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Preface 

Physical chemistry is a science of theories, concepts, and lengthy calcu­
lations. To the student the theories and concepts are likely to be more 
inspiring than the calculations, but that need no longer be the case. With the 
advent of computer hardware and software, the tedium of calculational 
work has largely been overcome. Complicated calculations are now acces­
sible to the student through computer programs, and they can become as 
much a part of the learning experience as the theories and concepts. 

This book acquaints you with that pleasant state of affairs by introducing 
more than 140 computer programs that perform the essential calculations of 
physical chemistry efficiently and painlessly. Calculational methods covered 
include those for integrating systems of differential equations, solving sys­
tems of nondifferential equations, data fitting, two- and three-dimensional 
plotting, contour plotting, matrix manipulations, data-file manipulations, 
Fourier transforms, simulations, and miscellaneous number crunching. 

Topics in the book are organized to follow the order found in most con­
temporary physical chemistry texts. Since the book is not itself a text, gen­
eral coverage of standard topics is limited to brief summaries and reminders. 
If that is not enough for you, consult your favorite text. A few topics are 
specialized and perhaps not familiar; they are given more extended treat­
ments. 

Most of the programs are written in Mathematica® code. If you are not 
familiar with the Mathematica® language, you will need to spend a few 
hours (no more) with one of the several introductory books (e.g., T.W. Gray 
and J. Glynn, Beginner's Guide to Mathematica, Version 3, Cambridge 
University Press, Cambridge, 1997). The programs include instructions on 
how to enter data and comments on how to interpret the code at each stage 
of the calculation. Pay attention to these comments: they can save you much 
wasted time. 

For a preview of the programs, you can browse the Contents, where the 
programs are listed in the contexts of the chapters, and in Appendix A, 
where they are listed alphabetically with one-sentence descriptions. Two 
versions of each program are included on the disc that accompanies the 
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vi Preface 

book, one (with the extension. rna) is prepared for Mathematica®, Version 
2, and the other (with the extension .nb) for Mathematica®, Version 3. The 
disc also includes files for most of the exercises and examples in the book. 
These files begin with Ex (for exercises) or Exrn (for examples). Data files on 
the disc have the extension . rn or . da t. The programs are all written in 
the "one-dimensional" form (i.e., all of the characters on one line). If you 
want to see the corresponding "two-dimensional" form, open a . rna file in 
Mathematica®, Version 3, and request that it be converted with the input in 
StandardForrn. 

Canton, New York William H. Cropper 
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How to Run the Programs 

The CD-ROM disc that accompanies this book contains the programs, 
applications (in exercises and examples), and required data files. You can 
run the programs directly from the disc or copy the files of interest to a 
directory on a hard disk. In any case, at the beginning of a Mathematica® 
session you should first set the current working directory to the one you are 
using. For example, if you are running the programs directly from the CD 
on drive E, initially type the command SetDirectory ["E:" J. This 
ensures that programs can open data files from the disc. Access programs by 
selecting Open under the File menu and double clicking the name of the 
program. 

The command ClearAll ["Global -*" J, included on the first or sec­
ond line of each program, is intended to clear all entities created in previous 
programs that might confuse the present program. Occasionally this pre­
caution does not work, and you will have to take more drastic measures, 
such as turning the Mathematica® kernel off and then back on again. 

Five of the programs are written in BASIC code, and they run under 
QuickBASIC, Version 4.5 (Mathematica® is too slow for the Monte Carlo 
and molecular dynamics calculations performed by these programs). All of 
the BASIC programs have graphics features requiring data from the file 
GRAPH.DAT. To create this file, run the BASIC program PIXEL. BAS, 
and enter the graphics mode you are using (choices are CGA, EGA, and 
VGA). Three of the programs, MCl.BAS, MC2.BAS, and MD3.BAS, 
also require the subprogram PLOTAXES.BAS. To run one of these 
programs, MCl.BAS, for example, open MCl.BAS first and then load 
PLOTAXES.BAS. 

xi 



1 
Preliminaries 

This book is about numbers, so it is fitting that this first chapter opens with a 
section on numbers, emphasizing units and uncertainties. The computer pro­
gram Err 0 r, introduced in Sec. 1.1, assesses the propagation of uncertainty 
in ordinary calculations. Another major theme in the book is equation solv­
ing. Some aspects of that topic are developed in Sec. 1.2 and applied to a 
selection of gas laws, ranging from the simplest to one of the most complex. 
The programs presented in Sec. 1.2, in order of increasing complexity and 
named after the inventors of the gas laws, are Waals, Pengl, Beattie, 
Anderko, and Keenanl. Also mentioned in Sec. 1.2 are gas laws in the 
generic virial form and two programs, Vir iall and Vir ial2, illustrate. 
A third theme, which will be important throughout the book, is the inter­
pretation of experimental data by fitting data sets to empirical equations. In 
Sec. 1.3 the technique of least-squares (or regression) analysis is applied to 
this task, and the program Linreg is introduced. 

1.1 Uncertainties and Units 

As an arithmetic problem, the statement 2 x 3 =? is complete with the 
answer 6. As a statement involving physical quantities, however, it is in­
complete. To find the answer to the corresponding physical problem, you 
need to know uncertainties and units for the multiplied factors and also for 
the product. 

Let both factors have cm units. Since units behave like algebraic quanti­
ties, the product has the units cm x cm = cm2 • Suppose the factors with 
their uncertainties included are 2.0 ± O. I and 3.0 ± 0.2. What is the un­
certainty of the product? That question is answered by the error-propagation 
formula (Hecht, 1990, p. 286), which is implemented in the program Error. 

Error states the product with the function calcFunction (in the 
fourth line of code, after the long comment concerning special constants). 
The two factors are represented symbolically with xl and x2 (or with 
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any other convenient symbols), in calcFunction and also in the list 
var iables. Numerical values and uncertainties for the factors are sup­
plied in the list data. The program calculates 6.0 ± 0.5. The answer to the 
original problem, including units, is 6.0 ± 0.5 cm2. 

Here are two more examples in which Err 0 r is applied. 

Example 1-1. Calculate 1.68/(6.325 + 4.56), including the uncertainty, 
assuming that the numbers involved have an uncertainty of one in the last 
digit. 

Answer. See the file E xm 1 - 1 for details on how to formulate cal c -
Function and data for this calculation. The program calculates 
0.13038 ± 0.0008. 

Example 1-2. The number of Joule energy units in an "atomic unit" of 
energy is calculated with 

in which me and e are the mass and charge of an electron, eo is the vacuum 
permittivity and h is Planck's constant. Calculate this quantity. 

Answer. All of the numbers involved in this calculation are "special con­
stants," whose values are supplied in the program Err 0 r, and uncertainties 
are small enough to be neglected in our calculations. Thus calcFunction 
is defined with the symbols noted in the program for the special constants 
and var iables and data are defined as empty lists. See the file Exml-2 
for details. The program calculates 4.3597 x 10-18 J. 

1.2 Gas Laws 

Ideal Gas Law 

This is where classical and statistical thermodynamics begin. The ideal gas 
law was one of the first, and is still one of the most important, mathemati­
cal models in physics and chemistry. In classical thermodynamics it is 
stated 

PV=nRT, 
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in which R = 0.083145 L bar K- I mol-I is the gas constant, and the most 
convenient units for the pressure P, volume V, molar amount n, and abso­
lute temperature T are bars (bar), liters (L), moles (mol), and Kelvins (K). 
In later problems, the gas constant will be expressed in other units, R = 
8.3145 J K-I mol-I. When both values of R are needed in a calculation 
(rarely necessary), use R1 for 8.3145 J K- I mol-I and R2 for 0.083145 L bar 
K- I mol-I. In statistical thermodynamics the ideal gas law is expressed 

PV=NkBT, 

where kB = 1.3807 X 10-23 J K-I is Boltzmann's constant and N is the 
number of molecules. 

Nonideal Gas Laws 

For an ideal model, the ideal gas law is remarkably realistic. It is accurate 
for many purposes at pressures below about lObar and at temperatures 
above the boiling point of the component involved. But it may fail under 
more extreme conditions, and that limitation has inspired the invention of 
numerous nonideal gas laws. Here are a few of them. 

Virial Equations 

Nonideal gas laws tend to be mathematically diverse, but many can be 
rearranged into a generic form called a virial equation, usually written 

BCD 
Z= 1 +-+-+-+ ... 

Vm V~ Vni (1.1) 

in which Vrn (= V/n) is the molar volume, Z (= PVrn/RT) is the compressi­
bility factor, and B, C, D, ... are second, third, fourth, ... virial coefficients, 
which depend on temperature but not on pressure, although the pressure 
range covered can dictate how many coefficients are needed. 

Most applications of the virial equations utilize just one or two of the 
virial coefficients. If only B is needed, the equation is 

B 
Z= 1+-. 

Vm 
(1.2) 

If two virial coefficients, both Band C, are required, the virial equation is 

(1.3) 

The programs vir iall and vir ia12 solve the last two equations and 
calculate nonideal molar volumes. The next example illustrates. 
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Example 1-3. Use Vir ia12 to calculate the molar volume of benzene at 25 
bar and 300°C. Virial coefficients (from Dymond and Smith, 1969, p. 127) 
are B = -0.315 Lmol-1 and C = 36800 L2 mol- 1 at 300°C and pressures as 
high as 25 atm. 

Answer. Enter data for P, T, B, and C as instructed at the beginning of 
the program. Run the program and calculate Vrn = 1.5476 Lmol-1 compared 
to Vrn = 1.9063 L mol-1 for an ideal gas under the same conditions. 

van der Waals Equation 

This is the grandfather of the nonideal gas laws. It was introduced in 1873 by 
J.D. van der Waals in his doctoral dissertation. Like the virial equation (1.3), 
it has two parameters (a and b). It is usually written to resemble the form of 
the ideal gas law, 

(p + ;ti) (Vrn - b) = RT, (1.4) 

or as a calculation of pressure, 

P = RT/(Vrn - b) - a/V;'. (1.5) 

Values of the van der Waals parameters for selected gases are listed in Table 
1.1, and the same data are included in the file Chap 1. m, which is called by 
all of the programs that implement nonideal gas laws. The program Waals 
calculates molar volumes by solving Eq. (1.4) for a selected gas and a given 
pressure and temperature. 

TABLE 1.1. Van der Waals parameters for selected 
gases 

Gas a/(barL2mo)-2) b/(Lmo)-l) 

He 0.03412 0.02370 
Ne 0.2107 0.01709 
O2 1.360 0.03183 
N2 1.390 0.03913 
C~ 2.253 0.04278 
HCl 3.667 0.04081 
CO2 3.592 0.04267 
NH3 4.170 0.03707 
H2O 5.464 0.03049 
C12 6.493 0.05622 . 
Hg 8.093 0.01696 

Source: CRC Handbook of Chemistry and Physics. 
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Example 1-4. Use Waals to calculate the molar volume of steam at 200 bar 
and 500°C. 

Answer. Enter the given pressure and temperature and H20 for the list gas, 
as instructed in the program. The program calculates Vm = 0.25880 mol L -I, 
compared to Vm = 0.32144 molL -I for an ideal gas. The program also plots 
an isotherm (constant-temperature) curve for the specified temperature. Run 
the program for P = 200 bar and T = 600 K. The FindRoot function fails 
in this case because subcritical conditions are involved, as revealed by the 
plot of the isotherm. The program starts to search for a root with the ideal 
gas molar volume, which is much larger than the liquid molar volume de­
fined by the van der Waals equation under these subcritical conditions, and 
F indRoot fails to find a root. If the pressure is decreased to 170 bar, how­
ever, the program succeeds. Watch out for this problem when you run any of 
the programs that make nonideal gas law calculations. 

Peng-Robinson Equation 

This is one of the many elaborations of the van der Waals equation. It can be 
expressed as 

or as an equation for calculating the pressure from the molar volume, 

RT a 
P=(Vm-b) Vm(Vm+b)+b(Vm-b)' 

(1.7) 

in which a and b, representing another pair of constants (not the same as the 
a and b in the van der Waals equation), are determined by three more fun­
damental parameters, the critical pressure Pc, the critical temperature Te, 
and a much-used parameter 0), called the acentric factor, which is a general 
measure of the geometric complexity of the molecules in the gas. The em­
pirical equations that determine the Peng-Robinson a and b in terms of Pe, 

Te, and 0) are 

K = 0.37464 + 1.54220) - 0.269920)2 

rx = {I + K[1 - (T/Te)I/2)}2 

a = 0.4572R2Te2rx/ Pe 

b = O.07780RTcI Pe. 

A listing of Pe, Te, and 0) values for selected gases is given in Table 1.2. 
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TABLE 1.2. Critical constants and acentric factors for selected 
gases 

Gas Pc/bar TclK w Vmc/(Lmol- 1) 

He 2.27 5.19 -0.365 0.0574 
Ne 27.6 44.4 -0.029 0.0416 
O2 50.4 154.6 0.025 0.0734 
N2 33.9 126.2 0.039 0.0898 
CH4 46.0 190.4 0.011 0.0992 
HCI 83.1 324.7 0.133 0.0809 
CO2 73.8 304.1 0.239 0.0939 
NH3 113.5 405.5 0.250 0.0725 
H 2O 221.2 647.3 0.344 0.0571 
Clz 79.8 416.9 0.090 0.1238 
Hg 1510. 1765. -0.167 0.0427 

Source: R.C. Reid, 1.M. Prausnitz, and B.E. Poling, 1987, Appendix A. 

These data are included as items 3, 4, 5, and 6 for each gas in the file 
Chap 1. m. The program Peng1 calculates a molar volume according to Eq. 
(1.7) for a selected gas and a given pressure and temperature; it also plots an 
isotherm for the temperature chosen. The strategy of the program is identical 
to that for the program Waals. You can run the program for C02 in 
Exercise 1-6 and compare with similar calculations made with other nonideal 
gas laws. 

Beattie-Bridgeman Equation 

The van der Waals equation has two parameters (a and b), and the Peng­
Robinson equation has three (Pc, Tc and w). One route to greater accuracy is 
to add more parameters. The equation introduced by Beattie and Bridgeman, 

where 

A = Ao(l - a/Vm ) 

B = Bo(1 - b/Vm ) 

B = c/Vm T 3, 

(1.8) 

is defined by five parameters, a, b, c, Ao, and Bo. Values of these parame­
ters are given in Table 1.3 for a few gases and are included as items 7, 8, 9, 
10, and 11 for those gases in the file Chap1.m. The program Beattie cal­
culates Vm for a selected gas and at a given pressure and temperature using 
the Beattie-Bridgeman Equation (1.8), and also plots an isotherm for the 
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TABLE 1.3. Beattie-Bridgeman parameters for selected gases 

AD a Bo b c 

Gas (bar L 2 mo\-I) (Lmo\-I) (Lmo\-I) (Lmo\-I) (104 LK3mo\-I) 

He 0.0219 0.05984 0.01400 0.0 0.004 
Ne 0.2153 0.02196 0.02060 0.0 0.101 

N2 1.362 0.02617 0.05046 -0.00691 4.20 

02 1.511 0.02562 0.04624 0.004208 4.80 
CO2 5.0728 0.07132 0.10476 0.07325 66.00 
CH4 2.3071 0.01855 0.05587 -0.01587 12.83 

Source: l.A. Beattie and D.C. Bridgeman, 1928. 

given temperature. You can run the program in Exercise 1-8 and compare 
the result with those of two other nonideal gas calculations. 

Anderko-Pitzer Equation 

This is a more recent (1990) addition to the list of nonideal gas laws. It has 
the advantage that it achieves good accuracy with only three parameters­
Pc, Te, and 0). It calculates the molar density P (= nlV = IIVm) by first 
calculating the reduced molar density Pr = PiPe' where Pc (= IIVme ) is the 
critical molar density. The Anderko-Pitzer equation for Pr is 

1 + CPr 2 3 
Z = 1 _ bPr + IXPr + PPr + YPr , (1.9) 

in which b, c, IX, p, and yare empirical parameters which depend on the 
acentric factor 0) and the reduced temperature Tr (= T I Te). The program 
Anderko calculates molar volumes with Eq. (1.9) for a selected gas at a 
given pressure and temperature, and like the other programs mentioned in 
this section, also plots an isotherm for the given temperature. For some 
practice with Anderko see Exercise 1-8. 

Keenan-Keyes-Hill-Moore Equation 

This may be the world's most complicated gas law. It fits data available on 
steam and liquid water with 55 parameters. It is one of a set of equations derived 
to calculate all of the thermodynamic properties of water. (We will see how that 
is done in Chapter 2). The program K e e nan 1 implements the Keenan-Keyes­
Hill-Moore equation at a selected pressure and temperature, and you can 
consult the program for more on how the calculation is formulated. 

Comparisons 

Here is a comparison of ideal and nonideal calculations made with some of 
the programs mentioned: all calculations are for steam at 200 bar and 500°C. 
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Gas law Program Vrn/(Lmol- 1) 

Ideal 0.3214 
van der Waals Waals 0.2588 
Peng-Robinson Pengl 0.2617 
Anderko-Pitzer Anderko 0.2664 
Keenan-Keyes-Hill-Moore Keenanl 0.2661 
Experimental 0.2661 

1.3 Data Fitting 

Suppose you have measured the molar heat capacity CPm of graphite over a 
wide range of temperatures and obtained the data points plotted in Figure 
1.1. Your aim is to express CPm as a function of the temperature T. This is a 
job for the least squares method of data fitting. 

Two kinds of temperature fitting functions are commonly used to fit molar 
heat capacity (and other) data. The most versatile are polynomial functions 

25 1 1 I 

0 • 20 • --.... • I 

'0 
E • .... 

I 15 -~ • ..., • --E • Q. 

U 
10 • 

• 
5 1 I I 

200 400 600 800 1000 

T/K 
FIGURE 1.1. Molar heat capacity data for graphite at high temperatures. 
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having the form 

(1.10) 

in which Co, CI, C2, ... are temperature-independent constants. The number of 
terms and the maximum power of T needed depend on the temperature range 
covered: high-temperature data require fewer terms than low-temperature 
data. The second heat capacity formula in common use is the Maier-Kelley 
equation 

(1.11) 

with a, b, and C the temperature-independent constants. This formula is 
applicable only to data taken above room temperature. 

To fit the graphite heat capacity data we choose a formula of the poly­
nomial or Maier-Kelley kind and adjust values of the constants in the func­
tion to make the overall agreement between measured heat capacities and 
values calculated by the function as close as possible. If CPm (TJ), Cpm(T2), . .. 
are measured heat capacities at the temperatures TI, T2, ... , and C~m (TI), 
C~m(T2)"" corresponding values calculated by the temperature function 
(1.10), the object is to minimize magnitudes of the differences 

CPm(TI) - C~m(Td, CPm (T2) - C~m(T2)"'" 

In the standard mathematical procedure squares of the differences are mini­
mized; hence the name least squares for the method. Another term for this 
general method, originated by statisticians, is regression analysis, or more 
specifically in the cases we will consider linear regression, because the co­
efficients [the c's in Eq. (1.10) and a,b, and c in Eq. (1.11)] occur linearly in 
the fitting functions. 

When data fitting of this kind is done, it is usually assumed that the inde­
pendent variable is known exactly and uncertainties in the dependent vari­
able are calculated. Data points plotted in Figure 1.1, for example, represent 
values of the independent variable T and dependent variable CPm . The first 
point is determined by T = 300 K and CPm = 8.581 JK-I mol-I. 

We will not explore further the mathematical basis of the least-squares 
analysis. A program called Linr eg, which performs least-squares data­
fitting tasks, is supplied, however, and it is easily used with little knowledge 
of the mathematical background. Here are two examples in which Linr eg 
is applied. 

Example 1-5. Use the program Linreg to fit the high-temperature graphite 
heat capacity data, plotted in Figure 1.1 and quoted below, to a cubic func­
tion of temperature, 

( 1.12) 
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300 8.581 
350 10.241 
400 11.817 
450 13.289 
500 14.623 
600 16.844 
700 18.537 
800 19.827 
900 20.824 

1000 21.610 

Answer. Enter data pairs in the list data beginning on the third line of 
Linreg code as instructed in the program. Then, on the line of code 
following the data list, specify the form of the fitting function with 

fittingFunction = {l, x, x A 2, x A 3}i 

The four items in brackets correspond to the four terms in the polynomial 
temperature function (1.12) with x representing T. Calculate 

Co = -5.799 ± 3.84 x 10-1 JK- I mol-I 

CI = 5.993 X 10-2 ± 2.02 x 10-3 JK-2mol- 1 

C2 = -4.399 X 10-5 ± 3.30 x 10-6 JK-3mol- 1 

C3 = 1.145 X 10-8 ± 1.69 x 10-9 JK-4 mol- l , 

and 0.0443 for the standard deviation of the fit, an indication of how well the 
overall data-fitting task has been done. The lower the standard deviation the 
better the calculated polynomial function fits the data. (The uncertainties 
indicated for Co, CI, C2, and C3 are also standard deivations.) Notice that the 
program plots both the original data pairs as points and a curve calculated 
according to the fitting function (1.12). Also run Linreg for various other 
polynomial functions (e.g., with 0, 1,2, and 4 as the maximum degree of the 
polynomial) and note the standard deviation and appearance of the plot in 
each case. 

Example 1-6. Use Linreg to fit the above graphite heat capacity data to the 
Maier-Kelley formula, Eq. (1.11). 

Answer. In this case the fitting function is specified with 

fittingFunction = {l, x, x A -2}i 
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and the program calculates 

Co = 1.155 X 10' ± 1.07 JK-' mol-' 

C, = 1.112 X 10-2 ± 1.19 x 10-3 JK-2mol-' 

C2 = -6.047 X 105 ± 8.60 x 104 J Kmol-'. 

As the standard deviations show, the fit in this case is not as good as it was 
in the last example, with the cubic temperature function, Eq. (1.12). That is 
expected since the cubic fit was done with four parameters and the Maier­
Kelley with three. 

1.4 Exercises 

Uncertainties 

1-1 Calculate (1.234) In(6 x 1023 ), including the uncertainty, assuming that 
the numbers involved have an uncertainty of one in the last digit (e.g., 
1.234 ± 0.001). Use the program Error. 

1-2 Calculate (1.234)e lO , including the uncertainty, assuming that the 
numbers involved have an uncertainty of one in the last digit. Use the 
program Error. 

1-3 Use the program Err or to calculate 

In(1823) + eO.525 + 0.0934 
6.52 + 1.8945 + 10.22 ' 

including the uncertainty, assuming that the numbers involved have an 
uncertainty of one in the last digit. 

Nonideal Gas Laws 

14 Use the program Waals to calculate the molar volume of CO2 gas at 
400 K and 1.00, 10.0, and 100 bar. Compare these van der Waals calcu­
lations with ideal calculations. Use data from Table 1.1. 

1-5 Use the program vir ia12 to calculate the molar volume of C02 
at 100 bar and 398.17 K. Virial coefficients for CO2 at 398.17 K and pres­
sures up to 240 atm (from Dymond and Smith, 1969, p. 36) are B = 
-62.20 cm 3 mol-' and C = 3623 cm6 mol-2. Also make the same calcu­
lation using Pengl, Beattie, and Anderko in the next three exercises and 
compare the results. 
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1-6 Use the program Pengl to calculate the molar volume of C02 at 
100 bar and 398.17 K. 

1-7 Use the program Beattie to calculate the molar volume of CO2 at 
100 bar and 398.17 K. 

1-8 Use the program Anderko to calculate the molar volume of C02 at 
100 bar and 398.7 K. 

1-9 Use the program Keenanl to calculate the molar volume of steam at 
2 bar and 200°C. 

1-10 Use the program Keenanl to calculate the molar volume of steam at 
500 bar and 1300°C. Compare with the ideal calculation. 

Data Fitting 

1-11 Data are given below which express the expansion coefficient IX 

for water as a function of temperature at 1 bar. Use the program Linreg 
to fit these data to the cubic function of temperature: 1X/(l0-5 K- I) = 
Co + CI T + c2T2 + c3T3. 

T/K a/(K- 1 10-5) 

298.2 25.53 
323.2 46.24 
348.2 61.39 
373.2 74.86 
398.2 88.36 
423.2 102.71 
448.2 118.70 
473.2 137.62 

1-12 Data are given below which express the compressibility coefficient 
P of water as a function of pressure at 423.2 K. Use the program Linreg 
to fit these data to the cubic function of pressure: P/(10-6 bar-I) = 
Co + CIP + C2p2 + C3P3. 

P/bar p/(bar-1 10-6) 

1 63.09 
500 50.41 

1000 42.83 
2000 34.00 
3000 27.50 
4000 23.30 
5000 20.30 
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1-13 Use the program Linreg to fit the low-temperature ice heat capacity 
data quoted below to a polynomial temperature function of the kind: 

CPm/(JK- I mol-I) = Co + cIT + c2T2 + c3T3 + C4T4 + CST5. 

T/K CPm/(JK- I mol-I) T/K CPm/(JK- I mol-I) 

10 0.27 150 21.95 
20 1.98 160 23.14 
30 4.10 170 24.37 
40 6.12 180 25.61 
50 7.90 190 26.84 
60 9.61 200 28.12 
70 11.26 210 29.49 
80 12.82 220 30.82 
90 14.38 230 32.11 

100 15.83 240 33.41 
110 17.22 250 34.71 
120 18.49 260 36.03 
130 19.71 270 37.36 
140 20.82 



2 
Chemical Thermodynamics in Theory 

The calculations of chemical thermodynamics center on a few state functions 
and on the dependence of the state functions on a few state variables. The 
state functions include enthalpy (H), entropy (S), and Gibbs energy (G), and 
the state variables are usually pressure (P), absolute temperature (T), and 
(in solutions of electrolytes) ionic strength (s). If a chemical reaction is 
involved, the extent-of-reaction variable (~) is also important. 

Each chemical component in a system is characterized by a molar (or 
partial molar) enthalpy, entropy, and Gibbs energy. Molar (or partial molar) 
Gibbs energies are particularly important; for a component A a partial mo­
lar Gibbs energy is represented f1.A and also called a chemical potential. 

The chemical reaction itself is characterized by an enthalpy represented 
I1rH, an entropy I1 r S, and a Gibbs energy I1 r G. The reaction enthalpy, I1rH, 
measures the thermal effect produced internally when the reaction proceeds. 
The reaction entropy, I1 rS, determines internal disorder changes accom­
panying the reaction. And the reaction Gibbs energy, I1 r G, points the spon­
taneous direction of the reaction: the rules (for a certain pressure and tem­
perature) are that the spontaneous direction is forward if I1 r G < 0, backward 
if I1 r G > 0, and the special condition I1 r G = ° defines chemical equilibrium. 

Enthalpies and Gibbs energies, like other kinds of energies, must be cal­
cu1ated with respect to reference values. Thermodynamicists use various de­
vices for this, including the concepts of formation reactions and standard 
states. Entropies are different; for many (but not all) components, they can 
be determined as if they were absolute quantities. 

In this chapter, some calculational methods are considered that apply this 
scheme. The programs Deltagl, Deltag2, and Deltag3, introduced in 
Sec. 2.1, illustrate the utility of heat capacity data for calcu1ating reaction 
enthalpies, entropies, and Gibbs energies at high temperatures. In Sec. 2.2, 
methods for calculating enthalpies, entropies, Gibbs energies, compressi­
bility factors, and fugacities for gaseous components at high temperatures 
and high pressures are introduced and illustrated in the programs Peng2, 
Peng3, and Keenan2. Four further programs, Gplot, Hplot, Splot, and 
Zplot, display pressure and temperature dependences with surface plots. 

14 
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The programs Entropy and Debye in Sec. 2.3 show how to calculate 
"absolute" molar entropies with calorimetric data and Debye's theory. One 
way to calculate partial molar quantities is introduced in Sec. 2.4 and illus­
trated with the program Rho. Chemical potential theory is briefly reviewed 
in Sec. 2.5, and ideal solution behavior is demonstrated by the programs 
Henry and Raoult. The topic in Sec. 2.7 is nonideal solution behavior of 
electrolytes and nonelectrolytes, and the illustrative programs are Pit z e r 
and Vanlaar. Finally, in Sec. 2.8, equilibrium theory is outlined and illus­
trated with the program Gibbs, which shows how the total Gibbs energy G 
and the reaction Gibbs energy l1. r G depend on the extent-of-reaction variable 
¢; at equilibrium G has a minimum value and l1. r G = O. The program 
Vanthoff, also introduced in Sec. 2.8, calculates equilibrium constants at 
high temperatures. 

2.1 At High Temperatures 

The key to thermodynamic calculations at high temperatures is heat capacity 
data represented by a convenient temperature function, as in the polynomial 
equation (1.l0) or the Maier-Kelley equation (l.ll). The temperature func­
tion permits calculation of the reaction heat capacity l1. rCp and that in tum 
determines the effects of temperature on the reaction enthalpy l1.rH and re­
action entropy l1. r S, 

( a(l1.rH)) = l1. C 
aT r P 

P,(, 

(2.1) 

( a(l1.rS)) = l1.rCp . 
aT P,(, T 

(2.2) 

If a cubic version of Eq. (1.10) is applicable to all of the components in a 
reaction, then 

where l1. r co, l1. r cl, l1. r c2, and l1. r c3 are changes in the coefficients Co, CI, C2, 

and C3 for the reaction. Substitution from this for l1.rCp in Eqs. (2.1) and 
(2.2) and integration between a reference temperature To (usually 298.15 K) 
and T then leads to 

l1.rH(T) = l1.rH(To) + (l1. rco)(T - To) + (l1.rc!/2)(T2 - Tl) 

+ (l1. rc2/3)(T3 - Tt) + (l1.rc3/4)(T4 - T~), (2.3) 

and 

l1.rS(T) = l1.rS(To) + (l1. rco) In(T ITo) + l1.r cl (T - To) 

+ (l1. rc2/2)(T2 - Tl) + (l1. rc3/3)(T3 - Tt). (2.4) 
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TABLE 2.l. Coefficients in a cubic heat capacity equation with CPm in JK-1 mol- 1 

Gas Co cl/IO-2 cz/10-5 c3/ 10- 9 Tmax/K (*) 

02 25.46 1.519 -0.7150 1.311 1800 
H2 29.09 -0.1915 0.4001 -0.8699 1800 
N2 28.88 -0.1570 0.8075 -2.871 1800 
Clz 28.54 2.389 -2.137 6.473 1500 
HCI 30.31 -0.7615 1.326 -4.335 1500 
CO2 22.24 5.977 -3.499 7.464 1800 
S02 25.76 5.791 -3.809 8.606 1800 
CO 28.14 0.1674 0.5368 -2.220 1800 
H2O 32.22 0.1922 1.055 -3.593 1800 
NH3 27.55 2.563 0.9901 -6.686 1500 
CH4 19.87 5.0251 1.268 -11.00 1500 
CH30H 19.04 9.146 -1.218 -8.033 1000 
CCI4 51.21 14.23 -12.53 36.94 1500 

Source: S.I. Sandler, 1989, p. 580. 
* Coefficients are valid from 273 K to the listed T max' 

From these two results, the reaction Gibbs energy ArG is calculated with 

(2.5) 

We use these equations in the program Deltagl to calculate standard 
reaction enthalpies, entropies, and Gibbs energies for a reaction at a high 
temperature T, given the following data for each component A participating 
in the formation reaction: the standard enthalpy of formation ArH1 at To, 
the standard entropy S1 at To, the standard Gibbs energy of formation, 
ArG1 at To, and the temperature-independent heat capacity parameters 
Co, CI, C2 and and C3. These data, values of ArH1, S1, and ArG1 at 298.15 
K and 1 bar, and the heat capacity coefficients for selected gases listed in 
Table 1.1, are all included in the data file Chap2.m (see Table 2.1). The 
Deltag programs read data from this file. 

Example 2-1. Use the program Deltagl to calculate the standard Gibbs 
energy of formation for the H20(g) formation reaction, 

at 1000 K. 

Answer. Del tagl requires only that you enter a value for the temperature T 
on the fourth line of code and a statement of the reaction in r e ac t i onL i s t on 
the sixth line of code, 

reactionList H20g - H2g - .5 02g; 
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The program calculates ~fG°(1000) = -192653 J mol-I. Chase, et. al. (1986), 
whose calculation is more refined, report ~fG°(1000) = -192590 J mol-I. 

A more convenient, but less accurate, approach to the same calculation 
utilizes the Maier-Kelley equation (1.11) to represent the temperature de­
pendence of heat capacities. Equations corresponding to Eqs. (2.3) and (2.4) 
are then 

~rH(T) = ~rH(To) + (~ra)(T - To) + (~rbI2)(T2 - Tl) 

- (~rc)(lIT - liTo), (2.6) 

~rS(T) = ~rS(To) + (~ra) In(T ITo) + (~rb)(T - To) 

(2.7) 

and ~rG(T) is again calculated with Eq. (2.5). Values of the heat capacity 
parameters a, b, and c for some components are listed in Table 2.2, and 
these data are also included in the data file Chap2.m. This approach is 
implemented in the program Deltag2. 

TABLE 2.2. Coefficients in the Maier-Kelley heat capacity equation for selected 
components, with CPrn in J K- 1 mol-I 

Component a b/10-3 e/l05 Tmax/K(*) 

02(g) 29.86 4.184 -1.67 3000 
H2(g) 27.28 3.26 0.50 3000 
CH!(g) 23.64 47.86 -1.92 1500 
CO(g) 28.41 4.10 -0.46 3000 
C02 (g) 44.22 8.79 -8.62 2500 
H20(g) 30.54 10.30 0 2750 
C(s) (graphite) 16.86 4.77 -8.54 2500 
CaO(s) 49.62 4.52 -6.94 2000 
Si02(s) (IX quartz) 46.94 3.30 -11.3 848 
CaC03(s) (calcite) 104.5 21.9 -25.9 1200 
CaSi03(s) II 1.5 15.9 -27.3 1800 
Ca(OHh(s) 105.3 11.94 -19.0 700 
NaHC03(s) 44.89 143.9 0 500 
Na2C03(s) 11.02 244.0 -24.5 723 

Sources: H.C. Helgeson, et. aI., 1978; I. Barin and O. Knacke, 1979. 
* Coefficients are valid from 298 K to the T max listed. 

Example 2-2. Use the program Deltag2 to calculate ~rGo for the H20(g) 
formation reaction at 1000 K. 
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Answer. The program Oeltag2 runs the same way as Oeltagl. Enter a 
value for T on the sixth line of code, and specify the reaction in reaction 
List on the fourth line of code. The program calculates ArG(lOOO) = 
-192744 J mol-I. 

The effects of temperature changes on a reaction Gibbs energy ArG are 
determined by 

( o(ArG)) = -ArS. 
oT P,e; 

(2.8) 

If ArS expressed by Eq. (2.7) is substituted in this equation, and the resulting 
equation integrated from To to T, an equation defining the Gibbs energy 
function ArG(T), 

ArG(T) = A + BT + CTln T + DT2 + EIT, (2.9) 

is obtained with 

A = ArHo(To) - (Ara)To - (Arb/2)T5 + Arc/To 

B = Ara - ArSo(To) + (Ara) In To + (Arb) To - (Arc)/2T5 

C = -Ara 

D = -Arb/2 

E = -Ar c/2. 

(2.10) 

(2.11 ) 

(2.12) 

(2.13) 

(2.14) 

Gibbs energy calculations are handled this way in the program Oeltag3. 

Example 2-3. Use the program Oeltag3 to calculate ArGo for the H20(g) 
formation reaction at 1000 K. 

Answer. Oeltag3 does the same calculation as Oeltag2 but in a differ­
ent way. Enter data in Oeltag3 as in Oeltag2 and again calculate 
ArG°(1000) = -192744 J mol- I for the H20(g) formation reaction at 1000 K. 

2.2 At High Temperatures and High Pressures 

The lesson taught in the last section is that the calculations of chemical 
thermodynamics can be extended to high temperatures by taking advantage 
of heat capacity data. Here we find that if a good nonideal gas law is avail­
able thermodynamic calculations at high pressures are also possible. 
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Suppose, for example, we need to calculate entropies of gases at high 
temperatures and also at high pressures. We turn to the entropy temperature 
and pressure derivatives, 

where 

Cp 

T 

G~)T = -~V, 

(2.15) 

(2.16) 

is the thermal expansion coefficient. We can integrate Eq. (2.15) with the heat 
capacity Cp expressed as a function of temperature of the kind seen in the 
last section, and integration of Eq. (2.16) is possible with ~ and V defined by 
a nonideal gas law. 

We will not give the details of such a calculation, but the procedure de­
veloped by Sandler (1989) is carried out in the program Peng2. Sandler's 
calculation is based on the Peng-Robinson nonideal gas law, Eq. (1.6), and 
it calculates departure functions for nonideal gases. For entropy, the "de­
parture" is the difference between the molar entropy Sm(P, T) of the real gas 
at the pressure P and temperature T and the molar entropy Smig( 1,298.2) of 
the same gas behaving ideally at 1 bar and 298.2 K ("ig" stands for ideal 
gas). Peng2 also calculates the enthalpy departures defined similarly, be­
ginning with the enthalpy temperature and pressure derivatives, 

(aH) = C aT p 
p 

(2.17) 

(~~)T = V(I - ~T). (2.18) 

Data required by Peng2 are values of the critical constants Pc and Tc for 
the gas, the acentric factor w (Table 1.2), and the parameters co, c), C2 and C3 

that fit heat capacity data to a cubic temperature function (Table 2.1). The 
next example demonstrates. 

Example 2-4. Use the program Peng2 to calculate entropy departures for 
C02 at 400 K, first for 50 bar and then for 100 bar. The difference between 
these two results is the entropy change in C02 when it is compressed at 400 
K from 50 to 100 bar. Compare this entropy change with that calculated for 
an ideal gas. 
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Answer. Enter 50 bar and 400 K for the pressure and temperature on the 
third and fourth lines of code in Peng2, and identify the gaseous component 
five lines later with 

gas = C02g; 

Calculate 

Sm(50,400) - Smig(I,298.2) = -23.48 JK- I mol- I 

for the entropy departure. Then enter 100 bar for the pressure and calculate 

Sm(100,400) - Smig(I,298.2) = -31.89 JK-I mol-I. 

Thus 

I:.!.Sm = Sm(100,400) - Sm(50,400) = -8.41 J K- I mol-I. 

The same calculation for an ideal gas is 

I:.!.S = Rln 15~0 ::: = -5.8 JK-I mol-I. 

The ideal calculation is considerably in error. 

In Sec. 1.4 we used the Keenan-Keyes-Hill-Moore nonideal gas law to 
calculate molar volumes and densities of steam at high pressures and high 
temperatures. We follow this analysis further now and calculate enthalpies 
and entropies of steam. 

Keenan, Keyes, Hill, and Moore organized their further calculations 
around the Helmholtz energy A expressed as a function of the density p. 
Since p depends on the volume V and temperature T, we can also treat A as 
the function A ( V, T). Thermodynamics then provides the equations needed 
to calculate the entropy S, internal energy U and enthalpy H, 

S= -(::)v (2.19) 

U=A+TS 

=A_T(aA) 
aT v 

(2.20) 

H= U+PV 

= A _ T(OA) _V(OA) . 
aT v av T 

(2.21) 

In the last line P = -(aA/ovh is used to calculate the pressure P. The pro­
gram Keenan2, demonstrated in the next example, carries out the Keenan­
Keyes-Hill-Moore internal energy, enthalpy and entropy calculations. 
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Example 2-5. Use the program Keenan2 to calculate the entropy and 
enthalpy of steam at 500.0 °C and 200 bar. 

Answer. Enter 200 bar and 773.2 K for the pressure and temperature on lines 
three and four of code in Keenan2, and calculate the following values for 
the specific internal energy u, enthalpy h and entropy s ("specific" means per 
unit mass, in this case, per gram), 

u = 2942.8 J g-l 

h = 3238.3 J g-l 

s = 6.140 J K-1 g-l. 

These results are calculated with respect to zero values at the water triple 
point. 

The molar Gibbs energy of an ideal gas at the pressure P and temperature 
T is calculated with 

Gm = G~ + RTln (PI pO), 

in which pO is a reference pressure which we assume to be equal to (exactly) 
1 bar, and G~ is therefore the molar Gibbs energy at that pressure. If the gas 
is nonideal, an equation of the same form applies, but the pressure P is re­
placed with the fugacity f, 

(2.22) 

A factor y called a fugacity coefficient connects a fugacity f and the corre­
sponding pressure P, 

f=YP. (2.23) 

A further adaptation of the Peng programs called Peng3 calculates fugac­
ities and fugacity coefficients. 

Example 2-6. Use the program Peng3 to calculate the fugacity and fugacity 
coefficient of steam at 500.0°C and 200 bar. The measured value of the 
fugacity coefficient of steam under these conditions is 0.85. 

Answer. Peng3 requires the same input as Pengl. Enter the required data 
on the third and fourth lines of code, and run the program to obtain Y = 0.83 
for the fugacity coefficient andf = 166.0 bar for the fugacity. 
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The program Peng2 is easily adapted so it plots three-dimensional sur­
faces representing the dependence ofthe thermodynamic functions G, H, S, 
and Z on the thermodynamic variables P and T for nonideal gases. This is 
done in the series of programs Gplot, Hplot, Splot, and Zplot. Run 
these programs and note particularly that with increasing pressure G, H, 
and S increase, decrease (slightly) and decrease, and with increasing tem­
perature the same functions decrease, increase and increase. 

2.3 Calorimetric Entropies 

We saw in the last section that heat capacity data permit the extension of 
thermodynamic calculations to high temperatures. We can also use heat 
capacity data for low temperature calculations. The most important appli­
cation of this kind determines calorimetric molar entropies according to the 
Third Law prescription 

Sm(T) = r Cp;.~T') dT'. (2.24) 

The integral is partly evaluated with a series of heat capacity measurements 
beginning at about 10 K and extending to a higher temperature T, usually 
around room temperature. 

Heat capacity measurements are difficult at very low temperatures, but 
that temperature range need not be covered by measurements because a 
theory of the solid state due to Debye shows how to extrapolate heat 
capacity calculations to absolute zero. Thus the full calculation of a calori­
metric entropy is 

S (T) = JTo Cpm(T') dT' + JT CPm(T') dT' 
m T' T" o ~ 

(2.25) 

where the first integral, with To typically equal to about 10K, is calculated 
with the Debye extrapolation. 

The program Entropy calculates the second integral in Eq. (2.25), with 
heat capacities expressed as polynomial temperature functions as in Eq. 
(1.10). The equation for the second integral is 

JT Cp;.~T') dT' = [co In T + Cl T + (c2/2)T2 + ... + (cn/n)Tn] 
~ . 

- [co In To + clTo + (c2/2)T'd + ... + (cn/n)TO']. (2.26) 

The Debye extrapolation can often be made by simply assuming that heat 
capacities of nonmetallic, nonmagnetic solids at low temperatures are pro­
portional to T 3 , that is, 
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with D a constant that depends on the identity of the solid but not on tem­
perature. (For more on how to calculate this constant, see the program 
Debye.) Thus the first integral in Eq. (2.25) becomes 

JTo CPm(T') dT' = DTg 
o T' 3 

CPm(To) 
3 

and the full calorimetric entropy calculation is 

S (T) = CPm(To) + JT CPm(T') dT' 
m 3 T" To 

(2.27) 

(2.28) 

The program Debye provides a more accurate calculation of the Debye 
extrapolation. 

Example 2-7. Heat capacity data taken by Hemingway, et. al. (1977) on the 
mineral magnesite (MgC03) fit the polynomial temperature function, 

CPm(T)/(JK- I mol-I) = 3.811 - 3.962 x 10-1 T + 1.132 X 10-2 T2 

- 6.975 X 10-5 T3 + 1.853 X 10-7 T4 

- 1.830 X 10-10 T 5 , 

from T = 12.73 to 332.19 K at 1 bar. The heat capacity of magnesite at 
12.73 K is 0.023 JK-I mol-I. Use the program Entropy to calculate the 
calorimetric entropy of magnesite at 298.15 K and 1 bar. 

Answer. Enter data in Entropy as instructed in the program and calculate 

J298.15 CPm(T') dT' = 64 83 J K-I mol-I 
12.73 T' . , 

and then according to Eq. (2.28), 

Sm(298.15) = 0.023/3 + 64.83 

= 64.84 JK-I mol-I. 

2.4 Partial Molar Quantities 

If you mix nA moles of component A with nB moles of B to form nA + nB 
moles of a solution, the total volume V of the solution is 

V = nA VA + nB VB, 
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in which VA and VB are partial molar volumes defined 

(2.29) 

VB _ (OV) 
- onB P Tn' 

, , A 

(2.30) 

and the molar volume is 

(2.31 ) 

in which XA and XB are mole fractions. 
This same approach can be applied to calculation of other thermodynamic 

state functions. For example, the molar Gibbs energy Gm of a solution con­
taining components A and B is 

Gm = XAIlA + XBIlB' 

where IlA and IlB are chemical potentials, defined 

(OG) IlA= -
onA P T n , , B 

(OG) IlB = - . 
onB P Tn , , A 

(2.32) 

(2.33) 

Partial molar quantities are often determined by first calculating an ap-
parent molar quantity. An example is the apparent molar volume, 

v: V - nBVIi ,= , 
nA 

with V = nA VA + nB VB the total volume and Vii the molar volume of pure 
B. If A and B play the roles of solute and solvent, and cm3 mol-I units are 
used for VA, VB and V" then 

V, = MA + (1000 gkg-I) (~_~), 
P rnA P PH 

(2.34) 

where P and PH represent densities (in gcm-3) of the solution and the pure 
solvent, and MA and rnA the molar mass (in gmo1- 1) and molality (in 
mol kg-I) for A. From V" the two partial molar volumes VA and VB are 
calculated with respect to VA and Vii for the pure components according to 

(2.35) 

(2.36) 
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The program Rho does this calculation for ethanol-water solutions begin­
ning with accurate density data. Run the program and note the complicated 
dependence of VA and VB on the composition of the solution. 

2.5 Chemical Potential Theory 

Chemical potentials are important in chemical thermodynamics because they 
permit calculation of reaction Gibbs energies. For the generic reaction 

aA + bB -+ rR + sS, 

the Gibbs energy is 

(2.37) 

and ArG points the spontaneous direction of the reaction, as mentioned at 
the beginning of the chapter. 

Chemical potentials are defined formally as derivatives [Eqs. (2.32) and 
(2.33)] but are usually calculated from activities, the general connection be­
tween the chemical potentialllA and the activity aA for a component A being 

(2.38) 

in which Ili, a standard chemical potential, evaluates IlA' when aA = I and is 
independent of composition, but dependent on pressure and temperature. 

Equation (2.38) expresses all of the composition dependence of the chem­
ical potentialllA in the activity aA. If A is a solute, composition is further 
expressed by relating the activity aA to the concentration of A. One way to 
do this is with the equation 

(2.39) 

where rnA is the molality of A (moles of A per kilogram of solvent), YA is an 
activity coefficient which depends on mA and perhaps on concentrations of 
other components in the solution, and mO is a reference molality, taken to be 
1 mol kg-I. Two other activity equations commonly used for solutes are 

(2.40) 

and 
(2.41) 

with CA and XA representing concentration as a molarity (moles of A per 
liter of solution) and a mole fraction (moles of A per mole of solution), 
CO = 1 mol L -I and the y's are two more activity coefficients. Equations 
(2.39) and (2.40) are not suitable for solvent components, but Eq. (2.41) is. 

If A is a component of a gas-phase mixture 

(2.42) 
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where pO is a reference pressure equal to I bar and Y A is another activity 
coefficients. [You may have to remind yourself that the YA's in Eqs. (2.39)­
(2.42) are all different quantities; later we will recognize the differences 
explicitly. ] 

Combination of Eqs. (2.37) and (2.38) leads to an important equation re­
lating the reaction Gibbs energy !1 r G to the activities of the components 
participating in the reaction, 

(2.43) 

in which Q is the activity quotient, 

for the reaction and !1r Go is the reaction's standard Gibbs energy, the Gibbs 
energy for the reaction when all of the activities have unit values. 

Chemical equilibrium is defined by !1r G = 0 and by an equilibrium value 
of the activity quotient, represented by K and called an equilibrium constant. 
Constraining Eq. (2.43) with equilibrium conditions we see that 

(2.44) 

2.6 Ideal Solutions 

In ideal solutions, relevant activity coefficients have values of one. Several 
experimental criteria are also important for identifying ideal solution be­
havior. One, called Raoult's law, and usually applied to an ideal solvent 
component, is 

(2.45) 

in which PA is the equilibrium vapor pressure of A over the solution and P'A 
is the vapor pressure of pure A. Ideal solute components obey Henry's law, 
either 

(2.46) 

or 

(2.47) 

depending on the concentration scale preferred (mole fraction XA or molality 
rnA). In these statements kA and k~ are two different Henry's law constants, 
related by 

(2.48) 
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in which MB is the molar mass of the solvent expressed in the units 
gmol-'. 

If Raoult's law, Eq. (2.45), is obeyed, the corresponding chemical poten­
tial calculation, usually for a solvent components, is 

(2.49) 

with .utg the standard chemical potential for A behaving as an ideal gas and 
pO a reference pressure, assumed as before to be equal to 1 bar. We do not 
attempt to calculate .uiig' but use it as an energy reference for chemical 
potential calculations. 

Chemical potentials for ideal solute components are calculated with 

.uA = .utg + RTln(kA/po) + RTlnxA, 

if Henry's law, Eq. (2.46), is obeyed and with 

.uA = .utg + RTln(k~mo /po) + RTln(mA/mo) 

(2.50) 

(2.51 ) 

if the other Henry's law, Eq. (2.47), is followed. In the second equation mO is 
a reference molality, assumed as before to be equal to 1 mol kg-'. 

The program Raoult displays plots of Eqs. (2.49) and (2.50) for solutions 
of acetone and carbon disulfide. The plot shows Henry's law and Raoult's 
law behavior (as seen in chemical potential calculations) and also shows how 
real behavior passes between the two ideal modes. Data used to make the 
calculation, and similar data for other systems, are listed in Tables 2.3 and 
2.4. Van Laar parameters, listed in Table 2.4, are discussed in the next 
section. 

The program Henry plots the ideal equation (2.51) and compares it with 
real behavior. As in the plot made with Raoul t the solute approaches ideal 
behavior at low concentrations. 

TABLE 2.3. Vapor pressures and molar masses for some 
volatile components 

Component PA * ITorr MA/(gmol- I ) T/K 

Acetone 231.6 58.08 298.2 
Acetone 615.9 58.08 323.2 
Acetone 868.7 58.08 333.2 
Benzene 391.4 78.114 333.2 
Carbon disulfide 858.5 76.131 323.2 
Ethanol 59.3 46.069 298.2 
Methanol 127.6 32.042 298.2 
Water 23.8 18.015 298.2 

Source: Reid, Prausnitz, and Poling, 1987, Appendix A. 
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TABLE 2.4. Van Laar parameters and Henry's law constants for some binary solutions 

A B a b kA/bar kB/bar T/K 

Acetone Carbon disulfide 1.79 1.28 4.91 4.12 323.2 
Acetone Water 0.405 0.405 1.74 0.782 333.2 
Acetone Water 1.89 1.66 2.04 0.167 298.2 
Ethanol Water 1.54 0.97 0.369 0.0837 298.2 
Methanol Water 0.58 0.46 0.304 0.0503 298.2 

Sources: Sandler, 1989, p. 328, and Henry's law constants calculated with Eq. (2.60). 

2.7 N onideal Solutions 

Nonideal solutions of all kinds are characterized by activity coefficients that 
are not equal to one. The necessary activity coefficients are added to Eqs. 
(2.49) to (2.51) as multplied factors preceding the concentration factors in 
the logarithm terms. To accomodate the different forms of the equations 
three different activity coefficients are needed. Thus the ideal equation (2.49) 
becomes the nonideal equation 

(2.52) 

[This equation has its origins in Raoult's law; hence the "r" in YA(r).] Ideal 
equations (2.50) and (2.51) become the nonideal equations 

itA = Ittg + RTln(kA/po) + RTln[YA(h1)XAJ 

itA = Ittg + RT1n(k~mo /po) + RTln[YA(h2)mA/moJ. 

(2.53) 

(2.54) 

[These equations originate in the two versions of Henry's law; hence the 
"hI" and "h2" labels in YA(hI) and YA(h2).] 

Many methods for measuring and calculating activity coefficients have 
been developed. We mention only a few. When binary mixtures of volatile 
components are involved the approximate equations 

(2.55) 

are useful. These equations are used in the programs Henry and Raoult. 
They are valid if the components behave ideally in the vapor phase, as is 
usually the case to a good approximation. 

A set of empirical equations introduced by van Laar is often used to fit 
activity coefficient data for binary mixtures, 

(2.56) 

(2.57) 
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in which YA and YB are determined by Eq. (2.55) and a and b are van Laar 
parameters. If data for YA and YB are available, values of a and b can be 
calculated with 

(2.58) 

(2.59) 

Van Laar parameters are useful for representing nonideality with the ac­
tivity coefficient equations (2.56) and (2.57). They also provide a simple 
route to calculation of Henry's law constants. For a component A, 

(2.60) 

The program Vanlaar calculates the van Laar parameters a and b accord­
ing to Eqs. (2.58) and (2.59). 

Examples of nonideal solutions mentioned so far have concerned non­
electrolytes. In a formal sense the chemical thermodynamics of electrolytes is 
similar. The general activity equation (2.38) again applies and activities of 
solutes are expressed with Eq. (2.39) or (2.40). 

Electrolytes in solutions form ions, however, which cannot be separated 
from each other in thermodynamic measurements and calculations, except 
as an approximation. For this reason, activity coefficients are often calcu­
lated as geometric means of contributions made by anion and cation com­
ponents. The electrolyte NaCl, for example, forms the ions Na+ and Cl- and 
the NaCI mean activity coefficient is defined Y+ = (YNa+YCl- )1/2. Mean ac­
tivity coefficients for CaCh, Na2S04 and CaS04 and Y± = (Yca2+Y~I- )1/3, 
( 2 ) I 13 d ( ) 1/2 YNa+ Yso;- an YCa2+ Yso;- . 

