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Introduction

This book is devoted to the mathematical and numerical modelling of the

cardiovascular system, a research topic that has attracted remarkable inter-

est from both the mathematical and bioengineering communities over the

past 25 years. The driving motivation for this interest is the increasing im-

pact of cardiovascular diseases in our lives. According to Mozaffarian et al.

(2015), cardiovascular diseases are the major cause of death worldwide, lead-

ing to more than 17.3 million deaths per year, a number that is expected to

grow to more than 23.6 million by 2030. In Europe this now corresponds to

nearly half of all deaths (47%).

We focus on the two principal components of the cardiovascular system:

arterial circulation and heart function, with its electrical and mechanical ac-

tivities, blood flow in its chambers, and valve dynamics. Geometric complex-

ity, the lack of data to feed the mathematical models, and the multiphysics

and multiscale nature of the processes at hand present major challenges

when trying to reproduce both function and dysfunction.

Owing to its composite nature, the cardiovascular system is first modelled

by means of stand-alone core components, each describing a single function-

ality, for example arterial fluid dynamics, the electrical activity of the heart,

and the fluid dynamics in the left ventricle. Each core model needs care-

ful mathematical analysis and efficient numerical approximation, often via

specifically devised methods. The next step is integration of the core models

into global, coupled integrated models suitable for describing a meaningful

and coherent part of the cardiovascular system – or even the entire system.

This step requires the introduction of suitable coupling conditions, as well as

novel numerical strategies for a stable, robust and computationally effective

solution of the global problem.

Clinical data play a decisive role in models of the cardiovascular system,

and at the same time dealing with data represents a formidable challenge.
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Clinical radiological images (such as computer tomography and magnetic

resonance imaging) are necessary to construct the computational domains

wherein the mathematical models (very often based upon a system of dif-

ferential equations) are defined. The procedure of geometric reconstruction

is difficult and, especially for the heart, requires advanced mathematical

and numerical tools. Standard radiological images can sometimes be useless:

some cardiovascular components may be smaller than the spatial resolution

of the imaging device (this is the case for the Purkinje network, for exam-

ple); in other cases the elevated brightness gap between fluid and vessel wall

makes the detection of the latter very hard. Boundary data that feed the

mathematical models are also difficult to obtain. When the computational

domain results from an artificial truncation, specific physical quantities (e.g.

fluid velocity or pressure) should be provided at those locations of the ar-

terial tree corresponding to the artificial boundaries. However, this would

require invasive measurements that cannot be easily carried out. In some

specific circumstances, this calls for suitable parameter identification and

data assimilation techniques. Finally, the huge inter- and intra-patient data

variability and uncertainty are further sources of concern regarding model

calibration and validation.

In spite of all these difficulties, a wealth of models has already been suc-

cessfully used to address both physiological and pathological instances. The

aim is, on one hand, a better understanding of the physical and quantita-

tive processes governing the cardiovascular system, and on the other hand

the opening of new frontiers in therapeutic planning and the design of im-

plantable devices (e.g. medical stents, cardiac defibrillators, ventricular as-

sisted devices and prosthetic valves).

The literature on the mathematical and numerical modelling of the cardio-

vascular system is huge, as readers will see by browsing our references, a tiny

subset of the total. In the following chapters we will provide a perspective on

the main contributions to this field. Here, among the several books, mono-

graphs and review papers published so far, we mention Formaggia, Quar-

teroni and Veneziani (2009a), Taylor and Figueroa (2009) and Quarteroni,

Veneziani and Vergara (2016c) for the circulatory system, and Peskin (2002),

Smith, Nickerson, Crampin and Hunter (2004), Colli Franzone, Pavarino and

Scacchi (2014), Quarteroni (2015) and Quarteroni, Lassila, Rossi and Ruiz-

Baier (2017) for the heart.

The book consists of three main parts: in Part 1 we model the arterial

circulation (Chapters 1, 2 and 4), in Part 2 we model the heart function

(Chapters 5, 6 and 7), and in Part 3 we treat inverse problems and include

uncertainty (Chapters 8, 9, 10 and 11). Both Parts 1 and 2 consist of an
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introductory section on physiology (Chapters 1 and 5), a section describing

the available data and their use (Chapters 2 and 6), and a final section on

mathematical and numerical modelling (Chapters 4 and 7). In Part 3 we be-

gin by emphasizing the need to move beyond a single (forward) simulation in

some applications (Chapter 8). This represents the common denominator of

three topics recently applied to cardiovascular mathematics: control and op-

timization (Chapter 9), parameter estimation (Chapter 10) and uncertainty

quantification (Chapter 11).

When appropriate (in particular in Chapters 4, 7, 9, 10 and 11), we re-

port some numerical results to highlight the effectiveness of the numerical

strategies presented here. Unless otherwise specified, all the numerical re-

sults presented in this book have been obtained using the finite element

library LifeV; see www.lifev.org for more details.

Disclaimers. This book is based upon the review paper A. Quarteroni,

A. Manzoni and C. Vergara (2017), ‘The cardiovascular system: mathemati-

cal modelling, numerical algorithms and clinical applications’, Acta Numer-

ica, 365–390. Several slight (and sometimes more substantial) additions have

been made throughout.

Despite the fact that it is 280 pages long,1 several topics related to the

cardiovascular system have not been addressed. Among others, we mention

the venous system (essential if one wants to consider a closed-loop model

of the cardiovascular system, and playing a crucial role in some specific

pathologies: see e.g. Toro 2016), the metabolic system (D’Angelo 2007), the

respiratory system (Maury 2013, Wall, Wiechert, Comerford and Rausch

2010, Trenhago et al. 2016), the cerebro-spinal fluid circulation (Fin and

Grebe 2003), the nervous system (Liang and Liu 2006) the lymphatic sys-

tem (Margaris and Black 2012) and growth and remodelling of the tissue

(Humphrey and Rajagopal 2002). For some of them (e.g. the venous and

respiratory systems) research has made remarkable progress in recent years.

Nonetheless, the mathematical investigation of these systems is still in its

infancy; in particular, their coupling with the cardiovascular system is al-

most absent. Many research avenues are open to the contribution of both

pure and applied mathematicians, with the dream of enabling mathematical

achievements to play a decisive role in everyday clinical practice.

Acknowledgements. The authors would like to thank P. Masci, J. Schwit-

ter, P. Tozzi (CHUV – Centre Hospitalier Universitaire Vaudois, Lausanne,

1 By slightly rephrasing Blaise Pascal’s quotation, we can state that ‘we were not good enough
to make it shorter.’
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(Ospedale S. Maria del Carmine, Rovereto (TN), Italy), for providing the

radiological images; G. Aloe (Politecnico di Milano) for his help in preparing

the figures; L. Azzolin, D. Bonomi, S. Fresca, B. Guerciotti, R.M. Lancellotti,

S. Pagani, S. Palamara (Politecnico di Milano), D. Forti, A. Gerbi, F. Negri,

L. Pegolotti, A. Tagliabue (EPFL, Lausanne, Switzerland), L. Barbarotta

(Technische Universiteit Eindhoven), E. Faggiano (University of Pavia) for

their help in preparing the plots of some numerical results; E. Faggiano and

A. Gerbi for the fruitful suggestions.
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Scientific Computing) network ‘Life Sciences Across Scales’ and the Swiss
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PART ONE

ARTERIAL CIRCULATION
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Basic facts about quantitative physiology

The cardiovascular system is a closed circuit that carries oxygenated blood

to all the tissues and organs of the body. Functionally, it can be regarded as

made up of three compartments: the heart, the systemic and pulmonary cir-

culations, and the microvasculature. In this chapter we will recall the most

important features of the physiology of the systemic circulation characteriz-

ing the mathematical models that will be introduced later on. We will also

highlight the main peculiarities of the pulmonary circulation. Heart physi-

ology will be addressed in Chapter 4.

The systemic circulation is made up of the arteries, which carry oxy-

genated blood ejected by the left part of the heart to the living tissues, and

the veins, which allow non-oxygenated blood to return to the right part.

The exchange of oxygen between blood and the body tissues occurs in the

microvasculature, which in fact separates the systemic arterial tree from the

venous systems. In the pulmonary circulation, non-oxygenated blood ejected

by the right part of the heart flows in the pulmonary arteries towards the

lungs where it becomes oxygenated and goes back to the left part through

the pulmonary veins.

Blood is composed of plasma (about 55% of its total volume), which con-

sists of water (about 92% of plasma volume), proteins and ions. The re-

mainder corresponds to the blood cells, of which 97% of the volume is made

up of erythrocytes (red blood cells), which carry the oxygen in oxygenated

blood. The other cells are leucocytes (white blood cells) and platelets. The

diameter of blood cells is approximately 10−3 cm, whereas that of the small-

est arteries and veins is about 10−1 cm. This is why blood in the systemic

and pulmonary circulations is often considered to be Newtonian, that is,

characterized by a linear relationship between internal forces and velocity

gradients (Perktold and Hilbert 1986, Formaggia et al. 2009a). However, in

the smallest arteries, such as coronary arteries (the arteries perfusing the
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(a) (b) (c)

Figure 1.1 The aorta (a), the carotid arteries (b) and (a subset of) the
coronary arteries (c).

heart and the corresponding veins; see Figure 1.1(c)), in the aortic root

(where the blood flow reaches its peak velocity) or in the presence of vessel

narrowing (stenosis), non-Newtonian blood rheology is more appropriate: see

e.g. Chen, Lu and Wang (2006), Fasano and Sequeira (2017) and references

therein.

Thanks to the synchronous heart contraction, blood flow is pulsatile, and

blood is pumped into the two circulations by means of discrete pulses with

a pressure usually varying during a heartbeat in the ranges 70–130 mmHg

and 20–30 mmHg for the systemic and pulmonary networks, respectively

(1 mmHg ≃ 133.3 Pa = 1333 g cm−1 s−2).

In the systemic circulation, blood first enters the aorta (the largest artery

with diameter equal to about 2.5 cm in adults: see Figure 1.1(a)) and then

flows through a network of hundreds of branching arteries of decreasing

size, reaching all the regions of the body. Dimensions and numbers of veins

are comparable with those of arteries. The waveform of the flow rate as

a function of time is characterized by different peak values when moving

downstream towards the smallest arteries. In particular, the flow rate peak

value is about 200 cm3 s−1 in the aorta, 80 cm3 s−1 in the abdominal aorta,

15 cm3 s−1 in the carotid arteries (the arteries supplying blood to the brain:

see Figure 1.1(b)), and 1 cm3 s−1 in the coronary arteries (corresponding

to a maximum blood velocity of about 150 cm s−1 in the aorta, 100 cm s−1
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(a) (b)

Figure 1.2 Typical flow rate waveforms in the ascending aorta, abdominal
aorta and carotid arteries (a), and in the coronary arteries (b).

in the abdominal aorta, 80 cm s−1 in the carotid arteries and 40 cm s−1 in

the coronary arteries). Further, the shape of the waveforms changes while

moving downstream: see Figure 1.2(a). In particular, in the ascending aorta,

after the systolic peak, the flow rate decelerates assuming null or even nega-

tive values, whereas in the abdominal aorta and in carotid arteries it is more

spread out and always positive. In any case, we can distinguish the systolic

phase – the interval of acceleration and deceleration of blood flow – and the

diastolic phase – the interval of almost constant or possibly reverse flow.1

A different situation occurs in coronary arteries, where the peak flow rate

is reached during diastole: see Figure 1.2(b). The coronary arteries are not

directly fed by the heart; indeed, blood in the proximal part of the aorta

(the sinuses of Valsalva from which the coronary arteries originate) during

diastole is allowed to enter the coronary arteries thanks to the elastic re-

sponse of the aorta and isovolumic ventricle relaxation (see below for more

details). The systemic circulation also comprises the venous system which

returns the de-oxygenated blood to the right part of heart.

In the pulmonary circulation blood first enters the pulmonary artery (dia-

meter equal to about 3.0 cm in adults) and then flows into another network of

branching arteries of decreasing size reaching the lungs. The waveforms and

peak intensities are similar to those of the systemic arteries. After oxygena-

tion in the lungs, the blood returns to the left heart through the pulmonary

veins.

The different characteristics of blood flow in the arteries of the systemic

1 The above definition of systole and diastole is formulated from the perspective of the arteries.
An almost equivalent definition could be given from the perspective of the heart and possibly
for each of its chambers: see Chapter 4.
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circulation result in different values of the Reynolds number,

Re =
ρf DU

µ
,

(where ρf is the blood density, D and U are the characteristic vessel dimen-

sion and blood velocity, respectively, and µ is the fluid viscosity), a dimen-

sionless number which quantifies the importance of inertial forces over the

viscous forces. In the cardiovascular system this variability is mainly due to

the size of the vessel and blood velocity. In particular, Re ≃ 4000 in the

aorta and Re ≃ 400 in coronary arteries, with intermediate values found

when moving downstream along the aorta. Thus, blood covers a range of

Reynolds numbers where both the inertial and the viscous components of

the flow are relevant. Although in the aorta Re is higher than the critical

value of 2000 above which the flow would no longer be laminar in a straight

pipe, the pulsatile nature of blood flow does not allow transition to full

turbulence in physiological conditions. It is debatable whether transition to

turbulence effects occur in the aorta. Some authors speculate that the he-

licoidal velocity pattern in the aorta, induced by the torsion of the heart’s

contraction, inhibits any transition to turbulence, thus supporting the thesis

that in healthy conditions fully developed turbulence is never observed in

the cardiovascular system (Morbiducci et al. 2009). This is not necessarily

the case for some pathological conditions, such as carotid stenosis, yielding a

narrowing of the vessel lumen and increased complexity of the geometry to-

gether with higher Reynolds numbers: see e.g. Ahmed and Giddens (1984),

Lee et al. (2008), Kefayati, Holdsworth and Poepping (2014) and Lancellotti

et al. (2017). The Womersley number,

W =

√
2Af

µ
,

(where A and f are the characteristic cross-section vessel area and time

frequency of the flow rate signal, respectively) is a dimensionless number

quantifying the pulsatility of flow. We find decreasing values in the systemic

circulation moving downstream: W ≃ 10 in the aorta, W ≃ 3 in the carotid

arteries. Similar values of Re and W are found in the pulmonary arteries.

In the veins of the systemic circulation, we find values of the flow rate,

Reynolds and Womersley numbers comparable to the arteries, the only dif-

ference being that the blood flow waveform is more spread out than for the

corresponding arteries. Another major difference is given by blood pressure

values. In the arteries the range of pressure is almost the same, independent

of the location in the tree (70–130 mmHg), whereas in the veins it reduces,
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assuming an average value of about 10 mmHg. This is due to the high re-

sistance experienced by blood flow in the microvasculature. The latter is

composed of thousands of arterioles and venules and billions of capillaries.

The blood velocity and vessel dimensions are here greatly reduced (about

10−1 cm s−1 in the former and 10−2 cm in the latter). This means that

Re is very small (typically much smaller than one) in comparison with the

systemic circulation since viscous forces completely dominate the inertial

forces. As a result, the highest resistance to flow is found in the micro-

vasculature, thus provoking a big decrease in the blood pressure. Since the

typical dimension of capillaries is comparable to that of erythrocytes, a mul-

tiphase (multicomponent) model seems appropriate for their mathematical

description (Enden and Popel 1992). Finally, we observe that most veins

are supplied with valves that prevent backflow of blood, and venous flow is

highly sensitive to muscle contraction and respiratory effects.

As observed, blood pressure assumes the same range of values along the

entire systemic arterial tree, 70–130 mmHg. More precisely, negligible dis-

sipation is experienced by the pressure signal in large and medium sized

vessels before reaching the small vessels and microvasculature. Of course, at

a given instant the pressure is not constant in space along the tree. Indeed, a

time shift characterizes the pressure waveforms at different locations which

generate gradient pressures between proximal and distal regions facilitating

blood movement. These spatial gradients are due to the propagating nature

of the pressure, which is in fact a wave travelling along the arterial network.

The pressure wave speed ranges from about 500 cm s−1 in the aorta to

1200 cm s−1 in the coronary arteries. The presence of bifurcations or high-

resistance regions, such as the microvasculature, produces wave reflections

that propagate back towards the heart.

The propagation of a pressure wave along the vascular tree is due to vessel

compliance, that is, the ability of the vessel to distend under the forces ex-

erted by blood pressure. Vessel wall displacements are quite large, reaching

up to 10% of the lumen diameter. This is possible thanks to the structure

of the vessel walls: their total thickness is about 10% of the lumen diameter

and they are composed of three layers: the intima, the media and the ad-

ventitia. The inner part of the intima is the endothelium (facing the blood),

whereas the remaining part is made up of connective tissue. The media and

the adventitia play a major role in characterizing the mechanical response of

the vessel wall. Their main structural components are elastin and collagen.

The media is also formed of smooth muscle cells which provide tone to the

vessel wall. Elastin forms complex networks that are very distensible, pro-

viding the elasticity of the vessel wall at small strain. In contrast, collagen
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forms stiff fibres oriented in a helical form providing tensile strength at large

strain; see e.g. Tricerri, Dede’, Deparis, Quarteroni, Robertson and Sequeira

(2015) and Tricerri, Dede’, Gambaruto, Quarteroni and Sequeira (2016) for

cerebral arteries. Thus, the artery vessel wall is characterized by highly non-

linear elastic properties. The quantity of elastin and collagen progressively

decreases moving downstream along the arterial network, whereas the quan-

tity of smooth muscle cells increases. This allows the proximal arteries (those

close to the heart), in particular the aorta, to be very extensible and, thanks

to the high peripheral resistances due to the elevated tone of the distal ar-

teries and to the microvasculature, to store about 50% of the blood entering

during systole. This blood reserve is then discharged during diastole owing

to the vessel wall elastic response (the so-called windkessel effect). This effect

is responsible for the smoothing of the blood flow waveform discussed above,

going downstream along the arterial network, which guarantees nearly con-

tinuous peripheral blood flow and thus an almost continuous exchange of

oxygen with the tissues. Further, pulmonary artery walls are extensible too

(with muscular tone increasing downstream), even though their thickness is

only about 1% of the lumen diameter.

As already observed, there is mutual exchange of energy between blood

and extensible vessel walls: the latter accumulate elastic potential energy

under the forces exerted by the blood pressure, which is then transferred

to the blood as kinetic energy (from the mathematical point of view, this

gives rise to the fluid–structure interaction problem). This process occurs

at short time scales, proportional to the duration of a heartbeat (∼ 1 s).

Other interaction mechanisms may take place at larger time scales yield-

ing wall modifications of vessel properties; these are usually referred to as

growth and remodelling problems. This occurs in the case of several arte-

rial diseases, such as atherosclerosis and aneurysm formation. In the first

case, an increased permeability of vessel wall to lipoprotein provokes a cas-

cade of events at the cellular level which leads to the accumulation of fatty

material in the intima, just below the endothelium, and then to plaque for-

mation in the media. Preferential sites of atherosclerotic plaque formation

are the carotid arteries and the coronary arteries. The main complications

are partial occlusion of the lumen with consequent (cerebral or cardiac) is-

chaemia, or even total occlusion resulting in (cerebral or cardiac) infarction.

An aneurysm consists in the dilatation of the vessel wall with formation of a

(possibly huge) bulge, mainly in the aorta and cerebral arteries, due to a loss

of elastin and to the consequent remodelling of collagen, resulting in a weak-

ening of the arterial wall; 80–90% of ruptured abdominal aortic aneurysms

and 45% of ruptured cerebral aneurysms result in death. The role of blood
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fluid dynamics has been recognized as crucial for the development of both of

these diseases (Glagov, Zarins, Giddens and Ku 1988, Bagci et al. 2008). In

particular, wall shear stresses, that is, the viscous/friction forces exerted by

the blood on the endothelium, despite being 100 times smaller in magnitude

than pressure, regulate the permeability of the wall to lipoprotein and de-

termine the loss of elastin, thus playing an important role in atherosclerosis

and aneurysm development. Other than the wall shear stresses, their spatial

distribution and gradient play a major role. For both these arterial diseases,

this supplementary interaction between fluid and structure occurs at time

scales of several years.

More on the physiology of the systemic and pulmonary circulations and

microvasculature in view of mathematical modelling is available in Nichols

and O’Rourke (2005), Quarteroni, Tuveri and Veneziani (2000c) and For-

maggia et al. (2009a), just to name a few.



2

An insight into vascular data

The ultimate ambition of mathematical models in medicine and clinical ap-

plications is to provide quantitative results to enhance the understanding of

biophysical processes and hence to support clinicians in their diagnostic and

therapeutic procedures. To this end, we must consider data that are patient-

specific, to use the bioengineering jargon – that is, related to real patients.

Obtaining and processing patient-specific data is a major issue which de-

serves a specific book in its own right. Here, we provide a brief overview of

the most common techniques for acquisition and analysis of ‘clinical’ data.

This data preprocessing is essential for feeding the mathematical models

prior to the set-up of a numerical simulation.

In this chapter we address the case of data related to the arterial (or

venous) circulation, whereas in Chapter 5 we will discuss cardiac data. In

arteries we have two interacting processes: the blood flow in the vessel lumen

(the region occupied by the blood, which is referred to as the fluid domain for

the corresponding mathematical problem) and the displacement of the vessel

wall (referred to as structure). As we anticipated, mathematical models need

geometric, boundary and biological data, which are discussed below.

2.1 Geometric vascular data

Geometric data are necessary for building the geometry of the computational

domains wherein the differential problems are numerically solved. At the

end of the geometric preprocessing step, we obtain the fluid computational

domain for the blood fluid dynamics problem and the structure computa-

tional domain for the vessel wall displacement problem. The construction

of the computational domain is an essential step as our typical mathemati-

cal model, very often constituted by systems of partial differential equations

(PDEs), is defined in a bounded subset of the three-dimensional space R3; in
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Figure 2.1 Computational mesh of a carotid bifurcation: unstructured vol-
umetric mesh comprised of tetrahedrons.

the case of the fluid problem, this is e.g. the artery lumen, while for the solid

problem this is the vessel wall. However, mathematical models described by

PDEs are almost never endowed with solutions in closed form. Hence, nu-

merical methods are nowadays well established for looking for approximate

solutions of such models. Among these, the most widespread is the Finite

Element method which carries the spatial approximation of the PDEs; see

e.g. Brenner and Scott (2008), Ciarlet (1978), Ern and Guermond (2004),

Hughes (2000) and Quarteroni and Valli (1994). The Finite Element method

– as well as other families of methods – is based on the approximation of

the computational domain wherein the PDEs are defined, thus requiring the

construction of the so-called computational mesh; an example of volumetric

mesh comprised of tetrahedrons is depicted in Figure 2.1.

The processing of geometric data for blood flow simulations is a major

task since vessels exhibit high morphological variability due, for example, to

the evident tortuousness of vessels and the presence of several bifurcations.

Moreover, in unhealthy cases, this variability is further emphasized, because

of the possible presence of calcifications, stenoses, aneurysms or even pros-

theses (such as stents).

Geometric preprocessing consists of the following steps, which are usu-

ally performed in sequence (Antiga et al. 2008, Antiga, Peiró and Steinman

2009):

(i) acquisition of clinical images,

(ii) image enhancement,

(iii) image segmentation,

(iv) generation of the computational mesh.
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These items are addressed below.

2.1.1 Acquisition of clinical images

Angiography is an imaging technique successfully used to ‘identify’ the vessel

lumen. It exploits the property that a liquid inside the vessel appears brighter

than the vessel wall and the surrounding tissue. Angiographies are usually

acquired as two-dimensional (2D) images,corresponding to different slices of

the domain of interest, but three-dimensional (3D) acquisitions of volumes

are also possible.

One of the most common techniques for obtaining an angiography is X-

ray imaging, based on the projection of X-ray beams through the body onto

suitable screens, and on the contrast produced in the 2D image by the differ-

ent absorption properties of body structures. To highlight the vessel lumen,

a radio-opaque dye is inserted into the bloodstream through the arterial

system. To reconstruct tortuous geometries, a rotational angiography (RA)

is performed, where X-ray sources and detectors are rapidly rotated around

the patient, allowing one to acquire many projections within a few seconds.

The excellent spatial resolution of projection angiography (about 0.2 mm,

0.4 mm for RA) makes this technique the gold standard for most vascular

imaging applications. Another X-ray angiography technique, widely used for

blood flow simulation, is based on computed tomography (CT) technology,

where multiple X-ray sources and detectors are rotated rapidly around the

patient, allowing one to acquire 3D images with excellent spatial resolution

(less than 1 mm in computed tomography angiography, CTA). Unlike projec-

tion angiography, another advantage of CTA is the possibility of using intra-

venous rather than arterial injections. Recently, temporally resolved CTA

(4D-CTA) has become feasible. This allows one to obtain several (15–20)

3D images during a heartbeat.

Difficulties may arise in the presence of metal artifacts in subjects bear-

ing metallic prostheses such as pacemakers, resulting in streaks on the im-

ages obscuring anatomical details; see Robertson, Yuan, Wang and Vannier

(1997) and Faggiano, Lorenzi and Quarteroni (2014) for possible mathemat-

ical treatments.

Another widely used technique to obtain angiographies is magnetic reso-

nance imaging (MRI), based on the different decay rates exhibited by body

structures on exposure to radio frequency (RF) energy. This is called mag-

netic resonance angiography (MRA). The generated contrast in the images

can be tuned by selecting different RF stimuli. This allows MRA to be

suitably tuned to detect soft tissues. Another advantage of MRA is that
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angiography can be generated without using exogenous agents. However,

usually an intravenous injection of a paramagnetic contrast agent is used to

improve the blood signal and reduce the acquisition time (contrast-enhanced

(CE)-MRA).

Finally, we mention ultrasound (US) imaging, based on the reflections of

high-frequency sound waves (a few MHz) transmitted into the body. Ultra-

sound is the least expensive and invasive of the techniques discussed here

and allows real-time acquisition of 2D images. In contrast, its spatial resolu-

tion is the poorest. Recently it has even been possible to acquire 3D images

(3D US) by reconstructing a 3D volume from 2D slices.

On the other hand, only a few techniques currently allow us to obtain im-

ages of vessel walls. Among these we cite black blood (BB)-MRA, by which

the vessel wall and the surrounding tissue can also be viewed, and intravas-

cular ultrasound (IVUS), which is however very invasive since the transducer

is placed directly into the artery (typically a coronary artery) via a catheter.

Independently of which technique is used, we can assume that, from a

mathematical standpoint, we are able to obtain a vector Iclin, whose jth

component, Iclinj , corresponds to the intensity of the image at the point xj
in grey-scale representing the contrast generated by the imaging technique.

The collection of the points xj , j = 1, . . . , N clin, forms the lattice Lclin,where

N clin is the total number of acquisition points (pixels or voxels) where the

image contrast has been evaluated. Here and below, a lattice is a simple

collection of points determined by the point coordinates. It can be useful to

associate a corresponding image intensity (scalar) function with the image

intensity vector Iclin, which is typically obtained by interpolation, and will

be denoted by Iclin(x).

2.1.2 Image enhancement

Medical images are often affected by noise and artifacts that may interfere

with the quality of the final results of the preprocessing step. Thus, prior to

the reconstruction of the 3D geometry, an image enhancement procedure is

usually performed.

One popular enhancement technique is resampling, which consists in suit-

ably changing the resolution of the images in one or more directions. In

practice, an interpolation of image intensity values Iclin onto a more refined

lattice is performed. The most commonly used methods are piecewise con-

stant interpolation, first-order composite Lagrangian interpolation, B-spline

(Unser 1999), and windowed sinc interpolation (Crochiere and Rabiner 1983).

The noise in the medical images may be due to thermal effects in the sig-
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nal processing electronics or to other undesired sources. Reduction of noise

could be obtained by means of a smoothing filter, which does not require any

prior knowledge about the nature of the noise and has a regularizing effect

on the image. This technique is the most commonly used both for CT and

MRI images. A very popular filter is the Gaussian filter, consisting in per-

forming a discrete convolution with a Gaussian kernel over the lattice Lclin of

the image intensity Iclin. Unfortunately, together with the noise, smoothing

could also cut off significant high-frequency image contents when perform-

ing the filtering procedure. Moreover, since the image is separated from the

background by sharp boundaries, characterized by high-frequency content,

the smoothing filter could blur and displace the boundaries. To prevent this,

anisotropic diffusion filtering has been introduced (Perona and Malik 1990):

the parabolic diffusion equation (often known the heat equation) is solved

for a new image intensity function, with diffusion coefficient decreasing for

increasing values of the gradient magnitude of intensity. By so doing, the

filtering is not performed at the boundaries where the gradient is large.

Another technique, called multiscale vessel enhancement (Frangi et al.

1999), exploits the specific tubular shape of vascular geometries, and there-

fore assumes that the minimum modulus eigenvalue of the Hessian matrix

of the image intensity function Iclin is small, while the other two are large

and of equal sign.

At the end of this substep we obtain a new image intensity vector Ien

whose jth component, Ienj , denotes the intensity of the enhanced image in

grey-scale at the point xj , j = 1, . . . , N en, in the lattice Len (and corre-

spondingly an associated enhanced image intensity function Ien(x) via in-

terpolation). Here, N en is the total number of points in the enhanced image

intensity vector. Usually, N en > N clin.

2.1.3 Image segmentation

Image segmentation is the cornerstone of the preprocessing step. It consists

in the construction of the shape of a vascular district from the image ob-

tained after the enhancement substep. In particular, the segmentation allows

one to detect those points of the lattice Len which – presumably – belong

to the boundary of the vessel lumen. The precise definition of the bound-

ary of the lumen is a challenging task which generally requires considerable

experience on the part of the user.

The first technique we describe is thresholding, which consists in selecting

a threshold value k ∈ R to identify the points xj ∈ Len such that Ienj > k.

This is motivated by the assumption that k separates different anatomical
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structures, in our case the vessel lumen (characterized by intensity values

larger than k) and the background, obtained by the collection of points for

which Ienj ≤ k. The value of k is determined either manually or via a suitable

algorithm. In the latter case, one commonly used strategy is full width at half

maximum (FWHM), which consists in setting the threshold halfway between

the peak intensity within the lumen and the intensity of the background.

For the segmentation of special structures, such as calcifications or stents,

higher-bound thresholds are used (Boldak, Rolland and Toumoulin 2003).

A more sophisticated class of segmentation methods than thresholding

is given by front propagation methods, where the propagation of a suitable

wavefront is tracked. The speed of the wave is small in regions where Ien

changes rapidly and high for other regions, so that the wavefront slows

down when approaching the boundary. The most popular front propagation

method is the fast marching method, which provides an efficient solution to

the eikonal problem:

‖∇T (x)‖ =
1

V (Ien(x))
, x ∈ Den,

where Den ⊂ R
3 is a region that contains all the points xj ∈ Len, and where

suitable boundary conditions are prescribed on a selected boundary where

the propagation starts (Zhu and Tian 2003). In the above equation, V is the

wavefront velocity and T (x) is the first arrival time at point x. In fact, T

is exploited through isocontours, denoting a collection of surfaces describing

the shape of the waveform. The vessel boundary is then represented by the

points xj ∈ Len such that T (xj) = T b (up to a given tolerance), where T b

is a suitable value selected by the user.

Another class of segmentation methods is that of deformable models,

where a suitable energy functional is minimized, allowing the deformation

of the body (in our case the boundary of the vessel lumen) to reach a fi-

nal state with the smallest energy, accounting for external terms derived

from the image and internal terms constraining the boundary to be regular.

The most widely used class of deformable models is the level-set method,

where a deformable surface is represented implicitly as the zero level of a

higher-dimensional embedding function (Sethian 1999). Deformable models,

for example those based on cylindrically parametrized surface meshes, in-

corporate anatomical knowledge of the vessel shape (Frangi et al. 1999, Yim

et al. 2001).

For the segmentation of the vessel wall, Steinman et al. (2001), starting

from BB-MRA images, segmented the vessel wall outer boundary using the

same deformable model as used for the vessel lumen segmentation. Usually,
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BB-MRA or other images detecting the vessel wall are not routinely acquired

in clinical practice. In this case, a reasonable approach to obtaining the vessel

wall is to ‘extrude’ the reconstructed boundary lumen along the outward unit

vector by using a suitable function specifying the vessel wall thickness in the

different regions of the district of interest.

In those cases where the image intensity vectors Iclin and Ien refer to 2D

slices, application of the above segmentation strategies leads to identifica-

tion of several vessel boundaries (contours), one for each slice, which now

need to be connected to obtain the 3D boundary surface. This operation

is called surface reconstruction. A simple procedure is to connect successive

contours with straight lines defining surface triangle edges. This strategy is

not suitable in the presence of changes of shape such as in bifurcations. Bet-

ter surface reconstruction is provided by least-squares fitting of polynomial

surfaces to the contour set (Wang, Dutton and Taylor 1999). This strategy

is suited to managing bifurcations whose branches are fitted separately with

a successive extension into the parent vessel. A variant of this approach has

been proposed in Geiger (1993), where contours are first filled with triangles

which are then connected to the triangles of the adjacent contours by means

of tetrahedra. The final lumen surface is then represented by the boundary

of this tetrahedral mesh (formed by triangles). We also mention shape-based

interpolation where, for each contour, a characteristic function with positive

(resp. negative) values for points located inside (resp. outside) the contour

is constructed. The final lumen boundary surface is then represented by

the zero level-set of the interpolation of all these characteristic functions

(Raya and Udupa 1990). Finally, we briefly describe interpolation by means

of radial basis functions (RBFs), which provide a flexible way of interpo-

lating data in multi-dimensional spaces, even for unstructured data where

interpolation nodes are scattered and/or do not form a regular grid, and

for which it is often impossible to apply polynomial or spline interpolation

(Carr, Fright and Beatson 1997, Fornefett, Rohr and Stiehl 2001). The co-

efficients (weights) in the linear combination with respect to the RBF basis

are determined by solving a suitable linear system, which is in fact invertible

under very mild conditions (Peiró et al. 2007).

A special mention must go to centreline reconstruction. The centreline

is a curve (a one-dimensional manifold) centred inside the vessel lumen.

Many segmentation tools use the centreline as the starting point, making

the assumption that the shape of the section around each centreline loca-

tion is known (O’Donnell, Jolly and Gupta 1998). Centreline reconstruction

allows complete reconstruction of the computational domain when using

one-dimensional modelling of blood flow: see Section 3.5.1.
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In any case, at the end of the segmentation step we obtain the lattice

Lsurf which collects the points xj, j = 1, . . . , N surf, classified as belonging to

the lumen vessel surface or to the outer wall, where N surf denotes the total

number of points of the surface lattice.

2.1.4 Building the computational mesh

Once the final boundary lattice Lsurf (made up of points on the lumen bound-

ary) is made available, we are ready to build the volumetric mesh T vol in

the lumen. This mesh usually consists of unstructured tetrahedra, because

of their flexibility in filling volumes of complex shape.

Unstructured volumetric meshes are constructed starting from an analyti-

cal expression, say S(x), representing the surface associated with the bound-

ary lattice Lsurf. This expression can derive from an explicit representation,

for instance a bivariate parametric function built as a collection of adjacent

polygons. The latter are typically triangles, generated by Lagrangian shape

functions, or patches, generated by high-degree piecewise polynomials such

as NURBS (Sun, Starly, Nam and Darling 2005). Alternatively, the surface is

represented implicitly as the isosurface of an embedding function. Note that

some of the segmentation strategies described above, such as deformable

models and those used for the surface reconstruction, directly provide an

analytical expression S(x) of the lumen boundary surface.

For the construction of unstructured volumetric meshes T vol, we men-

tion two possible approaches. In the first, a boundary surface mesh T surf is

generated. To this end, we start from a lattice L̃surf (in principle different

to Lsurf) composed of points of S. Then, the Voronoi diagram for L̃surf is

constructed. This is a partition of S into non-overlapping regions, each one

containing exactly one point (node) of L̃surf and composed of all the points

of S that are closer to that node than to any other node. Starting from

the Voronoi diagram, it is possible to generate a Delaunay mesh T surf: see

Thompson, Soni and Weatherill (1999). We emphasize that the vertices of

the mesh T surf do not necessarily coincide with the points of the lattice L̃surf.

Popular algorithms for generating a Delaunay mesh have been proposed by

Watson (1981) and Weatherill and Hassan (1994). Once a surface mesh T surf

is made available, the volumetric mesh T vol is generated. The latter could be

obtained by advancing front methods, where, starting from the triangles of

the surface mesh, a front composed of internal nodes is generated. These new

nodes allow us to identify tetrahedra, whose validity is verified by checking

that they do not intersect the front (Bentley and Friedman 1979).

The second approach relies on directly generating the volumetric mesh
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T vol, for example by means of Delaunay 3D mesh generation, where a start-

ing volumetric lattice L̃vol is obtained by locating the nodes in the volume

V(x) contained in S(x). One of the main problems related to this approach

is that boundary meshing is often difficult, since the related surface trian-

gulation could not be of Delaunay type. An alternative approach is given

by octree mesh generation, where V(x) is embedded in a box and successive

subdivisions are performed until the smallest cells permitaccurate descrip-

tion of the boundary. Despite being faster, this strategy generates meshes

with poor quality near the boundary.

When a volumetric mesh T vol is obtained, a further step (mesh optimiza-

tion) could be introduced prior to the generation of the final mesh, in order

to improve its quality. Mesh optimization helps controlling mesh distortion,

for example in presence of very large angles in the mesh elements, which

could harm the convergence of the algorithms used for the numerical solu-

tion of the PDE of interest and thus their accuracy. Mesh optimization is

incorporated in the strategies described above; it leads to an optimal mesh,

providing the best accuracy for a given number of nodes.

A mesh is deemed valid for blood flow simulations if it allows recovery of

outputs of physical interest. Even if the latter concerns the postprocessing

stage of the computational pipeline, the accuracy of the results and the

quality of the outputs evaluation strongly depend on the properties and

quality of the mesh. In arteries, the mesh should be fine enough to capture

wall shear stress (WSS) (Celik et al. 2008) and, to this end, the construction

of a boundary layer mesh is essential, even at low Reynolds numbers (Bevan

et al. 2010). Here WSS expresses the magnitude of tangential viscous forces

exerted by the fluid on the lumen boundary Σt, defined by

WSS = µ

√√√√
2∑

j=1

(
(∇v n) · τ (j)

)2
on Σt,

where v is the fluid velocity, n is the outward directed unit vector normal to

Σt and τ (j), j = 1, 2, represent the tangential unit vectors. Note that WSS

is a scalar function of x ∈ Σt and t > 0. In componentwise notation,

WSS = µ

(
2∑

j=1

(
3∑

i,k=1

(
∂vi
∂xk

nk

)
τ
(j)
i

)2)1/2

on Σt.

For the structure domain, hexahedral meshing is preferable in order to

prevent the locking phenomenon, whereas tetrahedral meshes are used when

conforming meshes at the boundary lumen interface are needed, in view of
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fluid–structure interaction problems (see Section 3.3). Usually, three or four

layers of mesh elements are enough to obtain an accurate result (Younis

et al. 2004).

For recent reviews on geometric reconstruction for blood flow simulation,

see Antiga et al. (2009), Sazonov et al. (2011) and Lesage, Angelini, Bloch

and Funka-Lea (2009).

2.2 Boundary vascular data

The differential problems – namely systems of PDEs – we will treat in the

following chapters need appropriate boundary conditions. In the case of

models like the incompressible Navier–Stokes equations for the fluid problem

and finite elasticity for the structure problem, we anticipate the kind of

boundary conditions that should ideally be prescribed. These are

v = gf on ΓD,tf , −pn+ µ(∇v + (∇v)T)n = hf on ΓN,tf

for the fluid problem and

d = gs on ΓD,ts , T sn = hs on ΓN,ts

for the structure problem. In the above equations, the Dirichlet and Neu-

mann boundaries, ΓD,tj and ΓN,tj , respectively, are such that ΓD,tj ∩ΓN,tj = ∅,
ΓD,tj ∪ ΓN,tj = ∂Ωtj, j = f, s, where Ωtf and Ωts are the fluid and structure

domains at time t: see Figure 2.2(a). Moreover, p denotes the fluid pressure,

−pn+ µ(∇v+ (∇v)T)n is the fluid normal Cauchy stress at the boundary,

d is the structure displacement, T s is the Cauchy stress tensor of the wall

material, and gf , gs, hf , hs are data: see Chapter 3. We use the superscript
t to indicate time-dependence of the computational domain, its boundary,

and their subsets.

As we will see below, the boundary of the computational domain (for

either the fluid or the structure) will be composed of two parts, namely the

physical boundary and the artificial boundary. On the physical boundary,

suitable conditions are often suggested by physical principles. For example,

for the fluid problem, no-slip Dirichlet conditions should be prescribed at

the lumen boundary, since it is assumed that the fluid particles perfectly

adhere to the vessel wall. This leads to a homogeneous Dirichlet condition

(v = 0) in the case of rigid walls, and instead to a kinematic interface

condition (v = ḋ) for fluid–structure interaction problems (see Section 3.3).

As for the structure problem, at the internal physical boundary (i.e. at

the lumen boundary) the fluid pressure is often prescribed. This leads to a

Neumann boundary condition (T sn = −Pn, where P is a measurement of
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(a) (b)

Figure 2.2 Possible choices of the Dirichlet and Neumann boundaries (a)
and physical and artificial boundaries (b) for a carotid domain in the fluid
stand-alone problem (reconstructed from MRA images).

the fluid pressure) for a pure structure problem, while to a dynamic interface

condition (T sn = −pn+ µ(∇v + (∇v)T)n) for fluid–structure interaction.

On the outer wall boundary Γext, the interaction with the surrounding tissue

should be considered. This is often modelled by means of a Robin boundary

condition of the form

αSTd+ T sn = Pextn on Γext, (2.1)

which assimilates the surrounding tissue to a sequence of elastic springs

with rigidity αST > 0 and where Pext is the external pressure (Moireau

et al. 2012).

In contrast, the artificial sections are those introduced by the truncation

of the computational domains: see Figure 2.2(b). Truncation is done in order

to focus on a specific domain of interest. Ideally, the boundary conditions

to be used on artificial sections should derive from clinical measurements.

The technique mainly used to obtain boundary data on artificial bound-

aries is ultrasound. This is because of its non-invasiveness and the fact that

it is used on a daily basis in clinical practice. If the ultrasound beam is

swept through a plane or sector (unlike in geometric acquisitions where it

is kept fixed), it is possible to measure the blood velocity at a single point

of a cross-section, let say Γt, in the direction of the ultrasound beam by
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exploiting the Doppler effect. The velocity is then converted into a flow rate

measure Q across Γt for each time (this is the principle of the so-called echo-

colour-Doppler technique: Savader, Lund and Osterman 1997) and can then

be used to prescribe a flow rate condition

ρf

∫

Γt

v · n dγ = Q. (2.2)

Condition (2.2) is defective since it is not rich enough to ensure well-posedness

of the fluid problem. The treatment of defective conditions will be ad-

dressed in Section 3.4. Another technique allowing measurement of cross-

sectional flow rates is based on the acquisition of thermal images (Mahmoud

et al. 2013). Another quantity easily measurable by means of ultrasound is

the lumen area
∫
Γt dγ. This information could be used to prescribe a de-

fective condition for the vessel wall if Γt coincides with a subset Γtf of the

boundary of the fluid domain.

More sophisticated techniques could acquire velocity measurements in sev-

eral points on the same cross-section, thus in principle leading to a Dirichlet

boundary condition (possibly after suitable regularization). This is the case

for phase contrast (PC)-MRA, where the blood velocities are encoded into

images taken at several instants during a heartbeat (Morbiducci et al. 2009).

The spatial resolution of modern PC-MRA is of the order of 1–2 mm on each

cross-section Γt of the vessel and 4 mm along the longitudinal axis. The re-

quired mesh size is often less than 1 mm, however, such interpolation is

needed to obtain a usable Dirichlet condition. The temporal resolution is

about 0.03 s.

If the lumen artificial cross-section is orthogonal to the axial direction,

then the viscous terms in the fluid normal Cauchy stress are very small

(Heywood, Rannacher and Turek 1996). In this case, a measurement of the

pressure P (t) could be used to prescribe a Neumann boundary condition.

This could be obtained for the arterial system non-invasively by means of a

sphygmomanometer, which usually measures the pressure at the level of the

radial aorta (remember that the pressure peak could be considered constant

along the arterial tree, at least until the capillary net: see Section 1). To have

continuous monitoring of the pressure (e.g. during hospital recovery) or to

take a measurement in the venous system (where the pressure reduces), a

catheter with a transducer could be placed in the region of interest. In any

case, the average pressure over the cross-section is measured. This leads

at each time to the following defective boundary condition for the normal
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component of the normal Cauchy stress of the fluid:

1

|Γt|

∫

Γt

(
pn− µ(∇v + (∇v)T)n

)
· n dγ = P. (2.3)

Unfortunately, measurements are not available at the artificial sections of

the structure, so ‘empirical’ and ‘practical’ choices are very often made (see

Section 3.4).

Finally, we observe that measurements acquired at several instants along

the heartbeat could be applied in principle for physical boundaries as well.

For example, from 4D-CTA imaging the boundary lumen displacement could

be used as the Dirichlet condition for the structure problem, whereas from

PC-MRA the blood velocity at the boundary lumen could be used to pre-

scribe a Dirichlet condition for the fluid problem. Since, at the physical

boundaries, physical principles are used to prescribe boundary conditions,

these ‘extra’ data could be used for validation of the numerical results or

in a parameter estimation fashion, as described in Chapter 9. PC-MRA also

allows us to acquire internal measurements of blood velocity. This could also

be used for validation or parameter estimation.

2.3 Biological vascular data

Finally, we need to know the values of physical parameters appearing in

the differential equations. For the fluid problem, two parameters character-

ize it, namely blood density ρf and blood viscosity µf . Although density is

easily measurable in principle, patient-specific acquisition is generally not

made because its value never significantly departs from an average value

of 1.06 g cm−3. In contrast, the variability range of viscosity is larger. In-

deed, its value depends on the shear rate (non-Newtonian behaviour) and on

the physical state of the patient. When the assumption of Newtonian fluid

(holding for medium and large healthy vessels) is made, typical values of the

viscosity range in the interval 0.03–0.04 P (the poise, symbol P, is the unit of

dynamic viscosity, i.e. 1 P=1 g cm−1 s−1). Again, no patient-specific viscos-

ity measurements are usually made and, except for pathological situations,

a value in the previous range is selected.

The parameters characterizing the vessel wall depend (also in number) on

the constitutive law used to represent its behaviour. More typically, these are

the density, the elasticity (or compliance) and the amount of compressibility

allowed or, very often, incompressibility. For linear elastic models, the latter

two are quantified by Young’s modulus and the Poisson ratio, respectively.

For the non-linear elastic laws typically used to characterize the arterial
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tissue, compliance and compressibility properties are quantified by suitable

parameters and coefficients typical of the constitutive model at hand. The

tissue density value is very similar to that of blood, the upper limit of the

range most commonly used being close to 1.2 g cm−3. The compliance of

the vessel could be qualitatively seen as the ratio between the volume and

pressure variations (Nichols and O’Rourke 2005). Patient-specific acquisi-

tions could be obtained from simultaneous (invasive) measurement of pres-

sure and cross-sectional area at different locations, by measuring the rate of

propagation of flow waves (Boese, Bock, Schoenberg and Schad 2000), or by

elastography, where the elasticity properties are analyzed by images before

and after a deformation (Oberai, Gokhale and Feijóo 2003). The range of

variability of vessel compliance is quite wide (200–800 kPa in normal condi-

tions), with large dependence on the location and on the possible presence

of aneurysms or calcifications. As for the Poisson ratio, only ex vivo mea-

surements are possible. An acceptable value used by the community is 0.49,

meaning that vessels could be considered as quasi-incompressible. Finally,

let us mention that the coefficient αST in (2.1) can be regarded as represen-

tative of the Young’s modulus of the surrounding tissue. As such, it could

thus be measured, though this is a difficult endeavour. Estimates have been

provided in Liu et al. (2007), for example.

When not available from measurements, patient-specific values of biolog-

ical data could alternatively be obtained by means of parameter estimation

mathematical techniques. This will be the topic of Chapter 9.

Figure 2.3 provides a sketch of the computational pipeline; this can be

defined as the sequence of procedures making available clinically meaningful

quantities of interest starting from clinical data (images, boundary and bio-

logical), and passing through geometry handling, mesh generation and Finite

Element approximation of the partial differential equations describing the

physical problem.
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Figure 2.3 Sketch of the computational pipeline applied to the blood flow
dynamics in carotid bifurcation; images at top generated by data and CT
images provided by the Vascular Surgery and Radiology Divisions at Fon-
dazione IRCSS Ca Granda, Ospedale Maggiore Policlinico, Milan, Italy.
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Modelling blood flow

We review in this chapter the mathematical and numerical models related

to blood flows in the vascular system and the mechanical deformation of

wall arteries. We address the fluid and solid problems, their interaction –

which yields the fluid–structure interaction problem – as well as geometric

reduced models, the issue of boundary conditions and the geometric multi-

scale approach. Finally, we outline commonly used numerical strategies for

the solution of these problems.

3.1 The fluid problem

In large and medium sized arteries – those more typically affected by vascular

diseases – blood can be modelled by means of the Navier–Stokes (NS) equa-

tions for incompressible homogeneous Newtonian fluids (Perktold, Thurner

and Kenner 1994, Taylor, Hughes and Zarins 1996, Taylor, Hughes and

Zarins 1998, Formaggia et al. 2009a). Non-Newtonian rheological models

are necessary for describing some specific flow processes, such as clotting

or sickle cell diseases, or more generally flow in capillaries, and for them

we refer to Robertson, Sequeira and Owens (2009) and Fasano, Santos and

Sequeira (2012), for example.

For the mathematical formulation of the problem, we write the fluid equa-

tions with respect to an Eulerian frame of reference, and we let Ωtf = Ωf (t) ⊂
R
3 denote the time-varying arterial lumen, at time t > 0 (see Figure 3.1(a)).

Then, at each time t > 0, we look for the fluid velocity v and pressure p

such that

ρf

(
∂v

∂t
+ (v · ∇)v

)
−∇ · T f (v, p) = 0 in Ωtf , (3.1a)

∇ · v = 0 in Ωtf . (3.1b)



26 Modelling blood flow

(a) (b)

Figure 3.1 Representation of the fluid domain (a) and structure domain
(b). The fluid domain illustrated is that of an abdominal aorta in the
presence of an aneurysm, reconstructed from CTA images. The structure
domain was obtained via extrusion of the fluid domain.

Note that volumetric forces acting in the fluid domain (e.g. due to gravity)

have been set to zero since they are quite often negligible. Moreover,

T f (v, p) = −pI + µ(∇v + (∇v)T) (3.2)

is the fluid Cauchy stress tensor already mentioned in Section 2.2, where µ

is the blood viscosity. As we consider only Newtonian rheology here, µ is

assumed to be constant.

Finally, problem (3.1) is completed by the initial condition

v|t=0 = v0 in Ωf ,

where Ωf = Ω0
f , and boundary conditions. The latter typically prescribe

no-slip conditions on the physical boundary Σt,

v = φ on Σt, (3.3)

the upstream velocity on the proximal boundaries, say Γtin,

v = vup on Γtin, (3.4)

and traction conditions on the distal boundaries, say Γtout,

T f n = hf on Γtout. (3.5)
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Here, v0, vup, φ and hf are suitable functions with the required regularity

(Quarteroni and Valli 1994). Note that the lumen boundary displacement φ

at this level is a known function of space and time. For rigid boundaries, we

have φ = 0.

When patient-specific measurements are available, other conditions might

be prescribed as discussed in Section 2.2. However, measurements seldom

provide a complete dataset to be used in the computation: see our discus-

sion in Section 2.2.This prompts the issue of solvability of Navier–Stokes

equations, which we address in Section 3.4.

For each t > 0 (a.e. t > 0), the weak formulation of (3.1) together with

the boundary conditions (3.3, 3.4, 3.5) reads as follows: find v = v(t) ∈
[H1(Ωtf )]

3, with v = vup on Γtin, v = φ on Σt, v = v0 for t = 0 in Ωf , and

p = p(t) ∈ L2(Ωtf ) such that

ρf

∫

Ωt
f

∂v

∂t
·w dω +At

f (v,v,w) + Bt(p,w) =

∫

Γt
out

hf · n dγ, (3.6a)

Bt(q,v) = 0, (3.6b)

for all

w ∈ V t = {[H1(Ωtf )]
3 : w = 0 on ∂Ω \ Γtout}

and q ∈ L2(Ωtf ), and where we have set

At
f (z,v,w) = ρf

∫

Ωt
f

(z · ∇)v ·w dω + µ

∫

Ωt
f

(∇v + (∇v)T) : ∇w dω

and

Bt(q,w) = −
∫

Ωt
f

q∇ ·w dω.

The existence of a global-in-time weak solution of the above problem was

proved by Leray (1934) for the case Ωf = R
3 and by Hopf (1951) for the

case of a bounded domain. The uniqueness has been proved only for the two-

dimensional case (Lions and Prodi 1959); for the three-dimensional case, only

local-in-time uniqueness results are available (Prodi 1962). See also Temam

(1984).

3.2 Mechanical wall models

The problem that models the deformation of vessel walls is given by the

elastodynamics equation, which is usually written in a reference domain

Ωs = Ωs(0) ⊂ R
3 using a Lagrangian framework. For any t > 0, the material
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domain Ωts = Ωs(t) (depicted in Figure 3.1(b)) is the image of Ωs by a proper

Lagrangian map L : Ωs → Ωts. We use the notation ĝ = g ◦ L to denote the

function ĝ induced on Ωs by the function g defined in the current solid

configuration Ωts.

For simplicity, we assume that the arterial wall obeys a (possibly non-

linear) finite elastic law relating stress to strain in the arterial tissue; for more

complex behaviours of arterial walls see Holzapfel, Gasser and Ogden (2000)

and Holzapfel and Ogden (2010), for example. In more realistic settings,

stress is a function of the strain but also of the past loading history (Fung,

Fronek and Patitucci 1979).

The problem we consider is as follows: find, at each time t > 0, the

structure displacement d̂ such that

ρs
∂2d̂

∂t2
−∇ · T̂ s(d̂) = 0 in Ωs, (3.7)

where ρs is the structure density. Note that volumetric forces acting in the

solid domain (e.g. due to muscle forces) have been set to zero since they are

quite often negligible.

The above equation is stated in terms of the first Piola–Kirchhoff ten-

sor T̂ s(d̂), which is related to the Cauchy tensor T s(d) via the relation

T̂ s = JT sF
−T . Here, F = ∇x is the deformation gradient tensor, where

the gradient is taken with respect to the reference space coordinates and

x denotes point coordinates in the current configuration. Correspondingly,

J = det(F ) denotes the change of volume between the reference and the

current configurations; note that F (and thus J) depends on the current

configuration Ωts.

For a hyperelastic material, the first Piola–Kirchhoff stress tensor is ob-

tained by differentiating a suitable strain energy density function Θ:

T̂ s =
∂Θ

∂F
. (3.8)

Several non-linear elastic energy functions have been proposed for arteries.

For the Saint Venant–Kirchhoff material,

Θ(C) =
Eν

2(1 + ν)(1− 2ν)

(
tr

(
1

2
(CT − I)

))2

+
E

2(1 + ν)
tr

((
1

2
(CT − I)

)2)
, (3.9)

where C = FTF , E is Young’s modulus and ν is the Poisson ratio of the

vessel wall. More complex and accurate functions widely used for arteries
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are based on separating the isotropic elastic behaviour due to the elastin

and the anisotropic behaviour accounting for the stiffening increment at

large displacements due to the collagen distributed along preferred directions

called fibre:

Θ = Θiso +Θaniso. (3.10)

A common choice for the isotropic part is the neo-Hookean law

Θiso(C) =
G

2
(tr(C)− 3), (3.11)

whereas for the anisotropic part, an exponential law is often considered,

Θaniso(C) =
k1
2k2

(
e(k2(a·(Ca)−1)2) − 1

)
, (3.12)

where a is the unit vector identifying the preferred direction of the col-

lagen fibres, G is the shear modulus, and k1, k2 are material parameters,

where k2 characterizes the stiffness of the material for large displacements

(Fung 1993, Holzapfel et al. 2000, Raghavan and Vorp 2000). More complete

laws also account for the symmetrical helical arrangement of the collagen

fibres, introducing a second predominant direction of fibres (Holzapfel and

Ogden 2010). When not available from medical images, the fibre directions

are computed by means of suitable algorithms under the assumption that

their orientation is mainly governed by the principal stresses: see e.g. Hari-

ton, de Botton, Gasser and Holzapfel (2006) and Kuhl and Holzapfel (2006).

