

MOBILE AGENTS
IN NETWORKING
AND DISTRIBUTED
COMPUTING

Wiley Series in Agent Technology

Series Editor: Michael Wooldridge, University of Liverpool, UK

The ‘Wiley Series in Agent Technology’ is a series of comprehensive practical
guides and cutting-edge research titles on new developments in agent technol-
ogies. The series focuses on all aspects of developing agent-based applications,
drawing from the Internet, telecommunications, and Artificial Intelligence
communities with a strong applications/technologies focus.

The books will provide timely, accurate and reliable information about the
state of the art to researchers and developers in the Telecommunications and
Computing sectors.

Titles in the series:

Padgham/Winikoff: Developing Intelligent Agent Systems 0-470-86120-7 (June
2004)

Bellifemine/Caire/Greenwood: Developing Multi-Agent Systems with JADE
0-470-05747-5 (February 2007)

Bordini/Hübner/Wooldrige: Programming Multi-Agent Systems in Agent-
Speak using Jason 0-470-02900-5 (October 2007)

Nishida: Conversational Informatics: An Engineering Approach 0-470-02699-5
(November 2007)

Jokinen: Constructive Dialogue Modelling: Speech Interaction and Rational
Agents 0-470-06026-3 (April 2009)

Castelfranchi/Falcone: Trust Theory: A Socio-Cognitive and Computational
Model 0-470-02875-0 (March 2010)

Cao/Das: Mobile Agents in Networking and Distributed Computing
0-471-7516-0 (January or July? 2012)

MOBILE AGENTS
IN NETWORKING
AND DISTRIBUTED
COMPUTING

Edited by

Jiannong Cao

Sajal K. Das

Copyright r 2012 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,

except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without

either the prior written permission of the Publisher, or authorization through payment of the

appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to

the Publisher for permission should be addressed to the Permissions Department, John Wiley &

Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at

http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best

efforts in preparing this book, they make no representations or warranties with respect to the

accuracy or completeness of the contents of this book and specifically disclaim any implied

warranties of merchantability or fitness for a particular purpose. No warranty may be created or

extended by sales representatives or written sales materials. The advice and strategies contained

herein may not be suitable for your situation. You should consult with a professional where

appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other

commercial damages, including but not limited to special, incidental, consequential, or other

damages.

For general information on our other products and services or for technical support, please contact

our Customer Care Department within the United States at (800) 762-2974, outside the United

States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print

may not be available in electronic formats. For more information about Wiley products, visit our

web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Cao, Jiannong.

Mobile agents in networking and distributed computing / Jiannong Cao, Sajal K. Das.

p. cm—(Wiley series in agent technology ; 3)

ISBN 978-0-471-75160-1 (hardback)

1. Mobile agents (Computer software) 2. Electronic data processing—Distributed

processing. I. Das, Sajal K. II. Title.

QA76.76.I58C36 2012

006.3—dc23

2011017017

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

“To my wife, Miao Yan, for her tolerance, support and caring”
—Jiannong Cao

“To my professors�Late A. K. Choudhury (Calcutta University),
Lalit M. Patnaik (Indian Institute of Science, Bangalore), and

Narsingh Deo (University of Central Florida)�for their
mentoring and showing the beauty of research.”

—Sajal K. Das

CONTENTS

FOREWORD ix

PREFACE xi

CONTRIBUTORS xiii

PART I INTRODUCTION 1

1 Mobile Agents and Applications in Networking
and Distributed Computing 3

PART II PRINCIPLES OF APPLYING MOBILE AGENTS 17

2 Mobile Agent Communications 19

3 Distributed Security Algorithms for Mobile Agents 41

4 Mobile Agent Coordination 71

5 Cooperating Mobile Agents 93

PART III MOBILE AGENT BASED TECHNIQUES AND
APPLICATIONS 127

6 Network Routing 129

7 Resource and Service Discovery 161

8 Distributed Control 189

9 Distributed Databases and Transaction Processing 219

10 Mobile Agents in Mobile and Wireless Computing 243

vii

PART IV DESIGN AND EVALUATION 263

11 Naplet: Microkernel and Pluggable Design of Mobile Agent Systems 265

12 Performance Evaluation of Mobile Agent Platforms and
Comparison with Client–Server Technologies 299

Index 323

viii CONTENTS

FOREWORD

I have worked in the area of artificial intelligence, and specifically on challenges
in machine learning and data mining, for twenty years. Originally these chal-
lenges focused on theoretical and algorithmic issues. Eventually, I became
interested in applying these ideas to complex, real-world problems. Applied
AI and machine learning not only allows researchers like me to see tangible
benefits of the work, but it also introduces new algorithmic and theoretical
challenges that need to be tackled.

As AI algorithms scale, they no longer exist just in the virtual world but find
use in the real world. The result is that intelligent agents not only need to focus
on their own problems but need to interact with other agents. As this book
discusses, these agents may be components of a single system. Alternatively,
they may be independent agents that are cooperating in order to solve a larger
problem or they may actually be competing for resources. The agents may be
pieces of software or they could be physical beings such as humans or robots.
An intelligent agent may automatically discover a clever way to negotiate with
others and such an agent may even harness the capabilities of other agents to
boost its own performance.

I met Sajal Das, one of the editors of this book, when we both worked at the
University of Texas at Arlington. Sajal is an expert in mobile computing,
wireless networks, pervasive and distributed systems and has written numerous
books, conference and journal articles on this topic. Together, we decided to
tackle one particularly ambitious application of our respective fields: designing
a smart home. We designed our smart home to perceive the state of the
residents and physical surroundings, to reason about the state and its relation-
ship to the goal of the home, and to change the state of the home using
actuators in a way that achieved the goal of the home. Such a smart home relies
on many components at the physical and software levels that seamlessly share
information and work together to meet the goals of the home. These
components include sensors, controllers, interfaces, networks, databases,
machine learning algorithms, and decision-theoretic reasoners.

As an AI researcher, I find that practical application of AI and machine
learning techniques can at times be overshadowed by the hurdles we face in
trying to facilitate interaction and cooperation of our agents with others. This is
certainly true for smart homes. During the first year that we designed our
MavHome smart home, the bulk of the effort went into designing middleware
(based on agent technologies), communication methodologies, database

ix

support, and interfaces. Each of these components needed to be able to work in
a distributed fashion and cooperate with the other components in a seamless
manner. The next evolution of the smart home project, the CASAS smart
home, made even more effective use of mobile agent technology as described in
this book and so was able to be up and running with less design time and a
smaller software and physical footprint.

The danger of designing a real-world application is that the infrastructure of
the application can start to dominate the project. In the smart home example,
the design of communication and cooperation strategies can take over the
project and detract from our goal of designing a home with learning
and reasoning, rather than support this goal. The ideas expressed and
topics covered in this book are a valuable step in designing mobile agents.
The emphases on agent cooperation and transparent cooperation facilitate the
design of complex and multi-agent systems, while the discussion of routing,
resource discovery, and distributed security offer potential enhancements to
such systems.

I find the coverage of topics in this book timely and comprehensive. The
twelve chapters of the book present state of the art research, design methodol-
ogies and applications of mobile agents in the areas of networking and
distributed computing. These topics range from principles of applying mobile
agents for distributed coordination and communication to advanced mobile
agent models and algorithms to mobile agent security to important case studies
with implementation and performance evaluation.

I believe that this book will be valuable for researchers and practitioners
interested in intelligent agents and mobile computing. The book will provide
descriptions of cutting-edge research in technology in mobile agents and
distributed computing. It will also offer practical guidance for those who,
like me, want to see their ideas span the gap from concept to real-world
applications.

Diane J. Cook
Washington State University

Dr. Diane J. Cook is a Huie-Rogers Chair Professor in the School of Electrical
Engineering and Computer Science at Washington State University. Dr. Cook
received aB.S. degree inMath/Computer Science fromWheatonCollege in 1985,
a M.S. degree in Computer Science from the University of Illinois in 1987, and a
Ph.D. degree in Computer Science from the University of Illinois in 1990.
Her research interests include artificial intelligence, machine learning, graph-
based relational data mining, smart environments, and robotics. Dr. Cook is
an IEEE Fellow.

x FOREWORD

PREFACE

A mobile agent is a specific form of mobile code and has the features of mobi-
lity, autonomy, adaptability, and collaboration. It provides a paradigm and a
powerful tool for implementing various applications in a computer networking
environment. Over the past decades, the mobile agent technology has attracted
a lot of attention from researchers and practitioners, thus leading to the devel-
opment of theories, algorithms, systems, and platforms. Mobile agents indeed
provide a means to complement and enhance existing technology in various
application areas, such as information retrieval, e-commerce, parallel/distributed
processing, network management, distributed data mining, event detection, and
data aggregation in wireless sensor networks, to name a few.

In this book we focus on networking and distributed computing applications,
and investigate how mobile agents can be used to simplify their development
and improve systemperformance. For example, amobile agent can structure and
coordinate applications running in a networking and distributed computing
environment because the agent can reduce the number of times one site contacts
another and also help filter out non-useful information, thus reducing the con-
sumption of communication bandwidth. Taking advantage of being in a network
site and interacting with the site locally, a mobile agent allows us to design
algorithms that make use of up-to-date system state information for better
decision making. Moreover, a group of cooperating mobile agents can work
together for the purpose of exchanging information or engaging in cooperative
task-oriented behaviors. Agents can also support mobile computing by carrying
out tasks for amobile user temporarily disconnected from the (wireless) network.

Criticisms about mobile agents in the past were mainly concerned with the
performance and security issues. However, with the advent of computer net-
works, mobile devices, and system dependability over the last decade, it is
promising now to revisit these challenges and develop sound solution meth-
odologies. Recent development in emerging areas like cloud computing and
social computing also provides new opportunities for exploring the mobile
agent technology.

This book is intended as a reference for researchers and practitioners and
industry professionals, as well as postgraduate and advanced undergraduate
students studying distributed computing, wireless networking, and agent tech-
nologies. It provides a clear and concise presentation of major concepts,
techniques, and results in designing and implementing mobile agents based on
networking and distributed computing systems and applications. The book

xi

consists of 12 chapters divided into four parts: (i) introduction, (ii) principles of
applying mobile agents, (iii) mobile agent based techniques and applications,
and (iv) system design and evaluation.

We gratefully acknowledge all the authors for their excellent contributions.
We also thank Wiley’s editorial and production team – Diana Gialo, Simone
Taylor, Christine Punzo, and particularly Shanmuga Priya – for their dedicated
professional service. It has been a real pleasure to work with them. Finally,
we thank our respective families for their tremendous support and cheerful
tolerance of our many hours spent at work. We owe them this book.

Jiannong Cao, Hong Kong Polytechnic University
Sajal K. Das, The University of Texas at Arlington

xii PREFACE

CONTRIBUTORS

NIGEL BEAN, University of Adelaide

PAOLO BELLAVISTA, University of Bologna

GIACOMO CABRI, University of Modena and Reggio Emilia

JIANNONG CAO, Hong Kong Polytechnic University

PANOS K. CHRYSANTHIS, University of Pittsburgh

ANTONIO CORRADI, University of Bologna

ANDRE COSTA, University of Melbourne

SAJAL K. DAS, University of Texas at Arlington

ANURAG DASGUPTA, University of Iowa

XINYU FENG, State Key Laboratory for Novel Software Technology
at Nanjing University

PAOLO FLOCCHINI, University of Ottawa

SUKUMAR GHOSH, University of Iowa

CARLO GIANNELLI, University of Bologna

JIAN LU, State Key Laboratory for Novel Software Technology
at Nanjing University

EVAGGELIA PITOURA, University of Ioannina

RAFFAELE QUITADAMO, University of Modena and Reggio Emilia

GEORGE SAMARAS, University of Cyprus

NICOLA SANTORO, Carleton University

LUÍS MOURA SILVA, University of Coimbra

YUDONG SUN, Oxford University

XIANBING WANG, National University of Singapore

CHENG-ZHONG XU, Wayne State University

PING YU, State Key Laboratory for Novel Software Technology
at Nanjing University

xiii

PART I
Introduction

1 Mobile Agents and Applications in
Networking and Distributed
Computing

JIANNONG CAO

Department of Computing, Hong Kong Polytechnic University

SAJAL K. DAS

Department of Computer Science and Engineering, The University

of Texas at Arlington, USA

1.1 INTRODUCTION

Agent technology has evolved from two research areas: artificial intelligence
and distributed computing. The purpose of AI research is to use intelligent
computing entities to simplify human operations. An agent is just a computer
program targeting that purpose [1]. Distributed computing, on the other hand,
allows a complex task to be better executed by cooperation of several distrib-
uted agents on interconnected computers. So, networking and distribution
bring out the true flavor of software agent technology in terms of agent
autonomy, coordination, reactivity, heterogeneity, brokerage, and mobility.

Mobile agents refer to self-contained and identifiable computer programs
that can move over the network and act on behalf of the user or another
entity [2]. They can execute at a host for a while before halting the execution
and migrating to another host and resuming execution there. They are able to
detect the environment and adapt dynamically to changes. Mobile agents are
widely used for handling disconnected operations in distributed, mobile, and
wireless networking environments [3–6]. Also, many applications, including
network diagnostic, e-commerce, entertainment and broadcasting, intrusion
detection, and home health care, are benefited from the use of mobile agents
[7, 8].

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

3

The term mobile agent contains two separate and distinct concepts: mobility
and agency [9]. Some authors (e.g., [10]) classify a mobile agent as a special case
of an agent, while others (e.g., [11]) separate the agency from mobility. Despite
the differences in definition, most research on the mobile agent paradigm as
reported in the literature has two general goals: reduction of network traffic
and asynchronous interaction. Mobile agents can reduce the connecting
time and bandwidth consumption by processing the data at the source and
sending only the relevant results. By moving the agents to data-residing hosts,
they can reduce communication costs. On the other hand, mobile agents sup-
port asynchronous interaction. They can continue computations even if the
user that has started it, is no longer connected to the system. Mobile agents
have been proposed as an alternative to the client–server paradigm which
can be a more efficient and flexible mode of communication in certain appli-
cation areas (Figure 1.1). It has been recognized that mobile agents provide a
promising approach to dealing with dynamic, heterogeneous, and changing
environments, which is tendency of modern Internet applications.

A mobile agent has the following properties or capabilities [12, 13]:

Mobility Transport itself from host to host within a network. This is the
most distinguishing property from other kinds of agents. Note that a
moving agent will carry its identity, execution state, and program code so
that it can be authenticated and hence can resume its execution on the
destination site after the move. Mobility refers to a wide range of new
concepts.Migration is undoubtedly the most important of these concepts.
Migration allows an agent to move from one location to another. The
migration of a mobile agent requires the agent system to support execu-
tion stopping, state collection, data serialization and transfer, data
deserialization, and execution resuming. From this point of view, mobile
agents strongly rely on mobile code technology, which will be described in
detail later in this chapter.

Intelligence Interact with and learn from the environment and make
decisions. A most advanced agent should be able to decide its action

Client

Server Server

Client

Agent

Server

Client

Agent

Server

Client

Agent

Traditional Mobile agent-based

FIGURE 1.1 Mobile agent can reduce communication cost.

4 MOBILE AGENTS AND APPLICATIONS IN NETWORKING

based on its knowledge and the information it gets en route, and thus be
able to generate new knowledge from its experience.

Autonomy Take control over its own actions. An agent should be able to
execute, move, and settle down independently without supervision even in
long-term running.

Recursion Create child agents for subtasks if necessary. An important
concept is agent cloning: The agent can clone itself, that is, create a new
mobile agent that is a copy of the parent. A pure cloning operation
implies that the cloned agent has the same behavior (code) and the same
knowledge (data) as the parent agent. A postcloning operation can
initialize specific values in the cloned agent, which starts its life cycle in
the same execution environment as the parent. Its location can however
be different from the parent’s.

Asynchrony In a distributed computing environment, perform computation
concurrently and possibly on different sites. Also, performing computation
on behalf of its user, an agent is responsible for the task assigned by a user
and allows the user to offer and/or obtain resources and services in order to
finish the task. All these can be done asynchronously with the user’s action.

Collaboration Cooperate and negotiate with other agents. Complicated tasks
can be carried out by collaboration of a group of agents.

1.2 MOBILE AGENT PLATFORMS

A mobile agent platform (MAP) is a software package for the development and
management of mobile agents. It is a distributed abstraction layer that provides
the concepts and mechanisms for mobility and communication on the one
hand, and security of the underlying system on the other hand. The platform
gives the user all the basic tools needed for creating some applications based on
the use of agents. It enables us to create, run, suspend, resume, deactivate, or
reactivate local agents, to stop their execution, to make them communicate with
each other, and to migrate them.

Some agent standards enable interoperability between agent platforms so
that software agents can communicate and achieve their objectives according to
standardized specifications. The most popular agent standards are FIPA and
OMG-MASIF as discussed below.

1.2.1 FIPA

The Foundation for Intelligent Physical Agents (FIPA) was formed in 1996 to
produce software standards for heterogeneous interacting agents and agent-
based systems. Currently, FIPA appears to be the dominant standards orga-
nization in the area of agent technology. Important efforts have been made
to address the interoperability issues between the agent platforms. Figure 1.2

1.2 MOBILE AGENT PLATFORMS 5

presents the overall architecture of an agent system as specified by FIPA. The
message transport is the main underlying mechanism devoted to communica-
tion between agents based on Agent Communication Language (ACL); at
this stage, mobile agents are not supported. The message transport itself relies
on standard communication techniques used by distributed system frame-
works, such as Common Object Request Broker Architecture (CORBA) or
Java remote method invocation (RMI).

Both Agent Management System (AMS) and Directory Facilitator (DF) are
FIPA agents: the AMS is responsible for the core management activities of
the agent platform whereas the DF acts as a yellow page service. Agents are reg-
istered in theDFandcanbe localized from their typesbyother agents. In addition,
agent communication is ensured through theMessage Transport System (MTS),
including theMessage Transport Protocol (MTP) and the Agent Communication
Channel (ACC), which directly provide agents with specific services for commu-
nication. The ACCmay access information provided by the other agent platform
services such as the AMS and DF to carry out its message transport tasks.

1.2.2 OMG-MASIF

In 1997, the Object Management Group (OMG) released a draft version of
the Mobile Agent System Interoperability Facilities (MASIF) [14]. MASIF

Software

Agent platform

Agent
management

system

Agent platform

Agent
Directory
facilitator

Message transport system

Message transport system

Agent
communication

channel

Agent
communication

channel

FIGURE 1.2 Agent system reference model of FIPA.

6 MOBILE AGENTS AND APPLICATIONS IN NETWORKING

proposes a specification of the communication infrastructure as well as inter-
faces defined in an interface definition language (IDL) to access mobility
services in order to promote the interoperability and diversity of MAP. From
the interoperability and heterogeneity perspectives, OMG follows the same
objectives as FIPA. The objectives in terms of requirements and functionalities
are clearly different, however. Whereas FIPA is concerned with a message-
based communication infrastructure, MASIF has to take into account the
migration of the agent and must consequently focus on the way to dynamically
create the agent, that is, to instantiate a new object at the right place and with
the right class.

In Figure 1.3, the MASIF architecture appears to be a hierarchical organi-
zation of regions, agencies, and places [15]. The place is a context within an
agent system in which an agent can execute its tasks and provide local access
control to mobile agents. A place is associated with a location which consists of
the place name and the address of the agent system within which the place
resides. The agency represents the agent system itself or is the core part of the
agent system. At a higher level, the region is a set of agent systems that have
the same authority but are not necessarily of the same type.

Considering its origin, MASIF strongly relies on a CORBA architecture
and therefore on the ORB. The services provided by the region, agency, and
place are defined through IDL interfaces; the most important interfaces are
MAFFinder and MAFAgentSystem: the MAFFinder supports the localization
of agents, agent systems and places in the scope of a region or in the whole

Mobile agents

Region

Agency

Place

MAF
agent

system

MAF
finder

Object request broker (ORB)

Basic
agency
services

Enhanced
agency
services

FIGURE 1.3 General architecture of OMG-MASIF mobile agent system.

1.2 MOBILE AGENT PLATFORMS 7

environment; on the other hand, the MAFAgentSystem interface provides
operations for the management and transfer of agents. In MASIF, the agent’s
migration requires the transfer of the agent class so that the agent can be
properly instantiated.

1.3 REPRESENTATIVE MAPs

In the following, we briefly describe some representative MAPs.

1.3.1 IBM Aglets Workbench (1997–2001)

This is a Java MAP and library that eases the development of agent-based
applications. Originally developed at the IBM Tokyo Research Laboratory, the
Aglets technology is now hosted at sourceforge.net as an open-source project,
where it is distributed under the IBM Public License. Aglets is completely made in
Java, granting a high portability of both the agents and the platform. The aglet
represents the next leap forward in the evolution of executable content on the
Internet, introducing program code that can be transported along with state
information. Aglets are Java objects that can move from one host on the Internet
to another. That is, an aglet that executes on one host can suddenly halt execu-
tion, dispatch itself to a remote host, and resume execution there. When the aglet
moves, it takes along its program code as well as its data.

1.3.2 Agent Tcl (1994–2002, later known as D’Agents)

This does not formally specify a mobile agent model. Instead, a mobile agent is
understood as a program that can be written in any language and that accesses
features that support mobility via a common service package implemented as a
server. This server provides mobile agent–specific services such as state capture,
transfer facility, and group communication as well as more traditional services
such as disk access, screen access, and CPU cycle. The philosophy was that all
functionalities an agent ever wants are available in the server. Agent mobility
then only concerns closure, which is the Tcl script (or scripts). There are no
additional codes to load (i.e., no external references). In Agent Tcl, the state
capture of an agent is handled automatically and transparently to the pro-
grammer. However, it is unclear what this state capture includes. Since Tcl is a
script language, a frequent example given is that the executing script resumes
after the instruction for mobility has been executed. There is also a plan to
introduce process migration–like behavior such that the states of the agent
would continue to evolve as it moves from place to place. However, this trend
could have adverse effects in areas such as the complexity of the transfer
mechanism and cost, adverse effects that are still being dealt with in the more
traditional process migration.

8 MOBILE AGENTS AND APPLICATIONS IN NETWORKING

1.3.3 Grasshopper (1998)

The agent development platform launched by IKVþþ in August 1998,
enables the user to create a wealth of applications based on agent technology.
This platform is completely implemented in Java, a programming language
that has become widely known among programmers, giving them the
opportunity to work with Grasshopper without intensive further training.
Companies with an urgent need for true distributed systems can therefore
benefit almost immediately from the advantages of Java as well as from
Grasshopper’s unique suitability for such systems. Grasshopper is also the
first mobile agent environment that is compliant to the industry standard
supporting agent mobility and management (OMG-MASIF). This compliance
ensures compatibility with other agent environments or applications based on
the same standard, thus avoiding costly and time-consuming integration
procedures. From Grasshopper version 1.2 released in 1999, it is also com-
pliant with the specifications of the FIPA standards. Grasshopper can be used
in many different application contexts, telecommunications being one of the
most prominent application areas.

1.3.4 Concordia (1997)

This is another mobile agent framework built on Java. In Concordia an agent
is regarded as a collection of Java objects. A Concordia agent is modeled as a
Java program that uses services provided by a collection of server components
that would take care of mobility, persistence, security, communication,
administration, and resources. These server components would communicate
among themselves and can run in one or several Java virtual machines; the
collection of these components forms the agent execution environment (AEE)
at a given network node. Once arriving at a node, the Concordia agent accesses
regular services available to all Java-based programs such as database access,
file system, and graphics, as in Aglet. A Concordia agent is considered to have
internal states as well as external task states. The internal states are values of
the objects’ variables, while the external task states are the states of an itinerary
object that would be kept external to the agent’s code. This itinerary object
encapsulates the destination addresses of each Concordia agent and the
method that each would have to execute when arriving there. The designers of
Concordia claim that this approach allows greater flexibility by offering
multiple points of entry to agent execution, as compared to always executing
an “after-move” method as in Agent Tcl, or Aglet. This concept of an exter-
nally located itinerary is similarly supported in Odyssey via task object.
However, the infrastructure for management of these itinerary objects is not
clear from the publicly available literature on Concordia which has support for
transactional multiagent applications and knowledge discovery for collabo-
rating agents.

1.3 REPRESENTATIVE MAPs 9

1.3.5 In Mole (1997)

The agent is modeled as a cluster of Java objects, a closure without external
references except with the host system. The agent is thus a transitive closure
over all the objects to which the main agent object contains a reference. This
island concept was chosen by the designers of Mole to allow simple transfer of
agents without worrying about dangling references. Each Mole agent has a
unique name provided by the agent system which is used to identify the agent.
Also, a Mole agent can only communicate with other agents via defined
communication mechanisms which offer the ability to use different agent
programming languages to convert the information transparently when needed.
A Mole agent can only exist in a host environment call location that serves as
the intermediate layer between the agent and the operating system. Mole also
supports the concept of abstract location to represent the collection of dis-
tributed physical machines. One machine can contain several locations, and
locations may be moved among machines. Mole limits the abstract location to
denote a configuration that would minimize cost due to communication. Thus,
a collection of machines in a subnet is an acceptable abstract location, whereas
a collection of machines that spans cities is not. Mole proposed the concept of a
system agent which has full access to the host facilities. It is through interacting
with these system agents that a given Mole agent (mobile) achieves tasks. A
Mole mobile agent can only communicate with other agents (systems and
mobile agents) and has no direct access to resources. The uniqueness of this
agent model is its requirement for closure of objects, whereas other facilities
such as static agent and communication are conceptually similar to other
systems. What is unclear is how the Mole system enforces the closure
requirement and whether there are mechanisms to handle closure management
automatically. The concept of closure is technically convenient, but without
helping tools it can be error prone and thus limiting.

1.3.6 The Odyssey

Project shares (or rather inherits) many features from a previous General
Magic product: Telescript. However, the amount of open documentation on
the Odyssey system is rather terse; therefore, its description is limited. The
Odyssey mobile agent model also centers on a collection of Java objects, more
similar in concept to Aglet than to Concordia or Mole. The top-level classes of
the Odyssey system are Agent, Worker, and Place. Worker is a subclass of
Agent and represents an example of what a developer can do with the Agent
class. A Place class is an abstraction of where an Odyssey agent exists and
performs work. A special facility such as directory service is associated with
Place. Odyssey agents communicate using simple method calls, and do not
support high-level communication. However, Odyssey agents can form and
destroy meeting places to exchange messages. There is also an undocumented
feature regarding global communication to a “published” object, but this

10 MOBILE AGENTS AND APPLICATIONS IN NETWORKING

feature is not officially supported. The distinctive feature of Odyssey is its
design to accommodate multiple transport mechanisms. Currently, Odyssey
supports Java RMI, Microsoft Distributed Component Object Model (DCOM),
and CORBA Internet Inter-ORB Protocol (IIOP). However, the current release
of Odyssey does not add new or distinctive features from its Telescript prede-
cessor, and the mobile agent model is not yet stable.

1.4 SOME APPLICATIONS

All the above mobile agent platforms are targeted at providing execution
environment and programming support for developing applications. Primitive
language-level operations required by programmers for developing agent-based
applications are identified. They are (1) basic agent management functions, such
as creation, dispatching, cloning, and migration; (2) agent-to-agent communi-
cation and synchronization functions; (3) agent monitoring and control func-
tions, such as status queries, recall, and termination of agents; (4) fault tolerance
functions, such as check pointing, exception handling, and audit trails; and
(5) security-related functions, such as encryption, authentication, signing,
and data sealing.

As mentioned before, many mobile agent–based applications have been
studied. Readers can find surveys on various types of applications [7, 8]. Based
on earlier mobile agent platforms, several new platforms have been developed
to meet the requirements of newly emerging computing technologies and
applications, including mobile computing, ad hoc networking, and ubiquitous
or pervasive computing [6, 16–20].

For distributed and network computing, mobile agent technology has been
used to design both system functions and applications. This book includes
excellent tutorial and advanced materials that cover a wide range of topics.
Here, we just describe one of the typical mobile agent applications that can help
reduce network communication cost. The mobile agent is particularly attractive
as a promising technology for information retrieval in large-scale distributed
systems like the Internet. The mobile agent acts as task-specific executable
code traveling the relevant information source nodes to retrieve data. Several
approaches have been proposed with both experimental and analytical
evaluations [21–23].

More recently, the mobile agent has been used in designing dynamic and ad
hoc systems. It enables the system to have the ability to deal with the uncer-
tainty in a dynamic environment. For example, works have been reported
[24, 25] on using mobile agents for monitoring, traffic detection, and man-
agement in highly dynamic distributed systems. Other examples include using
mobile agents for ad hoc networks [6, 26].

Mobile agents are also being used for developing applications for wireless
sensor networks (WSNs). Various operations and system functions in WSNs
can be designed and implemented using mobile agents, which can greatly

1.4 SOME APPLICATIONS 11

reduce the communication cost, especially over low-bandwidth links. Efficient
data dissemination and data fusion in sensor networks using mobile agents
have been proposed [4, 27, 28]. Solutions to location tracking in sensor net-
works using mobile agents are also proposed [29]. Location tacking aims to
monitor the roaming path of a moving object. There are two primary chal-
lenges: no central control mechanism and backbone network in such envi-
ronment and the very limited wireless communication bandwidth. A mobile
agent can assist in tracking such a mobile object by choosing to migrate in the
sensor closest to the object. For programming support, mobile agent–based
WSN middleware has been developed as a better foundation for rapidly
developing flexible applications for WSNs [5, 30]. Also WSN-based structural
health monitoring applications use mobile agent–based network middleware
[31] to enhance flexibility and to reduce raw data transmission. Design of
wireless sensor networks for structural health monitoring presents a number of
challenges, such as adaptability and the limited communication bandwidth. In
[31], an integrated wireless sensor network consisting of a mobile agent–based
network middleware and distributed high computational power sensor nodes
has been developed. The mobile agent middleware is built on a mobile agent
system called Mobile-C that allows a sensor network to move computational
programs to the data source. With mobile agent middleware, a sensor network
is able to adopt newly developed diagnosis algorithms and make adjustments in
response to operational or task changes.

1.5 OVERVIEW OF THE BOOK

As briefly described in the previous sections, there exists many applications to
benefit from mobile agent technology such as e-commerce, information
retrieval, process coordination, mobile computing, personal assistance, and
network management. Still more and more applications are switching to use
mobile agents due to their flexibility and adaptability. Also their abilities of
asynchronous and autonomous execution make connectionless execution
possible, which might be extremely valuable in the mobile computing context.
By moving computation to data rather than data to computation, mobile
agents can also reduce the flow of raw data in the network and therefore
overcome network latency, which is especially critical to real-time applications.
Additionally, other distinguishable features, such as fault tolerance, natural
heterogeneity, and protocol encapsulation enhance the utilization and appli-
cation horizon of the mobile agent technology over traditional approaches.

This book focuses on cutting-edge research and applications of mobile agent
technology in the areas of networking and distributed computing. The book is
divided into four parts: (1) introduction, (2) principles of applying mobile
agents to networking and distributed computing, (3) mobile agents techniques
as applied to networking and distributed computing, and (4) design and
evaluation.

12 MOBILE AGENTS AND APPLICATIONS IN NETWORKING

The first part introduces the idea of mobile agents and discusses their
potential as an important tool in networking and distributed computing.

The second part will show how to apply mobile agents to networking and
distributed computing. In this part, we cover mobile agent communication,
coordination, and cooperations as well as mobile agent security mechanisms.
Agents must communicate with each other in order to solve problems together.
Communication has been viewed between agents as planned actions that are not
aimed at changing the environment; rather the aim is to change the beliefs and
intentions of the agent to whom the message is sent. This implies that social
agents should have a framework with which to analyze each other’s behavior.
Mobile agent coordination is mainly required for distributed programs con-
sisting of a team of cooperating agents, where each agent is responsible for
performing part of a common, global task. Teams of mobile agents are likely to
become the means to implement several distributed and networked applications
in the future. For example, one possible application is the search for some
information in the network to be performed in parallel by a group of agents
that will not visit the same host more than once. Cooperation between a col-
lection of mobile agents is required for exchanging information or for engaging
in cooperative task-oriented behaviors. In addition to the advantages of the
mobile agent, using a cooperating mobile agent allows us to provide clear and
useful abstractions in building network services through the separation of
different concerns. Furthermore, mobile agents can be used to perform intru-
sion detection. With mobile agent technology, the collection nodes, internal
aggregation nodes, and command and control nodes do not have to continu-
ously reside on the same physical machine. For example, a mobile agent may
function as an aggregation node and move to whatever physical location in the
network is best for its purposes.

The third part of the book, describes in detail the techniques of mobile
agents in networking. Especially we discuss the applications of agents in net-
work routing, resource and service discovery, distributed control, distributed
databases and transaction processing, and wireless and mobile computing.
Mobile agents can have interesting applications at the network infrastructure
layer. Agents can adapt the network infrastructure to changing needs over
time and can facilitate network routing. Mobile agents can also dynamically
discover resources they need to accomplish their tasks. When an agent arrives
at a site, it should be able to discover the services offered at that site or things
it could do. Distributed control using mobile agents is a useful approach for
load balancing, deadlock detection, mutual exclusion, and so on. Character-
istics of mobile agents make them useful in achieving load balance in the whole
system. We also present some distributed algorithms using mobile agent sys-
tems for mutual exclusion, deadlock detection, consensus, and so on. Using
transactions for managing large data collections will guarantee the consistency
of data records when multiple users or processes perform concurrent opera-
tions on them. Owing to the heterogeneous and autonomous environment
that the mobile agents operate in and their typical longevity, agent-based

1.5 OVERVIEW OF THE BOOK 13

transactions have specific requirements. We discuss those requirements and
possible recovery mechanisms. With the advent of mobile wireless commu-
nications and the growth of mobile computing devices, such as laptop com-
puters, personal digital assistants (PDAs), and cell/smart phones, there is a
growing demand for mobile agent–based mobile computing middleware and
the mobile agent platforms for wireless hand-held devices and pervasive
computing [32].

In the final part, we will discuss the means of measuring performances of
mobile agent systems during the development of agent code, such as capturing
the overhead of local agent creation, point-to-point messaging, and overhead
for agent roaming. We can a keep track of the execution-related performances
of mobile agents, such as the migration performance.

REFERENCES

1. A. Lingnau, O. Drobnik, and P. Domel, An HTTP-based infrastructure for mobile

agents, WWW J., Proceedings 4th International WWW Conference, Vol. 1, Dec.

1995, pp. 461–471.

2. K. Rothermel and R. Popescu-Zeletin, Eds., Mobile agents, Lecture Notes in

Computer Science, 1219, Springer, 1997.

3. J. Cao, Y. Sun, X. Wang, and S. K. Das, Scalable load balancing on distributed web

servers using mobile agents, J. Parallel Distrib. Comput., 63(10):996–1005, Oct.

2003.

4. M. Chen, S.Gonzalez, andV. C.M. Leung, Applications and design issues formobile

agents in wireless sensor network, IEEE Wireless Commun., 14(6):20–26, Dec. 2007.

5. C.-L. Fok, G.-C. Roman, and C. Lu, Agilla: a mobile agent middleware for self-

adaptive wireless sensor networks, ACM Trans. Auton. Adapt. Syst., 4(3), July 2009.

6. J. Park, H. Yong, and E. Lee, A mobile agent platform for supporting ad hoc

network environment, Int. J. Grid Distrib. Comput., 1(1), 2008.

7. D. Milojicic, Mobile agent applications, IEEE Concurrency, July–Sept. 1999.

8. A. Outtagarts, Mobile agent-based applications: A survey, IJCSNS Int. J. Comput.

Sci. Network Security, 9(11), Nov. 2009.

9. V. A. Pham andA. Karmouch, Mobile software agents: An overview, IEEE Commun.

Mag., 36(7):26–37, July 1998.

10. H. S. Nwana and N. Azarmi, Eds., Software agents and soft computing: Towards

enhancing machine intelligence, Lecture Notes AI Series, 1198, Springer, 1997.

11. J. Vitek and C. Tschudin, Eds., Mobile object systems: Towards the programmable

internet, Lecture Notes in Computer Science, 1222, Springer, 1997.

12. J. White, Prospectus for an open simple agent transfer protocol. White paper,

General Magic, online, 1996.

13. A. Piszcz, A brief overview of software agent technology. White paper, The MITRE

Corporation, McLean, VA, 1998.

14 MOBILE AGENTS AND APPLICATIONS IN NETWORKING

14. GMD Fokus, Mobile agent system interoperability facilities specification, OMG TC

Document orbos/97-10-05, Nov. 1997. (OMG homepage - www.omg.org)

15. C. Baumer, M. Breugst, S. Choy, and T. Magedanz, Grasshoper: a universal agent

platform based on OMGMASIF and FIPA Standards, http://www.ikv.de/products/

grasshopper.html.

16. J. Cao, D. C. K. Tse, A. T. S. Chan, PDAgent: A platform for developing and

deploying mobile agent-enabled applications for wireless devices, in Proceedings of

2004 International Conference on Parallel Processing (ICPP’2004), Montreal,

Quebec, Canada, Aug. 2004, pp. 510–517.

17. F. Bagci, J. Petzold, W. Trumler, and T. Ungerer, Ubiquitous mobile agent system

in a P2P-Network, paper presented at the UbiSys-Workshop at the Fifth Annual

Conference on Ubiquitous Computing, Seattle, WA, Oct. 12–15, 2003.

18. M. Kumar, B. Shirazi, S. K. Das, B. Sung, D. Levine, and M. Singhal, PICO:

A middleware framework for pervasive computing, IEEE Pervasive Comput.,

2(3):72–79, July–Sept. 2003.

19. J. R. Kim and J. D. Huh, Context-aware services platform supporting mobile agents

for ubiquitous home network, in Proceedings of the 8th International Conference on

Advanced Communication Technology (ICACT’2006), Phoenix Park, Gangwon-Do,

Korea, February 20–22, 2006.

20. G. S. Kim, J. Kim, H.-j. Cho, W.-t. Lim, and Y. I. Eom, Development of a

lightweight middleware technologies supporting mobile agents, Lecture Notes in

Computer Science, Vol. 4078, 2009.

21. S. Pears, J. Xu, C. Boldyreff, Mobile agent fault tolerance for information

retrieval applications: An exception handling approach, in Proceedings of the

6th International Symposium on Autonomous Decentralized Systems (ISADS’03),

2003.

22. W. Qu, M. Kitsaregawa, and K. Li, Performance analysis on mobile-agent based

parallel information retrieval approaches, in Proceedings of 2007 IEEE International

Conference on Parallel and Distributed Systems, Dec. 5–7, 2007.

23. W. Qu, W. Zhou, andM. Kitsaregawa, An parallel information retrieval method for

e-commerce, Int. J. Comut. Syst. Sci. Eng., 5:29–37, 2009.

24. B. Chen, H. H. Cheng, and J. Pelen, Integrating mobile agent technology with multi-

agent systems for distributed traffic detection and management, Transport. Res.

Part-C., 17, 2009.

25. J. Ahn, Fault tolerant mobile-agent based monitoring mechanism for highly

dynamic distributed networks, Int. J. Comput. Sci. Iss., 7(3):1–7, May 2010.

26. G. Stoian, Improvement of handoff in mobile WiMAX network using mobile agent,

in Latest Trends in Computers, Vol. 1, WSEAS Press, 2010, pp. 300–305.

27. Q. Hairong, S. Iyengar, and K. Chakrabarty, Multiresolution data integration using

mobile agents in distributed sensor networks, IEEE Trans. Syst. Man Cybernet.,

31(3):383–391, August 2001.

28. Q. Wu, N. S. V. Rao, and J. Barhen, On computing mobile agent routes for

data fusion in distributed sensor networks, IEEE Trans. Knowledge Data Eng.,

16(6):740–753, June 2004.

REFERENCES 15

http://www.omg.org
http://www.ikv.de/products/grasshopper.html
http://www.ikv.de/products/grasshopper.html

29. Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang, Location tracking in

a wireless sensor network by mobile agents and its data fusion strategies, Comput.

J., 47(4):448–460, July 2004.

30. C.-L.Fok,G.-C.Roman, andC.Lu,Mobile agentmiddleware for sensor networks:An

application case study, Proceedings of the 4th International Symposium on Information

Processing in Sensor Networks (IPSN), Los Angeles, CA, 2005, pp. 382–287.

31. B. Chen and W. Liu, Mobile agent computing paradigm for building a flexible

structural health monitoring sensor network, Comput.-Aided Civil Infrastruct. Eng.,

25(7):504–516, October 2010.

32. Y. Feng, J. Cao, I. Lau, Z. Ming, and J. Kee-Yin Ng, A component-level self-

configuring personal agent platform for pervasive computing, Int. J. Parallel,

Emergent Distrib. Syst. 26(3):223–238, June 2011.

16 MOBILE AGENTS AND APPLICATIONS IN NETWORKING

PART II
Principles of Applying Mobile Agents

2 Mobile Agent Communications

JIAN LU and XINYU FENG

State Key Laboratory for Novel Software Technology at Nanjing University,

Nanjing, Jiangsu, P.R. China

2.1 INTRODUCTION

Mobile agents are regarded as the future of distributed computing. They are
promising to offer a unified and scalable framework for applications in widely
distributed heterogeneous open networks, such as electronic commerce, parallel
computing and information retrieval. Among essential features of mobile
agents, communication is a fundamental ability that enables mobile agents to
cooperate with each other by sharing and exchanging information and partial
results and collectively making decisions.

Much work on agent communication languages, such as Knowledge Query
and Manipulation Language (KQML) [1, 2] or Foundation for Intelligent
Physical Agents (FIPA) Agent Communication Language (ACL) [3], has been
proposed. However, in this chapter, we do not introduce the common semantic
layer for knowledge sharing. Instead we focus our discussion on the underlying
transportation layer of interagent communication and are concerned solely
with the delivery of opaque application data to a target agent, which is closer to
the tradition of research on distributed systems.

Although process communication has been a cliché in distributed systems
research, the presence of mobility raises a number of new challenges in
designing message delivery protocols for effective and efficient communications
between mobile agents. In designing such a protocol, two fundamental issues
must be addressed: (1) tracking the location of the target mobile agent and
(2) delivering the message reliably to the agent. To solve these two problems, a
wide range of message delivery protocols have been proposed for agent
tracking and reliable message delivery. Some representative research works are
introduced and discussed in this chapter.

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

19

The rest of this chapter is organized as follows. Section 2.2 argues the
importance of remote communications between mobile agents. Section 2.3
presents an analysis of the requirements of message delivery protocols for
mobile agents. Section 2.4 describes several schemes for communication
between mobile agents. Section 2.5 introduces the mailbox-based framework
and describes some of its meaningful special cases. The final section provides
some concluding remarks and some recent works for future reading.

2.2 IMPORTANCE OF REMOTE COMMUNICATION
BETWEEN MOBILE AGENTS

The typical use of a mobile agent paradigm is for bypassing a communication
link and exploiting local access to resources on a remote server. Thus one could
argue that, all in all, communication with a remote agent is not important and a
mobile agent platform should focus instead on the communication mechanisms
that are exploited locally, that is, to get access to the server or to communicate
with the agents that are colocated on the same site. Many mobile agent systems
provide mechanisms for local communication, using some sort of meeting
abstraction as initially proposed by Telescript [4], event notification for group
communication [5, 6], or, more recently, tuple spaces [7, 8].

Nevertheless, as we will argue, remote interagent communication is also a
fundamental facility in mobile agent platforms. Its necessity can be shown from
the following aspects:

1. The mobile computing paradigm makes good compensation to tradition-
al distributed computing, which is based on message passing or remote
procedure call (RPC), but it cannot completely replace the traditional
computing mode. Although the mobility of agents has the potential
benefits of reducing network traffic and overcoming network latency,
these benefits are obtained at the expense of transmitting the state and
code of the mobile agent across the network. If the network traffic caused
by agent migration is larger than the cost of sending requirements to
remote services and receiving the results from the remote server, message
passing will be more efficient in terms of network traffic than agent
mobility. Experiments [9�11] have shown that in many scenarios the
most efficient way is to combine message passing with agent mobility.

2. Mobile agent platforms can be used as general-purpose distributed
computing middleware, which combine mobility with message passing
naturally. Since mobile agents are generally computer and transport layer
independent (dependent on only their execution environments), mobile
agent technology can also be used to deploy distributed systems easily
over a heterogeneous network, in which an agent can be an encapsulated
component of the system and not necessarily mobile (called a stationary
agent). From this point of view, message passing between remote
agents, the most popular communication mode in traditional distributed

20 MOBILE AGENT COMMUNICATIONS

computing, should be an indispensable mechanism in mobile agent
platforms.

3. In many applications cooperating mobile agents need to exchange infor-
mation and partial results, collectively making decisions while migrating
around the network. For instance, when using mobile agents for informa-
tion retrieval over the network, it is efficient for cooperating agents to share
the partial results while each of them searches their subarea, so that the
search space can be considerably reduced [12]. In another example, a
mobile agent could visit a site and perform a check on a given condition. If
the condition is not satisfied, the agent could register an event listener
with the site. This way, while the mobile agent is visiting other sites and
before reporting its results, it could receive notifications of state changes
in the sites it has already visited and decide whether a second visit is
warranted. Another application can be find in [13, 14].

2.3 REQUIREMENTS ANALYSIS OF COMMUNICATION
BETWEEN MOBILE AGENTS

In this chapter, we choose message passing as the communication mechanism
we adapt to mobility, because it is a basic and well-understood form of com-
munication in a distributed system. This incurs no loss of generality because
more complex mechanisms such as RPC and method invocation are easily built
on top of message passing.

Although the interprocess message has been a cliché in distributed systems
research, agent mobility raises a number of new challenges in designing message
delivery mechanisms for effective and efficient communications between mobile
agents.

1. Location Transparency Since a mobile agent has its autonomy to move
from host to host, it is unreasonable, if not impossible, to require that agents
have a priori knowledge about their communication peers’ locations before
they send messages. Therefore, the first requirement of a practical mobile agent
communication protocol is to allowmobile agents to communicate in a location-
transparent way, that is, an agent can send messages to other agents without
knowing where they reside physically. The message delivery protocol, therefore,
is required to keep track of the location of mobile agents.

2. Reliability A desirable requirement for any communication mechanism is
reliability. Programming primitives that guarantee that the data sent effectively
reach the communication target, without requiring further actions by the
programmer, simplify greatly the development task and lead to applications
that are more robust.

In traditional distributed systems, reliability is typically achieved by provid-
ing some degree of tolerance to faults in the underlying communication link or
in the communicating nodes. However, fault tolerance techniques are not
sufficient to ensure reliability in systems that exhibit mobility. Because mobile

2.3 REQUIREMENTS ANALYSIS OF COMMUNICATION 21

agents are typically allowed to move freely from one host to another according
to some a priori unknown pattern, it is difficult to ensure that the data
effectively reach the mobile agent before it moves again. If this condition is
not guaranteed, data loss may occur. Thus, the challenge to reliable communi-
cation persists even under the assumption of an ideal transport mechanism,
which itself guarantees only the correct delivery of data from host to host
despite the presence of faults. It is the sheer presence of mobility, and not
possibility of faults, that undermines reliability.

3. Efficiency The cost of a protocol is characterized by the number of
messages sent, size of the messages, and distance traveled by the messages. An
efficient protocol should attempt to minimize all these quantities. More
specifically, a protocol should efficiently support two operations: “migration,”
which facilitates themove of an agent to a new site, and “delivery,” which locates
a specified agent and delivers a message to it. The objective of minimizing
the overhead of these two operations results in conflicting requirements [15].
To illustrate this trade-off, consider the two extreme strategies, namely
full-information strategy, in which every host in the network maintains com-
plete up-to-date information about the whereabouts of every agent, and the
no-information strategy, which does not require any update of information for
mobile agents during migration. Clearly, the former strategy makes the delivery
operation cheap, but the migration operation becomes very expensive because it
is necessary to update the location information at every host. With the latter
strategy, the migration operation has a zero cost but the delivery operation has
a very high overhead because it requires searching over the whole network. In
general, a protocol should perform well for any or some specific communication
and migration pattern, achieving a balance of the trade-off between the costs
of migration and delivery.

4. Asynchrony Here, the term asynchrony includes two aspects of meanings:
asynchronous migration and asynchronous execution. The former means
that the agent can freely migrate to other hosts whenever necessary. Although
coordination of message forwarding and agent migration is necessary to
guarantee reliable message delivery, agent mobility should not be overcon-
strained by frequent and tight synchronization. The latter means the agent is
independent of the process that created it and the agent home can be
disconnected as soon as the agent is transferred. The mobile agent’s asynchro-
nous execution should not be restricted by heavily relying on the agent home
for locating the agent and delivery of every message to the agent. In one word,
since asynchrony is regarded as an important advantage of the mobile agent
paradigm [16, 17], it is desirable that the protocol can keep the asynchrony of
both migration and execution so that little or no offset of the merits of mobile
agent technology will be introduced.

5. Adaptability Different applications may have different requirements and
thus different emphasis on the above issues. In some applications, asynchrony
is favored and thus the agent home should not be relied as the sole location
server. In other applications, reliability is more important so synchronization is

22 MOBILE AGENT COMMUNICATIONS

needed. Different interagent communication and agent migration patterns may
also have different implications on the update and search cost. Although
protocols can be designed for specific applications to achieve optimal perfor-
mance, it is desirable to have an adaptive protocol in a general-purpose mobile
agent system, which can suit as many kinds of applications as possible.

These requirements can be served as a guideline for the design of the mobile
agent communication protocols, which will be presented in the following
sections.

2.4 SEVERAL SCHEMES FOR COMMUNICATION
BETWEEN MOBILE AGENTS

As analyzed above, the message delivery protocol for mobile agents should
satisfy the requirements of location transparency, reliability, efficiency, asyn-
chrony, and adaptability. Location transparency and reliability are two basic
requirements of an effective protocol. More specifically, to satisfy these two
requirements, the message delivery protocol should be able to:

1. Identify communicating agents in a globally unique fashion. The agent
ID should not change whenever the agent migrates to other hosts.

2. Map the ID of the receiver agent to its current address. To delivermessages
to an agent, the underlying transport layer must know the current address
of the receiver. Since the agent ID does not contain the location informa-
tion of the agent, the mobile agent platform should support agent-tracking
mechanisms which map the agent ID to its current location.

3. Deliver the message reliably to its target agent. This process can be done
either in parallel with agents tracking or in a second phase after the address
has been received. In both cases, the message delivery scheme should
overcome the message loss or chasing problem caused by agent migration.

In what follows, we provide a review of related work on these three design
issues. Work to meet other requirements, such as efficiency and adaptability, is
also surveyed.

2.4.1 Naming Scheme

There are two basic requirements of the naming scheme of mobile agents:

1. Since a mobile agent can migrate from one host to another, the agent
should be identified in a globally unique fashion.

2. To let the mobile agents communicate in a location-transparent way,
the agent ID should remain unchanged during its life cycle, even if the
physical address of the agent has changed.

2.4 SEVERAL SCHEMES FOR COMMUNICATION BETWEENMOBILE AGENTS 23

The usual way to identify a mobile agent is to append the name of the agent’s
origin host (i.e., agent home) with its title (a free-form string used to refer to this
agent) [18, 19]. The name of the agent home can be either its Internet Protocal
(IP) address or its uniform resource locator (URL). In both cases no two hosts
should have the same name. Thus it is impossible for agents born at different
agent platforms to have the same ID. For agents created at the same host, the
host is responsible for managing the name space to ensure that each agent
created in it has a unique title. Since the name of the agent home and the title of
the agent will not be affected by the physical location of the agent, the ID of the
agent will remain unchanged during its life cycle (we assume that the name of
the agent home will not change during the agent’s life cycle).

We adopt this naming scheme in this chapter.

2.4.2 Tracking Mechanisms

The task of the tracking mechanisms is to obtain the current location of mobile
agents. With the presence of mobility in distributed systems, many mobile unit
tracking schemes have been proposed in the last several years in different
contexts, including mobile agents, mobile and wireless communications, and
wide-area distributed systems. According to the organization of location ser-
vers, the major schemes can be categorized into central server, forwarding
pointers, broadcast, and hierarchical location directory.

1. Central-Server Schemes The central-server scheme makes use of a loca-
tion server to keep track of the physical location of a mobile object. There are
several variations. For example, Mobile IP [20], which is designed for routing
IP packets to mobile hosts, uses the home server scheme, where a mobile host
registers its care-of-address with its home agent every time it moves. All the IP
packets to the host are sent to the home agent, which forwards the packets to
the host. This scheme is also used in IS-41 [21] for personal communication
service (PCS) as well as in mobile agent systems [6, 22] and distributed systems.

The central-server scheme is simple to implement and has less communica-
tion overhead for locating a mobile object. However, it incurs large overhead of
updating the locations and delivering messages. The server can be a bottleneck
of performance if the number of mobile objects is growing and communication
and migration are frequent. It can also be a single point of failure. The scheme
does not support locality of mobile object migration and communication, that
is, migration and communication involve the cost of contacting the server,
which can be far away. This is the well-known triangle routing problem [23].
Cache-based strategies [24, 25] are proposed to avoid the triangle routing
problem. If a cache miss occurs, the server is contacted for a new location. In
the Internet Mobile Host Protocol (IMHP) [23], packets are forwarded along
the forwarding address left by the mobile host if a cache “miss” occurs. All
these protocols do not handle message loss caused by mobility.

24 MOBILE AGENT COMMUNICATIONS

2. Forwarding-Pointer Schemes In the forwarding-pointer-based schemes for
tracking mobile objects [26�28], each host on the migration path of an object
keeps a forwarding pointer pointing to the next host on the path. Each sender
knows the home of the target object. Messages are sent to the agent home and
forwarded to the target object along the forwarding pointers.

The forwarding-pointer scheme is also easy to implement and incurs no
location registration overhead. However, the scheme cannot guarantee message
delivery because a message may follow a mobile object, which frequently
migrates, leading to a race condition. Furthermore, it is not practical for a large
number of migrations to distinct hosts (a chain of pointers is growing,
increasing the cost of message delivery). Some path compression methods
can be used to collapse the chain, for example, movement based and search
based. In the former case the mobile object would send backward a location
update after performing a number of migrations, in the latter case after
receiving a number of messages (i.e., after a number of message delivery
operations occur). For instance, a search-based path compression technique is
proposed in [26]. After a message is routed to the target object along the chain,
an Update_Entry message is sent back along the chain and forwarding pointers
kept in the nodes of the chain are updated. A similar algorithm has been used
in Emerald [29], where the new forwarding address is piggybacked onto the
reply message in the object invocation.

3. Broadcast Schemes There are three variants of the broadcast scheme, that
is, query broadcast, data broadcast, and notification broadcast. The first two
are proposed from the perspective of the message sender. In the query
broadcast scheme, the message sender sends a query message to all the hosts
in the system for the location of the receiver. After receiving the response from
the host at which the receiver resides, the sender sends the message to the
location obtained from the response. In the data broadcast scheme the sender
broadcasts the message directly to all the hosts in the system. The third is
proposed from the perspective of the receiver. After migration the mobile agent
broadcasts its new location to all the hosts in the system.

Broadcast schemes have less reliance on the agent home for agent tracking
or message forwarding; thus they can maintain the disconnected operation
ability of mobile agents. They can be implemented in the local Internet domain
or the local Ethernet. Broadcasts can be accomplished efficiently in bus-based
multiprocessor systems. They are also used in radio networks. However,
because of the large communication overhead, it is impractical to broadcast
in large-scale networks [30].

4. Hierarchical Schemes In the hierarchical schemes, a treelike hierarchy of
servers forms a location directory [similar to a domain name system (DNS)].
Each region corresponds to a subtree in the directory. For each agent there
is a unique path of forwarding pointers that starts from the root and ends at
the leaf that knows the actual address of the agent. Messages to agents are
forwarded along this path. These kinds of schemes and their variants have been

2.4 SEVERAL SCHEMES FOR COMMUNICATION BETWEENMOBILE AGENTS 25

used to track mobile users [15, 30, 31], objects [32], and agents [18, 33]. Krishna
et al. [31] explored different update and search strategies that can be used in the
hierarchical scheme.

The hierarchical scheme scales better than forwarding pointers and central
servers. It supports locality of mobile object migration and communication.
However, the hierarchy is not always easy to construct, especially in the
Internet environment. The hierarchical scheme itself cannot guarantee message
delivery. Messages might also chase their recipients under this scheme.

Readers are referred to [34, 35] for excellent surveys of the above techniques.

2.4.3 Efforts on Reliable Message Routing

Tracking mechanisms can map the agent’s location-independent ID to its
current location. However, they are not sufficient to guarantee message deliv-
ery. As discussed above, even though the sender knows the current location of
the receiver, the receiver may migrate to other hosts during message trans-
mission. Various approaches have been proposed to overcome message loss
caused by migration of recipients.

1. Forwarding-Pointer Scheme The idea is the same with the one introduced
in Section 2.4.2. Before migration, the mobile object leaves a pointer in its
current host pointing to the target host. When a message is sent to an obsolete
address of the recipient (this address can be obtained by any of the tracking
schemes introduced in Section 2.2), the message is routed along the forwarding
pointer. The forwarding-pointer scheme is often used in combination with
address caching. A case in point is IMHP [23].

Although messages can be routed along the forwarding pointer, there is not
an upper bound of the number of hops a message takes before it reaches the
recipient. If the recipient migrates frequently, the message may keep chasing
the recipient and could not be received until the death of the recipient. There-
fore, the forwardingpointer canonlypartially overcome themessage loss causedby
agent mobility and cannot guarantee reliable message delivery (message routing).

2. Resending-Based Scheme To implement reliable message delivery for
mobile objects, resending-based Transmission Control Protocol (TCP)�like
protocols [36�38] are proposed. If a message is missed because of the migration
of the recipient, the sender can detect the message loss and resend the message to
the new address of the recipient. Using TCP-like slide windowmechanism, these
protocols can not only overcome message loss caused by both migration of
recipients and faults of the networkbut alsomaintain the first in�first out (FIFO)
order ofmessage delivery.However, as in the forwarding-based scheme,when the
recipient migrates frequently, there is no upper bound of the number of message
resending. Therefore, it cannot satisfy our requirement of reliability.

3. Broadcast If the sender maintains an obsolete address of the recipient and
the message sent to that address could not be delivered to the recipient, the
message will be broadcasted to all the hosts in the system. This idea is similar to
the data broadcast mentioned in Section 2.4.2, but it is used only when the

26 MOBILE AGENT COMMUNICATIONS

communication failure occurs because of the recipient’s migration. In Emerald
[29] broadcast is used to find an object if a node specified by a forwarding
pointer is unreachable or has stale data. According to Murphy [39], however,
the simple broadcast cannot avoid message loss caused by object mobility.
Murphy proposed a snapshot-based broadcast scheme to guarantee reliable
delivery of messages to highly mobile agents. The protocol can also be extended
for group communication for mobile agents.

4. Synchronization between Message Passing and Target Migration From
the perspective of concurrency control, the message loss or chasing problem
in themessage delivery process is caused by concurrent and asynchronous access
to the location information of the target agent. The mobile agent migration and
the message delivery processes can be regarded as two kinds of database
operations. The migration of the target agent changes its actual address, which
can be regarded as a “write” operation of the location information. The message
delivery process needs the target agent’s actual address, which in fact is a “read”
operation of the location information. Strategies are proposed to synchronize
the message passing and target migration so that messages can reach the target
agent within a bounded number of hops.

One widely used synchronization strategy is implemented as follows. Before
migration the mobile agent informs all the hosts (usually the home of the agent
or a central message-forwarding server) that might send messages to its current
address and waits for an ACK from each host (containing the number of
messages sent from the host). It then waits for these messages due to arrive.
After migration it tells these hosts it has finished moving. During migrations
(after sending the ACK) the host suspends message forwarding. Variations of
the strategy are proposed. For instance, if FIFO message order is maintained
in the underlying transport layer, the ACK message does not need to contain
the number of messages sent from the host and the agent can leave for the
target host as soon as it has collected all the ACK messages. In the Mogent
system [19], a synchronous home server�based protocol is proposed to track
mobile agents and guarantee message delivery.

The synchronization scheme can guarantee that messages be routed to its
target agent with a bounded number of hops. However, the agent has to wait
for all the ACK messages from message-forwarding servers. If there are
multiple servers that might forward messages to the agent, the constraint on
the mobile agent migration is prohibitive. In this thesis we also use this kind of
synchronization scheme to realize reliable message delivery. However, using a
mailbox-based scheme, only the migration of the agent’s mailbox is con-
strained. The agent can move freely about the network.

2.4.4 Adaptive Protocols

To suit for different mobility patterns, many adaptive algorithms have been
proposed in the field of personal communication, including timer-based,
movement-based, distance-based, and state-based location-updating algorithms
[40, 41]. In these algorithms,mobile users decide whether to update their location

2.4 SEVERAL SCHEMES FOR COMMUNICATION BETWEENMOBILE AGENTS 27

information according to different factors. To optimize the location manage-
ment cost on a per-user basis, a selective location update strategy for PCS users is
proposed [42, 43]. When a mobile user enters a new location area (LA), it can
choose whether to update its location information or not. According to its own
mobility model and call arrival pattern, each mobile user has its update strategy
Su¼ {ui}, consisting of a set of binary decision variables ui (to update or not to
update) for all LAs.

In [44] a tracking agent is used for location tracking and message forwarding
for cooperating agents. It is dynamically generated when cooperation starts
and is killed after the cooperation is finished. The coordinates of the center of
the cooperating agents are set to the average coordinates of each agent. If the
distance between the center and the tracking agent is large enough, the tracking
agent will migrate to the center so that the communication latency between
cooperating agents can be decreased. The authors, however, did not discuss
how a new agent could find an existing tracking agent in order to join the
cooperation by sharing the tracking agent with others.

2.5 MAILBOX-BASED FRAMEWORK FOR DESIGNING MOBILE
AGENT MESSAGE DELIVERY PROTOCOLS

The design of a mobile agent (MA) message delivery protocol mainly addresses
two issues: (1) tracking the location of the target mobile agent and (2) delivering
the message to the agent. The framework [45] discussed in this section is based
on the concept of a mailbox associated with a mobile agent. Its flexibility and
adaptability come from the decoupling between a mobile agent and its mailbox,
allowing for the separation between the above two different issues. We discuss
the design space within the mailbox-based framework and identify the relevant
parameters and various protocols that can be derived as special cases.

2.5.1 System Model and Assumptions

Each mobile agent has a mailbox which buffers the messages sent to it. As
shown in Figure 2.1, if an agent wants to send a message to another agent,

MAP MAP

MAP

Receiver

Sender

: Mailbox

: Vestige of an agent

: Mobile agent

MAP : Mobile agent

Receiver

MB

MB(1) (2)
(3)

FIGURE 2.1 Detachment of agent from its mailbox.

28 MOBILE AGENT COMMUNICATIONS

it simply sends the message to the receiver’s mailbox (step 1). Later the
receiver receives the message from its mailbox using either pull or push (steps 2
and 3).

The mailbox is logically one part of the agent, but it can be detached from its
owner in the sense that the agent can migrate to a new host while leaving
its mailbox at a previous host along its migration path. Thus the communi-
cation between agents is divided into two steps: (i) the transmission of a
message from the sender to the receiver’s mailbox and (ii) the delivery of
the message from the mailbox to its owner agent. Since the mailbox is also a
mobile object (we do not call it another mobile agent dedicated to message
delivery because it has no autonomy to decide its migration), step (i) is identical
to the inter�mobile agent communication; thus it can be realized by any
existing message delivery strategies. Notice, however, that for a frequently
migrating agent its mailbox can migrate at a much lower frequency. When to
migrate the mailbox is a parameter of protocol design. The second step, that is,
the delivery of the message from the mailbox to its owner agent, raises new
issues to be discussed in detail later.

The term migration path is used in the following discussion to denote the list
of hosts that a mobile agent or its mailbox has visited in sequence. For instance,
as shown in Figure 2.2, a mobile agent is migrating through hosts h1, h2, . . . ,
h5 sequentially. It takes its mailbox while moving to h1, h3, and h5. We say h1,
h2, . . . , h5 are all on the migration path of the agent, while h1, h3, and h5 are on
the migration path of the mailbox. By definition, we know that the set of hosts
on the migration path of the mailbox is a subset of those on the migration path
of the mailbox’s owner agent. The home of the mobile agent, that is, the origin
host of the agent, is the first host on the migration paths of both the agent and
its mailbox.

We assume that mobile agent communication is largely asynchronous. This
is reasonable because, with mobile agents roaming the Internet, it is rare that
two agents use synchronous communication to talk to each other. The large
and unpredicted message delays on the Internet, which can easily become on
the order of several seconds, also prohibit frequent use of synchronous com-
munication in a mobile agent application. We also assume that our framework

MAP-h5

MB
Agent

MAP-h4

Agent

MAP-h3MAP-h1 MAP-h2

MB MB

: Vestige of mailbox

: Migration of MB or agent

MB
MB

Agent AgentAgent

FIGURE 2.2 Migration paths of mobile agent and its mailbox.

2.5 MAILBOX-BASED FRAMEWORK FOR DESIGNING MOBILE AGENT 29

is built on top of a reliable network communication layer, which guarantees
that messages will not be lost during transmission and will be delivered between
hosts. Finally, we do not deal with host failures and assume that no message is
lost due to host crash.

2.5.2 Three-Dimensional Design Model

In our framework, choices can be made in three aspects of designing a protocol
that best suits the specific requirement of an application: mailbox migration
frequency, mailbox-to-agent message delivery, and synchronization of message
forwarding with object migration.

1. Frequency of Mailbox Migration By frequency of mailbox migration, we
mean the number of mailbox migrations during the life cycle of the agent
and the time when these migrations happen. The migration frequency of
the agent’s mailbox can be categorized as follows:

� No Migration (NM) In this case, the mobile agent moves alone and
never takes its mailbox. The mailbox is left at the agent home during
the agent’s life cycle. All the messages are sent to the agent’s home
and the agent obtains messages from its home using one of the mailbox-
to-agent message delivery modes described below. The cost for tracking
the mailbox is zero, but the message delivery cost is high because all the
messages must be forwarded by the agent’s home. The triangle routing
[23] increases the communication overhead.

� Full Migration (FM) The mailbox is part of the data of the mobile agent
and migrates with the agent all the time. The cost of message delivery
between the mailbox and the agent is zero, but it is difficult to track the
mailbox. If the agent (and the mailbox) migrates frequently, there is
a trade-off between the number of messages that could be lost and
how much communication overhead will be introduced to guarantee
message delivery.

� Jump Migration (JM) Between the above two extreme cases, the mobile
agent determines whether to take its mailbox dynamically before each
migration. To make the decision, an agent can consider such factors as
the number of messages it will receive at its target host and the distance
between the target host and the host where its mailbox currently
resides. If an agent seldom receives messages from others at its target
host, it does not need to take its mailbox to the new host. On the other
hand, if an agent expects to receive messages frequently from others
and its target host is far away from the host where its mailbox currently
resides, it will be expensive to leave the mailbox unmoved and to fetch
messages from the remote mailbox. In this case the agent should migrate
to the target host together with its mailbox. Under the jump migration
mode, the protocol can work more flexibly based on a decision that

30 MOBILE AGENT COMMUNICATIONS

best suits particular agent migration and the interagent communication
pattern, reducing the cost of both “tracking” and “delivery” operations.

2. Mailbox-to-Agent Message Delivery As mentioned before, messages
destined to an agent are all sent to the agent’s mailbox and the agent
receives the messages later by either a push or a pull operation.

� Push (PS) The mailbox keeps the address of its owner agent and
forwards every message to it. In this way real-time message delivery can
be implemented and the message query cost is avoided. However, the
agent must notify the mailbox of its current location after every
migration. If the agent migrates frequently but communicates with
other agents only at a small number of hosts on the migration path,
most of the location registration messages (for the purpose of message
delivery) would be superfluous and introduce large migration overhead.

� Pull (PL) The agent keeps the address of its mailbox and retrieves
messages from the mailbox whenever needed. The mailbox does not
need to know the agent’s current location, and therefore the location
registration is avoided. On the other hand, the agent has to query its
mailbox for messages. The polling messages would increase the message
delivery overhead. Moreover, in the pull mode the message may not be
processed in real time.

3. Synchronization of Message Forwarding and Agent/Mailbox Migration
With the help of the proposed framework, users can choose whether or
not they need reliable message delivery. If higher reliability is required, we
increase the degree of synchronization in order to overcome message loss.
The synchronization is performed either for coordinating the message
forwarding by the host and the migration of the destination mailbox
(denoted by SHM) or for coordinating the message forwarding from an
agent’s mailbox and the migration of the agent (denoted by SMA), or
both (called full synchronization and denoted by FS). We use NS to
denote the extreme case where no synchronization is performed.

The synchronization between the message-forwarding object (mobile agent
server or the mailbox) and the moving object (mailbox or mobile agent) can be
realized in the following way. Before migration, the moving object sends Dereg-
ister messages to all objects that might forward messages to it and waits for the
ACK message from each object (containing the number of messages forwarded
from the object). It then waits for these messages due to arrive. After migration it
informs of its arrival to all the message-forwarding objects by sending them
Register messages. The state change of the moving object is shown in Figure 2.3.
Messages can be forwarded to the mobile object when in stationary and waiting
states and must be blocked when it is in the moving state.

The above three aspects can be used to develop a three-dimensional
model, as shown in Figure 2.4. Each aspect represents one dimension in
the model, showing a spectrum of different degrees of constraints for that

2.5 MAILBOX-BASED FRAMEWORK FOR DESIGNING MOBILE AGENT 31

dimension. The three dimensions are orthogonal. That is, each aspect may be
discussed independently of one another, and a property in one dimension can
logically have various combinations with the properties in the other dimen-
sions. For different applications with different requirements in the three
aspects, the required degree of properties can be different. Message delivery
protocols can be described by combining parameters in the orthogonal
dimensions.

2.5.3 Parameter Combinations

The three-dimensional model introduces a taxonomy of mobile agent message
delivery protocols. In this section, we describe a classification of these protocols
according to different parameter combinations. A string of the format XX-YY-
ZZ is used to express a protocol, where XX stands for NM, JM, or FM; YY for
PL or PS; and ZZ for NS, SHM, SMA, or FS. The overall configuration of a

Register Deregister

ACK and Msgs due to arrive

FIGURE 2.3 State switching of a mobile object.

Z (Synchronization)

Y (Delivery mode)

X (Migration frequency)
NM

(No)

JM

(Jump)

FM

PL (Pull)

PS (Push)

(No) NS
SHM (SMA)

(Full) FS

FIGURE 2.4 Design space of the framework.

32 MOBILE AGENT COMMUNICATIONS

protocol has a special value for each of the three parameters. Most combina-
tions have plausible applications. However, brevity precludes a discussion of
the full range of protocols that can be derived, and we study here only those
combinations with the most popular features. Table 2.1 shows the different
protocols derived from our mailbox-based framework, with the description of
their location registration modes and whether they can satisfy the required
reliability. An asterisk in a string denotes a “don’t care” state where multiple
values are applicable.

1. Home Server�Based Protocols All the protocols under the NM mode
adopt a home server approach. In this case the agent’s home acts as the message-
forwarding server.

The NM-PS-NS protocol is identical to the Mobile IP used in mobile
computing [20]. The agent registers its current location with its mailbox residing
at its home. Messages are sent to the mailbox. The mailbox pushes messages to
its owner agent. This protocol does not guarantee message delivery. If the agent
migrates during the message forwarding, the message will be lost.

To ensure reliable message delivery, synchronization between agent migra-
tion and message forwarding from the mailbox (SMA) is needed. This produces
the NM-PS-SMA protocol, a synchronized version of Mobile IP. In the
NM-PL-NS protocol the agent pulls messages from its mailbox; therefore
the message delivery can be guaranteed without using synchronization.

The home server�based protocols are simple and work well for small-to-
medium systems where the number of agents is small. However, the triangle
routing will increase the communication overhead, especially when the range of
agent distribution is large. In a system with a large number of agents and
frequent interagent communication, the home may become a performance
bottleneck and a single point of failure. Furthermore, a mobile agent’s ability
for asynchronous execution is constrained because of the dependence of the
agent home as a message-forwarding server.

2. Forwarding-Pointer-Based Delivery Protocols The FM-*-NS protocol
adopts the forwarding-pointer strategy. Each host on the mailbox migration

TABLE 2.1 Parameter Combinations and Corresponding Protocols

Protocols Location Registration Reliability

NM-PS-NS Yes (agent-mailbox) No

NM-PS-SMA Yes (agent-mailbox) Yes

NM-PL-NS No Yes

FM-*-NS No No

JM-PL-NS No No

JM-PS-NS Yes (agent-mailbox) No

FM-*-SHM Yes (mailbox-host) Yes

JM-PL-SHM Yes (mailbox-host) Yes

JM-PS-FS Yes (agent-mailbox, mailbox-host) Yes

2.5 MAILBOX-BASED FRAMEWORK FOR DESIGNING MOBILE AGENT 33

path keeps a forwarding pointer to the successive host in the path. The sender
caches the location of the target mailbox obtained before. If there is no such
address in the cache, the sender uses the home of the receiver agent as the
cached address of the mailbox. Messages are sent to the cached address directly.
If a cache miss occurs, messages will be forwarded along the forwarding
pointers. When the mailbox receives the message and finds that the sender has
outdated knowledge of its address, it notifies the sender its current location
and the sender updates the cached address. Since the mailbox is bound with
its owner agent in the FM mode, there is no remote interaction between the
mailbox and the agent.

The JM-PL-NS and JM-PS-NS protocols are similar to the FM-*-NS
protocol except that the mailbox migrates in the JM mode, which can be
regarded as a kind of path compression technique. When the agent and its
mailbox are at different hosts, the pull and push modes are used respectively by
the agent to get messages from its mailbox.

There is no location update cost in the forwarding-pointer scheme. The
sender sends messages to the cached address of the target agent; therefore
the workload of the agent home is decreased. Even if the cache is outdated,
messages can still be routed to the target agent along the path. But if one host
on the migration path fails, the target agent can no longer be reached. The most
serious problem with this scheme is that it cannot guarantee the reliability of
message delivery because many messages may keep chasing the target agent if
the agent migrates frequently.

In the FM-*-NS protocol, the multihop path could degrade the communi-
cation performance significantly. In both JM-PL-NS and JM-PS-NS protocols,
the mailbox of an agent migrates less frequently than the agent. Thus the
message-forwarding path is shorter and the communication overhead is
reduced. Moreover, the chasing problem may be less probable to occur.

3. Distributed Registration-Based Protocols Synchronization is used in the
distributed registration-based schemes to guarantee reliable message delivery.
Before migrating, the mailbox informs all the hosts on its migration path
and waits for ACK messages from them. After arriving at the target host, the
mailbox registers its new address to hosts on the migration path.

The sender sends messages to its cached address, say hk. If the mailbox has
moved away, hk (apparently hk is on the migration path of the mailbox)
forwards the messages to the current address of the mailbox and notifies the
sender of the new address. This scheme is similar to the synchronized home
server scheme (NM-PS-SMA), but the role of the agent home is distributed to
all the hosts on the migration path. It can also be regarded as a forwarding-
pointer scheme with a migration-based path compression technique, that is,
the agent updates all the pointers on its migration path after one or several
migrations.

Using the FM-*-SHM protocol, the overhead for synchronization and
location registration would be unaffordable if the agent migrates frequently.

34 MOBILE AGENT COMMUNICATIONS

But if the mailbox migrates in the JM mode, both the time of mailbox registra-
tion and the number of hosts on the mailbox’s migration path are reduced.
In the JM-PL-SHM protocol, the pull mode is used by the agent to obtain
messages from its mailbox. Synchronization between message sending from
hosts and migration of the mailbox (SHM) is necessary to guarantee message
delivery. In the JM-PS-FS protocol, the mailbox pushes each incoming
message to its owner agent. Therefore, in addition to SHM, synchronization
between message pushing from the mailbox and the migration of the owner
agent (SMA) is also needed to achieve reliable message delivery. That is why
FS is used in the protocol.

The JM-PL-SHM protocol is described in detail in [46], which shows that the
synchronization scheme is effective to guarantee reliable message delivery.
Messages are forwarded at most once to reach the receiver’s mailbox and no
chasing problem exists. The impact of the mailbox migration frequency on
the performance of the protocol is also analyzed. We observed that by properly
deciding on the migration frequency of the mailbox the protocol could be
designed to achieve better trade-off balance between the costs of migration
and delivery.

2.6 CONCLUDING REMARKS AND FURTHER RESEARCH

Communication is an essential ability for mobile agents to collaborate with
others by information exchanging and knowledge sharing; however, mobility
brings new challenges to interagent message passing. In this chaper, we first
analyzed the necessity of remote message passing in mobile agent systems and
presented requirements of message delivery protocols for mobile agents. We
believe mobile agent message delivery protocols should satisfy the requirements
of location transparency, reliability, asynchrony, efficiency, and adaptability.

After a comprehensive review of related work, a very general framework has
been introduced in detail for designing message delivery protocols in mobile
agent systems. The framework uses a flexible and adaptive mailbox-based
scheme which associates each mobile agent with a mailbox while allowing the
decoupling between them. With different combinations of mailbox migration
frequency, the message delivery mode between the mailbox and the agent, and
the synchronization mode between message forwarding and migration, the
framework not only covers several previously known location management
strategies, such as the home server scheme and forwarding-pointer scheme, but
also provides the designer with the possibility to define protocols better suited
for specific applications. It has the following advantages:

1. It can be used to describe and evaluate various mobile agent communi-
cation protocols.

2. It can help users to clearly specify their requirements.

2.6 CONCLUDING REMARKS AND FURTHER RESEARCH 35

3. It can help users design a flexible, adaptive protocol which can be
customized to meet their requirements.

In recent years, some further research approaches have been proposed
for communication between mobile agents. Some representative works are
sketched as follows.

In Cao et al. [47], the relay communication model is abstracted and identified
from existing algorithms and the two possible approaches, namely push and
pull, are explored to design adaptive and reliable message delivery protocols. In
this model, there are three roles involved, namely sender agents, relay stations,
and receiver agents. Each receiver agent in turn has one or more relay stations,
which can be its home server, proxy, or a mailbox. Communication between
agents is divided into two steps: (1) transmission of a message from the sender
to the receiver’s relay station and (2) delivery of the message from the relay
station to the receiver agent. To send the messages, the message sender will first
obtain the address of the target agent’s relay station and then send messages to
it. Later, the receiver agent can obtain messages from its relay station. There
exist two well-known approaches, namely, push and pull, for forwarding
messages from the relay station to mobile agents. In the push mode, the relay
station maintains the location of the mobile agent and forwards incoming
messages to it. In the pull mode, on the other hand, the agent knows the address
of its relay station and queries it periodically for messages. This study shows
that push and pull modes have complementary properties in terms of agent
mobility constraints, communication overhead, support of real-time message
processing, and the relay station’s resilience to failures and flexibility and
concludes that specific applications can select different message delivery
approaches to achieve the desired level of performance and flexibility.

Zhong et al. [48], on the other hand, argue that mailbox-based asynchronous
persistent communication mechanisms are not sufficient for certain distributed
applications like parallel computing. Synchronous transient communication
is provided as complementary services that make cooperative agents work
more closely and efficiently. Then, a connection migration mechanism in sup-
port of synchronous communication between agents is proposed. This reliable
connection migration mechanism allows mobile objects in communication to
remain connected during their migration. This mechanism supports concurrent
migration of both endpoints of a connection and guarantees exactly-once
delivery for all transmitted data.

Hsiao et al. [49] point out that communication between mobile agents often
relies on an infrastructure of the discovery server to resolve the location of
the agents and such an agent discovery infrastructure becomes very sophis-
ticated while considering scalability and reliability. Then they propose a
novel substrate called ARMADA that support reliable and scalable agent to
agent communication without relying on an auxiliary discovery infrastructure.
The ARMADA is based on a scalable and reliable peer-to-peer (P2P) storage
overlay that implements distributed hash tables and takes advantage of the

36 MOBILE AGENT COMMUNICATIONS

self-configuration and self-healing features provided by the underlying P2P
overlay network to support communications among agents running on top of
the overlay.

Ahn [50] presents three problems of the forwarding-pointer-based approach
when it is applied to a large-scale mobile agent system. First, it may lead to a very
high message delivery cost whenever each message is sent to a mobile agent.
Second, it requires a large size of storage where agent location information
is maintained. The third drawback is that even if, among all service nodes on
a forwarding path of a mobile agent, only one fails, any message destined
to the agent cannot be delivered to it. Then, a new fault-tolerant and efficient
mobile agent communication mechanism based on forwarding pointers is pro-
posed. This mechanism enables each mobile agent to keep its forwarding pointer
only on a small number of its visiting nodes in an autonomous manner. Con-
sequently, every mobile agent’s migration route has been considerably shortened
and the time for forwarding each message to the agent is much smaller.

REFERENCES

1. T. Finin et al., KQML as an agent communication language, in N. R. Adam, B. K.

Bhargava, and Y.Yesha (Eds.), Proceedings of the 3rd International Conference on

Information and Knowledge Management (CIKM94), ACM, New York, NY, USA,

Dec. 1994, pp. 456�463.

2. Y. Labrou and T. Finin, A proposal for a new KQML specification, Technical

Report CS-97-03, Computer Science and Electrical Engineering Department,

University of Maryland Baltimore County, Baltimore, MD 21250, Feb. 1997.

Available at http://www.csee.umbc.edu/csee/research/kqml/papers/kqml97.pdf.

3. FIPA ACL, available: http://www.fipa.org.

4. J. E. White, Telescript technology: Mobile agents, in D. Milojicić, F. Douglis, and

R.Wheeler (Eds.),Mobility: Processes, Computers, andAgents. ACMPress/Addison-

Wesley, New York, NY, USA, 1999.

5. J. Baumann et al., Communication concepts formobile agent systems, inK.Rothermel

and R. Popescu-Zeletin (Eds.), Mobile Agents: 1st International Workshop MA’97,

Lecture Notes in Computer Science, Vol. 1219, Springer, Apr. 1997, pp. 123�135.

6. D. B. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with

Aglets, Addison-Wesley, Reading, MA, 1998.

7. G. Cabri, L. Leonardi, and F. Zambonelli, Reactive tuple spaces for mobile agent

coordination, in L. Rohermel and F. Hohl (Eds.), Mobile Agents: 2nd International

Workshop MA’98, Lecture Notes in Computer Science, Vol. 1477, Springer, Sept.

1998, pp. 237�248.

8. G. P. Picco, A. L. Murphy, and G.-C. Roman, LIME: Linda meets mobility, in

D. Garlan (Ed.), Proceedings of the 21st International Conference on Software

Engineering, May 1999, ACM, New York, NY, USA, 1999, pp. 368�377.

9. T. Chia and S. Kannapan, Strategically mobile agents, in K. Rothermel and

R. Popescu-Zeletin (Eds.), Mobile Agents: 1st International Workshop MA’97,

Lecture Notes in Computer Science, Vol. 1219, Springer, Apr. 1997, pp. 149�161.

REFERENCES 37

http://www.csee.umbc.edu/csee/research/kqml/papers/kqml97.pdf
http://www.fipa.org

10. R. S. Gray et al., Mobile-Agent versus client/server performance: Scalability in an

information-retrieval task, in G. P. Picco (Ed.), Mobile Agents: 5th International

Conference, MA 2001, Lecture Notes in Computer Science, Vol. 2240, Dec. 2001,

pp. 229�243.

11. M. Straβer and M. Schwehm, A performance model for mobile agent systems, in

Proceedings of International Conference on Parallel and Distributed Processing

Techniques and Applications, Vol. II, Las Vegas, CSREA, New York, July 1997,

pp. 1132�1140.

12. J. Baumann and N. Radouniklis, Agent groups for mobile agent systems, in

H. König, K. Geihs, and T. Preuss (Eds.), Proceedings of the 1st International

Working Conference on Distributed Applications and Interoperable Systems

(DAIS’97), Cottbus, Germany, Champman & Hall, London, Sept. 1997, pp.

74�85.

13. J. Cao, G. H. Chan, W. Jia, and T. Dillon, Checkpointing and rollback of wide-area

distributed applications using mobile agents, in Proceedings of IEEE 2001 Interna-

tional Parallel and Distributed Processing Symposium (IPDPS2001), IEEE Com-

puter Society Press, San Francisco, Apr. 2001, pp. 1�6.

14. T. K. Shih, Agent communication network—a mobile agent computation model for

Internet applications, in Proceedings of 1999 IEEE International Symposium on

Computers and Communications. Red Sea, Egypt, 1999, pp. 425�431.

15. B. Awerbuch, and D. Peleg, Online tracking of mobile users, J. ACM, 42(5):

1021�1058, Sept. 1995.

16. D. Chess, C. Harrison, and A. Kershenbaum, Mobile agents: Are they a good idea?

in J. Vitek and C. Tschudin (Eds.), Mobile Object Systems: Towards the Program-

mable Internet, Lecture Notes in Computer Science, Vol. 1222, Springer, Feb. 1997,

pp. 25�45.

17. D. B. Lange and M. Oshima, Seven good reasons for mobile agents, Commun.

ACM, 42(3):88�89, Mar. 1999.

18. W. V. Belle, K. Verelst, and T. D’Hondt, Location transparent routing in mobile

agent systems—Merging name lookups with routing, in Proceedings of the 7th IEEE

Workshop on Future Trends of Distributed Computing Systems, Cape Town, South

Africa, 1999, pp. 207�212.

19. X. Tao et al., Communication mechanism in Mogent system, J. Software, 11(8):

1060�1065, 2000.

20. C. E Perkins, IP mobility support, in RFC2002, Oct. 1996. Available at http://rfc-

ref.org/RFC-TEXTS/2002/index.html.

21. M. D. Gallagher and R. A. Snyder, Mobile Telecommunication Networking with

IS-41, McGraw-Hill, New York, 1997.

22. D. Milojicic et al., MASIF: The OMG mobile agent system interoperability

facility, in L. Rohermel and F. Hohl (Eds.), Mobile Agents: 2nd International

Workshop MA’98, Lecture Notes in Computer Science, Vol. 1477, Springer, Sept.

1998, pp. 50�67.

23. C. Perkins, A. Myles, and D. B. Johnson, IMHP: A mobile host protocol for the

Internet, Computer Networks and ISDN Systems, 27(3):479�491, Dec. 1994.

24. Y. Lin, Determining the user locations for personal communications services

networks, IEEE Trans. Vehic. Technol., 43(3):466�473, Aug. 1994.

38 MOBILE AGENT COMMUNICATIONS

http://rfcref.org/RFC-TEXTS/2002/index.html
http://rfcref.org/RFC-TEXTS/2002/index.html

25. H. Harjono, R. Jain, and S. Mohan, Analysis and simulation of a cache-based

auxiliary user location strategy for PCS, in Proceedings of IEEE Conference

on Networks for Personal Communication, Long Branch, NJ, USA, Mar. 1994,

pp. 1�5.

26. J. Desbiens, M. Lavoie, and F. Renaud, Communication and tracking infrastruc-

ture of a mobile agent system, in Hesham El-Rewini (Eds.), Proceedings of the 31st

Annual Hawaii International Conference on System Sciences, Vol. 7, Kohala Coast,

HI, USA, Jan. 1998, pp. 54�63.

27. L. Moreau, Distributed directory service and message routing for mobile agents,

Science of Computer Programming, 39(2�3):249�272, Mar 2001.

28. Objectspace, Objectspace voyager core technology, available: http://www.object

space.com.

29. E. Jul, H. Levy, N. Hutchinson, and A. Black, Fine-grained mobility in the emerald

system, ACM Trans. Computer Syst., 6(1):109�133, Feb. 1988.

30. K. Ratnam, I. Matta, and S. Rangarajan, A fully distributed location management

scheme for large PCS networks, J. Interconnection Networks, 2(1):85�102, 2001.

31. P. Krishna, N. H. Vaidya, and D. K. Pradhan, Location management in distributed

mobile environments, in Proceedings of the 3rd International Conference on

Parallel and Distributed Information Systems (PDIS), Austin TX, USA, Sep.

1994, pp. 81�88.

32. M. van Steen, F. Hauck, P. Homburg, and A. Tanenbaum, Locating objects in

wide-area systems, IEEE Commun. Mag., Jan. 1998, pp. 104�109.

33. S. Lazar, I. Weerakoon, and D. Sidhu, A scalable location tracking and

message delivery scheme for mobile agents, in Proceedings of the 7th IEEE

International Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises 1998 (WET ICE’98), Stanford, CA, USA, Jun 1998, pp. 243�248.

34. P. T. Wojciechowski, Algorithms for location-independent communication between

mobile agents, Technical Report 2001/13, Operating Systems Laboratory, Swiss

Federal Institute of Technology (EPFL), Mar. 2001. Available at: http://infoscience

.epfl.ch/record/52380/files/IC_TECH_REPORT_200113.pdf.

35. E. Pitoura and G. Samaras, Locating objects in mobile computing, IEEE Trans.

Knowledge Data Eng., 13(4):571�592, 2001.

36. M. Ranganathan, M. Bednarek, and D. Montgomery, A reliable message delivery

protocol for mobile agents, in D. Kotz and F. Mattern (Eds.), Proceedings of ASA/

MA2000, Linear Notes in Computer Science, Vol. 1882, Springer, Sept. 2000, pp.

206�220.

37. T. Okoshi et al., MobileSocket: Session layer continuous operation support for java

applications, Trans. Inform. Process. Soc. Jpn., 1(1):1�13, 1999.

38. A. Bakre and B. R. Badrinath, I-TCP: Indirect TCP for mobile hosts, Technical

Report DCS-TR-314, Rutgers University, New Brunswick, NJ, Oct. 1994.

39. A. Murphy and G. P. Picco, Reliable communication for highly mobile agents,

in Agent Systems and Architectures/Mobile Agents, 5(1):81�100, Mar 2002.

40. A. Bar-Noy, I. Kessler, and M. Sidi, Mobile users: To update or not to update?

ACM/Baltzer Wireless Networks, 1(2): 175�185, July 1995.