Activity coefficients for dilute electrolyte solutions are calculated with a 
theory introduced by Debye and Huckel. The Debye-Huckel result for very 
dilute electrolyte solutions is 

(2.61) 

in which z+ and L are cation and anion charge numbers, A is a constant 
evaluated by the theory and s is the ionic strength defined 

with the m;'s and z;'s representing molalities and charge numbers for all ionic 
components in the solution. The constant A depends on the identity of the 
solvent and slightly on the temperature: its value for aqueous solutions at 
25°C is 1.171 kgl/2 mol- 1/2 . 

An extension of the Debye-Huckel theory to dilute, but not necessarily 



30 2. Chemical Thermodynamics in Theory 

TABLE 2.5. Debye-Hiickel size parameters 
for single ions 

Ions rB/nm 

K+,Cl-,I­
OH-, H2Citrate-
Na+, S042-, P04 3-, HP04 2- 0.40 
C032-, HC03-, Acetate-, 
HCitrate2- , H2P04 - 0.45 
Ba2+ Citrate3- 0.50 
Ca2+' Zn2+ Benzoate- 0.60 
Mg2: ' 0.80 
H+, AI 3+ 0.90 

Source: J. Kielland, 1937. 

very dilute, solutions leads to the equation 

(2.62) 

where B is an empirical parameter whose value depends on the identity of 
the electrolyte. This equation has a useful approximate form which calcu­
lates the activity coefficient for an individual ion. For an ion B with charge 
number ZB, the approximate equation is 

Az~y's 
In YB = - 1 by's , + rB s 

(2.63) 

in which b is another constant evaluated by the theory (= 3.282 kgl/2 
mol- I /2 nm- I for aqueous solutions at 25°C) and rB, called the size param­
eter, cannot be determined independently, so it is treated as an empirical 
parameter. Values of rB for a selection of ions are listed in Table 2.5. 

Equation (2.61) is valid at ionic strengths less than about 0.01 molkg- I , 

and Eqs. (2.62) and (2.63) are useful at ionic strengths below about 
0.1 molkg- I . Pitzer and his colleagues have developed a semiempirical 
method for calculating mean activity coefficients of electrolytes at high ionic 
strengths, to 1 mol kg- I and beyond. Pitzer's equation takes the form of 
a virial expansion resembling the virial nonideal gas law, Eq. (1.1). In the 
latter the variable of the expansion is IjVm ; in Pitzer's equation the ex­
pansion variable is m, the total molal concentration of the electrolyte. The 
form of the equation is simply 

(2.64) 

in which /0, II, and J2-the first, second, and third virial coefficients-are 
empirical parameters that vary from one electrolyte to another. 

The program Pitzer implements this procedure. To run the program 
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TABLE 2.6. Pitzer's parameters for some 1-1, 2-1,1-2, and 2-2 electrolytes at 25°C 

Electrolyte p(O) p(1) p(2) CMX~ mmax/{molkg- I ) 

NaCI 0.0765 0.2664 0 0.00127 6 
NaN03 0.0641 0.1015 0 -0.0049 5 
KOH 0.1298 0.3200 0 0.0041 5.5 
AgN03 -0.0856 0.0025 0 0.00591 6 
MgCh 0.3523 1.6815 0 0.00519 4.5 
CaCh 0.3159 1.6140 0 -0.0034 2.5 
BaCh 0.2628 1.4963 0 -0.01938 1.8 
Na2S04 0.0196 1.1130 0 0.00570 4.0 
Na2C03 0.1897 0.8460 0 -0.04803 1.5 
MgS04 0.2210 3.343 -37.23 0.0250 3.0 
ZnS04 0.1949 2.883 -32.81 0.0290 3.5 
NiS04 0.1702 2.907 -40.06 0.0366 2.5 
CdS04 0.2053 2.617 -48.07 O.oI14 3.5 

Source: K.S. Pitzer, Thermodynamics, 1995, Appendix 8. 

you need only identify on the fourth line of code the electrolyte component 
for which you want to make the calculation, and then later a molality m if 
you want to calculate an activity coefficient at a particular concentration, 
and yMax = O. 1 if a 2-2 electrolyte is involved. A short list of Pitzer's 
parameters is given in Table 2.6 and the same data are included in the file 
Chap2 • m. A much longer list is available in Pitzer's thermodynamics text 
(Appendix 8). 

2.8 Chemical Equilibrium Theory 

As mentioned at the beginning of the chapter, a chemical reaction reaches 
equilibrium when its Gibbs energy vanishes, 

(2.65) 

Since ArG is defined as a derivative with respect to the extent-of-reaction 
variable r;, 

ArG= (~~) , 
P,T 

(2.66) 

Eq. (2.65) also tells us that the derivative (oGjor;)p T has a zero value at 
equilibrium. That condition occurs when the syst~m's Gibbs energy G 
reaches a minimum value. 

These conclusions are demonstrated by the program Gibbs, which plots 
both G and its derivative (i.e., ArG) as functions of r; for a system in which a 
reaction of the following kind occurs, 

A(g) ~ R(g) + S(g), 
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involving ideal gas components. The reaction begins with no moles of A and 
no R or S. When the extent of reaction is ~ molar amounts of A, R, and S 
are nA = no -~, nR = ns = ~, the total molar amount is n = nA + nR + ns = 
no +~, and 

no - ~ 
PA=--P 

no +~ 

~ 
PR =PS =-- P, 

no +~ 

with P the total pressure. Chemical potentials for the components A, Rand 
S are 

J.LA = J.Ll + RTln(PA/po) 

J.LR = J.L~ + RTln(PR/po) 

J.Ls = J.L~ + RTln(ps/po), 

and Gibbs energy equations for the reaction are 

and 

t'1 r G = J.LR + J.Ls - J.LA· 

Evaluating the chemical potentials in terms of ~ and rearranging, these 
equations become 

and 

G(~);T G(O) = _ ~ InK + ¢1n(P/ pO) + (no -~) In(no -~) 

- (no +~) In(no +~) + 2~ln~, (2.67) 

t'1r G ° RT = -InK + In(P/P ) -In(no -~) -In(no +~) + 2In~, (2.68) 

in which G(O) is the initial Gibbs energy of the system (i.e., for no moles of 
A) and pO is the reference pressure 1 bar. These are the equations plotted by 
the program Gibbs. You can demonstrate Eq. (2.66) directly by differ­
entiating Eq. (2.67) with respect to ~ and comparing it with Eq. (2.68). 

Equilibrium constant data are a crucial part of most chemical equilibrium 
calculations. To obtain equilibrium constants at high temperatures use the 
van't Hoff equation, 

( 8 In K) = t'1 rHo 
8T p RT2' 

(2.69) 
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or, alternatively, Eq. (2.44), 

ArGO = -RTlnK. 

It is particulalry convenient to combine the latter equation with ArGo ex­
pressed as a function of T as in Eq. (2.9). This is done in the program 
Vanthoff, which plots InK vs liT for reactions of interest. 

The van't Hoff equation (2.69) tells us that for endothermic reactions 
(A rHo > 0) equilibrium constants increase with temperature and for exo­
thermic reaction (ArHo < 0) decrease with temperature. Thus endothermic 
reactions tend to dominate at high temperatures and exothermic reactions at 
low temperatures. The plots made by the program Vanthoff illustrate 
these trends. (Note that the temperature reciprocal liT is plotted by 
Vanthoff, so T increases from right to left in the plots.) 

It is often legitimate to simplify equilibrium calculations by assuming that 
ArHo in the van't Hoff equation (2.69) is independent of temperature. Then 
integration of Eq. (2.69) leads to 

InK = ArSo _ ArHo. 
R RT 

(2.70) 

This suggests measuring K for a reaction over a range of temperatures and 
then plotting In K vs 1 I T to obtain ArSo and ArHo for the reaction. The 
program Vanthoff does its plotting this way and in the high temperature 
range covered (500 to 2000 K) the curves are nearly straight lines with in­
tercepts and slopes equal to ArSo I Rand -ArHo I R. 

2.9 Exercises 

At High Temperatures 
2-1 Calculate the standard Gibbs energy offormation ofNH3(g) at 1000 K 
using the program Deltagl. 

2-2 Calculate the standard Gibbs energy of formation of CH4(g) at 1000 K 
using the program Deltag3. 

2-3 Use the program Deltag2 to calculate ArHo and ArSo for the 
reaction 

CaO(g) + H20(g) -+ Ca(OHh(s) 

at 350 K. 

24 Use the program De 1 t ag2 to calculate ArHo and ArSo for the 
reaction 

at 373.2 K. 
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2-5 Use the program Deltagl to calculate llrHo, llrSo, and llrGo for the 
reaction 

2 CO(g) + 02 (g) --> 2 C02 (g) 

at 500 K. 

2-6 Use the program Deltagl to calculate llrHo, llrSo, and llrGo for the 
reaction 

at 900 K. 

At High Temperatures and High Pressures 

2-7 Use the program Peng2 to calculate the entropy and enthalpy changes 
in a mole of 02(g) when it is compressed from 1.00 bar to 100 bar. The 
temperature increases in the process from 25.00°C to 150.00°C. 

2-8 Use the program Peng3 to calculate the fugacity and fugacity 
coefficient of CH4(g) at 100.0 °C and 100 bar. 

2-9 . Calculate the Gibbs energy change for a process that compresses 
NH3(g) at 100.0°C from 1.00 bar to 50 bar. Use the program Peng3 to 
calculate fugacities. 

Calorimetric Entropies 

2-10 Heat capacity data taken by Giauque and Powell on solid chlorine 
between To = 15.00 K and T m = 172.12 K (the melting point) at 1 atm fit 
the cubic polynomial temperature function (see Exercise 2-11), 

Cp,Ch(S, T) = -12.60 + 1.231 T - 9.420 X 10-3 T2 + 2.668 X 10-5 T3. 

Their heat capacity data for the reversible heating of liquid chlorine between 
Tm = 172.12 K and Tb = 239.05 K (the boiling point) fit the cubic temper­
ature function 

Cp,Ci2(1, T) = 48.91 + 0.2632 T - 1.197 X 10-3 T2 + 1.631 X 10-6 T3. 

The heat capacity of solid chlorine at 15.00 K is 3.72 J K- I mol-I. Giauque 
and Powell also measured 6406 J mol- I for the enthalpy of melting of solid 
chlorine at Tm = 172.12 K and 20410 Jmol-I for the enthalpy of boiling at 
Tb = 239.05 K and 1 atm. Calculate the calorimetric entropy of chlorine gas 
at 239.05 K and a atm. Giauque and Powell reported 215.22 JK-I mol-I. 

2-11 Heat capacity data for solid and liquid chlorine listed in Table 2.7 
were obtained by Giauque and Powell. Use the data and the program 
Linreg to derive cubic temperature functions that fit the data. 
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TABLE 2.7. Heat capacity data for chlorine 

T/K CPm/(JK- I mol-I) T/K CPm/(JK-I mol-I) 

Solid 15 3.724 80 38.618 
20 7.740 90 40.627 
25 12.092 100 42.258 
30 16.694 llO 43.806 
35 20.794 120 45.480 
40 23.974 130 47.237 
45 26.736 140 49.078 
50 29.246 150 51.045 
60 33.472 160 53.053 
70 36.317 170 55.103 

172.12 55.522 
(=melting point) 

Liquid 172.12 67.070 210 66.484 
180 67.028 220 66.275 
190 66.902 230 65.982 
200 66.735 240 65.689 

2-12 Heat capacity data obtained by Giauque and Stephenson for solid 
and liquid S02 are given in Table 2.8. Giauque and Stephenson also mea­
sured 7402 J mol-I and 24940 J mol-I for the molar enthalpy of melting and 
molar enthalpy of boiling of S02 at 1 atm. Use the program Linreg to fit 
the two sets of heat capacity data to cubic temperature functions. Then use 

TABLE 2.8. Heat capacity data for sulfur dioxide 

T/K CPm/(JK- I mol-I) T/K CPm/(JK-I mol-I) 

Solid 15 3.473 90 45.731 
20 6.945 100 48.074 
25 11.464 llO 50.082 
30 15.857 120 51.882 
35 20.292 130 53.681 
40 24.184 140 55.689 
45 27.656 150 57.823 
50 30.794 160 59.957 
55 33.556 170 62.132 
60 36.066 180 64.517 
70 40.041 190 67.028 
80 43.179 197.64 69.496 

(= melting point) 

Liquid 197.64 87.697 240 86.860 
200 87.738 250 86.651 
210 87.487 260 86.441 
220 87.278 263.08 86.358 
230 87.069 (= boiling point) 
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the program Entropy and other data supplied to calculate the entropy of: 
(a) solid S02 at 15.00 K; (b) solid S02 at 197.64 K (the melting point); (c) 
liquid S02 at 197.64 K; (d) liquid S02 at 263.08 K (the boiling point); and 
(e) S02 vapor at 263.08 K and 1 atm. With a more accurate evaluation 
of the Debye extrapolation and the heat capacity integrals, Giauque and 
Stephenson obtained 242.59 J K- I mol- I for the molar entropy of the vapor 
at the boiling point and I atm. 

2-13 Tabulated heat capacity data for gases describe ideal gas behavior at 
I bar. This presents a small obstacle in the calculation of calorimetric stan­
dard entropies of gases. The entropy of the real gas is determined at the 
normal boiling temperature and 1 atm, but to complete the calculation with 
the tabulated heat capacities the entropy of the ideal gas must be calculated 
at the boiling temperature and 1 bar. Giauque developed a simple procedure 
for making this correction beginning with a nonideal gas law, 

Pv' = RT 9RPTc (I _ 6Tc2) 
m + 128Pc T2' 

called the Berthelot equation. This equation of state, and the general entropy 
equation, 

( aSm) = _ (aVm) 
ap T aT p 

[see Eq. (2.16)] are used to calculate .1Sm for a two-step process that 
converts a real gas A at the pressure PI and temperature T to an ideal gas at 
P2 and T, 

A (real gas, PI, T) ~ A (ideal gas, 0, T) 

A (ideal gas, 0, T) ~ A (ideal gas, P2, T). 

Use the Berthelot equation to determine the derivative (aVm/aT)p, then in­
tegrate the entropy equation for the above two steps, and show that 

This result is applied in Exercise 2-14, where it is used to calculate the 
entropy of an ideal gas at P2 = 1 bar from the entropy of a real gas at 
PI = 1 atm = 1.0132 bar. 

2-14 The entropy of chlorine gas at the boiling point Tb = 239.05 K and 1 
atm is 215.22 J K- I (Exercise 2-10). Calculate the standard entropy for chlo­
rine gas at 298.15 K. In the temperature range 100-700 K tabulated standard 
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heat capacity data for chlorine gas fit the cubic temperature function, 

CP,Ch/(JK-lmol-1) =25.74+3.937 x 10-2 T-4.655 X 10-5 T2 

+ 1.850 X 10-8 T3. 

Use the program Entropy, the ideal-gas correction developed in Exercise 
2-13 and critical constants listed in Table 1.2. 

2-15 Nitrogen undergoes three transitions as it is heated from a low 
temperature, 

N2(sIl) ~ N2(s1) ~ N2(1) ~ N2(g). 

The two solid phases sIl and s1 are different crystalline modifications. They 
are treated thermodynamically like the liquid and solid phases. Giauque and 
Clayton measured enthalpies for these transitions, 

An,IHN2 = 228.9 Jmol- I 

AI,IHN2 = 720.9 J mol-I 

A1,gHN2 = 5577 J mol-I. 

They also measured heat capacities; between 15.82 and 35.61 K, their data 
fit the cubic temperature function 

Cp,N2(sIl, T)/(JK- 1 mol-I) = - 52.17 + 7.047 T - 2.377 X 10-1 T2 

+ 3.290 X 10-3 T3. 

Between 35.61 and 63.14 K, their data fit 

Cp,N2(s1, T)/(JK-1 mol-I) = 4.509 + 1.598 T - 2.696 X 10-2 T2 

+ 1.957 X 10-4 T 3 , 

and between 63.14 and 77.32 K, 

Cp ,N2 (1, T)/(J K- 1 mol-I) = 7.652 + 1.803 T - 2.319 X 10-2 T2 

+ 1.055 X 10-4 T3. 

Tabulated standard heat capacities for nitrogen gas between 77.32 and 700 K 
fit the function 

C~ N (g, T)/(JK- 1 mol-I) = 29.17 - 6.976 x 10-4 T + 8.441 X 10-8 T2 
, 2 
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Calculate the following: 

(a) The Debye evaluation of the entropy at 15.82 K using the program 
Debye. The Debye temperature for nitrogen is 68 K. 

(b) Values for the following four heat capacity integrals using the program 
Entropy 

P , dT J35.61 C (sIl T) 

15.82 T 

P , dT J63.14 C (sI T) 

35.61 T 

P , dT J77.32 C (1 T) 

63.14 T 

J298.15 C~(g, T) dT. 

77.32 T 

(c) Entropies for the three transitions N2(sIl) -> N2(sI), N2(sI) -> N2(1), 
and N2(1) -> N2(g). 

(d) The difference between the entropy of nitrogen as a real gas at 77.32 K 
and 1 atm and the entropy of nitrogen as an ideal gas at 77.32 K and 1 bar. 
Use Giauque's method for this correction. (see Exercise 2-13). 

(e) The standard entropy of nitrogen at 298.15 K. Giauque and Clayton 
reported 192.2 JK- 1 mol-I at 298.15 K and 1 bar (corrected from the 1 atm 
pressure condition assumed by Giauque and Clayton). 

Ideal Solutions 

2-16 Use the program Raoult to calculate and plot real and ideal chem­
ical potentials for acetone in acetone-benzene mixtures at 333.2 K. 

2-17 Use the program Raoult to calculate and plot real and ideal chem­
ical potentials for ethanol in ethanol-water mixtures at 298.2 K. 

2-18 Use the program Henry to calculate and plot real and ideal chemical 
potentials for methanol in methanol-water mixtures at 298.2 K. 

Nonideal Solutions 

2-19 Use the program Vanlaar to calculate the van Laar parameters a 
and b for benzene (A)-methanol (B) mixtures at 55°C. Relevant vapor 
pressure data are quoted below. Vapor pressures of pure benzene and meth­
anol at 55°C are 326.94 and 517.65 Torr. Note that XB and YB denote mole 
fractions of methanol in the solution and vapor phases. 
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XB YB PITorr 

0.0493 0.4051 527.12 
0.1031 0.4841 597.48 
0.3297 0.5540 664.24 
0.4874 0.5845 675.62 
0.4984 0.5858 675.99 
0.6076 0.6078 678.44 
0.7898 0.6716 664.91 
0.9014 0.7697 622.29 

2-20 Use the program Vanlaar to calculate the van Laar parameters a 
and b for acetic acid (A)-pyridine (B) mixtures at 80.05°C. Relevant vapor 
pressure data are quoted below. Vapor pressures of pure pyridine and acetic 
acid at 80.05°C are 242.75 and 207.60 Torr. 

XB YB PITorr 

0.2434 0.0842 104.0 
0.3281 0.2384 88.9 
0.3749 0.3482 84.6 
0.4442 0.5289 86.4 
0.5034 0.6960 94.6 
0.5456 0.8054 104.1 
0.6186 0.9159 123.5 

2-21 Use the program Pit z e r to plot mean activity coefficients for the 1-1 
electrolytes KOH, NaCl, NaN03, and AgN03, the 2-1 electrolytes MgCh, 
CaCh, BaCh, and the 1-2 electrolytes Na2S04 and Na2C03. What general 
patterns do these plots follow? 

2-22 Use the program Pitzer to plot mean activity coefficients for the 2-2 
electrolytes CdS04, NiS04, ZnS04, and MgS04. How do these plots differ 
from those seen in the last exercise? 

Equilibrium Theory 

2-23 Equilibrium constants for reactions involving gas-phase components 
are independent of pressure, but the equilibrium itself is often influenced by 
changes in pressure. You can demonstrate this by running the program 
Gibbs with different pressures entered. Interpret these pressure effects in 
terms of Le Chatelier's principle. Also run the program with various values 
of the equilibrium constant K entered and interpret the results. 

2-24 Calculate and plot equilibrium constants for the reactions 

CH4(g) + H20(g) ~ CO(g) + 3 H2(g) 

H2(g) + C0 2 (g) ~ CO(g) + H20(g) 
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in the temperature range 500 to 2000 K using an adaptation of the program 
Vanthoff. Are these reactions endothermic or exothermic? 

2-25 In the next chapter we will carry out thermodynamic calculations for 
the geochemical reaction 

CaC03(s) + Si02(s) - CaSi03(s) + C02(g) 

taking place at high temperatures and high pressures. You can do the high 
temperature part with an adaptation of the program Vanthoff. Use 
the program to calculate and plot equilibrium constants in the range 500 to 
1000 K. 

2-26 Equilibrium constants measured by Larson and Dodge for the 
ammonia-synthesis reaction, 

1/2 N2(g) + 3/2 H2(g) - NH3(g), 

at various temperatures are quoted below. Adapt the program Linreg so it 
fits the data to Eq. (2.70) and calculates average values of I1 rH o and I1r S o in 
the temperature range covered. 

TrC K 

325 0.0401 
350 0.0266 
375 0.0181 
400 0.0129 
425 0.00919 
450 0.00659 
475 0.00516 
500 0.00381 

2-27 Data are given below for Bodenstein's measurements of equilibrium 
constants for the reaction 

2 N02(g) - 2 NO(g) + 02(g) 

at various temperatures. Use these data and an adaptation of the program 
Linreg to estimate I1 rH o and I1 r So for the reaction. 

T/K iogIOK 

498.9 -4.216 
519.5 -3.734 
570.4 -2.706 
627.5 -1.752 
671.4 -1.118 
727.7 -0.418 
752.7 -0.136 
796.3 0.298 
825.3 0.570 
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2-28 Data are given below for measured values of the equilibrium constant 
for the H202 formation reaction, 

at various temperatures. 

T/K InK 

600 14.66 
800 7.615 

1000 3.452 
1300 -0.493 
1500 -2.466 

Adapt the program Linreg to fit these data to the equation ArGo = 
ArHO - T ArSo and thus to estimate ArHo and ArSo in the temperature 
range covered. 

2-29 The reaction 

was studied at equilibrium by Bodenstein and Boes over a range temper­
atures. Some of their data for equilibrium constants are quoted below. Using 
these data and an adaptation of the program Linreg estimate ArHo and 
ArSo for the reaction. 

T/K loglOK T/K loglOK 

281.7 -1.449 334.8 0.254 
285.7 -1.273 342.5 0.459 
288.8 -1.197 352.0 0.696 
293.0 -1.022 361.9 0.903 
302.0 -0.729 369.0 1.079 
305.9 -0.587 383.1 1.352 
315.9 -0.284 390.7 1.543 
324.0 -0.036 403.8 1.744 

2-30 The H2S decomposition reaction 

2 H2S(g) ~ 2 H2(g) + S2(g), 

was studied at equilibrium by Preuner and Schupp. Results for their mea­
surements of equilibrium constants are listed below. Adapt the program 
Linreg to estimate ArHo and ArSo for the reaction. 
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T/K K/IO-5 

1023 0.89 
1103 3.8 
1218 24.5 
1338 118 
1405 260 

2-31 Neuman measured the equilibrium solubility of AgCI(s) in solutions 
containing various concentrations of CaS04, a strong electrolyte. The added 
CaS04 changed the ionic strength s in the solutions. To analyze Neuman's 
data quoted below first prove that 

K. 2 2 
s = y±c , 

where Ks is the solubility product for AgCl, y± is the mean activity 
coefficient for Ag+ and Cl-, and c is the concentration of AgCl. With 
Eq. (2.61) calculating y±, 

In(c2) = InKs + 2AyS, 

use the program Linreg to fit Neuman's data to this equation and to 
calculate a value for Ks 

0.00620 
0.01 128 
0.02105 
0.04539 
0.06389 
0.07811 
0.1007 

1.281 
1.287 
1.306 
1.344 
1.372 
1.395 
1.436 



3 
Chemical Thermodynamics in Use 

For chemists thermodynamics reduces largely to the simple lesson that the 
spontaneous direction of a chemical reaction is forward if I:1r G < 0, back­
ward if I:1r G > 0, and in equilibrium if I:1r G = 0. This chapter shows how 
geochemists, biochemists, and plain chemists apply these conclusions. One 
approach taken by geochemists, calculation of I:1r G as a function of pressure 
and temperature, is seen in the program Powell in Sec 3.1. Chemists most 
often use thermodynamics to describe chemical reactions in equilibrium. 
Section 3.2 illustrates with some examples of equilibrium calculations involv­
ing gas-phase reactions (programs Haber and Coal), acid-base titrations 
(the program Tcurve), and buffers (the program Acetate). Biochemists 
rely on I:1r G calculations to construct Gibbs energy profiles for entire 
schemes of biochemical reactions. Some of the special methods of bio­
chemical thermodynamics are illustrated in Sec. 3.3 (programs Atpl, Atp2, 
and Biochem), and a Gibbs energy profile of the glycolysis series of 
reactions is plotted by the program Gprofile. 

3.1 Geochemical Thermodynamics 

Geologists who study metamorphic chemical reactions are familiar with a 
special kind of high-pressure, high-temperature reaction whose components 
each occur in a separate pure phase. Composition variables are fixed for 
such a reaction, and that means the reaction Gibbs energy behaves as the 
function I:1rG(P, T); it depends only on P and T. 

We obtain the function I:1rG(P, T) by first noting that 

( O(l:1rG)) = I:1r V. 
oT T,~ 

(3.1 ) 

Integrating this equation at a fixed temperature T and extent of reaction C;, 
we arrive at 

I:1rG(P, T) = I:1r G(I, T) + f (I:1rV)dP', (3.2) 

with P expressed in bar. 

43 
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To calculate ArG(l, T), we write 

Ar G(1, T) = ArH(l, T) - TArS(1, T) 

[Eq. (2.5)], then recall that 

( a(ArH)) = A C 
aT r p 

P,~ 

and 

( a(ArS)) = ArCp 

aT P,~ T 

(3.3) 

[Eqs. (2.1) and (2.2)], and integrate these equations to calculate ArH(1, T) 
and ArS(l, T), 

ArH(l, T) = ArH(l, 298) + JT (ArCp)dT' 
298 

( ) JT ArCp , 
ArS 1, T = ArS(1,298) + -T' dT. 

298 

(3.4) 

(3.5) 

Substituting Eqs. (3.4) and (3.5) in Eq. (3.3) and then in Eq. (3.2), we have 
one version of the desired function of P and T, 

ArG(P, T) = ArH(l, 298) - TArS(l, 298) + JT (ArCp) dT' 
298 

- T JT Ar~p dT' + JP (Ar V) dP'. (3.6) 
298 T 1 

The first two tenns on the right in this equation, ArH(1,298) and 
TArS(1,298), are easily calculated from tabulated standard enthalpies of 
fonnation and standard entropies for the reaction's components. In the last 
chapter, we developed methods for calculating the next two tenns, the two 
heat capacity integrals I2~8(ArCp) dT' and I~8(ArCp/T') dT'. But the last 
tenn, the volume integral Ii (Ar V) dP', is new and complicated for the high­
pressure conditions (2000 bar and beyond) we will need to recognize. 

Powell has demonstrated that both heat capacity integrals and the volume 
integral can be simplified for a common kind of metamorphic reaction which 
fonns a gaseous component. An example is the reaction that converts the 
mineral calcite (CaC03) to wollastonite (CaSi03), 

Calcite + Quartz --+ Wollastonite + C02 (g). 

CaC03 Si02 CaSi03 

The minerals calcite, quartz, and wollastonite all occur in separate pure solid 
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phases, and (we assume) C02 is found by itself in the gas phase. For this 
reaction 

Ar V = VC02 + VCaSi03 - V Caco3 - VSi02 

= VC02 + Ar Vs, (3.7) 

where Ar Vs = VCaSi03 - VCaC03 - VSi02 is the molar volume change for the 
solid components alone. This term has been separated because it is nearly 
independent of pressure and temperature, and its contribution to the volume 
integral is simply r (Ar Vs) dP' = (P - 1 )Ar Vs, (3.8) 

with P expressed in bar and Ar Vs in J bar-I mol- I (to convert Ar Vs in the 
usual units Lmol-I to these units note that Lmol-I = L bar bar-I mol- I = 
100 Jbar- I mol-I). Substituting from Eqs. (3.7) and (3.8) in Eq. (3.6), we 
now have 

ArG(P, T) = ArH(I,298) - TArS(I,298) + JT (ACp)dT' 
298 

- T JT (ArCp/T') dT' + (P - 1 )Ar Vs + JP VC02 dP'. (3.9) 
298 I 

The remaining problem is to evaluate the volume integral Ii VC02 dP' for 
the gaseous component. That could be done with a nonideal gas law, but 
none of the gas laws we have considered is valid in the very high pressure 
region (2-10 kbar) we are now covering. Powell avoids this problem by 
taking another tack. His formulation is based on the observations that the 
two heat capacity integrals are small enough in magnitude to be neglected, 
and that the C02 volume integral in Eq. (3.9) can be expressed as a single 
function Fco2 of P and T, 

FC02 = a' + b'T, (3.10) 

where a' and b' are parameters that depend on P and T. Powell provides 
simple tables of values of a' and b' at the pressures 2, 4, 6, 8 and 10 kbar and 
in the temperature range 200 to 1000°C. With these considerable simplifi­
cations the Gibbs energy calculation finally reduces to 

ArG(P, T) = ArH(I, 298) - TArS(I, 298) + (P - 1 )Ar Vs + nco2Fco2, 

(3.11 ) 

in which nC02 is the stoichiometric coefficient for C02 in the reaction (= 1 in 
the reaction considered). 

The program Powell incorporates Powell's method. It reads from the 
data file Chap 3 . m: data for enthalpies of formation and entropies of the 
reaction's components at 1 bar and 298 K; molar volume data for the solid 
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components; and values of a' and b' in Eq. (3.10). It then calculates: 
LlrH(l, 298), LlrS(l, 298), LlrVs, Fco2 and finally LlrG(P, T) according to Eq. 
(3.11). The nect example introduces the program. 

Example 3-1. When geologists calculate LlrG's for metamorphic reactions, 
they usually aim to determine equilibrium conditions, because most of the 
experimental data are gathered at or near equilibrium. Use the program 
Powell to calculate the equilibrium temperature for the CaC03-Si02 re­
action P = 2 kbar. The measured equilibrium temperature at 2 kbar is about 
1013 K. 

Answer. To run the program Powell enter data for the pressure P, temper­
ature T, identity of the gaseous component (C02), the stoichiometric 
coefficient n = 1 for the gaseous component, and enter the reaction in 
reactionList with products positive and reactants negative, 

ReactionList = wollastonite + C02 - quartz - calcite; 

The program calculates LlrG = 0.04 kJ mol-1 at P = 2 kbar and 1018 K, and 
LlrG = -0.05 kJmol- 1 at 2 kbar and 1019 K. The calculated equilibrium 
temperature at 2 kbar is between these temperatures. 

The program Powell implements a similar calculation for metamorphic 
reactions that form the gaseous component H20(g). Equation (3.11) is 
replaced by 

LlrG(P, T) = LlrH(l,298) - TLlrS(1,298) + (P - I)LlrVs + nH20FH20, 

(3.12) 

with 

(3.13) 

where a" and b" are parameters for H20, similar to a' and b' for C02 in 
Eq. (3.10). They are also included in the data file Chap3 .m. 

3.2 Ordinary Equilibrium Calculations 

Pre liminaries 
Most equilibrium calculations are based on equilibrium-constant expres­
sions, which in tum permit activity calculations. For the generic reaction 

aA + bB ---+ rR + sS 
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the equilibrium-constant expression is 

(3.14) 

in which the a's represent equilibrium values of activities. One or more of the 
activities may be unknown, and this equation (usually combined with others) 
allows us to calculate equilibrium values for the unknown activities. 

Remember that an activity for a component A depends on the concen­
tration of A and also perhaps on concentrations of other components in the 
system. This dependence is expressed in Eqs. (2.39) to (2.42), which we now 
compress into a single activity equation, 

(3.15) 

where YA is suitable activity coefficient and (A) has various meanings, de­
pending on how A is identified, 

(A) = PAlpo for a gas 

(A) = XA for a solvent 

(A) = mAlmO for a solute 

(A) = CAICo for a solute. 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

However it is defined, (A) (like the activity aA) is a unitless quantity. We will 
callpAlpo a unitless partial pressure, mAlmO a unitless molality, and CAICo a 
unitless molarity. We will also find it convenient to use the standard notation 
[A] to represent the concentration of a solute A with units included, either a 
molality or a molarity, or both if the solution is sufficiently dilute. 

Varieties of Equilibrium Constants 

For special equilibrium calculations some special equilibrium constants are 
required. In addition to K, defined by Eq. (3.14), we introduce 

(3.20) 

with the ( )'s representing unitless molalities or molarities, and for gas-phase 
reactions 

(R)'(SY 
Kp = --'-(A--')-O('-'B)--;-b ' 

with the ( )'s representing unitless partial pressures. 

(3.21) 



48 3. Chemical Thermodynamics in Use 

The Ammonia Synthesis Reaction 

We take as a first example the gas-phase reaction that synthesizes ammonia 
from elemental nitrogen and hydrogen, 

1/2N2(g) + 3/2H2(g) ----t NH3(g), 

developed as an industrial process in the early 1900s by Haber and Bosch. 
Suppose equilibrium is approached by beginning with a mixture of 1 mol 

N2 and 1 mol H2 and no NH3. At equilibrium some of the N2 and H2 is 
converted to NH3 but the total number of atoms remains constant. Initially 
there are 1 mol ofN2 molecules in the system and 2 mol N atoms. If, at some 
later time, there are nN2 mol N2 molecules and nNH3 mol NH3 molecules, the 
corresponding molar amount of N atoms, 2nN2 + nNH3' must still be equal to 
2 mol, 

2nN2 + nNH3 = 2 mol, 

because no atoms get lost in the reaction. 
We make this equation more convenient by dividing by n, the total molar 

amount of molecules in the system, 

2nH2 nNH3 2 mol -+--=--. 
n n n 

The ratios nN2/n and nNHJn represent YN2 and YNH3' mole fractions in the 
gas phase, so we write 

2 mol 
2YN2 + YNH3 = --, 

n 

and multiply the equation by P, the total pressure, 

(2 mol)P 
2YN2P + YNH3P = . n 

The quantities YN 2 P and YNH3 Pare PN 2 and PNH3' partial pressures of N 2 and 
NH3, so we have 

(2 mol)P 
2PN2 + PNH3 = . n 

(3.22) 

This equation conveniently expresses the nitrogen material balance. 
A similar argument leads to an equation for the hydrogen material balance. 

We begin with 2 mol H atoms (1 mol H2 molecules) and sometime later have 
2nH2 + 3nNH3 mol H atoms, with the n's again counting molecules. The total 
number of moles of H atoms remains constant at 2, so 

2nN2 + 3nNH3 = 2 mol, 
and we convert this to 

(3.23) 
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The two material balance equations (3.22) and (3.23) introduce five vari­
ables PN2' PH2' PNH3, P and n. To solve the problem we need three more 
equations. One of these is the equilibrium-constant expression, which we 
write with gas activities represented as unitless partial pressures (we will set 
the pressure low enough to justify using values of one for all fugacity co­
efficients), so 

K = K = (pNHJpO) 
P 1/2 3/2 . 

(PN2/pO) (PH2/pO) 
(3.24) 

We also express the total pressure P as a sum of the partial pressures, 

(3.25) 

In the following example the equilibrium calculation is done for a total 
equilibrium pressure of lObar and the fifth equation needed to complete the 
set of equations for the five variables is simply 

P= lObar. (3.26) 

Example 3-2. Use the program Haber to calculate N2, H2 and NH3 partial 
pressures at 450°C and 10 bar. At this temperature K = 0.00659. Assume 
that equilibrium is achieved and that the gases behave ideally. 

Answer. Enter Eqs. (3.22) to (3.26) in the F indRoot function of Haber as 
instructed in the program's comment lines. Following the equations enter 
trial, minimum and maximum values for the five unknown variables PN 2' 

PH2, PNH3, P, and n. Choose the trial values so they are within an order of 
magnitude of the correct values. In this case that can be lObar (or 0.1 bar or 
I bar). Pressures and molar amounts are all positive, so enter zeros for the 
minimum values. Maximum values place upper limits on the regions in 
which F indRoot searches for roots. Any large value (e.g., 100 bar) will 
do. The program calculates PN2 = 5.000 bar, PH2 = 4.843 bar, and PNH3 = 
0.157 bar. Under the conditions given the equilibrium ammonia yield is low. 
As a check, the program calculates the equilibrium constant K from the 
calculated partial pressures, obtaining the value supplied, K = 0.00659. 

Gas-phase equilibria are responsive to both pressure and temperature 
changes. The ammonia synthesis reaction, for example, is exothermic so its 
equilibrium constant decreases with increasing temperature (Sec. 2.8). If you 
want a higher yield of ammonia, decrease the temperature, but not too much 
because lower temperatures decrease the rate of the reaction. Le Chatelier's 
principle predicts that the ammonia yield is also increased by increasing the 
pressure. Both effects are illustrated by the following results obtained with an 
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adaptation of Hab e r, assuming that the initial mixture is I mol N2, 3 mol 
H2, and 0 mol NH3 (so there are 6 mol H atoms and 2 mol N atoms): 

P/bar T/K K 

10 700 0.00935 
10 800 0.00299 
20 700 0.00935 
20 800 0.00299 

Verify these results for more practice with Haber. 

Coal Gasification 

0.2865 
0.0953 
1.086 
0.374 

The ammonia-synthesis equilibrium involves a single reaction. The princi­
ples of the calculation are not changed if more than one reaction contrib­
utes, but the calculation becomes more complicated mathematically because 
more equations must be solved simultaneously. We illustrate with a high­
temperature system containing five gaseous components H20, C02, CO, H2, 
and CH4, and excess of a solid phase containing coal, which we represent as 
pure graphite or C(s). 

One way to approach this equilibrium calculation is to recognize three 
independent reactions, all heterogeneous, 

1 
C(s) + 2 H20(g) ~ C02 (g) + 2 H2(g) 

2 
C(s) + C02 (g) ~ 2 CO (g) 

3 
C(s) + 2H2(g) ~ CH4(g). 

Because the solid phase is pure graphite and we will set the pressure so it is 
not high, we can assume an activity of one for the solid phase and, as before, 
calculate gas activities as unitless partial pressures. Equilibrium-constant 
expressions for the three reactions are 

KJ = (pCOzlpO)(PH2{pO)2 =P~02P~2 
(PH20 / pO) PH20PO 

(3.27) 

2 

K2 = Pco (3.28) 
PC02PO 

K3 = PC";pO . (3.29) 
PH2 

Suppose the total pressure is I bar and the reaction mixture initially com­
prises excess graphite and I mol H20(g). Initially we have 2 mol H atoms 
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and this amount remains constant, so at a later time when there are nH20 mol 
H20 molecules, nH2 mol H2 molecules and nCH4 mol CH4 molecules there 
are 2nH20 + 2nH2 + 4nCH4 mol H atoms, and 

2nH2o + 2nH2 + 4ncH4 = 2 mol. 

We divide this equation by n, the total number of moles of molecules in the 
gas phase, and multiply be the total pressure P to obtain 

(2 mol)P 
2PH20 + 2PH2 + 4PCH4 = . 

n 
(3.30) 

This is a statement of the hydrogen material balance. Similarly, for the 
oxygen material balance, we have 

(1 mol)P 
PH20 + PCO + 2pco2 = . n 

(3.31) 

We now have five equations in the seven unknowns PHv PH20, Pco, Pco2, 
PCH4, P, and n. Two more equations are needed; they are 

PH2 + PH20 + Pco + Pco2 + PCH4 = P 

for the total pressure, and 

P = 1 bar, 

(3.32) 

(3.33) 

to assign the given total pressure. In the next example we solve these equa­
tions with the program Coal. 

Example 3-3. The program Vanthoff calculates the equilibrium constants 
K\ = 3.31,K2 = 1.70, and K3 = 0.0929 for reactions 1, 2, and 3 at 1000 K. 
Use the program Coal to calculate coal gasification partial pressures at 
1000 K and 1 bar total pressure. 

Answer. The procedure for running Coal is the same as that for Haber. 
Enter Eqs. (3.27) to (3.33) in the F indRoot function, enter 1 bar for all the 
trial values, and 0 and 100 bar for minimum and maximum values. Results 
for 1000 K and two other temperatures are listed below. 

T/K 

800 
1000 
1200 

Pcol/bar 

0.2279 
0.07628 
0.004689 

Pco/bar 

0.04718 
0.3601 
0.4914 

0.2844 
0.4714 
0.4935 

0.3313 
0.07156 
0.006719 

PCH.,/bar 

0.1092 
0.02064 
0.003629 

Notice that increasing the temperature favors production of CO and H2 • The 
calculation at 1200 K requires adjustment of the DampingFactor option in 
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FindRoot, which sets the step sizes taken by FindRoot as it searches for 
roots. Use 0.01 for this option in the calculation at 1200 K. 

In the example we have calculated equilibrium coal gasification partial 
pressures by assuming that excess graphite is present and that equilibrium is 
approached through the three heterogeneous reactions 1, 2, and 3. Exactly 
the same equilibrium state is reached through any other set of three inde­
pendent reactions collectively involving the graphite solid phase and the five 
gaseous components H20, C02, CO, CH4 and H2. You can demonstrate 
this point by making the calculation requested in Exercise 3-8 for the reaction 
scheme 

The first of these reactions is heterogeneous and was recognized in the 
scheme treated in the example. The other two reactions are homogeneous 
and different from those seen before. 

Buffer Equilibria 

In these problems we work with ionization equilibria of weak electrolytes, 
for example, the ionization of acetic acid (HAc), 

HAc(aq) ~ H+(aq) + Ac-(aq). 

We designate equilibrium constants for this and other acid ionizations with 
Ka. In this case, Ka is defined 

Ka = aH+aAc- = 1.754 x 10-5. 

aHAc 

which we also express on a logarithmic scale as a pKa value defined pKa = 
-logIOKa. For acetic acid, 

pKa = -loglO(1.754 x 10-5) 

= 4.756. 

See Table 3.1 for a list ofpKa values for some other weak acids. KaJ, Ka2, 
and Ka3 in the table refer to ionization of the first, second, and third hydro­
gens from a polyprotic acid. For example, the first ionization equilibrium of 
H2C03, to which KaJ applies, is 
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TABLE 3.1. pKa values for selected weak acids at 25°C 

Acid pKal pKa2 pK a3 

Acetic 4.756 
Benzoic 4.212 
Carbonic 6.352 10.329 
Citric 3.128 4.761 6.396 
Fonnic 3.752 
Lactic 3.860 
Oxalic 1.271 4.266 
Phosphoric 2.148 7.198 12.38 
Tartaric 3.033 4.366 

Source: H.A. Robinson and R.H. Stokes, 1959, p. 517. 

and the second ionization, represented by Ka2, is 

HC03 -(aq) ~ H+(aq) + C032-(aq). 

We illustrate the method of buffer calculations with an extended example. 

Example 3-4. You have prepared an acetate buffer by dissolving 0.0100 mol 
sodium acetate (NaAc) and 0.0100 mol acetic acid (HAc) in a liter of solu­
tion, and you want to calculate the pH in the solution, assuming that 
unionized acetic acid behaves ideally. 

Answer. For this calculation and most others involving electrolyte solutions, 
we will need to solve simultaneously five kinds of equations: 

Equilibrium Constant Expressions 

For the acetate buffer these are 

for acetic acid ionization, and 

yw(H+)Yow(OH-) = 1.012 x 10-14 

for water ionization, 

Calculation of Ionic Strength 

(3.34) 

(3.35) 

In the acetate buffer the ions Na+, H+, OH- and Ac- contribute to the ionic 
strength s, 

(3.36) 
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Calculation of Activity Coefficients 

We use the approximate Eq. (2.63) for this purpose, with A = 
1.171 kgl/2mol-I/2, b = 3.282 kgl/2mol-I/2nm-l, and data for Ya taken 
from Table 2.5. The three activity coefficient equations for the acetate buffer 
are 

YH+ = exp ( 
(-1.171 kgl/2 mol- I/2)y'S ) 

1 + (3.282 kgl/2 mol- I/2 nm- l )(0.90 nm)y'S 
(3.37) 

( 
(-1.171 kgl/2mol- I/2)y'S ) 

Yow = exp / / 
1 + (3.282 kgl 2 mol- l 2 nm-l )(0.35 nm)y'S 

(3.38) 

( 
(-1.171 kgl/2 mol- I/2)y'S ) 

YAc- =exp / . 
1 + (3.282 kgl/2 mol- l 2 nm- l )(0.45 nm)y'S 

(3.39) 

Material Balance Equations 

We note that the total acetate unitless concentration is 0.0200 (from both 
HAc and NaAc), 

(Ac-) + (HAc) = 0.0200, (3.40) 

and that the Na+ unitless concentration is 0.0100 (from NaAc, a strong 
electrolyte ), 

(Na+) = 0.0100. (3.41 ) 

Statement of Electroneutrality 

In all electrolyte solutions the negative charge derived from anions must 
equal the positive charge from cations. If this condition is not met, the sys­
tem develops a (possibly very large) static electric charge in which we are not 
interested. For the acetate buffer, this electroneutrality conditions is 

(3.42) 

This gives us nine equations in the nine unknowns (H+), (Ac-), (Hac), 
(OH-), (Na+), YH+, YAc-' Yow, and s. For the pH calculation, we add a 
tenth equation, 

(3.43) 

based on the physical chemist's definition of pH as the negative logarithm of 
the activity of H+. 

The program Acetate solves Eqs. (3.34) to (3.43) numerically with the 
function FindRoot, as in the programs Haber and Coal. Enter the equa­
tions first, and then trial values and minimum and maximum values for each 
variable. Because values of the variables cover a broad range in this prob-
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lem, trial values cannot all be made the same, as they were in Haber and 
Coal. Trial values here, and in other buffer problems, need to be obtained 
in a preliminary, order-of-magnitude calculation. 

That is not a difficult task. For the order-of-magnitude calculation we 
assume that all activity coefficients are equal to one and note that neither the 
acetic acid nor the acetate ion mixed to make the buffer are much altered in 
the solution, so we assume that no reaction occurs and calculate 

(HAc) ~ (Ac-) ~ 0.01. 

Then from Eq. (3.34) (setting all activity coefficients equal to one) 

(H+) ~ 2 X 10-5, 

and from Eq. (3.35) 

The ionic strength is 

and 
(Na+) ~ 0.01. 

Enter these results for trial values of the variables, and 0 and 1 for the min­
imum and maximum values. See the program Acetate for further details. 
The program calculates pH = 4.713 for the buffer, compared to the mea­
sured value 4.718. 

Titration Equilibria 

As an acid is titrated with a base the pH increases during the course of the 
titration, at first slowly, then rapidly near the equivalence point, and slowly 
again beyond the equivalence point. We formulate an equilibrium calcula­
tion that traces this S-shaped curve and locates the equivalence point. 

Suppose you titrate a weak acid HA with a strong base MOH. Unitless 
molar concentrations for the acid and base are a and b, and the ionization 
constant for the weak acid is defined by 

(H+)(A -) 
Kca = (HA) . 

You begin with a volume VA of the acid, a total volume of Vo( ~ VA) and 
titrate by adding base. The relationship between the volume VB of base 
added and the hydrogen concentration (H+) is 

Vi _ aVAfi + VoKcw/(H+) - Vo(H+) 
B - b - Kcw/(H+) + (H+) , 

(3.44) 
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in which 

(3.45) 

and 

At the equivalence point, 

aVA = bVB,equiv, (3.46) 

and 

(H+) . = (KcwKca(VO + VB,equiV))1/2 
eqwv aVA (3.47) 

The program Tcurve calculates and plots VB as a function of pH [now 
defined pH = -loglo(H+)] according to Eqs. (3.44) and (3.45), and calcu­
lates (H+)equiv with Eq. (3.47). 

Example 3-5. Use the program Tcurve to calculate the pH at the equiva­
lence point in the titration of 25.00 cm3 of 0.100 molL-I acetic acid with 
0.100 mol L -I NaOH. Do the calculation first assuming that all activity co­
efficients are equal to one. Then compare this result with that obtained 
using Eq. (2.63) to calculate activity coefficients of the ionic components. 
Assume that the activity coefficient of the unionized acetic acid HAc equals 
1.000. 

Answer. Obtain Ka = 10-4.756 = 1.754 X 10-5 from the pKa values quoted in 
Table 3.1. Use Kw = 1.012 X 10-14 for the water ionization equilibrium. If 
the activity coefficients all have values of one, Kca = Ka and Kcw = Kw. 
Enter these and other data given in Tcurve and calculate pH = 8.73 at the 
equivalence point. To calculate the activity coefficients note that at the 
equivalence point 25.00 cm3 of 0.100 molL-I HAc have reacted with 
25.00 cm3 of 0.100 mol L -I NaOH to form 50.00 cm3 of 0.050 mol L- I 
NaAc. In this case concentrations are low enough that molalities and molari­
ties are equivalent numerically and this concentration can also be expressed 
0.050 mol kg-I. Sodium acetate is a strong electrolyte; it forms the ions Na+ 
and Ac-, and the ionic strength in the NaAc solution is 

s = (1/2)([Na+] + [Ac-J) 

= (1/2)(0.050 mol kg-I + 0.050 mol kg-I) 

= 0.050 mol kg-I. 
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Use this ionic strength and data from Table 2.5 to calculate activity co­
efficients for the ions with Eq. (2.63), 

Yw = 0.854 

Yow = 0.812 

YAc- = 0.821. 

We now need to calculate KCa and Kcw for use in Tcurve. Since 

K _ aWaAc- _ YH+(H+)YAc-(Ac-) 
a - aHAc - YHAc(HAc) , 

we have 

and 

(1.000) 5 

(0.854)(0.821) (1.754 x 10- ) 

= 2.502 X 10-5 , 

Kcw = (H+)(OH-) 

= Kw/YwYow 

(1.012 x 10-14) 
= -'-:-:--:-:::-:-:-:-:-:~~ 

(0.854)(0.812) 

= 1.459 x 10-14• 

Enter these data in Tcurve and calculate pH = 8.57 at the equivalence 
point. The difference between the two pH calculations is 2% in pH and 31 % 
in (H+). The activity coefficients do make a difference. 

The calculation done by Tcurve concerns titration of a weak acid with a 
strong base. In Exercise 3-14 another program is introduced that makes a 
similar calculation for titration of a weak acid and a weak base. 

3.3 Biochemical Thermodynamics 

So far in our treatment of chemical thermodynamics, we have been able to 
express nonideality of solute components by calculating suitable activity co­
efficients, at least approximately. For many biochemical components that is 
not feasible. 
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A good example is adenosine triphosphate, often included in biochemical 
reactions which would, without adenosine triphosphate participation, pro­
ceed in the wrong (i.e., biochemically non beneficial) direction. In aqueous 
solutions, adenosine triphosphate can take a series of acidic forms which we 
will write as ATp4- , HA Tp3- , H2ATp2-, etc. It also binds Mg2+ in biologi­
cal cellular environments to form MgA Tp2-, MgHA TP-, etc. Biochemists 
usually abandon the task of recognizing all of these distinct components and 
instead just write ATP to represent all of the different forms. We will need 
to elaborate this notation a bit and write "ATP" when this is intended, so 
we do not have to contend with conflicting notations, such as ATP and 
ATp4-. 

This point of view demands use of the total "ATP" concentration (ATPh, 
defined 

(ATPh = (ATp4-) + (HATp3-) + (MgATp2-) + (MgHATp2-) +"', 
with the ( )'s referring to unitless molar concentrations. We will also need to 
define a total activity coefficient Y ATP relative to the total concentration 
(ATPh, 

aATP = YATP(ATPh· 

Then the "ATP" chemical potential equation is 

J1.ATP = J1.iTP + RTlnYATP + RTln(ATPh 

= J1.i'TP + RTln(ATPh, 

(3.48) 

(3.49) 

in which J1.i'TP = J1.!TP + RTln YATP. This new standard chemical potential 
incorporates the activity coefficient YATP and therefore depends not only on 
pressure and temperature, but also on composition variables such as (H+), 
(Mg2+), and ionic strength. 

This approach revises the general chemical potential equation (2.38) for a 
component A, 

J1.A = J1.i' + RTln(Ah· (3.50) 

From this, and similar equations for other components, we calculate the 
Gibbs energy for the generic reaction, 

aA + bB ---+ rR + sS, 

obtaining 

A G = A G01 + RTln (R)~(S)~ 
r r (A)~(B)~ , 

(3.51 ) 

with 
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called an apparent standard Gibbs energy. We will also write Eq. (3.51) 

in which 

Q' = (R)~(S)~ 
(A)~(B)~ 

(3.52) 

(3.53) 

is the reaction's concentration quotient. At equilibrium lirG = 0, Q' has an 
equilibrium value, which we write K' and call an apparent equilibrium con­
stant. Equation (3.52) becomes 

(3.54) 

Eqs. (3.52) and (3.54) are the biochemist's analogs of Eqs. (2.43) and (2.44). 
The apparent equilibrium constant K' is similar to equilibrium constants 

of the Kc kind we have used before (Sec. 3.2). Both K' and Kc omit activity 
coefficients. The main difference is that K' expressions are written with total 
concentrations, while Kc expressions include individual components. Bio­
chemists also have the habit of omitting from K' expressions concentration 
factors for H+ and all complexing cations (e.g., Mg2+). Thus for the "ATP" 
hydrolysis, 

"ATP" + H20 ~ "ADP" + "P", 

where "ADP" represents all the adenosine diphosphate components and "P" 
all the phosphate components, we have the simple statement 

K' = (ADPh(Ph 
(ATPh . 

A typical Kc expression for one of the many equilibria involved in the 
"ATP" hydrolysis is 

K _ (MgADP-)(H2P-) 
c - (MgATp2-) , 

in which the individual components MgADP- and H2P- and MgA Tp2- are 
recognized. Another important difference between K' and Kc equilibrium 
constants is that the former depends on composition, but the latter does not, 
except for a slight dependence on ionic strength. 

We now have the equipment to calculate the Gibbs energy for a bio­
chemical reaction. The first step is to obtain a suitable value of lirGo,. The 
second is to supply the total concentrations appearing in the concentration 
quotient Q' of Eq. (3.53) for the biological situation of interest. And in the 
third the two results, lirGo, and Q', are combined in Eq. (3.52) to calculate 
lirG. 