For distal arteries of muscular type, viscoelastic and pseudoelastic terms are

also considered (Holzapfel and Gasser 2001). Multi-layer constitutive mod-

els, i.e. models taking into account separately the mechanical properties of

the intima, media and adventitia, are also considered in literature for differ-

ent arteries (Balzani, Neff, Schroder and Holzapfel 2006, Dalong, Robertson,

Lin and Lovell 2012, Holzapfel and Gasser 2000). Even if experimental mea-

surements of the properties of the vessel wall layers (including orientation

and density of collagen fibres) are not often available – as highlighted in

Dalong et al. (2012) for cerebral arteries – multi-layer models represent a

significant enhancement toward the understanding of vascular diseases as

cerebral aneurysms (Tricerri et al. 2015, Tricerri et al. 2016).

Sometimes the arterial tissue is modelled as being (strictly) incompressible

by imposing the incompressibility constraint J = 1 on the strain energy

function via Lagrange multipliers (Holzapfel 2000), that is,

Θinc = Θ+ ps(J − 1). (3.13)

Here ps is the hydrostatic pressure related to the vessel wall displacement,
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which plays the role of the Lagrange multiplier for the incompressibility con-

straint. Correspondingly, the Cauchy stress tensor is augmented as follows:

T inc
s (d, ps) = T s(d) + psI,

where T s is the component arising from the energy Θ. However, experi-

mental studies have shown that the arterial tissue in fact exhibits nearly

incompressible behaviour (Carew, Vaishnav and Patel 1968). This means

that the strain energy function could be decomposed into two terms

Θ(C) = Θvol(J) + Θisoc(C̄),

where C̄ = J−2/3C, det C̄ = 1. The isochoric part Θisoc is given by the

general function (3.10) provided that C is replaced by C̄ and characterizes

the mechanical response of the material to incompressible deformations. The

volumetric part is usually given by

Θvol(J) =
κ

2
(J − 1)2,

where κ (bulk modulus) is a penalty parameter to enforce the incompress-

ibility constraint J = 1 (Li and Robertson 2013). In this case, the related

Cauchy stress tensor is the same as in the compressible case. For a review

of arterial vessel wall models we refer the reader to Holzapfel and Ogden

(2010).

Problem (3.7) has to be completed by the initial conditions

d̂|t=0 = d0,
∂d̂

∂t

∣∣∣
t=0

= d1 in Ωs,

and boundary conditions. The latter typically prescribe on the artificial sec-

tions Γtartif either

d̂ = 0 on Γartif (3.14)

(fixed boundary) or d̂ · n = 0 together with (T̂ sn) · τ (j) = 0, j = 1, 2,

where τ (j) are the unit tangential directions (displacement allowed in the

tangential direction), whereas at the internal physical boundary Σt they

prescribe the solid traction

T̂ sn = hs on Σ. (3.15)

Here d0, d1 and hs are suitable given functions. When considering the fluid–

structure (FS) coupling, hs is of course provided by the normal Cauchy stress

from the fluid side: see Section 3.3. To account for the effect of the tissues

surrounding the artery, the algebraic law (2.1) is often prescribed at the
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external lateral surface Γext of Ωs, to mimic the elastic behaviour of this

tissue (Moireau et al. 2012).

For each time t > 0, the weak form of (3.7) together with the boundary

conditions (2.1), (3.14) and (3.15), in the case for fixed boundaries, reads

as follows: find d̂ = d̂(t) ∈ D, d̂ = 0 on Γartif, d̂ = d0 and ∂d̂/∂t = d1 for

t = 0 in Ωs, such that

ρs

∫

Ωs

∂2d̂

∂t2
· ê dω +

∫

Ωs

T̂ s(d̂) : ∇êdω +

∫

Γext

αST d̂ · ê dσ

=

∫

Γext

Pextn̂ · êdσ +

∫

Σ
ĥs · ê dσ, (3.16)

for all ê ∈D =D0, where

Dt = {e ∈ [H1(Ωts)]
3 : e = 0 on Γtartif}.

The existence of strong (steady) solutions of the above problems could

be proved using the theory developed in Ball (1976). For example, this

is the case for the Saint Venant–Kirchhoff constitutive law given in (3.9)

(Ciarlet and Necas 1985). The existence and uniqueness of weak solutions

are guaranteed by the coercivity and convexity of the energy Θ (Ciarlet

1988, Dacorogna 2000). However, a convex strain energy function is not

generally able to describe instabilities such as buckling (Ball 1977). Thus, to

avoid the use of convex functions, the property of polyconvexity was intro-

duced (Ball 1976). Its fulfilment guarantees physically admissible solutions

(Dacorogna 2000). Both the neo-Hookean law (3.11) and the exponential

law (3.12) satisfy the polyconvexity property (Balzani et al. 2006).

3.2.1 Modelling the structure as a 2D membrane

In some circumstances, because of the thinness of the vessel wall, a non-

linear shell model has been proposed: see e.g. Leuprecht et al. (2002) and

Zhao et al. (2000). In this case, the structure problem is described by two-

dimensional equations defined with respect to the middle surface, consisting

of the computation of the deformation of this surface.

A simpler equation may be obtained if the structure is modelled as a

2D membrane whose position in space at any time exactly coincides with

internal boundary Σt, yielding the so-called generalized string model

ρsHs
∂2d̂r
∂t2

−∇ · (P∇d̂r) + χHsd̂r = f̂s in Σ (3.17)
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(Quarteroni et al. 2000c). Here Σ denotes the reference membrane configu-

ration, dr is the radial displacement and Hs is the structure thickness. The

tensor P accounts for shear deformations and, possibly, for pre-stress,

χ =
E

1− ν2
(4ρ21 − 2(1 − ν)ρ2),

where ρ1(x) and ρ2(x) are the mean and Gaussian curvatures of Σ, respec-

tively (Nobile and Vergara 2008), and fs is the forcing term, given by a mea-

surement of the fluid pressure. Equation (3.17) is derived from Hooke’s law

for linear elasticity under the assumptions of small thickness, plane stresses,

and negligible elastic bending terms (Zienkiewicz and Taylor 2005). To ac-

count for the effect of the surrounding tissue, the term χ in (3.17) needs

to be augmented by the elastic coefficient of the tissue αST (Formaggia,

Quarteroni and Vergara 2013).

Denoting by Σ the lateral surface of a cylinder, then a further simplifica-

tion occurs if we discard any dependence on the circumferential coordinate,

in which case model (3.17) reduces to

ρsHs
∂2d̂r
∂t2

− kGHs
∂2d̂r
∂z2

+
EHs

(1− ν2)R2
0

Hsd̂r = f̂s in Σ, (3.18)

where k is the Timoshenko correction factor, G is the shear modulus, R0 is

the initial cylinder radius and z is the axial coordinate. Often, in the latter

case, a viscoelastic term of the form γv(∂
3dr/∂

2z∂t) is also added, with γv
denoting a suitable viscoelastic parameter (Quarteroni et al. 2000c).

3.3 The coupled fluid–structure interaction problem

Blood flow in the vessel lumen and deformation of the vessel wall are inti-

mately connected via a fluid–structure interaction (FSI). In particular, fluid

and structure interact via the fluid–structure (FS) interface Σt which coin-

cides with the physical fluid boundary and the internal vessel wall bound-

ary introduced in the previous sections. The coupled problem is obtained by

combining (3.1) and (3.7) at each t > 0, as follows:

ρf

(
∂v

∂t
+ (v · ∇)v

)
−∇ · T f (v, p) = 0 in Ωtf , (3.19a)

∇ · v = 0 in Ωtf , (3.19b)

v =
∂d

∂t
at Σt, (3.19c)
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T s(d)n = T f (v, p)n at Σt, (3.19d)

ρs
∂2d̂

∂t2
−∇ · T̂ s(d̂) = 0 in Ωs, (3.19e)

df = d at Σt, (3.19f)

together with the boundary conditions (2.1), (3.4), (3.5), (3.14), and where

df is the displacement of the fluid domain Ωtf at the FS interface and we

have used the convention that n is the structure outward unit normal. The

matching conditions (3.19c, 3.19d) enforced at the FS interface express the

continuity of velocities (kinematic condition) and the continuity of normal

stresses (dynamic condition), respectively, whereas condition (3.19f) guar-

antees the geometry adherence between the fluid and structure domains

(geometric condition). The well-posedness analysis of the coupled problem

(3.19) (supplemented by the relevant boundary conditions) has been carried

out under several regularity assumptions. For a comprehensive description

of this topic we refer to Beirão da Veiga (2004), Grandmont (1998), Bodnár,

Galdi and Nečasová (2014) and Maday (2009), for example.

For each time t > 0, the weak formulation of the FSI problem (3.19)

together with its boundary conditions (for simplicity we set vup = 0 in

(3.4)) reads as follows: find

(v(t), d̂(t)) ∈W t = {(w, ê) ∈ [H1(Ωtf )]
3 × [H1(Ωs)]

3 :

(w, ê) = (0,0) on Γtin × Γartif and w = ė on Σt},

v = v0 for t = 0 in Ωf , d̂ = d0 and ∂d̂/∂t = d1 for t = 0 in Ωs, and

p(t) ∈ L2(Ωtf ), such that

ρf

∫

Ωt
f

∂v

∂t
·w dω +At

f (v,v,w) + Bt(p,w) + ρs

∫

Ωs

∂2d̂

∂t2
· êdω

+

∫

Ωs

T̂ s(d̂) : ∇êdω +

∫

Γext

αST d̂ · êdσ

=

∫

Γt
out

hf · n dγ +

∫

Γext

Pextn̂ · êdσ,

Bt(q,v) = 0,

df = d at Σt, (3.20)

for all (w, ê) ∈ W t and q ∈ L2(Ωtf ). Note that in the above weak formu-

lation, the two terms arising after integration by parts and involving the

normal Cauchy stresses T fn and T sn at the interface Σt cancel out, thanks

to (3.19d) and to the special choice of the test functions in W t.
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After introducing the total energy for the FSI problem, that is,

E3D(t) =
ρf
2

∫

Ωt
f

|v|2 dω +

∫

Ωs

ρs
2
| ˙̂d|2 dω +

∫

Ωs

Θ(d̂) dω +

∫

Γext

αST |d̂|2 dγ,

(3.21)

the following conservation property holds true for the case of homogeneous

boundary conditions:

d

dt
E3D(t) +

µ

2

∫

Ωt
f

(∇v + (∇v)t)2 dω = 0

(Formaggia, Gerbeau, Nobile and Quarteroni 2001, Formaggia et al. 2013).

When the membrane model (3.17) is used instead of (3.19e), the matching

conditions (3.19c, 3.19d) are replaced by

v · n =
∂dr
∂t

at Σt,

T f (v, p)n · n = −fs at Σt,

where dr is the membrane displacement written in the current configuration

and fs is the forcing term of the membrane equation (see (3.17)), acting

only at the FS interface; in this case it also plays the role of structure stress

exerted at the FS interface. Owing to (3.17) itself, we can rewrite the above

interface conditions as follows:

v · n =
∂dr
∂t

at Σt, (3.23a)

T f (v, p)n · n = −
(
ρsHs

∂2dr
∂t2

−∇ · (P∇dr) + χHsdr

)
at Σt. (3.23b)

Since the coupling only occurs in the radial direction, we have to complete

the conditions at Σt for the fluid problem in the tangential directions by pre-

scribing further equations on the fluid variables, for example homogeneous

Dirichlet or Neumann conditions (Nobile 2001).

Figueroa et al. (2006) propose an effective formulation to solve the FSI

problem with a membrane structure, while Colciago, Deparis and Quarteroni

(2014) discuss the accuracy of the FSI-membrane problem in comparison to a

full 3D/3D simulation. In particular, for Hooke’s law, the wall shear stresses

computed with these two FSI models are in good quantitative agreement

for a distal arterial tract such as a femoropopliteal bypass. In contrast,

when larger displacements are considered such as in the ascending aorta,

the discrepancies between the two FSI models increase.
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3.4 The boundary issue

According to the mathematical theory of the incompressible Navier–Stokes

equations, three scalar conditions need to be prescribed at each point of

the boundary. This, however, is seldom realistic in clinical practice. For in-

stance, PC-MRA provides velocity data, but this technique is not routinely

used and ad hoc studies are required (Morbiducci et al. 2009). Alternatively,

the flow rate Q = Q(t) can be obtained across a boundary cross-section Γt,

by suitable postprocessing of data retrieved by echo-colour-Doppler or by

thermal images: see Section 2.2. This yields the flow rate condition (2.2). In

other situations, at both the inlet and outlet cross-sections, pressure mea-

surements P = P (t) may be considered as representative of an average

estimate, leading to condition (2.3).

From a mathematical perspective, (2.2) and (2.3) are defective condi-

tions as they prescribe only one scalar function over the entire section Γt

(Formaggia, Gerbeau, Nobile and Quarteroni 2002). Several strategies have

been proposed so far to supplement (2.2) or (2.3) with other conditions that

allow us to ‘close’ the system. For clarity, we can classify them according to

three different strategies, which are reported below.

3.4.1 Conjecturing velocity and pressure profiles

A common trick to effectively prescribe the flow rate condition (2.2) consists

in prescribing a velocity profile

v(t) = g(t) on Γt, (3.24)

where g = g(t,x) is chosen in such a way as to satisfy (2.2); that is,

ρf

∫

Γt

g(t) · n dγ = Q(t). (3.25)

The flow rate condition (2.2) is therefore replaced with the standard (vecto-

rial) Dirichlet condition (3.24). A classical choice for g is a parabolic profile

(e.g. for flow simulations in the carotid arteries: Campbell et al. 2012), a

constant profile (often used for the ascending aorta: Moireau et al. 2012),

or that obtained from the Womersley solution (He, Ku and Moore 1993).

Both the parabolic and Womersley profiles require a circular section to be

prescribed, while non-circular sections require an appropriate morphing (He

et al. 1993).

In spite of its straightforward implementation, this choice has a major

impact on the solution, particularly in the neighbourhood of the section

Γt and for elevated values of the Reynolds number (Veneziani and Vergara
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2007). To reduce the sensitivity to the arbitrary choice of the profile, the

computational domain can be artificially elongated by operating what is

called a flow extension (Moore, Steinman and Ethier 1997).

A similar approach could be applied to the mean normal Cauchy stress

condition (2.3) as well. In the case at hand, we can postulate that the pres-

sure on Γt is constant and that the viscous stress can be neglected; that is,

we can prescribe

pn− µ(∇v + (∇v)T)n = Pn on Γt. (3.26)

Note that the above condition in particular satisfies the defective condition

(2.3). Condition (3.26) is generally acceptable because the pressure changes

in arteries mainly occur along the axial direction and the viscous stresses

are negligible on orthogonal cross-sections.

Since Pn plays the role of boundary normal Cauchy stress in the weak

formulation of the fluid problem (3.6), no further action is required beyond

assembling the vector for Neumann conditions. For this reason, the treat-

ment has been called the ‘do-nothing’ approach (Heywood et al. 1996). As

pointed out by Veneziani (1998a, 1998b), this procedure is in fact not com-

pletely ‘innocent’. The do-nothing approach corresponds to the following

weak formulation (for simplicity we assume homogeneous Dirichlet condi-

tions, vup = 0): for each t > 0, find v ∈ Ṽ t
, v = v0 for t = 0 in Ωf , and

p ∈ L2(Ωtf ) such that

ρf

∫

Ωt
f

∂v

∂t
·w dω +At

f (v,v,w) + Bt(p,w)

=

∫

Γt
out

hf · n dγ − P

∫

Γt

w · n dγ,

Bt(q,v) = 0,

for all

w ∈ Ṽ t
= {[H1(Ωtf )]

3 : w = 0 on ∂Ω \ (Γtout ∪ Γt)}

and q ∈ L2(Ωtf ).

A do-nothing formulation for the flow rate conditions is possible too: see

Heywood et al. (1996) and Veneziani (1998b).

Note that as an alternative to (2.3), other defective conditions involving

the fluid pressure could be considered as well. This is the case for mean

pressure conditions (Heywood et al. 1996), or conditions involving the total

pressure (Formaggia et al. 2013), defined by ptot = p + (ρf/2)|v|2. For a
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comprehensive review of these conditions, we refer the interested reader to

Quarteroni et al. (2016c).

3.4.2 Augmented formulation

An alternative approach is to regard the flow rate boundary condition (2.2)

as a constraint for the solution of the fluid problem and then enforce it via

a Lagrange multiplier approach. Since this is a scalar constraint, we need a

scalar multiplier λ = λ(t) at each time, resulting in the following weak for-

mulation (we again consider the case of homogeneous Dirichlet conditions):

for each t > 0, find v ∈ Ṽ t
, v = v0 for t = 0 in Ωf , p ∈ L2(Ωtf ), and λ ∈ R

such that

ρf

∫

Ωt
f

∂v

∂t
·w dω +At

f (v,v,w) + Bt(p,w) + Ct(λ,w) =

∫

Γt
out

hf ·w dγ,

Bt(q,v) = 0,

Ct(ψ,v) = ψ
Q

ρf
, (3.27)

for all w ∈ Ṽ t
, q ∈ L2(Ωtf ), and ψ ∈ R, and where we have set

Ct(ψ,w) = ψ

∫

Γt

w · n dγ.

See Formaggia et al. (2002) and Veneziani and Vergara (2005), who also

analyze the well-posedness of this problem.

Besides prescribing the flow rate condition (2.2), the above augmented

formulation enforces at each time a constant-in-space normal Cauchy stress

on Γt aligned with its normal direction, which precisely coincides with the

Lagrange multiplier λ; that is,

−pn+ µ(∇u+ (∇v)T)n = λn on Γt.

This method is particularly suitable when the artificial cross-section is or-

thogonal to the longitudinal axis, so that vector n is truly aligned along the

axial direction.

Since the velocity spatial profile is not prescribed a priori, this tech-

nique has been used to improve the parabolic-based law implemented in

the Doppler technology for the estimation of the flow rate starting from

the peak velocity (Ponzini, Vergara, Redaelli and Veneziani 2006, Vergara

et al. 2010, Ponzini et al. 2010).

Extension of the augmented formulation to the case of compliant walls is
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addressed in Formaggia, Veneziani and Vergara (2009b) and to the quasi-

Newtonian case in Ervin and Lee (2007).

An augmented formulation has been proposed by Formaggia et al. (2002)

to prescribe condition (2.3) as well. However, as noticed by Formaggia et al.

(2002), in this case it yields at each time the condition

v = λn at Γt,

where λ = λ(t) is again the constant-in-space Lagrange multiplier. This is a

non-homogeneous Dirichlet boundary condition for the fluid velocity, which

is generally incompatible with the no-slip condition v = φ prescribed at the

physical boundary Σt. For this reason, the approach is no longer popular.

3.4.3 A control-based approach

A different strategy for the fulfilment of condition (2.2) is based on the

minimization of the mismatch functional

J(v) =
1

2

(∫

Γt

v · n dγ −Q

)2

, (3.28)

constrained by the fact that v satisfies the incompressible Navier–Stokes

equations (Formaggia, Veneziani and Vergara 2008). This PDE-constrained

optimization – which can be regarded as the dual of the above augmented

strategy – yields a system of optimality conditions to be fulfilled (also re-

ferred to as the Karush–Kuhn–Tucker (KKT) system): see Section 8.1.2

for further details. In particular, Formaggia et al. (2008) used the normal

component of the normal Cauchy stress on Γt as the control variable for

the minimization of the mismatch functional. This approach was considered

by Formaggia et al. (2009b) for the compliant case, whereas Lee (2011),

Galvin and Lee (2013) and Galvin, Lee and Rebholz (2012) address the

non-Newtonian, quasi-Newtonian and viscoelastic cases.

The same approach can also be used to fulfil the defective condition (2.3)

provided that a suitable functional to be minimized is introduced (Formaggia

et al. 2008). This allows us to prescribe (2.3) on a section oblique with respect

to the longitudinal axis too. In this case the control variable is the full normal

Cauchy stress vector; that is, the direction of the normal Cauchy stress is

also a priori unknown.

Boundary data may also be lacking for the cross-section of the vessel wall.

In this case we end up with defective boundary conditions for the vessel wall

and related issues: see e.g. Quarteroni et al. (2016c).
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3.5 Geometric reduced models and the geometric multiscale

approach

3.5.1 The 1D and 0D models

Numerical modelling of the entire cardiovascular system by means of 3D

models is currently not affordable because of the complexity of the compu-

tational domain, which is composed of thousands of arteries and veins and

billions of arterioles, capillaries and venules (Nichols and O’Rourke 2005).

In many applications, reduced-dimensional models are used instead, either

as stand-alone models or coupled with the 3D ones.

The first one-dimensional (1D) model was introduced almost 250 years

ago by Euler (1775). Subsequently this approach was brought into the engi-

neering environment by Barnard, Hunt, Timlake and Varley (1966), Hughes

(1974) and Hughes and Lubliner (1973). These models allow the description

of blood flow in a compliant vessel where the unique space coordinate is the

centreline of the vessel.

One-dimensional models may be derived from 3D models by making sim-

plifying assumptions on the behaviour of the flow, the structure, and their

interaction (Quarteroni and Formaggia 2004, Peiró and Veneziani 2009).

The starting fluid domain is a truncated cone: see Figure 3.2. Referring to

cylindrical coordinates (r, ϕ, z), we make the following simplifying assump-

tions:

(i) the axis of the cylinder is fixed;

(ii) for any z, the cross-section S(t, z) is a circle with radius R(t, z);

(iii) the solution of both fluid and structure problems does not depend on

ϕ;

(iv) the pressure is constant over each section S(t, z);
(v) the axial fluid velocity vz dominates the other velocity components;

(vi) only radial displacements are allowed, so the structure deformation

takes the form d = der, where er is the unit vector in the radial

direction, and d(t, z) = R(t, z) − R0(z), where R0(z) is the reference

radius at the equilibrium;

(vii) the fluid is assumed to obey Poiseuille’s law, so that the viscous effects

are modelled by a linear term proportional to the flow rate;

(viii) the vessel structure is modelled as a membrane with constant thick-

ness.
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Figure 3.2 Fluid domain for the derivation of the 1D model.

We introduce the following quantities:

A(t, z) = |S(t, z)| = πR(t, z)2 lumen section area,

v̄(t, z) = A−1

∫

S(t,z)
vz(t, z) dS mean velocity,

s(r/R) such that vz(t, r, z) = v̄(t, z)s(r/R(t, z)) velocity profile,

Q(t, z) = ρf

∫

S(t,z)
vz dS = ρfA(t, z)v̄(t, z) flow rate,

P (t, z) = A−1

∫

S(t,z)
p(t, z) dS mean pressure.

As for the structure and its interaction with the fluid, we need to introduce

a membrane law, which in fact prescribes a relation between the pressure

and the lumen area (which is determined by dr) of the form

P (t, z) = Pext + ψ(A(t, z), A0(z),β(z)), (3.29)

where ψ is a given function satisfying ∂ψ/∂A > 0, ψ(A0) = 0. Here β is a

vector of parameters describing the mechanical properties of the membrane.

By integrating over the sections S the momentum fluid equation (3.19a) in

the z-direction and the mass conservation law (3.19b), we obtain the system

∂U

∂t
+H(U )

∂U

∂z
+B(U) = 0 z ∈ (0, L), t > 0, (3.30)

where U = (A Q)T is the vector of the unknowns,

α =

∫
S u

2
z

Av̄2
=

1

A

∫ 1

0
s2(y) dy
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is the Coriolis coefficient, Kr = −2πµs′(1) is the friction parameter,

c1 =

√
A

ρf

∂ψ

∂A
,

while

H(U ) =




0 1

c21 − α

(
Q

A

)2

2α
Q

A


, (3.31a)

B(U ) =




0

Kr
Q
A +

A

ρf

∂ψ

∂A0

∂A0

∂z
+
A

ρf

∂ψ

∂β

∂β

∂z


 (3.31b)

represent the flux matrix and the dissipation vector term, respectively. A

complete derivation of the model can be found in Pedley (1980), Hughes

(1974) and Peiró and Veneziani (2009), for example. Classical choices of the

velocity profile s are flat (α = 1) and parabolic (α = 4/3).

The term ∂A0/∂z in B is typically non-positive, accounting for vessel ‘ta-

pering’, that is, reduction of the area of the lumen when proceeding from

proximal to distal arteries. The term ∂β/∂z originates from possibly dif-

ferent mechanical properties along the vessel, to describe, for example, the

presence of atherosclerotic plaques or vascular prostheses.

If A > 0, system (3.30) has two real distinct eigenvalues,

λ1,2 = αv̄ ±
√
c21 + v̄2α(α − 1) (3.32)

(see e.g. Quarteroni and Formaggia 2004), so it is strictly hyperbolic (see e.g.

LeVeque 1992). Under physiological conditions, c1 ≫ αv̄, yielding λ1 > 0

and λ2 < 0, we thus have two waves travelling in opposite directions, asso-

ciated with corresponding characteristic variables. An explicit expression of

these variables as a function of the physical variables could, in general, be

derived; that is,

Wi = ζi(A,Q), i = 1, 2. (3.33)

A simple membrane law (3.29) can be obtained by the algebraic relation

ψ(A,A0, η) = η

√
A−√

A0

A0
, with η =

√
πHsE

1− ν2
(3.34)

(Formaggia, Lamponi and Quarteroni 2003, Formaggia et al. 2013), where

ν is the Poisson ratio of the membrane, E is its Young’s modulus, and Hs
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is its thickness, yielding

c1 =

√
η
√
A

2ρfA0
.

This simple law, stating that the membrane radial displacement dr is lin-

early proportional to the fluid pressure, has been considered successfully in

many applications: see e.g. Steele et al. (2003), Matthys et al. (2007) and

Grinberg et al. (2010). Other laws have been proposed to account for ad-

ditional features of arterial walls, such as viscoelasticity, wall-inertia and

longitudinal pre-stress (Quarteroni et al. 2000c, Formaggia et al. 2003).

Remark 3.1 One-dimensional models do not allow us to describe sec-

ondary flows, such as vortices or recirculation regions. However, they provide

average quantities about the axial component of the velocity, the radial vessel

wall displacements and the pressure of a complex network at computational

costs that are orders of magnitude lower than those of the corresponding

three-dimensional FSI models (Kufahl and Clark 1985, Hillen, Hoogstraten

and Post 1986, Blanco et al. 2015, Boileau et al. 2015, Malossi et al. 2013).

The accuracy of the solution provided by 1D models was addressed by

Avolio (1980), Steele et al. (2003) and Reymond et al. (2009), who suc-

cessfully compared the numerical results of different networks with clinical

measurements, and by Matthys et al. (2007) and Muller and Toro (2013),

who performed a comparison with in vitro measurements for a complete

network of the cardiovascular system.

A further geometric reduction is represented by the so-called lumped pa-

rameter models, which are zero-dimensional (0D) models obtained by inte-

grating the 1D problem over the axial direction. These are typically used

to describe the peripheral part of the arterial and venous tree, such as the

capillaries and the arterioles.

In this case only dependence on time is allowed, and nominal values of

the unknowns are used as representative of the entire compartment. To this

end, we introduce the average flow rate and pressure in the district at hand,

defined by

Q̂(t) =
1

l

∫ zd

zp

Q(t, z) dz =
ρf
l

∫ zd

zp

∫

S(t,z)
vz(t, z) dS dz,

P̂ (t) =
1

l

∫ zd

zp

P (t, z) dz =
1

V

∫ zd

zp

∫

S(t,z)
p(t, z) dS dz

respectively, where zp and zd are the proximal and longitudinal abscissas of



3.5 Geometric reduced models and the geometric multiscale approach 43

the segment, respectively, l is its length and V its volume. The convective

term is dropped since in the peripheral sites the velocity is small.

If we take the longitudinal average of the momentum equation given by the

first of (3.30) and combine it with (3.34), we obtain the ordinary differential

equation (ODE)

ρf l

A0

dQ̂

dt
+
ρfKRl

A2
0

Q̂+ P̂d − P̂p = 0, (3.35)

where P̂d and P̂p are the distal and proximal pressure, respectively. When

taking the longitudinal average of the mass conservation law given by the

second of (3.30) and using (3.34), we obtain
√
A0l

η

dP̂

dt
+ Q̂d − Q̂p = 0, (3.36)

where Q̂d and Q̂p are the distal and proximal flow rate, respectively. See

Peiró and Veneziani (2009).

The two ODEs (3.35, 3.36) can be regarded as the starting point for a 0D

description of a compartment model of an arterial tract. In fact, the term

L(dQ̂/dt), with L = ρf l/A0, corresponds to the blood acceleration, RQ̂,

with R = ρfKRl/A
2
0, stems from the blood resistance due to the viscosity,

while C(dP̂ /dt), with C =
√
A0l/η, is due to the compliance of the vessel

wall. Usually an electrical analogy is used to easily interpret 0D models. In

particular, the flow rate plays the role of the current whereas the pressure

is the potential. Accordingly, the acceleration term is represented by an

inductance, the viscosity term by a resistance, and the compliance term by

a capacitance.

To close the system (3.35, 3.36) (featuring four unknowns) we also need to

include the boundary conditions originally prescribed on the 1D model. For

instance, we can assume a Dirichlet condition at the inlet and a Neumann

condition at the outlet. Thus, we may localize the unknown pressure P̂ at

the proximal section (P̂ ≈ P̂p), assuming that the distal pressure P̂d is given.

Similarly we assume that the flow rate Q̂ is approximated by Q̂d and that

the proximal flow rate Q̂p is given. Then, from (3.35, 3.36), we obtain

P̂ − L
dQ̂

dt
−RQ̂ = P̂d,

C
dP̂

dt
+ Q̂ = Q̂p,

(3.37)

corresponding to the electrical circuit drawn in Figure 3.3. Other sequences

corresponding to different boundary conditions and then to different state
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Figure 3.3 Example of lumped parameter scheme for an arterial tract.

variables are also possible (see e.g. Quarteroni et al. 2016c). Even though

these schemes are equivalent in terms of functionality, they play a different

role when coupled with higher-dimensional models (see e.g. Quarteroni et al.

2016c).

For modelling more complex vascular districts, we may combine several

0D elementary tracts, by gluing them via classical continuity arguments.

However, the lumped parameter models have mainly been used to pro-

vide suitable boundary conditions at the distal artificial sections of 3D

and 1D models. In this case, one simple compartment is enough to de-

scribe the entire arterial system downstream of the region of interest. Ex-

amples are provided by the windkessel model (Westerhof, Lankhaar and

Westerhof 2009), featuring an average resistance and capacitance, the 3-

element windkessel model (Westerhof et al. 2009), where a second resistance

is added before the windkessel compartment, and the 4-elements windkessel

model (Stergiopulos, Westerhof, Meister and Westerhof 1996, Stergiopulos,

Westerhof and Westerhof 1999), where an inductance element is added to

the 3-elements windkessel model. A 0D model given simply by a resistance

is used to provide absorbing boundary conditions at the outlets of the fluid

domain in FSI simulations: see e.g. Nobile and Vergara (2008). Instead, more

sophisticated approaches account for the propagative dynamics associated

with the peripheral circulation, such as the structured tree model (Olufsen

et al. 2000), which assumes an asymmetric self-similar structure for the pe-

ripheral network.

3.5.2 Geometric multiscale coupling

The geometric multiscale approach, first introduced in Quarteroni and Vene-

ziani (1997), consists in the coupling among the 3D, 1D and 0D models. The

idea is to use higher-dimensional models in those regions where a very de-

tailed description is required, and lower-dimensional models in the remain-
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Figure 3.4 Schematic representation of the reference 3D/1D coupled model.

ing parts of the region of interest. This allows us to describe much of the

circulatory system.

As discussed earlier, 0D models are typically used to provide boundary

conditions for 3D and 1D models. For this reason, the coupling between 3D

or 1D models with an extended 0D network has rarely been considered in

applications. Instead, the 3D/1D coupling has received a great deal of at-

tention. For this reason, we will detail only the latter case, while referring to

Quarteroni, Ragni and Veneziani (2001), Quarteroni and Veneziani (2003),

Vignon-Clementel, Figueroa, Jansen and Taylor (2006), Kim et al. (2009),

Migliavacca et al. (2006) and Haggerty et al. (2013) for the 3D/0D coupling,

and Formaggia, Nobile, Quarteroni and Veneziani (1999) and Fernández,

Milisic and Quarteroni (2005) for the 1D/0D coupling.

As shown in Figure 3.4, we consider a 3D/FSI problem (3.19) in a 3D

cylindrical domain together with initial conditions and boundary conditions

at the proximal boundaries and at the external structure.

At the distal boundaries, the 3D problem is coupled with the 1D model

(3.30) written in the domain z ∈ [0, L], together with initial conditions and

a boundary condition at the distal boundary. We let Γt = Γtf ∪ Γts be the

coupling interface from the 3D side, which corresponds to the point z = 0

from the 1D side (see Figure 3.4).

A major mathematical issue is how to couple 3D and 1D models at the

common interface. Several strategies can be pursued, yielding many (alter-

native) sets of interface conditions. For a rigorous derivation of the 3D/1D

problem and a detailed discussion of the interface conditions, we refer the

interested reader to the recent review article by Quarteroni et al. (2016c).

Here we will follow the guiding principle described in Formaggia et al.

(2013), where suitable interface conditions are derived from a global energy

estimate. In particular, we introduce, together with the 3D energy (3.21),
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the 1D energy

E1D(t) =
ρf
2

∫ L

0
A v̄2 dx+

∫ L

0
χ(A) dx

(Formaggia et al. 2001), where χ(A) =
∫ A
A0
ψ(τ) dτ and ψ is the vessel law

(see (3.29)). Note that the stand-alone 1D problem satisfies bounds for this

energy functional as proved in Formaggia et al. (2001).

Let

Ptot = ψ(A) + (ρf/2)v̄
2

be the total pressure for the 1D model, and let

ptot = p+ (ρf/2)|v|2

be that of the 3D model. For the interface coupling conditions holding at

Γt, let us assume that the following inequality holds:
∫

Γt
f

T f (v, ptot)n · v dγ +

∫

Γt
s

T s(d)n · ḋdγ +Q|z=0 Ptot|z=0 ≤ 0. (3.38)

Then, for all t > 0, the coupled 3D/1D problem (3.19, 3.30) with homo-

geneous boundary conditions satisfies the energy decay property

d

dt
(E3D(t) + E1D(t)) ≤ 0.

For the proof see Formaggia et al. (2013).

The above result provides an indication of how to find suitable inter-

face conditions for the 3D/1D coupled problem. In particular, for inequality

(3.38) to be fulfilled it is sufficient that the interface conditions

ρf

∫

Γt
f

v · n dγ = Q|z=0, (3.39a)

(T f (v, ptot)n)|Γt
f
= −Ptot|z=0n (3.39b)

hold for the fluid, together with

T s(d)n = 0 on Γts (3.40)

for the structure (Formaggia, Moura and Nobile 2007, Formaggia et al.

2013). Similarly, inequality (3.38) holds if relation (3.40) is replaced by

d · n = 0 on Γts, (3.41a)

(T s(d)n)× n = 0 on Γts. (3.41b)
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The interface conditions (3.39) prescribe the continuity of the flow rate (kine-

matic condition) and a dynamic condition involving the total pressures. Note

that (3.40) and (3.41) are in fact independent of the 1D model, resulting in

boundary conditions for the 3D structure problems only. This allows a dis-

continuity to manifest in the displacement between the 3D and 1D models.

Usually, dynamic interface conditions involving the pressure (instead of

the total pressure) are considered in place of (3.39b), such as

1

|Γtf |

∫

Γt
f

T f (v, p)n dγ = −ψ(A|z=0)n. (3.42)

However, the above condition does not satisfy the compatibility condition

(3.38). More precisely, in this case we have

d

dt
(E3D(t) + E1D(t)) =

ρf
2

(
(Q(t)|z=0)

3

(A(t)|z=0)2
−
∫

Γt
f

|v(t)|2v(t) · n dγ

)
.

Even though the right-hand side is not necessarily (always) negative, nu-

merical evidence indicates that condition (3.42) leads to stable results for

several haemodynamic applications: see Malossi et al. (2013). This interface

condition is indeed the most commonly used among dynamic ones.

3.6 Numerical strategies

In this section we comment on the numerical solution of the problems pre-

sented in the previous subsections. Because of the complexity of the problem,

we do not seek to be exhaustive. Instead, we review some of most suitable

methods for computational haemodynamics. In particular, for space dis-

cretization, we will focus on Galerkin methods, such as finite elements,

spectral elements and discontinuous Galerkin methods.

We will use the following notation. Let ∆t and h be the time and space

discretization parameters. In our examples ∆t is assumed to be fixed, but

adaptive strategies could be considered as well: see e.g. Veneziani and Villa

(2013). Correspondingly, the discrete times are tn = n∆t. As usual, h is

instead defined as a representative value of the mesh size, for example h =

min{hK : K ∈ K}, where K is the set of all tetrahedra in the mesh and hK
is the radius of the sphere inscribed in K ∈ K. Given the functions w(t)

and z(x), we let wn denote the approximation of w(tn) and let zh(x) be the

Galerkin approximation of z(x).
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3.6.1 Numerical methods for the fluid problem

We start by reviewing some numerical methods for the fluid problem (3.1)

together with its initial and boundary conditions.

As for the time discretization, we usually consider implicit methods with a

semi-implicit treatment of the convective term and (for a moving domain) of

the fluid domain. The problem is solved at discrete time tn+1 in the domain

Ω∗
f and with convective term ρf (v

∗ · ∇)vn+1, where Ω∗
f and v∗ are suitable

extrapolations of Ωn+1
f and vn+1 of the same order as the time discretization.

This choice introduces a CFL-like (Courant–Friedrichs–Lewy) restriction on

the time step to preserve absolute stability (Quarteroni and Valli 1994).

However, this condition is not strict in haemodynamic applications, since, for

accuracy purposes, the pulsatility of the blood signal and the quick dynamics

around systole can only be accommodated by choosing a small ∆t. Usually, a

second-order approximation is considered a good choice in haemodynamics;

in this respect, the second-order backward difference formula (BDF2) and

Crank–Nicolson are the most widely used methods (Quarteroni, Sacco and

Saleri 2000a).

The first class of methods we present is based on a decomposition of the

semi-discrete problem at the spatial continuous level (differential splitting or

projection methods). The basic idea underlying these methods is to split the

computation of velocity and pressure, with a final step aiming to recover

the incompressibility constraint. In what follows we detail the Chorin–Teman

method (Chorin 1968, Temam 1969), originally proposed for homogeneous

Dirichlet conditions and fixed domain, which is the progenitor of these meth-

ods. We only detail the case of the backward Euler discretization.

Chorin–Temam method

For n ≥ 0, at time tn+1:

(1) Solve in Ωf the vectorial advection–reaction–diffusion problem with

homogeneous Dirichlet condition for the intermediate unknown veloc-

ity ṽn+1:

ρf
ṽn+1 − vn

∆t
− µ(∇ṽn+1 + (∇ṽn+1)T) + ρf (v

n · ∇)ṽn+1 = 0.

(2) Solve in Ωf the pressure problem with homogeneous Neumann condi-

tions:

△pn+1 =
ρf
∆t

∇ · ṽn+1.
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(3) Correct the velocity:

vn+1 = ṽn+1 − ∆t

ρf
∇pn+1.

This splitting method is based on the Ladyzhenskaya theorem (see, e.g.

Girault and Raviart (1986)), which states that a vector function belonging

to [L2(Ωf )]
3 can always be decomposed as the sum of a solenoidal part and

a gradient term. In fact, the correction step (3) corresponds to projecting

the intermediate velocity ṽn+1 onto

H = {w ∈ [L2(Ωf )]
3 : ∇ ·w = 0, w · n|∂Ωf

= 0}.

Thus, it is possible to show that vn+1 and pn+1 are in fact solutions of the

original semi-discrete problem. The Chorin–Temam method is very effec-

tive since it overcomes the saddle-point nature of the problem and solves

two standard uncoupled elliptic problems. However, it suffers from inac-

curacies at the boundary. In particular, the tangential velocity cannot be

controlled (see the definition of H) and spurious pressure values appear as

a consequence of the artificial Neumann condition for the pressure problem

(Rannacher 1992). This has an effect on the accuracy of the semi-discrete

solution. In particular, the following error estimate holds true (Rannacher

1992):

‖v(tn,x)− vn(x)‖[H1]3 + ‖p(tn,x)− pn(x)‖L2 .
√
∆t.

The use of higher-order time approximations leads to the same accuracy.

An improvement of the above method is given by the rotational incre-

mental variant of the Chorin–Temam scheme (Timmermans, Minev and

van de Vosse 1996). Below we detail the case of BDF2 and second-order

extrapolation of the convective term, since the first-order approximation

does not lead to any improvement with respect to the previous method.

Rotational–incremental Chorin–Temam method

For n ≥ 0, at time tn+1:

(1) Solve in Ωf the advection-reaction-diffusion problem with homogeneous

Dirichlet condition in the intermediate unknown velocity ṽn+1:

ρf
3ṽn+1 − 4vn + vn−1

2∆t
− µ(∇ṽn+1 + (∇ṽn+1)T)

+ ρf ((2v
n − vn−1) · ∇)ṽn+1 +∇pn = 0.
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(2) Solve the pressure problem:

△pn+1 = △pn +
(
3ρf
2∆t

− µ

)
∇ · ṽn+1, x ∈ Ωf ,

∂pn+1

∂n
= µ(∇×∇× ṽn+1) · n, x ∈ ∂Ωf .

(3) Correct the velocity:

vn+1 = ṽn+1 − 2

3

∆t

ρf
∇(pn+1 − pn + µ∇ · ṽn+1).

Unlike the classical Chorin–Temam scheme, in the above method the

boundary conditions for the pressure problem are consistent, and numer-

ical boundary layers for the pressure are not observed. This is confirmed by

the improved error estimate

‖v(tn,x)− vn(x)‖[H1]3 + ‖p(tn,x)− pn(x)‖L2 . ∆t3/2

(Guermond and Shen 2006).

The above two methods belong to the general class of pressure-correction

methods; see also Codina and Badia (2006), Guermond, Minev and Shen

(2006) and Guermond and Quartapelle (1998), for example. A different class

is obtained by switching the role of velocity and pressure in the splitting;

that is, the viscous term is now ignored or treated explicitly in the first step

and the velocity is then corrected accordingly (velocity-correction schemes:

Orszag, Israeli and Deville 1986, Karniadakis, Israeli and Orszag 1991).

These schemes are characterized by the same non-optimal error estimates as

the pressure-correction schemes due to artificial Neumann conditions for the

pressure problem. Again, an improvement could be obtained by considering

a rotational-incremental variant (Guermond and Shen 2003).

In haemodynamics it is often the case that Neumann boundary conditions

are prescribed at some artificial section. The extension of the differential

splitting methods to this case is addressed in Guermond, Minev and Shen

(2005): on the Neumann boundary we have an artificial Dirichlet condition

for the pressure, which again diminishes the optimal rate of convergence

with respect to ∆t.

Given the next methods we are going to review, it is convenient to intro-

duce the algebraic problem arising from the application of a Galerkin-like

method to the semi-discrete-in-time problem. First of all we notice that the

solvability of the discretized-in-space problem is guaranteed by a suitable

compatible choice of the approximation spaces for the velocity and the pres-

sure in order to satisfy the discrete inf–sup stability condition (Quarteroni
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and Valli 1994). As is well known, an example of finite elements for a tetra-

hedral mesh is provided by piecewise polynomials of order 2 for the velocity

approximation and of order 1 for the pressure approximation. This choice

guarantees the existence and uniqueness of the solution to the linearized fully

discrete problem and is often used to provide a stable solution in haemo-

dynamics. In this case, we have the optimal error estimate

‖vn(x)− vnh(x)‖[H1]3 + ‖pn(x)− pnh(x)‖L2 . h2,

provided that vn and pn are sufficiently regular. (For other stable choices see

Quarteroni and Valli 1994 and Boffi, Brezzi and Fortin 2013.) Alternatively,

suitable stabilization terms could be added to the problem, circumventing

the inf–sup condition and allowing the use of polynomials of equal order.

In this case, additional terms are added to the mass conservation equa-

tion and, if needed, to the momentum conservation equation. Usually, these

techniques also stabilize convected-dominated problems arising when the

Reynolds number is high, for example in the aorta or in stenotic carotid

arteries. One stabilization technique is streamline upwind/Petrov–Galerkin

(SUPG) method (Brooks and Hughes 1982, Muller et al. 2005). A gener-

alization of SUPG and other residual-based stabilization methods is the

variational multiscale (VMS) method (Hughes 1995, Hughes, Mazzei and

Jansen 2000), which is based on a decomposition of the unknown into two

terms, one accounting for the large scales and the other for the small scales of

the unknown field. The same decomposition is used for the test functions, so

that a system of two coupled problems is obtained. Suitable assumptions are

made to express the fine scale solution in terms of the coarse scale residual

of the PDE so that a closure rule is determined for the coarse scale prob-

lem. Thanks to this strategy, the VMS method only amounts to solving the

coarse scale problem by taking into account the contribution of the fine scale

solution without directly solving the corresponding problem, and therefore

at no additional computational cost. Further generalizations of the VMS

method have been proposed to account for turbulence modelling when solv-

ing the incompressible Navier–Stokes equations according to the Large Eddy

Simulation (LES) framework in Bazilevs, Calo, Cottrell, Hughes, Reali and

Scovazzi (2007) and later e.g. in Forti and Dede’ (2015); the corresponding

VMS method allows modelling the transition to turbulence effects, which

may occur in some pathological conditions such as stenoses (Akkerman

et al. 2008).

Here we introduce the algebraic problem related to the fully discretized

linearized problem. For the sake of exposition, we limit ourselves to the

cases without stabilization terms. For the more general case, we refer the
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interested reader to Elman, Silvester and Wathen (2005) and Benzi, Golub

and Liesen (2005), for example. At each time step we have to solve a linear

system in the saddle point form
[
A BT

B 0

] [
V

P

]
=

[
F f

0

]
,

where V and P are the vectors collecting the velocity and pressure un-

knowns,

A = ρf (α/∆t)Mf + ρfN(V ∗) + µK

(Mf is the mass matrix, N is the matrix related to the linearized convective

term, K is the stiffness matrix), F f accounts for non-homogeneous Dirichlet

and Neumann conditions and the terms coming from time discretization, α

depends on the time discretization scheme, and where we have omitted the

current temporal index n+1.

The above non-symmetric linear system can be solved by means of a

Krylov method, for example the GMRES method (Saad 1996). Suitable pre-

conditioners are required. A classical choice is given by block precondition-

ers – see e.g. (Quarteroni and Valli 1999) and (Toselli and Widlund 2005) –

which again split the solution of the velocity and of the pressure:

P =

[
PA BT

0 −PΣ

]
.

If PA = A and PΣ = Σ = BA−1BT (the Schur complement), then the so-

lution is achieved in three GMRES iterations (Elman et al. 2005). In fact,

this choice is equivalent to formally solving the momentum equation for the

velocity and substituting its expression in the mass equation. However, in

practice this preconditioner is not efficient, since the linear system involving

the Schur complement is too onerous, Σ being a full matrix whose explicit

construction requires knowledge of A−1. Efficient preconditioners can be

obtained by approximating Σ (and, if needed, A). For low Reynolds num-

bers (less than 10, say), an effective choice is given by PΣ = µ−1MP, where

MP is the pressure mass matrix, (or even its diagonal: Elman and Silvester

1996). Therefore this is a good choice in haemodynamics for small vessels.

For increasing Reynolds numbers, the convergence properties of this pre-

conditioner deteriorates since it does not account for the convective term.

A better choice for medium and large vessels is given by PΣ = APF
−1
P MP,

where AP is the pressure stiffness matrix, and FP = µAP + ρfNP(V
∗),

where NP is the matrix related to the convective term defined on the pres-

sure space (pressure convection–diffusion preconditioner: Elman et al. 2005,
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Benzi et al. 2005). For the solution of the velocity problem, suitable precon-

ditioners for the advection–reaction–diffusion problem could be introduced.

Alternatively, fast solutions such as V-cycle multigrid can be considered

(Turek 1999).

Another class of preconditioners is obtained by an inexact block LU fac-

torization of the fluid matrix. The starting point is the exact factorization

[
A BT

B 0

]
=

[
A 0

B −Σ

] [
I A−1BT

0 I

]
.

Again, different preconditioners are obtained by suitable approximations Â1

and Â2 of A and Σ̂ of Σ, leading to

P =

[
Â1 0

B −Σ̂

][
I Â−1

2 BT

0 I

]
.

A convenient choice is Â1 = Â2 = DA and Σ̂ = BD−1
A BT, where DA is the

diagonal of A (SIMPLE preconditioner: Patankar and Spalding 1972, Li

and Vuik 2004). Note that in this case Σ̂ is sparse and could be explicitly

assembled. This is an effective choice when the fluid matrix is diagonally

dominant; that is, when small values of ∆t are used. Another choice is the

Yosida preconditioner, where

Σ̂ =
∆t

ρfα
BM−1

f BT, Â1 = A and Â2 =
ρfα

∆t
Mf

(Veneziani 2003). Again, the efficiency deteriorates for increasing ∆t. The

Yosida preconditioner was originally introduced as a solver in Veneziani

(1998b); see also Quarteroni, Saleri and Veneziani (1999, 2000b). This led to

a splitting of the velocity and of the pressure computation, which could be

seen as the algebraic counterpart of the Chorin–Temam method (algebraic

pressure-correction methods). In particular, we have the following steps:

AṼ = F f computation of the velocity,

∆tBM−1
f BTP = BṼ computation of the pressure,

V = Ṽ − ∆t

ρfα
M−1
f BTP correction of the velocity.

Again, an incremental version of the algebraic pressure-correction methods

can also be considered (Quarteroni, Saleri and Veneziani 2000b). An ex-

tension to spectral methods is provided in Gervasio, Saleri and Veneziani

(2006).
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For a comparison of the performance of different preconditioners (all de-

scribed above) used for haemodynamic applications, see Deparis, Grandper-

rin and Quarteroni (2014).

In healthy conditions, blood flow is mainly laminar. Transitional flow may

develop in some pathological instances, or with the assistance of devices.

In these circumstances, suitable mesh refinement is often employed, possi-

bly accompanied by the use of turbulence models. We mention the case of

stenotic carotid arteries, for which Stroud, Berger and Saloner (2002) and

Grinberg, Yakhot and Karniadakis (2009) use Reynolds-averaged Navier–

Stokes (RANS) models, Lee et al. (2008), Fischer et al. (2007) and Cheung

et al. (2010) use direct numerical simulation (DNS), and Rayz, Berger and

Saloner (2007) and Lancellotti et al. (2017) use LES models. Bazilevs et al.

(2009) use the VMS-LES formulation previously mentioned for describing

describe transitional effects in the ascending aorta under the influence of the

left ventricular assist device (LVAD).

In Figure 3.5 we show some examples of numerical results obtained in four

real geometries reconstructed from radiological images (see the caption for

details). These results highlight the complex pattern of blood flow induced by

the geometry and by the heart pulsatility. To highlight the vortex structures

in stenotic carotid arteries, Figure 3.5(c) plots the Q criterion, defined by

Q = −1

2

∑

i,j

S2
ij − Ω2

ij,

where S = ∇u+(∇u)T andΩ = ∇u−(∇u)T (Lee et al. 2008). Positive val-

ues of Q indicate locations where rotations dominate strain and shear; hence

isosurfaces of positive values of Q are used to identify vortex structures.

3.6.2 Numerical methods for the vessel wall problem

In this section we review some of the most commonly used numerical ap-

proaches for the solution of problem (3.7), endowed with its initial and

boundary conditions.

For the time discretization, a popular family of schemes is that of New-

mark, which is characterized by two parameters θ and ζ (Newmark 1959).

The special combination θ = 1/2 and ζ = 1/4 yields the following semi-
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(a) (b)

(c) (d)

Figure 3.5 (a) Velocity vectors in the aneurysm of an abdominal aorta (data
from CT images provided by the Vascular Surgery and Radiology Divisions
at Fondazione IRCSS Cà Granda, Ospedale Maggiore Policlinico, Milan,
Italy). (b) Velocity streamlines in a stenotic carotid artery (data from MRI
images provided by the Vascular Surgery and Radiology Divisions at Os-
pedale Maggiore Policlinico, Milan). (c) Coherent vortical structures by
Q criterion in a stenotic carotid artery (we show only the regions with
Q > 50 000 shaded by the velocity magnitude; data from CT images pro-
vided by Vascular Surgery and Radiology Divisions at Ospedale Maggiore
Policlinico, Milan). (d) Wall shear stress in an ascending aorta (data from
MRI images provided by the Cardio Surgery and Radiology Divisions at
Ospedale Borgo Trento, Verona, Italy). Numerical results were obtained
using the finite element library LifeV, P2/P1 finite elements, the backward
Euler scheme for the time discretization with a semi-implicit treatment of
the non-linear term, and the Yosida preconditioner. For the stenotic carotid
arteries an LES model has been used.
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discrete form of (3.16) (for simplicity we set Pext = 0 and hs = 0):

ρs

∫

Ωs

4d̂
n+1 − 4d̂

n

∆t2
· ê dω +

∫

Ωs

T̂ s(d̂
n+1

) : ∇êdω +

∫

Γext

αST d̂
n+1 · êdσ

= ρs

∫

Ωs

(
4ŵn

∆t
+ ân

)
· ê dω, (3.43)

ŵn+1 =
2

∆t
(d̂
n+1 − d̂n)− ŵn, ân+1 =

4

∆t2
(d̂
n+1 − d̂n)− 4

∆t
ŵn − ân,

where ŵn+1 and ân+1 denote approximations of vessel wall velocity and

acceleration, respectively. This method is unconditionally absolutely sta-

ble and second-order accurate with respect to ∆t. However the Newmark

method does not fully control high-frequency oscillations of the solution

for t → +∞. In order to cope with this numerical issue, an extension of

Newmark schemes, namely the generalized-α method has been purposely in-

troduced in Chung and Hulbert (1993); see e.g. Isaksen et al. (2008) for an

application to haemodynamics.

Space discretization is typically based on finite elements. Whatever the

implicit temporal scheme chosen, a system of non-linear algebraic equations

is obtained after space and time discretization; that is,

ρsβ

∆t2
MsD + Γ(D) + αSTM

ext
s D = Gs,

where β depends on the time discretization (e.g. β = 4 for the Newmark

method (3.43)), D is the vector collecting the vessel wall displacement un-

knowns, Ms is the mass matrix, M ext
s is the boundary mass matrix related

to Σext, Γ is the non-linear operator defined by

Γi =

∫

Ωs

T̂ s(d̂) : ∇êi dω,

where êi is the ith basis function, and Gs is the vector related to the right-

hand side of the time-discretized equation. Notice that we have omitted

the temporal index, which is understood. The above system is linearized by

means of the Newton method, obtaining at each time step a sequence of

linear systems of the form
(
ρsβ

∆t2
Ms + T (D(k−1)) + αSTM

ext
s

)
δD(k)

= Gs −
ρsβ

∆t2
MsD(k−1) − Γ(D(k−1))− αSTM

ext
s D(k−1),

where k ≥ 1 is the Newton iteration index, to be solved until convergence
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occurs. Here δD(k) = (D(k) −D(k−1)), T is the matrix related to the lin-

earization of the first Piola–Kirchhoff tensor; that is,

(T )ij =

∫

Ωs

(DF T̂ s(d̂(k−1)) : ∇êj) : ∇êi,

where DF is the Gâteaux derivative with respect to F .

For the solution of the above linear system, domain decomposition (DD)

methods are often used as efficient preconditioners for iterative Krylov

methods. Since the matrix T is symmetric, the conjugate gradient method is

usually considered for solving the linear system. Among DD preconditioners,

finite element tearing and interconnect (FETI) methods (Farhat and Roux

1991) are very often used in structural mechanics. In particular, all floating

FETI methods have been considered for vessel wall problems, for example

in Augustin, Holzapfel and Steinbach (2014). As in classical FETI methods,

Lagrange multipliers are introduced to glue the solution together at the

subdomain interfaces. In addition, Lagrange multipliers are also used to

prescribe Dirichlet boundary conditions. This simplifies the implementation

of the FETI method since all the subdomains are treated in the same way.

A variant successfully used for arterial vessel walls is the so-called dual–

primal FETI method: see e.g. Balzani et al. (2010). Finally, we mention

yet another class of DD methods considered for this problem, a two-level

overlapping Schwarz method with an energy minimization coarse space: see

Dohrmann and Widlund (2009).

In Figure 3.6 we illustrate some examples of numerical results obtained in

real geometries reconstructed from radiological images (see the caption for

details). These results highlight the anisotropic internal stresses character-

izing vascular vessel walls.

3.6.3 Numerical methods for the fluid–structure interaction

problem

The numerical solution of the coupled FSI problem (3.19) requires us to

manage three sources of non-linearities, namely,

(i) the fluid domain is unknown and its deformation is in general non-linear

(geometric non-linearity),

(ii) the fluid subproblem is non-linear (fluid constitutive non-linearity),

(iii) the vessel displacement subproblem is non-linear (structure constitutive

non-linearity),

together with two different kinds of coupling,
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(a) (b)

Figure 3.6 (a) Von Mises internal stresses in a carotid artery
(data from MRI images provided by the Vascular Surgery and Ra-
diology Divisions at Ospedale Maggiore Policlinico, Milan, Italy).
(b) Von Mises stresses in an abdominal aortic aneurysm (mesh
from www.vascularmodel.com/sandbox/doku.php?id=start). Numerical re-
sults in (b) were obtained by D. Forti (CMCS-EPFL) using
LifeV (carotid artery) and the finite element library redbKIT v2.1
(github.com/redbKIT/redbKIT/releases) (AAA), P2 finite elements, a New-
mark unconditionally-stable scheme for the time discretization and an ex-
ponential vessel wall law.