41. V. Wong and V. Leung, Location management for next generation personal

communication networks, IEEE Network, 14(5):18�24, Sept./Oct. 2000.

REFERENCES 39

http://www.objectspace.com
http://www.objectspace.com
http://infoscience.epfl.ch/record/52380/files/IC_TECH_REPORT_200113.pdf
http://infoscience.epfl.ch/record/52380/files/IC_TECH_REPORT_200113.pdf

42. S. K. Das and S. K. Sen, A new location update strategy for cellular networks and

its implementation using a genetic algorithm, in Proceedings of the 3rd ACM/IEEE

Conference on Mobile Computing and Networking (MobiCom’97), Budapest,

Hungary, ACM New York, NY, USA, Sept. 1997, pp. 185�194.

43. S. K. Sen, A. Bhattacharya, and S. K. Das, A selective location update strategy for

PCS users, ACM/Baltzer J. Wireless Networks, special issue on selected Mobi-

com’97 papers, 5(5):311�326, Oct. 1999.

44. G. Kunito, Y. Okumura, K. Aizawa, and M. Hatori, Tracking agent: A new way of

communication in a multi-agent environment, in Proceedings of IEEE 6th Interna-

tional Conference on Universal Personal Communications, Vol. 2, San Diego, CA,

USA, Oct. 1997, pp. 903�907.

45. J. Cao, X. Feng, J. Lu, and S. Das, Mailbox-based scheme for mobile agent

communications, IEEE Computer (IEEE Computer Society Publication), 35(9):

54�60, Sept. 2002.

46. X. Feng, J. Cao, J. Lu, and H. Chan, An efficient mailbox-based algorithm for

message delivery in mobile agent systems, in G. P. Picco, (Ed.), Mobile Agents: 5th

International Conference, MA 2001, Lecture Notes in Computer Science, Vol. 2240,

Dec. 2001, pp. 135�151.

47. J. Cao, X. Feng, J. Lu, H. Chan, and S. Das, Reliable message delivery for mobile

agents: push or pull?, IEEE Trans. Syst. Man. Cybernet, Part A, 34(5):577�587,

Sept. 2004.

48. X. Zhong and C. Xu, A reliable connection migration mechanism for synchronnous

transient communication in mobile codes, in Proceedings of 2004 International

Conference on Parallel Processing, Montreal, Quebec, Canada, Aug. 15�18, 2004,

Vol. 1. pp. 431�438.

49. H. Hsiao, P. Huang, C. King, and A. Banerjee, Taking advantage of the overlay

geometrical structures for mobile agent communications, in Proceedings of the

18th International Parallel & Distributed Processing Symposium, Santa Fe, NM,

Apr. 2004.

50. J. Ahn, Fault-tolerant and scalable communication mechanism for mobile agents,

in C. Aykanat et al. (Eds.), Proceedings of the 19th International Symposium on

Computer and Information Science, Kemer-Antalya, Turkey, Oct. 27�29, 2004,

Lecture Notes in Computer Science, Vol. 3280, Springer, Berlin, Heidelberg 2004,

pp. 533�542.

40 MOBILE AGENT COMMUNICATIONS

3 Distributed Security Algorithms
for Mobile Agents

PAOLA FLOCCHINI

School of Electrical Engineering and Computer Science, University of

Ottawa, Canada.

NICOLA SANTORO

School of Computer Science, Carleton University, Canada.

3.1 INTRODUCTION

Mobile agents have been extensively studied for several years by researchers
in artificial intelligence and in software engineering. They offer a simple and
natural way to describe distributed settings where mobility is inherent
and an explicit and direct way to describe the entities of those settings, such as
mobile code, software agents, viruses, robots, and Web crawlers. Further, they
allow to immediately express notions such as selfish behavior, negotiation, and
cooperation arising in the new computing environments. As a programming
paradigm, they allow a new philosophy of protocol and software design, bound
to have an impact as strong as that caused by object-oriented programming. As
a computational paradigm, mobile agent systems are an immediate and natural
extension of the traditional message-passing settings studied in distributed
computing.

For these reasons, the use of mobile agents is becoming increasingly popular
when computing in networked environments, ranging from the Internet to the
data grid, both as a theoretical computational paradigm and as a system-
supported programming platform.

In networked systems that support autonomous mobile agents, a main
concern is how to develop efficient agent-based system protocols, that is, to
design protocols that will allow a team of identical simple agents to coopera-
tively perform (possibly complex) system tasks. Examples of basic tasks are
wakeup, traversal, rendezvous, and election. The coordination of the agents

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

41

necessary to perform these tasks is not necessarily simple or easy to achieve. In
fact, the computational problems related to these operations are definitely
nontrivial, and a great deal of theoretical research is devoted to the study of
conditions for the solvability of these problems and to the discovery of efficient
algorithmic solutions [1–10].

At an abstract level, these environments can be described as a collection of
autonomous mobile agents (or robots) located in a graph G. The agents have
limited computing capabilities and private storage, can move from node to
neighboring node, and perform computations at each node according to a
predefined set of behavioral rules called protocol, the same for all agents. They
are asynchronous, in the sense that every action they perform (computing,
moving, etc.) takes a finite but otherwise unpredictable amount of time. Each
node of the network, also called a host, may provide a storage area called
whiteboard for incoming agents to communicate and compute, and its access
is held in fair mutual exclusion. The research concern is on determining what
tasks can be performed by such entities, under what conditions, and at
what cost. In particular, a central question is to determine what minimal
hypotheses allow a given problem to be solved.

At a practical level, in these environments, security is the most pressing
concern and possibly the most difficult to address. Actually, even the most basic
security issues, in spite of their practical urgency and the amount of effort, must
still be effectively addressed [11–15].

Among the severe security threats faced in distributed mobile computing
environments, two are particularly troublesome: harmful agent (that is, the
presence of malicious mobile processes) and harmful host (that is, the presence
at a network site of harmful stationary processes).

The former problem is particularly acute in unregulated noncooperative
settings such as the Internet (e.g., e-mail-transmitted viruses). The latter exists
not only in those settings but also in environments with regulated access and
where agents cooperate toward common goals (e.g., sharing of resources or
distribution of a computation on the grid). In fact, a local (hardware or soft-
ware) failure might render a host harmful. In this chapter we consider security
problems of both types and concentrate on two security problems, one for each
type: locating a black hole and capturing an intruder. For each we discuss the
computational issues and the algorithmic techniques and solutions.

We first focus (in Section 3.2) on the issue of host attacks, that is, the
presence in a site of processes that harm incoming agents. A first step in solving
such a problem should be to identify, if possible, the harmful host, that is, to
determine and report its location; following this phase, a “rescue” activity
would conceivably be initiated to deal with the destructive process resident
there. The task to identify the harmful host is clearly dangerous for the
searching agents and, depending on the nature of the harm, might be impos-
sible to perform. We consider a highly harmful process that disposes of visiting
agents upon their arrival, leaving no observable trace of such a destruction.
Due to its nature, the site where such a process is located is called a black hole.

42 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

The task is to unambiguously determine and report the location of the black
hole. The research concern is to determine under what conditions and at what
cost mobile agents can successfully accomplish this task. The searching agents
start from the same safe site and follow the same set of rules; the task is
successfully completed if, within a finite time, at least one agent survives and
knows the location of the black hole.

We then consider (in Section 3.3) the problem of agent attacks, that is, the
presence of a harmful mobile agent in the system. In particular, we consider
the presence of amobile virus that infects any visited network site. A crucial task
is clearly to decontaminate the infected network; this task is to be carried out by
a team of antiviral system agents (the cleaners), able to decontaminate visited
sites, avoiding any recontamination of decontaminated areas. This problem is
equivalent to the one of capturing an intruder moving in the network.

Although the main focus of this chapter is on security, the topics and the
techniques have a much wider theoretical scope and range. The problems
themselves are related to long-investigated and well-established problems in
automata theory, computational complexity, and graph theory. In particular,
the black-hole search problem is related to the classical problems of graph
exploration and map construction [1, 7, 9, 16–22]. With whiteboards, in the case
of dispersed agents (i.e., when each starts from a different node), these pro-
blems are in turn computationally related (and sometimes equivalent) to the
problems of rendezvous and election [2, 5, 6, 23–25]. The network decontami-
nation problem is instead related to the classical problem known as graph search
[e.g., 26–30], which is in turn closely related to standard graph parameters and
concepts, including tree width, cut width, path width, and, last but not least,
graph minors [e.g., 31–34].

The chapter is organized as follows. In the next section we will discuss the
black-hole search problem, while the network decontamination and intruder
capture problems will be the subject of Section 3.3.

3.2 BLACK-HOLE SEARCH

3.2.1 The Problem and Its Setting

The problem posed by the presence of a harmful host has been intensively
studied from a programming point of view [35–37]. Obviously, the first step in
any solution to such a problem must be to identify, if possible, the harmful host,
that is, to determine and report its location; following this phase, a “rescue”
activity would conceivably be initiated to deal with the destructive process
resident there. Depending on the nature of the danger, the task to identify the
harmful host might be difficult, if not impossible, to perform.

Consider the presence in the network of a black hole (BH): a host where
resides a stationary process that disposes of visiting agents upon their arrival,
leaving no observable trace of such a destruction. Note that this type of highly

3.2 BLACK-HOLE SEARCH 43

harmful host is not rare; for example, the undetectable crash failure of a site in
an asynchronous network turns such a site into a black hole. The task is to
unambiguously determine and report the location of the black hole by a team
of mobile agents. More precisely, the black-hole search (shortly BHS) problem
is solved if at least one agent survives and all surviving agents know the location
of the black hole.

The research concern is to determine under what conditions and at what cost
mobile agents can successfully accomplish this task. The main complexity
measures for this problem are the size of the solution (i.e., the number of agents
employed) and the cost (i.e., the number of moves performed by the agents
executing a size-optimal solution protocol). Sometimes bounded time com-
plexity is also considered.

The searching agents usually start from the same safe site (the homebase). In
general, no assumptions are made on the time for an agent to move on a link,
except that it is finite; that is, the system is asynchronous. Moreover, it is
usually assumed that each node of the network provides a storage area called a
whiteboard for incoming agents to communicate and compute, and its access is
held in fair mutual exclusion.

One can easily see that the black-hole search problem can also be formulated
as an exploration problem; in fact, the black hole can be located only after
all the nodes of the network but one have been visited and are found to be
safe. Clearly, in this exploration process some agents may disappear in the
black hole). In other words, the black-hole search problem is the problem
of exploring an unsafe graph. Before proceeding we will first (briefly) discuss
the problem of safe exploration, that is, of exploring a graph without any
black hole.

3.2.2 Background Problem: Safe Exploration

The problem of exploring and mapping an unknown but safe environment has
been extensively studied due to its various applications in different areas
(navigating a robot through a terrain containing obstacles, finding a path
through a maze, or searching a network).

Most of the previous work on exploration of unknown graphs has been
limited to single-agent exploration. Studies on exploration of labeled graphs
typically emphasize minimizing the number of moves or the amount of memory
used by the agent [1, 7, 17, 21, 22]. Exploration of anonymous graphs is possible
only if the agents are allowed to mark the nodes in some way, except when the
graph has no cycles (i.e., the graph is a tree [9, 18]). For exploring arbitrary
anonymous graphs, various methods of marking nodes have been used by
different authors. Pebbles that can be dropped on nodes have been proposed
first in [16], where it is shown that any strongly connected directed graph can
be explored using just one pebble (if the size of the graph is known), and using
O(log log n) pebbles otherwise. Distinct markers have been used, for example,

44 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

in [38] to explore unlabeled undirected graphs. Yet another approach, used by
Bender and Slonim [39] was to employ two cooperating agents, one of which
would stand on a node, while the other explores new edges. Whiteboards have
been used by Fraigniaud and Ilcinkas [19] for exploring directed graphs and by
Fraigniaud et al. [18] for exploring trees. In [9, 19, 20] the authors focus on
minimizing the amount of memory used by the agents for exploration (they
however do not require the agents to construct a map of the graph).

There have been few results on exploration by more than one agent. A two-
agent exploration algorithm for directed graphs was given in [39], whereas
Fraigniaud et al. [18] showed how k agents can explore a tree. In both these
cases, the agents start from the same node and they have distinct identities.
In [6] a team of dispersed agents explores a graph and constructs a map. The
graph is anonymous but the links are labeled with sense of direction; moreover
the protocol works if the size n of the network or the number of agents k is
coprime and it achieves a move complexity of O(km) (where m is the number of
edges). Another algorithm with the same complexity has been described in [23],
where the requirement of sense of direction is dropped. In this case the agents
need to know either n or k, which must be coprime. The solution has been
made “effective” in [24], where effective means that it will always terminate,
regardless of the relationship between n and k reporting a solution whenever the
solution can be computed, and reporting a failure message when the solution
cannot be computed.

The map construction problem is actually equivalent to some others basic
problems, such as agent election, labeling, and rendezvous. Among them ren-
dezvous is probably the most investigated; for a recent account see [2, 25].

3.2.3 Basic Properties and Tools for Black-Hole Search

We return now to the black-hole search problem and discuss first some basic
properties and techniques.

3.2.3.1 Cautious Walk
We now describe a basic tool [40] that is heavily employed when searching for a
black hole. In order to minimize the number of agents that can be lost in the
black hole, the agents have to move cautiously. More precisely, we define as
cautious walk a particular way of moving on the network that prevents two
different agents to traverse the same link when this link potentially leads to the
black hole.

At any time during the search for the black hole, the ports (corresponding to
the incident links) of a node can be classified as unexplored (no agent has been
sent/received via this port), explored (an agent has been received via this port),
or dangerous (an agent has been sent through this port but no agent has been
received from it). Clearly, an explored port does not lead to a black hole; on the
other hand, both unexplored and dangerous ports might lead to it.

3.2 BLACK-HOLE SEARCH 45

The main idea of cautious walk is to avoid sending an agent over a
dangerous link while still achieving progress. This is accomplished using the
following two rules:

1. No agent enters a dangerous link.

2. Whenever an agent a leaves a node u through an unexplored port p
(transforming it into dangerous), upon its arrival to node v and before
proceeding somewhere else, a returns to u (transforming that port into
explored).

Similarly to the classification adopted for the ports, we classify nodes as
follows: At the beginning, all nodes except the homebase are unexplored; the
first time a node is visited by an agent, it becomes explored. Note that, by
definition, the black hole never becomes explored. Explored nodes and edges
are considered safe.

3.2.3.2 Basic Limitations
When considering the black-hole search problem, some constraints follow from
the asynchrony of the agents (arising from the asynchrony of the system, that is,
the impossibility to distinguish the BH from a slow node). For example [40]:

� If G has a cut vertex different from the homebase, then it is impossible for
asynchronous agents to determine the location of the BH.

� It is impossible for asynchronous agents to determine the location of the
BH if the size of G is not known.

� For asynchronous agents it is impossible to verify if there is a BH.

As a consequence, the network must be 2-connected; furthermore, the
existence of the black hole and the size of G must be common knowledge to
the agents.

As for the number of searching agents needed, since one agent may imme-
diately wander into the black hole, we trivially have:

� At least two agents are needed to locate the BH.

How realistic is this bound? How many agents suffice? The answers vary
depending on the a priori knowledge the agents have about the network and on
the consistency of the local labelings.

3.2.4 Impact of Knowledge

3.2.4.1 Black-Hole Search without a Map
Consider first the situation of topological ignorance, that is, when the agents
have no a priori knowledge of the topological structure of G (e.g., do not have a

46 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

map of the network). Then any generic solution needs at least Δþ 1 agents,
whereΔ is the maximal degree of G, even if the agents knowΔ and the number
n of nodes of G.

The goal of a black-hole search algorithm P is to identify the location of the
BH; that is, within finite time, at least one agent must terminate with a map of
the entire graph where the homebase, the current position of the agent, and the
location of the black hole are indicated. Note that termination with an exact
map in finite time is actually impossible. In fact, since an agent is destroyed
upon arriving to the BH, no surviving agent can discover the port numbers of
the black hole. Hence, the map will have to miss such an information. More
importantly, the agents are asynchronous and do not know the actual degree d
(BH) of the black hole (just that it is at most Δ). Hence, if an agent has a local
map that contains N� 1 vertices and at most Δ unexplored edges, it cannot
distinguish between the case when all unexplored ports lead to the black hole
and the case when some of them are connected to each other; this ambiguity
cannot be resolved in finite time or without the agents being destroyed. In other
words, if we require termination within finite time, an agent might incorrectly
label some links as incident to the BH; however, the agent needs to be wrong
only on at most Δ� d(BH) links. Hence, from a solution algorithm P we
require termination by the surviving agents within finite time and creation of a
map with just that level of accuracy.

Interestingly, in any minimal generic solution (i.e., using the minimum
number of agents), the agents must perform Ω(n2) moves in the worst case [41].
Both these bounds are tight. In fact, there is a protocol that correctly locates the
black hole in O(n2) moves using Δþ 1 agents that know Δ and n [41].

The algorithm essentially performs a collective “cautious” exploration of
the graph until all nodes but one are considered to be safe. More precisely, the
agents cooperatively visit the graph by “expanding” all nodes until the black
hole is localized, where the expansion of a node consists of visiting all its
neighbors. During this process, the homebase is used as the cooperation center;
the agents must pass by it after finishing the expansion of a node and before
starting a new expansion. Since the graph is simple, two agents exploring the
links incident to a node are sufficient to eventually make that node “expanded.”
Thus, in the algorithm, at most two agents cooperatively expand a node; when
an agent discovers that the node is expanded, it goes back to the homebase
before starting to look for a new node to expand. The whiteboard on the
homebase is used to store information about the nodes that already have been
explored and the ones that are under exploration. If the black hole is a node
with maximum degree, there is nothing to prevent Δ agents disappearing in it.

3.2.4.2 Black-Hole Search with Sense of Direction
Consider next the case of topological ignorance in systems where there is sense
of direction (SD); informally, sense of direction is a labeling of the ports that
allows the nodes to determine whether two paths starting from a node lead to
the same node using only the labels of the ports along these paths (for a survey

3.2 BLACK-HOLE SEARCH 47

on sense of direction see [42]). In this case, two agents suffice to locate the black
hole, regardless of the (unknown) topological structure of G. The proof of [41]
is constructive, and the algorithm has a O(n2) cost. This cost is optimal; in fact,
it is shown that there are types of sense of direction that, if present, impose an
Ω(n2) worst-case cost on any generic two-agent algorithm for locating a black
hole using SD. As for the topological ignorance case, the agents perform an
exploration. The algorithm is similar to the one with topological ignorance
(in fact it leads to the same cost); sense of direction is however very useful to
decrease the number of casualties. The exploring agents can be only two: A
node that is being explored by an agent is considered “dangerous” and, by the
properties of sense of direction, the other agent will be able to avoid it in its
exploration, thus ensuring that one of the two will eventually succeed.

3.2.4.3 Black-Hole Search with a Map
Consider the case of complete topological knowledge of the network; that is, the
agents have a complete knowledge of the edge-labeled graph G, the corre-
spondence between port labels and the link labels of G, and the location of the
source node (from where the agents start the search). This information is
stronger than the more common topological awareness (i.e., knowledge of the
class of the network, but not of its size or of the source location, e.g., being in a
mesh, starting from an unknown position).

Also in this case two agents suffice [41]; furthermore, the cost of a minimal
protocol can be reduced in this case to O(n log n), and this cost is worst-case
optimal. The technique here is quite different and it is based on a partitioning of
the graph in two portions which are given to the two agents to perform the
exploration. One will succeed in finishing its portion and will carefully move to
help the other agent finishing its own.

Informally, the protocol works as follows. Let Gex be the explored part of the
network (i.e., the set of safe nodes); initially it consists only of the homebase h.
Agents a and b partition the unexplored area into disjoint subgraphs Ga

(the working set for a) and Gb (the working set for b) such that for each con-
nected component of Ga and Gb there is a link connecting it to Gex (this parti-
tioning can always be done). Let Ta and Tb be trees spanning Ga and Gb,
respectively, such that Ta-Gb¼Tb-Ga¼;. (The graphs Ga and Gb are not
necessarily connected—the trees Ta and Tb are obtained from the spanning
forests of Ga and Gb by adding edges from Gex as necessary but avoiding the
vertices of the opposite working set.)

Each agent then traverses its working set using cautious walk on the cor-
responding spanning tree. In this process, it transforms unexplored nodes into
safe ones.

Let a be the first agent to terminate the exploration of its working set;
when this happens, a goes to find b. It does so by first going to the node w
where the working sets were last computed using an optimal path and avoiding
Gb, then following the trace of b, and finally reaching the last safe node w0

reached by b.

48 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

Agent a then computes the new subgraph Guex containing all nonsafe nodes
(Figure 3.1). If Guex contains a single node, that node is the black hole.
Otherwise a computes the new working sets for itself and b; it leaves a note for b
at the current node w0 indicating the new working set Gb for b and goes to
explore its new assigned area avoiding the (new) working set of b. When (if) b
returns to w0, it finds the note and starts exploring its new working set. Note
that, at any time, an agent is either exploring its working set or looking for the
other agent to update the workload or is destroyed by the black hole.

3.2.4.4 Topology-Sensitive Universal Protocols
Interestingly, it is possible to considerably improve the bound on the number of
moves without increasing the team size. In fact, there is a recent universal
protocol, Explore and Bypass, that allows a team of two agents with a map of
the network to locate a black hole with cost O(nþ d log d), where d denotes the
diameter of the network [43]. This means that, without losing its universality
and without violating the worst-case Ω(n log n) lower bound, this algorithm
allows two agents to locate a black hole with Θ(n) cost in a very large class of
(possibly unstructured) networks: those where d¼O(n/log n).

The algorithm is quite involved. The main idea is to have the agents explore
the network using cooperative depth-first search of a spanning tree T. When
further progress using only links of T is blocked, the blocking node is appro-
priately bypassed and the process is repeated. For efficiency reasons, the bypass
is performed in different ways depending on the structure of the unexplored set
U and on the size of its connected components. The overall exploration is done
in such a way that:

1. The cost of the cooperative depth-first search is linear in the number of
explored vertices.

2. Bypassing a node incurs an additional overhead of O(d) which can be
charged to the newly explored vertices if there are enough of them.

Va

Vb

Vb

Vex

u

Va

υ
Vuex

FIGURE 3.1 Splitting the unexplored subgraph Guex into Ga and Gb.

3.2 BLACK-HOLE SEARCH 49

3. If there are not enough unexplored vertices remaining for bypassing to be
viable, the remaining unexplored graph is so small [O(d)] that applying
the general O(n log n) algorithm would incur an O(d log d) additional cost
[which is essentially optimal, due to the lower bound of Θ(n log n) for
rings].

Importantly, there are many networks with O(n/log n) diameter in which the
previous protocols [41, 44] fail to achieve the O(n) bound. A simple example
of such a network is the wheel, a ring with a central node connected to all
ring nodes, where the central node is very slow: Those protocols will require
O(n log n) moves.

3.2.4.5 Variations with a Map
A very simple algorithm that works on any topology (a priori known by the
agents) is shown in [45].

Let C be a set of simple cycles such that each vertex of G is covered by a cycle
from C (Figure 3.2). Such a set of cycles with some connectivity constraint is called
open-vertex cover by cycles. The algorithm is based on the precomputation of such
an open-vertex cover by cycles of a graph. The idea is to explore the graph G by
exploring the cycles C.

The algorithm uses the optimal number of agents (two). If an agent is blocked
on an edge e (because either the transmission delay on e is very high or it leads to
the BH), the other agent will be able to bypass it, using the cycle containing e,
and continue the exploration. The number of moves depends on the choice of the
cover and it is optimal for several classes of networks. These classes include all
Abelian Cayley graphs of degree 3 andmore (e.g., hypercubes, multidimensional

en6

homebase � en1

en3en5

en2
en4

C6

C4C1

C2
C5

C3

FIGURE 3.2 Example of an open vertex cover C¼ {C1, C2, C3, C4, C5, C6}, for

graph G. The cycle directions are shown, as well as the entry nodes eni for each cycle Ci.

50 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

tori, etc,), as well as many non-Abelian cube graphs (e.g., cube-connected-cycles,
butterfly, wrapped-butterfly networks). For some of these networks, this is the
only algorithm achieving such a bound.

3.2.5 Special Topologies

A natural question to ask is whether the bounds for arbitrary networks with full
topological knowledge can be improved for networks with special topologies by
topology-dependent proptocols.

3.2.5.1 Rings
The problem has been investigated and its solutions characterized for
ring networks [40]. For these networks, at least two agents are needed, and a
Ω(n log n) lower bound holds on the number of moves regardless of the number
of agents [40].

An agent and move optimal solution exists based on a partitioning of the
ring and a nonoverlapping exploration by the agents. The solution is similar to
(and simpler than) the one for the known arbitrary topology case. Initially the
agents use the whiteboard to differentiate their tasks: each taking charge of
(cautiously) exploring roughly half of the ring. One of the two agents will
necessarily succeed (say agent A); by that time, the other (agent B) is either still
exploring or trapped into the black hole. The successful agent A follows the safe
trace of B; at the last safe node found following the trace, A writes on the
whiteboard a message for B, indicating that it will now take charge of half of
the area still to be explored. In this way, if B is not in the black hole and returns
to the node (as imposed by cautious walk), it will find the message and will act
accordingly. Notice that the size of the ring must be known for the algorithm to
work; furthermore, without knowledge of the size, the problem is unsolvable.
The key point of the algorithm’s correctness is that the agents are always
exploring disjoint areas; hence one of them will always complete its exploration.
Since the unexplored area to be explored is halved in each stage, the total
number of stages is O (log n); the amount of moves in each stage is linearly
proportional to the size of the explored area; therefore, the total number of
moves is O(n log n). The time complexity of this solution is also O(n log n).

Interestingly, increasing the number of agents, the number of moves cannot
decrease, but the time to finish the exploration does [40]. For example, suppose
n agents x1, x2, . . . , xn are available. By accessing the whiteboard they can
assign to themselves different tasks: for example, agent xi could take care of
exploring the node at distance i (clockwise: if there is no orientation, a similar
trick would work). To explore node u at distance i, agent xi moves to visit the
nodes that precede u clockwise and the one that precedes u counterclockwise.
Only one agent will be successful because all the others will terminate in the
black hole either when moving clockwise or when moving counterclockwise.
Notice that, in their exploration, the agents do not need to move with cautious
walk. Clearly the agents can perform their tasks concurrently and the time

3.2 BLACK-HOLE SEARCH 51

complexity is Ω(n). Indeed, there exists an optimal trade-off between time
complexity and number of agents.

Notice that the lower bound for rings implies an Ω(n log n) lower bound on
the worst-case cost complexity of any universal protocol.

The ring has been investigated also to perform another task: rendezvous of k
anonymous agents dispersed in the ring in spite of the presence of a black hole.
The problem is studied in [46] and a complete characterization of the conditions
under which the problem can be solved is established. The characterization
depends on whether k or n is unknown (at least one must be known for any
nontrivial rendezvous). Interestingly, it is shown that, if k is unknown, the
rendezvous algorithm also solves the black-hole location problem, and it does
so with a bounded-time complexity of Θ(n); this is a significant improvement
over the O(n log n) bounded-time complexity of [40].

3.2.5.2 Interconnection Networks
The Ω(n log n) lower bound for rings does not necessarily generalize to other
topologies. Sometimes the network has special properties that can be exploited
to obtain a lower cost network-specific protocol. For example, two agents can
locate a black hole with only O(n) moves in a variety of highly structured
interconnection networks such as hypercubes, square tori and meshes, wrapped
butterflies, and star graphs [44].

The protocol achieving such a bound is based on the novel notion of tra-
versal pairs of a network which describes how the graph will be explored by
each agent and will be used by an agent to avoid “dangerous” parts of the
network. The algorithm proceeds in logical rounds. In each round the agents
follow a usual cooperative approach of dynamically dividing the work between
them: The unexplored area is partitioned into two parts of (almost) equal size.
Each agent explores one part without entering the other one; exploration and
avoidance are directed by the traversal pair. Since the parts are disjoint, one of
them does not contain the black hole and the corresponding agent will complete
its exploration. When this happens, the agent (reaches the last safe node visited
by the other agent and there) partitions whatever is still left to be explored
leaving a note for the other agent (should it be still alive). This process is
repeated until the unexplored area consists of a single node: the black hole. In
addition to the protocol and its analysis, in [44] there is also the algorithm for
constructing a traversal pair of a biconnected graph.

3.2.6 Using Tokens

As we have seen, the problem of asynchronous agents exploring a dangerous
graph has been investigated assuming the availability of a whiteboard at each
node: Upon gaining access, the agent can write messages on the whiteboard and
can read all previously written messages, and this mechanism has been used by
the agents to communicate and mark nodes or/and edges. The whiteboard is
indeed a powerful mechanism of interagent communication and coordination.

52 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

Recently the problem of locating a black hole has been investigated also in a
different, weaker model where there are no whiteboards at the nodes. Each
agent has instead a bounded number of tokens that can be carried, placed on a
node or on a port, or removed from it; all tokens are identical (i.e., indistin-
guishable) and no other form of marking or communication is available
[47–49]. Some natural questions immediately arise: Is the BHS problem still
solvable with this weaker mechanism and if so under what conditions and at
what cost? Notice that the use of tokens introduces another complexity mea-
sure: the number of tokens. Indeed, if the number of tokens is unbounded, it is
possible to simulate a whiteboard environment; hence the question immediately
arises of how many tokens are really needed.

Surprisingly, the black-hole search problem in an unknown graph can be
solved using only this weaker tool for marking nodes and communicating
information. In fact, it has been shown [47] that Δþ 1 agents with a single
token each can successfully solve the black-hole search problem; recall that this
team size is optimal when the network is unknown. The number of moves
performed by the agents when executing the protocol is actually polynomial.
Not surprisingly, the protocol is quite complex. The absence of a whiteboard, in
fact, poses serious limitations to the agents, which have available only a few
movable bits to communicate with each other.

Special topologies have been studied as well, and in particular, the case
of the ring has been investigated in detail in [48]. There it has been shown that
the two-agent Θ(n log n) move strategies for black-hole search in rings with
whiteboards can be successfully employed also without whiteboards by care-
fully using a bounded number of tokens. Observe that these optimal token-
based solutions use only O(1) tokens in total, whereas the protocols using
whiteboards assumed at least O(log n) dedicated bits of storage at each node.
Further observe that any protocol that uses only a constant number of tokens
implies the existence of a protocol (with the same size and cost) that uses only
whiteboards of constant size; the converse is not true.

In the case of arbitrary networks, it has been recently shown that, with a map
of the graph, a Θ(n log n)-moves solution exists for 2 agents with a single token
each, which can be placed only on nodes (like in classical exploration algorithms
with pebbles) [49]. These results indicate that, although tokens appear as a
weaker means of communication and coordination, their use does not negatively
affect solvability and it does not even lead to a degradation of performance.

3.2.7 Synchronous Networks

The black-hole search problem has been studied also in synchronous settings
where the time for an agent to traverse a link is assumed to be unitary.

When the system is synchronous, the goals and strategies are quite different
from the ones reviewed in the previous sections. In fact, when designing an
algorithm for the asynchronous case, a major problem is that an agent cannot
wait at a node for another agent to come back; as a consequence, agents must

3.2 BLACK-HOLE SEARCH 53

always move and have to do it carefully. When the system is synchronous, on
the other hand, the strategies are mostly based on waiting the right amount of
time before performing a move. The algorithm becomes the determination
of the shortest traversal schedule for the agents, where a traversal schedule is a
sequence of actions (move to a neighboring node or stay at the current node).
Furthermore, for the black-hole search to be solvable, it is no longer necessary
that the network is two-node connected; thus, black-hole search can be per-
formed by synchronous agents also in trees.

In synchronous networks tight bounds have been established for some
classes of trees [50]. In the case of general networks the decision problem
corresponding to the one of finding the optimal strategy is shown to be non-
deterministic polynomial time (NP) hard [51, 52] and approximation algo-
rithms are given in [50] and subsequently improved in [52, 53]. The case of
multiple black holes has been very recently investigated in [54], where a lower
bound on the cost and close upper bounds are given.

3.2.8 Rendezvous in Spite of Black Hole

In networks where a black hole is present, the primary task is clearly that of
determining the location of the black hole. In addition to the BHS problem, the
research has also focused on the computability of other tasks in the presence of
a black hole, that is, on the design of black-hole resilient solutions to problems.
In particular, the focus has been on the rendezvous problem: k anonymous
agents are dispersed in the network and must gather at the same node; the
location of the rendezvous is not fixed a priori. As mentioned in Section 3.2.2,
rendezvous (with whiteboards) is equivalent to the exploration and leader
election problems, and it has been extensively studied in networks without
black holes. In the presence of a black hole, the problem changes drastically. In
fact, it is impossible to guarantee that all agents will gather since some agents
might enter the black hole. Thus the main research concern is to determine how
many agents can be guaranteed to rendezvous and under what conditions.

A solution strategy would be to first determine the location of the black hole
and then perform a rendezvous in the safe part of the network. This strategy
requires solving the BHS problem in a setting quite different from that exam-
ined by the investigators so far; in fact, the agents would not start from the
same safe node, the homebase, but are instead scattered in the network. To
date, the only solutions to the BHS problem when the agents are scattered are
for ring networks using whiteboards [40] or tokens [48].

Interestingly, the overall problem can be solved without necessarily having
to locate the black hole. The overall problem has been first investigated when
the k anonymous agents are dispersed in a ring, and a complete characteriza-
tion of the conditions under which the problem can be solved is established in
[46]. The characterization depends on whether k or n is unknown (at least one
must be known for any nontrivial rendezvous). Interestingly, it is shown that, if
k is unknown, the rendezvous algorithm also solves the black-hole location

54 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

problem, and it does so with a bounded-time complexity of Θ(n); this is a
significant improvement over the O(n log n) bounded-time complexity of [40].

The problem has recently been investigated in arbitrary networks in the
presence not only of one or more black holes but also of black links, that is,
edges that destroy traversing agents without leaving any trace [55]. A complete
characterization of the conditions necessary for solvability has been provided,
and a protocol has been designed that allows rendezvous if these conditions
hold and otherwise determines impossibility [40].

3.3 INTRUDER CAPTURE AND NETWORK DECONTAMINATION

3.3.1 The Problem

A particularly important security concern is to protect a network from
unwanted and possibly dangerous intrusions. At an abstract level, an intruder
is an alien process that moves on the network to sites unoccupied by the sys-
tem’s agents, possibly “contaminating” the nodes it passes by. The concern for
the severe damage intruders can cause has motivated a large amount of
research, especially on detection [56–58]. From an algorithmic point of view,
the concern has been almost exclusively on the intruder capture problem, that
is, the problem of enabling a team of system agents to stop the dangerous
activities of the intruder by coming in direct contact with it. The goal is
to design a protocol, to be executed by the team of agents, enabling them to
capture the intruder. To make the protocol as flexible as possible, the intruder is
assumed to be very powerful: arbitrarily fast and possibly aware of the posi-
tions of all the agents; on the contrary, the agents could be arbitrarily slow and
unable to sense the intruder presence except when encountering it (i.e., on a
node or on a link).

In this setting, the intruder capture problem is equivalent (both from a
computational and a complexity point of view) to the problem of network
decontamination. In this problem, the nodes of the network are initially con-
taminated and the goal is to clean (or decontaminate) the infected network. The
task is to be carried out by a team of antiviral system agents (the cleaners). A
cleaner is able to decontaminate an infected site once it arrives there; arriving at
a clean site, clearly no decontamination operation needs to be performed by the
cleaner. A decontaminated site can become recontaminated (e.g., if the virus
returns to that site in the absence of a cleaner); the specifications of the con-
ditions under which this can happen is called a recontamination rule. The most
common recontamination rule is that, if a node without an agent on it has a
contaminated neighbor, it will become (re-)contaminated. A solution protocol
will then specify the strategy to be used by the agents; that is, it specifies the
sequence of moves across the network that will enable the agents, upon all
being injected in the system at a chosen network site, to decontaminate the
whole network, possibly avoiding any recontamination.

3.3 INTRUDER CAPTURE AND NETWORK DECONTAMINATION 55

3.3.2 Background Problem: Graph Search

A variation of the decontamination problem described above has been exten-
sively studied in the literature under the name graph search [26–30].

The graph search problem has been first discussed by Breisch [59] and
Parson [30, 60]. In the graph-searching problem, we are given a “contaminated”
network, that is, whose links are all contaminated. Via a sequence of operations
using “searchers,” we would like to obtain a state of the network in which all
links are simultaneously clear. A search step is one of the following operations:
(1) place a searcher on a node, (2) remove a searcher from a node, and (3) move
a searcher along a link. There are two ways in which a contaminated link can
become clear. In both cases, a searcher traverses the link from one extremity u
to the other extremity v. The two cases depend on the way the link is preserved
from recontamination: Either another searcher remains in u or all other links
incident to u are clear. The goal is to use as few searchers as possible to
decontaminate the network. A search strategy is a sequence of search steps that
results in all links being simultaneously clear. The search number s(G) of a
network G is the smallest number of searchers for which a search strategy
exists. A search strategy using s(G) searchers in G is called minimal.

The decision problem corresponding to the computation of the search num-
ber of a graph is NP hard [29] and NP completeness is shown in [28, 61]. In
particular,Megiddo et al. [29] gave aO(n) time algorithm to determine the search
number of n-node trees and a O(n log n) time algorithm to determine a minimal
search strategy in n-node trees. Ellis, Sudborough, and Turner [26] linked s(G)
with the vertex separation vs(G) of G (known to be equal to the pathwidth of
G [62]). Given an n-node network G¼ (V, E), vs(G) is defined as the minimum
taken over all (one-to-one) linear layouts L : V- {1, . . . , n}, of vsL (G), the
latter being defined as the maximum, for i¼ 1, . . . , n, of the number of vertices
x2V such that L(x)# i and there exists a neighbor y of x such that L(y). i. Ellis
et al. showed that vs(G)# s(G)# vs(G)þ 2 and s(G)¼ vs(G0), where G0 is the
2-augmentation of G, that is, the network obtained from G by replacing every
link {x, y} by a path {x, a, b, y} of length 3 betweenx and y.They also showed that
the vertex separation of trees can be computed in linear time, and they gave an
O(n log n) time algorithm for computing the corresponding layout. It yields
another O(n) time algorithm returning the search number of trees and an
O(n log n) time algorithm returning a minimal search strategy in trees.

Graph searching has many other applications (see [63]), including pursuit–
evasion problems in a labyrinth [60], decontamination problems in a system of
tunnels, and mobile computing problems in which agents are looking for a
hostile intruder [64]. Moreover, the graph-searching problem also arises in very
large scale integration (VLSI) design through its equivalence with the gate
matrix layout problem [62]. It is hence not surprising that it gave rise to
numerous papers. Another reason for this success is that the problem and its
several variants (nodesearch, mixedsearch, t-search, etc.) are closely related to
standard graph parameters and concepts, including tree width, cut width, path

56 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

width, and, last but not least, graph minors [31]. For instance, Makedon and
Sudborough [33] showed that s(G) is equal to the cut width of G for all net-
works of maximum degree 3. Similarly, Kiroussis and Papadimitriou showed
that the node search number of a network is equal to its interval width [32]
and to its vertex separator plus 1 [27]. Seymour and Thomas [34] showed that
the t-search number is equal to the tree width plus 1. Takahashi, Ueno, and
Kajitani [65] showed that the mixed-search number is equal to the proper path
width. Bienstock and Seymour [61] simplified the proof of Lapaugh’s result
[28] stating that there is a minimal search strategy that does not recontaminate
any link (see also [66]). Thilikos [67] used graph minors to derive a linear-
time algorithm that checks whether a network has a search number at most 2.
For other results on graph searching, the reader is referred to the literature
[68–72]. Contributions to related search problems can be found elsewhere
[64, 73–78].

In graph searching, there has been a particular interest in monotone strat-
egies [28, 61, 79]. A strategy is monotone if after a node (link) is decontami-
nated it will not be contaminated again. An important result from Lapaugh has
shown that monotonicity does not really change the difficulty of the graph
search problem; in fact, it has been shown in [28] that for any graph there exists
a monotone search strategy that uses the minimum number of agents.

Let us stress that in the classical graph search problem the agents can be
arbitrarily moved from a node “jumping” to any other node in the graph.

The main difference in the setting described in this chapter is that the
agents, which are pieces of software, cannot be removed from the network; they
can only move from a node to a neighboring one (contiguous search). This
additional constraint was introduced and first studied in [4] resulting in a
connected-node search where (i) the removal of agents is not allowed and (ii) at
any time of the search strategy the set of clean nodes forms a connected sub-
network. With the connected assumption the nature of the problem changes
considerably and the classical results on node and edge search do not generally
apply.

In the case of connected graph search usually more agents are required to
decontaminate a network G. It has been shown that for any graph G with n
nodes the ratio between the connected search number csn(G) and the regular
search number sn(G) is always bounded. More precisely, it is known that csn(G)/
sn(G)# log nþ 1 [80], and, for a tree T, csn(T)/sn(T)# 2 [81]. Monotonicity also
plays an important role in connected graph searches. It has been shown that, as
in the more general graph search problem, a solution allowing recontamination
of nodes cannot reduce the optimal number of agents required to decontaminate
trees [4]. On the other hand, unlike the classical graph search, there exist graphs
for which any given monotone-connected graph search strategy requires more
searchers than the optimal non-monotone-connected search strategy [82]. The
decision problem corresponding to the computation of the connected search
number of a graph is NP hard, but it is not known whether there exists a yes
certificate that is checkable in polynomial time.

3.3 INTRUDER CAPTURE AND NETWORK DECONTAMINATION 57

As we will survey below, the problem has been studied mostly in specific
topologies. Also the arbitrary topology has been considered; in this case, some
heuristics have been proposed [83] and a move-exponential optimal solution
has been given in [84].

In this chapter we use decontamination to refer to the connected monotone
node search as defined in [4].

3.3.3 Models for Decontamination

Initially, all agents are located at the same node, the homebase, and all
the other nodes are contaminated; a decontamination strategy consists of a
sequence of movements of the agents along the edges of the network. The
agents can communicate when they reside on the same node.

Starting from the classical model employed in [4] (called the local model),
additional assumptions have sometimes been added to study the impact thatmore
powerful agents’ or system’s capabilities have on the solutions of our problem:

1. In the local model an agent located at a node can “see” only local
information, such as the state of the node, the labels of the incident links,
and the other agents present at the node.

2. Visibility is the capability of the agent to see the state of its neighbors;
that is, an agent can see whether a neighboring node is guarded and
whether it is clean or contaminated. Notice that, in some mobile agent
systems, the visibility power could be easily achieved by “probing” the
state of neighboring nodes before making a decision.

3. Cloning is the capability, for an agent, to clone copies of itself.

4. Synchronicity implies that local computations are instantaneous, and it
takes one unit of time (one step) for an agent to move from a node to a
neighboring one.

The efficiency of a strategy is usually measured in terms of number of agents,
amount of decontamination operations, number of moves performed by the
agents, and ideal time.

We say that a cleaning strategy is monotone if, once a node is clean, it will
never be contaminated again. The reason to avoid recontamination derives
from the requirement to minimize the amount of decontamination performed
by the system agents: If recontamination is avoided, the number of decon-
tamination operations performed is the smallest possible, one per network site.
All the results reported here are for monotone strategies.

3.3.4 Results in Specific Topologies

3.3.4.1 Trees
The tree has been the first topology to be investigated in the local model [4].
Notice that, for a give tree T, the minimum number of agents needed depends

58 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

on the node from which the team of agents starts. Consider for example the tree
shown in Figure 3.3. If the team starts from node A, then two agents suffice.
However, the reader can verify that at least three agents are needed if they start
from node B.

In [4], the authors describe a simple and efficient strategy to determine the
minimum number of agents necessary to decontaminate an arbitrary given tree
from any initial starting node. The strategy is based on the following two
observations.

Consider a node A. If A is not the starting node, the agents will arrive at
A for the first time from some link e (see Figure 3.4). LetT1(A), . . . ,Ti (A), . . . ,
Td(A)–1 be the subtrees of A from the other incident links, where d(A) denotes the
degreeofA; letmidenote the number of agents needed todecontaminateTi (A) once
the agents are atA, and letmi#miþ1, 1# i# d(A)� 2. The first observation is that

A

B

FIGURE 3.3 The number of needed agents depends on the starting node.

.

e

A

md(A)−1

mi

m1

.

m1

mj

md(B)

B

FIGURE 3.4 Determining the minimum number of cleaners.

3.3 INTRUDER CAPTURE AND NETWORK DECONTAMINATION 59

to decontaminateA and all its other subtrees without recontamination the number
m(A, e) of agents needed is

mðA; eÞ ¼ m1 if m1 .m2

m1þ1 if m1 ¼ m2

�

Consider now a node B and let mj(B) be the minimum number of agents
needed to decontaminate the subtree Tj(B) once the agents are at B and let
mj#mjþ1, 1# j# d(B). The second observation is that to decontaminate the
entire tree starting from B the number m(B) of agents needed is

mðBÞ ¼ m1 if m1 .m2

m1þ1 if m1 ¼ m2

�

Based on these two properties, the authors show in [4] how determination of
the optimal number of agents can be done through a saturation where
appropriate information about the structure of the tree is collected from the
leaves and propagated along the tree until the optimal is known for each
possible starting point. The most interesting aspect of this strategy is that it
yields immediately a decontamination protocol for trees that uses exactly that
minimum number of agents. In other words, the technique of [4] allows to
determine the minimum number of agents and the corresponding decontami-
nation strategy for every starting network, and this is done exchanging only
O(n) short messages [or, serially, in O(n) time].

The trees requiring the largest number of agents are complete binary trees,
where the number of agent is O(log n); by contrast, in the line two agents are
always sufficient.

3.3.4.2 Hypercubes
It has been shown in [85] that to decontaminate a hypercube of size n,
Θðn= ffiffiffiffiffiffiffiffiffiffi

log n
p Þ agents are necessary and sufficient. The employ of an optimal

number of agents in the local model has an interesting consequence; in fact, it
implies that Θðn= ffiffiffiffiffiffiffiffiffiffi

log n
p Þ is the search number for the hypercube in the classical

model, that is, where agents may “jump.”
In the algorithm for the local model one of the agents acts as a coordinator for

the entire cleaning process. The cleaning strategy is carried out on the broadcast
tree of the hypercube. The cleaning strategy broadcast tree of the hypercube; see
Figure 3.5. The main idea is to place enough agents on the homebase and to
have them move, level by level, on the edges of the broadcast tree, leaded by the
coordinator in such a way that no recontamination may occur. The number of
moves and the ideal time complexity of this strategy are indicated in Table 3.1.

The visibility assumption allows the agents to make their own decision
regarding the action to take solely on the basis of their local knowledge. In fact,
the agents are still moving on the broadcast tree, but they do not have to follow
the order imposed by the coordinator. The agents on node x can proceed to

60 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

clean the children of x in the broadcast tree when they see that the other
neighbors of x are either clean or guarded. With this strategy the time com-
plexity is drastically reduced (since agents move concurrently and indepen-
dently) but the number of agents increases. Other variations of those two
models have been studied and summarized in Table 3.1.

TABLE 3.1 Decontamination of Hypercube

Model Agents Time Moves

Local (?)Oðn= ffiffiffiffiffiffiffiffiffiffi
log n

p Þ O(n log n) O(n log n)

Local, cloning, synchronicity n/2 (?) log n (?) n� 1

Visibility n/2 (?) log n O(n log n)

Visibility and cloning n/2 (?) log n (?) n� 1

Note: The star indicates an optimal bound.

011111

000000

000100

000010

000001

001000

010000

100000

T(6)

T(5)

T(4)

T(3)

T(2)

T(1)

T(0)

000101

001001

010001

100001

000110

001010

010010

100010

001100

010100

100100

011000

101000

110000

001011

010011

100011

000111

001101

010101

100101

011001

101001

110001

001110

010110

100110

011010

101010

110010

011100

101100

110100

111000

000011 001111

010111

101011

011011

110011

011101

101101

110101

111001

011110

101110

110110

111010

111100

101111

110111

111110

111011

111101

111111

100111

FIGURE 3.5 The broadcast tree T of the hypercube H6. Normal lines represent edges

in T, dotted lines (only partially shown) the remaining edges of H6.

3.3 INTRUDER CAPTURE AND NETWORK DECONTAMINATION 61

A characterization of the impact that these additional assumptions have on
the problem is still open. For example, an optimal move complexity in the local
model with cloning has not been found, and it is not clear whether it exists;
when the agents have visibility, synchronicity has not been of any help,
although it has not been proved that it is indeed useless; the use of an optimal
number of agents in the weaker local model is obtained at the expense of
employing more agents, and it is not clear whether this increment is necessary.

3.3.4.3 Chordal Rings
The local and the visibility models have been the subject of investigation also in
the chordal ring topology in [86].

Let C(hd1¼ 1, d2, . . . , dki) be a chordal ring network with n nodes and link
structure hd1¼ 1, d2, . . . , dki, where di, diþ1 and dk# bn/2c. In [86] it is first
shown that the smallest number of agents needed for the decontamination
depends not on the size of the chordal ring but solely on the length of the
longest chord. In fact, any solution of the contiguous decontamination problem
in a chordal ring C(hd1¼ 1, d2, . . . , dki) with 4# dk#

ffiffiffi
n

p
requires at least 2dk

searchers (2dkþ 1 in the visibility model).
In both models, the cleaning is preceded by a deployment stage after which

the agents have to occupy 2dk consecutive nodes. After the deployment, the
decontamination stage can start. In the local model, nodes x0 to xdk�1 are
constantly guarded by one agent each, forming a window of dk agents. This
window of agents will shield the clean nodes from recontamination from one
direction of the ring while the agents of the other window are moved by the
coordinator (one at a time starting from the one occupying node xdk) along
their longest chord to clean the next window in the ring. Also in the case of the
chordal ring, the visibility assumption allows the agents to make their own
decision solely on the basis of their local knowledge: An agent moves to clean a
neighbor only when this is the only contaminated neighbor.

Figure 3.6 shows a possible execution of the algorithm in a portion of a
chordal ring C(h1, 2, 4i). Figure 3.6a shows the guarded nodes (in black) after
the deployment phase. At this point, the nodes indicated in the figure can
independently and concurrently start the cleaning phase, moving to occupy
their only contaminated neighbor. Figure 3.6b shows the new state of the
network if they all move (the arrows indicate the nodes where the agents could
move to clean their neighbor).

The complexity results in the two models are summarized in Table 3.2.
Consistent with the observations for the hypercube, also in the case of

the chordal ring the visibility assumption allows to drastically decrease the
time complexity (and in this case also the move complexity). In particular, the
strategies for the visibility model are optimal in terms of both number of agents
and number of moves; as for the time complexity, visibility allows some con-
currency (although it does not bring this measure to optimal as was the case for
the hypercube).

62 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

3.3.4.4 Tori
A lower bound for the torus has beed derived in [86]. Any solution of the
decontamination problem in a torus T(h, k) with h, k$ 4 requires at least 2 min
{h, k} agents; in the local model it requires at least 2 min{h, k}þ 1 agents. The
strategy that matches the lower bound is very simple. The idea is to deploy
the agents to cover two consecutive columns and then keep one column of
agents to guard from decontamination and have the other column move along
the torus. The complexity results are summarized in Table 3.3. As for the other
topologies, visibility decreases time and slightly increases the number of agents.
In the case of the torus it is interesting to notice that in the visibility model all
three complexity measures are optimal.

(a)

(b)

FIGURE 3.6 A chordal ring C(h1, 2, 4i). (a) The agents are deployed and four of them

(the ones pointed by an arrow) could move to clean the neighbor. (b) Four agents have

moved to clean their only contaminated neighbor and four more (the ones pointed by an

arrow) could now move.

TABLE 3.2 Results for Chordal Ring

Model Agents Time Moves

Local 2dkþ 1 (?) 3n� 4dk� 1 4n� 6dk� 1

Visibility 2dk (?)
n� 2dk

2ðdk � dk � 1Þ
� �

n� 2dk (?)

Note: The star indicates an optimal bound.

3.3 INTRUDER CAPTURE AND NETWORK DECONTAMINATION 63

Finally, these simple decontamination strategies can be generalized to
d-dimensional tori (although the lower bounds have not been generalized). Let
T(h1, . . . , hd) be a d-dimensional torus and let h1 , h2# � � �# hd. Let N be the
number of nodes in the torus and let H ¼ N=hd : The resulting complexities are
reported in Table 3.4.

3.3.5 Different Contamination Rules

In [87] the network decontamination problem has been considered under a new
model of neighborhood-based immunity to recontamination: a clean node, after
the cleaning agent has gone, becomes recontaminated only if a weak majority
of its neighbors are infected. This recontamination rule is called local immu-
nization. Luccio et al. [87] studied the effects of this level of immunity on the
nature of the problem in tori and trees. More precisely, they establish lower
bounds on the number of agents necessary for decontamination and on the
number of moves performed by an optimal-size team of cleaners and propose
cleaning strategies. The bounds are tight for trees and for synchronous tori;
they are within a constant factor of each other in the case of asynchronous tori.
It is shown that with local immunization only O(1) agents are needed to
decontaminate meshes and tori, regardless of their size; this must be contrasted
with, for example, the 2min{n, m} agents required to decontaminate an n 3 m
torus without local immunization [86]. Interestingly, among tree networks,
binary trees were the worst to decontaminate without local immunization,
requiring Ω(log n) agents in the worst case [4]. Instead, with local immuniza-
tion, they can be decontaminated by a single agent starting from a leaf or by
two agents starting from any internal node.

TABLE 3.3 Results for Two-Dimensional Torus with Dimensions

h, k, h# k

Model Agents Time Moves

Local 2hþ 1 (?) hk� 2h 2hk� 4h� 1

Visibility 2h (?) (?) 1

2

k� 2

2

� �
?ð Þ hk� 2h (?) (?)

Note: The star indicates an optimal bound.

TABLE 3.4 Results for d-Dimensional Torus T(h1, h2, . . . , hd)

Model Agents Time Moves

Local 2ðN=hdÞ þ 1 N � 2ðN=hdÞ 2N � 4ðN=hdÞ � 1

Visibility 2ðN=hdÞ (dhd� 2e)/2 N � 2ðN=hdÞ

64 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

A different kind of immunity has been considered in [88]: one disinfected, a
node is immune to contamination for a certain amount of time. This temporal
immunity has been investigated and characterized for tree networks [88].

3.4 CONCLUSIONS

Mobile agents represent a novel powerful paradigm for algorithmic solutions
to distributed problems; unlike the message-passing paradigm, mobile agent
solutions are naturally suited for dynamic environments. Thus they provide a
unique opportunity for developing simple solutions to complex control and
security problems arising in ever-changing systems such as dynamic networks.
While mobile agents per se have been extensively investigated in the artificial
intelligence, software engineering, and specification and verification commu-
nities, the algorithmic aspects (problem solving, complexity analysis, experi-
mental evaluation) are very limited. It is only recently that researchers have
started to systematically explore this new and exciting distributed computa-
tional universe. In this chapter we have described some interesting problems
and solution techniques developed in this investigation in the context of secu-
rity. Our focus has been on two security problems: locating a black hole and
capturing an intruder. For each we have described the computational issues
and the algorithmic techniques and solutions. These topics and techniques
have a much wider theoretical scope and range. In particular, the problems
themselves are related to long-investigated and well-established problems in
automata theory, computational complexity, and graph theory.

Many problems are still open. Among them:

� The design of solutions when the harmful host represents a transient
danger, in other words, when the harmful behavior is not consistent and
continuous but changes over time.

� The study of mobile harm, that is, of pieces of software that are wandering
around the network possibly damaging the mobile agents encountered in
their path.

� The study of multiple attacks, in other words, the general harmful host
location problem when dealing with an arbitrary, possibly unknown,
number of harmful hosts present in the system. Some results have been
recently obtained [54, 55]

ACKNOWLEDGMENTS

This work has been supported in part by the Natural Sciences and Engineering
Research Council of Canada under the Discovery Grant program, and by
Dr. Flocchini’s University Research Chair.

3.4 CONCLUSIONS 65

REFERENCES

1. S. Albers and M. Henzinger, Exploring unknown environments, SIAM J. Comput.,

29:1164–1188, 2000.

2. S. Alpern and S. Gal, The Theory of Search Games and Rendezvous, Springer, New

York, 2002.

3. B. Awerbuch, M. Betke, and M. Singh, Piecemeal graph learning by a mobile robot,

Inform. Comput., 152:155–172, 1999.

4. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro, Capture of an intruder by

mobile agents, in Proceedings of the 14th ACM Symposium on Parallel Algorithms

and Architectures (SPAA), Winnipeg, 2002, pp. 200–209.

5. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro, Can we elect if we cannot

compare? in Proceedings of the 15th ACM Symposium on Parallel Algorithms and

Architectures (SPAA), San Diego, 2003, pp. 200–209.

6. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro, Rendezvous and election

of mobile agents: Impact of sense of direction, Theory Comput. Syst., 40(2):

143–162, 2007.

7. X. Deng and C. H. Papadimitriou, Exploring an unknown graph, J. Graph Theory,

32(3):265–297, 1999.

8. A. Dessmark, P. Fraigniaud, and A. Pelc, Deterministic rendezvous in graphs,

Algorithmica, 46:69–96, 2006.

9. K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc, Tree exploration with little

memory, J. Algorithms, 51:38–63, 2004.

10. E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk, Mobile agent rendezvous in

a ring, in Proceedings of the 23rd International Conference on Distibuted Computing

Systems (ICDCS), Providence, 2003, pp. 592–599.

11. N. Borselius, Mobile agent security, Electron. Commun. Eng. J., 14(5):211–218, 2002.

12. D. M. Chess, Security issues in mobile code systems, in Mobile Agent Security,

G. Vigna (Ed.), Lecture Notes in Computer Science, Vol. 1419, Springer, London,

1998, pp. 1–14.

13. M. S. Greenberg, J. C. Byington, and D. G. Harper, Mobile agents and security,

IEEE Commun. Mag., 36(7):76–85, 1998.

14. R. Oppliger, Security issues related to mobile code and agent-based systems,

Computer Commun., 22(12):1165–1170, 1999.

15. K. Schelderup and J. Ones, Mobile agent security—Issues and directions, in Proceed-

ings of the 6th InternationalConference on Intelligence and Services inNetworks, Lecture

Notes in Computer Science, Vol. 1597, Barcelona, 1999, pp. 155–167.

16. M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan, The power of a pebble:

Exploring and mapping directed graphs, Inform. Comput., 176(1):1–21, 2002.

17. A. Dessmark and A. Pelc, Optimal graph exploration without good maps, Theor.

Computer Sci., 326:343–362, 2004.

18. P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc, Collective tree exploration,

Networks, 48(3):166–177, 2006.

19. P. Fraigniaud, and D. Ilcinkas, Digraph exploration with little memory, in

Proceedings of the 21st Symposium on Theoretical Aspects of Computer Science

(STACS), Montpellier, 2004, pp. 246–257.

66 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

20. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg, Graph exploration by a

finite automaton, Theor. Computer Sci., 345(2–3):331–344, 2005.

21. P. Panaite and A. Pelc, Exploring unknown undirected graphs, J. Algorithms,

33:281–295, 1999.

22. P. Panaite and A. Pelc, Impact of topographic information on graph exploration

efficiency, Networks, 36:96–103, 2000.

23. S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro, Map construction

of unknown graphs by multiple agents, Theor. Computer Sci., 385(1–3):34–48,

2007.

24. S. Das, P. Flocchini, A. Nayak, and N. Santoro, Effective elections for anonymous

mobile agents, in Proceedings of the 17th International Symposium on Algorithms and

Computation (ISAAC), Kolkata, 2006, pp. 732–743.

25. E. Kranakis, D. Krizanc, and S. Rajsbaum, Mobile agent rendezvous, in Proceed-

ings of the 13th International Colloquium on Structural Information and Communica-

tion Complexity (SIROCCO), Chester, 2006, pp. 1–9.

26. J. Ellis, H. Sudborough, and J. Turner, The vertex separation and search number of

a graph, Inform. Comput., 113(1):50–79, 1994.

27. L. Kirousis and C. Papadimitriou, Searching and pebbling, Theor. Computer Sci.,

47(2):205–218, 1986.

28. A. Lapaugh, Recontamination does not help to search a graph, J. ACM, 40(2):

224–245, 1993.

29. N. Megiddo, S. Hakimi, M. Garey, D. Johnson, and C. Papadimitriou, The

complexity of searching a graph, J. ACM, 35(1):18–44, 1988.

30. T. Parson, The search number of a connected graph, in Proceedings of the 9th

Southeastern Conference on Combinatorics, Graph Theory and Computing, Utilitas

Mathematica, Boca Raton, 1978, pp. 549–554.

31. D. Bienstock and M. Langston, Algorithmic implications of the graph minor

theorem, in M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser

(Eds.), Handbook of Operations Research and Management Science: Network

Models, Vol. 7, Elsevier, Amsterdam, 1995, pp. 481–502.

32. L. Kirousis and C. Papadimitriou, Interval graphs and searching, Discrete Math.,

55:181–184, 1985.

33. F. Makedon and H. Sudborough, Minimizing width in linear layout, in Proceedings

of the 10th International Colloquium on Automata, Languages, and Programming

(ICALP ’83), Barcelona, 1983, pp. 478–490.

34. P. Seymour and R. Thomas, Graph searching, and a min-max theorem for

treewidth, J. Comb. Theory, Ser. B, 58(1):22–33, 1993.

35. F. Hohl, Time limited blackbox security: Protecting mobile agents from malicious

hosts, in G. Vigna (Ed.),Mobile Agent Security, Lecture Notes in Computer Science,

Vol. 1419, Springer, London, 1998, pp. 92–113.

36. T. Sander, and C. F. Tschudin, Protecting mobile agents against malicious hosts,

in G. Vigna (Ed.), Mobile Agent Security, Lecture Notes in Computer Science,

Vol. 1419, Springer, London, 1998, pp. 44–60.

37. J. Vitek, and G. Castagna, Mobile computations and hostile hosts, in D. Tsichritzis

(Ed.), Mobile Objects, University of Geneva, Geneva, 1999, pp. 241–261.

38. G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, Robotic exploration as graph

construction, Trans. Robot. Autom., 7(6):859–865, 1991.

REFERENCES 67

39. M. Bender, and D. K. Slonim, The power of team exploration: Two robots can learn

unlabeled directed graphs, in Proceedings of the 35th Symposium on Foundations of

Computer Science (FOCS), Santa Fe, 1994, pp. 75–85.

40. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro, Mobile search for a black

hole in an anonymous ring, Algorithmica, 48(1):67–90, 2007.

41. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro, Searching for a black hole in

arbitrary networks:Optimalmobile agentsprotocols,Distrib.Comput. 19(1):1–19, 2006.

42. P. Flocchini, B. Mans, and N. Santoro, Sense of direction in distributed computing,

Theor. Computer Sci., 291:29–53, 2003.

43. S. Dobrev, P. Flocchini, and N. Santoro, Improved bounds for optimal black

hole search in a network with a map, in Proceedings of the 10th International

Colloquium on Structural Information and Communication Complexity (SIROCCO),

Smolenice Castle, 2004, pp. 111–122.

44. S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruzicka, and N. Santoro,

Optimal search for a black hole in common interconnection networks, Networks,

47(2):61–71, 2006.

45. S. Dobrev, P. Flocchini, and N. Santoro, Cycling through a dangerous network:

A simple efficient strategy for black hole search, in Proceedings of the 26th

International Conference on Distributed computing Systems (ICDCS), Lisboa, 2006,

p. 57.

46. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro, Multiple agents rendezvous

in a ring in spite of a black hole, in Proceedings of the 6th International Symposium

on Principles of Distributed Systems (OPODIS), La Martinique, 2003, pp. 34–46.

47. S. Dobrev, P. Flocchini, R. Kralovic, and N. Santoro, Exploring a dangerous

unknown graph using tokens, in Proceedings of the 5th IFIP International Confer-

ence on Theoretical Computer Science (TCS), Santiago, 2006, pp. 131–150.

48. S. Dobrev, N. Santoro, and W. Shi, Using scattered mobile agents to locate a black

hole in an unoriented ring with tokens, Intl. J. Found. Comput. Sci., 19(6):1355–1372,

2008.

49. P. Flocchini, D. Ilcinkas, and N. Santoro, Ping pong in dangerous graphs: Optimal

black hole search with pebbles, Algorithmica, 62(3–4):1006–1033, 2012.

50. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc, Searching for a black hole in

synchronous tree networks, Combinator. Prob. Comput., 16:595–619, 2007.

51. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc, Complexity of searching for a

black hole, Fund. Inform., 71(2–3):229–242, 2006; 35–45, 2004.

52. R. Klasing, E. Markou, T. Radzik, and F. Sarracco, Approximation bounds for

black hole search problems. Networks, 52(4):216–226, 2008.

53. R. Klasing, E. Markou, T. Radzik, and F. Sarracco, Hardness and approximation

results for Black Hole Search in arbitrary networks, Theor. Computer Sci., 384(2–3):

201–221, 2007.

54. C. Cooper, R. Klasing, and T. Radzik, Searching for black-hole faults in a network

using multiple agents, in Proceedings of the 10th International Conference on

Principle of Distributed Systems (OPODIS), Bordeaux, 2006, pp. 320–332.

55. J. Chalopin, S. Das, and N. Santoro, Rendezvous of mobile agents in unknown

graphs with faulty links, in Proceedings of the 21st International Symposium on

Distributed Computing (DISC), Lemesos, 2007, pp. 108–122.

68 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

56. W. Jansen, Intrusion detection with mobile agents, Computer Communications, 25(15):

1392–1401, 2002.

57. E. H. Spafford, and D. Zamboni, Intrusion detection using autonomous agents,

Computer Networks, 34(4):547–570, 2000.

58. D. Ye, Q. Bai, M. Zhang, and Z. Ye, Distributed intrusion detections by using

mobile agents, in Proceedings of the 7th IEEE/ACIS International Conference on

Computer and Information Science (ICIS), Portland, 2008, pp. 259–265.

59. R. Breisch, An intuitive approach to speleotopology, Southwestern Cavers VI(5):

72–78, 1967.

60. T. Parson, Pursuit-evasion in a graph, in Proceedings of Conference on Theory and

Applications of Graphs, Lecture Notes in Mathematics, Springer, Michigan, 1976,

pp. 426–441.

61. D. Bienstock and P. Seymour, Monotonicity in graph searching, J. Algorithms,

12:239–245, 1991.

62. N. Kinnersley, The vertex separation number of a graph equals its path-width,

Inform. Process. Lett., 42(6):345–350, 1992.

63. F. V. Fomin and D. M. Thilikos, An annotated bibliography on guaranteed graph

searching, Theor. Comput. Sci., 399(3):236–245, 2008.

64. I. Suzuki and M. Yamashita, Searching for a mobile intruder in a polygonal region,

SIAM J. Comput., 21(5):863–888, 1992.

65. A. Takahashi, S. Ueno, and Y. Kajitani, Mixed searching and proper-path-width,

Theor. Comput. Sci., 137(2):253–268, 1995.

66. D. Bienstock, Graph searching, path-width, tree-width and related problems,

(A Survey), in Proceedings of DIMACS Workshop on Reliability of Computer and

Communication Networks, Rutgers University, 1991, pp. 33–49.

67. D. Thilikos, Algorithms and obstructions for linear-width and related search

parameters, Discrete Appl. Math., 105:239–271, 2000.

68. R. Chang, Single step graph search problem, Inform. Process. Lett. 40(2):107–111,

1991.

69. N. Dendris, L. Kirousis, and D. Thilikos, Fugitive-search games on graphs and

related parameters, Theor. Comput. Sci., 172(1–2):233–254, 1997.

70. F. Fomin and P. Golovach, Graph searching and interval completion, SIAM J.

Discrete Math., 13(4):454–464, 2000.

71. J. Smith, Minimal trees of given search number, Discrete Math., 66:191–202, 1987.

72. Y. Stamatiou and D. Thilikos, Monotonicity and inert fugitive search games, in

Proceedings of the 6th Twente Workshop on Graphs and Combinatorial Optimization,

Electronic Notes on Discrete Mathematics, Vol. 3, Enschede, 1999, pp. 184.

73. H. Buhrman, M. Franklin, J. Garay, J.-H. Hoepman, J. Tromp, and P. Vitányi,

Mutual search, J. ACM, 46(4), 517–536, 1999.

74. T. Lengauer, Black-white pebbles and graph separation, Acta Inform., 16(4):

465–475, 1981.

75. S. Neufeld, A pursuit-evasion problem on a grid, Inform. Process. Lett., 58(1):5–9, 1996.

76. I. Suzuki, M. Yamashita, H. Umemoto, and T. Kameda, Bushiness and a tight

worst-case upper bound on the search number of a simple polygon, Inform. Process.

Lett., 66(1):49–52, 1998.

REFERENCES 69

77. B. von Stengel and R. Werchner, Complexity of searching an immobile hider in a

graph, Discrete Appl. Math., 78:235–249, 1997.

78. M. Yamamoto, K. Takahashi, M. Hagiya, and S.-Y. Nishizaki, Formalization of

graph search algorithms and its applications, in Proceedings of the 11th International

Conference on TheoremProving inHigher Order Logics, Canberra, 1998, pp. 479–496.

79. P. Fraigniaud and N. Nisse, Monotony properties of connected visible graph

searching, Inf. Comput., 206(12):1383–1393, 2008.

80. D. Ilcinkas, N. Nisse, and D. Soguet, The cost of monotonicity in distributed graph

searching, Distributed Comput., 22(2):117–127, 2009.

81. L. Barrière, P. Fraigniaud, N. Santoro, and D. M. Thilikos, Searching is not

jumping, in Proceedings of the 29th International Workshop on Graph Theoretic

Concepts in Computer Science (WG), Lecture Notes in Computer Science, Vol.

2880, Elspeet, 2003, pp. 34–45.

82. B. Yang, D. Dyer, and B. Alspach, Sweeping graphs with large clique number,

Discrete Math., 309(18):5770–5780, 2009.

83. P. Flocchini, A. Nayak, and A. Shulz, Cleaning an arbitrary regular network with

mobile agents, in Proceedings of the 2nd International Conference on Distributed

Computing and Internet Technology (ICDCIT), Bhubaneswar, 2005, pp. 132–142.

84. L. Blin, P. Fraigniaud, N. Nisse, and S. Vial, Distributed chasing of network

intruders, Theor. Comput. Sci., 399(1–2):12-37, 2008.

85. P. Flocchini, M. J. Huang, and F. L. Luccio, Decontamination of hypercubes by

mobile agents, Networks, 52(3):167–178, 2008.

86. P. Flocchini, M. J. Huang, and F. L. Luccio, Decontamination of chordal rings and

tori using mobile agents, Int. J. Found. Computer Sci., 18(3):547–564, 2007.

87. F. Luccio, L. Pagli, and N. Santoro, Network decontamination in presence of local

immunity, Int. J. Found. Comput. Sci., 18(3):457–474, 2007.

88. P. Flocchini, B. Mans, and N. Santoro, Tree decontamination with temporary

immunity, in Proceedings of the 19th International Symposium on Algorithms and

Computation (ISAAC), Gold Coast, 2008, pp. 330–341.

70 DISTRIBUTED SECURITY ALGORITHMS FOR MOBILE AGENTS

4 Mobile Agent Coordination

GIACOMO CABRI and RAFFAELE QUITADAMO

University of Modena and Reggio Emilia, Modena, Italy

In this chapter, we will discuss mobile agent coordination, starting with
some general considerations about coordination and mobility. By means of a
case study, we compare some coordination models and point out that fully
uncoupled models better suit dynamic scenarios such as those involving
mobility. Therefore, we then focus mainly on uncoupled coordination models
(Linda-like models), surveying some proposed coordination systems in the
literature and evaluating them with regard to some chosen classification
criteria. Finally, the chapter proposes an innovative approach to mobile agent
coordination which exploits the powerful concept of roles in multiagent
systems.

4.1 INTRODUCTION

In the early days of software agent research, much attention was focused on the
development of efficient and easy-to-use agent platforms or systems. Although
this has positively contributed to the maturation of this technology, it seemed
clear that a step forward was demanded. Design methodologies and coordi-
nation patterns were needed in order to enable a larger number of industrial
applications using agent technologies [1].

Designing complex applications with software agents implies decomposing
the main activity goal into activities (or subgoals) which together will achieve the
original goal [2]. Decomposition produces dependencies among the participant
agents who should be able to engage in, possibly, complex communications with
other agents in order to exchange information or ask their help in pursuing a
goal. The latter leads naturally to the notion of a number of agents “cooperat-
ing” with each other toward the accomplishment of some common objective.

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

71

The need to communicate and cooperate leads to the need for coordinating the
activities pursued by agents in order to both

1. simplify the process of building multiagent systems and

2. provide the ability to reuse descriptions of coordination mechanisms and
patterns.

Coordination has been defined as the process of “managing dependencies
between activities” [3]. In the field of computer science, coordination is often
defined as the process of separating computation from communication con-
cerns. Although collaboration and coordination are very important tasks in
multiagent applications, embedding all the required logic in agents themselves
seems to be an awkward solution, since it does not grant adaptability to
environmental changes and does not promote reusability. Furthermore, the
choice of an embedded coordination schema does not meet today’s agent-based
application requirements, which include the capability to operate in open and
dynamic environments.

To overtake the above problems, it is fundamental to use a collaboration and
coordination approach able to deal with application and developer needs
and which can be applied and reused in several scenarios. Coordination basi-
cally implies the definition of a coordination model and a related coordination
architecture or a related coordination language. An agent coordination model
is a conceptual framework which should cover the issues of creation and
destruction of agents, communications among agents, and spatial distribution of
agents as well as synchronization and distribution of their actions over time. In
particular, the “coordinables” are the coordinated entities (or agents) whose
mutual interaction is ruled by the model, the coordination media are the
abstractions enabling the interaction among the agents, and the coordination
laws are the rules governing the interaction among agents through the coordi-
nation media as well as the behavior of the coordination media itself [4].
A coordination architecture is a software infrastructure supporting and imple-
menting a coordination model. A coordination language is “the linguistic
embodiment of a coordination model” [5], which should orthogonally combine
two languages: one for coordination (interagents) and one for computation
(intraagent).

4.2 MOBILE AGENT COORDINATION: GENERAL OVERVIEW

In this paragraph, we will introduce the coordination approaches that have
emerged in the mobile agent literature. The general spatial–temporal taxonomy
proposed here will be discussed with references to a case study example and is
meant as a more comprehensive introduction to the next paragraphs, where we
will focus more on recent fully uncoupled coordination models.

72 MOBILE AGENT COORDINATION

4.2.1 Case Study

A promising application of mobile agents is the provision of an intelligent
urban mobility system. Modern cities are being more and more disseminated
with different types of computational devices, for example, wireless-enabled
devices providing tourist information or traffic updates (see Figure 4.1).

The devices installed into the cars can be exploited for helping drivers
achieve goals such as:

� Retrieving information about the current street, for instance, about hotels,
restaurants, or interesting monuments

� Checking the traffic situation for the presence of accidents or congestions
in order to select a different path

� Planning and coordinating their movements with other cars if they are
part of organized groups

Police

Egyptian
museum

Hospital

Passenger

FIGURE 4.1 Intelligent urban mobility system.

4.2 MOBILE AGENT COORDINATION: GENERAL OVERVIEW 73

To this end, we can assume that (i) cars are provided with a software agent
running on some wireless device, like a little PC for vehicles or a personal digital
assistant (PDA), in charge of giving the driver information on interesting places
to see, what they offer, and where they are; (ii) the city is provided with an
adequate embedded network infrastructure to support the provision of such
information bymobile agents and to enable their coordination; and (iii) both the
vehicles and the city infrastructure elements are provided with a localization
mechanism to find out where they are actually located in the city [e.g., the global
positioning system (GPS) in Figure 4.1]. With regard to the infrastructure,
installed in sensible places or buildings, there will be a wired network of com-
puter hosts each capable of communicating with each other and with the mobile
devices located in its proximity via the use of a short-range wireless link.

This system, even in the brevity of the description, is a case study that
captures in a powerful way features and constraints of mobile agent applica-
tions: It represents a very dynamic scenario with a variable number of cars
issuing different requests entering and exiting the system. The above scenario
and the associated coordination problems are of a very general nature, being
isomorphic to scenarios such as software agents exploring the Web, where
mobile software agents coordinate distributed researches on various websites.
Therefore, besides the addressed case study, all our considerations are of a
more general validity.

4.2.2 A First General Taxonomy

While coordination among distributed, even mobile, objects in closed and
stable environments has been widely explored and well understood, coordi-
nation of mobile agents operating in the Internet, which is characterized by
mutable communication paths, intermittency of hardware and software
resources, and heterogeneity, is still an open and interesting issue. Several
coordination models for mobile agents have been to date proposed and a first
general taxonomy [6] is proposed in this paragraph (see Figure 4.2): It is based
on the degree of spatial and temporal coupling among the mobile agents in a
MAS (multiagent system). This taxonomy provides a very high level view of
coordination models in literature, useful to follow the evolution of coordina-
tion approaches from the first coupled client–server models toward fully
uncoupled Linda-like models, more suited to dynamic scenarios.

As mentioned above, the explained taxonomy divides the approaches in the
literature according to their degree of spatial and temporal coupling. Spatial
coupling requires that agents share a common name space. Therefore, agents
can communicate by explicitly naming the receiving agents. In order to support
this ability, a naming or location service is often used to prevent the need
for explicit references from the sender agent to the receiver agent. Temporal
coupling implies some form of synchronization between the interacting agents.
Temporally uncoupled models instead relax this synchronization requirement.
Therefore, agents are no longer dependent on meeting and exchanging

74 MOBILE AGENT COORDINATION

information with others at specific times, and they do not have to worry as
much about other agents’ schedules.

Coordination models that exhibit both high spatial and temporal coupling
are referenced as direct coordinationmodels and are the most implemented ones
(many Java-based agent systems, e.g., Aglets [7] and D’Agents [8], adopt this
model). From the standpoint of interagent coordination, direct coordination
systems allow agents to communicate in a peer-to-peer manner and the ease of
communication comes from the fact of using agreed-upon communication
protocols (messages are formatted in a previously agreed-upon format, e.g.,
using an Agent Communication Language (ACL) like Knowledge Query and
Manipulation Language (KQML) [9]). An example from our case study is
reported in Figure 4.3, where driver agents A and B share their references and
can directly exchange messages using some agreed-upon protocol.

As concerns the interactions with the hosting environment, direct coordi-
nation models use client–server coordination, since the server makes its man-
aged resources available through well-specified interfaces to client agents. In the
case of mobile agent systems, this approach is quite inadequate. Since mobile
agents move frequently, locating and direct messaging are expensive operations
and rely heavily on the stability of the network. Statically located agents,
especially those located in the same environment, can benefit from spatially
coupled models, since the protocols, locations, and coordination times can be
agreed upon a priori and network involvement is minimized.

The meeting-oriented category aims at defining spatially uncoupled models,
where agents coordinate in the context of “meetings” without needing to

Linda-like

Limbo Tucson
MARS TOTA

Meeting-oriented

Ara Mole

Blackboard based

Ambit
ffMAIN

Uncoupled Coupled

U
nc

ou
pl

ed

Sp
at

ia
lly

Direct

Aglets
D’AgentsC

ou
pl

ed

Temporally

FIGURE 4.2 General taxonomy of agent coordination models.

4.2 MOBILE AGENT COORDINATION: GENERAL OVERVIEW 75

explicitly name the partners involved. Proper meeting points are established
and agents join them in order to communicate and synchronize with the other
agents involved in the meeting. In Figure 4.4, we have depicted a possible
meeting-oriented coordination among a group of driver agents trying to buy a
“group ticket” for the Egyptian museum. Drivers may not even know the
number and identity of all the group members, but they are requested to simply
synchronize with a meeting-point agent that will handle the coordination
among the requesters.

Driver
agent A

Driver
agent B

Give m
e y

our p
ositi

on

FIGURE 4.3 Example of direct coordination.

Meeting agent

Driver
agent A

Egyptian
museum

Meeting point

Driver
agent B

I need a “group ticket”
for the museum

FIGURE 4.4 Meeting-point coordination.

76 MOBILE AGENT COORDINATION

A very common design choice of meeting-oriented models is allowing only
local interactions among the agents in a certain meeting. Nonlocal commu-
nications would introduce unpredictable delays and unreliability problems
typical of direct coordination models. Examples of meeting-oriented inspired
systems include the Ara mobile agent system [10] and Mole [11]. In the latter
system, agents must share a reference to a specific synchronization object,
which represents the meeting; accessing one of these synchronization objects,
they are implicitly allowed to join the meeting and communicate with the other
participants. It must be observed that meeting-oriented coordination systems
do not fully achieve spatial uncoupling since agents must share the meeting
names at least.

The major drawback of the two previous temporal-coupled models derives
from their enforcing synchronization among interacting agents: In many
mobile agent applications neither the schedule nor the position of agents is
predictable, and this makes synchronization run the risk of missing interac-
tions. All temporal uncoupled models have some shared data space in common,
used as a repository for messages. This way, the sender is totally unaware of
when the receiver will retrieve the message. The blackboard-based coordination
model calls such a shared structure a “blackboard.” This model can be used, for
instance, to coordinate the routes of a group of drivers, avoiding them to follow
wrong paths. In the example of Figure 4.5, a driver agent in the past wrote
that the current road is wrong for group “GROUP1098” and a second driver
agent, belonging to the same group, retrieves the record and changes its path.

Even though the use of the blackboard makes this model temporally
uncoupled, it requires that agents must agree on a common message identifier

Driver
agent

Blackboard

“GROUP1098,” “WRONG PATH”

FIGURE 4.5 Example of blackboard-based coordination.

4.2 MOBILE AGENT COORDINATION: GENERAL OVERVIEW 77

to communicate (i.e., a common namespace and thus spatial coupling).
Further, since all interagent communications must be performed via a black-
board, hosting environments can easily monitor messages flowing and thus
enforce a more secure execution model than previous ones. Ambit [12] and
ffMAIN [13] follow the blackboard-based coordination model.

Tuple-based coordination was introduced in the late 1980s in the form of the
Linda coordination language for concurrent and parallel programming [14] and
consisted of a limited set of primitives, the coordination primitives, to access a
tuple space. Later, in the 1990s, the model received widespread recognition as
a general-purpose coordination paradigm for distributed programming. Linda-
like coordination models use local tuple spaces, just like Blackboard-based
models use a blackboard. The key difference is in the behavior of the space and
its operations, which are based upon an associative mechanism: The system
stores tuples in a certain format and retrieves them using associative pattern
matching. In the example of Figure 4.6, the police server provides agents with a
shared tuple space used to coordinate with other agents and the driver agent
can request records that are related to accidents along this road to avoid
wasting time queued in 10 km and change its route accordingly.

The Linda tuple space model allows full uncoupling of the cooperating
agents, both spatial and temporal. Linda-like coordination systems well suit
mobile agent applications situated in a wide and dynamic environment like the
Internet. Equipping each agent with a complete and updated knowledge of its
hosting environments and of other agents is hardly feasible. Pattern-matching
mechanisms help the programmer deal with uncertainty, heterogeneity, and
dynamicity and can contribute to reducing complexity. Since Linda-like

“accident,” “10 km,” “5:03 pm”

Police

“traffic congestion,” “10%”

Tuple space

Driver
agent

FIGURE 4.6 Using tuple spaces to coordinate car drivers.

78 MOBILE AGENT COORDINATION

coordination models better suit dynamic and unpredictable scenarios, they will
be deeply analyzed in the following paragraph.

4.3 LINDA-LIKE COORDINATION MODELS:
SOME EVALUATION CRITERIA

The atomic units of interaction in tuple-based coordination models are tuples.
A tuple is a structured set of typed data items. Coordination activities between
application agents (there included synchronization) are performed indirectly
via exchange of tuples through a shared tuple space. Linda primitives provide
means for agents to manipulate the shared tuple space, thereby introducing
coordination operations. Two operations are provided to associatively retrieve
data from the tuple space: rd and in, to read or extract, respectively, a tuple
from the tuple space. A tuple can be written in the tuple space by an agent
performing the out primitive. For instance, the out (“total”, 22, l) writes a tuple
with three fields: the string “total,” the integer 22, and the contents of the
program variable l.

The associative mechanism to get tuples from the space is based upon a
matching rule: rd and in take a template as their argument, and the returned
tuple is one matching the template. The full matching requires that the template
and the tuple must be of the same length, the field types must be the same, and
the values of constant fields have to be identical. For instance, the operation
in (“total”, ?b, l) looks for a tuple containing the string “total” as its first field
followed by a value of the same type as the program variable b and the value
of the variable l; the notation ?b indicates that the matching value is to
be bound to the variable b after retrieval. Supposing that the above tuple
(“total”, 22, l) has been inserted in the tuple space, performing the previous in
operation triggers the matching rules that associate the value 22 to the program
variable b.

Input operations are blocking, that is, they return only when a matching
tuple is found, thus implementing indirect synchronization based upon tuples’
occurrences. When multiple tuples match a template, one is selected non-
deterministically. There are also two nonblocking versions of the previous
input operations—inp and rdp—which return true if a matching tuple has been
found and false otherwise.

Though originally defined with a closed-system perspective, Linda-like
coordination is attractive for programming open mobile agent applications
because it offers some key advantages as concerns:

� Uncoupling As already stressed, the use of a tuple space as the coordina-
tion medium uncouples the coordinating components both in space and
time: An agent can perform an out operation independently of the presence
or even the existence of the retrieving agent and can terminate its execu-
tion before such a tuple is actually retrieved. Moreover, since agents do not

4.3 LINDA-LIKE COORDINATION MODELS: SOME EVALUATION CRITERIA 79

have to be in the same place to interact, the tuple space helps abstract from
locality issues.

� Associative Addressing The template used to retrieve a tuple specifies what
kind of tuple is requested, rather than which tuple. This well suits mobile
agent scenarios: In a wide and dynamic environment, a complete and
updated knowledge of all execution environments and of other application
agents may be difficult or even impossible to acquire. As agents would
somehow require pattern-matching mechanisms to deal with uncertainty,
dynamicity, and heterogeneity, it is worthwhile integrating these mechan-
isms directly in the coordination model to simplify agent programming
and to reduce application complexity.

� Context Awareness A tuple space can act as a natural repository of
contextual information to let agents get access to information about
“what’s happening” in the surrounding operational environment.

� Security and Robustness A tuple space can be made in charge of control-
ling all interactions performed via tuples, independently of the identity of
involved agents.

� Separation of Concerns Coordination languages focus on the issues of
coordination only: They are not influenced by characteristics of the host
programming language or of the involved hardware architecture. This
leads to a clear coordination model, simplifies programming, and intrinsi-
cally suits open and dynamic scenarios.

4.3.1 Some Criteria to Compare Tuple-Based Systems

Taking as a starting point the Linda system, a lot of projects have been pro-
posed to extend the original model under different aspects: Many have
extended the set of coordination primitives to address specific problems or to
enrich the expressiveness of the coordination language; programmability has
been often added to customize the behavior of the primitives and make the
coordination system more intelligent.

The identification of an extensive set of criteria (features), wide enough to
include all possible variations from the Linda model, would turn out to be
confusing rather than explanatory. Here we focus on three main classification
criteria, taking into account only the most significant systems in the literature:

1. Location of Tuple Space with Respect to Agents The tuple space is
usually considered as an external entitymade available by a third party and
accessed for coordination purposes by mobile agents. Nonetheless, some
approaches have been proposed that “internalize” the tuple space concept,
allowing single agents to have their internal instance of the tuple space.

2. Communication scopeof Tuple Space Given a set of tuple space instances,
it may happen that they are only locally connected or are not connected

80 MOBILE AGENT COORDINATION

at all. This means that either a space instance can communicate with only
other neighboring spaces or it can communicate only with connected
agents. Other kinds of systems exploit amore global concept of tuple space,
enabling also long-range, multihop, remote communications between
tuple space instances.

3. Degree of programmability Allowed Nonprogrammable tuple space
models are not able to support any computational activity. All the
computations are left to the agents. This kind of system provides only
a predefined set of hardwired capabilities without the possibility for the
middleware itself or for an agent to change or customize any features.
Adding programmability to a tuple space means that the system is able
to dynamically download, store, and execute external code. Agents
can program the tuple space, not only by reshaping its predefined set of
features, but also by injecting new programs and services. These new
implanted services can be associated with some triggering conditions
(reactivity) to let the middleware execute those procedures whenever the
proper conditions are met.

The programmability requirement is becoming of paramount importance
for most modern Linda-like systems. In a reactive tuple space model, the tuple
space transcends its role as a mere “tuple repository” with a built-in and
stateless associative mechanism. Instead, reactive spaces can also have their
own state and can react with specific actions to accesses performed by mobile
agents. Reactions can access the tuple spaces, change their content, and influ-
ence the semantics of the agents’ accesses.

Tuple space reactivity offers several advantages for mobile agent applica-
tions. First, it can be used to enforce local policies to rule the interactions
between the agents and the hosting environment and to defend the integrity of
the environments from malicious agents; for example, a site administrator can
monitor access events and implement specific security policies for its execution
environment. Second, using reactions, an agent can more easily adapt the
semantics of its interactions to the specific characteristics of the hosting
environment: This will result in a much simpler agent programming model
compared to the fixed pattern-matching mechanism of Linda-like models and
adds “distributed intelligence” to the whole system.

4.4 OVERVIEW OF SOME MODERN
TUPLE-BASED APPROACHES

Considering the above-mentioned criteria, in this paragraph we will survey
some important Linda-like extensions from the literature. They have been
graphically reported in Figure 4.7, where each axis corresponds to one of the
chosen features.