From the calculational point of view the most difficult part of this proce­
dure is the first step, determination of lirGo, [or K' if Eq. (3.54) is used], 
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which is complicated because I1r Go1 depends on composition variables, par­
ticularly pH. We next illustrate this detailed calculation with some examples, 
simple and complicated. 

A Simple Example 
Consider the biochemical reaction, 

"F" ---+ "M", 

where "P" and "M" represent all of the components derived from fumaric 
and maleic acids. Both acids are diprotic: fumaric acid forms the compo­
nents H2P, HP-, and p2- and maleic acid forms H2M, HM-, and M2-. 

Pumaric acid has two ionization equilibria 

H2P ~ HP- +H+ 

HP- ~ p2- + H+, 

for which we write two equilibrium-constant expressions 

(HP-)(H+) 
KII = (H2P) 

(P2-)(H+) 
KI2 = (HP) . 

Prom these two equations, we derive 

and 

Por maleic acid, we also recognize two ionization equilibria, 

H2M ~ HM- +H+ 

HM- ~ M2- +H+, 

(3.55) 
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two equilibrium-constant expressions, 

and derive 

(3.56) 

Equations (3.55) and (3.56) permit us to express the apparent equilibrium 
constant K' as a function of (H+). We have 

K' = (Mh 
(Fh 

(M2-)[1 + (H+)jK22 + (H+)2jK2I K 22l 

= (F2-)[1 + (H+)j KI2 + (H+)2 j KIIKI2l . (3.57) 

The factor (M2-)j(F2-) on the right side of this equation represents an 
equilibrium constant of the Kc kind for the equilibrium 

one of the many equilibria involved in the system. We label this equilibrium 
constant Kref, 

(M2-) 
Kf-

re - (F2-) , 
(3.58) 

and note that it, like other Kc equilibrium constants, is independent of pH. 
Equation (3.57) now shows explicitly how K' depends on (H+), 

K' = Kref [1 + (H+)j K22 + (H+)2 j K2IKzzl. 

[1 + (H+)j KI2 + (H+)2 j KIIKI2l 
(3.59) 

This equation requires four equilibrium constants, KII and KI2 for fumaric 
acid, and K21 and K22 for maleic acid. Their values are listed (as pKc values) 
in Table 3.2, along with similar data for some other biochemical compo­
nents. A value for Kref is obtained either by direct measurement or by 
measuring K' at a specific pH and calculating Kref with Eq. (3.59). 

The program Biochem uses Eqs. (3.58) and (3.59) to calculate and plot 
I1r Go, at various pH's for the "F" -+ "M" reaction. Similar treatments of 
several other biochemical reactions are covered in Exercises 3.16 to 3.18. 
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TABLE 3.2. Ionization constants for some biochemical 
components at 25°C 

Component pKCl pKC2 pKC3 

Phosphoric acid 2.15 6.82 12.38 
Fumaric acid 3.02 4.40 
Maleic acid 3.48 5.1I 
Pyruvic acid 2.39 
Lactic acid 3.73 
Citric acid 3.13 4.76 6.40 
Oxaloacetic acid 2.22 3.89 
Succinic acid 4.21 5.72 
Glucose 6-phosphate 0.94 6.11 
Fructose 6-phosphate 0.97 6.11 
Fructose 1,6-diphosphate 1.48 6.29 
Glyceraldehyde 3-phosphate 1.45 6.45 
Benzoyltyrosine 3.70 
Glycinamide 7.93 

Sources: R.M. Dawson et. aI, 1986; J.T. Edsall and H. Gutfreund, 
1983. 

A Complicated Example 
One of the most important of all biochemical reactions, the "ATP" 
hydrolysis, 

"ATP" + H20 -+ "ADP" + "P", 

is unfortunately also one of the most complicated. The source of the com­
plexity, as in the previous examples, is the habit of the reaction's components 
to exist in more than one form. The list of possible forms is a long one in this 
case, including not only protonated forms of the kind seen before, but also 
complexes resulting from the binding of adenosine triphosphate, adenosine 
diphosphate, and phosphate with Mg2+ and Ca2+. Under conditions likely 
to be important biochemically [with (Mg2+) » (Ca2+)], adenosine triphos­
phate not only forms the bare anion A Tp4-, but also the protonated 
HA Tp3- and the complexed MgHA TP-. The lists for adenosine diphos­
phate and phosphate are similar, including ADp3-, HADp2-, MgADP­
MgHADP, HP-, MgHP, and MgH2P+. 

Calculation of Ilr Go1 is now much more complicated, not only because the 
components have so many forms, but also because at least two composition 
variables, pH and pMg (= -log[Mg2+]), need to be considered. For accu­
rate calculations a third variable, the ionic strength s, is added. 

We lack the space to describe this calculation further. Instead we offer two 
programs, Atpl and Atp2, which demonstrate the complicated dependence 
of IlrGo1 for the "ATP" hydroysis on pH, pMg and s. 
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Gibbs Energy Profiles 

If ArGol values are available for a series of biochemical reactions, the next 
step in the thermodynamic analysis of the reactions, calculation of Gibbs 
reaction energies ArG according to Eq. (3.52), can be taken. This calculation 
requires total concentrations of all the components in the biological situation 
of interest. To illustrate, a calculation of this kind for the glycolysis series of 
reactions is displayed in the program Gprof ile. Run the program and note 
that most of the reactions in the series have Gibbs energies of small magni­
tudes indicating that these reactions are nearly reversible. Three of the 
reactions display large negative Gibbs reaction energies. They are important 
in the biochemical control of the reaction. 

3.4 Exercises 

Geochemical Thermodynamics 

3-1 Calculate an equilibrium temperature for the metamorphic reaction 

Muscovite + Quartz --+ Sillimanite + Sanidine + H20(g) 

KAh ShOlO (OHh Si02 AhSi05 KAIShOg 

at the pressure 2 kbar. The measured equilibrium temperature for this re­
action at 2 kbar is about 883 K. What mineral phases are stable above the 
equilibrium temperature, and what phases are stable below the equilibrium 
temperature? 

3-2 Calculate equilibrium temperatures for the metamorphic reaction 

Calcite + Quartz --+ Wollastonite + C02 (g) 

CaC03 Si02 CaSi03 

at 2, 4, 6, and 8 kbar. Enter these results in the program Linreg, fit the 
equilibrium P data to a quadratic function of T and plot the curve. This kind 
of plot is a phase diagram with the curve representing equilibrium conditions. 
On the high-temperature side of the equilibrium curve wollastonite and CO2 
are stable, and on the low-temperature side calcite and quartz. 

3-3 Calculate an equilibrium temperature for the metamorphic reaction 

Grossular 

Ca3AhSh012 

+ Quartz --+ Anorthite + 2 Wollastonite 

Si02 CaAhShOg CaSi03 

at 5 kbar. Notice that this reaction does not have a gaseous component. The 
measured equilibrium temperature at 5 kbar is about 990 K. 
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3-4 Calculate an equilibrium temperature for the reaction 

Brucite ---t Periclase + H20(g) 

Mg(OHh MgO 

at 2 kbar. The measured equilibrium temperature at 2 kbar is about 928 K. 

3-5 Calculate an equilibrium temperature for the reaction 

Magnesite ---t Periclase + C02 (g) 

MgC03 MgO 

at 2 kbar. The measured equilibrium temperature at 2 kbar is about 1118 K. 

3-6 Calculate an equilibrium temperature for the metamorphic reaction 

Talc ---t 3Enstatite + Quartz + H20(g) 

Mg3Si40 IO (OHh MgSi03 Si02 

at 2 kbar. The measured value for the equilibrium temperature at 2 kbar is 
about 1008 K. 

Ordinary Equilibrium Calculations 

3-7 Write an adaptation of the program Haber which makes the ammonia­
synthesis calculation (see Example 3-2) with the volume given rather than 
the pressure. Use the program to make the calculation for V = 10.0 L, 
T = 700 K, K = 0.00935, and an initial mixture comprising 1 mol N2, 3 mol 
H2, and no NH3 . Assume that all components are ideal. 

3-8 Consider three of the gas-phase reactions mentioned in Sec. 3.2, 

C(s) + 2H20(g) ~ C02 (g) + 2H2(g) 

4 
C02(g) + H2(g) --+ CO (g) + H20(g) 

CO(g) + 3 H2(g) ~ H20(g) + CH4(g). 

Equilibrium constants for these reactions (calculated by the program 
Vanthoff) are K\ = 3.31, IG. = 0.717, and Ks = 0.0391 at 1000 K. Write 
an adaptation of the program Coal (Example 3-3), which calculates all of 
the equilibrium partial pressures in this system at 1000 K, with the total 
pressure P = 1.00 bar and beginning with 1 mol H20(g). Compare results 
from this program with those obtained in Example 3-3. Assume that all 
components are ideal. 

3-9 Write an adaptation of the program Coal to calculate equilibrium 
partial pressures at 1000 K for the components involved in the reactions 

CH4(g) + H20(g) ~ CO(g) + 3 H2(g) 
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whose equilibrium constants at 1000 K are K6 = 26.601 and K7 = 1.439. 
The initial reaction mixture comprises 2 mol CH4 and 3 mol H20. The 
volume of the system is 60.0 L. Assume that all components are ideal. 

3-10 You have decided to synthesize methanol from carbon monoxide and 
hydrogen according to the reaction 

CO (g) + 2 H2(g) ~ CH30H(g), 

whose equilibrium constant at SOO K is 6.0 x 10-3. The process is carried out 
in a 10.0 L batch chemical reactor at SOO K, and the initial reaction mixture 
consists of 1 mol CO and 2 mol H2. Write an adaptation of the program 
Coal to calculate partial pressures and the total pressure at equilibrium for 
this system. Also calculate the initial pressure in the reactor. Assume that all 
components are ideal. 

3-11 Write an adaptation of the program Acetate (see Example 3-4), 
which calculates the pH in a carbonate buffer prepared by equilibrating 
0.0100 mol Na2C03 and 0.0100 mol NaHC03 in a liter of solution. The 
carbonate equilibrium involved is 

HC03(aq)- ~ H+(aq) + COl-(aq), 

whose equilibrium constant at 2S °c is K = 4.72 X 10-11 • Calculate activity 
coefficients with Eq. (2.63) and data from Table 2.S. To estimate initial 
values for the concentrations you can assume that C032- and HC03 - do 
not react appreciably, so (C032-) ~ 0.0100 and (HC03 -) ~ 0.0100. The 
measured pH is 10.112. 

3-12 A solution prepared by dissolving O.OSOO mol citric acid in a liter of 
solution is sometimes used as a low-pH buffer. Citric acid has three ionizable 
hydrogens. The three equilibria that dissociate these hydrogens are 
(C = Citrate) 

H3C(aq) ~ H2C-(aq) + H+(aq) 

H2C-(aq) ~ HC2-(aq) + H+(aq) 

HC2-(aq) ~ C3-(aq) + H+(aq), 

with equilibrium constants KI, K2 and K3, whose values are listed (as pK's) 
in Table 3.1. Write a program as an adaptation of the program Acetate, 
which calculates the pH in the citrate buffer described. To estimate initial 
values of the concentrations you can assume that the first ionization domi­
nates and that (H+) ~ (H2C-). The measured pH in this buffer is 2.238. 

3-13 Use the program Tcurve to calculate the pH at the equivalence point 
when 2S.0 cm3 of 0.100 molL-I benzoic acid is titrated with 2S.0 cm3 of 
0.100 mol L -I NaOH. Calculate activity coefficients with Eq. (2.63) and data 
from Table 2.S. Assume that at the equivalence point the system consists of a 
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0.05 mol L -I solution of sodium benzoate in which the ionic strength is 
0.050 mol kg-I. 

3-14 Equation (3.44) expresses the dependence of the volume VB of base in 
the titration of a weak acid with a strong base. The corresponding equation 
for titration of a weak acid HA with a weak base MOH is 

V = aVAfi + VoKcw/(H+) - Vo(H+) 
bh - Kcw/(H+) + (H+) 

The two functions fi and hare 

as before, and 

KCb 

h = KCb + Kcw/(H+)' 

where Kca and KCb are ionizations constants for HA and MOH, 

(H+)(A -) 
Kca = (HA) 

(M+)(OH-) 
KCb = (MOH) . 

At the equivalence point (H+) is calculated with 

(H+) . = KcaKcw ( )
1/2 

eqwv KCb . 

(3.60) 

(3.61 ) 

(3.62) 

(3.63) 

The program Ex3-14 plots titration curves according to Eq. (3.60) and 
calculates the pH at the equivalence point according to Eq. (3.63). Run 
Ex3-14 with KCa = 10-4 , KCb = 10-5, then with Kca = 10-5, KCb = 10-5, 

and finally with KCa = 10-5, KCb = 10-4 . Assume anything for a and b. 
How does the pH at the equivalence point reflect a comparison of Kca and 
KCb? 

Biochemical Thermodynamics 

3-15 The biochemical components fructose 1,6-diphosphate and glycer­
aldehyde 3-phosphate both behave as diprotic acids. Their ionization equi­
libria are 

H2FDP ~ H+ + HFDP­

HFDP- ~ H+ + FDp2- , 



with equilibrium constants KII and K12, and 

H2GAP ~ H+ + HGAP­

HGAP- ~ H+ + GAp2-, 
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with equilibrium constants K21 and K22. Consider the following reaction 
found in the glycolysis series of reactions, 

"FDP" -+ 2"GAP", 

with "FDP" and "GAP" representing all acidic forms of fructose 1,6-
diphosphate and glyceraldehyde 3-phosphate. Derive equations that relate: 
(a) (FDPh to (FDp2-) and (H+); (b) (GAPh to (GAp2-) and (H+); (c) K' 
for the reaction to (H+) and Kref = (GAp2-)/(FDp2-); and (d) the reaction's 
!!.rGo, to K'. Note that K' = 3.78 X 10-6 when pH = 7.00. Also derive 
equations for K' at the extremes of low and high pH. The program Ex3-15 
implements all of these calculations. Run the program and characterize 
general features of the dependence of !!.rGo, on pH. 

3-16 Consider another reaction from the glycolysis scheme, 

G + "P" -+ "G6P", 

in which "P" and "G6P" represent all acidic forms of phosphate and glucose 
6-phosphate. Glucose 6-phosphate behaves as a diprotic acid and phosphate 
as a triprotic acid. Relevant ionization equilibria are 

H3P ~ H2P- + H+ 

H2P- ~ Hp2- + H+ 

Hp2- ~ p3- + H+, 

with equilibrium constants Kl1, K12, and K13, and 

H2G6P ~ HG6P- + H+ 

HG6P- ~ G6p2- + H+, 

whose equilibrium constants are K21 and K22. Glucose is unaffected by 
changes in pH. Derive equations that relate: (a) (Ph to (P3-) and (H+); 
(b) (G6Ph to (G6p2-), (H+) and Kref = (G6p2-)/(p3-)(G); and (c) the 
reactions !!.rGo, to K'. Note that K' = 0.00382 at pH = 7.00. Also derive 
equations for K' related to (H+) at the extremes of low and high pH. These 
calculations are all implemented in the program Ex3-16. Run the program 
and characterize general features of the dependence of !!.rGo, on pH. 

3-17 The components benzoyltyrosine and glycinamide react to form 
benzoyltyrosyl-glycylamide, 

"BT" + "GA" -+ BTGA + H20, 
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with "BT" and "GA" representing all acidic fonns of benzoyltyrosine and 
glycinamide. Both of these components behave as monoprotic acids. Their 
ionization equilibria are 

HBT <==: BT- + H+ 

H3GA + <==: H2GA + H+, 

with ionization constants KJ and K2 . BTGA is not influenced by changes in 
pH. Derive an equation that relates the reaction's K' to (H+) and 

K. _ (BTGA) 
ref - (BT-)(H3GA +) . 

These calculations are implemented in the program Ex 3 -1 7. Run the pro­
gram and characterize general features of the dependence of Il r Go1 on (H+). 

3-18 The programs ATPl and ATP2 calculate and plot Ilr Go1 for the 
adenosine triphosphate hydrolysis reaction over a range of pH's and pMg's 
and a given ionic strength. Run both programs and note the complexities of 
the plots. Use one of the programs to calculate Ilr Go1 for pH = 6.8, pMg = 
3.0, and s = 0.15 molkg- J • These values are typical for cellular conditions. 



4 
Quantum Theory 

Physical chemists approach their problems from two broadly different points 
of view. The first three chapters emphasized gas laws and chemical thermo­
dynamics and adopted a macroscopic viewpoint; the systems described were 
of ordinary size, comprising roughly Avogadro's number of molecules. The 
next topic, quantum theory, explores the completely different microscopic 
realm of atoms and molecules. 

The master equation for this effort is the Schrodinger equation introduced 
in Sec. 4.1. Methods for solving the SchrOdinger equation numerically are 
introduced in Sec. 4.2 (programs Schroedl, Schroed2, Schroed3, and 
Well). Then the broad problem of describing the motion of electrons 
and nuclei in atoms and molecules is taken up. Topics included are the 
orbital approximation in Sec. 4.3 (programs Duality, Aorbital, and 
Morbital); hierarchies of different kinds of atomic and molecular motion 
and energy levels in Secs. 4.4 and 4.5 (programs Abc, Morse, Rol, Ro2, 
Rovil, and Viell). In Sec. 4.6 two programs (Hueckel and Hartree) 
illustrate some of the matrix methods for molecular orbital calculations. 

4.1 Schr6dinger Equations 

The simplest thing you can say about the Schrodinger equation is that it is 
always an energy equation, representing the statement 

Kinetic Energy + Potential Energy = Total Energy. (4.1) 

The equation can take different mathematical forms. In our problems we will 
see it as a differential equation and also as a matrix equation. 

We look first at the Schrodinger equation applied to a vibrating diatomic 
molecule (Fig. 4.1). The bond connecting the two atoms stretches and com­
presses by the amount x. If x is small, the potential energy for the vibrating 
molecule is calculated approximately with 

V(x) = kx2 /2, (4.2) 

69 
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(a) 

(b) 

FIGURE 4.1. Illustrating the vibration of a diatomic molecule (a) outward and (b) 
inward. The variable x in Eqs. (4.2) and (4.3) is related to the two displacements Xl 

and X2 according to X = Xl + X2. 

in which k is force constant. A vibrating molecule behaving this way is called 
an harmonic oscillator. A more realistic potential energy function, approxi­
mately valid for any value of x, is the Morse junction, 

(4.3) 

where De and p are constants. A vibrating molecule modeled with the Morse 
function is a Morse anharmonic oscillator. 

The two potential energy functions (4.2) and (4.3) are compared in Figures 
4.2 and 4.3. It is seen that for large positive values of x potential energy 
calculated according Eq. (4.3) approaches De. In this way dissociation of 
the molecule into atoms is simulated, with De representing the dissociation 
energy. 
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FIGURE 4.2. Plot of the potential energy function V(x) = kx2 /2 with k = 1000 J m-2• 

The SchrOdinger equation as a differential equation for these cases is 

,.,2 d21/1 
- 2/J dx2 + V(x)I/I = EI/I, 

where 1/1 is a wave function, /J is the diatomic molecule's reduced mass, 

mlm2 
/J= , 

ml+m2 

(4.4) 

,., = h/21C, E is the total (kinetic + potential) energy, and V(x) is given by Eq. 
(4.2) for the harmonic oscillator and by Eq. (4.3) for the Morse anharmonic 
oscillator. The first term on the left in Eq. (4.4) represents kinetic energy, the 
second potential energy and the term on the right total energy. In this sense 
the SchrOdinger equation is an energy equation. As we will confirm in the 
next section, solution of the harmonic oscillator version ofEq. (4.4) results in 
an equation for the total energy of the vibrating diatomic molecule, 

(4.5) 
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FIGURE 4.3. Plot of the Morse potential energy function with k = 1000 J m-2 and 
De = 10 eV. 

where v is a vibrational quantum number with zero and integer values, 
v = 0, 1,2, ... , and We is related to the force constant k and reduced mass Il, 

_ ~ (~)1/2 
We - 21l Il . (4.6) 

By simply changing the potential energy factor V(x) in Eq. (4.4), and 
perhaps the mass factor [u in Eq. (4.4)], the equation can be applied to any 
other one-dimensional problem. Consider, for another example, an electron 
whose mass is me, confined to a one-dimensional "well" defined by the 
potential energy function 

V(x) = Vo for x < 0 

= 0 forO ~ x ~ a (4.7) 

= Vo for x> a, 

in which a is the width of the well and Vo the depth. The Schrodinger equa­
tion for this case is obtained from Eq. (4.4) by replacing Il with me and 
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defining V(x) as in Eqs. (4.7), 

;,2 d2", 
- 2me dx2 + V(x)", = E"'. (4.8) 

4.2 The Schrodinger Equation Solved 

For the Harmonic Oscillator 

An approximate numerical method, implemented by the program 
Schroedl, solves (i.e., integrates) the harmonic oscillator Schrodinger 
equation, that is, Eq. (4.4) with V(x) evaluated by Eq. (4.2). 

The equation solved by Schroedl is a reduced version ofEq. (4.4), pre­
pared by transforming the independent variable x to a unitless variable x', 
with 

;,1/2 
x=--x' 

(pk)I/4 ' 

or 

2 ;, ,2 
X =--x 

(pk)I/2 ' 

and 

With this switch in variables, Eq. (4.4) conveniently loses all its constant 
factors and becomes 

(4.9) 

where 

(4.10) 

is a unitless energy parameter. 
Integration of Eq. (4.9) does not take into account the normalization 

condition. That additional constraint is included by introducing a second 
independent variable u equal to the normalization integral, 
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The differential equation for u is 

du = .1,2 
dx' '1" 

(4.11 ) 

The program Schroedl includes the variable u and offers the normal­
ization option. Normalization is correct if u has a value of one when the 
integration is complete. 

Example 4-1. Use the program Schroedl to confirm that the reduced 
SchrOdinger equation for the harmonic oscillator, Eq. (4.9), behaves as it 
should for E' = 1, 3, 5, and 7, but not for any other values of E' in this 
range. 

Answer. The program Schroedl uses the function NDSolve to integrate 
Eqs. (4.9) and (4.11). The first two lines of code in NDSolve state the two 
equations with x' and E' represented by x 1 and E 1, '" (x') by p s if xl], 
dt/J/dx' by psi' [xl], d2t/J/dx,2 by psi' , [xl], and duldx' by u' [xl]. 
The amplitude of the plotted wave function is controlled by changing the 
initial value of d"'ldx', called slopeO in the program, as instructed in the 
program's comment lines. Values of E' are calculated in the program with 
E' = 2v + 1. Run the program with v given integer values and note that 
"'(x') approaches small magnitudes as x' ~ ± 00. Try some noninteger 
values of v (even as slightly noninteger as 0.00001) and notice that "'(x') 
becomes very large in magnitude for large values of x'. Physically this de­
scribes an unstable molecule with a high probability for large atomic dis­
placements, obviously not what we are looking for. The program demon­
strates that wave functions calculated with Eq. (4.9) are "well behaved" only 
if v in E' = 2v + I has precisely integer values and E' = 1,3,5,7 .... From 
Eq. (4.10) conclude that 

E = hwe(v + 1/2), 

( )
1/2 

with v = 0, 1, 2, ... , and We = 2~ ~ . This is the energy equation (4.5) 

mentioned before without verification. Energies calculated with Eq. (4.5) are 
energy eigenvalues and the corresponding well-behaved wave functions are 
energyeigenfuncions. 

For the Morse Anharmonic Oscillator 

Here we consider the Schrodinger equation (4.4) with the Morse potential 
energy function (4.3) substituted for V(x'). For the calculation the equation 
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is reduced to 

~~ = [V' (x') - E'JI/I, (4.12) 

with x' and E' defined as before, and Eq. (4.3) simplified with 

(4.13) 

so 

(4.14) 

with 

D' = 2De (!!..)1/2 
e Ii k 

The program Schroed2 integrates Eq. (4.12). Energy eigenvalues and 
eigenfunctions are obtained as they were for the harmonic oscillator in 
Example 4.1. The equation 

(4.15) 

with Xe = hwel4De = 1/2D:, and v again given integer values, expresses 
energy eigenvalues. This can also be written 

(4.16) 

For an Electron in a Well 
Now we integrate Eq. (4.4) with V(x) expressed by Eqs. (4.7). In this case 
the equation reduces to 

- ~~ + V'(x')1/1 = E'I/I, 

or 

~~ = [V'(x') - E'JI/I, (4.17) 

where x' = 2x/a and 

28 2 
V' (x') = ~ :~a V(x') ( 4.18) 

28 2 
E' = ~ :~a E. ( 4.19) 
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Half of the eigenvalues of the energy-related quantity E' are determined by 

(4.20) 

and the other half by 

E' + E' - v.' 
tan2( vE') - 0' 

(4.21) 

with 

(4.22) 

Equations (4.20) and (4.21) are solved by numerical methods (see Exercise 
4-4 and the program Well), and they have many roots, some of which are 
not significant in the eigenvalue problem. See Exercise 4-5 for an intro­
duction to the program Schroed3, which integrates Eq. (4.17) and tests for 
valid energy eigenvalues. 

4.3 Orbitals 

The Schrodinger equation is the master equation in quantum chemistry, but 
mathematically speaking it has a serious flaw: it cannot be solved for most 
atomic and molecular problems without approximations. For many years 
the dominant approximation method used by quantum chemists has relied 
on the orbital concept. 

An orbital is simply an atomic or molecular electronic state that can ac­
commodate one electron-or two electrons if they have different spin states. 
Electronic structures of atoms and molecules are calculated with atomic orbi­
tals and molecular orbitals. Shapes and sizes of atomic orbitals are found by 
solving approximate versions of the SchrOdinger equation stated for atoms. 
Then molecular orbitals are formulated as linear combinations of atomic 
orbitals accessible to the atoms found in the molecule. 

You can run the program Aorbital to display shapes and sizes of 
atomic orbitals for hydrogen atoms. Atomic orbitals for other atoms are 
similar in shape to these hydrogen atomic orbitals, but different in size. The 
program simulates data that might be obtained with the "gamma-ray 
microscope" Heisenberg invented for a thought experiment demonstrating 
one aspect of his uncertainty principle. In each "measurement" with the 
gamma-ray microscope, a spot is recorded where an electron is "located" by 
the microscope. The measurement drastically alters the atom, so the micro­
scope must look at another atom of the same kind in the same state to record 
another spot where an electron is found. The program simulates the com­
posite spot pattern that would be obtained if millions of atoms were put 
under the Heisenberg microscope. The pattern is bright where electrons are 
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likely to be found and dark where they are unlikely to be found. In this way 
a statistical picture is obtained which defines the habitat of electrons occu­
pying a certain kind of atomic orbital. 

The program Morbital is similar except that is simulates sizes and 
shapes of (j and 1t molecular orbitals accessible to electrons in Hi molecules. 
Similar patterns are found in larger diatomic molecules. 

The program Duality demonstrates in another way the statistical basis 
of quantum theory. Duality simulates the interference-diffraction pattern 
obtained when a monoenergetic electron beam is passed through two closely­
spaced slits. No evidence of interference-diffraction effects, therefore no evi­
dence of wave behavior can be seen in observations of only a few electrons, 
but the pattern becomes evident if about 1000 electrons are observed in the 
beam. This makes the point that wave properties of electron beams can only 
be seen in the behavior of many electrons, and not at all in observations of a 
few electrons. 

4.4 Molecular Mechanics 

Molecules have four modes of motion that can cause changes in the mole­
cule's energy. They are translational motion, in which the entire molecule 
moves from one place to another; rotational motion, in which the entire 
molecule rotates around its axes; vibrational motion, in which the molecule's 
nuclei move with respect to each other; and electronic motion, involving 
orbital and spin motion of the molecule's electrons. We should also mention 
nuclear spin motion. If no external fields are applied (for the moment we 
assume that there are none), changes in this mode do not have appreciable 
effects on the molecule's energy. Changes in molecular energy are now are 
chief concern, so we lose nothing important by omitting the nuclear spin 
mode from our list. 

4.5 Energy Levels 

Rotational 
Energies for rotational levels of diatomic molecules are given by 

E(J) = hcBvJ(J + 1) - hci)J2(J + 1)2, (4.23) 

where J is a rotational quantum number (J = 0, 1,2, ... ), Bv is the rotational 
constant for the vth vibrational state, and jj is another constant. The term 
containing jj calculates the centrifugal distortion of a rotating diatomic 
molecule, an effect which is small enough so we can often ignore it. Both Bv 
and jj are given in wavenumber units (em -I) units. (The overhead tilde, as 
in Bv, will always denote wavenumbers). The rotational constant Bv depends 
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on the vibrational quantum number v according to 

(4.24) 

where lie is a further empirical parameter and 

- h 
Be = 8n2Ie' (4.25) 

with 

(4.26) 

This introduces the hypothetical "equilibrium" bond length Re between 
atoms in a diatomic molecule that has halted its vibrational motion, and Ie is 
the equibrium moment of inertia. 

Equation (4.23) calculates rotational energies of the levels "stacked" on 
the vth vibrational energy level. The vibrational term is omitted in Eq. (4.23), 
but it will be considered in the next subsection. 

The program Ro 1 calculates and plots rotational energy levels for dia­
tomic molecules. Data are supplied to the program in wavenumber (cm- I ) 

units, as is customary in spectroscopy, but energy levels are calculated and 
plotted in electron volts. We will follow this practice in other programs that 
calculate and plot energy levels. Run the program and note the pattern of 
widening spaces between energy levels as the energy increases. Also notice 
that rotational energy levels are very closely spaced; they are plotted on an 
me V energy scale. 

Diatomic molecules rotate around two axes that are perpendicular to the 
axis joining the atoms. Because practically all of the molecule's mass (in the 
nuclei) is located on the interatomic axis, rotation around that axis develops 
an insignificant amount of energy (not counting the energy resulting from 
electronic rotational motion, which is regarded as a contribution to the 
molecule's electronic energy). Thus, in effect, a diatomic molecule has only 
two rotational modes, and the moment of inertia for both modes is expressed 
by Eq. (4.26). A polyatomic molecule (any molecule not monatomic or dia­
tomic) behaves the same way if it is linear, that is, if its nuclei are all located 
on the same axis. Nonlinear polyatomic molecules, on the other hand, always 
have three modes of rotational motion and three nonzero principal moments 
of inertia which are conventionally labeled lA, IB and Ie. 

The rotational behavior of polyatomic (and diatomic) molecules is clas­
sified according to how the three principal moments of inertia compare: 

1. Linear molecules are defined by IA = 0, IB = Ie, and the A axis coinciding 
with the interatomic axis (e.g., C2H2). 

2. Spherical-top molecules are defined by h = IB = Ie (e.g., CH4). 
3. Oblate symmetric-top molecules are defined by IA = IB < Ie and the C 

axis coinciding with the molecule's main rotation axis (e.g., C6H6). 
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4. Prolate symmetric-top molecules are defined by h < IB = Ie and the A 
axis coinciding with the molecule's main rotation axis (e.g., CH3CI). 

5. Asymmetric-top molecules are defined by h < IB < Ie (e.g., H20). 

The program Ab c Calculates principal moments of inertia for molecules 
of any kind beginning with data on the coordinates of atoms in the molecule. 
Here is an example. 

Example 4-2. Data are given below for atomic coordinates in 14N1H3. The 
origin is located at the center of the nitrogen atom. Use the program Abc to 
calculate principal moments of inertia for the molecule. What is the rota­
tional classification of the shape of the molecule? 

Mi (gmo1-1) x;/A y;/A z;/A 

14.003 0 0 0 
2 1.0078 0 0.940 -0.381 
3 1.0078 0.814 -0.470 -0.381 
4 1.0078 -0.814 -0.470 -0.381 

Answer. Data entries in Abc, taken from the above table and beginning on 
the third line of code, are 

Data = {{14.003, 0, 0, O}, 

{1.0078, 0, .940, -.381}, 

{1.0078, .814, -.470, -.381}, 

{1.0078, -.814, -.470, -.381}}; 

The program calculates h = IB = 2.817 X 10-47 kgm2 and Ie = 4.436 x 
10-47 kg m2. Because IA = IB < Ie, the rotating molecule has an oblate 
symmetric-top shape. 

Energy levels for nonlinear polyatomic molecules are calculated with two 
quantum numbers, J and K. Our examples consider symmetric-top mole­
cules whose energy equations are: 

for a prolate symmetric top 

E(J, K) = hcBJ(J + 1) + hc(A - B)K2, (4.27) 

and for an oblate symmetric top 

E(J, K) = hcBJ(J + 1) + hc( C - iJ)K2. (4.28) 
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In these equations, A, B, and C are rotational constants defined by 

- h 
A=--

8n2hc 
- h 
B=--

8n2IBc 

- h 
C=--. 

8n2Iec 

A, B, and C are all given in wavenumber units (cm- I ), and C ~ B ~ A since 
IA ~ IB ~ Ie. The moments of inertia h, IB, and Ie (and the rotational 
constants A, B, and C) depend slightly on the vibrational quantum number 
v, but we will not include that detail. We also ignore the effects of Coriolis 
coupling. 

The program Ro2 plots energy levels for oblate and prolate symmetric­
top molecules. Run the program for both cases and note differences in the 
energy level patterns. How do Eqs. (4.27) and (4.28) account for these 
differences? 

Rotational- Vibrational 

We now elaborate the energy calculations by including the vibrational energy 
to which the rotational energies just calculated are added. Neglecting the 
centrifugal-distortion contribution [the term containing D in Eq. (4.23)], the 
rotational-vibrational energy equation for a diatomic molecule is 

E(J, v) = hcwe(v + 1/2) - hcwexe(v + 1/2)2 + hcBvJ(J + 1), 

in which 

We = _1_ (~)1/2 
2nc \P 

(4.29) 

[Eq. (4.6)], Xe is a small unitless constant and Bv is again given by Eq. (4.24). 
The program Rovil plots energy levels calculated with Eq. (4.29) for two 

vibrational levels. Run the program and notice the energy scale and the 
pattern of rotational levels stacked on vibrational levels. The hierarchical 
arrangements of energy levels is beginning to be apparent: we see rotational 
levels stacked on vibrational levels, and in the next subsection vibrational 
levels stacked on electronic levels. 

Vibrational-Electronic 

Consider two states of electronic motion for a diatomic molecule whose en­
ergies without rotational and vibrational contributions are E~' and E~ for the 
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lower and upper states, or in wavenumber units, t:' = E;' / he and t: = 
E;/he. Including vibrational contributions we have for the lower and upper 
energies, 

E(v", N') = het:' + hew;(v" + 1/2) - hew;x;(v" + 1/2)2 (4.30) 

E(v',N) = het: + hew~(v' + 1/2) - hew~x;(v' + 1/2)2, (4.31) 

where v", N' and v', N are vibrational and electronic quantum numbers for 
the lower and upper states. 

The program Viell plots vibrational-electronic, or vibronie, energy levels 
according to these equations. Run the program and note the pattern of the 
spacings. Notice also that energies plotted now cover the range 0-10 eV, 
compared to the previous plots covering the range 0-200 meV (rotational 
levels) and 0-1 eV (vibrational levels). 

The program Mo r s e also plots vibronic energy levels for diatomic mole­
cules and adds to the physical picture by superimposing the levels on plots of 
the Morse equation (4.3) for the lower and upper electronic states. To avoid 
congestion, only one third of the levels are plotted. The line for each level 
extends between the classical turning points, that is, the points where vibra­
tional motion turns from stretching to compressing, and also where (in clas­
sical theory) the kinetic energy of the motion is zero and the potential energy 
has its maximum value. The Morse equation includes an energy factor De, 
which measures the dissociation energy from the minimum value of the 
potential energy V(x). Mor se uses another dissociation energy Do which 
measures from the energy level of the molecule's zero-point vibrational state. 
The two dissociation energies are related by 

(4.32) 

Rotational- Vibrational-Electronic 

We complete this picture of the molecular hierarchy of energy levels by 
writing energy equations for lower and upper rovibronie states located by the 
rotational, vibrational, and electronic quantum numbers J", v", N' for the 
lower state and J', v', N for the upper state. These equations are composites 
of Eqs. (4.29) to (4.31), 

E(J", v",N') = het; + hew;(v" + 1/2) - hew;x;(v" + 1/2)2 

+ heR: J" (J" + 1) 

E(J', v', N) = het~ + hew~(v' + 1/2) - hew;i;(v' + 1/2)2 

+ heR~J'(J' + 1). 

(4.33) 

(4.34) 
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4.6 The Hartree-Fock Equation 

The Schrodinger equation has two fundamental limitations: it ignores the 
principles of relativity and does not recognize the existence of electron spin. 
The first omission is usually not important in physical chemistry because 
atomic and molecular interaction energies are low enough to make rela­
tivistic corrections negligible. The electron spin concept, on the other hand, 
is profoundly important in a major branch of physical chemistry, the theory 
of molecular structure. Practitioners of quantum chemistry, who focus on 
molecular calculations, demand broader equations which incorporate the 
effects of electron spin. 

The broader theory begins with the orbital approximation. Each of a 
molecule's electrons is assigned to an orbital, and that permits calculation of 
the electron's kinetic energy, attraction potential energy of interaction with 
the molecule's nuclei, and repulsion potential energy of interaction with 
electrons in other orbitals. When two orbitals have spatial regions in com­
mon, the theory corrects the interaction energy to conform with the Pauli 
requirement that electrons in the same spin state cannot occupy the same 
region. The equation that does this calculation was developed by Hartree 
and Fock in the 1920s and 1930s. Its mathematical form is 

(4.35) 

where rPi is a molecular orbital formulated as a linear combination of atomic 
orbitals Ua , 

(4.36) 
a 

E is a molecular orbital energy and fr, called a Fock operator, stands for the 
many differential and algebraic operators that represent molecular kinetic 
and potential energy. The Hartree-Fock equation (4.35) repairs some of the 
limitations inherent in the Schrodinger equation, but it has limitations of its 
own connected with the orbital approximation. The further theory is beyond 
our scope, however. Our quantum chemistry story begins and ends with a 
brief account of matrix versions of the Hartree-F ock equation. 

4.7 Matrix Equations 

For the sake of efficiency in computer calculations, the Hartree-F ock equation 
is usually manipulated into a matrix format. Three matrices are important: 
the Fock matrix F, orbital matrix C, and overlap matrix S. Ifmolecular orbitals 
are constructed from three atomic orbitals UI, U2, and U3, the Fock matrix is 

(4.37) 
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in which the matrix elements are integrals. For example, 

FlI = J ud'ul dr and F\2 = J Ud'U2 dr, 

with integration covering the space of the molecule. The corresponding 
overlap matrix is 

where, for example, 

(

SlI 

S = SI2 

S\3 

SlI = J UIUI dr and S\2 = J UI U2 dr. 

(4.38) 

When an orbital calculation is done with the 3 x 3 Fock matrix (4.37) three 
molecular orbitals are obtained whose coefficients in Eq. (4.36) are expressed 
as columns in the orbital matrix C, 

(

ClI 

C = C21 

C31 

CI2 C\3) 
C22 C23 . 

C32 C33 

The matrix version of the Hartree-Fock equation is simply 

FC=SCE, 

(4.39) 

(4.40) 

in which E is a diagonal matrix with the orbital energy eigenvalues EI, E2, ... 
located on its diagonal. If the Fock matrix is (4.37), E is 

(4.41 ) 

The strategy of a molecular orbital calculation is to begin with a suitable 
Fock matrix F, then to calculate the energy matrix E and simultaneously the 
orbital matrix C. That is much easier said than done, however. Each Fock 
matrix element Fab is complicated because it evaluates electrostatic and spin­
related interactions between an orbital overlap UaUb and all the other over­
laps in the molecule. Multitudes of integrals, some of them very complicated, 
have to be determined to calculate these interactions. To make matters 
worse, the Fock matrix is unknown at the beginning of the calculation 
because it depends on the orbital matrix C, which is also unknown at the 
outset. The calculation is saved by first approximating the Fock matrix F as 
the core matrix H, which neglects the most difficult part of the calculation, 
that concerned with interelectron electrostatic interactions. This permits cal­
culation of an approximate orbital matrix C, which is used to obtain a better 
Fock matrix, and so on through a series of iterative steps until a result with 
the desired accuracy is obtained. 
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One molecular orbital method, introduced in 1930 by Huckel, avoids all 
of these complications by resorting to some drastic simplifications. Huckel's 
method concerns n electrons found in molecules containing conjugated car­
bon chains (e.g., butadiene). It assumes that the overlap matrix S can be 
expressed as the identity matrix I, so Eq. (4.40) becomes 

FC=CE, (4.42) 

and that the Fock matrix has only two kinds of nonzero elements, 0( and p, 
which do not require iterations for their calculation. The quantity 0( is the 
energy an electron would have if it were confined to a carbon 2pn carbon 
atomic orbital, and p assesses the 2pn bond energy developed between two 
adjacent carbon atoms in the chain. The Huckel version of the Fock matrix 
for a three-carbon conjugated chain (the allyl free radical) is 

(

0( p 0) 
F= P 0( P . 

o P 0( 

(4.43) 

The rules are to place O('s on the diagonal of the Fock matrix, P's in positions 
corresponding to adjacent carbons in the chain, and O's elsewhere. 

To solve Eq. (4.42) in the Huckel procedure multiply on the left by C, the 
transpose of C, 

CFC= CCE, 

and since CC = I, obtain 

CFC = E. (4.44) 

This tells us that the orbital matrix diagonalizes the Fock matrix F in the 
transformation CFC and places the energy eigenvalues on the diagonal. The 
calculation begins with the Fock matrix expressed, for example, as in Eq. 
(4.43), and the strategy is to find a matrix that accomplishes the diagonal­
ization. That matrix is the orbital matrix and the diagonal elements in the 
diagonalized matrix are the energy eigenvalues. The program Hueckel 
carries out this procedure on Fock matrices which are further reduced as 
described in Exercise 4-21. 

The full Hartree-Fock procedure requires solution ofEq. (4.40), including 
the overlap matrix S. This more complicated matrix equation does not per­
mit us to proceed by diagonalizing the Fock matrix F. But a few simple 
matrix manipulations put the equation into a form that allows use of stan­
dard diagonalization procedures. 

Introduce the square-root matrix SI/2 (this matrix multiplied by itself 
equals S) and multiply both sides of Eq. (4.40) on the left by S-I/2, the in­
verse of SI/2 , 
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A factor of I, the identity matrix, can be introduced anywhere in this equa­
tion without changing it. Write 

S-I/2FIC = S-I/2ISCE , 
note that I = SI/2S-I/2 that S = SI/2SI/2 and write , , 

S-I/2FS- I/2SI/2C = S-I/2SI/2S-I/2SI/2SI/2CE 

= SI/2CE. 

Now define a transformed orbital matrix C', 

C' = SI/2C, 

a transformed Fock matrix F', 

F' = S-I/2FS- I/2, 

and put the Fock matrix equation in the same form as Eq. (4.42), 

FC' = C'E. 

(4.45) 

(4.46) 

(4.47) 

The further calculation proceeds just as it does in Hiickel theory except that 
the transformed Fock matrix F' is diagonalized and the calculation produces 
the transformed orbital matrix C'. To obtain the desired orbital matrix C 
multiply Eq. (4.45) on the left by S-I/2, 

S-I/2C' = S-I/2SI/2C , 
or 

C = S-I/2C'. (4.48) 

The matrix E containing energy eigenvalues does not require transformation. 
The computer program Hartree implements a full Hartree-Fock calcu­

lation for the diatomic molecule LiH. It reads from the file Chap4. m a large 
collection of preliminary integrals, calculates the SI/2 and S-I/2 matrices, 
and then does its further work in iterative steps. Each step begins with an 
approximate Fock matrix F, then transforms F to F', diagonalizes F', thus 
calculating C' and E, transforms C' to C, recalculates F, goes through 
another step, and continues in this way through a prescribed number of 
iterations. 

4.8 Exercises 

Schrodinger Equations Solved 

4-1 The program Schroedl obtains vibrational eigenfunctions by numeri­
cal integration of the Schrodinger equation for the harmonic oscillator. The 
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same results can also be obtained by solving the equation analytically. The 
first two eigenfunctions obtained this way (for v = 0 and 1) are 

t/lo = (l/nl/4)e- xI2 /2 

t/ll = _(21/2/nl/4)x'e-xI2/2. 

Write a program that plots these functions and compares with results 
obtained by numerical integration with the program Schroedl. 

4-2 Run the program Schroedl for v = 0, 1,2, and 3. Note occurrences 
of nodes, where the wave function crosses the x axis and has zero values. For 
a given value of v how many nodes does the wave function have? 

4-3 Run the program Schroed2, which integrates Eq. (4.12) for the 
Morse anharmonic oscillator, with v = 0, 1, 2, 3, and D~ = 25. Note differ­
ences between wave functions obtained with this equation and those obtained 
with Eq. (4.9) for the harmonic oscillator. 

4-4 Energy eigenvalues for the electron-in-the-well problem are calculated 
with Eqs. (4.20) and (4.21). The parameter V~ in those equations we now 
write V~ = (J.n2 /4, where the unitless parameter (J. is defined (J. = 8me a2 Vo / h2, 
with a and Vo the width and depth of the well. The program Well numeri­
cally calculates roots of Eqs. (4.20) and (4.21) for a given value of (J.. Run the 
program for (J. = 100 and use these results in the next exercise. 

4-5 Run the program Schroed3 to test the list of roots obtained in the last 
exercise concerning whether or not they are energy eigenvalues. Try each 
root in tum until you have found four valid energy eigenvalues. Do not 
bother with the normalization. 

4-6 Use the program Abc and the atomic coordinates given below for 
12C1 H4 to calculate the molecule's principal moments of inertia. What is the 
rotational classification of the molecule's shape? 

M; (gmo1-1) x;fA y;fA z;fA 

12.000 0 0 0 
2 1.0078 0.6291 0.6291 0.6291 
3 1.0078 -0.6291 0.6291 -0.6291 
4 1.0078 0.6291 -0.6291 -0.6291 
5 1.0078 -0.6291 -0.6291 0.6291 

4-7 Use the program Abc and atomic coordinates given below for 
12C1H335CI to calculate the molecule's principal moments of inertia. What is 
the rotational classification of the molecule's shape? 
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Mi (gmol- 1) xi/A Yi/A zi/A 

12.000 -0.1792 -0.7096 0 
2 34.969 -0.1792 1.0547 0 
3 1.0078 0.8493 -1.0825 0 
4 1.0078 -0.6935 -1.0825 0.8908 
5 1.0078 -0.6935 -1.0825 -0.8908 

4-8 Use the program Abc and the atomic coordinates given below for 
12C2i H2 to calculate the molecule's principal moments of inertia. What is the 
rotational classification of the molecule's shape? 

Mi (gmol- 1) xi/A zi/A zi/A 

12.000 0 0 0 
2 12.000 1.208 0 0 
3 1.0078 -1.058 0 0 
4 1.0078 2.266 0 0 

4-9 Use the program Rol to calculate and plot rotational energy levels 
for Ch(g) in its ground vibrational and electronic state. Rotational and vi­
brational constants for Ch(g) are Be = 0.2439 em- i and lie = 0.00149 cm-i. 

4-10 Use the program Ro 1 to calculate and plot rotational energy levels for 
N2(g) in its ground vibrational and electronic state. Rotational and vibra­
tional constants for N2(g) are Be = 1.99824 cm-i and lie = 0.017318 cm-i. 

4-11 Use the program Rol to calculate and plot rotational energy levels for 
12 (g) in its ground vibrational and electronic state. Rotational and vibra­
tional constants for h(g) are Be = 0.03737 cm- i and lie = 0.000114 cm- i. 

4-12 Use the program Ro2 to calculate and plot rotational energy levels for 
NF3(g) in its ground vibrational and electronic state. Principal moments 
of inertia for NF3(g) are IA = IB = 7.859 X 10-46 kgm2 and Ie = 1.437 x 
10-45 kgm2. 

4-13 Use the program Ro2 to calculate and plot rotational energy levels for 
CCIF3(g) in its ground vibrational and electronic state. Principal moments 
of inertia for CCIF3(g) are lA = 1.467 X 10-45 kgm2, IB = Ie = 2.520 x 
10-45 kgm2. 

4-14 Use the program Rovil to calculate and plot rotational-vibrational 
energy levels for 35Ch(g) in its ground electronic state and in vibrational 
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states corresponding to v = 0 and v = 1. Rotational and vibrational con­
stants are 

We = 559.72 cm- I 

WeXe = 2.675 cm- I 

lie = 0.00149 cm- I 

- -I Be = 0.2439 cm . 

4-15 Use the program Rovil to calculate and plot rotational-vibrational 
energy levels for 14N2(g) in its ground electronic state and in vibrational 
states corresponding to v = 0 and v = 1. Rotational and vibrational con­
stants are 

We = 2358.57 cm- I 

wexe = 14.324 cm- I 

lie = 0.017318 cm- I 

- -I Be = 1.99824 cm . 

4-16 Use the program Rovil to calculate and plot rotational-vibrational 
energy levels for 127h(g) in its ground electronic state and vibrational states 
corresponding to v = 0 and v = 1. Rotational and vibrational constants are 

We = 214.50 cm- I 

wexe = 0.615 em-I 

lie = 0.000114 cm- I 

- -I Be = 0.03737 cm . 

4-17 Use the program Viell to calculate and plot vibrational-electronic 
(vibronic) energy levels for two 12CI60(g) electronic states, Xl 1:+ and Al n. 
Vibrational and electronic constants are: 

W; = 2169.8136 em-I 

w;x; = 13.28831 em-I 

T"=O e 

W~ = 1518.2 cm- I 

w~x~ = 19.40 cm- I 

-, -I Te = 65075.8 cm . 

4-18 Use the program Viell to calculate and plot vibrational-electronic 
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(vibronic) energy levels for two 14N2(g) electronic states, A 3 ~~ and B3 TIg. 

Vibrational and electronic constants are 

w; = 1460.64 cm- I 

w;x; = 13.872 cm- I 

t~' = 50203.6 cm- I 

w~ = 1733.39 em-I 

w~x~ = 14.122 cm- I 

-, -I Te = 59619.4 cm . 

4-19 Use the program Mor se to calculate and plot Morse curves and 
vibrational energy levels for two 12CI60(g) electronic states, Xl ~+ and 
A I TI. Vibrational and electronic constants for these states are given in 
Exercise 4-17. Note also that D~ = 9.05 eV and D~ = 4.34 eV, and that 
R~ = 0.1128323 nm and R~ = 0.12353 nm. 

4-20 Use the program Morse to calculate and plot Morse curves and 
vibrational energy levels for two 14N2(g) electronic states, A3 ~~ and B3 TIg• 

Vibrational and electronic constants for these states are given in Exercise 
4-18. Note also that D~ = 3.6 eV and D~ = 4.0 eV, and that R~ = 0.12866 
nm and R~ = 0.12126 nm. 

Matrix Equations 
4-21 The Huckel calculation of molecular orbitals can be expressed FC = 
CE [see Eq. (4.42)]. For the Huckel calculation of n molecular orbitals in the 
allyl radical the Fock matrix F is 

(
IX P 0) 

F= P IX P . 
o P IX 

This expression for F is unsatisfactory, however, because the Huckel proce­
due provides no evaluation of IX and p. This problem is avoided by revising 
the original matrix equation so it has the form 

F'C = Cx, 

in which 
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for the allyl calculation and 

(

XI 

X= ~ 

o 
X2 

o 
where the x's are eigenvalues of the energy-related variable 

X = (rx - E)/p. 
The general recipe for formulating the Fock matrix in this scheme is to re­
place the rx's with O's and the P's with -1 's. When this matrix is diagonalized 
the diagonal elements are eigenvalues of X and C is again the orbital matrix. 
The program Hueckel does the Huckel (or Hueckel) calculation this way. 
Rows of the reduced matrix F' are entered in Hueckel, the program diag­
onalizes F', and prints eigenvalues of X and corresponding columns of the 
orbital matrix C (i.e., the orbital coefficients). Use Hueckel to calculate the 
allyl 1t orbitals. 

4-22 Use the Huecke 1 program to calculate 1t molecular orbitals for 
butadiene, a four-carbon conjugated straight chain hydrocarbon. 

4-23 Use the Hartree program to make Hartree-Fock calculations for 
the molecule LiH containing 2, 4 and 6 electrons (i.e., for LiH2+, LiH and 
LiH2-) assuming (unrealistically) that the size of the molecules does not 
change when electrons are added to or subtracted from the neutral mole­
cule LiH. Note the calculated total energy in each case and account for the 
differences. 



5 
Spectroscopy 

The proof of quantum theory lies mainly in the data of spectroscopy. In­
dividually the peaks of a molecule's spectrum represent emission or absorp­
tion transitions between energy levels, and collectively they build a richly 
detailed picture of the manifold of energy levels accessible to the molecule 
while it is engaged in one or more of its modes of motion. The effect of 
a photon absorbed by a molecule from a spectrometer beam depends on 
the energy of the photon. Microwave photons excite rotational transitions, 
infrared photons rotational and vibrational transitions, and visible or ultra­
violet photons rotational, vibrational, and electronic transitions. Photons 
from a radio frequency source excite spin transitions in an applied mag­
netic field. Rotational spectra are illustrated in Sec. 5.1 (the program 
Ro3), rotational-vibrational spectra in Sec. 5.2 (programs Peaks, Rovi2, 
Symtopl, and Symtop2), vibrational-electronic spectra in Sec. 5.3 (the 
program Vie12), and rotational-vibrational-electronic spectra in Sec. 5.4 
(the program Roviel). Spin resonance spectra are illustrated in Sec. 5.5 
(programs 2dnmr, Nmr, and Esr). The chapter closes with an account of 
Fourier-transform techniques for analyzing spectrometer data (programs 
Irft and Nmrft). 

5.1 Rotational Spectroscopy 

Rotational energy levels for diatomic molecules are calculated with Eq. 
(4.23), which can be simplified without losing much accuracy by omitting the 
centrifugal distortion term, 

E(J) = hcBvJ(J + 1), (5.1 ) 

in which J is the rotational quantum number and the rotational constant Bv 
is calculated with Eq. (4.24). A rotational transition JI +- Jo between a lower 
rotational state located by Jo and an upper state by J 1 is induced when 
the molecule absorbs a photon of energy hv = E(JI) - E(Jo), frequency 
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v = [E(J!) - E(Jo)]/h, and wavenumber v = [E(J!) - E(Jo)l/hc. Rotational 
spectra for diatomic molecules are restricted by the selection rule 

AJ = J) - Jo = + 1. 