(iv) the displacement of the fluid domain at the FS interface needs to match

the displacement of the vessel wall (geometric adherence: see (3.19f)),

(v) the fluid and vessel displacement subproblems are coupled by means

of the kinematic and dynamic conditions (3.19c, 3.19d) (physical cou-

pling).

Arbitrary-Lagrangian formulation. As for points (i) and (iv), a classical nu-

merical strategy relies on extending the FS interface displacement df = d|Σt

to the whole fluid domain, thus associating a displacement with its internal

points as well. This is obtained by solving an extra problem for the fluid do-

main displacement, usually a harmonic extension of the FS interface datum

df , with homogeneous Dirichlet conditions at ∂Ωtf \ Σt. The fluid domain

displacement is then used to move the points of the fluid mesh accordingly,

obtaining the new computational fluid domain. With this aim, the Navier–

Stokes equations are reformulated on a frame of reference that moves with
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the fluid domain. This is neither a Lagrangian description (where the frame

moves with the fluid particles) nor an Eulerian description (where a fixed

frame would be used). For this reason, it is called the arbitrary Lagrangian–

Eulerian (ALE) approach (Hirt, Amsden and Cook 1974, Donea 1982). To

write the Navier–Stokes equations in an ALE configuration, we use the

Reynolds transport formula to express the ALE material time derivative

δ/δt of a function z with respect to the Eulerian derivative; that is,

δz

δt
=
∂z

∂t
+ (vf · ∇)z,

where vf = ḋf is the velocity of the points of the fluid domain. Thus, the

FSI problem together with its initial and boundary conditions becomes

ρf

(
δv

δt
+ ((v − vf ) · ∇)v

)
−∇ · T f (v, p) = 0 in Ωtf , (3.44a)

∇ · v = 0 in Ωtf , (3.44b)

v =
∂d

∂t
on Σt, (3.44c)

T s(d)n = T f (v, p)n on Σt, (3.44d)

ρs
∂2d̂

∂t2
−∇ · T̂ s(d̂) = 0 in Ωs, (3.44e)

d̂f = d̂ at Σ, (3.44f)

−△d̂f = 0 in Ωf . (3.44g)

This choice is particularly suitable when finite elements are considered for

the space discretization. Indeed, the terms involving spatial derivatives are

as usual expressed with respect to the current configuration, whereas the

(material) time derivative term is written in the reference configuration. In

particular, given the nodal basis functions φj, we write the finite element

approximation of v(t,x) as vh(t,x) =
∑

j v
j
h(t)φj(x); then, we have

δ(vh(t,x))

δt
=

δ

δt

(∑

j

vjh(t)φj(x(t))

)
=
∑

j

dvjh(t)

dt
φj(x(t)),

since the time variations of the basis functions with respect to the reference

domain vanish. This makes the computation of the fluid velocity on the

nodes of the fluid mesh straightforward: see e.g. Nobile (2001).

For time discretization of (3.44), a common choice is to discretize the fluid

and the vessel wall problems with two schemes of equal order (of order p,
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say), for example BDF2 or Crank–Nicolson for the fluid and the Newmark

scheme (3.43) for the vessel problem.

Treatment of geometric coupling, geometric adherence and fluid non-linear-

ity. As for issue (ii) above (constitutive fluid non-linearity), following the

approach commonly used for a stand-alone fluid problem, the convective

field is usually treated explicitly, by using a suitable extrapolation v∗ − v∗f
of order p from previous time steps. This choice introduces a CFL-like con-

dition for ∆t to preserve absolute stability, which however is always satisfied

for the values of ∆t usually considered in haemodynamics. Another common

choice in haemodynamics is the explicit treatment of geometric coupling and

adherence (issues (i) and (iv) above). In particular, the fluid problem coupled

with the structure problem are solved in a domain Ω∗
f obtained by a suitable

extrapolation from previous time steps of order p, and the fluid geometry

problem is then solved in sequence (Swim and Seshaiyer 2006, Fernández,

Gerbeau and Grandmont 2007, Badia, Quaini and Quarteroni 2008c, Nobile

and Vergara 2008). Again, a limitation on ∆t is required to ensure absolute

stability. In particular, Fernández et al. (2007) prove, for a model problem,

that stability is guaranteed under a CFL-like condition. Numerical evidence

in real scenarios indicates that this is also a mild condition in the haemo-

dynamics regime: see e.g. Moireau et al. (2012) and Nobile, Pozzoli and

Vergara (2014). Based on the considerations above, the following temporal

discretization of the FSI problem (3.44) can be considered.

Explicit scheme for geometric coupling and adherence

For n ≥ 1, at time step tn:

(1) Solve the FSI problem:

ρfα

∆t
vn + ρf ((v

∗ − v∗f ) · ∇)vn −∇ · T f (vn, pn) = gnf in Ω∗
f , (3.45a)

∇ · vn = 0 in Ω∗
f , (3.45b)

vn =
α

∆t
dn + gnfs at Σ∗, (3.45c)

T s(d
n)n∗ = T f (v

n, pn)n∗ at Σ∗, (3.45d)

ρsβ

∆t2
d̂
n −∇ · T̂ s(d̂

n
) = ĝns in Ωs, (3.45e)
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where α still depends on the time discretization scheme, and

gnf = gnf (v
n−1,vn−2, . . .),

gns = gns (d
n−1,dn−2, . . .),

gnfs = g
n
fs(d

n−1,dn−2, . . .)

account for the terms at previous time steps coming from time dis-

cretizations of order p of the corresponding equations (3.44a), (3.44e)

and (3.44c), respectively.

(2) Then, solve the fluid geometry problem,

−△d̂nf = 0 in Ωf , (3.46a)

d̂
n

f = d̂
n

at Σ, (3.46b)

and build Ω∗
f accordingly.

In the above substeps, the FSI problem (3.45) is still coupled by means

of the physical coupling given by the interface conditions (3.45c, 3.45d): see

issue (v) above. For the solution of this problem, both partitioned and mono-

lithic procedures have been successfully considered so far in haemodynamics.

In partitioned schemes, the fluid and vessel wall subproblems are solved

separately, one or more times per time step. Each of the two problems is

equipped with a suitable boundary condition at the FS interface Σ∗ derived

by splitting the physical interface conditions (3.45c, 3.45d).

Partitioned algorithms of explicit type

From the computational point of view, an attractive class of partitioned

schemes is that of the loosely coupled algorithms where the two subprob-

lems are solved only once per time step. The classic loosely coupled algo-

rithm, widely used in aerodynamics (Piperno and Farhat 2001), is the explicit

Dirichlet–Neumann scheme, where condition (3.45c) is prescribed explicitly

as a Dirichlet condition in the fluid subproblem, whereas condition (3.45d)

is prescribed as a Neumann condition on the vessel wall subproblem, leading

to the following.

Explicit Dirichlet–Neumann scheme. For n ≥ 1, at time step tn:
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(1) Solve the fluid Oseen problem with a Dirichlet condition at the FS in-

terface:

ρfα

∆t
vn + ρf ((v

∗ − v∗f ) · ∇)vn −∇ · T f (vn, pn) = gnf in Ω∗
f , (3.47a)

∇ · vn = 0 in Ω∗
f , (3.47b)

vn =
α

∆t
dn−1 + gn−1

fs on Σ∗. (3.47c)

(2) Then, solve the non-linear vessel wall problem with a Neumann condi-

tion at the FS interface:

ρsβ

∆t2
d̂
n −∇ · T̂ s(d̂

n
) = ĝns in Ωs, (3.48a)

T̂ s(d̂
n
)n̂ = T̂ f (v̂

n, p̂n)n̂ on Σ. (3.48b)

Note that the time-discretized kinematic condition (3.47c) differs from

(3.45c) since now we are considering an explicit Dirichlet condition for

the fluid subproblem, so the right-hand side is computed at the previous

time step.

A ‘parallel’ version of this scheme is obtained by replacing T̂ f (v̂
n, p̂n)n̂

with T̂ f (v̂
n−1, p̂n−1)n̂ in (3.48b). Notice that in the monolithic FSI prob-

lem (3.45), the dynamic continuity condition (3.45d) is written in the cur-

rent configuration Σ∗, whereas for the structure subproblem alone (3.48) is

written in the reference configuration Σ. Accordingly, in what follows the

structure interface quantities will be written in the current configuration in

monolithic FSI problems and in the reference configuration when the struc-

ture problem is uncoupledin view of a partitioned scheme.

Unfortunately, the explicit Dirichlet–Neumann scheme can be unstable

regardless of the choice of ∆t. In particular, Causin, Gerbeau and Nobile

(2005) prove that this happens if the fluid and structure densities are com-

parable, which is precisely the case for haemodynamics. This is due to the

so-called large added mass effect. See also Forster, Wall and Ramm (2007)

and Nobile and Vergara (2012).

Stable loosely-coupled algorithms have been introduced recently. To this

end, in the FSI problem (3.45) the interface conditions (3.45c, 3.45d) are

replaced by two linear independent combinations

σfv
n + T f (v

n, pn)n∗ = σf

(
α

∆t
dn + gnfs

)
+ T s(d

n)n∗ on Σ∗, (3.49a)

σs

(
α

∆t
dn + gnfs

)
+ T s(d

n)n∗ = σsv
n + T f (v

n, pn)n∗ on Σ∗, (3.49b)
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where σf 6= σs are, in general, two functions of space and time. This natu-

rally leads to the following.

Explicit Robin–Robin scheme. For n ≥ 1, at time step tn:

(1) Solve the Oseen problem with a Robin condition at the FS interface:

ρfα

∆t
vn + ρf ((v

∗ − v∗f ) · ∇)vn

−∇ · T f (vn, pn) = gnf in Ω∗
f , (3.50a)

∇ · vn = 0 in Ω∗
f , (3.50b)

σfv
n + T f (v

n, pn)n∗

= σf

(
α

∆t
dn−1 + gn−1

fs

)
+ T s(d

n−1)n∗ on Σ∗. (3.50c)

(2) Then, solve the non-linear vessel wall problem with a Robin condition

at the FS interface:

ρsβ

∆t2
d̂
n −∇ · T̂ s(d̂

n
) = ĝns in Ωs, (3.51a)

σsα

∆t
d̂
n
+ T̂ s(d̂

n
)n̂ = σsv̂

n + T̂ f (v̂
n, p̂n)n̂ − σsĝ

n
fs on Σ. (3.51b)

Burman and Fernández (2009) propose a discontinuous Galerkin (DG)-

like mortaring of the interface coupling conditions (3.45c, 3.45d). The corre-

sponding block Gauss–Seidel explicit algorithm could be reinterpreted as an

explicit Dirichlet–Robin scheme, where in (3.50c, 3.51b) we have σf = +∞,

σs = −γµ/h, where γ is the DG penalty parameter. Burman and Fernández

show that the DG interface penalty and the viscous dissipation are not

able to control the pressure fluctuations at the FS interface appearing in

the discrete energy estimate. For this reason, they propose adding to the

fluid problem a consistent stabilization term penalizing the pressure fluctu-

ations, which is proved to be absolutely stable under a CFL-like condition.

Banks, Henshaw and Schwendeman (2014) have introduced a stable explicit

Robin–Robin scheme, setting the parameters in the Robin interface condi-

tions (3.50c, 3.51b) after analyzing the incoming and outgoing characteristic

variables of the vessel wall problem. In particular, the above parameters

are defined in terms of the outgoing characteristic variable for the fluid

subproblem and in terms of the incoming characteristic variable for the ves-

sel wall subproblem. For linear elasticity, the following values are obtained:

σf,norm =
√
ρs(µ1 + 2µ2) and σf,tang =

√
ρsµ2 in the normal and tangential

direction, respectively (µ1 and µ2 are the Lamé constants), and σs = −σf .
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This choice allows the travelling information contained in the characteristic

variables to provide a tighter coupling of the fluid and structure problems

than that enforced by (3.45c, 3.45d).

Partitioned algorithms of semi-implicit type

Fernández et al. (2007) prove that to achieve stability without introduc-

ing stabilization terms for the Dirichlet–Neumann scheme, an implicit cou-

pling between the fluid pressure and the vessel wall displacement is required.

In particular, a projection scheme is used where the fluid ALE-advection-

diffusion step is solved explicitly, whereas the fluid pressure and vessel wall

subproblems are coupled and solved in an iterative framework until con-

vergence occurs (see also Astorino and Grandmont 2009 for a convergence

analysis).

Semi-implicit pressure-vessel wall coupled scheme. For n ≥ 1, at time step tn:

(1) Solve the ALE-advection-diffusion problem with a Dirichlet condition

at the FS interface:

ρfα

∆t
ṽn + ρf ((v

∗ − v∗f ) · ∇)ṽn

−∇ · µ(∇ṽn + (∇ṽn)T) = gnf in Ω∗
f , (3.52a)

ṽn =
α

∆t
dn−1 + gn−1

fs on Σ∗. (3.52b)

(2) Then, solve the coupled pressure-vessel wall problem. To this end, in-

troduce the following iterations on index k ≥ 1.

(a) Solve the pressure problem with a Neumann condition at the FS

interface:

△pn(k) =
ρfα

∆t
∇ · ṽn in Ω∗

f ,

∂pn(k)

∂n∗
=

α

∆t
dn(k−1) + g

n
fs on Σ∗.

(b) Then, solve the non-linear vessel wall problem with a Neumann

condition at the FS interface:

ρsβ

∆t2
d̂
n

(k) −∇ · T̂ s(d̂
n

(k)) = ĝ
n
s in Ωs,

T̂ s(d̂
n

(k))n̂ = T̂ f (̂̃v
n
, p̂n(k))n̂ on Σ.

Astorino, Chouly and Fernández (2009) apply the DG mortaring approach
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to this projection scheme, leading to a Robin–Robin-like scheme. An alge-

braic version of the projection scheme proposed by Fernández et al. (2007)

is introduced in Badia et al. (2008c).

Partitioned algorithms of implicit type

More generally, a fully implicit treatment of (3.45c, 3.45d) (or (3.49)) by

means of partitioned algorithms is often considered. In this case, the fluid

and vessel wall subproblems are solved iteratively until the whole interface

conditions are satisfied within a prescribed tolerance. A general scheme is

given by the following.

Implicit Robin–Robin scheme. For n ≥ 1, k ≥ 1, at time step tn/iteration k:

(1) Solve the Oseen problem with a Robin condition at the FS interface:

ρfα

∆t
vn(k) + ρf ((v

∗ − v∗f ) · ∇)vn(k)

−∇ · T f (vn(k), pn(k)) = gnf in Ω∗
f , (3.55a)

∇ · vn(k) = 0 in Ω∗
f , (3.55b)

σfv
n
(k) + T f (v

n
(k), p

n
(k))n

∗

= σf

(
α

∆t
dn(k−1) + g

n
fs

)
+ T s(d

n
(k−1))n

∗ on Σ∗. (3.55c)

(2) Then, solve the non-linear vessel wall problem with a Robin condition

at the FS interface:

ρsβ

∆t2
d̂
n

(k) −∇ · T̂ s(d̂
n

(k)) = ĝ
n
s in Ωs, (3.56a)

σsα

∆t
d̂
n

(k) + T̂ s(d̂
n

(k))n̂

= σsv̂
n
(k) + T̂ f (v̂

n
(k), p̂

n
(k))n̂− σsĝ

n
fs on Σ. (3.56b)

σf and σs in (3.55c, 3.56b)) can be functions of space and time.

As proved in Causin et al. (2005), a small relaxation parameter is needed

to achieve convergence in the implicit Dirichlet–Neumann scheme (corre-

sponding to setting σf = +∞, σs = 0 in (3.55c, 3.56b)). In practice, an

Aitken relaxation procedure is often used to dynamically estimate an effi-

cient relaxation parameter (Deparis 2004, Kuttler and Wall 2008). A better

situation is obtained by properly selecting the parameters in the Robin in-

terface conditions (3.55c, 3.56b). In particular, the choice

σf =
βρsHs

α∆t
+

EHs∆t

(1− ν2)R2
, σs = 0
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(where, as usual, E and ν are Young’s modulus and the Poisson ratio for the

vessel material at small deformations, and Hs and R are therepresentative

thickness and radius of the vessel) yields fast convergence without any relax-

ation (Robin–Neumann scheme: Badia, Nobile and Vergara 2008a, Nobile,

Pozzoli and Vergara 2013). Gerardo-Giorda, Nobile and Vergara (2010) and

Gigante and Vergara (2015) have characterized the optimal value of σs, lead-

ing to further improvement in the convergence history. Yu, Baek and Karni-

adakis (2013) have derived a Dirichlet–Robin scheme by means of a general-

ized fictitious method, where the coefficients of the fluid pressure and vessel

wall acceleration are changed to account for the added mass effect. This

again allows one to obtain good convergence properties for haemodynamic

parameters without any relaxation. Another class of implicit methods with

good convergence properties for high added-mass effect is based on adding

a suitable interface artificial compressibility (IAC) consistent term to the

fluid problem, proportional to the jump of pressure between two successive

iterations (Degroote et al. 2010). Degroote (2011) showed that for a finite

volume approximation, the IAC method based on Dirichlet–Neumann itera-

tions is equivalent to a Robin–Neumann scheme for a suitable choice of the

parameter σf .

Partitioned algorithms for the FSI problem with a membrane structure

Recently, several papers have analyzed algorithms for FSI problems featuring

a reduced membrane model for the vessel wall. In this case, the FSI problem

is given by the fluid problem (3.19a), the kinematic continuity condition

(3.23a) and the membrane equation (3.23b), which in this case also plays

the role of dynamic continuity condition. Moreover, homogeneous Dirichlet

or Neumann conditions in the tangential direction need to be prescribed

for the fluid problem at the interface Σ. By considering an implicit time

discretization of (3.23b) and an explicit treatment of the geometry coupling,

we obtain at each time step the following linearized FSI problem:

ρfα

∆t
vn + ρf ((v

∗ − v∗f ) · ∇)vn −∇ · T f (vn, pn) = gnf in Ω∗
f , (3.57a)

∇ · vn = 0 in Ω∗
f , (3.57b)

vn · n∗ =
α

∆t
dr
n + gnfs on Σ∗, (3.57c)

vn − (vn · n∗)n∗ = 0 on Σ∗, (3.57d)

ρsHsβ

∆t2
dnr −∇ · (P∇dnr ) + χHsd

n
r

= −T f (vn, pn)n∗ · n∗ + gns on Σ∗, (3.57e)
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where, as usual, gnf , g
n
s and gnfs account for the terms at previous time steps

coming from time discretization.

The explicit Dirichlet–Neumann scheme applied to the previous mono-

lithic problem reads as follows.

Explicit Dirichlet–Neumann scheme for the FSI problem with membrane

structure. Given the quantities at previous time steps, at time step tn:

(1) Solve the Oseen problem with a Dirichlet condition at the FS interface:

ρfα

∆t
vn + ρf ((v

∗ − v∗f ) · ∇)vn −∇ · T f (vn, pn) = gnf in Ω∗
f ,

∇ · vn = 0 in Ω∗
f ,

vn · n∗ =
α

∆t
dn−1
r + gn−1

fs on Σ∗,

vn − (vn · n∗)n∗ = 0 on Σ∗.

(2) Then, solve the membrane problem:

ρsHsβ

∆t2
d̂nr −∇ · (P∇d̂nr ) + χHsd̂

n
r = −T̂ f (v̂n, p̂n)n̂ · n̂+ ĝns on Σ.

As in the case of scheme (3.47, 3.48), unfortunately this scheme is uncon-

ditionally absolutely unstable in the haemodynamic regime (Causin et al.

2005).

Different algorithms are obtained by linearly combining the interface con-

ditions (3.57c) and (3.57e) and by substituting the new condition in (3.57c).

In this case, we have to solve a coupled problem consisting of the following.

Robin–Neumann coupling for the FSI problem with membrane structure.

Given the quantities at previous time steps, at time step tn:

(1) Solve the Oseen problem with a Robin condition at the FS interface:

ρfα

∆t
vn + ρf ((v

∗ − v∗f ) · ∇)vn −∇ · T f (vn, pn) = gnf in Ω∗
f , (3.59a)

∇ · vn = 0 in Ω∗
f , (3.59b)

(σfv
n + T f (v

n, pn)n∗) · n∗σf

(
α

∆t
dnr + gnfs

)

−
(
ρsHsβ

∆t2
dnr −∇ · (P∇dnr ) + χHsd

n
r

)
on Σ∗, (3.59c)

vn − (vn · n∗)n∗ = 0 on Σ∗. (3.59d)
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(2) Solve the membrane problem:

ρsHsβ

∆t2
d̂nr −∇·(P∇d̂nr )+χHsd̂

n
r = −T̂ f (v̂n, p̂n)n̂·n̂+ ĝns on Σ. (3.60)

The above problem could be solved either monolithically or by means of

a block Gauss–Seidel method that in fact introduces sub-iterations splitting

the solution of (3.59) and (3.60). When P = 0, the special choice

σf = σ̃f =
ρsHsβ

α∆t
+
χHs∆t

α
, (3.61)

introduced in (3.59c), yields

(σ̃fv
n + T f (v

n, pn)n∗) · n∗ = σ̃fg
n
fs on Σ∗. (3.62)

At this stage, this is a Robin condition for the fluid problem without any ex-

plicit dependence on dnr . Thus, the monolithic problem given by (3.59–3.61)

is equivalent to the stand-alone fluid problem (3.59a, 3.59b, 3.59d, 3.62): see

Nobile and Vergara (2008). The solution of this fluid problem can then be

used to feed the right-hand side of (3.60) and to get the structure displace-

ment d̂nr . In this way, the fluid and structure problems are in fact decoupled,

even if the coupling conditions are treated implicitly. This provides a smart

and efficient way to solve the monolithic problem (3.57) exactly, at the ex-

pense of a single fluid problem solve (note that the membrane problem (3.60)

is solved very cheaply).

Starting from this result, Guidoboni, Glowinski, Cavallini and Canic (2009)

have proposed a stable Robin–Neumann scheme based on an operator split-

ting, for a general membrane law (P 6= 0). The inertial vessel wall term

is treated implicitly as in the previous case, leading to a Robin boundary

condition for the fluid with σf = ρsHsβ/α∆t, whereas the elastic and al-

gebraic contributions are treated explicitly. Fernández (2013) proposes an

incremental version of this scheme, where the elastic and algebraic parts of

the membrane law are included in the Robin condition for the fluid problem

by means of a suitable extrapolation from previous time steps. Finally, we

mention Colciago et al. (2014), who treat the whole membrane law implic-

itly, leading to a generalized Robin condition, which however requires an

ad hoc implementation.

Partitioned algorithms based on the Schur complement

Here we discuss partitioned schemes arising from an interface equation writ-

ten for the FSI problem and introduced by Deparis, Discacciati, Fourestey

and Quarteroni (2006). For the sake of exposition, we introduce the alge-

braic counterpart of (3.45) related to a finite element discretization for the
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case of linear elasticity for the vessel wall problem:



Cff CfΣ 0 0

0 MΣ −MΣ 0

CΣf CΣΣ GΣΣ GΣs

0 0 GsΣ Gss







V f

V Σ

UΣ

Ds




=




bf

0

bΣ

bs




, (3.63)

where the superscript f refers to internal fluid variables, s to internal vari-

ables for the vessel wall, Σ to the FS interface variables; C (with super-

scripts) refers to fluid matrices, G to vessel wall matrices, MΣ is the FS

interface mass matrix; V includes the fluid and pressure variables, Ds the

vessel wall displacement internal variables, and UΣ the vessel wall veloc-

ity interface variables; the vectors b denote the right-hand sides. The first

row corresponds to the momentum and mass conservation for the fluid, the

second and third rows to the interface kinematic and dynamic conditions,

and the last row to the vessel wall problem. By eliminating V f , V Σ andDs

from (3.63), we obtain the interface equation

(C̃Σ + G̃Σ)UΣ = b̃Σ, (3.64)

where

C̃Σ = CΣΣ − CΣf (Cff )−1CfΣ and G̃Σ = GΣΣ −GΣs(Gss)−1GsΣ

are the fluid and vessel wall Schur complement matrices and

b̃Σ = bΣ − CΣf(Cff )−1bf −GΣs(Gss)−1bs

is the corresponding right-hand side.

The Robin–Robin method (3.55, 3.56) could be obtained by applying the

Richardson method to the interface equation (3.64) preconditioned by the

matrix

P =
1

σf + σs
(C̃Σ + σfM

Σ)(MΣ)−1(G̃Σ + σsM
Σ). (3.65)

This leads to a new family of partitioned schemes obtained by applying

other Krylov methods to (3.64) with the same preconditioner. For example,

GMRES preconditioned by the Dirichlet–Neumann preconditioner P = G̃Σ

is considered in Badia, Quaini and Quarteroni (2008b), whereas GMRES

preconditioned with the RR preconditioner (3.65) is introduced in Badia,

Nobile and Vergara (2009). The first of these two schemes highlighted bet-

ter convergence properties with respect to the classical Dirichlet–Neumann



70 Modelling blood flow

method, whereas the second is more robust with respect to the choice of the

interface parameters σf , σs than the classical Robin–Robin method.

In some works, a non-linear interface equation is written directly for the

non-linear problem (3.44) and a Newton method is then applied to this

equation (Fernández and Moubachir 2005, Degroote and Vierendeels 2011).

Remark 3.2 In the partitioned schemes introduced above, the vessel wall

subproblem appearing at each iteration is still non-linear, that is, we have

not discussed how to tackle point (iii) in the list of issues reported at the be-

ginning of the subsection. The simplest way to treat vessel wall non-linearity

– very appropriate when a non-linear structural solver is available – is to in-

troduce inner Newton sub-iterations at each Robin–Robin iteration. Alterna-

tively, Kuttler et al. (2010) have proposed a scheme based on integrating the

management of the five sources of non-linearities/coupling (geometric cou-

pling and adherence, fluid and structure constitutive non-linearities, physi-

cal coupling) in a single inexact-Newton loop. Other possible combinations

will be discussed later on as specific monolithic procedures. For a detailed

overview with numerical comparisons we refer to Nobile et al. (2014).

Monolithic solvers

As an alternative to partitioned schemes, monolithic procedures have been

successfully considered in haemodynamics for the solution of the FSI prob-

lem (3.45). These methods consist in applying an exact or inexact Newton

method to the whole non-linear FSI problem. Referring to the notation

introduced above, by considering a finite element space discretization and

the inexact Newton method, we obtain from (3.45)

J̃(x(k−1))δx(k) = G−A(x(k−1)) (3.66)

(for simplicity we omit the temporal index n), where J̃ is the Jacobian matrix

or a suitable approximation of it, x = [V f V Σ UΣ Ds]T, and A(x) = G is

the non-linear system related to (3.45). The exact Jacobian matrix is given

by

J(x(k−1)) =




Cff CfΣ 0 0

0 MΣ −MΣ 0

CΣf CΣΣ JΣΣ
G (UΣ

(k−1)) JΣs
G (Ds

(k−1))

0 0 JsΣG (UΣ
(k−1)) JssG (Ds

(k−1))




, (3.67)
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where the submatrices JG are the exact Jacobians of A related to the struc-

ture variables. For the solution of the linear systems (3.66) with the exact

Jacobian, classical strategies used so far for haemodynamics include GM-

RES preconditioned by a one-level additive Schwarz method (Barker and

Cai 2010a) and global algebraic multigrid (Gee, Kuttler and Wall 2011).

Barker and Cai (2010b) use a two-level Newton method in combination

with a two-level hybrid Schwarz preconditioner, where the solution on a

coarse grid is used to provide a good initial guess to the Newton method.

Alternatively, inexact Newton methods have been considered, for example

by means of block approximations J̃ of J splitting the fluid velocity, pres-

sure and vessel wall unknowns (Heil 2004, Crosetto, Deparis, Fourestey and

Quarteroni 2011).

A particular class of inexact Newton methods is obtained by neglecting the

term −MΣ appearing in the upper-right block of the exact Jacobian (3.67).

This yields in fact a class of partitioned schemes of Dirichlet–Neumann type

where issues (iii) and (v) (vessel wall non-linearity and physical coupling)

are treated within the same iterations. An example is given by the precon-

ditioner proposed in Crosetto et al. (2011), where the fluid and structure

blocks in (3.67) are approximated by the corresponding algebraic additive

Schwarz preconditioners. This method is strongly scalable for haemodynamic

applications. Recently, Deparis, Forti, Grandperrin and Quarteroni (2016)

have introduced a variant of the above preconditioner. This new precondi-

tioner, named FaCSI, is based on operating a static condensation of the fluid

interface variables and using a SIMPLE preconditioner for the fluid block.

For the sake of exposition, we have discussed numerical strategies for the

FSI problem based on finite elements for the space discretization and finite

differences for the time discretization. Other strategies considered so far

in haemodynamics are space-time finite elements (see e.g. Tezduyar et al.

2007, Bazilevs, Takizawa and Tezduyar 2012) and the methods based on

isogeometric analysis (see Bazilevs, Calo, Zhang and Hughes 2006, Bazilevs

et al. 2009).

In Figure 3.7 we illustrate some examples of numerical results obtained in

real geometries reconstructed from radiological images (see the caption for

details).

3.6.4 Numerical methods for defective boundary problems

For the numerical solution of the augmented formulation (3.27), one could

rely either on a monolithic strategy, where the full augmented matrix is con-

structed and solved, or on splitting techniques. For the latter, Formaggia
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(a) (b) (c) (d)

Figure 3.7 (a) Blood velocity streamlines and vessel wall displace-
ment vectors in a stenotic carotid artery (data from MRI im-
ages provided by the Vascular Surgery and Radiology Divisions at
Ospedale Maggiore Policlinico, Milan, Italy). (b–d) Results of a
FSI simulation in the ascending and thoracic aorta (MRI images
from www.vascularmodel.com/sandbox/doku.php?id=repository); courtesy of
D. Forti (EPFL). Blood velocity magnitude in the whole domain (b) and on
a selected longitudinal section (c), vessel wall displacements (d). All cases
refer to the systolic peak. Numerical results were obtained using LifeV,
P1-Bubble/P1 finite elements for the fluid problem and P1 finite elements
for the vessel wall problem; the backward Euler scheme and the midpoint
method was used for the time discretization of the fluid and vessel wall
problems, respectively. The implicit Robin–Robin partitioned scheme was
used in case (a) and the FaCSI preconditioner in cases (b–d).

et al. (2002) and Veneziani and Vergara (2005) propose writing the Schur

complement equation with respect to the Lagrange multiplier of the lin-

earized and discretized (in time and space) augmented formulation. This is

a linear system whose dimension is equal to the number of flow rate con-

ditions, say m ≥ 1. By using the GMRES method to solve this system

iteratively, the exact solution is reached after exactly m iterations (in exact

arithmetic). At each iteration, the solution of a standard fluid problem with

Neumann conditions is needed (exact splitting technique). The solution of a

further standard fluid problem is required to compute the initial residual in

the GMRES algorithm. This approach is quite expensive, even for the case

m = 1, which requires the solution of two fluid problems per time step. How-
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ever, it preserves modularity; indeed, it can be implemented using available

standard fluid solvers in a black box mode. This is an interesting property

when applications to cases of real interest are addressed: see Viscardi et al.

(2010), Vergara, Viscardi, Antiga and Luciani (2012), Piccinelli et al. (2013)

and Guerciotti et al. (2015, 2017).

To reduce the computational time required by the exact splitting ap-

proach, Veneziani and Vergara (2007) propose a different (inexact) splitting

procedure, requiring the solution of m steady problems out of the temporal

loop and of one unsteady null flow rate problem at each time step. This

strategy introduces an error near the section which is smaller than the one

based on conjecturing the velocity profile in the original (non-null) flow rate

problem: see Section 3.4.1.

For the numerical solution of the control-based approach described in Sec-

tion 3.4.3, Formaggia et al. (2008, 2009b) have considered classical iterative

methods for the solution of the resulting KKT system.

Recently, a numerical approach based on the Nitsche method has been

considered to prescribe a flow rate condition. In particular, the original idea

of prescribing Dirichlet conditions with a consistent penalization approach

(Nitsche 1970/71) has been extended by Zunino (2009) to the case of flow

rate boundary conditions. This strategy does not introduce further variables

other than those of the original problem, but it does require careful tuning

of a penalization parameter. In addition, it deals with non-standard bilinear

forms that need ad hoc implementation. However, it should be very effective

if flow rate conditions are implemented in a DG code. Vergara (2011) has

considered a similar approach to fulfilling the mean pressure condition (2.3)

and the FSI case; see also Porpora, Zunino, Vergara and Piccinelli (2012).

For a more comprehensive overview of numerical strategies for defective

boundary problems, we refer the reader to Formaggia and Vergara (2012).

3.6.5 Numerical methods for the geometric reduced models and

multiscale approach

For the numerical solution of the 1D reduced model (3.30), in principle any

convenient approximation method for non-linear hyperbolic equations can

be used. The peculiar feature of this model, however, is the lack of discon-

tinuous solutions. A common approach relies on the finite element version

of the Lax–Wendroff scheme, thanks to its excellent ability in containing

numerical dispersion (Formaggia et al. 2001). As this scheme is explicit, a

CFL-like condition is required to ensure absolute stability. In the presence

of a viscoelastic term, the 1D model is usually discretized by means of a
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Figure 3.8 Pressure wave propagation in an ascending aorta (3D model)
and in the 1D model of the systemic circulation. Numerical results were ob-
tained using LifeV; the Newton method was used for the interface equation.
Courtesy of C. Malossi.

splitting procedure where the solution is split into two components, one

satisfying the pure elastic problem and the other satisfying the viscoelas-

tic correction (Formaggia et al. 2003, Malossi, Blanco and Deparis 2012).

High-order methods are suitable for capturing the (physical) reflections at

bifurcations induced by the vessel tapering: see e.g. Sherwin, Franke, Peiró

and Parker (2003b) and Sherwin, Formaggia, Peiró and Franke (2003a) for

a discontinuous Galerkin discretization and Muller and Toro (2014) for a

finite-volume scheme.

Regarding 0D models, they are in general described by systems of differen-

tial and algebraic equations, possibly non-linear due to the presence of diodes

to represent the valves (Formaggia et al. 2009a). Usually, for haemodynamic

applications, these systems can be reduced to classical Cauchy problems and

solved by classical Runge–Kutta methods.

As in the case of the 3D/1D coupled problems described in Section 3.5.2,

we can in principle identify three different strategies, namely partitioned

schemes, monolithic approaches, and methods based on the solution of an

interface equation. In partitioned schemes, the 3D and 1D problems are

solved separately in an iterative framework. The coupling interface condi-
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tions can be enforced in many different ways. For example, we can prescribe

the flow rate condition (3.39a) to the 3D problem and the pressure condition

(3.42) to the 1D problem. Different algorithms are obtained by switching the

role of the interface conditions in the iterative algorithm or by considering

other interface conditions (e.g. (3.39b)). This is also the case when one of

the two interface conditions is replaced by a condition expressing the conti-

nuity of the characteristic variable W1 entering the 1D domain (Formaggia

et al. 2001, Papadakis 2009), that is, according to (3.33),

W1(t)|z=0 = ζ1

(
|Γtf |,

∫

Γt
f

v · n dγ

)
.

In any case, each of these approaches yields a 3D problem with a defec-

tive boundary condition, which could be tackled by one of the strategies

described in Section 3.4. Formaggia et al. (2007) and Papadakis (2009) have

successfully considered explicit algorithms based on the solution of the 3D

and 1D problems only once per time step. These algorithms enforce a limita-

tion on ∆t, which, however, is milder with respect to that imposed by the nu-

merical scheme adopted for the 1D model. As an alternative, Blanco, Feijóo

and Urquiza (2007) and Blanco, Pivello, Urquiza and Feijóo (2009) have

introduced iterative methods applied directly to the monolithic linearized

system. A different approach to solving the 3D/1D coupled problem relies on

writing an interface equation involving only the 3D/1D interface unknowns.

We can interpret this equation as the geometric heterogeneous counterpart

of the Schur complement equation. For its numerical solution, Leiva, Blanco

and Buscaglia (2011), Malossi et al. (2013) and Blanco, Deparis and Malossi

(2013) have used either the Broyden or the Newton method, in combination

with GMRES. Methods relying on the numerical solution of the interface

equation are simple to implement in the case of multiple interfaces, such as

those arising in complex arterial networks.

In Figure 3.8 we provide a numerical result obtained by coupling the 3D

model of an ascending aorta with a 1D model of the systemic circulation.

This result highlights the suitability of the 1D model as provider of suitable

absorbing conditions wfor the 3D model and in propagating the pressure

wave along the whole network (Malossi 2012).
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Basic facts on quantitative cardiac physiology

In this chapter we present basic facts about the anatomy and functioning

of the human heart. We discuss the propagation of the electric signal, the

mechanics of heart contraction and cardiac fluid dynamics; finally we provide

a brief summary of heart diseases.

4.1 Basic anatomy

The human heart is a hollow organ that pumps the blood into the arteries

of the systemic and pulmonary circulations and collects it after its return

through the veins; see e.g. (Klabunde 2012). Specifically, the heart supplies

oxygenated blood and nutrients to the body through arteries and pumps

instead de-oxygenated blood to the lungs for re-oxygenation. In a healthy

heart, every second, blood is pumped to almost all the 75 trillion cells of

the body, which amounts to 1.5 million barrels in an average lifetime. This

endeavour is made possible by the cardiac rhythm – triggered by an electric

signal initiating at the sinoatrial node – and the exceptional strength and

resistance of our heart.

The human heart is made up of the left and right heart, each consisting

of two chambers, an atrium and a ventricle. The left and right hearts are

separated by the interatrial and interventricular septa, which do not allow

the transfer of blood, whereas the atria and the ventricles are connected by

the atrioventricular valves (tricuspid valve in the right heart, mitral valve

in the left heart) that either allow or prevent the blood transfer from the

atria to the ventricles depending on their configuration (open or closed,

respectively): see Figure 4.1. In particular, these valves open when the atrial

pressure is higher than the ventricular pressure and close as soon as the

blood flow rate becomes negative, that is, when blood flow, which normally

goes from the atrium to the ventricle, comes back into the atrium. In the
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Figure 4.1 Schematic representation of the heart.

latter configuration, the blood flow rate starts to become negative; that is,

the blood flow, which normally goes from the atrium to the ventricle, comes

back into the atrium; however, this backflow is not significant in physiological

conditions as the valves rapidly close. The papillary muscles, located in the

ventricles, attach to the cusps of these atrioventricular valves via the chordae

tendineae, preventing their inversion (prolapse) during closure.

All four chambers are connected to the circulatory system: the left ventri-

cle through the aorta, the right ventricle through the pulmonary artery, the

left atrium through the pulmonary veins, and the right atrium through the

superior and inferior venae cavae. The ventricles are separated from the

circulatory system by two further valves, the aortic valve on the left side and

the pulmonary valve on the right side, whose opening/closure mechanism is

similar to that of the atrioventricular valves; that is, they open when the

pressure is higher in the ventricle with respect to the corresponding con-

nected artery, whereas they close when the pressure jump across the valve

reverses, thus preventing the blood flow rate from becoming negative (i.e.

going from the artery to the ventricle). No valves are located between the

atria and the corresponding terminal veins.

The heart wall is made up of three layers: the internal thin endocardium,

the relatively thick muscular myocardium and the external thin epicardium.

The myocardium of the left ventricle is almost twice as thick as that of the

right ventricle. However, the walls of the atria are (much) less “muscular”

and significantly thinner than those of the ventricles. The epicardium is
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surrounded by the pericardium, a serous membrane that isolates the heart

from the closest organs, facilitating its movements.

4.2 The cardiac cycle

The main purpose of the heart is to pump blood in the circulatory system

through the aorta and the pulmonary artery. To achieve this goal, the heart

needs to exceed the resistance in the arteries where blood has pressure values

of about 70mmHg in the aorta and 10mmHg in the pulmonary artery; these

values are dependent, among other factors, on the reaction of the elastic

vessel wall to the deformation induced by blood inside. Moreover, the heart

supplies blood with the energy needed to reach the microvasculature in the

peripheral areas of the body and the lungs. The total work done by the heart

per heartbeat can be quantified as

W = Q∆P +
1

2
mv2,

where Q and m are the blood flow rate and the blood mass ejected, v is the

blood velocity in the aorta or the pulmonary artery and ∆P = P −P0, with

P being the arterial blood pressure in either the aorta or the pulmonary

artery and P0 the reference pressure in the corresponding heart chamber.

The above quantification of the cardiac work can be referred to either the

left or right hearts. The kinetic component 1
2 mv2 of the work W is quite

negligible with respect to the potential component Q∆P (about 2% for

the left heart and about 5% for the right heart), although it could become

more relevant (up to 25%) under physical effort. The flow rate Q in normal

conditions is about 5× 103 cm3 min−1, so that, assuming 60–90 heartbeats

per minute, we have about 55.5–83.3 cm3 of blood expelled at each heartbeat.

The energetic requirements for pumping blood are obtained, as in all organs,

by the consumption of oxygen that is provided to the heart by blood in the

coronary arteries. The efficiency of the heart – that is, the ratio between

the energy W and the total energy consumption – is in physiological cases

about 25%.

The cardiac cycle is the result of the concerted actions of several heart

components. The Wiggers diagram, named for its developer (Wiggers 1915),

is a standard representation used for understanding such cardiac cycles and,

more generally, cardiac physiology (Mitchell and Wang 2014). In a Wiggers

diagram, which is referred to the left heart as represented in Figure 4.2,

the coordinated evolution along the heartbeat of the following quantities

is highlighted: blood pressure in the left ventricle, left atrium and aorta;
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Figure 4.2 Wiggers diagram. The following quantities are displayed vs.
time from top to bottom: blood pressure in the left ventricle (blue), atrium
and aorta; left ventricular volume (red); electrocardiogram (dark blue);
phonocardiogram. The left ventricle phases, systole and diastole, are high-
lighted: isovolumic contraction (a); ventricular ejection (b); isovolumic re-
laxation (c); ventricular filling (d–f), comprised of rapid blood inflow (d),
diastasis (e) and atrial systole (f).

left ventricular volume; output of the electrocardiogram (ECG); output of

the phonocardiogram; arterial flow (optional). Another representation of the

cardiac function is provided by the Pressure–Volume loop, also known as PV

diagram or loop, which illustrates the changes in volume and pressure in an

heart chamber along the heartbeat; see Figure 4.3. Specifically, when referred

to the left ventricle, the PV loop is the phase diagram of the pressure and

volume variations represented in the Wiggers diagram. The PV loop is a

useful tool for synthetically assessing the efficiency and functionality of the

heart as a blood pump.

The cardiac cycle comprises different phases. For its description (see Fig-

ures 4.2 and 4.3), we consider the left heart and start from the situation

where the left ventricle is filled with oxygenated blood coming from the left

atrium, both the mitral and aortic valves are closed, and the left ventricle

has reached its maximum volume.
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Figure 4.3 Pressure–Volume (PV) loop. The left ventricle phases, systole
and diastole, are highlighted: isovolumic contraction (a); ventricular ejec-
tion (b); isovolumic relaxation (c); ventricular filling (d–f), comprised of
rapid blood inflow (d), diastasis (e) and atrial systole (f). Opening and
closing of mitral and aortic valves are indicated.

(a) Isovolumic contraction. After the atrial systole, the ventricular active

contraction starts. This produces a rapid increase in the ventricular

pressure in the chamber, whose valves are both closed. However, the

ventricular pressure is still lower than the aortic pressure, so the aortic

valve remains closed. Thus, during this phase (∼ 0.05 s), there is a

continuous and fast increase of ventricular pressure without apprecia-

ble change of blood volume in virtue of blood incompressibility.

(b) Ventricular ejection. As soon as the ventricular pressure overcomes

the aortic pressure (about 70mmHg), the aortic valve rapidly opens

and blood is ejected into the systemic circulation. Since the ventricular

contraction carries on after the valve opens, the ventricular pressure

continues to increase. Accordingly, the aortic pressure also increases,

in part due to the elastic adaptation of the vessel wall. In the first part

of ejection (∼ 0.15–0.20 s), the ventricular volume rapidly decreases

until the peak pressure value is reached (about 120mmHg); at this

stage, the blood flow rate and velocity are maximum. Then (∼ 0.15 s),
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the ventricle volume keeps decreasing, although at a smaller rate; this

causes a gradual decrease of ventricular and aortic pressures. In partic-

ular, the pressure jump across the aortic valve decreases in magnitude,

thus inducing a deceleration of the blood that however continues to

flow into the aorta. At this stage, the active contraction of the ven-

tricle stops, minor inertial effects allow some residual blood ejection,

and the elastic energy accumulated starts to be released.

(c) Isovolumic relaxation. When the ventricular and aortic pressures be-

come closer and hence the pressure jump across the aortic valve is

nearly zero, the aortic valve closes. The release of energy of the ventri-

cle continues with both the aortic and mitral valve closed; moreover,

relaxation of the muscle starts. In this phase (∼ 0.05 s), changes in

ventricular volume are negligible and the ventricular pressure rapidly

drops. After valve closure, the aortic pressure may still increase (albeit

slightly), due to the elastic recoil of the closing valve (dicrotic wave).

(d–f) Ventricular filling. While relaxing, the ventricular pressure becomes

smaller that the left atrial pressure and soon reaches its minimum

value (about 10 mmHg). The mitral valve opens and blood is allowed

to flow into the ventricle from the atrium. This initial stage, (d), of

(active) relaxation (∼ 0.15 s) is quite vigorous, ventricular volume

changes rapidly, and suction determines the peak blood flow rate in

the chamber (E–wave). The second stage, (e), of ventricular relax-

ation (∼ 0.15 s) is weaker, volume still increases at a smaller rate, and

a limited amount of blood enters the chamber from the atrium; ven-

tricular pressure gradually increases, while the mitral valve typically

remains open (even if partial closing may occur). In the last stage, (f),

of ventricular filling (∼ 0.15 s), the left atrium actively contracts and

forces oxygenated blood to enter in the chamber. Ventricular volume

increases, pressure slightly increases, and the blood flow rate reaches

a second, albeit smaller, peak value (A–wave); atrial contraction is re-

sponsible of about the 20% change in ventricular volume during filling.

When pressure values in the left atrium and ventricle become nearly

equal, the mitral valve closes.

As anticipated, a meaningful characterization of the heart function can

be inferred from the PV loop of Figure 4.3, which is referred to the left

ventricle. For example, the Stroke Volume (SV) can be calculated from the

End Diastolic Volume (EDV) and End Systolic Volume (ESV) as SV =

EDV − ESV; a typical value of SV is 95mL. The Ejection Fraction (EF)

of the left heart, computed as EF = 100 SV
EDV , measures the efficiency of
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pumping blood into the circulatory system; in a normal heart, EF is typically

equal to 67%. Instead, the Stroke Work (SW) is the work done by the left

ventricle to eject a given volume of blood (SV); specifically, SW is estimated

as the product of SV and the mean systolic pressure, and corresponds to the

area enclosed in the pressure–volume diagram. The Cardiac Output (CO) is

the volume of blood pumped by the left ventricle per unit time; specifically,

CO = SV × HR, where HR is the Heart Rate. As typically HR = 60 −
−100 bpm (beats per minute), the cardiac output is in the range CO = 4.0–

8.0L/min; therefore, in an average lifetime, this amounts to the previously

mentioned 1.5 million barrels of blood pumped. Finally, the Cardiac Work

(CW) – also known as cardiac minute work – represents the power of the

ventricle, CW = SW×HR.

Several other information can be extracted from the PV loop. For ex-

ample, during ventricular ejection, the maximum pressure that can be de-

veloped by the left ventricle at any given volume basically follows the End

Systolic Pressure–Volume Relationship (ESPVR), which represents the in-

otropic state of the ventricle; that is, roughly speaking, a measure of the

contractility of the whole ventricle. A raise of inotropy increases the veloc-

ity of muscle fibre shortening, thus enabling an increment in the rate of

pressure development and ejection velocity; in turn, this increases the SV

and decreases ESV. Instead, ventricular filling basically occurs along the

End Diastolic Pressure–Volume Relationship (EDPVR) – also known as the

passive filling curve – which measures the ventricle “stiffness” (that is, the

reciprocal of its compliance).

The right heart undergoes a cycle similar to the one of the left heart and

experiences the same phases. The main difference is related to the peak

pressure value reached in the right ventricle, which is significantly smaller

than in the left ventricle (about 35mmHg); as a consequence, the stroke work

of the right heart is smaller than that of the left. This justifies the thicker

myocardium of the left ventricle as higher values of resistances need to be

exceeded; as a matter of fact, the right heart is responsible for pumping the

de-oxygenated blood to the lungs and acts as “reservoir” of the circulatory

system.

4.3 Electrical propagation

As seen in the previous section, the main driver of blood ejection in the

circulatory system is active ventricular contraction. The heart itself is able

to produce the electrical impulse that determines this contraction, triggered

by an electric signal – in the form of an electric potential – that propagates



86 Basic facts on quantitative cardiac physiology

(a) (b)

Figure 4.4 (a) Characteristic action potential of cardiomyocytes and
(b) anatomy of the cardiac conduction system (http://medical-
dictionary.thefreedictionary.com).

along all the myocardium. This is possible owing to the excitability of the

heart cells, the cardiomyocytes, which, when suitably stimulated, are able

to produce a variation of the voltage – the potential – across the cellular

membrane, which is called transmembrane potential. At rest, the transmem-

brane potential is negative (∼ −90mV), whereas it reaches a positive value

(∼ 20mV) in a very short period (about 2ms) when the cell is stimulated.

After this depolarization, a plateau around 0mV is observed that corre-

sponds to the refractory period (see Figure 4.4). Then, the repolarization

phase starts, which brings the potential back to the rest value allowing

for a new excitation (see Figure 4.4(a)). This action potential – the evo-

lution of the transmembrane potential of the cell vs. time as depicted in

Figure 4.4(a) – is generated by several ion channels that open and close,

and by the resulting currents passing through the membrane. The most im-

portant channels are those of calcium, sodium and potassium. In particular,

a fast inward sodium current is the main driver of rapid depolarization,

a slow inward flux of extra-cellular calcium ions is the main agent behind

the characteristic plateau appearing after the depolarization, whereas the

outward potassium currents are responsible for the repolarization.

Unlike other cells in the human body, the cardiomyocytes obey the ‘all-

or-none’ law, meaning that if the stimulus is above a suitable threshold,

a complete action potential with peak value independent of the stimulus

is generated, otherwise no response is provided by the cell. Another char-

acteristic of the heart cells is the presence of a refractory period after the

generation of an action potential, which inhibits any further stimulus inde-

pendently of its intensity. Thus, during this period the cell is not excitable
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at all (absolute refractory period, infinite threshold). Afterwards, the cardio-

myocytes recover their excitability with a value of the threshold needed to

generate the action potential which decreases in time (relative refractory pe-

riod). Finally, once the threshold value reaches its minimum, the cell returns

to its excitable state and the threshold remains constant.

The cardiomyocytes act as a syncytium; that is, the stimulation of an

individual cell produces the action potential and the corresponding current

that results in the excitation of the neighbour cells, and thus of the whole

myocardium. This is due to the gap junctions, intercellular channels charac-

terized by low resistance and located between cardiomyocytes that permit

the electric transmembrane potential to literally travel (propagate) from cell

to cell through the whole tissue.

In normal conditions, the electric signal spontaneously originates at the

sinoatrial node, located in the right atrium at the junction with the superior

vena cava. It is made of self-oscillatory cells and is the natural pacemaker of

the heart; the sinoatrial node imposes its rhythm on the entire myocardium

(sinusal rhythm, ∼ 60–90 heartbeats per minute). The electric impulse gener-

ated by the sinoatrial node propagates through all the cardiomyocytes of the

right atrium and then of the left atrium through the interatrial connections.

This enables the activation of the atria tissues and drives their contraction.

The electric wave propagation is faster along the fibres; that is mainly to-

wards the ventricles (∼ 200 cm s−1), allowing the electric signal to reach

the atrioventricular node, which is located between the right atrium and the

ventricles. When the signal arrives at this node, it is subjected to a delay

(∼ 0.12 s) that allows the complete contraction of the atria before the elec-

tric propagation in the ventricles starts. Moreover, the atrioventricular node

acts as a filter, which limits (damp) possible high frequencies of the electric

signal coming from the atria – as induced, for example by atrial fibrillation

– thus “protecting” the normal function of the ventricles. This node, when

the sinoatrial node loses automatic function, becomes the leading pacemaker

and is able to take on the role of giving the pace to ventricle stimulation.

The electrical signal then enters the bundle of His, propagating in the ventri-

cles through the two (left and right) bundle branches and then through the

Purkinje fibres (see Figure 4.4(b)). The bundle of His, bundle branches and

Purkinje fibres form the cardiac conduction system (CCS), a subendocardial

specialized network responsible for the fast and coordinated propagation of

electrical impulses in the ventricle. The propagation in the CCS is very fast

(∼ 350 cm s−1), and its role is to reach the whole endocardium via the dense

network of Purkinje fibres, activating it almost simultaneously. Note that

the cells of the CCS are dedicated to electrical propagation, so they are not
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involved in the muscular contraction. The electrical signal then enters the

myocardium through the Purkinje muscle junctions which are the terminal

points of the Purkinje network. At the Purkinje muscle junctions, the signal

is subjected to a delay (∼ 0.01 s) and then propagates into the ventricular

muscle towards the epicardium with reduced velocity (∼ 80 cm s−1).

To better understand how the propagation of the electrical potential

spreads into the ventricles, we observe that cardiomyocytes are of cylin-

drical type. This allows us to define the fibre direction of the cell, resulting

in a macroscopic fibre direction intended as the average cell orientation in a

sufficiently small control volume. A transmural variation of the fibre direc-

tion is measured between the epicardium and the endocardium (∼ −70◦ and

∼ 80◦ with respect to the normal direction to the surface, respectively). The

fibres are in turn organized into sheets of collagen. The velocity of propaga-

tion of the electrical potential is about twice as fast along the fibre direction

compared to the directions tangential to the fibres.

4.4 Mechanisms of contraction and cardiac blood fluid dynamics

The propagation of the electrical signal through the cardiomyocytes is re-

sponsible for their contraction (electromechanical coupling), resulting in the

atrial and, more importantly, ventricular contractions. The characteristic

connections between the cardiomyocytes resulting in a syncytium allows

coordinated contraction of the heart.

At the cellular level, as discussed in the previous section, there is an inward

flux of extra-cellular calcium ions just after the depolarization of the cell.

Once in the intracellular space, calcium ions bind to troponin, which allows

myosin heads to bind to actin filaments and generate the upstroke, which

in turn leads to the cell contraction.

At the macroscopic level, ventricle contraction results in a longitudinal

shortening (from apex to base) of about 15% from the diastolic configura-

tion, in a ventricular wall thickening of about 30%, and torsion around the

longitudinal axis of about 15◦. This is due to the particular fibre orientation

of the cardiomyocytes, which also highly influences the mechanical response

of the heart.

The overall heart behaviour can be partially explained by the so-called

Frank–Starling law, stating that an increase (for any reason) of the end dias-

tolic volume (i.e. the maximum ventricular expansion) results in an increase

in the stroke volume; that is, the volume of blood pumped by the left ventri-

cle per heartbeat. This is due to an increase in the load experienced by the

cardiomyocytes as a result of the increased volume of blood filling the ven-
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tricle (preload). This extra stretching of the cells produces a larger number

of actin–myosin bridges, resulting in augmented muscle contraction power.

It should be noticed, however, that the Frank–Starling law holds true only

up to a certain level of increased stretch: for higher values, the contractility

power of the heart, and thus the stroke volume, decreases.

As well as the influence of electrical processes on mechanical behaviour,

cardiomyocytes also experience mechano-electrical feedback. This is due

to the formation of stretch-activated ion channels and to changes in cell

conductivity by means of stretching the cell, which changes the membrane

shape and the distance between gap junctions. This mechanism seems to be

of utmost importance in describing the evolution of spiral waves and thus

arrhythmias and fibrillation (Trayanova, Li, Eason and Kohl 2004, Kelder-

mann, Nash and Panfilov 2009).

Blood flow in the cardiac chambers exhibits different characteristics with

respect to the vascular flow. Peculiar factors are the large and complex de-

formations of the myocardium and the heart chambers, the complex inter-

action with valves leading to specific flow patterns, and the higher Reynolds

number (about 5000 at peak). These combined effects determine a quite so-

phisticated blood flow regime whose characterization has not been fully un-

derstood yet. As a matter of fact, recent studies indicate that the blood flow

regime is neither laminar not fully turbulent, but rather it can be referred as

transitional, (Chnafa, Mendez and Nicoud 2014, Mittal et al. 2016, Mengh-

ini, Dede’ and Quarteroni 2018, Tagliabue, Dede’ and Quarteroni 2017a).