4.4 OVERVIEW OF SOME MODERN TUPLE-BASED APPROACHES 81

4.4.1 JavaSpaces

JavaSpace [15] is a technology developed by Sun aimed at providing distributed
repositories of information similar to Linda tuple spaces. JavaSpaces are tuple
spaces, where tuples are Java objects: Tuples are classes implementing the Entry
interface. The access to the tuple space is defined in terms of Java methods,
belonging to the JavaSpace interface. Tuples are stored in their serialized form
(i.e., using the standard Java serialization mechanism) and the pattern-
matching mechanism relies on the serialized form of the tuples. Other useful
features provided by JavaSpaces are:

� The possibility to define a “lease time” for a tuple, that is, the tuple lifetime
that, when it is over, removes the tuple from the space

� The support for transactions, to ensure the correctness of the performed
operations

� A notifying mechanism, which signals a number of registered listeners
when a new tuple is written

Besides these relevant functionalities, JavaSpaces still can be classified as
nonprogrammable, because there is no way for the Java programmer to inject

Com
mun

ica
tio

n

sc
op

e

Degree of programmability

L
oc

at
io

n

Low High

Loc
al

Rem
ot

e

In
te

rn
al

E
xt

er
na

l

JavaSpaces

LIME

SwarmLinda

MARS

Tucson

TOTA

FIGURE 4.7 Classification of tuple space approaches.

82 MOBILE AGENT COORDINATION

code to customize the behavior of the tuple space. It has been also evaluated as
a system with a low communication scope, in the sense that there is no con-
nection among neighbor spaces and interactions can occur only in the local
tuple space. The middleware is positioned externally with respect to the agents
storing and retrieving tuples: Agents simply get a shared reference to the tuple
space object but are not supposed to have a personal tuple space.

4.4.2 SwarmLinda

SwarmLinda [16] is an example of a tuple space middleware with a remote
communication scope. These tuple spaces can interact with each other, meaning
that different instances can exchange data and information. Often, this is
reached through a peer-to-peer network, where different hosts run an instance
of the middleware, and such instances connect to other instances running on
other hosts. SwarmLinda is implemented in Java and exploits XML docu-
ments to describe tuples. SwarmLinda gets inspiration from concepts of swarm
intelligence and multiagent systems, modeling the tuple space as a set of
nodes, and provides services (inserting, retrieving, etc.) performed by “ants”
that travel across the nodes and search for (or carry on) one or more tuples.
An interesting feature of SwarmLinda is its tuple aggregation, based on pat-
terns criteria, thus similar tuples will be closer and kept (possibly) in the same
node space. This implies that, while the whole system can be seen as a com-
position of distributed tuple spaces, it is really a single tuple space with clients
connected to different instances but that perceives the system as unique. Such
a tuple space is situated externally to the interacting agents and is not pro-
grammable with special user-defined code.

4.4.3 LIME

LIME (Linda in a Mobile Environment) is the evolution of the Linda coor-
dination model, which addresses mobility of agents and their tuple spaces.
LIME tries to adapt the advantages of the Linda model (in terms of uncoupled
interactions) to the dynamicity of a mobile world.

In LIME the tuple space can be considered internal, since each mobile entity
is associated to an interface tuple space (ITS), which can be considered as a
personal space where tuples can be stored or retrieved from. When mobile
agents meet in the same physical place, their ITSs are automatically merged and
a new shared tuple space is available for their coordination. The merged tuple
spaces become a single tuple space from the viewpoint of agents, making
transparent any details about the actual location of tuples. When a new agent
arrives, its ITS is merged with the current one, and the content is automatically
recomputed. Agents can also define “private ITSs,” that are not shared with
other agents, to be exploited to store private information.

Interactions among agents can occur in LIME only in their shared ITS and
this make LIME a local coordination model from the standpoint of the com-
munication scope. In addition, LIME cannot be evaluated as a programmable

4.4 OVERVIEW OF SOME MODERN TUPLE-BASED APPROACHES 83

system, though it provides a limited form of event reaction capability: Due to a
new reactive statement, system events can be captured and proper code frag-
ments can be executed in response to each event. Therefore, LIME provides its
tuple space with a form of reactivity: A mobile entity can program the behavior
of its own ITS, so as to provide more flexible control on accesses to it.

4.4.4 TuCSoN

TuCSoN [17] is a coordination model for mobile Internet information agents.
TuCSoN exploits the tuple center concept to define an interaction space spread
over a collection of Internet nodes and, according to our classification criteria,
is clearly characterized by a remote communication scope. In particular, each
tuple center is associated to a node and is denoted by a locally unique identifier.
A TuCSoN tuple center can be identified by means of either its full absolute
name or its relative local name: The former is unique all over the Internet,
while the latter is unique only within a single-node name space. The syntax
tc@node uniquely identifies the specific tuple center tc hosted by node, while
the relative name tc refers to the local tuple center of the node where the mobile
agent is currently running. Due to this distributed network of tuple nodes and
centers, TuCSoN allows agents to perform tuple center operations in both a
network-transparent and a network-aware fashion: The former allows an agent
to remotely look for its next hosting environment, while the latter is typically
used by an agent wishing to interact with a node locally.

It must be pointed out that a tuple center is not just a tuple space, since it can
support “specification tuples,” which define the reaction logic to communica-
tive actions on the tuple space. This make TuCSoN a coordination model with
a high degree of programmability because it gives the programmer the capability
of modifying the standard behavior of the tuple space by programming it
without changing the set of primitives. In addition, TuCSoN provides a tuple
space external to the agents as concerns the location criteria.

4.4.5 MARS

MARS (Mobile Agent Reactive Spaces) [18] extends the Sun JavaSpaces,
implementing programmable reactive tuple spaces for Java-based mobile agent
applications. The MARS model assumes the existence of one (unnamed) tuple
space locally to each execution environment (thus located externally to mobile
agents), which is independent of other neighboring spaces (a local communi-
cation scope, following one of the above evaluation criteria). This tuple space
represents the only means that agents can use to interact both with the local
execution environment and with other agents. As in JavaSpaces, MARS tuples
are Java objects whose instance variables represent tuple fields. To access the
tuple space, the MARS interface provides some fundamental Linda-like
operations, such as read, write, take, readAll, takeAll.

The key feature of MARS relies, however, in the notion of programmable
reactive tuple space, which makes it possible to embody computational abilities

84 MOBILE AGENT COORDINATION

within the tuple space, assuming specific behaviors in response to access events.
Therefore, a MARS tuple space is no longer a mere tuple repository, but an
active component with its own state, which can be programmed so as to react to
tuple access operations by performing specific reactions. The MARS reaction
model complies with the standard tuple space model: Reactions are coded
as metalevel tuples (i.e., metatuples) stored in a local metalevel tuple space. Each
metatuple has the form (Rct, T, Op, I), meaning that when an agent I invokes
the operation Op on a tuple matching T, MARS must trigger the reaction
Rct. The reaction itself is a method of a Java object. Whenever an access
occurs, the system searches the metalevel tuple space for a matching metatuple.
If such a tuple is found, the corresponding reaction object is retrieved and its
reaction method is executed. To avoid endless recursion, reactions are not
allowed to trigger other reactions in a chain. Metatuples can be stored and
retrieved at run time, leading to dynamic installations and uninstallations of
reactions, both by the local administrator and by agents.

4.4.6 TOTA

Unlike traditional shared data space models, tuples in the TOTA (Tuples On
The Air) middleware [19] are not associated to a specific node (or to a specific
data space) of the network (it can be classified as an internal tuple space as
concerns the location criteria). Instead, tuples are injected in the network and
can autonomously propagate and diffuse in the network accordingly to a
specified pattern. Thus, TOTA tuples form a sort of spatially distributed data
structure able to express not only messages to be transmitted between appli-
cation components but also, more generally, some contextual information on
the distributed environment. Upon the distributed space identified by the
dynamic network of TOTA nodes, each component is capable of locally storing
tuples and letting them diffuse through the network. Tuples are injected in the
system from a particular node and spread hop by hop accordingly to their
propagation rule. In fact, a TOTA tuple is defined in terms of a “content” and a
“propagation rule” T¼ (C,P). The content C is an ordered set of typed fields
representing the information carried on by the tuple. The propagation rule
P determines how the tuple should be distributed and propagated in the
network. In addition, the propagation rules can determine how the content of
the tuple should change while it is propagated. This propagation provides a
sufficient degree of programmability to the tuple space and makes its com-
munication scope remote since tuples move dynamically through network
nodes crossing neighboring spaces.

4.5 ROLES FOR MOBILE AGENT COORDINATION

In this section we show an alternative research direction concerning mobile
agent coordination. This approach is based on roles, discussed next.

4.5 ROLES FOR MOBILE AGENT COORDINATION 85

4.5.1 Roles

Roles have been already exploited in object-oriented approaches, where a role
is defined as a set of behaviors common to different entities [20], with the
capability to apply them to an entity in order to change its capabilities and
behavior. Other approaches promote roles as views of a particular object or
entity [21], stressing the similarity between roles in computer programs and
those in real life.

Starting from previous work in object-oriented programming, roles have
been applied to agents, which after all can be thought as autonomous and
active objects, promoting the reuse of solutions and making the definition of
coordination scenarios easier. Roles allow not only the agent application
developers/designers to model the execution environment, but also allow agents
to actively “feel” the environment itself. In other words, roles allow the
developer and its agents to perceive the execution environment in the same way.

The importance of the use of roles is supported by the fact that they are
adopted in different areas of the computing systems, in particular to obtain
uncoupling at different levels. Some examples of such areas are security, in
which we can recall role-based access control (RBAC) [22], which allows
uncoupling between users and permissions, and computer-supported cooperative
work (CSCW) [23], where roles grant dynamism and separation of duties. Also
in the area of software development we can find approaches based on roles,
especially in object-oriented programming [24, 25], in design patterns [20], and
in computer-to-human interfaces [26], which remarks the advantages of role-
based approaches.

4.5.2 Applying Roles to Agents

Applied to the agent scenario, roles are mainly exploited to define common
interactions between agents (e.g., the interactions between the contract-net
participants or between auctioneers and bidders in an auction) and promote an
organizational view of the system, which well suits agent-oriented approaches
[26]. Roles embed all information and capabilities needed in a particular exe-
cution environment to communicate, coordinate, and collaborate with other
entities and/or agents. Due to this, an agent (and its programmer) does not
need to know details about the current execution environment but only needs
to know which role to assume and use to interact with (or to exploit) the
environment itself. This leads to a separation of issues related to the agent logic
and its communication with other entities. The former is embedded in the agent
itself, since it defines the agent base behavior, while the latter is embedded in a
role and expresses an added behavior. This separation is more emphasized at
the development phase, since it is possible to develop agents and roles they are
going to use in separated times and ways, leading to a more modular devel-
opment process. Another advantage of the use of roles is solution reusability.
Since roles embed a behavior applied to a specific application context

86 MOBILE AGENT COORDINATION

(e.g., collaboration in a MAS system), keeping it separated from agents, a set of
roles can be successfully applied to other similar areas, leading not only to a
faster development but also to an experience and solution reuse.

4.5.3 Roles and Mobility

Roles are pragmatically useful in mobile agent scenarios. Mobile agents
change their execution environment during their life, and they can hardly make
assumptions on the hosting environments. Separating the agent logic from
the interaction logic, roles allow agents to interact with the hosting environ-
ment without knowing details about it.

On the one hand, when a mobile agent arrives at an execution environment,
it can rely on the presence of well-known roles that make given capabilities
available; the agent can exploit such capabilities to carry out its tasks, dis-
regarding how these capabilities are implemented. On the other hand, hosting
environments can implement roles not only in terms of local functionalities but
also in terms of local policies. When a mobile agent changes its execution
environment and it must carry out the same task in the new environment, it can
find and play the same role disregarding implementation details. In general,
roles can be exploited to coordinate not only with the hosting environments but
also with other entities.

4.5.4 Running Examples

This section presents some application examples where roles are exploited to
coordinate agents with other entities.

1. Bridge This example shows in particular the coordination between agents
and their environments. Let us consider a driver that has to cross a bridge for
which a fee is required. When the driver arrives near the bridge, he can assume
the bridgeCrosser role, which gives him the capability of paying the service and
enables the crossing of the bridge. Different bridges can implement the capa-
bilities and the service in different ways: For instance, one bridge can exploit a
prepaid card, while another can rely on credit cards; as another example, one
bridge can provide a single-use pin that is read by sensors along the bridge,
while another bridge can simply raise a tollgate.

2. Museum In the latter example we consider tourists that visit a local
museum; we suppose that each involved human is supported by an agent that
is mobile since it resides on a mobile device. We can define three main roles:
visitor, guide, and driver. The visitor role is played by all the tourists that want to
visit the museum; the guide role is played by one person who explains the
artworks of the museum; the driver is played by the person who drives the tourist
bus. Assigning roles is a first way of coordinating agents. We can figure out a
situation where there is only one guide, whose agent is the only one authorized to
play the guide role; in another situation, a scholar group can arrange the visit

4.5 ROLES FOR MOBILE AGENT COORDINATION 87

by letting single students explain to other students the part of the museum they
have studied: In this case, the guide role is played by different agents in turn.
Moreover, roles can coordinate the movement of groups of tourists by suggest-
ing the room where the guide is. An intragroup coordination is also possible,
because different guides present in the same museum can be led to not overlap in
the same room; to avoid confusion, this information is sent only to those agents
playing the guide role. With regard to policies, some environments can impose
that only the guide can talk with the driver.

These simple examples should sketch how roles can be exploited to
coordinate agents. In our research activities, we have proposed RoleX [28], a
role-based infrastructure implemented in the context of the BRAIN framework
[29]. RoleX not only enables the assumption of roles by agents but also pro-
vides several mechanisms that can be exploited to coordinate agents playing
given roles. For instance, RoleX has been exploited to implement computational
institutions [30], where it has proved to be a powerful and flexible means to
implement abstractions for multiagent systems.

4.6 FUTURE DIRECTIONS IN MOBILE AGENT COORDINATION

This chapter has surveyed mobile agent coordination research in the main-
stream literature of software agents. The general trend that clearly emerges is
toward an increasing degree of uncoupling among the coordinable entities (i.e.,
mobile agents). In the last few years, new research fields, such as ubiquitous
and pervasive computing [31], are gaining momentum, leading to application
scenarios that are tremendously open to components (hardware and software)
developed by independent parties and whose evolution pace is often over-
whelming. Furthermore, in so-called software intensive systems [32], application
designers no longer produce software components to be integrated in well-
defined contexts but, instead, endow them with increasing levels of autonomy.
Components integration is typically not controlled or planned externally but is
induced by changes perceived in the environment, leading to self-adaptable
systems. Many pervasive applications, for instance, running on sensor networks
[33], have been implemented as agent-based programs and several initiatives are
trying to use agent research to build adaptable and self-organizing service
architectures [34].

The above research definitely proves that interactions must be treated as
first-class “citizens”; designers can no longer bury them in the component code
or make them implicit. Rather, they must externalize and represent them in
the architecture. Mobile agent coordination, as highlighted in this chapter,
has done much of the latter externalization work and we are convinced it
will be a valuable source of inspiration for future distributed component
models. However, the next step in coordination research is toward the pro-
vision of new powerful means to coordinate mobile agent interactions without

88 MOBILE AGENT COORDINATION

any (or with minimal) design-level agreement among the participant agents.
Tuple-based coordination models introduce associative mechanisms to retrieve
tuples (using pattern matching), but this seems to be no longer enough in
extremely dynamic and open environments. Pattern matching implies at least
two forms of coupling that have not been considered so far: syntactic and
semantic coupling. The former is related to the syntactic structure of the tuple
(e.g., field ordering and typing) and can heavily limit coordination possibilities
among independently developed mobile agents: The question is how can two or
more agents coordinate if their internal representations of a tuple are syntac-
tically incompatible? The solutions we have surveyed in this chapter assume an
implicit design-level agreement on syntax and can thus hardly tackle the stressed
dynamicity and openness of modern scenarios. Semantic coupling is still more a
subtle issue to deal with, because it poses the problem of the correct interpre-
tation of the tuple itself. When two agents are designed by independent pro-
grammers, how can we ensure that the meaning of field A (e.g., “road congestion
level”) is correctly understood by both the coordinable entities?

Some directions can be given to address the two mentioned problems of
syntactic and semantic uncoupling. We think that knowledge will be the key
factor of future coordination models. Coordination artifacts will no longer
be syntactically constrained tuples, but new forms of “semantically enriched”
models will rise [35]. Current research on environments for multiagent systems
[36, 37] is pointing in this direction, recognizing the importance of powerful
knowledge-enabled environments to drive coordination among mobile agents.
The concept of knowledge networks [38] is an ongoing example of introducing
knowledge as the mediator of agents’ interactions in open systems. Coordi-
nation would thus be driven by more sophisticated ontology-based knowledge
data, other than a simple tuple value. Linda-like tuples will become sort of
“knowledge atoms” and coordination will be supported by environments
capable of reconciling semantic and syntactic mismatches using well-known
semantic inference and reasoning algorithms. This will enable more robust and
adaptive configuration patterns as well as mitigate the syntactic and semantic
coupling problems described in this concluding section.

REFERENCES

1. D. Deugo, M. Weiss, and E. Kendall, Reusable patterns for agent coordination, in

A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf (Eds.), Coordination of

Internet Agents: Models, Technologies, and Applications, Springer, Berlin, Mar. 2001,

Chapter 14, pp. 347–368.

2. J. Jennings andM.Wooldridge, Agent-oriented software engineering, in J. Bradshaw

(Ed.), Handbook of Agent Technology, AAAI/MIT Press, Palo Alto, CA, USA,

2000.

3. T. W. Malone and K. Crowston, The interdisciplinary study of coordination, ACM

Comput. Surv., 26:87–119, 1994.

REFERENCES 89

4. P. Ciancarini, Coordination models and languages as software integrators, ACM

Comput. Surv., 28(2):300–302, 1996.

5. N. Carriero, and D. Gelernter, Coordination languages and their significance.

Commun. ACM, 35(2):97–107, 1992.

6. G. Cabri, L. Leonardi, and F. Zambonelli, Mobile-agent coordination models for

internet applications, IEEE Computer, 33(2):82–89, 2000.

7. D. Lange, M. Oshima, G. Karjoth, and K. Kosaka, Aglets: Programming mobile

agents in Java, in G. Goos, J. Hartmanis, and J. van Leeuwen (Eds.), Proceedings of

International Conference Worldwide Computing and Its Applications (WWCA’97),

Lecture Notes in Computer Science, Vol. 1274, Springer, Berlin, Tsukuba, Japan,

March 10–11, 1997, pp. 253–266.

8. R. S. Gray, G. Cybenko, D. Kotz, R. A. Peterson, and D. Rus, D’Agents:

Applications and performance of a mobile-agent system, Software—Pract. Exper.,

32(6):543–573, 2002.

9. T. Finin R. Fritzson, D. McKay, and R. McEntire, KQML as an agent communi-

cation language, in Proceedings of the 3rd International Conference on Informa-

tion and Knowledge Management (CIKM’94), ACM New York, NY, USA, Dec.

1994.

10. H. Peine, Ara—Agents for remote action, in Mobile Agents, Explanations and

Examples, Manning/Prentice-Hall, 1997, pp. 96–161.

11. J. Baumann et al., Mole—Concepts of a mobile agent system, World Wide Web J.,

1(3):123–137, 1998.

12. L. Cardelli and D. Gordon, Mobile Ambients. Foundations of Software Science and

Computational Structures, Lecture Notes in Computer Science, Vol. 1378, Springer,

Berlin, 1998, pp. 140–155.

13. P. Domei, A. Lingnau, and O. Drobnik, Mobile agent interaction in heterogeneous

environments, in Proceedings of the 1st International Workshop on Mobile Agents,

Lecture Notes in Computer Science, Vol. 1219, Springer, Berlin, 1997, pp. 136–148.

14. D. Gelernter and N. Carriero, Coordination languages and their significance,

Commun. ACM, 35(2):96–107, 1992.

15. E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces Principles, Patterns and

Practice, Addison Wesley, Reading, MA, 1999.

16. A.Charles, R.Menezes, andR.Tolksdorf, On the implementation of SwarmLinda, in

Proceedings of the 42nd Annual Southeast Regional Conference, Spartanburg, Hunts-

ville, AL, ACM, New York, NY, USA, Nov. 2004.

17. A. Omicini and F. Zambonelli, Coordination for Internet application develop-

ment, J. Auton. Agents Multi-Agent Syst., 2(3):251–269, 1999.

18. G. Cabri, L. Leonardi, and F. Zambonelli, MARS: A programmable coordination

architecture for mobile agents. IEEE Internet Comput., 4(4):26–35, 2000.

19. M. Mamei and F. Zambonelli, Programming pervasive and mobile computing

applications with the TOTA middleware, in Proceedings of the 2nd IEEE Interna-

tional Conference on Pervasive Computing and Communication (Percom2004), IEEE

Computer Society Press, Orlando, FL, 2004.

20. M. Fowler, Dealing with roles, 1997, available: http://martinfowler.com/apsupp/

roles.pdf.

90 MOBILE AGENT COORDINATION

http://martinfowler.com/apsupp/roles.pdf
http://martinfowler.com/apsupp/roles.pdf

21. D. Baumer, D. Ritchie, W. Siberski, and M. Wulf, The role object pattern, in

Proceedings of the 4th Pattern Languages of Programming Conference (PLoP),

Monticello, IL, USA, Sept. 1997.

22. R. S. Sandhu, E. J. Coyne, H. L. FeinStein, and C. E. YoumanHayes-Roth, Role-

based access control models, IEEE Computer, 20(2):38–47, 1996.

23. A. Tripathi, T. Ahmed, R. Kumar, and S. Jaman, Design of a policy-driven middle-

ware for secure distributed collaboration, in Proceedings of the 22nd International

Conference on Distributed Computing System (ICDCS), Vienna (A), July 2002.

24. B. Demsky and M. Rinard, Role-based exploration of object-oriented programs, in

Proceedings of International Conference on Software Engineering (ICSE 2002),

IEEE Computer Society Press, Orlando, FL, May 19–25, 2002.

25. B. B. Kristensen and K. Østerbye, Roles: Conceptual abstraction theory & practical

language issues, Special Issue of Theory and Practice of Object Systems on

Subjectivity in Object-Oriented Systems, 2(3):143–160, 1996.

26. B. Shneiderman and C. Plaisant, The future of graphic user interfaces: Personal role

managers, in G. Cockton, S. W. Draper, and G. R. S. Weir (Eds.), People and

Computers IX: Proceedings of Conference on HCI ’94, Press Syndicate of the

University of Cambridge, Glasgow, UK 1994.

27. F. Zambonelli, N. R. Jennings, and M. Wooldridge, Organizational rules as an

abstraction for the analysis and design of multi-agent systems, J. Knowledge

Software Eng., 11(3):303–328, 2001.

28. G. Cabri, L. Ferrari, and L. Leonardi, The RoleX environment for multi-agent

cooperation, in Proceedings of the 8th International Workshop on Cooperative

Information Agents (CIA), Erfurt, Germany, Lecture Notes in Artificial Intelli-

gence, Vol. 3191, Springer, Berlin, Sept. 2004.

29. G. Cabri, L. Leonardi, and F. Zambonelli, BRAIN: A framework for flexible role-

based interactions in multiagent systems, in Proceedings of 2003 Conference on

Cooperative Information Systems (CoopIS), Lecture Notes in Computer Science,

Vol. 2888, Springer, Berlin, Catania, Italy, Nov. 2003.

30. G. Cabri, L. Ferrari, and R. Rubino, Building Computational Institutions for Agents

with RoleX. Artificial Intelligence & Law, Vol. 1, Springer, Berlin, 2008, pp. 129–145.

31. D. Estrin, D. Culler, K. Pister, and G. Sukjatme, Connecting the physical world

with pervasive networks, IEEE Pervasive Comput., 1(1):59–69, 2002.

32. J. L. Fiadeiro, Designing for software’s social complexity, IEEE Computer, 40(1):

34–39, 2007.

33. C. L. Fok, G. C. Roman, and C. L. Agilla, A mobile agent middleware for self-

adaptive wireless sensor networks, ACM Transactions on Autonomous and

Adaptive Systems, Vol. 4, ACM, New York, NY, USA, 2009, pp. 1–26.

34. R. Quitadamo and F. Zambonelli, Autonomic communication services: A new

challenge for software agents. J. Auton. AgentsMulti-Agent Syst. (JAAMAS), 17(3):

457–475, 2007.

35. L. Tummolini, C. Castelfranchi, A. Ricci, M. Viroli, and A. Omicini, Exhibitionists

and Voyeurs do it better: A Shared Environment Approach for Flexible Coordination

with Tacit Messages, Environments for Multi-Agent Systems, Lecture Notes in

Artificial Intelligence, Vol. 3374, Springer, Berlin, 2005, pp. 215–231.

REFERENCES 91

36. E. Platon, M. Mamei, N. Sabouret, S. Honiden, and H. V. D. Parunak, Mechanisms

for environments in multi-agent systems: Survey and opportunities, J. Auton. Agents

Multi-Agent Syst., 14(1):61–85, 2007.

37. P. Valckenaers, J. Sauter, C. Sierra, and J. A. Rodriguez-Aguilar, Applications and

environments for multi-agent systems, J. Auton. Agents Multi-Agent Syst., 14(1):

61–85, 2007.

38. M. Baumgarten et al., Towards self-organizing knowledge networks for smart world

infrastructures. Int. Trans. Syst. Sci. Appl., 1(3), pp. 123–133, 2006.

92 MOBILE AGENT COORDINATION

5 Cooperating Mobile Agents

SUKUMAR GHOSH and ANURAG DASGUPTA

University of Iowa, Iowa City, IA 52242, USA

5.1 INTRODUCTION

A mobile agent is a piece of code that migrates from one machine to another.
The code (often called the script), which is an executable program, executes
at the host machine where it lands. In addition to the code, agents carry data
values or procedure arguments or results that need to be transported across
machines. Compared to messages that are passive, agents are active and can be
viewed as messengers.

Mobile agents are convenient tools in distributed systems, at both the
applications layer and the middleware level. The promise of mobile agents in
bandwidth conservation or disconnected modes of operation is now well
accepted. Deploying multiple mobile agents cooperating with one another can
add a new dimension to distributed applications. While parallelism is the
obvious advantage, the issues of load balancing, agent rendezvous, and fault
tolerance play major roles. Among numerous possible applications, we high-
light the following four problems, each with a different flavor of cooperation:

� Mapping of an Unknown Network Network mapping is also known as the
topology discovery problem. Making such a discovery using a single
mobile agent is equivalent to developing an efficient algorithm for graph
traversal. With multiple agents, the challenge is to develop an efficient
cooperation mechanism so that the discovery is complete in the fewest
number of hops and redundant traversals are avoided.

� Concurrent Reading and Writing A distributed data structure has different
components mapped to host machines at different geographic locations.
As multiple agents concurrently access such a distributed data structure,
the reading agent and the writing agent need to properly synchronize their
operations so that the semantics of data sharing are preserved.

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

93

� Black-Hole Search A black hole is a node that can potentially capture
a visiting agent and thus disrupt an application. Although it implies a
malicious intent on the part of the host, a black hole can be as simple as
a crashed node. If black holes can be located, then traversal paths can be
rerouted without incurring further loss of mobile agents.

� Stabilization Transient failures occasionally corrupt the global state of a
distributed system, and stabilization is an important technique for restor-
ing normal operation. To stabilize a network a mobile agent patrols the
network, and plays the role of traveling repairperson. Multiple agents can
expedite the process of stabilization, but in doing so, some synchroniza-
tion issues need to be resolved. We will address how multiple agents can be
deployed for maximum speedup of a stabilizing application.

This chapter has seven sections. Section 5.2 describes the model and the
notations. Sections 5.3�5.6 address the four problems highlighted above.
Finally, Section 5.7 contains some concluding remarks.

5.2 MODEL

We represent a distributed system by a connected undirected graph G¼ (V,E),
where V is the set of nodes representing processes and E is the set of edges
representing channels for interprocess communication. Basic interprocess
communication uses messages that are received in the same order in which they
are sent. Processes do not have access to a global clock.

Whenever appropriate, we will represent the program for each process of
a set of rules. Each rule is a guarded action of the form g-A, where g is a
Boolean function of the state of that process and those of its neighbors received
via messages and A is an action that is executed when g is true. An action by a
process involves several steps: receiving a message, updating its own state, and
sending a message. The execution of each rule is atomic, and it defines a step of
the computation. When more than one rule is applicable, any one of them can
be chosen for execution. The scheduler is unfair. A computation is a sequence of
atomic steps. It can be finite or infinite.

Definition A global state of the system is a tuple (s(0), s(1), . . . , s(n)), where
s(i) is the state of process i together with the states of all channels.

Each agent is launched by an initiator node that is also called the agent’s
home. An agent consists of the following six components:

1. The identifier id (also called a label), usually the same as the initiator’s id.
The id is unnecessary if there is a single agent but is essential to
distinguish between multiple agents in the same system.

2. The agent program: This program is executed when the mobile agent
lands on a host machine.

94 COOPERATING MOBILE AGENTS

3. The briefcase B containing a set of data variables. It defines the state of
the agent computation as well as some key results that have to be carried
across nodes.

4. The previous process PRE visited by the agent.

5. The next process to visit NEXT that is computed after every hop.

6. A supervisory program for bookkeeping purposes.

Each hop by an agent is completed in zero time. The agent computation is
superimposedon theunderlyingdistributedcomputationexecutedby thenetwork
of processes. The state of the agent is defined by its control anddata variables, and
the state of the distributed system consists of the local states of all the processes.
When an agent executes a step, it changes its own state and also potentially
changes the state of the host on which it executes that step. Unless specified oth-
erwise, the visit of an agent at any node will be treated as an atomic event.

Finally, an agent model that involves multiple agents can be either static or
dynamic. In the static model, the number of agents and their homes are known
at the beginning of the application, and they remain unchanged throughout the
entire life of the application. In the dynamic model, an agent can spawn child
agents or kill them whenever necessary. Unless specified otherwise, we will
consider the static model only.

5.3 MAPPING A NETWORK

We assume that an agent is trying to construct the complete map of an undi-
rected connected graph. It has to explore all the nodes and edges of the graph
starting from some node. When the agent traverses an edge, it explores the
corresponding edge and both of its end nodes. During exploration, the agent
keeps track of the visited nodes and the edges so that it recognizes them later. In
particular, after reaching an already explored node v incident on an explored
edge e, the agent recognizes the location of v and of the other end of e on the
partial map it constructs. The agent also knows the number of unexplored edges
incident on an explored node but does not know the other ends of these edges.

The goal is to explore all the nodes and the edges of the undirected connected
graph with the minimum number of edge traversals. One motivation for visiting
all nodes and retrieving data from unknown nodes in a vast network is network
maintenance. The agent continuously patrols the network. Also, fault detection
in a network requires this type of perpetual exploration. Before we discuss the
multiagent case, we introduce a few exploration protocols using a single mobile
agent.

5.3.1 Exploring Undirected Graphs

The penalty of an exploration algorithm running on a graph G¼ (V,E) is the
worst-case number of traversals in excess of the lower bound |E|. The total cost

5.3 MAPPING A NETWORK 95

of an exploration algorithm running on a graph G¼ (V,E) is the worst-
case number of edge traversal it uses taken over all starting points and all
adversary decisions. The adversary has the power of choosing an arbitrary
unexplored edge.

Panaite and Pelc [1] provide an exploration algorithm whose penalty is
O|V| for every graph. In fact, they showed that the penalty never exceeds 3|V|.

Natural heuristics such as GREEDY and Depth First Search (DFS) fail to
achieve the penalty O|V| for all graphs. The following theorem shows the
inefficiencies of these two strategies:

Theorem 1 The penalties of GREEDY and DFS are not linear in the order of the
graph.

At any stage of the algorithm execution, the edges that are already traversed
are called explored, and the remaining are called free. A node is saturated if all
its incident edges are explored. Otherwise it is free.

The arguments why DFS and GREEDY fail are not hard to see. In both
cases, the agent uses unexplored edges as long as possible, and when stuck at a
node v, it uses a simple strategy to reach a free node v0. In case of GREEDY, v0

is the free node closest to v, while in case of DFS, v0 is the most recently visited
free node. It turns out that both these choices are too naive. The vision of
GREEDY is too local, while DFS does not make sufficient use of the knowl-
edge of the explored subgraph, basing its decisions only on the order of visits.

The algorithmpresentedbyPanaite andPelc alsouses unexplored edges as long
as possible. But as opposed to DFS and GREEDY, their algorithm explores the
graph in the order given by a dynamically constructed tree. The key difference is
the choice of the free node to which the agent relocates after getting stuck. The
agent gets back to the node of the dynamically constructed tree at which it inter-
rupts the construction of the tree. In this way the number of traversals through
already explored edges is reduced. By following the structure of the dynamic tree,
the agent is not distracted from systematic exploration of free nodes situated close
to it, which is the case for GREEDY. At the same time, temporal preferences
dominate over geographic references that lead to the inefficiency of DFS.

Algorithm EXPLORE in [1] addresses this shortcoming. One of the main
features of EXPLORE is agent relocations along a dynamically constructed
tree T. Assume that the agent starts at node r of graph G. At any stage of
exploration, let H denote the known subgraph of G; T represents a tree in H
rooted at r and connecting only the saturated nodes. An overview of this
algorithm is given in Figure 5.1. We first define the different procedures that are
the building blocks of the algorithm.

Procedure SATURATE(v) performs a traversal that starts and ends at v and
saturates v. Procedure EXTEND(T) constructs the new tree T that corresponds
to the current H. Procedure NEXT(v) is defined as follows: If V(T)¼V(H),
then NEXT(v) returns the node v. Otherwise, it returns a node u2Ext(w),
where w is the first node w0 in dfs(T) with Chi(w0)¼; and Ext(w0) 6¼ ;. Here,

96 COOPERATING MOBILE AGENTS

Chi(w0) denotes the set of children of w0, that is, neighbors of w0 in T different
from the parent of w0 if it exists, and Ext(w0) denotes the set of extensions of w0,
that is, neighbors of w0 in H but not in T.

Panaite and Pelc proved the following theorem:

Theorem 2 The penalty of the proposed algorithm EXPLORE is linear in the
order of the graph. It uses mþO(n) edge traversals, for every graph with n nodes
and m edges.

5.3.2 Optimal Graph Exploration

For a given graph G and a given starting node v, a measure of the quality of an
exploration algorithm A is the ratio C(A,G, v)/opt (G, v) of its cost to that of
the optimal algorithm having complete knowledge of the graph. Here Opt(G, v)
is the length of the shortest covering walk which is the exploration with fewest
edge traversals starting from node v. The cost C(A,G, v) is the worst-case
number of edge traversals taken over all of the choices of the adversary. The
ratio represents the relative penalty paid by the algorithm for the lack of
knowledge of the environment. For a given class U of graphs, the number

OUðAÞ ¼ supG2Umaxv 2 G
CðA;G; vÞ
optðG; vÞ

� �

is called the overhead of algorithm A for the class U of graphs. For a fixed
scenario, an algorithm is called optimal for a given class of graphs if its
overhead for this class is minimal among all exploration algorithms working
under this scenario.

Dessmark and Pelc [2] presented optimal exploration algorithms for several
classes of graphs. They considered the following three scenarios:

1. The agent has no a priori knowledge of the graph. They called it
exploration without a map.

2. The agent has an unlabeled isomorphic copy of the graph. This is called
an unanchored map of the graph.

Program Explore
r :¼ the starting node;

T :¼ (;, ;);
v :¼ r;

do V(T) 6¼ V(H)-
SATURATE(v);
EXTEND(T);

v :¼NEXT(v);
Relocate to v along a shortest path in H

od

FIGURE 5.1 Algorithm for graph exploration with a single agent.

5.3 MAPPING A NETWORK 97

3. The agent has an unlabeled isomorphic copy of the explored graph with a
marked starting node. This is called an anchored map of the graph. This
scenario does not give the agent any sense of direction, since the map is
unlabeled. For example, when the agent starts the exploration of a line,
such a map gives information about the length of the line and distances
from the starting node to both ends but does not tell which way is the
closest end.

In all scenarios, the assumption is that nodes have distinct labels, and all
edges at a node v are numbered 1, . . . , deg(v) in the explored graph. Otherwise
it is impossible to explore even the star graph with three leaves, as after visiting
the second leaf, the agent cannot distinguish the port leading to the first visited
leaf from that leading to the unvisited one. Hence the agent can recognize the
already visited nodes and traversed edges. However, it cannot tell the difference
between yet-unexplored edges incident on its current position. The actual
choice of such unexplored edges is made by the adversary when worst-case
performance is being considered. Table 5.1 summarizes the main results of [2]

The table indicates that for the class of all undirected connected graphs DFS
is an optimal algorithm for all scenarios except for trees. Without any
knowledge, DFS is optimal for trees. Under the scenario with an unanchored
map, the optimal overhead is at least

ffiffiffi
3

p
but strictly below 2. Thus DFS is not

optimal in that case. Dessmark and Pelc [2] give an optimal algorithm for trees
with an anchored map and show that its overhead is 3

2
. Of the many algorithms

described in [2] we choose the simplest case of exploration on lines with an
anchored map. This means the agent knows the length n of the line as well as
the distances a and b between the starting node and the endpoints. The algo-
rithm for a # b is given in Figure 5.2.

Fraigniaud et al. [3] showed that for any K-state agent and any d $ 3 there
exists a planar graph of maximum degree d with at most Kþ 1 nodes that the
agent cannot explore. They also showed that in order to explore all graphs of
diameter D and maximum degree d an agent needs Ω(D log d) memory bits,
even if the exploration is restricted to planar graphs. This latter bound is tight.
So the worst-case space complexity of graph exploration is Θ(D log d) bits.

TABLE 5.1 Summary of Results about Optmial Exploration

Anchored Map Unanchored Map No Map

Lines Overhead¼ 7
5
, optimal Overhead¼ ffiffiffi

3
p

,

optimal

DFS

Trees Overhead¼ 3
2
, optimal Overhead , 2 Overhead¼ 2, lower

bound¼ ffiffiffi
3

p
General graphs DFS, overhead¼ 2,

optimal

Source: From ref. [2].

98 COOPERATING MOBILE AGENTS

5.3.3 Collective Tree Exploration with Multiple Agents

So far we have considered graph exploration with the help of a single agent.
Fraigniaud et al. [4] addressed the problem of collective graph exploration
using multiple agents: They considered exploring an n-node tree by k agents,
k. 1, starting from the root of the tree. The agents return to the starting point
at the end of the exploration. Every agent traverses any edge in unit time, and
the time of collective exploration is the maximum time used by any agent. Even
when the tree is known in advance, scheduling optimal collective exploration
turns out to be NP hard. The main communication scenario adopted in the
paper is the following: At the currently visited node agents write the infor-
mation they previously acquired, and they read information (provided by other
agents) available at this node. The paper provides an exploration algorithm for
any tree with overhead O(k/log k). The authors prove that if agents cannot
communicate at all, then every distributed exploration algorithm works with
overhead Ω(k) for some trees.

The model for a k-agent scenario is a little different than that described
earlier for a single agent. The agents have distinct identifiers, but apart from
that, they are identical. Each agent knows its own identifier and follows the
same exploration algorithm which has the identifier as a parameter. The net-
work is anonymous as before, that is, nodes are not labeled, and ports at each
node have only local labels that are distinct integers between 1 and the degree of
the node. At every exploration step, every agent either traverses an edge inci-
dent on its current position or remains in the current position. An agent tra-
versing an edge knows local port numbers at both ends of the edge.

The communication scenario is termed as exploration with write�read
communication. In every step of the algorithm every agent performs the fol-
lowing three actions: (a) It moves to an adjacent node. (b) It writes some
information in it. (c) It then reads all information available at this node,
including its degree. Alternatively, an agent can remain in the current node, in
which case it skips the writing action.

Actions are assumed to be synchronous: If A is the set of agents that enter v
in a given step, then first all agents from A enter v, then all agents from A write,
and then all agents currently located at v (those from A and those that have not

Algorithm Anchored Line
Let x¼ 3aþ n and y¼ 2n� a

if x# y then

go at distance a in one direction, or until an endpoint is reached;

if an endpoint is reached

then return, go to the other endpoint, and stop

else return, go to the endpoint, return, go to the other endpoint, and stop

else go to an endpoint, return, go to the other endpoint, and stop

FIGURE 5.2 Optimal algorithm for exploration on a line graph with an anchoredmap.

5.3 MAPPING A NETWORK 99

moved from v in the current step) read. Two extreme communication scenarios
are discussed. In case of exploration without communication, the agents are
oblivious of one another. At each step, every agent knows only the route it
traversed until that point and the degrees of all nodes it visited. In case of
exploration with complete communication, all agents can instantly communi-
cate at each step. In both scenarios, an agent does not know the other endpoints
of unexplored incident edges. If an agent decides to traverse such a new edge,
the choice of the actual edge belongs to the adversary when the worst-case
performance is being considered.

The exploration algorithm described in the paper has an overhead of
O(k/log k). To be precise, the algorithm explores any n-node tree of diameter
D in time O(Dþ n/log k). The algorithm is described for the stronger scenario
first, that is, for exploration with complete communication. It can be simulated
in the write�read model without changing time complexity. The paper shows
that any algorithm must have overhead of at least (2�1/k) under the complete
communication scenario. In order to get overhead sublinear in the number of
agents, some communication is necessary. Exploration without communication
does not allow any effective splitting of the task among agents.

We outline here the algorithm for exploration with complete communication
as described in [4]. Let Tu be the subtree of the explored tree T rooted at node u.
Then assume Tu is explored if every edge of Tu has been traversed by some
agent. Otherwise, it is called unexplored. If it is explored, Tu is finished, and
either there are no agents in it or all agents in it are in u. Otherwise, it is called
unfinished. If there is at least one agent in it, Tu is inhabited. Figure 5.3 shows
the algorithm.

Algorithm Collective Exploration
Fix a step i of the algorithm and a node v in which some agents are currently located.

There are three possible (exclusive) cases.

{Case 1} Subtree Tv is finished.

(Action) if v 6¼ r, then all agents move from v to the parent of v, else all agents

from v stop.

{Case 2} There exists a child u of v such that Tu is unfinished.

Let u1, u2, . . . , uj be children of v for which the corresponding trees are unfinished,

ordered in increasing order of the local port numbers of v. Let xl be the number of

agents currently located in Tul. Partition all agents from v into sets A1, . . . ,Aj of sizes

y1, . . . , yj, respectively, so that integers xlþ yl differ by at most 1. The partition is done

in such a way that the indices l for which integers xlþ yl are larger by one than for some

others, form an initial segment (1, . . . , z) in (1, . . . , j). Moreover, sets Al are formed

one-by-one, by inserting agents from v in order of increasing identifiers.

(Action) All agents from the set A1 go to u1, for l¼ 1, . . . , j .

{Case 3} For all children u of v, trees Tu are finished, but at least one Tu is inhabited.

(Action) All agents from v remain in v.

FIGURE 5.3 Algorithm for collective exploration with complete communication.

100 COOPERATING MOBILE AGENTS

5.3.4 Deterministic Rendezvous in Arbitrary Graphs

The rendezvous problem is defined as follows: Two mobile agents located in
nodes of an undirected connected network have to meet at some node of the
graph. If nodes of the graph are labeled, then agents can decide to meet at a
predetermined node, and the rendezvous problem reduces to graph exploration.
However, in many practical applications where rendezvous is needed in an
unknown environment, such unique labeling of nodes may not be available or
limited sensory capabilities of the agents may prevent them from perceiving
such labels. As before, we assume that the ports at a node are locally labeled as
(1, 2, . . . , d), where d is the degree of the node.

Agents move in synchronous rounds. In each round, an agent may either
remain in the same node or move to an adjacent node. Agents can start up
simultaneously or arbitrarily, that is, an adversary can decide the starting times
of the agents.

One assumption of deterministic rendezvous is, if agents get to the same node
in the same round, theybecomeawareof it, and rendezvous is achieved.However,
if they cross each other along an edge, moving in the same round along the same
edge in opposite directions, they do not notice each other. So rendezvous is not
possible in the middle of an edge. The time used by a rendezvous algorithm for a
given initial location of agents in a graph is theworst-case number of rounds since
the startup of the later agent until rendezvous is achieved. The worst case is taken
over all adversary decisions and over all possible startup times (decided by the
adversary) in case of the arbitrary startup scenario.

Each agent knows its own label but does not know the label of the other
agents. If agents are identical and execute the same algorithm, then determin-
istic rendezvous is impossible even in the simplest case when the graph consists
of two nodes joined by an edge. If both agents knew each other’s labels, then
the problem can be reduced to that of graph exploration. The same thing
applies if the graph has a distinguished node.

The rendezvous problem in graphs has mostly been studied using random-
ized methods. Dessmark, Fraigniaud, and Pelc [5] addressed deterministic
algorithms for the rendezvous problem, assuming that agents have distinct
identifiers and are located at nodes of an unknown anonymous connected
graph. Their paper showed that rendezvous can be completed in optimal time
O(nþ log l) on any n-node tree, where l is the smaller of the two labels. The
result holds even with arbitrary startup. But trees are a special case from
the point of view of the rendezvous problem, as any tree has either a central
node or a central edge1, which facilitates the meeting. This technique used for
trees cannot be applied to graphs containing cycles.

With simultaneous startup, the optimal time of rendezvous on any ring is
Θ(D log l) and [5] describes an algorithm achieving that time, where D is the

1Every tree has one or two centers. In the latter case, the edges joining the two centers serve as a

central edge.

5.3 MAPPING A NETWORK 101

initial distance between agents. With arbitrary startup, Ω(nþD log l) is a lower
bound on the time required for rendezvous on an n-node ring. The paper
presents two rendezvous algorithms for the ring with arbitrary startup: an
algorithm working in time O(n log l), for known n and an algorithm polyno-
mial in n, l and the difference between the startup times when n is unknown.
The paper also gives an exponential cost algorithm for general graphs, which is
later improved. The next section discusses the issue.

5.3.5 Polynomial Deterministic Rendezvous in Arbitrary Graphs

Deterministic rendezvous has previously been shown to be feasible in arbitrary
graphs [5] but the proposed algorithm had cost exponential in the number n of
nodes and in the smaller identifier l and polynomial in the difference τ between
startup times. The main result of the paper by Kowalski and Pelc [6] is a
deterministic rendezvous algorithm with cost polynomial in n, τ, and log l.
Kowalski and Pelc’s algorithm contains a nonconstructive ingredient: Agents
use combinatorial objects whose existence is proved using a probabilistic
method. Nevertheless their rendezvous algorithm is deterministic. Both agents
can find separately the same combinatorial object with desired properties,
which is then used to solve the rendezvous algorithm. This can be done using a
brute-force exhaustive search that may be quite complex, but their model only
counts the moves of the agents and not the computation time of the agents. The
paper concludes with the open question:

Does there exist a deterministic rendezvous algorithm whose cost is poly-
nomial in n and l (or even in n and log l) but independent of τ?

5.3.6 Asynchronous Deterministic Rendezvous in Graphs

Marco et al. [7] studied the asynchronous version of the rendezvous problem.
Note that in the asynchronous setting meeting at a node (which is normally
required in rendezvous) is in general impossible. This is because even in a two-
node graph the adversary can desynchronize the agents and make them visit
nodes at different times. This is why the agents are allowed to meet inside an
edge as well.

For the case where the agents are initially located at a distance d on an
infinite line, the paper describes a rendezvous algorithm with cost O(D � |Lmin|

2)
where d is known and OðDþ jLmaxjÞ3Þ if d is unknown, where jLminj and jLmaxj
are the lengths of the shorter and longer labels of the agents, respectively. The
authors also describe an optimal algorithm of cost OðnjLminjÞ if the size n of
the ring is known and of cost OðnjLmaxjÞ if n is unknown. For arbitrary graphs,
they show that rendezvous is feasible if an upper bound on the size of the graph
is known. They present an optimal algorithm of cost OðDjLminjÞ when the

102 COOPERATING MOBILE AGENTS

topology of the graph and the initial positions of the agents are known to each
other. The paper asks two open questions:

1. Is rendezvous with cost OðD � jLminjÞ possible for a ring of unknown size?

2. Suppose that a bound M on the number of nodes of the graph is known
to both agents. Is there a rendezvous algorithm polynomial in the bound
M and in the lengths of the agents’ labels?

5.4 CONCURRENT READING AND WRITING

This problem addresses the implementation of a read�write object on a wide-
area network. The various components of the object are mapped to different
processes over the network. We assume that the reading and writing of the
global states of a distributed system are carried out by reading agents and
writing agents, respectively. The notion of a consistent snapshot is available
from Chandy and Lamport’s seminal paper [8]. Also, Arora and Gouda [9]
illustrated how to reset a distributed system to a predefined global state.
None of these used mobile agents. Our goal is not only to examine how a
single reading or writing agent can perform these operations but also to
illustrate how reading and writing operations can be performed when mul-
tiple agents are active in the network at the same time (Figure 5.4). Clearly,
we plan to treat the network of processes as a concurrent object that can be
accessed by the read and write operations. There are numerous possible

Home of reader

Reader

Home of writer

Writer

FIGURE 5.4 A reading and a writing agent traversing a network.

5.4 CONCURRENT READING AND WRITING 103

applications. The reading and the writing agents can cooperate with one
another to implement a consistency model on a distributed data structure. Mul-
tiple reading agentsmaywork simultaneously to speed up data retrieval.Multiple
reading and writing agents may work together to expedite fault recovery. In
parallel programming languages like Linda [10], processes communicate with
one another via a tuple space. On a network of processes, the tuple space is a part
of the network state that can be concurrently read or written by two or more
agents. In the area of electronic commerce, multiagent protocols are rapidly
growing.

The classical approach to implementing concurrent objects consists of the
use of critical sections and a mechanism to mutual exclusion. This approach
involves waiting, since at most one process is allowed in the critical section at
any time. A sideeffect is deadlock—if one process is stuck in the critical section,
then it indefinitely blocks all processes waiting to enter the critical section. For
asynchronous, fault-tolerant distributed systems, it is much more desirable to
design a nonblocking or wait-free [11] solution, where each access by an agent
is completed in a finite number of steps, regardless of the speeds of other
agents or processes. In this chapter, we will explore nonblocking solutions
to the problem of concurrent reading and writing problem using the agent
model. The basic correctness condition relevant to our solutions is that, even
though the operations of reading and writing by two different agents may
overlap, the results of the reading must ensure that the operations are atomic
and consistent with what was written by the writing agent(s). Readers might
note that similar algorithms have already been proposed for shared registers
by Lamport [12], where he showed how to implement atomic registers using
weaker versions of registers where the reading and writing operations overlap
in time. Below we clarify the semantics of overlapped read and write.

Assume that initially, ’i; sðiÞ ¼ 0. LetWk andWkþ1 denote two consecutive
write operations by the writer: Wk updates the local state of every process to 6
and Wkþ1 updates the local state of every process to 5. Let the reading agent
take three successive snapshots Ri, Riþ1, and Riþ2 in overlapped time as shown
in Figure 5.5.

1. Each read operation must return a consistent value of the global state
that will correspond to (i) the previous reset state before the read started,

Wk Wkþ 1

writes 6 in each process writes 5 in each process

Ri Riþ 1 Riþ 2

FIGURE 5.5 Atomic behavior when multiple reads overlap a write.

104 COOPERATING MOBILE AGENTS

(ii) the state to which the system is being currently set, or (iii) a state
reachable from one of these.

2. No read returns a global state that is “older than”, that is, causally
ordered before, the global state returned by the previous read.

As a consequence of the second condition, it is okay if both Ri and Riþ1

return a state (0, 0, 0, . . .) or a state reachable from it, but it is not acceptable
for Riþ2 to return (6, 6, 6, . . .) and Riþ1 to return (5, 5, 5, . . .). Note that
similar conditions are true for atomic registers [13] too.

5.4.1 One-Reader and One-Writer Cases

Before presenting the protocol of concurrent reading and writing, we first
describe the individual protocols in the single-reader and single-writer cases. In
each case, the agent performs a DFS traversal of the network infinitely often
using the protocol described in [14]. The briefcase of the agent is initialized by
its home, and at each visited node, the agent executes its designated program
before hopping to the next node designated by NEXT :¼DFS. Ideally, the
processes should be oblivious to when the agent traverses and performs the
read or write operations. However, in the single-reader case (and in general
with the static model of agents), a little help from the visited processes seems
unavoidable.

5.4.2 One-Reader Protocol

The snapshot is taken by the reading agent and saved in its briefcase. The agent
starts by taking a snapshot of its home process. Thereafter, as the agent visits a
node, it records a snapshot state, which ordinarily is the local state of that node.
When the agent returns home after each complete traversal, it computes a
consistent global state of the system from the states recorded at the individual
nodes. For simplicity, we assume that the channels have zero capacity, so the
channel states are irrelevant.

At any moment, a message circulating in the system can be of one of the
following four types: (1) from an unvisited node to an unvisited node, (2) from
a visited node to a visited node, (3) from a visited node to an unvisited node,
and (4) from an unvisited node to a visited node. Of these, when a message M
propagates from a visited node i to an unvisited node j, there is the potential for
a causal ordering between the recordings of s(i) and s(j) by the agent. This is
because the following causal chain [record s(i), send m, receive m, record
s(j)] may exist. To avoid this, we have to ask process j receiving m to save its
current state s(j) into a history variable h(j) before receiving m. It is this saved
value that will be returned to the agent as the local state of process j. To detect a
message from a visited to an unvisited node, we use the following mechanism:

Each reading agent tags its traversal with a sequence number SEQ2 {0, 1, 2}
that is stored in its briefcase. Before each traversal begins, the home increments

5.4 CONCURRENT READING AND WRITING 105

this value modulo 3. Each node has two variables seq and agent_seq both
of which are updated to SEQ when the agent visits that node. The value of
agent_seq is appended to every message sent out by a node. Accordingly, when
a visited node i sends a message m to an unvisited node j, the condition
agent_seq(i)¼ agent_seq(j)"3 1 will hold. When node j receives the message, it
sets seq(j) to �12 and it also sets agent_seq(j) to the value of agent_seq(i), and
saves s(j) into the history variable h(j). Subsequently, when the reading agent
visits j, seq(j) will be reset to the value of SEQ in the briefcase of the agent, and
the history variable is deallocated. This leads to the program in Figure 5.6.

We presentwithout proof the following lemma. The proof can be found in [15].

Lemma 3 Each reading of the global state returns a consistent global state, and if
two readings are consecutively taken by the reading agent, then the second read
cannot return a reading older than the value returned by the first read.

5.4.3 One-Writer Protocol

For the writing protocol, we preserve the consistency of the reset operation by
disallowing all messages between nodes whose states have been updated and the
nodes whose states are yet to be updated [9]. To distinguish between conse-
cutive write operations, we introduce a nonnegative integer variable CLOCK
with the writing agent. For the purpose of reset only, a binary value of

Program for the agent while visiting process i

agent variables SEQ, S; (S � i records the state s(i) of node i)

process variables seq, s, agent_seq, h (initially H is empty);

if SEQ ¼ agent seqðiÞ"3 1X seqðiÞ 6¼ �1-
seqðiÞ :¼ SEQ; agent seqðiÞ :¼ SEQ; S�i :¼ sðiÞ;

& SEQ ¼ agent seqðiÞX seqðiÞ 6¼ �1- skip

& seqðiÞ ¼ �1- seqðiÞ :¼ SEQ; S�i :¼ hðiÞ; delete h(i)

fi;

NEXT :¼DFS

Program for Process i

do true-
if message from j: agent_seq(j)¼ agent_seq(i) "3 1-

h(i):¼ s(i); seq(i)¼�1; agent_seq(i) :¼ agent_seq(j);

fi;

accept the message;

od

FIGURE 5.6 The One-reader protocol.

2This flags the agent to record the state from the history.

106 COOPERATING MOBILE AGENTS

CLOCK will suffice. However, CLOCK will need to have more than two values
when we address concurrent reading and writing in the next section. The write
will update the value of clock(i) for every process i that it visits. Like the reading
agent, the writing agent also traverses the network along a spanning tree.
The spanning trees along which the reading and the writing agents traverse the
network can be totally independent. The program for the writer is described in
Figure 5.7.

When the writing agent returns home, the write operation is over. The home
increments CLOCK before the next traversal begins. The write operation does
not require the cooperation of the individual nodes, except for the rejection of
the messages that originated from nodes with a different value of the local clock.
This requires that messages be stamped with the clock value of the sender.

5.4.4 Concurrent Reading and Writing

In the general case when a reading agent and a writing agent carry out their
designated tasks in overlapped time, the writer may update the global state to
different values during different traversals, and the reader, unaware of when
and what the writer is writing, has to capture a consistent snapshot of the global
state of the distributed system. There is no relationship between the speeds at
which the writer and the reader move around the network. We will use the value
of clock at the different nodes as the yardstick of progress. The value of clock is
updated by the writing agent in all processes, including the home of the reader
process. The reader and the writer agents traverse the network following dis-
tinct spanning trees, denoted in the algorithm by DFSR and DFSW. On occa-
sion, these trees may be identical, but there is no guarantee for it. Since the
reader may be slow, the writing agent, in addition to updating the local state
and the clock, will record the current state of the visited process into a set
history for that process that could possibly be used by a slower reader. Each
element in the history h is a pair (clock, localstate), and we will designate the
entry in the history of process i corresponding to clock j by hj (i). The saving
of the current state becomes unnecessary when seq for the visited node is �1,
since the state that will be read by the reader has already been saved by the
process while updating seq to �1.

Program for the writing agent while visiting process i

The agent wants to reset the global state to W

agent variables CLOCK, W;

process variables clock, s;

if (clock(i),CLOCK)- s(i) :¼W � i;
clock(i) :¼CLOCK

fi

NEXT :¼DFS

FIGURE 5.7 The One-writer protocol

5.4 CONCURRENT READING AND WRITING 107

The following two observations are the cornerstones of the algorithm:

Lemma 4 CLOCK(writer)¼ k . ’i clock(i)2 {k �1, k}.

If the reading agent looks for copies of local states corresponding to
clock¼ k while the writer is still writing in round K, it is possible that the

Program for the writer while visiting process i

{The writer wants to reset the global state to W}

agent variables CLOCK, W;

process variables clock, s, h;

if (clock(i),CLOCK)-
if seq(i) 6¼�1- h(i) :¼ h(i), (clock(i), s(i)) fi;

s(i) :¼W � i; clock(i :¼CLOCK

fi;

NEXT :¼DFSW

Program for the reader while visiting process i

{The reader is trying to assemble a snapshot S}

agent variables SEQ, CLOCK, S;

process variables seq, agent_seq, s, h;

’j,CLOCK� 1 delete hjðiÞ;
{Case 1} if clock(i)¼CLOCK-

if SEQ¼ agent_seq(i)"3 1X seq(i) 6¼ �1-
S � i �CLOCK :¼ s(i); S � i � (CLOCK� 1) :¼ hCLOCK�1(i)

& SEQ¼ agent_seq(i)X seq(i); 6¼ �1- skip

& seq(i)¼�1-S � i �CLOCK :¼ hCLOCK(i); S � i � (CLOCK� 1) :¼ hCLOCK-1(i)

fi;

& {Case 2} clockðiÞ ¼ CLOCK� 1-
if SEQ ¼ agent seqðiÞ"3 1X seqðiÞ 6¼ �1-

S � i � ðCLOCK� 1Þ :¼ sðiÞ; S � i � CLOCK :¼ null

& SEQ ¼ agent seqðiÞX seqðiÞ 6¼ �1- skip

& seqðiÞ ¼ �1-S � i � ðCLOCK� 1Þ :¼ hCLOCK�1ðiÞ; S � i � CLOCK :¼ null

fi;

& {Case 3} clockðiÞ.CLOCK-

if SEQ ¼ agent seqðiÞ"3 1-
S � i � CLOCK :¼ hCLOCKðiÞ; S � i�ðCLOCK� 1Þ :¼ hCLOCK�1ðiÞ

& SEQ ¼ agent seqðiÞ- skip

fi;

fi;

seqðiÞ :¼ SEQ; agent seqðiÞ :¼ SEQ;
NEXT :¼ DFSR

FIGURE 5.8 The concurrent reading and writing protocol. (From ref. 15.)

108 COOPERATING MOBILE AGENTS

reader visits a node whose clock has not yet been updated from k� 1 to k. In
this case, the reader will construct the snapshot from local states recorded
at clock k� 1. All entries in the history corresponding to clock lower than
k� 1 are of no use and can be deleted by the reader. This leads to the fol-
lowing lemma:

Lemma 5 When the reader makes a traversal after the writer has started writing
with a CLOCK k, a consistent snapshot will be assembled from recordings of local
states made at clock k only or k� 1 only.

Figure 5.8 shows the final program.
The one-reader case can be easily extended to multiple readers since readers

do not interact—each process maintains a separate history. The extension to
the multiple-writer case is an open problem. The time complexity for a snapshot
or a reset operation is determined by the time for one traversal. An issue of
interest is the space complexity per process. Unfortunately, in the present
version of the protocol, the space requirement can grow indefinitely when the
writing operation is faster than the reading operation. The size of the briefcase
for both the reader and the writer scales linearly with the size of the network.
Bounding the space complexity when the writer is faster than the reader is an
open problem. Also relevant is the issue of implementing various consistency
models on the concurrent object.

5.5 FAULT TOLERANCE

When agents traverse an unknown network, they might get trapped in a host,
known as a black hole. Once trapped, the agent is lost for all practical purposes,
leaving no observable trace of destruction. A black hole need not always be a
malicious host—for example, an undetectable crash failure of a host in an
asynchronous network can make it a black hole.

An interesting aspect of fault tolerance is finding out a black hole by
sacrificing a minimum number of agents. The task is to unambiguously
determine and report the location of the black hole, assuming there is only
one black hole. The problem is called the black-hole search (BHS) problem.
More precisely, the BHS is solved if at least one agent survives, and all
surviving agents know the location of the black hole within a finite time.
Black-hole search is a nontrivial problem. In recent times, the problem has
gained renewed significance as protecting an agent from “host attacks”
has become a problem almost as pressing as protecting a host from an agent
attack.

The problem of efficient BHS has been extensively studied in many types of
networks. The underlying assumption in most cases is that the network is
totally asynchronous, that is, while every edge traversal by a mobile agent takes
a finite time, there is no upper bound on this time.

5.5 FAULT TOLERANCE 109

5.5.1 BHS in Anonymous Ring

ModelDobrev et al. [16] considered the BHS problem in the simplest symmetric
topology: an anonymous ring R, that is, a loop network of identical nodes.
Each node has two ports, labeled left and right. If this labeling is globally
consistent, the ring is oriented; otherwise it is unoriented. Let 0, 1, . . . , n� 1
be the nodes of the ring in the clockwise direction and node 0 be the home base
from where the agents start. Let A denote the set of anonymous mobile agents
and jAj ¼ k denote the number of mobile agents. The asynchronous agents are
assumed to have limited computing capabilities and bounded storage. They
obey the same set of behavioral rules, that is, the protocol. The bounded
amount of storage in each node is called its whiteboard. Agents communicate by
reading from and writing into the whiteboards, and access to a whiteboard is
mutually exclusive.

When the anonymous agents start from the same node, they are termed
colocated agents. Otherwise, when they start from different nodes, they are
called dispersed agents. The number of agents is the size of the fleet, and the
total number of moves performed by the agents determines the cost for an
algorithm. The following lemmas hold for the BHS problem:

Lemma 6 At least two agents are needed to locate the black hole.

If there is only one agent, the BHS problem is unsolvable because the only
agent will eventually disappear in the black hole.

Lemma 7 It is impossible to find the black hole if the size of the ring is not known.

Lemma 8 It is impossible to verify whether or not there is a black hole.

The presence of more than two agents does not reduce the number of moves. It
can however be helpful in reducing the time spent by colocated agents to locate the
black hole. The number of dispersed agents required to solve the problem depends
on whether the ring is oriented or not. If the ring is oriented, then two anonymous
dispersed agents are both necessary and sufficient. If the ring is unoriented, three
anonymous dispersed agents are both necessary and sufficient [16].

� Cautious Walk Cautious walk is a basic tool in many BHS algorithms. At
any time during BHS, the ports (corresponding to the incident links) of a
node can be classified into three types:

� Unexplored No agent has moved across this port.

� Safe An agent arrived via this port.

� Active An agent departed from this port, but no agent has arrived into it.

Both unexplored and active links are potentially dangerous because they
might lead an agent to the black hole. Only safe ports are guaranteed to be

110 COOPERATING MOBILE AGENTS

hazardfree. Cautious walk helps identify safe ports. It is defined by the fol-
lowing two rules:

Rule 1 When an agent moves from node u to v via an unexplored port
(turning it into active), it immediately returns to u (making the port safe)
and only then goes back to v to resume its execution.

Rule 2 No agent leaves via an active port.

Theorem 9 In a ring with n nodes, regardless of the number of colocated
agents, at least (n� 1) log(n� 1)þO(n) moves are needed for solving the BHS
problem.

Sketch of Solving BHS with Two Co-located AgentsWe present the main idea
behind the algorithm. It proceeds in phases. Let Ei and Ui denote the explored
and unexplored nodes in phase i, respectively; Ei and Ui partition the ring into
two connected subgraphs with the black hole located somewhere in Ui. Divide
the unexplored part of the ring between the two agents, assigning to each agent
a region of almost equal size. Each agent starts the exploration of the assigned
part. Because of the existence of the black hole, only one of them will complete
the exploration. When this happens, it will go through the explored part until it
reaches the last safe link visited by the other agent. It will then again partition
the unexplored area in two parts of almost equal size, leave a message for the
other agent (in case it is not in the black hole), and go to explore the newly
assigned area. If jUiþ1j ¼ 1, the surviving agent knows that the black hole is in
the single unexplored node, and the algorithm terminates.

The two-agent algorithm is cost optimal. There are algorithms for solving
the BHS problem in hypercubes and arbitrary graphs, which also follow the
similar idea. We present a few results from [16]:

Theorem 10 In the worst case, 2n� 4 time units are needed to find the black hole,
regardless of the number of colocated distinct agents available.

Theorem 11 The cost of locating the black hole in oriented rings with dispersed
agents is at least Ω(n log n).

Theorem 12 If the agents have prior knowledge of the number of agents k, then the
cost of locating the black hole in oriented rings is Ωðn logðn� kÞÞ.

Theorem 13 In oriented rings, k agents can locate the black hole in O((n/log n)/log
(k� 2)) time when k is known.

5.5.2 BHS in Arbitrary Networks

Dobrev et al. studied topology-independent generic solutions [17] for BHS. The
problem is clearly not solvable if the graph G representing the network

5.5 FAULT TOLERANCE 111

topology is not 2-connected. (BHS in trees requires a change of model that is
discussed later.) The cost and size for BHS algorithms are shown to be
dependent on the a priori knowledge the agents have about the network and on
the consistency of the local labeling. The assumption is that all agents know n,
the size of the network.

Model Let G¼ (V,E) be a simple 2-connected graph, n ¼ jV j be the size of G,
E(x) be the links incident on x2V, d(x) ¼|E(x)| denote the degree of x, and Δ
denote the maximum degree in G. If (x, y)2E, then x and y are neighbors of
each other. The nodes are anonymous. At each node there is a distinct label
called the port number associated to each of its incident links. Let λz 2 ðx; zÞ
denote the label associated at x to the link (x, z)2E(x) and λz denote the overall
injective mapping at x. The set λ ¼ λxjx 2 V of those mappings is called a
labeling, and (G,λ) is the resulting edge-labeled graph.

Let P[x] denote the set of all paths with x as a starting point, and let P[x, y]
denote the set of paths starting from x and ending in y. Let Λ be the extension
of the labeling function λ from edges to paths. A coding c of a system (G,λ)
is a function such that, ’x; y; z 2 V , ’π1 2 P½x; y�, ’π2 2 P½x; z�, cðΛxðπ1ÞÞ
¼ cðΛxðπ2ÞÞ iff y¼ z. For any two paths π1 π2 from x to y, cðΛxðπ1ÞÞ ¼
cðΛxðπ2ÞÞ. A decoding function d for c is such that ’x; y; z 2 V , such that
ðx; yÞ 2 EðxÞ and π 2 P½y; z�, dðλxðx; yÞ; cðΛyðπÞÞÞ ¼ cðλxðx; yÞ 3 ðΛyðπÞÞ, where
3 is the concatenation operator. The couple (c, d) is called a sense of direction for
(G,λ). If (c, d) is known to the agents, the agents operate with sense of direction.
Otherwise, the agents operate with topological ignorance. The agents have
complete topological knowledge of (G,λ) when the following information is
available to all agents:

1. Knowledge of the labeled graph (G,λ)
2. Correspondence between port labels and the link labels of (G,λ)
3. Location of the home base in (G,λ)

In Dobrev et al. [17] proved the following results:

Theorem 14 With topological ignorance, there is an n-node graph G with the
highest degree Δ# n� 4 such that any algorithm for locating the black hole in
arbitrary networks needs at leastΔþ 1 agents in G. In addition, if n� 4,Δ, n,
then any such algorithm needs at least Δ agents.

Theorem 15 With topological ignorance, there exists a graph G such that any
(Δþ 1) agent algorithm working on all 2-connected n-node networks of maximal
degree at most Δ$ 3 needs Ω(n2) moves to locate the black hole in G.

The authors provide an algorithm that correctly locates the black hole in
O(n2) moves using Δþ 1 agents, where Δ is the highest degree of a node in the
graph. They also showed the following:

112 COOPERATING MOBILE AGENTS

Theorem 16 With topological ignorance, if n� 3#Δ# n� 1, Δ agents can
locate the black hole with cost O(n2).

Theorem 17 In an arbitrary network with sense of direction, the black hole can be
located by two agents with cost O(n2).

Theorem 18 The black hole can be located by two agents with full topological
knowledge in arbitrary networks of vertex connectivity 2 with cost O(n log n), and
this is optimal.

The lower bound of Ω(n log n) in general networks does not hold for
hypercubes and related networks. Dobrev et al. [18] provided a general strategy
that allows two agents to locate the black hole with O(n) moves in hypercubes,
cube-connected cycles, star graphs, wrapped butterflies, and chordal rings as
well as in multidimensional meshes and tori of restricted diameter. Specifically
they proved the following:

Theorem 19 Two agents can locate the black hole in O(n) moves in all of the
following topologies: tori and meshes of diameter O(n/log n), hypercubes, cube-
connected cycles(CCCs), wrapped butterflies, and star graphs.

In another paper [19], Dobrev et al. showed that it is possible to considerably
improve the bound on cost without increasing the size of the agents’ team. They
presented a universal protocol that allows a team of two agents with a map of
the network to locate a black hole with cost Oðnþ d log dÞ, where d denotes the
diameter of the network. This means that, without losing its universality and
without violating the worst-case Ω(n log n) lower bound, their algorithm allows
two agents to locate a black hole with Θ(n) cost in a very large class of, possibly
unstructured networks, where d O(n/log n).

5.5.3 BHS in Tree Networks

Model The model for a tree network is different. Obviously the assumption of
2-connectedness is no more valid for trees. Also the network is assumed to be
partially synchronous instead of asynchronous. An upper bound on the time of
traversing any edge by an agent can be established. Without loss of generality,
we normalize this upper bound on edge traversal time to 1.

The partially synchronous scenario allows the use of a time-out mechanism
to locate the black hole in any graph with only two agents. Agents proceed
along edges of the tree. If they are at a safe node v, one agent goes to the
adjacent node and returns, while the other agent waits at v. If after two units of
time the first agent does not return, the other one survives and knows the
location of the black hole. Otherwise, the adjacent node is safe, and both agents
can move to it. This is a variant of the cautious walk. For any network, this
version of BHS can be performed using only the edges of its spanning tree.

5.5 FAULT TOLERANCE 113

Clearly, in many graphs, there are more efficient BHS schemes than those
operating in a spanning tree of the graph.

Czyzowicz et al. [20] considered a tree T rooted at node s, which is the
starting node of both agents. It is assumed that s is not a black hole. Agents
have distinct labels. They can communicate only when they meet and not by
leaving messages at nodes. There is at most one black hole in the network.
Upon completion of the BHS there is at least one surviving agent, and this
agent either knows the location of the black hole or knows that there is no
black hole in the tree. The surviving agent(s) must return to the root s.

An edge of a tree is unknown if no agent has moved yet along this edge (initial
state of every edge). An edge is explored if either the remaining agents know that
there is no black hole incident to this edge, or they know which end of the edge is
a black hole. In between meetings, an edge may be neither unknown nor
explored when an unknown edge has just been traversed by an agent.

The explored territory at step t of a BHS scheme is the set of explored edges.
At the beginning of a BHS scheme, the explored territory is empty. A meeting
occurs in node v at step t when the agents meet at node v and exchange
information which strictly increases the explored territory. Node v is called a
meeting point. In any step of a BHS scheme, an agent can traverse an edge or
wait in a node. Also the two agents can meet. If at step t a meeting occurs, then
the explored territory at step t is defined as the explored territory after the
meeting. The sequence of steps of a BHS scheme between two consecutive
meetings is called a phase.

Lemma 20 In a BHS scheme, an unexplored edge cannot be traversed by both
agents.

Lemma 21 During a phase of a BHS scheme an agent can traverse at most one
unexplored edge.

Lemma 22 At the end of each phase the explored territory is increased by one or
two edges.

Lemma 23 Let v be a meeting point at step t in a BHS scheme. Then at least one
of the following holds: v¼ s or v is an endpoint of an edge that was already
explored at step t� 1.

Czyzowicz et al. [20] provide an approximation algorithm (Figure 5.9) with
ratio 5/3 for BHS in case of arbitrary trees. The time complexity of the algo-
rithm is linear. It uses the following procedures:

probe(v) One agent traverses edge (p, u) (which is toward node v) and returns
to node p to meet the other agent who waits. If they do not meet at step tþ 2,
then the black hole has been found.

split(k, l) One of the agents traverses the path from node m to node k and
returns toward node pl. The other traverses the path from node m to node l

114 COOPERATING MOBILE AGENTS

and returns toward node pk. Let dist(l, k) denote the number of edges in the
path from node k to node l. If they do not meet at step tþ dist(l, k), then the
black hole has been found.

relocate(v) This function takes as input the current node v where both agents
reside and returns the new location of the two agents. If there is an unknown
edge incident to a child of v then the agents go to that child. Otherwise, the two
agents go to the parent of v.

The authors ask the open question whether there exists a polynomial time
algorithm to construct a fastest BHS scheme for an arbitrary tree. More
generally, until now it is not known if the problem is polynomial for arbitrary
graphs.

5.5.4 Multiple-Agent Rendezvous in a Ring in Spite of a Black Hole

The rendezvous problem requires all the agents to gather at the same node.
Both nodes and agents, besides being anonymous, are fully asynchronous. The
assumption is that there are k asynchronous, anonymous agents dispersed in a
symmetric-ring network of n anonymous sites, one of which is a black hole.
Clearly it is impossible for all agents to gather at a rendezvous point, since
an adversary can direct some agents toward the black hole. So, Dobrev
et al. [21] sought to determine how many agents can gather in the presence of a
black hole.

The rendezvous problem RV(p) consists of having at least p # k agents
gathering in the same site. There is no a priori restriction on which node will
become the rendezvous point. Upon recognizing the gathering point, an agent
terminally sets its variable to arrived. The algorithm terminates when at least p
agents set their arrived flag to true. A relaxed version of the rendezvous
problem is the near-gathering problem G(p, d) that aims at having at least p

Approximation Algorithm BHS on a Tree

Procedure explore(v) for a general node. Initially v¼ s

Procedure explore(v)
for every pair of unknown edges (v, x), (v, y) incident to v do

split(x, y);

end for

if there is only one remaining unknown edge (v, z) incident to v then

probe(z);

end if

if every edge is explored then

repeat walk(s) until both agents are at s

else

next :¼ relocate(v);
explore(next)

end if

FIGURE 5.9 Black-hole search on a tree network.

5.5 FAULT TOLERANCE 115

agents within distance d from one another. The summary of the results from the
paper is given in Table 5.2.

If k is unknown, then nontrivial3 rendezvous requires knowledge of the
location of the back hole.

Here are some basic results about the rendezvous problem on a ring:

Theorem 24 In an anonymous ring with a black hole:

1. RV(k) is unsolvable.

2. If the ring is unoriented, then RV(k� 1) is unsolvable.

Theorem 25 If k is unknown, then nontrivial rendezvous requires locating the
black hole.

Theorem 26 If n is not known, then the black-hole location is unsolvable.

Theorem 27 Either k or n must be known for nontrivial rendezvous.

5.5.5 BHS in Asynchronous Rings Using Tokens

Recently Dobrev et al. introduced a token model [22] for solving the BHS
problem. A token is an atomic entity—agents communicate with one another
and with the environment using these tokens. Each agent has a bounded
number of tokens that can be carried and placed on a node or removed from it.
One or more tokens can be placed at the middle of a node or on a port. All
tokens are identical and indistinguishable from one another.

There are no tokens placed in the network in the beginning, and each agent
starts with some fixed number of tokens. The basic computational step of an
agent, which it executes either when it arrives at a node or upon wake-up, is

1. to examine the node and

2. to modify the tokens and either fall asleep or leave the node through
either the left or right port.

TABLE 5.2 A Summary of Results for Rendezvous Problem

n Unknown, K Known n Known, K Unknown

Oriented ’k. 1 RV (k� 1) ’k. 2 RV (k� 2)

k odd RV (k� 2) k odd or n even RV (k� 2)

Unoriented k even RV

�
k� 2

2

�
k even and n odd RV

�
k� 2

2

�

’k G (k� 2, 1) ’k G (k� 2, 1)

3RV(p) is said to be nontrivial if p is a nonconstant function of k.

116 COOPERATING MOBILE AGENTS

The main results show that a team of two agents is sufficient to locate the
black hole in a finite time even in this weaker coordination model, and this can
be accomplished using only O(n log n) moves, which is optimal, the same as
with the whiteboard model. To achieve this result, the agents need to use only
O(1) tokens each. Interestingly, although tokens are a weaker means of com-
munication and coordination, their use does not negatively affect the solv-
ability of the problem or lead to a degradation of performance. On the
contrary, it turns out to be better in the sense that, whereas the protocols using
whiteboards assume at least O(log n) dedicated bits of storage at each node, the
token algorithm uses only three tokens in total.

An open question is whether it is possible to further reduce the number of
tokens and, if so, then what will be the cost in such a scenario.

5.6 STABILIZATION USING COOPERATING MOBILE AGENTS

A distributed system occasionally gets perturbed due to transient failures that
corrupt the memory of one or more processes or due to environmental changes
that include the joining of a new process or the crash of an existing process. For
example, in routing via a spanning tree, if the tree is damaged due to a failure,
then some packets will never make it to the destination. A stabilizing system
[23] is expected to spontaneously recover from any perturbed configuration to a
legal configuration by satisfying the following two properties [9]:

Convergence Starting from an arbitrary initial configuration, the system
converges to a legal configuration in a bounded number of steps.

Closure If the system is a legal configuration, then it continues to do so
unless a failure or a perturbation occurs.

Traditional stabilizing systems achieve stability using algorithms that use the
message-passing or shared-memory model of interprocess communication. In
this section, we demonstrate how mobile agents can be used to stabilize a dis-
tributed system. The mobile agent creates an extra layer of computation that is
superimposed on the underlying distributed computation but does not interfere
with it unless a failureoccurs. The role of themobile agent is comparable to that of
a repairperson that roams the network, detects illegal configurations, and fixes it
by appropriately updating the configuration. The individual processes are
oblivious to the presence of the agent. We disregard any minor slowdown in
the execution speed of a process due to the sharing of the resources by visiting
agents.

At any node, the arrival of an agent triggers the agent program whose
execution is atomic. The agent program ends with the departure of the agent
from that node or with a waiting phase (in case the agent has to wait at that
node for another agent to arrive), after which the execution of the application

5.6 STABILIZATION USING COOPERATING MOBILE AGENTS 117

program at that node resumes. The computation at a node alternates between
the agent program and the application program. At any node, the visit of a
single agent can be represented by the following sequence of events. We denote
an atomic event using h i:

agent arrives, h agent program executed i, agent leaves

When a pair of agents I and J meet at a node k to exchange data, the
sequence of events will be as follows:

agent I arrives, h agent program of I executedi, agent I waits at k

Following this, the application program at node k resumes and continues
until the other agent J arrives there. When J arrives at node k, the following
sequence of events takes place:

agent J arrives, h data exchange with I occurs i, agent I and J leave.

Then the application program at k resumes once again.
Agent-based stabilization can be viewed as a stabilizing extension of a dis-

tributed system as proposed in [24]. While Katz and Perry [24] emphasized the
feasibility of designing stabilizing distributed systems, mobile agents have some
interesting properties that make implementations straightforward. We first
demonstrate the mechanism by presenting a stabilizing spanning tree con-
struction [14] using a single mobile agent.

5.6.1 Stabilizing Spanning Tree Construction Using a Single Agent

To construct a spanning tree rooted at a given node of a graph G¼ (V,E), we
assume that the root is the home of the agent. Each node i has a parent p(i)
chosen from its immediate neighborhood. In addition, each node i has two
other variables:

Child(i)�{j:p{j}=i}

neighbor(i)�{j:(i,j)2e}
friend(i)�{j:j2N(i)^j 6¼P(i)^P(j) 6¼i}

The program of the agent consists of three types of actions: (i) actions
that update the local variables of the process that it is visiting, (ii) actions that
modify its briefcase variables, and (iii) actions that determine the next process
that it will visit. The individual processes are passive.

A key issue in agent-based solution is graph traversal. To distinguish
between consecutive rounds of traversal, we introduce a briefcase variable
SEQ (2{0, 1}) that keeps track of the most recent round of traversal. With every
process i, define a Boolean f(i) that is set to the value of SEQ whenever the

118 COOPERATING MOBILE AGENTS

process is visited by the agent. SEQ is complemented by the root before the next
traversal begins. Thus, the condition f(i) 6¼ SEQ is meant to represent that the
node has not been visited in the present round.

The agent program has three basic rules, DFS1, DFS2, and DFS3, and is
described4 in Figure 5.10. The first rule DFS1 guides the agent to an unvisited
child. The second rule DFS2 guarantees that when all children are visited the
agent returns to the parent node.

Unfortunately, this traversal may be affected when the DFS spanning tree is
corrupted. For example, if the parent links form a cycle, then no tree edge will
connect this cycle to the rest of the graph. Accordingly, using DFS1, the nodes
in the cycle will be unreachable for the agent, and the traversal will remain
incomplete. As another possibility, if the agent reaches one of these nodes
contained in a cycle before the cycle is formed, then the agent is trapped and
cannot return to the root using DFS2.

Program for the agent while visiting node i

agent variables NEXT, PRE, SEQ, C;

process variables f, child, p, neighbor, friend;

if f(i) 6¼ SEQ- f(i) :¼ SEQ fi;

if PRE 2 friendðiÞ- pðiÞ :¼ PRE fi;

if

Visit an unvisited child

(DFS1) 9 j 2 childðiÞ : f ð jÞ 6¼ SEQ-NEXT :¼ j;C :¼ 0

When all neighbors have been visited, return to the parent

& (DFS2) ’j 2 neighborðiÞ : f ð j Þ ¼ SEQXðC,N _ friendðiÞ ¼ ;Þ-
NEXT :¼ pðiÞ;C :¼ C þ 1

Create a path to a node that is unreachable using DFS1

& (DFS3) ’j 2 childðiÞ : f ð j Þ ¼ SEQX9k 2 neighborðiÞ : f ðkÞ 6¼ SEQ-
NEXT :¼ k;C :¼ 0

Break a possible cycle

& (DFS4) ðC.NÞX9k 2 friendðiÞ-NEXT :¼ k; pðiÞ :¼ k;C :¼ 0

fi;

Program for the home process

Executed when the agent visits home

if 9 j2 child: f(j) 6¼ SEQ-NEXT :¼ j; C :¼ 0

& ’ j2 neighbor: f(j)¼ SEQ-
SEQ :¼ 1-SEQ;

C :¼ 0; NEXT :¼ k : k2 child

fi

FIGURE 5.10 Spanning tree construction with a single agent.

4It disregards the details of how a process i maintains its child (i) and their flags.

5.6 STABILIZATION USING COOPERATING MOBILE AGENTS 119

To address the first problem, DFS3 will “force open” a path to the
unreachable nodes. After reaching k, the agent will set f(k) to true and p(k) to i,
that is, i will adopt k as a child. If the unreachable nodes form a cycle, then this
rule will break it. This rule will also help restore the legal configuration when
the spanning tree is acyclic, but not a DFS tree.

To address the second problem, the agent will keep track of the number
of nodes visited while returning to the root via the parent link. For this pur-
pose, the briefcase of the agent will include a nonnegative integer counter C.
Whenever the agent moves from a parent to a child using DFS1 or DFS3, C is
reset to 0, and and when the agent moves from a node to its parent using
DFS2, C is incremented by 1. (Note: This will modify rules DFS1 and DFS2.)
When C exceeds a predetermined value bigger than the size N of the network, a
new parent has to be chosen, and the counter has to be reset. This is the essence
of DFS4. A proof appears in [14].

Both the time complexity and the message complexity for stabilization are
O(n2). Once stabilized, the agent needs 2(n� 1) hops for subsequent traversals.

5.6.2 Agent Failure

If failures can hit the underlying distributed system, then they can hit the
mobile agent too, resulting in its loss, or in the corruption of its state variables.
This could do more damage than good and needs to be addressed. To deal with
agent failure, we first introduce a reliable agent. Divide the agent variables into
two classes: privileged and nonprivileged. Call an agent variable privileged when
it can be modified only by its home process—all other variables will be called
nonprivileged. Examples of privileged variables are SEQ or the id assigned to
an agent by its home process. Then, an agent will be called reliable when it
satisfies the following two criteria:

1. The agent completes its traversal of the network and returns home within
a finite number of steps.

2. The values of all the privileged variables of the agent remain unchanged
during the traversal.

An agent can be unreliable due either to the corruption of its privileged
variables during a traversal or to routing problems. Note that, by simply being
reliable, an agent cannot stabilize a distributed system. This leads to the
adoption of a two-phased approach. In the first phase, we demonstrate how a
reliable agent guarantees convergence and closure. In the second phase, we
present methods by which unreliable agents eventually become reliable and
remain reliable thereafter until the next failure occurs. This part will use some
generic remedies independent of the problem under consideration. The generic
remedies are as follows:

� Loss of Agent If the agent is killed, then the initiator discovers this using
timeout and generates a new agent with a new sequence number. If the

120 COOPERATING MOBILE AGENTS

timeout is due to a delayed arrival of the original agent, then the original
agent will eventually be killed5 by the initiator.

� Toavoid the riskofmultiple agentswith identical sequencenumbers roaming
in the system, the probabilistic technique of [25] can be used. It involves
the use of a sequence number from a three-valued set

P¼ {0, 1, 2}. If the
sequencenumberof the incomingagentmatcheswith the sequencenumberof
the previous outgoing agent, then the initiator randomly chooses the next
sequence number from

P
; otherwise the agent is killed.

� Corruption of Agent Identifier An agent is recognized by its home using the
agent’s id. If the id of the agent is corrupted, then the home process will
not be able to recognize it, and the unreliable agent will roam the network
forever. To prevent this, the supervisory program S of the agent counts
the number of hops taken by the agent. As soon as this number exceeds a
predefined limit c �R (c is a large constant and R is the round-trip traversal
time), the agent kills itself. The same strategy works if, due to routing
anomalies, the agent is unable to return home.

� Corruption of Agent Variables Here, the corruption of the nonprivileged
variables is not a matter of concern because these are expected to be
modified when the agent interacts with the underlying system. Our only
concern is the possible corruption of privileged variables. To recover from
such failures, we need to demonstrate that, despite the corruption of the
privileged variables, eventually the agent reaches the global state to which
it was initialized by its home process. For each agent-stabilizing system, as
a part of the correctness proof, we need to prove the following theorem:

Theorem 28 An unreliable agent is eventually substituted by a reliable agent.

For the spanning tree generation algorithm using a single agent, all the
generic fixes will hold. In addition, we will demonstrate how the system
transparently handles an inadvertent corruption of the privileged variable SEQ.

5.6.3 Spanning Tree Construction Using Multiple Agents

We represent the agents by the uppercase letters I, J, K, . . . Our model is a
synchronous one, where in unit time every agent takes a step. We assume that
every agent visiting a process i leaves its “footprint” by writing its own id to a
local variable f(i), which is a set of agent identifiers. Each agent can find out
which other agents visited process i by examining f(i). The issue of bad data in
f(i) will be handled as follows: If an agent J discovers the footprint of another
agent k that does not exist, then J will delete the K’s footprint. Ordinarily all

5This is a shift from the static to the dynamic model but is necessary to keep the number of agents

in control.

5.6 STABILIZATION USING COOPERATING MOBILE AGENTS 121

agents with a valid footprint are supposed to show up within a time period;
otherwise they become fossils and are flushed out.

We now employ multiple agents to generate a spanning tree (not necessarily
DFS) of g, with the hope of reducing the message or time complexity. Our static
model uses a fixed number k of agents (1# k# n). The proposed protocol is an
adaptation of the Chen�Yu�Huang protocol [26] for spanning tree genera-
tion. The home of the agent with the smallest id is designated the root of the
spanning tree—we call it the root agent. The spanning tree generation has two
layers: In the first layer, the agents work independently and continue to build
disjoint subtrees of the spanning tree until they meet other agents. In the second
layer, the agents meet other agents to build appropriate bridges among the
different subtrees; this results in a single spanning tree of the entire graph.

For the first layer, we will use the protocol of Figure 5.10. Therefore, we will
only elaborate on the second layer, where a pair of agents K, L meet to make a
decision about the bridge between them during an unplanned meeting at some
process x. We will designate a bridge by the briefcase variable BB. When an
agent K that is yet to form a bridge meets another agent L at a node x, it sets its
briefcase variable BB to (L, x). Thereafter, node x will have two parents pk and
pL from the two subtrees generated by K and L (see node j in Figure 5.11). Until
a node x is visited by an agent K, pK¼φ.