The program Ro 3 calculates and plots rotational spectra for diatomic mole­
cules. It also supplies a direct interpretation of the spectrum by plotting 
horizontal lines for the rotational energy levels involved and vertical lines for 
the transitions dictated by the above selection rule. 

5.2 Rotational-Vibrational Spectroscopy 

For Diatomic Molecules 

Rotational-vibrational energy levels for diatomic molecules are calculated 
with good accuracy by Eq. (4.29). A rotational-vibrational transition 
J), 1 t- Jo, 0 between the ground and first excited vibrational state (specified 
by v = 0 and 1) is induced by a photon of wavenumber 

_ E(J),I)-E(Jo,O) 
v = hc . (5.2) 

Rotational-vibrational transitions for diatomic molecules are restricted by 
the selection rules 

AJ = J) - Jo = -lor + 1. 

These two conditions account for the two branches, called P and R, found in 
rotational-vibrational spectra of diatomic molecules. The P branch, on the 
low-wavenumber side of the center of the spectrum, is defined by AJ = -1, 
and the R branch, on the high-wavenumber side, by AJ = + 1. If AJ = 0 
were allowed, a third branch would be seen near the center of the spectrum 
and would be called a Q branch. The center, calculated with Jo = J) = 0 in 
Eqs. (4.29) and (5.2), is located at the wavenumber 

(5.3) 

The program Rov i2 calculates and plots rotational-vibrational spectra 
for diatomic molecules, and it interprets the spectra by plotting horizontal 
lines for the rotational-vibrational levels and vertical lines for the transitions. 

For Polyatomic Molecules 

Rotational-vibrational spectra for polyatomic molecules are considerably 
more complicated than those for diatomic molecules. One source of com­
plexity is the requirement of more than one quantum number in the calcu­
lation of rotational energy levels for nonlinear molecules. We saw that in 
Sec. 4.5 and introduced Eqs. (4.27) and (4.28), which calculate rotational 
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energy levels for prolate and oblate symmetric-top molecules. Another 
complication is that polyatomic molecules have two kinds of vibrational 
modes, characterized as parallel and perpendicular, in which the molecule's 
dipole moment changes are parallel or perpendicular to the main rotation 
axis. 

For a symmetric-top molecule fundamental absorption transitions are 
represented by J" K" 1 f- Jo, Ko, 0, with v = 0 in the lower state and v = 1 
in the upper. Corresponding wavenumbers for peaks in the spectrum are 
calculated with 

_ E(J"K" 1) -E(Jo,Ko,O) 
v = hc . (5.4) 

We have seen that the rotational-vibrational spectrum of a diatomic mole­
cule consists of bands of peaks separated into P and R branches interpreted 
by assigning /:iJ = -1 to the P branch and /:iJ = + 1 to the R branch. Sym­
metric-top molecules display another level of complexity. Each band is a 
composite of a series of sub-bands which resemble entire bands in the spectra 
of diatomic molecules, with the difference that, in addition to P and R 
branches, most sub-bands have intense Q branches. 

Sub-bands are interpreted by labeling them with a value of Ko and P, Q, 
and R for /:iK = -1, 0, and + 1. Branches of the sub-bands are labeled as 
before: P, Q, and R for /:iJ = -1, 0, and + 1. All of this is condensed into a 
convenient notation: PQs denotes the Q branch (/:iJ = 0) of the P sub-band 
(/:iK = -1) for which Ko = 5, and Q Po the P branch (/:iJ = -1) of the Q sub­
band (/:iK = 0) for which Ko = O. 

Selection rules for the two rotational quantum numbers J and K are: 
for parallel vibrational modes, 

/:iK = 0 and /:iJ=±1 if Ko = 0 

/:iK = 0 and /:iJ = 0, ± 1 if Ko > 0, 

and for perpendicular vibrational modes, 

/:iK = +1 and /:iJ = 0, ± 1 ifKo=O 

/:iK = ± 1 and /:iJ = 0, ± 1 if Ko > O. 

The program Symtop 1 calculates and plots a complete parallel band (i.e., 
generated by a parallel vibrational mode) for a prolate symmetric-top mole­
cule. Energy levels are calculated with Eq. (4.27) and spectral wavenumbers 
with Eq. (5.4). The two rotational constants A and .iJ are assumed to have 
slightly different values in the lower and upper vibrational states. Run the 
program and note the overall pattern of the spectrum. Then follow instruc­
tions in the program's comments and plot a few of the sub-bands separately, 
each labeled with /:iK = 0 and a value of Ko. Note also the P, Q, and R 
branch structure of the individual sub-bands. 
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Another program, Symtop2, calculates and plots a perpendicular band 
(generated by a perpendicular vibrational mode) for a prolate symmetric­
top molecule. Energy levels and wavenumbers are again calculated with 
Eqs. (4.27) and (5.4), but differences in the selection rules lead to a still 
more complicated spectrum. Run the program for the entire spectrum 
and then for individual sub-bands defined by AK = -lor + 1 and values 
of Ko. 

Data Analysis 

Once you have observed a molecular spectrum, the next step is to extract 
from it information concerning the molecule's physical properties, such as its 
bond lengths and force constants. We include an example in which data 
from the rotational-vibrational spectrum of HCl(g) are analyzed. These 
wavenumbers fit Eqs. (4.29) and (5.2) reduced to 

- - - - 2 V = Voo + (BI + Bo)m + (BI - Bo)m . (5.5) 

In this equation Bo and BI are given by Eq. (4.24), Voo locates the center of 
the spectrum and m is a running index which labels peaks of the P branch 
with m = -1, -2, ... , peaks of the R branch with m = 1,2, ... , and the 
value m = 0 is not allowed. The peaks next to the gap at the center of the 
spectrum are assigned m = -1 in the P branch and m = 1 in the R branch. 
Other values of m are assigned to the peaks consecutively. The next example 
shows how this is done. 

Example 5-1. The program Peaks reads a file of observed wavenumbers 
for the rotational-vibrational spectrum of HCl(g), plots the data and cal­
culates wavenumbers for all of the peak maxima. Run the program and 
notice first that the plot is a composite of two spectra, one for I H35Cl 
and another for I H37 Cl. The lighter chlorine isotope 35Cl dominates, so 
the peaks of the I H35Cl spectrum have higher intensities than those for 
IH37Cl, and they occur at slightly higher wavenumbers. Run Peaks, 
locate the I H 35Cl peaks, and assign each one a value of the index m in 
Eq. (5.5). 

Answer. The program Peaks prepares a list of wavenumbers for peak max­
ima in the spectra for both I H35Cl and I H 37 Cl. Distinguish the I H35Cl peaks 
by their higher intensities and wavenumbers compared to the corresponding 
I H37 Cl peaks. The plot of the spectrum clearly shows the gap at the center of 
the spectrum. Assign m = -1 to 2865.0 cm- I in the P branch to the left of 
the gap and m = 1 to 2906.2 cm- I in the R branch to the right. Make other 
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assignments consecutively working out from the center. Assignments for the 
entire spectrum are: 

m vp/cm-1 m VR/cm- 1 

-1 2865.0 2906.2 
-2 2843.5 2 2925.7 
-3 2821.5 3 2944.8 
-4 2798.9 4 2963.1 
-5 2775.7 5 2981.0 
-6 2751.8 6 2998.1 
-7 2727.7 7 3014.5 
-8 2702.9 8 3030.2 
-9 2677.6 9 3045.1 

-10 2651.8 10 3059.3 

Example 5-2. Use the program Linr eg to fit the I H35Cl data obtained in 
the last example to Eq. (5.5), and calculate values for the rotational con­
stants Bo and BI. Then calculate values of <ie, Be and Re for the molecule. 

Answer. Enter data obtained from the table in Example 5-1 in Linreg be­
ginning on the third line of code, 

Data = {{-I, 2865.0}, 

{-2, 2843.5}, 

{-3, 2821.5}, 

etc. 
The program calculates 

so 

Voo = 2866 em-I 

BI + Bo = 20.45 cm-I 

BI - Bo = -0.3027 em-I, 

BI = 20.45 - 0.3027 = 10.07 cm-I 
2 

- -I Bo = 20.45 - 10.07 = 10.38 cm . 

From Eq. (4.24) conclude that 

- - I <ie = Bo - BI = 0.303 cm-

Be = 2Bo + <ie = (2)(10.38 cm-I) + (0.303 cm-I) = 10.53 cm-I. 
2 2 
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Calculate the reduced mass of I H35Cl, 

(1.0078 gmol- I)(34.969 gmol- i ) 

f1. = (1.0078 gmol-I + 34.969 gmol-I)(6.0221 x 1023 mol-I) 

= 1.6266 x 10-24 g 

= 1.6266 X 10-27 kg. 

Calculate Ie from Eq. (4.25), 

(6.6261 X 10-34 Js) 
(8n2)(10.53 cm-I )(2.9979 x 108 m S-I )(100 cm m- i ) 

= 2.658 X 10-47 kgm2. 

Calculate Re from Eq. (4.26), 

(
2.658 X 10-47 kgm2) 1/2 

Re = v' lei f1. = 1.6266 X 10-27 kg 

= 1.278 X 10-10 m 

= 0.1278 run. 

5.3 Vibrational-Electronic Spectroscopy 

Here we neglect the rotational fine structure and calculate vibrational­
electronic (vibronic) energy levels for diatomic molecules with Eqs. (4.30) 
and (4.31). Wavenumbers for transitions between an upper vibronic state 
defined by v', N and a lower state defined by v", N' are calculated with 

_ E(v',N) - E(v",N') 
V= he . (5.6) 

No selection rules restrict these transitions, and all values of Av = v' - v" are 
allowed. The program Vie 12 calculates and plots vibrational-electronic 
spectra for diatomic molecules. It interprets a spectrum by sorting the peaks 
into sequences for Av = -3, -2, -1,0,1,2,3. The program also calculates 
and prints a Delandres table whose entries T(v', v") are wavenumbers for the 
emission transitions v', N ---+ v", N'. 
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5.4 Rotational-Vibrational-Electronic Spectroscopy 

Each peak plotted by the program Vie12 (Sec. 5.3) is, in fact, a band of 
peaks with a rotational fine structure. The program Roviel expands Vie12 
to calculate and plot this fine structure. Energy equations involved (for di­
atomic molecules) are (4.33) and (4.34), and the wavenumber for a transition 
J', v', N +- J", v", N' is calculated with 

E(J' v' N) - E(J" v" N') ... " , , 
V= hc . 

The program isolates the rotational contributions by first calculating a 
vibrational term, 

to = t: + w~(v' + 1/2) - w~x~(v' + 1/2)2 

- t:' - w;(v" + 1/2) + w;x;(v" + 1/2)2 (5.7) 

and adding to this rotational terms permitted by the following selection 
rules: 

If l1A = 0 and N' = N = 0, l1J = ± 1 and the band has P and R 
branches but no Q branch. 

If M = ± 1, M = 0, ± 1 and the band has a strong Q branch, as 
well as P and R branches. 

If M = 0 and N' = N '# 0, M = 0, ± 1 and the band has a weak 
Q branch, as well as P and R branches. 

Rov ie 1 plots lines for the 4-11 band (i.e., v' = 4, v" = 11) of the CO(g) 
Al II-Xl ~+ spectrum. Run the program and sort out the details by plot­
ting the P, Q, and R branches separately. 

5.5 Magnetic Resonance Spectroscopy 

Spin states of electrons and nuclei have slightly different energies in an 
applied magnetic field. In the magnetic resonance method of spectroscopy 
absorption transitions between electronic or nuclear spin states are induced 
by radio-frequency photons. 

NMR 
Nuclear magnetic resonance (NMR) spectroscopy represents magnetically 
different nuclei with multiplets. Each multiplet can be interpreted to measure 
the number of equivalent nuclei involved, the number of coupling interactions 
those nuclei have with other nuclei, and the energies of the interactions. 
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The program Nmr provides a first-order simulation of the NMR multiplet 
pattern for a given system of spin-l 12 nuclei. The next example shows how to 
use the program and interpret its message. 

Example 5-3. Use the program Nmr to simulate the NMR multiplet pattern 
for a I H spin system of the AMX kind. Coupling constants are lAM = 
50 Hz, lAx = 20 Hz, and JMx = 100 Hz. Chemical-shift frequencies for the 
three nuclei are VA = 200 Hz, VM = 500 Hz, and vx = 800 Hz. 

Answer. Enter the A, M, and X frequencies, in the list fO 

fO = {200., 500., BOO.}; 

Enter the number of equivalent nuclei for each multiplet in the list ne, 

ne = {1, 1, 1}; 

Enter the number of coupling interactions for each nucleus in the list ni, 

ni = {2, 2, 2}; 

Enter the coupling constants for each multiplet in the list J in descending 
order, 

J = {{ 50., 20.,}, {100., 50.}, {100., 20.}}; 

Finally, in the list yO enter values of the parameters for locating vertically 
the branching diagrams that interpret the multiplets, 

yO = {3., 3., 3.}; 

Run the program and note the double-doublet pattern for each multiplet. 
The branching diagrams locate the centers of the multiplets and display 
splittings for each coupling interaction. 

ESR 
Electron magnetic resonance or electron spin resonance (ESR) spectroscopy 
provides the same kind of information as NMR for systems involving un­
paired electron spins. The program E s r simulates multiplet patterns for a 
single electron coupling with spin-1/2 nuclei. The program is similar to Nmr 
in the way it runs and is interpreted. 

2DNMR 
Complicated NMR spectra can become almost indeciperable when the 
multiplets are extensively overlapped or superimposed. A method called two-
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dimensional N M R expands the spectrum into two dimensions and greatly 
simplifies the task of deducing coupling interactions. Each nucleus has its 
own spectrum displayed separately in a row (or column) of the second 
dimension. The program 2 dnmr illustrates by simulating two-dimensional 
'H spectra. The next example introduces the program. 

Example 5-4. In a one-dimensional NMR spectrum peaks representing five 
magnetically different 'H nuclei are located at the delta values 2.52, 3.86, 
4.58, 5.02, and 6.15 ppm. Coupling interactions among these 'H nuclei are 
represented by the following triangular table: 

2 3 4 5 

5.1 2.5 0 0 2.2 
2 4.2 1.9 2.8 0 
3 6.5 2.0 0 
4 5.4 0 
5 5.2 

The first number in the first row is the intensity of 'H nucleus 1 (with the 
lowest chemical shift) in the ID spectrum, the second the intensity of the 
coupling between 'H nucleus 1 and 'H nucleus 2 (with the second lowest 
chemical shift), the third the intensity of the coupling between' H nucleus 1 
and' H nucleus 3, and so forth. The second row contains data for' H nucleus 
2 in the ID spectrum and for coupling between 'H nucleus 2 and 'H nuclei 
3, 4, .... The remaining rows contain data of the same kind for' H nuclei 3, 
4, .... Enter these data in the program 2dnmr, run the program and corre-
late the display with the data. 

Answer. Enter delta values in ascending order in the list delta, 

delta = {2.S2, 3.86, 4.S8, S.02, 6.1S}; 

And then coupling data from the above table in the list data, 

data = {{S.l, 2.S, 0, 0, 2.2}, 

{4.2, 1. 9, 2.8, O}, 

{6.S, 2.0, O}, 

{S.4, O}, 

{S.2}}; 

Run the program and note the 5 peaks as delta values plotted on the diago­
nal of the two-dimensional display. Also note the cross peaks, each one 
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indicating a coupling interaction. For example, the red circle located by the 
coordinates 2.52, 3.86 represents the coupling interaction between I H nuclei 
I and 2. 

5.6 Fourier-Transfonn Methods 

The classical approach to spectrometer design is to spread a radiation beam 
into spectral elements each covering a narrow wavenumber range. Good 
spectrometers can achieve high resolution, but the dispersion has disadvan­
tages. Each spectral element carries a very small amount of energy, thus 
limiting the sensitivity of the instrument, and the rate of scanning of a full 
spectrum is inconveniently slow. The Fourier-transform method introduces a 
radical departure: it permits the detector to scan an entire spectrum without 
dispersion. It is capable of high resolution and can gather and process the 
information needed to generate a spectrum in seconds compared to minutes 
for dispersion instruments. 

The program Irft demonstrates the Fourier-transform technique applied 
to infrared spectroscopy. The program simulates the interferogram recorded 
by an infrared spectrometer and then calculates and plots the Fourier trans­
form of the interferogram. The transform displays the spectral peaks. 

At a mirror displacement of d (in cm) the interferogram is simulated with 
the function 

I(d) = Laicos(2nvid)exp(-2nbddl), 
i 

(5.8) 

in which Vi is the wavenumber (in cm- I ) for the ith spectral peak, bi is the 
width of the peak (in cm- I ), and ai is an amplitude factor. Values of ai, 
bi, and Vi for the spectral peaks are entered in Irft in the lists pa, ph, and 
pw. The program samples the interferogram function (5.8) k times between 
the mirror displacements -dMax and dMax, uses these data to calculate 
the Fourier transform and thus display the spectral peaks. The ith peak is 
centered at the wavenumber Vi, has the width bi, and the amplitude 
ai/(2nbi). As the program demonstrates, the Fourier-transform analysis 
cannot, without some confusion, locate peaks whose wave-numbers are 
larger than k/ (2 dMax) . An aliasing error intrudes, which is discussed fur­
ther in Exercise 5-21. 

The program Nmrft simulates the application of Fourier-transform 
methods to NMR spectroscopy. In the NMR case an FID signal is recorded 
by the instrument and its Fourier transform displays the spectral peaks. 
Nmrft is formally similar to Irft. At a time t (in s) the FID signal is 
simulated by the function 

I(t) = L ai cos(2nvit) exp( -2nbit) , (5.9) 
i 
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in which Vi is the frequency of the ith spectral peak (in S-I), bi is the width of 
the peak (in S-I), and ai is an amplitude factor. Values of ai, bi, and Vi for 
the spectral peaks are entered in Nmrft in the lists pa, pb, and pf. The 
program samples the FlD function (5.9) k times between the times 0 and 
tMax and uses these data to calculate the Fourier transform and thus dis­
play the spectral peaks. The ith peak is centered at the frequency Vi, has the 
width bi and amplitude ai/(4nbi ). Here confusion results if the Fourier­
transform analysis attempts to locate peaks whose frequencies are larger 
than kj (2 tMax) . 

5.7 Exercises 

Rotational Spectroscopy 
5-1 Use the program Ro3 to calculate and plot the rotational spectrum for 
I H 35CI(g) in its ground vibrational and electronic state at 300 K. Rotational 
and vibrational constants for I H 35CI are 

Be = 10.59342 cm- I 

tie = 0.30718 em-I. 

These data and others quoted for diatomic molecules come from Huber and 
Herzberg, and Herzberg, Spectra of Diatomic Molecules (1950). 

5-2 Use the program Ro3 to calculate and plot the rotational spectrum for 
9BeI60(g) in its ground vibrational and electronic state at 300 K. Rotational 
and vibrational constants for 9Bel60 are 

Be = 1.6510 cm- I 

tie = 0.0190 em-I. 

5-3 Use the program Ro3 to calculate and plot the rotational spectrum for 
63Cu2H(g) in its ground vibrational and electronic state at 300 K. Rotational 
and vibrational constants for 63Cu2H are 

Be = 4.0375 cm- I 

tie = 0.09140 cm- I . 

Rotational- Vibrational Spectroscopy 

5-4 Use the program Rov i2 to calculate and plot the rotational-vibrational 
spectrum for I H 35CI(g) in its ground electronic state at 300 K. Use data 
given in Exercise 5-1 and 

We = 2990.946 cm- I 

wexe = 52.819 crr..- I . 
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5-5 Use the program Rov i2 to calculate and plot the rotational-vibrational 
spectrum for 9BeI60(g) in its ground electronic state at 300 K. Use data 
given in Exercise 5-2 and 

We = 1487.323 em-I 

wexe = 11.8297 em-I. 

5-6 Use the program Rovi2 to calculate and plot the rotational-vibrational 
spectrum for 63Cu2H(g) in its ground electronic state at 300 K. Use data 
given in Exercise 5-3 and 

We = 1384.38 em-I 

WeXe = 19.14 em-I. 

5-7 Use the program Symtopl to plot a parallel band in the rotational­
vibrational spectrum for 14NIH3(g) whose lower and upper rotational con­
stants are (ignoring the effects of inversion): 

Eo = 9.4443 em-I 

Co = 6.196 em-I 

CI = 6.178 em-I. 

The center of the band is located at 3336 em-I. These data and those quoted 
in the next exercise are obtained from Herzberg, Infrared and Raman Spectra 
(1945). 

5-8 Use the program Symtop2 to plot a perpendicular band in the 
rotational-vibrational spectrum for 14NIH3(g) whose lower and upper rota­
tional constants are (ignoring the effects of inversion): 

Eo = 9.4443 em-I 

Co = 6.196 em-I 

EI = 9.674 em-I 

CI = 6.130 em-I. 

The center of the band is located at 1626 em-I. 

Data Analysis 
5-9 In Example 5-1 we used the program Peaks to define the IH35Cl part 
of the HCl rotational-vibrational spectrum. Then in Example 5-2 we used 
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the program Linreg to fit the data to the empirical Eq. (5.5), to calculate 
Eo and EI , and finally to calculate Re for the molecule. Do this same analysis 
for the IH37CI data obtained by Peaks. How does the Re value for IH37CI 
compare with that for I H35CI? 

5-10 In Example 5-2 we calculated one important parameter for HCI, its 
interatomic distance Re. We go further now and calculate the force con­
stant k for the molecule. As preparation for that calculation derive the 
equation 

Voo(V) = vWe - wexev(v + 1), (5.10) 

which locates centers of the bands for the v+-O transitions. 

5-11 Data are quoted below for centers of the fundamental and overtone 
bands (i.e., for the transitions v+-O with v = 1,2, ... ) observed for I H35CI(g). 
Use the program Linreg to fit these data to Eq. (5.10) and calculate a value 
for We. Then calculate the force constant k. 

v voo(v +- O)/cm- I 

2885.9 
2 5668.0 
3 8347.0 
4 10923.1 
5 13396.5 

Vibrational-Electronic Spectroscopy 
5-12 Use the program Vie12 and the data quoted in Exercise 4-18 to plot 
the corresponding vibrational-electronic spectrum for the 14N2(g) electronic 
states A 3 L:~ and B3 TIg. 
5-13 Use the program Vie12 and the data quoted below for the 14N2(g) 
electronic states C3 TIu and B3 TIg to plot the corresponding vibrational­
electronic spectrum. 

W~ = 1733.39 cm- I 

w~x~ = 14.122 em-I 

t:' = 59619.4 cm- I 

w~ = 2047.18 cm- I 

w~x~ = 28.445 cm- I 

-, -I 
Te = 89136.88 em . 
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Rotational- Vibrational-Electronic Spectroscopy 

5-14 Use the program Roviel with data quoted below for the 9BeI60(g) 
electronic states BI 2:+ and Xl 2:+ to plot rotational lines for the 0-0 band 
at 300 K. 

w; = 1487.323 cm- I 

w;x; = 11.8297 cm- I 

a; = 0.0190 cm- I 

iJ; = 1.6510 cm- I 

t"=O e 

w~ = 1370.817 cm- I 

w~x~ = 7.7455 cm- I 

a~ = 0.0154 cm- I 

iJ~ = 1.5758 cm- I 

-, -I Te = 21253.94 cm . 

5-15 Use the program Roviel with data quoted below for the 63Cu2H(g) 
electronic states AIl:+ and Xll:+ to plot rotational lines for the 0-0 band at 
1000 K. 

w; = 1384.38 cm- I 

w;x; = 19.14 cm- I 

a" = 0.0914 cm- I 
e 

iJ; = 4.0375 cm- I 

til = 0 e 

w~ = 1213.16 em-I 

w~x~ = 20.65 cm- I 

a~ = 0.0898 cm- I 

iJ~ = 3.5199 cm- I 

t' = 23412 em-I. e 

Magnetic Resonance Spectroscopy 

5-16 Simulate NMR multiplets for a I H spin system of the A3X kind using 
the program Nmr. The coupling constant is hx = 50 Hz and chemical-shift 
frequencies for the two nuclei are VA = 200 Hz and Vx = 800 Hz. 
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5-17 Simulate NMR multiplets for a I H spin system of the A2X2 kind us­
ing the Nmr program. The coupling constant is hx = 5 Hz. Chemical-shift 
frequencies for the two nuclei are VA = 200 Hz and Vx = 800 Hz. 

5-18 Simulate the ESR spectrum for the CH20H5 - radical using the 
program Esr. Coupling constants between the unpaired electron and the 
methylene I H and hydroxyl I Hare 17.46 and 1.15 Gauss. Use the derivative 
plotting option and assume an arbitrary value of zero for the frequency at 
the center of the multiplet. 

5-19 Simulate the ESR spectrum for the ethyl radical C2H5 - using the pro­
gram E sr. Coupling constants between the unpaired electron and the methyl 
I H and methylene I Hare 26.87 and 22.38 Gauss. The center of the multiplet 
is located at 3294 Gauss. Interpret the branching diagram. Notice that some 
of the branches overlap. 

5-20 A 2D NMR spectrum for I H nuclei in N-methyl-benzocarbostyril is 
simulated in the file Ex5-20. Run the program and interpret the spectrum. 
Approximate chemical shifts for the nuclei and their positions in the mole­
cule are 

Position o/ppm 

5 8.08 
6 7.62 
7 7.48 
8 8.45 

11 8.08 
12 7.21 
13 7.42 
14 7.25 

Fourier-Transform Methods 

5-21 Fourier-transform calculations are limited by an error called aliasing, 
which causes confusion in applications of the program Irft if wave numbers 
included in the interferogram exceed k/ ( 2 dMax) , where k is the number of 
points sampled in the Fourier-transform calculation and dMax is the max­
imum mirror displacement. For example, if k = 500 and dMax = 0.05 then 
wavenumbers contributing to the interferogram should not exceed 500/0.1 = 
5000 cm -I. Note what happens if this rule is violated by running I r f t with 
peaks at 1000, 2000, and 6000 em-I as input. How can this problem be 
remedied? 

5-22 The last exercise illustrated the aliasing error the Fourier-transform 
calculation can make if an interferogram is not sampled with enough points. 
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Another kind of sampling error results when the interferogram is truncated 
on the sides. When this error is serious, the Fourier-transform calculation 
produces peaks that are distorted in width and height. Demonstrate by run­
ning Irft for a single peak whose width is pb = 5 em-I and is centered at 
1000 em-I. Use pa = 20 for the interferogram amplitude and set the number 
of sampling points at k = 500. In this case the peak height produced by the 
Fourier-transform calculation should be 20/(5)(2n) = 0.637. Instead, the 
program calculates 0.504. What evidently is the remedy for this problem? 



6 
Solids, Liquids, and Surfaces 

So far in this part of the book, we have pretended that molecules are small 
in size (containing no more than a few atoms) and in the aggregate are found 
only in gaseous phases. It is time now to recognize several important further 
facts of molecular life-that molecules are also found in solid, liquid, and 
surface phases, and that they can be large and very large, perhaps containing 
thousands of atoms. In this chapter we see molecules in solids, in liquids, and on 
surfaces. The next chapter discusses large-sized molecules (macromolecules). 

X-ray diffraction methods for studying the crystalline solid state are dem­
onstrated in Sec. 6.1 (programs Pattersn, Powder, Xrayl, Xray2, 
Xray3 and Xray4). A similar diffraction method utilizing electron beams is 
the topic in Sec. 6.2 (the program Elecdiff). In Sec. 6.3 electrical proper­
ties of solids are the subject and a program (Fermi) is introduced that cal­
culates concentrations of current carriers in semiconductors. A collection of 
QuickBASIC programs (MCl.BAS, MC2.BAS, MDl.BAS, MD2.BAS, and 
MD3.BAS), introduced in Secs. 6.4 and 6.5, shows how molecular dynamics 
and Monte Carlo calculational methods are applied to the determination of 
liquid structures. Finally, surface structures are emphasized, electrical as­
pects in Sec. 6.6 (the programs Gouyl, Gouy2, and Gouy3) and surface 
crystallography in Sec. 6.7 (the program Leed). 

6.1 X-Ray Crystallography 

X rays are reflected by lattice planes in a crystalline solid when they bounce 
off the planes with the same angle of reflection as incidence. The effect is 
observable if all the reflections from a set of planes are in phase so they can 
reinforce each other. That condition is met if all the reflected rays travel 
distances that differ by an integer number of wavelengths A. The Bragg 
equation, 

2d sin B = A, (6.1 ) 

with d the perpendicular distance between the reflecting planes, and B the 
angle of reflection, assures the conditions of reinforcement. 

107 
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A crystal lattice is characterized by a unit cell, which generates the entire 
lattice when it is translated in three dimensions. Reflecting planes in the 
lattice are designated by the Miller indices h, k, and 1, and if the unit cell has 
rectangular axes, and its dimensions are a, b, and c, the interplanar distances 
d are determined by 

or 

(6.2) 

in which Q = l/d2, A = l/a2, B = 1/b2 and C = l/c2. The x-ray wavelength 
A. and the Bragg angle e are both measurable, so for each reflection a value 
of Q = l/d2 can be calculated using Bragg's equation (6.1). 

One of the standard problems in x-ray crystallography is to observe as 
many reflections as possible from a crystalline material, then to determine 
Miller indices for each reflection, and finally to use this information to cal­
culate the lattice parameters a, b, and c, and others if the unit cell does not 
have rectangular axes. 

The Powder Method 
A commonly used technique for performing this task, called the powder 
method, was discovered by Debye, Scherrer, and Hull. As the name implies, 
the sample for this kind of experiment is provided in finely powdered form, 
which means that many different crystallites are presented to the x-ray beam 
in many different orientations. As the angle of incidence of the x-ray beam is 
changed many reflections are recorded. 

The program Powder does part of the analysis of data obtained this way. 
It begins by reading a file of data for interplanar distances d calculated ac­
cording to Bragg's equation (6.1) from observed reflection angles e. Then, 
with further information supplied on the unit-cell dimensions a, b, and c, the 
program indexes each reflection by assigning to it Miller indices h, k, and 1 
for the reflecting planes. 

The Precession Method 
In this technique, a single-crystal sample is mounted with one of the axes of 
its lattice, let us say the z axis, perpendicular to a photographic plate or other 
detector. Reflections are recorded as spots by the detector, and they are ar­
ranged in a grid. Miller indices for the set of reflecting planes responsible for 
a spot are easily read directly from the spot's location in the grid. 

The spots in an x-ray diffraction pattern have different intensities that de­
pend on locations of the atoms in the molecules forming the lattice. Analysis 
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of these intensities provides detailed information on the molecular structure. 
One key to that analysis is a quantity called a structure factor, often defined 

Fhkl = L.Ii cos[2n(hXi + k Yi + IZ;]. 
i 

(6.3) 

The summation covers all of the atoms in the unit cell. Coordinates of the 
atoms in the unit cell are expressed as reduced coordinates Xi, Yi, and Zi, 
each of which is an actual coordinate Xi, Yi, or Zi divided by the correspond­
ing lattice parameter 

Xi = x;ja, Yi = Yi/b, and Zi = z;jc. (6.4) 

The factors.li in Eq. (6.3), called scattering factors, depend on the type of 
atom involved and also on the Bragg angle e, the x-ray wavelength A, and 
the temperature. 

Structure factors are important for two reasons. First, the magnitudes of 
structure factors are proportional to the measurable spot intensities, that is, 
I Fhkl I is proportional to the intensity of the spot identified with the Miller 
indices h, k, and I. Second, the set of structure factors Fhkl for an entire dif­
fraction pattern can be used to calculate the electron density p(X, Y, Z) at 
any location in the unit cell, with X, Y, and Z again representing reduced 
coordinates. If Eq. (6.3) is valid, the equation that calculates p(X, Y, Z) is a 
Fourier expansion with the structure factors Fhkl as Fourier coefficients, 

p(X, Y,Z) = (2/V) L Fhklcos[2n(hX +kY + IZ)], (6.5) 
h,k,1 

where V is the volume of the unit cell, and the summation covers all of the 
spots in the diffraction pattern. Equations (6.3) and (6.5) are valid only for 
structures with centro symmetric unit cells, those having symmetry around 
the center: for each atom located at X, Y, Z in the unit cell there is also one 
located at 1 - X, 1 - Y, 1 - Z. 

Structure factors for lattices with noncentrosymmetric unit cells are like 
vectors with two components. One vector component, written Ahkl, is a sum 
of cosine terms like the sum in Eq. (6.3), 

(6.6) 

and the other component, Bhkl, is a sum of sine terms, 

Bhkl = L.Ii sin[2n(hXi + kYi + IZi)]. (6.7) 

The two components Ahkl and Bhkl determine the magnitude of the vector­
like structure factor, 

(6.8) 
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The noncentrosymmetric problem is more complicated than the centro­
symmetric. To define a structure factor Fhkl you must determine its compo­
nents, both Ahkl and Bhkl, or the magnitude IFhktl and the ratio Bhkt! Ahkl, 
conventionally expressed as a phase angle ¢Jhkl> 

(6.9) 

Both of the components are needed in the calculation of the electron density 
as a Fourier expansion, 

p(X, Y,Z) = (l/V) L {Ahklcos[2n(hX + kY + IZ] 
h,k,l 

+ Bhkl sin[2n(hX + k Y + IZ)]}. (6.10) 

All of this is demonstrated by the programs Xrayl and Xray2 for the 
centro symmetric and noncentrosymmetric cases defined in two dimensions. 
Atomic coordinates X;, Yj , and the x-ray wavelength A. are supplied to the 
programs. They simulate the diffraction spot pattern against an h, k grid, and 
then calculate electron densities p(X, Y), which are displayed as a contour 
map and also as a three-dimensional surface. Run both programs with the 
atomic coordinates provided. 

Patterson Plots 

Once the structure factors F hkl are fully determined they solve the structure, 
that is, in Eq. (6.5) or (6.10) they calculate an electronic density map of the 
unit cell and the lattice. But there is a catch. The x-ray diffraction experiment 
measures only magnitudes of the structure factors from intensities of the re­
flections. Structure factors also have signs in structures with centro symmetric 
unit cells and phase angles in structures with noncentrosymmetric unit cells. 
These aspects of structure factors are not directly measurable. In other 
words, the crucial structure factors are only about half determined by x-ray 
diffraction data. This is the ubiquitous phase problem that creates most of 
the calculational difficulty of x-ray crystallography. 

The unwelcome obstacle of the phase problem has been surmounted in 
many ingenious ways. An analysis developed by Patterson is one of them. 
Patterson's strategy is to calculate a Patterson function P(X, Y, Z) with 
equations like (6.5) and (6.10) except that Fhkl is replaced by the squared 
magnitude I Fhktl 2. The Patterson counterpart of Eq. (6.5) is 

P(X, Y, Z) = (1/ V) L IFhkl12 cos[2n(hX + kY + IZ)]. (6.11) 
h,k,1 

No phases or signs are needed to determine the IFhkd2 factors in this sum­
mation, so the Patterson function can be calculated and plotted directly from 
the diffraction data. 
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When the Patterson function P(X, Y, Z) is mapped on the same scale as 
the unit cell, it generates peaks which measure (from the corners of the map) 
all of the interatomic distances and their directions in the unit cell. If there 
are N atoms in the unit cell there are N(N - 1) peaks on this Patterson map, 
not including the large peaks that always appear at the corners of the map. 

Two programs, Xray3 and Xray4, calculate and plot Patterson maps 
from structure factors in much the same way Xr ayl and Xr ay2 plot and 
calculate electron density maps. The program Pattersn, introduced in 
Exercise 6-8, sketches an idealized Patterson map and shows how it relates to 
locations of atoms in the unit cell. 

6.2 Electron Diffraction in Gases (an Orphan Topic) 

In the last section we were concerned with x-ray diffraction produced by 
lattices of molecules in crystals. If the molecules are present in a gas phase at 
low pressures no lattice forms and no diffraction effects involving lattice 
planes, or any other kind of intermolecular interference, is observed. Intra­
molecular interference effects can, however, be observed. The diffraction 
patterns obtained resemble the patterns observed when solid powder samples 
are used because the gas-phase molecules, like the crystallites in the powder, 
present all possible orientations to the x-ray beam. We are straying here 
from the themes of this chapter, solids, liquids, and surfaces, but the link 
with diffraction methods justifies the misplacement. 

Using an argument that bears some resemblance to that leading to Bragg's 
equation (6.1), an approximate equation for the intensity I of an observ­
able (reinforced) reflection of an electron beam bya gas-phase molecule is 
derived, 

I = k L ZiZj sin (sRif ) , 

i#-j sRif 
(6.12) 

in which Zi and Zj are nuclear charges for the ith and jth atoms in the mol­
ecule, Rif is the distance between the same two atoms. The scattering vari­
able s in Eq. (6.12) is an observable quantity determined by the wavelength A. 
of the electron beam and the angle of reflection (), 

4n sin ( () /2) 
s = A. . (6.13) 

The program Elecdiff applies Eq. (6.12) to SiC4 and fits the equation 
to electron-diffraction data. The program finally calculates a value of RSiCl 

for the Si-CI bond distance. Run the program and note the strategy for 
matching minimum and maximum observed values of s with the minima and 
maxima generated by Eq. (6.12). 
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6.3 Semiconductors 

Electrons in semiconductors occupy states available in the valence band of 
the solid state, and to a lesser extent states in the conduction band. In a pure­
material semiconductor the energy gap between the valence band and the 
conduction band is forbidden territory for electron occupation. Semicon­
ductors can be modified, however, with controlled amounts of impurities in 
the lattice which make states available for electron occupation in the other­
wise forbidden energy gap. 

An electron promoted to the conduction band becomes an electrical cur­
rent carrier in the conduction band and it leaves behind a hole, which serves 
as a carrier in the valence band. Electrons and holes can also be trapped at 
donor and acceptor impurity states located in the energy gap. 

Semiconductor equilibrium calculations recognize six electron and hole 
concentrations: 

[e-]c = electron concentration in the conduction band 

[e-]d = electron concentration in a donor impurity state 

[e-]a = electron concentration in an acceptor impurity state 

[h +]v = hole concentration in the valence band 

[h+]d = hole concentration in a donor impurity state 

[h+]a = hole concentration in an acceptor impurity state. 

Four of these concentrations are related by 

(6.14) 

The condition [e-]c > [h+]v defines the case of an n-type semiconductor and 
[e-]c < [h+]v a p-type semiconductor. 

The crucial concentrations [e-]c and [h+]v are calculated with 

and 

[_] 2Nc 
e c = exp[(Eg - Er)/kBT] + 1 

[h+] _ 2Nvexp[(Ev - Er)/kBT] 
v - exp[(Ev - Er)/kBT] + 1 ' 

(6.15) 

(6.16) 

in which Nc and Nv equal total concentrations of states in the conduction 
and valence bands, Eg is the energy level at the top of the energy gap (or the 
bottom of the conduction band), Ev is the energy level at the top of the 
valence band, and Er is a useful parameter called the Fermi level. 
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Equations for the concentrations [e-la and [h+ld appearing in Eq. (6.14) are 

- [Alo 
[e la = exp[(Ea - Er)/kBTl + I 

[h+ld = [Oloexp[(Ed - Ef)/kBTl 
exp[(Ed - Er)/kBTl + I ' 

(6.17) 

( 6.18) 

where [Alo and [010 are concentrations of acceptor and donor states, and Ea 
and Ed are energy levels for those states. 

With data supplied for Ev, Eg , Ea, Ed, [Alo and [010' the program Fermi 
solves Eqs. (6.14) to (6.18) simultaneously to obtain a value for the Fermi 
level Ef, and then uses this result to calculate all of the relevant electron and 
hole concentrations. 

6.4 Molecular Dynamics Simulations of Liquids 

The methods of molecular dynamics simulate macroscopic systems (liquid 
and otherwise) by focusing on only a few molecules in a small part of the 
system called a simulation box. In our examples the box is two dimensional 
and square, or three dimensional and cubic, and it contains no more than 50 
molecules. Two conventions permit the enormous extrapolation from the 
tiny box to the full macroscopic system: 

• The periodic-boundary convention. We assume that the simulation box is 
part of a periodic system of replicas of the box. Thus a molecule leaving 
the box by crossing a boundary is replaced by a molecule crossing the 
opposite boundary. 

• The minimum-image convention. Molecular models of liquids usually in­
clude interactions among molecules. When these calculations are done 
for a particular molecule they obviously cannot include all of the other 
molecules in the macroscopic system (about 1024!). The interactions are 
conveniently truncated by placing the molecule of interest at the center 
of a box of the same size as the simulation box, and assuming that the 
molecule interacts only with other molecules in that box. 

In a molecular-dynamics simulation, paths of molecules in the simulation 
are followed by solving the classical equations of motion. The simulation 
begins by putting molecules in a simulation box of volume V and giving 
them initial velocities which are random but adjusted so the total momentum 
for all the molecules in the box is equal to zero. The molecules move in 
straight lines until a collision between two molecules occurs. Then the velo­
city components are changed for the colliding molecules and positions of all 
other molecules are updated. The molecules are again allowed to move until 
a collision occurs, requiring changes in velocity components and positions, 
and so forth. 
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The QuickBASIC program M01.BAS implements this calculation. The 
program initially places the molecules in a face-centered cubic lattice and 
follows their subsequent trajectories as the dynamics evolve. The calculation 
is simplified by assuming that each side L of the cubic simulation box is 
equal to one, so the average molecular density p in a cubic box of volume V 
containing N molecules is p = N I V = N I L3 = N. The looseness of mole­
cular packing in the box is determined by p and also by the molecular di­
ameter (1. We define a dimensionless parameter p' = p(13, called the reduced 
density, which includes both of these quantities. Packing in the box is also 
expressed by the ratio V I Vo, where Vo is the volume of a box that holds the 
molecules in close packing, so they cannot move at all. The reduced density 
p' is related to V I Vo according to 

VIVo = hlp'. (6.19) 

With V I Vo set at values larger than about 1.58 M01.BAS simulates the 
behavior of a liquid. Molecular motion is displayed in MO I.BAS by plotting 
positions of the centers of all the molecules in the box projected into two 
dimensions on one face of the box. 

The QuickBASIC program M02.BAS does a two-dimensional version of 
the molecular dynamics calculation, showing the erratic motion of a partic­
ular molecule as it bumps, and is bumped by, its neighbors. A third program, 
M03.BAS, uses the two-dimensional calculation to plot a radial distribu­
tion function g(r), which shows how neighboring molecules are distributed 
around a typical molecule. See the comment preceding Exercise 6-17 for in­
formation on how to run these QuickBASIC programs. 

6.5 Monte Carlo Simulations of Liquids 

This method also makes use of the simulation box and its conventions, but 
it simulates molecular motion in a different way. The strategy of the Monte 
Carlo method for "hard" molecules is to move one molecule in the system 
randomly and then check the resulting configuration for overlaps. If there 
are any, the move is rejected and another tried. This process is repeated for 
all the molecules in the simulation box. Then another such calculational 
cycle is carried out, and so forth. The QuickBASIC program MC1.BAS 
implements this procedure in two dimensions and calculates the radial dis­
tribution function g(r). 

The strategy of the Monte Carlo method for "soft" molecules is similar 
except that it allows molecules to penetrate each other to the extent allowed 
by an intermolecular potential energy function. We use the Lennard-Jones 
potential energy function, 

[( r)-12 (r)-6] V(r) = 4e ~ - ~ , (6.20) 
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in which e and (J are parameters that are characteristic of the molecules 
involved. Note that e has energy units and (J length units. In this case, the 
Monte Carlo procedure is to move a molecule randomly and then calculate 
the potential energy between that molecule and all the others. A move that 
decreases the potential energy is accepted; a move that increases the potential 
energy is accepted with the Boltzmann probability factor exp( -/1 V / kB T), in 
which /1 V is the potential energy increase. 

The Monte-Carlo calculation with a potential energy function includes 
the temperature T as a relevant variable. For convenience, the calculation is 
done with temperature units e/kB. This dimensionless reduced temperature 
T* is related to T in Kelvin units according to 

T* =~=kBT 
e/kB e' 

(6.21 ) 

The QuickBASIC program MC2.BAS does a two-dimensional Monte Carlo 
calculation for 50 Lennard-lones molecules in a square simulation box and 
calculates the distribution function g(r). 

6.6 Electrical Properties of Solid Surfaces 

Solid surfaces are often charged electrically. The surface of a metallic cathode 
electrode, for example, might lose electrons to a solution component and 
(with the rest of the electrode) become positively charged. The surface of a 
colloidal particle might adsorb anions from a solution and become negatively 
charged. The surface of a crystallite of a slightly soluble salt might lose more 
anions than cations to the solution and become positively charged. 

The Gouy-Chapman theory of the electrical double layer at an interface 
between a solid and a solution describes these processes. The theory calcu­
lates the potential ,p at a distance x from a surface with 

( eyo /2 + 1 + (e Yo /2 - 1 )e-KX ) 
y- 21n 

- eyo/2 + 1 - (eYo /2 - 1 )e-KX ' 

where y and K are defined 

and 

ze,p 
y= kBT 

K = (2Coo z2e2)1/2 
eOerkBT 

(6.22) 

(6.23) 

(6.24) 

In the last two statements, z is the charge number for ions in the solu­
tion (assumed in our examples to be the same for both anions and cations), 
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e is the electronic charge, eo is the vacuum permittivity, er is the relative 
permittivity (dielectric constant), and Coo is the molecular concentration of 
electrolyte in the bulk of the solution. Note that Yo in Eq. (6.22) is calculated 
with 

zerPo 
Yo = kBT' 

with rPo the potential on the surface. The charge density a is calculated with 

(6.25) 

and molecular concentrations c+ and c of cations and anions at a distance 
x from the surface are obtained with 

(6.26) 

Surface charge densities a are calculated with Eq. (6.25) by the program 
Gouyl; potentials rP at various distances x from the surface with Eqs. (6.22), 
(6.23), and (6.24) by the program Gouy2; and ionic concentrations at vari­
ous distances x with Eqs. (6.22), (6.23), (6.24), and (6.26) by the program 
Gouy3. 

6.7 Surface Crystallography 

Our concern here is with the surface phase that forms between a crystalline 
solid phase and a gas phase. This phase is likely to be no more than a few 
atoms in thickness, and built on an exposed substrate lattice determined by 
the underlying bulk phase. Such a surface can be "clean" meaning that it 
contains just atoms of the kind that come from the bulk phase, or it can 
contain foreign atoms adsorbed from the gas phase. A surface phase on a 
solid is likely to form a two-dimensional surface lattice of its own, which 
may be commensurate with the substrate, that is, to some extent it follows the 
periodicity and orientation of atoms in the substrate lattice, or it may be 
incommensurate and have nothing in common with the substrate lattice. 

The key to a commensurate surface lattice is the two-dimensional sub­
strate lattice exposed when the three-dimensional lattice is cleaved along 
planes with definite Miller indices h, k, I. The formalism of the calculation 
begins with the two vectors 

al=(all,al2) and a2=(a21,a22), 

which generate the substrate direct lattice. These vectors are combined in the 
rows of the matrix a, 

(6.27) 
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Similarly, the vectors 

bl = (b ll ,bl2) and b2 = (b21 ,b22 ) 

generate the surface direct lattice and are combined in the matrix b, 

(6.28) 

A matrix M connects a and b, 

b=Ma. (6.29) 

The matrices a" and b" contain the vectors aj,ai,bi, and bi, which gen­
erate the reciprocal substrate and surface lattices. The connection between a" 
and b" is 

b" = M"a". (6.30) 

Connections between a" and M* for the reciprocal lattice and a and M for 
the direct lattice are 

* (-)-1 a = a , (6.31 ) 

and 

(6.32) 

The surface reciprocal lattice is important because it has the same pattern as 
that observed with the methods of low-energy electron diffraction (LEED). 

The program Leed simulates substrate and surface, direct and reci­
procal lattices. It requires data for a and M as input, calculates a" with 
Eq. (6.31), M" with Eq. (6.32), b with Eq. (6.29) and b" with Eq. (6.30). 
Table 6.1 defines components of the matrix a for some common substrate 
lattices. 

TABLE 6.1. Components of the matrix a for common 
substrate lattices (*) 

Lattice 

fcc(IOO) 
fcc(llO) 
fcc(lll) 
bcc(IOO) 
bcc(llO) 
bcc(lll) 

all/a 

1/2 
.,fi/2 
.,fi/2 

I 
.,fi/2 
.,fi/2 

1/2 
o 
o 
o 

1/2 
../6/6 

-1/2 
o 

.,fi/4 
o 

-.,fi/2 
-.,fi/2 

1/2 
I 

../6/4 
I 

1/2 
../6/6 

*Matrix components are given in reduced form compared to 
the lattice parameter a. 
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6.8 Exercises 

X-Ray Crystallography 

6-1 Use the program Powder to assign powder x-ray diffraction data in 
the file s i 0 2 . da t to the sets of planes responsible for the reflections. 

6-2 Use the Program Powder to assign powder x-ray diffraction data in 
the file zr s io4 . dat to the sets of planes responsible for the reflections. 

6-3 Use the program Powder to assign powder x-ray diffraction data in 
the file f e 2 s io4 . datto the sets of planes responsible for the reflections. 

6-4 Modify the program Xr ayl so it plots just the diffraction spot pattern 
and then run this program for one atom in the unit cell located at 0,0 with 
the choices listed below. How do the cell size and x-ray wavelength affect the 
number of spots in the diffraction pattern? 

Unit cell dirnensions/A 

10, 10 
5, 5 
10, 10 
5, 5 
20,20 

X-ray wave!ength/A 

5 
5 
2.5 
2.5 
5 

6-5 The x-ray wavelength used to obtain a diffraction pattern is important 
in determining the resolution of the calculated electron density map. Demon­
strate this point by making calculations for four different wavelengths, A. = 
4,6,8, and 10 A. Use the program Xray2 and place four atoms in the unit 
cell at XI = 0.15, Y\ = 0.25, X2 = 0.25, Y2 = 0.65, X3 = 0.80, Y3 = 0.35, 
and X4 = 0.75, Y4 = 0.75. Assume a = 10 A and b = 8 A for the unit-cell 
dimensions. 

6-6 Use the program Xr ay2 to plot a diffraction spot pattern and calculate 
an electron density map for an invented triatomic molecule placed anywhere 
in a unit cell whose dimensions are a = 8 A and b = 8 A. Assume that the x­
ray wavelength is A. = 4 A. Do the same calculation again for the same 
molecule with the same orientation, but placed differently in the unit cell. 
How are the two calculations different and how are they identical? 

6-7 Lattices with certain symmetries generate diffraction patterns with sys­
tematic absences, that is, certain spots systematically located in the pattern are 
completely missing. Use an adaptation of the program Xr ay2 to display 
spot patterns for the five cases listed below, all involving a square unit cell 
with dimensions a = b = 10 A and an x-ray wavelength A. = 5 A. In each 
case, state the rule that governs the presence of observed spots. 
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Xl Yl X 2 Y2 X3 Y3 X4 Y4 

(a) 0.2 0.4 0.8 0.9 
(b) 0.2 0.4 0.8 0.4 0.7 0.9 0.3 0.9 
(c) 0 0.5 0.5 0.5 
(d) 0.15 0.45 0.85 0.55 0.35 0.95 0.65 0.05 
(e) 0.5 0 0 0.5 

6-8 Use the program Pattersn to sketch an idealized Patterson map 
corresponding to a unit cell with atoms located as follows: XI = 0.1, 
YI = 0.2, X2 = 0.3, Y2 = 0.8, X3 = 0.6, Y3 = 0.3, and X4 = 0.8, Y4 = 0.6. 

6-9 Use an adaptation of the program Xr ay4 to plot a Patterson map for 
atoms located in the unit cell given in the last exercise. Do the calculation 
first with A. = 4 A, then with A. = 1 A and 2 A. Assume that the unit cell di­
mensions are a = loA and b = 8 A. Compare each calculation with the 
idealized Patterson map sketched in the last exercise. 

6-10 Use an adaptation of the program Xray4 to calculate a Patterson 
map for a lattice based on a unit cell containing three atoms located at: 
XI = 0.15, YI = 0.25, X2 = 0.75, Y2 = 0.75, X3 = 0.8, and Y3 = 0.35. Use 
a = 10 A and b = 8 A for the unit cell dimensions and A. = 2 A for the x-ray 
wavelength. Interpret the result by making an idealized sketch of the 
Patterson map with the program Pattersn. 

Electron Diffraction in Gases 

6-11 Data are given below for electron diffraction scattering by SiF4(g). 
Use these data and an adaptation of the program Elecdiff to calculate a 
value for the bond distance RSiF in the molecule. SiF4(g) has tetrahedral 
geometry. Note that the (nonbonding) F-F distance RFF is related to the 
Si-F (bonding) distance RSiF by RFF = (8/3)1/2 RSiF. 

/ -I 
smin nm 22.19 69.32 115.9 150.8 193.2 

/ -I 
Smax om 54.06 82.66 130.2 172.7 213.4 

6-12 Data are given below for electron diffraction scattering by BF3(g). 
Use these data and an adaptation of the program E lecdiff to calculate a 
value for the bond distance RBF in the molecule. BF 3 has planar-trigonal 
geometry. Note that the (nonbonding) distance RFF is related to the (bond­
ing) distance RBF by RFF = V3RBF. 

/ -I 
Smin om 22.9 46.1 79 104 

/ -I 
Smax om 34.4 62.2 94 117 

6-13 Data are given below for electron diffraction scattering by C02(g). 
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Use these data and an adaptation of the program Elecdiff to calculate a 
value for the bond distance Reo in the molecule. C02 has linear geometry. 

/ -I 
Smin nm 44 100 154 210 

/ -I 
Smax nm 67 122 178 230 

Semiconductors 

6-14 The Fermi level for a pure-material semiconductor is always 
Ef = Eg/2. Use the program Fermi to calculate [e-l c ' [h+lv and Ef at 300 K 
for silicon whose gap energy is Eg = 1.11 eV. 

6-15 An impurity silicon semiconductor is prepared with [Dlo = 1014 cm-3, 

[Alo = 1015 cm-3, Ev = 0, Eg = 1.11 eV, Ea = 0.08 eV, and Ed = 1.05 eV. 
Use the program Fermi to calculate [e-lc ' [h+l v , and Ef at 300 K. Is this an 
n-type or p-type semiconductor? 