While fully developed turbulence may appear and be characteristic of some

pathological conditions, this is generally not the case in normal conditions.

A typical aspect of blood flow in the left ventricle is the formation of the

so-called vortex ring in the long axis plane corresponding to the E-wave;

that is, at the diastolic peak of the flow. Moreover, the asymmetry of the

mitral valve leaflets forces the blood flow jet to impinge on the posterior wall

(Charonko et al. 2013, Seo et al. 2014); as a result, the interaction of this

vortex ring with the ventricular wall gives rise to a complex flow pattern and

to the generation of smaller vortex structures. These latter allow mixing the

blood in the ventricular cavity and, in normal conditions, take on the role

of preventing the formation of blood clots.

Complex vortex structures can also be observed in the left atrium due

to the blood flow coming from the pulmonary veins and the geometrical

features of this chamber (Mittal et al. 2016, Menghini, Dede’, Forti and

Quarteroni 2017).
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4.5 A brief summary of heart diseases

The principal heart diseases (cardiopathies) are ischaemic cardiopathy, the

cardiomyopathies, hypertensive cardiopathy and valvular pathologies.

Ischaemic cardiopathy is the most important in terms of frequency and

clinical impact. It is caused by a reduced coronary flow rate (due to athero-

sclerosis of coronary arteries) with consequent malnutrition of the myo-

cardium. When, due to coronary occlusion, a decrease in oxygen supply

is abrupt, long-lasting and total, an infarct of the myocardium occurs. This

is the most classical event of ischaemic cardiopathy, resulting in necrosis of

cardiomyocytes and leading, at the end of the process, to the formation of

a scar.

In dilated cardiomyopathy the ventricle wall becomes thinner due to the

partial replacement of cardiomyocytes with fibrosis and small scars, leading

to dilatation of the ventricle. In this respect, the increment of the ventricu-

lar volume also has the effect of perturbing the normal blood flow patterns

and, eventually, of increasing the residence time of red blood cells in the

chamber. In turn, the increment of volume increases the risk of generating

blood cloths in the ventricle, near the apex. In hypertrophic cardiomyopathy

the ventricular wall thickens, with a consequent increase in ventricular blood

pressure resulting in decreased filling of the ventricle. As in all cases of ven-

tricular hypertrophy, this produces malnutrition of the myocardium, since

the amount of blood supplied by the coronary arteries remains unchanged.

Moreover, in this specific hypertrophic cardiomyopathy, the orientation of

the fibres is not coordinated as in normal conditions (this is called electrical

disarray).

In hypertensive cardiopathy there is an increase in blood pressure, result-

ing in increased work needed by the heart to pump blood, leading again to

thickening of the myocardial wall and to malnutrition of the myocardium.

The main valvular pathologies are stenosis and insufficiency. In aortic

valve stenosis, narrowing of the maximum opening of the aortic valve causes

the heart to require increased work to pump blood into the aorta properly,

again resulting in thickening of the myocardial wall and malnutrition. In

mitral valve stenosis, there is an increase in the pressure of the left atrium

and in the pulmonary circulation, with consequences for the right heart.

Aortic and mitral valve insufficiency is due to the partial reversal of flow

(going from the aorta to the left ventricle in aortic insufficiency, and from

the left ventricle to the left atrium in mitral insufficiency), which occurs

as a consequence of inadequate closure of the valve. In this case the heart

dilates in order to supply this retrograde flow, resulting in an increase in its
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contraction power according to the Frank–Starling law. However, sooner or

later the diastolic cell stretching overcomes the threshold of validity of the

Frank–Starling law, resulting in decreased contractile power.

The two main events, possibly fatal, that the heart may encounter as

a consequence of these cardiopathies are cardiac arrest, due to ventricular

fibrillation, and heart failure.

In ventricular fibrillation, the cardiomyocytes are not excited in a coordi-

nated way and thus do not contract homogeneously; instead, groups of cells

contract continuously whereas other groups relax. This chaotic excitation, if

the fibrillation continues, inhibits the normal functioning of the heart pump,

which is no longer able to pump the blood around the circulatory system

regularly, leading finally to death. All the cardiopathies described above

could yield altered electrical properties (i.e. velocity of conduction and re-

fractoriness), which could lead to ventricular fibrillation. For example, in

a myocardial infarct, the arrhythmogenic substrate is formed by a matrix

of healthy cardiomyocytes, necrotic cardiomyocytes and scars, whereas in

hypertrophic cardiomyopathy it is provided by the electrical disarray.

When the blood pumped by the heart at each heartbeat is less than the

amount required by the body (but not absent, as in ventricular fibrillation),

on the one hand the heart increases its frequency so as to guarantee that the

blood ejected per minute (cardiac output) is almost normal, and on the other

hand it increases its diastolic filling to increase the stroke volume. However,

the increase in frequency (tachycardia) is energetically disadvantageous for

the heart, and possible excessive diastolic cell stretching leads to the loss of

validity of the Frank–Starling law. When these two compensating mecha-

nisms are no longer effective, cardiac output dramatically decreases, leading

to heart failure. In the absence of other causes of death (cardiac arrest or

death for non-cardiac reasons), all the cardiopathies described above will

sooner or later lead to heart failure.
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An insight into cardiac data

As discussed in Chapter 2, the use of patient-specific data is needed for

mathematical and numerical modelling if we are aiming for personalized un-

derstanding of biophysical processes and to support clinicians in medical

decisions. This also holds true for heart modelling. The latter accounts for

several processes that are intimately coupled: electrical propagation, me-

chanical activation at the cellular level, mechanical contraction and relax-

ation (macroscopic at the tissue level), blood fluid dynamics, and valves

dynamics. The first three processes occur in the cardiac tissue (here called

the muscle region), blood fluid dynamics occurs in the four hollow regions

(chambers) delimited by the endocardium, whereas valves dynamics con-

cerns the valves leaflets. As done in Chapter 2 for the circulatory system,

in what follows we briefly discuss how to obtain geometric, boundary and

biological cardiac data.

5.1 Cardiac geometric data

Let us set aside for the moment the problem of valve dynamics. Referring to

Figure 5.1, we need to build two computational domains: the muscle region

Ωmus, delimited by the external surface of the epicardium Σepi and by the

internal surface of the endocardium Σendo, and the cavities Ωcav, referred

to below as heart cavities or chambers, delimited by the endocardium. The

cavities are easily obtained once the endocardium has been reconstructed,

so that in fact the cardiac image reconstruction process relies on identifying

the endocardium and epicardium surfaces.

This problem presents several challenges. In the vascular case, the ex-

ternal wall surface is usually obtained by extruding the internal surface

under the assumption of constant (or in any case known) wall thickness

(see Section 2.1.3). This procedure is unsuitable for the reconstruction of
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Figure 5.1 Longitudinal section of a complete heart domain.

the myocardium. On the one hand, the thickness changes significantly while

moving from apex to base. On the other hand, changes can be dramatic from

subject to subject, or from patient to patient. Moreover, due to the large

displacements induced by heart motion, a dynamic acquisition procedure

(allowing for the acquisition of several frames per heartbeat) is required to

obtain a reconstruction of the heart other than at the end-diastolic phase,

ideally along the whole heartbeat. The presence of the papillary muscles and

wall irregularities given by trabeculations (trabecular structures) makes the

reconstruction of the endocardium very problematic. Finally, the regions in

proximity of the valves – those at the base of the ventricles – are also dif-

ficult to acquire through images and then to reconstruct; this is due to the

complex morphology of the valve region, the motion of the muscle, and the

lack of resolution of the dynamics acquisition procedures.

Let us briefly review the most common radiological procedures for ac-

quisition of cardiac images. As in the vascular case, MRI and CT play a

major role. Often, due to heart motion, temporally resolved acquisitions are

performed, allowing us to obtain 20–30 frames per heartbeat.

The main interest is in the left ventricle, due to its vital importance, whose

pronounced thickness ranges between 6 and 16mm. The shape of its cavity

is often approximated by an ellipsoid. In contrast, the right ventricle and

the atria are characterized by a thickness that usually does not reach the

spatial resolution of the acquisition technologies, so their reconstruction is

hard and, consequently, less studied.

The standard cardiac acquisition plane is orthogonal to the long axis.

Blood appears brighter whereas the myocardium and the surrounding tissue

are darker: see Figure 5.2. Not all of the slices share the same degree of
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(a) (b)

Figure 5.2 (a) Longitudinal CT slice of the heart. Right atrium (top left),
right ventricle (bottom left), left atrium (top right), left ventricle (bottom
right). (b) CT slice in the plane orthogonal to the long axis. In both figures,
on the right the thick left ventricle myocardium is detectable in darker grey.
Data from radiological images provided by Ospedale Sacco, Milan, Italy;
courtesy of E. Faggiano.

complexity in their reconstruction. In particular, apical and basal (upward)

slice images are more difficult to segment than mid-ventricular slices.

Before the ventricle segmentation starts, a preliminary localization pro-

cedure is performed in order to identify a region of interest and reduce the

computational effort. This step is usually performed automatically, taking

advantage of the movement of the heart on a fixed background: see e.g.

Cocosco et al. (2004). Another automatic heart location is based on extract-

ing rectangular subwindows from the image and computing specific features

for them. Then, based on a priori chosen class, the subwindows satisfying

specific features are recognized as belonging to the heart.

An initial class of ventricle segmentation methods makes use of little (or

even no) a priori information. Usually in these methods the endocardium

is first segmented by means of thresholding (see Chapter 2 and Goshtasby

and Turner 1995). Alternatively, dynamic programming methods have been

considered, where the optimal path in a cost matrix is sought, assigning a low

cost to boundaries. Taking advantage of the circular shape of the ventricle,

polar coordinates are used and one-dimensional search is performed (Gupta

et al. 1993). In order to exclude papillary muscles from the segmentation,

possible strategies are the computation of the convex hull of the contour

(van der Geest, Jansen, Buller and Reiber 1994) or a smoothing of the
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latter by fitting a parametric curve (Waiter et al. 1999). As in the vascular

case, deformable models are used for cardiac segmentation (see Section 2).

In particular, the functional to be minimized often includes a regularization

term to control the smoothness of the reconstructed curves (Pham, Xu and

Prince 2000).

Specific automatic methods that have been developed for cardiac image

segmentation are based on strong a priori information concerning the shape

of the ventricles, which is included in the segmentation algorithm by means

of statistical models. These strategies are suited to cardiac segmentation

because variability in heart shape among patients, as opposed to arteries,

is very small in normal conditions. These statistical model-based segmenta-

tion strategies rely on identifying an average shape of available geometries

forming a training set, and modelling the variability within the latter. This

is usually done by means of principal component analysis of positions and, if

needed, displacements, allowing computation of the eigenvalues and eigen-

vectors of the covariance matrix related to the training set. These strate-

gies allow automatic segmentation without user intervention, at the expense

of needing a training set. For example, deformable models have been ex-

tended to this framework by adding a term to the functional to be mini-

mized that penalizes the distance to a reference model (e.g. the mean shape

of the training set). Another very common statistical model-based strategy

is atlas-guided segmentation. Given an atlas, that is, an integrated image

from multiple segmentations, a registration procedure is performed based

on mapping the coordinates of the image under investigation to those of

the atlas (Lorenzo-Valdés et al. 2004). This transformation is then applied

to the atlas obtaining the final segmentation. The registration process could

be based on non-rigid transformations that account for elastic deformations.

For a recent review of cardiac segmentation methods we refer to Petitjean

and Dacher (2011).

Finally, we observe the importance of including the fibre orientation in

the reconstructed geometries with respect to modelling electrical propaga-

tion and mechanical contraction in the muscle region. Indeed, as discussed

in Chapter 4, the conduction velocity of the action potential propagation

assumes different values along the fibres than in the tangential direction.

Moreover, the stretching ability of the myocardium is facilitated along the

fibre direction.

Diffusion-tensor-MRI is an MRI technology able to identify fibre orienta-

tion, but it is not yet used every day in clinical practice, and it is difficult to

apply because of heart movement. See Nagler et al. (2015) for a preliminary

study of the cardiac fibre estimation using synthetic diffusion-tensor-MRI
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(a) (b)

Figure 5.3 Rule-based construction of the fibres in a bi-ventricular geome-
try; blue colour represents fibres at the endocardium, while red colour fibres
at epicardium. Different layers of fibres through the myocardium thickness
are highlighted in (b). Images taken from Azzolin (2018).

datasets. Analytical representations of the fibres, suitably mapped onto the

geometry under investigation, have been proposed to supply the lack of in-

formation provided by the imaging. For example, Peskin (1989) described

fibres as geodesics, whereas Pravdin et al. (1989) represented them by means

of spiral surfaces. Other strategies are based on computational generation

of the fibre orientation to provide a plausible configuration, for example by

means of rule-based approaches, that is, based on the solution of the Laplace

equation (Bayer, Blake, Plank and Trayanova 2012, Patelli et al. 2017, Rossi

et al. 2014, Wong and Kuhl 2014), or by using the unscented Kalman filter

(Nagler, Bertoglio, Gee and Wall 2013). Examples of rule-based approaches

for reconstructing fibre fields are reported in Figures 5.3 and 5.4.

Purkinje fibres are not detectable via classical radiological acquisition

since their thickness falls below the spatial resolution. For this reason, Ab-

boud, Berenfeld and Sadeh (1991), Sebastian, Zimmerman, Romero and

Frangi (2011) and Ijiri et al. (2008) proposed exploiting the fractal nature of

these fibres to generate a realistic Purkinje network, whereas Vergara et al.

(2014), Palamara et al. (2014) and Palamara, Vergara, Faggiano and No-

bile (2015) have personalized such fractal networks to the patient at hand

by including patient-specific measurements of the activation times (see Sec-

tion 5.2 for a description of the latter).

For muscle region mesh generation, the strategies described in Chapter 2
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Figure 5.4 Rule-based construction of the fibres on the left and right atria
modelled as surfaces; arrows represent the fibre fields, while colours indicate
the solution of the Laplace equation used to generate the fibres. Result
obtained by means of isogeometric analysis solver; see Pegolotti (2017).
Courtesy of L. Pegolotti (EPFL).

can also be applied to cardiac geometries. For ideal ellipsoid geometries, usu-

ally considered in numerical experiments for testing the performance of the

numerical algorithms, structured hexahedral meshes are often used, exploit-

ing the symmetry of the ventricles around the long axis: see e.g. Pavarino,

Scacchi and Zampini (2015). However, unstructured meshes composed of

tetrahedra have also been considered (Goktepe and Kuhl 2010), in partic-

ular for real geometries reconstructed by MRI or CT (see e.g. Rossi et al.

2014, Wong, Goktepe and Kuhl 2013, Vergara et al. 2016), or for the atria

(Virag et al. 2002). Hybrid unstructured meshes composed of tetrahedra and

hexahedra have also been successfully considered (Gurev et al. 2015). We

notice that for the solution of the mechanical problem in the muscle region,

no particular requirements are needed for mesh generation, whereas for the

electrical propagation problem, due to the very steep front (about 200µm),

the required mesh resolution should be at least of the order of 100µm in

order to spatially resolve this front (Clayton and Panfilov 2008). In view of

the numerical solution of the fluid dynamics problem, for mesh generation of

the heart chambers, unstructured tetrahedral elements are often considered:

see e.g. Mittal et al. (2016). In this case the mesh resolution needs to be

very fine, even smaller than that for CT or MRI technologies (≃ 0.5mm),

in order to model the complex flow structures that arise, particularly in the

left atrium and left ventricle.
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5.2 Cardiac boundary data

The acquisition of boundary data on electrical activation in the muscle region

is now possible thanks to specific therapeutic techniques. For example, the

NavX system is able to locate accurately any electrode catheter inserted

in the heart chambers, providing accurate, real-time recording of the local

endocardial electrical activity at a point in contact with the catheter (Eitel

et al. 2010, Vergara et al. 2014). In particular, this allows us to acquire

endocardial maps of the activation times, defined as the time at which the

action potential in a point reaches an intermediate value between the rest

and the plateau potentials. However, this acquisition is performed only for

specific therapeutic purposes, such as the ablation of anomalous electrical

pathways.

For mechanical problems involving the muscle region, data that are com-

monly available include the stresses exerted by the blood on the endocardium

of the left ventricle and the endocardial and/or epicardial vessel wall dis-

placements. Stresses are indirectly recovered from measurements of aortic

pressure (see Section 2.2). This is a good approximation; as a matter of fact

the ventricular and circulatory pressures are not the same (thus allowing the

acceleration and deceleration of blood) but they are very similar: see Fig-

ure 4.2. Heart wall displacements can be obtained from dynamic MRI or CT

images, yielding 20–30 frames per heartbeat, providing the position of the

endocardium and epicardium at multiple times; see Figure 5.5. After suit-

able postprocessing, these techniques can provide an estimate of the cardiac

wall displacement (and thus velocity) by comparing two consecutive frames.

The endocardial wall velocity, thanks to a continuity argument, could also

be interpreted as the blood velocity at the interface with the endocardium

(Khalafvand, Zhong and Ng 2014, Mittal et al. 2016).

Another useful measurement that can be provided quite easily by means

of Doppler echocardiographic methods or PC-MRA (see Section 2.2) is the

flow rate at the mitral and aortic valve orifices. With PC-MRA technology,

measurement of blood velocity is possible in principle at any point of the

ventricles and atria chambers.

In Chapter 6 we will see how these data can be used to provide boundary

conditions for the different cardiac models we are about to introduce.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5 Dynamic MRI images: sequence of 9 longitudinal slices of the
heart (out of 25); systole (a)–(e) and diastole (f)–(i) are highlighted. The
left ventricle with the muscle wall (centre), left atrium (top-right), aortic
root and aorta (top-centre), and right heart (mid-left) appear in the images;
aortic (left) and mitral (right) valves’ leaflets are visible too. Data from
radiological images provided by CHUV, Centre Hospitalier Universitaire
Vaudois, Lausanne, Switzerland.
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5.3 Cardiac biological data

The classical monodomain and bidomain models, widely used to describe the

electrical propagation in the muscle region and Purkinje network (see Sec-

tion 6.1), require the following data: the membrane capacitance per unit area

C, the membrane surface-to-volume ratio χ, and the conductivities σ (see

the next section). Their subject-specific acquisition is generally out of reach.

An acceptable range of values for the capacitance Cm in the myocardium

is 0.8–1.0 µFcm−2 (Roth 1991, Huiskamp 1998); the capacitance Cp in the

Purkinje network is higher (∼ 1.3 µFcm−2: Legato 1973). The value of the

membrane surface-to-volume ratio in the muscle region χm varies in the

range 200–3000 cm−1 (Niederer et al. 2011, Potse et al. 2006), whereas for

the Purkinje network, a measurement in a pig heart gives χp = 1467 cm−1

(Stankovičová et al. 2003). In the myocardium, we need to distinguish be-

tween conductivity along the fibre direction (index f) and conductivity in

the direction of sheets (index s). Sometimes, a third direction (orthogonal

to sheets) is also considered (if this is the case we will use the index n).

Moreover, with the bidomain model in mind, we also distinguish between

the intra-cellular (index i) and extra-cellular (index e) conductivities. Fol-

lowing Roth (1997), acceptable ranges used in the numerical experiments

are σif ∈ (0.17, 0.34) Sm−1, σis ∈ (0.02, 0.06) Sm−1, σef ∈ (0.12, 0.62) Sm−1,

σes ∈ (0.08, 0.24) Sm−1.

Another classical model used for describing the activation of Purkinje

and muscle cells is provided by the eikonal equation (see Section 6.1). In

this case, one needs to prescribe the conduction velocity V explicitly, unlike

the monodomain and bidomain models where this is determined by the

conductivity and the membrane capacitance. Acceptable ranges of values

of the conduction velocity are Vf ∈ (0.6, 1.0)m s−1 (Kerckoffs et al. 2003),

Vs ≃ Vf/2 (Frazier et al. 1988), Vn ≃ Vf/4 (Clayton et al. 2011), and Vp ∈
(3.0 − 4.0)m s−1 (Iaizzo 2009), where again index f refers to the direction

along the fibres in the muscle region, s to the direction along sheets, and p

to the Purkinje network.

These electrical data are barely measurable in vivo, so subject-specific

measurements are not usually available. Nevertheless, the use of extra data,

such as the activation time at the endocardium provided by the NavX sys-

tem, could be used to estimate some of these parameters by solving a suitable

inverse problem; see e.g. Sermesant et al. (2012) and Vergara et al. (2014)

for the case of the Purkinje network.

The parameters involved in the cardiac mechanical model depend on the

chosen constitutive law. In general, linearization of the stress–strain curves
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gives the following values for the corresponding time-varying Young’s mod-

ulus E (Rossi 2014): during a traction/compression test along the fibre

direction, we have E ≃ 20 kPa during traction at small deformation and

during compression, and E ≃ 1500 kPa during traction for deformation of

about 15%; during traction the material behaves as transversally isotropic,

so the stiffness in the two tangential directions (along sheets and orthogonal

to fibres and sheets) is the same, whereas during compression the stiffness in

the direction of the sheets is higher than that in the direction orthogonal to

fibres and sheets. For the Poisson ratio, a value of 0.45 is usually considered.

Regarding the aortic valve leaflets, measurements in canine specimens ex-

hibited low stiffness during systole (≃ 240 kPa) and increased stiffness during

diastole (≃ 5000 kPa). For the mitral valve, different stiffness behaviour is

observed for the two leaflets (anterior and posterior). In particular, Kunzel-

man et al. (1993) propose the following values for Young’s modulus: for the

anterior leaflet, E = 6200 kPa and E = 2100 kPa in the directions parallel

and perpendicular to the annulus, respectively, and for the posterior leaflet,

E = 2300 kPa and E = 1900 kPa, respectively.

Physical characteristics of the blood in the heart are, in first instance,

very similar to those in the circulatory systems, so its parameters (density

and viscosity) are taken in the ranges reported in Section 2.3.



6

Modelling the heart

In this chapter we discuss the main mathematical models introduced so far

for describing heart function and the related numerical strategies developed

for their solution. In particular, Section 6.1 is devoted to electrical prop-

agation, Section 6.2 to cardiac mechanics and electromechanical coupling,

Section 6.3 to ventricular fluid dynamics, Section 6.4 to valve modelling

and its interaction with blood fluid dynamics, and finally Section 6.5 to the

integration (coupling) of these models.

6.1 Cardiac electrical activity

We review in this section the most common mathematical and numerical

models used for describing and simulating the physical processes at the

basis of the cardiac electrical activity. Among the mathematical models,

we consider the bidomain, monodomain and eikonal models for the cardiac

tissue, together with the most common cardiac cell models.

6.1.1 The bidomain model

As observed in Section 4.3, the electrical activation of the heart is the result

of two processes: at the microscopic scales, the generation of ionic currents

through the cellular membrane producing a local action potential, and at

the macroscopic scales, the propagation of the action potential from cell to

cell allowed by the presence of the gap junctions. The former is a discrete

process, in the sense that there is a delay between the depolarization of a

cardiomyocyte and its neighbours, whereas the latter can be assimilated to

a smooth process (Durrer et al. 1970).

At the macroscopic level, the propagation of the electric signal, in the form

of a trans-membrane potential, is described by means of partial differential
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Figure 6.1 Electrical circuit for the sequence of two cardiac cells. Each
consists of a capacitor and a series of resistances, one for each ionic cur-
rent (here only sodium and potassium ionic channels are depicted). In the
intracellular region, two adjacent cells are connected by a resistance rep-
resenting a gap junction. However, the latter is not explicitly modelled at
the macroscopic scales:instead its effect is hidden in the conductivity tensor
(see the text).

equations, suitably coupled with ordinary differential equations modelling

the ionic currents in the cells. In particular, the single membrane cell can

be modelled as a capacitor separating charges that accumulate at its intra-

cellular and extracellular surfaces. Moreover, as observed in Chapter 4, ionic

currents cross the membrane through channels which open and close during

excitation. A suitable model can therefore be expressed via a simple electric

circuit as that depicted in Figure 6.1, for which

Im = χm

(
Cm

∂Vm
∂t

+ Iion

)
,

where Im is the membrane current per unit volume, Cm is the membrane

capacitance, χm is the surface area-to-volume ratio (see Section 5.3 for a

quantification of the latter two), Vm(t,x) is the trans-membrane potential,

and Iion(t,x) are the ionic currents. Due to the conservation of current and

charge, this current should equal the divergence of both the intracellular and

extracellular current fluxes ji and je:

∇ · ji = −Im, ∇ · je = Im. (6.1)

Ohm’s law in the intracellular and extracellular regions gives

ji = −Σi∇φi, je = −Σe∇φe, (6.2)

where Σi,Σe are the conductivity tensors and φi(t,x), φe(t,x) are the in-
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tracellular and extracellular potentials, so that

Vm = φi − φe. (6.3)

Note that, due to the anisotropy of the cardiac tissue induced by the

presence of fibres and sheets, each conductivity tensor is in general expressed

in terms of three scalar quantities representing the conductivities along the

fibre direction af (x), the direction as(x) orthogonal to af and tangential

to sheets, and the direction an(x) orthogonal to sheets; that is,

Σβ = σβfafa
T
f + σβs asa

T
s + σβnana

T
n , β = i, e. (6.4)

Putting together all the above equations and using a homogenization pro-

cedure (see e.g. Colli Franzone et al. 2014 for a rigorous derivation), we ob-

tain for each t > 0 the following system of two partial differential equations

called the parabolic–parabolic (PP) formulation of the bidomain equations:

χmCm
∂Vm
∂t

−∇ · (Σi∇φi) + χmIion = Iexti in Ωmus, (6.5a)

− χmCm
∂Vm
∂t

−∇ · (Σe∇φe)− χmIion = −Iexte in Ωmus, (6.5b)

where Iexti (t,x), Iexte (t,x) are applied currents per unit volume.

Thanks to (6.1), ∇ · (ji + je) = 0; thus, using (6.2) and (6.3), we obtain

the following parabolic–elliptic (PE) formulation of the bidomain equations:

χmCm
∂Vm
∂t

−∇ · (Σi(∇φe +∇Vm)) + χmIion = Iexti in Ωmus, (6.6a)

−∇ · (Σi∇Vm)−∇ · ((Σi +Σe)∇φe) = Iexti − Iexte in Ωmus. (6.6b)

Due to the homogenization procedure, the effect of the gap junctions,

which at the cellular level contributes to determining the current flux ji,

is hidden in the conductivity tensor Σi. We also notice that both bidomain

problems (6.5) and (6.6) hold in the entire computational domain Ωmus given

by the union of the myocardium with the endocardium and epicardium: see

Figures 5.1 and 6.2. Indeed, again because of the homogenization procedure,

no geometric distinction is made between the intracellular and extracellular

regions, even if their different functionality is maintained in the bidomain

models.
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(a) (b)

Figure 6.2 (a) Left ventricular myocardial domain obtained by the cut at
the base (corresponding to Σb), and (b) corresponding fluid cavity domain.

6.1.2 Cardiac cell models

In order to close equations (6.5) and (6.6), we need to provide a model for

the ionic current Iion. In what follows we briefly describe three families of

models, featuring different levels of complexity and accuracy.

The first family, the so-called reduced (phenomenological) ionic models,

only provide a description of the action potential and disregard sub-cellular

processes. Specifically, we have for each cell:

Iion = f(Vm,w), (6.7a)

dw

dt
= gw(Vm,w), (6.7b)

where f,gw are suitable functions, while w : [0, T ] → R
M collects the

so-called gating variables which represent the percentage of open channels

per unit area of the membrane. If a cell is ideally attributed to each point

x ∈ Ωmus, then the function w reads w : [0, T ]×Ωmus → R
M . The most cel-

ebrated reduced model for ventricular cells is the FitzHugh–Nagumo model

(FitzHugh 1961), where

f(Vm, w) = −kVm(Vm − a)(Vm − 1)− w, gw(Vm, w) = ǫ(Vm − γw),

for suitable constant parameters k, a, γ. In this case the gating variable w

in fact plays the role of a recovery function, which allows us to model the re-

fractoriness of cells. Other, more sophisticated ventricular cell models of this

family include the Rogers–McCulloch model (Rogers and McCulloch 1994),

the Aliev–Panfilov model (Aliev and Panfilov 1996), the Fenton–Karma

model (Fenton and Karma 1998) and the Bueno-Orovio model (Bueno-
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Orovio, Cherry and Fenton 2008). Like FitzHugh–Nagumo, the first two

models are characterized by the dynamics of one gating variable and by a

cubic non-linear expression of the ionic current. In contrast, the Fenton–

Karma model and its Bueno-Orovio variant, specifically applied to human

ventricular cells, include two and three gating variables, respectively, and

a more complex non-linearity in the ionic current expression. These simple

models are very appealing, especially because their parameters have a direct

physical interpretation, such as the action potential duration, allowing easy

setting of the model properties. For example, the Aliev–Panfilov model has

been used successfully in the initial simulations of ventricular fibrillation in

a real geometry (Panfilov 1999). However, they are not able to describe any

process occurring at the level of the ionic channels or the cell, so they are

recommended when one is only interested in electric activity of the heart.

The second family of ventricular cell models we consider is that of the

so-called first-generation models. Unlike reduced models, which express the

ionic current by means of the sole function f , they allow explicit description

of the kinetics of different ionic currents by using several gating variables.

They are given by

Iion =
N∑

k=1

Ik(Vm,w), Ik = Gk

( M∏

j=1

w
pjk
j

)
(Vm − Vk),

dw

dt
= gw(Vm,w),

where N is the total number of ionic currents, M is the total number of

gating variables, Vk is the Nernst potential of the kth ion (a constant value

corresponding to the thermodynamic equilibrium of the ion at hand), Ik is

the current related to the kth ion, pjk accounts for the influence of the jth

gating variable on the kth ionic current (possibly vanishing) and Gk is the

maximal conductance of the kth ion. The M components of g usually have

the expression

gw,j = (w∞
j (Vm)− wj)/τj(Vm),

where w∞
j is the equilibrium state and τj the characteristic time constant.

The most famous model of this family, the Hodgkin–Huxley (HH) model

(Hodgkin and Huxley 1952), depends on three ionic currents, namely the

sodium, potassium and leakage currents, and three gating variables:

INa = GNaw
3
1w2(Vm−VNa), IK = GKw

4
3(Vm−VK), IL = GL(VM −VL).

Although introduced to describe the action potentials in nerves, the HH

model inspired all the following models introduced specifically for the ventri-

cle. Among these, we cite the Beeler–Reuter model (Beeler and Reuter 1977),

the Luo–Rudy I model (Luo and Rudy 1991) and the ten Tusscher–Panfilov
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model (ten Tusscher and Panfilov 2006). These models have been widely

used to study specific features of the ventricular electrical activation, such

as re-entry and fibrillation (Xie et al. 2004).

Finally, we mention the family of second-generation ventricular cell mod-

els, such as the Luo–Rudy dynamic model (Luo and Rudy 1994a, 1994b),

which, unlike first-generation models, provide a detailed description of ion

concentration variables c and of many processes allowing for the study of

channelopathies and drug action, for example. However, due to their in-

creased complexity, the computational time required is huge for a complete

heart model, and tuning of parameters is often very demanding. We refer

to Clayton and Panfilov (2008) for a discussion of second-generation models

and Rudy and Silva (2006) for a general review of cardiac cell models.

Although most research has focussed on ventricular cell models like those

mentioned above, specific models have also been introduced for the atrial

cells (e.g. Courtemanche, Ramirez and Nattel 1998 and Hilgemann and No-

ble 1987) and sinoatrial node cells (e.g. DiFrancesco 1993, Fabbri, Fantini,

Wilders and Severi 2017 and Yanagihara, Noma and Irisawa 1980).

All the cardiac cell models belonging to the three families described above,

used in combination with the bidomain problem (6.5) or (6.6), lead to a sys-

tem of two PDEs coupled with two systems of ODEs; that is, the equations

for the gating variables and ion concentrations at each point x. The general

form of this coupled problem is as follows (we only describe the PP case in

detail). At each time t > 0, find the potentials VM , φi and φe, the gating

variable w and the ion concentrations c such that, for each t > 0,

χmCm
∂Vm
∂t

−∇ · (Σi∇φi) + χmIion(Vm,w, c) = Iexti in Ωmus, (6.9a)

− χmCm
∂Vm
∂t

−∇ · (Σe∇φe)− χmIion(Vm,w, c)

= −Iexte in Ωmus, (6.9b)

Iion =

N∑

k=1

Ik(Vm,w, c) in Ωmus, (6.9c)

Ik = Gk

( M∏

j=1

w
pjk
j

)
(Vm − Vk(c)) in Ωmus, (6.9d)

∂w

∂t
= gw(Vm,w) in Ωmus, (6.9e)

∂c

∂t
= gc(Vm,w, c) in Ωmus, (6.9f)

together with suitable initial and boundary conditions; by using the notation
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introduced above for the reduced and first-generation models, c : [0, T ] ×
Ωmus → R

S collects the S ionic concentration variables and gc is a suitable

function: see e.g. Colli Franzone et al. (2014). We observe, in general, the

dependence of the Nernst potential Vk on the variable c. Well-posedness

results of the previous coupled problem are provided in Colli Franzone and

Savaré (2002), where the existence and uniqueness of the solution of the PP

formulation coupled with the FitzHugh–Nagumo model is proved, and in

Bourgault, Coudière and Pierre (2006), where a Faedo–Galerkin technique

is applied to the PE formulation coupled with a general first-generation cell

model.

The ODE systems modelling the gating variables and the ionic concentra-

tion variables are in general stiff, since the Jacobians ∂gw/∂w and ∂gc/∂c

associated with the cardiac cell models exhibit a wide range of eigenvalues

and hence a large stiffness ratio.

For each t > 0, the weak formulation of the bidomain model (6.9) to-

gether with homogeneous Neumann conditions and initial conditions (see

Section 6.1.4) reads as follows. Given Iexti (t) and Iexte (t) ∈ L2(Ωmus), find

Vm(t), φe(t), φi(t) ∈ H1(Ωmus), w ∈ [L2(Ωmus)]
M and c ∈ [L2(Ωmus)]

S such

that

χmCm

∫

Ωmus

∂Vm
∂t

z dω +

∫

Ωmus

Σi∇φi · ∇z dω

+ χm

∫

Ωmus

Iion(Vm,w, c)z dω =

∫

Ωmus

Iexti z dω, (6.10a)

− χmCm

∫

Ωmus

∂Vm
∂t

z dω +

∫

Ωmus

Σe∇φe · ∇z dω

− χm

∫

Ωmus

Iion(Vm,w, c)z dω = −
∫

Ωmus

Iexte z dω, (6.10b)

∫

Ωmus

∂w

∂t
· y dω =

∫

Ωmus

g(Vm,w) · y dω, (6.10c)

∫

Ωmus

∂c

∂t
· ζ dω =

∫

Ωmus

gc(Vm,w, c) · ζ dω, (6.10d)

for all z ∈ H1(Ωmus), y ∈ [L2(Ωmus)]
M and ζ ∈ [L2(Ωmus)]

S , together with

(6.9c, 6.9d).

6.1.3 Reduced continuous models: the monodomain and eikonal

equations

The bidomain models (6.5) and (6.6) are physically meaningful and rich
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enough to permit a very detailed description of a wide range of physiological

and pathological scenarios; however, they are also very complex for which

their analyses and simulations are quite involved.

The first step in reducing the complexity of the bidomain models is based

on an assumption of proportionality between the intracellular and extracel-

lular conductivities; that is, Σe = ξΣi for a suitable constant ξ. Substituting

this relation in (6.6b), eliminating Σe and substituting the corresponding

relation for Σi in (6.6a), we obtain the following monodomain equation. For

each t > 0, find the trans-membrane potential Vm such that

χmCm
∂Vm
∂t

−∇ · (Σ∇Vm) + χmIion = Iext in Ωmus, (6.11)

where

Σ =
ξ

1 + ξ
Σi (6.12)

is the effective conductivity and

Iext =
ξIexti + Iexte

1 + ξ
.

Again, a ventricular cell model is needed to provide the ionic current Iion.

The same models discussed above for the coupling with the bidomain prob-

lem are used in combination with the monodomain problem too. Once the

trans-membrane potential Vm has been computed, the extracellular poten-

tial φe may be computed as a postprocessing by solving the elliptic problem

(6.6b).

For each t > 0, the weak formulation of the monodomain problem (6.11)

together with homogeneous Neumann conditions and initial conditions (see

Section 6.1.4) reads as follows. Given Iext(t) ∈ L2(Ωmus), find Vm(t) ∈
H1(Ωmus), w ∈ [L2(Ωmus)]

M and c ∈ [L2(Ωmus)]
S such that

χmCm

∫

Ωmus

∂Vm
∂t

z dω +

∫

Ωmus

Σ∇Vm · ∇z dω

+ χm

∫

Ωmus

Iion(Vm,w, c)z dω =

∫

Ωmus

Iextz dω, (6.13a)

∫

Ωmus

∂w

∂t
· y dω =

∫

Ωmus

g(Vm,w) · y dω, (6.13b)

∫

Ωmus

∂c

∂t
· ζ dω =

∫

Ωmus

gc(Vm,w, c) · ζ dω, (6.13c)

for all z ∈ H1(Ωmus), y ∈ [L2(Ωmus)]
M and ζ ∈ [L2(Ωmus)]

S , together with

(6.9c and 6.9d).
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Although the hypothesis underlying the monodomain model – that is,

the proportionality between the internal and external conductivities – is not

physiological, as shown by experiments, in some cases this model provides

a very accurate solution compared with the bidomain model. In particular,

this is the case when there is no injection of current in the extracellular

region (Colli Franzone, Pavarino and Taccardi 2005, Potse et al. 2006); the

monodomain model is therefore fairly accurate and physically meaningful

in physiological conditions. In contrast, when an external current is injected

such as in defibrillation, the monodomain solution is no longer accurate,

and the use of the more complex bidomain model is mandatory since the

unequal anisotropy is fundamental to successful description of these scenar-

ios (Trayanova 2006).

An alternative simplification is provided by the eikonal equation. Starting

from the bidomain model coupled with a simplified representation of the

ionic current that which does not consider any gating variable and allows

for the description only of the depolarization phase, Colli Franzone, Guerri

and Rovida (1990) derived the following eikonal–diffusion equation:

co
√

∇ψ ·M∇ψ −∇ · (M∇ψ) = 1 in Ωmus, (6.14)

where ψ(x) is the unknown activation time (see Section 5.2), co denotes

the velocity of the depolarization wave along the fibre direction for a pla-

nar wavefront, and M = Σ/(χCm). A different derivation was provided in

Keener (1991), leading to the following eikonal–curvature equation:

co
√
∇ψ ·M∇ψ−

√
∇ψ ·M∇ψ∇·

(
M∇ψ√∇ψ ·M∇ψ

)
= 1 in Ωmus. (6.15)

These are both steady equations providing information on the activation

time of each cell in the tissue, i.e. of each point x ∈ Ωmus. More specifically,

the isocontours of ψ(x) give the position of the action potential wavefront at

time t = ψ. The eikonal–diffusive model (6.14) is an elliptic equation, where

the propagation speed is influenced by the tissue surrounding the wavefront.

Once the activation time ψ has been computed, it is possible to obtain an

approximate value of the extracellular potential φe by solving at each time

step a suitable elliptic problem: see Colli Franzone and Guerri (1993).

In contrast, the eikonal–curvature model (6.15) is of parabolic type since

the ‘diffusive’ term lacks the second derivative in the direction of propaga-

tion. This term is also proportional to an anisotropic generalization of the

mean curvature (Tomlinson, Hunter and Pullan 2002). This implies that the

propagation is faster when the wavefront is concave. This is in accordance
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with the diffusion of charge, which allows for faster depolarization in regions

close to already depolarized tissues.

The eikonal equations are not suitable for recovering the action potential

and the ionic currents. However, they provide accurate results about the

activation of cells even in complex scenarios such as front-to-front collision:

see e.g. Colli Franzone and Guerri (1993) for the eikonal–diffusive model.

The eikonal models are, however, very appealing from the computational

point of view. First of all, they consist of a single steady PDE. Although non-

linear, they do not require coupling with ODE systems. More importantly,

the activation time, unlike the trans-membrane potential, does not feature

any internal or boundary layer, so no special restriction on the mesh is

needed in this case (see Section 5.1).

6.1.4 Boundary conditions and Purkinje network models

We discuss here the initial and boundary conditions of the problems intro-

duced above. The bidomain and monodomain equations and the ODE sys-

tems for the gating variables and ionic concentrations need to be equipped

with suitable initial conditions; that is,

Vm|t=0 = Vm,0, w|t=0 = w0, c|t=0 = c0 in Ωmus,

for given functions Vm,0(x),w0(x), c0(x).

For the boundary conditions for the bidomain, monodomain and eikonal-

diffusion problems, a homogeneous Neumann condition is commonly pre-

scribed at the external surface Σepi of the epicardium and, for a ventricular

domain only, at the base Σb (see Figures 5.1 and 6.2(a)) to prescribe null

outgoing current fluxes. In particular, the following conditions have to be

prescribed on Σepi ∪ Σb:

(Σβ∇φβ) · n = 0 β = i, e for PP (6.5),

(Σi∇(Vm + φe)) · n = 0

((Σi +Σe)∇φe) · n+ (Σi∇Vm) · n = 0

}
for PE (6.6),

(Σ∇Vm) · n = 0 for monodomain (6.11),

(M∇ψ) · n = 0 for eikonal-diffusion (6.14).

As φe is defined up to a constant for the PE formulation (6.6) together with

previous boundary conditions, the constraint
∫

Ωmus

φe dω = 0
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is often employed and henceforth adopted in this section. Moreover, for the

bidomain problems in both the formulations (6.5) and (6.6), the following

compatibility conditions on the applied external currents must be enforced:

∫

Ωmus

Iexti dω =

∫

Ωmus

Iexte dω.

On the internal surface Σendo of the endocardium, Neumann boundary

conditions are again prescribed. In this case, however, they could be non-

homogeneous at specific stimulation points (e.g. the atrioventricular node

and the points of the bundle of His). For the eikonal problem, Dirichlet data

on the activation time could be prescribed at some specific locations if they

are available, thanks to measurements provided by the NavX system, for

example; see Section 5.2 (Sermesant et al. 2012). When redundant (e.g. when

the electrical problem in the myocardium is coupled with the Purkinje fibres

network: see below) these data have been used to solve inverse problems, for

example to estimate the conduction velocity in the myocardium (Sermesant

et al. 2012) or to obtain personalized Purkinje networks (Vergara et al. 2014,

Palamara et al. 2014, Palamara et al. 2015).

If the mathematical model accounts for the presence of the Purkinje net-

work, interface conditions on Σendo describing the continuity of the cur-

rent and of the potential at the Purkinje muscle junctions (PMJs) are im-

plicitly provided for the bidomain and monodomain problems by the so-

lution of the coupled muscle region/Purkinje network problem (Vigmond

and Clements 2007, Vergara et al. 2016). For the sake of exposition, we will

not provide details of the bidomain and monodomain models for the Purk-

inje network, instead referring interested readers to Vigmond and Clements

(2007), Bordas et al. (2012) and Vergara et al. (2016). We will only note

that, unlike the muscular case, in the network the gap junctions connecting

two consecutive Purkinje cells are often explicitly modelled by means of re-

sistances. Specific Purkinje cell models have also been developed, with the

same structure as those developed for the muscular cells: see e.g. DiFrancesco

and Noble (1985). However, we will describe the mechanisms of coupling; in

particular, we will refer to the coupled problem obtained by considering the

monodomain problem both in the muscle region and in the Purkinje network

(Vergara et al. 2016). We consider N Purkinje muscle junctions located at

x = sj and we assume that each of them could be modelled by means of

a resistance RPMJ. Then, the monodomain–monodomain coupled problem is

as follows. For each t > 0, find Vp, Vm, wp, w and γj , j = 1, . . . , N , such
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that

Pm

(
Vm,w,

N∑

j=1

1

Ar
IBr(sj)γj + Iext

)
= 0, (6.16a)

Pp(Vp,wp,γ) = 0, (6.16b)

γj =
Vp(sj)− 1

Ar

∫
Br(sj)

Vm dx

RPMJ
j = 1, . . . , N, (6.16c)

where Pm(Vm,w, F ) = 0 denotes the monodomain problem in the myo-

cardium with source term F , Pp(Vp,wp,η) = 0 is the monodomain problem

in the Purkinje network with Neumann conditions with data ηj at the Purk-

inje muscle junctions, Vp and wp are the trans-membrane potential and the

gating variables in the Purkinje network, γj are the PMJ currents which are

determined by Ohm’s laws (6.16c), IY is the characteristic function related

to the region Y ⊂ Ωmus, Br(sj) is the ball of radius r centred at the point

sj, and Ar is the volume of this ball. We observe that the two monodomain

problems are coupled by means of the PMJ currents γj : for the 3D problem

the latter act as source terms distributed in balls of radius r, whereas for

the network they act as Neumann conditions (Bordas et al. 2012). A similar

approach could be considered for the bidomain problems as well.

The coupling between eikonal muscular and Purkinje network problems

has been addressed by Vergara et al. (2014) for normal propagation and

Palamara et al. (2014) for pathological propagations.

6.1.5 Computing the surface electrocardiogram signals

The computation of the potentials related to electrical propagation in the

heart could be used to numerically compute the surface electrocardiogram

(ECG) signals, that is, electrical potential on the surface of the body, thus

simulating what happens in normal clinical practice. This could be obtained

by coupling the bidomain or monodomain problem with the propagation in

the torso (see e.g. Sundnes et al. (2007)), modelled by a simple diffusion

problem for the extracellular potential at each t > 0:

−∇ · (ΣT∇φT ) = 0 in ΩT ,

where ΩT is the torso domain that surrounds the heart domain Ωmus (i.e.

the heart boundary surface Σepi ∪ Σb denotes the interface with the torso),

ΩT ∩ Ωmus = ∅, with φT denoting the extracellular potential in the torso.

Homogeneous Neumann conditions have to be applied on the external torso

surface ΣT , whereas the following interface conditions, which replace the
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boundary conditions for the heart problem, need to be prescribed at the

torso/heart interface:

φe = φT on Σepi ∪Σb,

(Σe∇φe) · n = (ΣT∇φT ) · n on Σepi ∪Σb,

(Σi∇(Vm + φe)) · n = 0 on Σepi ∪Σb.

6.1.6 Numerical discretization

The numerical solution of the bidomain and monodomain problems is very

demanding. Together with the strict constraint on the spatial mesh size due

to the propagation of a very steep front (see Section 5.1), a time step of

the order of tenths or even hundredths of milliseconds must be used in or-

der to capture the fast dynamics characterizing the propagation, with time

constants of the order of 0.1ms. Moreover, as discussed below, the algebraic

solution of the linear systems arising at each time step using the finite ele-

ment method, for example, requires careful treatment – due to the coupled

nature of the problem, the singularity of some of the matrices involved, and

the presence of the non-linear term due to the ionic currents.

Several time-discretization strategies have been considered so far. We can

group them into four main categories: explicit; semi-implicit; implicit; and

operator splitting-based methods, which we now briefly present. We start by

introducing the finite element matrices and vectors:

(M)jk =

∫

Ωmus

ψkψj dω,

(Aβ)jk =

∫

Ωmus

Σβ∇ψk · ∇ψj dω, β = i, e

(I ion(V
n
m,W

r,Cs))j =

∫

Ωmus

Iion(V
n
m,w

r, cs)ψj dω,

(G(V n
m,W

r))j =

∫

Ωmus

g(V n
m,w

r) · yj dω,

(S(V n
m,W

r,Cs))j =

∫

Ωmus

gc(V
n
m,w

r, cs) · ζj dω,

where ψi, yj and ζj denote the basis functions of the finite element spaces,

and n, r, s are integers denoting discretized times. The vectors V m, Φe, Φi,

W and C denote the unknown coefficients of the finite element solutions

associated with the unknowns Vm, φe, φi, w, c. Note that the dimensions of

W and C are MK and SK, respectively, where K is the number of degrees

of freedom associated with the mesh and the choice of finite elements (e.g.
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the number of vertices for linear finite elements). In all the cases, in order

to simplify the notation, we will set Iexte = Iexti = 0, and we assume that the

running temporal index n+1 is understood.

Explicit methods. In explicit methods, all the problems in (6.10) are dis-

cretized by means of an explicit scheme, for example forward Euler for both

the PDE and ODE systems (Puwal and Roth 2007, Ethier and Bourgault

2008). This choice allows us to decouple the four blocks of the bidomain

system (the two PDEs and the two ODEs systems), involving only the mass

matrix in the PP formulation, and thus in principle avoiding the need to

solve any linear system provided that mass lumping is performed. In con-

trast, for the PE formulation, the absence of time derivatives in the second

PDE implies that a linear system in the unknown Φe needs to be solved

at each discrete time instance tn; we detail the discrete formulation for the

forward Euler method:

χmCmM
V m − V n

m

∆t
= −Ai(V n

m +Φn
e )− χmI ion(V

n
m,W

n,Cn),

AiV m + (Ai +Ae)Φe = 0,

M
W −W n

∆t
= G(V n

m,W
n), M

C −Cn

∆t
= S(V n

m,W
n,Cn).

Explicit methods generally involve a severe restriction on the time discretiza-

tion of the type ∆t < h2/Σ, where Σ is a representative value of the con-

ductivity (Puwal and Roth 2007). Dos Santos, Plank, Bauer and Vigmond

(2005) showed for a model problem that an explicit method is not absolutely

stable even for a value of ∆t much smaller than that required to capture

the front propagation. For this reason and due to the increased availability

of computational resources (CPUs), explicit methods have nowadays lost

popularity.

Semi-implicit methods. ODE systems are usually solved at each time step

by means of explicit or semi-implicit methods (in the latter case the depen-

dence on Vm is treated explicitly). This suggests using semi-implicit methods

(Keener and Bogar 1998, Pennacchio and Simoncini 2002, Colli Franzone and

Pavarino 2004) for the whole coupled PDE/ODE problem. These methods

are the most widely used together with operator splitting-based methods

(see below). They are based on treating the diffusive term implicitly and

the non-linear term explicitly. A possible semi-implicit (first-order) scheme

for the PP formulation (6.10) is as follows:

M
W −W n

∆t
−G(V n

m,W ) = 0, M
C −Cn

∆t
− S(V n

m,W ,C) = 0,
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χmCmM
V m − V n

m

∆t
+AiΦi + χmI ion(V

n
m,W ,C) = 0,

− χmCmM
V m − V n

m

∆t
+AeΦe − χmI ion(V

n
m,W ,C) = 0

(see e.g. Colli Franzone and Pavarino 2004).

A semi-implicit method like the one reported here has two nice properties.

First of all, the two PDEs are decoupled by the ODE systems, thus signifi-

cantly simplifying the numerical solution of the entire problem. This decou-

pling strategy is justified by noticing that the Jacobian matrices of a fully

implicit discretization feature dominant values on the diagonal, suggesting

weak coupling between potentials and gating/ionic concentration variables

(Munteanu, Pavarino and Scacchi 2009). Second, it allows for a linearization

of the non-linear reaction term given by the ionic currents, thus requiring

the solution of a 2×2 block linear system.

Special attention has been paid to evaluation of the ionic current in a

finite element context. In particular, two strategies have mainly been con-

sidered, namely ionic current interpolation (ICI) and state variable interpo-

lation (SVI). In the first case, only the nodal values are used to build an inter-

polation of the ionic current, whereas in the second, the trans-membrane po-

tential and the gating/ionic concentration variables are interpolated within

each element and the ionic current is then evaluated by using these interpo-

lated variables; see Pathmanathan, Mirams, Southern and Whiteley (2011)

and also Krishnamoorthi, Sarkar and Klug (2013). The ICI approach is of

course more efficient from the computational point of view, and allows us

to express the reaction term by means of a mass matrix. However, it has

lower accuracy with respect to state variable interpolation; in particular, the

computed conduction velocity is generally larger than the true velocity: see

Pathmanathan et al. (2011).

From the algebraic point of view, the solution of a semi-implicit discretized

problem is very demanding, since the matrix of the linear system associated

with the PDEs written in terms of the unknowns Φi and Φe is given by

B =
χmCm
∆t

[
M −M
−M M

]
+

[
Ai 0

0 Ae

]
.

Both the terms of this block matrix are singular, the first because of the

degenerate parabolic nature of the PP bidomain formulation and the sec-

ond since each block Aβ is related to a pure Neumann diffusive problem.

However, the matrix B is positive semidefinite, so the preconditioned con-

jugate gradient method is often used for its numerical solution (Pennacchio

and Simoncini 2002, Colli Franzone and Pavarino 2004). Preconditioning is
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needed since B is highly ill-conditioned, due to the block 2×2 mass ma-

trix which, unlike the classical mass matrix, worsens the spectrum of the

stiffness matrix. Efficient preconditioners include block Jacobi and Gauss–

Seidel (Mardal, Nielsen, Cai and Tveito 2007), block SSOR (Pennacchio and

Simoncini 2002), multilevel additive Schwarz (Pavarino and Scacchi 2008),

multigrid (Plank et al. 2007, Vigmond et al. 2008), and a functional block

preconditioner obtained by the monodomain solver (Gerardo-Giorda et al.

2009).

Semi-implicit methods have also been proposed for the PE formulation:

see e.g. Fernández and Zemzemi (2010). For example, with respect to the

unknowns V m and Φe, we have

B =
χmCm
∆t

[
M 0

0 0

]
+

[
Ai Ai
Ai Ai +Ae

]
.

Again the matrix is singular, ill-conditioned, and semidefinite positive. In

this context, we cite Pierre (2012) for an incomplete block LU factorization

preconditioner, and Vigmond, Aguel and Trayanova (2002), where the two

PDEs are decoupled by treating Vm explicitly in (6.6a) and φe in (6.6b).

In any case, semi-implicit methods are conditionally stable with a bound

on ∆t which is, however, independent of the mesh size (Fernández and Zem-

zemi 2010, Colli Franzone et al. 2014).

A variant of the semi-implicit method reported above arises from treating

the reaction term Iion implicitly. In this case, Newton–Krylov–Schwarz meth-

ods have been proved to be very efficient (Munteanu et al. 2009). Second-

order semi-implicit schemes have been successfully considered as well: see

e.g. Ethier and Bourgault (2008).

Operator splitting-based methods. These methods separate the reaction op-

erator from the diffusive operator, in a similar way to what is done in frac-

tional step methods for fluid problems. They were first introduced for the

monodomain problem by Qu and Garfinkel (1998). Here we limit ourselves

to present an operator splitting-based method for the PP formulation of

the bidomain problem (Sundnes, Lines and Tveito 2005, Colli Franzone

et al. 2014), but we refer the interested reader e.g. to (Spiteri and Torabi

Ziaratgahi 2016) for a wider overview on the topic of operator-splitting meth-

ods for electrophysiology models.

(1) Given the quantities at time step tn, solve the reaction problem and the
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(a) (b)

Figure 6.3 (a) Purkinje network generated by the algorithm proposed in
Palamara et al. (2015) in the case of a real, subject-specific left ventricle.
(b) Map of the activation times computed by means of the eikonal equa-
tion. The time marching scheme and P1 finite elements have been used. The
source term (dark blue) is located within the myocardium, as typically hap-
pens in Wolff–Parkinson–White syndrome. Results were obtained by means
of a code implemented in the VMTK environment (www.vmtk.org). Data
from CT images provided by the Cardiology Division at Ospedale S. Maria
del Carmine, Rovereto (TN), Italy, and from the Radiology Division of
Borgo-Trento (TN), Italy.

ODE systems in (tn, tn + θ∆t]:

χmCmM
Ṽ
n+θ
m − V n

m

∆t
+ χmI ion(V

∗
m,W

∗,C∗) = 0,

M
W̃

n+θ −W n

∆t
−G(V ∗

m,W
∗) = 0,

M
C̃
n+θ −Cn

∆t
− S(V ∗

m,W
∗,C∗) = 0.

(2) Given Ṽ
n+θ
m , solve the diffusion problems in (tn, tn+1]:

χmCmM
V̂
n+1
m − Ṽ n+θ

m

∆t
+AiΦ

∗
i = 0,

−χmCmM
V̂
n+1
m − Ṽ n+θ

m

∆t
+AeΦ

∗
e = 0.

(3) Given V̂
n+1
m , W̃

n+θ
, C̃

n+θ
, solve the reaction problem and the ODE
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Figure 6.4 Propagation of the trans-membrane potential in the two ventri-
cles at eight different instants during a heartbeat. Monodomain simulation,
semi-implicit method, P1 finite elements. Results were obtained using LifeV;
the computational mesh was obtained by an open source biventricular ge-
ometry segmented from CT images: see Rousseau (2010).

systems in (tn + θ∆t, tn+1]:

χmCmM
V n+1
m − V̂ n+1

m

∆t
+ χmI ion(V

∗
m,W

∗,C∗) = 0,

M
W n+1 − W̃ n+θ

∆t
−G(V ∗

m,W
∗) = 0,

M
Cn+1 − C̃n+θ

∆t
− S(V ∗

m,W
∗,C∗) = 0.