The maximum number of parents for any node is min (δ, k), where δ is the
degree of the node and k is the number of agents. By definition, the root agent
does not have a bridge (we use BB¼>, > to represent this).

In addition to BB, we add another nonnegative integer variableY(O#Y# k)
to the briefcase of every agent. By definition, Y¼ 0 for the root agent. Fur-
thermore, during a meeting between two agents K, L, when K sets up its bridge
to L, x, it also sets Y(K) to Y(L)þ 1. Thus, Y(K) denotes “how many subtrees
away” the subtree of K is from the root segment. In a consistent configuration,
for every agent, Y, k. Therefore, if Y¼ k for any agent, then the bridge for that
subtree is invalidated.

Figure 5.12 describes the protocol for building a bridge between two sub-
trees. The home processes initialize each BB to >, > once, but like other
variables, these are also subject to corruption. The description of this protocol
does not include the fossil removal actions.

Theorem 29 For a given graph, if each agent independently generates disjoint
subtrees, then the protocol in Figure 5.12 stabilizes to a spanning tree that consists
of all the tree edges of the individual subtrees.

Proof Outline As a consequence of the fossil removal mechanism, for every
agent K, eventually BB¼>,> or L, i, where i is a process visited by both L
and K. By definition, each subtree has exactly one bridge BB linking it with
another subtree. Draw a graph g0 in which the nodes are the subtrees (excluding
the bridges) of g and the edges are the bridges linking these subtrees. Using the
arguments in [26], we can show that g0 will eventually be connected and acyclic.
Therefore the set of edges (connecting a node with its parents) generated by the
protocol of Figure 5.12 defines a spanning tree. &

122 COOPERATING MOBILE AGENTS

K is the root agent

agent K’s subtree

agent L’s subtree

agent M’s subtree

BB(L)

BB(M)

FIGURE 5.11 Spanning tree viewed as a graphwith the nodes as subtrees and the edges

as bridges.

Program for agent K while meeting agent L at node i

agent variables BB, NEXT, PRE;

process variables p {represents the parent of a node};

initially BB¼>,>;

do BBðKÞ ¼ L; iXBBðLÞ ¼ K ; iXK ,L-BBðKÞ :¼ >;>;

& BBðKÞ ¼>,>XBBðLÞ 6¼ K ; iXK 6¼ root agentXYðLÞ 6¼ k-
BBðKÞ :¼L; i; YðKÞ :¼ YðLÞ þ 1

& BBðKÞ ¼L; iXBBðLÞ 6¼ K ; iXYðLÞ 6¼ kXYðKÞ 6¼ YðLÞ þ 1-
YðKÞ :¼ YðLÞ þ 1

& BBðKÞ 6¼ L; iXBBðLÞ ¼ K ; iX pKðiÞ 6¼ PRE- pKðiÞ :¼ PRE

& BBðKÞ ¼ L; iXYðLÞ ¼ kXYðKÞ 6¼ k-YðKÞ :¼ k;

& YðKÞ ¼ kXBBðKÞ 6¼ L; iXYðLÞ, k� 1-
BBðKÞ :¼ L; i; YðKÞ :¼ YðLÞ þ 1

& BBðLÞ 6¼ K ; iX pK ðiÞ 6¼ φ- pKðiÞ :¼ φ
od;

NEXT :¼ PRE

FIGURE 5.12 Program for building a bridge between adjacent subtrees.

5.6 STABILIZATION USING COOPERATING MOBILE AGENTS 123

Note that any existing spanning tree configuration is closed under the
actions of the protocol.

To estimate the complexities, assume that each subtree is of equal size n /k.
Let M(sK) be the number of messages required by a single agent K to build a
subtree of size sK starting from an arbitrary initial state. From [27],
MðsKÞ ¼ Oðs2KÞ Also, once the subtree is stabilized, the number of messages
required to traverse the subtree is 2 � (sK� 1). Since we assume sk¼ n/k, the
number of messages needed to build the k subtrees is k �M (n/k). To estimate
the number ofmessages needed to detect a cycle in the graphg0 using the condition
Y$ k, consider a cycle s0s1� � �sts0(t # k) in g0, where each node is a subree. To
correctly compute Y, each agent has to read the value of Y from the agent in its
predecessor segment. This can take up to 1þ 2þ 3þ � � � þ ðt� 1Þ ¼ tðt� 1Þ=2
traversals of the subtrees. Since the maximum value of t is k, for correctly
detecting cycles in g0, atmost ½kðk� 1Þ=2�=½2n=k�will be required.Also, each time
a cycle is broken, the number of disjoint subtrees in g0 is reduced by 1 [26], so this
step can be repeated no more than k� 1 times. Therefore the maximum number
of messages needed for the construction of a spanning tree using a set of coop-
erating reliable agents will not exceed

k �O n2

k2

� �
þ k � kðk� 1Þ

2
� 2n
k

� �
¼ O

n2

k
þ n � k2

� �

To estimate the worst-case message complexity, we also need to take into
account the overhead of fossil removal. This is determined by the number of
hops taken by the agents to traverse the subtrees of size n/k, which is
Oððn=kÞ � kÞ ¼ OðnÞ. Note that this does not increase the order of the message
complexity any further. The interesting result, at least with this particular protocol,
is that as the number of agents increases, themessage complexity first decreases and
then increases. The minimum message complexity is Oðn5=3Þ when k ¼ Oðn1=3Þ.

To estimate the time complexity, assume that each of the k agents simulta-
neously builds subtrees of size n=k in time Oðn2=k2Þ. The time required by the k
agents to correctly establish their Y values is k �Oðn=kÞ ¼ OðnÞ. At this time,
the condition Y $ k can be correctly detected. The resulting actions reduce the
number of disjoint subtrees by 1, so these actions can be repeated at most k� 1
times. The time complexity is thus Oðn2=k2 þ n � kÞ. The overhead of fossil
removal [which is Oðn=kÞ] does not increase the time complexity any further.
Therefore, the smallest value of the time complexity isOðn4=3Þwhen k ¼ Oðn1=3Þ.

5.7 CONCLUSION

Of the various possible roles that multiple mobile agents can play in a dis-
tributed system, this chapter picks four specific applications, illustrates how
they work, and summarizes important results and open problems. For the
proofs of these results, we encourage the readers to read the original articles.

Some of these problems can be solved using a single agent too. But a few
problems (like the BHS problem) cannot be solved by a single agent and

124 COOPERATING MOBILE AGENTS

explicitly needs miltiple agents. The multiplicity of agents, on the one hand,
accelerates certain applications, but on the other hand, synchronization
becomes a tricky issue. Peleg [28] highlights several open problems related to
coordination of multiple autonomous mobile robots (also known as robot
swarms) for distributed computing application.

REFERENCES

1. P. Panaite and A. Pelc, Exploring unknown undirected graphs, J. Algorithms,

33:281�295, 1999.

2. A. Dessmark and A. Pelc, Optimal graph exploration without good maps, Theor.

Computer Sci. 326: 343�362, 2004.

3. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg, Graph exploration by a

finite automaton, in Proceedings of the 29th International Symposium on Mathemat-

ical Foundations of Computer Science (MFCS’2004), Lecture Notes in Computers

Science, Vol. 3153, Prague, Czech Republic, Aug. 22�27, 2004, pp. 451�462.

4. P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc, Collective tree exploration,

in Proceedings of Latin American Theoretical Informatics (LATIN’2004), Lecture

Notes in Computers Science, Vol. 2976, Springer, Buenos Aires, Argentina, Apr.

2004, pp. 141�151.
5. A. Dessmark, P. Fraigniaud, and A. Pelc, Deterministic rendezvous in graphs, in

Proceedings of the 11th Annual European Symposium on Algorithms (ESA’2003),

Lecture Notes in Computers Science, Vol. 2832, Budapest, Hungary, Sep. 2003,

pp. 184�195.

6. D. Kowalski and A. Pelc, Polynomial deterministic rendezvous in arbitrary graphs,

in Proceedings of the 15th Annual Symposium on Algorithms and Computation

(ISAAC’2004), Hong Kong, Dec. 2004.

7. G. Marco, L. Gargano, E. Kranakis, D. Kriznac, A. Pelc, and U. Vaccaro,

Asynchronous deterministic rendezvous in graphs, Theor. Comput. Sci., 355(3):

315�326, 2006.

8. K. Chandy and L. Lamport, Distributed snapshots: determining global states of

distributed systems, ACM Trans. Computer Syst., 3: 63�75, 1985.

9. A. Arora and M. Gouda, Distributed reset, IEEE Trans. Computers, 43(9):

1026�1038, 1990.

10. N. Carriero and D. Gelernter,How toWrite Parallel Programs: A First Course, MIT

Press, Cambridge, Mass., 1990.

11. M. Herlihy, Wait-free synchronization, ACM Trans. Program. Lang. Syst. 11(1):

124�149, 1991.

12. L. Lamport, Concurrent reading and writing, CACM Ser., 20(11): 806�811, 1977.

13. L. Lamport, On interprocess communication. Part II: Algorithms, Distributed

Comp., 1(2): 86�101, 1986.

14. S. Ghosh, Agents, distributed algorithms, and stabilization, Lecture Notes in

Computers Science, Vol. 1858, pp. 242�251, 2000.

15. S. Ghosh and A. Bejan, Concurrent reading and writing with mobile agents, in

Proceedings of IWDC (International Workshop on Distributed Computing),

Lecture Notes in Computer Science, Vol. 2571, Springer, 2002, pp. 67�77.

REFERENCES 125

16. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro, Mobile agents searching for a

black hole in an anonymous ring, in Proceedings of the 15th International Symp. on

Distributed Computing (DISC’01), Lecture Notes in Computer Science, Vol. 2180,

Springer, 2001, pp. 166�179.

17. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro, Searching for a black hole in

arbitrary networks: Optimal mobile agent protocols, in Proceedings of the 21st ACM

Symposium on Principles of Distributed Computing (PODC’02), 2002, pp. 153�162.

18. S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruzicka, and N. Santoro,

Searching for a black hole in hypercubes and related networks, in Bui and Fouchal

(Eds.), Proceedings of the 6th International Conference on Principles of Distributed

Systems (OPODIS ’02), Vol. 3, Suger, Saint-Dennis, France, 2002, pp. 171�182.

19. S. Dobrev, P. Flocchini, and N. Santoro, Improved bounds for optimal black hole

search with a network map, in SIROCCO 2004, Lecture Notes in Computer Science,

Vol. 3104, Springer, 2004, pp. 111�122.

20. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc, Searching for a black hole

in tree networks, in Proceedings of the 8th International Conference on Principles of

Distributed Systems (OPODIS ’04), Lecture Notes in Computer Science, Vol. 3544,

Grenoble, France, Dec. 15�17, 2005, pp. 67�80.

21. S.Dobrev, P. Flocchini,G. Prencipe, andN. Santoro,Multiple agents rendezvous in a

ring in spite of a black hole, in Proceedings of the 7th International Conference on

Principles ofDistributed Systems (OPODIS ‘03), LectureNotes inComputer Science,

Vol. 3144, La Martinique, French West Indies, Dec. 10�13, 2004, pp. 34�46.

22. S. Dobrev, R. Kralovic, N. Santoro, and W. Shi, Black hole search in asynchronous

rings using tokens, in CIAC, Lecture Notes in Computer Science, Vol. 3998,

Springer, 2006, pp. 139�150.

23. E. W. Dijkstra, Self stabilizing systems in spite of distributed control, Commun.

ACM, 17(6):643�644, 1974.

24. S. Katz and K. Perry, Self-stabilizing extensions for message-passing systems, in

Proceedings of the 9th Annual Symposium on Principles of Distributed Computing

(PODC’90), 1990, pp. 91�101.

25. T. Herman, Self-stabilization: Randomness to reduce space, Distributed Comput.

6:95�98, 1992.

26. N. S. Chen, H. P. Yu, and S. T. Huang, A self-stabilizing algorithm for constructing

a spanning tree. Inform. Process. Lett., 39:147�151, 1991.

27. S. Ghosh, Cooperating mobile agents and stabilization, Lecture Notes in Compu-

ters Science, Vol. 2194, 2001, pp. 1�18.

28. D. Peleg, Distributed coordination algorithms for mobile robot swarms: New

directions and challenges, in IWDC 2005, keynote address, Lecture Notes in

Computers Science, Vol. 3741, Springer, pp. 1�12.

29. T. Araragi, P. Attie, I. Keidar, K. Kogure, V. Luchanugo, N. Lynch, and K. Mano,

On formal modeling agent computations, Lecture Notes in Artificial Intelligence,

Vol. 1871, 2000, pp. 48�62.

30. F. Mattern, Virtual time and global states of distributed systems, in M. Cosnard,

et al. (Ed.), Proceedings of Parallel and Distributed Algorithms, Chateau de Bonas,

France, Elsevier, 1989, pp. 215�226.

31. G. Tel, Distributed Algorithms, Cambridge University Press, Cambridge, 2000.

126 COOPERATING MOBILE AGENTS

PART III
Mobile Agent Based Techniques and
Applications

6 Network Routing

ANDRE COSTA

ARC Centre of Excellence for Mathematics and Statistics of Complex

Systems, University of Melbourne, Melbourne, Australia

NIGEL BEAN

Applied Mathematics, University of Adelaide, Adelaide, Australia

6.1 INTRODUCTION

Since the early days of the ARPANET [1], adaptive decentralized routing
algorithms for communications networks have been in demand. This has driven
the development of a variety of autonomous systems, where routing decisions
are made by a collection of agents that are spatially distributed and where each
agent communicates only local information with is nearest neighbors. The first
such algorithm was the distributed Bellman–Ford algorithm [1] originally
developed for the ARPANET, whereby a routing “agent” resides at each net-
work node and implements the local dynamic programming operations that are
required to solve the network shortest path problem.

Recent advances in the fields of multiagent systems, ant colony optimization,
and reinforcement learning have led to the proposal of mobile agent-based
algorithms for the task of network routing. The majority of mobile agent-
based routing algorithms extend the basic distance–vector framework [1],
whereby each node maintains a measure of the cost associated with reaching
each possible destination node, via each available outgoing link. However, while
traditional distance–vector algorithms (such as the distributed Bellman–Ford)
take administrator-assigned link weights, mobile agent-based algorithms
employ agents to actively gather route information, usually in the form of trip
timemeasurements. This information is then used to update the routing tables at
the network nodes in a manner that aims to reinforce good routes (e.g., those

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

129

with low delay) and divert data traffic away from unfavorable routes (those with
high delay).

A characteristic of many (though not all) agent-based routing algorithms is
that they employ stochastic routing policies for agents and data traffic. This
provides an exploration mechanism which permits agents to discover and
monitor alternative routes. It also provides a mechanism for multipath routing
for data traffic, which is desirable for the purpose of load balancing. In par-
ticular, for algorithms such as AntNet [2, 3], which are inspired by the collective
problem-solving behaviors of ant colonies, the stochastic routing tables play a
role that is analogous to the chemical pheromone field which mediates the
indirect communication between biological ants.

Agent-based routing algorithms possess a number of desirable attributes:

� They are designed to adapt in real time to sudden or gradual changes in
traffic demands and network component failures.

� There is no centralized controller—The overall network routing policy is
generated and updated by a population of mobile agents, none of which
are critical (at the individual level) to the operation of the system.

� They are distributed, in the sense that agents make decisions using only
local information, without having knowledge of the global state of the
network, that is, a priori knowledge of all link delays and the state of the
routing tables at every network node.

Together, these attributes confer a high level of robustness, making agent-
based algorithms highly suited to the problem of adaptive routing in stochastic
nonstationary environments.

This chapter is structured as follows. In Section 6.2, we give background
information and a literature review. In Section 6.3, we describe the problem
of network routing. A number of agent-based routing algorithms are
described in Section 6.4 followed by a discussion and comparison in Section
6.5. Future research directions are given in Section 6.6, followed by conclu-
sions in Section 6.7.

6.2 BACKGROUND AND LITERATURE REVIEW

Adaptive routing algorithms such as the distributed Bellman–Ford algorithm
were first developed for the ARPANET in the 1970s. Although these algo-
rithms did not explicitly employ mobile agents, they were an important pre-
cursor, because modern agent-based algorithms are based on data structures
that are natural extensions of the basic distance–vector framework [1]. For the
early ARPANET algorithms, it is useful to think of each node of the network
as a routing agent, which communicates with its nearest neighbors to collectively

130 NETWORK ROUTING

solve a shortest path problem on the whole network. These algorithms typically
performed single-path (as opposed to multipath) routing of data traffic, via the
shortest path links. As a result, when they were augmented with real-time
measurements of link delays and link queue lengths [1, 4], undesirable oscil-
lations in the routing policy often resulted, requiring fine tuning of damping
parameters in order to avoid instability. Faced with these difficulties, static
routing schemes remained popular in practice (and are still widely used in
modern computer networks).

In the late 1970s, distance-vector algorithms were further extended using
ideas from nonlinear programming [5, 6]. These were more sophisticated
than the early shortest path routing algorithms, in that they were designed to
perform multipath routing and were able to attain system optimal routing
policies. The trade-off is that they were also significantly more computationally
demanding due to their requirement for the estimation of gradients. In partic-
ular, instead of maintaining estimates of the delay associated with reaching a
destination node via each outgoing link, they maintained estimates of the mar-
ginal delay. This restricted their suitability to network environments in which
traffic demands changed gradually or infrequently, that is, at the time scale of
connections, rather than the much shorter time scale of packet trip times. As a
result of these factors, they were never actually deployed in the ARPANET.
However, we include them in our discussion because they serve as a useful point
of reference, and they show how system optimal routing policies can be achieved
by a distributed multiagent system. Furthermore, they may prove useful in
future research on mobile agent systems, particularly in the light of recent
advances in online gradient estimation techniques [7–9].

The idea of using mobile agents for routing first appeared in [10], although
no actual algorithm was given. During the 1990s, the emergence of multiagent
systems and reinforcement learning algorithms [11] led to renewed research
interest in applications to adaptive network routing. In the context of control
systems, reinforcement learning is concerned with algorithms which are able
to learn optimal or near-optimal control policies using as input only a set of
reward or penalty signals obtained directly from the system that is being
controlled. Indeed, the approach of “embedding” a reinforcement learning
algorithm within a multiagent system has received much attention in recent
years (see, for example, [12]). In particular, the Q-learning algorithm [13] is one
of the most well-known reinforcement learning algorithms and forms the basis
for a number of agent-based routing algorithms for communications networks,
such as Q-routing [14], predictive Q-routing [15], confidence-based Q-routing
[16], and confidence-based dual-reinforcement Q-routing [17]. Much like the
early ARPANET algorithms, these were designed to perform single-path
shortest path routing.

More recently, actor–critic reinforcement learning algorithms [11] provided
the motivation for the multipath system and traffic adaptive routing algorithm
(STARA) [18, 19], which can attain a particular type of user-based optimization

6.2 BACKGROUND AND LITERATURE REVIEW 131

known as the Wardrop equilibrium. Other agent-based routing algorithms that
use reinforcement learning include team-partitioned, opaque transition rein-
forcement learning (TPOT-RL) [20] and an online policy gradient algorithm for
solving partially observed Markov decision problems (OLPOMDP) [21].

The field of research which has had perhaps the greatest impact on mobile
agent-based routing algorithms is that of ant colony optimization (ACO)
[22, 23], a well-established stochastic optimization method which is inspired by
the emergent problem-solving capabilities of biological ant colonies. The ACO
method has been applied to the problem of adaptive network routing, resulting
in the well-known AntNet algorithm [2, 3, 24] for packet-switched networks.
Extensive simulation experiments using AntNet [2] show that it performs
exceptionally well in a range of realistic nonstationary network conditions.
One of AntNet’s strengths is that it was designed to perform a type of multipath
routing known as proportional routing, with the specific aim of avoiding
the instability and inefficiency that often arises with shortest path routing
algorithms. Other routing algorithms that use antlike mobile agents include
[25–29]. Indeed, there exist close connections between ant-based methods and
reinforcement learning [30–32].

Mobile agent-based routing algorithms have also been applied successfully
to wireless adhoc networks [33–35], where the network nodes are themselves
mobile, resulting in a nonstationary network topology.

6.3 NETWORK ROUTING PROBLEM

Given a communications network with a set of origin–destination node pairs
and a set of associated traffic demands, the routing problem involves deter-
mining which paths are to be used to carry the traffic. A path may comprise
multiple hops passing through multiple routers and links, and typically,
there are a number of alternative paths that are available for any given origin–
destination node pair.

In principle, the task of routing can be viewed as an optimization problem
whereby a routing algorithm attempts to optimize some performance measure
subject to constraints. Examples of performance measures include the total
average throughput (to be maximized) or the total average packet delay (to be
minimized). Constraints arise from the limited transmission and processing
capacity of network links and nodes. The algorithm designer may also intro-
duce quality-of-service (QoS) constraints, such as maximum acceptable average
delay jitter or packet loss rate [36]. Furthermore, a good adaptive routing
algorithm is able to track an optimal or near-optimal solution in real time as
network conditions change.

Some agent-based routing algorithms are designed to solve an explicit
optimization problem using a “top-down” approach; that is, the agent behavior
is programmed so that the collective outcome is the solution to a target opti-
mization problem. In contrast, a number of popular agent-based routing

132 NETWORK ROUTING

algorithms are designed from the “bottom up”; that is, agent behavior is
designed using heuristics that are inspired and informed by reinforcement
learning and/or ACO. Thus, an answer to the question of “what optimization
problem is an agent-based routing algorithm attempting to solve” is not always
immediately apparent; indeed, in some cases, it may be that be that a complex
multiobjective problem is being solved implicitly, without such a problem ever
having been formulated explicitly by the algorithm designer. In this study, we
survey agent-based routing algorithms within a unified framework, which pro-
vides some insights into their similarities and differences with respect to a
number of key features, including their optimization goals.

Given that the majority of agent-based routing algorithms attempt to
optimize delay-based performance measures, we focus in this chapter on
delay as the primary measure of performance. Furthermore, we focus on
algorithms for packet-switched networks, as these comprise the majority of
mobile agent-based routing algorithms that have been proposed during the
last decade.

We begin by surveying the decentralized data structures and functions that
are common to the majority of agent-based routing algorithms that have been
proposed in the literature to date. As we shall see, these data structures and
their functions determine the nature of the optimization goals that can be
achieved using a mobile agent system.

6.3.1 Data Structures and Function

The algorithms incorporate a delay estimation process and a routing update
process as follows. For every possible destination node, each node maintains
estimates of the travel time taken by a packet to reach the destination via each
of the node’s outgoing links. This is done via the active online measurement of
network delays using mobile agents and constitutes a natural extension of static
distance–vector routing algorithms which take administrator-assigned link
weights as an exogenous input [1]. For every possible destination node, each
node maintains a set of routing probabilities which are used to randomly route
data packets arriving at the node via one of the outgoing links. The routing
probabilities are updated periodically according to some function of the delay
estimates that are generated by the agents and are modified in such a way as to
reduce traffic flow on outgoing links which are estimated to have a high
associated delay to the destination and vice versa.

Significantly, a node does not differentiate packets by their origin or history;
all packets assigned to a given destination node are treated equally by the node,
as they are routed according to the same set of routing probabilities. We use the
term stateless (a term that we borrow from the language of networking [37]) to
describe this type of routing. Thus, a characteristic property of agent-based
algorithms is that link routing probabilities, rather than paths flows, are the
primary control variables.

6.3 NETWORK ROUTING PROBLEM 133

As a general network model, we consider a set of nodes N connected by a
set of directed links A, and we denote the set of neighbor nodes of i using N i.
Consider a given destination node d 2 N . A stateless routing policy for
packets with destination node d, represented by Ψd , is a decision rule for
selecting an outgoing link from the set A at each node i 2 N =d. A complete
routing policy for all destination nodes is thus defined by the union

S
d2NΨ

d .
For clarity of presentation and without loss of generality, we shall henceforth
write all quantities and algorithmic update rules for a single destination
node d 2 N . The reader should keep in mind that all of the quantities and
update rules are replicated for all nodes that act as destination nodes for
data traffic.

Specifically, a routing policy for a given destination d is represented by
the probabilities ψij ; i 2 N =d; j 2 N , where we set ψij ¼ 0 for ði; jÞ =2 A.
For a given node i 2 N =d, the probabilities ψij; j 2 N i, define a probability
distribution over the outgoing links. These probabilities are used for the
stochastic routing of data packets, comprising the traffic demands that are
placed on the network. We note that several agent-based routing algorithms
employ shortest path routing, which corresponds to the “degenerate” case
where all routing probabilities are either 0 or 1. For convenience, the routing
policy for destination d can be represented by an ðN � 1Þ3 ðN � 1Þ stochastic
matrix Ψ, with entries ψij; i; j 2 N =d, where the remaining probabilities ψid

are recovered as 1�Pj2N i
ψij . Let si denote the traffic demand originating at

node i, with destination node d, and let si; i 2 N =d, denote the set of such
demands.

The union
S

d2NΨ
d uniquely determines the total expected rate of packet

flow on link ði; jÞ, denoted simply as fijðΨÞ for clarity of notation. The reader is
referred to [5, 31] for details of the calculation of these flows. The link flows
induce queueing delays on each link, and their expected values, given by the
functions RijðfijðΨÞÞ; ði; jÞ 2 A, can be described using a number of models [38].
Clearly, the functions RijðxÞ must be increasing in x to reflect the fact that the
expected delay incurred by a packet in traversing a link increases as the amount
of traffic flow on the link increases.

In the following sections, we shall discuss a number of delay-based opti-
mization problems that can be solved in a distributed manner by mobile agent
systems, that is, by performing delay measurements and controlling only the
routing probabilities ψij; ði; jÞ 2 A. The objective functions that we consider are
constructed using the delay functions RijðxÞ, and the routing probabilities
are subject to the following constraints:

(i) The routing probabilities must belong to the set

P ¼
(
ψij $ 0; ði; jÞ 2 A;

X
j2N i

ψij ¼ 1; i 2 N =d

)

134 NETWORK ROUTING

(ii) In order for the link flows to be finite, it is necessary that the matrix Ψ
specify a path of positive probability from all nodes i 2 N =d to d,
which is equivalent to the condition that the matrix I � Ψ be invertible,
where I is the identity matrix [31].

(iii) Letting Cij denote the (finite) capacity on link (i,j), Ψ must be such that

fijðΨÞ#Cij ð6:1Þ
for all links ði; jÞ 2 A.

We note that constraint (iii) forces the link flows to be finite, which in turn
implies that constraint (ii) must be satisfied; therefore it is sufficient to consider
only constraints (i) and (iii). Furthermore, following [5, 6], the need to explicitly
consider constraint (iii) can be eliminated by assuming that the link delay
functions have the property

lim
x-Cij

RijðxÞ ¼ N ð6:2Þ

for all ði; jÞ 2 A. This eliminates the need to introduce Lagrange multipliers
corresponding to the capacity constraints because capacity violations are
effectively “penalized” in the objective function via (6.2). Thus the only
constraint which must be explicitly taken into account when modeling the
routing algorithms is the normalization constraint (i).

6.3.2 User Equilibrium Routing

User equilibria arise when there exist multiple users of a finite set of shared
resources. In the network routing context, a user usually represents a certain
traffic demand which must be carried from an origin node to a destination
node, while the finite resources correspond to the network link transmission
capacities. Mathematically, this situation can be modeled as a multiobjective
optimization problem. Let Y denote the set of users of the network, and let
f
y
ij ðΨÞ denote user y’s traffic flow on the link (i, j) under the routing policy Ψ.
The expected flow-weighted delay incurred by user y on the link (i, j) is given by

J
y
ijðΨÞ ¼ f

y
ij ðΨÞRijðfijðΨÞÞ ð6:3Þ

The total expected flow-weighted delay incurred by user y over all links is
then given by

JyðΨÞ ¼
X
ði;jÞ2A

J
y
ijðΨÞ ð6:4Þ

This suggests the constrained multiobjective program

min
Ψ2P

JyðΨÞ y 2 Y ð6:5Þ

6.3 NETWORK ROUTING PROBLEM 135

The program (6.5) on its own does not specify a way to balance the com-
peting interests represented by each objective function. The fields of game
theory and multiobjective optimization have given rise to a number of solution
concepts that define what it means for a solution to (6.5) to be “optimal.” These
include pareto optimality as well as the celebrated Nash equilibrium [39].
However, given the stateless routing structure described in Section 6.3.1, agent-
based routing algorithms are not able to systematically attain these operating
points, except for a special case of the Nash equilibrium, known as the
Wardrop equilibrium [40], which we describe shortly.

Nash equilibria arise when each user (origin–destination traffic flow) is
“selfish,” in that each user makes decisions in an effort to minimize its own
incurred cost, without taking into consideration the effect that its own decisions
may have on the costs incurred by other users. A routing policy Ψ represents a
Nash equilibrium if no user y 2 Y can unilaterally decrease its total expected
delay JyðΨÞ by routing its traffic according to a routing policy that is different
to Ψ. The reason why Nash equilibria cannot be attained in a systematic
manner by agent-based algorithms is essentially due to their stateless property;
all packets arriving at a node that have the same destination are routed
according to a common set of routing probabilities, regardless of their origin or
“history.” Thus no node can be acting differently on behalf of any user. Indeed,
algorithms that do attain Nash equilibria are not stateless in the sense defined
above. For Nash routing, each user is allocated a finite set of paths, and Nash
equilibria are attained by an iterative procedure, whereby users take turns in
adjusting their own routing policy in response to the decisions made by other
users (see, for example, the algorithms described in [41, 42]). In order to achieve
the same degree of control, it would be necessary for agent-based routing
algorithms to maintain a separate routing matrix Ψ for each origin–destination
node pair, so that each user could have complete control of the routes used to
carry its own traffic. However, this is beyond the scope of the data structures
and functions that have been proposed to date for agent-based routing
algorithms.

The Wardrop equilibrium arises from the Nash equilibrium in the limiting
case where

1. the number of users becomes infinitely large,

2. the demand placed on the network by each individual user becomes
negligible, so that routing decisions of individual users have no effect on
the delays experienced by other users, and

3. the total traffic demand placed on the network remains constant.

This limiting case corresponds most closely to the physical interpretation of
users being the individual packets that pass through the network. A Wardrop
equilibrium routing policy Ψ is therefore characterized by the fact that no

136 NETWORK ROUTING

packet can unilaterally decrease its expected trip time from its origin to the
destination by following a policy that is different from Ψ.

The derivation of the Wardrop equilibrium as a special case of the Nash
equilibrium was originally given in [43]. A similar derivation that is specific to
the context of stateless network routing is given in [31], yielding the following
sufficient condition: Ψ corresponds to a Wardrop equilibrium if, for each
ði; jÞ 2 A,

RijðfijðΨÞÞ þDjðΨÞ$ min
l2N i

½RilðfilðΨÞÞ þDlðΨÞ� if ψij ¼ 0

RijðfijðΨÞÞ þDjðΨÞ ¼ min
l2N i

½RilðfilðΨÞÞ þDlðΨÞ� if ψij . 0
ð6:6Þ

where DlðΨÞ is the expected delay incurred by a packet currently at node l to
reach the destination d under the routing policy Ψ. At the destination node, we
impose the natural boundary condition DdðΨÞ ¼ 0. It is straightforward to
show that the terms

min
l2N i

½Rilð filðΨÞÞ þDlðΨÞ�

for i 2 N =d, which appear on the right-hand side of (6.6), are Lagrange
multipliers associated with the normalization constraints in P. We also note
that since the objective functions in the problem (6.5) are nonconvex in the
routing probabilities, the ordinary Karush–Kuhn–Tucker (KKT) conditions
[44] are not sufficient for a Wardrop equilibrium, and a slightly different
method of proof is required (see [31] for details). The condition (6.6) can be
understood as follows. Let

DijðΨÞ ¼ RijðfijðΨÞÞ þDjðΨÞ ð6:7Þ

and observe that this is the expected delay incurred by a packet at i to reach the
destination node d via the outgoing link (i, j), under the routing policy Ψ. Then
(6.6) implies that a Wardrop equilibrium has the property that for each node
i 2 N =d all outgoing links at i which are used for sending traffic to the
destination have the minimum expected delay and all outgoing links at i which
are unused have an expected delay which is at least as large, thus coinciding with
our earlier definition of aWardrop equilibrium. Of course, given delay functions
Rijð�Þ, the expectations DijðΨÞ; ði; jÞ 2 A, can be calculated analytically. Howev-
er, this requires global information, that is, knowledge of all entries of the matrix
Ψ, which is not available to any individual node agent or mobile agent. These
expectations must therefore be estimated by performing active trip time
measurements using mobile agents. In particular, an agent-based routing
algorithm that exploits the sufficient condition (6.6) in order to achieve
approximate Wardrop routing policies is described in Section 6.4. Furthermore,

6.3 NETWORK ROUTING PROBLEM 137

we shall see that the equilibrium operating point of ant-based routing algorithms
can be interpreted as an approximate Wardrop equilibrium.

6.3.3 System Optimal Routing

A common networkwide performance measure is the total expected flow-
weighted packet delay in the network [1], given by

DTðΨÞ ¼
X

ði;jÞ2A
fijðΨÞRijðfijðΨÞÞ ð6:8Þ

Accordingly, a routing policy Ψ corresponds to a system optimum if it is an
optimal solution to the constrained nonlinear program

min
Ψ2P

DT ðΨÞ ð6:9Þ

We note thatDTðΨÞ is nonconvex in the routing probabilities Ψ, and thus the
correspondingKKT conditions for the routing probabilities are not sufficient for
a minimum of (6.9). However, it is shown in [5] that a minor modification of the
KKT conditions yields a first-order sufficient condition. In particular, letting

R
0
ijðxÞ ¼

dRijðxÞ
dx

then Ψ corresponds to a system optimal routing policy if, for all ði; jÞ 2 A,

R
0
ijðfijðΨÞÞ þ

@DTðΨÞ
@sj

$ min
l2N i

R
0
ilðfilðΨÞÞ þ

@DT ðΨÞ
@sl

2
4

3
5 if ψij ¼ 0

R
0
ijð fijðΨÞÞ þ

@DTðΨÞ
@sj

¼ min
l2N i

R
0
ilð filðΨÞÞ þ

@DTðΨÞ
@sl

2
4

3
5 if ψij . 0

ð6:10Þ

whereR
0
ijðfijðΨÞÞ gives themarginal packet delay associatedwith the link (i, j) and

@DTðΨÞ=@sj captures the marginal packet delay associated with the remaining

journey from node j to d. At the destination node, we have the natural boundary

condition @DT ðΨÞ=@sd ¼ 0. Again, the terms on the right-hand side of (6.10) for

each i 2 N =d are Lagrange multipliers associated with the normalization
constraints on the routing probabilities. Let

D
0
ijðΨÞ ¼ R

0
ijð fijðΨÞÞ þ

@DT ðΨÞ
@sj

ð6:11Þ

and observe that this is the expected marginal delay incurred by a packet at i
to reach the destination node d via the outgoing link (i, j) under the routing

138 NETWORK ROUTING

policy Ψ. Then (6.10) implies that a system optimal routing policy has the
property that for each node i 2 N =d all outgoing links at i which are used for
sending traffic to the destination have the minimum expected marginal delay,
and all outgoing links at i which are unused have an expected marginal delay
which is at least as large. A class of distributed algorithms which exploit the
sufficient condition (6.10) in order to attain a system optimal routing policy is
discussed in Section 6.4.

6.4 SURVEY OF AGENT-BASED ROUTING ALGORITHMS

Before giving a description of the algorithms, we introduce a classification
system which will allow us to compare and contrast their salient features.

6.4.1 Classification System

Agent-based routing algorithms can be classified and differentiated by com-
paring the following key properties:

1. Nature of Active Measurements That Are Performed by Mobile Agents

� The delay statistic that is sampled by a mobile agent is either delay or
marginal delay.

� The mechanism for generating samples of the delay statistic is either the
bootstrapping approach or the Monte Carlo approach [11]. The boot-
strapping approach involves using mobile agents that report the delay
statistic associated with traveling from node i to d via node j by
directly measuring the delay statistic on the link (i, j) and using node j’s
locally stored estimate of the delay statistic associated with the remainder
of travel to the destination d. In contrast, the Monte Carlo approach
involves the direct measurement of the delay statistic by explicitly
measuring the delay statistic associated with a complete path from node
i to d via node j. TheMonteCarlomethod therefore does not use any delay
information that is “cached” at intermediate nodes between i and d.

2. Exploration Mechanism The exploration mechanisms employed by agent-
based routing algorithms can be classified as either on-policyor off-policy—
this terminology is borrowed from [11]. In the context of adaptive routing,
exploration entails measurement of the delay characteristics of alternative
routes. We shall say that an agent-based routing algorithm is on-policy
if there exists a coupling between the agent exploration mechanism and
the data routing policy, resulting in a trade-off between these tasks. In
contrast, an off-policy learning algorithm is one where the exploration and
decision-making mechanisms are decoupled in such a manner that there is
no trade-off between these tasks.

3. Single-Path or Multipath Routing For a given origin–destination node
pair, a single-path routing algorithm sends all data traffic over a single

6.4 SURVEY OF AGENT-BASED ROUTING ALGORITHMS 139

route, so that ψij 2 f0; 1g for all links (i, j). In contrast, a multipath
routing algorithm has the ability to split the data traffic over more than
one route, and we therefore have ψij 2 ½0; 1� for all (i, j).

4. Characteristic Operating Point The target operating points of the agent-
based routing algorithms described in this chapter fall into one of four
categories:Wardrop routing, system optimal routing, shortest path routing,
and proportional routing. The first two were discussed earlier in this
section. Shortest path routing entails sending all traffic on an outgoing
link which is associated with the smallest estimated delay to the destina-
tion. The last category refers to the case where the proportion of data
traffic routed on each outgoing link is a decreasing function of the
associated delay estimate for the link.

We note that the characteristic operating point refers to the type of routing
policy that is targeted by the algorithm and which would be reached sooner or
later (depending on the rate of convergence) under stationary conditions. In a
nonstationary environment, the target operating point changes with time and is
then tracked by the algorithm.

In the following sections, we describe a collection of representative agent-
based routing algorithms, and we classify them according to the features listed
above. A summary of these classifications is provided in Table 6.1.

6.4.2 Algorithms Based on Q-Learning

The first adaptive routing algorithm for communications networks to be
modeled explicitly on a reinforcement learning algorithm is known as
Q-routing [14] and was inspired by the popular Q-learning algorithm [13]. In
the Q-routing algorithm, a reinforcement learning agent is embedded into each
node of the network. For every destination node d, each node i maintains
estimates Qij; j 2 N i, of the time taken for a packet to travel from i to d via the
outgoing link (i, j). Consider a fixed destination node d and a given link (i, j).
Every time that a packet with destination d traverses the link (i, j), the update

Qij :¼ ð1� aÞQij þ aðrij þQmin
j Þ ð6:12Þ

is performed, where a 2 ð0; 1� is a step size, or learning rate parameter, rij is the
queueing plus transmission delay incurred by the packet in moving from node
i to j, and

Qmin
j ¼ min

l2N j

Qjl ð6:13Þ

which constitutes node j’s estimate of the minimum possible trip time to
reach d. In particular, the quantity rij þQmin

j is transmitted back to node i by a
special “signaling” packet, or mobile agent, which carries this information.
Thus,Q-routing performs delay measurements via the bootstrapping approach.

140 NETWORK ROUTING

TABLE 6.1 Classification of Agent-Based Routing Algorithms

Routing Operating Point Measurement Exploration

Distributed Bellman–Ford Singlepath Shortest path Bootstrapping (fixed-link weights) Off policy

Q-routing Singlepath Shortest path Bootstrapping (delay) Off policy

STARA Multipath Wardrop Monte Carlo (delay) On policy

AntNet and other ant-based algorithms Multipath Proportional Monte Carlo (delay) On policy

AntHocNet Multipath Proportional Combination (delay) On policy

Gallager and variants Multipath System optimal Bootstrapping (marginal delay) On policy

TPOT-RL Singlepath Shortest path Monte Carlo (delay) On policy

OLPOMDP Multipath System optimal Monte Carlo (marginal delay) On policy

SAMPLE Multipath Proportional Bootstrapping (delay) Off policy

MCWR Multipath Wardrop Monte-Carlo (delay) Off policy

Wardrop Q-routing Multipath Wardrop Bootstrapping (delay) Off policy

1
4
1

The policy used to route packets is to always select the outgoing link which
has the minimum associated delay estimate, that is, single-path shortest path
routing. This corresponds to the following update rule for the routing proba-
bilities maintained at node i:

ψij :¼ 1 if ði; jÞ ¼ argminði;lÞ:l2N i
Qil

0 otherwise

�
ð6:14Þ

The inventors of Q-routing do not specify how to route packets in the event
that two or more outgoing links have equal associated delay estimates. A
natural way to resolve such situations would be to randomize uniformly over
the set of outgoing links with equal minimum associated delay estimates.

The delay estimates Qij are analogous to the entries of a traditional distance–
vector routing algorithm, such as the distributed Bellman-Ford [1]. The dif-
ference lies in the fact that actual trip time measurements, rij , form the basis for
updating the estimates and these updates occur very frequently, whereas the
entries of a distance–vector algorithm are typically static values that are
assigned by a network administrator. The step size parameter a in (6.12)
determines the weighting of new measurements versus the stored estimate.

As described above, the Q-routing algorithm routes all packets on the
outgoing link which has the smallest associated Q-value. As a result, delay
measurements for currently unused links are never obtained. This prevents the
algorithm from being able to discover new paths which may be shorter than
those currently in use. The inventors of Q-routing avoid this type of stagnation
by introducing an exploration mechanism whereby every node periodically
probes all of its outgoing links, including the ones which do not carry traffic.
This task is performed by mobile agents, which periodically trigger the update
(6.12) for all links ði; jÞ 2 A. This exploration mechanism ensures that delay
information is obtained for all outgoing links, irrespective of which link is
currently being used to route data traffic, and is therefore classed as off-policy.
We also note that this exploration mechanism performs an analogous role to
the broadcasting of distance estimates between neighboring nodes that occurs in
most distance–vector routing algorithms, such as the distributed Bellman–Ford
algorithm [1].

While the exploration mechanism greatly enhances the algorithm’s ability to
adapt to network changes, it was also found to result in oscillatory routing
policies when traffic load on the network is high [14]. This is because shortest
path routing can easily lead to the saturation of individual links and paths.
Indeed, oscillations in the routing policy are a well-known phenomenon in
adaptive routing algorithms that perform shortest path routing and were
documented in the study of similar algorithms developed in the 1970s for the
ARPANET [1, 4]. A number of heuristic modifications to the basic Q-routing
scheme have been proposed, which aim to address this problem and improve
efficiency in general. These include predictive Q-routing [15], confidence-
based Q-routing [16], and confidence-based dual-reinforcement Q-routing [17].

142 NETWORK ROUTING

For example, the confidence-based dual-reinforcement Q-routing algorithm
associates a measure of confidence with each Q-value, which is used to vary the
learning rate parameter so as to give greater importance to delay information
which is estimated to be more up to date and thus a more accurate reflection of
the true state of the network.

6.4.3 Algorithms Based on “Actor–Critic” Approach

In the field of reinforcement learning, an alternative to the Q-learning approach
described in Section 6.4.2 is the “actor–critic” approach [11, 45]. While the
former is derived from the value iteration algorithm for solving dynamic pro-
gramming problems, the latter is derived from the policy iteration algorithm,
and as such, the policy update plays a more prominent role. In particular,
instead of switching between deterministic policies, actor–critic algorithms
typically make incremental changes to a randomized policy in a “direction”
which is estimated to lead to improvement.

The most common application of reinforcement learning is for solving
unconstrained Markov decision problems, which are known to have determin-
istic optimal policies, and thus a randomized policy in an actor–critic algorithm
typically converges to a deterministic one. However, the use of randomized
policies is attractive in its own right in the context of network routing, as this
allows the algorithm to balance traffic between any given origin–destination
node pair over multiple paths and thus perform multipath routing. Indeed, the
existence of optimal routing policies which are randomized reflects the presence
of capacity constraints in a communications network.

These considerations motivated the development of STARA [18, 19], an
agent-based multipath routing algorithm that was derived from the actor–critic
reinforcement learning approach. Instead of shortest path routing, STARA has
as its routing goal the Wardrop equilibrium, which, as discussed earlier, con-
stitutes a form of user optimum.

STARA operates as follows: A packet entering the network at node i is
routed to one of the neighboring nodes j 2 N i, according to the probability
mass function ψil; l 2 N i. A similar selection process is repeated at node j and at
each subsequent node until the packet reaches its destination d. Let the (ran-
dom) sequence of nodes visited by the packet be denoted i1; i2; : : : ; in, where
n is the total number of nodes visited by the packet, and i1 ¼ i; in ¼ d. We
denote using qik;ikþ1

; k ¼ 1; : : : ; n� 1, the packet’s trip time measurement from
node ik to the destination d via the node ikþ1. Upon the packet’s arrival at the
destination, a mobile agent is sent back to every node ik; k ¼ 1; : : : ; n� 1,
which triggers the following updates of the corresponding delay estimates,

Qik;ikþ1
:¼ ð1� aÞQik;ikþ1

þ aqik;ikþ1
k ¼ 1; : : : ; n� 1 ð6:15Þ

where, as before, a 2 ð0; 1� is a step size parameter. Thus, STARA performs
delay measurements via the Monte Carlo approach (see Section 6.4.1) using

6.4 SURVEY OF AGENT-BASED ROUTING ALGORITHMS 143

data packets for the forward trip time measurement and mobile agents for
backpropagation of the delay information.

Whenever the value Qij is updated, the set of routing probabilities main-
tained at i that pertain to the destination node d are updated according to
the rule

ψij :¼ ψij þ bψij

X
l2N i

ψilQil �Qij

 !
þ ξij ði; jÞ 2 A ð6:16Þ

where 0, b{1 is a step size parameter and ξij is a randomized noise term which
we discuss shortly. The set of routing probabilities ψij ; j 2 N i, are then
renormalized so as to remain in the set P. Finally, the routing probabilities
are perturbed according to the rule

ψij :¼ ð1� εÞψij þ εUij ði; jÞ 2 A ð6:17Þ

where 0, ε{1 and Uij; j 2 N i, is the probability mass function corresponding
to the uniform distribution over the set of outgoing links at node i. Thus, the
routing probabilities that are actually used for the routing of packets are a
convex combination of the uniform distribution and the routing probabilities
given by (6.16).

The update rule (6.16) has the following effect: The probability ψij is
increased by a small amount if the estimated delay, Qij, is less than the esti-
mated average delay over all outgoing links, given by

P
l2N i

ψilQil, and
conversely, ψij is decreased by a small amount if the estimated delay Qij is
greater than the estimated average delay. If Qij is equal to the average estimated
delay, then the routing probability ψij does not change. It is shown in [19] that
STARA converges to an approximate Wardrop equilibrium. Indeed, inspection
of (6.16) shows that a fixed point of the algorithm occurs when

X
l2N i

ψilQil ¼ Qij ð6:18Þ

for all ði; jÞ 2 A. A connection between the fixed-point condition (6.18) and the
sufficient condition for a Wardrop equilibrium given in (6.6) can be established
by considering a fixed routing policy Ψ and observing that under this policy
the zupdate rule (6.15) will result in convergence of the delay estimates Qij

to the corresponding mathematical expectations DijðΨÞ given by (6.7). Thus,
with a little thought, we see that a routing matrix Ψ which satisfies the Wardrop
condition (6.6) also satisfies the fixed-point condition (6.18). Furthermore, it is
shown in [19] that fixed points of the algorithm are stable only if they
correspond to Wardrop equilibria, and the presence of the noise term ξij in
(6.16) guarantees that unstable (non-Wardrop) equilibria which also satisfy the
condition (6.18) are avoided.

A key feature of (6.16) is that for sufficiently small values of the parameter b
a gradual deviation of traffic flow from high delay paths to lower delay paths is

144 NETWORK ROUTING

achieved. This contrasts with the “all-or-nothing” shortest path approach used
byQ-routing and other adaptive shortest path algorithms and is the reason why
STARA is able to converge to a multipath routing policy.

The update rule (6.17) constitutes an exploration mechanism parameterized
by ε because it ensures that no routing probability can ever be set to zero, which
in turn means that all links are eventually probed with probability 1 by sending
small amounts of traffic on them. Thus, the delay characteristics of alternative
paths can be measured, allowing the algorithm to detect changes in the network
environment and reroute traffic accordingly. This exploration mechanism is
classed as on-policy, because there exists a tight coupling between the data
routing policy and the exploration mechanism such that there exists a direct
trade-off between the tasks of exploration and decision making. In fact,
STARA converges to an “ε-perturbed,” or approximate, Wardrop equilibrium
rather than a pure Wardrop equilibrium due to this exploration mechanism.
Specifically, the decision-making mechanism steers the routing policy toward a
Wardrop equilibrium, while the exploration mechanism perturbs the routing
policy away from a Wardrop equilibrium. It follows that a closer approxima-
tion to a Wardrop equilibrium is achieved at the expense of reducing the
probability (and hence frequency) of exploration, which in turn leads to a
slower rate of adaptation when changes occur in a nonstationary environment.
In Section 6.6, we describe how this perturbation can be eliminated without
compromising the exploration of alternative paths.

6.4.4 Other Reinforcement Learning-Based Algorithms

TPOT-RL is a general reinforcement learning technique that is applied to net-
work routing in [20]. In the network routing context, TPOT-RL reduces to a
shortest path routing algorithm that is similar to Q-routing, but with the fol-
lowing key differences: The delay estimates are updated via the Monte
Carlo approach instead of the bootstrapping approach, it performs on-policy
exploration by making small perturbations of the shortest path data routing
policy, and an additional state variable is maintained for each link, indicating
whether the number of packets routed on a link over a recent time period of fixed
length was “high” or “low.” This additional state variable is taken into account
when making routing decisions. A limited simulation study presented in [20]
suggested that TPOT-RL has marginally superior performance to Q-routing.

OLPOMDP is presented in [21] in the context of network routing. It has an
on-policy exploration mechanism in the form of a randomized data routing
policy, which also allows for multipath routing. Mobile agents employ
the Monte Carlo approach for the measurement of marginal delays, and the
algorithm’s routing goal is a system optimal routing policy. However, it
employs a global rather than local method in order to generate marginal delay
estimates, requiring that mobile agents measure the trip time from a given
origin to destination and then subsequently broadcast all trip times to every
node in the network, regardless of the packet’s path. The latter feature

6.4 SURVEY OF AGENT-BASED ROUTING ALGORITHMS 145

therefore constitutes a significant departure from the completely decentralized
framework of the other agent-based routing algorithms discussed in this
chapter (including a system optimal distributed routing algorithm which we
discuss in Section 6.4.6). The algorithm’s potential was demonstrated via a
small simulation example in [21].

6.4.5 Ant-Based Routing Algorithms

The first ant-based routing algorithm, proposed in [26], was designed for
connection-oriented networks [46]. A more sophisticated version for routing in
connectionless packet-switched networks, known as AntNet [2], was proposed
by researchers working in the field of ACO [23], and similar algorithms were
also proposed in [25–29]. In this survey, we focus exclusively on ant-based
routing algorithms for connectionless packet-switched networks, as these have
attracted the most research interest in recent years.

Ant-based routing algorithms employ “antlike” mobile agents, whose pur-
pose it is to traverse the network and measure trip times between origin–
destination node pairs. The trip time measurements made by the ants are then
used to construct a data routing policy. Thus, ant-based algorithms operate
separate ant and data traffic “layers” whereby the ant layer informs and drives
the data routing update process. Specifically, for every destination node, ant-
based routing algorithms maintain a set of ant routing probabilities
φij; ði; jÞ 2 A, in addition to the data routing probabilities ψij. Each node
periodically creates ants, which are dispatched to each of the destination nodes.
Consider a given distination node d. At node i, an ant is routed to one of the
neighbor nodes j 2 N i according to the probability mass function φil; l 2 N i.
The ant repeats this process at every subsequent node that it visits until the
destination node is reached, experiencing the same queueing and transmission
delays that are experienced by data packets at each of the links that it traverses.
As before, we denote the (random) sequence of nodes visited by the ant using
i1; i2; : : : ; in, where n is the total number of nodes visited by the ant, and let
qik;ikþ1

; k ¼ 1; : : : ; n� 1, be the ant’s trip time measurement from node ik to the
destination d (via the node ikþ1). The ant then retraces its path from d back to i,
passing via every intermediate node ik; k ¼ 1; : : : ; n� 1, thus performing on
its return journey a similar role to the acknowledgment packet in STARA.
Thus, like STARA, ant-based algorithms perform delay measurements via the
Monte Carlo approach.

On its return path, the ant directly updates the routing probabilities, φik;ikþ1
,

for k ¼ 1; : : : ; n� 1, using the corresponding trip time measurements qik;ikþ1
.

To simplify presentation, we just give the update rule for the case of the origin
node i ¼ i1 and first-hop node j ¼ i2. Similar updates are performed at the
intermediate nodes. First, the routing probability φij associated with the link
(i, j) traversed by the ant is incremented according to a rule of the form

φij :¼
φij þ δðqijÞ
1þ δðqijÞ ð6:19Þ

146 NETWORK ROUTING

where δðxÞ is a function which determines the size of the increment. The specific
functional form of δðxÞ differs from one ant-based routing algorithm to
another, but in all cases, δðxÞ is a decreasing function of x. Second, the routing
probabilities φil. l 6¼ j corresponding to all other outgoing links at node i that
were not traversed by the ant on its forward path, are updated according to a
rule of the form

φil :¼
φil

1þ δðqijÞ l 2 N i = j ð6:20Þ

Note that the update rules (6.19) and (6.20) ensure that the ant routing
probabilities remain normalized, that is, that they remain in the set
fφij : φij $ 0; ði; jÞ 2 A;

P
l2N i

φil ¼ 1 for all i 2 N =dg provided they are ini-
tially in this set.

The update rules for the ant routing probabilities have the following effect.
The routing probability φij is increased by the update (6.19) each time that an
ant traverses the link (i, j). Simultaneously, the remaining routing probabilities
at node i are decreased by the update (6.20). With the passage of many ants
across the network, the net effect is that routing probabilities associated with
links that lie on low-delay paths experience a positive feedback effect leading to
their increase, and conversely, routing probabilities associated with links that
lie on high-delay paths are decreased. In particular, this positive and negative
feedback occurs as a result of two distinct processes:

1. A transient process whereby in a given period of time a larger number of
ants complete a round trip from origin to destination over a low-delay
path compared with the number that complete a round trip over a high-
delay path. This results in a larger total number of increments per unit of
time to the routing probabilities associated with links that lie on low-
delay paths.

2. A persistent process, resulting from the fact that the routing probability
φij is incremented by an amount δðqijÞ, which decreases as the measured
trip time Qij increases. Therefore, routing probabilities corresponding to
links that are associated with high-delay paths receive a smaller rein-
forcement compared with links that are associated with low-delay paths.

The transient process described above is unique to ant-based routing algo-
rithms and is not present in other agent-based routing algorithms. However,
the differential reinforcement of paths that results from the persistent process is
analogous to the delay-based updating of the routing policy that is carried out
by the reinforcement learning-based algorithms and is crucial to an ant-based
algorithm’s ability to adapt to on-going network changes.

In addition, in some ant-based algorithms, the ant routing probabilities are
perturbed according to the rule

φij :¼ ð1� εÞφij þ εUij ði; jÞ 2 A ð6:21Þ

6.4 SURVEY OF AGENT-BASED ROUTING ALGORITHMS 147

This constitutes an exploration mechanism similar to the one employed by
STARA, except that it is the ants which are routed according to the ε-perturbed
policy rather than the data packets, the routing of which we discuss next.

The ant routing probabilities constitute an ant-based algorithm’s represen-
tation of the current network state and are used in order to generate a data
traffic routing policy. This is done via a proportional routing mechanism where
the data routing probabilities ψij are given by a transformation of the form

ψij ~ ðφijÞβ ði; jÞ 2 A ð6:22Þ

where β acts as a load-balancing parameter. For typical values of β (for
example, 1,β, 2), the rule (6.22) usually results in traffic being routed over
multiple paths between any given origin–destination node pair, rather than
being routed on a single path. As a result, ant-based algorithms are able to
perform a heuristic form of load balancing. We see that (6.22) generates a data
packet routing probability mass function that is more strongly biased in favor
of links which are most likely to be selected by ants, reflecting the idea that data
should attempt to exploit the paths which are estimated by the ants to have the
lowest delay. That is, exploration should be left to the ants, and the data traffic
should exploit low-delay paths.

As noted above, ant-based routing algorithms are classed as on-policy,
despite the fact that they employ a separate “layer” of ant traffic for explora-
tion. This is because they achieve only a partial rather than complete decou-
pling of the tasks of exploration and data traffic routing. The reason for this is
as follows. The role of ants is twofold: to explore alternative routes and to
estimate the delays experienced by data packets. The first task is achieved by
assigning to all links a nonzero probability of being selected by an ant. How-
ever, ants are not able to accurately perform the latter task, since ants and data
packets are routed according to different policies [see expression (6.22)].
Specifically, the distribution of ant trip times is different from the distribution
of data packet trip times, and the expected trip times will generally also be
different. Therefore, the ants’ measurement of network delays will in fact
contain a systematic perturbation with respect to the actual delays experienced
by data packets under the current data routing policy. These perturbations are
a direct result of the exploratory actions of the ants and can be characterized as
perturbations from a Wardrop equilibrium [31, 32].

A unique feature of ant-based algorithms is that the ants update the routing
probabilities directly, according to (6.19) and (6.20), rather than first updating a
set of delay estimates. However, some ant-based algorithms also employ an
explicit delay estimation component. For example, AntNet maintains delay
estimates that are analogous to the Qij maintained by STARA, and in addition,
it maintains estimates of the variances of ant trip times. These statistics are used
to determine a heuristic measure of “reliability” of trip time samples Qij, which
is incorporated into the function δð�Þ used to determine the magnitude of
increments to the routing probabilities in (6.19) and (6.20). This confers to

148 NETWORK ROUTING

AntNet a greater degree of stability and counteracts undesirable oscillations in
the routing policy [2]. Extensive simulation experiments presented in [2] dem-
onstrate that AntNet performs very well in response to sudden changes in
traffic demands or isolated network component failures. Further analysis
and comments on the topic of ant-based routing algorithms can be found in
[31, 32, 47–49].

6.4.6 System Optimal Routing Algorithms

A family of distributed algorithms that are able to achieve system optimal
routing policies is described in [6]. Although these algorithms predate the era of
multiagent systems and mobile agents, the data structures and functions at
the network nodes fit within the distance–vector framework that is common
to the other algorithms presented in this chapter, and the internode information
transfer which is carried out by “signaling packets,” as they were referred to
in [6], can equivalently be cast in terms of modern mobile agent technology. In
particular, they serve as a useful point of reference because they show how
system optimal routing policies can be achieved by a distributed multiagent
system. As mentioned in Section 6.2, they may prove useful in future research
on mobile agent systems due to recent advances in online gradient estimation
techniques [7–9].

We give a brief overview of the simplest of these routing algorithms, known
as Gallagher’s algorithm, which was first proposed in [5]. For every destination
node d, each node i 2 N =d maintains estimates Q

0
ij ; j 2 N i, where Q

0
ij is the

marginal delay associated with traveling from i to d via the outgoing link (i, j).
These estimates are periodically updated according to the rule

Q
0
ij :¼ R

0
ij þQ

0
j ð6:23Þ

where R
0
ij is an estimate of the marginal delay associated with the link (i, j) and

Q
0
j is an estimate of @DT ðΨÞ=@sj (see Section 6.3). Techniques for measuring

these quantities using mobile agents are discussed at the end of this section. In
particular, Q

0
j is calculated by each neighbor node j according to

Q
0
j ¼

X
l2N j

ψjlQ
0
jl ð6:24Þ

and transmitted back to node i by a mobile agent. Similarly all nodes i 2 N =d
calculate Q

0
i and broadcast this value to all of their immediate neighbors.

Of course, Q
0
d ¼ 0 due to the boundary condition @DTðΨÞ=@sd ¼ 0. In terms of

our classification scheme (see Section 6.4.1), we see that Gallagher’s algorithm
performs marginal delay measurements via the bootstrapping approach. We
also note that the values Q

0
ij constitute estimates of the average “first derivative

length” [1] of used paths from i to d via the link (i, j) under the current routing
policy Ψ.

6.4 SURVEY OF AGENT-BASED ROUTING ALGORITHMS 149

The routing probabilities are updated as follows. Each node i calculates

Aij :¼ Q
0
ij �min

l2N i

½Q0
il� ð6:25Þ

and

Δij :¼ min ψij ;
bAij

fi

� �
ð6:26Þ

for each j 2 N i, where b. 0 is a step size parameter and fi is an estimate ofP
j2N i

fijðΨÞ, the total traffic flow passing through node i, with destination d.

Let Mij be a node l 2 N i which achieves the minimization in (6.25). Then

ψij :¼
ψij �Δij if j 6¼ Mij

ψij þ
P

l2N i ;l 6¼Mij
Δil if j ¼ Mij

�
ð6:27Þ

Note that the update rule given by (6.25)–(6.27) preserves the normalization
of the routing probabilities. In [25], the case where multiple nodes achieve the
minimum in (6.25) is not addressed; however, a natural extension whereby
the increase in traffic is divided evenly over such links is given in [31].

We see from (6.27) that Gallagher’s algorithm increases the proportion of
traffic sent on the link with the minimum estimated marginal delay to reach d
and reduces the proportion of traffic sent on the remaining links (which have
larger estimated marginal delay).

If a routing policy is a fixed point of Gallagher’s algorithm, then it must
satisfy the sufficient condition for a system optimal routing policy given in
(6.10). To see this, let Ψ be a fixed point of Gallagher’s algorithm and suppose
that all marginal link delay estimates R

0
ij are equal to their exact mathematical

expectations R
0
ijðΨÞ. Then, recalling (6.11), we have Q

0
ij ¼ D

0
ijðΨÞ for all links

(i, j). We observe that the fixed-point condition for Gallagher’s algorithm
implied by (6.25) and (6.26) implies the sufficient condition (6.10).

In addition, in order to ensure that the routing policy Ψ is loop free,
Gallagher’s algorithm maintains at each node i a list of outgoing links which
are “blocked.” Blocked links are excluded from all of the calculations in (6.25)–
(6.27), and the routing probabilities associated with blocked links are auto-
matically set to zero. The reader is referred to [5, 6] for details.

Gallagher’s algorithm and those in [6] differ significantly from the other
algorithms described in this chapter, in that they require the online estimation
of marginal link delays rather than link delays. There are a number of
approaches to performing this estimation. The simplest is to assume a specific
functional form for RijðfijÞ from which R

0
ijðfijÞ can readily be calculated given an

estimate of the link flow fij . The drawback of this approach is that any formula
for R involves assumptions which may not be warranted. Another approach is
to perform nonparametric estimation of the marginal link delays. This can be

150 NETWORK ROUTING

done via finite-difference methods, as in [50], or via infinitesimal perturbation
analysis, as described in [7–9, 51]. In either case, these methods require trip time
measurements, which can be performed by mobile agents.

The finite-difference method requires an actual perturbation of the data
routing policy and produces biased estimates, whereas the method of infini-
tesimal perturbation analysis does not require an actual perturbation of the
policy and has been shown to produce asymptotically unbiased estimates.
The latter (more modern) approach is therefore preferable, although in both
cases the computational demand is significantly greater than that required to
estimate (simple) delays, or trip times. In addition, the amount of time required
to accurately estimate marginal delays is large compared with that required to
estimate delays. These are perhaps the primary reasons for which distributed
system optimal routing algorithms have not been deployed in real networks,
despite the fact that they are well researched and can be implemented within the
distance–vector framework.

Finally, we note that the exploration mechanism employed by Gallagher’s
algorithm is, in principle, off-policy, because there is a decoupling between
the mechanism for probing the marginal delays of alternative routes (via the
nearest-neighbour broadcasting of marginal delay estimates) and the mecha-
nism for the routing of data traffic. However, Gallagher’s algorithm effectively
becomes on-policy whenever perturbations of the data routing policy are per-
formed in order to estimate marginal delays. This is always the case when the
method of finite differences is employed. Furthermore, the method of infini-
tesimal perturbation analysis cannot be applied to estimate the marginal delay
of a link which carries no data traffic, and thus some small amount of data
traffic would need to be carried on all links in order to generate estimates. Thus,
the exploration mechanism of Gallagher’s (and other related system optimal
algorithms [6]) tend to be on-policy in practice.

6.4.7 Algorithms for Mobile Ad Hoc Networks

Agent routing algorithms for mobile ad hoc networks extend the fundamental
ideas already described for wired networks. In particular, for ad hoc networks,
agent-based routing algorithms are augmented with a broadcast (rather than
unicast) mechanism for monitoring the network topology and connectivity,
which itself is nonstationary due to node mobility. Thus, at each node, the
possible destination entries and nearest-neighbor entries are added and
removed as the topology and connectivity change with time.

The idea of using mobile agents for routing in mobile ad hoc networks first
appeared in [33]. More recently, a reinforcement learning-based algorithm
called SAMPLE was proposed in [35]. In SAMPLE, each node maintains a
local model of the reliability of outgoing links, which is used to drive a model-
based version of the Q-learning algorithm (see Section 6.4.2). Another prom-
ising approach is given by the algorithm AntHocNet [34], which is derived from
the original AntNet algorithm for wired networks. AntHocNet employs a

6.4 SURVEY OF AGENT-BASED ROUTING ALGORITHMS 151

combination of bootstrapping between nearest neighbors for topology dis-
covery and Monte Carlo measurement of route delays using mobile agents.
Both SAMPLE and AntHocNet were found to perform favorably compared
with ad hoc on-demand distance–vector (AODV) routing [52], a popular
algorithm for mobile ad hoc networks.

6.5 COMPARISON OF ROUTING ALGORITHMS

Table 6.1 shows a classification of agent-based routing algorithms in terms of
properties 1–4 presented in Section 6.5. This classification system provides
a useful basis from which to compare the algorithms and to highlight their
relative strengths and weaknesses.

Regarding property 1, Q-routing and Gallagher’s algorithm employ the
bootstrapping approach to delay and marginal delay measurement, respec-
tively. This is because in both algorithms each node uses mobile agents to
perform direct measurements of the delay (or marginal delay) on its immediate
outgoing links and then uses information that is cached at neighboring nodes in
order to construct an estimate of the remaining delay (or marginal delay)
associated with reaching the destination node. On the other hand, STARA,
ant-based algorithms, TPOT-RL, and OLPOMPD employ the Monte Carlo
approach, since mobile agents report direct measurements of packet trip times
over entire paths from origin to destination, rather than using delay informa-
tion cached at neighboring or intermediate nodes. With all other properties 2–4
(compared below) being equal, it is not immediately clear which of these
approaches is superior in the context of adaptive network routing, and this
remains an open question for future research.

Regarding property 2, only Q-routing is an off-policy algorithm; all of
the other algorithms are on-policy, due to some form of coupling between the
exploration mechanism and the data routing mechanism. In principle, an off-
policy exploration mechanism is preferable, as this ensures that the exploration
of alternative routes does not interfere with or adversely affect the routing of
data traffic. We note that STARA and ant-based routing algorithms, which are
both on-policy, can be easily modified to perform off-policy exploration, as will
be described in Section 6.6.

Regarding property 3, single-path routing is attractive because of its sim-
plicity, ease of implementation, and the fact that all packets traveling between a
given origin–destination node pair are routed on the same path (provided the
routing policy is not oscillatory), which is in turn desirable as this leads to the
minimum possible resequencing delays for packets arriving at the destination.
On the other hand, it is well known that adaptive shortest path routing is prone
to instability, in the form of oscillations of the routing policy, especially when
the traffic load on the network is high [1]. Indeed, when the total traffic load
placed on the network is large, it may be impossible to route all traffic over any
given single path. These considerations motivate the need for multipath routing

152 NETWORK ROUTING

algorithms, which are less likely to be unstable if properly designed and can
reduce network delays and increase throughput by splitting traffic flows over
multiple paths. In this regard, multipath routing algorithms are superior to
single-path algorithms.

Regarding property 4, of the agent-based algorithms that have the capacity
to perform multipath routing, and hence have the ability to perform load
balancing of traffic, there is no immediate and straightforward answer to the
question “which type of operating point, or optimisation goal, is best?” It may be
tempting to suggest that the system optimal routing goal of Gallagher’s and
related algorithms is superior, but it is important to consider that an optimal
routing policy can result in some traffic streams experiencing low delays while
subjecting others to very high delays. In other words, there is no guarantee of
“social welfare” for all traffic streams in this case. Also, even though all used
paths between a given origin–destination node pair have the same marginal
delay under a system optimal routing policy, they do not in general have the
same delay, and this can lead to significant packet resequencing delays at
the destination for packets belonging to the same traffic stream [1]. Perhaps the
most significant drawback of achieving a system optimum is the added
computational requirement associated with the estimation of marginal delays,
which necessarily slows down the rate of convergence and adaptation of the
algorithm.

The consideration of the actual delays incurred by users of the network
leads to the notions of user optimality and user equilibria that were discussed
in Section 6.3. We observed that the Wardrop equilibrium is the only type
of user equilibrium that is systematically attainable within the distributed
distance–vector framework of agent-based routing algorithms. Significantly, no
estimation of derivatives is necessary in order to achieve it. The Wardrop
equilibrium also has the desirable property that all packets traveling between a
given origin–destination node pair have the same expected delay. As a result,
packet resequencing delays at the destination are, on average, the smallest
possible among the algorithms that perform multipath routing. Indeed, the
authors of [19] are of the opinion that “The Wardrop equilibrium is a curious
animal, certainly deserving more attention from the telecommunications
community than what it seems to have hitherto mustered (p. 383).”

Of the algorithms that perform multipath routing, STARA, Gallagher’s and
OLPOMDP were designed using a “top-down” approach (as discussed in
Section 6.3), with the goal of Wardrop or system optimal routing. In contrast,
ant-based routing algorithms were not designed with a particular optimization
concept as their goal. The primary motivation for their development was to
harness the emergent problem-solving behaviors of ant colonies and to design
routing algorithms which could adapt rapidly in response to network changes
and perform a degree of adaptive load balancing (via proportional routing)
instead of shortest path routing. For example, in simulation experiments pre-
sented in [2], AntNet is shown to have superior performance in a nonstationary
environment compared with algorithms that are currently deployed in the

6.5 COMPARISON OF ROUTING ALGORITHMS 153

Internet, such as distributed Bellman–Ford [1] and OSPF [53] (which both
employ shortest path routing), and was also shown to have superior perfor-
mance to the Q-routing algorithm described in Section 6.4. The fact that
AntNet performs adaptive multipath routing instead of shortest path routing is
one of the primary reasons for its superior performance. An analysis of the
equilibrium properties of ant-based routing algorithms in [31, 32] suggests that,
similarly to STARA, AntNet effectively achieves “perturbed” Wardrop
equilibria. This is not surprising given that the ant-based routing algorithms
measure path delays and deviate data traffic flow from high-delay paths to low-
delay paths, much like STARA.

6.6 NEW DIRECTIONS: HYBRID AGENT-BASED ALGORITHMS

In this section, we propose two alternative approaches for the future devel-
opment of mobile agent-based routing algorithms, incorporating the strengths
of the algorithms surveyed in this chapter, as identified in Section 6.5.
Assuming that marginal delay estimates are unavailable, we propose that a
desirable hybrid of the algorithms surveyed in this chapter should

1. have the ability to perform multipath routing,

2. target the Wardrop equilibrium as its routing goal, and

3. have an off-policy exploration mechanism.

The first approach that we propose, which we call Monte Carlo Wardrop
routing (MCWR), is a hybrid of STARA and ant-based routing algorithms and
employs the Monte Carlo method for the measurement of path delays. An
implementation of MCWR first appeared in [31, 32]. The second, which we call
Wardrop Q-routing, is a hybrid of Q-routing and STARA and employs the
bootstrapping method for the measurement of path delays. A comparison of
these approaches is shown in Table 1.1.

The proposed MCWR approach uses the same update rules as STARA, but
the updates are driven by measurements performed by a separate layer of mobile
agents. In particular, the mobile agents are routed according to the same routing
policy as data packets, Ψ, except for the agent’s first hop, which is selected uni-
formly at random from the set of outgoing links as the agent’s node of origin.
Upon reaching the destination, themobile agent retraces its path and updates the
appropriate delay estimates at each node that it visited on its forward path,
according to the rule (6.15). Each update of a delay estimate triggers an update of
the set of routing probabilities, according to the rule (6.16).

The MCWR approach differs from STARA in the following ways. Explo-
ration of all possible routes is carried out by a separate layer of mobile agents,
rather than the data packets, thus borrowing from the ant-based approach (in
STARA, the forward trip time is measured using data packets, and a mobile
agent is created at the destination node for the purpose of backpropagating the

154 NETWORK ROUTING

information to the origin node). This ensures that every link continues to be
selected by agents, even if the current data routing probability for the link is set
to zero. In particular, there is no need for the ε-perturbation that is employed
by STARA [see (6.17)]. This is an important factor in the decoupling of the
exploration mechanism from the data routing mechanism and also permits
MCWR to converge to a pure rather than ε-perturbed Wardrop equilibrium.

The MCWR approach differs from ant-based routing algorithms in that the
mobile agents perform exploration exclusively when selecting their first hop and
follow the current data routing policy for all subsequent routing decisions until
the destination node is reached. As a result, unlike in ant-based algorithms, the
trip times reported by agents have the same distribution as the trip times of data
packets, and thus agent exploration does not introduce a bias in the mea-
surement of network delays. A simulation study comparing an implementation
of MCWR with ant-based routing is presented in [31, 32], which suggests that
the MCWR approach is more efficient than the ant-based approach with
respect to a number of equilibrium delay-based performance measures.

An alternative to the MCWR approach is to perform delay measurements
using the bootstrapping method, and we refer to this as Wardrop Q-routing. In
particular, instead of sending mobile agents from their node of origin all of the
way to the destination, an agent created at node i selects an outgoing link
uniformly at random, (i, j), say, and requests information from node j about the
remaining trip time to the destination node d (under the current routing policy),
and then returns to node i. Upon returning to node i, the agent performs the
update

Qij :¼ ð1� aÞQij þ aðrij þQave
j Þ ð6:28Þ

where a 2 ð0; 1� is a step size parameter, rij is the random delay incurred by the
agent in traversing the link (i, j), and

Qave
j :¼

X
l2N j

ψjlQjl ð6:29Þ

Note that Qave
j constitutes node j’s local estimate of DjðΨÞ, the average trip

time of a data packet from node j to d, under the current routing policy [see
(6.7)]. As before, each update of a delay estimate Qij ; j 2 N i, triggers an update
of the set of routing probabilities ψij; j 2 N i, according to the rule (6.16).

The update rules (6.28) and (6.29) should be compared with the Q-routing
update rule (6.12). We see that Q-routing and Wardrop Q-routing share the
bootstrapping approach, which involves the use of local estimates of trip times
maintained at the neighbor node. The difference lies in the fact that an agent in
the Q-routing algorithm requests the local minimum estimate, Qmin

j , given by
(6.13), reflecting the fact that all data traffic is routed on links with the mini-
mum associated delay estimates, that is, single-path shortest path routing. In
contrast, an agent in the Wardrop Q-routing algorithm requests the average

6.6 NEW DIRECTIONS: HYBRID AGENT-BASED ALGORITHMS 155

trip time estimate, Qave
j . The “minimization” step is then performed in small

increments by (6.16), thus allowing the algorithm to converge to a multipath
rather than single-path routing policy.

Finally, if every node periodically probes every outgoing link in the manner
described above, then this guarantees that every alternative path is explored,
and there is no need for the ε-perturbation introduced by the exploration
mechanism (6.17) that is employed by STARA. Importantly, the use of a
separate agent layer, where agents perform exploration only on their first hop,
guarantees that the exploration mechanism is decoupled from the data traffic
routing mechanism and is thus off-policy.

As we shall discuss in Section 6.7, it remains an open problem to compare
the performance of the bootstrapping and Monte Carlo methods for delay
measurement. We believe that the MCWR and Wardrop Q-routing approaches
would constitute appropriate vehicles for such a study.

6.7 CONCLUSIONS

We have surveyed and compared a number of agent-based routing algorithms
within a unified framework. In particular, we have brought together ideas from
“traditional” nonlinear optimization and game theory and more recent ideas
from the fields of multiagent systems, reinforcement learning, and ant-based
routing algorithms, and we have shown how these ideas overlap and interrelate
within the specific setting of network routing in packet-switched networks.

One of our primary aims has been to provide a “roadmap” and platform for
future research and comparison of mobile agent-based routing algorithms. In
particular, we have identified the following aspects as key defining features: the
mechanism for delay measurement and information-passing between nodes,
the exploration mechanism, and the type of routing goal sought. These con-
siderations led to our proposal of two alternative hybrid mobile agent algo-
rithms, which combine several of their strengths, as outlined in Section 6.6.

A fertile area for further investigation is the investigation of bootstrapping
versus Monte Carlo delay estimation. The question of which of these
approaches results in the best performance, when all other factors such as load
balancing and exploration are equal, remains open. A number of empirical
studies have compared these approaches in the context of solving Markov
decision problems (see [54] for an overview and references), but neither has
been shown to possess a universal advantage for all situations. An interesting
avenue for further research would be to establish if and when one of these
approaches yields superior performance in the context of adaptive network
routing. Indeed, the MCWR and Wardrop Q-routing approaches presented in
Section 6.6 provide a vehicle for such a study, although we note that care must
be taken in the selection of a performance measure which leads to a fair
comparison. Following the approach employed in [25, 34], a natural measure
would be the rate of convergence (speed of adaptation) to a desired operating

156 NETWORK ROUTING

point achieved with a given “overhead” cost, measured in total mobile agent
hops.

We conclude by noting that the trade-off between adaptive behavior and
stability, first identified in early adaptive algorithms for the ARPANET,
remains a pertinent issue for mobile agent routing systems and is notoriously
difficult to study within a theoretical domain. While reliance on ad hoc methods
for tuning algorithm parameters via simulation remains a common and useful
practice, there exists a need for improved theoretical support for analysis of the
trade-offs between timely adaptive behavior and stability.

ACKNOWLEDGMENTS

Andre Costa would like to acknowledge the support of the Australian Research
Council Centre of Excellence for Mathematics and Statistics of Complex
Systems. Nigel Bean would like to acknowledge the support of the Australian
Research Council through Discovery Project DP0557066.

REFERENCES

1. D.BertsekasandJ.Gallager,DataNetworks, Prentice-Hall,EnglewoodCliffs,NJ, 1992.

2. G. Di Caro and M. Dorigo, AntNet: Distributed stigmergetic control for commu-

nications networks, J. Res. 9:317–365, 1998.

3. G. A. Di Caro and M. Dorigo, Two ant colony algorithms for best-effort routing in

datagram networks, in Proceedings of PDCS’98—10th International Conference on

Parallel and Distributed Computing and Systems, Las Vegas, Nevada, NV, Oct. 28–31,

1998.

4. D. Bertsekas, Dynamic behavior of shortest path routing algorithms for communi-

cation networks, IEEE Trans. Automatic Control, 27:60–74, 1982.

5. R. Gallagher, A minimum delay routing algorithm using distributed computation,

IEEE Trans. Commun., 25:73–85, 1979.

6. D. Bertsekas, E. Gafni, and R. Gallagher, Second derivative algorithms

for minimum delay distributed routing in networks, IEEE Trans. Commun.,

32:911–919, 1984.

7. J. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation,

and Control, Wiley, Hoboken, NJ, 2003.

8. H. Kushner, Stochastic Approximation Algorithms and Applications, Springer, New

York, 1997.

9. F. J. Vazquez-Abad, Strong points of weak convergence: A study using RPA

gradient estimation for automatic learning, Automatica, 35:1255–1274, 1999.

10. S. Appleby and S. Steward, Mobile software agents for control in telecommunica-

tions networks, BT Technol. J., 12(2):104–113, 1994.

11. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press,

Cambridge, MA, 1998.

REFERENCES 157

12. D. Kudenko, D. Kazakov, and E. Alonso, Adaptive Agents and Multi-Agent

Systems II, Lecture Notes in Artificial Intelligence, Vol. 3394, Springer, Berlin,

Heidelberg, 2005.

13. C. Watkins and P. Dayan, Q-learning, Machine Learning, 8:279–292, 1992.

14. J. A. Boyan and M. L. Littman, Packet routing in dynamically changing networks:

A reinforcement learning approach, in J.D. Cowan, G. Tesauro, and J. Alspector

(Eds.), Advances in Neural Information Processing Systems, Vol. 6, Morgan

Kaufmann, San Francisco, CA, 1993, pp. 671–678.

15. S. P. M. Choi and D.-Y. Yeung, Predictive Q-routing: A memory-based reinforce-

ment learning approach to adaptive traffic control, in D. S. Touretzky, M. C.

Mozer, and M. E. Hasselmo (Eds.), Advances in Neural Information Processing

Systems, Vol. 8, MIT Press, Cambridge, MA, 1996, pp. 945–951.

16. S. Kumar and R. Miikkulainen, Confidence-based Q-routing: An on-line adaptive

network routing algorithm, in C. H. Dagli, M. Akay, O. Ersoy, B. R. Fernandez,

and A. Smith, (Eds.), Proceedings of Artificial Neural Networks in Engineering,

Smart Engineering Systems: Neural Networks, Fuzzy Logic, Data Mining, and

Evolutionary Programming, 8, 1998.

17. S. Kumar, Confidence based dual reinforcement Q-routing: An on-line adaptive

network routing algorithm, Technical Report AI98–267, 1998, p. 1. Available at

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1555.

18. P. Gupta and P. R. Kumar, A system and traffic dependent adaptive routing

algorithm for ad hoc networks, in Proceedings of the 36th IEEE Conference on

Decision and Control, San Diego, Dec. 1997, pp. 2375–2380.

19. V. S. Borkar and P. R. Kumar, Dynamic Cesaro-Wardrop equilibration in net-

works, IEEE Trans. Automatic Control, 48(3):382–396, 2003.

20. P. Stone, TPOT-RL applied to network routing, in Proceedings of the 17th

International Conference on Machine Learning, 2000, pp. 935–942.

21. N. Tao, J. Baxter, and L. Weaver, A multi-agent policy-gradient approach to

network routing, in Proceedings of the 18th International Conference on Machine

Learning, 2001, pp. 553–560.

22. M. Dorigo, V. Maniezzo, and A. Colorni, The Ant System: Optimization by a

colony of cooperating agents, IEEE Trans. Syst. Man Cybernet., 26:29–41, 1996.

23. M.Dorigo andT. Stutzle,AntColonyOptimization,MITPress, Cambridge,MA, 2004.

24. G. Di Caro, Ant colony optimisation and its application to adaptive routing in

telecommunications networks, Ph.D. thesis, Faculté des Sciences Appliquées,

Université Libre de Bruxelles, Belgium, 2004.

25. K. A. Amin and A. R. Mikler, Agent-based distance vector routing: A resource

efficient and scalable approach to routing in large communications networks,

J. Syst. Software, 71:215–227, 2004.

26. R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz, Ant-based load

balancing in telecommunications networks, Adaptive Behav., 5:169–207, 1996.

27. E. Bonebeau, F. Henaux, S. Guerin, D. Snyers, P. Kuntz, and G. Theraulaz,

Routing in telecommunications networks with “smart” ant-like agents, in Proceed-

ings of IATA ’98, Second Int. Workshop on Intelligent Agents for Telecommunication

Applications, Lecture Notes in Artificial Intelligence, Vol. 1437, Springer, Berlin,

Heidelberg, 1998.

158 NETWORK ROUTING

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1555

28. M. Huesse, D. Snyers, S. Guerin, and P. Kuntz, Adaptive agent-driven load

balancing in communication networks, Adv. Complex Syst., 1:237–254, 1998.

29. T. White, B. Pagurek, and F. Oppacher, Connection management using adaptive

mobile agents, in Proceedings of International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA’98), CSREA Press, 12–16 July,

1998, pp. 802–809.

30. D. Subramanian, P. Druschel, and J. Chen, Ants and reinforcement learning: A case

study in routing in dynamic networks, in Proceedings of IJCAI-97, International

Joint Conference on Artificial Intelligence, Morgan Kaufmann, 1997, pp. 832–839.

31. A. Costa, Analytic modelling of agent-based network routing algorithms, Ph.D.

thesis, School of Applied Mathematics, University of Adelaide, Adelaide, 2003.

32. N. Bean and A. Costa, An analytic modelling approach for network routing

algorithms that use “ant-like” mobile agents, Comput. Networks, 49:243–268, 2005.

33. N.Minar,K.H.Kramer, andP.Maes,Cooperatingmobile agents for dynamicnetwork

routing, in A. L. G. Hayzelden and J. Bigham (Eds.), Software Agents for Future

Communication Systems, Springer, Heidelberg, Germany, 1999, pp. 287–304.

34. F. Ducatelle, G. Di Caro, and L. M. Gambardella, Using ant agents to combine

reactive and proactive strategies for routing in mobile ad-hoc networks, Int.

J. Computa. Intell. Appl., 5(2):169–184, 2005.

35. J. Dowling, E. Curran, R. Cunningham, and V. Cahill, Using feedback in

collaborative reinforcement learning to adaptively optimize MANET routing,

IEEE Trans. Syst. Man Cybernet. Part A: Syst. Humans, 35:360–372, 2005.

36. C. Aurrecoechea, A. Campbell, and L. Hauw, A survey of QoS architectures,

Multimedia Syst., 6:138–151, 1998.

37. L. Leon-Garcia and I. Widjaja, Communication Networks: Fundamental Concepts

and Key Architectures, McGraw-Hill, New York, 2004.

38. L. Kleinrock, Queueing Systems, Vol. 1, Wiley, New York, 1975.

39. M. Osborne and A. Rubenstein, A Course in Game Theory, MIT Press, Cambridge,

MA, 1994.

40. J. G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civil

Eng. Part II, 1:325–362, 1952.

41. Y. Korilis and A. Lazar, On the existence of equilibria in noncooperative optimal

flow control, J. ACM, 42(3):584–613, 1995.

42. A. Orda, R. Rom, and N. Shimkin, Competitive routing in multi-user communica-

tions networks, IEEE/ACM Trans. Networking, 1:510–521, 1993.

43. A. Haurie and P. Marcotte, On the relationship between Nash-Cournot and

Wardrop equilibria, Networks, 15:295–308, 1985.

44. D. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1999.

45. V. R. Konda and V. S. Borkar, Actor-critic-type learning algorithms for Markov

decision processes, SIAM J. Control Optimization, 38:94–123, 1999.

46. A. Tanenbaum, Computer Networks, Prentice-Hall International, Hemel Hemp-

stead, 1988.

47. J. Sum, H. Shen, C. Leung, and G. Young, Analysis on a mobile agent-based

algorithm for network routing and management, IEEE Trans. Parallel Distrib.

Syst., 14(3):193–202, 2003.

REFERENCES 159

48. G. Takahara and C. Leith, A control framework for ant-based routing algorithms,

in Proceedings of IEEE Congress on Evolutionary Computation, Vol. 3, CEC’03,

2003, pp. 1788–1795.

49. K. M. Sim and W. H. Sun, Ant colony optimisation for routing and load-balancing:

Survey and new directions, IEEE Trans. Syst. Man Cybernet. Part A: Syst. Humans,

33:560–573, 2003.

50. A. Segall, The modeling of adaptive routing in data-communication networks,

IEEE Trans. Commun., 25:85–98, 1977.

51. C. Cassandras, V. Abidi, and D. Towsley, Distributed routing with on-line marginal

delay estimation, IEEE Trans. Commun., 38:348–359, 1990.

52. C. E. Perkins and E. M. Royer, Ad hoc on-demand distance vector routing, in

Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applica-

tions, 1999, pp. 90–100.

53. S. Thomas, IP Switching and Routing Essentials, Wiley, Hoboken, NJ, 2002.

54. D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific,

Belmont, MA, 1996.

160 NETWORK ROUTING

7 Resource and Service Discovery

PAOLO BELLAVISTA, ANTONIO CORRADI,
and CARLO GIANNELLI

DEIS—University of Bologna, Bologna, Italy

7.1 INTRODUCTION

The dynamic discovery of resource and service components at run time is a
crucial functionality in any execution environment where it is not feasible to
assume that (i) all interacting entities have full static knowledge about each
other and (ii) this mutual knowledge does not change over time. Therefore,
given that almost all modern execution environments permit some forms of
dynamicity (change in the set/characteristics of available resources and service
components, client mobility, resource/service mobility, etc.), discovery has
become a necessary element of any distributed systems nowadays.

The discovery process consists of several substeps, as extensively described in
Section 7.2: Resources/service components willing to be discovered should
advertise their availability; clients should be able to perform queries on the set
of resources/service components available in the client discovery scope; once
retrieved, that discovered entity should be bound to the client for the whole
duration of the interaction by possibly maintaining the session state in the case
of multiple successive client requests.

The support of all these steps, available in any traditional discovery solution,
is significantly complicated when dealing with mobile computing environments.
Mobile clients can change their discovery scope due to their movements while
either involved in a discovery query or accessing discovered resources/service
components. Discoverable entities can even migrate due to server host mobility,
more and more common in peer-to-peer networks. In response to client
mobility and changed patterns of request traffic, it could be interesting to have
the possibility to either duplicate or move discoverable entities as well as
maintain colocality with their currently served clients [1]. The code and state
mobility features typical of the mobile agent (MA) programming paradigm can

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

161

well fit and further improve these mobility scenarios: On the one hand, mobile
clients can exploit MA-based mediators that follow them at run time to
transparently maintain/requalify the bindings to discovered entities; on the
other hand, MAs could represent the primary enabling technology to develop
and deploy discoverable entities that can even move during service provisioning
by preserving their reached execution state.