6-16 At low temperatures in an n-type semiconductor most of the electron 
carriers are created by ionizations of donor levels, the Fermi level is located 
near the top of the energy gap, and [e-lc » [h+lv. But as the temperature is 
raised more electron carriers are created by ionizations from the valence 
band and the Fermi level is lowered. At high temperatures, the Fermi level 
approaches the middle of the energy gap and [e-lc ~ [h+lv, that is, the 
semiconductor behaves as if it had no impurities. Demonstrate these trends 
by running an adaptation of the program Fermi with [Dlo = 1014 cm-3, 
[Alo = 0, Ev = 0, Eg = 1.11 eV (silicon), Ea = 0.08 eV, and Ed = 1.05 eV, 
and for temperatures in the range 200-700 K. Revise Fermi so it makes the 
calculation in a loop covering the required temperature range. 

Molecular Dynamics and Monte Carlo Simulations 

The following three exercises make use of the QuickBASIC programs 
MC1.BAS, MC2.BAS, MD1.BAS, MD2.BAS, and MD3.BAS. All of these 
programs have graphics features requiring data from the file GRAPH.DAT. 
To create this file run the QuickBASIC program PIXEL.BAS and enter the 
graphics mode you are using (choices are CGA, EGA, and VGA). Three of 
the programs, MC1.BAS, MC2.BAS, and MD3.BAS, also require the sub­
program PLOTAXES.BAS. To run one of these programs, MC1.BAS for 
example, open MC1.BAS first and then load PLOTAXES.BAS. 

6-17 Molecular dynamics models simulate the melting transition. When the 
molecules are closely packed in a lattice, their movements are confined 
to small "cages" surrounding the lattice positions. As the packing is made 
looser (by increasing the ratio V / Yo), the molecular motion becomes corre­
spondingly less confined until some of the molecules are able to exchange 
places with molecules in neighboring cages. Caged molecules simulate be-
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havior of the solid phase, and molecules moving freely between cages simu­
late the liquid phase. The molecular dynamics simulation supplied by the 
program MD1.BAS finds a sharp transition between solid and liquid be­
havior when V / Vo has values in the range 1.58 to 1.60. Demonstrate this by 
running MD I.BAS for 3000 collisions and with values of V / Vo in the range 
indicated. 

6-18 The program MD2.BAS displays in an animation the motion of one 
molecule as it bumps, and is bumped by, its neighbors. Run the program 
with V / Vo = 2 and for 1000 collisions. Watch the progress of the empha­
sized molecule. If it moves beyond the edge of the square simulation box it is 
replaced by another molecule on the opposite side of the box. 

6-19 The programs MC1.BAS and MC2.BAS (and MD3.BAS) calculate 
and plot the radial distribution function g(r) for simulated liquid structures. 
This function is defined so that if p is the bulk density in the liquid 

pg(r) = average density of molecules at a radial distance r 
from a particular molecule. 

Run MC1.BAS for V / Vo = 1.5 and 1000 calculation cycles, and note that 
g(r) has several maxima-a large one for r = 0' (0' is a molecular diameter) 
and smaller ones for r = 20' and 30'. The maxima locate coordination shells of 
molecules surrounding the particular molecule. There is one well-defined 
shell at r = 0', and smaller ones for r = 20' and 30'. Also run the program 
MC2.BAS for V / Vo = 1.5, 1000 calculation cycles and T* = 1. Compare 
with the run of MC1.BAS. Account for the similarities and differences. 

Electrical Properties of Solid Surfaces 

6-20 A charged surface is in contact with an aqueous 0.0100 mol L-1 

solution of NaCl. Each atomic site on the surface occupies 2.0 nm2, and one 
in four sites accomodates a chloride ion; sodium ions are not adsorbed on 
the surface. Write a program that uses the Gouy-Chapman theory to cal­
culate the potential t/J(x) for x = 2.0 nm. The temperature is 298 K. Also 
have the program calculate the potential t/Jo on the surface. 

Surface Crystallography 

6-21 A face-centered cubic lattice is cleaved along the (110) planes and a 
(2 xl) surface lattice forms on this substrate lattice. For this surface lattice, 

M= (~ ~). 
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Use the program Leed to plot substrate and surface, direct and inverse 
lattices for this case. 

6-22 A face-centered cubic lattice is cleaved along the (100) planes and a 
c(2 x 2) surface lattice forms on this substrate lattice. For this surface lattice, 

M=(~ ~l). 
Use the program Leed to plot substrate and surface, direct and inverse 
lattices for this case. 

6-23 A body-centered cubic lattice is cleaved along the (100) planes and a 
(2 x 2) surface lattice forms on this substrate lattice. For this surface lattice, 

M= (~ ~). 
Use the program Leed to plot substrate and surface, direct and inverse 
lattices for this case. 



7 
Macromolecules 

Macromolecules are marvels of complexity and diversity, as we all know. To 
a large extent we are macromolecules. A detailed study of the structure of a 
macromolecule (e.g., with x-ray diffraction methods) is an arduous task, re­
quiring much skill, patience, and ingenuity. But if you are willing to forgo 
some of the details and picture a macromolecule as a random coil, a light­
scattering particle, or a hydrodynamic particle with an ellipsoid shape, the 
analysis is much simpler-in fact, almost easy. This chapter emphasizes these 
almost-easy approaches to macromolecule structure. In Sec. 7.1 the random 
coil model is used and dimensions are calculated with statistical formulas 
(the programs Coill, Coi12, and Coil3). In Sec. 7.2 the ellipsoid model 
is introduced and applied to determination of a macromolecule's shape and 
dimensions (the programs Perr inl and Perr in2). This calculation is based 
on measurements of diffusion coefficients. Another approach, beginning with 
viscometry data, also relies on the ellipsoid model and leads to approximately 
the same results (the programs Simhal and Simha2). A third method pre­
sented in Sec. 7.4, pictures a macromolecule as a light-scattering particle. 
The light-scattering measurements also supply data on a macromolecule's 
size and shape (the program Z imm). 

7.1 Random Coils 

Some macromolecules have an extended structure with the segments moving 
freely with respect to each other, "writhing and twisting and changing shape," 
as Richards puts it; such a molecule has no definite shape. At another extreme 
are macromolecules that fold themselves into tight, highly organized struc­
tures. We first discuss the loose structures, called random coils. 

Picture the random coil as a sequence of linked bonds joining monomer 
residues in the chain. Assume that there are n residues with n - 1 bonds 
joining them, and that each bond has the length L. At each residue, for ex­
ample Ri, two angles Oi and ,pi define the conformation, or three-dimensional 
structure, of the molecule (Fig. 7.1). In the simplest model all of the angles Oi 

123 
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FIGURE 7.1. Part of a random-coil macromolecule. Residues are indicated by circles. 
Note that the two angles 8i and tPi define the conformation at the residue Ri • 

and tPi are assumed to have random values. This freely jointed chain is not a 
model for any real macromolecule, but it serves as a beginning point for 
more realistic models. 

The program Co ill plots bond segments for a freely-jointed chain (and 
for another model considered later). The plot locates three important points 
on the chain: the two ends and the center of mass. One measure of size of the 
chain is the end-to-end distance r. Because a freely-jointed chain is random it 
can have many different conformations and end-to-end distances r, but r2, 
the average of the squared end-to-end distance calculated for many freely­
jointed chains, depends in a simple way on the number of bonds n - 1, and 
the bond length L, 

r2 = (n -1)L2 (many random conformations). (7.1) 

Another important measure of chain size, the square of the radius of 
gyration Rb, is calculated by summing the squares of the distances RGi from 
each residue to the chain's center of mass and averaging by dividing by the 
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number of residues, 

n 

2:: Rbj 
R2 _ j=l 
G---' 

n 
(7.2) 

The radius of gyration, like the end-to-end distance, changes with the con­
formation of the chain, but an average Rb of Rb is simply related to r2, 

for large chains, so 

- r2 
R2 - - (n large), G-6 

- (n-l)L2 
R2 - (n large). G- 6 

(7.3) 

(7.4) 

The freely-jointed chain is of little value as a model of any real macro­
molecule, but it is improved by simple modifications. The most obvious 
failing of the freely-jointed chain is that it allows random values for the an­
gles OJ. In a simple chain, such as that of polymethylene, the bond angles, 
that is, the angles between adjacent bonds (180 - OJ for residue Rj in Fig. 7.1), 
are all expected to be approximately the same. A useful model, called the 
freely rotated chain, assumes a single value for the B/s, but random values 
for the f/J/s. In this model, an average of the squared end-to-end distance r2 is 
calculated for many large freely rotated chains according to 

r2 = (n _ I)L 2 1 + cos 0 (I ) 1 _ cos 0 n arge , (7.5) 

where 0 is the constant value of the O/s. The angle between adjacent 
bonds might typically be the tetrahedral angle 1090 , so 0 = 180 - 109 = 71 0 , 

cosO> 0, and according to Eq. (7.5), r2 is larger for this more constrained 
chain. 

If the "large n" condition for Eq. (7.5) is not met, a more elaborate 
equation must be used, 

with 

C _ 1 +cosO 2cos()(1 n-10)(1 0)-2 - --- -cos -cos. 
1 - cosO n - 1 

(7.6) 

(7.7) 

The program Coill calculates and plots in three dimensions random 
chains of both the freely rotated and freely jointed kinds. To run the pro­
gram enter data beginning on the third line of code for: the bond length L, 
the mass m of each residue, the number of residues n, and 

chain = "fr"; 
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if you want a freely rotated chain, or 

chain = "fj"; 

for a freely jointed chain. If the chain is freely rotated, then also enter a value 
for the bond angle (in degrees), for example, 

bondAng1e = 135; 

The program plots the chain in three dimensions and also calculates values 
for the radius of gyration RG and the end-to-end distance r. 

The program Co i 11 calculates r directly from the program data for loca­
tions of the first and nth residues. The programs Coil2 and Coi13 make 
the same calculation and then compare with Eq. (7.6) for a freely rotated 
chain (in Coil2), or with Eq. (7.1) for a freely jointed chain (in Coi13). 

7.2 Macromolecules as Hydrodynamic Particles 

Imagine that a dissolved macromolecule A is disturbed by an applied cen­
trifugal, electrical, or diffusional force. The macromolecular particle accel­
erates at first, but at the same time it is affected by an increasing opposing 
frictional force as a result of physical interactions between the particle and 
the solvent medium through which it moves. A dynamic steady-state condi­
tion is rapidly reached in which the applied and frictional forces are balanced, 
and the particle attains a constant terminal speed WA. If the applied force is 
FA per mole of component A, the average force per molecule is FA/ L (L = 
Avogadro's constant), and we note that the terminal speed WA increases in 
direct proportion to this molecular force, 

(7.8) 

wherefA, called africtional coefficient, is a much-used parameter in the study 
of macromolecule behavior. Frictional coefficients are measurable, as we will 
see, and they depend on the size and shape of the molecule, and also on the 
viscosity of the solvent medium. 

The viscosity dependence is brought out in Stokes Law, which is valid for 
molecules with spherical shapes, 

fA = 6n"rOA (spherical molecules), (7.9) 

in which" is the viscosity coefficient of the medium and rOA is the radius of 
the spherical molecules. 

The volume of a macromolecule A with molar mass MA and partial spe­
cific volume VA is M AVA / L. If the macromolecule has incorporated solvent 
molecules (e.g., water in proteins) the volume Vs of this solvated molecule is 

V. _ MA(VA +JBVS) 
s - L ' (7.10) 
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Prolate (p=b/a<1) 

FIGURE 7.2. Prolate and oblate ellipsoids of revolution seen in cross section. Three­
dimensional shapes are generated by rotating around the axes indicated. 

where B represents the solvent, bB is the mass of solvent molecules per gram 
of macromolecule, and Vs is the specific volume of the pure solvent. For a 
spherical molecule 

(7.11 ) 

Calculation of the frictional coefficient fA beComes considerably more 
complicated when the macromolecules do not have spherical shapes. The 
detailed calculation was done by Perrin for two idealized distortions of the 
spherical shape called prolate and oblate ellipsoids of revolution (Fig. 7.2). 
These figures are defined by the dimensions a and b measured along the axis 
of revolution and along a perpendicular (equatorial) axis. The axial ratio 
p = b/a is important in Perrin's analysis: note that p < 1 for prolate shapes, 
p > 1 for oblate shapes and p = 1 for a sphere. The volume for any of these 
figures is 

4nab2 
v=--

3 
(7.12) 

Perrin's calculation determines the frictional ratio irA for a macromolecule 
A, defined as 

(7.13) 

where loA = 6n'lroA is the frictional coefficient the macromolecule would 
have if it were spherical with radius rOA [Eq. (7.9)]. The frictional ratio is 
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important because it depends only on the shape of the molecule and not on 
its size. 

The program Perr inl performs the Perrin calculation and plots the 
frictional ratio fr against the axial ratio p = b I a. Consult the program for 
details on the equations involved. Note that the minimum value of the fric­
tional ratio is fr = 1 for a spherical shape. 

The program Per r in2 does a specific Perrin calculation, either the 
frictional ratio fr from an axial ratio p, or vice versa, p from fr. The next 
example illustrates. 

Example 7-1. A macromolecule has the volume 8380 nm3, and it is known to 
have an approximately prolate shape. Its frictional coefficient is fr = 1.044. 
Calculate the approximate dimensions of the molecule. 

Answer. Enter the frictional ratio in the program Perr in2, 

fr = 1.044; 

and the prolate shape, 

shape = "prolate"; 

and calculate the axial ratio p = 0.50. Thus a = bI0.50, and from the given 
volume and Eq. (7.12), 

4nab2 4nb3 

8380 nm3 = -3- = (3)(0.50)' 

so 

b = C3)(8380 ;;;3)(0.50)Y/3, 

= lOnm, 

and 

b lOnm 
a=--=--

0.50 0.50 

=20nm. 

7.3 Diffusion 

In the last section we found methods for calculating the frictional ratio of a 
macromolecule from information on the size and shape of the molecule. 
Here we determine how to obtain an experimental value for the frictional 
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ratio, and then from this, through the program Per r in2, the molecule's size 
and shape. 

The key experimental measurement is that of diffusion. Molecules of any 
kind diffuse under the influence of a diffusional force. For a diffusing com­
ponent A this force, call it FdA, in a direction x is calculated as the negative 
gradient of the chemical potential f.1.A, 

(7.14) 

In systems dilute enough to guarantee ideal solution behavior f.1.A = f.1.i + 
RTln CA, where CA is the molar concentration of A (Sec. 2.6), and 

FdA = -RT dl~xCA. 

This is one of the molar forces that can be used in Eq. (7.8) containing the 
frictional coefficient fA. We find that 

I'AWA = FdA = _ RT dinCA 
ji L L dx ' 

where WA is now the average speed of A molecules moving in the x direction. 
Noting that din CA = dCAI CA, we rearrange the equation to 

RT dCA 
WACA = - fAL dx . (7.15) 

The quantity on the left side ofEq. (7.15) expresses the molar flux h of A 
molecules, that is, the number of A molecules passing through a plane per­
pendicular to x per unit area per second, 

JA = WACA. 

Thus, Eq. (7.15) can be written 

h =_ RT dCA. 
fAL dx 

(7.16) 

This equation has the same form as one of the basic empirical laws of 
diffusion, 

(7.17) 

in which DAis a measurable parameter called the diffusion coefficient. With 
CA expressed in mol cm-3, DA has the units commonly used, cm-2 s-l. 

Comparison of Eqs. (7.16) and (7.17) brings us to an equation that permits 
calculation of a frictional coefficient fA from a measured diffusion coefficient 
DA, 

(7.18) 



130 7. Macromolecules 

Since it has been derived for ideal solutions this equation usually applies 
only to very dilute solutions. Diffusion coefficients used in the equation are 
customarily obtained by extrapolation to the condition of infinite dilution. 
The use of Eq. (7.18) is demonstrated in the next example. 

Example 7-2. The protein myosin has the molar mass 4.93 x 105 gmol-'. 
In very dilute aqueous solutions, its diffusion coefficient is D A = 1.10 x 
10-7 cm-2 s-' at 20.0°C. Calculate the frictional coefficient fA for 
myosin. Also calculate the frictional ratio irA = fA/foA' assuming that VA = 
0.728 cm3 g-' and that the macromolecule has no incorporated solvent 
[c5B =0 in Eq. (7.11)]. Finally, calculate the axial ratio p=b/a and the 
molecule's dimensions a and b, assuming a prolate shape. Water has the 
viscosity coefficient t7 = 1.002 X 10-3 kgm-' s-' at 20.0°C. 

Answer. CalculatefA with Eq. (7.18) 

fA = (8.3145 J mol-' K-' )(293.0 K) 
(1.10 x 10-7 cm2s-')(10-4 m2cm-2)(6.0221 x 1023 mol-i) 

= 3.68 x 10-'0 kg s-'. 

Calculate rOA, the radius the molecule would have if it were spherical, using 
Eq. (7.11) and c5B = 0, 

r = ((3)(4.93 x 105 gmol-')(0.728 cm3 g_,))'/3 
OA (41l)(6.0221 x 1023mol-') 

= 5.221 x 10-7 cm 

= 5.221 nm. 

Calculate loA using Eq. (7.9) and t7 = 1.002 X 10-3 kgm-' s-' for water, 

loA = (61l)(1.002 X 10-3 kgm-' s-')(5.221 x 10-9 m) 

= 9.86 x 10-11 kgs-'. 

Then, the frictional ratio is 

fA 3.68 X 10-10 kgs-' 
irA = loA = 9.86 X 10-11 kg s-' 

= 3.73, 

and from this the program Perrin2 calculates the axial ratio p = alb = 
0.0120. Calculate the dimensions a and b separately by first obtaining the 
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molecule's volume from Eq. (7.10) with c)B = 0, 

v= MAVA 

L 

(4.93 X 105 gmol-I)(0.728 cm3 g-I) 

(6.0221 x 1023 mol-I) 

= 5.96 x 10-19 cm3 

= 5.96 x 10-25 m3. 

Then combine Eq. (7.12), with a = b/(0.0120) obtained above and the vol­
ume just calculated to arrive at values of a and b, 

b = C3)(5.96 x 1O~: m3)(0.0120)Y/3 

= 1.20 x 10-9 m 

= 1.20 nm 

b 1.20 run 
a = 0.0120 = 0.0120 = 100 nm. 

Myosin is a muscle protein; it has an elongated fiber-like shape, as these 
dimensions indicate. 

7.4 Viscometry 

Viscometry is utilized in the study of macromolecules by making viscosity 
measurements on a series of dilute solutions of the macromolecule. The key 
measured quantity is the relative viscosity 1'/r = 1'/8/1'/0' which compares the 
viscosity coefficient 1'/8 of a solution with the viscosity coefficient 1'/0 of the pure 
solvent. The relative viscosity 1'/r has a virial-like dependence on the mass 
concentration gA (units g L -I) of the macromolecule in the solution, 

(7.19) 

where [1'/lA' called the intrinsic viscosity of component A (although it does not 
have viscosity units), and C are constants. 

The importance of the intrinsic viscosity [1'/lA is that it depends on the 
molecular volume of the dissolved macromolecule, and also, in a sensitive 
way, on molecular shape. The following equation expresses these depen­
dencies for a solvated macromolecule whose volume is V8 , 

(7.20) 
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in which v A is an important shape-dependent parameter introduced by 
Simha and called the Simhafactor. From Eq. (7.10), we see that Eq. (7.20) 
can be expressed more conveniently 

(7.21) 

The Simha factor VA, like the frictional factor irA, depends only on mo­
lecular shape, and that dependence can be expressed as a function of the axial 
ratio p = bla for prolate and oblate ellipsoids of revolution. The program 
Simhal does the calculations and plots VA vs p for both cases. Values of VA, 

and of the intrinsic viscosity ['11 A , become very large for elongated prolate 
molecules. The minimum value for the Simha factor is VA = 2.5 for a spher­
ical shape. The program S imha2 does a specific Simha calculation, either 
the Simha factor VA from the axial ratio p, or vice versa, p from VA. Here is 
an example showing how the Simha factor is used. 

Example 7-3. Myosin has the molar mass MA = 4.93 X 105 gmol-1, intrinsic 
viscosity ['11A = 217 cm3 g-l in aqueous solutions at 20.0°C, and the partial 
specific volume VA = 0.728 cm3 g-l. Calculate the Simha factor VA and the 
axial ratio p for the molecule, assuming that it has no bound solvent (t5B = 0) 
and a prolate shape. 

Answer. Calculate VA using Eq. (7.21) and t5B = 0, 

['11 A 217 cm3 g-l 
VA = - = -=-==---i'----;-

VA 0.728 cm3 g-l 

= 298. 

Enter this result in the program Simha2, assume a prolate shape and 
calculate p = bla = 0.0148. This agrees about as well as can be expected 
with the axial ratio (bla = 0.0120) calculated for myosin from diffusion co­
efficient data in Example 7-2. 

7.5 Macromolecules as Light-Scattering Particles 

Macromolecules in solution scatter light away from the direction of an 
incident beam. Scattering can change the energies of the incident photons, 
as in Raman spectroscopy, or it can leave photon energies unaffected. Our 
concern here is with the latter, called Rayleigh scattering. Such scattering is 
measured in an instrument that gathers light scattered at an angle () from a 
solution of the macromolecule with volume V located at a distance rs from 
the detector. The ratio lsi 10 of scattered intensity Is to the incident intensity 
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10 is directly proportional to V, inversely proportional to r§, and scatter­
ing at low angles is greater than that at larger angles, as expressed by the 
function I + cos2 0, 

or 

Is V(l + cos2 0) 
T oc 2 ' 
~o rs 

Is 
10 

(7.22) 

in which Ro is a constant called the Rayleigh ratio. 
Light-scattering measurements are useful in the study of macromolecules 

because the extent of the scattering depends on the size and shape of the 
macromolecules responsible for the scattering. If the macromolecules are 
small compared to the wavelength of the incident light (although sti11large 
enough to be called macromolecules), if the solution containing the mole­
cules is ideal, and if the solution is monodisperse, the Rayleigh ratio Ro 
depends just on the molar mass MA of the macromolecules and their mass 
concentration gA in the solution, 

Ro = KMAgA (small macromolecules; ideal, monodisperse solutions). 

(7.23) 

The factor K is a constant containing all the optical parameters that char­
acterize the scattering experiment. 

In light-scattering experiments involving macromolecules, nonideality is 
the rule. Thus Eq. (7.23) requires modification for application to real solu­
tions. The equation most often used with nonideal solutions of small mac­
romolecules has the virial form, 

(small macromolecules; nonideal, 
monodisperse solutions), 

(7.24) 

in which gA is again the mass concentration of macromolecules in the solu­
tion, and A2 is a virial coefficient. In an ideal solution A2 = 0 and Eq. (7.24) 
reduces to (7.23). 

If the macromolecules are not small compared to the wavelength of the 
incident light, Eq. (7.24) has to be further modified by including a shape 
factor which depends on the scattering angle O. We write this factor P(O) and 
note that it is included only in the first term of Eq. (7.24), 

(large macromolecules; nonideal, 
monodisperse solutions). 

(7.25) 

Since Eq. (7.25) reduces to Eq. (7.24) for small molecules, P(O) must ap­
proach one for small-sized macromolecules. For large macromolecules the 
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P( ()) factor depends on the square of the macromolecule's radius of gyration 
according to the approximate equation, 

1 _ 16n:2 Rb . 2 

P(()) = 1 + 3A.2 sm (()12). (7.26) 

Light-scattering measurements are usually aimed at determining the molar 
mass of the macromolecule studied. Eq. (7.25) provides that information 
in a double extrapolation of () and gA to zero values, so P(()) = 1, the virial 
term containing A2 in Eq. (7.25) vanishes, and KgAI Ro = II M A, as in the 
ideal equation (7.23). A procedure developed by Zimm accomplishes this 
extrapolation. Zimm's technique is to plot KgAI Ro, call this function y, 

KgA 
y= Ro ' 

against a function that depends on both () and gA, call it x, 

x = sin2(()12) + egA. 

(7.27) 

(7.28) 

The constant e preceding gA is chosen to make the plot convenient but is 
otherwise arbitrary. 

The program Z irnm simulates a typical Zimm plot. Input to the program 
consists of value for the light wavelength lambda (in nm); the radius of gy­
ration RG (in nm); the virial coefficient A2 (in mol cm3 g-2); the molar mass 
MA (in g mol-I); and the constant c (in em3 g-l). The program also requires 
a list thet a of scattering angles (in degrees) and a list gA of concentrations 
of solutions (in g em-3). Data supplied to Z irnm are for solutions of cellulose 
nitrate in acetone at 25°C. 

Run the program and note that the Zimm plot consists of a network of 
data points (blue) which define constant-() curves (red) and constant-gA curves 
(yellow). Two extrapolated curves are located on the plot (by the green points) 
and they meet at an intercept where the double extrapolation is in effect and 

kgA 1 
y = -R = -. Slopes of the two extrapolated curves are 

o MA 

( OY) = 2A2, 
ax 0=0 e 

(7.29) 

and 

( OY) = (16n:2~) _1 . 
ax gA=O 3A. MA 

(7.30) 

Thus, measured slopes of the extrapolated curves can be used to calculate the 
virial coefficient A2 and the radius of gyration (R&)1/2 for the macromolecule 
studied. 

Equations (7.23) to (7.30) require the assumption that the solution of 
macromolecules is monodisperse, so only a single molar mass MA is present. 
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Light-scattering data from polydisperse solutions obey equations of the same 
form with MA replaced by the mass-average molar mass Mrn , so Eq. (7.25) 
becomes 

(large macromolecules; nonideal, 
polydisperse solutions), 

(7.31 ) 

and Zimm's double extrapolation provides an intercept, which is equal to 
l/Mrn • 

7.6 Exercises 

Random Coils 

7-1 Run the program Coill for a freely rotated chain with L = 10, n = 100 
and with the bond angle set at 0° and then at 180°. Account for the shapes of 
the plots and the calculated end-to-end distances. Do the same thing for 
n = 10 1. The radius of gyration for these cases is considered in the next 
exercise. 

7-2 Repeat the calculation requested in the last exercise and account for the 
calculated values of the radius of gyration. 

7-3 Revise the program coill so it plots chain structures for macro­
molecules which have both of the angles e and l/J defined in Fig. 7.1 fixed. 
Run the revised program with e = l/J = 30°, n = 101 and L = 10. Compare 
with the chain generated by e = 30° and random values of l/J. 

7-4 Run the program Coil2 with L = 10, n = 17 and a bond angle of 30°, 
and note the comparison of the average end-to-end distance calculated with 
data from the program and with the statistical formula. 

7-5 Run the program Coil3 with L = 10, n = 17, and note the compar­
ison of the average end-to-end distance calculated with data from the pro­
gram and with the statistical formula. 

Macromolecules as Hydrodynamic Particles 

7-6 Molecules of a polystyrene preparation dissolved in benzene at 25.0 °C 
have the frictional ratio irA = 1.548. The number-average molar mass of the 
polystyrene is Mn = 1.32 X 103 gmol-1 and the partial specific volume is 
VA = 0.90 cm3 g-l. Estimate the dimensions a and b of the molecule modeled 
as a prolate ellipsoid of revolution. Assume that the molecules have no 
incorporated solvent. 

7-7 Molecules of another polystyrene preparation dissolved in benzene at 
25°C have the frictional ratio irA = 3.70. The number-average molar mass 
of this polystyrene is Mn = 1.20 X 106 gmol-1 and the partial specific vol-
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ume is about VA = 0.90 cm3 g-I. Estimate the molecular dimensions a and b, 
assuming that the molecules have prolate shapes and that they have no 
incorporated solvent. 

Diffusion 

7-8 A polyvinyl alcohol has the diffusion coefficient 3.97 x 10-7 cm2 S-I in 
water at 25.0 °C in very dilute solutions. The molar mass of this preparation 
is 2.33 x 104 gmol- I, and its partial specific volume is 0.750cm3 g-I. Cal­
culate the axial ratio p = b I a for the molecule modeled as a prolate ellipsoid 
of revolution. Assume that the molecules have no incorporated solvent and 
that the solutions have the same viscosity coefficient as pure water, that is, 
1.002 x 10-3 kgm- I S-I. 

7-9 A cellulose nitrate preparation has the diffusion coefficient 6.5 x 
10-7 cm2 S-I in acetone at 20.0°C in very dilute solutions. The molar mass 
of this preparation is 1.00 x 105 gmol- I, and its partial specific volume is 
0.51 cm3 g-I. Calculate the dimensions a and b for the molecule modeled as 
a prolate ellipsoid of revolution. Assume that the molecules have no in­
corporated solvent and that the solutions have the same viscosity coefficient 
as pure acetone, that is, 3.26 x 10-4 kgm- I S-I. 

7-10 A preparation of polyvinylpyrrolidine in water at 20.0°C has the dif­
fusion coefficient 7.55 x 10-7 cm2 S-I in very dilute solutions, the axial ratio 
p = bla = 0.076, and the partial specific volume 0.802 cm3 g-I. Calculate 
the frictional ratio fr and then the molar mass of the macromolecules, as­
suming that they have no incorporated solvent. 

Viscometry 

7-11 You have measured ['1lA = 820 cm3 g-I for the intrinsic viscosity of a 
macromolecule in water, MA = 3.2 X 104 gmol- I for the molar mass, and 
VA = 0.75 cm3 g-I for the partial specific volume. Use the program Simha2 
to calculate the axial ratio p = b I a and the dimensions a and b, assuming a 
prolate shape and that the molecules contain no incorporated solvent. 

7-12 Relative viscosities '1r are measured with a remarkably simple instru­
ment called a viscometer. The efflux time ts for a certain volume of the solution 
of interest to flow through a glass capillary in the viscometer is measured and 
compared to the efflux time to for the same volume of solvent. An approx­
imate calculation of '1r is then obtained as the ratio tsl to of ts to to. Efflux 
times for solutions of a polyvinyl alcohol dissolved in water at 25.0°C are 
quoted below. Use these data, the program Linreg, and Eq. (7.19) re­
arranged to 

(7.32) 
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to calculate a value for the intrinsic viscosity ["JA- Intrinsic viscosities are 
related to an average molar mass M vA, called the viscosity-average molar 
mass, according to an empirical equation, 

(7.33) 

where K = 2.0 X 10-2 cm3 g-I and aA = 0.76 for the aqueous polyvinyl 
alcohol solutions. Calculate the viscosity-average molar mass for the poly­
vinyl alcohol. 

gA/(gL- 1) IsIs 

.00 262.30 
2.00 285.40 
4.00 312.50 
6.00 343.70 
8.00 378.80 

10.00 419.00 

7-13 The viscometer efflux times (see Exercise 7-12) listed below are ob­
tained with solutions of an atactic polystyrene in benzene at 25.0°C. The 
partial specific volume and molar mass for this polystyrene are 0.90 cm3 g-I 
and 5.6 x 103 g mol-I. Estimate the dimensions a and b of the molecule, as­
suming that it has a prolate shape and that it has no incorporated solvent. 

gA/(gL -I) IsIs 

.00 210.20 
2.00 215.50 
4.00 227.00 
6.00 245.70 
8.00 270.70 

10.00 302.70 

7-14 You are going to do a viscometry study of a macromolecule prepa­
ration with no computer at hand. You will need tables of Simha factors 
calculated as functions of the axial ratio alb (not p = bla), and vice versa. 
Revise the program S imha2 so that for prolate ellipsoids of revolution it 
calculates: (a) v A for a I b ranging from 1 to 10 in steps of 1; (b) v A for a I b = 10 
to 200 in steps of 10; (c) alb for VA = 2.5 to 10 in steps of 0.5; (d) alb for 
VA = 10 to 1000 in steps of 10. 

Macromolecules as Light-Scattering Particles 

7-15 Use the program Z imm to construct a Zimm plot for a poly­
styrene preparation in butanone. Relevant parameters for the plot are 
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A. = 436 run, Rgz = 46 run, Az = 1.29 X 10-4 cm3 mol g-Z, c = 100 cm3 g-', 
Urn = 1.03 X 106 gmol-'. Concentrations of the solutions involved are 
gA = 0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 g L -, and scattering angles are f) = 
0, 20, 40, 60, 80, 100, 120, and 1400 • 

7-16 Light scattering data obtained from a solution of cellulose acetate in 
acetone and analyzed with a Zimm plot provide the following results: 

intercept = 2.5 x 10-6 molg-' 

(~y) = 1.32 X 10-5 molg-' 
oX 8=0 

(:~) = 2.59 x 10-6 molg-'. 
9A=0 

The light used in the scattering experiments has the wavelength 436 nm, and 
the adjustable parameter c used in the plotting has the value 100 cm3 g-'. 
Calculate the molar mass, second virial coefficient, and radius of gyration for 
this macromolecule. 

7-17 In this exercise you can demonstrate the effect of the adjustable 
parameter c in Eq. (7.28) on the appearance and usefulness of a Zimm plot. 
Make Zimm plots with the program Z imm using the data given in Exercise 
7-15 and c =10, 100, 500, 1000, and 10,000 cm3 g-'. Note changes in the 
plot caused by changes in c, and decide which one (or ones) of the five plots 
could be used for an analysis that leads to information on the polymer's 
molar mass, second virial coefficient, and radius of gyration. 
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Statistical Thermodynamics 

The methods of physical chemistry create two worlds-one macroscopic 
and the other microscopic. The laws of thermodynamics open a door to the 
macroscopic world, and quantum theory is the key to the microscopic world. 
This chapter focuses on the bridge between the microscopic and macroscopic 
worlds erected by the methods of statistical thermodynamics. We begin in 
Sec. 8.1 with a review of general methods, concluding with statistical equa­
tions for calculating internal energy and entropy. A simple example (in the 
program Mixing) illustrates entropy calculations. The basic tools in the 
statistical calculation, called partition functions, are introduced in Sec. 8.2 
and then calculated (with the programs Zrot, Zvib, and Zelec). In Sec. 8.3 
we demonstrate for an ideal gas that all of the thermodynamic state func­
tions-entropies, enthalpies, chemical potentials, and heat capacities-can 
be calculated from molecular partition functions and spectroscopic data (the 
program Statcalc). The calculations in Sec. 8.3 are approximate; more 
refined versions of the same calculations are outlined in Sec. 8.4 (the pro­
gram Chas e). Ideal-gas calculations lead to the methods of statistical chem­
ical thermodynamics described in Sec. 8.5 (the program Statk). The chapter 
closes with an account of the Pauli principle and the subtleties of nuclear­
spin statistics applied to hydrogen and deuterium (programs Cpd2, Cph2, 
Cphd, S&mud2, S&muh2, S&muhd, and Statg). 

8.1 General Methods 

Any equilibrated macroscopic system has access to a fantastically large 
number of quantum states. The energy Ei for one such state is obtained from 
the energies ei of the molecules in the system, 

Ei= L ej. 

all molecules 
in the system 

(8.1 ) 

You will need to remind yourself that in this chapter Ei is an energy of the 

139 
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entire macroscopic system, while the e/s are molecular energies. (In previous 
chapters Ei was used for molecular energies.) 

Canonical Ensembles 

We call the collection of states that is available to a macroscopic system an 
ensemble. Particularly important for the thermodynamic description are 
canonical ensembles for equilibrated, closed, macroscopic systems with the 
number of molecules N, volume V, and temperature T fixed, but not the 
energy. Each state included in a canonical ensemble has a probability Pi, 
which depends just on the energy Ei , 

Pi = f(Ei) (fixed N, V and T), (8.2) 

withf(Ei) a function of Ei only. We note that, because it is a certainty that a 
system occupies one of its states, the sum of the p;'s over all of the quantum 
states equals one, 

(8.3) 

The average energy E of a closed macroscopic system is simply an ensemble 
average, 

with the summation again covering all of the accessible quantum states. We 
now build one of the bridges that links the microscopic and macroscopic by 
identifying the statistically calculated E with the thermodynamic quantity U 
called internal energy, 

U = LPiEi. (8.4) 

Corresponding to the energy Ei for the ith quantum state of a macroscopic 
system, we introduce the entropy Si, calculated with 

Si = -kB lnpi, (8.5) 

where kB is Boltzmann's constant, and an average entropy S determined by 

S = L PiSi = -kB L Pilnpi· 
i i 

We construct another bridge between the macroscopic and microscopic 
realms by identifying this statistically calculated entropy with the thermo­
dynamic entropy S, 

S = -kB L Pi lnpi· 
i 

(8.6) 
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The two equations (8.4) and (8.6) are all that is needed to begin the devel­
opment of a statistical thermodynamics for closed macroscopic systems. 

Microcanonical Ensembles 

We model isolated macroscopic systems with a different kind of ensemble. 
This one, called a microcanonical ensemble has a fixed number of molecules 
N, volume V, and energy E (rather than the fixed temperature T in the 
canonical ensemble). In the microcanonical ensemble, as in the canonical 
ensemble, probabilities for the quantum states depend only on the energy 
[Eq. (8.2)]. Thus, with the energy fixed in the microcanonical ensemble all 
of the states have the same probability, which is written Pi = I/O, with 
o a number later recognized as a measure of disorder. Equations (8.3) 
to (8.6) apply to the microcanonical ensemble, as well as to the canonical 
ensemble. Substituting Pi = I/O in Eq. (8.6), and recalling Eq. (8.3), we find 
that 

S = -kB L Pi In(I/O) 
i 

= kBlnO LPi 
i 

= kBlnO. (8.7) 

Equation (8.7) is often interpreted as an expression of the link between 
entropy and disorder. In that interpretation 0 measures disorder and is cal­
culated as the number of ways a macroscopic system can rearrange itself on 
a microscopic level without changing its macroscopic state. If, for example, a 
mixture at equilibrium contains N A A molecules and NB B molecules, 

(8.8) 

in which N = N A + NB. Since factorials are involved and the N's apply to a 
macroscopic system, 0 is an exceedingly large number. It is usually evaluated 
with the help of Stirling's approximation, 

In x! = (x + 0.5) lnx - x + 0.5 In(2n) , 

which reduces to 

In x! = xlnx - x 

if x is very large. 
The program Mixing applies Eq. (8.8) to a mixing process in a system 

that is not macroscopic in size. The program demonstrates that in such sys­
tems the Second Law of Thermodynamics is not precisely obeyed; entropy 
can decrease in a spontaneous process. 
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8.2 Partition Functions 

System Partition Functions 

We return now to canonical ensembles and construct a statistical version of 
thermodynamics based on the variables N, V, and T. The probability Pi in 
the canonical ensemble is calculated with 

exp( - Ed kB T) 
Pi= Z ' (8.9) 

in which 

Z= ~exp(;Bi), (8.10) 

is a system partition function. You are reminded again that Ei is the total 
energy of the macroscopic system in the ith quantum state, and that the 
summation covers all of the quantum states available to the system. 

Molecular Partition Functions 

At this point, we could derive equations that express all of the thermo­
dynamic state functions in terms of the system partition function Z and its 
derivatives. It is more convenient, however, to switch from the system parti­
tion function Z to a molecular partition function which is also a sum of ex­
ponential terms, but the energies involved are molecular energies ei rather 
than system energies Ei . One way to define a molecular partition function is 

z' = ~exp( - k:iT), (8.11 ) 

with the summation now covering all of the energy states accessible to an 
individual molecule. If the summation covers energy levels instead of energy 
states, 

(8.12) 

in which gj is the degeneracy of the jth energy level. If this partition function 
is multiplied by exp(eo/kBT), we obtain a more convenient molecular parti­
tion function, 

(8.13) 
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This is the molecular partition function used in the further discussion. As 
you can see, Z is like ZI except that all molecular energies are reckoned with 
respect to the zero-point energy eo. 

Molecular Partition Functions for Ideal Gases 

For an ideal gas the system partition function Z and the molecular partition 
functions Z and ZI are related according to 

and 

ZIN 

Z = N! (ideal gas) 

Z = [exp( -eo/kBT)z]N 
N! 

(ideal gas), 

where N is the number of molecules in the system. 

(8.14) 

(8.15) 

The energy ei of a molecule can always be separated into two added terms, 
eY for the molecule's translational motion and elnt for "internal" motion, 

(8.16) 

At the same time, the molecule's partition function separates into two 
corresponding multiplied factors, 

Z = ZtrZint. (8.17) 

As an approximation, we can go further and separate e;nt for internal 
motion into added terms for rotational, vibrational" electronic, and nuclear­
spin motion, 

e!nt = e~ot + e vib + eelec + e nuc 
I J kim' (8.18) 

Corresponding to this is an approximate factoring of Zint into separate rota­
tional, vibrational, electronic, and nuclear-spin partition functions, 

(8.19) 

in which 

"'" rot ( (e;ot - e~ot)) 
Zrot = ~gj - kBT ' 

J 

and similar statements for Zvib, Zelec, and Znuc. 

Boiling it all down to a sentence, statistical thermodynamics depends on 
system partition functions Z, system partition functions on molecular parti­
tion functions z, molecular partition functions on the factors Ztr and Zint. 

representing translational and internal modes of motion, and finally Zint 

on the factors Zrot. Zvib, Zelec, and Znuc representing all the internal modes of 



144 8. Statistical Thennodynamics 

motion. The last reduction is an approximation, but we will use it in this and 
the next section. Sec. 8.4 offers more refined calculations. 

Translational Partition Functions 

The translational molecular partition function Ztr for a system of volume V 
at temperature T and containing molecules of mass m is 

_ (2nmkBT)3/2 V 
Ztr - h2 . (8.20) 

This partition function, like others in this chapter, carries no units. But, un­
like other partition functions, Ztr is an extensive quantity, because of the V 
factor. 

Rotational Partition Functions 

Recall that the rotational modes of a molecule are defined with respect to 
the three principal axes, which we have labeled A, B, and C (Sec. 4.5). Three 
principal moments of intertia lA, IB, and Ie are defined with respect to these 
axes, and we introduce three parameters (BrodA, (BrodB, and (Brode, called 
characteristic rotational temperatures, 

h2 

(Brot)A = 8n2/AkB 

h2 

(Brot)B = 8n2IBkB 

h2 

(Brot)c = 8n2/ekB . 

As the name implies, these parameters have temperature (K) units. 

(8.21 ) 

For the rigid-rotor model of rotational motion the only contribution to Zint 

made by the ith rotational mode is 

(8.22) 

As an approximation the summation in this equation can be evaluated as an 
integral, with the simple result 

[ 
T ] 1/2 

(Zrot)i = (Brot)i (8.23) 

Remember that diatomic and linear polyatomic molecules have only two 
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modes of rotational motion, conventionally labeled i = Band C (Sec. 4.5). 
For those cases the full molecular rotational partition function Zrot is calcu­
lated with 

1 C 
Zrot = - II (Zrot)i (diatomic and linear polyatomic molecules), (8.24) 

(J i=B 

with (J the symmetry number. 
Nonlinear polyatomic molecules have three modes of rotational motion, 

labeled i = A, Band C, and the full molecular rotational partition function 
is 

vln C 
Zrot = - II (Zrot)i (nonlinear, polyatomic molecules). 

(J i=A 
(8.25) 

Characteristic temperatures and symmetry numbers are listed in Table 8.1 
for some diatomic molecules and in Table 8.2 for some polyatomic mole­
cules. The program Z rot calculates rotational partition functions with Eq. 
(8.24) and both the approximate Eq. (8.23) and the more accurate Eq. (8.22). 
To run the program enter only the temperature and identify the molecule for 
which the calculation is to be made. The program automatically supplies 
data from Tables 8.1 and 8.2 in the file Chap8 . m. 

TABLE 8.1. Characteristic rotational and vibrational tempera-
tures, symmetry numbers and molar masses for some diatomic 
molecules 

Molecule (T M/(gmol-1) (}rodK(*) (}vib/K(*) 

Ch(g) 2 70.906 0.351(2) 805.2(1) 
CO(g) 28.010 2.78(2) 3122(1) 
H2(g) 2 2.0159 87.55(2) 6322(1) 
HCI(g) 36.461 15.234(2) 4303(1) 
HF(g) 20.006 30.15(2) 5954(1) 
HI(g) 127.91 9.37(2) 3322(1) 
h(g) 2 253.81 0.0538(2) 308.6(1) 
N2(g) 2 28.013 2.8748(2) 3393(1) 
Na2(g) 2 45.975 0.223(2) 228.9(1) 
02(g) 2 31.999 2.080(2) 2273(1) 
S2(g) 2 64.12 0.425(2) 1044(1) 
NO(g) 30.006 2.452(2) 2739(1) 
OH(g) 17.008 27.15(2) 5373(1) 

Sources: Characteristic temperatures calculated from spectroscopic data 
tabulated by K.P. Huber and G. Herzberg, 1979, and by M.W. Chase et 
aI, 1986. 
* Numbers in parentheses denote degeneracies. 
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TABLE 8.2. Characteristic rotational and vibrational tempera-
tures, symmetry numbers and molar masses for some poly-
atomic molecules 

Molecule (J M/(gmo!-l) OrotlK(*) Ovib/K(*) 

H20 (g) 2 18.015 40.10(1) 5261(1) 
20.88(1) 2294(1) 
13.36(1) 5403(1) 

NH3(g) 3 17.031 13.59(2) 5044(1) 
8.91(1) 1470(1) 

5146(2) 
2433(2) 

CH4(g) 12 16.043 7.54(3) 4196(1) 
2206(2) 
4344(3) 
1879(3) 

C02 (g) 2 44.010 0.561(2) 1997(1) 
960(2) 

3380(1) 
C2H2(g) 2 26.038 1.693(2) 4852(1) 

2839(1) 
4740(1) 

880(2) 
1049(2) 

Sources: Characteristic temperatures calculated from spectroscopic data 
given by G. Herzberg in Molecular Spectra and Structure. III, and by 
M.W. Chase et aI., 1986. 
* Numbers in parentheses denote degeneracies. 

Vibrational Partition Functions 

For this calculation we introduce characteristic vibrational temperatures. For 
the ith vibrational mode the characteristic temperature (Ovib)i is calculated with 

(8.26) 

in which Wi is the wavenumber for the ith vibrational mode. 
For the harmonic-oscillator model the contribution made to Zvib by the ith 

vibrational mode is 

1 
(Zvib)i = , 

1 ( (Ovib)i) -exp ---
T 

(8.27) 

and the full vibrational partition function for a molecule with b vibrational 
modes is 

b 

Zvib = II (Zvib k 
i=! 

(8.28) 
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Characteristic vibrational temperatures for some diatomic and polyatomic 
molecules are listed in Tables S.1 and S.2. The program Zvib calculates 
vibrational partition functions with Eqs. (S.27) and (S.2S). 

Electronic Partition Functions 

If a molecule has n + 1 electronic levels located by the wavenumbers 
To (= 0), TI, ... , Tn, the electronic partition function Zelec is calculated 
directly as a sum 

n ( heTi) 
Zelec = ~ giexP - ksT ' (S.29) 

in which go, gl, ... ,gn are degeneracies for the electronic levels. The program 
Z e lee uses Eq. (S.29) to calculate electronic partition functions. 

Nuclear-Spin Partition Functions 

Nuclear energy states are separated by very large energies, so the sum in 
Eq. (S.13) has only a single significant term, that for the ground state, 

Znuc = go, 

where go is the ground-state nuclear-spin degeneracy for the molecule. 
If the n nuclei in a molecule have the spins II, h, ... , In, go = 
(211 + 1)(2/2 + 1)··· (2In + 1), and 

n 

Znuc = II (2/; + 1). 
i=1 

(S.30) 

Physical chemists customarily ignore this partition function in statistical 
calculations because its effects cancel in calculations of equilibrium constants 
and thermodynamic state functions for chemical reactions. There is, how­
ever, a subtle connection between rotational and nuclear-spin motion dic­
tated by the Pauli Principle, which cannot be ignored in special cases. That 
matter is discussed in Sec. S.6. 

8.3 Partition-Function Thermodynamics 

As has been mentioned, all of the thermodynamic state functions can be 
calculated from the system partition function Z and its derivatives. The same 
statement can be made for the molecular partition function z. The relevant 
equations for ideal-gas molar entropies Sm(T), molar enthalpies Hm(T), 
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molar heat capacities CPm(T), and chemical potentials J.l(T) are 

Sm(T) = Rlnz + RTC~~zt - RlnL + R 

Hm(T) - Hm(O) = RT2(a~~zt +RT 

C (T) = 2RT (aln z) RT2 (a2ln z) R 
Pm aT + aT2 + 

v v 

J.l(T) - Hm(O) = -RTlnz + RTlnL. 

(8.31 ) 

(8.32) 

(8.33) 

(8.34) 

Note that molar enthalpies and chemical potentials are calculated with re­
spect to the zero-point enthalpy Hm(O). 

Translational contributions to the thermodynamic state functions are ob­
tained by substituting Ztr calculated according to Eq. (8.20) in Eqs. (8.31) to 
(8.34). Results, after collecting all the constants, are 

[s (T)] = RI (TjK)5/2[Mj(gmol-I)] 3/2 
m tr n (Pjbar) 

- 9.5758 J K- I mol-I 

5RT 
[Hm(T)]tr = -2-

5R 
[CPm(T)]tr = T 

[ (T) - H (0)] = -RTI (TjK) 5/2[Mj(gmol-I)] 3/2 
J.l m tr n (P jbar) 

(8.35) 

(8.36) 

(8.37) 

+ (30.362 JK-I mol-I) (T). (8.38) 

All of the remaining contributions are due to internal (rotational, vibra­
tional, and electronic) modes of motion. For all of these modes the equations 
are 

Sm(T) = Rlnz + RT(a~~z)v 

Hm(T) - Hm(O) = RT2(a~~zt 

C (T) = 2RT(alnz) RT2 (a2 Inz) 
Pm aT + aT2 

v v 

J.l(T) - Hm(O) = -RTlnz, 

in which z can be Zrot, Zvib, or Zelec. 

(8.39) 

(8.40) 

(8.41) 

(8.42) 
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For example, in a full statistical calculation of the molar entropy for an 
ideal gas translational entropy [Sm(T)]tr is calculated with Eq. (8.35), and 
rotational entropy [Sm(T)]rot> vibrational entropy [Sm(T)]vib' and electronic 
entropy [Sm(T)]elec with adaptations of Eqs. (8.39) to (8.42). Then, if the 
total partition function z reduces to multiplied factors, as in Eqs. (8.17) and 
(8.19), the total entropy is 

Sm(T) = [Sm(T)]tr + [Sm(T)]rot + [Sm(T)]vib + [Sm(T)]elec· (8.43) 

Enthalpy, heat capacity, and chemical potential calculations are handled 
similarly. 

The program Statcalc does all these calculations for gases in standard 
states (i.e., for the ideal gas with P = 1 bar), assuming in the rotational and 
vibrational calculations that the rigid-rotor and harmonic-oscillator models 
are valid. The rotational calculation also uses Eq. (8.23), which evaluates a 
summation approximately as an integral. The following example shows how 
to run the program. 

Example 8-1. Use the program Statcalc to calculate the standard molar 
entropy, molar enthaply, molar heat capacity, and chemical potential for 
H20(g) at 1000 K. 

Answer. Enter the temperature 

T = 1000; 

in Statcalc and identify the component 

gas = H20; 

The program assumes P = 1 bar for the standard state, reads the necessary 
spectroscopic data from the file Chap8 .m, and calculates 

S~(lOOO) = 232.47 JK-1 mol-1 

H~(lOOO) - H~(O) = 35.829 kJmol-1 

pO(lOOO) - H~(O) = -196.64 kJm01- 1 

cRn(1000) = 41.027 J K- I mol-I. 

8.4 Refinements 

The rotational and vibrational parts of the calculations just described are 
limited by several approximations: the rigid-rotor and harmonic-oscillator 
models are used and the summation in the Eq. (8.22) is evaluated with an 
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TABLE 8.3. Spectroscopic parameters for some diatomic molecules 

Molecule we/crn- 1 Be/crn- 1 wexe/crn-1 fi../crn- 1 g Te/crn- 1 

Ch(g) 559.751 0.24415 2.6943 0.0015163 0 
CO(g) 2169.52 1.9302 13.453 0.01746 0 
H2(g) 4401.21 60.853 121.34 3.062 0 
HCL(g) 2889.59 10.5884 52.06 0.3037 0 
HF(g) 4138.73 20.9555 90.05 0.7958 0 
HI (g) 2309.06 6.512 39.73 0.1715 0 
h(g) 214.5481 0.037395 0.61626 0.0001243 0 
N2(g) 2358.57 1.99824 14.324 0.017318 0 
Na2(g) 159.11 0.15474 0.72142 0.000868 0 
02(g) 1580.1932 1.445622 11.9808 1.59 x 10-7 3 0 
S2(g) 724.67 0.2946 2.836 0.00157 3 0 

2 4700 
8500 

OH(g) 3735.21 18.871 82.81 0.714 2 0 
2 139.7 

NO(g) 1903.6 1.7042 13.97 0.0178 2 0 
2 121.1 

Source: K.P. Huber and G. Herzberg, 1979. 

integral in Eq. (8.23). The program Chase does more refined statistical 
calculations for diatomic molecules by making corrections for rotational 
stretching, vibrational anharmonicity, and rotational-vibrational inter­
actions. For details on the calculation consult comments in the program and 
the Pitzer and the Chase et a1., references cited. 

Input to the program, supplied by the file Chap8. m (Table 8.3) consists 
of values for the rotational and vibrational spectroscopic parameters We, Be, 
WeXe, lie and degeneracies g and wave-numbers Te for low-lying electronic 
levels. Example 8-2 shows how to use the program Chase. 

Example 8-2. Use the program Chase to calculate the standard molar en­
tropy, molar enthalpy, molar heat capacity, and chemical potential of N2(g) 
at 2000 K. 

Answer. The procedure for running Chase is like that for Statcalc. Enter 
the temperature, 

T 2000; 

and identify the component, 

gas N2; 
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The program calculates the results listed below and compared with the more 
approximate results obtained using Statcalc. 

S~(2000)/(JK-I mol-I) 
[H~(2000) - H~(O)JI(kJmol-l) 
[pO(2000) - H~(O)JI(kJ mol-I) 
CR,,(2000)/(J K- I mol-I) 

Calculated with 

Chase Statcalc 

252.070 
64.800 

-439.340 
35.958 

251.800 
64.534 

-439.070 
35.678 

8.5 Statistical Chemical Thermodynamics 

In addition to entropies, enthalpies, chemical potentials, and heat capacities 
for individual ideal-gas chemical components, equilibrium constants for 
entire ideal-gas chemical reactions can be calculated statistically. The key to 
this calculation is a statistical analog of the activity concept. For a compo­
nent A, define this activity analog as ZA/ N A, with ZA the molecular partition 
function for A, and NAthe number of molecules of A in the system. A 
standard value (i.e., at 1 bar pressure) for the translational contribution is 
calculated with 

(z~)A/NA = (O.025947)[MA/(gmol-I)]3/2(T/K)5/2. 