The superscript ∗ means that the quantity at hand could be treated either

explicitly or implicitly. The variable θ could assume value 1/2 or 1. In the

latter case, step (3) is unnecessary and we simply set

V n+1
m = V̂

n+1
m , W n+1 = W̃

n+1
, Cn+1 = C̃

n+1
;

this case corresponds to a first-order method (Godunov splitting). Instead,

for θ = 1/2, we have a second-order method provided that all the subprob-

lems are solved with a second-order strategy (Strang splitting). Note that if

step (2) is solved implicitly, then the same preconditioners introduced above

for the semi-implicit schemes could be applied as well, since it applies to the

same operator.
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Figure 6.5 Numerical simulation of the electrophysiology problem on the
left and right atrial surfaces according to the methods developed in Collin
et al. (2013), Patelli et al. (2017), Pegolotti (2017), and Pegolotti et al.
(2019); spatial discretization by Isogeometric Analysis (Cottrell et al. 2009).
Idealized surface representations of the left (LA) and right (RA) atria gen-
erated by means of NURBS from different viewpoints; the sinoatrial node
(SAN) and bundle interatrial connections are highlighted in yellow (top).
Evolution of the trans-membrane potential on the atrial surfaces and propa-
gated from the SAN node according to the bidomain equation together with
the Courtemanche-Nattel-Ramirez cellular ionic model in Courtemanche
et al. (1998) (bottom); fibres direction as highlighted in Figure 5.4. Results
obtained by means of isogeometric analysis solver; courtesy of L. Pegolotti
(EPFL).
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Implicit methods. Some authors have considered a fully implicit discretiza-

tion of the full bidomain problem (6.9): see e.g. Bourgault, Ethier and

LeBlanc (2003) and Murillo and Cai (2004). In this case the whole Jaco-

bian is built and the Newton method is applied. Due to the small time

step required in bidomain simulations to capture the propagating front and

because of the excellent stability properties of semi-implicit and operator

splitting-based methods, fully implicit method are currently no longer pop-

ular.

We provide some examples of numerical results related to the solution

of the electrophysiology problem in the myocardium and in the atria in

Figures 6.3, 6.4 and 6.5.

6.2 Cardiac mechanics and electromechanical coupling

We review in this section the models used for the description of cardiac

mechanics, both in its active and passive components. In particular, active

mechanics refers to the model introducing the contraction and relaxation

of the muscle independently of the action of external forces on the tissue.

In this respect, we recall the two paradigms commonly used to model ac-

tive mechanics: active stress and active strain. We consider then the cou-

pling of electrophysiology and mechanical models into the integrated electro-

mechanics (EM) model and we finally review the numerical strategies for the

solution of such coupled problem.

6.2.1 The continuous mechanics problems

We present the models commonly used for both active and passive cardiac

mechanics.

Active stress approach

During a physiological contraction, the cardiac cells change in length by up

to 20–30%, so finite elasticity models are needed to describe heart contrac-

tion and relaxation. In particular, the first Piola–Kirchhoff tensor is written

as the sum of two terms (Nash and Panfilov 2004, Niederer and Smith 2008):

a passive component, T̂
P
s , describing the stress required to obtain a given

deformation of the passive myocardium (similarly to arteries), and an ac-

tive component, T̂
A
s , denoting the tension generated by the depolarization

of the propagating electrical signal that provides the internal active forces

responsible for the contraction (see Section 4.4):

T̂ s = T̂
P
s + T̂

A
s , (6.23)
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where, using the notation of Part 1, ̂ refers to quantities computed in the

reference domain.

The passive component of the stress is obtained as the derivative of a

suitable strain energy function: see (3.8). The heart’s mechanical response

(just like the electrical propagation: see Section 6.1) is highly dependent on

the presence of fibres and sheets. For this reason, the passive myocardium

is modelled as an hyperelastic orthotropic material, characterized by two

principal directions and with different material responses on three mutu-

ally orthogonal planes, identified by these directions. This is in accordance

with the shear tests performed on pig hearts, which highlighted an elevated

resistance to shear deformations producing an extension along the fibre di-

rection, an intermediate resistance in the direction orthogonal to fibres and

tangential to sheets, and the least resistance in the third orthogonal direc-

tion (Dokos, Smaill, Young and LeGrice 2002). Letting âf , âs, ân denote the

unit vectors along these directions (see Section 6.1) in the reference configu-

ration, the following strain energy function has been proposed in Holzapfel

and Ogden (2009):

Θ(I1, I4,f , I4,s, I8,fs) (6.24)

=
a

2b
eb(I1−3) +

∑

i=f,s

ai
2bi

[
ebi(I4,i−1)2 − 1

]
+

afs
2bfs

[
ebfsI

2
8,fs − 1

]
,

where, referring to the notation introduced in Section 3.2, I1 = trC, I4,i =

âi · (Câi), i = f, s, I8,fs = âf · (Câs) are invariants of C, and a, b, af , bf ,

as, bs, afs, bfs are material parameters. The quantity I1 is the first isotropic

invariant and the related term in Θ accounts for the isotropic response of

the myocardium at small deformations;I4,f and I4,s are the squares of the

stretch of âf and âs in the deformed configuration, and the related terms in

the energy are associated with the increased stiffness of the material along

the two principal directions af and as for large deformations; finally, I8,fs
denotes the angle spanned by the two principal directions in the deformed

configuration, and the related term in the energy describes the coupling

between the two principal directions. Convexity of the strain energy func-

tion Θ of Eq. (6.24) is guaranteed for positive parameter values (Holzapfel

and Ogden 2009). Other orthotropic models have been proposed, for exam-

ple by Hunter, Nash and Sands (1997) and Costa, Holmes and McCulloch

(2001), whereas transversally isotropic models with only one principal direc-

tion (along the fibres) were introduced by Humphrey and Yin (1987) and

Guccione, McCulloch and Waldman (1991), for example; however, the con-
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stitutive law of Eq. (6.24) is commonly accepted as the golden standard in

cardiac passive mechanics.

Some authors (Holzapfel and Ogden 2009) model the myocardium as

incompressible material in accordance with the experiments reported by

Vossoughi, Vaishnav and Patel (1980). In this case the term ps(J − 1) is

added to the strain energy functions, as in (3.13), with ps playing the role

of Lagrangian multiplier for the enforcement of the incompressibility con-

straint. Conversely, some other authors, e.g. (Cheng et al. 2005) and (Rossi

et al. 2014), model the material as nearly-incompressible, for which moder-

ate volumetric changes (2–15%) are allowed to account for blood perfusion

(see (Yin, Chan and Judd 1996)). In this case a volumetric contribution

Θvol(J) is added to the strain energy function Θ to penalize deformations

which substantially depart from the fully incompressible case; a common

choice is the following convex function endowed with global minimum in

J = 1 (see e.g. (Simo and Taylor 1991)):

Θvol(J) =
B

2
(J − 1)log(J);

the larger is the bulk modulus B > 0, the stronger is the penalization of vol-

umetric changes. On the basis of experimental evidence, reported by Dokos

et al. (2002), for example, highlighting hysteresis under shear deformations,

viscoelastic orthotropic models have recently been proposed for the passive

myocardium: see Gultekin, Sommer and Holzapfel (2016). The viscoelastic

behaviour is probably due to the extracellular fluid that filtrates through

the solid part.

The active contribution of the cardiac cells to the contraction is regulated

by the opening of calcium channels as a response to the depolarization, with

a consequent entry of calcium ions in the cells. As detailed in Section 4.4, this

process is responsible for cardiac contraction. Since the latter occurs along

the axial direction of the cardiac cells – that is, along the fibre direction –

the active part of the stress tensor usually takes the form

T̂
A
s = PAâf ⊗ âf (6.25)

(Nash and Panfilov 2004), where the scalar function of time and space PA

denotes the pointwise active stress, and should be properly modelled.

In the classical model for the active stress function proposed in Nash and

Panfilov (2004), PA depends only on the trans-membrane potential Vm. In

particular, for each spatial point x ∈ Ωmus, the following ODE equation is
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introduced:

dPA(t)

dt
= ε(Vm(t))

[
kP (Vm(t)− Vr)− PA(t)

]
, (6.26)

where Vr is the resting potential, kP is a suitable parameter controlling the

amplitude of PA, and ε controls the delay of the contraction with respect to

the action potential. For example, Goktepe and Kuhl (2010) proposed the

expression

ε(Vm) = ε0 + (ε∞ − ε0)e
−e−ξ(Vm−V̄m)

,

where ε0, ε∞, ξ, V̄m are suitable parameters.

Since cardiac cell contraction is regulated by calcium ion concentration,

the active stress function PA can be assumed to depend directly on this

specific concentration, say cca, rather than on the more general variable Vm.

For example, Wong, Goktepe and Kuhl (2013) proposed a system of ODEs

of the same structure as (6.26), but using cca instead of Vm on the right-

hand side.

In more sophisticated models, the active stress function also depends on

the stretch in the fibre direction λ = (âTf Câf )
1/2 and on the fibre stretch

rate dλ/dt (Niederer, Hunter and Smith 2006, Land et al. 2012). In compact

form, these models are written as

dy

dt
= gy

(
PA, λ,

dλ

dt
, c,y

)
,

PA = gPA(λ,y),

(6.27)

for suitable functions gy and gPA and where c, as in Section 6.1, is the ionic

concentration variable (in particular the calcium one), whereas y collects

other myofilament and electrophysiology state variables.

Active strain approach

As an alternative to the decomposition (6.23), where the stress tensor is

split into a passive and an active component (the active stress approach),

Cherubini, Filippi, Nardinocchi and Teresi (2008) and Ambrosi, Arioli, No-

bile and Quarteroni (2011) have instead proposed a different strategy based

on an active strain approach. In this case, the following factorization of the

deformation tensor is used,

F = F PFA,

where FA is the active factor acting at the microscales, describing fibre dis-

tortion not preserving geometric compatibility, whereas F P describes passive
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macroscale deformation and the deformation needed to restore compatibil-

ity. With this choice, quite common when analyzing plasticity, growth and

remodelling of living tissues, the microscale information related to the fibre

contraction is directly incorporated in the body kinematics, allowing for the

inclusion of fibre contraction driven by the depolarization as a prescribed

active deformation rather than a further contribution to stress. In this case,

the first Piola–Kirchhoff stress tensor is generally written as

T̂ s = JA
DΘ

DF P
(FA)−T ,

where JA = det(FA). In analogy with (6.25), a possible expression for FA

is

FA = I − βVmâf ⊗ âf ,
linking the trans-membrane potential to the active deformation tensor, where

β is a suitable parameter (Ambrosi et al. 2011). However, as the active de-

formation occurs mainly along the direction of the fibres, different active

strain models have been proposed to account this aspect. In the transversely

isotropic activation model of (Boyett, Frampton and Kirby 1991), the active

deformation tensor assumes the expression

FA = γf âf ⊗ âf +
1

√
γf

(I − âf ⊗ âf ) (6.28)

in the variable γf , which represents the shortening of the fibres; here âf
stands for the fibre direction. Orthotropic activation models have instead

been proposed in (Rossi et al. 2012) and (Rossi et al. 2014), which read

FA = γf âf ⊗ âf + γs(γf )âs ⊗ âs + γn(γf )ân ⊗ ân, (6.29)

where âs stands for the normal to the sheets and ân is orthogonal to both

âf and ân; the shortenings along ân and âs are determined by assum-

ing isochoric active deformation, for which γn = k′(1/
√

1 + γf − 1) and

γs = 1/((1 + γf )(1 + γn(γf ))) − 1, where k′ > 0 is a suitable parameter

relating the microscale-to-macroscale shortening. More recently, a transmu-

rally variable orthotropic model has been proposed in (Barbarotta 2014)

and validated in (Barbarotta, Rossi, Dede’ and Quarteroni 2018) to better

reproduce the heterogeneous activation in the myocardium; in this case k′

becomes a function of a transmural coordinate, i.e. k′ = k′(x).

In order to link the fibres shortening γf to cardiac electrophysiology, the

use of a suitable mechanical activation model is in order within the ac-

tive strain approach. Specifically, such model should describe the so-called

crossbridge cycle occurring in the sarcomeres (Huxley and Kress 1985) and
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establish the dependence of γf on the intracellular calcium concentration

c (an output of the cell ionic model). Here we limit ourselves to recall the

mechanical activation model proposed in (Ruiz-Baier et al. 2014), which

assumes the compact form

dγf
dt

= gγf (γf , c, λ) (6.30)

for each x ∈ Ωmus; here, gγf depends on the sarcomere force-length rela-

tionship, while λ is the stretch in the fibre direction. We refer the interested

reader to, e.g. (Regazzoni, Dede’ and Quarteroni 2017) and the references

therein for a more detailed sarcomere model and a review on the topic.

The active strain approach is probably more satisfactory from the mod-

elling point of view, since, unlike active stress, it should provide (in principle)

the expected fibre contraction without any tuning; moreover, it preserves the

polyconvexity properties of the strain energy function along the mechanical

activation. However, from the numerical point of view it is more involved,

since standard finite element, finite elasticity solvers cannot be used directly

and should be properly adapted; specifically, solvers based on the active

strain approach should be properly integrated with the characteristic law of

passive mechanics to achieve computational efficiency. As the active stress

approach is more popular in literature, from now on we will mainly refer to

it; however, we will also provide some indications on the use of the active

strain approach. For a comparison between the two approaches we refer

to Ambrosi et al. (2011) and Ambrosi and Pezzuto (2012), and for related

computational results to Pezzuto (2013) and Rossi et al. (2014).

6.2.2 The coupled electromechanical problem

The values of the trans-membrane potential Vm or calcium ion concentration

cca, to be used in (6.26) or (6.27) to compute the active stress function PA,

are sometimes prescribed as given data to the mechanics problem: see e.g.

Eriksson, Prassl, Plank and Holzapfel (2013). However, in most cases these

should be obtained from the bidomain or monodomain equations. This leads

to a coupled electromechanical problem; see e.g. Dössel et al. (2007).

The electrical propagation problem needs to be solved in a domain that

changes in time, because of the cardiac contraction and relaxation. Under

suitable assumptions (Colli Franzone, Pavarino and Scacchi 2016), in an

Eulerian framework, these problems assume the form (6.5), (6.6) or (6.11),

provided that the conductivity tensors (6.4) or (6.12) are computed by using

the deformed unit directions af , as, an: see e.g. Keldermann et al. (2009).
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However, for computational simplicity, the bidomain and monodomain equa-

tions are usually set in a Lagrangian framework and written in the reference

undeformed configuration. Here we report the corresponding monodomain

equation,

JχmCm

(
∂V̂m
∂t

− F−T∇V̂m · ∂ψ
∂t

)
−∇ ·

(
JF−1ΣF−T∇V̂m

)

+ JχmĨion
(
V̂m, ŵ, ĉ, λ

)
= JÎext in Ωmus (6.31)

(using the notation of Part 1, we set Ωmus = Ω0
mus), coupled with the ODE

systems (6.9e, 6.9f) (similar arguments hold true for the bidomain equations

as well). The spatial derivatives have to be taken with respect to the unde-

formed domain, ψ is the deformation map between Ω0
mus and Ωtmus and λ is

the stretch in the fibre direction introduced above.

From the above equation, we observe that there are three sources of

mechano-electrical feedback – that is, three ways in which the mechanics

problem influences the electrical problem:

(i) the effective conductivity tensor Σ̂ = JF−1ΣF−T depends on the de-

formation gradient F ;

(ii) the ionic current term Iion depends on the stretch in the fibre direc-

tion λ;

(iii) the relation between the spatial and material time derivatives intro-

duces the advection term −F−T∇V̂m · ∂ψ/∂t, which depends on the

solution of the mechanics problem (Colli Franzone et al. 2016).

Terms (i) and (iii) are due to the pull-back of the monodomain equation

into the undeformed domain (geometric feedback). Term (ii) is due to a

well-known physical process consisting of the opening of ion channels under

the action of deformation (stretch-activated channels: see Section 4.4) (Kohl,

Hunter and Noble 1999, Kohl and Sachs 2001). Accordingly, the ionic current

term is written as the sum of two contributions:

Ĩion = Iion(V̂m, ŵ, ĉ) + ISAC(V̂m, λ), (6.32)

where Iion denotes one of the classical independent-stretch models described

in Section 6.1.2, and ISAC is the current activated by the deformation. A

fairly general expression for the latter term is given by

ISAC =
∑

i

Ki(V̂m)(λ− 1)(V̂m − Vi)H(λ− 1), (6.33)

where the ith term of the sum represents the stretch-activated currents re-

lated to the ith ion (usually sodium and potassium),Ki is a suitable function,
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and Vi is the Nernst potential introduced in Section 6.1.2. The Heaviside

function H(·) guarantees that the stretch-activated ion channels open only

under fibre tension (λ > 1) (Niederer and Smith 2007). Colli Franzone et al.

(2016) showed (computationally) that these terms do not significantly al-

ter the morphology of the action potential, but they strongly influence the

action potential duration.

Stretch-activated ionic currents together with the active stress component

of the stress tensor (or equivalently the active strain component of the de-

formation gradient) make the electromechanics problem a highly coupled

system, which can be summarized as follows. Find the muscle displacement

d̂, the trans-membrane potential V̂m, the gating variables ŵ, and the ionic

concentration variables ĉ, such that, for all t > 0

−∇ ·
(
T̂
P
s (d̂) + T̂

A
s

(
ĉ, d̂,

∂d̂

∂t

))
= 0 in Ωmus, (6.34a)

T̂
A
s = PAâf ⊗ âf , PA = A

(
ĉ, d̂,

∂d̂

∂t

)
in Ωmus, (6.34b)

V̂m = M(V̂m; d̂, ŵ, ĉ) in Ωmus, (6.34c)

(ŵ, ĉ) = G(ŵ, ĉ; V̂m) in Ωmus. (6.34d)

Here, equation (6.34a) stands for the mechanical problem. Note that, unlike

for the vessel case (see (3.7)), the time-dependent inertial term has been

neglected, as is commonly done for cardiac mechanics. Moreover, T̂
P
s =

∂Θ/∂F , where Θ is given by the orthotropic law (6.24), for example, and

PA is given by either (6.26) or (6.27). Equation (6.34c) represents the mon-

odomain problem (6.31) in compact form, together with the ionic current

expression given by (6.32, 6.9c, 6.9d, 6.33). Finally, (6.34d) is shorthand for

the ODE systems (6.9e, 6.9f) for the gating and ionic concentration variables

characterizing the cardiac cell model. The symbols M and G are abridged

notations to identify the underlying PDE and ODEs, respectively. Note also

that in writing system (6.34), we have exploited the fact that λ and F

could be written in terms of d, allowing us to indicate the dependences of

the monodomain problem on λ and F and of T̂
A
s on λ in compact form

through d.

If the active strain approach were instead to be used, the coupled electro-

mechanics problem would read as follows. Find d̂, γ̂f , V̂m, ŵ and ĉ, such
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that, for all t > 0,

−∇ ·
(
T̂ s(d̂)

)
= 0 in Ωmus, (6.35a)

T̂ s = ĴA
DΘ

DF P
(FA)−T , FA = FA(γ̂f ) in Ωmus, (6.35b)

∂γ̂f
∂t

= gγf (γ̂f , ĉ, d̂) in Ωmus, (6.35c)

V̂m = M(V̂m; d̂, ŵ, ĉ) in Ωmus, (6.35d)

(ŵ, ĉ) = G(ŵ, ĉ; V̂m) in Ωmus. (6.35e)

Here the active strain tensor in (6.35b) is expressed either by (6.28) or (6.29),

while (6.35c) derives from (6.30).

Regarding the well-posedness of the electromechanical coupled problems

(6.34) or (6.35), very few results have been obtained so far. We mention Path-

manathan, Chapman, Gavaghan and Whiteley (2010), who noticed that for

the general active stress model (6.27), the equilibrium equation (6.34a) is

not even elliptic when there is explicit dependence on the rate of stretch

dλ/dt, and Andreianov, Bendahmane, Quarteroni and Ruiz-Baier (2015),

who proved the existence of a weak solution for the case of a linearized

elasticity equation in the active strain formulation coupled with the bido-

main equations including the geometric feedback affecting the conductivity

tensors.

6.2.3 The issue of boundary conditions for the mechanics

problem

For the mechanical problem (6.34a) (or (6.35a)), proper boundary condi-

tions should be prescribed at both the external epicardium and internal

endocardium surfaces. For the former, the presence of both the pericardium

and the surrounding tissue has to be accounted for, because of their effect on

heart movement. Fritz et al. (2014) have proposed a sophisticated model of

interaction with the pericardium accounting for a frictionless contact. More

commonly, and similarly to the vascular case, a Robin condition such as (2.1)

is prescribed at Σepi; see e.g. (Barbarotta et al. 2018) and (Gerbi 2018).

At the endocardium internal surface Σendo, in the presence of a fluid model

in the atrial and ventricular cavities, the usual dynamic and kinematic con-

ditions (3.19c, 3.19d), arising from the fluid–structure interaction model,

implicitly provide both the endocardial displacement and normal stresses

(see Section 6.5). When the fluid in the ventricular cavity is not modelled,
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suitable strategies for prescribing boundary conditions at Σendo are manda-

tory. A common strategy relies on prescribing a Neumann condition of the

form

T̂ sn̂ = P n̂, (6.36)

where P is a suitable value of the blood pressure distribution at the endo-

cardium.

During ventricular filling, condition (6.36) is prescribed both for atria

and ventricles by means of selected values of blood pressures taken from the

literature (see Figure 4.2).

During isovolumic contraction, the ventricular volume is kept constant

often by means of fixed-point iterations, for example, where the value of the

endocardial pressure to be prescribed in (6.36) at each time step is updated

until satisfaction of the constraint given by the unchanged volume:

P(k+1) = P(k) + (V − V n)/Ck,

(Usyk, LeGrice and McCulloch 2002, Eriksson et al. 2013), where V is the

current cavity volume, k is the sub-iteration index and Ck is a penalty

parameter, and where the current temporal index n+1 is as usual understood.

Alternatively, a Lagrange multiplier approach can be employed (Gurev et al.

2015). During this phase the atrial pressure is kept constant to the values

reached when the mitral and tricuspid valves close.

For ventricular ejection, a reduced 0D model (based on the analogy with

electrical circuits: see Section 3.5.1) for the systemic (or pulmonary) circu-

lation is usually coupled with the cardiac mechanics problem, assuming that

the ventricular pressure equals the pressure in the aorta (or in the pulmonary

artery) (Usyk et al. 2002, Eriksson et al. 2013). This is an approximation

which is acceptable in first instance since, although the ventricular and circu-

latory pressures are different (thus allowing for the acceleration and deceler-

ation of blood: see Figure 4.2), they are very similar. In this case one obtains

a coupled problem between the cardiac mechanics and the lumped parame-

ter model where the two subproblems exchange suitable interface conditions

(e.g. in an iterative framework). For example, the 0D model could provide

the pressure to be prescribed to the mechanics problem by means of (6.36),

whereas the flow rate Q = ρf (dV /dt) is prescribed to the 0D model. During

the ejection phase the atrial pressure is determined by the venous pressure,

which may be obtained with a 0D model or by values from the literature.

Finally, during isovolumic relaxation the endocardial pressure is decreased

according to values from the literature until it reaches the pressure atrial
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value. Also during this phase the atrial pressure is determined by the venous

pressure.

When only the ventricular mechanics is modelled (no atria), a truncated

computational domain is considered, like the one depicted in Figure 6.2(a).

In this case we have to provide suitable boundary conditions for the ven-

tricular base Σb. Often, this surface is kept fixed by enforcing homogeneous

Dirichlet conditions. In other cases, the tangential displacement is allowed

by prescribing a homogeneous Neumann condition along the tangential di-

rections.

6.2.4 Numerical approximation

Let us consider the coupled electromechanical problem (6.34) in the active

stress approach, which is commonly used in literature. Problem (6.34) is

composed of four different blocks, namely the two PDEs (6.34a) and (6.34c)

describing the heart mechanics and electrical propagation, respectively, the

ODE system (6.34b) providing the active stress function, and the ODE sys-

tems (6.34d) modelling gating and ionic concentration variables. Moreover,

the algebraic source of coupling (6.32, 6.33) needs to be accounted for to de-

termine the stretch-activated ion currents. Their influence on the electrical

problem has been included directly in the right-hand side of (6.34c).

A common numerical solution strategy for problem (6.34) addresses the

two PDEs (6.34a) and (6.34c) separately by relying (when possible) on pre-

existing mechanics and electrical codes: for instance, the mechanics subprob-

lem is solved by Pavarino et al. (2015) using efficient Newton–Krylov itera-

tions, while the electrical subproblem (monodomain equation together with

a cell ODE model) is solved by means of one of the strategies described in

Section 6.1.6 (see also Sundnes et al. 2014 for an operator splitting method).

In this context, at each time step the electrical subproblem is solved first

and the mechanics problem later (Nash and Panfilov 2004, Gurev et al. 2015,

Sundnes et al. 2014). In particular, after time discretization, the following

scheme is employed (as usual the current temporal index n+1 is understood

and ∗ means that the related term could be treated either implicitly or

explicitly, depending on the temporal scheme used).

Algorithm EM1. At each time step:

(1) Solve the monodomain problem together with the cell model:

V̂m = M(V̂ ∗
m; d̂

n
, ŵ∗, ĉ∗) in Ωmus, (6.37a)

(ŵ, ĉ) = G(ŵ∗, ĉ∗; V̂ ∗
m) in Ωmus. (6.37b)
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(2) Then, solve the following mechanics problem:

(2a) Update the active stress contribution

T̂
A

s = PAaf ⊗ âf , PA = A
(
ĉ, d̂

n
,
d̂
n − d̂n−1

∆t

)
in Ωmus.

(2b) Solve the equilibrium equation by means of the following Newton

iterations. At each iteration k solve

∇ ·
(
DF T̂

P

s (d̂(k−1))
)
δd̂(k)

= −∇ ·
(
T̂
P

s (d̂(k−1)) + T̂
A

s

(
ĉ, d̂

n
,
d̂
n − d̂n−1

∆t

))
in Ωmus.

Using the notation introduced in Section 3.6.2, DF is the Gâteaux deriva-

tive with respect to F , δd̂(k) = d̂(k)−d̂(k−1), and, for simplicity, we have con-

sidered a Forward Euler approximation of dλ/dt|tn (instead of dλ/dt|tn+1).

The active stress contribution is treated explicitly, that is, it is updated

once per time step. This choice may lead to numerical instabilities, as re-

ported computationally in Niederer and Smith (2008). Pathmanathan et al.

(2010) speculate that such instability could be ascribed to the (necessarily)

explicit time discretization of the explicit stretch rate term dλ/dt|tn (instead

of dλ/dt|tn+1) in the active stress function solution.

To overcome these instabilities, Niederer and Smith (2008) proposed up-

dating the active stress function at each Newton step, that is, to replace

step (2) in Algorithm EM1 with the following:

Algorithm EM1′.

(2′). Solve the mechanics problem by means of the following Newton iterations.

At each iteration k:

(2′a) Update the active stress contribution:

T̂
A

s = PAaf ⊗ âf , PA = A
(
ĉ, d̂(k−1),

d̂(k−1) − d̂
n

∆t

)
in Ωmus.

(2′b) Solve the equilibrium equation:

∇ ·
(
DF T̂

P

s (d̂k−1)
)
δd̂k

= −∇ ·
(
T̂
P

s (d̂k−1) + T̂
A

s

(
ĉ, d̂(k−1),

d̂(k−1) − d̂
n

∆t

))
in Ωmus.
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Note that step (2′) does not coincide with a Newton iteration for (6.34a,

6.34b). Although at the expense of a larger number of iterations, this scheme

provides stable solutions and allows the use of a standard solver for the

mechanics part.

A Newton method for the solution of the mechanics problem (6.34a,

6.34b), used in combination with a different explicit decoupled scheme,

was successfully proposed by Pavarino et al. (2015), who split the electrical

problem (6.34c, 6.34d) into the cellular and macroscopic parts (semi-implicit

treatment), and solved the mechanics problem in between, as follows.

Algorithm EM2. At each time step:

(1) Solve the ODE system for the gating and ionic concentration variables

(ŵ, ĉ) = G(ŵ∗, ĉ∗; V̂ ∗
m) in Ωmus.

(2) Then, solve the mechanics problem by means of the following Newton

method. At each iteration k solve:

(2a) Update the active stress contribution:

T̂
A

s = PAaf ⊗ âf , PA = A
(
ĉ, d̂(k−1),

d̂(k−1) − d̂
n

∆t

)
in Ωmus.

(2b) Solve the equilibrium equation:

∇ ·
(
DF T̂

P

s (d̂(k−1)) +DF T̂
A

s

(
ĉ, d̂(k−1),

d̂(k−1) − d̂
n

∆t

))
δd̂(k)

= −∇ ·
(
T̂
P

s (d̂(k−1)) + T̂
A

s

(
ĉ, d̂(k−1),

d̂(k−1) − d̂
n

∆t

))
in Ωmus.

1 Solve the monodomain problem:

V̂m = M(V̂ ∗
m; d̂, ŵ, ĉ) in Ωmus.

Andreianov et al. (2015) have proposed a simplified variant of the above

decoupled algorithms for the active strain formulation.1 We provide the same

variant below for the active stress formulation; in the second equation of

(6.34b), however, the active stress function PA = A(ĉ) does not depend on

the stretch and stretch rate.

1 This is one of the very few papers that contain a convergence result for the finite element
solution to the differential problem (6.34).
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(a) (b)

Figure 6.6 (a) Fibre orientation in a real left ventricle obtained with the
rule-based method proposed in Rossi et al. (2014). Data from CT images
provided by the Cardiology Division of Ospedale S. Maria del Carmine,
Rovereto (TN), Italy, and by the Radiology Division of Borgo-Trento (TN),
Italy; courtesy of S. Palamara. (b) Displacement configuration of a real left
ventricle during the contraction phase at three different times. Orthotropic
model of activation: see Barbarotta (2014). Numerical results were obtained
using LifeV and taken from Barbarotta (2014); data from CT images pro-
vided by the Cardio Surgery and Radiology Divisions at Ospedale Sacco,
Milan, Italy.

Algorithm EM3. At each time step:

(1) Update the active stress contribution:

T̂
A

s = PAaf ⊗ âf , PA = A(ĉn−1) in Ωmus.

(2) Solve the equilibrium mechanics problem by means of the following New-

ton method. At each iteration k solve

∇ ·
(
DF T̂

P

s (d̂k−1)
)
δd̂k = −∇ ·

(
T̂
P

s (d̂k−1) + T̂
A

s (ĉ
n−1)

)
in Ωmus.

(3) Then, solve the electrical problem:

V̂m = M
(
V̂ ∗
m; d̂

n−1
, ŵ∗, ĉ∗

)
in Ωmus,

(ŵ, ĉ) = G(ŵ∗, ĉ∗; V̂ ∗
m) in Ωmus.

Although segregated algorithms such as those reported above are the most

widely used for numerical solution of the coupled electromechanics prob-

lem (6.34), a monolithic approach has been used by Goktepe and Kuhl

(2010), who have successfully applied a Newton method to the whole cou-

pled problem with a FitzHugh–Nagumo cardiac cell model (i.e. without the

ODE systems (6.34d)); see also (Dal, Göktepe, Kaliske and Kuhl 2013) for

the coupled electromechanics problem with the bidomain equations. More
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Figure 6.7 Displacements of the two ventricles at six different times dur-
ing systolic contraction. Electromechanical coupled simulation, P1 finite
elements. Numerical results were obtained using LifeV; the computational
mesh was obtained from an open source biventricular geometry segmented
from CT images: see Rousseau (2010).

recently, Hirschvogel et al. (2017) proposed a monolithic electromechanics

solver including 0D models for the vascular system, atria and heart valves.

A monolithic algorithm for cardiac electromechanics within the active

strain approach and based on the transmurally variable orthotropic activa-

tion model (6.29) was introduced and analyzed in Gerbi, Dede’ and Quar-

teroni (2018); the same solver was used in Landajuela et al. (2018) for the

electromechanical coupling in the left ventricle with the inclusion of the

Purkinje network. Segregated and staggered algorithms for the same electro-

mechanics model were alternatively proposed and analyzed in Gerbi (2018)

and Gerbi, Dede’ and Quarteroni (2018).

In Figure 6.6 we show an example of fibre configuration in the left ventri-

cle, and in the same figure and Figure 6.7 we give the results of an electro-

mechanical simulation.

6.3 The ventricular fluid dynamics

Blood flow in heart cavities Ωcav, shown in Figure 5.1, can be regarded

as homogeneous, Newtonian and incompressible (Vierendeels, Riemslagh,

Dick and Verdonck 2000, Watanabe et al. 2002). The displacements induced

by the interaction with the myocardium can be larger than 30%, so it is
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mandatory to account for the geometric deformation of the fluid computa-

tional domain, either by prescribing its motion or through the solution of

fluid–structure interaction (FSI) problems. Despite the large displacements,

the ALE technique introduced in Section 3.6.3 is suitable for FSI in this

context, as shown by several authors: see e.g. Cheng, Oertel and Schenkel

(2005) and Nordsletten et al. (2011a). Alternatively, the immersed boundary

method (Peskin 1972), which does not require remeshing or induced mesh

deformation, has often been used since the celebrated paper by Peskin (Mit-

tal et al. 2016, Choi et al. 2015, De Tullio et al. 2009, Meschini et al. 2018);

see Section 6.4 for a mathematical description.

One of the main features of the intraventricular fluid dynamics is rep-

resented by the formation of a vortex ring (O-ring) during diastole (i.e.

the filling phase) just downstream of the mitral valve; see e.g. Menghini

et al. (2018) and Tagliabue et al. (2017a). This ring is generated during the

peak flow due to a pressure gradient between left atrium and left ventri-

cle, and it is distorted due to the asymmetry of the mitral valve leaflets

(Seo et al. 2014). At the end of this phase, the vortex ring is broken up

into small-scale structures that propagate towards the posterior wall and

the apex. After the second mitral peak flow due to the atrium contraction,

additional vortex rings pop up. However, due to the small duration of this

phase, they are less intense and do not propagate far into the chamber (Le

and Sotiropoulos 2013). Similar vortex rings are generated in the left atrium

from the flow ejected by the pulmonary vein (Mittal et al. 2016, Menghini

et al. 2017). This complex and disturbed fluid dynamics, in the presence of

a fairly high Reynolds number (≃ 4000), may lead to a nearly turbulent flow

even in healthy cases; as a matter of fact, the ventricular blood flow can be

characterized as transitional (Chnafa et al. 2014, Mittal et al. 2016, Quer-

zoli, Fortini and Cenedese 2010). For this reason, it is common practice to

include a suitable turbulence model in cardiac simulations; see e.g. Chnafa

et al. (2014) for LES models, while Menghini et al. (2018) and Tagliabue,

Dede’ and Quarteroni (2017b) for the variational multiscale (VMS–LES)

formulation. We refer the reader to Cimino et al. (2012) and Domenichini,

Pedrizzetti and Baccani (2005) for a wider discussion of intraventricular

blood flow in healthy and unhealthy conditions.

Regarding boundary conditions for the FSI problem, on the endocardium

Σendo (Figure 5.1) the kinematic and dynamic conditions are implicitly de-

termined by the coupling with the structural problem holding in the myo-

cardium, leading to a fluid–structure interaction problem (see Section 6.5).

The solution of a coupled FSI problem can be avoided in those cases where

the wall velocity can be derived from dynamic MRI or CT images as in
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(a) (b)

Figure 6.8 Blood flow modelling in idealized left ventricle geometries mod-
elled as prolate ellipsoids (with prescribed deformation), 2D (a) and 3D
(b): flow velocity and vortex structures at diastolic peak. Results obtained
by means of isogeometric analysis solver; see Tagliabue et al. (2017a) and
Tagliabue et al. (2017b). Courtesy of A. Tagliabue (EPFL).

(Chnafa et al. 2014) for the left ventricle and (Masci et al. 2017) for the left

atrium. However, this requires us to have at our disposal several (20–30)

wall displacement fields at different time instants during every heartbeat.

The wall myocardium velocity (which provides the Dirichlet boundary con-

dition for the fluid equations in the ventricle) can be generated by numer-

ically differentiating the displacement field (Khalafvand et al. 2014, Mittal

et al. 2016). Alternatively, the wall myocardium velocity could be provided

by the solution of the electromechanics model if the latter were segregated

from the fluid model (Choi et al. 2015). Finally, in reference or idealized

geometries of the chambers, the deformation of the computational domain

can be prescribed or inferred from the Wiggers diagram as done in Menghini

et al. (2017), Menghini et al. (2018), Tagliabue et al. (2017a) and Tagliabue

et al. (2017b). In these cases, the solution of FSI problems is not needed.

The heart also has four (virtual) sections that delimit it from the cir-

culatory system, namely the aortic and pulmonary valve orifices (outlets)

and the interfaces with the venae cavae and the pulmonary vein (inlets). In

these cases, suitable conditions can be obtained by coupling the heart fluid

dynamics with the aorta, the pulmonary artery, and the above-mentioned

veins. These can be modelled by means of 3D, 1D or 0D models.

In the case of simulation in the left ventricle alone (see Figure 6.2(b)) we

have to prescribe suitable boundary conditions at the mitral valve orifice
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(a) (b)

(c) (d)

Figure 6.9 Numerical simulations of the blood flow in the left heart (left
ventricle and left atrium) with prescribed deformation of the cavities: vor-
tex structures by Q criterion and velocity magnitude at different times of
diastole. The vortex O-ring and smaller vortex structures in the left ven-
tricle are highlighted. See Menghini et al. (2018); courtesy of F. Menghini
(EPFL).

Γmitr as well. For example, Khalafvand et al. (2014) propose prescribing the

flow rates at Γmitr and at the aortic valve outlet Γao obtained by MRI mea-

surements of the volume changes of the left ventricle chamber, noticing that

the two valves are never open simultaneously. Alternatively, flow rate curves
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(a) (b)

Figure 6.10 Numerical simulations of the blood flow in the left atrium
with prescribed deformation: vortex structures by Q criterion and velocity
magnitude at different times. The flow coming from the pulmonary veins is
highlighted by O-ring vortexes in (b). See (Menghini et al. 2017); courtesy
of F. Menghini (EPFL).

taken from the literature can be applied: see e.g. Nordsletten et al. (2011a).

Special boundary conditions are instead proposed in Tagliabue et al. (2017b)

as we will discuss in Section 6.4. In any case, fluid dynamical simulations

of the blood flow in the heart chambers are strongly affected by the valve

behaviour for which their action should be properly modelled.

We provide examples of numerical simulations related to the solution of

the fluid dynamical problem in the left ventricle and in the left atria in

Figures 6.8, 6.9 and 6.10.

6.4 Modelling the valves

Heart valves are made of thin leaflets. Aortic and pulmonary valves cause

limited resistance to the blood during systole and sustain large pressure

gradients during diastole. Moreover, unlike the vascular vessel wall, they

are subjected to very large displacements. Because of these features, the

mathematical and numerical modelling of the valve mechanics and their

interaction with blood flow is very demanding, requiring ad hoc techniques

for their description. This is further complicated by the fact that the opening

and closing of the valves introduce topological changes to the computational

domain of the fluid problem. Our main focus in this section will be on

the aortic and mitral valves of the left ventricle, the most studied from

the mathematical and clinical points of view. For recent reviews on valve

modelling, see Marom (2015) and Votta et al. (2013), for example.
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6.4.1 Mechanical models of the leaflets

Due to fibre alignment, which occurs mostly in the circumferential direction

a, and to the presence of collagen, most of the valve mechanical models

proposed so far are of the non-linear transversally isotropic type. In partic-

ular, they depend on the two invariants I1 = trC and I4 = â · (Câ) of the
left Cauchy tensor C. For example, May-Newman, Lam and Yin (2009) and

Prot, Skallerud and Holzapfel (2007) use the strain energy function

Θ(I1, I4) = c
[
eb1(I1−3)2+b4(I4−1)2 − 1

]
,

for suitable constants c, b1, b4. Variants of the above energy have been con-

sidered, for example by Humphrey and Yin (1987), May-Newman and Yin

(1998) and Weinberg and Kaazempur-Mofrad (2006). For a comparison of

numerical results obtained with these constitutive laws, see Auricchio, Fer-

rara and Morganti (2012). More sophisticated energy functions include the

microstructure of the leaflet tissue: see e.g. Einstein et al. (2005).

Due to their thinness, heart valves are often modelled as membrane shells

(see Ciarlet (2000)) by neglecting the shear bending forces, which are an

order of magnitude smaller than the in-plane stresses (Hsu et al. 2015, Kim,

Lu, Sacks and Chandran 2008, Merryman, Huang, Schoen and Sacks 2006,

Morganti et al. 2015).

Some works on the mitral valve also consider the presence of the chordae

tendinae (see Section 4.1). These comprise independent ring models, where

the chordae are modelled as non-linear springs with zero elasticity during

compression and exponential-like stiffness during traction (Kunzelman and

Cochran 1990, Mansi et al. 2012), and one-dimensional models characterized

by a non-linear energy function (Einstein et al. 2005, Votta et al. 2007,

Padala et al. 2010).

Another difficulty arises when modelling the contact among the leaflets

during closure. A common strategy to handle this process is a penalty

method (Hsu et al. 2015, Marom 2015, Mansi et al. 2012). This is based

on measuring the distance between each vertex of the finite element mesh

discretizing the leaflet and the other closest leaflet, and on locating a spring

between the vertex and the collision point when the distance becomes smaller

than a critical value. Astorino, Gerbeau, Pantz and Traoré (2010) propose

a more sophisticated algorithm, based on the introduction of sub-iterations

that guarantee the satisfaction of the contact constraint via the introduction

of Lagrange multipliers that act as a force of repulsion between the leaflets.

The numerical simulation of valve mechanics has usually been obtained by

prescribing a pressure difference (jump) between the two sides of the leaflets,
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mimicking the effect of the fluid (Gnyaneshwar, Kumar and Balakrishnan

2002, Votta et al. 2013). However, more realistic models are obtained by

considering the FSI problem arising between the blood flow and the leaflets.

This is the topic of the next two subsections.

6.4.2 Reduced models for fluid–valve interaction

As already noted, the simulation of the fluid–structure interaction between

blood and valve leaflets is computationally demanding. However, if one is

interested only in the fluid dynamical quantities and not in the internal

leaflet stresses, reduced models may be considered.

Models for the valve orifice. The first family does not explicitly represent the

leaflets; rather, only the opening/closure mechanism of the valve is modelled

through the description of the valve orifice. The simplest strategy consists in

a priori operating the opening and closing of the valve on the basis of a flow

rate or pressure profile obtained from the literature or from clinical data: see

for instance Faggiano et al. (2013). For an example, see Bazilevs et al. (2009),

Vergara et al. (2012) and Nestola et al. (2017) for the flow simulation in the

aorta and Khalafvand et al. (2014) for that in the left ventricle. A more

realistic situation is obtained by simulating the opening/closure mechanism

of the aortic valve orifice by means of the following conditions prescribed to

the fluid problem:

if Pu > Pd then the valve opens,

if Qd < 0 then the valve closes,
(6.38)

where Pu is the upstream pressure and Pd and Qd are the downstream pres-

sure and flow rate (Formaggia et al. 1999). The quantities Pu, Pd, Qd could

be prescribed as data or else be the results of the numerical computation

of the flow field. For example, in a fluid dynamics simulation in the aorta,

Pu is the prescribed left ventricular pressure, and Pd and Qd are the un-

known aortic pressure and flow rate. For a left ventricular flow simulation,

the situation is more involved as we have to distinguish between the mitral

and the aortic valve: for the former, Pu is the prescribed atrial pressure

and Pd and Qd are the unknown left ventricular pressure and flow rate;

for the latter, Pu is the unknown left ventricular pressure, and Pd and Qd
the prescribed aortic pressure and flow rate. Many works have considered

a zero-dimensional model of the systemic circulation to provide the latter

quantities (Wenk et al. 2013). In any case, the opening/closure mechanism

is not prescribed a priori. This leads to a non-linear boundary condition for
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the fluid problem at the valve orifice which, in the electric circuit analogy

of zero-dimensional models (see Section 3.5.1), is represented by an ideal

diode. Similar models have been proposed by Korakianitis and Shi (2006b)

and Blanco and Feijóo (2013), to account for diseased valves, by introducing

a suitable non-ideal law for the diode. More refined reduced models consider

the opening/closure mechanism not simply in an on–off mode: the open part

of the orifice dynamically changes continuously by projecting the supposed

leaflet position on the orifice plane. For example, in Sundaram, Balakrishnan

and Kumar (2015) the dynamics of the valve orifice opening/closure is given

by a prescribed law, whereas in Korakianitis and Shi (2006a) it is given by

AV =
(1− cos θ)2

(1− cos θmax)2
,

where AV ∈ [0, 1] is the fraction of open orifice area, θ is the (mean) opening

leaflet angle (θ = 0 means closed valve) and θmax is the maximum opening

angle. The dynamics of the opening angle θ is determined by the ODE

d2θ

dt2
+ k1

dθ

dt
+ k2(Pd − Pu) cos θ = 0, (6.39)

for suitable parameters k1 and k2 and appropriate initial conditions on θ

and dθ/dt.

For all these models, which do not explicitly include the leaflets, there

might be a need to switch between Dirichlet and Neumann (essential and

natural) boundary conditions (and vice versa) along a single heartbeat in a

fluid problem. Indeed, a Dirichlet condition is usually prescribed when the

valve is closed (e.g. homogeneous in the physiological case), whereas a Neu-

mann or a resistance condition might be preferred when the valve is open.

This might be problematic at the numerical level, particularly in view of the

definition of suitable algorithms and the implementation. Tagliabue, Dede’

and Quarteroni (2017b) propose a new way to overcome this problem, based

on a Robin-like condition called mixed time varying boundary condition,

which implemented by means of the extended Nitsche’s method proposed in

Juntunen and Stenberg (2009); see (Tagliabue, Dede’ and Quarteroni 2016)

for the analysis of the method applied to parabolic PDEs. For simplicity we

detail the case of a Neumann-like condition for the open valve, and we refer

the reader to Tagliabue et al. (2017b) for the more physiological case of a

resistance condition. Let Γ be the valve orifice at hand, and suppose that

one wants to prescribe at each time the following conditions:

v = g if the valve is closed, (6.40a)

T f (v, p)n = h if the valve is open. (6.40b)
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For example, g might be obtained via a prescribed flow rate (null or equal to

the fluid domain velocity in the physiological case) by assuming a priori the

shape of the velocity profile (e.g. flat), whereas usually h = Pn, where P

is a prescribed mean pressure. The boundary conditions (6.40) are replaced

by the unique mixed time varying boundary condition

T f (v, p)n+ λv = h+ λ g,

where λ : Γ × (0, T ) is a suitable switch function dependent on space and

time. If λ → 0+, then the natural (Neumann in this case) boundary con-

dition is set on Γ to mimic the open valve; conversely, if λ → +∞, the

essential (Dirichlet) boundary condition is instead enforced to represent the

closed valve. Such a mixed time-varying condition is set by means of the

extended Nitsche method, for which the following terms are added to the

weak formulation (3.6) of the fluid problem:

−
∫

Γ

λh

ξ + λh
T f (v, p)n ·w dγ

−
∫

Γ

λh

ξ + λh
(v − g) · (T f (w, q)n) dγ +

∫

Γ

ξλ

ξ + λh
(v − g) ·w dγ

−
∫

Γ

h

ξ + λh
(T f (v, p)n − h) · (T f (w, q)n) dγ +

∫

Γ

ξ

ξ + λh
h ·w dγ,

where ξ ∈ [0,+∞) is a parameter and h is the mesh size (possibly not

constant); in particular, in order for the method to be effective, ξ should

be “large” when λ → +∞ and “small” for λ → 0+. This discrete problem

preserves the usual finite element accuracy. Note that for λ → +∞ and ξ

“sufficiently large” we recover the classical Nitsche method for prescribing

the Dirichlet condition (6.40a), whereas for λ = 0 and ξ “small” the formu-

lation is consistent with the Neumann condition (6.40b) with an additional

stabilization term. Numerical results obtained with this method were pre-

sented in Figure 6.8. We remark that at this stage λ and ξ are assigned

functions of the time; however, these could be used as unknowns of the

fluid–valve problem.

Alternatively, the switch between a flow rate and mean pressure condition

could be prescribed via the defective version of the extended Nitsche method

proposed in Vergara (2011).

Reduced models for valve leaflets. A second family of reduced strategies in-

cludes a reduced model of the leaflets without solving the full 3D mechanical

problem. These methods are very useful when one wants to determine to

good accuracy the influence of the leaflets on the blood flow. A first simple
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model is based including the position of the open leaflets obtained by a pre-

liminary mechanical simulation and considering an on–off opening/closure

mode: see e.g. Bonomi et al. (2015). A similar model was proposed by As-

torino, Hamers, Shadden and Gerbeau (2012), who considered an immersed

resistive method to switch between the open and closed configuration. In

particular, the following term is added to the variational formulation of the

fluid problem: ∫

Γo

Rov ·w dγ +

∫

Γc

Rcv ·w dγ,

where Γo and Γc are the surfaces representing the open and closed leaflet

configurations, respectively, and Ro and Rc are the corresponding resistance,

which act as penalization terms to enforce the no-slip condition v = 0 at

the leaflet. Thus, when the value of the resistance is high, the corresponding

surface configuration is physically included in the model, the velocity is zero

at the leaflet and, accordingly, a pressure drop is generated across the leaflet;

by contrast, when the value of the resistance is zero, the leaflet is invisible

to the model, no constraint is prescribed on the velocity, and no pressure

drop is generated. The switch between large and vanishing values of the

resistances is determined by (6.38).

More sophisticated reduced fluid–valve models account not only for the

open and closed configurations of the leaflets, but also provide a simpli-

fied dynamics of the entire valve opening/closure mechanism. For example,

Laadhari and Quarteroni (2016) and Fedele, Faggiano, Dede’ and Quar-

teroni (2017) represent a leaflet Γ as a surface described by two embedded

level-set functions which depend on a single scalar function of time; that is,

the opening angle θ. The latter is determined by a relation very similar to

(6.39). At each time step, the term
∫

Γ
R(v − vleaf) ·w dγ

is added to the weak formulation of the fluid problem, in order to guarantee

a no-slip condition at the leaflet (v = vleaf, where vleaf is the leaflet velocity

determined from θ) by selecting a sufficiently large resistance R. We remark

that in this case, the surface Γ representing the valve leaflets through the

level-set functions depends and varies over the time as determined by the

opening angle θ; the problem is therefore a reduced fluid–valve model in the

unknowns v, p and θ. A similar approach was adopted in Auricchio, Lefieux,

Reali and Veneziani (2016), where however the leaflet was represented in a

more simplified way by means of the opening angle alone (i.e. no level-

set functions were involved). Suitable extensions of the SUPG and VMS–
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Figure 6.11 Fluid dynamics in the ascending aorta with a patient-specific
aortic valve. Numerical results were obtained using LifeV. See Fedele et al.
(2017) for a complete overview of the reduced fluid-valve interaction model
and the results. Courtesy of M. Fedele (Politecnico di Milano).

LES stabilization techniques have been proposed in Fedele et al. (2017) and

Menghini et al. (2018) to account for the resistive terms mimicking the

presence of the valves.

In Figure 6.11 we give an example of the fluid dynamics across the aortic

valve obtained by means of the method proposed in Fedele et al. (2017).

6.4.3 Interaction between blood and leaflets

To accurately model the interaction between blood and valve leaflets, aimed,

for example, at detailed computation of the internal leaflet stresses, the

solution of a full FSI problem is required.

Unlike for the blood vessel and ventricular simulations, the arbitrary

Lagrangian–Eulerian (ALE) formulation, described in Section 3.6, is not

suited to handling the FSI problem arising between blood and heart valve

leaflets. Indeed, due to the large displacements of the leaflets, the fluid mesh

becomes highly distorted, producing severely stretched mesh elements and

thus requiring a frequent remeshing of the grid. For this reason, specific FSI

techniques have been developed specifically for the numerical solution of

this problem. The most successful are the immersed boundary method, the

fictitious domain approach and the cut-FEM method, together with their



146 Modelling the heart

numerous variants; see e.g. (Hsu et al. 2015) and (Kamensky et al. 2015)

for the recently proposed immersogeometric method. In general, all these

methods are characterized by a fixed fluid mesh and enable us to treat non-

conforming interface meshes.

Immersed boundary method. The celebrated immersed boundary method

(IB) was specifically developed by Peskin (1972) for the fluid dynamics in

the heart. The leaflets are represented by membranes in a Lagrangian frame-

work regarded as part of the fluid, represented in an Eulerian framework,

and exerting internal localized forces on the latter. This is achieved by in-

troducing a Dirac delta distribution, δ, on the membrane.

The IB method was originally developed for finite difference spatial dis-

cretization: see e.g. Peskin (1972), Mittal and Iaccarino (2005) and Peskin

(2002). In this case, in order to avoid leaks, the Lagrangian grid should be

sufficiently fine for the distance between two adjacent points to be less than

the Eulerian mesh size. Then, the structural forces are interpolated into the

fixed nodes of the fluid mesh. The major issue when finite differences are

used is the approximation of δ. This is usually obtained via a function δh,

which is non-singular for each h and tends to δ for h→ 0 (Peskin 2002).

Here we describe the variational formulation of the IB method proposed

in Boffi and Gastaldi (2003), which is useful for a finite element approxi-

mation and does not require any specific approximation of the delta distri-

bution. Given a two-dimensional fluid domain Ωf , let Γs be the immersed

(one-dimensional) structure, whose material points are located at each t in

X(s, t), where s ∈ [0, L] is the Lagrangian coordinate. We consider as an ex-

ample the case of a massless linear elastic structure with elasticity constant

κ. Thus, referring to the notation introduced in Section 3.1 and assuming

homogeneous boundary conditions, the weak formulation of the IB method

is as follows (Boffi, Gastaldi and Heltai 2007). For each t > 0, find v ∈ V ,

v = v0 for t = 0, p ∈ L2(Ωf ), and X =X(t), X =X0 for t = 0, such that

ρf

∫

Ωf

∂v

∂t
·w dω +Af (v,v,w) + B(p,w) =

∫ L

0
κ
∂2X(s, t)

∂s2
w(X(s, t)) ds,

(6.41a)

B(q,v) = 0, (6.41b)

∂X

∂t
(s, t) = v(X(s, t), t), (6.41c)

for all w ∈ V and q ∈ L2(Ωf ). In fact, the right-hand side of (6.41a)
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guarantees the satisfaction of the normal stress continuity at the membrane,

whereas (6.41c) enforces the velocity continuity.

For the finite element approximation of the above problem, the forcing

term is usually integrated by parts. For example, in the case of linear finite

elements for the structure, for each t > 0 it becomes

M−1∑

i=0

κ

(
∂Xi+1

h

∂s
− ∂X i

h

∂s

)
w(Xi

h),

(Boffi et al. 2007), where X i
h = Xh(si), i = 0, . . . ,M , is the finite element

approximation of X and si are the nodes of the one-dimensional mesh.

Regarding the time discretization, a first approach is to consider a fully

implicit scheme. For the backward Euler approximation, unconditional sta-

bility is guaranteed (Tu and Peskin 1992). However, this scheme requires

the introduction of sub-iterations to handle the coupling between fluid and

structure in (6.41). A more useful approach relies on treating the right-hand

side of (6.41a) explicitly and the remaining part of the equation implicitly.

The position occupied by the structure is then updated in a second step by

means of a suitable implicit approximation of (6.41c). This scheme has been

proved to be stable under a CFL-like condition (Boffi et al. 2007).

Several extensions and applications of the IB method have been provided.

Among them, we mention the following: the variational formulation for the

case of a thick immersed structure proposed in Boffi, Gastaldi, Heltai and

Peskin (2008), for which the right-hand side of (6.41a) becomes
∫

Ωs

T̂ s(d̂(s, t)) : ∇w(X(s, t)) ds,

where s in this case is a vectorial Lagrangian coordinate; a mesh-adaptive

approach used in combination with a second-order scheme (see Griffith, Hor-

nung, McQueen and Peskin 2007); the use of a curvilinear fixed fluid mesh

to improve flexibility and efficiency (the CURVIB approach: see Borazjani,

Ge and Sotiropoulos 2008); the application to realistic three-dimensional

mitral and aortic valves successfully addressed in Griffith, Luo, McQueen

and Peskin (2009) and Yin, Luo, Wang and Watton (2009).