After having introduced the main concepts related to discovery in mobile
computing scenarios, the chapter aims at overviewing the most important
discovery solutions in the literature by sketching their main characteristics
according to an original taxonomy. The proposed classification is organized in
three different and growing degrees of mobility:

i. Low-mobility solutions, where only discovery clients can sporadically
move at run time, even after having retrieved a discoverable entity and
before having terminated using it

ii. Medium-mobility solutions, where the frequency of client movements
significantly increases and discoverable resources (files, cached data,
devices, etc.) can change their location at run time

iii. High-mobility solutions, where discoverable service components can
migrate at run time together with their code and their reached execution
state because they are implemented as MAs.

The state of the art will also permit us to identify some trends that are
recently emerging as solution guidelines for resource/service discovery in highly
mobile computing scenarios. In particular, we claim the suitability of middle-
ware-level solutions based on the exploitation of possibly mobile mediators,
fully aware of current location and context information about served clients
and discoverable entities. These mediators are in charge of transparently
managing the bindings to discovered entities independently of the various
forms of mobility that clients, resources, and service components may exhibit.

The remainder of the chapter is organized as follows. Section 7.2 defines the
terminology and primary subprocesses involved in resource/service discovery.
Section 7.3 presents our original taxonomy and uses it to classify the main
discovery research activities in the literature. Section 7.4 identifies the most
relevant solution guidelines recently emerging, while hot topics for current
discovery research and concluding remarks end the chapter.

7.2 MOBILITY AND RESOURCE/SERVICE DISCOVERY

Over the past few years resource/service discovery has been the subject of active
research and development efforts in both academia and industry; the primary
goal was facilitating dynamic interworking among clients and dynamically
retrieved entities with minimal administration intervention. Nowadays, several
discovery suites are available, targeted at different computing environments

162 RESOURCE AND SERVICE DISCOVERY

and exhibiting different features [2]. The aim of this section is first to define the
characteristics and terminology of the different tasks involved in the discovery
process and then to show how mobile code programming paradigms, especially
MAs, can affect the design and implementation of these tasks.

7.2.1 Definitions and Concepts

The discovery process involves several entities. Discovery clients are the active
entities that usually start the process by requesting the list of available dis-
coverable items; in several discovery solutions, this list only includes the items
that respect the criteria specified at request time. Discoverable entities are
usually distinguished into resources, such as printers, storage devices, network
access points, and data files, and service components, which offer logical services
by allowing clients to invoke code execution and returning service results. In
contrast to resources, discoverable service components can maintain their
reached execution state (session), possibly to exhibit differentiated behavior
over time, also in response to the same service requests.

Any discovery solution has to define how discoverable entities should reg-
ister and provide the information needed to be retrieved (naming and descrip-
tion). Typically, discovery systems impose unique identifiers for registered
discovered entities. In open and dynamic scenarios, it is usually unfeasible to
assume that clients know the identifiers of needed resource/service components.
Therefore, client retrieval requests are typically based on some forms of
description of the searched entity. Most discovery solutions (see the following
section) exploit very simple pattern-matching mechanisms based on entity
names. Some state-of-the-art proposals have recently started to extend this
approach by permitting the description of discoverable entities via their
interfaces and/or name�attribute pairs.

Once it is decided how to identify and describe discoverable entities, any
discovery solution has to provide a registration/query service. To support
service registration, different options are available. Nonscalable solutions
suitable for small-scale deployment environments with limited dynamicity
exploit broadcast-based announcement of available entities; announcements
can be either clientdriven (in response to a new client broadcast message with a
discovery query) or resourcedriven (any time a discoverable entity enters a new
group of potential clients). Most interesting registration solutions adopt cen-
tralized or distributed registries to maintain names/interfaces/attributes of
discoverable entities. Distributed registries can work in an isolated way by
maintaining only their nonreplicated partition of registrations or can coordi-
nate to maintain a globally consistent, partially replicated, and partially par-
titioned registry space. Coordinated registries can be organized in a flat way,
hierarchically, or in a hybrid intermediate way, as more generally in many
distributed naming servers.

To support resource/service component retrieval, some discovery solutions
require clients to specify the name, interface, or attribute values for searched

7.2 MOBILITY AND RESOURCE/SERVICE DISCOVERY 163

discoverable entities. Most recent proposals also permit us to specify search
patterns: Discoverable entity selection is based on a syntactic comparison for
compatibility between the specified pattern and the registered names/interfaces/
attribute values.

A more relevant aspect of discovery solutions is how they determine
the search space scope for client discovery queries, that is, the set of discov-
erable entities that should be searched in response to a discovery query from
one client. First we need to consider the difference between local and global
scopes. The first case includes discovery solutions that decide that any client
could be interested only in discoverable entities which are currently located
within the client locality (in the same wired network locality, at a single-hop
distance in wireless ad hoc networks, in the same administrative domain, etc.).
In the second case, in contrast, any registered entity can be discovered by any
client, thus complicating scalability and coordination over geographical-wide
deployments. A few recent and very interesting research efforts are providing
more advanced forms of discovery scope where the set of searchable resources
depends not only on client position but also on its preferences, application-level
requirements, and history of previous interactions: The ultimate goal is to
transparently provide clients with personalized and context-dependent dis-
covery [3].

Finally, a very relevant aspect of advanced mobility-enabled discovery
solutions is how they address the issue of managing the bindings between cli-
ents and discovered entities in the case of mutual mobility after discovery-based
retrieval and before termination of resource/service access. Traditional dis-
covery solutions do not confront this issue: If a binding is broken at service
provisioning time, the client is notified about it and has the full duty of man-
aging the event, possibly by redoing the query and restarting the resource/
service request on the newly retrieved entity instance. Changing an entity
instance with an equivalent new one is easily possible only if the offered service
is stateless. Recently, some discovery supports have started to investigate how
to provide mechanisms and tools for automatically requalifying broken bind-
ings, with no impact on the client application implementation. Those solutions
tend to provide differentiated binding strategies that automatically rebuild
links to moved entities, or requalify bindings to novel equivalent discoverable
instances, or even move/duplicate resources and service components to main-
tain the search scope invariant. As better detailed in Section 7.3, these solutions
can extensively benefit from mobile code technologies and especially from
MA-based support implementation.

7.2.2 Suitability of Mobile Code Technologies for Discovery Solutions

As observed for the above case of rebinding support and stated in the intro-
duction, mobility affects the discovery process and forces us to consider novel
mechanisms, tools, and strategies to dynamically adapt several discovery steps
to react to different forms of mobility exhibited by different discovery entities.

164 RESOURCE AND SERVICE DISCOVERY

In all these cases, mobile code programming paradigms, in particular the MA
technology, play the twofold role of exacerbating the dynamicity of clients,
resources, and service components on the one hand and representing a
very suitable implementation solution for mobility-enabled discovery on the
other hand.

By exploiting the terms defined in the introduction, in low-mobility
deployment scenarios, clients can move at run time (typically in an unpre-
dictable way), that is, during a discovery query or after binding to discovered
entities but before ending to use them. In most discovery solutions, client
movements may produce changes in the client discovery scope and bound
entities could become unreachable. Traditional discovery approaches do not
address those issues: Mobile clients have visibility of failures in their discovery
queries or are unable to access the retrieved entities; they are in charge of
explicitly restarting the discovery process; and the management of discovery-
related client mobility should be directly embedded into the client application
logic code in a way that is not transparent. As a consequence, in addition to
affecting the development of client application logic, they tend to support only
execution environments where node movements are relatively rare events: If
mobility frequency increases too much, these traditional discovery solutions are
not able to correctly propagate updates and the client-visible discovery scopes
may become inconsistent.

Novel discovery solutions tend to provide some forms of middleware sup-
port to low-mobility problems: The primary solution guideline is of assisting
mobile clients with middleware-level mediators in charge of transparently
refreshing discovery scopes and of requalifying broken bindings in response to
client mobility. Those mediators sometimes execute directly on the same hosts
of assisted clients, thus ensuring mediator�client colocality for the whole dis-
covery sessions notwithstanding client movements.

However, it is more frequent the case of discovery clients running on
resource-limited devices with strict constraints on available memory, battery
power, connectivity bandwidth, and connectivity time (often simply because of
high costs of wireless connectivity). In this case, it can be extremely useful to
deploy mediators on fixed network hosts in the same current locality of the
assisted clients: Those mediators could autonomously work on behalf of their
clients and without consuming their limited resources (by also permitting
temporary disconnections to reduce connectivity time). However, mediators
running in the fixed network can lose colocality with their clients depending on
run time client movements. For this reason, mobile code programming para-
digms are extremely suitable: They are necessary to enable the dynamic
movement of discovery mediators at run time to follow client mobility. If
mediators have to preserve the reached execution state when migrating, the MA
technology has to be exploited.

Medium-mobility deployment scenarios further complicate the case above
by allowing higher frequency in client movements and resource mobility at run
time. Therefore, in this situation, not only can the set of resources in the

7.2 MOBILITY AND RESOURCE/SERVICE DISCOVERY 165

discovery scope rapidly vary, for example, due to resource frequently entering/
exiting an administrative domain, but also bindings can break because of
resource change of allocation. These problems are counterbalanced by the
significant advantage of having the possibility to move resources at run time
depending on dynamic factors, such as change of traffic and/or of traffic dis-
tribution in the served localities. Let us observe that resource replication and
deployment could be considered a particular case of resource movement, where
the old resource instance maintains its original location while the new copy
moves.

All the problems of refreshing discovery scopes and requalifying already
established bindings to resources remain the same as described for low
mobility. Therefore, code mobility technologies have the same crucial role of
enabling implementation solution. In addition, mobile code can be extremely
suitable for moving/replicating resources that are associated with server-side
code to access there. For instance, when moving a printer from one network
locality to another, the printer spooler demon should be moved too and thus
requires migrating its code at run time. The spooler acts as a server-side
mediator to access the printer resource and benefits from continuously main-
taining colocation with the managed resource, similarly to the dual case of
discovery client mediators.

In the high-mobility scenario, the complexity of managing dynamic changes
in both discovery scope and established bindings is further exacerbated. In
particular, here also service components (together with their code and reached
execution state) could be interested in moving during service provisioning,
basically for the same reasons resources benefit from mobility, for example, to
dynamically balance workload among localities, to follow client group move-
ments, and to increase/decrease replication degree depending on request traffic.
Note that this is a logical form of mobility which could be present also when
physical nodes are not mobile and service components change their execution
environments by migrating from one host to another one, as in the case of MA-
based service components.

On the one hand, the additional complexity of managing discovery in high-
mobility scenarios stems from the fact that service components usually are
interested in migrating by preserving their session state. That implies that
discovery supports should not only provide mechanisms to move the reached
execution state but also distinguish between stateless interactions (for instance,
to requalify client bindings to new, just started, instances of service compo-
nents) and stateful interactions (where clients should maintain bindings to
exactly the same service instances independently of mutual movements). On the
other hand, service components are often clients of other service components:
Migrating a component could affect the network of bindings established not
only with its clients but also with other service components of which it is
currently a client. Advanced discovery proposals can benefit from MA
solutions to support high-mobility scenarios simply because exactly the
same problem had to be faced in the MA research and in the development of

166 RESOURCE AND SERVICE DISCOVERY

state-of-the-art MA systems: A mobile agent is a service component, can move
at run time by carrying its session state, and has the problem of reestablishing
its bindings to clients and resources/service components when resuming its
execution after migration.

In short, mobility-enabled discovery solutions could significantly profit from
both mobile code enabling technologies and the results obtained from research
about code mobility and MAs, as pointed out by the examples of the following
section.

7.3 RELATED WORK

This section tries to classify all the relevant discovery protocols/systems pro-
posed in the literature by taking into consideration their capability to react to
discovery entity movements by either adapting service discovery scope or per-
forming automatic service rebinding or both. The presentation of existing
solutions is organized according to our original taxonomy that distinguishes low-,
medium-, and high-mobility deployment environments for discovery solutions.

7.3.1 Low-Mobility Discovery Solutions

Traditional and widely accepted service discovery protocols, such as Jini [4],
Service Location Protocol (SLP) [5], Universal Plug and Play (UPnP) Simple
Service Discovery Protocol (SSDP) [6], Bluetooth Service Discovery Protocol
(SDP) [7], and Salutation [8], address the basic issues related to the dynamic
discovery of resources and service components. Themain objective is to advertise
the availability of discoverable entities to mobile devices approaching a new
location in order to increase client capabilities with resources/services usually
deployed on fixed nearby nodes. These solutions have been designed with a
nomadic mobility deployment scenario in mind: Mobile clients are expected to
request that locally available entities not to move while accessing them.

Jini, SLP, and SSDP mainly focus on discovery in infrastructure-based and
administrator-controlled networks, where services are typically deployed on the
fixed-network infrastructure and wired/wireless nodes play the role of clients.
All these solutions model the different entity roles defined in the previous
section and provide repositories for resource/service registration and lookup. In
particular, Jini exploits Lookup servers to store information about the avail-
able set of discoverable entities and provides client-sided Java proxies to invoke
services. SLP clients (called user agents) look up available services (called
service agents) either by multicasting requests and waiting for unicast responses
from matching services or by contacting a service repository (called directory
agent) to get the currently available service set. SSDP discoverable entities
announce their presence with an “alive” message at startup; SSDP clients look
up available services by broadcasting User Datagram Protocol (UDP)
messages in their local network.

7.3 RELATED WORK 167

Bluetooth SDP and Salutation do not strongly differentiate roles among
discovery entities. Each node is always able to both request and offer resources/
services in a peer-to-peer fashion. In particular, Bluetooth SDP well fits peer-
based ad hoc networks as its primary deployment scenario. The Salutation
protocol is mainly based on Salutation managers, perceived from clients
as local service brokers connected with other remote Salutation managers.
Clients request for and offer resources/services to their local managers,
which eventually contact other managers to widen the discovery search.
Managers exploit underlying Salutation transport managers to retrieve nearby
managers via multicasting, static configuration, or interrogation of a central-
ized directory.

Regardless of their specific characteristics, the aforementioned widespread
protocols do not address the specific issues of performing discovery in a highly
dynamic mobile environment where new resources/services become available
and old ones disappear frequently.

On the one hand, discovery protocols based on entity description reposi-
tories (e.g., Jini and, optionally, Salutation and SLP) assume rather static
discovery management operations and do not fit well highly mobile scenarios
with frequent update procedures, which tend to be expensive and resource
consuming. In addition, let us observe that Jini is the only discovery solution
that supports a form of lease, that is, any Jini lookup server entry has an
expiration time after which the corresponding information is automatically
discarded. The other discovery solutions do not exploit any lease mechanism:
Resources/services should be explicitly removed from registries, thus increasing
the possibility of inconsistent registry entries whenever a discoverable entity
become abruptly unreachable due to, for example, the crash of the hosting node
or its movement outside the wireless client coverage range in single-hop com-
munication environments.

On the other hand, other service discovery protocols (Bluetooth SDP, SSDP,
and, optionally, SLP and Salutation) perform discoverable entity advertise-
ment in a client-driven pull fashion by multicasting or broadcasting client
requests. This generates heavy-bandwidth consumption and long discovery
delay times, which are not appropriate for a highly dynamic mobile environ-
ment. Note that SLP and Salutation can be optionally based on a centralized
registry for discoverable entity descriptions.

It is important to stress that, although Bluetooth SDP and Salutation have
also been designed for ad hoc deployment scenarios, they do not fit well highly
dynamic execution environments. In fact, both Bluetooth devices and Saluta-
tion managers retrieve nearby nodes and hosted resources/services either in a
costly manner by multi-/broadcasting client requests or in a very static way by
exploiting configuration settings or a single centralized directory.

Most important, all these low-mobility discovery protocols do not provide
any rebinding mechanism for clients to automatically and transparently switch
among equivalent resources/service components. Rebinding mechanisms are
crucial in dynamic environments where the available resource/service set

168 RESOURCE AND SERVICE DISCOVERY

continuously changes and it is necessary to support medium- and high-mobility
deployment scenarios.

For a more detailed and general-purpose description of widely diffused low-
mobility discovery solutions, refer to [2, 9], where they are classified according
to an alternative, more traditional taxonomy not based on mobility
characteristics.

7.3.2 Medium-Mobility Discovery Solutions

The widespread diffusion of mobile devices has provided new challenging
scenarios where devices freely move and exploit wireless technologies for
mutual interaction either with the traditional network infrastructure via wire-
less access points (infrastructure-based wireless Internet) or in a completely
peer-to-peer collaboration mode with other wireless nodes (mobile ad hoc
networks). Mobile devices move while taking advantage of dynamically dis-
covered entities and while offering their resources. Therefore, possibly frequent
device movements generate resource movements too, and the traditional dis-
covery solutions sketched in the previous section cannot apply to this highly
dynamic scenario.

First,mediummobilitymaycause abrupt variations indiscovery scopes, even if
mobile clients do notmove.On the one hand, it is impossible to support discovery
in a static manner merely exploiting resource/service registries since they become
inconsistent quickly. On the other hand, the needed frequent broadcasting
requests would waste the often limited wireless bandwidth available. Thus, the
main guideline is to provide discovery protocols able to provide a suitable trade-
off between discovery scope update costs and consistency. For example, a com-
monly adopted solution principle is to maintain the set of currently discoverable
resources/services as a distributed soft state located at discovery clients:
Announcements are exploited to specify not only a resource/service description
but also an announcement lease interval; clients autonomously consider their
locally stored discovery entries valid until their lease expires.

In addition, clients and resource movements claim for frequent rebinding
management. Discovery solutions should provide mechanisms for the auto-
matic update of resource/service references, for instance, based on service type
to rebind to a functionally equivalent laser printer in the current client locality
when the client moves outside its usual office locality, including its usual own
printer. Moreover, automatic rebinding must be triggered not only by resource/
service availability but also by considering the currently applicable context (see
Section 7.4.3), for example, by preferring a discoverable entity because it better
fits user preferences and/or application-level quality requirements.

In contrast to the solutions in the previous section, the discovery approaches
sketched in the following propose mechanisms to (i) efficiently announce,
discover, and request for discoverable entities when both clients and resources
move and (ii) automatically rebind to new equivalent entities in response to
broken binding.

7.3 RELATED WORK 169

DEAPspace aims at providing a discovery protocol for wireless, mobile,
adhoc, single-hop networks able to maximize the diffusion of information
about available resources/services among close mobile clients [10]. There is no
centralized repository; the efficient dissemination of discovery registries is
obtained by forcing any participating node to periodically broadcast not only
the list of local resources/services it offers but also the lists of its recently nearby
devices (diffusion of recent worldview). To maximize knowledge sharing, one
node broadcasts its lists more frequently if it detects that the worldview of
one nearby device lacks at least one of the entities it offers or when the leases
of some entries are going to expire.

To increase the rapidity of discoverable entity information dissemination, it
could be interesting to forward resource/service announcements/queries not only
to neighbors but also along multihop paths. Konark is similar to DEAPspace
but, instead of locally broadcasting the entire worldview each time, it sends only
information missing at the neighbors [11]. Moreover, Konark spreads discovery
registries by exploitingmultihop adhoc communications. In addition, it provides
discovery clients implementing the tiny SDP and resources running aHyper Text
Transfer Protocol (HTTP) server to answer to binding requests.

Rubi has the specific primary goal of addressing registry dissemination in a
mobility-enabled execution environment [12]. Rubi distinguishes different
classes of mobility frequencies. In the case of frequent client/resource mobility,
Rubi exploits a reactive algorithm to reduce updated message traffic: Each
node performs lookup in a peer-to-peer fashion by individually caching the
received registry information, similarly to DEAPspace and Konark. In the case
of rare client/resource movements, Rubi exploits a proactive algorithm to keep
disseminated information probabilistically up to date by delegating to relays
the duty of storing the most updated discoverable entity descriptions; Rubi
relays work similarly to directory servers.

Allia [13] is a multihop discovery framework that aims at performing dis-
semination and caching of discoverable entity descriptions, like Konark and
Rubi. Any Allia mobile device advertises its offered services to neighbors. The
main original aspect is that Allia is policybased; that is, it exploits high-level
rules, modifiable at run time, to manage service information. In particular,
when a node receives a new entity description, it exploits its locally enforced
policies to decide to either forward, stop, or discard it.

In the case of medium-mobility deployment scenarios, it is crucial to increase
discovery efficiency not only via effective mechanisms for registry dissemina-
tion but also with efficient solutions for propagating discovery queries and for
establishing client-to-resource bindings. Lanes proposes a two-dimensional
overlay structure that exploits an axis for registry dissemination and another
different axis for distributing search requests [14]. The main idea is to differ-
entiate paths and strategies for announcement and request messages: Since
resource/service announcements have usually long-term effects, they should
benefit from proactive propagation; on the contrary, given that a discovery
query is typically a one-time action, a reactive anycast communication should

170 RESOURCE AND SERVICE DISCOVERY

be more appropriate. By exploiting its overlay network, Lanes proactively
forwards announcements to nodes along the same line, while it reactively
propagates discovery requests by anycasting nearby lines and limiting the
search scope by exploiting resource/service description in the query.

Group-based service discovery (GSD) performs group management in ad
hoc networks and exploits groups to efficiently perform discovery requests [15].
In particular, (i) GSD operates a limited advertising of resources/service
components by propagating announcements for a given number of hops; (ii) it
dynamically caches advertisements and information about current group
compositions; and (iii) it efficiently performs discovery requests by exploiting a
selective group-based request forwarding. Moreover, GSD resource/service
description is based on the Ontology Web Language (OWL), an extensible and
semantic-based description language that can help in matching discovery
requests/offers based on semantics and not only on syntactic comparison
between names, interfaces, and attributes.

The other crucial point in medium-mobility deployment scenarios is the
support to efficient rebinding in response to unpredictable and frequent
changes in the discovery search scope. The computer-aided design package
Q-CAD proposes a rebinding mechanism specifically designed for pervasive
environments [16]. Q-CAD first looks for resources that satisfy client require-
ments included in the discovery query; if several resources/service components
are in the discovery scope and are compatible with the requirements,
Q-CAD automatically selects the one maximizing a utility function that deter-
mines the applicable quality metrics. Q-CAD can answer discovery requests
either reactively or proactively: In the first case, Q-CAD reacts to explicit client
requests for (re)binding; in the second mode, Q-CAD permits us to specify
which context changes trigger (re)binding operations.

While other discovery proposals are explicitly targeted to ad hoc networks,
service-oriented network sockets (SoNSs) transparently support connection-
oriented semantics in infrastructure-based wireless networks [17]. The main
idea is to maintain client-to-resource bindings independently of entity move-
ments during a service session by automatically requalifying bindings according
to the strategies specified in high-level policies.

Tripathi et al. [18] focuse on adapting rebinding decisions to different user
preferences, service characteristics and system settings. In particular, when a
client moves among different network localities, to perform rebinding Tripathi
et al. [18] take into account user role, user privacy concerns, and access
authorizations based on context. Bindings could be either permanent or context
based. In the case of permanent bindings, the discovery support tries to
maintain them via multihop paths even if client and discovered entities are no
longer in the same locality (remote reference); context-based ones use implicit
and automatic rebinding triggered by context changes. The work of Tripathi
et al. [18] is implemented in terms of MAs: MAs, running in the fixed network
infrastructure, perform context monitoring and resource/service rebinding to
preserve the limited resources of mobile client devices. Let us stress that [18]

7.3 RELATED WORK 171

exploits MAs to assist client discovery operations and not to actively migrate
resources and service components, as the advanced discovery proposals pre-
sented in the next section do.

Finally, the Atlas discovery solution is relevant because it introduces the
policy-based exploitation of location awareness in rebinding mechanisms [19].
Atlas adapters wrap each discoverable entity and exploit failure determination
mechanisms to notify relevant context modifications, for example, a client or
resource location change. Triggered by failure detection, the Atlas Service
Binder replaces the discoverable entity no longer available and tries to auto-
matically rebind the involved clients with another equivalent instance of it.

7.3.3 High-Mobility Discovery Solutions

In this mobility case, not only do clients requesting for services and discov-
erable resources move freely, but also service components can migrate at
provisioning time between different network nodes, also independently of
actual physical node movements. In this highly dynamic scenario, service
advertisement, discovery, and rebinding become more and more challenging,
calling for state-of-the-art discovery solutions.

Hermann et al. [20] propose a discovery protocol that considers the possi-
bility that service components can autonomously replicate and migrate to
optimize resource usage and message latency in ad hoc networks. A self-
repairing lookup service is able to efficiently cope with the inconsistencies
caused by service migrations by applying a lazy, request-driven update protocol.
The implemented lookup opportunistically exploits discovery responses to
update local cached registration data with the new network locations of
migrated/replicated services. The exploitation of discovery responses, instead
of active announcements of migration/duplication updates, is a growingly adop-
ted approach which can achieve a suitable trade-off between imposed network
load and registration data consistency. Note that Hermann et al. [20] do not
consider explicitly the possibility of triggering service component migration; they
only focuse on the efficient discovery of service components capable of mobility.

According to Riva et al. [21], service components canmigrate among nodes of
an ad hoc network. Both clients and discoverable entities continuously monitor
their contexts to promptly trigger rebinding and migration, respectively. The
main goal is to dynamically adapt the association with discovered resources/
service components depending on quality requirements. Similarly toHermann et
al. [20], Riva et al. [21] completely hide clients from the fact that service com-
ponents can move at run time; service migration is completely transparent from
the point of view of the implementation of the client application logic.

By following the principle that different rebinding strategies after service
migration can be suitable for different application requirements, the following
discovery proposals allow developers to explicitly specify their preferred rebind-
ing rules. Several solutions provide rebinding supports inspired by the seminal
work on binding requalification inMA systems byFuggetta et al. [22]: Depending

172 RESOURCE AND SERVICE DISCOVERY

on resource/service characteristics and client requirements, they tend to allow
looking for new resources of the same type, migrating/copying discoverable
entities, or remote referencing already bound entities independently of mobility.

The Dynamic Adjustment of Component InterActions (DACIA) framework
supports the design and implementation of reconfigurable mobility-enabled
applications by providing developers with mechanisms to dynamically alter
mobility-triggered reconfiguration rules [23]. For instance, DACIA applica-
tions can explicitly request the migration, duplication, connection, and dis-
connection of specific middleware components that encapsulate discoverable
entities. However, DACIA-based applications must explicitly specify how to
perform mobility-triggered service adaptation within the same application
code, thus not permitting clear separation of resource/service mobility logic
from service application logic.

Instead, the Mobility Attributes Guide Execution (MAGE) project intro-
duces mobility attribute programming abstraction to describe the mobility
semantics of discoverable service components [24]. Developers can associate
service components with different mobility attributes to control their dynamic
allocation: For instance, the remote procedure call (RPC) attribute determines
that the discoverable entity should be invoked remotely independently of its
mobility, while the MA attribute specifies that the entity should migrate in
response to run time event notifications. However, MAGE leaves to developers
the burden of manually implementing the proper binding between discovery
entities by exploiting the visibility of the specified mobility attributes.

Another interesting approach is FarGo, which supports the specification of
high-level declarative policies influencing the run time allocation of mobile
service components [25]. Explicit relationships between related components,
namely complets, specify if the migration of a shared component should trigger,
for example, the migration of another component (pull), the duplication of
another component in the new locality (duplicate), or the discovery of an
equivalent component in the new location (stamp). Migration policies are
expressed in a high-level script language that permits us to specify the opera-
tions to be performed in response to events generated by a monitoring facility
that controls discoverable resources/service components and the overall per-
formance of the execution environment.

To further improve flexibility, Tanter and Piquer [26] use reflection to define
customizable binding strategies implemented as basic reusable meta-objects
attached to any mobility-enabled discoverable service component. For
instance, it is possible to specify a rebinding strategy invoked whenever an MA
arrives to a new host in order to discover and bind to a suitable instance of
required resources. However, the linking between MA-based service compo-
nents and binding strategies is performed at the beginning of the execution and
cannot change at provision time without an execution restart.

With a greater support of dynamicity, the Context-Aware Resource
Management Environment (CARMEN) permits us to specifymigration/binding
strategies in terms of high-level obligation policies and to modify them even

7.3 RELATED WORK 173

during service provisioning, without any impact on service implementation [1].
CARMEN exploits profiles to describe discoverable entity characteristics and
policies tomanagemigration, binding, and access control.Given thatCARMEN
is a good example of some solution guidelines recently emerging in the discovery
research area, a description of itsmain characteristics can be found in Section 7.4.4.

To summarize some crucial points analyzed in Section 7.3, Figure 7.1 depicts
a possible classification of registration dissemination and rebinding mechan-
isms. About announcement/search, When and Where respectively represent
the events triggering and the scope of announcement/search procedures. The

Announcement/
search

When
(frequency)

Fixed
instants

Where
(scope)

Tuned
frequency

Reactive

Proactive

Infrastructure

Domain

One-hop

Multi-hop

Rebinding

How
(action)

Strategy
policy

When
(trigger)

Equivalent service

Remote reference

Copy

Move

Service
type

Service
semantic

Resource
migration

Service
migration

Availability

Quality of Service

Location/context/profile

FIGURE 7.1 A possible classification of registration dissemination and rebinding

mechanisms.

174 RESOURCE AND SERVICE DISCOVERY

Infrastructure scope is the announcement/search scope coinciding with
the underlying network locality, while Domain delegates to upper management
layers the definition of scope boundaries. About rebinding, How is the actual
action a triggered rebinding operation should perform, possibly depending on
what is specified in the Strategy Policy. When represents the monitored indi-
cators which can trigger binding management operations.

Table 7.1 organizes the discovery solutions according to the classification of
Figure 7.1 (which covers some relevant aspects among the ones pointed out in

TABLE 7.1 Related Work Main Characteristics

Mobility

Degree

Related

Research

Announcement/Search Rebinding

Frequency Scope Action Trigger

Low Jini [4] Proactive

(lease based)

Infrastructure n.a. n.a.

SLP [5] Fixed Infrastructure n.a. n.a.

SSDP [6] Fixed Infrastructure n.a. n.a.

SDP [7] Fixed One-hop n.a. n.a.

Salutation [8] Fixed Domain n.a. n.a.

Medium DEAPspace [10] Proactive Onehop n.a. n.a.

Konark [11] Proactive Multihop n.a. n.a.

Rubi [12] Reactive/

proactive

Multihop n.a. n.a.

Allia [13] Proactive

(policy based)

Multihop n.a. n.a.

Lanes [14] Reactive/

proactive

Multihop n.a. n.a.

GSD [15] Proactive Multihop Semantic

search

n.a.

Q-CAD [16] Reactive Domain Service

type

QoS

SoNS [17] Reactive Domain Service

type,

policy

QoS

[18] Reactive Domain Policy Context

Atlas [19] Reactive Domain Policy Location

High [20] Proactive Multihop n.a. n.a.

[21] Proactive Multihop n.a. n.a.

DACIA [23] n.a. Domain Static

policy

Aapplication

dependent

MAGE [24] n.a. Domain Static

policy

Resource

invocation

FarGo [25] n.a. Domain Policy QoS, context

[26] n.a. Domain Static

policy

Resource

invocation

CARMEN [1] n.a. Domain Policy Context

Note: n.a¼ not applicable.

7.3 RELATED WORK 175

Section 7.3). Static policies do not allow us to change the rebinding strategy at
run time, while more powerful regular policies provide this capability. Note
that only a few proposals perform discovered entity binding management, and
only [1, 25] do it with a policy-based approach suitable for highly mobile
execution environments.

7.4 EMERGING SOLUTION GUIDELINES

The wide set of discovery-related research activities presented in the previous
section certainly exhibit different characteristics and different levels of suit-
ability depending on the mobility level of deployment scenarios. Despite this
differentiation, here we try to point out some common solution guidelines that
are emerging in the variegated field of discovery solutions, especially when
dealing with highly dynamic execution environments (high density of highly
mobile discovery entities). We claim that most recent discovery approaches
tend to adopt three main directions of solution, of increasing complexity for
discovery supports: (i) the exploitation of mediators to decouple clients from
discoverable entities, (ii) the full visibility of location information to properly
guide rebinding decisions, and (iii) the full awareness of context data to suitably
inform rebinding management. All the guidelines can benefit from implemen-
tation solutions that exploit state/code mobility features.

7.4.1 Mediator-Based Discovery Infrastructures

In the last years, distributed service provisioning to mobile clients has often
motivated infrastructure-based middleware solutions, for example, to dynam-
ically downscale service contents, in order to suit the specific characteristics and
limits of portable access terminals. In addition to dynamic content negotiation
and tailoring, the crucial challenge is to properly handle mobility at service
provisioning time, which requires several other support operations that may be
too expensive to be done by severely limited devices on their own.

Discovery is the primary example of such a support operation, given that it
calls for local/global finding of discoverable entities, binding to needed ones,
and binding adjustments depending on varying conditions at provisioning time.
Environment exploration, negotiation with discoverable entities, global iden-
tification and retrieval of applicable user profiles and resource/service
descriptions, and location-/context-dependent binding management operations
can be too expensive and time consuming to be directly managed by terminals
with severe resource constraints (see also Section 7.4.4).

For this reason, recent discovery solutions propose distributed infra-
structures of mediators (often called discovery brokers, or interceptors, or
stubs, or proxies) that run in the fixed network on behalf of and close to mobile
clients. We claim that the adoption of these mediators, which we will call

176 RESOURCE AND SERVICE DISCOVERY

discovery proxies in the following, is a crucial design solution for state-of-the-
art and future discovery solutions in mobile computing scenarios.

The idea behind discovery proxies is quite simple (and common to other
fields of distributed systems): to partially decouple, possibly in space and in
time, discovery clients from discovered entities in order to hide application
developers from the complexity of discovery management operations and to
reduce the client-side discovery costs. For instance, proxies can cache discovery
registration data by exploiting the typically large storage capabilities of fixed
network hosts; they can determine the applicable discovery scopes without
affecting the limited computing power and bandwidth of wireless clients, also
proactively with regard to client discovery queries; they can allow temporary
disconnection of their clients by returning discovery results at client recon-
nection; and they can transparently requalify bindings to discovered entities,
for instance in response to context variations, with no impact on the imple-
mentation of the client/service application logic.

In particular, as pointed out in Section 7.3, several discovery management
approaches are recently pushing toward the exploitation of mobile discovery
proxies to assist mobile clients. Mobile proxies can be dynamically deployed,
where and when needed, to work on behalf of mobile clients in their current
network localities and can follow client movements during service sessions.
Given the relevance of local access in mobile computing, proxy mobility is
considered a crucial feature and is motivating the adoption of code mobility
programming paradigms to implement discovery infrastructures of proxies.
Among the different mobile code technologies, MAs tend to be preferred
because of their additional capability of migrating the reached execution state,
particularly relevant to maintain client session state notwithstanding client/
proxy mobility.

In addition, the MA adoption facilitates the achievement of crucial prop-
erties, such as dynamicity, autonomy, and full visibility of the underlying
execution environment. Discovery supports in open deployment scenarios
should be highly dynamic also in the sense that it should be possible to migrate,
modify, and extend the infrastructure of distributed discovery proxies with new
components and protocols; dynamic installation and code distribution typical
of MAs are decisive when dealing with mobile clients with highly heterogeneous
hardware/software characteristics. MAs can autonomously work, either pro-
actively or in response to explicit discovery queries, even temporarily discon-
nected from their served clients: In the case of wireless mobile clients with strict
constraints on available bandwidth and communication reliability, MAs can
minimize the requested client connection time by requiring client connectivity
only at the moment of discovery query injection and of result forwarding.
Finally, the MA programming paradigm typically permits us to achieve full
visibility of underlying system implementation details and execution environ-
ment conditions because those forms of awareness are required to drive MA
mobility decisions [22]: In particular, the full visibility of location and context

7.4 EMERGING SOLUTION GUIDELINES 177

information is crucial to enable efficient discovery management supports, as
illustrated in the following sections.

7.4.2 Location Awareness

Location can be defined as physical position of any entity involved in discovery
processes, that is, clients, resources, and service components. In general, tra-
ditional distributed middleware solutions tend to hide the location information
to facilitate the high-level transparent design of services for fixed-network
environments. However, in the mobile computing scenario, the explicit visi-
bility of location is necessary both at the middleware level to perform efficient
location-dependent management operations (as in the case of discovery) and at
the application level to enable the realization of location-dependent services.

Notwithstanding the growing diffusion of positioning systems and locali-
zation techniques, the management of location information is still a complex
and challenging issue in open and dynamic deployment scenarios. On the one
hand, a wide set of heterogeneous positioning solutions are currently available,
with no widely accepted standard specifications to uniformly access location
information and to control positioning systems. On the other hand, an open
problem remains of how to effectively handle possibly frequent modifications in
location data without introducing excessive overhead in terms of both network
traffic and data processing.

Notwithstanding the presence of these issues, novel discovery approaches
should exploit location information as a crucial element to decide which dis-
coverable entities belong to a client discovery scope. Discovery scopes should
primarily include the discoverable resources/service components currently
located a limited distance from their requesting clients (in direct wireless visi-
bility or at a few wireless hops to reduce expensive multihop traffic, especially in
ad hoc networks). There is the need to favor local access in order to reduce the
complexity and the costs associated with discovery-related management
operations: Reducing the size of the discovery scope not only accelerates search
and selection processes but also significantly contributes to decrease the over-
head of binding management operations. In fact, discovery supports typically
have to monitor any modification in the availability of entities in the discovery
scope and any change in context conditions of interest for them (see the fol-
lowing section); these modifications can trigger expensive middleware opera-
tions of binding management. In addition, local access to discovered resources/
service components generally contributes to decrease the overhead in the phases
of resource/service request/result delivery.

In addition to efficiency, let us observe that automatic rebinding according
to the locality principle is also a very simple way to implement location-
dependent services: Service providers can deploy different equivalent instances
of service components (e.g., with the same interface) in any locality where they
are willing to provide differentiated contents; anytime a client changes its access
locality, it is transparently rebound to a local instance of the currently accessed

178 RESOURCE AND SERVICE DISCOVERY

service; that service instance provides results depending on its location to all
currently served clients.

Letusfinallynote that theadoptionofMA-based technologies cansignificantly
simplify the realization of location-aware discovery services. In fact, the MA
programmingparadigm is location awarebynature becauseMAs shouldhave full
visibility of location information to make proper decisions in order to guide their
autonomous migrations. Therefore, MAs can easily propagate their visibility of
the underlying execution environment to support location-aware discovery when
exploitedbothasmediators andas services themselves. For instance, in the former
case, location-aware MA mediators usually execute in fixed hosts close to their
associated mobile nodes, thus having full knowledge of client positions and
favoring interaction with resources and services colocated either in the same
network domain or in close proximity. In the latter case, MA-based services can
dynamically migrate depending on location visibility of traffic requests, hence
increasing the possibilities of local location-aware access to discovered services.

7.4.3 Context Awareness

Location visibility is not the only crucial property of which discovery solutions
should be aware. We claim that there is the need for full context visibility to
enable effective discovery management solutions for mobile computing envir-
onments. By following a widespread definition, the context of a client at a
specified time is the whole set of user preferences, discoverable entity descrip-
tions, and environmental conditions that can influence service provisioning to
that client. A notable example of context is the user personal profile of pre-
ferences: For instance, a user can express his or her interest in audio streaming
service components with specified minimum quality requirements and in Web
page contents in the Italian language.

Similarly to what was pointed out for location awareness in the previous
section, novel discovery supports should have full visibility of context-related
information and should exploit this awareness to increase the effectiveness of
discovery-related operations. First, context should drive the determination
of reduced discovery scopes with only the discoverable entities that are com-
pliant with current context requirements. For instance, from the point of view
of resource consumption it is uselessly expensive to include in the discovery
scope service components that provide results in a format not supported at the
current user access terminal. In addition, context should also be exploited to
prioritize items in the list of discoverable entities, thus simplifying the selection
by the final client/user: That facilitation is crucial especially when using por-
table client devices with small display size and limited browsing capabilities.

However, the monitoring, control, and effective management of context
information is still a hard technical challenge, in particular if coupled with the
goal of minimizing network traffic overhead. Middleware solutions that
continuously monitor all possible execution environment indicators and
immediately notify all discovery entities about the occurred modifications are

7.4 EMERGING SOLUTION GUIDELINES 179

obviously unfeasible and not scalable in highly mobile computing scenarios.
The current research in context-aware discovery supports is concentrating on
dynamically choosing the most suitable trade-off between responsiveness of
context monitoring and promptness of requalifications of bindings to subsets
of discoverable entities (see also the following section). There is the need for
solutions capable to perform effective context management operations by
permitting us to consider only the context indicators of interest for resources/
service components in the discovery scope and, hopefully, only for a minimum
subset, for example, the ones with currently ongoing sessions to discovery clients.

Also context-aware discovery solutions can significantly benefit from the
adoption of MA-based technologies. In fact, context monitoring, control, and
management are power-consuming and computationally heavy activities.
Moreover, they usually require full visibility of both application requirements
and execution environment characteristics in order to transform potentially
huge amounts of raw monitoring data in high-level useful information for
context-aware discovery. On the one hand, MA-based mediators deployed on
the fixed-network infrastructure may autonomously monitor relevant context
indicators (especially related to resources/services hosted in the wired network)
with no need of continuous connectivity with the associated clients. The result
is an important reduction in client node overhead, in terms of both power
consumption and computing power. On the other hand, the migration of new
MA-based mediators when and where required at provisioning time provide
the needed flexibility and dynamicity, for instance to manage newly installed
context sources or to inject new monitoring data-processing behavior when
context-related policies are updated (see also the following section). In that
way, MAs hide most complexity associated with context awareness from
mobile nodes and service providers, thus leveraging and accelerating the
development of context-aware discovery solutions.

Finally, notice that location can be modeled as a particular case of context,
where the position (possibly mutual) of the different discovery entities is the
only information about the execution environment taken into account to
influence the discovery process. Therefore, all the technical issues of hetero-
geneity and dynamicity put into evidence in the previous section also apply to
context awareness, with the further relevant complications deriving from the
multiplicity of potential context information sources.

7.4.4 Mobile Discovery Proxies with Location and Context Awareness:
CARMEN Case Study

One interesting middleware for mobility-enabled discovery that exploits all
three solution guidelines described above is CARMEN, which uses MA-based
proxies acting as discovery mediators to transparently requalify bindings to
discovered entities depending on both location and context visibility.

CARMEN allows service providers, system administrators, and final users
to specify different kinds of metadata in a declarative way at a high level of

180 RESOURCE AND SERVICE DISCOVERY

abstraction. CARMENmetadata influence the dynamic determination of client
discovery scope and the adaptation of client bindings to discovered entities
without any intervention on the application logic, according to the design
principle of separation of concerns. In particular, CARMEN exploits two types
of metadata: profiles to describe the characteristics of any discovery entity
modeled in the system and policies to manage migration, binding, and access
control (see Figure 7.2).

CARMEN profiles describe users, resources, service components, and sites.
In particular, user profiles maintain information about personal preferences,
interests, and security requirements for any CARMEN registered user.Resource
profiles report the hardware/software characteristics of client access terminals
and discoverable resources. Service component profiles describe the interface of
discoverable service components as well as their properties relevant for binding
management decisions, for example, whether a service component can be copied
and migrated over the network. Site profiles provide a group abstraction by
listing all the resources/service components currently available at oneCARMEN
host. CARMEN adopts eXtensible Markup Language (XML)�based standard
formats for profile representation to deal with the Internet openness and
heterogeneity: the World Wide Web Consortium Composite Capability/
Preference Profiles (CC/PP) for user/device profiles [27], Web Service Definition
Language (WSDL) for the service component interface description [28], and the
resource description framework (RDF) for the site collections of resources [29].
For instance, Figure 7.2 shows the CC/PP-compliant profile for a PalmOS
device resource hosting the K Virtual Machine (KVM)/Connected Limited
Device Configuration (CLDC)/Mobile Information Device Profile (MIDP)
software suite [30]. CARMEN profiles are opportunistically disseminated
among discovery entities with a protocol similar to Lanes [1, 14].

In addition to profiles, CARMEN expresses discovery management policies
as high-level declarative directives. CARMEN distinguishes two types of pol-
icies: access control policies to properly rule the determination of discovery
scopes depending on security permissions and mobility-handling policies
to guide discovery decisions in response to run time variations, mainly due to
mobility. Mobility-handling policies, in their turn, include two different types
of discovery-related policies: migration policies specify under which circum-
stances, where, and which service components have to migrate triggered by
user/resource movements; binding policies define when and which binding
management strategy to apply to update the set of currently accessed service
components after any change of client context.

CARMENsupports four different bindingmanagement strategies amongwhich
service administrators can dynamically choose by specifying a binding policy:

� Resource movement states that currently accessed service components are
transferred along with their client when it moves.

� Copy movement specifies to copy bound service components and to
migrate them to follow client movements.

7.4 EMERGING SOLUTION GUIDELINES 181

<?xml version=”1.0”?>
<RDF xmlns=http://WWW.w3.org/1999/02/22-rdf-syntax-ns#xmlns:rdf=
 http://www.w3.org/1999/02/22-rdf-syntam-
ns#xmlns:ccpp=http://www.w3.org/
 2000/07/04-ccpp#xmlns:ccpp-client=2000/07/04-ccpp-client#
 <Description about=”ldap://lia.deis.unibo.it/MyProfile”>
 <ccpp:component>
 <Description about=”1dap://lia.deis.unibo.it/TerminalSoftware”>
 <type resource=”1dap://lia.deis.unibo.it/Schema#Software-Platform”>
 <ccpp-client: name>Palm OS</prf: OS>
 <ccpp-client: Version>4.1</prf: OS>
 <ccpp-client: Virtual machine>KVM</prf: Java>
 <ccpp-client: Configuration>CLDC</prf: Java>
 <ccpp-client: profile>MIDP</prf: Java>
 </ccpp:component>
 </Description>
…

Metadata

Policies Profiles

Mobility handling Access control User Service
component

Resource

Site

Binding Migration

inst oblig ResourceMovement {
on DomainArrival(DeviceID,LocalityID);
Subject s = DeviceID.getServingProxy();
target t = s.myContext;
do t.setAgentBindingType(“resource movement”);
when CARMEN.Monitoring.gerFreeDiskSpace(DeviceID)
 > threshold;
}

FIGURE 7.2 CARMEN metadata to drive discovery management: taxonomy and examples.

1
8
2

http://WWW.w3.org/1999/02/22-rdf-syntax-ns#xmlns:rdf=
http://www.w3.org/1999/02/22-rdf-syntamns#xmlns:ccpp=
http://www.w3.org/1999/02/22-rdf-syntamns#xmlns:ccpp=
http://www.w3.org/2000/07/04-ccpp#xmlns:ccpp-client=2000/07/04-ccpp-client#
http://www.w3.org/2000/07/04-ccpp#xmlns:ccpp-client=2000/07/04-ccpp-client#

� Remote reference automatically modifies client bindings after migration to
refer remotely its bound resources/service components.

� Rebinding specifies that the CARMEN discovery support, triggered by
client movements, has to rebind the client to equivalent resources/service
components available in the new locality.

For instance, depending on the chosen binding policy and the current
applicable context, a user movement can either trigger the copy of a service
component to his or her new access locality or request the reconnection to an
equivalent local one, for example, to automatically provide location-dependent
service contents. CARMEN adopts the Ponder language for policy specifica-
tion [31]. In particular, mobility-handling policies are expressed as declarative
event�action�condition rules defining the actions that policy subjects must
perform on target objects when specific events occur (see Figure 7.2).

The CARMENdiscovery solution is centered on the distributed and dynamic
deployment of mobile MA-based proxies over the fixed network to play the role
of discovery mediators on behalf of usually resource-limited wireless client
terminals. CARMEN provides any user, at the start of his on her service session,
with a personal mobile proxy, called a shadow proxy, that is responsible for
metadata-dependent management of bindings to discovered entities. Shadow
proxies usually follow their associated users in their movements among different
Secure and Open Mobile Agent (SOMA) domains, carry the reached service
state, and make it possible to migrate service sessions dynamically. Other dif-
ferent mobility policies for shadow proxies can be specified and enforced, for
instance, to support disconnected asynchronous operations.

Shadow proxies retrieve the profile of characteristics of their companion
devices and the profile of preferences of their users at their instantiation.
Always at instantiation time, they determine the applicable discovery scopes by
including only the discoverable entities of interest for their clients depending on
profile metadata, current location, and execution context. Discovery scopes list
resource/service component identifiers, tagged as active or passive: A discov-
erable entity becomes active when the client asks the proxy to access and use it.
For any active entity, the shadow proxy also maintains the corresponding
resource descriptor, the identifier of the binding strategy to apply, and a ref-
erence object that encapsulates the specific mechanism for implementing the
associated binding strategy.

Let us finally observe that discovery-related information at clients, such as
discovery scopes, is not continuously reevaluated in CARMEN to reduce the
overhead introduced by the discovery support: The discovery scope of a client
and the binding strategy decisions for its active resources are redetermined by
the CARMEN support anytime the proxy changes its allocation, that is, typ-
ically anytime the client changes its wireless access point to the Internet; context
monitoring is performed only for the indicators that can trigger obligation
policies that involve currently active entities. Again, there is the need to
partially sacrifice global consistency and freshness of discovery-related

7.4 EMERGING SOLUTION GUIDELINES 183

information in order to limit the overhead of complex location- and context-
dependent discovery management.

7.5 CONCLUDING REMARKS AND “HOT TOPICS”
IN CURRENT RESEARCH

The widespread diffusion of mobile wireless devices has resulted in service
provisioning scenarios of market interest, where mobile nodes freely move
while accessing/offering services from/to other peers and the Internet infra-
structure. No assumption about the static knowledge of available resources and
service components is realistic. Therefore, mobile computing stresses the need
for novel discovery solutions capable of flexibly providing access to currently
discoverable entities while preserving possibly limited client capabilities, for
example, in terms of power consumption and available bandwidth.

As pointed out in the chapter, a first direction of solution is the adoption of
opportunistic discovery announcements/queries, thus sacrificing consistency and
completeness of discovery registration data but limiting computational/network
overhead. A second guideline is that discovery solutions should also support
transparent rebinding in order to avoid the growth of complexity of developing
mobility-enabled distributed applications. To trigger transparent requalification
operations, rebinding solutions should not only consider the availability of cur-
rently accessed discoverable entities. Also in the case of still-available entities,
context modifications should stimulate rebinding management in order to maxi-
mize application-specific quality metrics, such as local access and load balancing.

Rebinding operations can be long and expensive for resource-limited clients
in terms of both computational and traffic overhead. MAs represent a very
suitable technology to implement middleware components that assist and fol-
low mobile nodes by performing rebinding on their behalf. Recent MA-based
discovery solutions also suggest the exploitation of high-level declarative pol-
icies to drive entity rebinding in order to achieve the required flexibility not
impacting the application implementation. Most important, the MA adoption
in discovery solutions enables a crucial management function that significantly
widens the possibilities for systems/service administrators: MA-based service
components can be migrated at run time to achieve several possible goals of
different nature, for example, to continuously maintain colocality between
mobile clients and their accessed service components.

The relevant research results obtained in the presented challenging scenarios,
even with high node mobility, are stimulating the development of discovery
solutions that fit well other emerging deployment environments, with different
and specific characteristics, such as the wide research area of pervasive ubiq-
uitous environments and the most peculiar case of mobile grids.

Future pervasive scenarios will exhibit an enormous density of mobile nodes,
resources, and service components, which may continuously and abruptly
move/disconnect, by provoking temporary interruptions in connectivity with

184 RESOURCE AND SERVICE DISCOVERY

extremely high frequency. For instance, a user with a personal digital assistant
could gather a huge amount of context information (from temperature and
humidity data to shop sales and cinema show-on lists) while driving a car on
a motorway by interacting with sensors hosted in encountered cars and
with context data repositories located on the way, that is, at gas stations. This
context information should be collected and processed very rapidly, for
example, when the user moves rapidly, in order to be useful to guide the dis-
covery process (also the encountered cars may host discoverable resources and
service components of interest, but they are transient too). On the one hand,
those scenarios require extremely lightweight discovery protocols to effectively
exploit the usually short time intervals of mutual client�resource reachability.
On the other hand, they push to the extreme the necessity of flexible solutions
to transparently and asynchronously carry on discovery requests and to hide
clients from communication unreliability. The MA properties of asynchronicity
and full visibility of their execution environment make MAs a promising
implementation technology for pervasive scenarios.

A completely different kind of deployment scenarios of recent interest are
grids, that is, wide-scale networks composed of nodes typically without strict
limitations on hosted resources and willing to share them collaboratively. In
particular, in mobile grids, service components can dynamically migrate toward
their needed resources driven either by availability reasons (the resources are
available on different hosts in different time intervals) or by load-balancing
purposes. In addition, these collaborative sharing scenarios may exhibit rele-
vant dynamicity since the set of current participants (and associated resources
and service components) may frequently vary. MA-based mediators can rep-
resent an efficient way to dynamically rebind to discovered shared entities in
response to relevant context changes, transparently and with no impact on
client/resource implementations for mobile grids.

The adoption of MA-based solutions in both pervasive and mobile grid
environments is still in its infancy (for this reason, we only mention it in this
section) and will certainly deserve more attention in future research. The open
challenges are primarily two: (i) to support prompt and energy-efficient resource/
service management in order to take into account the extreme dynamicity of
pervasive environments and (ii) to dynamically distribute the required know-how
only when and where really required (and deinstall it when no longer needed)
guided by dynamic resource availability by relying on context-based service
migration in mobile grid environments. Therefore, MA-based migration
mechanisms and discovery solutions with automatic rebinding support are
expected to find future application in those emerging execution environments.

ACKNOWLEDGMENTS

This work was partly funded by the MIUR FIRB WEB-MINDS, the MIUR
PRIN MOMA, and the CNR Strategic IS-MANET Projects.

ACKNOWLEDGMENTS 185

REFERENCES

1. P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli, Context-aware middle-

ware for resource management in the wireless internet, IEEE Trans. Software Eng.,

29(12):1086�1099, 2003.

2. F. Zhu, M. W. Mutka, and L. M. Ni, Service discovery in pervasive computing

environments, IEEE Pervasive Comput., 4(4):81�90, 2005.

3. P. Bellavista, A. Corradi, R. Montanari, and A. Toninelli, Context-aware semantic

discovery for next generation mobile systems, IEEECommuni.Mag., 44(9):62�71, 2006.

4. K. Arnold, R. W. Scheifler, J. Waldo, A. Wollrath, R. Scheifler, and B. O’Sullivan,

The Jini (TM) Specification, Addison-Wesley, June 1999.

5. E. Guttman, C. Perkins, J. Veizades, andM. Day, Service Location Protocol, Vo1. 2,

Internet Engineering Task Force, Request for Comment 2608, June 1999.

6. Y. Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright, Simple Service Discovery

Protocol (SSDP), available: http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt.

7. Bluetooth Specification v. 2.0, Specification Vol. 3, Part B, Service Discovery

Protocol (SDP), available: http://bluetooth.com/Bluetooth/Learn/Technology/

Specifications/.

8. Salutation architecture specification, Salutation Consortium, 1999 (the reference

website http://www.salutation.org is no more available; the Salutation Consortium

dissolved on June 2005).

9. G. G. Richard III, Service advertisement and discovery: Enabling universal device

cooperation, IEEE Internet Comput., 4(5):18�26, 2000.

10. M.Nidd, Service discovery inDEAPspace, IEEEPersonal Commun., 8(4):39�45, 2001.

11. L. C. Lee, A. Helal, N. Desai, V. Verma, and B. Arslan, Konark: A system and

protocols for device independent, peer-to-peer discovery and delivery of mobile

services, IEEE Trans. Sys Man Cybernet, Part A, 33(6):682�696, 2003.

12. R. Harbird, S. Hailes, and C. Mascolo, Adaptive resource discovery for ubiquitous

computing, Paper presented at the Workshop on Middleware for Pervasive and

Ad-hoc Computing (Middleware), Toronto, Canada, Oct. 2004.

13. O. Ratsimor, D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, Service discovery in

agent-based pervasive computing environments, Mobile Networks Appl., 9(6):

679�692, 2004.

14. M. Klein, B. König-Ries, and P. Obreiter, Lanes—A lightweight overlay for service

discovery in mobile ad hoc networks, Paper presented at the 3rd Workshop on

Applications and Services in Wireless Networks, Berne, Switzerland, July 2003.

15. D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, Toward distributed service

discovery in pervasive computing environments, IEEE Trans. Mobile Comput., 5(2):

97�112, 2006.

16. L. Capra, S. Zachariadis, and C. Mascolo, Q-CAD: QoS and context aware

discovery framework for adaptive mobile systems, Paper presented at the IEEE

International Conference on Pervasive Services, Santorini, Greece, July 2005.

17. U. Saif and J. M. Paluska, Service-oriented network sockets, Paper presented at the

USENIX International Conference on Mobile Systems, Applications and Services,

San Francisco, CA, May 2003.

186 RESOURCE AND SERVICE DISCOVERY

http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt
http://www.salutation.org
http://bluetooth.com/Bluetooth/Learn/Technology/Specifications/
http://bluetooth.com/Bluetooth/Learn/Technology/Specifications/

18. A. R. Tripathi, T. Ahmed, D. Kulkarni, R. Kumar, and K. Kashiramka, Context-

based secure resource access in pervasive computing environments, Paper presented at

the 2nd IEEE Conference on Pervasive Computing and Communications Work-

shops, PerCom Workshops 2004, Orlando, FL, Mar. 2004.

19. A. Cole, S. Duri, J. Munson, J. Murdock, and D. Wood, Adaptive service binding

middleware to support mobility, Paper presented at the 1st International ICDCS

Workshop on Mobile Computing Middleware, Providence, RI, May 2003.

20. K. Herrmann, G. Muhl, and M. Jaeger, A self-organizing lookup service for dynamic

ambient services, Paper presented at the 25th IEEE International Conference on

Distributed Computing Systems, Columbus, OH, June 2005.

21. O. Riva, T. Nadeem, C. Borcea, and L. Iftode, Mobile services: Context-aware

service migration in ad hoc networks, available: http://www.cs.rutgers.edu/pub/

technical-reports/technical report dcs-tr-564.

22. A. Fuggetta, G. P. Picco, and G. Vigna, Understanding code mobility, IEEE Trans.

Software Eng., 24(5):342�361, 1998.

23. R. Litiu and A. Prakash, DACIA: A mobile component framework for building

adaptive distributed applications, Paper presented at the International Middleware

Symp. Principles of Distributed Computing, Portland, OR, July 2000.

24. E. Barr, M. Huangs, and R. Pandey, MAGE: A distributed programming model,

paper presented at the 21st IEEE International Conference on Distributed Com-

puting Systems, Phoenix, AZ, Apr. 2001.

25. O. Holder, I. Ben-Shaul, and H. Gazit, Dynamic layout of distributed applications in

FarGo, paper presented at the 21st International Conference on Software Engineer-

ing, Los Angeles, CA, May 1999.

26. E. Tanter and J. Piquer, Managing references upon object migration: Applying

separation of concerns, paper presented at the 21st International Conference Chilean

Computer Science Society, Punta Arenas, Chile, Nov. 2001.

27. W3 Consortium, Composite capability/preference profiles (CC/PP), available:

http://www.w3.org/Mobile/CCPP.

28. F. Curbera, M. Duftler, R. Khalaf, N. Mukhi, W. Nagy, and S. Weerawarana,

Unraveling the Web services: An introduction to SOAP, WSDL, and UDDI, IEEE

Internet Comput., 6(2):86�93, Mar.�Apr. 2002.

29. S. Decker, P. Mitra, and S. Melnik, Framework for the semantic Web: An RDF

tutorial, IEEE Internet Comput., 4(6):68�73, Nov.�Dec. 2000.

30. C. E. Ortiz and E. Giguere, Mobile Information Device Profile for Java 2 Micro

Edition (J2ME): Professional Developer’s Guide, Wiley, Hoboken, NJ, 2001.

31. Imperial College, Ponder, available: http://www-dse.doc.ic.ac.uk/Research/policies/

ponder.shtml.

REFERENCES 187

http://www.cs.rutgers.edu/pub/technical-reports/technicalreportdcs-tr-564
http://www.cs.rutgers.edu/pub/technical-reports/technicalreportdcs-tr-564
http://www.w3.org/Mobile/CCPP
http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtml
http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtml

8 Distributed Control

JIANNONG CAO

Internet Computing and Mobile Computing Lab, Department of Computing,

Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

SAJAL K. DAS

Center for Research in Wireless Mobility and Networking, Department of

Computer Science and Engineering, University of Texas at Arlington,

Arlington, Texas

YUDONG SUN

Computing Laboratory, Oxford University, Oxford, England

XIANBING WANG

School of Computers, Wuhan University, Wuhan, China

8.1 INTRODUCTION

Recent years have seen an explosion of interest in wide-area distributed
applications running on a global network environment like the Internet. Due to
its fast expansion, the Internet has become the platform of choice for many
important applications that led to commercial and social activities being
available through various services provided on the Internet. On the other hand,
people have also seen the potential of the Internet on forming a super-
computing resource out of networked computers and research efforts have been
made to develop wide-area parallel computing infrastructure that provide
access to high-end computational capabilities on the Internet.

Another prevailing technology is mobile computing: ubiquitous access to
information, data, and applications. Ubiquitous access refers to the ability for
users to access these computing resources from almost any terminal, whether
personal or public. The Internet established solid foundations for wide-area
ubiquitous computing systems. Further evolution of Internet technologies will

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

189

yield a wide-area network based on component-oriented, dynamic applications
which will support efficient, scalable resource sharing for a large number of
mobile and nomadic users. While mobile users access the Internet from a
portable computer, nomadic users may move from terminal to terminal. In
either case, ideally a user would be able to accomplish the same tasks with same
effort from any location on either his portable computer or any Internet con-
nected terminal. This requires management of distributed data and application
resources over a wide area, including automated replication and consistency
management.

Todeploy a large-scale ubiquitous computing system, amechanism tomanage
shared distributed resources over a wide-area, fault-prone network is required.
To the end user, the entire network and any terminal attached to it is one large
virtual host. The end user does not care how or where the data and applications
are stored, because distributed hosts on the fixed network collaborate to provide
data and application hosting for individual users. With data scattered over a
wide-area network, redundancy of data for high availability, fault tolerance, and
security are very important. The system should integrate replication and con-
sistencymanagement of data as a fundamental feature.Awide-areanetwork such
as the Internet, especially with mobile hosts, is subject to frequent shifts in
topology and network conditions. Such volatility in topology is attributed to
(1) frequent changes in the availability of various intermediate network hosts,
(2) mobility of mobile hosts such as laptops, and (3) general shifts in network
usage patterns which may affect bandwidth and host availability.

The classical architecture for the development of distributed applications
involves two parts: a lower layer implementing the communication protocol
and a higher layer implementing the actual algorithms of the application while
using the functionality of the lower layer. There are two fundamental draw-
backs with this traditional architecture: (1) The complexity of the lower layer,
that is, the protocol layer increases dramatically as the needs of the higher level
application layer increase. (2) The separation between these layers may not be
clear, and as a result, distributed applications require different methodologies
than those required by centralized applications and are harder to implement
and verify.

The mobile agent (MA) paradigm [1] can be used to provide a solution to
these problems in distributed applications. In the agent paradigm, a distributed
application is broken down into components (usually on a task basis), which
are then implemented as agents. Agents contain both computational logic to
perform their task and state information needed to complete the task or
information gathered while completing the task. These agents are then used to
carry out the algorithms of the system and act on behalf of either human users
or other agents (as subagents).

An agent does not need to be concerned with lower layer communication
protocols. It instead behaves more like a traditional, self-contained, centralized
application. All the responsibility of transporting agents, that is their code and

190 DISTRIBUTED CONTROL

state information, and maintaining communication between agent hosts is
delegated to an agent system. The tasks an agent performs are within a local
context, hence simplifying interfaces and protocols to a level of functions and
procedures within an application. This brings about a clear line of separation
between the communication protocol layer and the application layer. Fur-
thermore, changes in the needs of applications are localized to the application
layer. Additionally, changes in the communication protocol do not have an
effect on the application itself.

In this chapter, we present a MA-enabled framework for structuring and
building distributed systems and applications over the Internet. The frame-
work is called MAWSG (MA-enabled, Web sever group) and has following
characteristics:

1. MAWSG provides an approach to overcome the difficulties that hamper
tight interaction between the servers. Because an MA can package a
conversation and dispatches itself to a destination host, taking advantages
of being in the same site as the peer server, interacting with the peer locally
and autonomouslymaking decisions, it allows us to design algorithms that
make use of up-to-date system state information for decision making and
eliminates unnecessary remote communications [2].

2. MAWSG provides a proactive, adaptive and scalable distributed control
scheme, taking advantages ofMA in the sense that anMA can encapsulate
the distributed control protocol and can be dynamically dispatched
according to the current system configuration and state. As such, a mobile
agent can be programmed to automatically tolerate transit faults and
accommodate dynamic changes of the network.

3. MAWSG can support disconnected operations by letting MAs carry out
tasks for a server temporarily disconnected from the network. After being
dispatched, the MAs become independent of the creating server and can
operate asynchronously and autonomously.

Our approach focuses on realizing fundamental functions in structuring
and building distributed systems and applications, including cooperation,
coordination, and other distributed control functions using a collection of
autonomous, cooperating MAs. Cooperating MAs are a collection of MAs that
come together for the purpose of exchanging information or in order to engage in
cooperative task-oriented behaviors [3]. In MAWSG, an individual server has a
well-defined interface with primitives that can be invoked by mobile agents to
access the information about the server, such as central processing unit (CPU)
statistics, the memory statistics, and the number of Web requests served and to
perform some local operations. Cooperating MAs encapsulate policies and
algorithms for their interaction and coordination in order to implement various
distributed control functions. In addition to the advantages described above,

8.1 INTRODUCTION 191

using cooperating MAs allows us to provide clear and useful abstractions in
building network services through the separation of different concerns.

MAWSG demonstrates a new paradigm of distributed system design. For
distributed control functions which require tight interactions between peer
entities and quick response to system events, cooperative mobile agents are
especially useful because they can move closer to the local servers, conduct
local interactions, and achieve the coordination as required. The advantage
of the MAWSG is that it clearly separates cooperation among servers and
the local operations. Our goals of this chapter in designing MAWSG are
as follows:

1. Study under which circumstances MA will be more beneficial than
message passing or traditional methods in distributed control systems,
such as load balancing, checkpointing, and fault tolerance.

2. Evaluate the performance of MA-based methods compared to traditional
methods.

3. Design a uniform interface for realizing distributed control.

In addition to exploiting generic techniques, some protocols have been devel-
oped for performing load balancing [4, 5], replication consistency management [6],
distributed mutual exclusion [7], checkpointing of Web server computations [8],
distributed deadlock detection [9], and distributed consensus [10].

The rest of this chapter is organized as follows. Section 8.2 provides the
MAWSG framework and its simulator. In Section 8.3, we describe how to use
MAs to achieve consensus. Section 8.4 describes how to achieve dynamic load
balancing of network services while Section 8.5 presents a MA-based check-
pointing and rollback scheme. Finally, Section 8.6 concludes the chapter.

8.2 MAWSG FRAMEWORK

8.2.1 System Model

Figure 8.1 shows the general system model of a network service provided by a
collection of servers for various purposes such as information distribution,
trading, network management, and computation. Servers can be (partially)
replicated and grouped in two cases:

a. Server Cluster Servers reside at a single geographical site and are created
for performing the same task; this is mainly for reliability and computa-
tion speedup (parallel processing) purposes.

b. Server Group Servers reside at multiple sites and perform their tasks
autonomously but, from time to time, cooperate to help each other; this is
mainly for balancing of information/services, reducing service latency,
and improving system availability and reliability.

192 DISTRIBUTED CONTROL

This chapter focuses on the server group system model, where the net-
work service is provided by a group of servers distributed over a wide-area
network, thus providing various kinds of services such as information distri-
bution, network management, trading, and software download.

8.2.2 MAWSG Framework

The MAWSG framework is aimed at designing various distributed control
functions for wide-area network server groups. All servers in the group may
have the same functionality and carry the same data, but this is not a require-
ment. In general, we only require that each of the member servers is capable of
handling individual client requests; they have partial overlap in their informa-
tion and functionality and need to cooperate with each other from time to time
in order to fulfill clients’ requests. Each request arriving at the server group can
be executed at a subset of the member servers. The servers are often heteroge-
neous in terms of the hardware configuration, operating systems used, and
storage and processing capabilities. During execution, the capacity of a server
changes over time according to the number of requests the server is processing.

We consider building network server groups with the support of MAs. In
traditional distributed client/server systems using a message-passing-based
approach, the coordination code has to be integrated into the server service
model itself. This mixes the functionality of providing services with the service-
independent operation for maintaining relationships among the servers and
ensuring desirable performance. Whenever a new coordination protocol is used
or a new feature is introduced, the server code must be reimplemented. Using
MAs allows us to develop a flexible system architecture for Web server groups
by having MAs carry out coordination tasks for the cooperating Web servers

Parallel/distributed
processing within a server

Site 2

Site n

Site 1

Request

Service provider

Server
1

Server
2

Client
Server

n

Server
group

s
e
r
v
i
c
e

FIGURE 8.1 Network service and server group.

8.2 MAWSG FRAMEWORK 193

in the group. This provides us clear and useful abstractions in providing
network services through the separation of different concerns. The server site
functionality can be separated from the operations for maintaining the logical
relationship between group members and providing the desired level of per-
formance, which are realized by a collection of autonomous, cooperating MAs.

Figure 8.2 illustrates the system architecture of MAWSG. Mobile agents
have their own identity and behavior and are capable of navigating through the
underlying network, performing various tasks at the sites they visit, and
communicating with other MAs. Mobile agents are sent by or on behalf of the

 MAs – Mobile agents
– Agent interactions
– Underlying network communication

Agent-enabled server

Agent-enabled server

Network

Agent-enabled server

Network

MAs MAs

MAs

Agent environment

MAs

Agent environment

MAs

Agent environment

MAs

Agent
traveling

Network

FIGURE 8.2 System architecture for MAWSG.

194 DISTRIBUTED CONTROL

servers for coordinating their activities. The servers can use both message
passing and MAs in their computation.

Mobile agents are capable of interacting with the stationary servers they vis-
ited for reading andwriting specific data on that server. The individual server has
a well-defined interface with primitives that can be invoked by mobile agents to
access the information about the server, such as the CPU statistics, memory
statistics, and number of Web requests served, and to perform some local
operations. Cooperating MAs encapsulate policies and algorithms for their
interaction with the servers and coordination with other agents. There will be a
network connection between each pair of server hosts, which can be set up when
the whole framework is initialized. The agents can be arranged to travel on the
shortest path across the sites to collect information and dispatch jobs or
dynamically decide their routes according to the current network traffic status.

Figure 8.3 shows the structure of the MA server, where the MA is used as
an aid to the servers for achieving their coordination. Distributed control

MAs: Mobile agents

Server

Mobile agent server

MA-enabled distributed control
 -- Consensus
 -- Load balancing
 -- Mutual exclusion
 -- Deadlock detection
 -- Replication
 -- Checkpointing

 -- Checkpointing
 -- Replication
 -- Consensus
 -- Deadlock detection
 -- Mutual exclusion
 -- Load balancing

MA-enabled distributed control

Mobile agent server

Server

MAs

MAs MAs

MAs

FIGURE 8.3 Mobile agent environment structure.

8.2 MAWSG FRAMEWORK 195

functions, which maintain logic relationship between group members and
provide the desired level of performance, such as checkpointing, load sharing,
distributed mutual exclusion, and consensus, are realized by a collection of
autonomously cooperating MAs. Since the MA carries the program it executes
in its entirety as it propagates through the network, utilizing the information
provided by the local servers, a flexible and adaptive coordination scheme could
be developed. There are several common issues that need to be addressed in
designing an MA-enabled distributed control algorithm:

� Who owns the MAs and what are the roles of the MAs? Mobile agents can
be created and dispatched by individual servers in the group for their
specific purposes. Mobile agents can also be owned by the system and
shared by all servers. In the former case, the MAs act as information
collectors and/or negotiators on behalf of their owner servers, while in the
latter case, MAs can travel around the servers to update their knowledge
about the state of other servers and to coordinate their activities.

� What will an MA do at a visited server site? An MA can request the local
state information from the visited host and collect shared information left
by other MAs who has previously visited the host. AnMA can also update
the local host’s knowledge about the other hosts along the traveling path
of the MA.

� What will be carried by an MA? What kind of data or job information will
be carried by an MA in different distributed control algorithms?

� How can MAs communicate? Mobile agents can interact with each other
and with the server hosts either directly through message passing or
indirectly using the stigmergy technique—mobile agents interact with the
traces left in the environment by one another [3]. By sharing each other’s
information, unnecessary traversal to remote server sites may be eliminat-
ed and thus network traffic is reduced. Also, faster decision making can be
achieved.

8.2.3 Simulation Environment

Based on the MAWSG model, we have designed a software environment to
simulate and evaluate MA algorithms on the Aglet platform [11, 12]. As shown
in Figure 8.4, the architecture of the software environment consists of four
modules:

1. The user interface module has the functionality to enable the user to
configure the simulation session and then start it. By sending the
commands through the Session Control component, the user can set
the parameters, including the number of simulated hosts, network
topology, and network bandwidth. User Interface also provides support
for the user to monitor the execution condition of the whole system (by

196 DISTRIBUTED CONTROL

Monitor) and to show the information about the performance evaluation
of the mobile agents (by Analyzer).

2. The simulation control module is composed of Configuration, Execution
Control, and Event Manager. Configuration can retrieve and save the
information of simulation configuration. Simulation configuration con-
sists of MA server configuration and network configuration. The former
is about the system environment configuration mainly on the conditions
of a simulated host such as CPU capacity, memory constraint, and
workload. The latter focuses on the simulation of the underlying network,
including network topology, bandwidth of the links, and network traffic.
After finishing the environment configuration, Execution Control will
place the agents to each logical host for execution and then launch
the simulation. During the execution of the simulation, it will receive the
events from the Simulated System module and forward the events to
Event Manager.
Event Manager gathers the events sent by Simulated System during

the simulation and forwards them to Monitor. The events from the

Configuration
Execution

control
Event

manager

MA server Network simulator

Mobile agent systems Mobile agents

Control

Event queue

Exchange

Execution

Simulated system

Execution system

Analyzers

User interface

Session
control

Monitor

Simulation control

FIGURE 8.4 Architecture of MA group simulation environment.

8.2 MAWSG FRAMEWORK 197

simulators sent to Event Manager are usually interleaved and thus
disordered. It is Event Manager’s task to sort the incoming events and
send a set of ordered event queues to the monitor and analyzer, which
would extract the information about the performance of the MAs in the
events.

3. The simulation system module largely implements the MA server model
and Network Simulator involved with the simulation of network topology
and communication cost. The network topology and the bandwidth are
configured by the user, and the real-time communication cost is gener-
ated by using the specified network simulation algorithm given in the
configuration.

4. In the execution system module, the MA algorithm implemented by
Mobile Agents is the target of the evaluation. In the simulation environ-
ment, each MA is associated with a control object whose tasks are to
generate the event when the agent is going to take a behavior action, send
the event to the MA server’s Controller, and resume the execution of the
MA once it receives the commands from the Controller. As a part of
the MA being transparent to the user, the control object is created within
its owner agent and accompanies the agent during the agent’s lifetime. In
this way, the behavior of the MA can be recorded and the Event Manager
module can obtain the details of the simulation execution of the agents in
the MA algorithm to evaluate the performance.

In the following sections, we describe the design and simulation of distrib-
uted algorithms for various dynamic control functions in MAWSG.

8.3 MOBILE AGENT–ASSISTED SCHEME FOR
DISTRIBUTED CONSENSUS

Consensus is a fundamental problem in distributed systems. It states that there
are a set of n processes {p1, p2, . . . , pn}, each process pi initially proposes a value
vi, and all nonfaulty processes have to decide on one common value v which is
equal to one of the proposed values. A process fails if it behaves abnormally, for
example, by crashing. A process is correct if it never fails. More precisely, the
consensus problem is defined by the three following properties [13]:

� Termination Every correct host eventually decides on some value.

� Validity If a host decides v, then v was proposed by some host.

� Agreement No two correct hosts decide differently.

The agreement property applies to only correct hosts. Thus, it is possible
that a host decides on a distinct value just before crashing. Uniform consensus

198 DISTRIBUTED CONTROL

prevents such a possibility. It has the same termination and validity properties
but the following agreement property:

� Uniform Agreement No two hosts (correct or not) decide differently.

Consensus has been extensively studied over the last two decades both in
synchronous and asynchronous distributed systems [14–16]. In a synchronous
system, message delays and speeds of relative processes are bounded and these
bounds are known. In contrast, none of these bounds exist in the asynchronous
system. Fischer et al. [15] proved that consensus cannot be solved determinis-
tically in an asynchronous system that is subject to even a single crash failure.
In this chapter, we consider the uniform consensus problem for synchronous
distributed systems.

8.3.1 Mobile Agent–Based Consensus Algorithm

To evaluate the MAWSG framework, we consider the consensus problem in
synchronous systems with crash failures [10]. Here, the hosts can be the web
servers. The design of our proposed algorithm uses the pigeon hole principle.
Initially, tþ1 hosts are randomly chosen, called coordinating host (CH), where
t , n is the maximum number of hosts that can crash and n is the number of
all processes. We assume that every host has a unique identity over the
network and tþ1 hosts are randomly chosen as CHs. For simplicity, we
choose first tþ1 hosts, whose identities range from 1 to tþ1, as CHs.
Therefore, there is at least one CH which never crashes. We call such a CH a
correct CH. Because there is at least one correct CH and correct CHs never
destroy MAs, the information obtained from them is the most complete
and reliable.

Our algorithm is round based. In each round, an MA is dispatched from
each host to every live CH. On each live CH, the MAs exchange information
with each other and then return home. On returning home, a stationary
agent, called the master agent, performs calculations on the value set and a
flag of every MA to obtain the information that indicates whether the
algorithm can terminate or not. If execution of the algorithm is not yet
complete, another round starts. Otherwise, the algorithm terminates, thus
making decisions based on the current value set, and also all MAs stop their
executions. The decision on termination is made as follows. Every MA carries
a flag, Altered_Flag, which indicates whether some new values are added into
its value set during last traveling. The flags of all agents created by a host will
be combined after they return home. If there exists at least one agent with its
flag set to be true, the host will start the next round. Note that setting a flag
to true can also reflect that some values were deleted by the intersection
calculation at the previous round.

8.3 MOBILE AGENT–ASSISTED SCHEME FOR DISTRIBUTED CONSENSUS 199

Algorithm 1 Executed by a

Mobile Agent

Algorithm 2 Executed by a

Master Agent

1. Initialization

2. define fi,j as Altered_Flag
of Ai,j

3. Algorithm

4. while (alive)

5. wait_signal() //wait signal
from its creating host

6. Vi,j :¼Vi;

7. migrate_to(CHj)

8. VCHj
¼ VCHj

,Vij

9. wait_signal() //wait signal
from the CH

10. fi;j ¼ ðVCHj
6¼ VijÞ?

true : false

11. Vi;j ¼ VCHj

12. migrate_to(hi) // return
home

13. end while

1. Initialization

2. Vi :¼ {vi}

3. Ai :¼Ø

4. for each CHj, create_agent(ai,j),
init(ai,j), Ai :¼Ai, {ai,j}

5. Loop

6. repeat

7. for each ai,j2Ai, signal(ai,j)

8. if itself is a Coordinating Host then

9. wait_timeout(Ts) // all agents
migrate to it can arrive

10. signal all arrived agents

11. wait_timeout(Ts) // its all agents
can return

12. else wait_timeout(2Ts) // its all
agents can return

13. end if

14. Ai :¼ {all agents that came back}

15. if Ai¼Ø then fi :¼ false

16. else

17. Vi ¼
T

ai;j2Ai
Vi;j

18. f i ¼ ORai;j2Ai
f i;j

19. end if

20. until fi¼ false

21. Ai :¼Ø // delete all agents

22. di :¼min(Vi)

Algorithm 1 is executed by an MA, Agenti,j, on behalf of host hi traveling to
CHj;Vi,j denotes the value set of Agenti,j andVh denotes the value set of a host h;
Ts denotes the maximum timeout that an agent migrates between any two hosts;
fi,j denotes the Altered_Flag of Agenti,j. This algorithm terminates as soon as the
agent is destroyed by its home host (see explanation for Algorithm 2).

In each iteration of the loop, the MA Agenti,j waits for the signal from its
home host. After receiving the signal from its home host, it copies the value set

200 DISTRIBUTED CONTROL

maintained by the master agent and migrates to CHj. After arrival at CHj, the
agent gives its value set to CHj. Then it waits for a signal from CHj. When it has
received the signal, every agent which is dispatched to CHj must have arrived at
CHj, and VCH will contain complete values of all arriving agents. Agenti,j then
compares VCH and the value set Vi,j and sets the flag fi,j to indicate whether they
are different. Finally, the agent copies the value set of CHj and returns to its
home host.

Algorithm 2 is executed by the master agent at each host hi. The master
agent first initializes the variables. There are a total of tþ1 CHs, namely CH0,
CH1, . . . CHt. Initially Vi contains its proposed value, vi. The master agent
maintains an agent set, Ai, for holding a mobile agent created by itself. Initially
it creates and initializes tþ1 MAs, namely, ai,0, ai,1, . . . ai,t. All these MAs are
added to the set Ai.

Then the master agent sends a signal to every MA in the set Ai. The MAs will
migrate out of host hi after receiving the signal (Algorithm 1, lines 6–7). If
the master agent is on a coordinating host, it waits for timeouts for all agents
migrating to it to arrive, then signals these agents to collect information and
return home. Finally it waits for another timeout for all its agents returning.
Otherwise, themaster agent justwaits for two timeouts for all its agents returning.

After returning, the agent will stay at host hi until it receives another signal
from the master agent of its home host. If no agents return, which means all live
CHs have made a decision and terminated, the master agent will set fi to false to
exit the loop and make a decision. Otherwise, it calculates the intersection of
value sets of all agents in the set Ai and store the resulting set into its own value
set Vi. It applies the OR operation on Altered_Flag variables of all agents in Ai

and stores the result into the local variable fi.
If fi is true, implying that some agent in Ai reported that the values collected

from its CH are not consistent, the master agent will go back to line 7 to start
a new round. If not, the loop exits and all MAs will be destroyed, and the
decision is made according to the current value set of host hi.

8.3.2 Performance and Simulation

The proposed algorithm achieves uniform consensus and its upper bound is
dðtþ 1Þ=2e; the proof canbe found in [10]. In the presence of up to t crash failures,
uniformconsensus canbe solvedbyour algorithmwithin dðtþ 1Þ=2e rounds.The
meaning of a round notion in this chapter is different from traditional message-
passing consensus algorithms in both synchronous and asynchronous systems, in
which each process executes sequentially the following steps in each round r [13]:
(1) It sends a round r message to the other processes, (2) it waits for a round r
message from the other processes, and (3) it executes local computations. The
time cost of a round in our proposed algorithm is nearly double the time cost of a
round in traditional synchronous consensus algorithms [13]. Our proposed
algorithm can stop early as in [14], and uniform consensus can be solved by
our algorithmwithin dð f þ 1Þ=2e þ 1 rounds according to the number of failures

8.3 MOBILE AGENT–ASSISTED SCHEME FOR DISTRIBUTED CONSENSUS 201

f that actually occur, where f , t. Unlike traditional early-stopping consensus
algorithms in synchronous systems, such as the scheme in [14], where every
process needs to broadcast a decide message after it has made a decision, our
proposed algorithm does not need to do this.

In the simulation, we consider two types of costs: time and number of dis-
patched mobile agents. In the previous section, we discussed these costs for
the best and worst cases. The experiments aim to find average costs. We con-
sider an even distributed random model for the number of hosts that can fail.
In other words, supposing t is the maximum number of hosts that can fail, the
actual number of hosts that fail in a series of executions of the algorithm is
evenly distributed in the closed interval [0, t].

In simulation, MAs are simulated as Java threads. The main thread of the
simulation application is in charge of simulating crashes. After initialization, it
sleeps for a while and randomly chooses a host object and calls it “down” by
invoking its crash() method.

The following properties may affect the performance of the algorithm:
(1) the actual number of hosts that crash and (2) the frequency of crash events.
We analyze two aspects of performance, namely, execution time and total
number of agent migrations.

8.3.2.1 Number of Migrations to Actual Crashes
The simulation environment is comprised of 20 hosts, up to 19 of which can
crash. In other words, the number of actual crashes is in the range of [0, 19].
The simulation is executed 5000 times. This is enough to generate multiple
instances for each possible number of actual crashes. Figure 8.5 shows the
results obtained from the executions.

We plot the graph of number of migrations (Y axis) against actual crashes
(X axis) in Figure 8.5.

1800

1600

1400

1200

1000

800

600

400

200

0
0 2 4 6 8 10 12 14 16 18 20

Actual crashes

To
ta

l n
um

be
r

of
 m

ig
ra

tio
ns

FIGURE 8.5 Number of migrations versus actual crashes.

202 DISTRIBUTED CONTROL

We found that the more hosts crash in the network, the less migrations
occur. This is reasonable because the crashes can destroy MAs. More crashes
will destroy more MAs. This leads to a decrease in total migrations.

A more important implication of the results illustrated in the graph is that the
network loading (reflected by the total number of migrations) decreases if more
hosts crashed. That is, crash does not cause unwanted effects in network loading.

8.3.2.2 Execution Time to Actual Crashes
Figure 8.6 shows average execution time as a function of the number of crashes.
From the figure, we found that the execution time is not affected very much by
the actual number of crashes, which is different from our expectation; just two
rounds are needed for all hosts to make a decision. The reason for this is that,
during a round, the effect on the algorithm’s execution time by a single crash or
multiple crashes within a partition is the same. The probability of the occur-
rence of the worst case is too small, and we cannot reach this case by executing
the simulation thousands of times.

The experiments illustrate how performance is affected by the properties
of the network. These properties are determined by factors such as the number
of actual failed hosts and frequency of the crashes.

8.4 MOBILE AGENT–ASSISTED DISTRIBUTED
DYNAMIC LOAD BALANCING

Load-balancing protocols are designed for servers in a distributed system to
balance their workload. The purpose is to avoid performance degradation
caused by a high load imbalance. This is achieved by letting the servers coop-
eratively monitor the global system load information and distribute/redistribute

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
0 2 4 6 8 10 12 14 16 18 20

Actual crashes

E
xe

cu
tio

n
tim

e

FIGURE 8.6 Execution time (ms) versus actual crashes.

8.4 MOBILE AGENT–ASSISTEDDISTRIBUTEDDYNAMIC LOADBALANCING 203

the load among the servers whenever necessary. However, most of these algo-
rithms are designed for closely coupled distributed systems [7].

Load-balancing algorithms can be static or dynamic and can use either cen-
tralized or distributed control [18, 19]. In static load-balancing algorithms,
decisions about the allocation of requested jobs to the sites are made before
execution. This is not practical for some system and application environments if
the information about the requests to be executed (execution time) and the
execution requirements (current load, transfer times, and communication costs)
cannot be known in advance. Also, the static approach suffers from theweakness
that it does not take the fluctuation of the system load into account. In dynamic
load balancing, the system attempts to find the best server for an incoming
request at run time. Decisions are made using the information on the current
system states. However, this approach requires gathering and maintaining sys-
tem state information because in order to achieve load balancing a snapshot of
the global loading information in a specific time frame must be acquired.

A load-balancing algorithm can be adaptive or nonadaptive depending
on whether only information on the current system states is used or both the
previous behaviors of the system together with the current state are used tomake
decisions [20]. An adaptive algorithm can modify its policies and parameters
used in the algorithm according to the previous and current system behaviors.
Furthermore, load-balancing algorithms can be classified according to who will
initiate the load distribution process (source initiative or destination initiative)
and the way jobs will be allocated (e.g., preemptive or nonpreemptive). If the
overloaded server is responsible for finding other servers to balance its work-
load, the strategy is called a source initiative. On the other hand, if a lightly
loaded server looks for requests to process from overloaded servers, the strategy
is called destination initiated [21]. In preemptive allocation, a job can be real-
located even after its execution starts, while in nonpreemptive allocation, once a
job starts execution, it cannot be selected for reallocation [22].

Our framework MAWSG provides a novel MA-enabled load-balancing
mechanism on distributed Web servers [5]. A server can dispatch MAs to the
system when required. After leaving the source server, a mobile agent becomes
an independent object that is autonomous in action. Mobile agents can embed
optional policies of load balancing and travel from one server to another to
interact with the servers on the site. The on-site interaction can acquire the
latest load information. The optional policies can deal with the load-balancing
requirement according to the states of the servers and the client requests.
The MA-based approach can minimize the network traffic and enrich the
flexibility of the load-balancing mechanism. Multiple MAs can exist simul-
taneously in the system and perform asynchronous operations. They can
strengthen the scalability and availability of distributed Web servers. The
MAWSG framework can specify the behaviors of mobile agents and the pol-
icies of load information gathering and load distribution to implement efficient
load balancing on varied Web server systems from a local-area cluster and a
wide-area system.

204 DISTRIBUTED CONTROL

8.4.1 Mobile Agent–Enabled Load-Balancing Scheme

The design of a load-balancing mechanism for network services should include
the following policies:

� Information-Gathering Policy Maintains the information about the work-
load at the servers. The policy is made up of two components: frequency
of information exchange and method for dissemination of the informa-
tion. There is a trade-off between having accurate information and
minimizing the overhead. It also includes the estimation and specification
of workload, for example, processor load, length of queue, and storage
utility.

� Initiation Policy Determines who initiates the process of load balancing.
The initiator can be the source server, the destination server, or both
(symmetric initiations).

� Job Transfer Policy Decides when the initiator should consider reallocat-
ing some requests to other servers. The decision can be made based on
only the local state or by exchanging global processor load information.

� Selection Policy Determines which particular job to reallocate.
Nonpreemptive policies select tasks from the set of jobs which are yet to
begin execution. Preemptive policies expand this set to include all jobs
located at the processor.