For the full value of zV NA, which is now writteniL we have 

11 = (O.025947)[MA/(gmol-I)]3/2(T/K)5/2(z~t)A' 

(8.44) 

(8.45) 

where (z~t)A includes rotational, vibrational, and electronic contributions. 
The quantities 11 give us the mathematical wherewithal to formulate 

a statistical method for calculating equilibrium constants. An equilibrium 
constant for the generic ideal-gas reaction, 

aA(g) + bB(g) -> rR(g) + sS(g), 

is calculated with 

K = [(f~r(fsO)'] ex [_ !1rHO (O)] 
(f1t(fJ)b p RT' 

(8.46) 

in which !1rHO(O) is the reaction's zero-point enthalpy. 
The program Statcalc calculates equilibrium constants with Eq. (8.46) 

and the various equations listed earlier for calculating partition functions. 
The next example introduces the program. 
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Example 8-3. You are investigating the possibility of preparing HCI(g) by 
oxidizing Ch(g) at a high temperature with steam, 

Calculate an equilibrium constant for this reaction at 800 K and inter­
pret the result. The zero-point enthalpy for the reaction is ArH(O) = 
109.150 kJ mol-I. 

Answer. Enter the temperature 

T 800. ; 

and the zero-point enthalpy 

deltaHO =109.150; 

in Statk. Identify the reaction with 

reactionList = 4 HCl + 02 - 2 H20 - 2 C12; 

Also enter 

TMin 300. ; 

Tmax 1000. ; 

for a plot of InK vs T- I in the range TMin to Tmax. The program calcu­
lates K = 0.259 at 800 K. The reaction is endothermic, so K increases with 
increasing temperature. At T = 1000 K, for example, K = 8.935. This may 
be better for your process, since it gives a higher yield of HC!. 

8.6 Nuclear-Spin Statistics 

Fermions and Bosons 

The Pauli principle informs us that systems of particles with half-integer spin 
(1/2, 3/2, 5/2, etc.) must be represented by antisymmetric wave functions, 
and systems of particles with integer spin (0, 1, 2, etc.) by symmetric wave 
functions. The former are called fermions and the latter bosons. A familiar 
example is the electron, which has a spin of 1/2 and is therefore a fermion: 
electronic wave functions in atoms and molecules are always antisymmetric. 
The principle applies at any level, however, from electrons and nuclei to 
nucleons and quarks. 
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Ortho and Para H2 and D2 

We are concerned in this section with the systems of nuclei found in homo­
nuclear diatomic molecules, for example, the hydrogen nuclei in H2 mole­
cules. Their spin is 1/2, they are fermions, and the H2 nuclear system must 
have an anti symmetric wave function. Three contributions to this wave 
function-from rotational, vibrational, and nuclear-spin factors-are im­
portant. For H2 and other homonuclear diatomic molecules, the rotational 
factors are symmetric if the rotational quantum number J is even, and anti­
symmetric if J is odd. We consider only the ground vibrational state (v = 0); 
its contributions are always symmetric. Nuclear-spin states contribute both 
symmetric and anti symmetric factors, three symmetric and one anti­
symmetric. The general rule for a homonuclear diatomic molecule whose 
nuclei have spin 1 is that the tally of spin factors is (I + 1)(21 + 1) sym­
metric and 1(2/ + 1) antisymmetric, for a total of (21 + 1)2. Molecules 
with nuclear spin states represented by symmetric factors are labeled ortho, 
and those with antisymmetric factors para. Even though they are chemi­
cally the same, ortho and para molecules behave as independent species. 
Ortho-para interconversion is extremely slow unless an efficient catalyst is 
present. 

Because the nuclei in H2 are fermions, the overall nuclear wave function 
for the molecule must be antisymmetric. Ortho H2 whose wave functions 
have symmetric nuclear-spin factors, must therefore have anti symmetric 
rotational factors defined by J = 1,3,5 .... And para H2, with antisym­
metric nuclear-spin factors, must have symmetric rotational factors defined 
by J = 0,2,4, . .. This remarkable connection between nuclear-spin and 
rotational states-forced by the Pauli Principle-is. summarized below: 

Symmetry-

Molecule Nuclear-spin Rotational 
type J= factor factor Overall Degeneracy 

Para 0,2,4, ... a a (2J + I) 
Ortho 1,3,5, ... a a 3(2J + I) 

- s = symmetric; a = antisymmetric. 

Degeneracies are noted. Rotational states always have the degeneracy 
2J + 1. Nuclear-spin degeneracies are 3 for ortho H2 molecules and I for 
para H2 molecules, as we have seen. The total degeneracy is a product of the 
nuclear-spin and rotational factors, as shown in the table. 

Hydrogen nuclei in deuterium, 2H2 or D2, have spin 1; they are bosons 
and therefore the overall nuclear wave function for the molecule must be 
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symmetric. The tally for ortho and para molecules in this case switches the 
role of rotational states: 

Molecule Nuclear-spin 
type J= factor 

Para 1,3,5, ... a 
Ortho 0,2,4, ... 

• s = symmetric; a = antisymmetric. 

Symmetry· 

Rotational 
factor 

a 

Overall Degeneracy 

3(21 + 1) 
6(2J + 1) 

The program Statg calculates and plots nuclear-rotational degeneracies 
for any homonuclear diatomic molecule, given the spin of the nuclei. Run 
the program and note the alternating participation of ortho and para mole­
cules. For a given value of J only one nuclear-spin state is allowed, either 
ortho or para, but not both. 

Partition Functions 

The point just made by the program Statg, that for homonuclear diatomic 
molecules a given rotational state allows only one nuclear-spin state, tells us 
that special rules are needed to formulate nuclear-rotational partition func­
tions. Two summations are required, one for para molecules and another for 
ortho molecules. For H2 the nuclear-rotational contribution, call it Znucrot is 

Znucrot = _L (2J + l)exp ( _ J(J +/)Orot) 
1-0,2,4 ... 

(8.47) 

The first summation covers para molecules and the second ortho. We have 
previously ignored nuclear-spin contributions in partition function calcu­
lations. That is not possible here; we are calculating a composite rotational 
and nuclear-spin partition function. 

For D2 the nuclear rotational partition function is calculated with 

" ( J(J + 1 )Brot) Znucrot = 6 _L..t (2J + 1) exp - T 
1-0,2,4 ... 

+3 _L (2J+l)exp (_J(J+/)Orot). (8.48) 
1-1,3,5, ... 

Here the first summation covers ortho molecules, and the second para. 
The programs Cpd2 and Cph2 show how Eqs. (8.47) and 8.48) are ap­

plied in the calculation of standard molar heat capacities for H2(g) and D2(g) 
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at low temperatures. These programs make separate calculations for the 
ortho and para components and also for the equilibrium and "normal" ortho­
para mixtures. Run the programs, compare the H2 and D2 heat capacity 
plots with each other, and also with the HD heat capacity plot made by the 
program Cphd. None of the orth-para complications are included in the HD 
calculations. Why not? 

Three more programs, S&mud2, S&muh2, and S&muhd, calculate 
chemical potentials and standard entropies for D2, H2, and HD. In these 
calculations the conventional subtraction of nuclear-spin contributions is 
observed. 

8.7 Exercises 

Partition Functions 

8-1 Calculate Zrot for 02(g) at 300K. 

8-2 Calculate Zyib for Na2(g) at 500 K. 

8-3 Calculate Zrot for S2(g) at 1000 K. 

8-4 Calculate Zyib for S2(g) at 1000 K. 

8-5 Calculate Zelec for Si(g) at 5000 K. 

Partition-Function Thermodynamics 

8-6 Calculate the standard molar entropy of CO(g) at 298.15 K. 

8-7 Calculate the standard molar entropy of CO2(g) at 500 K. 

8-8 Calculate the standard molar entropy of C2H2(g) (acetylene) at 800 K. 

8-9 Calculate p.°(T) - H~(O) for H20(g) at 2000 K. 

8-10 Calculate p.°(T) - H~(O) for NH3(g) at 1000 K. 

8-11 Calculate p.°(T) - H~(O) for 02(g) at 5000 K. 

8-12 Revise the program Statcalc so it calculates and prints separately 
translational, rotational, vibrational, and electronic standard molar entro­
pies. Apply this program to NO(g) at 100, 300, 500, and 1000 K. Note the 
relative importance of the four contributions to the entropy at the four 
temperatures. 

Refinements 

8-13 Use the program Chase to calculate the standard molar entropy 
S~ (T) of CO(g) at 1000 K. Compare this result with the same calculation 
done by Statcalc. 
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8-14 Use the program Chase to calculate the standard molar enthalpy 
H~(T) - H~(O) for 02(g) at 1000 K. Compare this result with same calcu­
lation done by Stat calc. 

8-15 Use the program Chase to calculate the standard chemical capacity 
p(T)o - H~(O) for I2(g) at 1000 K. Compare this result with the same cal­
culation done by Statcalc. 

8-16 Use the program Chase to calculate the standard molar entropy 
CRn(T) for OH(g) at 1000 K. 

Statistical Chemical Thermodynamics 

8-17 Use the program Statk to calculate an equilibrium constant for the 
reaction 

2CO(g) + 02(g) -+ 2C02(g) 

at 900 K. The zero-point enthalpy for the reaction is ArHO(O) = 
-558.69 kJ mol-I. 

8-18 Use the program Statk to calculate an equilibrium constant for the 
reaction 

1/2H2(g) + Ij2I2(g) -+ HI (g) 

at 700 K. The observed value is K = 7.42 and the zero-point enthalpy for the 
reaction is ArHO(O) = -4.217 kJ mol-I. 

8-19 Use the program Statk to calculate an equilibrium constant for the 
reaction 

H2(g) + CO2 (g) -+ CO(g) + H20(g) 

at 900 K. The observed value is K = 0.46 and the zero-point enthalpy for the 
reaction is ArHO(O) = 40.425 kJ mol-I. 

8-20 Use the program Statk to calculate an equilibrium constant for the 
reaction 

Ij2N2(g) + 3j2H2(g) -+ 2NH3(g) 

at 500 K. The zero-point enthalpy for the reaction is ArHO(O) = 
-38.907 kJmol- l . 

8-21 Use the program Statk to calculate an equilibrium constant for the 
reaction 

H2(g) + Ij202(g) -+ H20(g) 

at 4500 K. The zero-point enthalpy for the reaction is ArHO(O) = 
-238.921 kJ mol-I. 

8-22 Use a revised version of the program Statk to find the temperature 
at which the reaction 
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2H20(g) + 2Ch(g) --> 4HCI(g) + 02(g) 

has the equilibrium constant K = 1. At this temperature the reaction 
"turns around." The zero-point enthalpy for the reaction is t'lrHO(O) = 
109.150 kJ mol-I. 

8-23 Use a revised version of the program Statk to find the temperature 
at which the reaction 

2CO(g) + 02(g) --> 2C02(g) 

has the equilibrium constant K = l.The zero-point enthalpy for the reaction 
is t'lrHO(O) = -558.69 kJ mol-I. 

Nuclear-Spin Statistics 

8-24 Run the program Statg for a homonuclear diatomic molecule whose 
nuclei have spin ° (e.g., 160 2). Note the connection between rotational states 
(represented by J) and ortho and para nuclear-spin states. 

8-25 Run the program Statg for a homonuclear diatomic molecule whose 
nuclei have spin 1 (e.g., 14N2). Note the connection between rotational states 
(represented by J) and ortho and para nuclear-spin states. 

8-26 Run the program Statg for a homonuclear diatomic molecule whose 
nuclei have spin 3/2 (e.g., 35Ch). Note the connection between rotational 
states (represented by J) and ortho and para nuclear-spin states. 

8-27 Run the program Cph2. Which of the heat capacity curves plotted by 
the program would be observed with no catalyst present? Which would be 
observed with an efficient ortho-para-converting catalyst present? 

8-28 Write an adaptation of the program Cpd2 which calculates and prints 
(does not plot) values of [Cvm(T)]rot at a given temperature T for ortho and 
para nuclear-spin states of any homonuclear diatomic molecule whose nuclei 
are bosons. You will need to increase n, which sets the number of terms in 
the summation. Have the program make calculations at 1, 10, 100,200, and 
300 K for 14N2, whose nuclei have spin 1. Also use the program to make the 
same calculation for D2, whose nuclei also have spin 1. Why do N2 and D2 
behave so differently at low temperatures? 

8-29 Write an adaptation of the program Cpd2 which calculates and prints 
(does not plot) values of [Cvm(T)]rot at a given tepmerature T for ortho and 
para nuclear-spin states of any homonuclear diatomic molecule whose nuclei 
are fermions. You will need to increase n, which sets the number of terms in 
the summation. Have the program make calculations at 1, 10, 100,200, and 
300 K for 35Ch, whose nuclei have spin 3/2. Also use the program to make 
the same calculation for H2. Why do Ch and H2 behave so differently at low 
temperatures? 



9 
Physical Kinetics 

Our topic for the remaining three chapters, is kinetics. The term is a broad 
one with an elusive meaning. For the present the subject is divided just two 
ways, into physical kinetics and chemical kinetics. Physical kinetics means 
the study of molecular motion and its strictly physical consequences; that is 
the topic considered in this chapter. Chemical kinetics is the broad study of 
rates of chemical processes of all kinds. Its applied and theoretical aspects 
are discussed in the next two chapters. 

Sec. 9.1 takes advantage of a statistical analysis introduced by Maxwell 
for calculating the distribution of molecular speeds as a function of molar 
mass and temperature (the programs Maxwelll and Maxwel12). A detailed 
picture of two molecules colliding is developed in Sec. 9.2, and the calculation 
provides data for plots of trajectories of the colliding molecules (the program 
Collide). Sec. 9.3 quotes two of the equations that describe the processes 
of diffusion, and two programs (Diffusel and Diffuse2) demonstrate 
the progress of diffusion from plane and step sources. The topic in Sec. 9.4 is 
ions in motion and the calculation of limiting molar conductivities. Two 
programs (Lambda and Onsager) provide applications. 

9.1 Maxwell's Distribution Function 

In one of the earliest efforts to express molecular behavior by statistical 
methods, Maxwell presented an analysis equivalent to the calculation of the 
probability h(v)dv that molecules in a system at thermal equilibrium have 
speeds in the range v to v + dv. The distribution function h(v) is defined 

( m )3/2 2 ( mv2) 
h(v) = 4n 2nkBT v exp - 2kBT ' (9.1 ) 

in which m is the mass of the molecules, T is the temperature, and kB is 
Boltzmann's constant. This is more conveniently expressed with m replaced 
by the molar mass M = Lm (L = Avogadro's constant), and kB by the gas 
constant R = LkB , 

( M )3/2 2 (Mv2) 
h(v) = 4n 2nRT v exp - 2RT . (9.2) 

158 
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This is a probability distribution function with units of reciprocal speed, 
defined so that h(v) dv is a probability, and the integral of h(v) dv over all 
possible speeds from 0 to 00 is equal to I, 

J~ h(v) dv = 1. 

The program Maxwelll calculates h(v) with Eq. (9.2) for a sequence of 
increasing temperatures requested in the program. For each calculation the 
program plots a frame that can be selected for an animation, as explained in 
the program's comments. Run the program and note the broadening of the 
distribution as the temperature increases. 

The program Maxwe1l2 is similar except that it calculates h(v) for a 
sequence of increasing molar masses M. Run this program and note the 
narrowing of the distribution as M increases. 

9.2 Molecular Collisions 

Maxwell's calculation takes a statistical point of view and therefore provides 
no pictures of individual molecules. We now zoom in on a single inter­
molecular collision and calculate trajectories of the two molecules as they 
approach each other, collide, and part company. We make the calculation 
using the classical equations of motion (relying on conservation of energy 
and angular momentum). 

Picture two identical spherical molecules of mass m separated by the dis­
tance r, approaching each other in opposite directions (Fig. 9.1). Their initial 
relative speed is g, and the perpendicular distance I; between the two initial 
trajectories is a collision parameter called the impact parameter. The mole­
cules are far enough apart initially (as shown in Fig. 9.1) so they do not 

-:---+-~--------------

r b 

------- ---------E~_+_-~-

Center of mass 

FIGURE 9.1. Two molecules of mass m approaching each other, possibly to meet in a 
collision. 
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influence each other. But as they approach, their trajectories change in 
response to intermolecular forces. If band g are small enough, a collision 
occurs. 

The kinetic energy T(r) of the system comprising the two molecules is 
calculated with 

p, [(dr)2 2 (dO)2] T(r) = 2" dt +r dt ' (9.3) 

in which p, (= m/2) is the reduced mass for the two molecules and rand 0 
are as defined in Figure 9.1. We calculate the potential energy with the 
Lennard-Jones junction, 

V(r) = 4e (~) -(~) , [ 12 6] 
(9.4) 

in which e and a are empirical parameters. The first term in this function has 
a repulsion effect and the second an attraction effect. 

Initially, with r large enough that V(r) = 0, each molecule has the relative 
energy p,g2/2. This energy is conserved and at all stages of the intermolecular 
interaction is equal to the total energy T(r) + V(r), 

Angular momentum is also conserved during the collision. Initially the 
approaching molecules have the angular momentum p,bg and in general the 
angular momentum is W 2(dO/dt), so 

or 

dO bg 
dt 71' (9.6) 

Equations (9.5) and (9.6) are the equations of motion needed to solve to 
determine the trajectory of a collision. The calculation is simplified for pro­
gramming if we introduce the reduced quantities 

r* = r/a 

b* = b/a 

g* = gp,1/2 / el/2 

t* = (e I/2 /ap,1/2)t, 
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so, after some rearrangements, Eqs. (9.5) and (9.6) become 

( dr*)2 _ *2 (1 _ b*) _ 8(_1 _~) 
dt* - g r*2 r*12 r*6 (9.7) 

dO b*g* 
dt* r*2 

(9.8) 

From Eq. (9.7) we extract the function 

[ ( b*) (1 1 )] 1/2 q(r*) = g*2 1 - - - 8 - - - , 
r*2 r*12 r*6 

(9.9) 

and note that Eq. (9.7) can be written 

dr* 
dt* = ±q(r*). (9.10) 

Both signs are significant in this equation, the minus sign before the mole­
cules reach their distance of closest approach, called the turning point, and 
the plus sign after. 

At the turning point r* has its minimum value r~, calculated with the 
condition dr* / dt* = 0, or 

q(r*) = 0. 

We rearrange this equation to a polynomial form, 

g*2r*12 _ g*2b*2r*1O + 8r*6 - 8 = 0, 

(9.11 ) 

(9.12) 

identify r~ as the maximum real root of the polynomial, and calculate the 
time t~ for the molecules to reach the turning point by integrating Eq. (9.10) 
with the minus sign attached, 

J':, 1 
t~ = - rQ q(r*) dr*, (9.13) 

where ro is the value of r* when t* = 0. 
The procedure for calculating the full trajectory, followed by the program 

Collide, is: 

1. Calculate r~ with Eq. (9.12). 
2. Calculate t~ with Eqs. (9.9) and (9.13). 
3. Solve Eq. (9.10) with the minus sign simultaneously with Eq. (9.8) for 

t* = ° to t~, with ro as the initial value of r*, and 

as the initial value of O. 
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4. Solve Eq. (9.10) with the plus sign simultaneously with Eq. (9.8) for 
t* = t~ to 2t~, with r~ as the initial value of r* and the value of () calcu­
lated at t~ in the last step as the initial value of (). 

The program Collide displays the collision trajectory by plotting a vector 
oflength r /2 which locates the center of one of the molecules with respect to an 
origin located at the center of mass for the two molecules. Because the mole­
cules have the same mass m, the center of mass is fixed. Run the program and 
note the influence of the two parameters band 9 on the collision dynamics. 

9.3 Diffusion 

In a system of uniform composition there is no net transport of molecules in 
any particular direction. If you construct a plane anywhere in the system and 
count molecules crossing the plane, there are, on the average, as many mol­
ecules crossing the plane in one direction as in the opposite direction. That is 
the situation assumed in Sec. 9 .1. We take a broader viewpoint now and 
treat the important case of systems with nonuniform composition-not only 
gaseous but also liquid systems. 

If a component is nonuniformly distributed in a system, its concentration is 
high in some parts of the system and low in others, and its molecules are, on the 
average, transported in the process of diffusion from regions of high concen­
tration to those of low concentration. Molecules of all sizes are subject to dif­
fusional transport, and the general laws of diffusion are the same in all cases. 

One of these laws expresses the expected conclusion that the rate of dif­
fusion in a certain direction depends on the concentration gradient in that 
direction. We take as a simple example one-dimensional diffusion in the 
direction x. The diffusion rate is measured as a molecular flux: for a com­
ponent A that flux, call it jA, is the number of molecules of the component 
passing through a plane perpendicular to x per unit area per unit time 
(possible units are cm-2 S-I). The molecular flux jA and concentration gra­
dient dCA/dx are related by a proportionality, 

. dCA 
JA = -DA dx ' (9.14) 

with CA the molecular concentration and DA a proportionality factor called a 
diffusion coefficient (units: cm2 S-1 if CA is expressed in cm-3). 

Equation (9.14) is valid if the molecular concentration CA depends only on 
the spatial variable x and does not change with time. That is a steady-state 
condition which obtains if the molecular flux jA does not change in the x 
direction. A more general equation includes the time variable, 

(OCA) = D (02CA) ot x A ox2 . 
t 

This is a one-dimensional version of the diffusion equation. 

(9.15) 
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If the molecules are initially located in a thin plane source, and diffuse in 
the +x and -x directions from the source, Eq. (9.15) has the solution 

(9.16) 

The program Diffusel plots this function in an animation. In each frame 
of the animation CA(X, t) is plotted as a function of x for a particular value of 
DAt. The program simulates molecules diffusing from the plane source when 
the frames are viewed for increasing DAt. 

Another useful solution ofEq. (9.15) is 

CA(X, t) = c;o [1 - erf(4~At) ], 

which describes diffusion from a step source defined initially by 

CA(X,O)=CAO for-oo<x~O 

= 0 for 0 < x < +00. 

(9.17) 

The program Diffuse2 calculates frames with Eq. (9.17). When the frames 
are displayed in an animation they simulate diffusion in the +x direction 
from the step source. 

9.4 Ions in Motion 

This section presents some calculations made possible by the theory of elec­
trical conductivity. That theory is simple if the electrolyte whose conduc­
tivity is measured is very dilute. In the limiting case of infinite dilution the 
electrolyte's ions move independently under an applied electrical field, and 
the limiting molar conductivity Amo is equal to the sum of the separate ionic 
molar conductivities. The situation becomes considerably more complicated 
in any actual solution involving a finite electrolyte concentration. Then each 
ion in the solution gathers around itself an ionic atmosphere in which ions of 
the opposite charge dominate, and an ion must to some extent remain 
wrapped in this oppositely-charged atmosphere as it moves under the influ­
ence of an applied field. 

A theory developed by On sager, Debye, and Hiickel calculates the molar 
conductivity of a strong electrolyte whose molar concentration is C with an 
approximate equation, 

A ~ Amo - SC1/2 (strong electrolye), 

in which S is a parameter which also depends on Amo, 

S = B1Amo + B2. 

(9.18) 

(9.19) 
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The further parameters B\ and B2 depend on the relative permittivity er , the 
viscosity coefficient 'I of the solvent, the temperature T, the stoichiometry of 
the electrolyte, and the charges carried by the ions. 

Consider the case of a symmetric electrolyte, for which the charges z+ and 
L on the two ions produced by the electrolyte have the same magnitudes: 
the electrolyte has the formula AX and Iz+ I = IL I = z. Then, 

qz3eF2 ( 2 )1/2 
B\- --

- 24neoerRT eoerRT 
(9.20) 

B2 _ z3eF 2 ( __ 2_)\/2 
- 3n'l eoerRT ' 

(9.21 ) 

where F is Faraday's constant and q = 2 - V2. 
Equation (9.19) is accurate only for very dilute (but not necessarily 

infinitely dilute) solutions. The equation can be extended by adding a term 
that is linear in e, 

Am = Amo - sel / 2 + be (strong electrolytes), (9.22) 

with b an empirically determined (not a theoretical) parameter. The program 
Lambda fits molar conductivity data to Eq. (9.22) and calculates the limiting 
molar conductivity Amo, as shown in the next example. 

Example 9-1. Data are tabulated below for molar conductivities of aqueous 
NaCI solutions at 25.00°C. Use these data and the program Lambda to 
calculate Amo for NaCI at 25.00 0C. 

0.0001 
0.0002 
0.0005 
0.001 
0.002 
0.005 
O.oI 
0.02 

125.56 
125.21 
124.50 
123.72 
122.67 
120.58 
118.43 
115.65 

Source: Lando/dt-Bornstein, Vol. II, Part 
7, p. 52. 

Answer. The program Lambda contains all the data necessary for calculating 
the constants B\ and B2 in Eq. (9.19) for aqueous solutions at 25.00°C. To 
run the program enter only the molar conductivity data in the list LmData, 
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LmData {{.0001, 125.S6}, 

{.0002, 12S.21}, 

{.0005, 124.50}, 

{.001, 123.72}, 

{.002, 122.67}, 

{.005, 120.S8}, 

{ .01, 118.43}, 

{.02, l1S.6S}}; 

The program fits these data to Eq. (9.22) and calculates a value for Amo (Lmo 
in the program). The data-fitting task is complicated by the fact that S in Eq. 
(9.22) cannot be calculated at the outset because it depends on Amo, which 
we need to calculate. That problem is handled in Lambda by guessing an 
initial value for Amo, and then, with data fitting, calculating better values of 
Amo and S, followed by another data-fitting step, and so forth. The guessed 
value of Amo can be obtained from the first item in the data list, entered on 
the first line of code after the data, 

LmO = 126.; 

The program calculates Amo = 126.452 Scm2 mol-I. 

For a weak electrolyte (not 100% ionized) Eq. (9.18) must be modified. If 
the weak electrolyte has the degree of ionization IY:, aC is substituted for C, 
the equation becomes 

Amo = a(Amo - sy"'iC) (weak electrolyte), (9.23) 
and 

Am 
a = (weak electrolyte) 

Amo - s.,fiC 
(9.24) 

calculates a. 
If a value of the limiting molar conductivity Amo is available, Eq. (9.24) 

can be used to calculate a from molar conductivity data. But the equation 
has the complication that the unknown quantity a occurs on both sides of 
the equation. The term containing a on the right is generally small, however, 
so a first approximation of a can be calculated with a ~ Ami Amo. If this 
value of a is then substituted on the right in Eq. (9.24), a second approxi­
mation is obtained. Substituting this on the right in Eq. (9.24) we calculate a 
third approximation of a, and so forth. This procedure generally converges 
rapidly to an accurate value of a. 
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The program Onsager implements the procedure outlined and also cal­
culates an equilibrium constant for an ionization of the kind 

AX ~ A+ +X-, 

according to 

Y~[IX(AXhf 
K = (AXh(1 - IX) , (9.25) 

with Y + the mean activity coefficient for the electrolyte. The program calcu­
lates y~ with the Debye-Hiickellimiting law (2.61). Onsager is applied to 
the ionIzation of acetic acid in the next example. 

Example 9-2. Use the program Onsager and the acetic acid molar con­
ductivity data (taken at 25.0°C) quoted below to calculate an ionization 
constant for acetic acid. The limiting molar conductivity for acetic acid at 
25.0°C is Amo = 390.7 Scm2 mol-'. 

0.2810 
1.1135 
2.1840 

10.2830 
24.1400 
59.1200 

210.350 
127.750 
96.493 
48.146 
32.217 
20.962 

Answer. Enter the concentration and molar conductivity data, 

Data = {{.0000281, 210.35}, 

{.00011135, 127.75}, 

{.0002184, 96.493}, 

{.0010283, 48.146}, 

{.002414, 32.217}, 

{.005912, 20.962}}; 

and the limiting molar conductivity, 

LmO = 390.7; 

The program calculates the average value K = 1.752 X 10-5 for the acetic 
acid ionization constant. 
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9.5 Exercises 

Maxwell's Distribution Function (and Others) 

9-1 In his 1866 paper, On the Dynamical Theory of Gases, Maxwell did not, 
in fact, mention the distribution function h(v) defined in Eq. (9.2). Instead, 
he introduced the probability density 

1 (v; + v; + v;) 
""""33/2 exp - 2 a n a 

that a gas molecule has velocity components between 

Vx and Vx + dvx , Vy and Vy + dvy , Vz and Vz + dvz • 

Maxwell called the constant a the modulus of velocity. In our terms, a2 = 
2RT / M, and this function is 

g(v) = (2n~T y/2 exp ( _ ~v;). (9.26) 

Revise the program Maxwe 111 so it calculates and plots this function for 
values of v ranging from -2000 m S-I to +2000 ms-I. Suppress the anima­
tion and make one plot for M = 40 gmol- I and T = 1000 K. Compare this 
plot with that of h(v) and explain the difference. 

9-2 Equation (9.2) expresses a speed distribution function. It can be con­
verted to a kinetic energy distribution function, 

(9.27) 

where Ek is the molar kinetic energy andf(Ek) is the probability density for 
kinetic energies between Ek and Ek + dEk. Adapt the program Maxwelll 
so it plots this function at T = 1000 K (suppress the animation). Notice that 
the molar mass M is not needed in this calculation. 

9-3 Photons in blackbody radiation are distributed over energy according 
to a function which has features in common with the Maxwell distribution 
function g(v). The photon function is usually expressed as a frequency dis­
tribution, 

8nh v3 
p(v) --7 exp(hv/kBT) - 1 ' 

but it can be converted to a function of the photon molar energy E = Lhv, 

8n E3 
p(E) = L4h3c3 exp(E/ RT) - 1 . (9.28) 
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This function has a maximum value for EMostProb determined by dp(E)/ 
dE = 0, or 

EMostProb = 3 [1 _ (_ EMOStPrOb)] 
RT exp RT ' 

which has the approximate solution 

EMostProb = 2.82144RT. (9.29) 

Write an adaptation of the program Maxwelll which plots p(E) in an ani­
mation covering the temperature range 500 to 2000 K in steps of 100 K. 

Molecular Collisions 

9-4 If the impact parameter b* is large enough, two molecules mayor may 
not actually come in contact with each other when they "collide." At low g* 
the collision is a contact event, but for higher g* the molecules pass each 
other without making contact. Between these two cases there is a special 
situation in which the collision interaction causes the two molecules to orbit 
each other. Such an orbiting collision is defined by 

dr* /dt* = 0, 

and also by 

dUO /dr* = 0 (maximum), 

in which U* is the effective potential, 

U -4 --- +--* (1 1) b*2 g*2 
- r*12 r*6 2r*2' 

(9.30) 

(9.31) 

(9.32) 

including a Lennard-Jones term and also a centrifugal potential due to the 
centrifugal force. This function has a minimum and a maximum, both de­
fined by dUo /dr* = 0; as Eq. (9.31) indicates, orbiting collisions are defined 
by the maximum. From Eqs. (9.7), (9.l2) and (9.30) we derive 

and, from Eqs. (9.31) and (9.32), 

g*2b*2r*1O - 24r*6 + 48 = O. 

Eliminating g*2b*2r*1O between Eqs. (9.33) and (9.34), we have 

g*2r*12 - 16r*6 + 40 = 0, 

which has the solution 

* = [16 + }256 - 160 g*2]1/6 
rm 2 g*2 ' 

(9.33) 

(9.34) 

(9.35) 
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corresponding to the U* maximum. Notice that no real value of r~ exists, 
and orbiting collisions are not possible, if g* > (256/160)1/2 = 1.26491. To 
calculate a value of b* corresponding to g* we substitute r~ in Eq. (9.33) and 
solve for b*, 

(9.36) 

Write an adaptation of the program Collide that simulates an orbiting 
collision by including Eqs. (9.35) and (9.36). Input to the program should be 
a value of g*. There is no turning point in this case, but instead an "orbiting 
point," where orbiting begins. Have the program calculate (approximately) 
tm , the time elapsed before the molecules reach the orbiting points, then 
calculate and plot the trajectory before the orbiting point, and finally plot a 
circle of radius rm/2 simulating the orbits (they are all alike). Run the pro­
gram for g* = 0.1,0.5, 1.0 and 1.2. How does the value of g* affect the orbits? 
For more on orbiting collisions and other aspects of collision dynamics see 
Eyring, Lin and Lin. 

9-5 Usually the molecules that meet in a collision are deflected, that is, 
directions of their trajectories before and after the collision are different. 
Under special conditions, that is not the case. Demonstrate this by running 
the program Collide for b* = 2 and various values of g* between 0.3 and 
0.4. By trial and error find a value of g* for which the collision causes 
no deflection, even though the two molecules contact each other in the 
collision. 

9-6 The program Collide plots the trajectory of one molecule involved in 
a two-molecule collision. Improve the picture by modifying Collide so it 
plots trajectories for both of the molecules. 

Diffusion 

9-7 The program Diffusel plots frames for an animation that displays 
the progress of diffusion for increasing values ofthe variable DAt. Revise the 
program so it plots frames for increasing time t rather than DAt. Assume 
that the diffusion coefficient is DA = 10-5 cm2 s-I. 

9-8 Revise the program Diffusel so that, instead of plotting a series of 
frames, each one of which is a complete plot of CA(X, DAt) vs x for a partic­
ular value of DAt, the program makes a single plot of CA(X, DAt) vs DAt for a 
particular x. 

9-9 Write a program which makes a three-dimensional plot of cA(x,DAt) 
vs x and DAt for a plane source. 
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Ions in Motion 
9-10 Data are tabulated below for molar conductivities of aqueous NaI 
solutions at 25.0°C. Use these data, the program Lambda and ANa+ = 
50.11 Scm2 mol-1 for the ionic molar conductivity of Na+ to calculate the 
ionic molar conductivity of r. 

0.0005 
0.001 
0.005 
0.01 
0.02 

125.36 
124.25 
121.25 
119.24 
116.70 

Source: Landoldt-Bomstein, Vol. II, Part 
7, p. 53. 

9-11 Some electrolytes usually regarded as "strong" are actually to some 
extent "weak" because of extensive ion-pair formation. Demonstrate this 
to be the case for MgS04 in dilute aqueous solutions, using the program 
Onsager and the molar conductivities tabulated below. The limiting molar 
conductivity for MgS04 is 266.1 S cm2 mol-I. 

0.8098 
1.634 
2.692 
4.297 
6.005 
8.380 

Source: C.W. Davies, 1962, p. 13. 

254.62 
248.54 
242.68 
235.70 
229.84 
223.22 
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Chemical Kinetics in Use 

Many chemical and biological processes have measurable rates that can be 
studied in experiments and modeled mathematically with the methods of 
chemical kinetics. The strategy of the modeling, sketched in Sec. 10.1, is 
conceptually simple, and it has been applied far and wide by practitioners of 
many kinds. Sec. 10.1 applies the kinetic analysis to reacting systems ap­
proaching equilibrium and steady-state conditions (the programs Chemkin 
and xss). The kineticist's view of more complicated reaction schemes is 
illustrated in Sec. 10.2, with accounts of the kinetics of catalytic cycles, sim­
plified versions of biochemical cycles, and branching reactions (the programs 
Catcycle, Cycle, Krebs, and Branch). In Sec. 10.3 the kinetic analysis 
implied by two mechanisms of polymerization reactions is the topic (the 
programs Chain and Step). Not only chemists, but biologists and bio­
physicists (among others, including geologists, chemical engineers, and phar­
macologists), have found remarkable uses for the concepts and methods 
of chemical kinetics. We see an example of biological kinetics in Sec. 10.4 
(Biokin) and biophysical kinetics in Sec. 10.5 (Hodgkin). 

10.1 Chemical Kinetics 

Chemical rate processes are modeled with differential equations, each equa­
tion expressing a rate as a function of concentrations of the reactants entering 
into the process. For example, if the chemical process of interest is a reaction 
whose stoichiometry is 

A+B~R, (10.1 ) 

the rate of the reaction, expressed as d[R}/dt, the rate of formation of the 
product R, might be calculated with 

d~~l = k[A][B], (10.2) 

171 
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in which [ ] denotes a molar concentration, and k is a compoSltlon­
independent, but usually temperature-dependent, "constant" called a rate 
constant. 

Chemical statements like (l0.1) can be understood on two levels: 
"A + B -+ R" may represent an elementary reaction or a complex reaction. 
If (10.1) is elementary it is irreducible; the reactions occurs when molecules 
of A and B interact directly. But if (10.1) represents the net result of a com­
plex chemical process, it may ignore some of the details such as the occur­
rence of intermediates. For example, A and B may participate in an elemen­
tary reaction which produces the intermediate X, 

I 
A+B ---t X, (10.3) 

and then X participates in a seeond elementary reaction which forms the 
product R, 

2 
X ---t R. (10.4) 

These two elementary steps constitute the mechanism of the reaction. Their 
net effect is (l 0.1 ). 

The rate equation (10.2) has an unfortunate ambiguity. It is certainly valid 
if (10.1) is an elementary reaction, but it may also be valid if the reaction has 
a mechanism expressed by (10.3) and (10.4), and it is even consistent with 
other mechanisms. If Eq. (10.2), or another equation like it, applies to an 
elementary reaction we will call it a rate equation; if the equation applies to 
an entire complex reacting system we will call it a rate law. In Sees. 10.1-
10.3 we will model elementary reactions with rate equations, while in Sees. 
10.4-10.5 some complicated biological processes will be modeled with rate 
laws. 

We begin with the simple case of a reversible bimolecular reaction, 

with the rate equations, 

I 

A+B~R+S, 
2 

d[A] dt = -kl [A][B] + k2[R][S] 

d~~] = -kdA][B] + k2[R][S] 

d[R] = kdA][B] - k2[R][S) 
dt 

dJ~) = kdA][B)- k2[R][S). 

(10.5) 

(10.6) 

(10.7) 

(10.8) 

This reacting system approaches a chemical equilibrium condition in which 
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the derivatives in Eqs. (10.5) to (10.8) vanish, the concentrations reach their 
equilibrium values [Ale, [Ble, [Rle, [Sle' and 

[Rle[Sle kJ 
[Ale[Ble = k2 ' 

(10.9) 

where kJ / k2 is a kinetic evaluation of the equilibrium constant for the re­
action. 

The program Chemkin integrates Eqs. (10.5) to (10.8) for given values of 
kJ and k2, and also calculates equilibrium concentrations by finding the roots 
of Eq. (10.9) in combination with the stoichiometric conditions 

[Alo - [Ale = [Blo - [Ble 

[Rle - [Rlo = [Sle - [Slo 

[Ale + [Ble + [Rle + [Sle = [Alo + [Blo + [Rlo + [Slo, 

where [Alo, [Blo, [R)o, and [S)o are initial concentrations. 

(10.10) 

(10.11) 

(10.12) 

Many reacting systems are unable to reach a chemical equilibrium con­
dition, but some arrive at a steady-state condition instead, which has features 
in common with equilibrium. We take as an example a reaction scheme in 
which an intermediate X forms, 

J 

A+ B +===! X, 
2 

3 
X + B ----> R + S. 

The net reaction, not involving the intermediate X, .is 

A + 2B ----> R + S. 

Rate equations for this scheme are 

d[A) dt = -kJ [A) [B) + k2[X) 

d[B) dt = -kl[A)[B) +k2[X)-k3[B)[X) 

d[X) dt = kl[A)[B)- k2[X)- k3[B)[X). 

(10.13) 

(10.14) 

(10.15) 

(10.16) 

(10.17) 

If either k2 or k3 or both are large compared to kl' the intermediate X has a 
very small concentration and sooner or later (usually sooner) reaches a 
steady-state condition in which d[XJldt ~ 0, and from Eq. (10.17), 

(10.18) 

where [X)ss denotes a steady-state concentration. In spite of appearances, 
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[X]ss is not independent of time (as it would be if X were in equilibrium), 
because [AJ and [BJ change with time. 

This behavior is demonstrated by the program Xss, which calculates and 
plots [X]ss according to the accurate equations (10.15) to (10.17), and also 
with the approximate equation (10.18). The program shows that Eq. (10.18) 
is approximately correct during most of the course of the reaction with 
k,=O.1Lmol-'s-', k2 =0.ls-' and k3 =1OLmol-'s-'. Run the pro­
gram for other values of k" k2, and k3 and verify the same conclusion for 
any other values of the rate constants satisfying k2 and/or k3 » k,. If these 
conditions are not met (e.g., with k, = 0.1 Lmol-' s-', k2 = 0.1 s-' and 
k3 = 0.5 Lmol-' s-'), Eq. (10.18) is not accurate enough to be useful. 

10.2 Complex Reaction Systems 

Catalytic Cycles 

We look now at some more complicated examples of reacting systems. 
Consider first a catalytic cycle of reactions, 

, 
A+X--+R+Y 

2 
B+ Y --+ S+X. 

(10.19) 

(10.20) 

The intermediates X and Yare catalysts-they are both produced and con­
sumed in the reactions-and the reaction catalyzed is 

A+B--+R+S. 

Rate equations for this scheme are 

d[A] = -k, [A][X] 
dt 

d~~] = k, [B] [Y] 

d[X] dt = -k, [A] [X] + k2 [B] [Y] 

d[Y] dt = kdA][X] - k2[B][Y]. 

(10.21) 

(10.22) 

(10.23) 

(10.24) 

The program Cat eye le integrates these equations and plots the results. 
Run the program, and notice the behavior of the catalysts X and Y; their 
concentrations change while the reaction proceeds and return to the initial 
values, as they should for catalysts, when the reaction is completed. 



10.2. Complex Reaction Systems 175 

Reaction Cycles 
Many biochemical schemes of reactions occur in series, with the products of 
one reaction serving as the reactants in a subsequent reaction. If the series of 
reactions also forms a cycle the entire system can maintain a permanent 
steady-state condition. A simple example (not found in biochemistry) is the 
scheme 

whose rate equations are 

A~B 

B~R 

R~S 
3 

S ---+ A, 

d[Aj = k4 [Sj - k, [Aj 
dt 

d[Bj = k,[Aj- k2[Bj 
dt 

d[Rj = k2[Bj- k3[Rj 
dt 

dd~j = k3[Rj- k4[Sj. 

(10.25) 

(10.26) 

(10.27) 

(10.28) 

Given an initial supply of at least one of the components, this scheme 
establishes a true steady-state condition in which all of the concentrations 
are exactly constant, unlike the steady state mentioned in the last section 
where the concentration of the intermediate X was only approximately con­
stant. After an initial transient period this cyclic scheme does not accomplish 
a net chemical reaction: it just maintains the components in steady-state 
concentrations. The program Cycle integrates Eqs. (10.25) to (10.28) and 
plots concentrations of the four components. 

Here is another cyclic reaction scheme, which comes closer to simulating 
biochemical schemes, although it is still much simpler than the real thing, 

B~C 

R+C~S+D 

D~A. 
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To keep the system in continuous operation another reaction is included, 
which produces R at a constant rate from a reactant P whose concentration 
is large enough to be nearly constant, 

5 
P~R. 

This scheme, unlike the last one, does accomplish a net reaction, 

R~S. 

Rate equations in this case are 

d[Aj = k4 [Dj- kdA][Rj 
dt 

d[Bj = k,[Aj[Rj- k2[Bj 
dt 

d[C] = k2[Bj- k3[C][Rj 
dt 

(10.29) 

(10.30) 

(10.31 ) 

(10.32) 

(10.33) 

The program Krebs (so named because the scheme represented is a 
simplification of the Krebs cycle of biochemical reactions) integrates Eqs. 
(10.29) to (10.33) and plots concentrations of A, B, C, D and R. Run the 
program and notice that all of the components eventually reach steady-state 
concentrations, even the component R, which is being consumed in the 
cycle. Why is R not depleted? 

Branching Reactions 

The simple catalytic cycle represented by (1O.l9) and (10.20) has many 
elaborations. Consider a scheme involving three catalysts, X, Y and Z, and 
three reactions, 

, 
A+X~Y+Z 

B+Z~X+Y 

B+Y~R+X. 

Two molecules of Yare produced in the first two reactions, and both can 
react with B in the third. Thus one cycle of the net reaction is 

A+3B+X~2R+3X, 



10.3. Polymerization Kinetics 177 

which multiplies the X concentration by three and produces the product R 
from the reactants A and B. Because of the multiplication this is called a 
branching reaction. If the branching mechanism can be sustained it provides 
a very efficient reaction path, in fact, too efficient for comfort in some cases 
when the reaction goes out of control and explodes. 

A familiar example is the reaction between hydrogen and oxygen, 

2H2(g) + 02(g) ~ 2H20(g). 

At high temperatures three free radical components, H, OH, and 0, form 
and participate as X, Y, and Z in the above branching cycle, while 02, H2, 
and H20 are A, B, and R. Rate equations are 

d[H] dt = -k) [02] [H] + k2 [H2] [0] + k3 [H2] [OH] (10.34) 

d[OH] 
~ = k)[02][H] + k2[H2][0]- k3[H2][OH] (10.35) 

d[O] dt = k)[02][H]- k2[H2] [0] (10.36) 

d[H2] ----crt = -k2[H2][0]- k3[H2][OH] (10.37) 

d[02] = -kd02][H]. 
dt 

(10.38) 

The program Branch calculates values for the three rate constants k), k2, 
and k3 at a given temperature, then integrates Eqs. (10.34) to (10.38) and 
plots the results. Run the program and note that both H2 and 02 are rapidly 
depleted, after which the three catalysts, H, OH, and 0, have residual 
steady-state concentrations. That behavior is not actually observed because 
the free radicals are lost in competing reactions. 

10.3 Polymerization Kinetics 

In polymerization reactions, small monomer molecules combine to form 
polymer molecules with large linear or branched chain structures. If a single 
kind of monomer molecule M is involved the overall polymerization re­
action is 

with Mx representing a polymer molecule called an x-mer whose degree of 
polymerization is x. Monomer molecules enter into the polymerization 
reaction in two basically different modes called chain polymerization and step 
polymerization. 
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Free-Radical Chain Polymerization 

This mechanism, one route for chain polymerization, begins with the for­
mation of initiator radicals R· in the dissociation of initiator molecules I. 
The rate R; of the initiation step depends on the concentration [I] of the 
initiator, 

(10.39) 

where f is an efficiency factor and kd is a rate constant for initiator dis­
sociation. In the propagation steps of the polymerization, polymer radicals 
p. form and grow as the monomer molecules M add to initiator radicals and 
to the polymer radicals themselves. The propagation rate Rp depends on 
monomer concentration [M], the total polymer radical concentration [p.], 
and the initiator radical concentration [R·] 

Rp = kp[M][P.] + kp[M][R.], (10.40) 

in which kp is the propagation rate constant. We assume that chain poly­
merization terminates when polymer radicals react with each other in com­
bination reactions (neglecting disproportionation reactions), and express the 
termination rate 

(10.41 ) 

with k t a termination rate constant. 
Rate equations for the monomer M, polymer radicals p', the initiator I, 

the initiator radicals R·, and the polymer Pare 

d[M] dt = -Rp = -kp[M][P·]- kp[M][R.] 

d~.] = R; - Rt = 2fkd[I]- 2kt [P.]2 

dl!] = -R; = -2fkd[I] 

d[R.] 
(It = 2fkd[I]- kp[M][R·] 

d[P] = kt[P.f. 
dt 

The average degree of polymerization x is calculated with 

_ -d[MJldt 
x = d[PJldt 

kp[M][P] +kp[M][R.] 
k t [p·]2 

(10.42) 

(10.43) 

(10.44) 

(10.45) 

(10.46) 

(10.47) 



10.3. Polymerization Kinetics 179 

The program Chain integrates Eqs. (10.42) to (10.46) and plots [M], [p.], 
[I], [R·], [P], and x for the first lOs of a free-radical chain polymerization 
process. Run the program and note the [M] and [I] are nearly constant for 
the short time of the calculation, that [p.], [R·] and x quickly reach steady­
state values, and that [P] continually increases. 

Step Polymerization 
An example of step polymerization is the formation of a polyester from an 
hydroxycarboxylic acid. The monomer is HO-R-COOH (R = any divalent 
group, usually a hydrocarbon) and two monomers react with the elimination 
of H20 to form a dimer, 

HORCOOH + HORCOOH ---> HO(RCOOhH + H20. 

The dimer, also an hydroxycarboxylic acid, can react with another monomer 
to form a trimer, 

HORCOOH + HO(RCOOhH ---> HO(RCOOhH + H20, 

with another dimer to form a tetramer, 

H(ORCOOhH + HO(RCOOhH ---> HO(RCOO)4H + H20, 

and so forth. 
The essential chemical feature of step polymerization is that any monomer 

or polymer molecule in the reaction mixture can react with any other mon­
omer or polymer. We assume as an approximation that all of these reactions 
have the same rate constant, so the kinetics of step polymerization can be 
treated stochastically. 

That is what we do in the program Step. Molecules are chosen randomly 
for reaction. If Mx and My are selected, they form an (x + y)-mer Mx+y. In 
the simulation, this reaction is represented by replacing Mx in the list of the 
system's molecules with Mx+y and dropping My. The simulation begins with 
no monomer molecules. When, later, there are n (monomer and polymer) 
molecules in the system the fractional conversion p of monomer to polymer 
is defined by 

no - n 
p=--. 

no 
(10.48) 

Corresponding to this is the average degree of polymerization x, calculated 
with 

_ no 
X --- . 

n 
(10.49) 

The program proceeds to a requested maximum degree of polymerization 
Pmax and displays in a bar chart the composition of the reaction mixture. 
Each molecule is represented by a bar showing its degree of polymerization. 
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lOA Biological Kinetics 

Many important biochemical components are both supplied and removed in 
physiological processes. If there are no disturbing influences, the compo­
nent's rates of input and output to the process are exactly balanced, and the 
concentration of the component has a steady-state value. Like other steady­
state conditions we have met, these are not equilibrium situations. If they 
were, all related chemical and physical processes would come to a halt and 
be of no use biologically. 

The physiological steady-state concept is exemplified by a kinetic model 
that simulates the body's handling of glucose. Two components are involved, 
glucose and insulin, a hormone that facilitates the transport of glucose 
through cell membranes into the intracellular space where it is utilized. In 
the kinetic model, rate-law statements are made, values of rate constants are 
supplied, and a steady-state condition is expressed as a balance between the 
rates of production and removal of a component. 

There are important differences, however, between this example of "bio­
logical kinetics" and ordinary chemical kinetics. First, the biological rate 
laws serve the purposes of simulation only and do not necessarily provide 
clues concerning the underlying molecular mechanisms. Second, the steady­
state conditions reached by the biological components are true balances 
between input and output rates, not approximate statements contingent on 
certain components having very small concentrations. 

Inputs and Outputs 

In the glucose-insulin model, there is one normal glucose input to the ex­
tracellular space, from the liver, and three outputs, renal (excretion through 
the kidney), normal first-order utilization, and the second-order insulin­
controlled process that increases the rate of transport of glucose through cell 
membranes. The renal output is zero unless the glucose exceeds a certain 
threshold level. The model also shows the effect of artificially raising the 
glucose concentration temporarily with a glucose infusion. All of these pro­
cesses are represented in Figure 10.1 with 

gl = rate constant for renal output 

g2 = rate constant for first-order utilization 

g3 = rate constant for the glucose-insulin interaction 

R t = threshold for renal glucose output 

Ginf = constant rate of glucose infusion 

C1]iv = constant rate of glucose input from the liver. 
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= 0 if [G]<R. 
Ginf Renal 

Infusion Extracellular Glucose 
92[G] 

Concentration = [G) Utilization 

GUY 

Liver input 93[I][G] 

Glucose-insulin 
interaction 

FIGURE 10.1. Glucose inputs to and outputs from the extracellular space. 

The model also represents insulin input from the pancreas and output 
by first-order utilization. The pancreatic input is zero unless the glucose 
concentration exceeds a threshold level. These processes are represented in 
Figure 10.2 with 

i1([G] - Pt) 

= 0 if [G]<Pt 

Pancreatic 
input 

i) = rate constant for pancreatic input 

i2 = rate constant for first-order utilization 

PI = threshold for pancreatic input. 

Extracellular Insulin 

Concentration = [I] Utilization 

FIGURE 10.2. Insulin inputs to and outputs from the extracellular space. 
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Rate Laws 
This model is expressed mathematically with two rate laws, one for glucose, 

d[G] = Ginf + ~iv _ G - [G] - [I] [G] dt V V ren g2 g3 , 

in which V is the total extracellular volume and 

Gren = gl ([G] - R t ) if [G] > Rt 

= 0 if [G] :$; Rt , 

and another for insulin, 

d[l] . 
dt = [pan - 12 [I], 

where 

[pan = il ([G] - Pt) if [G] > Pt 

= 0 if [G] :$; Pt. 

(10.50) 

(10.51 ) 

(10.52) 

(10.53) 

(10.54) 

(10.55) 

Values for the parameters as determined by Stolwijk and Hardy (reported in 
Mountcastle's Medical Physiology) are (with some changes in units): 

V= 15L 

~iv = 8400 mgh- I 

Ginf = 80,000 mgh- I 

gl = 0.480 h- I 

g2 = 0.165 h- I 

g3 = 0.221 Lmg- I h- I 

il = 0.00401 h- I 

i2 = 0.507 h- I 

Rt = 2500 mgL- 1 

P t =51OmgL- I . 

The program Biokin integrates Eqs. (10.50) and (10.53) with these data, 
values for the initial glucose and insulin concentrations, and times tl and t2 

between which the glucose infusion is supplied. Run the program and note 
that [G] and [I] have steady-state values before the glucose infusion and then 
return to the same steady-state values after the disturbance caused by the 
infusion. Try other values for the initial concentrations and the rate of 
infusion Ginf, and demonstrate that the system always returns to the same 
steady-state condition. 
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10.5 Biophysical Kinetics 

Here is one more application of the methods of the chemical kinetics to a 
biological process. This one concerns Na+ and K+ currents across the axon 
membrane of a nerve cell, resulting in the production of an action potential. 
We will state the Hodgkin-Huxley equations for these processes and intro­
duce a program Hodgkin which simulates action potentials by solving the 
equations and plotting the results in an animation. 