Fictitious domain approach. The fictitious domain (FD) approach was first

introduced by Glowinski, Pan and Periaux (1997) and Bertrand, Tanguy and

Thibault (1997), and then used by de Hart, Peters, Schreurs and Baaijens

(2000) and de Hart, Baaijens, Peters and Schreurs (2003) in the context

of heart valves. The FD approach can be regarded as the dual of the IB

method, in the sense that in the latter a weak enforcement of the normal
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stress continuity at the FS interface is added to the weak formulation of

fluid problem, whereas in the FD approach the velocity continuity is weakly

enforced at the FS interface. This is achieved by means of Lagrange multi-

pliers, as detailed in what follows (we refer to Sections 3.1, 3.2 and 3.3 for

the notation; in particular, variables with ̂ are referred to the reference

domain, and we assume homogeneous boundary conditions). Find

v(t) ∈ V t, d̂(t) ∈D, λ(t) ∈H−1/2(Σt) and p(t) ∈ L2(Ωt),

such that

ρf

∫

Ωt

∂v

∂t
·w dω +Af (v,v,w) + B(p,w)

+ ρs

∫

Ωs

∂2d̂

∂t2
· êdω +

∫

Ωs

T̂ s(d̂) : ∇êdω =

∫

Σt

λ · (w − e) dσ,

B(q,v) = 0,
∫

Σt

µ ·
(
v − ∂d

∂t

)
dσ = 0,

df = d at Σt, (6.42)

for all w ∈ V , ê ∈D, µ ∈H−1/2(Σt) and q ∈ L2(Ωt), where Ωt = Ωtf ∪ Ωts
and V t is defined over Ωt. For the well-posedness of the time-discretized

version of problem (6.42) we refer to Formaggia et al. (2009b). We notice

that the use of the same Lagrange multiplier λ from both the fluid and

structure sides also guarantees the continuity of normal stresses (Formaggia

et al. 2009b).

Stijnen, de Hart, Bovendeerd and van de Vosse (2004) have successfully

reported a validation with experimental measurements, and Astorino et al.

(2010) have reported an application of the FD approach to three-dimensional

problems in combination with a contact model for the leaflets.

Cut-FEM approach. A natural strategy for handling an internal interface

cutting the mesh in an arbitrary way is to write two weak formulations of

the problem at hand, one for each of the two subdomains generated by the

presence of the interface, and then sum them up. In this case, the meshes

of the two subdomains are fixed (background meshes). Since some of the

mesh elements are cut by the interface, their contribution to the matrices

is split into two parts: see Figure 6.12(a). This method is known as cut-

FEM (Hansbo and Hansbo 2002, Hansbo, Hansbo and Larson 2003). Here,

the jump between the normal stresses at the interface is determined by

the physical interaction with the interface, as happens for the blood/valve

interaction.
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(a) (b)

Figure 6.12 Element mesh K cut by the interface Γ (a) and FS domain (b).
For the latter, we notice that Ω1

f and Ω2

f are two non-overlapping subdo-

mains, whereas the related computational meshes have an overlap (in grey)
in view of the X-FEM approach.

A common strategy used for guaranteeing the satisfaction of the inter-

face continuity conditions is discontinuous Galerkin (DG) mortaring (often

referred to as Nitsche mortaring). This is a very effective choice since the

DG method prescribes interface conditions in a weak sense, thus allowing

a great degree of flexibility of the solution at the interface (Hansbo and

Hansbo 2002, Hansbo et al. 2003).

We notice however that the implementation of the cut-FEM method is

not standard since in the cut elements we may have polygonal elements: see

for example Figure 6.12(a), where the original triangle is split into a triangle

and a trapezoid. A solution is offered by the extended finite element method

(X-FEM), enriched in order to make the treatment of the cut elements easy.

In particular, the basic idea is to duplicate the variables in the cut elements

and to use the basis functions of the original triangle in both subdomains, to

represent the finite element solution and to compute the integrals (Hansbo

and Hansbo 2002).

To provide a concrete example of the cut-FEM method, we will give the

weak formulation introduced and analyzed by Alauzet, Fabrèges, Fernández

and Landajuela (2016), related to the case of a valve embedded in blood

and represented by

ρsHs
∂d

∂t
+Ld = −[[T fn]] in Σ,

where Σ is the embedded membrane, L is an elliptic operator, and [[·]] denotes
the jump across the membrane. In particular, referring to Figure 6.12(b), let
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Ω1
f and Ω2

f be two non-overlapping subdomains separated by Σ, and Ω1
f,h

and Ω2
f,h two meshes containing Ω1

f and Ω2
f , respectively, with an overlap

region (in grey in the figure) containing the membrane. Moreover, let V i
h

and Qih be velocity and pressure finite element spaces related to Ωif,h and

let Ci be one of the bilinear or trilinear forms C introduced in Chapter 3

restricted to Ωif,h. Thus we have

2∑

i=1

[
ρf

∫

Ωi
f

∂vih
∂t

·w dω +Ai
f (v

i
h,v

i
h,w) + Bi(pih,w)− Bi(q,vih)

]

+ sh(vh,w) + ρsHs

∫

Σ

∂dh
∂t

· e dσ +

∫

Σ
Ldh · edσ

+

2∑

i=1

[
−
∫

Σ
T f (v

i
h, p

i
h)n

i · (w − e) dσ −
∫

Σ
T f (w, q)n

i ·
(
vih −

∂dh
∂t

)
dσ

+
γ

h

∫

Σ

(
vih −

∂dh
∂t

)
· (w − e) dσ

]
= 0.

The terms in the third and fourth rows above are simply the usual DG terms

guaranteeing consistency, symmetry and stability of the method, whereas

sh(·, ·) accounts for the ghost node stabilization (Burman et al. 2015), which

guarantees an optimal convergence order. This formulation was introduced

for infinitesimal displacements. However, the authors also treat the case of

a moving interface: for details see Alauzet et al. (2016).

Finally, we notice that the cut-FEM approach has been also considered

for the case of a thick structure: see Burman and Fernández (2014), (Zonca

2018) and Zonca, Formaggia and Vergara (2018). Alternatively to the X-

FEM method, another strategy has been recently proposed in Antonietti

et al. (2018) to manage the polygonal elements generated by the cut of

the background mesh with the moving structure. This strategy is based on

building the DG basis functions directly on the current polygon. This allows

to easily consider high-order space discretizations.

6.5 Modelling the entire heart function

We conclude this chapter by providing some hints on the modelling of the

complete heart function, a challenging and far-reaching endeavour. The lat-

ter is very complex and requires us to merge all the mathematical, numerical

and computational issues highlighted previously in this chapter: see Chabin-

iok et al. (2016), Dössel and Loewe (2017), Lee et al. (2016), Nordsletten

et al. (2011b) and Quarteroni et al. (2017).



6.5 Modelling the entire heart function 151

Basically, an integrated model of the heart involves the coupling of the

electromechanical problem (6.34), the blood fluid dynamics (see Section 6.3),

and the valve functioning (see Section 6.4). The coupling between the first

two subproblems occurs at the endocardium Σendo: see Figure 5.1. In partic-

ular, this is determined by the classical fluid–structure interaction coupling

conditions, i.e., the kinematic condition (3.19c) and the dynamic condition

(3.19d). In particular, referring to the notation of Sections 3.1 and 6.2 and

to Figure 5.1, we have the following problem in the framework of the active

stress approach for electromechanics. Find the blood velocity v and pressure

p, the muscle displacement d, the trans-membrane potential Vm, the gating

variables w, and the ionic concentration variables c, such that

ρf

(
∂v

∂t
+ ρf (v · ∇)v

)
−∇ · T f (v, p) = 0 in Ωtcav, (6.43a)

∇ · v = 0 in Ωtcav, (6.43b)

v =
∂d

∂t
at Σtendo, (6.43c)

(
T Ps (d) + T

A
s

(
c,d,

∂d

∂t

))
n = T f (v, p)n at Σtendo, (6.43d)

−∇ ·
(
T̂
P

s (d̂) + T̂
A

s

(
ĉ, d̂,

∂d̂

∂t

))
= 0 in Ωmus, (6.43e)

T̂
A

s = PAâf ⊗ âf , PA = A
(
ĉ, d̂,

∂d̂

∂t

)
in Ωmus, (6.43f)

V̂m = M
(
V̂m; d̂, ŵ, ĉ

)
in Ωmus, (6.43g)

(ŵ, ĉ) = G(ŵ, ĉ; V̂m) in Ωmus. (6.43h)

After numerical discretization in time and space, the corresponding non-

linear algebraic system is tremendously stiff and can have a very large nu-

merical dimension. Devising computationally efficient numerical strategies

for its solution is a very active research area.

An effective numerical strategy for solving the entire heart coupled prob-

lem is given by the iterative solution at each time step of the electro-

mechanical and fluid subproblems and based on the exchange of the inter-

face conditions (6.43c, 6.43d). In particular, one of the partitioned strategies

described in Section 3.6.3 can be adapted and used for problem (6.43) as

well. Of course, at each iteration of the partitioned algorithm, the electro-

mechanical problem could be solved by means of one of the strategies re-

ported in Section 6.2.

Another partitioned algorithm for the solution of problem (6.43) is ob-
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tained by considering the solution at each time step of the electrical prob-

lem first and the FSI problem later (Nordsletten et al. 2011b). This is simply

an extension of EM1 and EM1′ algorithms described in Section 6.2, where

steps (2b) and (2′b) are replaced by a Newton iteration over the FSI prob-

lem. Different segregated schemes were proposed in (Gerbi 2018) for the

integrated problem in the framework of the active strain approach.

A different approach is based on the monolithic solution of the integrated

heart problem (6.43) by means of a full Newton method. In particular, Quar-

teroni et al. (2017) describe fully implicit and semi-implicit methods. The

latter is based on updating only a part of the Jacobian as a consequence of

an operator splitting technique. By means of numerical experiments, the au-

thors emphasized that particular choices of the splitting and of the temporal

scheme could lead to numerical instabilities. Whatever strategy is adopted,

the tangent problem at each Newton iteration is solved by means of a pre-

conditioned iterative method, which in this case is particularly suitable due

to the block structure of the Jacobian: see Quarteroni et al. (2017).

Stability and convergence analysis of the different numerical strategies

and solvers is a field of current investigation.

As for today, the “UT heart simulator” developed by the research team of

T. Hisada (Tokyo University) has provided the most comprehensive simula-

tions of the entire cardiac function, including multiscale processes in the tis-

sue, fluid dynamics in the heart chambers, and valves dynamics; see (Sugiura

et al. 2012) and e.g. (Watanabe et al. 2002, Watanabe et al. 2004).
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Beyond direct simulation

In all the problems considered so far, for a given set of inputs (e.g. geometry,

source terms, boundary and initial conditions) the goal has been to solve a

forward (direct) PDE-based problem numerically, and, possibly, to evalu-

ate some physical indices of clinical interest, such as the flow rate across a

vessel section, the wall shear stress over a portion of the lumen boundary,

or the oscillatory shear index. On the other hand, the efficient numerical

algorithms and computational resources now available enable us to tackle

several additional kinds of problem.

When simulating blood flows one has to deal with the variability of in-

put data, such as geometric features of the vessel, boundary conditions and

physical coefficients (e.g. the Reynolds number, the Womersley number, the

structural model or material parameters related to the vessel wall). Very

often, these data vary within a broad range and are almost impossible to

characterize precisely. All these inputs affect the solution of the problem un-

der investigation, as well as the outcomes of clinical interest. In the clinical

context it is thus important to be able to characterize input/output relation-

ships efficiently, in order to investigate both intra-patient and inter-patient

variability. For the former case we include all those effects due to variations

affecting a single patient, for example over time, or before/after clinical in-

tervention. For the latter case, we mention for instance the morphological

variability among vessel shapes due to age, size or pathological factors (see

e.g. Xiong and Chong 2008 for the case of distal coronary anastomoses). It

is thus of paramount importance to develop mathematical techniques capa-

ble of detecting the most relevant parameters, and then address the impact

of their variation on the outputs of interest. This requires the solution of

many queries to the forward problem. In this context, three classical situa-

tions we may face are (i) optimal control and optimal design, (ii) parameter

identification and data assimilation, and (iii) uncertainty quantification.
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(i) Optimal control and optimal design problems. When we pursue a suit-

able objective via an optimal strategy to be determined, we act on

some inputs of the given partial differential equation, the state prob-

lem, such as boundary data, physical coefficients, or the shape of the

domain itself, and the control variables, so that the solution of the cor-

responding state problem could meet the prescribed goal. This yields a

PDE-constrained optimization problem; its numerical solution usually

poses severe computational challenges, as the state problem needs to be

solved several times while searching for the optimal control in an itera-

tive way. Exploiting numerical optimization procedures for blood flow

simulations is intended to (a) improve the design of prosthetic devices

(such as stents, grafts, ventricular assist devices) with the aim of fulfill-

ing a specific target, or (b) customize treatments or surgical procedures,

provided that patient-specific information can be acquired. Examples

include the optimal placement of electrodes in a defibrillation stage

to damp the electrical activity in the myocardium in a desired way

when dealing with the therapeutic treatment of cardiac arrhythmias

(Nagaiah, Kunisch and Plank 2013b), the optimization of the shape

of a cannula in order to maximize the flow rate through a ventricular

assist device (Marsden 2014), and the improvement of the shape of a

coronary bypass graft in order to possibly avoid vessel re-occlusion (Lei,

Archie and Kleinstreuer 1997, Dur et al. 2011). The first example men-

tioned above is an optimal control problem, where the control variable

is a current source for the monodomain (or bidomain) equation (see

Section 6.1), that is, one of its data. The two other examples address a

shape optimization or optimal design problem to be solved, the control

variable being the shape of the domain where the state problem is set.

(ii) Parameter identification and data assimilation. In principle, cardio-

vascular models necessitate a huge amount of data, for example the

patient’s radiological images and measurements. In general, however,

some of them may be missing; remember for instance the issue of miss-

ing or defective boundary conditions discussed in Section 3.4, or the

lack of biological parameters characterizing the tissue properties. For

example, it is very hard to estimate the electrical conductivity of the

myocardium for electrophysiology models, whereas (pointwise) mea-

surements of the electrical potential – whose mathematical modelling

can be characterized by a PDE model requiring electrical conductivities

as inputs – can be easier to acquire. By solving inverse/identification

problems in cardiovascular modelling, we aim to identify those inputs

which are unknown or affected by uncertainty. For that, we rely on
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suitable quantities which are (a) acquired from measurements, such as

displacements, pressures or flow rates, and (b) obtained as the out-

come of a numerical simulation, and match these two sets of values.

In other words, to identify those input values yielding the acquired

measurements, we need to drive the PDE outcome as near as possi-

ble to the measured quantity. In general, vastly different inputs may

have produced the observed outcome: this is why, instead of finding the

most likely input configuration resulting in the observation performed,

we instead rely on statistical inversion theory, in order to incorporate

all possible information about the unknown inputs we may have prior

to the measurement. This requires us to reformulate inverse problems

as problems of statistical inference, for example by means of Bayesian

statistics. A second issue is data assimilation. This rather generic term

encompasses a wide range of techniques exploited to merge measure-

ments and images into the mathematical model in order to improve

numerical simulations. Furthermore, a filtering effect induced by the

numerical simulation can also be exploited in view of noise reduction

in image and measurement acquisition.

(iii) Uncertainty quantification and propagation. Confidence in the outcome

of a cardiovascular simulation depends directly on the level of accuracy

and certainty at which inputs can be determined. In fact, although

outcomes are computed from inputs via a deterministic process, input

data are often contaminated by experimental noise, or cannot be fully

ascertained. Common sources of uncertainty in cardiovascular simula-

tions include (a) boundary conditions, (b) anatomical models, where

each geometric model is contaminated by image noise, (c) flow split,

since very often there is a lack of clinical data to determine flow distri-

bution to multiple distal branches, and (d) material properties, related

to vessel walls or blood (Sankaran and Marsden 2010). Because of un-

certainty, computational simulations have to be performed for a set of

different parameter configurations and then merged in order to deter-

mine how robust simulation outcomes are with respect to variations in

uncertain inputs (Sankaran and Marsden 2011). This is indeed strictly

related to the task of parametric studies and sensitivity analyses, and

can be seen as a forward uncertainty quantification (UQ) problem. Inves-

tigating the propagation of input uncertainties via computed outputs

means evaluating suitable statistics of the outputs (such as expected

values, moments, confidence bands), which are functions of the parame-

ters affected by uncertainty. On the other hand, the solution of optimal

control and inverse identification problems also depends on the experi-
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mental noise affecting observations and measurements used during the

identification process, or the set-up of a desired target. Evaluating un-

certainties in this case, providing suitable confidence intervals for the

estimated quantities (not simply point estimates) and characterizing

the statistical distribution of the unknown parameters are all inverse

UQ problems. In this second case, quantifying uncertainties is even more

important because an inverse problem is intrinsically ill-posed.

In the following chapters we hone our understanding of these three classes

of problems, showing relevant examples in cardiovascular modelling.
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Control and optimization

Solving a PDE-constrained optimization problem consists of reaching a tar-

get by acting on a system governed by PDEs. The goal is to act on a state

problem E(y, u) = 0 given by a PDE system modelling the behaviour of a

state variable y, through a control variable u in order to reach a desirable

target. This is usually done by minimizing (or maximizing) a cost func-

tional J = J(y, u) expressing some physical index of interest encoding the

desired objective – for instance, the squared distance from a target state. For

a comprehensive presentation of the functional setting and well-posedness

analysis of PDE-constrained optimization, see the monographs by Hinze,

Pinnau, Ulbrich and Ulbrich (2009) and Gunzburger (2003). Other classes

of problems of interest in cardiovascular applications, such as those related

to parameter estimation, can also be cast in a PDE-constrained optimization

framework; see e.g. Section 9.1 for further insights.

Generally speaking, a PDE-constrained optimization problem reads

min
y,u

J(y, u) subject to E(y, u) = 0, y ∈ V, u ∈ Uad ⊆ U . (8.1)

Here V and U denote the state and the control space, whereas E : V ×
U → V ∗ and J : V × U → R denote the state equation and the cost

functional, respectively; V ∗ is the dual space of V , and 〈· , ·〉V ∗,V denotes the

duality between two elements in V ∗ and V ; similarly, 〈· , ·〉U∗,U indicates the

duality between two elements in U∗ and U . Additional constraints, depending
on the problem at hand, can also be imposed, for example in the form of

inequalities; we express this fact by saying that we seek the optimal control

in a closed subset Uad ⊆ U of admissible controls.

We assume that the state equation E(y, u) = 0 has a unique solution

y = y(u) ∈ V , and that the Fréchet derivative (with respect to y) Ey(y(u), u)
has a bounded inverse for each u ∈ U . Under these assumptions, the solution
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operator of the state equation is continuously differentiable – we let y′(u)

denote its derivative – and the reduced formulation

min
u
J̃(u) = J(y(u), u), u ∈ Uad (8.2)

is equivalent to (8.1). Note that this is a convenient framework to embrace

– upon defining suitable functional spaces and operators – both stationary

and time-dependent state problems; in the following we will make it clear

whether the proposed methods can be used to tackle both classes of prob-

lems.

8.1 Optimality conditions

The solution (ŷ, û) of a PDE-constrained optimization problem such as (8.1)

requires a system of optimality conditions to be fulfilled, including the state

equation and an optimality condition which involves the gradient of the cost

functional. Indeed, if û ∈ Uad is a local minimum of J̃ , then it satisfies

the variational inequality (also referred to as the optimality condition or

minimum principle)

〈J̃ ′(û), v − û〉U∗,U ≥ 0 for all v ∈ Uad. (8.3)

The quantity appearing on the left-hand side is the so-called Gâteaux deriva-

tive of J̃ , evaluated at û, in the generic, admissible direction v − û (see e.g.

Tröltzsch 2010); J̃ ′(û) denotes the gradient of J̃ at û. To express this latter

quantity in terms of the state solution y, we can use either (i) the sensitivity

approach or (ii) the adjoint approach. As we will see below, in both cases

at least a second PDE problem has to be solved in order to evaluate J̃ ′(u).

8.1.1 Sensitivity approach

Computing sensitivities requires the evaluation of directional derivatives of

both the cost functional and the state solution. For any u, v ∈ U , we can

write

〈J̃ ′(u), v〉U∗ ,U = 〈Jy(y(u), u), y′(u)v〉V ∗,V + 〈Ju(y(u), u), v〉U∗ ,U . (8.4)

The quantity δvy = y′(u)v denotes the sensitivity of the state with re-

spect to the control, evaluated at u, for a given variation v, and can be

obtained by solving a further PDE. Indeed, differentiating the state equa-

tion E(y(u), u) = 0 along the direction v, we obtain

Ey(y(u), u)y′(u)v + Eu(y(u), u)v = 0, (8.5)
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where Ey(y, u), Eu(y, u) are the Fréchet derivatives of the state operator with
respect to y and u, respectively; see e.g. Tröltzsch (2010). Then δvy = y′(u)v

is given by the solution of the linearized state equation

Ey(y(u), u)δvy = −Eu(y(u), u)v. (8.6)

Note that y′(u) : U → V is a linear operator so that, for any admissible

v ∈ U , a new problem has to be solved to evaluate δvy. Numerically, this

approach is very demanding if the whole gradient J̃ ′(u) is required: in this

case, the number of linearized state equations (8.6) to be solved is equal to

the dimension of the control space U , a task that becomes out of reach as

soon as the control has dimension larger than O(10).

8.1.2 Adjoint approach and Lagrange multipliers

A convenient alternative is based on the so-called adjoint approach. By

rewriting (8.4) as

〈J̃ ′(u), v〉U∗ ,U = 〈(y′(u))∗Jy(y(u), u) + Ju(y(u), u), v〉U∗ ,U (8.7)

and exploiting problem (8.5), we can express the first term on the right-hand

side of (8.7) as

(y′(u))∗Jy(y(u), u) = −E∗
u(y(u), u)((E∗

y(y(u), u)))
−1Jy(y(u), u),

where E∗
u(y(u), u) is the adjoint operator1 of Eu(y(u), u). Let us introduce

an additional variable λ = λ(u) ∈ V , called the adjoint state, the solution of

Ey(y(u), u))∗λ = −Jy(y(u), u). (8.8)

Then (y′(u))∗Jy(y(u), u) = E∗
u(y(u), u)λ; moreover, owing to (8.7), the eval-

uation of

J̃ ′(u) = E∗
u(y(u), u)λ(u) + Ju(y(u), u) (8.9)

simply requires us to solve the state problem and a further PDE problem,

regardless of the dimension of the control space U . Note that the adjoint

problem is always a linear PDE.

The adjoint-based expression of the gradient of the cost functional (and

more generally a system of first-order optimality conditions) can also be

1 The adjoint operator of E, denoted by E∗, is given by the relation
(E∗ϕ,ψ)L2(Ω) = (ϕ, Eψ)L2(Ω) for any ϕ,ψ ∈ C∞

0 (Ω); note that no boundary condition is

involved in its definition. For this reason, E∗ is also referred to as the formal adjoint operator.
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obtained, in a more straightforward way, by relying on the Lagrange mul-

tiplier method (Hinze et al. 2009). Let us define the Lagrangian functional

L : V × U × V → R,

L(y, u, λ) = J(y, u) + 〈λ, E(y, u)〉V,V ∗ ,

where λ ∈ V denotes a Lagrange multiplier enforcing the PDE constraint

(playing the role of adjoint variable); note that in this case the three variables

are independent.

By deriving L with respect to λ and imposing that the derivative is equal

to zero, we recover the state problem,

〈Lλ(y, u, p), ϕ〉V ∗,V = 0 for all ϕ ∈ V ⇔ E(y, u) = 0.

Similarly, by deriving L with respect to y, we obtain the expression of the

adjoint problem (8.8),

〈Ly(y, u, p), ψ〉V ∗,V = 0 for all ψ ∈ V ⇔ Jy(y, u) + E∗
y (y, u) = 0. (8.10)

Finally, at the optimum we impose

〈Lu(y, u, λ), v − u〉U∗,U = 0 for all v ∈ Uad

⇔ 〈Ju(y, u) + Eu(y, u)∗λ, v − u〉U∗,U ≥ 0 for all v ∈ Uad.

In this way, a system of first-order necessary optimality conditions to be

fulfilled by the optimal solution (y, u) and the corresponding adjoint state

λ is given by the following Karush–Kuhn–Tucker (KKT) system:

E(y, u) = 0, (8.11a)

Ey(y, u)∗λ̂ = −Jy(y, u), (8.11b)

〈Ju(y, u) + Eu(y, u)∗λ, v − u〉U∗,U ≥ 0 for all v ∈ Uad. (8.11c)

In the unconstrained case Uad ≡ U , the variational inequality reduces to the

equation

〈Ju(y, u) + Eu(y, u)∗λ, v〉U∗,U = 0 for all v ∈ U ,

so (8.11) can be viewed as the Euler–Lagrange system for the Lagrangian

functional; that is, the solutions of (8.11) are the stationary points of L(·, ·, ·):

∇L(y, u, λ)[w, v, η] = 0 for all (φ, v, ψ) ∈ Y × U × V.

The third inequality of system (8.11) allows us to recover the expression of

the gradient J̃ ′(u). Indeed, since E(y(u), u) = 0, it holds that L(y(u), u, λ) =
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J̃(u) for any arbitrary λ ∈ V , so that, by differentiating this latter equality

with respect to u, we obtain

〈J̃ ′(u), v〉U∗,U = 〈Ly(y(u), u, λ), y′(u)v〉V ∗,V + 〈Lu(y(u), u, λ), v〉U∗ ,U

= 〈Lu(y(u), u, λ), v〉U∗ ,U .

Hence, J̃ ′(u) = Lu(y(u), u, λ(u)), since 〈Ly(y(u), u, λ), ψ〉V ∗,V = 0 for any

ψ ∈ V , thanks to (8.10).

For illustration we discuss a specific example, by considering the problem

of minimizing the energy

J(v,u) =
1

2

∫

Ωobs

|v − vd|2 dΩ +
α

2

∫

Γcon

|∇u|2 dΓ,

of a fluid flow in a tract of blood vessel where a bypass is inserted. As a

matter of fact, the bypass is not simulated. Its action is represented via a

velocity control u acting on the boundary Γcon ⊂ ∂Ωf , the interface where

the bypass and the vessel meet: see Figure 8.1. The goal is to regularize the

velocity pattern in a suitable observation region Ωobs ⊆ Ωf by requiring v to

be as close as possible to a desired distribution vd; see the related discussion

in the next section. Referring to the notation of Chapter 3, for simplicity,

we consider a steady version of the Navier–Stokes equations (3.1a, 3.1b),

for which the velocity/pressure couple y = (v, p) solves the state problem

−∇ ·Tf (v, p) + ρf (v · ∇)v = 0 in Ωf ,

∇ · v = 0 in Ωf ,

v = vin on Γin,

v = 0 on Γw,

v = u on Γcon,

T f (v, p)n = 0 on Γout,

where the control variable is the velocity u imposed on the boundary Γcon.

Here α > 0 is a parameter penalizing the control magnitude (or cost); this

can also be seen as a regularization term, ensuring the convexity of the cost

functional. The fluid Cauchy stress tensor Tf (v, p) has been defined in (3.2).

Following the Lagrangian approach, we can derive a system of first-order

optimality conditions, where the adjoint problem for the adjoint variables

λ = (z, q) is given by

−∇ ·Tf (z, q) + ρf (∇Tv)z − ρf (v · ∇)z

= (v − vd)IΩobs
in Ωf ,

∇ · z = 0 in Ωf ,
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(a) (b)

Figure 8.1 (a) Schematic representation of a bypass graft. (b) Domain,
boundary portion and observation region for the bypass model problem.

z = 0 on Γin ∪ Γw ∪ Γcon,

T f (z, q)n = 0 on Γout,

where IΩobs
= IΩobs

(x) is the characteristic function of the region Ωobs. Note

that the adjoint problem is linear in (z, q), and comes from the linearization

of the Navier–Stokes equations around the state solution; the optimality

condition instead reads

αu+ z = 0 on Γcon.

Remark 8.1 In the case of time-dependent state problems, the adjoint

problem is backward-in-time. Depending on the observation appearing in

the cost functional – which can be either on the whole time interval (0, T )

or at the final time T only – the dependence of the adjoint problem on the

state is only at t = T (thus, as initial condition) or on the whole interval

(0, T ). The approach followed so far can still be employed to derive a system

of optimality conditions: see e.g. Section 8.3.2 for further details of a case

of interest.

8.2 Numerical approximation

Solving a PDE-constrained optimization problem entails a computational ef-

fort larger than that required for the solution of a forward (state) problem.

The two formulations (8.1) and (8.2) yield two different paradigms for the

approximation of such a problem. In the former case, both state and control

variables are optimization variables and PDE constraints are explicitly spec-

ified; in the latter, only the control variable u is an optimization variable,

whereas the state variable y is considered to be an implicit function of u via
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the PDE constraint.2 In this latter case, the solution of the state problem is

nested in the evaluation of the gradient J̃ ′(u) of the reduced cost functional.

Algorithms for solving PDE-constrained optimization problems can be

sorted according to several criteria. An initial classification criterion is be-

tween iterative methods, rooted in iterative minimization algorithms for the

reduced cost functional, and all-at-once methods, where the PDE constraint

is kept explicitly and the three equations forming (8.11) are solved simulta-

neously. Another criterion is concerned with the highest order of derivatives

exploited by the algorithm, yielding derivative-free methods, gradient-based

methods and Hessian-based methods.

A different perspective is taken when addressing the interplay between

optimization and discretization: numerical discretization can be performed

before or after the derivation of a system of optimality conditions. More

precisely, in the so-called optimize-then-discretize approach, optimization is

carried out at the continuous level (e.g. to find system (8.11)) and then the

discretization is operated on the resulting optimality system. Alternatively,

using the discretize-then-optimize approach, we first approximate the state

equation (and the cost functional) and then carry out the optimization at

the discrete level. Here we address the former approach; further details are

given at the end of this section. For brevity, we recall the main features of

iterative and all-at-once methods in the case of unconstrained problems, that

is, problems without further equality/inequality constraints or, equivalently,

for which Uad ≡ U . In particular, Y ∈ R
ny , U ∈ R

nu denote the discrete

representation of the state and the control variable, respectively, whereas

λ ∈ R
nλ is the discrete adjoint variable.

8.2.1 Iterative methods

Iterative (also referred to as black-box) methods treat the reduced problem

min
U

J̃(U) = J(Y (U),U ),

once U is known; Y (U ) is obtained as the solution of the state equation. An

existing algorithm for the solution of the state equation therefore has to be

embedded into an optimization loop, and any available PDE and optimiza-

tion routines can be freely combined. In particular, iterative methods are a

popular choice when dealing with optimal control problems by extending an

2 From the numerical standpoint, the former approach is often given the name of simultaneous
analysis and design (SAND) and the latter is referred to as nested analysis and design
(NAND).
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existing code for the state problem. Within this class, a notable difference

exists between gradient-based and non-gradient-based algorithms.

Non-gradient-based (or derivative-free) algorithms, such as the popular

Nelder–Mead algorithm, exploit either comparisons between function evalu-

ations in different directions at each step, or low-order local approximants

of J̃ , in order to assess its local behaviour and find the minimizer: see e.g.

Marsden, Feinstein and Taylor (2008). Employing a finite-difference approx-

imation of the gradient is an attractive alternative due to its ease of imple-

mentation, but it may suffer from limited accuracy and large costs in the

presence of many design variables. Hence, these methods are feasible only

in the case where the control space has very small dimension, for example if

the control is expressed in terms of a vector of nu = O(10) design variables.

Gradient-based algorithms exploit the gradient J̃ ′ to iteratively update the

control until a suitable convergence criterion is fulfilled. Notable instances

are descent methods, such as the gradient, (non-linear) conjugate gradient,

quasi-Newton or Newton methods. In the simplest case of a gradient method,

starting from an initial guess U (0) we iteratively generate a sequence

U (k+1) = U (k) − τkJ̃
′(U (k)), k = 0, 1, . . . ,

where τk > 0 is a step size, until e.g. ‖J̃ ′(U (k))‖ < ε, for a given tolerance

ε > 0. Further details can be found in Nocedal (1992) and Kelley (1999), for

example. The solver for the state equation has to be augmented with a rou-

tine which provides the gradient of the state with respect to the optimization

variables, and hence the solution of the adjoint problem. Optimization algo-

rithms with faster convergence rates are needed to speed up the execution of

the whole algorithm. Although straightforward to implement, the gradient

method suffers from a poor rate of convergence when dealing with the nu-

merical solutions of PDE-constrained optimization problems. More efficient

methods are more typically employed, such as quasi-Newton methods: see

e.g. Borz̀ı and Schulz (2011) for further details.

8.2.2 All-at-once methods

By treating both the control and the state variables as independent opti-

mization variables, coupled via the PDE constraint, we deal with an equality

constrained non-linear optimization problem, the state equation now play-

ing the role of equality constraint. The goal of all-at-once (also referred to as

one-shot) methods is to tackle the (possibly) non-linear optimality system

(8.11) as a whole problem to be solved. After numerical discretization, in
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the unconstrained case we obtain the algebraic system

JY (Y ,U) + eTY (Y ,U )λ = 0, (8.12a)

JU (Y ,U) + eTU (Y ,U )λ = 0, (8.12b)

e(Y ,U) = 0. (8.12c)

Here e(Y ,U ) denotes the discrete state operator, JY and JU are the gradi-

ents of J with respect to state and control variables, respectively, whereas

eY and eU are the Jacobians of the state equations with respect to state

and control variables, respectively. The three equations of system (8.12) can

also be seen as the conditions obtained by requiring that the gradient of the

discrete Lagrangian L(Y ,U ,λ) = J(Y ,U )− λTe(Y ,U ) vanishes.

The strategy above is well suited to PDE-constrained optimization prob-

lems involving stationary state systems, but it is more computationally in-

volved in the time-dependent case. If J(Y ,U) is quadratic and e(Y ,U) is

linear in Y and U , (8.12) is a linear system of equations in saddle-point

form, such as those arising from quadratic programming. In this case, pre-

conditioned iterative methods for linear systems could be employed, such

as those based on Krylov subspaces. In this respect, several precondition-

ers have been proposed in the past decade, in which multigrid schemes are

exploited as inner solvers (or preconditioners) for some blocks of the KKT

matrix within an outer iterative solver; see e.g. Benzi et al. (2005) and Rees,

Dollar and Wathen (2010). More recent extensions to constrained problems

have been addressed, for example in Borz̀ı and Schulz (2011) and the refer-

ences therein.

If the state problem is non-linear, the optimality system has to be solved

via appropriate linearization procedures (e.g. sequential quadratic program-

ming methods) or modern penalty methods (e.g. augmented Lagrangian

methods). Indeed, the equations of system (8.12) are still linear in λ but

non-linear in (Y ,U). When a Newton-type method is applied to (8.12),

each iteration on the KKT system entails the solution of the linear system


LY Y LY U eT

Y

LUY LUU eT
U

eY eU 0






δY

δU

λ(k+1)


 = −



JY
JU
e


 (8.13)

for the update δXT = (δY , δU )T of the optimization variable and the

new value λ(k+1) of the adjoint variable. Then we set (Y (k+1),U (k+1))T =

(Y (k),U (k))T + (δY , δU )T. Here

H =

(LY Y LY U

LUY LUU

)
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denotes the Hessian of the Lagrangian functional, to be evaluated at (Y (k),

U (k), λ(k))T. Note the saddle-point structure of system (8.13), where the ad-

joint variable indeed plays the role of multiplier for the constraint expressed

by the (linearized) state equation. The system (8.13) can be equivalently

obtained as the KKT system for the linear-quadratic optimization problem

min
δX

[
1

2
δXTHδX +

(
JY
JU

)T

δX

]
subject to

(
eY
eU

)
δX + e = 0

(e.g. Hinze et al. 2009, Borz̀ı and Schulz 2011), whence the name sequen-

tial quadratic programming method, which is commonly used to refer to the

Newton iterations on system (8.13). Indeed, a quadratic programming prob-

lem has to be solved at each step, for example by means of a preconditioned

Krylov method such as MINRES, until a suitable convergence criterion is

fulfilled. Suitable approximations of the Hessian, based for example on quasi-

Newton methods, are required to make this algorithm more computationally

attractive: see e.g. Borz̀ı and Schulz (2011).

Remark 8.2 Constraints on the control and/or state variables add non-

linearity to the optimization problem. A first option is to treat inequality

constraints in an outer loop, via penalty methods which allow us to convert

them into additional terms in the cost functional. For instance, if u ≤ b is

a pointwise control constraint, the term c
2‖max{0, u − b}‖2U can be added,

where c > 0 is a penalty parameter to be properly selected, and then an

iterative method can be used in the inner loop. Another option in iterative

methods is to perform a projection over the space of admissible controls

at each step. More efficient strategies to tackle constrained problems are

usually obtained when dealing with constraints in the main optimization

loop, such as in the case of primal–dual active set strategies: see e.g. the

monographs by Borz̀ı and Schulz (2011) and Hinze et al. (2009).

We finally point out that in this section we have opted for the optimize-

then-discretize approach: that is, we have shown how to recover a system of

optimality conditions and then proceed to its numerical discretization. The

opposite strategy (discretize-then-optimize) would have led to substantially

similar numerical methods, by choosing either an iterative or an all-at-once

method for the system of optimality conditions derived once the original

state system had been discretized. The two approaches do not generally

yield identical solutions; see e.g. Hinze et al. (2009) for a discussion.
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8.3 Applications to cardiovascular modelling

8.3.1 Optimal design of bypass grafts

PDE-constrained optimization problems are obtained when looking for the

optimal design of prosthetic devices, such as ventricular assist devices or

bypass grafts. For instance, coronary artery bypass grafting (CABG) is a

standard surgical procedure to restore blood perfusion to the cardiac muscle

by redirecting blood from the aorta through a graft vessel downstream of a

coronary artery affected by stenosis or occlusion. The ability to design the

graft–vessel connection (the so-called anastomosis, which we refer to as the

domain Ω) in an efficient way is a potentially critical factor in preventing

post-operative recurrence of re-stenosis.

Today it is accepted that intimal wall thickening, caused by the accelerated

growth of smooth muscle cells and the surrounding matrix, is one of the

leading causes of long-term failure of end-to-side vascular grafts (Haruguchi

and Teraoka 2003). Low and/or highly oscillatory patterns of wall shear

stress (WSS), as well as strong vorticity and recirculations, cause intimal wall

thickening (Ethier et al. 1998, Keynton et al. 2001) at sites where curvatures,

bifurcations, tortuosity and branching occur, and, more generally, where flow

departs from unidirectional patterns (Giordana et al. 2005, Loth, Fischer

and Bassiouny 2008). In mathematical terms, an optimal graft is one that

minimizes suitable cost functionals involving the area of low WSS, the spatial

WSS gradient (Lei et al. 1997) or the vorticity (Quarteroni and Rozza 2003,

Manzoni, Quarteroni and Rozza 2012b); see e.g. Kleinstreuer (2006) for a

detailed review. Taking blood velocity v and pressure p as state variables,

and u = Ω (i.e. the shape of the domain itself) as the control variable, the

goal is thus to find the optimal shape Ω̂ of the graft by minimizing the cost

functional

J(v,Ω) =

∫ T

0

∫

Ωobs

|∇ × v|2 dω dt,

where Ωobs ⊂ Ω is a given observation region in the artery portion immedi-

ately after the anastomosis. Indeed, high downstream vorticity may lead to

strong flow recirculation, yielding similar effects in terms of intimal thicken-

ing.

Other cost functionals that can be employed include the following.

• A tracking-type functional, in order to drive the blood velocity (and pres-

sure, if δ > 0) towards a specified velocity (and pressure) target state vd,
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pd, featuring a regular pattern:

J(v,Ω) =
1

2

∫ T

0

∫

Ωobs

|v − vd|2 dΩdt+
δ

2

∫ T

0

∫

Ωobs

|p − pd|2 dω dt.

A typical choice of (vd, pd) is provided by the Stokes (or a low-Reynolds

Navier–Stokes) flow in the same domain.

• In two dimensions, a Galilean invariant vortex measure identifies a region

as a vortex if ∇v has complex eigenvalues; that is, if det(∇v) > 0. Fol-

lowing Hintermüller, Kunisch, Spasov and Volkwein (2004), Kunisch and

Vexler (2007) and Lassila, Manzoni, Quarteroni and Rozza (2013a), then

J(v,Ω) =

∫ T

0

∫

Ωobs

max(0,det(∇v)) dω dt

can be used when dealing with vortex suppression.

• A WSS gradient-based functional is given by

J(v,Ω) =

∫ T

0

∫

Γobs

WSSG(t) dγ dt,

WSSG(t) =

((
∂wp

∂τ p

)2

+

(
∂wn

∂τn

)2)
,

that is, by a time-averaged WSS gradient, measured over the portion

Γobs ⊂ ∂Ω of the boundary in the anastomosis region. Here, WSSG de-

notes the WSS gradient, where w = w(t,x) is the WSS vector of compo-

nents w(j) = µ∇vn(t,x) ·τ (j), and τ p and τn are the unit vectors parallel

and normal to the direction of the time-averaged WSS vector w, respec-

tively. Only a linear combination of the normal components ∂xj/∂τ j,

j = p, n is considered as an index to quantify the tension yielding intimal

thickening. Moreover, the time-averaged WSS is relatively insensitive to

changes in the anastomosis configuration, whereas the time-averaged WSS

gradient is highly sensitive, and has been linked to localized mechanobio-

logical responses in tissues (see Lei et al. 1997 and the discussion therein).

Using WSSG rather than WSS can be understood as filtering the WSS by

removing its component induced by the steady mean flow and considering

only the spatially fluctuating term as part of the indicator. For the sake

of numerical efficiency of the whole optimization process, a steady flow

simulation (e.g. corresponding to the systolic peak) can be considered,

and the WSS gradient of the steady flow can be taken as an approxima-

tion of the time-averaged WSS gradient. The interested reader can refer

to Kleinstreuer (2006), for example, for further details.
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Many works of the past few decades have focussed on the optimal shape de-

sign of end-to-side anastomoses, typically by acting on the wall shape near

the anastomosis by local shape variation. If a simpler parametric optimiza-

tion approach is considered, the three most significant design variables (see

Loth et al. 2008) are the anastomosis angle, the graft-to-host diameter ratio

(Keynton et al. 2001, Do, Owida, Yang and Morsi 2011) and the toe shape,

that is, the profile of the bypass junction. Optimizing a complex configura-

tion in terms of few design variables is more advantageous since it is known

that grafts usually have an extended patch or cuff that effectively provides

a hood to ease the flow transition from the graft to the artery. Further, im-

proved anastomosis design must comply with the constraints set by surgical

realization. For a more comprehensive review of bypass graft design results,

we refer to Migliavacca and Dubini (2005), Loth et al. (2008), Owida, Do

and Morsi (2012) and Marsden (2014).

Concerning the objective to be minimized, each cost functional involves

suitable observations, obtained as functions of the state variables over the

entire domain or some boundary portions, and over a given time interval and,

possibly, data acquired from measurements, as in the case of a tracking-type

functional. There are of course other parameters affecting the cost func-

tional, such as the Reynolds number, or the flow split between the proxi-

mal host artery and the graft, i.e. the ratio of the corresponding flow rates

(Giordana et al. 2005). All these parameters should be considered as un-

certainties within a robust optimization framework, in order to characterize

the optimal shape of the graft in a range of possible operating conditions.

Examples of optimal design in the presence of uncertainty in cardiovascular

applications were considered by Sankaran and Marsden (2010).

As a concluding remark, we point out that the coupling of optimization al-

gorithms to blood flow simulations is computationally challenging, since each

evaluation of the cost functional requires the solution of an unsteady, three-

dimensional Navier–Stokes problem. If relying on the adjoint approach to

characterize the gradient of the cost functional, a further linearized Navier–

Stokes (Oseen) problem has to be solved at every iteration. For this reason,

the majority of works related to applications in surgery and device optimiza-

tion have focussed, so far, on small-scale and/or two-dimensional problems,

or on steady-flow problems, usually relying on gradient-free methods.

For the sake of illustration, we report some numerical results for the opti-

mal design of a femoropopliteal bypass graft. This surgery is used to bypass

diseased blood vessels above or below the knee, and is one of the most com-

mon surgical treatments of chronic lower-extremity ischaemia. We model

the blood flow across a bypass graft via a steady Navier–Stokes model, and
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(a)

(b)

(c)

(d) (e)

Figure 8.2 Optimal design of bypass grafts. (a) A tract of femoral artery
with a bypass graft. (b) Computational domain, boundaries and observa-
tion region; (c) FFD shape parametrization used to generate admissible
shapes. Global shape deformations are induced by the displacement of a
few selected control points (shown in red) in the 6 × 4 FFD lattice. These
control points are selected by a preliminary screening procedure based on
sensitivity analysis. (d) Initial and (e) optimal bypass configurations in the
case of total (above) or partial (below) occlusion. Numerical results were
obtained using the MATLAB finite element library MLife.

consider a vorticity cost functional

J(v,Ω) =

∫

Ωobs

|∇ × v|2 dω,

where Ωobs ⊂ Ω is the observation region. Initial and optimal shapes are

shown in Figure 8.2 for the case of a stenosed host artery; its occlusion,

either total or partial, is expressed via a Dirichlet boundary condition on

the incoming velocity field on Γres, homogeneous for the completely occluded

case and non-homogeneous otherwise. See Figure 8.2(b) for the definition

of Ωobs and Γref. A shape parametrization technique based on free-form

deformations (FFDs) is very suitable for describing admissible shapes via

deformation of a reference configuration by acting on a small set of control

points: see e.g. Manzoni (2012) and Manzoni et al. (2012b).

8.3.2 Optimal control of electrical defibrillation

Whereas in healthy conditions the electrical activation of the heart is an
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extremely organized (and efficient) process, some disturbances in the for-

mation and/or propagation of electrical signals may induce re-entrant acti-

vation patterns which lead to tachycardia, that is, a noticeable increase in

the heart’s activation rate. In the worst cases, this may turn into an even

less organized activation pattern, called fibrillation. A common therapy to

terminate fibrillation and restore regular cardiac rhythm is electrical defib-

rillation, consisting in the delivery of a strong electrical shock by injecting

external currents through a set of electrodes. This restores a spatially uni-

form activation pattern, recovering an extracellular potential distribution

showing damped voltage gradients. Today, electrical defibrillation is carried

out by implanting devices (so-called cardioverter defibrillators) able to mon-

itor the heart rhythm and then deliver electrical discharges when needed.

This process can be modelled by considering the monodomain equation

(6.11) as the state system, for which the extracellular stimulation current

Ie = Ie(t) to be applied plays the role of a distributed control function, and

has to be determined in order to minimize the cost functional

J(Vm, Ie) =
1

2

∫ T

0

∫

Ωobs

|Vm − vd|2 dΩdt+
α

2

∫ T

0

∫

Ωcon

|Ie|2 dΩdt. (8.14)

Here Vm is the trans-membrane potential, Ωobs ⊆ Ωmus is the observation

domain, Ωcon ⊆ Ωmus is the control domain, and vd is the target potential

distribution. For instance, if vd = 0, the minimum of J(Vm, Ie) corresponds

to the case of an excitation wave which is suppressed in the region Ωobs: see

e.g. Nagaiah, Kunisch and Plank (2011). The trans-membrane potential Vm
can be obtained by solving the monodomain equations

χmCm
∂Vm
∂t

−∇ · (Σ∇Vm) + χmIion = Ie in Ωmus × (0, T ), (8.15a)

∂w

∂t
= g(Vm, w) in Ωmus × (0, T ), (8.15b)

Vm|t=0 = Vm,0 in Ωmus, (8.15c)

w|t=0 = w0 in Ωmus, (8.15d)

Σ∇Vm · n = 0 on Σepi ∪Σendo (8.15e)

(see Section 6.1.3), where Iion is provided, for example, by the FitzHugh–

Nagumo model (see Section 6.1.2):

Iion = f(Vm, w) = −kVm(Vm − a)(Vm − 1)− w, g(Vm, w) = ǫ(Vm − γw).

An analysis of this optimal control problem can be found in Nagaiah et al.

(2011), for example. We can exploit the Lagrangian approach to derive a
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system of first-order optimality conditions, by introducing the Lagrangian

L(Vm, w, Ie, z, q)
= J(Vm, Ie) + 〈E(Vm, w, Ie), (z, q)〉V,V ∗

= J(Vm, Ie)

+

∫ T

0

∫

Ωmus

(
χmCm

∂Vm
∂t

−∇ · (Σ∇Vm) + χmIion − Ie

)
z dΩdt

+

∫ T

0

∫

Ωmus

(
∂w

∂t
− g(Vm, w)

)
q dΩdt,

where (z, q) denote the dual variables of Vm, w, respectively. Here (Vm, w) ∈
V = L2(0, T ;V) ×W 1,2(0, T ;H), where V = H1(Ωmus) and H = L2(Ωmus);

the control space can be chosen as U = L2(0, T ;L2(Ω)), and the initial con-

ditions can be kept as explicit constraints. By setting the partial derivatives

of L equal to zero, we find the following expression for the adjoint problem:

− χmCm
∂z

∂t
−∇ · (Σ∇z) + χm

∂Iion
∂Vm

z − ∂g

∂Vm
q

= vd − Vm in Ωmus × (0, T ), (8.16a)

− ∂q

∂t
− ∂g

∂w
q +

∂Iion
∂w

z = 0 in Ωmus × (0, T ), (8.16b)

z|t=T = 0 in Ωmus, (8.16c)

q|t=T = 0 in Ωmus, (8.16d)

Σ∇z · n = 0 on Σepi ∪Σendo (8.16e)

and the optimality condition

z + αIe = 0 on Ωcon. (8.17)

The optimal control problem (8.14, 8.15) can be solved by an optimize-

then-discretize strategy, where both spatial and temporal discretizations are

required because of the time-dependent nature of the problem. After dis-

cretization, we can employ an iterative method, by computing at each step

the solution of the (coupled) state problem (8.15) over (0, T ), and the so-

lution of the adjoint problem (8.16), which is a linear problem, backward

in time, where the adjoint variables are coupled similarly to (Vm, w) in the

state problem. Note that the data of the adjoint problem are related to the

Fréchet derivative of the cost functional with respect to the state variables,

and that the adjoint problem depends on the control function only through

the state variable. Moreover, the adjoint operator calls into play the lin-

earization of the state operator around the computed state solution; that
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is, the derivatives ∂Iion/∂Vm, ∂g/∂Vm, ∂Iion/∂w, ∂g/∂w have to be evalu-

ated, at each step, around the computed solution of the state system. The

optimality condition (8.17) then allows us to determine the gradient J̃ ′(Ie)

of the cost functional J̃(Ie) = J(Vm(Ie), Ie), required to update the control

function at each step.

To simplify the optimal control problem, we can for instance look for

control functions of the form

Ie(t,x) =

Nel∑

k=1

uk(t)IΩcon,k
(x)I(0,Tdef)(t),

where the location of Nel electrodes through which the current is delivered

is prescribed, and only its time intensity has to be controlled over time.

Here IΩcon,k
(x) denotes the indicator function of the region Ωcon,k where

the kth electrode is located. Additional inequality constraints of the form

umin ≤ uk(t) ≤ umax can also be taken into account in order to limit current

amplitude.

Further extensions of this framework consider, for example, the bidomain

model (Nagaiah et al. 2013b), the case of boundary controls (Nagaiah, Ku-

nisch and Plank 2013a), and a different Mitchell–Schaeffer model to describe

ionic currents, together with the presence of a conductive bath medium out-

side the heart effects and experimentally based fibre and sheet orientations

(Nagaiah, Kunisch and Plank 2016). Moreover, the case where the shock

duration itself is also optimized has been considered by Kunisch and Rund

(2015). The reason to consider this further effect is that after applying a

defibrillation shock, the muscle tissue needs a suitable amount of time to

reach a non-fibrillatory state, so that a successful defibrillation can only be

assessed at a time T ≫ Tdef, where Tdef is the end time of the defibrilla-

tion shock and T the final observation time, at which the tissue should have

reached a non-excited state. In this context, the cost functional

J(Vm, u, Tdef) = Tdef +
µ

2

∫

Ωobs

|Vm(·, T )|2 dΩ +
α

2

Nel∑

k=1

∫ T

0
|uk|2 dt

can be minimized, accounting for (i) a minimum time term, (ii) a final

time observation at t = T , and (iii) the amplitude of the applied currents,

subject to the state system (8.15) to be solved over (0, T ). Indeed, the shock

duration and its energy have to be minimized to avoid negative side effects

of the applied shock, while the final time observation term is taken into

account to quantify defibrillation, thus requiring that the tissue reaches a

non-excited state at T ≫ Tdef.
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(a)

(b)

Figure 8.3 Electric trans-membrane potential at times t =
0, 4, 12, 20, 40, 52, 64 ms in the uncontrolled case (a) and in the con-
trolled case (b). The re-entry wave appearing in the uncontrolled case is
damped by the control acting on Ωcon.

For illustration, we consider the case of an axially symmetric domain

Ωmus = (0, 2) × (0, 0.8), where a constant pulse of intensity u is delivered

in the control domain Ωcon = (0, 0.25) × (0.3, 0.55) ∪ (1.75, 2) × (0.3, 0.55),

until time Tdef. Here U = (u, Tdef)
T is the control variable, with 1 ≤ u ≤

100 mV and 0.1 ≤ Tdef ≤ 4 ms; the final time is T = 64 ms. The initial

condition (Vm,0, w0)
T describes a re-entry wave of the ‘figure of eight’ type,

obtained following the procedure described by Kunisch and Rund (2015),

who also took into account more general optimal control problems. For the

case at hand, a planar wavefront travelling from the bottom to the top can

be damped by imposing an optimal control of intensity u ≈ 95 mV until

Tdef ≈ 1.2 ms on the control region. The successful defibrillation – resulting

from a trade-off between a large intensity and a short duration of the pulse

– is clearly visible in Figure 8.3, where in the controlled case at the final

time the tissue is almost completely unexcited. Indeed, the pulse acts on

the excitable region of the tissue adjacent to the wavefront, bringing it to a

non-excitable state.

Remark 8.3 We point out that choosing the cost functional and, if nec-

essary, imposing suitable constraints on the control and/or the state vari-

able, are two extremely hard, problem-dependent tasks. Moreover, very often
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control functions are described in terms of (possibly few) relevant parame-

ters, which play the role of design variables. However, in the case of com-

plex, patient-dependent geometries, for example, their automatic selection

can result in a fairly involved procedure. Last but not least, in the case

where a target state to be reached depends on acquired data, the effect

of uncertainty has to be considered in the formulation (and then solution)

of the problem. This leads to robust optimization problems, for example,

or PDE-constrained optimization problems under uncertainty, an active re-

search field, where very few applications to cardiovascular modelling have

yet been considered.



9

Parameter estimation from clinical data

When dealing with the mathematical and numerical modelling of the circula-

tory system, initial conditions, boundary conditions or physical coefficients,

for example tissue properties, might be (partially) unknown (Veneziani and

Vergara 2013): see Chapters 2 and 5. From here on we refer to any of these

quantities as input parameters, independent of their mathematical nature

(they could be scalars or vectors, or even parametric fields varying in space)

and we refer to the issue of making inferences about unknown parameters

from data as parameter estimation (or identification). To perform parameter

estimation for a system of PDEs, we need to combine state observations and

additional data that are not strictly required for solving the PDE problem,

and have to be acquired from measurements.

Parameter estimation for PDEs can be done according to several tech-

niques, which can be roughly classified depending on their outcome (Taran-

tola 2004, Le Dimet and Talagrand 1986). Point estimates rely on either

variational or sequential methods (Ide, Courtier, Ghil and Lorenc 1997).

Both methods provide optimal least-squares estimates by minimizing a cost

functional accounting for the misfit between measured data and state ob-

servations. A second class of techniques instead yields confidence regions or,

more generally speaking, the possibility of characterizing the probability dis-

tribution of the unknown parameters provided they are described in terms

of random variables; this is the goal of statistical inversion theory relying for

example on Bayesian inference, which will be the main focus of Section 10.2.

In the context of cardiovascular modelling, parameter estimation is nec-

essary for model calibration/personalization, for the purpose of diagnosis or

treatment. Indeed, parameters that are not directly measurable (e.g. for tis-

sue conductivity or vessel compliance) are tuned so that the outcome of the

numerical model is able to reproduce patient-specific data (Krishnamurthy

et al. 2013). Difficulties arise because of data sparsity (Konukoglu et al.
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2011). Indeed, spatial resolution and temporal frequency are typically un-

dersampled; experimental data, on the other hand, are always contaminated

by measurement noise.

Remark 9.1 Data assimilation (DA) is the process by which a numerical

model of a given system, usually affected by noise or model uncertainties,

is improved by incorporating system observations. Although data assimila-

tion relies on the same variational or filtering approaches addressed in this

chapter, in the case of geophysical fluids, for example, its main goal often

goes beyond parameter estimation; indeed, it is more often related to state

estimation, namely, to improving the outcome of the numerical model and

of its initial state to correctly initialize forecasts, by assimilating available

measurements into the numerical model itself. Data assimilation is intrin-

sically related to time-varying phenomena and deals with highly non-linear

dynamical systems, very often far from being periodical (such as in the

case of meteorological models) and ill-posed: see e.g. Blum, Le Dimet and

Navon (2009), Voss, Timmer and Kurths (2004) and Le Dimet and Tala-

grand (1986) for a detailed discussion. In the past decade several works

dealing with cardiovascular applications have focussed on data assimilation

(Sermesant et al. 2006, Delingette et al. 2012, Bertagna, D’Elia, Perego and

Veneziani 2014, Lal, Mohammadi and Nicoud 2017), which has been consid-

ered, in many cases, as synonymous with parameter estimation.