� Location Policy Determines to which servers the jobs should be reallo-
cated. The simplest location policy is to choose a server at random. More
complicated policies use negotiation, where the initiator negotiates with
each member in a subset of servers.

These policies must be represented and implemented in appropriate system
components. A key issue common to all the components is how to define the
workload at a server. Estimation of workload should consider factors including
job characteristics and processor and storage utilization at the site.

Figure 8.7 illustrates the structure of the load-balancing mechanism at a
server of the network server group. It contains three major component agents,
namely the server module agent (SMA), the load information agent (LIA), and
the job-dispatching agent (JDA). These agents cooperate to perform load
balancing for the local server.

8.4.1.1 Server Module Agent
This is a stationary agent that interacts with the server’s functionality. It
accepts and serves the incoming job requests, and when the server becomes
overloaded, it will create a JDA to trigger the job selection/migration process.
The SMA is the largest component in the system and can be decomposed into
four independent submodules:

� Job Generator (G) Receives incoming requests and inserts them into the
job queue.

8.4 MOBILE AGENT–ASSISTEDDISTRIBUTEDDYNAMIC LOADBALANCING 205

� Job Processor (J) Processes the jobs located in the server job queue by
submiting them to the server.

� Log Agent (L) Maintains the log of the server activities and provide an
interface between the server module and the external system.

� Queue Sever (Q) This is the most critical submodule in the SMA. Its
functions include job queue management, message queue management,
storing of the global loading information, and triggering of the job-
dispatching agent to redispatch a request to some other server.

In our design, we use a source initiative initiation policy, that is, the load-
balancing process is initiated by a heavily loaded server who needs help. The
SMA at a server site implements the job transfer policy and the selection policy.
It needs to monitor and measure the local workload to decide when to real-
locate a job to some other servers. Once it decides that the condition for job
transfer becomes satisfied, the SMA needs to select a suitable job for reallo-
cation from the local job queue.

The transfer policy used in the SMA is a threshold policy: Job reallocation
is triggered if and only if the local workload exceeds some threshold T.

Job queue

LIA

SMA

JDA

Q

G C

L

Log agent

Gen agent

Queue server

Request jobAdd job

Sync info Dispatch job

Update log

Update log
Con agent

Report status

Push Pop

Legend

Server internal
components

Mobile agent Global loading info Info exchange Redispatched load

FIGURE 8.7 System components and their interactions.

206 DISTRIBUTED CONTROL

The threshold can be either static or dynamic. In the former case, it is set with a
predefined value, while in the latter case, it is defined according to the current
global load status, for example, the average of the global workload calculated
from the local copy of the global load information stored at a site. Once the
threshold is exceeded, an attempt is made to select an appropriate job from
the job queue and transfer it to another server. Several strategies can be used
for the selection policy. In the simplest way, the SMA continuously removes the
last job in the local job queue and insterts it into a job reallocation list until either
the local workload becomes less than the threshold or there is no destination
server available for reallocation. A more complex strategy considers the time
spent on transferring a job to a remote server. A job from the job queue of
the local site A is reallocated to a remote server B if tw(A). tm(AB) þ tv(B), where
tw(A) and tw(B) are the expected waiting times spent by the job at server A and
server B, respectively, and tm(AB) is the time for the JDA to migrate from server
A to server B. As a special case, we can consider the distance between the client
and the server where the client’s request is to be processed, so that access to the
nearest server can be implemented whenever appropriate.

The job reallocation list will then be passed to a newly created job trasfer
agent for relocating the jobs.

8.4.1.2 Load Information Agent
This is an MA that implements the information-gathering policy component of
the load-balancing mechanism. It continuously travels through the servers to
collect the global information about the workload and resource utilization at
the participated servers. Each server site stores its own copy of the global
workload information, which will be used for the SMA to make decisions on
job reallocation. The global load information will be maintained by the LIAs
shared by all the servers in the system. An LIA presents itself at a server site and
obtains, in real time, the accurate, current load information at that site.

Figure 8.8a depicts a single LIA traveling from one site to another contin-
uously, carrying updated load information of previously visited server sites. At
each site it visits, an LIA synchronizes itself with the global load information
stored at the server. When it arrives at a server site, it will first update its
knowledge about the local workload at the site. Then it will retrieve the local
copy of the global load information stored at the site, which is in the format of
a table containing one entry for each server in the group, and synchronize it
with the information collected from the sites it previously visited. As shown by
the example in Figure 8.9, the synchronization is done by using the timestamp
associated with each entry of the load information table, which represents the
local time of a server when its workload information is last measured and
collected.

Using only one LIA to move among all server sites to collect and maintain
global workload information may result in delay in updating the load infor-
mation tables at individual server sites. This delay will have impact on the
effectiveness of load balancing because the timeliness and information coverage

8.4 MOBILE AGENT–ASSISTEDDISTRIBUTEDDYNAMIC LOADBALANCING 207

of the global workload snapshot are the most critical factors in determining
system performance. Without up-to-date global load information, it is unlikely
that an accurate decision can be made for balancing the heavy workload of an
overloaded server. To overcome this difficulty, we can deploy multiple LIAs,
each propagating through a portion of the server group. Figure 8.8b shows an
example of using two LIAs which circulate in its own directions along each half
of the overall server group, respectively. Then LIAs can cooperate to maintain
the global load information by exchanging their partial results at the over-
lapping servers and assembling them into the global snapshot. Using multiple
LIAs increases the frequency of updating the global load information stored at
each server site and is expected to lead to better performance. In fact, LIAs can
be injected into the network dynamically. Since the MA can monitor and sense
the changes in the environment, when an LIA observes that more LIAs have
been dispatched, it will adjust its itinerary accordingly.

Sever Agent Server Agent

S1 info: t1 S1 info: t3 S1 info: t3 S1 info: t3

S2 info: t3 S2 info: t2 S2 info: t3 S2 info: t3

S3 info: t4 S3 info: t9 S3 info: t9 S3 info: t9

FIGURE 8.9 Synchronization of global load information at a server.

First partition

(a () b)

Second partition

Legend

Server LIA Traveling route

sy

1

2

3

4 5

6

7

8
s

y

n
1

2

3

4

5

6

7

8
s
y
n

n

Global loading info Info exchange

FIGURE 8.8 LIA traveling through network to maintain global load information.

208 DISTRIBUTED CONTROL

8.4.1.3 Job-Dispatching Agent
The JDA is an MA that implements the location policy. When the server is over-
loaded, a clone of the JDAwill be created by the SMA.When the JDA is activated,
using the global loading snapshot stored at the local server, it will carry the jobs
in the job reallocation list to the appropriate remote servers for execution.

The chaotic nature of a distributed wide-area environment may cause
excessive loading fluctuation of the destination servers, which can consequently
lead to server thrashing. As an attempt to prevent this from happening,
conventional message-passing-based load-balancing methods implement an
additional accept policy which involves a series of negotiations between the job
origin site and the candidate destination sites, including a decision-making
process on the acceptance/refusing of the job reallocation request. These
operations require exchanging messages between the servers and will increase
the network traffic, add complexity to the design of load-balancing algorithms,
and yet not guarantee a desirable performance.

Using the JDA greatly simplifies the problem. Initially, the JDA will use the
global load information stored at the local server site to decide which node to
go for load distribution. The JDA presents itself at the receiver site and
negotiates with the receiver server locally. There is no need for the sender site to
wait for acknowledgment from the receiver as the JDA gets the acknowledg-
ment on behalf of it. In the case where the JDA carries the job to a destination
server and finds that the server became overloaded, the JDA can make a
decision on the fly to find another suitable server by using the current system
state information collected while it travels through the destination servers.

8.4.2 Preliminary Evaluation

We have carried out a preliminary study to evaluate the performance of the
proposed distributed dynamic load-balancing algorithm. Preliminary experi-
ments were set to measure the effectiveness of the MA-enabled load-balancing
scheme in comparison with a server group system with no load balancing.
Performance measures such as the average queue length at each server and the
average throughput are used for the evaluation. Random-number generators
are used to generate the job interarrival time and the job service time; both
follow an exponential distribution. In the preliminary simulation, for simplic-
ity, the workload at a server is defined as the length of the job queue, which
represents the number of jobs in the queue. The threshold for dispatching a
JDA was predefined between each simulation. We assume that each server can
process one request at a time. Only one LIA is dispatched for maintaining the
global load information.

Figures 8.10 and 8.11 illustrate the effect of load balancing on the average
queue length, which reflects the variance of loads among servers, and on the
average throughout a five-server group. In the figures, the first pair of bars
compares the performance of the server group without and with load balancing
when the job interarrival time for the servers is 2 sec. Similarly, the second pair

8.4 MOBILE AGENT–ASSISTEDDISTRIBUTEDDYNAMIC LOADBALANCING 209

of bars compares the performance of the server group without and with load
balancing when the job interarrival time for the servers is 3.

Figure 8.12 shows the time saving due to load balancing. By time saving
we mean on average the reduction in job waiting time. We observe that the
average amount of time saved increases with decreasing interarrival rate. This
can be explained as follows. If all the servers are very busy, it is less likely for a
JDA to find a helper server. This value is also dependent on the number of visits
by a JDA agent. As JDA takes time to travel around, more visits will reduce the
performance gain brought by job reallocation.

As we can observe from the graphs, the MA-enabled load-balancing
algorithm is effective as it improves performance compared to the no-load-
balancing case, in terms of decreasing the average job waiting time and
increasing the system throughput.

Interarrival time
� 2 s

Interarrival time
� 3 s

8.360

6.579
6.043

4.032

0

1

2

3

4

5

6

7

8

9

10
Q

ue
ue

 L
en

gt
h

: Without load sharing : With load sharing

FIGURE 8.10 Effect of load balancing on average queue length.

Interarrival time
� 2 s

Interarrival time
� 3 s

: Without load sharing : With load sharing

140

241

152

256

0

50

100

150

200

250

300

350

T
hr

ou
gh

pu
t

FIGURE 8.11 Effect of load balancing on average throughput.

210 DISTRIBUTED CONTROL

8.5 MOBILE AGENT–ENABLED SCHEME FOR
CHECKPOINTING AND ROLLBACK

Rollback error recovery is a general, powerful approach to eliminating transient
errors in a system. The technique requires that a system records its state (called
checkpointing) periodically during normal operation and, upon failure, restore
a previous consistent state (called rollback) and restart the execution from
the restored state [23, 24]. Since processes in a distributed system do not share
memory, a global state of the system is thus composed of a set of local states of
the processes in the system and the system state must be checkpointed dis-
tributively over all the processes. A local checkpoint is a saved copy of an earlier
local state of one process. A global checkpoint of the system is a set of local
checkpoints, one for each process. We say that a global checkpoint is consistent
if the set of the local checkpoints forms a consistent global state. With an
inconsistent global checkpoint, under some scenarios, cascading rollback
propagation may force the system to restart from the initial state, causing the
occurrence of the undesirable domino effect [25].

Existing distributed checkpointing and rollback algorithms are almost all
based on using message passing for coordinating local process activities. This
section proposes a novel approach, called MACR (mobile agent–enabled
checkpointing and rollback), which uses MAs to enhance the design of dis-
tributed checkpointing and rollback algorithms [8]. In MACR, MAs act as
messengers and/or monitors that travel over the network from site to site and
facilitate the coordination of the distributed computation processes to carry out
their checkpointing and rollback activities.

8.5.1 The Mobile Agent–Enabled Scheme

The checkpointing algorithm works as follows. Periodically, each process takes
its local checkpoints independently according to its own needs. For example, a
process may take a new checkpoint after t local clock ticks elapsed or after
sending out k messages. The main advantage of the independent checkpointing
methods is that less communication overhead is incurred during normal

�20

0

20

40

60

1 2 3 4 5
Inter-arrival time

T
im

e
sa

ve
d

by
 e

ac
h

di
sp

at
ch

ed
 jo

b

3 Servers

5 Servers

10 Servers

FIGURE 8.12 Average saving in waiting time.

8.5 MOBILE AGENT–ENABLED SCHEME FOR CHECKPOINTING 211

operation when taking checkpoints, but it may result in a domino effect upon
recovery. To prevent cascade rollback, an MA, called the coordinator agent, is
used to enforce that the number of checkpoints to rollback in case of recovery
will not exceed the predefined threshold. The coordinator MA travels from one
site to another, carrying updated information of previously visited sites. When
it arrives at the process p, it will first read all the rollback information saved at
p and then uses these to update the dependency table so that the corresponding
entries will contain the necessary information about dependency between
checkpoints of p and q.

Based on the checkpoint dependency information, the coordinator agent
will calculate the number of rollbacks that need to be performed by the
current process if a fault is detected at that moment. If that number is greater
than the predefined threshold value, MaxRecovery, a coordinated check-
pointing procedure will be performed to remove the possibility of a domino
effect. The calculation proceeds like this. Starting from the most recent
checkpoint of the current process under visit, Cp,y, until reaching the check-
point immediately following the last consistent checkpoint Cp,x, where x , y,
the dependency relationship is tracked to see whether Cp,y can belong to more
recent consistent global checkpoint. If not, it moves to the immediately pre-
ceding checkpoint. This continues until either a more recent consistent check-
point has been found or the last consistent checkpoint has been reached. The
number of rollbacks that need to be performed by the process equals the dis-
tance between the current checkpoint and the checkpoint where the calculation
is terminated.

For each checkpoint, a semiConsistentCPNO vector is used to store the
partial information of the new consistent global checkpoint under construction.
Each entry of this vector is a pair of values representing the ID of a site and the
number of its current checkpoints under testing. Once semiConsistentCPNO
proves to be a consistent global checkpoint, it will be used as the recovery line
of the system. To maintain this vector, the site ID and the checkpoint number
under consideration are first inserted into the semiConsistentCPNO. Then, if
the checkpoint number in the corresponding entry (site ID, checkpoint number)
in the dependency table is greater than that in semiConsistentCPNO, the
checkpoint number is updated in the vector. With this newly updated check-
point number, the process continues until all information has been updated
and no more entries can be found in the dependency table which had a
checkpoint number greater than the entries in the semiConsistentCPNO. Then
the new recovery line has been found. If the value had not been found from
the table, it means that consistency cannot be achieved yet and, therefore, this
semiConsistentCPNO is not consistent and should be aborted.

Whenever, upon visiting a site, the coordinator agent detects that the
number of rollbacks exceeds the threshold value, a forced coordinated check-
pointing procedure will be initiated. The coordinator agent first generates a
group of ConsistentCP agents, one for each site, and dispatches them to their
corresponding sites. Algorithm 2 describes the operation carried out by a

212 DISTRIBUTED CONTROL

ConsistentCP agent. When the ConsistentCP agent arrives at the remote site, it
will monitor the local process to see whether there are any messages sent after
its last checkpoint. If so, it will request the local process to take a forced
checkpoint. Before the new local checkpoint is taken, the local process is not
allowed to send out any new messages. After taking a forced checkpoint, the
ConsistentCP agent sends back a complete_message to the coordinator agent.
The coordinator agent will then send start_message to all remote sites and
processes start the normal execution again.

Next we describe the recovery algorithm. When a process p recovers from
a failure, the agent associated with the process, called CPMaster, initiates a
rollback recovery. Agents associated with the processes that are in the global
recovery line will be informed and need to participate in the rollback. The
coordinator agent stores the recovery line at each site it visited. When the
CPMaster initiates a rollback recovery, if the coordinator agent is in the middle
of calculating the most up-to-date recovery line, it will inform CPMaster to
wait. When the CPMaster agent receives the global recovery line, it will send a
recovery_message to each site involved with the recovery, which contains the
latest consistent checkpoint number of that site. Upon receiving recovery_
message, the participating process will roll back to the consistent checkpoint.
Then it will send back a recovery_complete message to the CPMaster agent
which in turn waits until a recovery_complete message is received from all
participating processes. Then, CPMaster will send restart_message to all the
participating sites so they can restart their execution.

A common approach to garbage collection is to identify the recovery line and
discard all information relating to events occurring before that line. To reclaim
the space from the message receiving tables and local checkpoints, the coordinator
agent may decide what data can be discarded. After obtaining the most up-to-date
recovery line, any message header files and local checkpoints recorded before the
current recovery line are deemed useless and can be safely garbage collected.

8.5.2 Performance Evaluation

The MA-enabled checkpointing and rollback algorithms proposed in this
section have been implemented in the MAWSG simulator. An evaluation study
has been carried out to demonstrate the effectiveness of the proposed algo-
rithms. Experiments were set to measure the actual number of rollbacks upon
failure, the probabilities for the actual number of rollbacks by each process to
exceed the threshold Maxrb, the probabilities for delay in the detection of global
recovery lines, and the number of forced checkpoints. In all experiments, each
process takes 50 local checkpoints independently at random times. The
threshold of the maximum number of rollbacks allowed for each process is
set to be 2, 4, 6, 8, and 10, each used for 20 runs. Processes are randomly chosen
to terminate to generate scenarios of failure and recovery.

Figure 8.13 compares the maximum number of checkpoints rolled back for a
system failure with the traditional independent checkpointing method. The

8.5 MOBILE AGENT–ENABLED SCHEME FOR CHECKPOINTING 213

results show that the hybrid approach performs better and is effective. From
the figure, it can be observed that, for the independent checkpointing method,
the maximum number of checkpoints rolled back upon failure increases sig-
nificantly as the number of processes increases. In our hybrid algorithm, the
maximum number of checkpoints needed to roll back is guarded by the user-
defined parameter Maxrb.

Using only one coordinator agent may result in delay in the detection of
recovery lines. Due to the delay in forming the recovery line, the actual number
of rollbacks can be larger than Maxrb, but not significantly, as observed from
Figure 8.13. Figure 8.14 depicts the results of the experiments measuring the
probability for the actual number of checkpoints rolled back to exceed Maxrb.
Even with 10 processes, the average probability of the actual rollback per-
formed by each process is less than 0.09. Figure 8.15 illustrates the probability
that, upon recovery, the actual recovery line used is not the most recent
recovery line that can be possibly identified if no delay is incurred. The results
are obtained from experiments with Maxrb¼ 4 with the number of processes
ranging from 3 to 10. We can see that on an average, less than 10% of the
recovery lines used for the restart agent exceed the specified maximum.

The last set of experiments was performed to measure the overhead of the
proposed algorithms in terms of taking additional forced checkpoints. We set
Maxrb¼ 2 and the number of processes ranges from 3 to 10. From Figures 8.16
and 8.17, it can be observed that the number of forced checkpoints in the
system is not closely related to the number of processes. This is because

22

20

18

16

14

12

10

8

6

4

2

0
3 4 5 6 7 8 9 10

Number of processes

M
ax

im
um

 n
um

be
r

of
 c

he
ck

po
in

t r
ol

lb
ac

ks
Independent

Maxrb = 6

Maxrb = 2

Maxrb = 8

Maxrb = 4

Maxrb = 10

FIGURE 8.13 Actual number of rollbacks performed by each process.

214 DISTRIBUTED CONTROL

the forced checkpoints taken highly depend on the normal checkpointing
patterns of the local processes.

8.6 CONCLUSION

In this chapter, we have proposed a novel MA-enabled framework, called
MAWSG, to design distributed system functions for MA-enabled high-
performance Web server groups. By high performance, MAWSG has quick
response time for processing client-requested operations and provides highly
available and uninterrupted services in the presence of faults. Within the

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0
3 4 5

Number of processes
6 7 8 9 10

0.01

 P
ro

ba
bi

lit
y

FIGURE 8.15 Probability of nonmaximum recovery line.

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0
3 4 5

Number of processes
6 7 8 9 10

0.01

 P
ro

ba
bi

lit
y

FIGURE 8.14 Probability of checkpoint rollback beyond user-defined Maxrb.

8.6 CONCLUSION 215

MAWSG framework, cooperating MAs are used to develop algorithms for
various distributed control functions such as dynamic load sharing and repli-
cation management, mutual exclusion, and deadlock detection and consensus.
Cooperating MAs have shown that their benefits can be very useful to meet the
requirements of building flexible, adaptive, and high-performance distributed
system functions.

Since the MAs are able to execute asynchronously and autonomously, this
approach relieves the servers from having to wait for synchronization messages
from remote servers and eliminates large amounts of message passing required

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0
3 4 5

Number of processes
6 7 8 9 10

0.02

Pr
ob

ab
ili

ty

FIGURE 8.17 Probability of forced checkpoints taken within 50 checkpoints.

10

9

8

7

6

5

4

3

2

0
3 4 5

Number of processes
6 7 8 9 10

1

N
um

be
r

of
 c

he
ck

po
in

ts

FIGURE 8.16 Average number of forced checkpoints taken within 50 checkpoints.

216 DISTRIBUTED CONTROL

in traditional algorithms. In this chapter, we demostrate the feasbility of the
MAWSG framework by a fully distributed dynamic load-balancing scheme, a
distributed consensus, and a checkpointing and rollback scheme. The results of
the experiments showed that the proposed algorithms are effective with good
performance.

REFERENCES

1. V. A. Pham and A. Karmouch, Mobile software agents: An overview, IEEE

Commun. Mag., July 1998, pp. 26–37.

2. D. B. Lange and M. Oshima, Seven good reasons for mobile agents, Communi.

ACM, 42(3):88–89, 1999.

3. N. Minar, K. H. Kramer, and P. Maes, Cooperative mobile agents for dynamic

network routing, in A. L. Hayzelden and J. Bigham (Eds.), Software Agents for

Future Communication Systems, Springer, New York, 1999.

4. J. Cao, X. Wang, and S. K. Das, A framework of using cooperating mobile agents

to achieve load balancing in distributed Web server groups, in Future Generation

Computer Systems, Vol. 20/4, 2004, pp. 591–603.

5. J. Cao, Y. Sun, X. Wang, and S. K. Das, Scalable load balancing on distributed Web

servers using mobile agents, J. Parallel Distributed Comput., 63(10): 996–1005, 2003.

6. J. Cao, A. T. S. Chan, and J. Wu, Achieving replication consistency using

cooperating mobile agents, in Proceedings International Workshop on Wireless

Networks and Mobile Computing (held in conjunction with the International

Conference on Parallel Processing—ICPP’01), Valencia, Spain, Sept. 2001, IEEE

Computer Society Press, pp. 453–458.

7. J. Cao, X. Wang, and J. Wu, A mobile agent enabled fully distributed mutual

exclusion algorithm, in Proceedings 6th IEEE International Conference on Mobile

Agents (MA’02), Spain, Oct. 2002, Lecture Notes in Computer Science, Vol. 6,

Springer, 2002, pp. 138–153.

8. J. Cao, G. H. Chan, W. Jia, and T. Dillon, Checkpointing and rollback of wide-

Area distributed applications using mobile agents, in Proceedings IEEE 2001

International Parallel and Distributed Processing Symposium (IPDPS2001), San

Francisco, CA, Apr. 2001, IEEE Computer Society Press, pp. 1–14.

9. J. Cao, J. Zhou, W. Zhu, D. Chen, and J. Lu, A mobile agent enabled approach for

distributed deadlock detection, in Proceedings 3rd International Conference on Grid

and Cooperative Computing (GCC’04), Wuhan, China, Oct. 21–24, 2004.

10. J. Cao, X. Wang, S. Lo, and S. K. Das, A consensus algorithm for synchronous

distributed systems using mobile agent, in Proc. 2002 Pacific Rim Int’l Symposium

on Dependable Computing (PRDC’02), Tskuba, Japan, Dec. 2002, IEEE Computer

Society Press, pp. 229–236.

11. D. B. lange and M. Oshima, Programming and Deploying Java Mobile Agents with

Aglets, Addison Wesley, Reading, MA, 1998.

12. X. Li, J. Cao, and Y. He, A direct execution approach to simulating mobile agent

algorithms, J. Supercomput. 29(2):171–184, 2004.

13. N. Lynch, Distributed Algorithms, Morgan Kaufmann, San Francisco, CA, 1996.

REFERENCES 217

14. B. Charron-Bost and A. Schiper, Uniform consensus harder than consensus,

Technical Report DSC/2000/028, École Polytechnique Fédérale de Lausanne,

Switzerland, May 2000.

15. M. J. Fischer, N. Lynch, and M. S. Paterson, Impossibility of distributed consensus

with one faulty process, J. ACM, 32(2):374–382, 1985.

16. M. Pease, R. Shostak, and L. Lamport, Reaching agreement in the presence of

faults, J. ACM, 27(2):228–234, 1980.

17. N. Shivaratri, P. Krueger, and M. Singhal, Load sharing policies in locally

distributed systems, IEEE Computer, 25(12):33–44, 1992.

18. T. L. Casavant and J. G. Kuhl, A taxonomy of scheduling in general-purpose

distributed computer systems, IEEE Trans. Software Eng., 14(2):141–153, 1988.

19. Y. Wang and R. Morris, Load sharing in distributed systems, IEEE Trans.

Computers, C-34(3):204–217, 1985.

20. R. Mirchandaney, D. Towsley, and J. A. Stankovi, Adaptive load sharing in

heterogeneous systems, in Proceedings IEEE 9th International Conference on

Distributed Computing Systems (ICDCS), 1989, pp. 298–305.

21. D. Eager, E. Lazowska, and J. Zahorjan, A comparison of receiver-initiated and

sender-initiated dynamic load sharing, Perform. Evalu., 6(1):53–68, 1986.

22. P. Krueger and M. Livny, A comparison of preemptive and non-preemptive load

distributing, Proceedings 8th International Conference on Distributed Computing

Systems, 1988, pp. 123–130.

23. J. Cao and K. C. Wang, An abstract model of distributed rollback recovery control

algorithms, ACM Operating Syst. Rev., 26(4):62–77, Oct. 1992.

24. E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson, A survey of rollback-

recovery protocols in message-passing systems, Technical Report CMU-CS-99–148,

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, Oct.

1999.

25. B. Randell, System structure for software fault tolerance, IEEE Trans. Software

Eng., SE-1(2):220–232, 1975.

218 DISTRIBUTED CONTROL

9 Distributed Databases
and Transaction Processing

EVAGGELIA PITOURA

University of Ioannina, Ioannina, Greece

PANOS K. CHRYSANTHIS

University of Pittsburgh, Pittsburgh, Pennsylvania, USA

GEORGE SAMARAS

University of Cyprus, Cyprus

9.1 INTRODUCTION

Mobile software agents have been used to provide an alternative way of
implementing distributed applications. Mobile agents are programs that may
be dispatched from a client computer and transported to a remote server
computer for execution [1].

Software systems built using mobile agents allow flexibility in designing
applications and extensibility, since mobile agents can be launched without
requiring any preinstallation besides the existence of an efficient execution
platform to host agents. They support an asynchronous mode of operation,
which can be useful with intermittent connectivity, as is often the case with
mobile wireless computing. Mobile agents may also reduce the communication
overhead by moving the computation closer to the data. Another major
advantage of mobile agents is that agents can roam the network to collect
information, thus offering an attractive way to discover data in unknown
networks.

The goal of this chapter is to provide an overview of the use of mobile agents
in distributed database systems and applications. Mobile agents have been used
to derive extended database architectures that divide functionality between
database clients and servers in a more flexible way than the one achieved by
traditional client�server approaches. In these approaches, mobile agents have

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

219

been deployed for both distributed query processing and processing of updates.
The use of mobile agents allows easy parallelization of the query-processing task
and reductions in communication by processing data locally at their sources.
However, it makes the problem of maintaining data consistency in the presence
of updates more challenging. Database transaction models and protocols have
been used toward providing correctness properties to agent execution.

This chapter is structured as follows. In Section 9.2, we consider agent-based
software architectures and their application in database management systems.
In Section 9.3, we show how agents can be used to assist in processing queries.
The focus of Section 9.4 is on transactional mobile agents. The chapter con-
cludes in Section 9.5 with a short summary.

9.2 MOBILE AGENT ARCHITECTURES FOR DATABASE ACCESS

In this section, we first present a number of software architectures for dis-
tributed systems ranging from simple client�server configurations to archi-
tectures involving various middleware components and mobile agents. Then,
we focus on the applications of these software architectures to database man-
agement systems (DBMSs). In general, mobile agents are used in these archi-
tectures to support more extensible designs and efficient database access from
thin clients and through wireless communications.

9.2.1 Agent-Based Software Architectures

Various software models have been proposed to support wireless computing
[2]. Most extensions of the client�server (c/s) model introduce stationary
software agents between the client and the server. These agents alleviate
the constraints of the wireless communications by performing various com-
munication optimizations to reduce data transmission. They also support
disconnections by deploying caching at the client and by queuing requests and
responses during periods of disconnections. Further, to address resource con-
straints of thin mobile clients, these agents undertake part of the functionality
of the resource-poor mobile clients.

A popular extension of the c/s model is a three-tier or client�agent�server
(c/a/s) architecture that introduces a server-side agent (Figure 9.1a). The server-
side agent either acts as a complete surrogate of the client on the fixed network
or is associated with a specific service or application (such as a database or Web
service). In the former case, any communication between the client and the
server is through the agent, while in the latter, the agent is responsible only for
the interactions related to the specific service. These middleware agents split the
interaction between mobile clients and servers into two parts, one between the
server and the agent and the other between the agent and the client allowing for
optimizing and customizing them. However, such agents can directly optimize
data transmission over the wireless link only from the server to the client and

220 DISTRIBUTED DATABASES AND TRANSACTION PROCESSING

not vice versa. Furthermore, they cannot hide any potential network dis-
connections from the client.

To address these issues, the client�agent�agent�server (c/a/a/s) or
client�intercept�agent (c/i/s) model introduces an additional agent deployed at
the client device (Figure 9.1b). This way it is possible to optimize the com-
munication from the client to the server as well. The client-side agent can also
hide disconnections by caching data locally and by queuing requests that
cannot be serviced immediately. This model also provides upward compati-
bility, since the agent pair is transparent to both the client and the server.
Further, the pair of agents can adaptively split work among the client and the
server based on the current availability of communication and computation
resources.

Besides middleware approaches that introduce stationary agents on the path
between the mobile client and the server, mobile agents have also been used to
accomplish tasks required by clients, in particular in the case of mobile clients.
In such architectures, mobile agents are dispatched by the (mobile) clients to
perform a requested task by contacting one or more servers (Figure 9.2).By
delegating the responsibility for executing a task to a mobile agent, the burden
of computation is shifted from the resource-poor client to the fixed network.
Further, mobile agents can migrate to follow the pattern of movement of the
clients that submit them. Mobile agents can also migrate among servers until
the requested task is fulfilled. Finally, such architectures support asynchronous
communication which is appropriate in wireless communications.

Mobile agents are orthogonal to the extended client�server models, in the
sense that mobile agents can be used not only with the c/s but also with the c/a/s
and the c/i/s models. In this case, any of the components (i.e., the server, client,
or agent components) of the extended model can launch mobile agents to
accomplish part of their functionality or to communicate with the other com-
ponents, thus enhancing the flexibility of the models. For instance, the pair of

Application client

Application client Client-side
intercept agent

Agent

Server-side
intercept agent

Mobile host

Mobile host

Application server

Application server

Fixed networkWireless link

(a)

(b)

FIGURE 9.1 Extension of the client�server architecture: (a) client�agent�server and

(b) client�intercept�server model

9.2 MOBILE AGENT ARCHITECTURES FOR DATABASE ACCESS 221

agents of the c/i/s model may communicate with each other through mobile
agents instead of simple messages or remote procedure calls (RPCs). We shall
call the agents used for communication between the system component mes-
senger agents. Finally, note that it is possible to use mobile agents to implement
the agents of the c/a/s and the c/i/s models. For example, the server-side agent
may be implemented as a mobile agent so that it can roam within the fixed
network to remain close to its corresponding clients.

9.2.2 Mobile Agents for Web Database Access

Various extended client�server models using messengers have been used to
provide efficient Web database access [3, 4]. The c/s with messenger model for
database access employs mobile agents between the client interface and the
database server machine.

The messenger, called DBMS-agent, provides support for database con-
nectivity, processing, and communication. In particular, a DBMS-applet at
the client creates and launches one or more mobile DBMS-agents that move
to the database server. At the database server, a DBMS-agent initiates a local
database driver, connects to the database, and performs any queries specified
by the client. Upon completion of the queries, the DBMS-agent dispatches
itself back to the client.

By using DBMS-agents to encapsulate the interaction between the client and
the database server, the client applet remains lightweight and portable. Spe-
cifically, there is no need to download and initialize any drivers at the client;
instead the DBMS-agent can at run time select and load the appropriate drivers
from those available at the server side. Furthermore, the effect on performance
is significant. Experiments conducted using IBM’s Aglets platform show per-
formance improvements by a factor of 2 in the case of wireless and dial-up
environments.

To avoid the overhead of creating a mobile agent per database request, the
adaptation of the c/a/s with messenger model for Web database access creates a

Application client

Application server

Application server

Application server

Mobile host

Fixed networkWireless link

Mobile
agent

Mobile
agent

Mobile
agent

Mobile
agent

FIGURE 9.2 Client�server model with mobile agents acting as messengers.

222 DISTRIBUTED DATABASES AND TRANSACTION PROCESSING

database-specific agent at the server side (Figure 9.3). In particular, at the
first database request, the client creates a mobile agent that is sent and parked
at the database server. The parked database agent materializes the agent of the
c/a/s model. Database connectivity is now the responsibility of this parked
database agent. A database connection is established and maintained for the
whole duration of the client interaction, thus eliminating the limitation of the c/s
with messenger approach that requires creating one connection per request. To
submit queries, a messenger agent, called DBMS-messenger, is created by
the client. The responsibility of the DBMS messenger is to transfer the queries
and their results between the client and the parked database agent or agents.
The introduction of the parked database agent results in additional performance
improvements even in fixed networks.

Communication through messenger agents allows flexibility as the agents
can roam the network to collect information before they reach their destina-
tion. However using messengers introduces considerable overheads over a
simple c/a/s approach that uses messages instead of mobile agents. To avoid
such overheads, the messenger agent can be replaced by two types of messages.
The first type is delivered from the DBMS-applet to the parked database agent
and contains the query. The second type is delivered from the parked database
agent to the DBMS-applet and contains the results of the last query.

Employing the c/i/s model introduces a database-specific agent at the mobile
client as well. While the server-side agent might serve multiple clients, the client-
side agent is unique to the client. The functionality of the client-side agent may
include various optimizations such as client-side view materialization, caching,
and queuing of queries during disconnections. The client-side agent can also be
implemented as a mobile agent created at the time of the first database request.
Again, communication can be performed through either messages or mobile
agents, that is, messengers.

DBMS-agents can be launched to query multiple databases in parallel. The
agents are launched to different hosts and cooperate with each other to perform
their tasks. The simplest approach is for the DBMS-applet to create multiple
agents, one per database query, and be itself responsible for combining the
results. Alternatively, it can create a coordinator query agent that is assigned
the responsibility of creating the agents and receiving and manipulating any
intermediate results. In this case, only the final result is reported to the applet.

DBMS-applet

Parked database
agent

Application server
(DBMS)

Web client

Fixed networkWireless link

DBMS
messenger

DBMS
messenger

FIGURE 9.3 The c/a/s with messengers for Web database access.

9.2 MOBILE AGENT ARCHITECTURES FOR DATABASE ACCESS 223

This model can also be extended to work with parked agents, one per database
server. The coordinator query agent launches agents that roam among the
parked agents.

A comparison of implementing Web-based access using two different mobile
agent platforms, namely, IBM’s Aglets and Mitsubishi’s Concordia, is pre-
sented in [4]. The two agent platforms were used to implement all client�server
variations using either messenger agents or simple messages. In addition,
Concordia service bridges were used as an alternative nondynamic way of
materializing the parked database agent. Service bridges present an efficient
approach to provide services to incoming agents at the server side but lack the
flexibility of “parking” the agent dynamically at run time and allowing this
agent to negotiate which services to provide. The comparison of the imple-
mentations of the models is based on simple microbenchmarks and more
elaborate application kernels along the lines of [5]. Microbenchmarks are short
codes designed to isolate and measure basic performance properties. In the case
of Web database access, microbenchmarks include the overhead of creating
and launching messenger agents, the overhead of just creating and posting
messages, and the overhead of agent roaming. Application kernels correspond
to short synthetic codes designed to measure the basic performance properties
of the application frameworks of interest, in this case, of the various models for
Web database access. In summary, the Aglets workbench outperforms Con-
cordia for the first query, while Concordia outperforms Aglets in subsequent
queries. In general, Concordia provides better scalability and robustness, while
Aglets offers improved flexibility.

Finally, [6] compares an implementation of the c/a/s with messenger
approach using the Aglet platform with other Java-based approaches with
respect to (a) performance, expressed in terms of response time under different
loads, and (b) programmability, expressed in terms of the number of system
calls at the client and server side.

9.2.3 Peer-to-Peer Computing

Recently, peer-to-peer (p2p) computing has attracted a lot of attention, mainly
as a means of sharing files among dynamically formed communities of users [7].
In a p2p system, there is no clear distinction between servers and clients; instead
each node acts both as a server offering data and as a client requesting data.
Nodes can enter and leave a p2p system dynamically.

There are similarities in the issues addressed in agent-based systems and in
p2p computing [8, 9]. From one point of view, p2p networks can be used to
provide an infrastructure for deploying multiagent systems. From a modeling
and design perspective, the concept of an agent and its associated properties
(such as autonomy, reactivity, proactiveness, and social ability) can be
understood as an extension of a peer.

The various agent-enhanced client�server models for database access are
directly extensible to the peer-to-peer model. PeerDB [10] is such a network of

224 DISTRIBUTED DATABASES AND TRANSACTION PROCESSING

database-enabled nodes. Each PeerDB node includes a database server and a
database agent called DBAgent. The DBAgent encapsulates the functionalities
of both the client- and the server-side agent of the c/i/s model. Each peer
DBAgent has a master agent that manages the queries of the user. It clones and
dispatches messenger or worker agents to neighboring nodes to collect infor-
mation. Each worker agent is dispatched to the appropriate node. Answers to
each query are returned directly to the master agent. Upon receiving answers,
the master agent combines them and returns any results to the user. The master
database agent also monitors statistics and manages reconfiguration policies.
Other components of the architecture include a cache manager and a user
interface component.

9.3 QUERYING WITH AGENTS

In this section, we focus on deploying mobile agents for answering queries.
First, we discuss how the various stages of query processing can be assigned to
mobile agents. Then, we focus on the topic of view materialization.

9.3.1 Query Processing

Query processing refers to the steps taken toward executing a database query
which is most commonly expressed in some relational language, such as Struc-
tured Query Language (SQL). In centralized database systems, query processing
is generally structured in three logical steps: (1) parsing, (2) rewriting and opti-
mization, and (3) execution. In the first step, the query is parsed and translated
into an internal representation. Then, query rewriting transforms the query by
carrying out optimizations that are good independently of the physical state of
the system, for example, the size of the relations or the presence of indexes. The
rewritten query is then optimized using information from the system catalog
including various statistics about the size of data and the system state. The output
of the query optimizer is a queryplan that specifies precisely how thequery is to be
executed. Finally, the query is executed by the query execution engine.

In distributed query processing, database relations, called global, are frag-
mented and distributed at various nodes. After the query involving global
relations has been parsed, it is rewritten so that each relation in the query is
replaced by the various fragments of the relation; this step is called localization.
Localization results in a number of subqueries each involving relations at a
single site. It is assisted by a system catalog that provides information regarding
the way the relation is fragmented and the sites where each fragment is located.
Subsequently, the query is rewritten and optimized globally. Each subquery
involving a single site is submitted to the site and executed there. The results of
the subqueries are then combined to form the final query answer.

Mobile agents may be employed to implement the various steps of query
processing. Rather than providing additional functionality, mobile agents offer

9.3 QUERYING WITH AGENTS 225

an alternative implementation platform for query processing that may be more
efficient, easier to implement, and more extendable. In general, a single query
agent can be created to coordinate the overall query execution and one worker
mobile agent may undertake the execution of each subquery. By having one
worker agent per subquery, various parts of the queries may be executed in
parallel. Further the worker agent responsible for each subquery may perform
locally any possible optimizations of the results attained so that the amount of
data returned to the coordinator agent are reduced. Variations of this simple
scheme are also possible; for example, instead of a single coordinator agent that
collects the results of all worker agents, many intermediate coordinator agents
may be spawned to combine the results of the subqueries incrementally. Fur-
ther, in the absence of a global catalog, a mobile catalog agent may be used to
roam the network and collect information regarding the various database
fragments and their location to assist localization.

Next, we present a number of approaches that use various groups of
cooperating agents for query processing.

9.3.1.1 Web Access to Multidatabases
In the mulidatabase framework of [3], DBMS-aglets are launched to query
multiple Web-accessible databases. The DBMS-applet at the Web client creates
a coordinator DBMS-aglet that is dispatched to the fixed network most likely
to a Web server. This aglet dynamically creates and dispatches to several target
sites a variable number of DBMS-aglets to work in parallel. The coordinator
DBMS-aglet is also responsible for receiving and manipulating the intermediate
results provided by the various DBMS-aglets. Only the final result is reported
to the DBMS-applet. This approach serves the objective of keeping the client
lightweight, since the coordinator DBMS-aglet does not necessarily reside on
the client. Instead, processing can be done remotely with only the final result
transmitted to the client.

When processing of multiple sets of queries is expected, the coordinator
DBMS-aglet can be extended to create and submit parked DBMS-aglets
instead of DBMS-aglets. Thus, at the submission of the first set of queries, a
network of parked mobile agents is created. The coordinator DBMS-aglet uses
this infrastructure of parked agents already set up to process any subsequent set
of queries. If a subsequent query needs to access a new site, the coordinator
aglet may choose, based on the current system conditions, either to create a new
aglet or to instruct a nearby one to move to the new site and execute the query.
In the latter case, the query is sent to the existing aglet along with the move
instruction. Instead of waiting to receive all results, the coordinator agent may
employ multithreading to receive and manipulate results in parallel.

9.3.1.2 PeerDB
PeerDB [10] provides support for querying a dynamically formed network of
database-enabled nodes where each node serves as both a database client and
server. There is no catalog information available; thus information regarding

226 DISTRIBUTED DATABASES AND TRANSACTION PROCESSING

the location of the various relation fragments must be collected before the
query is rewritten. To this end, query processing is performed in two phases. In
the first phase, a relation-matching strategy is applied to locate relations of
interest. These relations are returned to the query node, allowing the user to
select the appropriate relations. In the second phase, the queries are submitted
for execution to nodes containing the selected relations. Note that the two
phases can be interleaved providing the user with intermediate results. Both
phases are assisted by agents.

For the first phase, PeerDB adopts a flooding strategy: a query for relations
is forwarded to the neighbors of the query node, which in turn forward the
query to their own neighbors, until a specified maximum number of steps is
reached. In particular, when a user issues a query (SQL-like selection query), a
master (i.e., coordinator) agent is created to oversee the evaluation of the
query. The agent parses the query, clones relation-matching agents, dispatches
them to all neighbors of the node, and waits for their replies. When a relation-
matching agent arrives at a node, it searches the local catalog of the node and
returns promising relations to the master agent. If the maximum number of
steps is not reached, the relation-matching agent clones more relation-matching
agents and dispatches them to the neighbors of the current node; otherwise, the
agent is dropped. Upon receiving any answers, the master agent returns them to
the users for selection.

In the second phase, the master agent clones one worker agent for each
relation selected during the first phase. Each worker agent reformulates the
query so that it matches the schema at the target node. If the target relations are
found locally, the worker agent submits a reformulated SQL query to the local
DBMS. If the target relations are on a remote node, then the worker agent
is dispatched to this node, reformulates the SQL query, and submits it
to the DBMS of this node. Once the answers are retrieved, they are returned to
the master node directly. If the retrieved data need to be processed further
before being returned, then the worker agent performs this task as well (with
the code that it carries along) and returns only the summarized data. The
worker agent may then be dropped.

9.3.1.3 ACQUIRE
ACQUIRE (Agent-based Complex QUerying and Information Retrieval
Engine) [11] is a framework for querying heterogeneous and distributed data
sources. ACQUIRE implements the following three phases. In the first phase, a
user query is decomposed (i.e, localized) appropriately into a set of subqueries
using site and domain models of the distributed data stores. In the second
phase, an optimized plan is created for retrieving answers to these subqueries
over the Internet and a set of intelligent mobile agents is spawned to delegate
these tasks. During the last phase, the answers returned by the mobile agents
are merged and returned to the user.

The system was tested on simulated NASA Earth Science data sources under
three test conditions. In the first condition, multiple mobile agents were

9.3 QUERYING WITH AGENTS 227

spawned (one for each data source) using an ACQUIRE decomposition and
planning system. The second condition also used the standard ACQUIRE
retrieval mechanism, except that a single hopping mobile agent was used to
retrieve data by visiting each data source in turn. Finally, a reference case was
conducted in which the planning, optimization, and remote data-processing
features were disabled; thus all data required for the query was transferred to
the host application without any remote data processing. However, data were
still retrieved by ACQUIRE mobile agents. The best performance was attained
by the multiple mobile agents case, since data were processed and retrieved in
parallel, whereas the single agent was required to retrieve data in a serial
manner. The reference case required the most time and had a much larger total
download size than either of the two other methods.

Instead of using multiple single-hop agents that move to a site, retrieve some
data, and return to the coordinator, ACQUIRE also suggests to allow agents to
send data to other data sources (via the mobile agent agencies located there)
rather than sending all retrieved data to a single coordinator. Furthermore,
adaptive query optimization is proposed. Typically, query optimization is
static, that is, an optimized execution order of the subqueries (and thus the
itinerary for the corresponding agents) is determined at query planning and
remains unchanged during query execution. The query optimization method in
ACQUIRE has been enhanced to dynamically optimize the retrieval strategy as
it is carried out. This requires equipping each spawned agent with the full query
execution plan instead of just the part delegated to it as well as with the nec-
essary code to execute the retrieval plan at any data site in the network. The
spawned agents communicate, collaborate, and negotiate with each other to
dynamically decide where to migrate, send data, and perform necessary com-
putations to complete query execution. These decisions depend on current
conditions such as network speed, data size, and the computational capabilities
of the data servers and agents involved in the retrieval. For example, an agent
that finishes retrieval earlier than other agents producing a small-size dataset
may decide at run time to migrate to the site of another agent to complete there
a computation that requires data produced by both agents.

9.3.1.4 PaCMAn
Employing mobile agents for query processing can be seen as a specific instance
of a general framework of executing complicated tasks in parallel using
mobileagents. Sucha framework isprovidedbythePaCMAn(ParallelComputing
with Java Mobile Agents) middleware [12]. PaCMAn launches multiple Java
mobile agents that communicate and cooperate to solve problems inparallel. Each
mobile agent can travel anywhere in the network to perform its tasks.A number of
brokers/load forecasters keep track of the available resources and provide load
forecasts to clients. Clients select the servers that they will utilize based on their
specific resource requirements and the load forecast. The PaCMAn mobile
agents are modular; the mobile shell is separated from the specific task code of
the target application. This is achieved through TaskHandlers, which are Java

228 DISTRIBUTED DATABASES AND TRANSACTION PROCESSING

objects implementing a particular task of the target application. TaskHandlers are
dynamically assigned toPaCMAn’smobile agents. In the caseof queryprocessing,
TaskHandlers perform the task of data connection and retrieval.

As in ACQUIRE, the implementation of query processing using PaCMAn
was tested for a mode in which a single agent moves from database server to
database server gathering and joining all results and for a mode in which there
is one agent per subquery, that is, one agent per database server. In addition, a
third mode was implemented in which, instead of having a single coordinator
agent joining all results, the results are joined in a tree reduction order. Using
multiple agents achieves a considerable speedup over the case of a single agent
which corresponds to a serial execution. The additional improvement of using
multiple coordinators comes from the extra parallelism attained during the
result join phase.

9.3.1.5 Location-Dependent Queries
Adistributed architecture based onmobile agents has also been proposed for the
continuous processing of location-dependent queries [13]. In the proposed
architecture, a set of fixed computers, called proxies, manage the location
information of moving objects within a certain geographic area, called proxy
area. For example, in a cellular network, a proxy area is obtained as the union of
the coverage areas of one or base stations. At each proxy, a data management
system (DMS) module is in charge of storing and providing location data about
movingobjectswithin that proxy area.Mobile agents are used to track interesting
moving objects, optimize the wireless part of the communication, and adapt to
themovement of relevantobjects.Eachcontinuous locationquery is parsed into a
set of standard queries about the location of objects referenced in the query.

A QueryMonitor agent is created for each location query at the query
submission site. The QueryMonitor agent sends a MonitorTracker mobile
agent to the proxy in charge of its location, which is the proxy that provides it
with wireless coverage. The MonitorTracker performs three main tasks:
(1) follows the monitor wherever it goes (moving from proxy to proxy with the
goal of staying close to the user), (2) stores any data requested by the user in
case of disconnection of the monitor, and (3) refreshes the data that the
QueryMonitor must present to the user minimizing wireless communications
with the monitor. For the third task, the MonitorTracker creates a Tracker
mobile agent to track the location of each reference object and process the
standard queries related to such a reference object.

Trackers perform three main tasks continuously: (1) stay on the proxy that
manages the location of its reference object, traveling from proxy to proxy when
needed inorder to request its location locally, (2) detect andprocess new locations
of its reference object by querying the corresponding DMS at its proxy, and
(3) detect and process, with the help of Updates agents, the location of target
objects that satisfy the constraints where such a reference object appears.

The Tracker agent creates one Updater agent on each proxy whose area
intersects the extended area of the reference object; these proxies are obtained

9.3 QUERYING WITH AGENTS 229

by querying a proxy catalog which stores information about the proxies [such
as their Internet Protocol (IP) address and proxy area]. Updater agents are
initialized with the corresponding standard query. The goal of Updaters is to
detect the location of target objects by executing its standard query against the
DMS on its proxy at the required refreshment frequency.

Every agent in the network correlates the results received from its underlying
agents and communicates its own results to its creator agent. Note that the only
wireless data transfer occurs at query initialization when the QueryMonitor
sends the MonitorTracker to the proxy of the monitor and at refreshment when
the MonitorTracker sends a new answer to the QueryMonitor.

9.3.2 View Materialization

In database systems, views are virtual relations defined using a query over a set
of stored database relations, called base relations. Views are used for security
reasons to allow specific parts of base relations to be hidden from users. Aside
from security considerations, views also allow the creation of personalized
collections of data that better match the interests of users. When the results of
the query that defines the view are stored, the view is called materialized.
A materialized view needs to be updated to reflect any changes at the base
relations. This process is called view maintenance.

Views Supported by Mobile Agents (ViSMA) [14] provides the functional-
ities of defining, materializing, and maintaining views over multiple data
sources by taking advantage of mobile agent technology. The role of mobile
agents in ViSMA is twofold: First, views are carried within mobile agents called
view agents (VAs) that may relocate themselves to reduce the distance from
users that frequently request them. Second, mobile agents are used for
migrating to a remote data source and locally execute update propagation and
query materialization operations, relieving remote clients and local data
sources from performing this task while saving network resources.

ViSMA is based on a multitier architecture including components at the
client, middleware, and data source site. ViSMA handles view definitions
consisting of select, project, and join (SPJ) queries as well as set operations over
SPJ queries. Views are categorized as simple or complex. A simple view can be
broken down to a sequence of SPJ operations that represent a linearized query
evaluation plan. Complex views consist of at least two simple views combined
with a set operator. Views can also be defined to extract data from a single data
source (single views) or from multiple data sources (multiviews). The user can
define a view to be either sharable or private. Sharable views are visible to all
ViSMA clients, while private views are available only to the clients that have
created them. Additionally, personalized views can be defined. Personalized
views are materialized subviews of existing views.

Client-side components implement the interface between the user and
ViSMA. At the middleware layer, the agents provide catalog information
regarding participating data sources and created views. With respect to views,

230 DISTRIBUTED DATABASES AND TRANSACTION PROCESSING

metadata include the view definition as well as the current location of the
mobile agent carrying the view. In particular, the ViSMA middleware server
consists of four types of agents: view dictionary agent (VDA), VA, data holder
(DH), and personal agent (PA). The VDA is the central coordinator agent.
Each time a user defines a view, the VDA creates a VA. A VA is responsible for
creating, materializing, and maintaining the view. A VA allows its materialized
view to be queried by external entities if the view is defined as sharable. Since
the VA is a mobile agent, its data are carried with it as it moves. Therefore, view
migration is achieved. When a VA is created, it also initializes and dispatches a
number of DHs to support the materialization and maintenance of its view.
The DHs created by a VA are configured in a hierarchy with the VA as the root.
Each DH in the hierarchy is responsible for handling a single view fragment.
The VA is responsible for combining the fragments and producing the final
view. The personal agent (PA) is a mobile agent that is used for creating per-
sonalized, nonsharable-subviews. It derives its subview from the view of a VA
and maintains its subview by issuing queries to the VA. The PA may com-
municate directly with its client and may move as its client moves.

Components at the data source site are agents that generally reside at a data
source location (e.g., at a remote database server location). These components
may be created at the ViSMA middleware server but they migrate and execute
the bulk of their operations at one or more data source locations. The com-
ponents at the data source site are two mobile agents, namely, the DBInfo
agent and the ViewEvaluator agent, and two stationary agents, namely, the
Assistant agent and the Monitor agent. The Assistant agent is a stationary
agent that maintains a pool of connections to the data source to serve visiting
agents. These agents provide transparent connectivity between the data sources
and the agents that require access to these data sources. Changes to data source
connectivity settings need only be made known to the corresponding Assistant
agent. The DBInfo agent migrates to the remote data source, collects its
metadata (schema and data types), and sends them to the VDA. The Monitor
agent is a stationary agent created and dispatched to a data source by a DH to
enable view maintenance. The Monitor agent parks at the remote site and
periodically resubmits queries to the data source and sends changes to the DH.
A view evaluator agent (VEA) is a mobile agent that is sent by a DH to roam
from one data source to another to collect the data required for the material-
ization of the view fragment for which the DH is responsible. A VEA incre-
mentally materializes the view fragment as soon as data are collected.

To cope with disconnected operation, view holders may use view versioning
to allow application sessions to access more current data without invalidating
work previously done [15]. A data validation process detects inconsistencies
with newer versions of data upon reconnection. Essentially, these agents
compute the period of time or consistency window, measured in versions, for
which the results of a mobile client application are consistent. Rules are sup-
plied that govern the creation and sharing of results and show how incon-
sistencies can be detected to offer a higher availability of data while organizing

9.3 QUERYING WITH AGENTS 231

and gracefully degrading the amount of consistency achieved between the
mobile clients and the data sources.

Because the view holder combines and computes the necessary derived data,
it is also able to offer different levels of view consistency between the data
available and the derived data given to the clients. Work in [16] considers ways
to customize view currency and discuss how they affect view consistency. Two
types of view maintenance algorithmic approaches are examined: (1) recom-
putational maintenance that constructs an entirely new version of a material-
ized view and (2) incremental view maintenance that allows updates to be
slowly incorporated within an existing version.

9.4 TRANSACTION MANAGEMENT

During execution, agents access their local data, data carried by other agents, and
data at the remote sites that they visit. Maintaining data consistency despite fail-
ures andunder concurrent executionofmanyprograms accessing them is the focus
of transaction management. In this section, we consider transaction management
in the case ofmobile agents.After a short introduction,we present issues related to
a fault-tolerant execution of agents. Then, we focus on transaction models for
agents and protocols for maintaining the transaction properties of agents even in
the case of failures.

9.4.1 Agents and Transactions

Transactions are used to model the execution of a program that accesses and
possibly modifies various data items. To ensure data integrity, transactions are
required to have the ACID properties, namely Atomicity, Consistency, Isola-
tion, and Durability [17, 18]. Atomicity guarantees that either all or none of
the operations of a transaction are executed, despite any failures. Thus, a
failure does not leave data in a state where a transaction is partially executed.
Consistency ensures that the execution of each transaction preserves the con-
sistency of data. Even though multiple transactions may be executed concur-
rently, isolation guarantees that each of the concurrently executing transactions
is unaware of the others; each transaction gets the same view as if it were the
only one executing in the system. Finally, durability ensures that, after a
transaction completes successfully, any modifications made by the transaction
are permanent and persist even if there are failures.

The ACID properties are maintained through a set of system protocols.
Concurrency control protocols schedule the operations of each transaction so as
to achieve isolation usually by employing locks or timestamps. Commit pro-
tocols are used to coordinate the execution of a transaction so that atomicity
and durability are ensured even in the case of failures. A commonly used
protocol for committing the results of transaction accessing distributed
resources is the two-phase commit (2PC) protocol. In the first phase of 2PC, all

232 DISTRIBUTED DATABASES AND TRANSACTION PROCESSING

participants of a transaction reply to a request to commit, either with an abort
or with a prepare-to-commit vote. In the second phase, the transaction is
committed only if all participants have replied with a prepare-to-commit vote.
Otherwise, the transaction is aborted. After a transaction is committed, its
results become permanent. The recovery manager guarantees atomicity and
durability in the case of failures, by ensuring that the data items are left in a
consistent state and modifications made by committed transactions are not lost.

In general, during its execution, a mobile agent accesses and modifies a
number of data items including its own and other agents’ data (internal agent
states) as well as data at the various sites that it visits (external states).
Attributing to the execution of an agent all or some of the ACID transaction
properties offers a systematic way to ensure integrity even in the case of
failures.

9.4.2 Fault Tolerance

In general, a mobile agent executes on a number of machines. In each machine,
a place provides the logical execution environment for the agent. During
the execution of an agent, the agent itself, the places that execute the agent, the
machines hosting the places, or the communication links may fail for a variety
of reasons. When a place fails, all agents running on it fail to continue their
execution. A machine failure causes all places and agents running on it to fail as
well. Finally, a communication link failure causes the loss of messages or agents
currently on transmission on this link. A desirable property of a mobile agent
system is fault tolerance, meaning that the system can provide its services even
in the presence of failures.

To avoid loss of information, in the case of an agent failure, an agent should
regularly checkpoint its state to stable storage. After a failure, the agent may be
retrieved from stable storage and computation may be restarted from the point
that the checkpoint was taken. For mobile agents, checkpoints may be taken,
for instance, when an agent arrives at a place and is maintained there until the
agent successfully completes its operation at this place, as, for example, in
Concordia [19]. Taking frequent checkpoints results in both faster recovery and
losing smaller parts of computation than taking less frequent ones; however, it
increases the cost of normal operation. For example, in the extreme case of
taking checkpoints only at the beginning of an agent computation at a place,
the associated overhead is small; however, the agent should be restarted
from the beginning of its execution at the place.

To avoid blocking, the method in [20] exploits another form of redundancy
in agents systems: the fact that a mobile agent can achieve a task in more than
one way. Alternative ways to accomplish a task are captured through nonde-
terministic constructs in the agent language. During the execution of the agent,
the actual computational path taken by the agent is maintained in its possible
computational tree. Upon detection of a failure, the recovery manager rolls
back computation and restarts the agent from a previous point in its

9.4 TRANSACTION MANAGEMENT 233

computational tree down to a different but equivalent computational path
without waiting for the actual failure to be repaired.

Restarting an agent may lead to multiple executions of the same operations.
This may be acceptable for idempotent operations, for instance, searching
for the best travel itinerary, but may lead to incorrect results in other cases, for
instance, when booking a hotel room. The exactly-once or safety property
requires that the code of an agent is executed only once.

Based on the number of failures that a system can mask, a t-nonblocking
system ensures that progress is made, that is, agent execution is not blocked,
despite the occurrence of up to t failures. A common way to avoid blocking is
by introducing redundancy through replication. Again, one potential problem
with replication is that it may lead to multiple executions of the same task and
thus to a violation of the exactly-once property. There are many forms of
redundancy. For instance, machines can be added to make it possible for the
system to tolerate the loss of some of its components. Similarly, additional
information such as extra bits can be included in communication protocols to
allow recovery from grabbled bits. There are two types of redundancy specific
to mobile agents: having more than one agent executing the same task and
replicating places.

In terms of replication at the agent level, a task may be assigned to a group
of agents instead of a single agent. In terms of replicating places, we may
distinguish three types of places, isoplaces, heteroplaces, and heteroplaces with
witnesses [21, 22]. Isoplaces correspond to traditional server replication, where
all places reflect the same state. The places run a replication protocol that
ensures consistency among the place replicas. Heteroplaces are not exact
replicas of each other, instead, they correspond to a set of places that all
provide similar services. Heteroplaces with witnesses are a generalization of
heteroplaces where only a subset of the places provide the service. The places
that do not provide the service are the witnesses. In general, a witness is a
place that can execute the mobile agent but does not provide the particular
service requested by the agent. Hence, the agent request fails, but the agent can
continue its execution despite an infrastructure failure of a place.

In the case of mobile agents, it is also important to provide exactly-once
delivery of an agent despite failures. Often fault-tolerant agent systems utilize
transactional message queues for communication. Transactional message
queues provide for persistent messages. They also ensure exactly-once delivery;
that is, once a queue manager has accepted a message, the message will be
delivered exactly once despite any node or communication failures. This is
ensured by performing the put-and-get queue operations within ACID
transactions.

The discussion above considered fail-stop failures, that is, failures that cause
a component to stop processing. Even more challenging are arbitrary failures
where no assumptions can be made about the behavior of faulty components.
For example, in this case, executing on a faulty place may alter the results of an
agent in a nondeterministic way. Further, a faulty place may interfere with the

234 DISTRIBUTED DATABASES AND TRANSACTION PROCESSING

execution of an agent even if the agent is never executed at this place, for
instance, by generating bogus agents that interfere with it. In this case, repli-
cation with voting can be used to mask the effects of executing an agent on a
faulty place or machine [23].

9.4.3 Transactional Models

In many applications, especially in the case of long-running transactions, it is
not possible or desirable to maintain all four ACID properties [24]. To address
such cases, a number of advanced transaction models have been proposed that
relax one or more of the ACID properties. Most often a transaction is viewed
as a collection of related subtransactions allowing the flexibility of specifying
the atomicity and isolation properties at the subtransaction level. In multilevel
transactions, modifications made by a subtransaction become visible to all
other subtransactions when it completes its operations. In nested transactions,
modifications made by a subtransaction become visible only to its parent (sub)
transaction when the subtransaction completes. In open nested transactions,
these results can also be made visible to other nonconflicting subtransactions.
A subtransaction may abort without forcing its parent to abort. Instead, the
parent transaction may ignore the subtransaction or invoke a compensating
transaction. Compensating transactions are transactions designed to semanti-
cally reverse the effects of another transaction. They are used whenever atomic
rollback is not possible because results have already been committed.

Open nested transaction models are more suitable for modeling the execu-
tion of mobile agents when compared to flat ACID transactions, since agent
computations correspond to long-running activities. In this case, the top-level
transaction of the nested transaction model corresponds to the overall mobile
agent execution. The overall agent execution is then divided into subtransac-
tions. Most commonly, each subtransaction corresponds to the execution of
the mobile agent at a single place. We call the execution of an agent at a single
place a step. Thus, the agent execution proceeds in a number of steps, each
one executed at a single machine. Note that some of the challenges regarding
agent transactions are similar to those also faced when supporting transactions
in mobile wireless computing [25].

In [22], transactional approaches are classified into commit-after-stage and
commit-at-destination protocols based on when the modifications made by an
agent become permanent and visible to other agents. The execution of an agent
is modeled as a sequence of stages where each stage corresponds to the exe-
cution of an agent at a single place. With commit after stage, modifications of
an agent are made permanent and visible immediately after each stage execu-
tion, while with commit at destination, modifications are committed after the
agent finishes its entire computation. A commit-after-stage execution corre-
sponds to an open-nested-transaction model where each subtransaction cor-
responds to a stage. A commit-at-destination execution corresponds to viewing
each agent execution as a flat ACID transaction. Commit-at-stage executions

9.4 TRANSACTION MANAGEMENT 235

are further classified based on whether the decision to commit is taken by a
single or multiple places.

The transaction model for agents in [26] provides the semantics of open
nested transactions. It is based on a single wandering agent moving from site to
site executing all tasks. Tasks either offer an external prepare-to-commit state
or not. Each local subtransaction (i.e., step) is executed as an ACID transac-
tion. The approach in [27] builds on the distributed transaction processing of
the Object Management Group (OMG) to guarantee exactly-once semantics
for the migration of a mobile agent, that is, of a step. The migration of an agent
is contained within a transaction.

A protocol for preserving the exactly-once execution property of mobile
agents in the case of failures is introduced in [28]. This is achieved by using
transactional message queues to implement steps as subtransactions. There is a
message queue at each place. Each place uses a get operation to remove an
agent from its input queue. Then, it executes the agent locally. Finally, it uses
put to place the agent directly to the input queue of the place to be visited next.
The get, execute, and put operations are executed within a transaction and
hence build an atomic unit. The protocol reduces the blocking probability
through heterospaces with witnesses. In particular, for each step, there is a set
of nodes, called a stage, that can perform the step. The nodes of a stage are
called observers and either provide the same or alternative services, in which
case they are called workers, or provide just an environment for running agents.
A voting algorithm along with a 2PC protocol is run among the observers of
each stage, so that a single worker is committed per step. This protocol is
extended in [29] with a mechanism to partial rollback of an agent. The mech-
anism is based on using savepoints (i.e., checkpoints) along with compensation
operations and considers both the internal state of the agent (i.e., its private
data) and the external state (i.e., data local at a place). The protocol is also
extended in [30] to allow for an agent to execute more than one (sub)transaction
at each step. Using a three-phase commit (3PC) protocol is suggested to avoid
the blocking problem of 2PC when the coordinator fails.

The transactional agents of [31, 32] are mobile agents whose task is to
implement transactional access to objects. A transactional mobile agent moves
through a number of machines and, locally at each machine, manipulates
a number of objects. In the case of two agents accessing the same object in a
conflicting manner, the two agents negotiate with each other on whether to hold
or release the object. When an agent leaves a machine, it creates a surrogate
agent and assigns it all its locks on objects in this machine. The surrogate agent
holds the locks until the agent finishes its execution. In the case that the
agent detects that the next place or machine to visit is faulty, it finds a new place
or machine to move. If the agent is faulty, its surrogate can create a new
instance of it or bypass it. The fact that the surrogate of an agent is faulty is
detected by some preceding surrogate and the faulty agent is again replaced or
ignored. Transactional agents implemented in Aglets are used to support
transactions in a relational multidatabase where objects correspond to relations.

236 DISTRIBUTED DATABASES AND TRANSACTION PROCESSING

The work in [33] shows how transaction support can be provided in a mobile
agent system. The focus is on applications in which resources change over time.
In this case, using multiple, mobile, and autonomous agents enables monitoring
resources, even those not known in advance, and reacting to changes in a very
flexible manner. Transactional support builds on the OMG Object Transaction
Service. A transaction involves a group of mobile agents where each mobile
agent is responsible for a subtask (subtransaction) that involves only one
resource. There are also compensating subtransactions per subtransaction
(resource) as well as contingency transactions that are used to specify alter-
native paths. Agents observe the resources in a preparation phase and execute
the actual transaction in a later phase. The goal is to minimize the probability
of aborts and rollback/compensation. This is similar to optimistic protocols or
preexecution protocols proposed for real-time systems. In general, the
semantics achieved are those of open nested transactions. In the case that all
resources are cooperative and offer an external prepare-to-commit state, then
the semantics of closed nested transactions can also be offered. Exactly-once
semantics are achieved for more than one step by performing all operations in
one global transaction.

In the general case, an agent does not just correspond to a sequence of
subtransactions (steps) each one executed at a single site. Instead, an agent may
model complex computational activities, with several dependencies among the
various parts (subtransactions) of an agent execution. The agent transaction
models of [34�36] aim at expressing such complex dependencies within the
agent as well as among agents.

The work in [34] introduces an object-oriented programming model for
representing the plan of an agent. A plan is modeled using workflows to rep-
resent the activities that comprise the plan and the control dependencies that
specify the order of execution of these activities. Special mediator nodes are
used to represent control flow activities, including an ANDSplit mediator
that spawns activities to be executed in parallel and an XORJoin mediator that
awaits a successful completion of one of its preceding activities; otherwise it
aborts. An activity may be defined as compensatable in which case it can commit
independently of other activities. A plan is carried out by assigning it to a
transactional mobile agent. The agent has access to its entire plan locally.
Control flow and transaction semantics are encapsulated by mediators. Trans-
action processing involves a forward and a backward process. The forward
phase is similar to the preparation phase of [33]. During the forward process,
mobile agents migrate to activity locations (places) to execute activities and to
mediators locally or to propagate an internal abort until the final activity is
reached. During the backward process, the agents return to these locations to
locally commit, abort, or compensate activities. The protocol is carried out by
the original agent and its clones. A transaction completes once its plan has a path
from the top to the final activity along which all activities complete successfully.

Similarly the work in [35, 36] allows the specification of control flow
dependencies both within a single agent, called intra-agent dependencies, and

9.4 TRANSACTION MANAGEMENT 237

among agents, called interagent dependencies. Intra-agent dependencies are
expressed through structural dependencies that define the flow of control
between the tasks of an agent. Interagent dependencies are based on break-
points that define points in the execution of an agent where the modifications
made by an agent can be made visible to other agents. Each agent encapsulates
a transaction manager that schedules its task according to the specified
dependencies and uses a timestamp-based concurrency control method to
ensure local serializability of all executions involving access to its own private
data. For accessing database resources, there is also a local database agent that
is responsible for all tasks involving access to the database that in addition uses
a ticket-based method [37] to ensure local serializability.

9.5 SUMMARY

In this chapter, we have discussed issues related to mobile agents and data-
bases. Several agent-based architectures have been developed to provide access
to multiple, distributed, and Web databases. The main advantages of these
architectures are as follows:

a. They can be deployed at run time, thus requiring minimum setup
and preinstallation as well as being easily adjustable to support new
components.

b. They can dynamically reallocate load among the various system
components.

c. They provide an asynchronous mode of operation and can minimize the
network by moving the computation closer to the data sources.

Mobile agents offer an ideal platform for developing cooperative compu-
tations including database ones. We have also shown how query processing can
be performed by groups of cooperating agents and discussed their applicability.

Finally, we have considered the challenging problem of data consistency
when mobile agents not only query data but update them as well. We have
discussed models and methods for the execution of agents with correctness
guarantees through transaction properties.

Besides the above advantages, an important concern with mobile agents is
the potential of compromising security by allowing foreign code to execute at a
machine. We have not discussed this issue in this chapter, since this is not
unique to database applications. Security in agent-based applications is a
general problem and a major challenge of the agent-based applications and
needs to be addressed at the level of the agent-based platform.

In conclusion, mobile agents may offer no advantage in database applica-
tions which are rather static and where simpler communication protocols with
small transmission overheads would suffice. However, mobile agents offer a
great promise for developing distributed, highly dynamic, and collaborative

238 DISTRIBUTED DATABASES AND TRANSACTION PROCESSING

database applications. Currently, there are no large-scale agent-based appli-
cations mainly because the use of mobile agents assumes the existence of an
efficient and secure agent platform to host mobile agents. We expect that large
mobile agent applications will be deployed soon in environments where security
is not an issue, for example, in processing data in emergency and disaster
management.

REFERENCES

1. D. M. Chess, C. G. Harrison, and A. Kershenbaum, Mobile agents: Are they a good

idea? in J. Vitek and C. Tschudin (Eds.), Mobile Object Systems—Towards the

Programmable Internet, Second International Workshop, MOS’96, Linz, Austria,

July 8�9, 1996, selected presentations and invited papers, Lecture Notes in

Computer Science, Vol. 1222, Springer, Berlin, Heidelberg, 1997, pp. 25�45.

2. C. Spyrou, G. Samaras, E. Pitoura, and P. Evripidou, Mobile agents for wireless

computing: The convergence of wireless computational models with mobile-agent

technologies, MONET, 9(5):517�528, 2004.

3. S. Papastavrou, G. Samaras, and E. Pitoura, Mobile agents for world wide web

distributed database access, IEEE Trans. Knowledge. Data Eng., 12(5):802�820, 2000.

4. G. Samaras, M. D. Dikaiakos, C. Spyrou, and A. Liverdos, Mobile agent platforms

for web databases: A qualitative and quantitative assessment, paper presented at

the 1st International Symposium on Agent Systems and Applications/3rd Interna-

tional Symposium on Mobile Agents (ASA/MA ’99), Palm Springs, CA, Oct. 3�6,

1999.

5. M. D. Dikaiakos and G. Samaras, Performance evaluation of mobile agents: Issues

and approaches, in R. R. Dumke, C. Rautenstrauch, A. Schmietendorf, and

A. Scholz (Eds.), Performance Engineering, Lecture Notes in Computer Science,

Vol. 2047, Springer, Berlin, Heidelberg, 2001, pp. 148�166.

6. S. Papastavrou, P. K. Chrysanthis, G. Samaras, and E. Pitoura, An evaluation of

the java-based approaches to web database access, Int. J. Cooperative Inf. Syst., 10

(4):401�422, 2001.

7. J. Risson and T. Moors, Survey of research towards robust peer-to-peer networks:

Search methods, Computer Networks, 50(17): 3485�3521, 2006.

8. M. Koubarakis. Multi-agent systems and peer-to-peer computing: Methods, sys-

tems, and challenges, in M. Klusch, S. Ossowski, A. Omicini, H. Laamanen (Eds.),

Cooperative Information Agents VII, 7th International Workshop, CIA 2003, Helsinki,

Finland, Aug. 27�29, 2003, Lecture Notes in Computer Science, Vol. 2782, Springer,

Berlin, Heidelberg, 2003, pp. 46�61.

9. G. Moro, A. M. Ouksel, and C. Sartori, Agents and peer-to-peer computing: A

promising combination of paradigms, in G. Moro and M. Koubarakis (Eds.),

Agents and Peer-to-Peer Computing, First International Workshop, revised and

invited paper, AP2PC 2002, Bologna, Italy, July, 2002, Lecture Notes in Computer

Science, Vol. 2530, Springer, Berlin, Heidelberg, 2002, pp. 1�14.

10. W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou, Peerdb: A p2p-based system for

distributed data sharing, in U. Dayal, K. Ramamritham and T. M. Vijayaraman

REFERENCES 239

(Eds.),Proceedings of the 19th International Conference onData Engineering (ICDE),

Bangalore, India, IEEE Computer Society, Washington, DC, USA,Mar. 5�8, 2003,

pp. 633�644.

11. S. Kumar Das, K. Shuster, C. Wu, and I. Levit, Mobile agents for distributed and

heterogeneous information retrieval, Inform. Retrieval, 8(3):383�416, 2005.

12. P. Evripidou, G. Samaras, C. Panayiotou, and E. Pitoura, The pacman metacom-

puter: Parallel computing with java mobile agents, Future Generation Comp. Syst.,

18(2):265�280, 2001.

13. S. Ilarri, E. Mena, and A. Illarramendi, Location-dependent queries in mobile

contexts: Distributed processing using mobile agents, IEEE Trans. Mobile Comput.,

5(8):265�280, 2006.

14. K. Karenos, G. Samaras, P. K. Chrysanthis, and E. Pitoura, Mobile agent-based

services for view materialization, Mobile Comput. Commun. Rev., 8(3):32�43, 2004.

15. S. Weissman Lauzac and P. K. Chrysanthis, View propagation and inconsistency

detection for cooperative mobile agents, in R. Meersman and Z. Tari (Eds.), On the

Move to Meaningful Internet Systems, 2002 � DOA/CoopIS/ODBASE 2002 Confed-

erated International Conferences, Irvine, California, Lecture Notes in Computer

Science, Vol. 2519, Springer, Berlin, Heidelberg, Oct. 30�Nov. 1, 2002, pp. 107�124.

16. S. Weissman Lauzac and P. K. Chrysanthis, Personalizing information gathering

for mobile database clients, in G. B. Lamont, H. Haddad, G. Papadopoulos and

B. Panda (Eds.), Proceedings of the 2002 ACM Symposium on Applied Computing

(SAC), Madrid, Spain. ACM, New York, NY, Mar. 10�14, 2002, pp. 49�56.

17. G. Weikum and G. Vossen, Transactional Information Systems: Theory, Algorithms,

and the Practice of Concurrency Control and Recovery, Morgan Kaufmann, San

Francisco, CA, 2001.

18. K. Ramamritham and P. K. Chrysanthis, Advances in Concurrency Control and

Transaction Processing, IEEEComputer Society Press,Washington,DC,USA, 1998.

19. N. Paciorek T. Walsh, and D. Wong, Security and reliability in concordia, in

Proceedings of the Thirty-First Hawaii International Conference on System Sciences,

Kohala Coast, HI, Jan. 6�9, 1998, IEEE Computer Society, Washington, DC, 1998,

pp. 44�53.

20. A. Mohindra, A. Purakayastha, and P. Thati, Exploiting non-determinism for

reliability ofmobile agent systems, inProceedings of the 2000 International Conference

on Dependable Systems and Networks (DSN), June 25�28, 2000, IEEE Computer

Society, Washington, DC, USA, New York, NY, 2000, pp. 144�156.

21. S. Pleisch and A. Schiper, Fault-tolerant mobile agent execution, IEEE Trans.

Computers, 52(2):209�222, 2003.

22. S. Pleisch and A. Schiper, Approaches to fault-tolerant and transactional mobile

agent execution—an algorithmic view. ACM Comput. Surv., 36(3):219�262, 2004.

23. F. B. Schneider, Towards fault-tolerant and secure agentry, in M. Mavronicolas and

P. Tsigas (Eds.), Distributed Algorithms, 11th International Workshop, WDAG ’97,

Saarbrucken, Germany, Sept. 24�26, 1997, Lecture Notes in Computer Science,

Vol. 1320, Springer, Berlin, Heidelberg, 1997, pp. 1�14.

24. A. Elmagarmid, Database Transaction Models for Advanced Applications, in

M. Mavronicolas and P. Tsigas, (Eds.), Morgan Kaufmann, Springer, Berlin,

Heidelberg, 1992.

240 DISTRIBUTED DATABASES AND TRANSACTION PROCESSING

25. P. K. Chrysanthis, Transaction processing in a mobile computing environment, in

B. Bhargava (Ed.), Proceedings of IEEE Workshop on Advances in Parallel and

Distributed Systems, IEEE Computer Society Press, Princeton, NJ , USA, Oct. 6,

1993, pp. 77�82.

26. F. M. de Assis Silva and S. Krause, A distributed transaction model based

on mobile agents, in K. Rothermel, R. Popescu-Zeletin (Eds.), Mobile Agents,

First International Workshop, MA’97, Berlin, Germany, Apr. 7�8, 1997, Lecture

Notes in Computer Science, Vol. 1219, Springer, Berlin, Heidelberg, 1997,

pp. 198�209.

27. H. Vogler, T. Kunkelmann, and M.-L. Moschgath, An approach for mobile agent

security and fault tolerance using distributed transactions, paper presented at the

1997 International Conference on Parallel and Distributed Systems (ICPADS ’97),

Seoul, Korea, Dec. 11�13, 1997, IEEE Computer Society, Washington DC, 1997,

pp. 268�274.

28. K. Rothermel and M. Strasser, A fault-tolerant protocol for providing the exactly-

once property of mobile agents, paper presented at the Symposium on Reliable

Distributed Systems., West Lafayette, Indiana, USA, IEEE Computer Society,

Washington, DC, USA, Oct. 20�22, 1998, pp. 100�108.

29. M. Strasser and K. Rothermel, System mechanisms for partial rollback of mobile

agent execution, in M. G. Gouda (Ed.), Proceedings of the 20th International

Conference on Distributed Computing Systems, Taipei, Taiwan. IEEE Computer

Society, Washington, DC, April 10�13, 2000, pp. 20�28.

30. F. M. de Assis Silva and R. Popescu-Zeletin, An approach for providing mobile

agent fault tolerance, in Mobile Agents, Second International Workshop, MA’98,

Stuttgart, Germany, Sept. 1998, Lecture Notes in Computer Science, Vol. 1477,

Springer, 1998, pp. 14�25.

31. T. Kaneda, M. Shiraishi, T. Enokido, and M. Takizawa, Mobile agent model for

transaction processing on distributed objects, in L. Barolli (Ed.), paper presented at

the 18th International Conference on Advanced Information Networking and

Applications (AINA 2004), Fukuoka, Japan, Mar. 2004, 29�31, IEEE Computer

Society, Washington, DC, 2004, pp. 506�511.

32. T. Kaneda, Y. Tanaka, T. Enokido, and M. Takizawa, Transactional agent model

for fault-tolerant object systems, in H. Haddad, L. M. Liebrock, A. Omicini and

R. L. Wainwright (Eds.), Proceedings of the 2005 ACM Symposium on Applied

Computing (SAC), Santa Fe, NM. ACM, New York, NY, Mar. 13�17, 2005,

pp. 1133�1138.

33. H. Vogler and A. P. Buchmann, Using multiple mobile agents for distributed

transactions, in Proceedings of the 3rd IFCIS International Conference on Coopera-

tive Information Systems (CooPIS), Aug. 20�22, 1998, New York, IEEE Computer

Society, Washington, DC, USA, 1998, pp. 114�121.

34. R. Sher, Y. Aridor, and O. Etzion, Mobile transactional agents, in M. G. Gouda

(Ed.), Proceedings of the 21st International Conference on Distributed Computing

Systems (ICDCS 2001), Phoenix, Arizona, USA. IEEE Computer Society,

Washington, DC, USA, April 16�19, 2001, pp. 73�80.

35. E. Pitoura, Transaction-based coordination of software agents, in G. Quirchmay,

E. Schweighofer and T. J. M. Bench-Capon (Eds.), Database and Expert Systems

Applications, 9th International Conference, DEXA ’98, Vienna, Austria, Aug.

REFERENCES 241

24�28, 1998, Lecture Notes in Computer Science, Vol. 1460, Springer, Berlin,

Heidelberg, 1998, pp. 460�469.

36. E. Pitoura and B. K. Bhargava, A framework for providing consistent and

recoverable agent-based access to heterogeneous in mobile databases, SIGMOD

Record, 24(3):44�49, 1995.

37. D. Georgakopoulos, M. Rusinkiewicz, and A. P. Sheth, Using tickets to enforce the

serializability of multidatabase transactions, IEEE Trans. Knowledge Data Eng.,

6(1):166�180, 1994.

242 DISTRIBUTED DATABASES AND TRANSACTION PROCESSING

10 Mobile Agents in Mobile
and Wireless Computing

PING YU and JIAN LU

State Key Laboratory for Novel Software Technology at Nanjing

University, Nanjing, Jiangsu, P.R. China

JIANNONG CAO

Department of Computing, Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong

10.1 INTRODUCTION

Mobile and wireless computing raises new challenging problems due to the
diverse types of devices used, user mobility, and dynamic nature in network
conditions and execution context [1]. Mobile devices [e.g., laptop, personal
digital assistant (PDA), mobile phone] do not have a permanent connection to
the network and are often disconnected for long periods of time. When a device
is reconnected to a network, the performance of the network connection can
vary dramatically from the previous connection; the connection often has low
bandwidth and high latency and is prone to sudden failures.

To provide support for building mobile computing applications, research
in the field of middleware systems has proliferated in recent years. A middle-
ware is a software system that connects two otherwise separate distributed
entities, serving as the glue between application and service components in
a distributed system. It handles network communication and distributed
processing issues, providing application developers with a higher layer of
abstraction [2]. A number of research projects have been exploring how to
build mobile applications with the support of a middleware [3]. Several efforts
focus on how to deliver information/services to mobile users regardless of

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

243

where they are and how they are connected in a suitable format [4�10] as well
as on how to support weakly connected or disconnected operation on the
user’s device and maintain consistency after providing mechanisms for mobile
host/agents to interact and coordinate their activities [11, 12]. Recently, more
research has been carried out on developing middleware techniques for sup-
porting context-aware and adaptive mobile applications [13�17].

As a paradigm for code mobility in large-scale distributed settings like the
Internet, the mobile agent (MA) introduces several advantages, including
reducing network load by accessing resources locally, executing task asynchro-
nously and autonomously, and being hardware and transport layer independent
[18].Many applications can benefit from using aMA.Mobile agents canmigrate
through the network of sites to search, filter, and process information they need
to accomplish their tasks. They can also cooperate with each other by sharing
and exchanging messages and partial results and collectively making decisions.
The MA paradigm is especially suited in mobile computing environments where
disconnection from the network often occurs. Recently, many proposals have
suggested using MA technology for mobile computing middleware [8, 19, 20].
Mobile agent�based middleware shows promise for providing an advanced
infrastructure that integrates support protocols, mechanisms, and tools to per-
mit communication and coordination of mobile entities [21]. Implementing MA
based middleware to support mobile computing requires extending the mobile
agent platform architecture, which is generally organized in layered services.

In this chapter, we cover MA-based mobile computing middleware and an
MA-enabled platform on wireless hand-held devices. We will first provide a
survey on the state-of-the-art in mobile computing middleware. Second, we will
concentrate on MA technology in mobile and wireless computing. We will also
discuss our own work. We will investigate the MA for pervasive/ubiquitous
computing as well.

10.2 MOBILE COMPUTING MIDDLEWARE

Mobile computing is distinguished from traditional distributed computing
by hand-held devices, wireless network connection, and dynamic execution
context [3, 22]. Hand-held devices (except laptop) usually have limited battery
capability and memory size, low central processing unit (CPU) speed, small
screen size, and other constraints. These devices can not afford to run tradi-
tional distributed computing middleware such as Common Object Request
Broker Architecture (CORBA) and Java 2 Enterprise Edition (J2EE) on them
because these middleware always involve a lot of services or modules even
though they are not required by most on-top applications. In middleware
running on resource-scarce devices, the middleware should be lightweight with
a configurable architecture. Not all functionalities of the middleware will be
installed in the device. The user can choose a subset of these functionalities
based on device profile or user preferences. Wireless networks also vary from

244 MOBILE AGENTS IN MOBILE AND WIRELESS COMPUTING

type to type, such as wireless local-area networks (WLANs), General Packet
Radio Service (GPRS), and Universal Mobile Telecommunication System
(UMTS). These different networks coexist today to provide the foundational
network infrastructure for mobile users. The bandwidth of wireless networks
has been greatly improved. However, wireless network bandwidth outdoors is
still much lower than WLAN bandwidth indoors. In addition, with wireless
networks, users experience network disconnection when moving between dif-
ferent areas. To minimize packet or session loss, asynchronous communication
should be enabled for mobile computing applications. Specifically, mobile
computing middleware should support disconnected operations when the
wireless network is unstable or network handoff occurs. Moreover, when a user
moves from one area to another, not only will his or her location change but
also the whole execution environment, especially the network properties (e.g.,
bandwidth or connectivity), will change accordingly. This requires middleware
and applications to behave differently to cope with dynamic changes in the
environment. Context awareness is desired for building a flexible and efficient
mobile computingmiddleware. As AnindDey defined, system is context aware if
it can adapt to its location of use, the collection of nearby people and objects, as
well as changes of these objects over time [23]. The context of a mobile unit is
usually determined by its current location. Besides location information, user
context also includes information about device characteristics, a user’s profile or
preferences, and any physical or social environmental status (e.g., temperature,
noisy level, people nearby, user activity) which impacts application execution.

A lot of middleware has been implemented for mobile computing, addres-
sing different aspects such as lightweight, asynchronous communication and
context awareness.

10.2.1 Lightweight

Compared with traditional distributed computing middleware, the middleware
for mobile computing should be designed as lightweight as possible. In general,
separation of concerns is the basic principle when designing such a lightweight
middleware. How to make the middleware dynamically configurable is a
challenge to software engineers. Non configurable middleware always hides
implementation details from users. This feature is recognized as transparency.
Otherwise, the middleware should expose some of its implantation to the users
and provide a mechanism for modifying middleware settings in a principled
way, that is, openness. The reflection technology satisfies these requirements
nicely. Initially, reflection was proposed in programming languages for the
program introspecting itself during run time [38]. Then reflection is exploited in
operating systems and middleware. A reflective system is basically separated
into two levels: metalevel and base level. The base level is in charge of modeling
the real-world problem domains, whereas the metalevel is responsible for
modeling the base-level elements. The metalevel can intercept base-level status
andmodify the base-level structure or behavior by natural means. Consequently,

10.2 MOBILE COMPUTING MIDDLEWARE 245

the middleware base level can be initialized with a minimal subset of function-
alities. Through metainterfaces between the metalevel and base level, the mid-
dleware can dynamically load or unload services as current requirements
indicate. Examples of middleware based on the principle of reflection include
but are not limited to OpenORB [24], OpenCorba [25], dynamicTAO [26],
MobiPADs [16], and CARISMA [27].

10.2.2 Asynchronous Communication

Communication in a mobile or wireless environment is characterized by fre-
quent disconnection and limited bandwidth [22]. Synchronous communication,
such as message passing and remote procedure call/remote method invocation
(RPC/RMI), depends on a tight coupled relationship between client-side devices
and server-side hosts. In contrast, asynchronous communication does not
require the sender and receiver of a request to be connected at the same time. So it
is more competitive compared to the synchronous paradigm especially in an
unstable and fragile network. As we know, tuple space is a widely accepted
facility for asynchronous interaction. It decouples participants by a globally
shared and associatively addressed memory space, which acts as a repository of
tuples that can be seen as a vector of typed values [3]. Tuples are anonymous;
thus their selection is based on a pattern-matching mechanism. So this paradigm
fits well in mobile settings where logical and physical mobility are both involved.
LIME [11], T Space [12], and JavaSpace [28] all fall in this category. Besides
the tuple space communication paradigm, some other technologies coexist as
competitors. Message-oriented middleware [e.g., IBM’s MQSeries and Sun’s
Java Message Service (JMS)] is a popular middleware which also decouples
senders and receivers by publishing and subscribing topics.