The two currents mentioned, the sodium current iNa+ and the potassium 
current iK +, are calculated with 

(10.56) 

and 

(10.57) 

where rPm is the potential across the axon membrane, rPNa+ and rPK+ are 
equilibrium potentials for Na+ and K+, and gNa+ and gK+ are conductances. 
These look like Ohm's law statements, but they are actually more com­
plicated than that because the conductances gNa+ and gK+ depend on the 
membrane potential rPm. 

The ions flow through channels in the axon membrane, one for Na+ and 
an independent one for K+. The channels behave as if they had gates that 
open and close under the influence of changes in the membrane potential. 
When all the gates are open in a channel ions can pass through. When at 
least one gate is closed, the channel is blocked to the passage of ions. 

One way to model axon behavior is to assume that the Na+ and K+ 
channels both have four gates. In the K+ channels these gates are all of the 
same kind, which we designate N, and we introduce the variable n for the 
probability that one N gate is open. Probabilities that two, three, and four of 
the N gates are open are n2, n3, and n4. Since four gates have to be open to 
allow passage of K + ions, we assume that gk+ oc. n4, or 

(10.58) 

with iJK+ a proportionality constant. 
The Na+ channels are more complicated. They have two kinds of gates, 

three of one kind M, each with the probability m for being open, and one of 
another kind H with the probability h for being open. The probability that 
all four gates are open, so the channel can pass Na+ ions, is m3h, so we 
assume that 

(10.59) 

in which iJNa+ is another constant. 
Combining Eqs. (10.56) to (10.59), we have two of the components of the 

axon membrane current im . Two more contributions are important. First, 
there is a capacitative current ie, which depends on the membrane's capaci-
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tance em and also on the rate of change in the membrane potential tPm' 

ie = -em df;· (10.60) 

Second, is a "leakage" current iL due mostly to passage of Cl- through the 
membrane. This current has its own equilibrium potential tPL and con­
ductance gL (independent of the membrane potential), 

(10.61) 

Combining all of the currents iNa+, iK+, iL, and ie, we have the total 
membrane current im , 

im = -em df; + iJNa+m3h(~a+ - tPm) + iJK+n4 (tPK+ - tPm) + iJdtPL - tPm)' 

(10.62) 

The further mathematical burden is lightened by doing the calculations 
under a space-clamp condition in which the membrane current im is forced to 
have a zero value, so Eq. (10.62) becomes 

As mentioned, the Na+ and K+ gates are influenced by the membrane 
potential tPm' and that means the variables n, m, and h depend on the mem­
brane potential. Hodgkin and Huxley expressed that dependence in three 
first-order rate laws, 

dn 
- = IX (1 - n) - P n dt n n 

(10.64) 

dm 
- = IX (1 - m) - P m dt m m 

(10.65) 

(10.66) 

where the IX'S and p's are rate constants with a sensitive dependence on the 
membrane potential, calculated by Hodgkin and Huxley using empirical 
equations formulated for their model preparation, the squid giant axon. The 
equations are (with tPm measured in mY): 

O.OI(tPm + 55) 
IXn = ------'-.:,.:.:.:...,..-----'-:::-=-

1 ( tPm + 55) - exp 10 
(10.67) 

Pn = 0.055exp ( - ~o) (10.68) 
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O.I(<bm + 40) 
am = ---=F--:----'-:_=__ 

1 ( <bm + 40) - exp - '-"-'-::-=--
10 

(10.69) 

Pm = 0.108exp ( - i;) (10.70) 

ah = 0.0027exp ( - ~~) (10.71) 

1 
Ph = ( .J. + 35)· 

1 +exp 'I'm 10 
(10.72) 

The program Hodgkin solves Eqs. (10.63) to (10.72) simultaneously and 
simulates action potentials by plotting <bm vs t. The program makes a series 
of these plots, which can be displayed in an animation. Two important fea­
tures of action potentials are demonstrated, that they are generated only 
when the initial membrane potential is above a certain threshold value (about 
-60 m V) and that action potentials always have the same shape regardless 
of the conditions that initiate them. 

10.6 Exercises 

Chemical Kinetics 

10-1 Write a modification of the program Chemkin which includes a third 
reaction 

3 
R-Q, 

in addition to the two already included. Assume that the rate constant for the 
third reaction is k3 = 0.1 S-I. How does the third reaction affect the behavior 
of the reaction scheme? 

10-2 Run the program Xss with the following sets of values of the rate 
constants kl' k2, and k3. Comment on the validity of the steady-state calcu­
lation in each case. 

kJ/(L mol-I 8-1) k2/8- 1 k3/(L mol-I 8-1) 

(a) 0.1 0.1 10.0 
(b) 0.1 10.0 0.1 
(e) 0.1 10.0 10.0 
(d) 10.0 0.1 10.0 



186 10. Chemical Kinetics in Use 

10-3 Write a modification of the program Chemkin which calculates and 
plots A, R, and X concentrations for the reaction scheme 

1 2 
A --+ X --+ R. 

Assume kl = 0.5 S-I and k2 = 0.2 S-I for the rate constants, and [Alo = 
0.6 mol L -I, [Xlo = 0 and [Rlo = 0 for the initial concentrations. 

10-4 Write a modification of the program Chemkin which calculates and 
plots A, R, and X concentrations for the reaction scheme 

1 3 
A~X~R. 

2 4 

Assume kl = 0.5 S-I, k2 = 0.2 S-I, k3 = 0.1 S-I, and k4 = 0.05 S-I for the 
rate constants and [Alo = 0.6 mol L -I, [Xlo = 0, and [Rlo = 0 for the initial 
concentrations. How does the behavior of this scheme differ from that con­
sidered in the last exercise? 

Complex Reaction Schemes 

10-5 Write a revision of the program Cycle which shows the effect of 
disturbing the reacting system by abruptly changing the concentration of 
component A. Include three steps in the program: 

1. Calculate [A], [B], [R], and [S] for to = 0 to tl = 50 s. 
2. Increase [A] to 0.05 mol L -I, but leave [B], [R], and [S] unchanged. 
3. Calculate [A], [B], [R], and [S] for tl = 50 s to t2 = 150 s. 

Also have the program calculate algebraically the steady-state concen­
trations [Alss, [Bl ss , [Rlss, and [Slss' 

10-6 Write a revision of the program Krebs which shows the effect of 
disturbing the reacting system by abruptly changing the concentration of 
component A. Include three steps in the program: 

1. Calculate all components for to = 0 to tl = 100 s. 
2. Increase [A] to 0.1 mol L -I, but leave concentrations of all other com-

ponents unchanged. 
3. Calculate concentrations of all components for tl = 100 s to t2 = 300 s. 

Also have the program calculate algebraically the steady-state concentra­
tions [Alss, [Blss, [Clss' [Dlss ' and [Rlss· 

10-7 Run the program Branch for T = 500,800, and 1000 K. How does 
increasing the temperature in this range affect the behavior of the system? 
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10-8 Consider the catalytic cycle of reactions, 

I 
A+X ------+ Y +R 

2 
B + Y ------+ 2X + S. 

Write a program which calculates [A), [B), [X), and [Y) for this system with 
kl = 0.1 Lmol- I and k2 = 1.0 Lmol- I S-I and [A]o = [B]o = [X]o = [Y]o = 
0.1 molL-I. Run the program and note how the behavior of this system 
differs from that calculated by the program Cat cycle. 

10-9 Consider the catalytic cycle of reactions, 

I 
A + X ------+ 2Y + R 

2 
B + Y ------+ X + S. 

Write a program which calculates [A), [B), [X), and [Y) for this system with 
kl = 0.1 Lmol- I and k2 = 1.0 Lmol- I S-I and [A]o = [B]o = [X]o = [Y]o = 
0.1 mol L -I. Run the program and note how the behavior of this system 
differs from that calculated by the program Catcycle. 

Polymerization Kinetics 

10-10 Run the program Chain with methyl methacrylate as the monomer, 
for which kp = 260 Lmol- I S-I and k t = 1.05 x 107 Lmol- I S-I at 25°C. 

10-11 Run the program Chain with styrene as the monomer, for which 
kp = 44 Lmol- I S-I and k t = 2.37 x 107 Lmol- I S-I at 25°C. 

10-12 In our treatment of free-radical chain polymerization reactions we 
did not include chain-transfer reactions in the mechanism. These are termi­
nation reactions such as 

Mm' + TA ------+ AMm + T·, 

in which Mm' is a chain radical and TA is chain transfer agent. The rate of 
this reaction is calculated as ktr [p.] [T A) and Eq. (10.41) becomes 

Rt = 2ktlP· f + ktr[P. ][TA], 

so Eqs. (10.46) and (10.47) are 

d[P] 2 
Tt] = ktlP.] +ktr[P·][TA] 

_ kp [M][P.] + kp [M][R .] 

x = ktlP .]2 + ktr[P.][T A] 

(10.73) 

(10.74) 

(10.75) 
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Rewrite the program Chain so it includes chain-transfer terms. Run the pro­
gram with the parameters already included, and in addition ktr = 100 L mol-I 
and [T A] = 0.01 mol L -I. Note that chain-transfer agents always decrease 
the average degree of polymerization x. 

10-13 In the bar chart displayed by the program Step each x-mer is listed 
separately. Adapt Step so it gives a clearer indication of the final distribu­
tion of polymer sizes by calculating the final mole fraction Ix for each x-mer 
with 

nx Ix=-, 
n 

(10.76) 

where nx and n are final values for the number of x-mers and the total 
number of molecules. Step does its calculation stochastically. The same 
calculation can be done deterministically using 

Ix = (1 - Pmax)P~, (10.77) 

with Pmax the final conversion of monomer. Write an adaptation of Step 
which calculates the mole fraction Ix both stochastically and determin­
istically and displays the calculations together in a plot. For more on 
Eq. (10.77), see Rudin, 1982, p. 178. 

10-14 The program written in the last exercise displays mole fractions Ix 
for x-mers in a polymer mixture produced by step polymerization. Write a 
program which calculates the mass fraction wx , instead of the mole fraction 
Ix, for each x-mer in the final polymer mixture. Use program (stochastic) 
data and 

nxxM nxX 
Wx=--=--

noM no' 
(10.78) 

where M is the molar mass of the monomer and no is the initial number of 
monomer molecules. This calculation can also be done deterministically 
with 

(1 )2 x-I 
Wx = X - Pmax Pmax (10.79) 

(see Rudin, 1982, p. 178). Have your program compare the stochastic and 
deterministic calculations. 

Biological Kinetics 

10-15 Run the program Biokin with the glucose-insulin interaction 
turned off (g3 = 0) and all other parameters unchanged. How does this affect 
steady-state values of [G] and [I]? 
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10-16 Run the program Biokin with pancreatic production of insulin 
turned off (il = 0) and all other parameters unchanged. How does this affect 
steady-state values of [G] and [I]? 

10-17 Write a revised version of Biokin which calculates steady-state 
values of [G]. Eliminate the glucose infusion term and suppress the plotting. 
Have the program solve Eqs. (10.50) and (10.53) with d[G]/dt = 0 and 
d[I]/dt = 0, that is, 

Ginf V - Gren - g2[G]- g3 [I] [G] = 0, (10.80) 

and 

Ipan - i2 [I] = o. (10.81) 

You will need to revise the functions Grenal and Ipancreatic, repre­
senting Gren and Ipan in the program, so they depend on [G] rather than t. 
Run the revised program for the normal case and then for four abnormal 
cases with: (a) Rt = 0; (b) Pt = 0; (c) g3 = 0; (d) il = 0; and all other parame­
ters unchanged. 

Biophysical Kinetics 

10-18 Run the program Hodgkin with rh.a+ = 20 mV and all other pa­
rameters unchanged. Assume that the initial membrane potential is rPmO = 
-50 mV and suppress the animation. How does the changed value of rh.a+ 

affect the action potential? 

10-19 Run the program Hodgkin with rPK+ = -50 mV and all other 
parameters unchanged. Assume that the initial membrane potential is 
rPmO = -50 mV and suppress the animation. How does the changed value of 
rPK+ affect the action potential? 

10-20 The Hodgkin-Huxley model simulates the behavior of the axon 
membrane when it "fires" and produces just one action potential. The model 
can be modified so it simulates a membrane firing repeatedly, something like 
the behavior of certain other kinds of excitable membranes, such as heart 
muscle. Demonstrate this by running the program Hodgkin with rPmO = 
-50 mY, rPK+ = -60 mY, iJNa+ = 500 mScm-2, tmax = 50 ms, and all other 
parameters unchanged. Suppress the animation. 

10-21 The Hodgkin-Huxley equations (10.63) to (10.72) calculate values 
of the variable n, which determines the probability that one of the gates in a 
potassium channel is open. We can use this variable to calculate probabilities 
for all of the possible configurations of a potassium channel with its 4 N 
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gates. There is a total of 16 of these configurations which we divide into 5 
groups designated No, NI, N2, N3, and N4, 

No: 1 configuration with all gates closed 

N \: 4 configurations with 1 gate open and 3 closed 

N2: 6 configurations with 2 gates open and 2 closed 

N3: 4 configurations with 3 gates open and 1 closed 

N4: 1 configuration with all gates open. 

Each group has its own probability: 

p(No) = (1 - n)4 

p(N I ) = 4(1 - n)3n 

p(N2) = 6(1 - n)2n2 

p(N3) = 4(1 - n)n3 

p(N4) = n4. 

(10.82) 

Notice that these probabilities total one, as is necessary because we have 
accounted for all of the potassium-channel configurations. The N4 config­
uration is the only one that conducts K+ ions. Write an adaptation of the 
program Hodgkin that calculates these probabilities from tmin = 0 to 
tmax = 8.1 ms and displays the results in a series of bar charts suitable for 
animation. Assume that the initial membrane potential is rPmO = -50 mY, 
and leave all other parameters unchanged. 

10-22 If you did Exercise 10-21 try this one also, which requires rewriting 
the program Hodgkin so it calculates probabilities for the 16 configurations 
allowed by a sodium channel with its 3 M gates and 1 H gate. Divide the 
configurations into 8 groups, 

HoMo: 1 configuration with all gates closed 

HoM\: 3 configurations with the H gate closed, 1 M gate open and 2 closed 

HoM2: 3 configurations with the H gate closed, 2 M gates open and 1 closed 

HoM3: 1 configuration with the H gate closed and 3 M gates open 

H\Mo: 1 configuration with the H gate open and all M gates closed 

HIM I: 3 configurations with the H gate open, 1 M gate open and 2 closed 

H\M2: 3 configurations with the H gate closed, 2 M gates open and 1 closed 

HIM3: 1 configuration with all gates open. 



Each group has its own probability: 

p(HoMo) = (1 - m)3(1 - h) 

p(HoMd = 3m(1 - m)2(1 - h) 

p(HoM2) = 3m2(1 - m)(l - h) 

p(HoM3) = m3(1 - h) 

p(HIMo) = (1 - m)3h 

p(HIMd = 3m(1 - m)2h 

p(HIM2) = 3m2(1 - m)h 

P(HI M 3) = m3h. 
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(10.83) 

These probabilities total one because they cover all of the sodium-channel 
configurations. The last configuration (HIM3) is the only one that allows 
passage of Na+ ions. Write an adaptation of the program Hodgkin that 
calculates these probabilities from lmin = 0 to lmax = 8.1 ms and displays the 
results in a series of bar charts suitable for animation. Assume that the initial 
membrane potential is tPmO = -50 mV and leave all the other parameters 
unchanged. 

10-23 The Hodgkin-Huxley model is not very sensitive to assumptions 
concerning the number of potassium and sodium gates. Demonstrate this by 
rewriting the program Hodgkin for a model that assumes 4 M, 1 H, and 
5 N gates. Make the calculation for the initial membrane potential tPmO = 
-50 mV, but leave all other parameters unchanged. Also make a calculation 
for a model based on 2 M, 1 H, and 3 N gates. 



11 
Chemical Kinetics in Theory 

One way to approach the theoretical study of chemical reactions is to bring 
the reactants together in well-defined crossed molecular beams. Then energy 
allocations to reactant and product molecules can be calculated with a kin­
ematic analysis, as will be shown in Sec. 11.1 and in the program Newt on. 
Beneath the kinematics lies reaction dynamics and its principle theoretical 
tool, the potential energy surface. A simple method for constructing poten­
tial energy surfaces is described in Sec. 11.2, and the program Leps displays 
graphical representations. The course of a reaction is traced as a path on the 
potential energy surface, up the valley of the reactants, through a pass at the 
head of that valley, and down the valley of the products. The configuration 
of the reacting system at the saddle point in the pass defines the activated 
complex, which often behaves as if it were in equilibrium with reactant 
molecules. If so, a statistical method for estimating rate constants introduced 
by Eyring is applicable. Rudiments of Eyring's theory are sketched in Sec. 
11.3 and implemented for unimolecular and bimolecular reactions in the 
programs Eyr ingl and Eyr ing2. Some features of the further theory of 
unimolecular reactions are mentioned in Sec. 11.4 and illustrated with the 
programs Beyer, Rrkm, and Whitten. We saw many examples of steady­
state conditions in Chapter 10. Usually, as the name implies, steady states 
are stable, but not always. In rare cases "steady" states are unstable, and 
the result can be chemical oscillations. Some examples are discussed in Sec. 
11.5 and illustrated with the programs Brussels, Cubecat, Cubictko, 
Limcycle, Oregon, and Thermkin. A glimpse of the complexities of 
electrode processes is given in Sec. 11.6 and the programs Butler, Dme, 
and Rde illustrate. The rate equations of conventional chemical kinetics are 
accurate when they are applied to large systems. The last section of this 
chapter (and the book) examines stochastic rate equations that apply to 
systems of all sizes-large and small-and a program Stokin simulates the 
chemical kinetics of small systems. 

192 
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11.1 Reactions in Beams 

When two reactants meet each other in a collision event a reaction may take 
place, but not necessarily. Two factors are important in determining the 
chemical effectiveness of a collision, the energy of the collision and the orien­
tations of the colliding molecules. In an ordinary "bulb" experiment, colliding 
molecules approach each other with random orientations and energies cover­
ing a broad range. This is the usual situation in kinetic studies of chemical re­
actions. But some kineticists prefer to design their experiments with the more 
definite specification of collision parameters allowed in "beam" experiments. 

In a crossed-beam experiment, the reactants in a bimolecular reaction are 
carried in collimated beams as high-speed gas-phase molecules at very low 
pressures. The apparatus in the experiment selects the speeds of the mole­
cules entering the scattering region where the reaction takes place, and also 
identifies, and measures speeds of, scattered molecules at various angles 0. 

The crossed-beam experiment is easy to understand if you care only about 
what enters and what leaves the scattering region. Suppose the reaction is 

A + Be --+ AB + e, 

where A, B, and e are atoms. One of the crossed beams contains A and the 
other Be. The precollision velocities VA and VBC of these reactant molecules 
are determined in the experiment, and the postcollision velocity v;'B and the 
scattering angle 0 of the product AB are also measured. These measure­
ments are made in the laboratory coordinate system. But scattering data are 
easier to comprehend if they are expressed in the center-oj-mass coordinate 
system, which travels with the colliding molecules and has its origin placed 
at the system's center of mass. Precollision velocities of A and Be in the 
center-of-mass system are UA and UBC, and the postcollision velocity of AB is 
U~B' The vector diagrams itn Figures 11.1 and 11.2 display these vectors, and 

FIGURE 11.1. Vector diagrams representing velocities of the colliding molecules A and 
BC in the laboratory and center-of-mass coordinate systems. The two diagrams are 
equivalent physically; the one on the right is the conventional representation. 
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FIGURE 11.2. Newton diagram for the reactive collision A + BC ~ AB + c. Note 
definitions of the scattering angles 0 and (J for the product AB in the laboratory and 
center-of-mass coordinate systems. 

in addition, the velocity Vern of the center of mass defined by 

rnA VA + rnBCvBC 
Vern = M (ILl) 

with M = rnA + rnBC the total mass. The vectorial relationship between UA 

and VA is 

( 11.2) 

The precollision relative velocities VA - VBC and UA - UBC are equal; we 
represent them with w, 

and calculate w with 

W = UA - UBC = VA - VBC, 

MUA 
W=--. 

rnBC 

(11.3) 

(11.4 ) 

The precollision relative translational kinetic energy Et is calculated with 

( 11.5) 

where 

( 11.6) 

is the precollision reduced mass. 
Now consider the postcollision velocities, represented by uAB and u~ in the 

center-of-mass coordinate system, and by vAB and Vc in the laboratory sys-
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tern. It is demonstrated in Figure 11.2, a Newton diagram, that 

where 

v' em 

V~B = U~B + V::m, 

Since linear momentum is conserved in the collision, we have 

and from this it follows that 

(11. 7) 

We use w' to represent either of the relative velocities v~B - v~ or 
U~B - u~, 

w' = V~B - v~ = U~B - u~, 

and, in analogy to Eqs. (11.4) and (11.5), arrive at 

and 

where 

I 

W= M UAB 

mc, 

E' = /-l'W2 
t 2' 

is the postcollision reduced mass. 

( 11.8) 

( 11.9) 

(11.10) 

(11.11) 

The program Newton implements these calculations. It requires as input 
data for VA, VBC, V~B' 0 (the laboratory scattering angle), mA, mB, and mc; it 
calculates Et, Ef, and e (the center-of-mass scattering angle); and it draws a 
Newton diagram. 

Example 11-1. The reaction K + 12 ---+ KI + I has been studied by Gillen, 
Rulis, and Bernstein in crossed-beam experiments. In one series of measure­
ments, the average speed of 12 molecules in one beam was 172 m S-1 and 
of K in the other was 794 m S-I. The maximum flux of the product was 
observed at a laboratory scattering angle of 0 = 30 0 , and the KI speed 
there was 360 m S-I. Calculate the precollision and postcollision relative 
translational kinetic energies Et and Ef, and the center-of-mass scattering 
angle e. 
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Answer. Enter the given speeds of K, 12, and KI (in m S-I) and the scattering 
angle (in degrees) in Newton, 

wA = 794.; 

wBC = 172.; 

wAB1 = 360.; 

labTheta = 30.; 

Also enter molar masses of K, I, and I (in g mol-I), 

rnA = 39.1; 

mB 126.9; 

mC 126.9; 

The program calculates Et = 11.2 kJ mol-I, E~ = 8.3 kJ mol-I, and () = 
20.8°. 

11.2 Potential Energy Surfaces 

One of the principal aims of kineticists is to describe the dynamics of chem­
ical reactions. In the last section, we made a beginning by describing the 
kinematics of a reaction taking place in the scattering region where two 
molecular beams cross. We calculated the translational kinetic energy input 
and output and scattering angle for a reactive collision event. But that de­
scription omits an important feature of the dynamics: it says nothing about 
the forces that influence a reactive encounter between molecules. The theory 
must also include those forces expressed as the potential energies from which 
they are derived. 

As a simple example we again discuss a three-atom reaction of the kind 

A+BC-+AB+C. 

This reaction begins with the diatomic molecule BC and ends with another 
diatomic molecule AB. We have seen how to express potential energies of 
stable diatomic molecules with Morsefunctions (Sec. 4.1). The Morse func­
tion used by spectroscopists is given by Eq. (4.3), 

(11.12) 

in which x is the displacement of the nuclei in the diatomic molecule from 
their equilibrium positions (when V = 0), P is a constant which can be cal­
culated from spectral data (see the program Morse), and De is the asymp­
totic value of V, approached as x -t 00. 



11.2. Potential Energy Surfaces 197 

We revise Eq. (11.12) by replacing x with the equivalent R - Re, where R 
is the internuclear distance and Re is the equilibrium value of R, 

V(R - Re) = De[l - e-P(R-Rc)f. (11.13) 

We will also find it expedient to calculate V(R - Re) - De rather than 
V(R - Re). Call this quantity VM(R - Re), 

VM(R - Re) = V(R - Re) - De = De[e-2P(R-Rc) - 2e-P(R-Rc)J, (11.14) 

and note that VM(R - Re) = -De when R = Re, and that VM(R - Re) --t 0 
as R --t 00. 

With all the parameters in Eq. (11.14) evaluated for BC, and with 
R = RBC, the BC internuclear distance, the equation is a suitable repre­
sentation for the potential energy of the reactants A + BC in the reaction we 
are considering. [On the reactant side, the internuclear distances RAB and 
RAC are much larger than RBC, so the potential energy calculated with Eq. 
(11.14) for the AB and AC interactions can be neglected.] Similarly, Eq. 
(11.14) with R = RAB, and all the parameters evaluated for AB, accounts for 
the reaction's products AB + c. 

How do we interpolate between these two extremes to calculate the 
potential energy of the reacting system when all three atoms are in close 
proximity? That calculation is never easily done accurately. We use a simple, 
mostly empirical, calculational method developed in the early days of quan­
tum theory by London, Eyring, and Polyani, and later modified by Sato. 
The method, labeled LEPS for its authors, was derived in the context of 
valence bond theory. We quote just the final formulas and show how they 
are used in the program Leps to make the potential energy calculation for 
the three-atom reaction. 

The central equation in the LEPS three-atom calculation is London's po­
tential energy equation, 

VL = QAB + QBC + QAC 

- {(lj2)[(lAB - JBC)2 + (JBC - JAc)2 + (lAc -lABfnl/2, (11.15) 

in which the Q's and J's, called Coulomb and exchange integrals, are valence­
bond counterparts of the Coulomb and bond integrals of molecular-orbital 
theory. Sato modified Eq. (11.15) by including another empirical parameter 
K in a denominator factor, 

(11.16) 

where Vs is Sato's version of the three-atom potential energy. Equations for 
the Coulomb and exchange integrals, also involving K, are 

Q = De [(3 + K)e-2P(R-Rc) _ (2 + 6K)e-P(R-Rc)] (11.17) 
4 

J = ~e [(1 + 3K)e-2P(R-Rc) - (6 + 2K)e-P(R-Rc)]. (11.18) 
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Equation (11.15) requires calculation of Coulomb and exchange integrals 
for three possible diatomic combinations, AB, AC, and Be. That means the 
independent variables in the calculation are the three internuclear distances 
RAB, RAe, and RBC. One of these variables can be eliminated if we assume 
a fixed geometry for the transition states. The simplest possibility is linear 
transition states for which 

(11.19) 

11.3 Activated-Complex Theory 

In its simplest version activated-complex theory begins with three funda­
mental assumptions: 

• That the reactant molecules, product molecules, and activated complexes 
are all in thermal equilibrium, that is, they are distributed among their 
quantum states according to the Boltzmann distribution law. 

• That in a reaction forming an activated complex Xt, 

A + B -> xt -> R + S, 

the reactants A and B, and the activated complex Xt, appear to be 
in chemical equilibrium, so the concentration ratio [Xt]/[A][B] can be 
assumed to have its equilibrium value. This a vital assumption because it 
permits the use of partition functions to calculate the concentration ratio 
(Sec. 8.5). 

• That the forward rate of the reaction is equal to the rate of crossings of 
activated complexes along the reaction path through the saddle point on 
the reaction's potential energy surface between the reactant and product 
valleys. This assumption, which has its exceptions, requires that the re­
action path traverse the saddle point only once; meandering paths with 
multiple crossings are not allowed. 

These assumptions lead finally to the Eyring equation for calculating rate 
constants, 

k = (LkBT /h)(qt/qAqB) exp( -E~/ RT) (bimolecular reactions), (11.20) 

in which the q's are partition functions expressed per unit volume and E~ 
is the reaction's threshold energy. In Sec. 8.5, we used partition functions 
defined zA/NA for a component A. In Eq. (11.20) they are replaced by par­
tition function of the kind qA = ZA/ V, calculated with 

qA = (1.8793 X 1023 L-1)[MA/(gmol- I)](T/K)3/2(Zint)A- (11.21) 

[Do not confuse L in Eq. (11.20) with L in Eq. (11.21); the former is 
Avogadro's constant and the latter the liter volume unit.] Thus qA has the 
units L -I and qt/ q A qB the units L. Because the factor LkB T / h has mol-I S-I 
units, we see that Eq. (11.20) calculates k in the usual units for a bimolecular 
reaction, L mol-I S-I. 
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Equation (11.2) calculates rate constants for bimolecular reactions. The 
same analysis applies to unimolecular reactions, except that the partition­
function ratio qt/ qAqB is replaced by qt! qA, 

k = (LkBT /h)(qt!qA) exp( -EJ! RT) (unimolecular reactions). (11.22) 

The program Eyr ing1 uses Eqs. (11.21) and (11.22) to calculate rate 
constants for unimolecular reactions, and Eyr ing2 does the same thing for 
bimolecular reactions with Eqs. (11.20) and (11.21). 

Example 11-2. Consider the bimolecular gas-phase reactions, 

H + HBr -----t H2 + Br, 

which you can assume proceeds through the linear activated complex H-H­
Br, whose bond distances are RHH = 0.90 A and RHBr = 1.50 A. The bond 
distance in HBr is 1.413 A, and the single vibrational mode for HBr has the 
wavenumber 2560 em-i. Vibrational modes for the activated complex have 
the wavenumbers 1313, 540 and 540 em-i. The threshold energy for the re­
action is 5.0 kJ mol-i. Estimate the rate constant for the reaction at 300 K. 

Answer. The data supplied have been converted to rotational and vibra­
tional characteristic temperatures for HBr and the activated complex, and 
the results entered in the data file Chap 11. m, read by the Eyr ing pro­
grams. To finish the calculation using Eyr ing2, we need only enter in 
reactionList the "reaction" that forms the activated complex, 

ReactionList = HHBrac - H - HBr; 

Note that the suffix ac denotes an activated complex. Also enter the tem­
perature for which the calculation is to be made, 

T = 300.; 

and the value of the reaction's threshold energy (in J mol-i), 

EdaggerO = 5000.; 

The program calculates k = 2.4 X 109 Lmol- i S-i. A measured value is k = 
3 X 109 L mol- i S-i. Considering the uncertainties, the agreement is good. 

11.4 Unimolecular Reactions 

Unimolecular reactions are not strictly unimolecular. A reactant molecule 
acquires energy in a bimolecular interaction with another molecule M, and 
then the energized A molecule forms products in a unimolecular step. The 
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energized molecule can also lose energy to M molecules. The full mechanism 
IS 

A + M ~ A*(Ei) + M Rate constant = ki 

A*(Ei) + M ~ A + M Rate constant = k2 
3 

A*(E;) -4 Products Rate constant = k(Ei), 

where A*(Ei) is an energized reactant molecule with energy Ei. The rate 
constants k(Ei) for the product-forming reaction in Step 3 are called micro­
scopic rate constants. This mechanism leads to the rate equation 

k(Ei)[A*(Ei)] 
Rate = ~ 1 + k(E;)/k2[M]' (11.23) 

The number of energy states available to reacting molecules is enormous, 
large enough so Ei can be treated as a continuous variable E. Then the 
microscopic rate constants k(Ei) become a continuous function k(E) and the 
concentration of energized molecules [A*(Ei)] is expressed P(E) [A] dE, 
where P(E)dE is the fraction of the total concentration of molecules [A] 
having energies in the range E + dE. The summation in Eq. (11.23) becomes 
an integral, 

R - Joo k(E)P(E)[A]dE 
ate - Eo 1 + k(E)/k2[M] , 

(11.24) 

in which Eo is the threshold above which the reaction can take place [i.e., 
k(E) = 0 for E < Eo]. 

Further theoretical progress is made by introducing the continuous density 
of states N(E), which counts the number of states available per unit of 
energy in the energy range E to E + dE. Not all of these states are occupied 
by molecules. The Boltzmann distribution function exp( - E / RT) / z (z is a 
molecular partition function; see Sec. 8.2) determines the fraction of the 
states counted by N(E) that is actually occupied. Multiplying N(E) by the 
Boltzmann factor, we obtain the function P(E) in Eq. (11.24), 

N(E) exp (-RE ) 
P(E) = T 

z 
(11.25) 

From Eqs. (11.24) and (11.25), we see that the density of states N(E) and 
the microscopic rate constants k(E) are the keys to the calculation. The 
RRKM theory, developed by Rice and Ramsperger, Kassel, and most re­
cently, Marcus, calculates the microscopic rate constants k(E) in a statistical 
manner. The theory assumes that on the time scale of the reaction the 
reactant's internal molecular energy is rapidly and randomly distributed 
among all of the molecule's vibrational and rotational states. If the energy E 
is greater than the threshold energy Eo for the reaction, this distribution 
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eventually concentrates energy in the right molecular location to form the 
activated complex, and the reaction can proceed to products. 

This statistical picture, and the methods of activated-complex theory, lead 
to a simple equation for calculating microscopic rate constants, 

k(E) = Gt(E - Eo)/hN(E), (11.26) 

where h is Planck's constant, N(E) is the density of states for the reactant 
and Gt(E - Eo), a sum of states, covers all the states available to the acti­
vated complex in the energy range Eo to E. 

The program Rr km calculates microscopic rate constants according to 
Eq. (11.26), Beyer calculates N(E) and G(E) for vibrational states with a 
direct count algorithm, and Whitten does the same calculation with an 
analytical procedure. 

11.5 Oscillating Reactions 

In Sec. 10.2, we discussed chain reactions which are unstable and possibly 
explosive because the free radical intermediates that propagate the chain 
cannot be maintained in steady-state concentrations; the radical concen­
trations increase exponentially and the system can explode. 

We now consider some exotic reacting systems that are unstable for more 
subtle reasons. In these systems steady states for the chain-carrying inter­
mediates exist-at least they can be calculated-but may not be worthy of 
the name. These "steady" states may be unsteady and unstable. If the system 
is prepared in such a state it cannot remain there: concentrations of the 
intermediates diverge from the "steady" values, either monotonically or in 
oscillations. 

The Brusselator 

Features of steady-state instabilities and chemical oscillations are most easily 
appreciated by studying an example. Consider the Brusselator model, so 
called because it was invented by Prigogine and coworkers in Brussels. The 
reaction scheme for this system is 

A~X 

B+X~R+Y 
Y+2X~3X 

4 
X ----- S, 

(11.27) 

in which A, B, R, and S are reactants and products in the overall stoi­
chiometry and X and Yare intermediates. 

Reaction 3 is like the chain-carrying steps that contribute to explosion 
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kinetics. Here we call them autocatalytic steps, and find that their kinetic 
effect is destabilizing but not catastrophic. Reaction 3 exhibits cubic auto­
catalysis because the reaction is kinetically third order. To diminish some of 
the calculational difficulties, we assume that the reactant concentrations [A] 
and [B] have fixed values. 

We write the rate equations for the Brusselator (assuming that [A] and [B] 
are constant), 

d[X] k, [A]- k2[B][X] + k3[Xf[y]- k4[X] 
do k4 

(11.28) 

dry] k2[B][X]- k3[X]2[y] 
(11.29) 

in which 0 = k4t is a unitless time-related variable. The steady-state condi­
tions for [X] and [Y] are d[X]/d 0 = 0 and d[Y]/d 0 = 0, and they permit 
calculation of the steady-state concentrations [X]ss and [Y]ss' 

[X]ss = k~~] (11.30) 

(11.31) 

Now consider the stability of these steady states. Our test for stability is an 
easy one to apply. Imagine that the two concentrations [X] and [Y] are 
temporarily displaced small amounts <5(X] and <5[Y] from the steady-state 
values [X]ss and [Y]ss. If [X] and [Y] respond to this disturbance by returning 
to [X]ss and (Y]ss' the steady state is a stable one. If, on the other hand, the 
disturbance causes [X] and [Y] to diverge further from (X]ss and (Y]ss' the 
steady state is unstable. 

These responses to the displacements <5[X] and <5[Y] are calculated by the 
quantities 

(:~l):[XJ and (:mtW], 
where [X] and M are shorthand notations for d[X]/d 0 and d(Y]jd 0, and the 
partial derivatives are evaluated for steady-state conditions, as indicated. 
The rules for stability and instability of a steady state depend on the sign of 
the sum of the two partial derivatives: if 

(:[~lt+(:[~l).< 0 

the steady state is stable, and if 

(O[X]) (O[Y]) 
a [X] ss + o[Y] ss ~ 0 
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it is unstable. For the Brusselator, the stability-instability criterion depends 
on 

(11.32) 

The program Brusse Is integrates Eqs. (11.28) and (11.29), plots [X] and 
[Y]ys T, and calculates a value for the "stability parameter" (o[X]/o[XDss + 
(o[Y]jo[YDss according to Eq. (11.32). Run the program for several cases: 
[A] = [B] = 0.01 mol L -1; [A] = [B] = 0.02 mol L -I; [A] = 0.01 mol L-1, 

[B] = 0.02 mol L -I; and [A] = 0.02 mol L -I, [B] = 0.01 mol L -I. Note that 
the stability parameter calculated by Eq. (11.32) correctly predicts stable and 
unstable steady states. 

In cases where [X] and [Y] oscillate the oscillations appear to settle into a 
pattern of constant amplitude and period. The program Limcyc Ie demon­
strates this by plotting [X] vs [Y] for the Brusselator. Regardless of the initial 
values of [X] and [Y], the plot always leads to the same closed loop called a 
limit cycle. If [A] and [B] do not change, the system traces the limit cycle 
forever. Run Limcyc Ie several times with different initial values of [X] 
and [Y]. 

Another Cubic Autocatalator 
Here is another reaction scheme with a cubic autocatalytic step, 

A~X 

X~Y 

X+2Y ~ 3Y 
4 

Y --+ R. 

Assuming that [A] has a fixed value, the rate equations are 

d[X] kl [A] - k2[X] - k3[X][y]2 
dT k4 

dry] k2[X] + k3[X][y]2 - k4[Y] 
dT k4 

(11.33) 

(11.34) 

(11.35) 

in which T = k4 t. An analysis like that outlined for the Brusselator model 
leads to 

(:~~Oss+(:~~lt= -CI - C2 + ~~ ~ ~: ' 
(11.36) 

where CI = k2/k4 and C2 = kfk3 [A]2/kl, for the stability parameter. 
The program Cubecat integrates Eqs. (11.34) and (11.35) and plots [X] 

and [Y] vs T. 
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The Oregonator 

The examples of oscillating chemical reactions mentioned so far have con­
cerned systems which have no counterpart in actual reacting systems. We 
tum now to a more realistic system called the Oregonator model (developed 
by Noyes and colleagues at the University of Oregon) which accurately 
models the much-studied Belousov-Zhabotinsky (or BZ) reaction. 

The BZ reaction brominates malonic acid (MA) with Br- and the Ce3+ I 
Ce4+ couple as catalysts. The overall stoichiometry is (approximately) 

Br- ee4+ 
2Br03 + 3MA + 2H+ ~ 2BrMA + 3C02 + 4H20. 

The Oregonator model represents the BZ reaction with the following 
scheme: 

A+Y~X+R 
X+ Y -...:.. 2R 

A+X~2X+2Z 
2X~A+R 

B+Z~ 1/2Y, 

( 11.37) 

where A = Br03, B = MA + BrMA, R = HOBr, X = HBr02, Y = Br-, 
and Z = Ce4+. These reactions are not necessarily elementary; they omit 
some of the intermediates. Rate laws for this scheme are 

d[X) k[ [A][Y]- k2[X][Y] + k3[A][X]- 2k4[Xf 
(11.38) 

dr ks[B] 

d[Y] 
= 

-k[[A][Y]- K2[X][Y] + (1/2)ks[B][Z] 
(11.39) 

dr ks[B] 

d[Z] 2k3 [A] [X] - ks [B] [Z] 
(11.40) 

dr ks[B) 

where r = ks[B] is another unitless time-related variable. 
The program Or egon integrates Eqs. (11.38) to (11.40) and plots 1O[X], 

M, and [Z] vs r. 

Thermokinetic Oscillators 

Chemical engineers are familiar with systems involving exothermic reactions 
which "catalyze" themselves because they generate thermal energy more 
rapidly than it can be conducted away from the reactor in which the reaction 
takes place. The temperature rises and the reaction rate increases because of 
the exponential (Arrhenius) dependence of the rate constant on temperature. 
This is a case of exponential autocatalysis, and it can lead to unstable steady-
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state behavior and oscillations, both chemical and thennal. A minimal 
scheme that can oscillate thennochemically is 

A~X 
2 

X--R, 
(11.41 ) 

in which Reaction 2 has an appreciable reaction enthalpy and activation 
energy. 

We express the rate constant for Reaction 2 as a function of temperature 
beginning with the Arrhenius equation, 

( -Ea) k2(T) = Aexp RT ' 

in which Ea is the activation energy for Reaction 2, and rearrange the equa­
tion to 

(11.42) 

where To is the temperature of the reactor's surroundings, IX = Eal RTJ, and 
AT = T - To. Then the rate equations are 

d~ ( ~T ) dt = kdA]- k2(To)[X] exp 1 + AT ITo (11.43) 

d(AT) (IXAT ) ----cit = y[X] exp 1 + AT ITo - pAT. (11.44) 

If A and V are the reactor's surface area and volume, p and Cp the density 
and specific heat of the reaction mixture, h the coefficient for heat transfer 
from the reactor to the surroundings, and ArH the enthalpy for Reaction 2, 
the parameters p and y in Eq. (11.44) are calculated with 

Ah 
P = Vpcp (11.45) 

y = IArHlk2(To) . (11.46) 
PCp 

The program Thermkin integrates Eqs. (11.43) and (11.44) and plots AT 
and [Xl vs t. 

We have seen in three of our examples that oscillating systems involving 
two variables, two rate equations and constant reactant concentrations have 
oscillations that follow a particularly simple pattern: the peaks all have the 
same amplitude and they occur with the same frequency. This is a period-l 
pattern. 

Autocatalytic systems described by three variables and three rate equa­
tions are considerably more complicated. The additional equation and vari­
able make possible a seemingly endless variety of oscillation patterns. We 
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take as an example an elaboration of the cubic autocatalator (11.33). We 
now recognize that Reaction 1 has an appreciable activation energy Ea, so kl 
depends on T, and that Reaction 4 is exothermic (ArH < 0). 

The rate equations for the intermediates X and Y written in terms of the 
dimensionless time variable r = k4 t, are identical to Eqs. (11.34) and (11.35), 
except that we now recognize the temperature dependence of kl' 

d[XJ kl (T)[AJ - K2[XJ - k3[X][Yf 
dr k4 

(11.47) 

d[YJ k2 [XJ + k3[X][Yf - k4 [YJ 
dr k4 

(1l.48) 

We express kl (T) approximately in terms of the unitless temperature-related 
variable e = (Ea)(AT)jRTJ, with Ea the activation energy for Reaction 1, 

(11.49) 

and this is substituted in Eq. 01.47). 
The third rate equation, which calculates the rate of change in e, is similar 

to Eq. 01.44), 

in which 

de 
dr = y[YJ - pe, 

p= Ah 
Vpcp k4 

EalArHI y-
- RTJpcp . 

(11.50) 

(11.51) 

(11.52) 

The program Cubictko integrates Eqs. 01.47), (11.48), and 01.50) and 
plots [Y] vs r. Run the program for [AJ = 0.6000 mol L -I and note that the 
oscillations occur in a period-l pattern. The oscillations are more compli­
cated when [AJ = 0.6500 molL-I: every second peak repeats in a period-2 
pattern. At [AJ = 0.6870 mol L -I there is period-4 behavior; and at [AJ = 
0.6970 mol L -I period-3. At [AJ = 0.7080 mol L -I, we are confronted with 
chaos: there are oscillations but no repeat pattern. 

For further study of chaos in the mathematical realm see Exercises 11-21 
and 11-22. 

11.6 Electrode Kinetics 

The events that take place at or near an electrode during electrolysis are 
numerous and complicated. Reactant materials are transported in several 
ways to the vicinity of the electrode surface, and product materials are sim-
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ilarly transported away. One or more electron transfer steps, converting 
oxidized forms of components to reduced forms, or vice versa, take place at 
the electrode, and these electrode reactions may be accompanied by various 
nonelectrochemical reactions. 

For our limited account, we will need to trim away some of these com­
plexities to obtain a manageable model. We assume that the electrode re­
actions consist of two n-electron transfer steps which convert an oxidized 
component Ox to a reduced component Red and vice versa, 

c 
Ox + ne-~ Red. 

a 

In the forward or cathodic direction (c) the reaction accomplishes reduction, 
and in the backward or anodic direction (a), oxidation. We assume in our 
model that Ox and Red are transported to and from the electrode surface by 
diffusion, and that no nonelectrochemical reactions are involved. In sum­
mary, the mechanism is 

c 
Ox(b) ~ Ox(s) ~Red(s) ~ Red(b), 

a 
Diffusion Electrode Diffusion 

reactions 

in which (b) and (s) represent the electro active components Ox and Red 
located in the bulk of the solution and at the electrode surface. 

The electrode reaction steps dominate the diffusion steps in the overall 
kinetics if the reaction rates are much slower than the diffusion rates. (The 
slow step is the bottleneck or rate-determining step.) We first assume that to 
be the case and develop a separate treatment of electrode reaction kinetics. 
We then assume the opposite situation, that the diffusion steps dominate 
because their rates are much less than the electrode reaction rates, and de­
scribe electrode diffusion kinetics. 

Electrode Reaction Kinetics 

As always in chemical kinetics, we are concerned with processes that are 
thermodynamically irreversible. For electrode processes an important mea­
sure of irreversibility is the overpotential 'I, defined as the difference between 
the reversible electrode potential Erm measured when the net electrode cur­
rent density jne! is equal to zero, and the irreversible potential Eirr, measured 
whenjne! "# 0, 

(11.53) 

Of particular interest to electrochemists is the connection between the over­
potential 'I and the net current density joe!' 

We approach that relationship by first writing the net rate of the electrode 
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reaction Rnet as the difference between the cathodic rate R.; and the anodic 
rate Ra, 

R net = Rc - Ra· 

With the rates Rc and Ra expressed in terms of first-order rate laws this 
becomes 

R net = kc[Oxl b - ka[Redl b , 

where kc and ka are cathodic and anodic rate constants, and [Oxlb and 
[Redlb are concentrations in the bulk of the solution. 

Each occurrence of a reaction at an electrode causes n electrons to be 
transferred to or from the electrode. Thus R net calculates the corresponding 
net current density jnet, expressed, let us say in moles of electrons per cm2 of 
electrode area per second. The current density calculated in the more famil­
iar units coulombs per cm2 per second, or amperes per cm2, is 

with F the Faraday constant. 
The equation that relates jnet and the overpotential 1'/, known as the 

Butler- Volmer equation, is 

jnet = jo [exp ( - n;~1'/) - exp(n!~1'/) l (11.54) 

The parameters IX and pare unitless quantities called cathodic and anodic 
transfer coefficients; they are restricted by IX + p = 1. The factor jo in 
Eq. (11.54), the exchange current density, expresses both the cathodic and 
anodic currents when the electrode operates reversibly (withjnet = 0). 

Over part of the range of 1'/ values the Butler-Volmer equation simplifies 
to a single exponential term because the other exponential term is negligible. 
Thus for 1'/ large in magnitude and positive 

. . (npF1'/) 11net I ~ 10 exp RT ' 

or 

. . npF1'/ 
Inllnetl ~ In 10 RT . 

For 1'/ large in magnitude and negative 

. . nrxF1'/ 
Inllnetl ~ In 10 - RT . 

In both cases a plot of the linear form 

Inljnetl = a + b1'/, 
called a Tafel plot, is indicated. 

( 11.55) 

(11.56) 

(11.57) 
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The program Butler displays plots of the Butler-Volmer equation and 
Tafel plots. Run the program and note the effects of changing the parame­
ters (x, p and io. 

Electrode Diffusion Kinetics 

We now look at an entirely different kind of electrochemistry based on elec­
trode processes dominated by diffusion rates rather than electrode reaction 
rates. We assume that the electrode reaction is rapid and reversible, and that 
the diffusion rates are relatively much slower. 

Picture a diffusion layer between the bulk of the solution and the electrode 
surface within which the concentration of Ox in our model scheme falls from 
[Oxlb, the concentration of Ox in the bulk of the solution, to [Oxl s' the con­
centration at the electrode surface. The [Ox] gradient across this layer is 
approximately ([Oxls - [Oxlb)/xox, where XOx is the width of the Ox dif­
fusion layer. The rate of diffusion of Ox across the diffusion layer toward the 
electrode is proportional to this gradient and the proportionality factor is the 
diffusion coefficient Dox for Ox, 

Rate = -Dox([Oxls - [Oxlb) . 
XOx 

The corresponding diffusion current density is 

. ( )(R ) nFDox([Oxlb - [Oxls) J = nF ate = . 
XOx 

( 11.58) 

As the potential E applied to the electrode is made more negative the rate of 
reduction of Ox to Red increases and that decreases [Oxls' finally to [Oxls = 
0, where the diffusion current has its limiting value iL, 

. nFDox[Oxlb 
JL = , 

XOx 
(11.59) 

or 

(11.60) 

The magnitude of the current density is also determined by diffusion of 
Red away from the electrode, 

We consider the case of no Red in the bulk of the solution, so [Redlb = 0, 
and 

[Redls = XRedi . 
nFDRed 

(11.61) 
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The electrode reaction we are concerned with is rapid and thermody­
namically reversible. We can therefore assume that the Nernst equation 
applies to the reaction at the electrode surface where the concentrations of 
the electroactive components are [OxJs and [RedJs' 

_ E01 RT I [RedJs 
E - - nF n [OxJs ' (11.62) 

in which EOl is a standard electrode potential measured for specific con­
ditions. 

Combining Eqs. (11.60), (11.61), and (11.62) and rearranging we have 

j 

[
nF(E - E 1/ 2)] ) 

1 +exp RT 

(11.63) 

where EI/2' the half-wave potential, is the value of the applied potential E 
which gives j its half value A/2. 

Equation (11.63) is not as simple as it looks, because the two diffusion 
layers for Ox and Red do not have the same widths, so XOx and XRed depend 
not only on the diffusion coefficients Dox and DRed but also on the time 
variable t. As a result, the half-wave potential EI/2 and the limiting current 
A are also time dependent: what you get in an electrode measurement may 
depend on when you make the measurement. 

One way to cope with this complication is to make each measurement at a 
certain well-controlled time; that is the tactic used in the electrode design 
called the dropping-mercury electrode. Another approach is to introduce 
efficient stirring of the solution (until now we have assumed that the solution 
is unstirred), so that the diffusion layers have time-independent, steady-state 
structures; this is accomplished in the rotating-disk electrode. 

The program Drne simulates a polarogram (a plot of the electrode current i 
vs the applied potential E) taken with a dropping-mercury electrode. The 
plot has "teeth," each of which follows the growth of a drop until the drop 
falls. The top of each tooth marks the point where the drop falls. The teeth 
maxima are easy to locate and together they define the shape of the polaro­
gram. The cycle of events at the dropping-mercury electrode is well enough 
defined to allow calculation of the limiting current iL according to 

1· - 706nDI/2[OxJ u2/3tl / 6 
L- Ox b , (11.64) 

written for the electroactive component Ox. In this equation Dox is a dif­
fusion coefficient measured in m2 S-I, [OxJb is a concentration in mol m-3, u 
is the mass flow rate of mercury in kg S-I and t is time in the life of a drop in 
s. Run the program Drne and note that it simulates the polarogram obtained 
with two electroactive components OXI and OX2 in the solution; their half­
wave potentials are -0.6 and -0.8 v. 

The program Rrne simulates a voltammetry plot obtained with a rotating-
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disk electrode for the same two electroactive components. Diffusion in this 
case takes place across a thin stagnant layer next to the electrode surface. 
The physical status of the stagnant layer has been treated theoretically and 
an equation for the limiting current derived, 

i = 0 620nFAd/3[Oxl v-I/16wl/2 L· ox b , ( 11.65) 

where F is Faraday's constant, A is the area of the electrode surface mea­
sured in m2, Dox is a diffusion coefficient in m2 S-l, [Oxl b is a concentration 
in molm-3, v is the kinematic viscosity (= 'lId, where 'l is the viscosity in 
kgm- I S-I and d is the density in kgm-3), and w is the angular rotational 
speed of the electrode in radians S-I [= (2n)(rpm)/601. 

11.7 Stochastic Kinetics 

Chemical kinetics, like chemical thermodynamics, is designed to describe 
macroscopic events. The rate equations of chemical kinetics are not accurate 
when a small number of molecules is involved ("small" in this case means less 
than about 10000). In this section we take a completely different approach to 
kinetics and simulate the kinetic data we would obtain if we followed 
chemical rate processes in small systems. 

The new method is called stochastic kinetics, and it is based on a proba-
bility analysis. To illustrate the strategy, we consider the reaction scheme 

A~X 

X~R 

R~X 
4 

A ---+ S. 

Suppose that at some time t the numbers of A, X and R molecules are nA, 
nx, and nR, so rates of the reactions are 

r(l) = kInA 

r(2) = k2nX 

r(3) = k3nR 

r(4) = k4nA, 

where the k's are rate constants. Then the probability p(l) for Reaction 1 is 

p(l) = r(l) , 
rsum 

in which rsum = Li r(i), and similarly for the other reactions. 
In the stochastic simulation, we allow the reactions to take place randomly 
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as dictated by the probabilities p(1), p(2), p(3), and p(4). We might, for 
example, have p(l) = 0.1, p(2) = 0.2, p(3) = 0.4, and p(4) = 0.3 at some 
time t. This tells us that Reactions 2, 3, and 4 are 2, 4, and 3 times as prob­
able as Reaction 1. The simulation algorithm makes use of running sums of 
these probabilities, 

p(l) = 0.1 

p(l) + p(2) = 0.3 

p(l) + p(2) + p(3) = 0.7 

p(l) + p(2) + p(3) + p(4) = 1.0. 

To select a reaction, the algorithm picks a random number PI from a uni­
form distribution between 0 and 1, and then makes a reaction decision based 
on the range within which PI lies: 

With PI in the range, 

0.0-0.1 
0.1-0.3 
0.3-0.7 
0.7-1.0 

the reaction selected is: 

2 
3 
4 

This accomplishes the desired result in our example: Reactions 2, 3, and 4 
are 2, 4, and 3 times as probable as Reaction 1. 