In this chapter we provide an overview of both variational and sequential

approaches for parameter estimation in time-dependent systems. Parame-

ter estimation problems dealing with stationary systems in cardiovascular

applications have also been solved: see e.g. D’Elia, Perego and Veneziani

(2012), Bertagna et al. (2014), MacLachlan, Nielsen, Lysaker and Tveito

(2006), Nielsen, Cai and Lykaser (2007a), Lassila, Manzoni, Quarteroni and

Rozza (2013b) and Manzoni, Lassila, Quarteroni and Rozza (2014). For the

sake of space and relevance, we will focus on time-dependent problems.

9.1 Variational approach: PDE-constrained optimization

The variational approach recasts parameter estimation in the framework

of PDE-constrained optimization, by considering the equations governing

the problem at hand as the state system, and the discrepancy between the

observation of the state and the measured data as the cost functional to be

minimized (Banks and Kunisch 1989, Chavent 2010). The parameters to be

estimated (often involving the initial condition) play the role of optimization

variables, just like control variables in the case of optimal control problems;
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however, unlike the optimal control case, the parameters to be estimated are

quantities which no one can actually control. They are often coefficients of

the operator appearing in the PDE problem.

Here we provide an abstract formulation of the variational approach, fol-

lowing Bertoglio, Moireau and Gerbeau (2012) and Blum et al. (2009); for

more details see e.g. Nichols (2010), Chapelle, Fragu, Mallet and Moireau

(2013a) and Sermesant et al. (2006). We assume that the state problem

has already been discretized in space. We let X(t) ∈ R
nx denote the semi-

discrete state, θ ∈ R
p the parameters of the model to be estimated, and

A(t,X(t),θ) the (semi-discretized in space) state operator; note that usu-

ally p≪ nx. The state variable then solves the dynamical system

Ẋ(t) = A(t,X(t),θ), t ∈ (0, T ), (9.1a)

X(0) = G. (9.1b)

For instance, in the case of the FSI system (3.19), X = (v, p,d) contains

fluid velocity and pressure, and structure displacement, and θ may contain

the value of the Young’s modulus (here assumed to be piecewise constant)

in different patches of the arterial wall.

We consider the case where the parameter vector θ is unknown, and for

which the estimation problem consists in finding θ̂ such that the discrepancy

between the observation and a set of measurements Z(t) ∈ R
nz , t ∈ (0, T ),

is minimized, for example in a least-squares sense. The case of unknown

initial data G to be estimated can be treated in essentially the same way.

We usually assume that measurements Z(t) are related to observations of

the true state through an additive noise model; that is,

Z(t) = H(t)X(t) + ε(t), t ∈ (0, T ),

where H = H(t) ∈ Rnz×nx is an observation operator which maps the state

space into the observation space Rnz , and ε = ε(t) is a noise term accounting

for measurement errors. The following minimization problem is then solved:

J(X ,θ) =
1

2

∫ T

0
‖Z(t)−H(t)X(t)‖2M dt+

αθ
2
‖θ − θ0‖2P−1

θ

→ min
θ∈P

, (9.2)

where X = X(t) is the solution of (9.1). Here P ⊂ Rp × Rnx denotes the

set of admissible parameters. Additional information is usually added to the

least-squares objective expressed by the first term in (9.2), via a background

estimate θ0 of θ; M and P−1
θ are suitable symmetric positive definite ma-

trices (the reason why we consider an inverse matrix to define this latter

norm will be clarified in the following). This procedure goes by the name
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of Levenberg–Marquardt–Tikhonov regularization. For a discussion of classi-

cal regularization methods for inverse problems, see Kaipio and Somersalo

(2005); note that the usual penalization coefficients are embedded in the

definition of the matrix P−1
θ .

The minimization problem (9.2) can be solved by an optimization algo-

rithm based on the evaluation of the gradient of J with respect to θ. As

shown in Section 8.1, this latter can be computed by relying on the solu-

tion of a suitable adjoint problem. This is a four-dimensional variational

(4D-Var) assimilation; a three-dimensional variational (3D-Var) assimila-

tion would arise in the case of steady-state systems. See Section 9.3.1 for

further details on a relevant example in cardiovascular modelling, and Blum

et al. (2009) and Chapelle et al. (2013a) for more on 4D-Var assimilation

problems.

Since measurements Z are only available at a discrete number of times

τ1, . . . , τK , we formulate the identification problem by replacing the dynam-

ical system (9.1) with its time-discretized version:

Xk+1 = Ak|k+1(X
k,θ), k = 0, . . . ,K − 1, (9.3a)

X0 = G (9.3b)

where Ak|k+1 is a non-linear function describing the evolution of the state

from time τk to time τk+1 and Xk ≈ X(k∆τ) denotes the state vector at

time τk. Note that the length ∆τ = τk+1 − τk of the time window between

two subsequent measurements is usually larger than the time step ∆t used

for time discretization, and that θ does not depend on k. From here on k

will denote the temporal index of system evolution, thus using a different

notation from that introduced in Parts 1 and 2 (where the temporal index

was denoted by n).

We then formulate an optimal time-discretized minimization criterion and,

finally, determine the corresponding adjoint problem, rather than discretiz-

ing the adjoint problem in time. This yields the minimization problem

JK(X,θ) =
1

2

K∑

k=1

‖Zk −HXk‖2Mk
+

1

2
‖θ − θ0‖2P−1

θ

→ min
θ∈P

, (9.4)

where X = (X1, . . . ,Xk), and we set

Zk = HkX
k + εk. (9.5)

Here εk denotes the noise of the measurement device at τk = k∆τ ; a possible

choice for Mk is Mk = ∆τM , whereas Hk ≈ H(k∆τ). Also in this case a

gradient-based optimization procedure can be used to solve the constrained
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optimization problem (9.3, 9.4) with gradients evaluated by introducing a

suitable adjoint problem.

9.2 Sequential approach: Kalman filter and extensions

A drawback of the variational approach is the need to wait until the whole

set of measurements has been acquired in order to perform an optimization

step. A sequential approach instead performs the assimilation of acquired

measurements on the fly, and updates the estimate of the unknown quanti-

ties accordingly.

A numerical milestone for the solution of sequential estimation problems,

the Kalman filter (KF) (Kalman 1960), was introduced as a recursive filter

for the estimation of the state of a noisy dynamical system from a set of

measurements, that is, to improve the prediction of the state dynamics by

taking into account additional data. An augmented form of the Kalman filter

can be easily adapted to the problem of estimating unknown parameters, as

we will see. Originally designed for linear dynamical systems, the Kalman

filter has severe memory requirements. To mitigate these two limitations,

several improvements and extensions have been proposed in the past few

decades, most notably the extended Kalman filter (EKF), the unscented

Kalman filter (UKF) and the ensemble Kalman filter (EnKF); detailed re-

views can be found, for example, in Kaipio and Somersalo (2005), Simon

(2006), Humphreys, Redd and West (2012) and Asch, Bocquet and Nodet

(2017). In this section we recall the formulation of the basic Kalman filter

and provide some hints about its extensions, with a special focus on the field

of cardiovascular modelling where these techniques have been applied.

The literature offers many possible derivations of the Kalman filter; fol-

lowing Humphreys et al. (2012) and Chapelle et al. (2013a), we will exploit

the analogy with the solution of a recursive least-squares problem yielding

the best linear unbiased estimator for a linear model; alternative derivations

can be obtained, for example, by relying on the so-called push-forward and

subsequent conditioning of Gaussian measures (Sullivan 2015) or a sequen-

tial Bayesian estimation framework (Law, Stuart and Zygalakis 2015).

9.2.1 The Kalman filter algorithm

The KF algorithm sequentially generates an estimate of the unknown quan-

tity by means of a linear combination of the current estimate and the ac-

quired measurement. Let us first consider the case where there is no dynam-
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ics, and data are generated by the linear model

Z = HX + ε, (9.6)

where H is a given nz × nx matrix of rank nx, ε is an nz-dimensional

random variable with zero mean and known positive definite covariance

Q = E[εεT] > 0, and Z denotes known, but inexact, measurements with

errors given by ε. The vector X ∈ Rnx is the quantity to be estimated from

the observation Z; E[·] denotes the expected value.

Among all linear estimators ofX, that is, estimators of the form X̂ = KZ

for some matrix K ∈ Rnx×nz , which are unbiased (i.e. E[X̂] =X), the best

choice is the one that minimizes the mean-square error E[(X̂−X)T(X̂−X)];

by the Gauss–Markov theorem (see e.g. Sullivan 2015, Chapter 7), the best

or minimum variance linear unbiased estimator for (9.6) is given by

X̂ = (HTQ−1H)−1HTQ−1Z. (9.7)

In that case, E[(X̂ −X)(X̂ − X)T] = (HTQ−1H)−1. Equivalently, (9.7)

can also be obtained by solving the weighted least-squares problem

X̂ =
1

2
‖HX −Z‖2Q−1 → min

X

, (9.8)

again resorting to a variational argument. In the slightly different case where

we want to combine the observation and a background estimate X0 of X

with covariance matrix P−, (9.8) becomes

X̂ =
1

2
‖HX −Z‖2Q−1 +

1

2
‖X −X0‖2(P−)−1 → min

X

,

and instead of (9.7) we find

X̂ =X0 +K(Z −HX0), K = P+HTQ−1, (9.9)

upon defining the matrix playing the role of updated covariance as

P+ = ((P−)−1 +HTQ−1H)−1. (9.10)

Note that this estimate is given by a linear combination of the background

estimate X0 and the so-called innovation Z −HX0. K is usually referred

to as the Kalman gain matrix; it can also be evaluated by exploiting the

prior covariance P− instead of the updated covariance P+, according to the

equivalence

P+HTQ−1 = P−HT(HP−HT +Q)−1. (9.11)

We now consider the case of a time-discretized linear system, with data
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acquired over a time interval. Then the model (9.6) is replaced by

Xk = Ak−1|kX
k−1 + vk, k = 1, . . . ,K, X0 = G,

Zk = HkX
k +wk,

(9.12)

where Xk ∈ R
nx denotes the state and Zk ∈ R

nz are the measurements; vk
and wk are uncorrelated zero-mean random noise processes with positive-

definite covariances Qk and Rk, modelling the uncertainty of the model

and the additive noise in the observation, respectively. The state estimation

problem is the problem of finding the state Xk given k known observations

Z1, . . . ,Zk.

The Kalman filter is a recursive algorithm that provides the best linear

unbiased estimate Xk
a of Xk in terms of both the previous estimate Xk−1

a

and the latest data Zk up to that point in time. It is based on a predictor-

corrector strategy, consisting of the following steps.

(1) A prediction step (called the forecast or the time update) consists in let-

ting the system dynamics evolve fromXk−1
a without taking into account

the observations, yielding the forecast state Xk
f .

(2) A correction step (called the analysis or the measurement update) up-

dates the forecast state Xk
f by assimilating the measurements into the

model, yielding the assimilated state Xk
a.

To derive the expression of the correction step, let us suppose that the cur-

rent prediction based on observations Z1, . . . ,Zk−1 is Xk
f , with covariance

matrix P fk . If the true state is Xk, model (9.6) becomes
[
Xk

f

Zk

]
=

[
I

Hk

]
Xk + ε,

where ε is an (nx + nz)-dimensional random variable with zero mean and

covariance Qk = diag(P fk , Rk). The best linear unbiased estimator of this

system (see (9.7)) is given by

Xk
a = P ak

[
I HT

k

] [(P fk )−1 0

0 R−1
k

] [
Xk

f

Zk

]
= P ak

(
(P fk )

−1Xk
f +HT

k R
−1
k Z

k
)
,

(9.13)

and results from the linear combination of the current estimate and the last

observation Zk, where

P ak =

([
I HT

k

] [(P fk )−1 0

0 R−1
k

] [
I

Hk

])−1

= ((P fk )
−1 +HT

k R
−1
k Hk)

−1.

Note the formal analogy with (9.10), where P fk and P ak now play the role
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of P− and P+, respectively. Equation (9.13) can be written in the more

convenient form

Xk
a = P ak

[
(P ak )

−1 −HT
k R

−1
k Hk))X

k
f +HT

k R
−1
k Z

k
]

=Xk
f + P akH

T
k R

−1
k (Zk −HkX

k
f ) =X

k
f +Kk(Z

k −HkX
k
f )

as a function of the innovation Zk −HkX
k
f . Similarly to (9.11), we obtain

Kk = P akH
T
k R

−1
k = P fkH

T
k (HkP

f
kH

T +Rk)
−1, (9.14)

so it is possible to evaluate the Kalman gain matrix Kk as a function of P fk ,

and then correct the covariance:

P ak = ((P fk )
−1 +HT

k R
−1
k Hk)

−1

= (I −KkHk)P
f
k (I −KkHk)

T +KkRkK
T
k = (I −KkHk)P

f
k .

The prediction step instead exploits the dynamical system to propagate

the state, yielding

Xk+1
f = Ak|k+1X

k
a

for the time update of the state, and

P fk+1 = E[(Xk+1
f −Xk+1)(Xk+1

f −Xk+1)T]

= E[(Ak|k+1X
k
a −Ak|k+1Xk −wk)(Ak|k+1X̂

k

a −Ak|k+1Xk −wk)
T]

= Ak|k+1P
a
kA

T
k|k+1 +Qk+1

for the time update of the covariance.

Grouping the prediction and the correction steps together, we finally ob-

tain the kth step of the KF algorithm:

Xk
f =Ak−1|kX

k−1
a state prediction, (9.15a)

P fk =Ak−1|kP
a
k−1A

T
k−1|k +Qk error covariance prediction, (9.15b)

Kk =P
k
fH

T
k (HkP

f
kH

T
k +Rk)

−1 Kalman gain evaluation, (9.15c)

Xk
a =X

k
f +Kk(Z

k −HkX
k
f ) state correction, (9.15d)

P ak =(I −KkHk)P
f
k error covariance correction. (9.15e)

Note that from (9.15d) only, the estimated state from the above step and

the current measurement are needed to compute the estimate of the cur-

rent state. The two prediction and correction steps alternate: the prediction

advances the state until the next measurement is acquired, and then the

correction incorporates this measurement.
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Remark 9.2 The Kalman gain Kk defined in (9.14) can also be expressed

as Kk = P
XfZ
k (PZk )−1. Here

P
XfZ
k = E[Xk

f (Z
k −HkX

k
f )

T] = P fkH
T
k

is the cross-covariance between Xk
f and the innovation Zk −HkX

k
f , and

PZk = E[(Zk −HkX
k
f )(Z

k −HkX
k
f )

T] = HkP
f
kHk +Rk

is the innovation covariance. Similarly, (9.15e) can be rewritten as P ak =

P fk −KkP
Z
k K

T
k . This interpretation is useful when dealing with the unscented

Kalman filter (see Section 9.2.3).

Remark 9.3 In the linear case, the variational and the sequential ap-

proaches yield the same result at the end of a time window, provided the

following assumptions are made: the same background estimation and the

same covariance matrices are used, and the same measurements are acquired

– that is, both algorithms are optimal from a least-squares or minimum vari-

ance standpoint.

Let us now return to our problem of estimating the parameter θ. We apply

the KF algorithm to the system

Xk = Ak−1|kX
k−1 +Bkθ

k + vk, k = 1, . . . ,K, X0 = G,

θk = θk−1

with observations

Zk = HkX
k +wk, k = 1, . . . ,K.

Here θk ∈ R
p denotes the parameter vector and (under the linearity as-

sumption) Bk ∈ R
nx×p, and we assume that no random error is associated

with model parameters. This is the so-called state augmentation technique.

In order to exploit the KF algorithm, we consider X̃
k
= (Xk,θk)T as state

vector instead of Xk, thus yielding the augmented KF algorithm

X̃
k
f =Ãk−1|kX̃

k−1
a state prediction, (9.16a)

P̃ fk =Ãk−1|kP̃
a
k−1Ã

T
k−1|k + Q̃k error covariance prediction, (9.16b)

Kk =P̃
k
f H̃

T
k (H̃kP̃

f
kH

T
k + R̃k)

−1 Kalman gain evaluation, (9.16c)

X̃
k
a =X̃

k
f +Kk(Z̃

k − H̃kX̃
k
f ) state correction, (9.16d)

P̃ ak =(I −KkH̃k)P̃
f
k error covariance correction, (9.16e)
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(a) (b)

Figure 9.1 Variational approach (a) versus Kalman filter (b) approach: in
the former, at each optimization stage the whole state dynamics has to be
computed, whereas in the latter each measurement is sequentially used for
the state (and parameter) correction.

where

Ãk−1|k =

[
Ak−1|k Bk

0 I

]
, Z̃

k
=

[
Zk

0

]
,

H̃k =

[
Hk 0

0 0

]
, Q̃k =

[
Qk
0

]
, R̃k =

[
Rk 0

0 0

]
.

We point out that, by construction of the filtering procedure, the estimated

parameter values evolve along the simulation period and the actual estima-

tion is achieved with the final values; that is, the estimated parameter vector

is θ̂ = θKa . (Note that in the current formulation θ is independent of time.)

Hence, we expect these estimation trajectories to fluctuate less and less dur-

ing the course of the simulation (see e.g. Figure 10.3 in Section 10.3.2);

the non-converging case would therefore denote the presence of persistent

modelling errors.

We conclude this section by pointing out that when a sequential approach

like the Kalman filter is used for parameter estimation, the dynamical system

has to be solved only once, by updating the parameter value after each as-

similation of new measurements. On the other hand, a variational approach

would require us to solve the dynamical system on the whole time interval

several times, assuming that an iterative approach is used to perform the

optimization: see the sketch in Figure 9.1.

9.2.2 The extended Kalman filter

The classical Kalman filter formulation is well suited to low-dimensional,

linear dynamical systems, although in real applications these assumptions



188 Parameter estimation from clinical data

are seldom verified. The extended Kalman filter (EKF) was introduced for

non-linear dynamical systems, where (9.12) is replaced by

Xk = f(Xk−1, τk) + εk, Zk = h(Xk, τk) + ηk, (9.17)

where f and h are two non-linear functions. Non-linearity here involves both

the system dynamics and the observation model. The EKF consists in ap-

plying the KF algorithm (9.15) to a linearized version of (9.17) around the

previous state, so that at each step we set

Ak−1|k =
∂f

∂X

∣∣∣∣
X

k−1
a ,θk

, Hk =
∂h

∂X

∣∣∣∣
X

k
f

.

At each step two Jacobian matrices have to be evaluated at the current pre-

dicted state/parameters. A similar extension of the algorithm (9.16) provides

the EKF for parameter estimation. Although feasible in principle, the EKF

suffers from several drawbacks. For instance, it entails prohibitive computa-

tional costs to invert large matrices and to propagate the covariance matrix

in time. Even more importantly, the EKF may lack stability, meaning that

as the estimated state deviates from the true state, the linearized model

becomes inaccurate, which may lead to an even larger error in state esti-

mation. To mitigate these shortcomings, several strategies have been put in

place: low-rank approximation of the covariance matrices have been consid-

ered, and other extensions of the original Kalman filter such as the UKF

and EnKF have been introduced.

9.2.3 The unscented Kalman filter

While the EKF exploits the differentiation of non-linear operators, mod-

elling both the state dynamics and the observation process, to evaluate the

propagation of means and covariances, the unscented Kalman filter (UKF),

introduced by Julier, Uhlmann and Durrant-Whyte (1995), relies on a set of

well-chosen deterministic points (or sigma points) whose propagation via the

non-linear operators yields the empirical means and covariances required in

the Kalman prediction-correction formulas. The rationale goes by the name

of unscented transformation, whose goal is to map a set of points so that their

sample distribution approximates the true distribution (Julier, Uhlmann and

Durrant-Whyte 2000).

Supposing that we know the mean E[X] and the covariance Σ of a random

vector X ∈ R
nx, the simplest choice is to select 2nx (symmetric) sigma
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points x(i) as

x(i) = E[X] +
(√

nxΣ
)
i
, x(nx+i) = E[X]−

(√
nxΣ

)
i
, i = 1, . . . , nx,

where
(√
nxΣ

)
i
is the ith column of the Cholesky factor of nxΣ. Different

options for the sigma points selection are however possible: see e.g. Julier

and Uhlmann (2004).

The prediction-correction strategy of the Kalman filter is then performed.

Referring to the same notation used in Section 9.2.1 and supposing that the

current forecast based on Z1, . . . ,Zk−1 is X̂
k
f , with covariance matrix P fk ,

the following correction step is performed.

• From the estimated mean X̂
k
f and covariance P fk at time τk, select a set

of 2nx sigma points

xkf,(i) = X̂
k
f+
(√

nxP
f
k

)
i
, xkf,(nx+i)

= X̂
k
f−
(√

nxP
f
k

)
i
, i = 1, . . . , nx,

centred around X̂
k
f at a distance given by the standard deviation ex-

tracted from the covariance matrix, and obtain the predicted measure-

ment

Ẑ
k
=

1

2nx

2nx∑

i=1

Ẑ
k
(i), where Ẑ

k
(i) = h(xkf,(i), τ

k), i = 1, . . . , 2nx.

• Estimate the covariance of the predicted measurement,

PZk =
1

2nx

2nx∑

i=1

(
Ẑ
k
(i) − Ẑk)(

Ẑ
k
(i) − Ẑk)T

+Rk,

and the cross-covariance between Xk
f and Ẑ

k
:

P
XfZ
k =

1

2nx

2nx∑

i=1

(
X̂

k
f − xkf,(i)

)(
Ẑ
k − Ẑk

(i)

)T
.

• Perform the Kalman gain evaluation, state correction and the error co-

variance correction similarly to (9.16c–9.16e) (recall Remark 9.2),

Kk = P
XfZ
k (PZk )−1,

X̂
k
a = X̂

k
f +Kk(Z

k − Ẑk
),

P ak = P fk −KkP
Z
k K

T
k .

In the prediction step, a set of sigma points is selected as

xka,(i) = X̂
k
a +

(√
nxP ak

)
i
, xka,(nx+i)

= X̂
k
a −

(√
nxP ak

)
i
, i = 1, . . . , nx
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and a forward computation of one time window is performed to get the state

prediction at step k + 1:

X̂
k+1
f =

1

2nx

2nx∑

i=1

xk+1
f,(i), where xk+1

f,(i) = f(xka,(i), τ
k+1)

(note that each sigma point is treated independently). Finally, the covariance

is updated as

P fk+1 =
1

2nx

2nx∑

i=1

(
X̂

k+1
f − xkf,(i+1)

)(
X̂

k+1
f − xkf,(i+1)

)T
+Qk+1.

Provided the analysis step is performed in parallel, the cost of the whole

estimation procedure is comparable to that of a simple forward simulation.

By contrast, a variational estimation would require a significant number of

successive iterations (typically, of the order of hundreds) of both forward

and adjoint simulations.

An augmented formulation of the UKF can be easily obtained, similarly to

(9.16), in order to treat the case where the system depends on a set of p pa-

rameters affected by uncertainty, which need to be estimated. Nevertheless,

the very large dimension of the state vector (depending on the spatial dis-

cretization of the state variable) makes this filter intractable in practice. In

those cases where uncertainty only affects the parameters, and p ≪ nx, a

much more feasible version yielding a reduced-order UKF limits the com-

putations of the filter operator to a subspace of small dimension and is

much more efficient. The reduction to the parametric space as regarding the

choice of the sigma points for the sake of parameter estimation was origi-

nally introduced by Pham (2001) and Hoteit, Pham and Blum (2002); an

initial application to the estimation of electrophysiology parameters can be

found in Wang, Zhang, Wong and Shi (2009) and Wang et al. (2011). A

detailed analysis of the reduced-order UKF can be found in Moireau and

Chapelle (2011), for example. A possible alternative, recently explored by

Pagani, Manzoni and Quarteroni (2017) and Pagani (2016), is to perform

a state reduction (rather than a reduction of the parameter space) relying

on a reduced-order model, and then consider the problem of simultaneous

state/parameter estimation.

9.3 Applications to cardiovascular modelling

In the past decade, parameter identification problems have been considered

in several applications to cardiovascular modelling. In this section we de-
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scribe some relevant contributions; two substantive examples will be more

specifically discussed in Sections 9.3.1 and 9.3.2.

The problem of identifying a set of parameters of one-dimensional models

for the arterial circulation was first considered by Martin, Clément, Decoene

and Gerbeau (2005), who considered a non-linear least-squares approach

based on the optimization of a cost function and the introduction of a suit-

able adjoint problem. A relevant application in this context is the estimation

of the elastic coefficient of a subject-specific vessel based on measurements

of its displacement recovered from medical images. A variational approach

based on the minimization of suitable functionals was proposed by Perego,

Veneziani and Vergara (2011) and, more recently, by Bertagna and Veneziani

(2014); we present this technique in Section 9.3.1. A different approach based

on an unscented Kalman filter has been proposed by Bertoglio et al. (2012)

and further explored by Moireau et al. (2013) to estimate modelling param-

eters pertaining to vessel wall boundary conditions. Similar strategies based

on the unscented Kalman filter have been considered by Lombardi (2014),

for example, to solve inverse problems in large one-dimensional arterial net-

works, and by Pant, Fabrèges, Gerbeau and Vignon-Clementel (2014) to

estimate lumped (e.g. windkessel) model parameters by using the pressure

curve in the ascending aorta.

Other approaches have been considered, for example in Blanco, Watanabe

and Feijóo (2012), for characterizing the terminal peripheral resistances in

a network describing one-dimensional arterial blood flow, or, in Spilker and

Taylor (2010), for adjusting the parameters of windkessel outflow boundary

conditions of three-dimensional blood flow models, in order to match some

desired features of pressure and flow waveforms.

Several recent works have focussed on parameter identification and, more

generally speaking, on the solution of inverse problems in heart modelling.

The classical inverse problem in electrocardiology has been considered by

many authors in recent decades. It consists in recovering the electrical po-

tential at the epicardial surface by using a number of remote, non-invasive

or minimally invasive potential recordings, such as those acquired along the

body surface (Rudy and Messinger-Rapport 1988, Pullan et al. 2001, Cheng,

Bodley and Pullan 2003), usually referred to as body surface-potential data.

In its original formulation, this problem involves the pure (linear) diffu-

sion model for the torso as a direct problem (Colli Franzone, Taccardi

and Viganotti 1978, Colli Franzone, Guerri, Viganotti and Taccardi 1985,

Yamashita 1982): see Section 6.1.5. This inverse problem is mathematically

ill-posed, and several regularization strategies have been proposed; see e.g.

the reviews by Pullan et al. (2010) and Colli Franzone et al. (2014). Another
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method for solving the inverse electrocardiology problem relies on measure-

ments of the electrical potential within one of the heart chambers (ventricles

and atria) by means of non-contact multi-electrode catheter arrays, and tries

to estimate the endocardial surface potential from them. Since the measure-

ments are recorded closer to the endocardial surface than those acquired on

the body surface, this problem is less ill-conditioned than the former. If the

problem is recast in the form of a parameter estimation problem, that is,

where the epicardial potential distribution is described in terms of a set of

parameters, the inverse problem can be more easily tackled.

More generally speaking, inverse and parameter estimation problems have

been considered in several works in order to approximately reconstruct the

cardiac electrical activity in the myocardium, for example, and to provide

indications of the presence of ischaemic or infarcted zones by estimating

conductibility parameters. Concerning variational approaches, we can men-

tion a level-set framework for identifying heart infarctions (Lykaser and

Nielsen 2006) by relying on a least-squares formulation and an adjoint prob-

lem to determine the gradient of the cost functional. In this case, the in-

farcted region in a simplified two-dimensional domain has been described

in terms of a discrete level-set function, involving a set of parameters to

be identified from synthetic ECG boundary measurements, and a Tikhonov

regularization procedure. MacLachlan et al. (2006) and Nielsen et al. (2007a)

considered the solution of a parameter identification problem to locate (in

terms of size and position) ischaemic regions, where a simplified state ellip-

tic system models the electrical potential in both the heart and the torso

in the resting phase. In all these papers, the PDE-constrained optimiza-

tion problem was solved using an iterative method, following an optimize-

then-discretize approach. Nielsen, Lykaser and Tveito (2007b) instead con-

sidered an all-at-once approach for a similar problem, also taking into ac-

count anisotropic cardiac conductivities and fibre orientation. A more in-

volved version of this problem, still focussing on the inverse electrocardio-

graphic source localization of ischaemias, has been considered more recently

by Wang, Kirby, MacLeod and Johnson (2013).

The personalization of an eikonal model, via the identification of local con-

duction velocities and parameters related to the action potential duration

restitution curve, was addressed by Chinchapatnam et al. (2008) and Relan

et al. (2011). More recently, Yang and Veneziani (2015) proposed a varia-

tional approach for the estimation of cardiac conductivities in a bidomain

model, from measurements of the trans-membrane and extracellular poten-

tials available at some locations in the tissue. Boulakia, Fernández, Gerbeau

and Zemzemi (2008) have considered parameter estimation in a problem
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where the bidomain model for the heart is coupled with the Laplace equa-

tion for the passive conduction in the torso, in order to estimate the torso

conductivity parameters.

The unscented Kalman filter was exploited by Wang et al. (2011) and

by Marchesseau et al. (2013) and Talbot et al. (2015) to identify scar lo-

cations and their size from body surface-potential and MRI data, using a

monodomain two-variable Aliev–Panfilov model. A reduced-order UKF was

used by Corrado, Gerbeau and Moireau (2015) to estimate electrical pa-

rameters within a coupled electromechanical model, by taking advantage of

observations from both electrocardiograms and myocardium displacements.

Another inverse problem in electrophysiology has been studied by Vergara

et al. (2014) and Palamara et al. (2015). Measurements of the electrical ac-

tivation time on the endocardium, acquired via NavX (see Section 5.2), were

used to find the optimal Purkinje network configuration. For this problem,

the parameters to be estimated are the coordinates of the network. In par-

ticular, starting from an initial network with a fractal shape, a functional

accounting for the discrepancy between measured and computed activation

times is minimized in order to find the patient-specific location of the Purk-

inje muscle junctions (see Section 4.3). This methodology has been success-

fully applied to real pathological scenarios: see Palamara et al. (2014).

Regarding cardiac biomechanics, Moireau, Chapelle and Le Tallec (2009)

and Moireau and Chapelle (2011) addressed the estimation of contractility

parameters using the unscented Kalman filter, where the degree of damage

in cardiac tissues caused by an infarct is estimated using velocity measure-

ments from tagged MRI; see also Moireau, Chapelle and Le Tallec (2008).

A reduced-order UKF was used by Xi et al. (2011) to identify material

parameters in a transversally isotropic mechanical model; further details

concerning this application will be provided in Section 9.3.2. Subsequently,

the same technique was exploited by Chabiniok et al. (2012) to estimate

contractility values in a more complex cardiac model, where the tissue is

described by combining an active constitutive law in the muscle fibre direc-

tion and a visco-hyperelastic material, using actual clinical data consisting

of in vivo cine-MRI image sequences and pressure measurements.

Finally, for the coupled electromechanical problem, very few numerical re-

sults are now available. The personalization of a 3D electromechanical model

has been tackled by variational approaches, for example by Sermesant et al.

(2006), who estimated local ventricular myocardium contractility using MRI

in an electromechanical model. Similarly, Delingette et al. (2012) estimated

both the parameters of a Mitchell–Schaeffer model and cardiac contractili-

ties from catheterized electrophysiology data and cine-MRI images, respec-



194 Parameter estimation from clinical data

tively. Marchesseau, Delingette, Sermesant and Ayache (2012) performed

the calibration of mechanical parameters of a complete electromechanical

model of the heart involving the eikonal model for electrophysiology and an

isotropic Mooney–Rivlin material model for cardiac mechanics, relying on

the unscented Kalman filter.

Although several works have made a big step forward, the solution of

parameter estimation problems remains an open computational challenge if

complex, coupled models and patient-specific data are taken into account.

Further, when UKF and EnKF techniques are exploited – which exhibit

natural parallelism to a high degree – the need to evaluate the state dynam-

ics for several different scenarios (given by the elements of the ensemble,

for example) makes the computational effort exorbitant. For this reason,

simplified physical models have been considered in many contexts; on the

other hand, reduced-order strategies, such as the reduced-order unscented

Kalman filter, have recently been proposed as a possible way of overcom-

ing the computational complexity arising from these problems. Dramatic

progress is expected in this field in the next few years.

9.3.1 A variational approach for estimating the tissue

compliance

In this section we illustrate a variational approach introduced by Perego et

al. (2011) for estimating the Young’s modulus E of a cardiovascular tissue

from displacement data. Indeed, this parameter – and, more generally speak-

ing, the deformability of a soft tissue – is an important index for detecting

diseases: low compliance may indicate atherosclerosis or hypertension in the

case of an artery, or a marker of diastolic dysfunction in the case of the

left ventricle wall. The basic steps are (i) to retrieve the vessel displace-

ment dmeas by image registration procedures on time frames of the vessel

of interest, and then (ii) to minimize the difference between dmeas and the

displacement computed by solving the coupled 3D blood vessel problem, in

order to estimate Young’s modulus. Here the structure is assumed to be lin-

early elastic, and the only parameter to be estimated is E, which is generally

a function of space (e.g. an atherosclerotic plaque has a different modulus

to healthy tissue) but not of time.

The former step consists of data acquisition, image segmentation and re-

construction, and finally registration; see Perego et al. (2011) for further

details. The latter, which we will address, is an example of an inverse fluid–

structure interaction (IFSI) problem, and results in a constrained optimiza-

tion problem, where the constraint is the FSI problem and the functional
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to be minimized is a measure of the mismatch between the data and the

computed solution.

An initial formulation of the IFSI problem is obtained by assuming that

the displacement data dmeas(x, τk) for x ∈ Στk retrieved from the image

registration process are available within the interval [0, T ] in some instants

denoted by τk, k = 1, . . . ,K. Here K is the number of instants when image

registration is performed, ∆τ is the time step between two measurements,

driven by the sampling frequency of the image devices, and Στk denotes

the interface between the fluid and the structure domain. Following the

formulation of problem (9.4), we consider the functional

JK(d, E) =
1

2

K∑

k=1

∫

Στk

(
dmeas(x, τ

k)− d(x, τk)
)2

dσ

+
αE
2

K∑

k=1

∫

Ωs

(
E(x, τk)−Eref

)2
dx, (9.18)

where d(x, τk) denotes the solution of the FSI system (3.44) in the ALE

formulation, at t = τk and the second term is a non-negative Tikhonov

regularization term. Here Eref is a prior estimate (available from ex vivo

specimens, for example), so that the regularization forces E to be close to

its reference value. Given an admissible set Ead where we seek the parameter

E, a possible formulation of the IFSI problem reads as follows. For t > 0,x ∈
Ωs, find E = E(x, t) ∈ P that minimizes (9.18) under the constraint (3.44).

A possible choice for P is

P = {E : E ∈ L∞(Ωs), 0 < Emin ≤ E ≤ Emax, with Emin, Emax ∈ R}.
(9.19)

Such a problem entails the solution of a time-dependent minimization prob-

lem, for which a classical KKT system can be obtained using the Lagrange

multiplier method. In this setting the parameter E plays the role of the

control variable. However, this approach is rather involved, since the adjoint

problem results in a final-value problem which would involve differentiation

with respect to the deformable domain as well: the so-called shape deriva-

tive. Moreover, it requires a massive memory occupancy as the solution at

all the time steps needs to be stored due to the back-in-time nature of the

adjoint problem.

A more convenient alternative numerical approach proposed by Perego

et al. (2011) first considers the time-discretization of the forward problem,

and formulates a minimization problem at each time step. For simplicity a

constant time step ∆t = ∆τ/m is assumed, for a suitable m ∈ N, m ≥ 1,



196 Parameter estimation from clinical data

that is, the instants τk in which measurements are acquired are a subset of

the time discretization of (3.44); for simplicity, we will consider m = 1. For

the time discretization of (3.44), we consider implicit methods with a semi-

implicit treatment of the convective term and of the fluid domain, whereas

the fluid viscous term is treated implicitly. As in Section 3.6.1, we use the

superscript ∗ to identify fluid quantities extrapolated from corresponding

quantities at previous time steps. Moreover, we introduce the spaces

V ∗ = {v ∈H1(Ω∗
f ) : v|Γ∗

D,f
= 0}, Q∗ = L2(Ω∗

f ),

W = {ψ ∈H1(Ωs) : ψΓD,s
= 0},

where Γ∗
D,f and ΓD,s are the portions of the boundary where a Dirichlet

condition is prescribed. Further, we let

Z∗ = {(v,ψ) ∈ V ∗ ×W : v|Σ∗ − ψ̂|Σ∗/∆t = 0},

and introduce the following bilinear forms:

a(v,d;w,ψ)∗ =
ρf
∆t

(v,w)∗f + (T f (v, p),∇w)∗f

+ ρf (((v
∗ − v∗f ) · ∇)v,w)∗f + ρs

(
d

∆t2
,
ψ

∆t

)

s

,

b(q;w)∗ = −(q,∇ ·w)∗f ,

where

(v,w)∗f =

∫

Ω∗

f

v ·w dx and (ψ,χ)s =

∫

Ωs

ψ · χ dx.

Then, for any given E ∈ Ead, at each time tn+1, the time-discretized forward

FSI problem consists of the following steps.

(1) Compute extrapolations Ω∗
f , v

∗ and v∗f to approximate Ωn+1
f , vn+1 and

vn+1
f .

(2) Given fn+1
f ∈ L2(Ω∗

f ) and f
n+1
s ∈ L2(Ωs), find (vn+1,dn+1) ∈ Z∗ and

pn+1 ∈ Q∗ such that

a(vn+1,dn+1;w,ψ)∗ +

(
E Ss(d

n+1),
1

∆t
∇ψ

)

s

+ b(pn+1;v)∗

= Fn+1
f (w) + Fn+1

s

(
ψ

∆t

)
− a(Rn+1

f ,0;w,ψ)∗ for all (w,ψ) ∈ Z∗

b(q;vn+1)∗ = 0 for all q ∈ Q∗. (9.20)

(3) Update the fluid domain to obtain Ωn+1
f .
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We used the notation

Ss(d) =
1

2(1 + ν)
(∇d+ (∇d)T) + ν

(1 + ν)(1− 2ν)
(∇ · d)I

so that we can write T s = E Ss. Moreover, given g ∈H1/2(Σ∗), we let

Rf (g) ∈Hdiv(Ω∗
f ) = {v ∈H1(Ω∗

f ) : ∇ · v = 0} and Rs(g) ∈H1(Ωs)

denote two lifting functions for the fluid–structure interface continuity, given

by

Rf (g)−Rs(g) = −g/∆t on Σ∗.

Due to the arbitrariness of one of these functions, in what follows we set

Rs(g) = 0. Moreover, when applied to function dn−1, it is possible to set

Rn
f = Rf (d

n−1). Finally, the functionals Fn+1
f and Fn+1

s in (9.20) account

for forcing terms, boundary data on ∂Ω∗
f \Σ∗ and ∂Ωs \Σ and terms coming

from the time discretization at previous time steps.

Regarding the parameter estimation problem, once the problem has been

discretized in time, the minimization of the cost functional

J̃k(d, E) =

∫

Σ
(dmeas(x, τ

k)− d(x, τk))2 dσ +
αE
2

∫

Ωs

(E(x, τk)−Eref)
2 dx

for each k = 1, 2, . . . ,K, was considered by Perego et al. (2011), under the

constraint (9.20). Hence, a system of KKT conditions can be derived relying

on the standard Lagrange multiplier approach (see Section 8.1.2). With this

aim we introduce the Lagrangian functional at time τk:

L(v, p,d;λv, λp,λd;E) = J̃k(d, E) + a(v,d;λv,λd)
∗+

(
E Ss(d),

1

∆t
∇λd

)

s

+ b(p;λv)
∗ + b(λp;v)

∗ − Ff (λv)− Fs

(
λd

∆t

)
+ a(Rf ,0;λv,λd)

∗.

The dependence on the superscript k is omitted. By the requirement that

the gradient of L vanishes, we obtain the following.

• The adjoint problem, by forcing to zero the (Gâteaux) derivatives of the

Lagrangian functional with respect to (v, p,d), which in fact is a time-

discretized FSI problem (see below for the interface condition). Find
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(λv,λd) ∈ Z∗, λp ∈ Q∗ such that

a(v,ψ;λv,λd)
∗ +

(
E Ss

(
ψ

∆t

)
,∇λd

)

s

+ b(λp;w)∗

+

∫

Σ
(d− dmeas) ·ψ dσ = 0,

b(q;λv)
∗ = 0 for all (w,ψ) ∈ Z∗, q ∈ Q∗. (9.21)

• The optimality condition

(ϕSs(d),∇λd)s = 0 for all ϕ ∈ L∞(Ωs),

by forcing to zero the derivative with respect to E.

• We also require the following state problem. Find (v,d) ∈ Z∗, p ∈ Q∗

such that

a(v,d;w,ψ)∗ +

(
E Ss(d),

1

∆t
∇ψ

)

s

+ b(p;w)∗

= Ff (w) + Fs

(
ψ

∆t

)
− a(Rf ,0;w,ψ)

∗

b(q;v)∗ = 0 for all (w,ψ) ∈ Z∗, q ∈ Q∗,

formally obtained by deriving the Lagrangian with respect to (λv,λp,λd).

The adjoint problem, the optimality condition and the state problem yield

the system of KKT conditions at each τk, which couples two linearized FSI

problems and a scalar equation.

In particular, for the adjoint problem the interface velocity condition reads

λv =
λd

∆t
on Σ∗,

whereas the interface stress condition is

T s(λd)n − T f (λv, λp)n = −(d− dmeas) on Σ∗, (9.22)

taking into account the mismatch between the data and the solution, and

modifying the homogeneous interface stress condition (3.19d) accordingly.

The same strategies described in Section 8.2 (e.g. gradient-based methods)

can be exploited to solve the KKT system numerically. To take into account

the constraint E > 0 in the case at hand, it is possible to transform the

parameter as ψ = log(E), so that E = exp(ψ) > 0 for every ψ ∈ L∞(Ωs),

and then optimize with respect to ψ. Finally, a finite element discretization

in space is required to solve the state and the adjoint problem numerically.

By construction, this approach provides an estimate for E at each time;
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Figure 9.2 Convergence history for the estimation of Young’s modulus by
means of the algorithm proposed by Perego et al. (2011). Rectangular fluid
and structure domains are used, with synthetic measurements generated by
means of forward FSI simulations. Numerical results were obtained using
the MATLAB finite element library MLife.

a possible option is then to average them to obtain a unique estimate, al-

though this may suffer from instabilities in the presence of highly noisy data.

A more robust approach is to solve the minimization problem over time. In

this case, however, the complexity of the problem would increase, due to

the inclusion of the shape derivatives in the minimization problem. In Fig-

ure 9.2 we show the number of iterations and the convergence history for

the algorithm described above for the estimation of Young’s modulus.

9.3.2 A Kalman filter approach for estimating material

parameters in cardiac mechanics

In this section we illustrate a Kalman filter approach introduced by Xi

et al. (2011) for estimating material parameters occurring in the mechanical

model describing myocardial contractility. Only passive mechanics is mod-

elled, making a quasi-static assumption, and without taking into account

the electromechanical coupling. A transversely isotropic Guccione’s consti-

tutive law (Guccione et al. 1991) is used, and four parameters are estimated

in silico from noisy displacement measurements of material points located

on the myocardial surface. In principle, a similar approach can also be used,

for example, to identify the material parameters affecting the orthotropic

model (6.24).

The transversely isotropic strain energy function in the Guccione law can
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be expressed as

Θ(E) =
1

2
θ1(e

Q − 1),

where

Q = θ2E
2
ff + θ3(E

2
ss + E2

nn + 2E2
sn) + θ4(2E

2
fs + 2E2

fn).

Here θ = (θ1, . . . , θ4) ∈ R
p denotes a vector of p = 4 material parameters,

and Eij is the (i, j)th component of the Green–Lagrange strain tensor E =
1
2 (F

TF −I) = 1
2(C−I), with i, j ∈ {f, s, n} denoting fibre, sheet and sheet-

normal directions, respectively. After performing spatial discretization, at

each time step the augmented state X̃
k
= (Xk,θk)T ∈ R

nx+p, made up of

the deformed configuration Xk and the material parameter vector θk, has

to be determined by solving a non-linear problem of the form

X̃
k
= f(X̃

k−1
,uk−1) + εk, f(X̃

k−1
,uk−1) =

[
G(θk−1,uk−1)

θk−1

]
,

where the input vector uk−1 at time k − 1 is given by the external forces,

with observations

Zk = h(X̃
k
+wk), k = 1, . . . ,K.

Xi et al. (2011) take h : Rnx+p → R
nz to be a linear (interpolation) matrix

H ∈ R
(nx+p)×nz , mapping the augmented state vector to the coordinates

of the points where measurements are acquired. These measurements are

assumed to be contaminated by a noise term wk with zero mean and covari-

ance Rk; note that the material parameter has no explicit time dependence.

Nevertheless, as already pointed out, the filter will provide recursively up-

dated estimates of θk. The goal is thus to compute the estimate θK at the

final time t = tK .

Moreover, since the augmented state vector X̃
k
does not depend on the

deformed configuration X̃
k−1

, the rank of the error covariance matrix P̃k
at each step will be equal to p. This is a crucial point in order to devise a

reduced-order UKF, making it possible to (i) store a covariance matrix of

dimension (nx + p) × p, (ii) perform inversion of p × p matrices and, even

more importantly, (iii) decrease the number of model evaluations required

by the filter at each time step from O(nx + p) to O(p).

Slight differences arise with respect to the UKF formulation addressed in

Section 9.2.3, due to the reduction of the estimation process to the subset of

X̃
k
corresponding to the p parameter components. The filtering algorithm

consists of three steps.
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• Initialization. A singular value decomposition P a0 = La0Λ
a
0(L

a
0)

T of the

initial error covariance P a0 ∈ R
(nx+p)×(nx+p) is performed. For instance,

P a0 can be given by a diagonal matrix with p non-zero entries representing

the variances of the initial (or background) parameter estimates. Letting

La0,p be the matrix whose columns are the first p singular vectors of La0
and Λa0,p, the p× p diagonal matrix of the singular values, the reduced-

rank square-root approximation Sa0 ∈ R
(nx+p)×p can be obtained as

Sa0 = La0,p

√
Λa0,p.

• Prediction (or time update). At each step k = 1, . . . , starting from the

assimilated state
̂̃
X

k−1

a at step k− 1, a set of sigma points is selected as

x̃k−1
a,(i) =

̂̃
X

k−1

a + (Sak−1)i, x̃k−1
a,(p+i) =

̂̃
X

k−1

a − (Sak−1)i, i = 1, . . . , p.

The sigma points are then transformed via the state dynamics to obtain

x̃kf,(i) = f
(
x̃k−1
a,(i),u

k−1
)
, i = 1, . . . , 2p,

and the mean
̂̃
X

k

f and the error covariance P fk are estimated as

̂̃
X

k

f =

2p∑

i=1

x̃kf,(i), P fk =

2p∑

i=1

(
̂̃
X

k

f − x̃kf,(i))(
̂̃
X

k

f − x̃kf,(i))
T.

To preserve the low-rank structure of the correlation matrix P fk , a sin-

gular value decomposition P fk = LfkΛ
f
0(L

f
k)

T is performed, thus yielding

P fk = Sfk (S
f
k )

T, Sfk = Lfk,p

√
Λfk,p.

• Correction (or measurement update). At each step k = 1, . . . , the ob-

servation Zk is assimilated into the forecast
̂̃
X
k

f yielding the corrected

state
̂̃
X

k

a =
̂̃
X

k

f +Kk(Z
k −H

̂̃
X

k

f ).

In this case the Kalman gain can be shown to be

Kk = Sfk (I + (HSfk )
TR−1

k HSfk )
−1(HSfk )

TR−1
k

along with the square-root of the error covariance, given by

Sak = Sfk (I + (HSfk )
TR−1

k HSfk )
−1/2.

Note that here, compared to the UKF formulation of Section 9.2.3, up-

date formulas for the Kalman gain and the error covariance are directly
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obtained for the square-root of the covariance matrix. For further details

see Simon (2006) or Xi et al. (2011).

Xi et al. (2011) show that such a reduced-order UKF is able to estimate

p = 4 (and subsequently p = 12) material parameters, starting from a set

of synthetic measurements generated by adding Gaussian noise to a set of

noise-free measurements, obtained via model simulation for a chosen ground

truth parameter vector. Myocardial dilatation is considered by loading the

structure with a given ventricular pressure on the endocardium, and nz =

600 material points located on the epicardium and endocardium.

We have chosen to describe this example to illustrate how to take advan-

tage of a Kalman filter strategy in a relatively simple cardiovascular appli-

cation; further details and more involved cases can be found in Moireau and

Chapelle (2011), Bertoglio et al. (2012), Chabiniok et al. (2012), Moireau

et al. (2013) and Corrado et al. (2015), for example. Numerical results re-

lated to parameter identification in electrophysiology by means of an ensem-

ble Kalman filter – a technique that indeed shares several similarities with

the UKF – will be shown in Section 10.2.2.



10

Accounting for uncertainty

Moving towards model personalization – that is, the adaptation of model

inputs to subject-specific conditions – the question immediately arises as

to the sensitivity of model predictions to errors and uncertainties in the

model inputs. The inputs to be personalized may include the computa-

tional domain (e.g. vascular networks), physical parameters (e.g. vascular

material properties) and boundary conditions. Because of noise in input

measurements, as well as their large biological variability, model inputs are

inevitably hampered by uncertainty. Furthermore, as already seen in Sec-

tion 9, not all model inputs are directly measurable, as in the case of the

local mechanical properties of the arterial wall, thus calling into play the

need to solve parameter estimation problems. The uncertainties carried by

patient-specific features should then be incorporated into the computational

model, to quantify their impact on the computed results and to obtain more

reliable predictions or best/worst-case scenarios (Eck et al. 2016). These are

the main reasons behind the very rapid growth of applications of sensitiv-

ity analysis and uncertainty quantification (UQ) to cardiovascular problems

in the past decade. Since UQ is a very active field (and less mature than

PDE-constrained optimization or parameter estimation) from both a math-

ematical and computational viewpoint, in this chapter we only touch on

some basic, yet relevant, issues related to UQ techniques; see e.g. Sullivan

(2015), Kaipio and Somersalo (2005) and Le Mâıtre and Knio (2010) for a

more in-depth overview of numerical aspects of UQ.

Typically, UQ problems involve a mathematical model for a process of in-

terest, subject to some uncertainty about the correct form of this model or,

more frequently, about some of its parameters. Although exhibiting substan-

tial overlap with the field of parameter estimation and data assimilation, UQ

problems also involve the propagation of uncertainty on outputs of interest,

reliability or certification problems, prediction problems and, very often, con-
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sist of several of these aspects coupled together. For instance, after estimat-

ing some model parameters, we may use them to forward-propagate other

uncertainties. Often, though not always, uncertainties are treated proba-

bilistically, thus calling into play probabilistic and statistical methods. Here

we focus on basic aspects related to forward propagation and backward prop-

agation of uncertainty, for the latter case focussing on statistical inversion

methods within a Bayesian framework.

10.1 Forward uncertainty quantification

The goal of forward UQ is to derive information about the uncertainties in

system outputs of interest, given information about the uncertainties in the

system inputs. The goal is to obtain the probability density function (PDF)

of some output of interest Z = f(θ) ∈ R
nz given the probability distribution

of the input θ ∈ R
p, or evaluate moments (e.g. the expected value and

the variance), correlation functions, confidence regions or quantiles.1 Here

f : Rp → R
nz denotes an input/output map. For instance, Sankaran and

Marsden (2011) take the radius of an abdominal aortic aneurysm, the radii

and the inflow velocity of the carotid artery bifurcation, and the flow split of

the left and right pulmonary arteries as random variables to account for the

uncertainty impact on blood flows modelled by three-dimensional Navier–

Stokes equations with rigid arterial walls, by considering as outputs blood

velocity and wall shear stresses.

Once a probabilistic description of the random inputs has been provided,

a suitable strategy is needed to propagate uncertainties through the model.

The simplest case is one where the PDE system depends on a set of ran-

dom inputs that are constant with respect to space and time. In this case,

they can be described by means of a finite-dimensional random vector, with

a given probability distribution. A more involved case is one where input

data may vary randomly from one point of the physical domain to another

(and possibly from one time instant to another); in this case, they are de-

scribed in terms of random fields. Two popular strategies for describing cor-

related random fields include Karhunen–Loève expansions, and expansions

in terms of global orthogonal polynomials (Ghanem and Spanos 2003, Xiu

and Karniadakis 2002b). Made up of infinitely many terms, these expansions

are usually truncated to approximate random fields: the milder the varia-

1 Sensitivity analysis (see e.g. Saltelli et al. 2008 for a detailed review) may be seen as a
precursor of forward UQ, sharing the need to provide a quantitative description of the
dependence of the solution of a model on input parameters. See Donders, Huberts, van de
Vosse and Delhaas (2015) for the application of sensitivity analysis to a pulse wave
propagation model of arterial flows.
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tions in space and time of the random field realizations, the fewer the terms

retained in the expansion.

Several approaches are available for solving PDE problems with random

input data. Monte Carlo (MC) methods are the most popular. These are

based on independent realizations θ1, . . . ,θM of the random variable θ

(whose probability distribution is denoted by µ) yielding approximations

of the expectation by averaging over the corresponding realizations of that

quantity; that is,

E[f(θ)] =

∫

Rp

f(θ)µ(dθ) ≈ 1

M

M∑

i=1

f(θi), (10.1)

where the sample θ1, . . . ,θM is generated randomly from the probability

distribution of θ. Such a method requires a deterministic PDE query for each

realization and a very large number of queries to achieve a small error, this

latter being proportional to 1/
√
M . This entails an excessive computational

burden, especially for systems which are already computationally expensive

in their deterministic setting. See, for example, Fishman (1996), Robert and

Casella (2004) and Voss (2013) for more on Monte Carlo methods, and Dick,

Kuo and Sloan (2013) and Giles (2015) for quasi-Monte Carlo and multilevel

Monte Carlo methods, respectively.

When the solution depends analytically on the random input parame-

ters, other approaches exhibit much faster convergence rates. These include

spectral (global) stochastic Galerkin (SG) methods (Ghanem and Spanos

2003, Xiu and Karniadakis 2002a, Babuška, Tempone and Zouraris 2004)

and stochastic collocation (SC) methods (Babuška, Nobile and Tempone

2007, Xiu and Hesthaven 2005, Nobile, Tempone and Webster 2008); for a

mathematical and numerical discussion, see the detailed review by Gunz-

burger, Webster and Zhang (2014) and the recent books by Le Mâıtre and

Knio (2010) and Sullivan (2015). These methods are based on the discretiza-

tion of a PDE system, not only with respect to spatial variables but also

with respect to the random inputs. Stochastic Galerkin methods are in-

trusive approaches since the physical and the probabilistic variables are

coupled; stochastic sampling (SS) and interpolatory-type stochastic collo-

cation methods are instead non-intrusive. Furthermore, stochastic Galerkin

methods require the solution of discrete systems that couple all spatial and

probabilistic variables, whereas stochastic collocation methods can combine

standard approximations in physical space with globally defined polynomial

approximation in the probability domain, either by full polynomial spaces,

tensor product polynomial spaces or sparse tensor product polynomials. The
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(a)

(b)

Figure 10.1 Different degrees of tissue damage in terms of relative con-
ductivity (a) and activation times in milliseconds (b) for a healthy case
(left) and different ischaemic regions on the myocardium. The patient-
specific geometry of the left ventricle has been reconstructed using the
semi-automatic segmentation method proposed by Fedele et al. (2015). Nu-
merical results were obtained using the finite element library redbKIT v2.1
(github.com/redbKIT/redbKIT/releases).

stochastic space can then be queried at any point in order to construct the

PDF of the output, the interpolation in the stochastic space being built on

top, and independently, of the PDE solver.

By way of illustration, Figure 10.1 gives the activation times obtained

using the monodomain model coupled with the Aliev–Panfilov cell model.