10.2.3 Context Awareness

To let applications adapt to the user’s environment, middleware should make
applications capable of sensing the context which is used to characterize the
execution environment. In general, there are three levels of activity between a
mobile computing device and its user: personalization, passive context aware-
ness, and active context awareness [29]. Personalization provides facilities for
the users to customize his or her own settings or profiles of how the application
should behave in a given situation. Passive context awareness makes the con-
text change explicit to the users who will take charge of the application
adaptation. Active context awareness is similar to automatic reconfiguration or
self-adaptation which will change application behaviors according to the sensed
context information without user intervention. Many research groups focused
on location-aware middleware which depends on the underlying network
operating systems to obtain location information and generate a suitable for-
mat to be used by the system. Different locating technologies, such as the global
positioning system (GPS) outdoors and infrared and radio frequency sensors
indoors, will provide absolute or relative location information. Other kinds of

246 MOBILE AGENTS IN MOBILE AND WIRELESS COMPUTING

context information can also be accessed by external public services like
weather forest service or internal context providers which will acquire context
value directly from ubiquitous sensors located in a specific environment or from
system status monitors. To provide context awareness, context-aware middle-
ware should include a context processing module which is responsible for
detecting, collecting, interpreting, filtering, reasoning, predicting, and dissem-
inating context [23, 30, 31].

10.3 MOBILE AGENT IN MOBILE COMPUTING

The MA has been a promising technology in the distributed and mobile
computing society since the late 1990s. In general, MAs are self-contained and
identifiable computer programs that can move autonomously within the net-
work and act on behalf of the user or other entities. Mobile agent platforms
provide migration service that serializes both MA code and execution state into
streams suitable for network transfer and storage persistency. Consequently, a
MA can execute at a host for a while, halt execution, dispatch itself to another
host, and resume execution there [32]. Today, the MA has been exploited in
network management, mobile e-commerce, as well as mobile computing
middleware.

Since we have discussed the MA for networking in previous chapters, in this
chapter, we will focus on how to make use of an MA in mobile computing
middleware and application layers.

10.3.1 Mobile Agent�Based Mobile Computing Middleware

Mobile agent�based middleware provides an advanced infrastructure that
integrates support protocols, mechanisms, and tools to permit communication
and coordination of mobile entities [21]. As discussed in Section 10.2, mobile
computing middleware should be at least lightweight and context aware and
support asynchronous communication. Generally, the MA performs well in
wireless network where bandwidth is always limited and disconnection happens
frequently. As a widely known scenario in MA-based mobile computing, a
mobile user can dispatch a MA to perform computation tasks autonomously
over the network. Once the agent is dispatched, the user can disconnect from
the network. Later the user reconnects to the network to collect the result
returned by the MA. Consequently, disconnected operation can be supported
by an MA in a more principled and natural way. Moreover, as an autonomous
entity roaming in the network, an MA also has the capability of adapting itself
when its execution environment changes. That is, mobile agents can be natu-
rally programmed as context-aware entities. In terms of a MA-based system,
the system can be configured and reconfigured by dynamically deploying spe-
cific agents. However, due to the lack of serialization support and other con-
straints in resource-limited mobile devices, MA systems encounter a big
obstacle when being deployed in these devices. So we proposed a lightweight

10.3 MOBILE AGENT IN MOBILE COMPUTING 247

and highly portable middleware (PDAgent) for deploying and developing
MA-enabled applications in wireless hand-held devices.

10.3.1.1 Agent�Proxy�Server Approach
In PDAgent, we do not install any MAS (mobile agent server) on hand-held
devices but introduce a midtier, a gateway (i.e., the proxy), to bridge the mobile
user with the MA server deployed in the wired network (Figure 10.1). We name
this approach agent�proxy�server to distinguish from other MA-based
methods. The client-side device interacts with the gateway using the protocol
defined in PDAgent middleware. The gateway parses and interprets the user’s
requests and interacts with MA servers. The server-side hosts provide services
for incoming MA to perform their tasks. From the user’s point of view, the
gateway is treated as a proxy of a MA server. Users can control this remote
proxy to deploy and manage their agents directly from their hand-held devices.
Moreover, the middleware on the client side supports multiple channels for
the users to get the MA codes. This means the MAs that can be deployed are
provided or designated by the user and not bounded by the gateway. On
the gateway side, various MA servers can be linked. So the deployable MAs
in this approach are not constrained with a specific MA system. It is more
flexible than other monolithic MA-based systems.

Furthermore, the middleware enables application developers to specify the
way to customize the initialization of the agent instances using so-called
parameters. In addition to those parameters from the end users, special para-
meters, called context parameters, can also be specified by the MA developers.
While deploying the MAs on PDAgent, the middleware will fill in those special
parameters according to the current user’s profile and the status of the current
environment. Thus, context-aware deployment is achieved.

10.3.1.2 Design of PDAgent
The design of PDAgent middleware is based on the following model as shown
in Figure 10.2. A set of MA servers are dispersed over the network to support
the running of the MAs and provide services. Mobile users, holding the wireless
hand-held devices, can roam in the network. The client-side middleware enables
the user to manage MA code, issue commands for dispatching and controlling

Dispatch
mobile agent

End service

PDA

Execute
service

Service requires Internet connection Request/response message passing

MA code

Gateway with MAS

FIGURE 10.1 PDAgent agent�proxy�server approach.

248 MOBILE AGENTS IN MOBILE AND WIRELESS COMPUTING

agent instances, and deal with results. To bring the MA technology to those
users without burdening the carried devices with a whole ponderous system,
MA servers for roaming users to run their mobile agents are still placed within
the wired network instead of being ported into the hand helds. Gateways are
deployed at the edge of the wired network, bridging the mobile users and the
MA servers. Users are able to select one of the gateways currently reachable to
serve as a proxy for them to dispatch or manage their MAs. The gateway can be
set by the user who prefers a particular trustful gateway or be dynamically
discovered by the underlying system. The gateway-side middleware deploys
MAs to the MA servers as the user designated, and then manages the MAs’
life cycle according to user’s commands. In addition, it provides additional
mechanisms, such as running a database to store final results that have to be
kept for the user.

Thus, the service-accessing procedure becomes convenient, reliable, and
affordable for those mobile users. They can import MA codes and store them in
their hand-held devices locally. On dispatching an agent, the user should fill
in all the customizing information for the instance and send it with the corre-
sponding codes to the gateway. Then the gateway will create an instance on
behalf of this user. Future management on this instance can also be performed
by the roaming user remotely issuing management commands to the gateway.
The agent instance will travel from the gateway to its destination host for the
desired service and bring the result, if any, back. The user can get results by
“pull” or “push” mechanisms. In terms of pull, the user can get connected again
to the gateway and fetch the result. In contrast, when a user reconnects to a

Internet

MA

MA
MA

MA

MA

MA

MA

Cell phone

Cell phone

Cell phone

Cell phone

Laptop computer

Gateway/MAS
Gateway/MAS

Gateway

Gateway/MAS

MAS

MAS

MAS - Mobile agent server

MA - Mobile agent

PDA - Personal digital assistant

PDA

PDA

PDA

PDA

FIGURE 10.2 System model of PDAgent.

10.3 MOBILE AGENT IN MOBILE COMPUTING 249

network, the device will send an “online” signal to the gateway and then the
cached result in the gateway can send the result to the client. Basically,
the agent can be deployed when the user is offline. After the codes and para-
meters are delivered, the user can disconnect again until the next time he or she
wants to communicate with the gateway to manage the agent instances. The
requirement for network connection is minimized.

In general, PDAgent middleware is featured as follows:

� Lightweight The PDAgent client side is able to run smoothly on resource-
constrained devices because the client side will not include a heavy-
weight mobile agent server as most existing MA middleware requires.
The agent is actually initiated and activated at the gateway. The client side
only needs to send a request to the gateway to trigger the action. Though
no agents run in the client side, the client also has full control of the agent
by management functions provided by the PDAgent client-side services,
such as querying agent status, retracting the agent, and destroying the
agent.

� Connectivity The PDAgent provides mobile users with reliable and efficient
network access minimizing network connection. Besides the disconnected
operation supported in MA, the gateway provides a flexible, extendable,
and scaleable bridge between the client and theMA environment. Network
traffic is encoded/decoded by XML Engine and compressed/decompressed
by Network. Thus, the network traffic for the running of applications is
greatly reduced.

� Flexibility The PDAgent allows users to subscribe to the MA-enabled
services in a loose manner. The client side is not aware of implementation
details of these services. The service’s self-description is encapsulated in
XML file for the client to dynamically subscribe and download MA-
enabled service. Moreover, users can import MA code from various
origins into their hand helds. The customizing information for one
instance, which we call parameters, can configure the outgoing instance
with not only the user requirements but also the context factors. We also
address information security and network optimization in this platform.
These features make the PDAgent platform a novel solution to extend the
use of MAs to the mobile computing environment.

� Heterogeneity Because of the gateway architecture, a user may deploy
MAs on heterogeneous MA systems. User only needs to care about the
business logic of MAs. There is a “connector” in the gateway which
decouples the design of the platform on its client side from the MA
server side. By using multiple connectors to link different MA servers in
a gateway, the user of this gateway can transparently deploy MAs of
different types.

250 MOBILE AGENTS IN MOBILE AND WIRELESS COMPUTING

These properties make it feasible to deploy PDAgent middleware in mobile
devices for mobile computing. Mobile users can access network services in
different locations from all wireless devices that install PDAgent middleware.
Moreover, security and network optimization have been taken into account
when implementing PDAgent middleware:

� SecurityMost security issues in the MA environment, such as shielding the
service provider from malicious MAs and protecting MAs from evil
servers, are still open research issues in this distributed computing model.
To avoid potential threats in this area, we advocate that the user
download MA code from trusted places and MAs be executed on trusted
servers in a secure environment, such as within an intranet or over a
virtual private network (VPN). We try to address security problems from
the point of view of PDAgent middleware, as an enabling platform for the
mobile user to use MA technology. A secure communication channel is
established between the client and the gateway once an online interaction
is needed. Currently, all information exchange is based on the HyperText
Transfer Protocol (HTTP) and HTTP Secure (HTTPS) is adopted to
ensure the information transferred is neither eavesdropped nor tampered
with. Besides, on sending any information package out, the sender will
attach the digital signature of the outgoing message. The receiver can
verify this signature; the authentication and authorization at the applica-
tion level can follow after the identity of the sender is extracted. The
gateway will only serve those authorized users in a predefined list. Thus
information security and the mutual authentication/authorization are
achieved in our PDAgent platform.

� Network Optimization Reducing network connection time and probability
of network errors is an important issue in designing mobile computing
middleware. To ensure that communication between wireless devices
and the gateway will not affect overall operational performance, we employ
the following two techniques to optimize networking services. First, all the
traffic between the hand-held device and the gateway will be compressed
before transmission. Some compressing algorithms are used to reduce the
amount of data needed to transmit over the air. Second, a probing procedure
canbe carried outmanually or automatically, according to the preference set
by the user. The round-trip time (RTT) from the current reachable gateways
to the client will be detected by sending a probing request. On receiving the
responses, theRTTcanbe calculated and the gatewaywith the smallestRTT
value is appointed to be the active one to communicate with the client.
Assuming that the network bandwidth is the same, this can minimize data
transfer times, with the minimum transfer time being dependent on the
shortest RTT from the wireless device to the gateway.

10.3 MOBILE AGENT IN MOBILE COMPUTING 251

10.3.2 Mobile Agent for Mobile Applications

A lot of mobile applications can benefit from using mobile agents. Mobile
e-commerce is the most popular one. For example, when you are using wireless
devices to browse an electronic book store, it must displease you if you have to
visit a lot of Web pages until you finally get what you want. In the case of an
MA, you only need to dispatch an MA which encapsulates your requests of the
book name, preferred price, and publisher name, to name a few. The agent will
help you search in the back-end servers (e.g., book store’s database) or even
other book stores which provide similar services. When the agent is dispatched,
you do not need to stay online as you would with traditional m-ecommerce
applications. After the agent gets satisfactory results, it will return to you when
you are online again. This not only saves time but also saves network usage
fees. Other applications, such as yellow page searcher, Web page searching, and
email assistant, will also benefit from using MA, and most have been imple-
mented on top of PDAgent middleware.

Another appealing application is cooperative agents for scheduling meetings.
Suppose you want to hold a meeting. It is more natural and efficient for each
person to dispatch an agent to a common space, discussing the meeting time
and place. Generally, mechanisms for cooperative MAs are developed with
the concept based on a multiagent system, which enables an agent to communi-
cate and coordinate with other agents of different types or dispatched by different
users automatically and intelligently, in either a reactive or a cognitive way.Tuple
Space [12] seamlessly integrated into PDAgent middleware supports cooperative
agent-based mobile applications such as scheduling a meeting.

Mobile agents are also suitable for more advanced mobile applications such
as workflow management. A workflow can be easily organized by deploying
and dispatching a multitask, multihop agent. This agent will migrate to dif-
ferent sites performing tasks one by one as defined. Parallel execution is also
allowed by simultaneously dispatching an agent and its clones to different sites.
The agent is also aware of different situations and capable of automatically
adjusting the migration route and tasks during run time. When all tasks are
finished, it will provide you with a complete report.

There aremany otherMA-based applications in themobile computing society.
For example, Hermes supports MAs for bioinformatics and industrial control
whereMAs are used to support data collection, service discovery and self-healing
and so on [33]. With the advent of pervasive computing, MAs are also finding
their way in pervasive computing. We will discuss this in the next section.

10.4 MOBILE AGENT FOR PERVASIVE COMPUTING

Mobile computing is followed by pervasive or ubiquitous computing where
computation can be performed anywhere, anytime. Since pervasive computing
has evolved from mobile computing, properties in mobile computing such as

252 MOBILE AGENTS IN MOBILE AND WIRELESS COMPUTING

heterogeneous hand-held devices, various and unstable networks, and a
changeable environment are all included in pervasive computing. In particular,
pervasive computing emphasizes seamless migration in smart spaces and self-
adaptation without user intervention. In general, users are almost unaware of
the computing technologies they are enjoying, as the technologies have been
weaved into the fabric of everyday life [34].

However, currently, development of the application of pervasive computing
falls behind the technology advances in hardware and communication infra-
structures. The pervasive computing community is expecting applications that
can make better use of the underlying networking facilities and computing
devices without requiring complicated interactions with the users. In addition
to the requirements already mentioned in mobile computing, the following are
of particular importance for pervasive computing.

10.4.1 Seamless Mobility

One of the most challenging issues in pervasive computing is application migra-
tion. Traditional application-to-computer association will disappear in pervasive
computing environments [35]. The user will benefit from application mobility in
at least two aspects: (1) User can transfer application to any available device
before the device is running out of power or when more powerful devices are
available to make good use of various hardware resources and (2) When
usermoves to another place, the application running on his original unmovable
device can automatically migrate to any computing device available at his
destination place to continue the computation. Such an application is well
known as a “follow-me” application.

10.4.2 Self-Adaptation

Being context aware, applications and the underlying supporting system should
be able to adapt to the users needs. Adaptation includes changing application
content, user interface, and other application or system-level behavior for
switching between different devices and environments.

The MA has been demonstrated to be suitable for mobile computing.
Consequently, it is natural for us to consider exploiting the MA in pervasive
computing, especially for movable applications. In fact, we have developed
MA-enabled applications, such as “smart” notepad and media player, for
pervasive computing. A corresponding middleware, MDAgent, which is based
on the previous PDAgent platform, is implemented to provide application with
mobility and self-adaptability. Generally speaking, MAs provide a more
principled and elegant approach to move the application from site to site
compared with other proposals designed for application mobility.

In MDAgent middleware, an application is wrapped by an MA that has full
control (e.g., suspending, migrating, resuming) of the application. Aided by the
underlying middleware services, MA-enabled applications can be made

10.4 MOBILE AGENT FOR PERVASIVE COMPUTING 253

sensitive to the user’s execution context, including location, activity, preference,
and the profile of the device being used. With regard to self-adaptation, each
MA is attached with a rule set which consists of some adaptation rules. Figure
10.3 shows the abstraction of such an MA-enabled application.

The general life cycle of an MA-enabled application is illustrated in
Figure 10.4. When the middleware detects that the user is leaving the current
site, the agent will automatically be suspended and then cached to secondary
storage (deactivated). When the user logs into another device, the middleware
will activate the agent, which will exit the current site and migrate to the device
where the user is working. When it arrives at the new site, the agent first checks
in (or registers) at the middleware. After successful registration (e.g., authen-
tication, authorization), it will restore from the application snapshot and
resume execution from exactly where it was suspended. The MDAgent mid-
dleware consists of an agent container for agent execution and management, a
context space for collecting and processing internal and external context
information, a rule engine for making decisions when the context changes, and
a discovery and directory component for looking up hosts and services when
the agent migrates to another site.

Pervasive computing is distinguished by invisibility, which means compu-
tation will happen silently without distracting users. We believe the MA is
suitable for this kind of invisible computing as we have practiced in MA-
enabled “follow-me” applications. In the future, people will hold a mobile
device where a lot of MAs with different tasks are installed. These agents are

Application

Mobile agent:

<rule-set>
 <rule>

…
</rule>

</rule-set>

Context space

Resources

FIGURE 10.3 Abstract model of agent enable application.

254 MOBILE AGENTS IN MOBILE AND WIRELESS COMPUTING

customized by users or automatically configured by underlying context-
aware services, keeping the user’s intention in mind. Whenever they are dis-
patched out to execute computation tasks, they will work according to their
user’s needs. An MA will perform boring and complicated searching, typing, or
other unnecessary tasks. Mobile agent�based smart spaces have also been
proposed.

10.5 RELATED WORK

Currently researchers in distributed and mobile computing areas have pre-
sented a number of architectures and systems that provide lightweight, asyn-
chronous, and context-aware computation, communication, and coordination
for mobile devices and wireless networks. In this section, we discuss some
related work in detail and compare the work with ours:

� SOMA SOMA is MA-based middleware which provides three different
kinds of mobility—user mobility, terminal mobility, and mobile access to
resources—on top of a secure and open MA-distributed programming

Running

Suspend

Deactivate

Activate

Check out Migrate Check in

Resume

Create Dispose

Agent
container

Context
space

Rule
Engine

Discovery/
directory

Middleware support

Wired or wireless network

Reconfigure

User leaving
current site

User logging in
another site

User Device Environment

FIGURE 10.4 Life cycle of “follow-me” application in MDAgent.

10.5 RELATED WORK 255

framework [21]. Concretely, a mobility-enabled naming service based on a
directory and discovery protocol [37] is provided as a foundational service
for tracing entities that move in the global Internet environment. The user
virtual environment (UVE) lets users connect to the Internet at different
locations while maintaining their personal configurations as indicated in
user profiles. The mobile virtual terminal (MVT) service enables continu-
ous execution while moving by virtue of underlying MA platforms. For
mobile access to resources, virtual resource management (VRM) is
implemented to establish dynamic connections between mobile terminals
and resources. These services are incorporated into an original MA
platform to satisfy requirements from mobile computing. Moreover,
Java-based implementation overcomes the platform heterogeneity and
applies to the open Internet. SOMA middleware demonstrated that the
MA-based approach is suitable to mobile computing where users, term-
inals, and resources are all mobile. However, SOMA is not a context-
aware middleware. Though it provides a UVE for customizing services the
as user’s profile indicates, it cannot fetch real-time context information
from the environment and adapt the services dynamically. Moreover, It is
not as lightweight as PDAgent, which can be run in a personal digital
assistant (PDA) or mobile phone, since it relies on a standard JVM which
is not available in resource-limited devices.

� LIME LIME is the abbreviation of Linda in a Mobile Environment [11].
To exploit Linda in the mobile computing environment, the traditional
Linda tuple space is broken down into many tuple spaces (interface tuple
space), each permanently associated to amobile unit. Themobile unit refers
to the mobile agent or mobile host. The mobile agent provides logical
mobility, while the mobile host indicates physical mobility. Two novel
operations—engagement and disengagement—are introduced for attach-
ing and detaching distributed interface tuple spaces. Coordination between
different mobile units is asynchronous due to the intrinsic properties of
Linda. Moreover, LIME extends Linda operations with tuple location
parameters that allow operating on different projections of the transiently
shared tuple space. Besides LIME, other tuple space�based middleware
coexist. T Space and JavaSpaces are two famous ones supported by IBM
and Sun, respectively. L2imbo is another tuple-based middleware, which is
featured as quality-of-service (QoS) aware by attachingQoS information to
tuple fields [36]. In general, in view of asynchronous communication and
coordination for mobile computing, the tuple space is a competitive
and preferred choice. In PDAgent, though we adopt the MA to provide
disconnected operation for wireless network communication, when we
consider cooperative agent-based applications such as meeting scheduling,
the tuple space is also incorporated into PDAgent as a basic service for
agent coordination. Otherwise, LIME and L2imbo extend the original
Linda model and introduce new characteristics for mobile computing.

256 MOBILE AGENTS IN MOBILE AND WIRELESS COMPUTING

LIME supports dynamic reconfiguration of MAs and mobile hosts within
the same programming interface (i.e., interface tuple space), whereas
L2imbo provides QoS-aware services by associating agents to monitor
network conditions and power consumption.

� CARISMA As we mentioned above, reflection is a principled mechanism
to provide middleware lightweight-ness and context awareness. CAR-
ISMA is such a reflective middleware exploiting the principle of reflection
to enhance the construction of adaptive and context-aware applications in
a mobile computing environment. Being aware of user preferences and
application profiles which are defined in a platform-independent extensi-
ble Markup Language (XML) format, middleware can deliver services in a
more suitable way. Reactive adaptation and proactive adaptation are both
enabled by virtue of introspection and intercession, two basic operations
in a reflective system. Users can define their preference to applications
through metainterfaces exposed by the middleware. Meanwhile, middle-
ware can adapt applications dynamically through built-in reflective
application programming interfaces (APIs). In short, CARISMA is
capable of deployment time configurability and run time adaptability.
In fact, in PDAgent and MDAgent, we also exploit reflection techniques
to achieve elegant adaptation. The MA is attached to metadata specifying
properties of the agent itself and the intention of agent holders. These
metadata are used by the underlying middleware when context or user
requirements change. The middleware will adapt the agent according to
the user’s preferences. Moreover, the agent can also adapt itself by
reflecting on its metadata during run time.

� JADE JADE [19] is a middleware for development and run-time execu-
tion of peer-to-peer agent applications which can work and incorporate
both in the wired and wireless environment. JADE is a Foundation for
Intelligent Physical Agents (FIPA) specification-compliant implementa-
tion. It enables an agent to operate with other FIPA-compliant agents.
JADE is independent of the Java version. Thus it can be easily deployed
into mobile devices without worrying about Java virtual machine (JVM)
difference. Moreover, JADE can be configured to adapt to the character-
istics of the deployment environment. JADE architecture, in fact, is
completely modular and, by activating certain modules instead of others,
it is possible to meet different requirements in terms of connectivity,
memory, and processing power. Agents in JADE are very suitable for those
coordination- and negotiation-oriented applications due to the underlying
agent-based peer-to-peer architecture. Agent mobility is also supported in
JADE. Moreover, agents are capable of controlling themselves without
human intervention. In another words, agents are self-adaptive according
to our definition above. JADE is an ongoing project in the open-source
society today, with new features incorporated continuously. JADE pro-
vides a lightweight agent container and a flexible peer-to-peer mechanism

10.5 RELATED WORK 257

for upper layer applications which are adopted by a few mobile computing
and pervasive computing proposals.

10.6 CONCLUSION

In this chapter, we discussed the state-of-the-art of mobile and wireless com-
puting middleware. Generally, lightweight, asynchronous communication and
context-aware services are recognized as most important issues for enabling
reliable and flexible computation and communication from mobile devices. In
accordance, several different kinds of middleware satisfy these new require-
ments. The reflection technique becomes promising in constructing a light-
weight and context-aware middleware by run time introspection and
intercession. A tuple space is a preferred facility for enabling loosely coupled
communication and coordination in the mobile computing environment. An
MA provides a principled paradigm for computation mobility and communi-
cation asynchronicity in both the local network and World Wide Web settings.
Based on existing knowledge, we proposed a lightweight and highly portable
platform named PDAgent for programmers to develop and for mobile users to
deploy MA-enabled applications from wireless devices. It has several advan-
tages over existing solutions in providing support for the development of highly
portable, efficient, flexible, and context-aware mobile applications.

The PDAgent platform, developed on the agent�proxy�server approach,
provides efficient and reliable network services to mobile users with hand-held
devices without requiring a large amount of resources. PDAgent also has low
network latency and low network connectivity costs. This is achieved by pro-
viding a lightweight platform for running MAs that can execute services
autonomously on the Internet on behalf of the user. Mobile clients can go
offline after they submit the execution plan to the MA, thereby reducing net-
work connection times. Security and optimizations are also considered to get
close to practical application.

New challenges continually emerge as the pervasive computing era comes
near. Among these challenges, seamless migration and minimized user dis-
traction are most distinguished. Smartness is emphasized by the pervasive
computing society as well. However, as a follower of mobile computing,
pervasive computing also shares a lot of properties with mobile computing,
such as lightweight and heterogeneous devices, variable and unstable net-
works, and a continuously changing environment. Naturally, in view of
building a middleware for pervasive computing, the experiences from mobile
computing are most helpful. From this opinion, we try to exploit MAs in this
new area. We believe that the autonomy and reactivity of MAs is most suit-
able to the new paradigm. Mobile agents, similar to virtual surrogates of
human beings, can perform tasks intelligently by bearing user intention in
mind and sensing environmental change over time. As a result, the MDAgent
middleware, which is based on the original PDAgent platform, becomes our

258 MOBILE AGENTS IN MOBILE AND WIRELESS COMPUTING

touchstone to pervasive computing. This enables applications to follow the
users from one place/device to another. Application states are conserved
during migration due to the mobility service provided by MAs. Context
awareness is also achieved by exposing environmental conditions to agents,
which can subscribe the context they are interested in. The middleware is in
charge of collecting and processing real-time context and notifying agents to
adapt themselves when necessary.

However, many issues require further investigation. For example, fault
tolerance is such a common issue which should never be ignored. In particular,
MA-based middleware should guarantee reliable agent migration when the
destination is unreachable suddenly or when the server is damaged during agent
execution. Security is another critical issue which usually includes protecting
the server from malicious agent attach and protecting agents from untrustful
services. For agents in a pervasive computing environment, the issue of how to
let agents from different sources recognize and cooperate with each other also
challenges researches. The goal of organizing a smart space by mobile agents is
identified as our next step.

REFERENCES

1. M. Satyanarayanan, Fundamental challenges in mobile computing, in J. E. Burns

(Eds.), Proceedings Symposium on Principles of Distributed Computing, Philadelphia,

PA, USA, May 23�26, 1996, pp. 1�7.

2. P. A. Bernstein, Middleware: A model for distributed system services, Commun.

ACM, 39(2):86�98, Feb. 1996.

3. C. Mascolo, L. Capra, and W. Emmerich, Mobile computing middleware, in

E. Gregori et al. (Eds.), Networking 2002 Tutorials, Lecture Notes in Computer

Science, 2497, Springer, Berlin, Heidelberg, 2002, pp. 20�58.

4. A. T. S. Chan, S.-N. Chuang, and J. Cao, Dynamic service composition for wireless

Web access, in T. S. Abdelrahman (Ed.), Proceedings of the 31st International

Conference on Parallel Processing (ICPP-2002), Vancouver, BC, Aug. 2002, pp.

429�436.

5. D. Chakraborty et al.,Middleware formobile information access, inA.M.Tjoa (Ed.),

Proceedings of the 13th International Workshop on Database and Expert Systems

Applications (DEXA’02), Aix-en-Provence, France, Sept. 2002, pp. 729�733.

6. J. Jing, A. Helal, and A. Elmagarmid, Client-server computing in mobile environ-

ments, ACM Comput. Surv., 31(2):117�157, 1999.

7. A. D. Joseph, J. A. Tauber, and M. F. Kasshoek, Mobile computing with the Rover

Toolkit, IEEE Trans. Comput., 46(3):337�352, Mar. 1997.

8. Q. H. Mahmoud, MobiAgent: A mobile agent-based approach to wireless informa-

tion systems, in G. Wagner, K. Karlapalem, Y. Lesperance, and E. Yu (Eds.),

Proceedings of the 3rd International Bi-Conference Workshop on Agent-Oriented

Information Systems, Montreal, Canada, May, 2001, pp. 87�90.

REFERENCES 259

9. S. Saha, M. Jamtgaard, and J. Villasenor, Bringing the wireless Internet to mobile

devices, IEEE Computer, 34(6):54�58, June 2001.

10. M. Satyanarayanan, Accessing information on demand at any location Mobile

information access, IEEE Personal Commun., 3(1):26�33, 1996.

11. A. L. Murohy, G. P. Picco, and G.-C. Roman, LIME: A middleware for physical

and logical mobility, in Proceedings 21st International Conference on Distributed

Computing Systems (ICDCS-21), Mesa, AZ , USA, Apr 2001, pp. 524�533.

12. P. Wyckoff, S. W.Mclaughry, T. J. Lehman, and D. A. Ford, T spaces, IBM Syst. J.,

37(3):454�471, 1998.

13. G. Chen and D. Kotz, A survey of context-aware mobile computing research,

Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College,

Hanover, NH, Nov. 2000. Available at: http://www.cs.dartmouth.edu/reports/

abstracts/TR2000-381/.

14. L. Capra, Mobile computing middleware for context-aware applications, in Pro-

ceedings of the 24th International Conference of Software Engineering (ICSE 2002),

Orlando, FL, May 2002, pp. 723�724.

15. S-N. Chuang, A. T. S. Chan, J. Cao, and R. Cheung, Dynamic service reconfigura-

tion for wireless Web access, in Proceedings of the 12th International World Wide

Web Conference, Budapest, Hungary, May 2003, ACM, New York, NY, USA 2003,

pp. 58�67.

16. A. T. S. Chan and S. N. Chuang, MobiPADS: A reflective middleware for context-

aware computing, IEEE Trans. Software Eng. 29(12):1072�1085, Dec. 2003.

17. S. S. Yau and F. Karim, A context-sensitive middleware-based approach to

dynamically integrating mobile devices into computational infrastructures,

J. Parallel Distrib. Comput., 64(2):301�317, 2004.

18. D. B. Lange and M. Oshima, Seven good reasons for mobile agents, Commun.

ACM, 42(3):88�89, 1999.

19. F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, JADE: A white paper, Telecom

ItaliaEXP in searchof innovation, Journal special issueon JADE,3(3):6�19, Sept. 2003.

20. J. Cao, D. C. k. Tse, and A. T. S. Chan, PDAgent: A platform for developing

and deployingmobile agent enabled applications for wireless devices, in R. Eigenman

(Ed.), Proceedings of the International Conference on Parallel Processing 2004,

Montreal, Canda, Aug. 2004, pp. 510�517.

21. P. Bellavista, A. Corradi, and Cesare, Mobile agent middleware for mobile

computing, IEEE Comput., 34(3):73�81, Mar. 2001.

22. A. Gaddah and T. Kunz, A survey of middleware paradigms for mobile computing,

Carleton University Systems and Computing Engineering Technology Report

SCE-03-16, July 2003. Available at: http://www.sce.carleton.ca/wmc/middleware/

middleware.pdf.

23. A. K. Dey and G. D. Abowd, Towards a better understanding of context and

context-awareness, in H.-W. Gellersen (Ed.), Proceedings of HUC’99, Lecture Notes

in Computer Science, Vol. 1707, Springer, Berlin, Heidelberg, 1999, pp. 304�307.

24. G. S. Blair et al., The design and implementation of open ORB 2, IEEE Distributed

Syst. Online, 2(6):1�40, 2001.

260 MOBILE AGENTS IN MOBILE AND WIRELESS COMPUTING

http://www.cs.dartmouth.edu/reports/abstracts/TR2000-381/
http://www.cs.dartmouth.edu/reports/abstracts/TR2000-381/
http://www.sce.carleton.ca/wmc/middleware/middleware.pdf
http://www.sce.carleton.ca/wmc/middleware/middleware.pdf

25. T. Ledoux, OpenCorba: A reflective open broker, in P. Cointe (Ed.), Proceedings of

Reflection 99, Lecture Notes in Computer Science, Vol. 1616, Springer, London,

UK, 1999, pp. 197�214.

26. F. Kon et al., Monitoring, security, and dynamic configuration with the dynamic-

TAO reflective ORB, in J. Sventek and G. Coulson (Eds.), Proceedings of Middle-

ware 2000, Lecture Notes in Computer Science, Vol. 1795, Springer, Berlin,

Heidelberg, Apr. 2000, pp. 121�143.

27. L. Capra, W. Emmerich, and C. Mascolo, CARISMA: Context-aware reflective

middleware system for mobile applications, IEEE Trans. Software Eng., 29(10):

929�945, Oct. 2003.

28. E. Freeman, S. Hupfer, and K. Arnold. JavaSpacest Principles, Patterns, and

Practice. Addison-Wesley as part of the Jini Technology Series from Sun Micro-

systems, Inc. San Antonio Road, Palo Alto, California 94303 USA, 1999.

29. L. Barkhuus and A. Dey, Is context-aware computing taking control from the user,

in A.K. Dey (Ed.), Proceedings of UbiComp 2003, Lecture Notes in Computer

Science, 2864, Springer, Berlin, Heidelberg, 2003, pp. 150�156.

30. B., Schilit, N. Adams, and R., Want, Context-aware computing applications, in

Proceedings of the Workshop on Mobile Computing Systems and Applications, Santa

Cruz, CA, 1994, pp. 85�90.

31. T. Gu, H. K. Pung, and D. Q. Zhang, Toward an OSGi-based infrastructure for

context-aware applications, IEEE Pervasive Comput., 3(4):66�74, Oct.�Dec. 2004.

32. D. Kotz and R. S. Gray, Mobile agents and the future of the Internet, SIGOPS

Oper. Syst. Rev., 33(3):7�13, 1999.

33. F. Corradini andE.Merelli, Hermes: Agent-basedmiddleware formobile computing,

M. Bernardo and A. Begliolo (Eds.), SFM-Moby 2005, Lecture Notes in Computer

Science, Vol. 3465, Springer, Berlin, Heidelberg, 2005, pp. 234�270.

34. M. Weiser, The computer for the twenty-first century, Sci. Am., 265:94�101, 1991.

35. M. Roman, H. Ho, and R. H. Campbell, Application mobility in active spaces, in

Proceedings of the 1st International Conference on Mobile and Ubiquitous Multime-

dia, Oulu, Finland, 2002.

36. N. Davies, A. Friday, S.P. Wade, and G.S. Blair. L2imbo: A distributed system

platform for mobile computing, in I. Chlamtac, D. Lee, and M.Schwarts (Eds.),

ACM Mobile Networks and Applications, Special Issues on Protocols and Software

Paradigms of Mobile Network, Kluwer Academic Publishers, Hingham, MA, USA,

1998, pp. 143�156.

37. S. Helal, Standards for service discovery and delivery, IEEE Pervasive Comput., 1(3):

95�100, 2002.

38. B. Smith, Reflection and semantics in a procedural programming language, Ph.D.

thesis, Massachusetts Institute of Technology, Cambridge, MA, Jan. 1982.

REFERENCES 261

PART IV
Design and Evaluation

11 Naplet: Microkernel and
Pluggable Design of Mobile
Agent Systems

CHENG-ZHONG XU

Department of Electrical and Computer Engineering, Wayne State

University, Detroit, Michigan

11.1 INTRODUCTION

An agent is a sort of special object that has autonomy. It behaves like a human
agent, working for clients in pursuit of its own agenda. A mobile agent has as
its defining trait the ability to travel from machine to machine proactively on
open and distributed systems, carrying its code, data, and running state. The
proactive mobility of autonomous agents, particularly their flow of control,
leads to a novel distributed processing model on the Internet.

Mobile agents grew out of early code mobility technologies such as process
migration and mobile objects in distributed systems. Process migration deals
with the transfer of code as well as data and running state between machines for
the purpose of dynamic load distribution, fault resilience, eased system
administration, and data access locality [1, 2]. In distributed object systems
such as Common Object Request Broker Architecture (CORBA) and Java
remote method invocation (RMI), object mobility is realized by passing objects
as arguments in remote object invocation. Object migration makes it possible to
move objects among address spaces, implementing a finer grained mobility with
respect to process-level migration.

Early process and object migration frameworks are mostly targeted at a
“closed” system in which programmers have complete knowledge of the whole
system and full control over the disposition of all system components. They
assume the process/object authority is under the control of a single adminis-
trative domain and hence deal with the transfer of authority in a limited way. In
contrast, a mobile agent is tailored to “open” and distributed environments. Its

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

265

autonomy lends itself to be migratable, with a delegation of resource access
privileges, between loosely coupled systems. Mobile agents can also survive
intermittent or unreliable connections between the systems. What is more,
mobile agents feature a proactive mobility in the sense that the migration can
be initiated by the agent itself according to its predefined itinerary.

The proactive mobility of mobile agents was first demonstrated by Telescript
[3]. Since then, mobile agent technology has received much attention in both
academia and industries. Java language and its dynamic class loading model,
coupled with several other important features such as serialization, remote
method invocation, and reflection, greatly simplify the construction of mobile
agent systems. Examples of the systems include Aglet [4], Ajanta [5], Concordia
[6], D’Agent [7], JADE [8], JACK [9], and FarGo [10].

Naplet system [11, 12] was initially designed as an educational package for
students to develop understanding of advanced concepts in distributed systems
and to gain experience with network-centric mobile computing. Although dis-
tributed systems have long been in the core of computer science curriculum,
there are few educational software platforms available that are small but full
of key concepts and principles. Amobile agent system consists of a group of agent
servers that accomplish agent migration between the servers and perform
agent execution in a confined environment. Each agent server not only needs to
protect itself from attacks by malicious or misbehaved agents but also requires
to isolate the performance of the agents that are concurrently running in the same
server andensure reliable communicationbetween collaborativeagentswhile they
are moving. Systems with such support serve as an ideal middleware platform for
experiments with related concepts such as naming, process migration, resource
management, reliable communication, and security in distributed systems.

An educational system must be organized in a way that mechanisms are
separated from policies so that various algorithms can be implemented without
changes in system infrastructure. For example, multiple agents running in the
same server can be scheduled in First Come First Served (FCFS), round-robin,
or other more complex policies. The system framework should be able to
accommodate different policies at run time. More importantly, the system
should be in a microkernel and pluggable architectural design so that its func-
tionalities can be extended by reconfiguring present modules or plugging in new
functionality modules. For example, agent execution in a remote server often
requires to access certain local server resources (e.g., printer, data file, system
status). The resources should be provided as run time plug-ins so that new or
modified resources can be offered without shutting down the server. It is known
that different applications have requirements for different types of agent com-
munication: synchronous versus asynchronous, reliable versus unreliable. The
communication module of an agent server should be able to be reconfigured at
installation time or run time to meet the needs of different applications.

We reviewed a number of representative systems in public domains and none
of them met our needs. The Naplet system was then developed. Since its alpha
release in 1998, it has been used by hundreds of students at Wayne State

266 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

University and a number of other schools around the world as a platform for
programming laboratories and term projects of advanced distributed system
courses. Over the years, it has also evolved into a research testbed for the study
of mobility approaches for scalable Internet services. The latest release of the
software package is available at www.cic.eng.wayne.edu/software/naplet.html.
Part of this chapter draws on [12].

Like other mobile agent systems, Naplet provides constructs for agent
declaration, confined agent execution, and mechanisms for agent monitoring,
control, and communication. It has the following distinct features: structured
navigation facility, reliable interagent communication mechanism, open
resource management policies, and agent-oriented access control. The system is
in a microkernel and pluggable architectural design. It separates a minimal
functional core for navigation and remote execution from extended function-
alities such as interagent communication and application-specific local
resource provisioning. The extensions can be plugged in at run time or con-
figured at installation time. This design makes it easy to accommodate future
development by plugging in new functionality modules and enhances system
extensibility and availability.

The rest of this chapter is organized as follows. Section 11.2 presents the
design goal and Naplet architecture. Section 11.3 gives system support for
structured navigation. Section 11.4 presents a hybrid of centralized and
decentralized mechanisms for agent tracking. The tracking mechanism enables
location-independent internaplet communication. Two mechanisms for syn-
chronous and asynchronous communication are discussed. Section 11.5 is
dedicated to Naplet security architecture and related resource management
strategies. Section 11.6 demonstrates the system programmability in network
management. Related work is reviewed in Section 11.7. Section 11.8 concludes
the chapter with remarks on the potential and limitation of Naplet and mobile
agent technology in general.

11.2 DESIGN GOALS AND NAPLET ARCHITECTURE

11.2.1 Design Goals

Code mobility introduces a new dimension to traditional distributed systems
and opens vast opportunities for new network-centric distributed applications.
In a networked world, one is obligated to specify not only how to execute
designated tasks of an agent but also where to execute them. A primary goal of
the Naplet system is to support an agent-oriented programming paradigm. It is
centered around two first-class objects: Naplet and NapletServer. The object
Naplet is an abstraction of agents, defining a set of basic attributes pertaining
to agents, hooks for application-specific functions to be performed on visited
servers, and itineraries to be followed by the agent. We refer to each instance of
the object Naplet as a naplet. NapletServer defines a docking place that pro-
vides naplets with a protected run-time environment within a Java virtual

11.2 DESIGN GOALS AND NAPLET ARCHITECTURE 267

http://www.cic.eng.wayne.edu/software/naplet.html

machine (JVM). We refer to each object of NapletServer as a Naplet server
(or server).

The Naplet system was designed with two goals in mind—microkernel and
pluggable:

� Microkernel To support the execution of naplets in a confined environ-
ment, Naplet server must provide an array of mechanisms for agent
migration, agent communication, resource management, security control,
and so on. The server is designed in a microkernel architectural pattern. It
is represented by a highly modular collection of powerful abstractions,
each containing handlers to deal with different but specific aspects of the
mobility support. The microkernel design requires a separation of core
functionalities in the form of a microkernel from extended functionalities
and application-dependent services.

� Pluggable Most of the modules in the Naplet server are made as external
services to the microkernel. Their default implementations can be easily
replaced or enhanced with new implementations. Moreover, application
services accessible to naplets should also be installed, configured, reconfi-
gured, and removed dynamically without shutting down the server.

In principle, a microkernel architectural pattern defines five kinds of par-
ticipating components in a software system: microkernel, internal server, exter-
nal server, clients, and adapter [13]. The microkernel implements the minimal
core functionalities; the internal server extends the core functionalities; and the
external server exposes the functionalities to clients via an interface defined in
the adapter.

When the microkernel pattern is applied to the Naplet system, each naplet
is viewed as a client which interacts with local and remote Naplet servers in
pursuit of its agenda on behalf of its owner (or program that dispatches the
naplet). Naplet server comprises seven key components, as shown in Figure
11.1: NapletSecurityManager, ResourceManager, NapletMonitor, Navigator,
Messenger, Locator, and NapletManager. Among them, the first three modules
form a microkernel in support of remote execution in a confined environment
and the other three modules are internal servers, providing extended function-
alities for multihop migration and internaplet communication. NapletManager
is an external server that provides an interface between naplets and other
functionality modules. The interface is defined in an adapter, NapletContext.

In the following, we first present the class Naplet in detail. We then delineate
the microkernel and pluggable design of NapletServer.

11.2.2 Naplet Class

Naplet is a template class that defines a generic mobile agent. Its primary
attributes include a systemwide unique immutable identifier, an immutable
codebase uniform resource locator (URL), and a protected serializable con-
tainer of an application-specific agent running states in the following:

268 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

public abstract class Naplet implements Serializable, Cloneable {

private NapletID nid;

private URL codebase;

private Credential cred;

private NapletState state;

private transient NapletContext context;

private Itinerary itin;

private AddressBook aBook;

private NavigationLog log;

public abstract onStart();

public void onInterrupt() {};

public void onStop() {};

public void onDestroy() {};

}

The naplet identifier (ID) contains the information about what the naplet is
andwhen andwhere it is created. In support of the naplet clone, the naplet IDalso
includes version information to distinguish the cloned naplets from each other.
Since a naplet can be recursively cloned, we use a sequence of integers to encode
the pedigree information and reserve 0 for the originator in a generation.

Navigator

Security
manager

Context Context

Naplet
monitor

Thread
table

Naplet
manager

Naplet
table

Internet

Locator
Messenger

Mailbox

Resource
manager

Service
channel

Resources

Naplet
socket

FIGURE 11.1 The Naplet server architecture.

11.2 DESIGN GOALS AND NAPLET ARCHITECTURE 269

For example, a naplet ID czxu@ece.wayne.edu:010512172720:2.1/HelloNaplet
represents the hello naplet that was cloned from the original one created by a user
czxu at 17:27:20 May 12, 2001 in the host ece.wayne.edu. The pedigree infor-
mation is shown in Figure 11.2; the naplet name is omitted for brevity.

The Naplet system supports lazy-code loading. It allows classes loaded on
demand and at the last moment possible. The codebase URL points to the
location of the classes required by the naplet. The naplet classes and their
associated resources, such as texts and images in the same package, can be
zipped into a Java archive (JAR) file so that all the classes and resources the
naplet needs are transported at a time.

Note that both the naplet ID and codebase URL are immutable attributes.
They are set at the creation time and cannot be altered in the naplet life cycle.
To ensure their integrity, they can be certified and signed by the naplet owner’s
digital signature. The naplet credential is used by naplet servers to determine
naplet-specific security and access control policies.

As a generic class, Naplet is to be extended by agent applications.
Application-specific agent states are contained in a NapletState object. Any
object within the container can be in one of the three protected modes: private,
public, and protected. They refer to the states accessible to the naplet only, any
Naplet servers in the itinerary, and some specific servers, respectively. For
example, a shopping agent that visits hosts to collect price information about
a product would keep the gathered data in a private access state. The gathered
information can also be stored in a protected state so that a Naplet server can
update a returning naplet with new information.

The naplet executes in a confined environment, defined by its NapletContext
object. The context object provides references to dispatch proxy, messenger,
and stationary application services on the server. The context object is a

czxu@ece:010512172720:0

czxu@ece:010512172720:1 czxu@ece:010512172720:2.0

czxu@ece:010512172720:2.1 czxu@ece:010512172720:2.2

FIGURE 11.2 Hierarchical naming of naplet ID of a HelloNaplet.

270 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

transient attribute and is to be set by a resource manager on the arrival of the
naplet. It cannot be serialized for migration.

In addition to the attributes, Naplet class also provides a number of hooks
for application-specific functions to be performed in different stages of the
agent life cycle: onStart, onStop, onDestroy, and onInterrupt. onStart is
an abstract method which must be instantiated by extended agent applications.
It serves as a single entry point when a naplet arrives at a host. onStop
and onDestroy are event handlers when respective events occur during the
execution of the agent. The agent behavior can also be remotely controlled
by its owner via the onInterrupt method. Details of these will be discussed in
Section 11.2.3.

Mobile agents have a defining characteristic of proactive mobility. Each
naplet is associated with an Itinerary object for the way of traveling among the
servers. It is noted that many mobile applications can be implemented in dif-
ferent ways by the same agent associated with different travel plans. We sep-
arate the business logic of an agent from its itinerary in Naplet class. Each
itinerary is constructed based on five primitive constructs: singleton, sequential,
parallel, alternative, and loop. Complex constructs can be composed recur-
sively. In addition to the way of traveling, itinerary constructs also allow users
to specify a postaction after each visit. The postaction mechanism facilitates
interagent communication and synchronization. Details about the itinerary
mechanism will be discussed in Section 11.3.

Many mobile applications involve a group of agents and the agents need
to communicate with each other. In addition, an agent in travel may need to
communicate with its home server from time to time. In support of inter-
agent communication, we associate with each naplet an AddressBook object.
Each address book contains a group of naplet IDs and their original locations.
The locations may not be current, but they provide a starting point for
tracking. The address book of a naplet can be altered as the naplet grows. It can
also be inherited from naplet cloning. We restrict communications between
naplets whose IDs are known to each other.

The last attribute of Naplet class is NavigationLog for naplet management.
It records the arrival and departure time information of the naplet at each
server. The navigation log provides the naplet owner with detailed travel
information for postanalysis.

11.2.3 NapletServer Architecture

NapletServer is a class that implements a docking place of naplets within a
JVM. It is responsible for executing naplets in a confined environment and
making local host resources available to them in a controlled manner. It also
provides mechanisms to facilitate resource management, naplet migration, and
naplet communication.

Naplet servers are run autonomously and cooperatively to form a naplet
sphere, where naplets are launched, migrated, and executed during their life

11.2 DESIGN GOALS AND NAPLET ARCHITECTURE 271

cycles in pursuit of their agenda on behalf of their owners. Each naplet has a
home server in the sphere where it is launched through NapletManager. The
manager provides local users or application programs with an interface to
launching naplets, monitoring their execution states, and controlling their
behaviors. In addition, the manager maintains the information about its locally
launched naplets in a naplet table. Footprints of all past and current visiting
naplets are also recorded for management purposes. Each JVM can contain
more than one Naplet server. This feature greatly simplifies the task of code
debugging.

At the heart of a Naplet server are three modules: NapletSecurityManager,
ResourceManager, and NapletMonitor. They together form a microkernel in
support of remote execution. A Naplet server can be configured or reconfigured
with various hardware, software, and data resources available at its host.
Hardware resources such as central processing unit (CPU) cycles, memory
space, and network input–output (I/O) constitute a confined basic execution
environment. The software and data resources are largely application depen-
dent and often configured as services. For example, naplets for distributed
network management need to access local network-monitoring services; naplets
for distributed high-performance computing need access to various math
libraries.

NapletSecurityManager defines a suite of agent-oriented access control
policies for the protection of the Naplet server from illegitimate access to local
resources. Its focus is on authentication and authorization. It leaves monitoring
of the naplet execution and control of resource and service consumption to
NapletMonitor and ResourceManager.

NapletMonitor schedules the execution of multiple naplets from the same or
different owners in a Naplet server. It defines a thread-based scheduling
mechanism which enables the implementation of scheduling policies, such as
FCFS and weighted fair queueing, for performance optimization.

ResourceManager provides a local service access control and allocation
mechanism to request naplets, with the assistance of ServiceProxy. The proxy
contains references to local services open to visiting naplets. Because of their
diversity, services are defined in a reflection pattern so that any type of services
can be accessed via the proxy. Moreover, the reflective design and the indi-
rection of access to services via the proxy make it possible to “plug in” (or
install) new services or reconfigure the existing ones at run time, without shut-
ting down the Naplet server. More details about the run time pluggable service
microkernel will be presented in Section 11.5. Section 11.6 gives an example of
such services in network management.

The microkernel implements the core functionalities for naplet remote exe-
cution. It is enhanced by three other components: Navigator, Messenger, and
Locator. Navigator is responsible for the realization of naplet migration
between Naplet servers. Naplet migration can be initiated by the naplet itself
according to its own itinerary or requested by the server where the naplet
resides. On receiving a request for migration, the local navigator consults its

272 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

associated security manager for a LAUNCH permission. Then, it contacts its
counterpart in the destination server for a LANDING permission. Success of a
launch will release all of the resources occupied by the naplet.

On receiving a naplet migration request from a remote server, the navigator
consults its security manager and resource manager to determine whether a
LANDING permission should be granted. When the naplet arrives, the navi-
gator reports the arrival event to the managers and then passes the control over
the naplet to the local naplet monitor. We note that single-hop migration is not
a big issue in Java-based systems. The challenge is the implementation of
multihop migration according to the naplet’s own itinerary. In Section 11.3, we
will define a set of structured itinerary patterns and present an implementation
for various itineraries.

Each Naplet server contains a Messenger for internaplet asynchronous
persistent communication. There are two types of messages: system and user.
System messages are used for naplet control (e.g., callback, terminate, suspend,
and resume); user messages are for communicating data between naplets. On
receiving a system message, the messenger casts an interrupt onto the running
naplet thread. How the control message should be reacted by the naplet is
application dependent and left for programmers to specify. The interrupt
handler is given in method onInterrupt when a naplet is created. On receiving a
user message, the messenger puts it into a mailbox associated with the receiving
naplet. The naplet decides when to retrieve the message from its mailbox.

The messenger relies on a Locator for naplet tracking and location services
and supports location-independent communication. Naplet ID-based message
addresses are resolved through a centralized or distributed naplet directory
service. Due to the mobility nature of naplets and network communication
delay, the location information provided by the directory service may not be
current. The messenger provides a PostOffice mechanism to handle messages
passing between mobile naplets.

In addition to support for asynchronous communication, each Naplet server
provides a NapletSocket mechanism for complementary synchronous transient
communication between naplets. NapletSocket bears much resemblance to
Java Socket in application programming interfaces (APIs), except it is naplet
oriented. Conventional Transmission Control Protocol (TCP) has no support
for mobility. To guarantee message delivery, an established socket connection
must migrate with naplets continuously and transparently. Section 11.4.2 gives
the details about NapletSocket and Messenger.

Recall that NapletManager provides an interface for naplet launch and
remote control. It also provides an interface for visiting naplets to interact with
the microkernel and extended migration and communication modules. This is
implemented by NapletContext. It serves as an adapter which contains refer-
ences to instances of Navigator, Messenger, and ServiceProxy. The context
object is created on receiving a naplet by the Naplet monitor. Because of the
indirection of access, migration and communication functionality can be
enhanced by plugging in new modules at run time.

11.2 DESIGN GOALS AND NAPLET ARCHITECTURE 273

11.3 STRUCTURED ITINERARY MECHANISM

Mobility is the essence of naplets. A naplet needs to specify functional opera-
tions for different stages of its life cycle in each server as well as an itinerary for
its way of traveling among the servers. The functional operations are mainly
defined in the methods of onStart() and onInterrupt() in an extended Naplet
class. The itinerary is defined as an extension of Itinerary class. Separation of
the itinerary from the naplet’s functional operations allows a mobile applica-
tion to be implemented in different ways following different itineraries. This
section presents the design and implementation of a set of primitive constructs
in support for easy representation of itineraries.

11.3.1 Primitive Itinerary Constructs

The itinerary of a naplet is mainly concerned with visiting order among the
servers. Each visit is defined as the naplet operations from the arrival event
through the departure event. The visiting order encoded in the itinerary object
is often enforced by departure operations at servers. Correspondingly, we
denote a visit as a pair hS;T i, where S represents the operations for server-
specific business logic and T represents the operations for itinerary-dependent
control logic. For example, consider a mobile agent–based information col-
lection application. One or more agents can be used to collect information from
a group of servers in sequence or in parallel. At each server, the agents perform
information-gathering operations (S) (e.g., work load measurement, system
configuration diagnosis) as defined by the application. The operations are
followed by agent movement-dependent operations (T) for possible interagent
communication and exception handling. Different itineraries would lead to
different communication patterns between the naplets. Different itineraries
would also have different requirements for handling itinerary-related excep-
tions. For example, in a parallel search over a number of servers, naplets needs
to communicate with each other about their latest search results before they
move forward. Success of the search in a naplet may need to terminate the
execution of the others.

We note that servers listed in a journey route may not be necessarily visited
in all cases. Many mobile applications involve conditional visits. For example,
in a mobile agent–based sequential search application, the agent will search
along its route until the end of its route or the search is completed. That is,
all visits except the first one should be conditional visits. We denote a con-
ditional visit as hC - S;T i, where C represents the guard condition for the
visit hS;T i.

Based on the concepts of visit and conditional visit, we define an itinerary in
recursively constructed visiting orders. Its base is a singleton, comprising a
single visit or conditional visit. Assume P and Q are two itineraries. We define
four primitive construct operators seq, alt, and par over P and Q for con-
structions of sequential, alternative, and parallel patterns. Specifically:

274 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

� seq(P, Q) refers to an itinerary that the visits of P are followed by the visits
of Q by one naplet;

� par(P,Q) refers to an itinerary that the visits of P and Q are carried out in
parallel by a naplet and its clone;

� alt(P,Q) refers to an itinerary that the visits of either P orQ are carried out
by one naplet;

� loop(C- P) refers to an itinerary that the visits of P are repeated until the
guard condition C becomes false.

Formally, itinerary P is defined in Backus–Naur Form (BNF) syntax as

hVi ::¼ hSijhS;TijhC-S;Ti
hPi ::¼ singletonðVÞjseqðP;QÞjparðP;QÞjaltðP;QÞjloopðC-PÞ

11.3.2 Itinerary Programming Interfaces

Each itinerary construct defines an itinerary pattern. Its abstraction, guard
condition, and postaction are expressed respectively in the following public
programming interfaces in the Naplet system.

public interface ItineraryPattern extends Serializable, Cloneable {

public void go(Naplet nap) throws UnableDispatchException;

}

public interface Checkable extends Serializable, Cloneable {

public boolean check(Naplet nap);

}

public interface Operable extends Serializable, Cloneable {

public void operate(Naplet nap);

}

The Naplet system contains five built-in ItineraryPattern implementations:
Singleton, Seq, Alt, Par, and Loop. Their class diagrams are shown in
Figure 11.3. In the following, we give two itinerary examples constructed from
visits and conditional visits to demonstrate itinerary programming. Consider a
mobile agent–based information collection application. One or more agents can
be used to collect information from a group of servers s1, s2, . . . , sn in
sequence or in parallel. At each server, the agents perform information-gather-
ing operation (e.g., work load measurement, system configuration diagnosis) as
defined by the application. They are followed by itinerary-dependent opera-
tions for possible interagent communication and exception handling. Different
itineraries would lead to different communication patterns. In a parallel search,
naplets need to communicate with each other about their latest search results.
Success of the search by a naplet may need to terminate the execution of the
others.

11.3 STRUCTURED ITINERARY MECHANISM 275

Example 11.1 The class MyItinerary1 defines a sequential itinerary using the
SeqPattern construct for MyNaplet, indicating a sequential information
collection. We define the MyNaplet class as an extension of the base class
Naplet (line 1). The method onStart (line 3) is one of the hooks of the Naplet
class for application-specific functions to be performed on agent arrival at a
server. It contains a location-aware business logic collectInfo (line 4). After
completion of this function, the agent travels according to its itinerary (line 6).
The itinerary is defined in a private class MyItinerary1 (line 10). It is a simple
sequential visiting order over an array of servers (line 13). At the end of its
itinerary, the agent reports its collected results back to its home by a post-
action as defined in the class ResultReport (line 9). Since the itinerary class
MyItinerary1 is declared as a private inner class of the naplet, the postaction
can be defined on the naplet states. The itinerary is set via a setItinerary method
of the Naplet class (line 13).

1) public MyNaplet extends Naplet {

2)

3) public void onStart() {

4) collectInfo(); // Location-aware business logic

5) try {

6) getItinerary().travel(this);

7) } catch (UnableDispatchException node) {};

8) }

9) private class ResultReport implements Operable { . . . }

10) private class MyItinerary1 extends Itinerary {

11) public MyItinerary1(String[] servers) {

12) Operable act¼new ResultReport();

13) setItinerary(new SeqPattern(servers, act));

14) }

15) }

16) }

ItineraryPattern

Singleton Composite Loop

Seq Par Alt

FIGURE 11.3 Built-in itinerary constructs in the Naplet system.

276 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

Example 11.2 The class MyItinerary2 defines a parallel-search itinerary, as
shown in Figure 11.4, by the use of k cloned naplets, each for an equal number of
servers (for simplicity, we assume n can be divided by k). Let m¼ n/k. Totally
m3 k visits are defined (lines 12–22). Each visit is of class Singleton, comprising a
checkable object ResultVerify as its guardian precondition (line 12). Whenever a
naplet finds the target, it will skip the rest of its servers and meanwhile inform the
others. The synchronization is realized by a collective operation defined in the
operable object DataComm (line 13). A cloned naplet i, 0# i# k, will visit m
servers in sequence, as defined in a SeqPattern object journeys[i] (line 21). The
naplets report their results to their home at the end of their journeys via postaction
ResultReport. All the journeys together form parallel itinerary using the ParPat-
tern construct (line 23). The itinerary object is set via a setItinerary method of the
base class Naplet. Naplet cloning is due to the ParPattern construct.

10) private class MyItinerary2 extends Itinerary {

11) public MyItinerary2(String[] servers, int k) {

12) Checkable guard¼new ResultVerify();

13) Operable sync¼new DataComm();

14) Operable report¼new ResultReport();

15) int n¼servers.length; int m¼n/k;

16) Singleton[][] visits¼new Singleton[k][m];

17) SeqPattern[] journeys¼new SeqPattern[m];

18) for (int i¼0; i , k; iþþ) {
19) for (int j=0; j , m; jþþ)
20) visits[i][j]=new Singleton(guard,servers[i*kþj],sync);

21) journeys[i]=new SeqPattern(visits[i],report);

22) }

23) setItinerary(new ParPattern(journeys));

24) }

25) }

11.3.3 Implementations of Itinerary Constructs

In [14], we showed that the set of primitive constructs in Figure 11.3 is regular
complete in the sense that any itinerary in a regular trace can be constructed based
on these primitive constructs. However, they are insufficient to express itineraries
like “Visiting site s1 for x times, followed by visiting of s2 for the same number of

SyncVisit Report

FIGURE 11.4 Example of parallel-search itinerary using three cloned naplets.

11.3 STRUCTURED ITINERARY MECHANISM 277

times.” In the following, we show the implementation details of Singleton and
SeqPattern as programming examples of user-defined itinerary constructs.

InNaplet system, each customized itinerary associatedwith anaplet is extended
from a serializable Itinerary class. The itinerary contains a reference to the current
itinerary pattern and keeps in stack the naplet trace for recursive traverse.

public class Itinerary implements Serializable, Cloneable {

private ItineraryPattern cur; // Current itinerary pattern the

naplet is on.

private Stack patterns; // Stacked itinerary patterns the

naplet was on.

.

protected ItineraryPattern popPattern() { return patterns.pop(); }

protected void pushPattern(ItineraryPattern itin) { return patterns.

push(itin); }

public final void setCurPattern(ItineraryPattern itin) { cur¼itin; }

public final void travel(Naplet nap) { current.go(nap); }

}

Singleton class defines the visit of a single server coupled with a precondition
and postaction. Each itinerary has an associated iterator, indicating the next
itinerary pattern to be visited. ItineraryIterator is defined as serializable to
replace Java built-in iterators because the Java iterators are nonserializable and
their index information will be lost after migration. The go() method shows the
details of a naplet visit of a single server, including guard condition checking,
postaction execution, and migration. Recall that the execution of a naplet is
confined to a context created by Naplet Monitor, as shown in Figure 11.1. The
context contains a reference to local navigator service. The migration is accom-
plished by the navigator.

Because an itinerary is recursively constructed, backtrack() method returns
the itinerary pattern following the current singleton. For example, consider an
itinerary seq(s1, s2, s3). Internally, it is transformed into a representation of seq
(singleton(s1), singleton(s2), singleton(s3)). The visit of singleton(s1) will end
up with a backtrack to the initial visit of the seq(. . .) pattern with its iterator
pointing to singleton(s2). Details about the visit of a composite pattern like seq
will be discussed later.

public class Singleton implements ItineraryPattern {

private URN server; // Site to be visited

private Checkable guard; // Precondition of the visit

private Operable action; // Postaction of the visit

private ItineraryIterator iter; // A serializable iterator defined over

itinerary

.

public void go(Naplet nap) throw UnableDispatchException {

if (iter.hasnext()) {

URN next¼((Singleton)iter.next()).server;

if (guard ¼¼ null 8 guard.check(nap))

nap.getNapletContext().getNavigator().toDispatch(next, nap);

278 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

else { backtrack(nap); }

} else {

if (action !¼ null)

action.operate(nap); // Perform postaction

iter.reset(); // Reset the iterator for possible itinerary loop

backtrack(nap);

}

}

private void backtrack(Naplet nap) {

ItineraryPattern itin¼nap.getItinerary().popPattern();

if (itin !¼null) {

nap.getItinerary().setCurPattern(itin);

itin.go(nap);

}

}

}

SeqPattern class is defined as an extension of CompositePattern class. A
CompositePattern object contains a number of itineraries together with a pre-
condition and a postaction. The itineraries are stored in an ArrayList data
structure indexed by an itinerary iterator. CompositePattern class is defined as
an abstract class because it leaves the visiting order of the servers in ArrayList
unspecified. SeqPattern class defines a sequential visit order in its go() method.
It recursively traverses each itinerary recorded in the agent itinerary until a
Singleton is reached. Due to space constraints, other composite itinerary pat-
terns such as ParPattern and Loop are omitted.

public abstract class CompositePattern implements ItineraryPattern {

private ArrayList path; Composite itinerary is stored in an array list

protected Checkable guard; Terminate condition for the loop

protected Operable action; Postaction after the loop

protected ItineraryIterator iter; A serializable iterator over the

array list

public abstract void go(Naplet nap) throws UnableDipatchException;

}

public class SeqPattern extends CompositePattern {

.

public void go(Naplet nap) throw UnableDispatchException {

if (iter.hasNext()) {

ItineraryPattern next¼iter.next();

if (guard ¼¼ null 8 guard.check(nap)) {

nap.getItinerary().pushPattern(this);

nap.getItinerary().setCurPattern(next);

next.go(nap); // traverse next pattern recursively

} else { backtrack(nap); }

} else {

if (action 6¼ null) action.operate(nap);

iter.reset();

backtrack(nap);

}

}

}

11.3 STRUCTURED ITINERARY MECHANISM 279

}11.4 NAPLET TRACKING AND INTERNAPLET COMMUNICATION

Mobility is a defining characteristic of mobile agents. Mobility support poses a
basic requirement for tracking agents and finding their current locations
dynamically. The agent location information is needed not only for home
servers to contact their outstanding agents for agent management purposes but
also for interagent communication. In this section, we first present a Naplet
location service. Then, we show two mechanisms for synchronous and asyn-
chronous communication between naplets.

11.4.1 Naplet Location Service

In general, there are three approaches for the tracking and location-finding
problem: broadcast, location directory, and forward pointer.1 A broadcast
approach sends a location query message to all servers. It is simple in concept
and easy to implement if the system supports broadcasting in network and
transport layers. In large-scale networks with unreliable communication links,
reliable broadcasting is nontrivial by any means. Moreover, any agent location
change during the process of broadcasting makes the approach impractical.

A location directory approach is to designate one or more directory servers
to keep track of agent locations. The directory service is advertised so that any
location query message is directed to the directory. Because naplets may keep
moving and the communication delay between naplet servers and the directory
is nonnegligible, the location information provided by the directory service is
not necessarily current.

Agent tracking based on forward pointers relies upon agent footprints left
on visited servers to chain the servers together in a visiting order. In this
approach, a location query message will first be sent to the agent home server.
The message will then be passed down the agent visiting path. Since the
approach requires no updates of agent locations, it incurs no extra overhead in
migration. Its downside is a long delay for tracking.

The Naplet location service is based on a hybrid of directory and forward
pointer mechanisms. The location service interface is defined by Locator in the
following:

public interface Locator {

public URN lookup(NapletID nid) throws NapletLocateException;

public URN lookup(NapletID nid, long timeout) throws

NapletLocateException;

}

Recall that NapletServer can be running in one of the two modes: with
and without naplet directory service. In a system without a directory service,

1In [15], the author discussed five messaging models, which mixed agent tracking with messaging

services together.

280 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

naplets are tracked by using naplet footprint information recorded in each
naplet manager in the servers. NapletFootPrint, as defined in the following,
contains the source and destination information about each naplet visit.

public class NapletFootPrint {

private URN source; // Where the naplet comes from

private Date arrivalTime;

private URN dest; // Where the naplet leaves for

private Date departTime;}

On receiving a location-finding request from Messenger or other high-level
location-independent services, the local Locator first checks with its local naplet
manager to find out whether the target naplet is in. If not, the Locator then
retrieves the home server address of the target naplet, as encoded in its NapletID
object, and sends a query message to the home server. The query message is for-
warded along the path, starting from the home server, according to the agent
footprints left in visited servers until the message catches the target naplet. Note
that a query message may arrive at a server before its target because the query
message and the naplet may be transferred in different physical routes and the
naplet may be blocked in the network. If the query message arrives after the
naplet’s landing and before its departure, it is responded with the current server
location; otherwise, the message needs to be buffered for a certain time period.
Readers are referred to Section 11.4.2.1 for details about in-order message/agent
delivery on non-FIFO (first in–first out) communication networks.

Since a query message for an agent needs to traverse its whole path, the lookup
service will be timedout as the agent path stretches out. This is an inherent problem
with the forward-pointer approach. As a remedy, the Naplet system requires
updating the home server with the new location whenever a query is responded to.
Another solution is to use a forward pointer together with a location directory.

In a system with an installation of NapletDirectory, each locator can posi-
tion naplets by looking up the directory. Although the location information
from the directory may not be current due to the communication delay between
a naplet server and the directory, it can be used as a starting point for tracking
via the complementary forward-pointer approach. Note that we distinguish
between two types of naplets: long lived and short lived in terms of their
expected lifetime at each server. For stability, the naplet tracking and location
service is limited to long-lived naplets.

public interface NapletDirectory extends Remote {

public void register (NapletID nid, URN server, Date time, int event)

throw DirectoryAccessException

public URN lookup(NapletID nid) throw RemoteException;
}

On launching or receiving a naplet, it is the navigator that registers the
ARRIVAL and DEPARTURE events with the directory. The departure event
is reported after a naplet is successfully dispatched. However, there is no

11.4 NAPLET TRACKING AND INTERNAPLET COMMUNICATION 281

guarantee of the time when the naplet arrives at the destination. The arrival
event is reported after the naplet lands. We postpone the execution of the
naplet until the arrival registration is acknowledged. This guarantees that the
directory keeps the current location information about the naplets. If the latest
registration about a naplet in the directory is a departure from a server, the
naplet must be in transmission out of the server. If its latest registration is an
arrival at a server, the naplet can be either running in or leaving the server
(departure registration may not be needed). NapletDirectory is currently imple-
mented as a component of the naplet server, although its installation is option-
al. In fact, it can be realized as a stand-alone Lightweight Directory Access
Protocol (LDAP) service. One LDAP server can be installed for each naplet
sphere (i.e., a group of naplet servers), independent of Naplet servers. To access
the LDAP service, each Naplet server must authenticate itself to the service.

We note that a location directory is not necessarily implemented in a cen-
tralized manner. The Naplet directory services can be provided collaboratively
by the Naplet manager of each server. Since each naplet has its own home
server and the home information is encoded in naplet IDs, the naplet location
information can be maintained in their home managers. Correspondingly, any
naplet tracking and location requests are directed to respective home managers.

The Naplet location service is demanded by a messenger for internaplet
communication or by a Naplet manager for naplet management. The location
service also caches recently inquired locations so as to reduce the response time
of subsequent naplet location requests. The buffered naplet location informa-
tion can be updated on migration either by home Naplet managers in systems
with distributed Naplet directory services or by remote-residing Naplet servers
in systems with forward pointers.

11.4.2 Internaplet Communication

The Naplet location service enables location-independent communication
between naplets. That is, a Naplet can take messages from a specific naplet, any
naplet from a naplet server, or any naplet in the sphere if the message sender is
not specified. In the following, we present a PostOffice mechanism for asyn-
chronous communication and a NapletSocket mechanism for synchronous
communication.

11.4.2.1 PostOffice Messaging Service
Messenger in a Naplet server supports asynchronous message passing between
naplets. The messages are naplet ID oriented and location independent. The
asynchrony is realized based on a mailbox mechanism. On receiving a naplet,
the messenger creates a mailbox for its subsequent correspondences with other
naplets or its home naplet manager. Recall that we distinguish messages into
two classes: system message for naplet control and user message for data
communication. System messages are delivered to their target naplets imme-
diately via interrupts, while user messages are stored in respective mailboxes for

282 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

the target naplets to retrieve. For flexibility in communication, each messenger
also keeps the mailbox open to its naplet so that the naplet can access the
mailbox directly, bypassing the send/receive interface.

public interface Messenger {

public void send(NapletID dest, Message msg) throws NapletCommException;

public void receive(URN server, Message msg) throws NapletCommException;

public void receive(Message msg) throws NapletCommException;

public Mailbox getMailbox(NapletID nid);
}

The mailbox-based scheme provides a simple and reliable way for asyn-
chronous communication between naplets. Under the hood is a PostOffice
delivery protocol that implements message forwarding to deal with agent
mobility. Each messenger maintains a mailbox cabinet to contain all mail-
boxes of the residing naplets. In addition, it has a special system mailbox,
called s-box, to temporarily store undelivered messages and deal with a ren-
dezvous issue between forwarded messages and moving agents.

Assume naplet A residing on server Sa is to communicate with naplet B.
Naplet A makes a request to Sa’s messenger. The messenger checks with its
associated locator to find out naplet B’s most recent server or its home server.
Due to the mobility nature of naplets and communication delay, this server
information is not necessarily current. Without loss of generality, we assume
naplet B used to be in server Sb. Messenger in server Sa sends the message to its
counterpart in server Sb. On receiving this message:

1. If naplet B is still running in the server, Sb’s messenger replies to Sa with a
confirmation and meanwhile inserts the message into naplet B’s mailbox.
The confirmation message is kept in Sa’s messenger only for further
possible inquiry from naplet A.

2. If naplet B is no longer in server Sb, Sb’s messenger checks with its naplet
manager against its naplet trace and forwards the message to the server to
which the naplet moved. The forwarding continues until the message
catches up to naplet B, say in server Sc. Sc’s messenger replies to Sa with a
confirmation and inserts the message onto B’s mailbox.

3. If naplet B has not arrived in server Sb yet (it is possible because the
naplet might be temporarily blocked in the network), Sb’s messenger
checks with its naplet manager against its naplet trace and finds no record
of naplet B. The messenger will insert the message into the s-box, waiting
for the arrival of naplet B. On receiving naplet B, Sb’s messenger creates a
mailbox and transfers B’s messages in the s-box to B’s mailbox.

11.4.2.2 NapletSocket for Synchronous Communication
Asynchronous persistent communication is not sufficient for applications that
require agents to cooperate closely. Synchronous transient communication
would keep the agents working more closely and efficiently.

11.4 NAPLET TRACKING AND INTERNAPLET COMMUNICATION 283

The PostOffice-based asynchronous communication mechanism aside,
Messenger provides a Naplet socket service for interagent synchronous com-
munication. The Naplet socket service is built on a pair of classes: NapletSocket
and NapletServerSocket. They are implemented as wrappers of Java Socket and
ServerSocket, respectively, providing similar APIs to the Java socket service:

public interface NapletSocket {

public NapletSocket(NapletID dest, boolean isPersistent);

public void close();

public void suspend();

public void resume();

public InputStream getInputSteam();

public OutputStream getOutputStream();

}

public interface NapletServerSocket {

public NapletServerSocket(NapletID dest, boolean isPersistent);

public NapletServerSocket(boolean isPersistent);

public NapletSocket accept();

public void close();

public void suspend();

public void resume();

}

Unlike the Java socket service, which is network address oriented, the Naplet
socket service is oriented toward location-independent NapletID. Assume
naplet B runs a server socket and naplet A wants to establish a synchronous
communication channel with B. Naplet A creates a NapletSocket connecting to
naplet B. The local messenger locates naplet B via its associated internal track-
ing service provided by locator and establishes an actual socket connecting to
the destination.

An established socket can be closed by either side. In addition, the Naplet
socket service supports connection migration. We distinguish communication
channels between persistent and transient. Persistent channels need to be
maintained during migration, while transient channels are not. To support
connection migration NapletSocket provides two new methods: suspend and
resume. They can be called either by agents for explicit control over connection
migration or by a messenger for transparent migration. Assume there is an
established socket connected between naplet A and naplet B. If naplet A is to
migrate and naplet B is stationary, the socket is simply suspended before A’s
migration and resumed after it arrives at its destination. If naplet B is about to
leave, its messenger needs to suspend all of its outstanding sockets and inform
them of its destination for reconnection.

Socket hand-off in connection migration must hold until the servers are
assured no messages are in transmission. A challenge is how a naplet monitors
the status of its naplet sockets. By default the close() method returns immedi-
ately, and the system tries to deliver any remaining data. By setting a socket
option SO_LINGER, the system is able to set up a zero-linger time. That is,
any unsent packets are thrown away when the socket is closed.

284 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

NapletSocket module relies on an out-band control channel for the man-
agement of connections and operations that need access right to socket
resources. Details of the mechanism for synchronous persistent Naplet socket
services are available in [16].

11.5 SECURITY AND RESOURCE MANAGEMENT

A primary concern in the design and implementation of mobile agent systems is
security. Most existing computer security systems are based on an identity
assumption. It asserts that whenever a program attempts some action we can
easily identify a user to whom that action can be attributed. We can also
determine whether the action should be permitted by consulting the details of
the action and the rights that have been granted to the user running the pro-
gram. Since mobile agent systems are hard to keep this important assumption
valid, their deployment involves more security issues than for traditional sta-
tionary code systems.

11.5.1 Naplet Security Architecture

Over the course of agent execution on a server, server resources are vulnerable
to illegitimate access by residing agents. On the other hand, the agents are
exposed to the server, their carried confidential information can be breached,
and their business logic can even be altered on purpose. The design and
implementation of a mobile agent system need to protect agents and servers
from any hostile actions from each other. These two security requirements are
equally important in an open environment because mobile agents can be
authored by anyone and executed on any site that has docking services.
However, server protection is more compelling in an environment where the
sites are generally cooperative and trustworthy, although mobile code from
different sites may have different levels of trustiness.

The Naplet system assumes naplets are run on trustworthy servers. Security
measures focus on protection of servers from any possible naplet attacks. The
Naplet Security Architecture (NSA) is based on the standard Java security
manager to prevent untrusted mobile code from performing unwanted actions.
Unlike Java’s early sandbox security model, which hard coded security policies
together with its enforcement mechanism in a SecurityManager class, the Java
2 security architecture separates the mechanism from policies so that users can
configure their own security policies without having to write special programs.

A security policy is an access control matrix that says what system resources
can be accessed, in what manner, and under what circumstances. Specifically, it
maps a set of characteristic features of naplets to a set of access permissions
granted to the naplets. It can be configured by a Naplet server administrator. It
is our belief that any Naplet server should be prepared to run an overwhelming

11.5 SECURITY AND RESOURCE MANAGEMENT 285

number of alien agents from different places. It is cumbersome, if not impos-
sible, to manage the security needs of each individual agent. NSA supports the
concept of agent group. A group of agents represents a collection of agents that
share certain common properties. For example, cloned agents belong to a
group which should be granted similar access permission; agents from the same
owner, organization, or geographical region may form a group that shares the
same access control policies. Moreover, agents can also be grouped in terms of
their functionalities/responsibilities or particular resources that the agents need
to access. Such a group is often referred to an agent role. The administrator,
anonymous agents, and normal agents are examples. NSA defines security
policies for agents as well as groups and roles. Following is a policy example
that grants agents from an Internet domain ece.wayne.edu to look up a yellow
page service.

grant Principal NapletPrincipal “ece.wayne.edu/*” {

permission NapletServicePermission(“yellow-page”, “lookup”);

}

Early Java security architecture was targeted at code source. That is, autho-
rization is based on where the code in execution comes from, regardless of the
subject of code execution. Subject-based access control is not supported until
JDK 1.2. Naplet is one of the primary subjects we defined in NSA. Other sub-
jects include Administrator and NapletOwner. Their authentication is based
on a username/password login module defined in Java Authentication and
Authorization Service (JAAS). The principal for naplet authentication is
Naplet ID, which encodes the information about its owner, birth place, and
birth time. This information remains unchanged under naplet migration. The
information is signed by a private credential of the home Naplet manager on
behalf of its owner.

Agent-oriented access control is realized via an array of additional per-
missions: NapletServicePermission, NapletRuntimePermission, and Naplet-
SocketPermission. They grant access control privileges to system resources as
well as application-level services in a flexible and secure manner. Details of the
access control model can be seen in [17].

11.5.2 Resource Management

NSA supports policy-driven and permission-based access control to prevent
visiting agents from illegitimate access to local services of a server. It leaves
monitoring of the Naplet execution and control of resource consumption to
Naplet monitor and resource manager components of the Naplet server.

11.5.2.1 NapletMonitor
Critical resources to be monitored are CPU cycles, memory sizes, and network
bandwidth. Amobile agent system without appropriate resource management is

286 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

vulnerable to denial-of-service (DoS) attacks. The Naplet system supports
migration and remote execution of multithreaded naplets. Also, multiple naplets
may be run concurrently in a server. It is the Naplet monitor that monitors and
schedules the execution of multithreaded agents on a Naplet server.

On receiving a naplet, the monitor creates a NapletThread and a thread
group for the execution of the naplet. The NapletThread object assigns a run
time context, NapletContext, to each naplet thread and sets traps for its
execution exceptions. Each context contains references to the internal services
of a server, including navigator, locator, messenger, and service proxy. All the
threads created by the naplet are confined to the thread group. The group is set
to a limited range of scheduling priorities so as to ensure that all alien threads
are running under the control of the monitor. The monitor maintains the
running state of each thread group in a NapletThreadTable data structure.

Notice that newly arrived agents are not necessarily activated immediately.
Their threads are first buffered in a ready-to-run queue. Their execution order
is determined by an internal Scheduler service. A default implementation is a
FIFO best effort model, in which naplets are started to run in their arrival
order. Naplet servers in this model are vulnerable to DoS attacks. A challenge
is to schedule the execution of multithreaded naplets in a fair-share manner.

Thread scheduling is one of the troublesome problems in Java because it is
closely dependent on the scheduling mechanisms in the underlying operating
system (OS). A JVM uses fixed-priority scheduling algorithms to decide the
thread execution order. If more than one thread exists with the same priority,
the JVM would switch between the threads in a round-robin fashion only if the
OS uses time-slicing scheduling. The JVM on Microsoft Windows supports
fair-share scheduling between threads with the same priority. But a Java thread
on Sun Solaris would continue to run until it terminates, gets blocked, or is
preempted by a thread of higher priority. In Linux, the Java thread priority
information is totally ignored. Because of this platform-dependent effect,
thread priority is unreliable to support fair-share scheduling. In fact, Java
language specification recommends that thread priority information be used as
guides to efficiency only.

Thread priority aside, another performance factor of multithreaded agents is
the number of threads. Since JVM cannot distinguish threads from different
naplets, a malicious agent can block the execution of other agents by spawning
a large number of threads. To ensure fair-share scheduling between naplets,
Scheduler needs to implement a scheduling policy to isolate the performance of
naplets, regardless of their priorities and number of threads.

We implemented a CPU fair-sharing policy by using the Java thread
suspend/resume mechanism with priority control to switch the execution of
threads in each scheduling epoch. Although we were able to achieve the goal
of fair sharing of CPU utilization on the time scale of seconds in all of the
platforms that we tested, including Windows, Solaris, and Linux, it came at a
high scheduling overhead. The Java suspend/resume primitives have been
deprecated because they are deadlock prone. It remains an open issue to

11.5 SECURITY AND RESOURCE MANAGEMENT 287

provide performance isolation between concurrent agents in Java-based mid-
dleware platforms.

11.5.2.2 Access to Local Services
Naplets can do few things without access to local services installed on servers
and external to the Naplet system. The services include those provided by local
operating systems, database management, and other user-level applications.
They may be implemented in legacy code and most likely run in a privileged
mode. Although such local services can open to visiting naplets by setting
appropriate permissions in NapletSecurityManager, visiting naplets should
not be allowed to access these services directly. To prevent any threats from
misbehaved naplets, resource access operations must be monitored all the time.
This is realized by the use of ServiceProxy and ServiceChannel objects inside
the resource manager, as shown in Figure 11.5.

ServiceChannel class defines a bidirectional communication channel
between local services and accessing naplets. Each channel is created by the
resource manager and attached to a local service by assigning a pair of input/
output endpoints, ServiceInputStream and ServiceOutputStream, to the local
service. The other pair of endpoints, NapletOutputStream and NapletInput
Stream, are left open. The open endpoints will be assigned to a visiting naplet
after its service access permission is granted. Once the naplet receives the
endpoints, it can start to communicate with the local service under the auspices
of the proxy.

Note that the service channel is essentially a synchronous pipe. But it is
different from a Java built-in pipe facility. Java pipe is symmetric in the sense

Naplet
NapletContext

ResourceManager

Privileged services Nonprivileged services

ServiceChannel

ServiceProxy

FIGURE 11.5 Access control over privileged and nonprivileged service.

288 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

that both ends rely on each other and the pipe can be destroyed by any party. In
contrast, a service channel is asymmetric in that the channel can be allocated by
the service proxy to any authorized naplet as long as the service provider is
alive. The asymmetry of service channels enables dynamic installation and
reconfiguration of application services.

Local privileged services are accessed via service channels. A naplet server
may also be configured with nonprivileged services. Examples are small utility
services and math libraries. Nonprivileged services are published with access
handlers (e.g., math library function calls). It is also the responsibility of
ServiceProxy to allocate the handlers to requesting naplets.

11.6 PROGRAMMING FOR NETWORK MANAGEMENT IN NAPLET

Agent-based mobile computing has been experimented with in various applica-
tions, such as distributed information retrieval, high-performance distributed
computing, network management, and e-commerce; see [18–23] for examples. It
provides a number of advantages over conventional distributed computing
paradigms [24, 25]. For example, in the client–server model, clients are limited to
services that are predefined in a server. Agent-basedmobile computing overcomes
this limitation by allowing an agent to migrate carrying its own new service
implementation. Due to its unique property of proactive mobility, a featured
agent should also be able to find necessary services and information in an open
and distributed environment. Other advantages include low network bandwidth
due to its on-site computation property, resumed execution after a disconnection
from the network is reconnected, ability to clone itself to perform parallel com-
putation, and migration for performance scalability or fault tolerance.

In this section, we demonstrate Naplet programmability in a network
management application. We also gives an example of internal services that are
pluggable at run time due to the microkernel architectural design. Network
management involves monitoring and controlling the devices connected in a
network by collecting and analyzing data from the devices. Conventional
network management is mostly based on the Simple Network Management
Protocol (SNMP). It assumes a centralized management architecture and
works in a client–server paradigm. SNMP demon processes (i.e., SNMP agents)
reside on network devices and act like servers. They communicate on request
device data to a network management station. The device data are stored in a
management information base (MIB) and accessible to local SNMP agents.
The management station requests remote MIB information through a pair of
fine-grained get and set operations on primitive parameters in MIBs. This
centralized micromanagement approach for large networks tends to generate
heavy traffic between the management station and network devices and heavy
computational overhead on the management station.

The performance issues in the centralized network management architecture
can be resolved in many ways. One of the attempts is a mobile agent–based

11.6 PROGRAMMING FOR NETWORK MANAGEMENT IN NAPLET 289

distributed approach. Instead of collecting MIB information from SNMP
agents, in this approach, the network management station programs required
device statistics or diagnostics functions into an agent and dispatches the agent
to the devices for on-site management. Figure 11.6 shows a Naplet-based
network management framework. The mobile agent–based framework, namely
MAN, is in a hybrid model [22]. It gives the manager the flexibility of using
mobile agents or SNMP according to the requirements of management
activities.

The MAN management system relies on privileged services provided by the
local SNMP agent in each device. In the following, we first present an imple-
mentation of the privileged services and then define a naplet class for network
management.

11.6.1 Privileged Service for Naplet Access to MIB

In the MAN framework, a network management station creates naplets and
dispatches them to target devices. The naplets access the MIB through local
SNMP agents of the devices. For communication between Java-compliant
naplets and SNMP agents, we deployed an AdvenNet SNMP package on each
managed device. The AdventNet SNMP packages provide a Java API for
network management.

Following is a NetManagement class extended from a PrivilegedService
base class. It is instantiated by a resource manager and associated with a pair of
ServiceReader and ServiceWriter channels: in and out. Through the input
channel, the naplet server gets input parameters from naplets and reorganizes
them into an AdventNet SNMP format (lines 6–10). It then conducts a
sequence of operations, as shown in the private “retrieve” method, to

 MAN

MAP CNMP

MAEE

GUI

MAP — Mobile agent producer
CNMP — Conventional network management protocol
MAEE — Mobile agent execution environment
MIB — Management information base

MAEE

MIB

MAEE
SNMP Agent

MIB

SNMP Agent

FIGURE 11.6 Architecture for mobile agent–based network management.

290 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

communicate with the AdventNet SNMP for required MIB information. The
information is returned to the naplet through the out channel (line 12). The
whole process can be repeated for a number of inquiries from the same naplet
or different naplets.

1) import naplet.*;

2) import com.adventnet.snmp.beans.*;

3) public class NetManagement extends PrivilegedService {

4) public void run() {

5) for (;;) {

6) String parms¼in.readLine();

7) Vector values¼new Vector();

8) StringTokenizer paramTokenizer¼new StringTokenizer

(parms,”;”);

9) while (paramTokenizer.hasMoreElements())

10) values.addElement((String)paramTokenizer.nextToken());

11) String result¼retrieve(values);

12) out.writeLine(result);

13) }

14) }

15) private String retrieve(Vector parameters) {

16) StringBuffer result¼new StringBuffer();

17) String result¼null;

18) SnmpTarget target¼new SnmpTarget();

// Create an enquiry SNMP target

19) target.loadMibs(“RFC1213-MIB”);

// Load MIB

20) target.setTargetHost(InetAddress.getLocalHost());

//Set the SNMP target host

21) target.setCommunity(“public”);

22) Enumeration enum¼parameters.elements();

23) while(enum.hasMoreElements()) {

24) target.setObjectID((String)enum.nextElement()þ”.0”);

25) result¼target.snmpGet(); // Issue an SNMP get request

on managed node

26) }

27) return result.toString();

28) }

29)}

11.6.2 Naplet for Network Management

The privileged service defined reflectively in NetManagement can be plugged in
at run time. It is accessed by requesting naplets through its registered name
serviceImpl.NetManagement. The run time service pluggability greatly enhances
the system stability because new services can be installed or reconfigured without
terminating the naplets in execution and shutting down the server. Also, the
service reflective design increases the system programmability because there is no
need for users to dramatically change their naplet code to access new services.

Following is a naplet example for network management. The NMNaplet
class is extended from the Naplet base class with name, list of servers to be

11.6 PROGRAMMING FOR NETWORK MANAGEMENT IN NAPLET 291

visited, and MIB parameters. It is also instantiated with a NapletListener
object to receive information retrieved from the servers. All the information
will be stored in a reserved ProtectedNapletState space. At last, the newly
created NMNaplet object is associated with a custom-designed parallel itin-
erary pattern shown in lines 37–45.