After a reaction has been selected the numbers nA, nx, and nR are changed 
according to the reaction's stoichiometry. For the example the rules are: 

Reaction IlnA Ilnx IlnR 

-1 +1 0 
2 0 -1 +1 
3 0 +1 -1 
4 -1 0 0 

The next step in the algorithm is to calculate the time • before another 
reaction (any reaction) occurs. This is done by picking another random 
number P2 from a uniform distribution in the range 0 to 1, and calculating. 
according to 

(11.66) 

which distributes the .'s according to rsume-rsumT, making shorter .'s more 
probable than longer ones. 
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The algorithm then increments the time t by T, and goes through another 
cycle of calculations: the r(i)'s and p(i)'s are recalculated, another pair of 
random numbers PI and P2 is generated, a reaction decision is made, nA, nx, 
and nR are changed, T is recalculated, t is incremented by T, and so forth. For 
more details on this method see Gillespie's paper. 

The program Stokin implements this calculation for the reaction scheme 

A~X 

X~A 
3 

X --+ R, 

assuming that the system contains 1000 molecules (of A, X, or R), and plots 
nx vs t. Stokin also calculates and plots nx deterministically, that is, using 
the rate equations 

d[A] 
dt = -kl [A] + k2 [X] 

d[X] dt = kl [A] - k2 [X] - k3[X]. 

Comparison with the stochastic calculation shows the limitations of the de­
terministic calculation for small systems. 

11.8 Exercises 

Reactions in Beams 

11-1 The reaction CH3I + K --+ KI + CH3 has been studied in molecular 
beams by Rulis and Bernstein. In a series of measurements, the average 
speed of K in one beam was 601 m S-I and of CH3I in the other was 256 
m S-I. The maximum flux of the product KI was obtained at a laboratory 
scattering angle of e = 85 0 and the KI speed there was about 450 m s-I . 
Calculate the center-of-mass scattering angle () and the relative precollision 
and postcollision energies Et and E~. Assume that the methyl group CH3-
behaves as if it were an atom. 

11-2 In the text, we developed methods for calculating precollision and 
postcollision relative translational kinetic energies Et and E~. Et is part of the 
energy input that initiates a reaction A + BC --+ AB + C. Other important 
energy inputs are the rotational and vibrational energy of BC, Er(BC), and 
Ey( BC), and the energy of the reaction itself. The latter is the difference be­
tween the dissociation energies Do(AB) and Do( BC) for AB and BC, because 
the reaction is the chemical sum of the dissociation of BC, BC --+ B + C, and 
the reverse of the dissociation of AB, A + B --+ AB. The total energy input 
to the reactive collision is therefore 

Et + Er(BC) + Ey(BC) + Do(AB) - Do(BC). 



214 11. Chemical Kinetics in Theory 

For energy conservation, this precollision total energy must be balanced by 
the postcollision total energy comprising the relative translational kinetic 
energy E: and the "internal" energy Ej(AB) of the product, that is, its com­
bined rotational and vibrational energy. Thus the full energy conservation 
statement is 

( 11.67) 

The crossed-beam experiment provides information on E t and E:. Other 
quantities on the left side of Eq. (11.67) are usually obtainable from spec­
troscopic data, so the equation is usefully solved for Ej(AB), 

( 11.68) 

Consider again the reaction CH31 + K -+ KI + CH3 mentioned in Exercise 
11-1. For the experiment described initial rotational and vibrational energies 
for CH31 and relevant dissociation energies are 

Er(CH31) = 3.6 kJmol- 1 

Ev(CH31) = 0.9 kJmol- 1 

Do(CH31) = 226.0 kJmol- 1 

Do(KI) = 326.4 kJ mol-I. 

Estimate the energy allocated by the reaction to the CH31 internal modes of 
motion. 

11-3 Consider again the reaction K + 12 -+ KJ + 1 mentioned in Example 
11-1. Use Eq. (11.68), derived in the last exercise, to calculate the energy 
allocated by the reaction to the KI internal modes of motion. For the 
experiment described initial rotational and vibrational energies and relevant 
dissociation energies are 

Er(h) = 2.8 kJ mol-I 

Ev(12) = 1.8 kJmol-1 

Do(12) = 148.5 kJ mol-I 

Do(KJ) = 318.0 kJ mol-I. 

11-4 The calculation done in Example 11-1 determines the center-of-mass 
scattering angle e corresponding to the laboratory scattering angle E> = 30 0 

where the maximum flux of the product KI is observed in a molecular beam 
experiment. Offhand, you might expect this angle would also locate the 
maximum flux in the center-of-mass system. But the connection between the 
laboratory fluxj(1ab) and the center-of-mass fluxj(cm) is more complicated 
than that: for a reaction A + BC -+ AB + C, 

j(cm) = (U~B)2 j(lab). 
vAB 

(11.69) 
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Write a modification of the program Newton to include this calculation. 
Use the data quoted below for observed values of j(lab) at various labora­
tory scattering angles 0 to calculate corresponding values ofj(cm) at various 
center-of-mass scattering angles e. At what value of e does j(cm) have a 
maximum value? 

e/degrees vb/(m S-I) j(lab)/(arb. units) 

-15 480 
-5 500 
10 450 
20 390 
25 380 
30 360 
40 340 
50 350 
60 350 
70 380 
80 500 

100 510 

Source: Gillen, Rulis, and Bernstein, 1971. 

Potential Energy Surfaces 

11-5 Run the program Leps with 

De(AB) = 600 kJ mol-I 

De(BC) = 200 kJ mol-I 

De(AC) = 200 kJ mol-I 

K = -0.1, 

3.5 
3.7 
8.7 
9.3 
9.5 

10.0 
10.0 
8.5 
5.5 
2.7 
2.5 
2.5 

and other parameters unchanged. Estimate the activation energy indicated 
by the potential energy surface plotted. 

11-6 Use the program Leps to plot a potential energy surface for a re­
action with an endoergicity of about 250 kJ mol-I and an activation energy 
of about 400 kJ mol-I. 

11-7 Revise the program Leps so it accomodates a (fixed) bent geometry 
for the triatomic transition states rather than the linear geometry assumed in 
Leps. 

11-8 Write a program which plots a potential energy profile for a reaction, 
that is, a plot of potential energy versus distance along the reaction path. 
Locate the coordinates for points on the path by sketching the path on a 



216 II. Chemical Kinetics in Theory 

contour map of the potential energy surface made by Leps, and then locat­
ing equidistant points separated by 0.25 A along the path. Also have the 
program plot a potential energy for the point whose coordinates locate the 
activated complex. 

Activated Complex Theory 
11-9 Schatz and Walch did an ab initio calculation of the potential energy 
surface for the reaction 

OH+H2~H20+0H. 

They calculated 25940 J mol- I for the reaction's threshold energy. Other re­
sults of theirs have been incorporated in the data included in the file 
Chap 11. rn for the activated complex (designated OHHHac in Chap 11. rn). 
Use the program Eyr ing2 to calculate and plot rate constants for the re­
action in the temperature range 300 to 1000 K. Also plot the empirical 
equation, 

( T )1.73 (1605.7 K) 
k/(Lmol-1s- l ) = (8.02 x 108) 298K exp - T ' 

obtained from the NIST kinetics database. 

11-10 Use the program Eyr ing2 to calculate a rate constant for the 
reaction 

H+Iz~HI+I, 

at 300 K. Data are included in the file Chap 11. rn for the activated complex 
(called HIIac in Chap11.rn). Assume that the reaction has no threshold 
energy. An observed value for the rate constant is 3.7 x lO" Lmol- I S-I. 

11-11 The gaseous component HNC, hydrogen isocyanide, isomerizes to 
hydrogen cyanide, HCN, in a unimolecular reaction, HNC --+ HCN. This 
reaction has apparently not been studied experimentally because HNC is 
difficult to prepare in the laboratory (the molecule is found in interstellar 
space, however). Nevertheless, activated complex theory can be used to 
estimate rate constants for the reaction at any temperature. Use the program 
Eyr ingl to calculate rate constants for the isomerization reaction in the 
temperature range 300 to 1000 K, with 134 kJ mol- I for the reaction's 
threshold energy. 

11-12 In the last exercise you calculated rate constants for the isomeriza­
tion reaction HNC --+ HCN. Consider now the reverse isomerization reaction 
HCN --+ HNC. Use the program Eyr ingl to calculate rate constants for 
this reaction in the temperature range 300 to 1000 K. Note that one calcu­
lation gave 62 kJ mol- I as the exoergicity of the forward reaction HNC --+ 

HCN. Compare your calculated values of the rate constants with values 
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calculated using the Arrhenius parameters A = 3.5 X 1013 S-I and Ea = 
197 kJmol- l , measured by Lin et al. 

Unimolecular Reactions 

11-13 Run the program Beyer with the data supplied in the program. 
(You may want to schedule another activity while you wait for the program 
to finish its task; the calculation is very slow.) 

11-14 The two programs Beyer and Whitten do the same calculation, 
the former with direct-count algorithms, and the latter with analytical pro­
cedures. Run Whitten and check its result against that obtained with 
Beyer in Exercise 11-13. Restrict wMax in Whitten to 0.8 wz. 

11-15 The data file c2h5cl. dat contains densities of states N(E) and 
sums of states Gt(E - Eo) for the activated complex in the unimolecular 
decomposition reaction, 

C2HsCI---. C2H4 + HCI, 

at 1000 K and 750 Torr. Use this file and the program Rrkm to calculate and 
plot microscopic rate constants for the above reaction. 

Oscillating Reactions 

11-16 Prove that the following reaction scheme, involving a quadratic 
autocatalysis step, 

A~Y 

B+X~R+Y 
Y+X~2X 

4 
X ---. S, 

has no unstable steady states. 

11-17 Consider the following autocatalytic scheme, 

A+X~2X 
X+Y~2Y 

3 
Y ---. R, 

known as the Lotka- Volterra mechanism, which cannot have stable 
steady states under any conditions. Revise the program Brussels so it 
calculates and plots [X] and [Y] for this scheme with [A] = 1 mol L -I, 
kl = 1 Lmol- I S-I, k2 = 0.5 Lmol- I S-I, k3 = 0.8 S-I, and [X]o = [Y]o = 
1 molL-I. 
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11-18 In this exercise you can derive the rate equations for the thermo­
chemical oscillator, Scheme (11.41). Express the rate constant for Reaction 2 
as a function of temperature beginning with the Arrhenius equation k2 (T) = 
Ae-Ea / RT, in which Ea is the activation energy for Reaction 2. Rearrange this 
to 

( rxAT ) 
k2(T) = k2(To) exp 1 + rxAT ITo ' (11.70) 

in which rx = EaIRTJ. Use this result to derive a rate equation for X. Derive 
an equation that expresses dAT Idt, the rate of change in AT, by writing an 
enthalpy balance statement for the reactor in which the reaction takes place, 

with 

( Net rate Of) ( Rate of ) ( Rate of ) 
enthalpy change = enthalpy input - enthalpy output ' 

( Net rate Of) (V ) dT (V ) dAT 
enthalpy change = pCp dt = pCp <It 

( Rate of ) = IArBI Vk2(T) [X] 
enthalpy input 

( Rate of ) _ (Ah)(AT) 
enthalpy output - , 

where the parameters A and V are the reactor's surface area and volume, P 
and Cp are the density and specific heat of the reaction mixture, h is the co­
efficient of heat transfer from the reactor to the surroundings, and ArB is the 
enthalpy for Reaction 2. Combine these equations to obtain Eq. (11.44). 

11-19 The program Cubecat does its calculation for Scheme (11.33) as­
suming that the concentration [A] of A is constant. Modify the program so 
changes in [A] are allowed. Have the program plot [A] and IO[X] from r = 0 
to 1000 s. Use [A]o = 0.5 mol L -I. 

11-20 The program Thermkin does its calculation for Scheme (11.41) as­
suming that the concentration [A] of A is constant. Modify the program so 
changes in [A] are allowed. Have the program plot AT, [A] and 10[X] from 
t = 0 to 20 s. Use [A]o = 1.5 mol L -I. 

11-21 You can make a study in this exercise of the astonishingly complex 
periodic and aperiodic (chaotic) behavior of the simple recursion relation 

x(n + 1) = Ax(n)[l - x(n)] (11.71) 

for various values of the parameter A in the range 3 to 4. Begin the calcu­
lation with x(O) = 0.5, then use the Eq. (11.71) to calculate x(l) from x(O), 
then x(2) from x(1), etc. A series of numbers calculated this way mayor 
may not show periodic behavior. For example, with A = 3.5, Eq. (11.71) 
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shows period-4 behavior, but with A = 3.75, aperiodic or chaotic behavior. 
Write a program that calculates an extended series of numbers from Eq. 
(11. 71) and searches for periodic behavior. If it succeeds, have the program 
print out a typical cycle of numbers. 

11-22 Chaos theory introduces a parameter 

), = hm - L log2 :;- , . 1 n 10fl 
n->oo n i=O uX 

(11.72) 

called the Lyapounov exponent, to test for periodic or aperiodic (chaotic) 
behavior. A negative value of ), signifies periodic behavior and a positive 
value aperiodic behavior. The functionf is the right side of the equation of 
interest. For example, in Eq. (11.71),1 = Ax(i)[1 - x(i)], and 

lixl = IA[I-2x(i)]I, 

so 

I 
1
0fl- In IA[1 - 2x(i)] I 

og2 ox - In2 . 

Write a program which calculates), from Eq. (11.71) for a given value of the 
parameter A. Assume that n = 100 is an "infinite" value of n in Eq. (11.72). 

Electrode Kinetics 

11-23 Run the program Butler and note the effects of changing the 
parameters n, 0(, and p. 
11-24 Run the program Dme with the half-wave potentials -0.6 and -0.7 
V for the electro active components. What problem does this simulation 
illustrate? 

11-25 The programs Drne and Rde simulate voltammetry plots for electro­
chemical systems dominated by electrode reaction kinetics. Electrode re­
actions are assumed to be slow enough relative to diffusion rates so there are 
no concentration gradients across the diffusion layers. If this assumption is 
not valid the Butler-Volmer equation has to be modified, perhaps to 

. . [ (O(Fn) (PFn)] . lolL exp -Rf - exp Rf 

1 = . [( O(Fn) (PFn)] , 
JL + jo exp - RT - exp RT 

(11.73) 

where A is the limiting current. Rewrite the program Drne so the current 
density is calculated this way. Assume thatA = 0.01 A cm-2 for" < 0 and 
-0.01 A cm-2 for" > O. Leave other parameters in Drne unchanged. 
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Stochastic Kinetics 
11-26 The program Stokin is designed to make calculations for reaction 
schemes comprising more than one reaction. The program can, however, be 
simplified so it handles a single reaction. Make this adaptation and have the 
revised program calculate and plot nA and nB stochastically and determin­
istically for the bimolecular reaction 

A + B ---t R + S. 

Use k = 0.0001 S-l for the rate constant and nAO = 500, nBO = 1000 for ini­
tial numbers of A and B molecules. Have the program make a calculation 
for the time t in the range 0 to 50 s. 

11-27 Adapt the program Stokin so it calculates numbers of molecules of 
X formed as an intermediate in the sequence of reactions, 

A"':""X 
2 

X ---t R. 

Use kl = 0.1 S-l and k2 = 0.2 S-l for the rate constants, and nAO = 1000 and 
nXO = 0 for the initial numbers of A and X molecules. Make the calculation 
for t in the range 0 to 50 s. 

11-28 Adapt the program Stokin so it calculates and plots numbers of 
molecules of X formed as an intermediate in the scheme 

A"':""X 

A~R 

X~R 
4 

R---tX. 

Use kJ = 0.1 s-l, k2 = 0.2 S-l, k3 = 0.3 s-J and k4 = 0.4 S-l, and nAO = 100, 
nXO = 0, and nRO = 0 for the initial numbers of molecules. Make the calcu­
lation for t in the range 0 to 50 s. 
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Data Files on the Disk* 

2dnrnr 
Abc 

Acetate 
Anderko 
Aorbital 
Atpl 

Atp2 

Beattie 
Beyer 

Biochern 

Biokin 

Branch 

Brussels 

Butler 

Simulates a IH COSY two-dimensional NMR plot (5.5). 
Calculates principal moments of inertia for linear and non­
linear molecules (4.5). 
Calculates the pH in an acetate buffer (3.2). 
Solves the Anderko-Pitzer nonideal gas law (1.2). 
Calculates and plots H atomic orbitals in two dimensions (4.3). 
Calculates and plots the apparent standard Gibbs energy 
I:irGo1 for the ATP hydrolysis reaction at various pMg's and 
a specified pH and ionic strength (3.3). 
Calculates and plots the apparent standard Gibbs energy 
I:irGo1 for the ATP hydrolysis reaction at various pH's and a 
specified pMg and ionic strength (3.3). 
Solves the Beattie-Bridgeman nonideal gas law (1.2). 
Calculates and plots the density of states N(E) and the sum 
of states G(E) for a molecule's vibrational modes using the 
Beyer-Swinehart direct-count algorithm (11.4). 
Calculates and plots the apparent standard Gibbs energy 
I:irGo1 for the F -+ M biochemical reaction at various pH's 
(3.3). 
Calculates and plots extracellular glucose and insulin con­
centrations as functions of time (10.4). 
Calculates and plots H, 0, OH and 02 concentrations for the 
branching catalytic cycle that drives the 2H2 + 02 -+ 2H20 
reaction (10.2). 
Calculates and plots concentrations of intermediates in the 
autocatalytic Brusselator model (11.5). 
Calculates and plots the Butler-Volmer and Tafel equations 
relating electrode current and overpotential (11.6). 

*Mathematica program files on the Disk have the extension. rna for Version 
2.2, and . nb for Version 3, QuickBASIC program files the extension .BAS, 
and data files the extension . da t or . rn. Numbers in parentheses refer to 
section numbers. 
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c2h5 

c2h5cl 

Catcycle 

Chain 

Chapl 
Chap2 
Chap3 
Chap4 
Chap8 
Chap 11 
Chase 

Chemkin 

Coal 

Coill 

Coi12 

Coil3 

Collide 

Cpd2 

Cph2 

Cphd 

Cubecat 

Cubictko 

Cycle 

Contains N(E) and G+(E) data for the C2HS -> C2H4 + H 
reaction (11.4). 
Contains N(E) and G+(E) data for the C2HsCI -> C2HS + 
HCl reaction (11.4). 
Integrates and plots the rate equations for a catalytic cycle 
(10.2). 
Integrates and plots rate equations for chain polymerization 
reactions (10.3). 
Data file for Chapter 1. 
Data file for Chapter 2. 
Data file for Chapter 3. 
Data file for Chapter 4. 
Data file for Chapter 8. 
Data file for Chapter 11. 
Calculates accurate values for standard molar entropies, 
molar enthalpies, molar heat capacities, and chemical poten­
tials for gases whose molecules are diatomic (8.4). 
Calculates and plots changes in concentrations of compo­
nents in the bimolecular reversible reaction A + B +2 R + S 
(10.1). 
Calculates equilibrium partial pressures for the coal gasifica­
tion reactions (3.2). 
Calculates and plots in three dimensions a random chain, 
either freely rotated or freely jointed (7.1). 
Calculates a mean value of the end-to-end distance for freely 
rotated random chains (7.1). 
Calculates a mean value of the end-to-end distance for freely 
jointed random chains (7.1). 
Solves the classical equations of motion for two colliding 
molecules and plots the trajectory of one of the molecules 
with respect to the center of mass of the two-molecule system 
(9.2). 
Calculates and plots D2 standard spectroscopic molar heat 
capacities for pure ortho D2, pure para D2, the "normal" 2/1 
ortho-para mixture, and the equilibrium mixture (8.6). 
Calculates and plots H2 standard spectroscopic molar heat 
capacities for pure ortho H2, pure para H2, the "normal" 3/1 
ortho-para mixture, and the equilibrium mixture (8.6). 
Calculates and plots standard spectroscopic molar heat 
capacities for HD (8.6). 
Calculates and plots changes in concentrations of compo­
nents participating in the isothermal cubic catalator (11.5). 
Calculates and plots changes in concentrations of components 
participating in the nonisothermal cubic autocatalator (11.5). 
Calculates and plots changes in concentrations of compo­
nents participating in a simple cycle of reactions (10.2). 
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Debye Calculates the Debye entropy extrapolation from a low tem­
perature to 0 K (2.3). 

Deltagl Calculates standard reaction enthalpies, entropies, and Gibbs 
energies at high temperatures using a polynomial heat ca­
pacity formula (2.1). 

De 1 t ag2 Calculates standard reaction enthalpies, entropies and Gibbs 
energies at high temperatures using the Maier-Kelley heat 
capacity formula (2.1). 

Deltag3 Calculates standard reaction Gibbs energies at high temper­
atures using a special empirical formula (2.1). 

D if f use 1 Simulates in an animated plot diffusion from a thin plane 
source (9.3). 

Diffuse2 Simulates in an animated plot diffusion from a step-function 
source (9.3). 

Dme Simulates a polarogram taken by a dropping-mercury elec­
trode (11.6). 

Duali ty Simulates two-slit, interference-diffraction patterns produced 
by an electron beam (4.3). 

Elecdiff Interprets electron diffraction data for SiCI4(g) (6.2). 
Entropy Calculates heat capacity integrals for the determination of 

calorimetric entropies (2.3). 
Err 0 r Calculates uncertainty in a calculation propagated by un­

certainties in the independent variables (1.1). 
Esr Calculates and plots a first-order ESR multiplet involving 

spin-1/2 nuclei, and draws the corresponding inverted tree 
that interprets the multiplet (5.5). 

Eyr ingl Uses activated complex theory to calculate approximate rate 
constants for unimolecular reactions (11.3). 

Eyr ing2 Uses activated complex theory to calculate approximate rate 
constants for bimolecular reactions (11.3). 

fe2sio4 File containing powder x-ray diffraction data for Fe2Si04(s) 
(fayalite) (6.1). 

Fermi Calculates the Fermi level and carrier concentrations for 
semiconductors (6.3). 

Gibbs Calculates and plots G(C;) and ArG = (iJGliJc;)pT for the 
reaction A(g) -. R(g) + S(g) (2.8). ' 

Gouyl Calculates and plots surface potentials for various surface 
charge densities according to the Gouy-Chapman theory of 
the electric double layer (6.6). 

Gouy2 Calculates and plots potentials at various distances from a 
charged surface according to the Gouy-Chapman theory of 
the electric double layer (6.6). 

Gouy3 Calculates and plots concentrations of anions and cations at 
various distances from a charged surface according to the 
Gouy-Chapman theory of the electric double layer (6.6). 

Gplot Calculates and plots a surface representing Gibbs energy de-
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partures for a gas at pressures and temperatures above the 
critical point (2.2). 

Gprofile Plots a Gibbs energy profile for the biochemical glycolysis 
scheme of reactions which converts glucose to lactate (3.3). 

Haber Calculates equilibrium partial pressures for the ammonia­
synthesis reaction (3.2). 

Hartree Calculates Hartree-Fock molecular orbitals for LiH using 
HIs, Lils, Li2s, and Li2p atomic orbitals (4.7). 

he 1 File containing experimental data for the rotational­
vibrational spectrum of HCl(g) (5.2). 

Henry Compares real and Henry's-law behavior for a component in 
a binary mixture (2.6). 

Hodgkin Uses the Hodgkin-Huxley equations to calculate squid axon 
action potentials for a voltage-clamp situation (10.5). 

Hplot Calculates and plots a surface representing enthalpy depar­
tures for a gas at pressures and temperatures above the criti­
cal point (2.2). 

Hueckel Calculates Hiickel (or Huecke1) orbital energies and orbital 
coefficients for ll-electron systems (4.7). 

Irft Calculates and plots a simulated interferogram and then cal­
culates its Fourier transform (5.6). 

Keenanl Calculates steam densities according to the method of 
Keenan, Keyes, Hill, and Moore (1.2). 

Keenan2 Calculates specific internal energies, enthalpies and entropies 
of steam according to the method of Keenan, Keyes, Hill, 
and Moore (2.2). 

Krebs Integrates and plots rate equations for a cycle of reactions 
that has features in common with the biochemical Krebs 
cycle (10.2). 

Lambda Calculates limiting molar conductivities using an extension of 
the Onsager-Debye-Hiicke1 equation (9.4). 

Leed Calculates and plots substrate and surface, direct, and recip­
rocallattices for crystalline surface phases (6.7). 

Leps Calculates and plots contour maps and three-dimensional 
representations of potential energy surfaces for three-atom 
reactions according to the London-Eyring-Polanyi-Sato 
method (11.2). 

Limeye le Demonstrates a limit cycle for the Brusselator model in a 
parametric plot of [X] vs [Y] at various times (11.5). 

Linreg Calculates coefficients for the best fit of data pairs to a fitting 
function in which the coefficients occur linearly (1.3). 

Maxwe 111 Calculates and plots the Maxwell distribution of molecular 
speeds at various temperatures (9.1). 

Maxwel12 Calculates and plots the Maxwell distribution of molecular 
speeds at various molar masses. (9.1). 



MCI 

MC2 

MOl 

M02 

M03 

Mixing 

Morbital 
Morse 

Newton 

Nmr 

Nmrft 

Onsager 

Oregon 

Pattersn 
Peaks 
Pengl 
Peng2 

Peng3 

Perrinl 
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Uses a Monte Carlo simulation to calculate a radial distribu­
tion function for a "hard-sphere" liquid in two dimensions; a 
QuickBASIC program (6.5). 
Uses a Monte Carlo simulation to calculate a radial distribu­
tion function for a "Lennard-Jones" liquid in two dimensions; 
a QuickBASIC program (6.5). 
A molecular-dynamics simulation of a "hard-sphere" liquid 
in three dimensions; a QuickBASIC program (6.4). 
A molecular-dynamics simulation of a "hard-sphere" liquid 
in two dimensions; a QuickBASIC program (6.4). 
Calculates radial distribution functions from two-dimensional 
data obtained in a molecular dynamics simulation of a "hard­
sphere" liquid; a QuickBASIC program (6.4). 
Calculates and plots changes in statistical entropies for mixing 
of molecules of two different kinds (8.1). 
Calculates and plots H2 molecular orbitals (4.3). 
Calculates and plots potential energy curves according to the 
Morse function for electronic states of diatomic molecules 
and superimposes vibrational energy levels plotted between 
the classical turning points (4.5). 
Calculates collision kinetic energies and scattering angles for 
crossed molecular beam experiments and plots a Newton 
diagram (11.1). 
Calculates and plots first-order NMR multiplets involving 
spin-1/2 nuclei, and draws the inverted trees that interpret 
the multiplets (5.5). 
Calculates and plots a simulated FlO signal, and then calcu­
lates and plots its Fourier transform (5.6). 
Calculates ionization constants of weak electrolytes from 
molar conductivity data using the Onsager and Oebye­
Hlickel equations (9.4). 
Calculates and plots concentrations of components partici­
pating in the Oregonator model (11.5). 
Plots points and lines for idealized Patterson maps (6.1). 
Locates peak maxima in a list of spectral data (5.2). 
Solves the Peng-Robinson nonideal gas law (1.2). 
Calculates molar volumes, compressibility factors, molar 
enthalpy departures, and molar entropy departures for non­
ideal gases using the Peng-Robinson nonideal gas law (2.2). 
Calculates molar volumes, compressibility factors and fuga­
city coefficients for nonideal gases using the Peng-Robinson 
nonideal gas law (2.2). 
Calculates and plots the frictional ratio fr = /1/0 as a func­
tion of the axial ratio p = bla for oblate and prolate ellip­
soids of revolution (7.3). 
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Perrin2 

Pitzer 

PIXEL 

PLOTAXES 

Powder 
Powell 

Raoult 

Rde 

Rho 

rho 
Rol 

Ro2 

Ro3 

Rovil 

Rovi2 

Roviel 

Rrkm 

S&mud2 

S&muh2 

S&muhd 

Schroedl 

Calculates the axial ratio p = b I a given the frictional ratio 
fr = /1/0, or vice versa, for oblate and prolate ellipsoids of 
revolution (7.3). 
Calculates mean activity coefficients for strong electrolytes 
according to Pitzer's equation (2.7). 
Creates the file graph.dat read by PLOT AXES when it plots 
axes; a QuickBASIC program. 
A QuickBASIC submodule which plots axes, a frame and 
tickmarks; and prints labels for the tickmarks and titles for 
the axes. 
Indexes x-ray reflections obtained from powder samples (6.1). 
Calculates ArG for metamorphic geochemical reactions in­
volving the gaseous components C02 and H20 (3.1). 
Compares real and Raoult's-law behavior for a component in 
a binary mixture (2.6). 
Simulates a voltammetry plot taken by a rotating-disk elec­
trode (11.6). 
Calculates partial molar volumes for ethanol-water mixtures 
(2.4). 
A file containing density data for ethanol-water mixtures (2.4). 
Calculates and plots rotational energy levels for diatomic 
molecules (4.5). 
Calculates and plots rotational energy levels for symmetric­
top molecules (4.5). 
Calculates and plots the rotational spectrum, rotational en­
ergy levels and rotational transitions allowed by the selection 
rule AJ = +1 for diatomic molecules (5.1). 
Calculates and plots rotational-vibrational energy levels for 
diatomic molecules (4.5). 
Calculates and plots the rotational-vibrational spectrum, 
rotational-vibrational energy levels and rotational-vibrational 
transitions allowed by the selection rules AJ = ± 1 for dia­
tomic molecules (5.2). 
Calculates and plots lines in an absorption rovibronic spec­
trum for a diatomic molecule (5.4). 
Calculates and plots microscopic rate constants using the 
theory of Rice, Ramsperger, Kassel, and Marcus (11.4). 
Calculates standard molar spectroscopic entropies and 
chemical potentials for D2 (8.6). 
Calculates standard molar spectroscopic entropies and 
chemical potentials for H2 (8.6). 
Calculates standard molar spectroscopic entropies and 
chemical potentials for HD (8.6). 
Integrates the Schrodinger (or Schroedinger) equation, and 
plots wave functions, for the harmonic oscillator (4.2). 



Schroed2 

Schroed3 

Simhal 

Simha2 

sio2 

Specons 
Splot 

Statcalc 

Statg 

Statk 

Step 

Stokin 

Symtopl 

Symtop2 

Tcurve 

Thermkin 

Vanlaar 

Vanthoff 
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Integrates the Schrodinger equation, and plots wave func­
tions, for the Morse anharmonic oscillator (4.2). 
Integrates the Schrodinger equation, and plots wave func­
tions, for an electron in a well (4.2). 
Calculates and plots the Simha shape factor v as a function of 
the axial ratio p = bja for oblate and prolate ellipsoids of 
revolution (7.4). 
Calculates the axial ratio p = bja given the Simha shape 
factor v, or vice versa, for oblate and prolate ellipsoids of 
revolution (7.4). 
File containing powder x-ray diffraction data for Si02(s) 
(silica) (6.1). 
File containing special physical constants (1.1). 
Calculates and plots a surface representing entropy depar­
tures for a gas at pressures and temperatures above the crit­
ical point (2.2). 
Calculates approximate standard spectroscopic molar en­
tropies, enthalpies, chemical potentials, and heat capacities of 
monatomic, diatomic, and polyatomic gaseous components 
(8.3). 
Calculates and plots nuclear-rotational degeneracy factors 
for homonuclear molecules whose nuclei have spin S (8.6). 
Calculates and plots spectroscopic equilibrium constants for 
gas-phase reactions involving monatomic, diatomic, or poly­
atomic (linear or nonlinear) molecules (8.5). 
Simulates step polymerization of monomer molecules of the 
A-R-B kind, and plots in a bar chart the degree of polymeri­
zation of each molecule remaining after a requested degree of 
polymerization (10.3). 
Demonstrates the stochastic approach to chemical kinetics 
(11. 7). 
Calculates and plots peaks in the parallel bands of the 
rotational-vibrational spectrum of a nonrigid symmetric-top 
molecule (5.2). 
Calculates and plots peaks in the perpendicular bands of the 
rotational-vibrational spectrum of a nonrigid symmetric-top 
molecule (5.2). 
Calculates and plots a curve for titration of a weak acid with 
a strong base (3.2). 
Calculates and plots concentrations and temperatures for a 
thermo kinetic oscillator (11.5). 
Calculates activity coefficients for components in binary 
mixtures according to the van Laar formula (2.7). 
Calculates standard Gibbs energies and equilibrium con­
stants for reactions at high temperatures (2.8). 
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Viell 

Vie12 

Viriall 

Viria12 

Waals 
Well 

Whitten 

Xrayl 

Xray2 

Xray3 

Xray4 

Xss 

Zelec 
Zimm 

Zplot 

Zrot 
zrsio4 

Zvib 

Calculates and plots vibronic energy levels for diatomic mol­
ecules (4.5). 
Calculates and plots vibronic spectra for diatomic molecules 
(5.3). 
Calculates molar volumes for nonideal gases using the virial 
equation with only the second virial coefficient B included 
(1.2). 
Calculates molar volumes for nonideal gases using the virial 
equation with the second and third virial coefficients Band C 
included (1.2). 
Solves the van der Waals nonideal gas law (1.2). 
Calculates energy eigenvalues for the electron-in-the-well 
problem (4.2). 
Calculates the sum of states G(E) and the density of states 
N(E) for a molecule's vibrational modes using the Whitten­
Rabinovitch analytical method (11.4). 
Plots an x-ray diffraction pattern and calculates and plots 
electron densities for a known two-dimensional centrosym­
metric unit cell (6.1). 
Plots an x-ray diffraction pattern and calculates and plots 
electron densities for a known two-dimensional noncentro­
symmetric unit cell (6.1). 
Plots an x-ray diffraction pattern and calculates and plots a 
Patterson map for a known two-dimensional centrosym­
metric unit cell (6.1). 
Plots an x-ray diffraction pattern and calculates and plots a 
Patterson map for a known two-dimensional noncentro­
symmetric unit cell (6.1). 
Calculates and plots concentrations of components partic­
ipating in the reaction scheme A + B +=t X -+ R + S (10.1). 
Calculates and plots electronic partition functions (8.2). 
Simulates data points and constructed lines in a Zimm plot of 
light-scattering data (7.5). 
Calculates and plots a surface representing compressibility 
factors for a gas at pressures and temperatures above the 
critical point (2.2). 
Calculates and plots rotational partition functions (8.2). 
File containing powder x-ray diffraction data for ZrSi04(s) 
(zircon) (6.1). 
Calculates and plots vibrational partition functions (8.2). 



Appendix B 
Mathematica and Physical Chemistry 

A famous theoretical physicist once remarked that it is easy to get lost in 
mathematics. The same might be said of Mathematica, which can over­
whelm the casual user with its multitude of details. Fortunately, only a small 
part of the full equipment provided by Mathematica (and mathematics) is 
needed to handle the calculational problems of physical chemistry. One of 
the aims of this book is to demonstrate that conclusion. As an introduction, 
you can read this appendix containing ten key prototype segments of Math­
ematica code. Adaptations of these code segments do most of the extended 
calculations in the programs found elsewhere in the book. 

1. Equation Solving: N ondifferential Equations 

The most important mathematical methods in physical chemistry calcula­
tions are those that solve equations numerically. In our problems, the Math­
ematica function F indRoot perfonns this task for nondifferential equa­
tions. F indRoot requires a statement of the equations to be solved, then a 
list for each variable containing a name for the variable, a starting value of 
each variable for F indRo ot to use in its search for a root, and a range of 
values within which F indRoot should search. 

Suppose you want to estimate the pH in a 0.1 mol L -1 solution of 
acetic acid. The equilibrium equations to be solved simultaneously are 
(Ac- = acetate) 

(~~i~~-) = 1.754 x 10-5 

(HAc) + (Ac-) = 0.1 

(Ac-) = (H+), 

where ( ) denotes molar concentrations with the units omitted. Using h, ac, 
and hac to represent the concentrations, the problem is solved with the fol-
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lowing statement of F indRoot followed by code that prints the result in 
three digits: 

solution = 

FindRoot[ 

] i 

{h acjhac == 1.754 10 A -5, 

ac + hac == .1, 

h == ac}, 

{h, .001, 0, .1}, 

{ac, .001, 0, .1}, 

(hac, .1, 0, .1} 

Print ["pH = II N[-Log[10, h j. solution, 3]] 

The starting values, 0.001 for hand ac and 0.1 for hac, are estimates 
obtained assuming no ionization of HAc takes place, so (HAc) = 0.1 and 

(H+) = }(1.754 x 10-5)(0.1) ~ 0.001. 

The range prescribed for each root search, 0 to 0.1, applies the constraints 
that concentrations must be positive and cannot exceed the total acetate in 
the system. This basic strategy is elaborated in many other equilibrium cal­
culations in Chapter 3. 

2. Equation Solving: Differential Equations 

A second useful equation solver, NDSolve, integrates differential equations. 
We illustrate its use with a problem from chemical kinetics involving the re­
action system 

Rate equations for this system are 

d[A] 
dt = -kl [AJ + k2 [BJ 

d[B] = k [AJ - k [BJ dt 1 2) 

where [A] and [B] are molar concentrations with the units included. Suppose 
kl = 0.2 S-I and k2 = 0.3 S-I, and initial values of [A] and [B] are 1.0 and 
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O.5molL-'. Representing [A] and [B] with CA and CB we can integrate the 
above rate equations and plot the result with the code 

kl .2; 

k2 .3; 

CAO 1. ; 

CBO .5; 

solution = 

NDSolve[ 

{CA'[t] == -kl CArt] + k2 CB[t], 

CB'[t] == kl CArt] - k2 CB[t], 

cArol 

CB[O] 

CAO, 

CBO}, 

{CA, CB}, {t, 0, 10.} 

] ; 

Plot[CA[t] /. solution, {t, 0, 10.}] 

The first two lines under NDS 0 1 ve state the differential equations, the next two 
lines the initial conditions for CA and CB and the last line lists the independent 
variables CA and CB, and the range covered by the independent variable t in 
the integration. Chapter 10 contains many variations on this calculation. 

3. Matrix Manipulations 

A matrix is expressed in Mathematica as a list of lists. For example, 

m = {{1., 2.}, 

{3.,4.}}, 

represents a 2 x 2 matrix. Some of the problems of physical chemistry are 
greatly simplified by expressing them in a matrix language. Most important 
for us are the calculations of molecular orbital theory. The central problem 
is to calculate the eigenvalues and eigenvectors of the Fock matrix repre­
senting a system of molecular orbitals. The eigenvalues are orbital energies 
and the eigenvectors contain orbital coefficients. For example, in Huckel 
theory the Fock matrix for butadiene's 1C electrons is 

( ~1 
F= o 

o 

-1 0 
o -1 
-I 0 
o -1 
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(see Sec. 4.7 and Exercise 4-21 for additional details). Representing F with 
Forbital, the list of orbital energies with Eorbital, and a matrix con­
taining the orbital coefficients with Corbital, the Mathematica code that 
handles this problem utilizes the function E igensyst em, 

Forbital = 

{{a, -1., 0, a}, 

{-1., 0, -1., a}, 

{a, -1., 0, -1.}, 

{a, 0, -1., a}}; 

{Eorbital, Corbital} = 
Eigensystem [Forbitall//Transpose//Sort//Transpose; 

Eorbital 

Corbital = Transpose [Corbitall//MatrixForm 

Eigensystem is manipulated so the orbital energies are arranged in 
ascending order, and the orbital coefficients, placed in the columns of 
Corbital, are put in the same order. 

The strategy outlined is used in the programs Hueckel and Hartree. In 
another application the program Ab c calculates principal moments of inertia 
as eigenvalues of the inertia matrix (see Sec. 4.5). 

4. Graphics 

Many of the programs in the book display results graphically as curves 
plotted in color against a black background. Here is a prototype for the code 
that generates these displays: 

xMin -50. ; 

xMax 50. ; 

yMin -1. ; 

yMax 1.; 

F[x_l := Exp[-.002 xA2l Cos[xl 

plotF [color_l := 

Plot[F[xl, {x, xMin, xMax}, 

PlotStyle -) color, 

DisplayFunction -) Identity 
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Show[plotF[RGBColor[l, 0,0]], 

Frame -) True, 

PlotRange -) {{xMin, xMax}, {yMin, yMax}}, 

DefaultFont -) {"Courier-Bold", 12}, 

FrameLabel -) {"x", "F[x]"}, 

RotateLabel -) True, 

Background -) GrayLevel[O], 

DisplayFunction -) $DisplayFunction 

The first four lines enter the x and y limits for plotting, the next line defines 
the function to be plotted and the next four lines a function that specifies the 
plot and its color. Finally, the Show function, given above with a typical 
collection of options, generates the display with the plotted curve in red. 

5. Data Fitting 

The program Linr eg performs this standard task as a hnear regres­
sion. It utilizes the function Regress from the package Statistics 
'LinearRegression.' The program begins with two lists, one con­
taining the data and the other the fitting function. For the latter we might 
specify 

fittingFunction = {1, x, xA2, x A3} 

to fit high-temperature heat capacity data, with x representing the temper­
ature T. The implied function for the heat capacity CPm is 

Cpm(T) = Co + CIT + c2T2 + c3T3. 

Linr eg fits the data to this function, calculates the coefficients Co, CI, C2, 
and C3, and displays the original data and the calculated function. The pro­
gram is introduced in Chapter 1 and is subsequently applied many times. 

6. Simulations of Spectral Data 

Chapter 5 introduces programs that simulate spectra of various kinds. Here 
is a prototype for the code that generates some of these spectral plots: 

10 { 5 ., 3., 10.}; 

aO {200., 150., 100.}; 
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pf = {1000., 1700., 2000.}; 

nPeaks = Length[pf]; 

xMin 

xMax 

yMin 

yMax 

500. ; 

2500. ; 

0; 

12. ; 

IO[[i]] aO[[i]]A2/(aO[[i]]A2 + (f - pf[[i]])A2) 

intensity[f_] .= Sum[lorentz[i, f], {i, 1, nPeaks}] 

Plot [ 

Intensity[f], {f, xMin, xMax}, 

PlotRange -) {{xMin, xMax}, {yMin, yMax}} 

The first three lines specify data on the spectral peak amplitudes (in ro), 
peak widths (in aO), and locations of the centers of the peaks, let us say as 
frequencies (in pf). The fourth line calculates the number of peaks in the 
spectrum. Lines 5 to 8 enter x and y limits for plotting. Next a Lorentz 
function is defined which determines the shapes of the peaks. The Lorentz 
contribution at the frequency f is calculated with lorentz [f ], and a 
plot of lorentz [f] over a range of frequencies generates the spectrum 
simulation. 

7. Stochastic Models 

The equations of physics are deterministic, but physical events on an atomic 
or molecular level are essentially stochastic, that is, random. Usually the 
deterministic models are reliable because the systems are macroscopic, and 
random fluctuations are undetectable, or the theory deals in probabilities. 
But occasionally stochastic modeling is of interest, as in Monte Carlo and 
molecular dynamics calculations (Chapter 6), calculations of random chains 
(Chapter 7), simulations of step polymerization (Chapter 10), and stochastic 
formulations of rate equations (Chapter 11). These applications are diverse, 
but they all rely on the generation of random numbers, in Mathematica with 
the function Random. Each random number provides data for the next cal­
culation in the program. For example, in the program Step two molecules 
labeled iA and iB are chosen stochastically for a reaction from a list of n 
molecules with the code, 
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While[True, 

iA Random[Integer, {l, n}l; 

iB Random[Integer, {1, n}l; 

If[iA != iB, Break[ll 

1 ; 

The If function sends the program to subsequent steps if A and B are not 
the same molecule (A molecule cannot react with itself). 

8. Fourier Transforms 

Our uses of Fourier transforms simulate applications in spectroscopy. For 
example, in the program I r f t an interferogram of the kind generated in an 
infrared spectrometer is simulated and then used as the argument in the 
function Four ier. A plot of the result displays the spectral peaks. See Irft 
and Nmrft (which simulates an application to NMR spectroscopy) for more 
details. 

9. Symbols and Numbers 

Mathematica has the remarkable ability to treat variables both symbolically 
and numerically. Sometimes it is expedient to include both interpretations in 
the same program. Here, for example, is a code fragment adapted from the 
program Err 0 r: 

f[variables_l := 

Log[x yl + (y + z)"(1/3) + Exp[x"2 z"3l 

variables {x, y, z}; 

numbers = {.5, .2, 1.6}; 

derivSymbolic [i_l .= D[f [variables], variables [[illl 

derivNumerical 

Table [ 

DerivSymbolic[il I. Thread[variables -) 

numbersl , 

{i, 1, n} 
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The first line defines a (complicated) function f[variablesl. Then 
var iables lists the variables symbolically, n counts the number of vari­
ables, number s lists numerical values of the variables, der ivSymbolic [i 1 
defines a function that calculates symbolically the partial derivative of the 
function with respect to the ith variable, and finally der ivNumer icallists 
numerical values of the partial derivatives. The program Err 0 r uses this 
result to calculate the uncertainty in the value of the function, given a list 
err 0 r of uncertainties in the variables. 

10. Numerical Integration 

There are many recipes for accomplishing this computational chore. We use 
the function Nintegr ate to evaluate several definite integrals with com­
plicated integrands. For example, the program Debye calculates 

ITo/eo u3 
--du 

o e"-l ' 

where To = 10 K and eo = 100 K, with the code 

TO = 10.; 

ThetaD = 100.; 

Nintegrate[ 

u A 3/(Exp[ul - 1), {u, a, thetaD/TO}, 

GaussPoints -> 20 

This completes our list of useful Mathematica prototypes. Return to this 
list as you study the programs in the book. Try not to get lost. 
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Huckel,84 
Hydrogen material balance, 48 

Ideal gas components, 32 
Ideal gas law, 2-3 
Ideal solutions, 26-28 
Identity matrix, 85 
Inertia, comparison of moments of, 78-

79 
Interferogram, 100 
Ionic strength, 14 
Irft, 91, 100, 105-106,224,235 

Keenanl, 1, 7, 12,224 
Keenan2,14,20-21,224 
Kennan-Keyes-Hill-Moore equation, 7, 

20 
Krebs, 171, 176,186,224 
Krebs cycle, 176 

Lambda, 134, 158, 164-165, 170,224 
Least squares method, 8, 9 
Leed, 107, 122, 224 
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Lennard-Jones potential energy 
function, 114-115 

Leps, 192, 197,215,224 
LEPS method, 197 
Limcycle, 192,203,224 
Linear molecules, 78 
Linear regression, 9-10 
Linreg, 9-10, 12,34-35,40-42,63,95, 

103, 136, 224, 233 

Macromolecules, 123-138 
and diffusion, 128-131 
as hydrodynamic particles, 126-128 
as light-scattering particles, 132-135 
and random coils, 123-126 
and viscometry, 131-132 

Maier-Kelley equation, 9, II, 15, 16 
Mathematica®, 229-236 

data fitting, 233 
equation solving 

differential, 230-231 
nondifferential, 229-230 

Fourier transfonns, 235 
graphics, 232-233 
matrix manipulations, 231-232 
numerical integration, 236 
spectral data, simulations of, 233-234 
stochastic models, 234-235 
variables, treatment of, 235-236 

Matrix equations, 82-85 
Maxwelll, 158, 159, 167-168,224 
Maxwe1l2, 158, 159,224 
Maxwell's distribution function, 158-

159 
MC1.BAS, 114, 120-121,225 
MC2. BAS, 115, 120-121,225 
MD1.BAS, 114, 120-121,225 
MD2.BAS, 114, 120-121,225 
MD3.BAS, 114, 120-121,225 
Microcanonical ensembles, 141 
Mixing, 141,225 
Molar density, 7 
Molar volume, 3 
Molecular collisions, 159-162 
Molecular dynamics simulations, 113-

114 
minimum-image convention, 113 
periodic-boundary convention, 113 
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Molecular mechanics, 77 
Molecular orbitals, 76 
Molecular partition functions, 142 

for ideal gases, 143-144 
Monte Carlo simulations, 114-115 
Morbital, 69, 77, 225 
Morse, 69, 81, 89, 196,225 
Morse anhannonic oscillator, 70, 71, 

74-75 
Motion, kinds of, 77 

Newton, 192,215,225 
Nitrogen material balance, 48 
Nmr,91, 98,104,225 
Nmrft, 91, 100-101,225,235 
Nonideal gas laws, 3-8 
Nonideal solutions, 28-31 
Nuclear magnetic resonance spectros­

copy, 97-98 
two-dimensional, 98-99 

Nuclear spin motion, 77 
Nuclear-spin statistics, 152-155. See also 

Pauli principle 
homo-nuclear diatomic molecules, 

152-155 
partition functions, 154-155 

Oblate symmetric-top molecules, 78, 79 
Onsager, 158, 166, 170,225 
Onsager-Debye-Hiickel theory, 162-

164 
Orbital concept, 76 
Orbital matrix, 82 
Orbitals, 76-77 
Oregon, 192,204,225 
Oregonator,204 
Oscillating reactions, 201-206 
Overlap matrix, 82 

Parallel vibrational modes, 93 
Partial molar quantities, 23-25 
Partition functions, 142-147. See also 

Nuclear-spin statistics; Statistical 
thennodynamics 

Partition-function thennodynamics, 
147-149 

Pattersn, 10~ 111, 11~225 
Pauli principle, 139, 152-155 
Peaks, 91, 94,102-103,225 

Peng~ 1,~ 11,21,225 
Peng2, 14, 19,22,34,225 
Peng3, 14, 21, 34, 225 
Peng-Robinson equation, 5-7 
Perpendicular bands, 94 
Perpendicular vibrational modes, 93 
Per r inl, 123, 128, 225 
Perrin2, 123, 128, 129, 130,226 
Perrin's analysis, 127-128 
Physical kinetics, 158-70 

diffusion, 162-163 
and ions in motion, 163-166 
Maxwell's distribution function, 158-

159 
molecular collisions, 158-162 

Pitzer, 30,39,225 
Pitzer's equation, 30-31 
Pitzer's parameters, 31 
PIXEL.BAS,120,226 
Planck's constant, 2, 201 
PLOTAXES.BAS,120,226 
Polymerization kinetics, 177-179 

free-radical chain, 178-179 
step, 179 

Polynomial equation, 8-9, 15 
Powder, 107, 108, 118,226 
Powell, 43, 45-46, 226 
Pressure, 14 
Programs, list of, 221-228 
Prolate symmetric-top molecules, 79 

Quantum theory, 69-90 

Raman spectroscopy, 132 
Raoult, 15,27,28,38,226 
Raoult's law, 26, 27, 28 
Rate of reaction, 49 
Rayleigh ratio, 133 
Rayleigh scattering, 132 
Rde, 192, 219, 226 
reactionList, 16, 18,46, 152, 199 
Reduced molar density, 7 
Reduced temperature, 7 
Regression analysis, 9 
Rho, 15, 25, 226 
rho, 226 
Rme,210 
Rol, 69, 78, 87, 226 
Ro2,69, 80, 87,226 



Ro3, 91, 92, 101,226 
Rotational motion, 77 
Rovil, 69, 80, 87-88,226 
Rovi2, 91, 92, 101-102,226 
Rovibronic states, 81 
Roviel, 91, 97, 104,226 
Rrkm,192,226 
RRKM theory, 200 

S&mud2, 139, 155,226 
S&muh2, 139, 155,226 
S&muhd, 139, 155,226 
Schroedl, 69, 73-74,85-86,226 
SChroed2,69,75,86,227 
SChroed3,69, 76, 86,227 
Schrodinger equations, 69-76 
Semiconductors, 112-113 
Simhal, 123, 132,227 
Simha2, 123, 132, 136-137,227 
sio2,227 
Size parameter, 30 
Solid surfaces, electrical properties of, 

115-116 
Specons, 227 
Spectroscopy, 91-106 

magnetic resonance, 97-100 
ESR,98 
NMR,97-98 

rotational, 91-92 
rotational-vibrational, 92-96 

data analysis, 94-96 
for diatomic molecules, 92 
for polyatomic molecules, 92-93 

rotational-vibrational-electronic, 97 
vibrational-electronic, 96 

Spherical-top molecules, 78 
Splot, 14,22,227 
Square-root matrix, 84 
Standard chemical potential, 25 
Standard deviation, 10 
Standard Gibbs energy, 26 
Standard states, 14 
Statcalc, 139, 149, 150-151, 155-156, 

227 
State functions, 14 
State variables, 14 
Statg, 139, 154, 157,226 
Statistical chemical thermodynamics, 

151-152 

Index 245 

Statistical thermodynamics, 139-156 
partition functions, 142-147 

electronic partition functions, 147 
molecular, 142-144 
nuclear spin, 147 
rotational, 144-146 
translational, 144 
vibrational, 146-147 

partition-function thermodynamics, 
147-149 

Statk, 139, 152, 156-157,227 
Step, 171, 179, 188,227,234 
Stochastic kinetics, 211-213 
Stokes law, 126 
Stokin,192,213,220,227 
Sub-bands, 93 
Surface crystallography, 116-117 
Symtopl, 91,93, 102,227 
Symtop2, 91, 94, 102,227 

Tafel plot, 208 
Tcurve,43, 56-57, 65, 227 
Thermal expansion coefficient, 19 
Thermkin,192,205,218,227 
Thermodynamic calculations 

at high temperatures, 15-18 
at high tempeartures and high 

pressures, 18-22 
Thermokinetic oscillators, 204-206 
Titration equilibria, 55-57 
Translational motion, 77 
Turning points, 81 
2dnmr, 91, 99, 221 

Uncertainties, 1-2 
Unitless molality, 47 
Unitless molarity, 47 
Unitless partial pressure, 47 
Units, 1-2 

van der Waals, equation, 4-8 
Vanlaar, 29, 38-39,227 
Van Laar parameters, 27, 28, 29 
Vanthoff, 15,33,40,51,64, 

227 
van't Hoff equation, 32-33 
Vibrational motion, 77 
Viell, 69, 81, 88, 228 
Vie12,91, 96, 97, 103,228 
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Vir iall, 1, 3, 228 
Viria12, 1,3-4,11,228 
Virial coefficients, 3 
Virial equations, 3-4 
Viscometry, 131-132 

Waals, 1,4, 5,6,228 
Well, 86, 228 
Whitten, 192,201,217,228 

Xrayl, 107, 110, 111, 118,228 
Xray2, 107, 110, Ill, 118,228 
Xray3, 107, 111,228 
Xray4, 107, Ill, 119,228 

X-Ray Crystallography, 107-111 
Patterson plots, 110-111 
powder method, 108 
precession method, 108-110 

xss, 174, 185,228 

Zelec, 139,228 
Zimm, 123, 134, 137-138,228 
Zimm's technique, 134-135 
Zplot, 14, 22, 228 
Zrot, 139, 145,228 
zrsio4,228 
zvib, 139, 147,228 
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