On arrival at a server, the naplet starts to execute its entry method: onStart
(). It gets a handler to predefined NetManagement privileged service (lines 16
and 17). It then sends parameters to the server through a NapletWriter channel
and waits for results from a NapletReader channel. Notice that NapletWriter
and ServiceReader are two ends of a data pipe from naplets to servers. Another
pipe links a ServiceWriter to a NapletReader.

When the naplet finishes work on a server, it travels to the next stop (line 27).
At the end of its itinerary, the naplet executes an operate() method (lines 30–34)
to report the results back to its home. Since NMItinerary defines a broadcast
pattern (lines 40–43), the naplet will spawn a child naplet for every server. The
spawned naplets will report their results individually.

1) import naplet.*;

2) import naplet.itinerary.*;

3) public class NMNaplet extends Naplet {

4) private String parameters; // MIB parameters to be accessed

5) public NMNaplet(String name, String[] servers, String param,

NapletListener ch) throws InvalidNaplet

Exception, InvalidItineraryException {

6) super(name, ch);

7) parameters¼param;

8) setNapletState(new ProtectedNapletState()); // Set space to keep

device info.

9) getNapletState().set(“DeviceStatus”, new HashTable

(servers.length));

10) setItinerary (new NMItinerary (servers));

// Associate an itinerary with NMNaplet

11) }

12) // Entry point of a naplet at each server

13) public void onStart() throws InterruptedException {

14) String serverName¼getNapletContext().getServerURN().

getHostName();

15) Vector resultVector¼new Vector();

16) HashMap map¼getNapletContext().getServiceChannelList();

17) ServiceChannel channel¼map.get(“serviceImpl.NetManagement”);

18) NapletWriter out¼channel.getNapletWriter();

19) out.writeLine(parameters); // Pass parameters to servers

20) NapletReader in¼channel.getNapletReader();

21) String result¼null;

22) while ((result¼in.readLine()) !¼EOF) {

23) resultVector.addElement(result);

24) }

25) Hashtable deviceStatus¼(Hashtable) getNapletState().get

(“DeviceStatus”);

26) deviceStatus.put(serverName, resultVector);

292 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

27) getItinerary().travel(this);

28) }

29) private class ResultReport implements Operable {

30) public void operate(Naplet nap) {

31) if (nap.getListener()!¼null) {

32) Hashtable messages¼(Hashtable) nap.getNapletState().get

(“message”);

33) nap.getListener().report(deviceStatus);

34 }

35) }

36) }

37) private class NMItinerary extends Itinerary {

38) public NMtinerary(String[] servers) throws

InvalidItineraryException {

39) Operable act¼new ResultReport();

40) ItineraryPattern[] ip¼new ItineraryPattern[servers.length];

41) for (int i=0; i , servers.length; iþþ)

42) ip[i]¼new SingletonItinerary(servers[i], act);

43) setRoute(new ParItinerary(ip));

44) }

45) }

46) }

11.7 RELATED WORK

The software agent technology has found its way in two main areas: artificial
intelligence (AI) and distributed systems. AI research is mainly on the exploi-
tation of agent autonomy in human–agent interaction and multiagent appli-
cations [26]. JADE [8] and JACK [9] are two recent examples of autonomous
agent development systems. Although agents in such systems can be moved
from one host to the other on demand, their migration is limited to reactive
mobility. In contrast, research in distributed systems emphasizes system sup-
port for agent proactive mobility. In this section, we provide a concise review of
current mobile agent systems with a focus on their treatments of four design
issues related to proactive mobility: migration, naming, communication, and
security.

The defining trait of mobile agents is their proactive mobility, which allows
them to migrate from server to server in their own itineraries. Itinerary
representation is a major undertaking of mobile agent systems. Various itin-
erary programming constructs were developed in different systems. Aglet [4]
implemented only a single itinerary pattern for a list of servers to be visited in
sequence. Mole [27] provided sequence, set, and alternative constructs as well
as a priority assignment facility in support of flexible travel plans. Ajanta [5]
implemented two additional constructs: split, split–join, and loop. They
demonstrated the programmability and expressiveness of the constructs mainly
by examples. The Naplet system defines five core structural constructs: sin-
gleton, sequence, parallel, alternative, and loop. Since each itinerary pattern is

11.7 RELATED WORK 293

associated with a precondition and a postaction, the parallel construct provides
flexible support for set, split, and split–join itinerary patterns. In [14], we
extended the core itinerary constructs into a general-purpose mobile agent
itinerary language, namely, MAIL. We analyzed its expressiveness based on its
operational semantics and showed MAIL to be amenable to formal methods to
reason correctness and safety properties regarding mobility.

Naplet deals with proactive mobility of individual agents. In contrast,
FarGo [10] provided system support for reference-based group mobility. It
assumes that mobile components of a distributed application be interconnected
by different types of references (pull, stamp, etc). Migration of a component
may need to pull other components along or leave behind a copy in the original
server so as to preserve the validity of its incoming and outgoing component
references.

Agent naming determines the way of agent tracking, as required by agent
communication and management. Systems such as Agent Tcl [28], Aglet [4],
and Tacoma [29] deploy a location-dependent naming scheme in which an
agent changes its name to reflect the new location whenever it migrates. Agents
are simply tracked by the use of the domain name system (DNS). Albeit simple
in agent tracking, the scheme comes at extra cost for agent renaming in
migration. In contrast, Naplet uses a location-transparent naming scheme and
implements a directory-based name resolution mechanism to find current agent
locations.

The directory can be organized in a centralized or distributed way. A cen-
tralized organization maintains all location information in a single server. Due
to its simplicity in management, this centralized directory approach has been
widely used in today’s mobile agent prototypes, such as Mobile Objects and
Agents (MOA) [30], Grasshopper [31], and Aglet [4]. A major drawback of this
approach is poor scalability. In highly mobile agent systems, the centralized
directory is prone to bottleneck jams.

A distributed directory organization maintains the agents’ location infor-
mation in their respective home servers. Whenever an agent migrates, its home
server is updated with the new location. This approach was used in the Object
Management Group (OMG) Mobile Agent System Interoperability Facilities
(MASIF) [32]. Because this approach binds each agent to a home directory
statically, the home server address must be retrievable from the agent name.
The Naplet system can be deployed in two modes: with and without centralized
directory. Considering the fact that the location information in the directory is
not necessarily current due to the presence of communication delay, the Naplet
system provides an additional mechanism, agent footprint, to help keep track
of agent locations.

Communication is a crucial issue in multiagent systems. Agent communi-
cation languages such as Knowledge Query and Manipulation Language
(KQML) [33] and the Foundation for Intelligent Physical Agents (FIPA) Agent
Communication Language (ACL) [34] were designed for interactions between
autonomous agents that originate in different places. Communication in

294 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

mobile agent systems is concerned more with connectivity of agents on the
move. Mailbox is a basic location-independent mechanism for asynchronous
communication between mobile agents, in which each agent is associated with a
mailbox. Aglet and JADE are two examples relying on mailbox-based com-
munication protocols. But their frameworks cannot deal with the rendezvous
issue between forwarded messages and moving agents, as illustrated in Section
11.4.2.1. Cao et al. [35] argued that mailboxes could be decoupled from their
agents and migrated independent of agents. They suggested a synchronization
scheme between mailbox migration and message delivery in support of reliable
communication. In contrast, the PostOffice mechanism in the Naplet system
creates a temporary mailbox for each visiting naplet. The mailbox is revoked
after its naplet is left. Message forwarding is implemented by the use of agent
footprint log information in Naplet servers.

In addition to asynchronous communication, Aglet supports synchronous
message passing between agents similar to the message-passing interface (MPI).
Its implementation requires the two agents in communication to remain sta-
tionary during the session. NapletSocket is our solution that supports synchro-
nous communication between agents on the move during a session. Each
persistent communication channel between a pair of moving agents preserves
their logical relationship all the time. Mishra et al. [36] proposed a communica-
tion mechanism which is similar to NapletSocket in application semantics. But
they achieved persistent connectivity via a centralized clearinghouse which
matches sender and receiver and passes their addresses to each other for their
subsequent direct communication. This may incur long message delivery latency
because it requires at least twice the one-waymessage delay plus processing time.

Security is one of the primary concerns in mobile agent systems. Many past
studies were devoted to the protection of agents and servers from hostile
actions from each others; see [12, 37] for a recent comprehensive review of
mobile code and security measures. The NapletState attribute of the Naplet
class is designed in a similar way to the security measure of Ajanta [5] to protect
the confidentiality of agent-carried application-specific information. Like other
Java-based mobile agent systems, such as Concordia [6] and Aglet [4], the
security measures of Naplet is built on the foundation of the Java security
architecture [38] for server protection. However, early Java-based systems
defined permissions on the origin of the mobile code. The static code source
information is insufficient for identification of the agent owner in access con-
trol. In contrast, the Naplet system defines each naplet as an authenticated
subject representing the source of a request. Its agent-oriented access control
permissions allows naplets to exercise their own role-based privileges [17].

11.8 CONCLUDING REMARKS

In this chapter, we have presented the microkernel architectural design and
implementation of the Naplet mobile agent system. The system features a

11.8 CONCLUDING REMARKS 295

structured navigation facility, synchronous and asynchronous agent commu-
nication mechanisms, open resource management policies, and agent-oriented
access control. We have demonstrated its programmability in an agent-based
network management application.

It is not our intention to sell the Naplet system as a versatile platform con-
taining all necessary features for various mobile agent applications. It remains
an experimental middleware prototype in support of research in mobile dis-
tributed computing. Due to its microkernel and pluggable architectural design,
the system can be further enhanced easily by plugging in new internal services.
For example, the current messaging service implements the send and receive
methods in the Messenger interface with no consideration of message loss or
out-of-order delivery. It can be replaced by implementation of a reliable mes-
saging service at system configuration time, if needed, without the need for any
change in other system components. New application-specific services such as
NetManagement can be plugged in at run time without shutting down a server.

Mobile agent technology has been the focus of much speculation and hype in
the past decade. Research on mobile agents has recently cooled down, as the
technology awaits the emergence of killer applications. Security concerns also
impede the acceptance of mobile agents in real-world applications. The Java
security architecture provides a reasonably solid foundation to protect the
server from hostile actions of mobile code. But current JVM provides very
limited support for preemptive thread scheduling. As a result, JVM-based agent
servers are prone to DoS attacks from visiting agents. Without support for
performance isolation, an aggressive agent can also block the execution of
others. Recent research on resource management interface for the Java plat-
form [39] has opened a path to fine-grained control of resource consumption
and construction of a more secure agent execution environment.

ACKNOWLEDGMENTS

This research was supported in part by U.S. National Science Foundation
Grant Nos. CCF-0611750, DMS-0624849, CNS-0702488, CRI-0708232, CNS-
0914330, and CCF-1016966.

REFERENCES

1. D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou, Process

migration, ACM Comput. Surv., 32(3):241–299, Sept. 2000.

2. C.-Z. Xu and F. Lau, Load Balancing in Parallel Computers: Theory and Practice,

Springer/Kluwer Academic, 1997.

3. J. E. White, Mobile agents make a network an open platform for third-party

developers, IEEE Computer, 27(11):89–90, Nov. 1994.

4. D. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with

Aglet, Addison-Wesley, Reading, MA, 1998.

296 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

5. A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. Singh, Design of the Ajanta

system for mobile agent programming, J. Sys. Software, May 2002, pp. 123–140.

6. D. Wang et al., Concordia: An infrastructure for collaborating mobile agents, in

Proceedings of the 1st International Workshop on Mobile Agents (MA’98), 1997,

Springer, Apr. 11, 2006, pp. 86–97.

7. R. Gray, D. Kotz, G. Cybenko, and D. Rus, D’Agents: Security in a multiple-

language, mobile-agent system, in G. Vigna (Ed.), Mobile Agents and Security,

Lecture Notes in Computer Science, Vol. 1419, Springer, London, 1998.

8. F. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent Systems with

JADE, Wiley, Hoboken, NJ, 2007.

9. N. Howden, R. Roennquist, A. Hodgson, and A. Lucas, Jack intellent agents: A

summary of an agent infrastructure, in Proceedings of the 5th International

Conference on Autonomous Agents, 2001, Agent Oriented Software Pty. Ltd.

10. O. Holder, I. Ben-Shaul, and H. Gazit, Dynamic layout of distributed applications

in FarGo, in Proceedings of the International Conference on Software Engineering,

ACM New York, NY, USA, 1999.

11. C.-Z.Xu,Naplet: A flexiblemobile agent framework for network-centric applications,

in Proceedings of IEEE IPDPS Workshop on Internet Computing and E-Commerce

(ICEC), Fort Lauderdale, Florida, Apr. 2002, pp. 219–226.

12. C.-Z.Xu, Scalable and Secure Internet Services and Architecture, Chapman & Hall/

CRC, June 10, 2005.

13. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,

Pattern-Oriented SoftwareArchitecture: A System of Patterns,Wiley,NewYork, 1996.

14. S. Lu and C.-Z. Xu, A formal framework for agent itinerary specification, security

reasoning, and logic analysis, in Proceedings of IEEE ICDCS Workshop on Mobile

Distributed Computing, Columbus, Ohio, USA, 2005, pp. 580–586.

15. D. Deugo, Mobile agent messaging models, in Proceedings of Int. Symp. on

Autonomous Decentralized Systems, Dallas, TX , USA, 2001, pp. 278–286.

16. X. Zhong and C.-Z. Xu, A reliable connection migration mechanism for synchro-

nous communication in mobile codes, in Proceedings of International Conference on

Parallel Processing (ICPP), Montreal, Quebec, Canada, 2004, pp. 431–438.

17. C.-Z. Xu and S. Fu, Privilege delegation and agent-oriented access control in

Naplet, in Proceedings of IEEE ICDCS Workshop on Mobile Distributed Computing

(MDC), Providence, RI, USA, Apr. 2003, pp. 493–497.

18. A. Bieszczad, T. White, and B. Pagurek, Mobile agents for network management,

IEEE Commun Surv., 1(1), 1998, pp. 2–9.

19. B. Brewington, R. Gray, K. Moizumi, D. Kotz, G. Cybenko, and R. Rus, Mobile

agents in distributed information retrieval, in M. Klusch (Ed.), Intelligent Informa-

tion Agents, Springer, Heidelberg, 1999.

20. P. Dasgupta et al., MAgNET: Mobile agents for networked electronic trading,

IEEE Trans. Knowledge Data Eng., 11(4):509–525, July/Aug. 1999.

21. K. Kato et al., An approach to mobile software robots for the WWW, IEEE Trans.

Knowledge Data Eng., 11(4):526–548, July/Aug. 1999.

22. M. Kona and C.-Z. Xu, A framework for network management using mobile

agents, Int. J. Parallel Emergent Distributed Comput., 20(1):39–55, 2005.

REFERENCES 297

23. C.-Z. Xu and B. Wims, Mobile agent based push methodology for global parallel

computing, Concurrency: Practice and Experience, 14(8):705–726, July 2000.

24. C. Harrison, D. Chess, and Kershenbaum, Mobile agents: Are they a good idea?

Technical report, IBM Watson Research Center, Yorktown Heights, NY,

Mar. 1995.

25. D. Lange and M. Oshima, Seven good reasons for mobile agents, Commun. ACM,

42(3):88–89, Mar. 1999.

26. P. Maes, Agents that reduce work and information overload, Commun. ACM, 37

(7):30–40, 1987.

27. M. Strasser and K. Rothermel, Reliability concepts for mobile agents. Int. J. Coop.

Inf. Sys., 7(4):355–382, 1998.

28. R. S. Gray, Agent Tcl: A flexible and secure mobile-agent system, in M. Diekhans

and M. Roseman (Eds.), Proceedings of the 4th Annual Tcl/Tk Workshop (TCL 96),

Monterey, CA, USENIX Association Berkeley, CA, USA, 1996, pp. 9–23.

29. D. Johansen, R. van Renesse, and F. Schneider, Operating system support for

mobile agents, in Proceedings of the 5th IEEE Workshop on Hot Topics in Operating

Systems, 1995, pp. 42–45.

30. D. Milojicic, W. LaForge, and D. Chauhan, Mobile objects and agents (MOA), in

Proceedings of the 4th USENIX Conf. Object-Oriented Technologies and Systems

(COOTS’98), USENIX Association Berkeley, CA, USA, 1998.

31. C. Baeumer, M. Breugst, S. Choy, and T. Magedanz, Grasshopper—A universal

agent platform based on OMG MASIF and FIPA standards, available: www

.grasshopper.de.

32. D. Milojicic et al., MASIF: The OMG mobile agent system interoperability facility,

in Proceedings of the International Workshop on Mobile Agents (MA’98), Springer,

1998.

33. T. Finin, R. Fritzson, D. McKay, and R. McEntire, KQML as an agent

communication language, in Proceedings of the 3rd ACM International Conference

on Information and Knowledge Management (CIKM’94), ACM New York, NY,

USA, 1994, pp. 456–463, ISBN:0-89791-674-3.

34. FIPA, ACL message structure specification, Foundation for Intelligent Physical

Agents, 2001, available:www.fipa.com.

35. J. Cao, L. Zhang, J. Yang, and S. Das, A reliable mobile agent communication

protocol, in Proceedings 24th International Conference on Distributed Computing

Systems, Hachioji, Tokyo, Japan, Mar. 24–26 2004.

36. S. Mishra and P. Xie, Interagent communication and synchronization support in the

daagent mobile agent-based computing system, IEEE Trans. Parallel Distributed

Syst. 14(3), Mar. 2003, pp: 290–306.

37. S. Fu and C.-Z. Xu, Mobile codes and security, in Handbook of Information

Security, Wiley, Hoboken, NJ, Hossein Bidgoli, 2005.

38. L. Gong, Inside Java 2 Platform Security: Architecture, API Design, and Implemen-

tation, Addison-Wesley, Reading, MA, 1999.

39. G. Czajkowski, S. Hahn, G. Skinner, P. Soper, and C. Bryce, A resource

management interface for the java platform. Software: Practice and Experience,

35(2):123–157, 2005.

298 NAPLET: MICROKERNEL AND PLUGGABLE DESIGN

http://www.grasshopper.de
http://www.grasshopper.de
http://www.fipa.com

12 Performance Evaluation of
Mobile Agent Platforms and
Comparison with Client–Server
Technologies

LUÍS MOURA SILVA

Departamento Engenharia Informática, Universidade de

Coimbra—POLO II, Coimbra, Portugal

12.1 INTRODUCTION

Mobile agents are autonomous programs that can migrate through the
machines of the network to accomplish some tasks on behalf of some user.
The agents carry their code and their internal data while they are migrating
between different machines. According to [1] mobile code can be seen as the
merging of two concepts that have been successfully deployed in distributed
computing: code-on-demand and remote evaluation. In both cases, the mobility
of code is only between a client and a single server. Mobile agents go further
than these concepts since the agents can migrate across several machines and
provide a more decentralized approach.

According to [2] there is a potential list of advantages for using mobile agent
technology, namely, mobile agents reduce the network traffic, give support
for disconnected computing, facilitate the process of software upgrading and
introduction of new services in the network, and achieve higher scalability
and easy integration with legacy systems. During almost a decade there
has been intensive research in this paradigm, taken as an assumption that
mobile agents can bring some clear advantages against traditional client-server
solutions [3].

Tens of papers have been published in the literature and several commercial
mobile agent implementations have been presented in the market, including

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

299

Aglets from IBM [4], Concordia fromMitsubishi [5], Voyager fromObjectSpace
[6], Odyssey from General Magic [7], Jumping Beans from AdAstra [8], Kafka
from Fujitsu [9], and Grasshopper from IKV [10].

We developed a Java-based mobile agent platform, called JAMES, in a
research project between the University of Coimbra and Siemens [11]. This
platform is mainly oriented for the field of telecommunications and included
some particular features for better performance, fault-tolerance and resource-
control. Our industrial partners (Siemens S.A. and Siemens A.G.) have adopted
the JAMES platform to develop some applications of large-scale network
management and performance monitoring in telecommunications networks,
and the results were quite convincing.

While the list of advantages of using this paradigm seems theoretically quite
appealing, it is now a fact that, after all the hype about mobile agents, this
model did not take off on a large-scale in the IT industry. The main reason to
explain this has to do with the fact that software architects soon understood
that they could achieve similar results by using traditional client-server solu-
tions, such as remote invocation and web-technologies. Some people might say
mobile agents have been “over-hyped” and it may be a fact.

Today that the technology is more mature and there is no big fuzz about it,
software designers may look at this paradigm as a complement solution that can
be used in some particular cases, where the decentralized nature of active objects
and agents may bring some clear advantages in terms of scalability and autono-
mous execution.

This chapter presents some performance results collected with two experi-
mental studies: a benchmark study that compares mobile-agent platforms; and
a performance comparison between mobile agents and client-server solutions
like Java RMI, Corba-IIOP and Java Servlets.

The results that will be presented might be of interest to the reader that is
thinking in the future to adopt the mobile agent paradigm to develop some
large-scale applications with some specific needs for autonomous execution and
versatile software upgrading.

The rest of the chapter is organized as follows: section 12.2 presents a
brief overview of the JAMES platform; section 12.3 gives a summary of other
commercial platforms; section 12.4 describes the benchmarking comparison
between mobile agent platforms and includes some remarks about the
performance of targeted platforms; section 12.5 presents a performance com-
parison between mobile agents and client-server solutions; section 12.6 presents
some conclusions about our study.

12.2 BRIEF DESCRIPTION OF JAMES PLATFORM

This study was conducted with the JAMES platform, a mobile agent plat-
form that was developed by a consortium with three partners: the University
of Coimbra (Portugal), SIEMENS S.A. (Portugal) and SIEMENS AG

300 PERFORMANCE EVALUATION OF MOBILE AGENT PLATFORMS

(Germany). This platform was mainly targeted to the field of telecommunica-
tion and network management [11].

Our industrial partners used this platform to develop some mobile agent
applications that were integrated into commercial products. These applications
had something in common: they had to deal with very large amounts of data,
distributed over the nodes of telecommunication networks, and required a
computing paradigm that would bring software services “on-demand” to do
some processing in the sources of data. With this project we learned that this
technology, when appropriately used, provides competitive advantages to
develop distributed management applications.

The JAMES platform provides the running environment for mobile agents.
There is a distinction between the software environment that runs in the
manager host and the software that executes in the network elements (NEs): the
central host executes the JAMES manager while the nodes in the network run a
JAMES agency. The agents are written by application programmers and exe-
cuted on top of that platform. The JAMES system provides a programming
interface that allows the full manipulation of mobile agents. Figure 12.1

Central Host

Network
Element

Network
Element

Network
Element

Mobile Agent

Mobile Agent

JAMES
Agency

JAMES
Manager

User
Operator

JAMES
GUI

JAMES
Agent

JAMES
Code Server

Code Server

Application Developer

FIGURE 12.1 An Overview of the JAMES platform.

12.2 BRIEF DESCRIPTION OF JAMES PLATFORM 301

presents a global snapshot of the system with a special description of a possible
scenario where the mobile agents will be used.

Every NE runs a Java virtual machine and executes a JAMES agency that
enables the execution of the mobile agents. The JAMES agents will migrate
through these machines of the network to access some data, execute some tasks
and produce reports that will be sent back to the JAMES manager. There is
a mechanism of authentication in the JAMES agencies to control the execu-
tion of agents and avoid the intrusion of non-official agents. Communication
between the different machines is done through stream sockets. A special
protocol was developed to transfer the agents across the machines in a robust
way and is atomic to the occurrence of failures.

The application developer writes applications based on a set of mobile
agents. These applications are written in Java and should use the JAMES API
for the control of mobility. After writing an application the programmer should
create a JAR with all the classes that make part of the mobile agent. This JAR
file is placed in a JAMES code server. This server can be a different machine or
in the same machine where the JAMES Manager is executing. In both cases, it
maintains a code directory with all the JAR files available and the mapping to
the corresponding mobile agents.

The host machine that runs the JAMES manager is responsible for the whole
management of the mobile agent system. It provides the interface to the end-
user, together with a graphical UI for the remote control and monitoring of the
agents. The JAMES GUI is the main tool for management and administration
of the platform.

Due to lack of space we will not describe the inner details of the JAMES
platform. We have paid special attention to algorithms and techniques to
optimize the performance of the applications and we did include some support
for fault-tolerance and security. We do not advocate that this platform is better
than other ones. Our focus is just on the lessons we have taken from this project
which might be important to other researchers that want to conduct further
work on this topic of distributed computing.

12.3 BRIEF DESCRIPTION OF OTHER PLATFORMS

In our experimental study we have selected eight different mobile agent plat-
forms: James, Swarm, Odyssey, Grasshopper, Voyager, Concordia, Aglets and
Jumping Beans.

There are several reports in the literature about the functionality of some
of these platforms. Kiniry and Zimmerman [12] presented a direct comparison
between Odyssey, Aglets, and Voyager. In [13] there is another comparison of
agent system features that includes Aglets, Voyager, Odyssey, and Kafka. In
[14] the authors presented a comprehensive review of three platforms: Aglets,
Voyager, and Odyssey. Another evaluation was presented in [15] that included

302 PERFORMANCE EVALUATION OF MOBILE AGENT PLATFORMS

a feature comparison between the following platforms: D’Agents, April, Aglets,
Grasshopper, Odyssey, and Voyager.

These reports only focus on the list of features of each platform and present
some conclusions about the overall functionality of the platforms. However, no
performance results have been reported so far. Next, we will present a short
description of each platform.

12.3.1 Aglets SDK

The Aglets Software Developer Kit (ASDK) was developed at the IBM
Research Laboratory in Japan [4]. The migration of Aglets is based on a
proprietary Agent Transfer Protocol (ATP). The ASDK run-time consists of
the Aglets server and a visual agent manager, called Tahiti. There is an addi-
tional module of software (called Fiji) that allows the installation of an Aglets
server on a HTTP browser. The ASDK provides a modular structure and an
easy-to-use API for the programming of Aglets. This platform has extensive
support for security and agent communication and provides an excellent
package of documentation. In our experiments we used ASDK 1.0.3.

12.3.2 Concordia

Concordia has been developed by Mitsubishi Electric [5]. This platform pro-
vides a rich set of features, like support for security, reliable transmission of
agents, access to legacy applications, interagent communication, support for
disconnected computing, remote administration, and agent debugging. This
system also provides good documentation. In our experiments we used version
1.1.2 of Concordia.

12.3.3 Voyager

Voyager is an object request broker with support for mobile objects and
autonomous agents. It was developed by ObjectSpace [6]. The agent transport
and communication is based on a proprietary ORB on top of TCP-IP. Voyager
has a comprehensive set of features, including support for agent communica-
tion and agent security. Voyager provides support for Corba and RMI. Due to
its dynamic proxy generation, these technologies can be used without the need
for stub generators. Thereby, Voyager objects can be used as Corba objects. In
our experiments we used version 3.0 beta of Voyager.

12.3.4 Odyssey

Odyssey is a Java-based mobile agent system from General Magic [7]. The
platform has a transport-independent API that works with JavaRMI, IIOP, and
DCOM. Odyssey provides the basic functionality and a small set of features.

12.3 BRIEF DESCRIPTION OF OTHER PLATFORMS 303

Currently, it is not clear if General Magic will continue the efforts in this plat-
form. In our experiments we used version 1.0 beta 2 of Odyssey.

12.3.5 Jumping Beans

Jumping Beans platform is a platform from AdAstra [8]. The main strengths
of this platform include the support for security, agent management,
easy integration with existing environments, and a small footprint. As far as
we know it is also the only platform that claims to support the mobility of
Corba objects. However, this platform uses a client-server approach for agent
migration: if an agent wants to migrate between two agencies it has to go
first to the agent manager. This approach may represent a point of bottleneck
in large-scale applications. In our experiments we used version 1.0.4 of
Jumping Beans.

12.3.6 Grasshopper

Grasshopper is a mobile agent platform that was distributed commercially by
IKVþþ, a company from Berlin [10]. Grasshopper supports several transport
protocols through the use of an internal ORB: a proprietary protocol based on
TCP/IP, Java RMI, Corba IIOP, TCP/IP with SSL and RMI with SSL. The
platform supports comprehensive support for security, agent communication,
and agent persistency. In our experiments we used release 1.2 of the light
edition of Grasshopper.

12.3.7 Swarm

The Swarm platform was developed by a research center of Siemens A.G. It is
based on version alpha 1.0 of theMole platform from theUniversity of Stuttgart,
Germany. Swarm provides an extensive support for inter-agent communication
and agent management. In our experiments we used version 1.0 of Swarm.More
details about this platform can be obtained in [16].

In the next section we present the methodology of the benchmarking study, a
description of the test environment, the test parameters, and the benchmark
application.

12.4 BENCHMARKING STUDY: COMPARING AGENT PLATFORMS

12.4.1 Test Environment

In our experiments we used a dedicated cluster of six machines connected
through a 10Mb/sec switched Ethernet. All the results were taken when the

304 PERFORMANCE EVALUATION OF MOBILE AGENT PLATFORMS

machines were fully dedicated. Every machine has a Pentium II (300 Mhz)
processor and 128Mb of RAM. These machines were running Microsoft
Windows NT 4.0 and all the mobile agent platforms have used JDK 1.1.7 with
the JIT option.

12.4.2 Application Benchmark

In the experiments presented in this section we have used a simple benchmark
application composed by a migratory agent that roams the network to get a
report about the current memory usage of each machine. This application has
been written in eight different versions for all those platforms.

12.4.3 Test Parameters

In our experiments we changed some of the application and platform para-
meters, namely the number of agencies, the number of laps performed by the
agent, the agent size, and the use of caching and prefetching techniques.
This way, we have made tests with one, three and five agencies. The number
of itinerary laps performed by the agent has been changed between 1, 10, and 100.
The size of additional data that was carried by the mobile agent has been set to
none, 100 Kb and 1Mb. For this application, the size of the jar file was 3.66 Kb
and the size of the serialized object with no additional data was around 1 Kb.

12.4.4 Methodology of Benchmarking

All platforms have been tested in the same conditions using the same appli-
cation, the same test parameters, the same agent itinerary, and the same
configuration. Before every set of tests all the machines of the cluster have been
rebooted for operating system rejuvenation. The agencies were restarted before
each experiment, except for the case where we wanted to measure the effect of
code caching. We tried to make all the tests with the agent manager running
uninterrupted. Some platforms were not able to survive to some situations of
stress testing and the agent manager had to be restarted when it failed. All the
experiments were repeated at least four times and the standard deviation was
within 5% of the average values.

12.4.5 Experimental Results

The benchmark application was executed in all eight platforms by changing
all the test parameters (number of agencies, number of laps, agent data size,
caching mode). We measured two main metrics: performance of the application
and network traffic. Due to lack of space we will only present the most relevant
results, corresponding to 12 experiments.

12.4 BENCHMARKING STUDY: COMPARING AGENT PLATFORMS 305

Experiment 1 In this experiment we measured the execution time of all eight
platforms using the following parameters: 1 agency; 1 lap; data size¼ none; no
caching. The results are presented in Figure 12.2. JAMES, Odyssey, and Swarm
present the best results for this small-size agent. Jumping Beans is the slower
platform: for instance, in this case it executed five times slower than JAMES.

Experiment 2 In this experiment we increased the size of the agent to 100 Kb.
The results are presented in Figure 12.3, and as can be seen, they were quite
similar: JAMES, Odyssey, and Swarm present the best results while Jumping
Beans presented the worst results, being eight times slower than JAMES. When
using the caching mechanism, the difference was even higher: Jumping Beans
was 48 times slower than JAMES.

Experiment 3 In this third experiment we increased the size of the agent to
1 Mb. The results are presented in Figure 12.4. In this case, it was interesting
to observe that Odyssey and JAMES presented the best results. However, the
most important result was the fact that two of the platforms crashed in this test:
Jumping Beans and Concordia. We tried several runs with different system
parameters but apparently these two platforms were not ready for agents with
large data sets.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Number of Agencies: 1
Laps: 1 (No Cache)
Agent Data Size: None

Se
co

nd
s

James
Swarm
Odyssey
Grashopper
Voyager
Concordia
Aglets
Jumping Beans

James 0.64

Swarm 0.78

Odyssey 0.85

Grashopper 1.25

Voyager 1.28

Concordia 1.33

Aglets 1.49

Jumping Beans 3.53

Execution Time

FIGURE 12.2 Execution time with 1 agency, 1 lap, no data size, and no caching.

306 PERFORMANCE EVALUATION OF MOBILE AGENT PLATFORMS

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Number of Agencies: 1
Laps: 1 (No Cache)
Agent Size: 100 Kb

Se
co

nd
s

James

Odyssey

Swarm

Grashopper

Voyager

Aglets

Concordia

Jumping Beans

James 0.70

Odyssey 0.89

Swarm 1.01

Grashopper 1.47

Voyager 1.67

Aglets 1.73

Concordia 2.56

Jumping Beans 5.90

Execution Time

FIGURE 12.3 Execution time with 1 agency, 1 lap, data size¼ 100Kb, and no caching.

0.00

0.50

1.00

1.50

2.00

2.50

Number of Agencies: 1
Laps: 1 (No Cache)
Agent Size: 1 Mb

Se
co

nd
s

Odyssey
James
Swarm
Grashopper
Aglets
Voyager
Concordia
Jumping Beans

Odyssey 1.17

James 1.22

Swarm 1.88

Grashopper 2.19

Aglets 2.35

Voyager 2.37

Concordia

Jumping Beans

Execution Time

FIGURE 12.4 Execution time with 1 agency, 1 lap, data size¼ 1Mb, and no caching.

12.4 BENCHMARKING STUDY: COMPARING AGENT PLATFORMS 307

Experiment 4 In this experiment we used five agencies and we only have
results for seven platforms since the evaluation copy we had from Jumping
Beans only executed in three platform servers. This test was done without using
the caching mechanisms of the platforms and measured the impact of using the
code prefetching techniques that we implemented in the JAMES platform. For
more details about these mechanisms please refer to [17]. The results are
presented in Figure 12.5. As can be seen, the version of JAMES that uses code
prefetching achieved the best results: it was two times faster than running
without prefetching and it was four times faster than the Aglets SDK.

Experiment 5 In this experiment we executed the benchmark application in
five agencies of the dedicated network. We exploited the caching mechanisms of
the platforms by previously running the application in those agencies. The
results are presented in Figure 12.6: Odyssey, Voyager, JAMES, and Swarm
were faster than the other three platforms.

Experiment 6 In this experiment we did not use caching and the size of the
agent was increased by 1Mb. With this agent size the Concordia system always

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Number of Agencies: 5
Laps: 1 (No Cache)
Agent Data Size: None

Se
co

nd
s

James (Pref.)

James

Swarm

Odyssey

Concordia

Grashopper

Voyager

Aglets

James (Pref.) 1.57

James 3.17

Swarm 3.46

Odyssey 4.11

Concordia 4.78

Grashopper 5.37

Voyager 5.49

Aglets 7.10

Execution Time

FIGURE 12.5 Execution time with 5 agencies, 1 lap, no data, and no caching.

308 PERFORMANCE EVALUATION OF MOBILE AGENT PLATFORMS

crashed. The best results were achieved with the JAMES platform and using the
code prefetching scheme. As can be seen in Figure 12.7, this version was three
times faster than Aglets SDK and the Grasshopper platform.

Experiment 7 This experiment was similar to the previous one, but this time
we exploited the use of memory caching by the platforms. When there is
caching, the use of code prefetching makes no sense. Once again, the Concordia
system was not able to execute the application with a mobile agent of (B) 1Mb.
The results are presented in Figure 12.8 and show that Odyssey and JAMES
achieved the best results. In this experiment, Grasshopper was the slowest
platform: six times slower than Odyssey and JAMES.

Experiment 8 This experiment departs from the previous ones: this time the
agent had to execute 10 laps in the itinerary of five agencies. Increasing
the number of laps allowed us to observe the behavior of the cachingmechanisms
and the way the platforms recycle the communication channels that are used by
the mobility subsystem. We started by using a small-size agent. The results are

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Number of Agencies: 5
Laps: 1 (Memory Cache)
Agent Data Size: None

Se
co

nd
s

Odyssey

Voyager

James

Swarm

Grashopper

Concordia

Aglets

Odyssey 0.15

Voyager 0.19

James 0.20

Swarm 0.25

Grashopper 0.90

Concordia 1.10

Aglets 1.24

Execution Time

FIGURE 12.6 Execution time with 5 agencies, 1 lap, no data, but using caching.

12.4 BENCHMARKING STUDY: COMPARING AGENT PLATFORMS 309

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Number of Agencies: 5
Laps: 1 (No Cache)
Agent Size: 1 Mb

Se
co

nd
s

James (Pref.)

James

Odyssey

Swarm

Voyager

Aglets

Grashopper

Concordia

James (Pref.) 3.00

James 4.62

Odyssey 5.48

Swarm 7.30

Voyager 7.60

Aglets 9.99

Grashopper 10.48

Concordia

Execution Time

FIGURE 12.7 Execution time with 5 agencies, 1 lap, data size¼ 1Mb, and no caching.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Number of Agencies: 5
Laps: 1 (Memory Cache)
Agent Size: 1 Mb

Se
co

nd
s

Odyssey

James

Aglets

Swarm

Voyager

Grashopper

Concordia

Odyssey 1.02

James 1.09

Aglets 2.70

Swarm 2.74

Voyager 3.39

Grashopper 5.91

Concordia

Execution Time

FIGURE 12.8 Execution time with 5 agencies, 1 lap, data size¼ 1Mb, but using

caching.

310 PERFORMANCE EVALUATION OF MOBILE AGENT PLATFORMS

presented in Figure 12.9. The performance of JAMES was still the best one,
although with minimal differences to Swarm, Odyssey, and Voyager.When using
the prefetching scheme JAMES was five times faster than Concordia.

Experiment 9 This experiment was similar to the previous one, but this time
we increased the agent size by 1Mb. Once again the Concordia system was not
able to execute the application without crashing. JAMES and Odyssey were
reasonably faster than the other platforms. Once again, Grasshopper was the
slowest platform. The results are shown in Figure 12.10.

Experiment 10 In this final experiment for the execution time we did some
stress testing of the platforms by using a mobile agent of about 1Mb and
running it 100 laps over the itinerary of five agencies. The results are presented
in Figure 12.11. Two of the platforms, Concordia and Swarm, were not able to
execute this agent without crashing. Odyssey and JAMES were the fastest
platforms, while Grasshopper was the slowest one. It was five times slower than
the Odyssey system.

12.4.5.1 Measuring the Network Traffic

Experiment 11 In this experiment we measured the whole traffic in the
network that is imposed by the application and the platform protocols. These

0.00

5.00

10.00

15.00

20.00

25.00

Number of Agencies: 5
Laps: 10
Agent Data Size: None

Se
co

nd
s

James (Pref.)
James
Swarm
Odyssey
Voyager
Aglets
Grashopper
Concordia

James (Pref.) 4.04

James 5.43

Swarm 5.71

Odyssey 6.34

Voyager 6.99

Aglets 12.07

Grashopper 13.20

Concordia 19.53

Execution Time

FIGURE 12.9 Execution time with 5 agencies, 10 laps, no additional data.

12.4 BENCHMARKING STUDY: COMPARING AGENT PLATFORMS 311

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Number of Agencies: 5
Laps: 10
Agent Size: 1 Mb

Se
co

nd
s

James (Pref.)

James

Odyssey

Aglets

Swarm

Voyager

Grashopper

Concordia

James (Pref.) 13.41

James 15.27

Odyssey 16.06

Aglets 30.56

Swarm 32.29

Voyager 34.60

Grashopper 59.30

Concordia

Execution Time

FIGURE 12.10 Execution time with 5 agencies, 10 laps, data size¼ 1Mb.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

Number of Agencies: 5
Laps: 100
Agent Size: 1 Mb

Se
co

nd
s

Odyssey

James (Pref.)

James

Aglets

Voyager

Grashopper

Concordia

Swarm

Odyssey 108.62

James (Pref.) 120.91

James 122.12

Aglets 205.64

Voyager 284.02

Grashopper 497.94

Concordia

Swarm

Execution Time

FIGURE 12.11 Execution time with 5 agencies, 100 laps, data size¼ 1Mb.

312 PERFORMANCE EVALUATION OF MOBILE AGENT PLATFORMS

results were collected by using a network sniffer (Sniffer Pro). This metric
is useful to evaluate the degree of optimization that was introduced in the
mobility subsystem and the network overhead that is introduced by
the protocols. Figure 12.12 presents the first results which were taken with
five agencies. The agent had no additional data and executed one lap in its
itinerary without making use of caching. The network traffic is represented
in Kbytes.

As can be seen, the JAMES platform introduces the smallest amount of
traffic in the network when compared with the other platforms. This shows
some benefits from the optimizations we have in the platform protocols. The
version of JAMES that used code prefetching imposed more traffic than
the other version due to the additional messages that are necessary to
implement that scheme. Concordia was the platform that introduced more
traffic in the network.

Experiment 12 In this second experiment we used five agencies, a small-size
agent that runs one lap of its itinerary. However, we activated the use of
caching in all the platforms to reduce some of the network traffic due to the
distribution of code. The results are shown in Figure 12.13. In this situation,
JAMES was still the platform that introduced the smallest amount of traffic in
the network. Voyager and Swarm presented similar results. Odyssey, Aglets,
and Concordia were the platforms that introduced more traffic.

0.00

50.00

100.00

150.00

200.00

250.00

Number of Agencies: 5
Laps: 1 (None)
Agent Data Size: None

K
b

James

James (Pref.)

Swarm

Odyssey

Voyager

Aglets

Concordia

James 45.84

James (Pref.) 48.67

Swarm 103.59

Odyssey 117.15

Voyager 128.55

Aglets 135.84

Concordia 210.01

Total Traffic

FIGURE 12.12 Network traffic (in Kb) with 5 agencies, 1 lap, and no additional data.

12.4 BENCHMARKING STUDY: COMPARING AGENT PLATFORMS 313

12.4.6 Concluding Overview about the Platforms

In this section, we present some discussions about the experience we had with
these eight agent platforms.

12.4.6.1 Aglets
Aglets SDK is probably the most famous platform of mobile agents. The
results show that it is quite a robust platform and has passed all the tests
without crashing. The performance is not so good when compared with other
platforms. For instance, the JAMES platform is two or fourteen times faster
than Aglets, depending on the test cases. The caching mechanisms seem to be
not so efficient. We have done some profiling experiments where we detected
there is some garbage left in the memory of the agencies. This memory leak can
lead to a deterioration of the performance of the application over time. The
network traffic is also a weak point of this platform.

12.4.6.2 Concordia
Concordia is another well-known platform. Unfortunately, the results show
that this platform is not very robust in situations of stress testing. We could
not run the benchmark with a big size agent (B1Mb). Although the agency did
not hang up the first time the GUI interface crashed every time we tried to
create a second agent of that size. The garbage collection within the platform is
also not done in an appropriate way and there is a big deterioration in the

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Number of Agencies: 5
Laps: 1 (Memory Cache)
Agent Data Size: None

K
b

James

Voyager

Swarm

Odyssey

Aglets

Concordia

James 17.66

Voyager 28.38

Swarm 31.90

Odyssey 95.10

Aglets 109.25

Concordia 111.12

Total Traffic

FIGURE 12.13 Network traffic (inKb)with 5 agencies, 1 lap, butmakinguse of caching.

314 PERFORMANCE EVALUATION OF MOBILE AGENT PLATFORMS

execution of agents when we perform some consecutive experiments. Perfor-
mance is another weak point of Concordia, as can be seen by the results pre-
sented. This platform is also the one that generated more network traffic.

12.4.6.3 Voyager
Voyager is a commercial platform with hundreds of users. The performance
results are not brilliant, and we can say this platform is in the middle of the
table. However, there are issues related to lack of robustness of this platform.
Sometimes we got memory errors and the platform crashed completely. There
were some test cases that could not be done at any time. It is important to
notice that this situation happened with big size agents (B1Mb) but also with
small-size agents. The platform produces a big amount of network traffic when
using no cache, but it significantly reduces the traffic when we activated the use
of a memory cache.

12.4.6.4 Odyssey
Odyssey is the Java-based successor of Telescript. The results have shown that
this platform is very robust: it did not crash in any test we made. The perfor-
mance is also very good and it presented the best execution times, together with
JAMES. The only drawbacks we found was some lack of functionality and the
absence of graphical interface for the management of the application and the
launching of mobile agents.

12.4.6.5 Jumping Beans
The evaluation copy we had from Jumping Beans only allows execution with
three machines. The number of tests we could perform was therefore quite
limited. However, those tests were enough to conclude that this platform has a
really poor performance. In some cases, it was 40 times slower than the other
platforms. The reason for this poor performance is simple: every time a mobile
agent wants to migrate from machine A to machine B it has to go first to
the agent manager. This manager is a point of bottleneck and the platform is
not scalable. The platform is also not very robust in situations of stress testing:
for instance, it was not possible to execute the big size agent (B1Mb) without
giving any memory errors.

12.4.6.6 Grasshopper
This platform has a very user-friendly graphical interface and a comprehensive
set of features. In fact, this is the platform that presents the higher function-
ality. However, the performance of Grasshopper is not very good: it was two to
five times slower than the JAMES platform. The robustness is also not as
good as we expected: the platform crashed several times for big-size agents
(B1 Mb). Upon the occurrence of a memory error the platform had to be fully
restarted. The GUI also has a few bugs that result in crashes of the interface.

12.4 BENCHMARKING STUDY: COMPARING AGENT PLATFORMS 315

12.4.6.7 Swarm
This platform presented some problems of stability, although it can have some
good performance results. The platform seems to open a channel between all
the agencies. If some of these channels are not well established in the beginning
of the execution, the agent’s migration cannot be done properly and the
application hangs up. This situation has happened several times, showing that
there are some problems to be solved in this system. The GUI interface is a bit
confusing and crashes periodically. The platform also had some problems when
using big-size agents: it crashed very often and had to be completely rebooted.
The performance was good for the majority of the test cases, being better for
small-size agents. The network traffic generated by this platform was also one
of the smallest among the other platforms.

12.4.6.8 JAMES
The JAMES platform was devised and implemented with performance and
robustness in minds. Several mechanisms have been introduced to optimize the
migration of mobile agents and it seems those techniques have introduced clear
benefits. In most of the test cases, JAMES was the platform with the best level
of performance, and it presented a very good level of robustness. The resource
control mechanisms have been quite useful to increase the stability of the
system and the applications. This platform has been used by Siemens to
develop some commercial applications in the field of telecommunications.

While this section presents some benchmark results about a full set of mobile
agent platforms the reader might be interested in knowing if this mobile agent
paradigm has benefits in terms of performance when compared with traditional
client-server solutions.

12.5 COMPARING AGENTS WITH RMI, CORBA AND SERVLETS

In this section we present the results of another experimental study. This time
we compared the performance of mobile agents running in the JAMES plat-
form against similar versions of the application that were implemented in Java
RMI, Java Servlets, and Corba IIOP.

12.5.1 Test Environment

In these experiments we used the same dedicated cluster of six machines con-
nected through a 10Mb/sec switched Ethernet. All the results were taken when
the machines were fully dedicated. Every machine has a Pentium II (300 Mhz)
processor and 128Mb of RAM. These machines were running Microsoft
Windows NT 4.0 and we used JDK 1.1.7 with the JIT option. We used the
version 1.0.3 of the JAMES platform. For the CORBA version of the appli-
cation we used Visibroker (version 3.1). The servlet version was implemented
with the JavaWebServer (version 1.1).

316 PERFORMANCE EVALUATION OF MOBILE AGENT PLATFORMS

12.5.2 Application Benchmark

In this performance study we used a different synthetic application: this time
the goal of the application was a simple string search in a set of data files. The
data files were located in the servers of the network and the goal was to scan
every file to determine the number of occurrences of the target string.

12.5.3 Five Different Versions of the Application

This application was implemented in five different versions: (i) a version with a
migratory agent that visits all the nodes in the network to scan the files in the
different machines; (ii) a second version with mobile agents, but this time
the client created a set of N agents that are sent to the N machines and will
conduct the search in parallel; (iii) a third version that was implemented in Java
RMI; (iv) a fourth version that was implemented in Corba IIOP (Visibroker
ORB); (v) and a fifth version that was implemented in Servlets and commu-
nication was done by HTTP.

The versions implemented in RMI, Servlets, and Corba just follow the
typical client-server model: the client issues a remote invocation in each server,
asking to scan the data file searching the target string. The two other versions
made use of the JAMES platform: one made use of a single agent that was sent
to the network with a predefined itinerary. In this itinerary the migratory agent
should visit one server at a time, scan the local time, store the partial results,
and then migrate to the next server. At the end of the itinerary the agent will be
sent back to the client requester with the aggregate of the partial results col-
lected. This migratory agent was presented in Figure 12.1.

The second version with agents used parallel and asynchronous execution:
when the client application wants to scan the data files in N servers, it creates N
cloned agents that will be sent to each server and will work in parallel and bring
back the results to the client. This is the popular master-worker model, highly
used in parallel computing. Figure 12.14 represents this execution model.

While it would be possible to also execute remote invocations in parallel,
when using Java RMI, Servlets, and Corba, we did not use this optimization. It
would require a threaded model on the client side and some synchronization
mechanisms, not actually used by programmers when they deploy client-server
applications in these technologies.

With mobile agents, the creation of several agents to work in parallel is a
very straightforward task, and this is why we tried this master-worker version
to show some of the potentials of this computing paradigm.

12.5.4 Test Parameters

In our experiments we have taken results with different conditions for the
execution: we tried the agent’s version with run time downloading of the JAR
file the first time it is executed and when the JAR file was already prefetched to

12.5 COMPARING AGENTS WITH RMI, CORBA AND SERVLETS 317

the target servers. We collected results with different servers (1 and 5) and
different searches per execution (1 and 5). Finally, we ran the application with
different data files in the target servers: 1Mb, 10Mb, 100Mb and 1Gb.

12.5.5 Methodology of the Performance Study

The five different versions of the application were tested in the same conditions
of the network, the same data files, and the same target searches. Before every
set of tests all the machines of the cluster were rebooted for operating system
rejuvenation. The agencies were restarted before each experiment, except for
the case where we wanted to measure the effect of code caching. All the
experiments were repeated at least four times and the standard deviation was
within 5% of the average values.

12.5.6 Experimental Results

Experiment 1 In the first experiment we measured the total execution time of
the five different versions while considering two different scenarios: (a) running
with just one server; (b) running with five servers. Results are presented in
Figure 12.15.

In this experiment the client only issued one search request and the data file
in each server had 1Mbytes. As can be seen in Figure 12.15, with only one
server the Servlet version was the fastest one, which is per se an interesting
result. The migratory agent did not pay off the cost of code transfer. When we

CLIENT APPLICATION

Server

Server

Server

Server

Mobile Agent

Mobile Agent

Mobile Agent

Mobile Agent

Mobile Agent

Server

FIGURE 12.14 Master-worker version with mobile agents.

318 PERFORMANCE EVALUATION OF MOBILE AGENT PLATFORMS

increased to five servers, the fastest version was the one with mobile agents
running in parallel: the master-worker version. This is a quite expected result
since the application has work to do in parallel and the usage of concurrent
agents brought some clear benefits in terms of performance. The master-worker
version with agents achieved a speedup of 3.4 when compared with the Corba
version and a speedup of 2.2 when compared with the RMI version. It is also
interesting to see that the simple migratory agent took more time to execute
than the versions with RMI and Java Servlet.

Experiment 2 In this second experiment the client application issued one
and five search requests. Results are presented in Figure 12.16. These results
were taken with five servers, and the local data files had 1Mb. When issuing
five different searches to the five servers, the master-worker version with the
parallel mobile agents achieved expectably the best results, being 2 times faster
than the client-server versions (RMI, Corba and Servlets). Curiously, the single
migratory agent got the worst results.

Experiment 3 In the third experiment we changed the size of the local data
files: 1Mbytes, 10Mbytes, 100Mbytes and 1Gbyte. This means we are
increasing the computational time in the scanning process of the data files.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Se
co

nd
s

Total Execution Time

Master-Worker 0.89 1.17

Migratory Agent 0.85 3.65

RMI 0.93 2.59

Corba 1.67 3.97

Servlets 0.60 2.18

1 Server 5 Servers

FIGURE 12.15 Total execution time with 1 and 5 servers.

12.5 COMPARING AGENTS WITH RMI, CORBA AND SERVLETS 319

The results are presented in Figure 12.17. They were collected with five servers
and one search request. When the data files had a size of 1 Gbyte there was
almost no perceptible difference between the version with the single migratory
agent and the client-server versions. The master-worker version with five
running agents did remarkably well: it achieved a speedup of almost five.
When the data files got bigger this was the case where the potential for parallel
computing can be exploited by sending several agents to the network and
exploiting the asynchronous and parallel execution.

12.6 FINAL REMARKS

In this chapter, we presented a rich set of experimental results: in section 12.4
we presented a benchmarking study that compared the performance of eight
mobile-agent platforms: James, Swarm, Odyssey, Grasshopper, Voyager,
Concordia, Aglets and Jumping Beans. The conclusions of that study might be
relevant to the reader who is looking for a platform and wants to get more
insight about the differences in performance.

In section 12.5 we presented a performance study comparing mobile agents
with traditional client-server solutions. It was clear that in those experiments,

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Se
co

nd
s

Total Execution Time

Master-Worker 1.17 4.24

Migratory Agent 3.65 14.35

RMI 2.59 9.41

Corba 3.97 11.20

Servlets 2.18 9.56

1 Search 5 Searches

FIGURE 12.16 Total execution time with 1 and 5 searches.

320 PERFORMANCE EVALUATION OF MOBILE AGENT PLATFORMS

the single migratory agent has almost no advantage against solid technologies
like Java RMI, Java Servlets, and Corba IIOP.

We were only able to observe some gains in performance when the appli-
cation had some work to do in parallel. In this case, the client created a set of
agents that were sent to the network, do the work in parallel, and bring back
the outcome. The results are encouraging and we were able to obtain almost
linear speedups. While this study presents some results taken some time ago,
the relative conclusions might still be valid. It remains to be seen how the
adoption of mobile-agents will be in production code.

REFERENCES

1. V. Pham and A. Karmouch, Mobile software agents: An overview, IEEE Commun.

Mag., July 1998, pp. 26–37.

2. C. G. Harrison, Mobile agents: Are they a good idea?, Technical Report, IBM T. J.

Watson Research Center, RC 19887, Mar. 1995.

3. D. Lange and M. Oshima, Seven good reasons for mobile agents, Commun. ACM,

42(3):88–89, Mar. 1999.

4. IBM Aglets Workbench, available: http://www.trl.ibm.co.jp/aglets/.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

Se
co

nd
s

Master-Worker 1.17 3.61 28.63 279.62

Migratory Agent 3.65 15.87 140.95 1395.90

RMI 2.59 14.81 139.89 1394.84

Corba 3.97 16.19 141.27 1396.22

Servlets 2.18 14.40 139.48 1394.43

1 Mb 10 Mb 100 Mb 1 Gb

Total Execution Time

FIGURE 12.17 Total execution timewithdifferent data-files: 1Mb, 10Mb, 100Mb, 1Gb.

REFERENCES 321

http://www.trl.ibm.co.jp/aglets/

5. Concordia Platform, available: http://www.meitca.com/HLS/Projects/Concordia/.

6. Voyager System, available: http://www.objectspace.com/products/voyager/.

7. General Magic Odyssey, available: http://www.genmagic.com/technology/odyssey

.html.

8. Jumping Beans Platform, available: http://www.JumpingBeans.com.

9. Kafka, available: http://www.fujitsu.co.jp/.

10. Grasshopper Platform, available: http://www.ikv.de/products/grasshopper.

11. L. M. Silva, G. Soares, P. Martins, V. Batista, C. Renato, L. Almeida, and N. Stohr,

JAMES: A platform of mobile agents for the management of telecommunication

networks, in S. Albayrak (Ed.), Proceedings of Intelligent Agents for Telecommuni-

cation Applications: 3rd International Workshop, IATA’99, Lecture Notes in Artifi-

cial Intelligence, Springer, Stockholm, Sweden, Aug. 1999.

12. J. Kiniry and D. Zimmerman, A hands-on look at Java mobile agents, IEEE

Internet Comput., July–Aug. 1997, pp. 21–30.

13. T. Ugai, and M. Bursell, Comparison of autonomous mobile agent technologies,

Internal Report, FollowMe Project, APM, Cambridge, Oct. 1997.

14. M. Corkery, A review of state of the art in mobile agent systems, Technical Report,

Dept. Computer Science, National University of Ireland, Maynooth, Ireland, 1998.

15. A. Guther and M. Zell, Platform enhancement requirements, Internal Report,

Project MIAMI (ACTS Program AC338), 1998, available: http://www.fokus.gmd

.de/research/cc/ima/Miami.

16. E. Kovacs, K. Rohrle, and M. Reich, Integrating mobile agents into the mobile

middleware, in K. Rothermel and F. Hohl (Eds.), Proceedings of the 2nd Interna-

tional Workshop, MA’98, Lecture Notes in Computer Science, Stuttgart, Germany,

Sept. 1998, pp. 124–135.

17. G. Soares, and L. M. Silva, Optimizing the migration of mobile agents, in

A. Karmouch and R. Impley (Eds.), Proceedings of the 1st International Workshop

on Mobile Agents for Telecommunication Applications (MATA’99), World Scientific

Publishing Ltd, Ottawa, Canada, Oct. 1999.

322 PERFORMANCE EVALUATION OF MOBILE AGENT PLATFORMS

http://www.meitca.com/HLS/Projects/Concordia/
http://www.objectspace.com/products/voyager/
http://www.genmagic.com/technology/odyssey.html
http://www.genmagic.com/technology/odyssey.html
http://www.JumpingBeans.com
http://www.fujitsu.co.jp/
http://www.ikv.de/products/grasshopper
http://www.fokus.gmd.de/research/cc/ima/Miami
http://www.fokus.gmd.de/research/cc/ima/Miami

INDEX

Abstract location, concept of, 10

ACID properties of transaction

management, 232

ACID transaction, 235�236

Actor�critic algorithms, 143�145

ACTS AMASE Project, 304

Adaptive algorithms for location

tracking and message forwarding,

27�28

Adaptive routing, 139

Administrator-controlled networks, 167

Advanced mobility-enabled discovery

solutions, 164

Agent, 3

Agent attacks, 43

Agent-based applications, development

of, 11

Agent-based mobile computing, 289

Agent-based routing algorithms, 130

“actor�critic” approach, 143�145

algorithms for mobile ad hoc networks,

151�152

ant-based routing algorithm, 146�149

background and literature review,

130�132

classification system, 139�140

comparison of, 152�154

hybrid, 154�156

Q-learning algorithm, 140�143

reinforcement learning-based

algorithms, 145�146

routing problems, 132�139

system optimal routing algorithms,

149�151

“top-down” approach, 132

Agent cloning, 5

Agent Communication Channel

(ACC), 6

Agent Communication Language

(ACL), 6

Agent failure, 120�121

Agent footprint, 294

Agent location service, 280�282

Agent Management System (AMS), 6

Agent monitoring, 11

Agent-oriented access control, 286

Agent-oriented access control, 267

Agent-oriented access control

permissions, 295

Agent server, 266

Agent Tcl, 8, 294

Agent-to-agent communication, 11

Aglet, 266, 293�295

Aglets Software Developer Kit (ASDK),

303, 313

Aglets technology, 8

Ajanta, 266, 293, 295

Allia, 170

Altered_Flag, 199�200

Anchored map of the graph, 98

ANDSplit mediator, 237

Ant-based routing algorithm, 146�149

Ant colony optimization (ACO), 132�133

AntHocNet algorithm, 151

AntNet algorithm, 132

Approximate Wardrop equilibrium, 138

Arbitrary initial state, 124

ARPANET, 129

ArrayList, 279

Artificial intelligence (AI), 3, 293

Mobile Agents in Networking and Distributed Computing, First Edition.
Edited by Jiannong Cao and Sajal K. Das.
r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

323

Asynchronous deterministic rendezvous

algorithm, 102�103

Asynchrony and agent, 5

Atlas discovery solution, 172

Atomic event, 95

Atomicity in transaction management,

232

Audit trails, 11

Authentication, 11

Autonomous mobile agents, 41

Autonomy of agents, 5

Basic agent management functions, 11

Bellman�Ford algorithm, 129, 142

Black hole, 42

Black-hole search, 94

Black-hole search (BHS) problem, 109

in anonymous ring, 110�111

in arbitrary networks, 111�113

in asynchronous rings using tokens,

116�117

rendezvous problem RV(p), 115�116

theorems, 111�113, 116

in tree networks, 113�115

Black-hole search problem, 43

basic properties and techniques,

45�46

exploration of unknown graphs, 44�45

with a map, 48�49

rendezvous in, 54�55

with sense of direction (SD), 47�48

setting of problem, 43�44

study using tokens, 52�53

in synchronous settings, 53�54

topology-dependent protocols, 51�52

topology-sensitive universal protocols,

49�50

variations with a map, 50�51

without a map, 46�47

Bluetooth Service Discovery Protocol

(SDP), 167�168

Bootstrapping approach, 140

Broadcast scheme for reliable message

routing, 26�27

Broadcast schemes for tracking mobile

objects, 25

CARISMA, 246

Central-server schemes for tracking

mobile objects, 25

Characteristic operating point, 140

Check pointing, 11

Child agents, 5

Chordal ring topology, 62�63

Client�server paradigm, 4

Client�server solutions, 299�300

Cloned agent, 5

Cloning, 11

Code mobility technologies, 164�167

Collaboration and agent, 5

Commit-at-destination protocols, 235

Common Object Request Broker

Architecture (CORBA), 6,

244, 265

Common Object Request Broker

Architecture (CORBA) Internet

Inter-ORB Protocol (IIOP), 300

Communication mechanisms

adaptive algorithms for location

tracking and message forwarding,

27�28

asynchronous migration and

asynchronous execution, 22

efficiency, 22

location transparency, 21

mailbox-based framework for designing

mobile agent message delivery

protocols, 28�35

naming scheme of mobile agents, 23�24

parameter combinations for, 32�35

reliable, 21�22

reliable message routing for, 26�27

remote, for mobile agents, 20�21

schemes for mobile agents, 23�28

system model and assumptions, 28�30

three-dimensional design model, 30�32

Compensating transactions, 235

Complete binary trees, 60

CompositePattern class, 279

Computation, definition, 94

Computer-aided design package

Q-CAD, 171

Computer programs, 3

Concordia, 9, 266, 295, 303, 314�315

Concurrent reading and writing, 93

Confidence-based dual-reinforcement

Q-routing, 142

Confidence-based Q-routing, 142

Confidentiality of agent-carried

application-specific information, 295

324 INDEX

Consistency in transaction management,

232

Constrained multiobjective program, 135

Context-Aware Resource Management

Environment (CARMEN), 173�174,

180�184

Context-related information, 179�180

Control functions, 11

Cooperating mobile agents

concurrent reading and writing,

103�109

fault tolerance, 109�117

mapping a network, 95�103

model, 94�95

stabilization using, 117�124

Coordinating host (CH), 199

Coordination approaches of mobile agents

blackboard-based model, 77

case study, 73�74

direct, 75�76

first coupled client�server models, 74

future directions, 88�89

Linda-like models, 78�81

meeting-oriented, 75�77

overview, 72�79

roles for, 85�88

temporally uncoupled models, 74�75

tuple-based, 78, 80�85

CORBA Internet Inter-ORB Protocol

(IIOP), 11

Corruption of agent identifier, 121

Corruption of agent variables, 121

CPU cycle, 8

Critical section, 104

D’Agent, 266

D’Agents, 8

Database management systems (DBMSs),

architectures for

agent-based software, 220�222

peer-to-peer (p2p) computing, 224�225

transaction management, 232�238

view materialization, 230�232

web database access, 222�224

Data sealing, 11

DEAPspace, 170

Decontamination strategies. See

intruder capture problem and network

decontamination

Delay-based optimization problems, 134

Depth First Search (DFS), 96

Deterministic rendezvous algorithm,

102

Directory Facilitator (DF), 6

Discoverable entities, 163

Discovery clients, 163

Disk access, 8

Dispatching, 11

Distance�vector routing algorithms,

142

Distributed and network computing,

11, 293

Distributed Component Object Model

(DCOM), 303

Distributed computing, 3

Distributed computing environment, 5

Distributed registration-based protocols,

34�35

Domain name system (DNS), 25

Durability in transaction management,

232

Dynamic Adjustment of Component

InterActions (DACIA) framework,

173

DynamicTAO, 246

E-commerce, 3

Encryption, 11

Entertainment and broadcasting, 3

Exception handling, 11

Exploration algorithm, 95�96

with an overhead O(k/log k), 100

collective, 99�100

on a line graph with an anchored

map, 99

optimal, 97�99

without a map, 97

with write—read communication,

99�100

Exploration protocols, 95

FarGo, 173, 266

Fault tolerance, 109�117, 233�235

Fault tolerance functions, 11

FIPA standards, 9

First Come First Served (FCFS), 266

First in-first out (FIFO) order of message

delivery, 26�27

FM-*-NS protocol, 33�34

FM-*-SHM protocol, 34�35

INDEX 325

Forwarding-pointer-based delivery

protocols, 33�34

Forwarding-pointer-based schemes for

tracking mobile objects, 25

Forwarding-pointer scheme for reliable

message routing, 26

Foundation for Intelligent Physical

Agents (FIPA), 5�6, 257

Foundation for Intelligent Physical

Agents (FIPA) Agent

Communication Language

(ACL), 294

Full Migration (FM), 30

Gallagher’s algorithm, 150

General Packet Radio Service

(GPRS), 245

General-purpose distributed computing

middleware, 20

Global state of system, 94

Go() method, 279

Graph exploration, 43

Graph search problem, 43

Grasshopper, 9, 294, 304, 315

GREEDY, 96

GROUP1098, 77

Group-based service discovery (GSD), 171

Group communication, 8

Hermes, 252

Heteroplaces, 234

Heteroplaces with witnesses, 234

Heuristics, 96

Hierarchical schemes for tracking mobile

objects, 25

High-mobility discovery solutions,

172�176

High-mobility solutions, 162

Home health care, 3

Home server-based protocols, 33

Host attacks, 42

Hypercube topology, 60�62

HyperText Transfer Protocol (HTTP), 252

Hyper Text Transfer Protocol (HTTP)

server, 170

IBM Aglets Workbench, 8

IBM Public License, 8

Identifier id, 94

Information-gathering policy, 205

Infrastructure-based networks, 167

Initiation policy, 205

Intelligence of agent, 4�5

Interagent dependencies, 238

Internet Mobile Host Protocol

(IMHP), 24

Interprocess communication, 94

Intra-agent dependencies, 238

Intruder capture problem and network

decontamination

chordal ring networks, 62�63

chordal ring topology, 62�63

decontamination problem in a torus,

63�64

decontamination strategy, 58

different contamination rules, 64�65

graph search problem, 56�58

hypercubes, 60�62

problem definition, 55

trees, 58�60

Intrusion detection, 3

Isolation in transaction management,

232

Isoplaces, 234

Itinerary, 274

JACK, 266, 293

JADE, 257, 266, 293, 295

JAMES platform, 300, 316

description, 300�302

Java Authentication and Authorization

Service (JAAS), 286

Java-based mobile agent platform, 300

Java-based programs, 9

Java-based systems, 295

Java 2 Enterprise Edition (J2EE), 244

Java language, 266

Java MAP, 8

Java objects, 8

Java remote method invocation (RMI),

6, 265

Java RMI, 11

Java security architecture, early, 286

JavaSpaces coordination model for

mobile Internet information agents,

82�83

Java thread suspend/resume

mechanism, 287

326 INDEX

Java virtual machine (JVM), 267�268, 287

on Linux, 287

on Microsoft Windows, 287

Jini, 167�168

JM-PL-SHM protocol, 35

JM-PS-FS protocol, 35

Job-dispatching agent, 209

Job Generator (G), 205

Job Processor (J) Processes, 206

Job transfer policy, 205

Jumping Beans platform, 304, 315

Jump Migration (JM), 30�31

Karush�Kuhn�Tucker (KKT)

conditions, 137

Knowledge Query and Manipulation

Language (KQML), 19, 294

Konark, 170

Kowalski and Pelc’s algorithm, 102

Lagrange multipliers, 135, 137

Lemmas, 106, 108�109

BHS scheme, 110, 114

L2imbo, 256�257

LIME, 256�257

LIME (Linda in a Mobile Environment)

for mobile Internet information

agents, 83�84

Linda-like coordination approaches of

mobile agents, 78�81, 104

advantages, 79�80

Load-balancing protocols, 203�211

Load information agent, 207�208

Location-dependent management

operations, 178�179

Location-dependent queries,

229�230

Location-independent internaplet

communication, 267

Location policy, 205

Location service, of agents, 280�282

Log Agent (L), 206

Loss of agent, 120�121

Low communication scope, 83

Low-mobility deployment

scenarios, 165

Low-mobility discovery solutions,

167�169

Low-mobility solutions, 162

MA-enabled, Web sever group

(MAWSG) framework, 191�198

distributed control algorithm, 196

distributed control functions, 193�196

execution system module, 198

Server Cluster Servers, 192

Server Group Servers, 192

simulation control module, 197�198

simulation environment, 196�198

simulation system module, 198

system architecture for, 194

system model, 191�192

user interface module, 196�197

MAFAgentSystem, 7

MAFFinder, 7

Mailbox, 295

Mailbox-based framework for designing

mobile agent message delivery

protocols, 28�35

Mailbox migration

Full Migration (FM), 30

Jump Migration (JM), 30�31

Mailbox-to-Agent Message

Delivery, 31

No Migration (NM), 30

paths of mobile agent and its mailbox,

29�30

push or a pull operation, 31

synchronization of message forwarding

and agent/mailbox migration, 31

Management information base (MIB), 289

Map construction, 43

Markov decision problems, 143

MARS (Mobile Agent Reactive Spaces),

84�85

MAS (multiagent system), 74

Mediator-based discovery infrastructures,

176�178

Medium-mobility deployment scenarios,

165�166

Medium-mobility discovery solutions,

169�172

Medium-mobility solutions, 162

Message delivery protocols for mobile

agents, 28�35

Message-passing interface (MPI), 295

Message Transport Protocol (MTP), 6

Message Transport System (MTS), 6

Microkernel, 267

INDEX 327

Microkernel architectural design, 289

Microsoft Distributed Component Object

Model (DCOM), 11

Migration, 11

Migration concept, 4

Mobile ad hoc networks, algorithms for,

151�152

Mobile agent (MA) programming

paradigm, 161�162, 171�173, 177,

179�180, 190

assisted distributed dynamic load

balancing, 203�210

assisted scheme for distributed

consensus, 198�203

cooperating, 191

crash() method, 202

enabled scheme for checkpointing and

rollback, 211�215

execution time to actual crashes, 203

MAWSG, 192

MA-enabled, Web sever group

(MAWSG) framework, 192�198

number of migrations to actual crashes,

202�203

Mobile agent platform (MAP), 5�12

benchmark comparative study,

304�316

in Java RMI, Java Servlets, and

CORBA IIOP, comparative study,

316�320

Mobile agents, 3

communication cost and use of, 4

defining trait of, 293

distributed and network computing, 11

mailbox-based framework for designing

mobile agent message delivery

protocols, 28�35

proactive mobility of, 265

properties or abilities, 4�5

remote communication mechanisms,

20�21

requirement analysis of communication

mechanisms, 21�23

for routing. See

agent-based routing algorithms

schemes for communication between,

23�28

specific services, 8

use of, 3�4

for wireless sensor networks (WSNs),

11�12

for WSN-based structural health

monitoring applications, 12

Mobile Agent System Interoperability

Facilities (MASIF), 6�8

architecture, 7

Mobile and wireless computing

agent-proxy-server, 248

asynchronous communication, 246

context awareness, 246�247

lightweight middleware, 245�246

mobile agent-based middleware,

247�252

mobile computing middleware,

244�247

PDAgent middleware, 248�251

for pervasive computing, 252�255

related work, 255�258

remote procedure call/remote method

invocation (RPC/RMI), 246

seamless mobility, 253

self-adaptability, 253�255

Mobile IP, 24

Mobile Objects and Agents (MOA), 294

Mobile virtual terminal (MVT) service, 256

Mobile virus, 43

Mobility Attributes Guide Execution

(MAGE) project, 173

Mobility of agent, 4

MobiPADs, 246

Mole, 10

Mole system, 10

MonteCarlo method, 139

Monte Carlo Wardrop routing (MCWR),

154�155

Multilevel transactions, 235

Multipath routing algorithm, 139�140

Mutual exclusion, 104

Naming scheme of mobile agents, 23�24

Naplet architecture, 267

NapletListener object, 292

NapletReader channel, 292

NapletState attribute, 295

Naplet system, 266�267

access to local service, 288�289

AdventNet SNMP packages, 290

backtrack() method, 278

328 INDEX

class, 268�271

composite itinerary patterns, 279

CPU fair-sharing policy, 287

denial-of-service (DoS) attacks, 287

design goals, 267�268

go() method, 278�279

implementations of Itinerary

constructs, 277�279

internaplet communication, 282�285

itinerary class MyItinerary1, 276

itinerary class MyItinerary2, 277

Itinerary programming interfaces,

275�277

MAN management system, 290

methods of onStart() and

onInterrupt(), 274

NapletFootPrint, 281

NapletInput Stream, 288

Naplet monitor, 286�288

NapletOutputStream, 288

NapletRuntimePermission, 286

NapletSecurityManager, 288

NapletServer architecture, 271�273

NapletServicePermission, 286

NapletSocket module, 285

NapletSocketPermission, 286

Naplet socket service, 283�285

NapletThread, 287

NetManagement class, 290

NMItinerary, 292

operate() method, 292

ParPattern construct and, 277

PostOffice messaging mechanism,

282�283

primitive Itinerary constructs, 274�275

privileged service for Naplet Access to

MIB, 290�291

programming for network management

in, 289�293

resource management, 286�289

security architecture, 267, 285�286

SeqPattern class, 279

ServiceChannel class, 288

ServiceReader channels, 290

ServiceWriter channels, 290

tracking and location-finding, 280�282

NapletWriter channel, 292

Nash equilibrium, 136

Nash routing, 136

Nested transactions, 235

NetManagement, 291

NetManagement privileged service, 292

Network decontamination problem, 43

Network diagnostic, 3

Network management

Naplet system, 289�293

Network mapping, 93

NMNaplet class, 291

NMNaplet object, 292

NM-PS-NS protocol, 33

No Migration (NM), 30

Nonblocking solutions, 104

Novel discovery solutions, 165

Object Management Group (OMG), 6

Object Management Group (OMG)

Mobile Agent System

Interoperability Facilities

(MASIF), 294

Object migration, 265

Object mobility, 265

Observed Markov decision problems

(OLPOMDP), 132

Odyssey, 303�304, 315

Odyssey mobile agent model, 10

Odyssey project, 10�11

Odyssey’s task object, 9

Off-policy learning algorithm, 139

O(log log n) pebbles, 44

OLPOMDP, 145, 153

OMG Object Transaction Service, 237

One-reader protocol, 105�106

One-writer protocol, 106�107

On-policy learning algorithm, 139

Ontology Web Language (OWL), 171

OpenCorba, 246

Open nested transactions, 235

OpenORB, 246

Open resource management policies, 267

Optimal graph exploration, 97

Oscillations in routing policy, 142

ParPattern, 279

PDAgent middleware, 248�251

Peer-to-peer (p2p) computing,

224�225

Perpetual exploration, 95

INDEX 329

Personal communication service

(PCS), 24

E-perturbed Wardrop equilibrium,

155

Pigeon hole principle, 199

Postcloning operation, 5

Predictive Q-routing, 142

Process-level migration, 265

Process/object authority, 265

Proportional routing, 132, 140

Q-learning algorithm, 131, 140�143

QueryMonitor agent, 229

Query processing, 225�230

Queue Sever (Q), 206

Reading agent, 103

Recall, 11

Recontamination of network

local immunization rule, 64

monotone strategy, 58

neighborhood-based immunity

model, 64

of nodes, 57

rule, 55, 64

via a sequence of operations, 56

Recursion and agent, 5

Reinforcement learning-based algorithms,

145�146

Reliable agent, 121

Reliable interagent communication

mechanism, 267

Reliable message routing, 26�27

Remote communication scope, 83

Remote interagent communication,

20�21

Remote method invocation (RMI), 6

Remote procedure call (RPC), 20,

173, 246

Rendezvous algorithm, 101

asynchronous version, 102�103

deterministic, 102

Resending-based scheme for reliable

message routing, 26

Resending-based Transmission Control

Protocol (TCP), 26

Resource and service components

administrator-controlled

networks, 167

aspect of advanced mobility-enabled

discovery solutions, 164

common solution guidelines,

176�184

different and growing degrees of

mobility, 162

discovery process, 161�167

discovery protocols/systems proposed

in literature, 167�176

identifying and describing discoverable

entities, 163

infrastructure-based networks, 167

in low-mobility deployment

scenarios, 165

medium-mobility deployment

scenarios, 165�166

migrating a component, 166�167

mobile code technologies, 164�167

novel discovery solutions, 165

resource/service component

retrieval, 163

Rollback error recovery algorithms,

211�212

Root agent, 122

Round-trip time (RTT), 251

Routing algorithms, agent-based. See

agent-based routing algorithms

Routing probabilities, 134�135

Rubi, 170

Salutation, 167�168

Screen access, 8

Secure and Open Mobile Agent (SOMA)

domains, 183

Security-related functions, 11

Selection policy, 205

SemiConsistentCPNO, 212

SeqPattern class, 279

Service components, 163

ServiceImpl.NetManagement, 291

Service Location Protocol (SLP), 167

Service-oriented network sockets (SoNSs),

171�172

Shortest path routing, 140

Signing, 11

Simple Network Management Protocol

(SNMP), 289

Single-path routing algorithm,

139�140

330 INDEX

Singleton class, 278

SOMA, 255�256

Spanning tree, 122, 124

Stabilization of network, 94

using cooperating mobile agents,

117�124

STARA, 143�144, 154�155

State capture, 8

Static distance�vector routing

algorithms, 133

Status queries, 11

SwarmLinda coordination model for

mobile Internet information

agents, 83

Swarm platform, 304, 316

Synchronization functions, 11

System and traffic adaptive routing

algorithm (STARA), 131

System optimal routing, 140

System optimum routing, 138�139

Team-partitioned, opaque transition

reinforcement learning

(TPOT-RL), 132

Telescript, 266

Temporally uncoupled models, 74

Termination of agents, 11

Theorems

agent failure, 121

black-hole search (BHS) problem,

111�113, 116

penalties of GREEDY and DFS, 96�97

penalty of the proposed algorithm

EXPLORE, 97

subtrees, 122

Three-phase commit (3PC)

protocol, 236

T-nonblocking system, 234

Topology discovery problem, 93

TOTA (Tuples On The Air)

middleware, 85

Tracking mechanisms of mobile agents,

24�26

broadcast schemes, 25

Cache-based strategies, 24

central-server schemes, 24

forwarding-pointer-based schemes, 25

hierarchical schemes, 25�26

Transfer facility, 8

Trees topology, 58�60

TuCSoN [17] coordination model for

mobile Internet information

agents, 84

Tuple space, 80�81, 252

Two-agent algorithm, 111

Unanchored map of the graph, 97

Universal Mobile Telecommunication

System (UMTS), 245

Universal Plug and Play (UPnP)

Simple Service Discovery

Protocol (SSDP), 167

Unreliable agent, 121

Update_Entry message, 25

User Datagram Protocol (UDP), 167

User equilibria routing, 135�138

flow-weighted delay, 135

User virtual environment (UVE), 256

Views Supported by Mobile Agents

(ViSMA), 230

Virtual resource management (VRM), 256

Voyager, 303, 312�315

Wardrop equilibrium, 136�137, 143

Wardrop Q-routing, 155

Wardrop routing, 140

Wireless local-areanetworks (WLANs), 245

Worst-case message complexity, 124

Writing agent, 103

XORJoin mediator, 237

INDEX 331

	Mobile Agents in Networking and Distributed computing
	Contents
	Foreword
	Preface
	Contributors
	Part I: Introduction
	1: Mobile Agents and Applications in Networking and Distributed Computing
	1.1: Introduction
	1.2: Mobile Agent Platforms
	1.2.1: FIPA
	1.2.2: OMG-MASIF

	1.3: Representative MAPs
	1.3.1: IBM Aglets Workbench (1997–2001)
	1.3.2: Agent Tcl (1994–2002, later known as D'Agents)
	1.3.3: Grasshopper (1998)
	1.3.4: Concordia (1997)
	1.3.5: In Mole (1997)
	1.3.6: The Odyssey

	1.4: Some Applications
	1.5: Overview of the Book
	References

	Part II: Principles of Applying Mobile Agents
	2: Mobile Agent Communications
	2.1: Introduction
	2.2: Importance of Remote Communication between Mobile Agents
	2.3: Requirements Analysis of Communication between Mobile Agents
	2.4: Several Schemes for Communication between Mobile Agents
	2.4.1: Naming Scheme
	2.4.2: Tracking Mechanisms
	2.4.3: Efforts on Reliable Message Routing
	2.4.4: Adaptive Protocols

	2.5: Mailbox-Based Framework for Designing Mobile Agent Message Delivery Protocols
	2.5.1: System Model and Assumptions
	2.5.2: Three-Dimensional Design Model
	2.5.3: Parameter Combinations

	2.6: Concluding Remarks and Further Research
	References

	3: Distributed Security Algorithms for Mobile Agents
	3.1: Introduction
	3.2: Black-Hole Search
	3.2.1: The Problem and Its Setting
	3.2.2: Background Problem: Safe Exploration
	3.2.3: Basic Properties and Tools for Black-Hole Search
	3.2.4: Impact of Knowledge
	3.2.5: Special Topologies
	3.2.6: Using Tokens
	3.2.7: Synchronous Networks
	3.2.8: Rendezvous in Spite of Black Hole

	3.3: Intruder Capture and Network Decontamination
	3.3.1: The Problem
	3.3.2: Background Problem: Graph Search
	3.3.3: Models for Decontamination
	3.3.4: Results in Specific Topologies
	3.3.5: Different Contamination Rules

	3.4: Conclusions
	Acknowledgments
	References

	4: Mobile Agent Coordination
	4.1: Introduction
	4.2: Mobile Agent Coordination: General Overview
	4.2.1: Case Study
	4.2.2: A First General Taxonomy

	4.3: Linda-Like Coordination Models: Some Evaluation Criteria
	4.3.1: Some Criteria to Compare Tuple-Based Systems

	4.4: Overview of Some Modern Tuple-Based Approaches
	4.4.1: JavaSpaces
	4.4.2: SwarmLinda
	4.4.3: LIME
	4.4.4: TuCSoN
	4.4.5: MARS
	4.4.6: TOTA

	4.5: Roles for Mobile Agent Coordination
	4.5.1: Roles
	4.5.2: Applying Roles to Agents
	4.5.3: Roles and Mobility
	4.5.4: Running Examples

	4.6: Future Directions in Mobile Agent Coordination
	References

	5: Cooperating Mobile Agents
	5.1: Introduction
	5.2: Model
	5.3: Mapping a Network
	5.3.1: Exploring Undirected Graphs
	5.3.2: Optimal Graph Exploration
	5.3.3: Collective Tree Exploration with Multiple Agents
	5.3.4: Deterministic Rendezvous in Arbitrary Graphs
	5.3.5: Polynomial Deterministic Rendezvous in Arbitrary Graphs
	5.3.6: Asynchronous Deterministic Rendezvous in Graphs

	5.4: Concurrent Reading and Writing
	5.4.1: One-Reader and One-Writer Cases
	5.4.2: One-Reader Protocol
	5.4.3: One-Writer Protocol
	5.4.4: Concurrent Reading and Writing

	5.5: Fault Tolerance
	5.5.1: BHS in Anonymous Ring
	5.5.2: BHS in Arbitrary Networks
	5.5.3: BHS in Tree Networks
	5.5.4: Multiple-Agent Rendezvous in a Ring in Spite of a Black Hole
	5.5.5: BHS in Asynchronous Rings Using Tokens

	5.6: Stabilization Using Cooperating Mobile Agents
	5.6.1: Stabilizing Spanning Tree Construction Using a Single Agent
	5.6.2: Agent Failure
	5.6.3: Spanning Tree Construction Using Multiple Agents

	5.7: Conclusion
	References

	Part III: Mobile Agent Based Techniques and Applications
	6: Network Routing
	6.1: Introduction
	6.2: Background and Literature Review
	6.3: Network Routing Problem
	6.3.1: Data Structures and Function
	6.3.2: User Equilibrium Routing
	6.3.3: System Optimal Routing

	6.4: Survey of Agent-Based Routing Algorithms
	6.4.1: Classification System
	6.4.2: Algorithms Based on Q-Learning
	6.4.3: Algorithms Based on "Actor–Critic" Approach
	6.4.4: Other Reinforcement Learning-Based Algorithms
	6.4.5: Ant-Based Routing Algorithms
	6.4.6: System Optimal Routing Algorithms
	6.4.7: Algorithms for Mobile Ad Hoc Networks

	6.5: Comparison of Routing Algorithms
	6.6: New Directions: Hybrid Agent-Based Algorithms
	6.7: Conclusions
	Acknowledgments
	References

	7: Resource and Service Discovery
	7.1: Introduction
	7.2: Mobility and Resource/Service Discovery
	7.2.1: Definitions and Concepts
	7.2.2: Suitability of Mobile Code Technologies for Discovery Solutions

	7.3: Related Work
	7.3.1: Low-Mobility Discovery Solutions
	7.3.2: Medium-Mobility Discovery Solutions
	7.3.3: High-Mobility Discovery Solutions

	7.4: Emerging Solution Guidelines
	7.4.1: Mediator-Based Discovery Infrastructures
	7.4.2: Location Awareness
	7.4.3: Context Awareness
	7.4.4: Mobile Discovery Proxies with Location and Context Awareness: CARMEN Case Study

	7.5: Concluding Remarks and "Hot Topics" in Current Research
	Acknowledgments
	References

	8: Distributed Control
	8.1: Introduction
	8.2: MAWSG Framework
	8.2.1: System Model
	8.2.2: MAWSG Framework
	8.2.3: Simulation Environment

	8.3: Mobile Agent–Assisted Scheme for Distributed Consensus
	8.3.1: Mobile Agent–Based Consensus Algorithm
	8.3.2: Performance and Simulation

	8.4: Mobile Agent–Assisted Distributed Dynamic Load Balancing
	8.4.1: Mobile Agent–Enabled Load-Balancing Scheme
	8.4.2: Preliminary Evaluation

	8.5: Mobile Agent–Enabled Scheme for Checkpointing and Rollback
	8.5.1: The Mobile Agent–Enabled Scheme
	8.5.2: Performance Evaluation

	8.6: Conclusion
	References

	9: Distributed Databases and Transaction Processing
	9.1: Introduction
	9.2: Mobile Agent Architectures for Database Access
	9.2.1: Agent-Based Software Architectures
	9.2.2: Mobile Agents for Web Database Access
	9.2.3: Peer-to-Peer Computing

	9.3: Querying with Agents
	9.3.1: Query Processing
	9.3.2: View Materialization

	9.4: Transaction Management
	9.4.1: Agents and Transactions
	9.4.2: Fault Tolerance
	9.4.3: Transactional Models

	9.5: Summary
	References

	10: Mobile Agents in Mobile and Wireless Computing
	10.1: Introduction
	10.2: Mobile Computing Middleware
	10.2.1: Lightweight
	10.2.2: Asynchronous Communication
	10.2.3: Context Awareness

	10.3: Mobile Agent in Mobile Computing
	10.3.1: Mobile Agent–Based Mobile Computing Middleware
	10.3.2: Mobile Agent for Mobile Applications

	10.4: Mobile Agent for Pervasive Computing
	10.4.1: Seamless Mobility
	10.4.2: Self-Adaptation

	10.5: Related Work
	10.6: Conclusion
	References

	Part IV: Design and Evaluation
	11: Naplet: Microkernel and Pluggable Design of Mobile Agent Systems
	11.1: Introduction
	11.2: Design Goals and Naplet Architecture
	11.2.1: Design Goals
	11.2.2: Naplet Class
	11.2.3: NapletServer Architecture

	11.3: Structured Itinerary Mechanism
	11.3.1: Primitive Itinerary Constructs
	11.3.2: Itinerary Programming Interfaces
	11.3.3: Implementations of Itinerary Constructs

	11.4: Naplet Tracking and Internaplet Communication
	11.4.1: Naplet Location Service
	11.4.2: Internaplet Communication

	11.5: Security and Resource Management
	11.5.1: Naplet Security Architecture
	11.5.2: Resource Management

	11.6: Programming for Network Management in Naplet
	11.6.1: Privileged Service for Naplet Access to MIB
	11.6.2: Naplet for Network Management

	11.7: Related Work
	11.8: Concluding Remarks
	Acknowledgments
	References

	12: Performance Evaluation of Mobile Agent Platforms and Comparison with Client–Server Technologies
	12.1: Introduction
	12.2: Brief Description of James Platform
	12.3: Brief Description of Other Platforms
	12.3.1: Aglets SDK
	12.3.2: Concordia
	12.3.3: Voyager
	12.3.4: Odyssey
	12.3.5: Jumping Beans
	12.3.6: Grasshopper
	12.3.7: Swarm

	12.4: Benchmarking Study: Comparing Agent Platforms
	12.4.1: Test Environment
	12.4.2: Application Benchmark
	12.4.3: Test Parameters
	12.4.4: Methodology of Benchmarking
	12.4.5: Experimental Results
	12.4.6: Concluding Overview about the Platforms

	12.5: Comparing Agents with RMI, CORBA and Servlets
	12.5.1: Test Environment
	12.5.2: Application Benchmark
	12.5.3: Five Different Versions of the Application
	12.5.4: Test Parameters
	12.5.5: Methodology of the Performance Study
	12.5.6: Experimental Results

	12.6: Final Remarks
	References

	Index

Mobile Agents in
Networking

and Distributed
Computing