This computation is carried out on a patient-specific left ventricle geome-

try, obtained by considering different levels of tissue damage (or ischaemia),

caused by an insufficient blood perfusion of the myocardium. In this case,

each component of the conductivity Σ is multiplied by a spatial field σ(x;θ)

ranging from 0 (lack of conductivity, damaged tissue) to 1 (regular conduc-

tivity, healthy tissue), which we refer to as relative conductivity; as soon

as the position and size of the ischaemia are unknown, σ is a random field,

depending on (a finite number p of) random inputs θ1, . . . , θp. We empha-

size that in this case input uncertainty yields significant variability in the

output, thus making uncertainty propagation a problem of interest in this

context.
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10.2 Inverse uncertainty quantification

Inverse UQ (or backward uncertainty propagation) problems refer to those

situations in which input quantities are inferred starting from observed sys-

tem outputs. Variational or sequential methods described in Sections 9.1

and 9.2 provide point estimates of the quantities of interest, given a set of

observations. The statistical inversion approach provides a well-established

framework for better characterization of the uncertainty in the data and

the resulting uncertainty in the computed estimates, adopting a Bayesian

formulation. In this setting, all the model inputs included in the model are

described by random variables, where randomness accounts for the avail-

able degree of information concerning their realizations, and is expressed in

terms of probability distributions; as a result, the solution of the inverse UQ

problem is the posterior PDF of the unknown inputs. Compared with the

variational methods of Section 9.1, where classical regularization methods

yield point estimates by curing the ill-posedness of the problem, statistical

inversion aims at removing ill-posedness by recasting the inverse problem

in a larger space of probability distributions (Kaipio and Somersalo 2005).

This strategy also enables better characterization of the prior information

contained in the regularization terms in (9.2), in the form of a prior PDF

of the unknown inputs. The task of Bayesian inversion is to improve the

knowledge of the unknown system features starting from the prior belief

and exploiting information from a set of model realizations. For more on

this topic, see Stuart (2010) and Sullivan (2015), for example.

10.2.1 Static problems

Assume that we are measuring an output z = f(θ, ε) ∈ R
nz in order to get

information on the unknown input θ ∈ R
p, and that the measured quantity is

contaminated by noise ε. By treating input and output as random quantities,

let us denote by Z ∈ R
nz and Θ ∈ R

p two random variables, of which z and

θ denote the corresponding realizations. Very often, the noise is modelled

as additive and mutually independent of Θ, so that the input/output map

takes the form

Z = f(Θ) + ε,

where Z, ε ∈ R
nz , Θ ∈ R

p are random variables. Here Z is called the

measurement, and its realization Z = z in the actual measurement process is

called the data. Moreover, let πnoise(ε) denote the PDF of the noise ε, usually

encoding experimental errors. Before performing output measurements, all

the information (e.g. structure or regularity) about the distribution of the
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inputΘ are encapsulated in the prior PDF πprior(θ), to be selected according

to problem-specific considerations.

The conditional probability π(z | θ) of Z | Θ = θ (i.e. of Z conditioned

on Θ = θ) is the so-called (conditional) likelihood function, and expresses

the likelihood of different measurement outcomes z given Θ = θ. In our

case the input/output map f : Rp → R
nz requires the solution of a PDE

problem, and the evaluation of the output f(θ). Thanks to the assumption

of mutual independence of Θ and ε, Z | Θ = θ is distributed like ε, that is,

the likelihood function is

π(z | θ) = πnoise(z − f(θ)).

Assuming that the measurement data Z = z is given, in the Bayesian

framework the inverse problem is to find the conditional PDF π(θ | z) of

Θ. This latter is the posterior PDF of Θ given the data Z = z and can be

expressed via Bayes’ theorem as

π(θ | z) = πprior(θ)π(z | θ)
π(z)

,

where

π(z) =

∫

Rnz

π(z | θ)πprior(θ) dθ

plays the role of a normalization constant, and often has little importance

from a computational standpoint.

Solving an inverse UQ problem in the static case – alternatively, in the

literature such a problem is referred to as the stationary inverse problem –

thus consists in finding a prior PDF πprior(θ), expressing the likelihood func-

tion π(z | θ) using the interplay between the observation and the unknown,

and finally developing suitable numerical techniques to explore the poste-

rior PDF. Each of these tasks is a challenging problem from a computational

standpoint; here we provide some hints on how to use this framework for a

wide range of applications related to backward uncertainty quantification in

cardiovascular modelling.

In the case where the unknown is a random variable with few components,

the posterior PDF can also be visualized in the form of a non-negative

function of these variables. Most applications, however, yield larger-scale

inverse UQ problems, and resulting PDFs in high-dimensional spaces, for

which it is much more effective to evaluate suitable point estimators, such

as the maximum a posteriori estimator

θMAP = arg max
θ∈Rp

π(θ | z)
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or the conditional mean

θCM = E[θ | z] =
∫

Rp

θ π(θ | z) dθ.

Evaluating the former requires the solution of an optimization problem,

for example using iterative, gradient-based methods; computing the latter

involves a numerical quadrature problem in high-dimensional spaces. The

evaluation of variability estimators such as the conditional covariance

Cov (θ | z) =
∫

Rp

(θ − θCM)(θ − θCM)T π(θ | z) dθ ∈ R
p×p,

or confidence regions, also provides further indicators for uncertainty quan-

tification.

The simplest probabilistic model that can be used to describe experimen-

tal uncertainties is the Gaussian model, for which the noise ε ∼ N (0,Σε) is

normally distributed, with mean 0 and covariance matrix Σε. In this case,

the likelihood function is

π(z | θ) ∝ exp

(
−1

2
‖z − f(θ)‖2

Σ−1
ε

)
.

If we can also assume a Gaussian model on the prior knowledge of the

parameter distributions, that is, πprior ∼ N (θp,Σp), then the posterior PDF

will be normally distributed as well, that is,

π(θ | z) ∝ exp

(
−1

2
‖z − f(θ)‖2

Σ−1
ε

− 1

2
‖θ − θp‖2Σ−1

p

)
. (10.2)

In this case, the maximum a posteriori estimator is

θMAP = arg min
θ∈Rp

(
1

2
‖z − f(θ)‖2

Σ−1
ε

+
1

2
‖θ − θp‖2Σ−1

p

)
;

that is, it coincides with the estimator obtained by solving the (static ver-

sion, with K = 1 of the) regularized least-squares problem (9.4), as long

as we choose θ0 = θp, Pθ = Σp and M = Σ−1
ε . If we assume instead that

no information is available about the parameter distribution except that it

resides in a subset D of the parameter space R
p, then πprior(θ) ∼ U(D) is a

uniform distribution over D.

Remark 10.1 The parameter estimation techniques of Section 9.1 can

be seen as strategies yielding point estimates without any reference to un-

derlying statistical models. However, when a Gaussian assumption is made

in the Bayesian framework, the regularization term and the norms ‖ · ‖Σ−1
ε
,

‖·‖Σ−1
p

and the value θp have a clear interpretation in terms of measurement
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noise and prior probability distribution. Hence, a prior that carries sufficient

information about the true underlying structure of the parameters often pro-

vides more meaningful estimates and regularizes the inverse problem in a

more natural way than relying on abstract regularization terms, as in (9.4),

that might not have any interpretation. The benefit of casting parameter

estimation problems in the form of inverse UQ problems is that one is also

able to characterize the variance of the prediction due to measurement and

model errors more precisely than from the single-point estimates.

Exploring the posterior distribution in the case where the input space D
has a larger dimension than p = 2 or 3 calls into play suitable sampling

methods, among which the Markov chain Monte Carlo (MCMC) techniques

are the most relevant example. Instead of evaluating the posterior PDF at a

single point, an MCMC technique is a systematic way of generating a sample

which can be used to explore the distribution, as well as to perform Monte

Carlo integration as in (10.1) in order to compute the conditional mean or

conditional covariance, for example. In the former case, the posterior π(θ | z)
plays the role of target probability distribution that we want to explore, and

is obtained as a realization of a Markov chain by relying on the following

Metropolis–Hastings algorithm, for example.

(1) Pick an initial θ1.

(2) For m = 1, . . . ,M :

1. Compute π(θm | z).
2. Draw w ∼ N (0,Σε) and take a random step to find the next candi-

date θ̂ = θk +w.

3. Compute π(θ̂ | z).
4. Define the acceptance ratio

αm = min

{
1,

π(θ̂ | z)
π(θm | z)

}
.

5. Let u ∼ U([0, 1]). If u ≤ αm, then accept, set θm+1 = θ̂, and add to

the set of samples Ξ; otherwise reject, and keep θm+1 = θm.

After M steps of the algorithm, the set Ξ of samples contains realizations

of the probability distribution π(θ | z). The random step in point (b) from

the current sample to the next candidate is distributed as white noise; its

covariance should be chosen as large as possible while still maintaining a

reasonable acceptance rate. Moreover, the initial points of the generated

set usually represent the distribution to be explored poorly, and are then

removed from the sample. To learn more on MCMC algorithms we refer to
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Kaipio and Somersalo (2005), Robert and Casella (2004) and Voss (2013),

and references therein.

10.2.2 Dynamical problems

Backward UQ problems whose forward system is stationary, or with observa-

tions that are not acquired sequentially in time, cannot be cast in the form of

a Bayesian inverse problem, as shown in the previous section. In these cases,

backward UQ can be formulated in the Bayesian framework by means of

Bayesian filtering methods, among which the Kalman filter can be seen as

a particular instance. These problems are also referred to as non-stationary

inverse problems. As in Section 9.2, depending on the quantities that have to

be estimated, the problem can be formulated as a state estimation or a joint

state/parameter estimation problem. We will treat both these cases but will

limit our discussion to finite-dimensional models (which usually arise from

space and time discretization of unsteady PDEs) and using time-discretized

evolution models. Further discussion can be found in Kaipio and Somersalo

(2005), Särkkä (2013), Sullivan (2015) and Houtemaker and Zhang (2016),

for example.

Let {Xk}Kk=0 and {Zk}Kk=1 denote two stochastic processes; the former is

related to the quantity we are interested in, whereas the latter represents

the measurement. In particular, the random vector Xk ∈ R
nx is referred

to as the state vector, whereas the random vector Zk ∈ R
nz is referred

to as the observation, both considered at the kth time τk. From a Bayesian

standpoint, the goal is to use the observations until time k to get information

about the state Xk and quantify the uncertainty related to this estimate.

To frame this problem in the Bayesian setting, we assume that {Xk}Kk=0

and {Zk}Kk=1 are an evolution/observation model, as follows.

(1) {Xk}Kk=0 and {Zk}Kk=1 are Markov processes, that is,

π(xk+1 | x0,x1, . . . ,xk) = π(xk+1 | xk), k = 0, 1, . . . ,

π(zk | x0,x1, . . . ,xk) = π(zk | xk), k = 1, 2, . . . .

(2) {Xk}Kk=0 depends on the past observations only through its own history,

that is,

π(xk+1 | xk,z1, . . . ,zk) = π(xk+1 | zk), k = 0, 1, . . . .

Here xk, zk denote the realizations of the processes {Xk}Kk=0 and {Zk}Kk=1,

respectively. In order to characterize such a model, we need to specify
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the PDF of the initial state X0, πprior(x
0), the so-called transition ker-

nel π(xk+1 | xk), k = 0, 1, . . . and the conditional probability π(zk | xk),
k = 1, 2, . . . , the so-called (conditional) likelihood function. We assume a

state evolution equation of the form

Xk+1 = fk+1(Xk,V k+1), k = 0, 1, . . . (10.3)

and an observation equation of the form

Zk = hk(Xk,W k), k = 1, 2, . . . . (10.4)

Here fk+1 and hk are known functions, whereas V k+1 ∈ R
nx andW k ∈ R

nz

denote the state noise and the observation noise, respectively. We want to

determine the conditional PDF π(xk | Dk) of the state at the kth time

instant given the observations Dk = (z1, . . . ,zk) up to the same time in-

stant; this procedure is usually referred to as filtering problem. By recursive

application of Bayes’ theorem, we have the following.

• The time-evolution updating, i.e., the problem of determining π(xk+1 |
Dk) given π(xk | Dk) and the transition kernel π(xk+1 | xk), provides

π(xk+1 | Dk) =

∫

Rnx

π(xk+1 | xk)π(xk |Dk) dxk. (10.5)

• The observation updating, i.e., the problem of determining the posterior

distribution π(xk+1 | Dk+1) of Xk | Dk based on the new observation

Zk+1 given π(xk+1 | Dk) and the likelihood function π(zk+1 | xk+1),

provides

π(xk+1 |Dk+1) =
π(zk+1 | xk+1)π(xk+1 |Dk)

π(zk+1 | Dk)
, (10.6)

where

π(zk+1 | Dk) =

∫

Rnx

π(zk+1 | xk+1)π(xk+1 | Dk) dxk+1.

Formula (10.6) is Bayes’ formula, where π(xk+1 | Dk) is considered as

the prior distribution for xk+1.

The Kalman filter introduced in Section 9.2.1 is a remarkable instance of

Bayesian filter method. Indeed, let us assume that the state and the obser-

vation equations are linear with additive noise processes; that is,

fk+1(xk,vk) = Ak|k+1x
k + vk, hk = Hkx

k +wk,

for given matrices Ak|k+1, Hk, that the noise vectors V
k+1 andW k are mu-

tually independent, Gaussian, with zero mean and known covariances Qk+1
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and Rk, respectively, and that the prior PDF of X0 is Gaussian with mean

m0 and covariance P 0. Under these assumptions, the time evolution and

the observation updating formulas (10.3, 10.4) involve Gaussian distribu-

tions, whose means and covariances can be updated at each step according

to prediction formulas (9.15a, 9.15b) and correction formulas (9.15d, 9.15e),

respectively. In particular, we have that

π(xk+1 | xk) ∼ N(Ak|k+1x
k, Qk),

π(zk | xk) ∼ N(Hkx
k, Rk).

The Bayesian filtering equations can be evaluated in closed form, yielding

the following Gaussian distributions:

π(xk | Dk−1) ∼ N (mk
f , P

f
k ),

π(xk |Dk) ∼ N (mk
a, P

a
k ),

π(zk | Dk−1) ∼ N (Hkm
k
f ,HkP

f
kH

T
k +Rk),

where the means and the variances can be computed with the Kalman filter

prediction step

mk
f = Ak−1|km

k−1,

P fk = Ak−1|kP
a
k−1A

T
k−1|k +Qk−1

(10.7)

and the consequent correction step

Kk = P fkH
T
k (HkP

f
kH

T
k +Rk)

−1,

mk
a =m

k
f + Fk(z

k −Hkm
k
f ), (10.8)

P ak = (I −KkHk)P
f
k .

In other words, under the Gaussian assumption, the density is updated only

through the mean and the covariance. A similar interpretation also holds for

the EKF, as soon as a Gaussian approximation of the densities is considered,

and the evolution of these densities is taken into account. In this respect,

Bayesian filtering can be seen as a generalization of deterministic filters,

such as the KF, EKF and UKF introduced in Section 9.2.

As already remarked in Section 9.2.2, when the evolution model is fully

non-linear, the EKF, which can be seen as a particular instance of an ap-

proximate Gaussian filter, may perform badly: this can be explained by

considering that the push-forward of the previous state estimate (which has

a Gaussian distribution) by a non-linear map is poorly approximated by a

Gaussian distribution. To avoid the linearization of the evolution and the



214 Accounting for uncertainty

observation models, one can rely on Monte Carlo methods to simulate the

distributions by random samples, similarly to what has been done in the

static case. This strategy yields the so-called particle filters (also referred to

as sequential Monte Carlo methods), now very popular for complex backward

UQ problems.

The goal of a particle filter is to produce an ensemble {xk|k1 , . . . ,x
k|k
Ne

} of

Ne particles sequentially, that is, a random sample distributed according to

the conditional probability distribution π(xk | Dk). The ensemble Kalman

filter (EnKF), introduced by Evensen (1994, 2003), is a particle filter ex-

ploiting the idea of approximating the means and the covariances of the

current estimate involved in the Kalman filter prediction-correction strat-

egy by a set of particles sampled from the distribution. Unlike the Kalman

filter itself, we evaluate the error covariance predictions and corrections by

the ensemble covariance matrices around the corresponding ensemble mean,

instead of classical covariance equations (9.15b–9.15e) given in the KF algo-

rithm. The covariance matrices of the state vector X need not be evolved,

thus eliminating the costs associated with storing, multiplying and inverting

the matrices appearing in the equations (9.15b–9.15e).

The ensemble is initialized by drawing Ne independent particles from, say,

a Gaussian distribution with mean m0 and covariance P0.

• At each prediction step, each particle is evolved using the Kalman filter

prediction step,

xk|k−1
e = Ak−1|kx

k−1|k−1
e + vk−1

if the system is linear, or

xk|k−1
e = fk(xk−1|k−1

e ,vk−1)

if the system is non-linear.

• At each correction step, the observation zk is replicated Ne times, ob-

taining

dke = z
k + ηke , ηke ∼ N(0, Rk).

Then, the empirical mean

x̄k|k−1
e =

1

Ne

Ne∑

e=1

xk|k−1
e

and the empirical covariance

CEk|k−1 =
1

Ne − 1

Ne∑

e=1

(
xk|k−1
e − x̄k|k−1

e

)(
xk|k−1
e − x̄k|k−1

e

)T
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of the particles set {xk|k−1
e }Ne

e=1 are computed. The exact Kalman gain

is then approximated by

KE
k = CEk|k−1H

T
k (HkC

E
k|k−1H

T
k +Rk)

−1

and, finally, the state correction is obtained by applying the formula

(9.15d) to each particle; that is,

xk|ke = xk|k−1
e +KE

k (d
k
e −Hkx

k|k−1
e ).

Several alternative implementations can be found, for example in Evensen

(1994, 2009); for more on the ensemble Kalman filter, see also Iglesias,

Law and Stuart (2013), Kelly, Law and Stuart (2014), Ernst, Sprungk and

Starkloff (2014) and Houtemaker and Zhang (2016).

If the backward UQ problem also involves random inputs (as in the case

of model parameters θ, which can also be time-varying), the problem of

state estimation and parameter estimation simultaneously arises. Generally

speaking, there is no unique optimal solution for this problem. Similarly to

the state augmentation technique presented in Section 9.2, a possible way

of facing this problem is to treat the unknown parameters θ as part of the

state, and use conventional filtering technique to infer the parameter and

state simultaneously. This strategy goes by the name of joint estimation: see

e.g. Moradkhani, Sorooshian, Gupta and Houser (2005), Ching, Beck and

Porter (2006) and Evensen (2009) for more details. An example related to

cardiovascular modelling where an EnKF can be exploited to deal with state

and parameter estimation is addressed in Section 10.3.2.

10.3 Applications to cardiovascular modelling

Until recently, UQ has not been a priority for cardiovascular modelling. To-

day, a growing number of works focus on both forward and inverse UQ prob-

lems, taking into account uncertainties related to (i) measurement errors in

experimental data (also referred to as observational uncertainty), (ii) model

parameters, which may result from observational uncertainty as well as from

variability, or lack of information, (iii) boundary and/or initial conditions

and, possibly, (iv) the computational model itself, because of model limi-

tations (model uncertainty) or systematic approximation errors (which can

be seen as a form of epistemic uncertainty) introduced, for example, when

the original high-fidelity model is replaced by a cheaper surrogate model or

a reduced-order model. The list of contributions we mention is inevitably

incomplete.
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The effect of uncertain parameters in one-dimensional models of the arte-

rial network was first considered by Xiu and Sherwin (2007), who exploited

a high-order stochastic collocation method based on the generalized polyno-

mial chaos expansion, combined with a discontinuous Galerkin spectral/hp

element discretization in physical space, in order to analyze the effects of

parametric uncertainties related to material properties and the initial cross-

sectional area of the arterial vessel in pulse wave propagation, in a network

of up to 37 vessels connected via 16 bifurcations. Chen, Quarteroni and

Rozza (2013) have considered a more general setting, taking into account a

wider network and many more sources of parametric uncertainties, including

parameter-dependent boundary conditions in each distal boundary site and

geometric parameters describing the cross-section area in each arterial seg-

ment. Similar problems, involving both sensitivity analysis and uncertainty

propagation for networks built over patient-specific datasets, can be found

in Leguy et al. (2011), Huberts et al. (2013a, 2013b) and Brault, Dumas and

Lucor (2017).

The use of an adaptive stochastic collocation framework to deal with

UQ in haemodynamic simulations was considered by Sankaran and Mars-

den (2011), who extracted relevant haemodynamic features – and quantified

their uncertainty – for two idealized problems, namely an abdominal aortic

aneurysm and a carotid artery bifurcation, and for a patient-specific prob-

lem, a Fontan procedure for congenital heart defects. In the former case, for

instance, the radius of the abdominal aortic aneurysm, the radius and inflow

velocity of the carotid artery bifurcation, and the flow split of the left and

right pulmonary arteries were treated as random variables, following either

Gaussian or uniform distributions, to account for the uncertainty impact on

blood flows described by three-dimensional Navier–Stokes equations with

rigid walls in small arterial portions. More detailed versions of this method-

ology have recently been exploited by Sankaran, Grady and Taylor (2015)

and Sankaran, Kim, Choi and Taylor (2016) to analyze the impact of ge-

ometric uncertainties (i.e. anatomic uncertainties resulting in errors in the

reconstructed geometry) and physiological uncertainties (yielding errors in

boundary conditions or blood viscosity) for the blood flow and pressures in

the coronary arteries.

The problem of calibrating outflow boundary conditions of blood flow sim-

ulations in truncated arterial domains has been cast in a Bayesian framework

by D’Elia and Veneziani (2013) and Perdikaris and Karniadakis (2015), with

the goal of quantifying the uncertainty affecting velocity and flow-related

variables of interest, all treated as random variables.

A complete uncertainty propagation pipeline from clinical data to compu-
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tational results was considered by Schiavazzi et al. (2016), focussing on an

example of single ventricle palliation surgery. After determining the prob-

ability density functions of right pulmonary artery flow split and average

pulmonary pressures from clinical measurements, Bayesian parameter esti-

mation is carried out in order to characterize the distributions of boundary

conditions yielding the observed flow splits and average pressure distribu-

tions. Then, uncertainties in the boundary conditions are propagated to sim-

ulation predictions by employing sparse grid stochastic collocation to sta-

tistically characterize model predictions of post-operative haemodynamics

in models with and without pulmonary artery stenosis, in order to quan-

tify the statistical variability in virtual surgery predictions. Finally, the im-

pact of uncertainty on the optimal design of idealized bypass graft models

has been considered by Sankaran and Marsden (2010) and Lassila et al.

(2013a, 2013b), for example.

As to cardiac electrophysiology, a systematic application of UQ techniques

to the forward problem of electrocardiography (i.e. the characterization of

the torso potential given the electrical conductivity inside the heart and the

torso) has been considered by Geneser, Kirby and MacLeod (2008), focussing

on a simplified 2D configuration representing a geometric model of a slice

through the human thorax. The forward UQ propagation problem yielding

the standard deviation of the resulting stochastic torso potentials depending

on several uncertainties affecting, for example, the electrical conductivities

of the organs and the representation of cardiac sources, was tackled by a

stochastic Galerkin method based on the generalized polynomial chaos ex-

pansion. Model personalization in cardiac electrophysiology was considered

by Konukoglu et al. (2011), who applied an efficient Bayesian method ex-

ploiting polynomial chaos and compressed sensing to an eikonal–diffusion

model involving a large (> 10) number of parameters, by integrating uncer-

tainty on data and parameters.

Johnstone et al. (2016) have addressed a UQ framework for cardiac ac-

tion potential models, focussing on (i) the inverse UQ problem of inferring

the maximal conductance of ionic channels from noisy experimental record-

ings, and (ii) the forward UQ problem of propagating the uncertainty in

maximal ion channel conductances to suitable outputs of interest, such as

the action potential duration. To solve the inverse UQ problem a Bayesian

framework, such as that described in Section 10.2, has been successfully em-

ployed, whereas the UQ propagation problem has been tackled by means

of a Monte Carlo approach exploiting suitable surrogate models, such as

Gaussian process emulators, to speed up the evaluation of the system model

under analysis. A detailed analysis of the mechanisms underlying physiolog-
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ical variability in cardiac electrophysiology and pro-arrhythmic risks under

a variety of conditions can be found in Muszkiewicz et al. (2016).

Concerning heart electromechanics, Osnes and Sundnes (2012) have ad-

dressed the quantification of the effect of uncertainties in the fibre orienta-

tion and the elasticity parameters included in the strain energy function on

global output quantities such as the increase in cavity volume, the elonga-

tion of the ventricle, the increase in the inner radius, the decrease in wall

thickness, and the rotation at the apex during the passive filling phase. Wall-

man, Smith and Rodriguez (2014) have estimated cardiac tissue properties

by integrating structural information with electrophysiological data from

electro-anatomical mapping systems, for example. By means of Bayesian in-

ference tools, they obtained a simultaneous description of clinically relevant

electrophysiological conduction properties and their associated uncertainty

for various levels of noise, together with suitable design strategies to opti-

mize the location and number of measurements required to maximize in-

formation and reduce uncertainty. A relevant application of UQ techniques

to non-linear biomechanics has been considered by Biehler, Gee and Wall

(2015), where parametric uncertainties related to the constitutive law for the

artery wall of an AAA are modelled as random fields. In particular, Biehler

et al. use a lognormal three-dimensional random field to describe the inter-

and intra-patient variations of one constitutive parameter of a hyperelastic

constitutive model, and sampling-based approaches such as Monte Carlo to

solve the resulting stochastic mechanical problem. A multi-fidelity Bayesian

framework incorporating information from different low-fidelity models was

developed to speed up the intensive approximation of the resulting problem,

following some general ideas reported by Kennedy and O’Hagan (2000) and

Koutsourelakis (2009). Employment of surrogate models or more reliable

reduced-order models (for more on this subject, see Section 11) to speed up

the numerical solution of direct and inverse UQ problems is indeed a pow-

erful alternative to stochastic collocation and stochastic Galerkin methods.

However, they have only been partially touched on in the case of simple prob-

lems, for example in the works of Cui, Marzouk and Willcox (2015), Chen

and Schwab (2015), Dihlmann and Haasdonk (2016), Manzoni, Pagani and

Lassila (2016) and Pagani et al. (2017).

10.3.1 Backward uncertainty propagation in a simplified blood

flow model

We want to compare the solution of a parameter estimation problem in

a variational framework and in a Bayesian setting, on a simplified blood
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(a) (b)

(c)

(d)

(e)

Figure 10.2 (a) Velocity profiles (cm s−1) for different carotid bifurcations
parametrized with respect to the diameters dc, db. (b) Variational parame-
ter estimation and isolines of the pressure drop. (c) Two different choices of
the prior distribution on diameters θ = (dc, db)

T. (d, e) Results of the back-
ward UQ problem obtained with the priors in (c) with observed pressure
drop zobs = −1400 and zobs = −2200 (dyn cm−2), respectively. Numerical
results were obtained using the MATLAB finite element library MLife.
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flow problem. We consider a two-dimensional section of a carotid artery

bifurcation where the diameters dc, db of the common carotid artery (CCA)

at the bifurcation and of the mid-sinus level of the internal carotid artery

(ICA) are the input parameters, assumed to be uncertain. In this idealized

setting, our goal is to identify θ = (dc, db)
T from the observation of the mean

pressure drop)

z =
1

|Γin|

∫

Γin

p dγ − 1

|ΓICA|

∫

ΓICA

p dγ

between the internal carotid outflow ΓICA and the inflow Γin: see Figure

10.2(a). For simplicity, a steady incompressible Navier–Stokes model is em-

ployed to model the blood flow, although the same approach concerning the

solution of the inverse UQ problem can be applied to the case of an unsteady

fluid model, as soon as a peak (or time average) pressure drop is evaluated.

Although presented here in a very simplified way for the sake of illustration,

the problem of recovering information about vessel features by evaluating

physical indices related to flow variables is of general interest for diagnostic

purposes too. For instance, fractional flow reserve is a procedure exploited in

coronary catheterization to measure pressure differences across a coronary

artery stenosis in order to determine the degree of stenosis.

The parameter estimation problem is first solved by minimizing a least-

squares functional for different observations of the pressure drop, z = −1400

and z = −2200, by assuming 5% relative additive noise in the measure-

ments. The results of the inverse identification problem are represented in

Figure 10.2(b) for 100 realizations of random noise in both cases. The recov-

ered diameter values are shown to be quite sensitive to small noise variations.

This is due to the fact that several geometric configurations – in terms of

diameters (dc, db) – may correspond to the same output observation. The

backward UQ propagation problem is then solved in a Bayesian setting, char-

acterizing the posterior PDF of θ = (dc, db) starting from a Gaussian prior

and assuming a Gaussian model to describe experimental noise. In particu-

lar, we can assume that the two diameters are either a priori independent

(case (c), left), or correlated (case (c), right)). The two corresponding poste-

rior distributions, obtained for the observations z = −1400 and z = −2200

of the pressure drop, are shown in Figure 10.2(d, e).

10.3.2 Backward uncertainty propagation in cardiac

electrophysiology

We finally consider the problem of identifying the size and the position of

an ischaemic region in the myocardial tissue, as a remarkable instance of
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a backward UQ problem dealing with cardiovascular applications. Such a

problem case can be cast in the form of a joint state/parameter estimation

problem, and can be tackled efficiently by an EnKF technique.

The state evolution equation is given by the (space and time discretization

of the) monodomain equation for the trans-membrane potential Vm, coupled

with an Aliev–Panfilov cellular model involving a single gating variable

w; the state variable is thus u = (Vm, w)
T. Similarly to the example in

Section 10.1, in order to represent lack of conductivity in the tissue we

introduce the relative conductivity σ = σ(x;θ) ∈ [0, 1]; here σ = 1 and σ =

0 correspond to proper electrical conduction or total lack of conductivity,

respectively.

Because the position and the extension of the ischaemic region is un-

known, σ(x;θ) is a random field. In order to make its representation low-

dimensional, we parametrize the field σ(x;θ) in terms of p = 20 random in-

puts

θ = (θ1, . . . , θ20)
T entering into a linear combination of p = 20 radial basis

functions (RBFs), around p given centres {xi}20i=1,

σ(x;θ) =
1

ν(x)

p∑

i=1

θi exp

(
−‖x− xi‖2

λ2

)
, ν(x) =

p∑

i=1

exp

(
−‖x− xi‖2

λ2

)
,

where ν(x) is a normalization factor so that σ(x;θ) ∈ [0, 1]. We consider a

patient-specific left-ventricle geometry, and assume that a dataset z1, . . . ,zK

is acquired sequentially over a time interval. In particular, at each time τk,

k = 1, . . . ,K, data are given by the trans-membrane potential values com-

puted at a set of nine points located on the endocardium, contaminated

by Gaussian noise with zero mean and known covariance, to simulate the

effect of experimental noise while evaluating the so-called simultaneous en-

docardial mapping in the human left ventricle; these invasive measurements

are usually obtained using a non-contact catheter (see e.g. Schilling, Peters

and Davies 1998, Álvarez et al. 2012). For the sake of the computational

experiment, we assume that the data zk, k = 1, . . . ,K, are generated by the

monodomain model with relative conductivity σ∗ = σ∗(x;θ∗) for a particu-

lar choice θ = θ∗ of the input vector, that is,

zk = h(u(θ∗)) + ηk, ηk ∼ N(0, Rk).

The goal is thus to recover the (posterior) PDF of θK | Dk given the observa-

tions Dk = (z1, . . . ,zk), evaluate the conditional mean θKCM = E[θK | Dk],

and finally estimate the conductivity field as σ(x;θKCM).

Starting from a prior distribution for the input vector θ0 ∼ U([0, 1]20),
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reflecting the lack of information about the possible presence and position of

the ischaemic region, we rely on the EnKF to produce sequentially an ensem-

ble {θke}Ne

e=1 of Ne particles distributed according to the conditional distri-

bution π(θk | Dk), and the associated ensemble of Ne states {uk|k(θke)}Ne

e=1.

Hence, starting from the initial ensemble {P(0),U (0)} sampled from the prior

distribution, the prediction-analysis procedure of the EnKF is given by the

following two-stage recursion.

(1) At each prediction step, compute the solution uk|k−1(θk−1
e ) of the state

system over [τk−1, τk) with initial datum uk|k−1(θk−1
e ).

(2) At each correction step, the observation zk is replicated Ne times, ob-

taining

dke = z
k + ηke , ηke ∼ N(0, Rk).

Then, compute the sample means

uk|k−1 =
1

Ne

Ne∑

e=1

uk|k−1(θk−1
e ),

sk|k−1
e =

1

Ne

Ne∑

e=1

h(uk|k−1(θk−1
e )),

θ
k−1
e =

1

Ne

Ne∑

e=1

θk−1
e , (10.9)

and the sample covariances

Ck
ss =

1

Ne − 1

Ne∑

e=1

vev
T
e ∈ R

nz×nz , (10.10)

Ck
θs =

1

Ne − 1

Ne∑

e=1

(θk−1
e − θk−1

e )vTe ∈ R
p×nz , (10.11)

Ck
us =

1

Ne − 1

Ne∑

e=1

(uk|k−1(θk−1
e )− uk|k−1)vTe ∈ R

nx×nz , (10.12)

where ve = h(u
k|k−1(θk−1

e )). Finally, the state/parameter ensembles are

updated via the Kalman formula
[

θke
uk|k(θke)

]
=

[
θk−1
e

uk(θk−1
e )

]
+

[
Ck
θz

Ck
uz

]
(Rk+Ck

zz)
−1(dke −h(uk|k−1(θk−1

e ))),

(10.13)

for e = 1, . . . , Ne.
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(a)

(b)

(c)

Figure 10.3 (a) 5% quantile, mean and 95% quantile of the uniform prior

distribution of θ0. (b) Identification of p = 20 parameters via the EnKF al-
gorithm. Reference values θ∗i , i = 1, . . . , 20, estimates (θ̄ke )i and confidence
intervals are reported in dotted red, solid blue and dotted blue lines, respec-
tively. (c) 5% quantile, conditional mean and 95% quantile of the posterior

distribution of θK . Numerical results were obtained using the finite element
library redbKIT v2.1 (github.com/redbKIT/redbKIT/releases).

The numerical results obtained by this procedure are shown in Figure 10.3.

The data were generated by the monodomain model with the relative con-

ductivity field σ∗ = σ∗(x;θ∗) shown in Figure 10.3(a); a uniform prior dis-

tribution θ0 ∼ U([0, 1]20) is assumed. After executing the EnKF algorithm,

we obtain the posterior distribution whose mean and 5%, 95% quantiles are

shown in Figure 10.3(c). The uncertainty in the input parameters is greatly
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reduced, while the conditional mean of the posterior distribution correctly

approximates the realization of the random field reported on the left, by

which data exploited for the sake of parameter estimation have been gener-

ated.



11

Reduced-order modelling

As seen in Chapters 8–10, several numerical strategies used for tackling PDE-

constrained optimization, parameter estimation and uncertainty quantifica-

tion problems arising in cardiovascular modelling involve the approximation

of PDE systems for several input parameter values. On the other hand, the

repeated evaluation of input/output maps to characterize different scenarios

requires many queries to numerical models too. Furthermore, if quantitative

outputs are meant to support clinicians and medical doctors in their de-

cisions, each new numerical simulation should be carried out very rapidly

(order of minutes, say) on deployed platforms rather than on huge parallel

hardware architectures, possibly requiring limited data storage and memory

capacity. Meeting all these requirements is a challenging task, with the result

that traditional high-fidelity, or full-order, techniques (e.g. the finite element

method) are ill-suited, despite the constant growth of computer resources

available.

Reduced-order models (ROMs) are emerging methodologies aimed at re-

ducing the computational complexity and costs entailed by the repeated

solution of PDE problems (Antoulas 2005, Benner, Gugercin and Willcox

2015, Quarteroni and Rozza 2014). In the case of parametrized PDEs (i.e.

PDEs depending on a vector of parameters µ ∈ P ⊂ R
p), the reduced basis

(RB) method is a ROM that enables dramatic reduction of the dimension of

the discrete problems arising from numerical approximation – from millions

to hundreds, or thousands at most, of variables.

Describing the mathematical principles and numerical algorithms under-

lying the RB method would take us a long way; interested readers can find a

detailed presentation in Quarteroni, Manzoni and Negri (2016), for example.

Here we limit ourselves to sketch the main features of the RB method, using

for the sake of generality an algebraic standpoint. We denote by y(t;µ) the

solution of a time-dependent non-linear problem (µ ∈ P ⊂ R
p denotes a set
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of input parameters) of the form

M(µ)
dy(t;µ)

dt
+A(µ)y(t;µ) + F (y(t;µ)) = f(t;µ), t ∈ (0, T ],

y(0;µ) = y0(µ),
(11.1)

stemming from the (e.g. finite element) discretization of a parametrized

PDE, where A(µ) ∈ R
Nh×Nh , M(µ) ∈ R

Nh×Nh and F (µ) : RNh → R
Nh are

three operators corresponding to the linear, mass and non-linear terms of

the PDE.

The dimensional reduction is made possible by exploiting the paramet-

ric dependence of the solution manifold, that is, the set Mh = {y(t;µ) :

t ∈ (0, T ],µ ∈ P}, thanks to the evaluation of a database of solutions, or

snapshots, for selected parameter values, and to a (Petrov–) Galerkin pro-

jection onto the RB space spanned by a set of RB functions. In the case of

a stationary problem, these latter are the snapshots themselves if a greedy

algorithm is used, or the first singular vectors of the snapshot matrix if

proper orthogonal decomposition (POD) is used: see e.g. Quarteroni et al.

(2016), Hesthaven, Rozza and Stamm (2016) and Cohen and DeVore (2015).

For time-dependent problems, the parameter space can still be sampled by

relying on one of the two techniques mentioned, whereas POD is usually

exploited to reduce trajectories of the system over the time interval.

In a very broad sense, POD is a technique for reducing the dimensionality

of a given dataset (and, generally speaking, of a system) by representing it

onto an orthonormal basis which is optimal in a least-squares sense. The

original variables are transformed into a new set of uncorrelated variables

(called POD modes, or principal components), the first few of them ideally

retaining most of the energy present in all of the original variables. A lower-

dimensional representation of the data is thus obtained by retaining only

the first few modes. In the theory of stochastic processes this procedure

is known as Karhunen–Loève (KL) decomposition, whereas in multivariate

statistics it goes under the name of Principal Component Analysis. From

an algebraic standpoint, the POD method relies on the use of the singular

value decomposition (SVD); for the sake of simplicity, we first consider the

case of a steady problem, following the so-called method of snapshots. In this

case, by considering a set of ns ≪ Nh snapshot vectors {y(µ1), . . . ,y(µns
)}

belonging to RNh , which form the snapshot matrix U ∈ R
Nh×ns sorting them

as column vectors, we compute the SVD decomposition of U,

V TUZ =

(
Σ 0

0 0

)
,
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where V = [ζ1 ζ2 . . . ζNh ] ∈ R
Nh×Nh and Z = [ψ1 ψ2 . . . ψns

] ∈ R
ns×ns

are orthogonal matrices and Σ = diag(σ1, . . . , σr) with σ1 ≥ σ2 ≥ . . . ≥ σr;

here r ≤ ns is the rank of U, which is strictly smaller than ns if the snapshot

vectors are not all linearly independent. For any N ≤ ns, the POD basis

of dimension N is defined as the set of the first N left singular vectors

ζ1, . . . , ζN of U and denoted by VN .

By construction, the POD basis is orthonormal. Moreover, it minimizes,

over all possible N -dimensional orthonormal bases W = [w1, . . . ,wN ] ∈
R
Nh×N , the sum of the squares of the errors between each snapshot vector

yi and its projection onto the subspace spanned by W , that is,

ns∑

i=1

‖y(µi)− VNV
T
N y(µi)‖22 = min

W∈VN

ns∑

i=1

‖y(µi)−WWTy(µi)‖22 =
r∑

i=N+1

σ2i

where VN = {W ∈ R
Nh×N : WTW = I} is the set of all N -dimensional

orthonormal bases. The minimal POD dimension N ≤ r is selected so that

the projection error is smaller than a desired tolerance εPOD; indeed, it is

sufficient to choose N as the smallest integer such that

∑N
i=1 σ

2
i∑r

i=1 σ
2
i

≥ 1− ε2POD,

that is the energy retained by the last r−N modes is equal or smaller than

ε2POD.

In the case of time-dependent problems, the procedure above is applied to

a snapshot matrix U collecting snapshots yn(µi) at different time instances

tn, n = 1, . . . , Nt and different parameter values µ1, . . . ,µns
. However, this

can be computationally unbearable due to the large amount of data to be

collected and stored; for this reason, POD is preferably performed in time,

on each set of snapshots {y1(µi),y
2(µi), . . .}, and then a further POD is

performed to obtain the basis for the RB space.

In general, a RB method seeks an approximation VNyN (t;µ) ≈ y(t;µ) to

the solution of (11.1), where yN (t;µ) is the reduced state vector and VN =

[v1, . . . ,vN ] ∈ R
Nh×N is a matrix stacking the RB functions by columns.

One possible RB approximation of (11.1) might be

MN (µ)
dyN (t;µ)

dt
+AN (µ)yN (t;µ)

+V T
NF(VNyN (t;µ)) = fN (t;µ), t ∈ (0, T ]

yN (0;µ) = yN,0(µ), (11.2)



228 Reduced-order modelling

where

AN (µ) = V T
NA(µ)VN , MN (µ) = V T

NM(µ)VN , fN (t;µ) = V T
N f(t;µ).

The arrays appearing in (11.2) can be efficiently assembled in a rapid online

phase by combining parameter-independent quantities stored during a more

expensive offline phase, provided that the dependence of the high-fidelity

arrays such as A(µ) and f(t;µ) is affine. This is, e.g., the case when A(µ)

is expressed as a linear combination as follows:

A(µ) =

Qa∑

q=1

Θq
a(µ)Aq,

where Θq
a : P → R, q = 1, . . . , Qa are µ-dependent functions, and Aq ∈

R
Nh×Nh , q = 1, . . . , Qa, are µ-independent matrices. In this way,

AN (µ) =

Qa∑

q=1

Θq
a(µ)AN,q, with AN,q = V T

NAqVN ;

the arrays AN,q, q = 1, . . . , Qa, can be assembled offline and stored.

Suitable hyper-reduction techniques are instead required to manage non-

affine and, above all, non-linear terms, in order to make their assembly inde-

pendent of the dimension Nh of the high-fidelity problem; see e.g. (Carlberg,

Farhat, Cortial and Amsallem 2013). Indeed, the small dimension N ≪ Nh

of system (11.2) does not warrant substantial computational savings as the

assembly of the non-linear terms still involves computations whose com-

plexity depends on Nh. If F : RNh → R
Nh features a low-order polynomial

non-linearity and the parametric dependence is affine, the assembly of the

non-linear terms can be efficiently achieved via an offline-online decompo-

sition. On the other hand, if F features a higher (or non-polynomial) non-

linearity (and possibly a non-affine parametric dependence), a further level

of reduction must be introduced by suitably employing techniques such as

the empirical interpolation method (Barrault, Maday, Nguyen and Patera

(2004) and Maday, Nguyen, Patera and Pau (2009)) or the discrete empir-

ical interpolation method (Chaturantabut and Sorensen (2010) and Negri,

Manzoni and Amsallem (2015)) with the aim of approximating the nonlin-

ear/nonaffine terms and recovering an (approximate) affine structure.

We emphasize that a RB method requires the solution of some full-order –

and therefore very expensive – discrete equations. The key idea is that these

demanding calculations can be done offline, before the optimization with re-

spect to the control parameters, or the parameter estimation, is attempted.

In fact, the cost of each optimization step performed online is much smaller
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than that involving the full-order state approximation; similarly, computing

the evolution of a particle set in the ensemble Kalman filter algorithm by

querying the ROM can be performed in a way that is substantially less ex-

pensive. Numerical results shown in Chapters 8 and 10 have been obtained

by exploiting suitable reduced order techniques to speed up the approxima-

tion of the partial differential equations modelling the problems.

Besides those contexts, the efficient solution of parameter-dependent PDE

systems in cardiac modelling is of key importance in several circumstances.

Examples include: the need of computing outputs of clinical interest in sev-

eral different scenarios; the exploration of intra-patients variability affect-

ing relevant physical and/or geometrical parameters. Here we report some

numerical results, taken from Manzoni, Bonomi and Quarteroni (2018),

obtained by means of the ROM framework described above in the case

or parameter-dependent cardiac electrophysiology and mechanics problems

solved in a patient-specific geometry.

Electrophysiology is modelled by the monodomain equation coupled with

the minimal model of Bueno-Orovio (Bueno-Orovio et al. 2008). The elec-

trical conductivities in the fibre direction (σf ) and in the plane orthogonal

to the former (σs = σn) are treated as parameters:

• σf ∈ [30 kΩ−1cm−1, 80 kΩ−1cm−1];

• σs = σn ∈ [10 kΩ−1cm−1, 30 kΩ−1cm−1].

The proposed ROM yields a speed-up of more than one order of magnitude:

on a mesh with 248216 elements and Nh = 45817 degrees of freedom, the

high-fidelity finite element approximation takes 0.12 s, while the ROM 12

times less. Provided we consider a sufficient number of basis functions for the

state variables and of terms in the affine approximation of the µ-dependent

quantities, the front propagation captured by the ROM is similar to the

one obtained with the FOM. A comparison between the high-fidelity and

the reduced solutions is reported in Figure 11.1; for the case at hand, the

average (over a sample of parameter values) relative error between the ROM

and the high-fidelity model is about 5%. The computed ROM makes the

evaluation of several scenarios efficiently available. For instance, we report

in Figure 11.2 the activation maps obtained for different parameter values;

as expected, the duration of the depolarization phase is longer if electrical

conductivities are smaller.

Regarding cardiac mechanics, we consider a quasi-incompressible, active-

strain formulation of the mechanical problem, treating the myocardium as an

hyperelastic material obeying the orthotropic model proposed in Holzapfel
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Figure 11.1 High-fidelity and reduced-order approximations of the electric
potential (rescaled between 0 and 1) computed at different time instants
for µ

1
= [30, 10] and µ

2
= [80, 30].

Figure 11.2 Activation maps for µ1 = [30, 10], µ2 = [45, 10], µ3 = [65, 30]
and µ

4
= [80, 30].

and Ogden (2009); see Section 6.2. In the present situation, the electro-

mechanical coupling is not included in the ROM – that is, for each param-

eter value we use the high-fidelity approximation of the electrophysiology

model and, in particular, of the fibres’ shortening variable. We use the same

patient-specific geometry as in the previous example, however we now con-

sider a coarser mesh with 31027 elements and Nh = 18567 degrees of free-

dom. Here, the parameters are the electrical conductivities (similarly to the

electrophysiology problem above) and the orientation of the fibres:

• σf ∈ [30 kΩ−1cm−1, 80 kΩ−1cm−1];
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Figure 11.3 Section of the ventricle at different time instants, µ
1

=
[60, 10, 78◦] (first two rows), µ2 = [80, 30, 34◦] (last two rows), obtained
with the high-fidelity and the reduced-order models.

• σs = σn ∈ [10 kΩ−1cm−1, 30 kΩ−1cm−1];

• θmax ∈ [30◦, 80◦];

• t ∈ [0, 100ms].

Time can be seen as an additional parameter since the problem here is quasi-

static and needs to be solved at different time steps. Figure 11.3 highlights

the displacement of the myocardium obtained with the high-fidelity and the

reduced-order model on a longitudinal section of the ventricle, for two differ-

ent parameters. In this case, the ROM yields a speed-up of about 20 times

with respect to the 7 minutes of the high-fidelity model for each solution of

the mechanical problem at a single time instant, on a single-core processor.

The proposed ROM correctly captures the high-fidelity solution as the

relative error between the two is in this case about 2%. The associated ejec-

tion fraction (EF) is reported in Figure 11.4 by varying θmax and σf – σs; σn
only has a moderate effect on the solution. The quantity of blood ejected by

the ventricle is larger when θmax and σf assume large values. A similar para-

metric study, relating an output of clinical interest with relevant physical

parameters, and showing the sensitivity of the former to the latter, would

have been almost impossible to obtain without exploiting ROM modelling

techniques such as the RB method, because of the overwhelming computa-
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Figure 11.4 Ejection fraction as function of σf and θmax.

tional cost entailed by several queries to a high-fidelity computational model

for cardiac mechanics.

We close this chapter by citing some notable applications of the RB

method to problems of interest in cardiovascular modelling (this list is of

course incomplete). Parametrized blood flows in idealized cardiovascular ge-

ometries have been considered by Lassila, Quarteroni and Rozza (2012),Man-

zoni, Quarteroni and Rozza (2012a), Ballarin et al. (2016), Ballarin et al.

(2017), Colciago et al. (2014) and Negri (2016), taking into account more

complex (and computationally challenging) patient-specific configurations;

in all these cases, solutions of Navier–Stokes equations are computed with re-

spect to inflow and/or geometric parameters. Applications to PDE-constrai-

ned optimization problems arising in the context of optimal design of pros-

thetic devices can be found, for example, in Manzoni et al. (2012b) and Las-

sila et al. (2013a). A reduced-order model based on POD is proposed for the

bidomain equations of cardiac electrophysiology in Boulakia, Schenone and

Gerbeau (2012), yielding the efficient approximation of a restitution curve

and the estimation of ionic parameters and infarction locations from syn-

thetic electrocardiograms with an evolutionary algorithm; Gerbeau, Lom-

bardi and Schenone (2015) have proposed alternative options in this re-

spect. More efficient strategies based on local reduced spaces to approxi-

mate the solution of problems whose dependence on parameters is rather

involved have been used in Pagani et al. (2017). This is the case of the non-

linear electrophysiology problem, for which the presence of moving fronts

in the solution and the high sensitivity of this latter to parameter varia-
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tions make the application of standard RB techniques quite problematic.

Regarding cardiac mechanics, a first attempt to solve (one-way coupled)

electromechanics problems was instead considered in Bonomi, Manzoni and

Quarteroni (2017), where a hyper-reduction framework for cardiac mechan-

ics problems has been set and numerically tested. An overview of reduction

and hyper-reduction techniques for both cardiac electrophysiology and me-

chanics can be found, for instance, in Manzoni et al. (2018).

Applications of POD to parameter estimation problems with sequential

filtering techniques are given in Chapelle, Gariah, Moireau and Sainte-Marie

(2013b), and an application of the RB method to the computational speed-

up of Bayesian inverse problems related to blood flows modelling has been

reported by Lassila et al. (2013b) and Manzoni et al. (2014). Variational pa-

rameter estimation problems arising in cardiac electrophysiology have been

solved by means of POD in Yang and Veneziani (2017), whereas a conve-

nient framework for dealing with uncertainty quantification – for sensitivity

analysis, forward and backward UQ – can be found in (Pagani 2016).

We emphasize that while physical coefficients, boundary and/or initial

conditions, as well as source terms, can usually be described in terms of in-

put parameters in a straightforward way, the task of dealing with geometries

of varying shape is much more involved. In this latter case, additional tech-

niques providing flexible descriptions of complex shapes are required, possi-

bly involving few parameters. Notable examples are given by volume-based

representations, which operate on a control volume and define parametric

maps by introducing a set of control points over the control volume; con-

trol point displacements, actually inducing a shape deformation, can thus

be treated as input parameters. Within this class, free-form deformation

techniques and interpolants constructed over a family of radial basis func-

tions have been successfully employed; for further details see Manzoni et al.

(2012a, 2012b) and Ballarin et al. (2016). A more general and automatic

way of dealing with the efficient solution of parametrized PDEs defined on

domains with variable shape has been used in Manzoni and Negri (2017),

where a mesh motion technique relying on the solution of a solid extension

problem is combined with the RB method, allowing to directly define global

domain deformations starting from boundary parametrizations.

We also point out that the need to derive flexible and low-dimensional

parametrizations is not confined to the realm of RB methods for parametrized

PDEs. Indeed, it also arises when dealing with random inputs or fields; in

this latter case, input uncertainties are usually parametrized with respect

to a finite number of random variables, corresponding to the retained terms

after truncating Karhunen–Loève or polynomial chaos expansions.
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The analysis, development and application of reduced-order modelling

techniques is a very active field in the numerical approximation of PDEs.

Without any doubt, cardiovascular applications are one of the most relevant

testing environments.
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pressure, 7
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pressure–volume (PV) loop, 82
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stroke work, 85
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active model, 121
active strain, 124, 126, 152, 230
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systemic, 3, 79, 130

computational pipeline, 23
conditional likelihood function, 208
conservation law, 40

data
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non-Newtonian, 4, 22, 25
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pressure drop, 80, 220
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wall shear stress gradient, 170

haemodynamics, 47, 51, 61, 74
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heart, 3, 79, 92
anatomy, 79
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atrium, 79, 93, 139, 192
blood fluid dynamics, 92, 136, 139, 146
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cardiac conduction system, 87
cardiomyocytes, 86, 88, 90
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electrical propagation, 92, 126, 131
endocardium, 80, 88, 92, 129, 192
epicardium, 80, 88, 92, 129
fibres, 88, 95, 101, 122, 230
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mechanical relaxation, 92
model, 92, 150
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papillary muscles, 80
perfusion, 123, 206
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Purkinje fibres, 87, 96, 100, 111, 112
Purkinje muscle junction, 88, 112
right, 79
sarcomere, 126
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sinoatrial node, 79, 87
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aortic, 80, 138, 139, 141
dynamics, 92
leaflet, 101, 138–141, 144, 146, 148
mitral, 79, 138, 140
pulmonary, 80, 139
tricuspid, 79

ventricle, 79, 93, 139, 141, 192
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arrhythmia, 89, 218
cardiomyopathy, 90
fibrillation, 89, 91, 173
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ischaemic cardiopathy, 90
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tachycardia, 91
valve insufficiency, 90
valve stenosis, 90
Wolff–Parkinson–White syndrome, 118

heartbeat, 4, 81, 137
homogenization technique, 104
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Gaussian filter, 14
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smoothing filter, 14
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deformable model, 15
fast marching, 15
front propagation, 15
image programming, 94
level set, 15
surface reconstruction, 16
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computed tomography angiography (CTA),
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echo-colour-Doppler, 21, 35
magnetic resonance angiography (MRA), 12
magnetic resonance imaging (MRI), 12, 93,

97, 98, 137
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ultrasound (US), 13
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inf–sup stability condition, 50
initial condition, 26, 59, 108, 111, 142
interface conditions, 33, 75, 130, 136, 149, 151
inverse problem

electrocardiology, 191
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Kalman filter (KF), 182, 212
Kalman gain matrix, 183
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linear system, 52, 116
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preconditioner, 52, 69, 116, 119, 152
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method
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cut-FEM, 148
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extended finite-element (X-FEM), 149
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finite volume, 74
fixed-point iterations, 130
forward Euler, 132
Galerkin, 47
generalized-α, 56
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high–order, 74, 150
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immersed boundary (IB), 136, 146, 147
implicit, 119, 121, 152
inexact Newton, 70
ionic current interpolation (ICI), 116
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level-set, 144
Markov chain Monte Carlo (MCMC), 210
Monte Carlo (MC), 205

multilevel, 205
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sequential, 214

Newmark, 54, 56
Newton, 56, 70, 75, 121, 132, 152
Newton–Krylov, 131
Nitsche, 73, 143
Nitsche mortaring, see discontinuous

Galerkin mortaring
penalty, 140
pressure-correction, 50
projection, 48
reduced basis (RB), 225
resistive, 144, 145
Runge–Kutta, 74
sampling, 210
semi-implicit, 115, 119, 152, 196
spectral element, 47
splitting, 48, 117, 131, 152

Godonov, 119
Strang, 119

state variable interpolation (SVI), 116
stochastic collocation, 205
stochastic Galerkin, 205
stochastic sampling, 205
streamline upwind/Petrov–Galerkin

(SUPG), 51, 145
variational multiscale (VMS), 51, 54, 136,

145
velocity-correction, 50

microvasculature, 3, 7
capillary, 7

model
full-order, 225
high–fidelity, 225
ionic, 105, 107, 126, 127, 131

Aliev–Panfilov, 105, 206, 221
Beeler–Reuter, 106
Bueno–Orovio, 105, 229
Fenton–Karma, 105
first-generation, 106
FitzHugh–Nagumo, 105, 108, 134, 173
Hodgkin–Huxley, 106
Luo–Rudy, 106, 107
Mitchell–Schaeffer model, 175
Rogers–McCulloch, 105
second-generation, 107
ten Tusscher–Panfilov, 107

personalization, 178, 203, 217
reduced, 39, 109, 141, 143

lumped parameter, 42
one-dimensional (1D), 39, 42, 45, 73, 137
windkessel, 44
zero-dimensional (0D), 39, 42, 45, 74, 130,

135, 137
reduced–order (ROM), 218, 225
turbulence

direct numerical simulation (DNS), 54
Large Eddy Simulation (LES), 51, 54, 136

Reynolds-averaged Navier–Stokes
(RANS), 54

valve leaflet, 140

optimal control, 156
adjoint problem, 161, 181, 197
adjoint state, 161
all-at-once methods, 166
augmented Lagrangian method, 167
control variable, 38, 159
cost functional, 38, 159, 197
derivative-free algorithms, 166
Euler–Lagrange system, 162
gradient-based algorithms, 166
iterative methods, 165
optimality conditions, 38, 73, 160, 162, 198
primal–dual active set strategy, 168
sequential quadratic programming, 167

optimal design, 156, 169
ordinary differential equation (ODE), 43, 103,

107, 115, 117, 124, 131, 135, 142

parameter estimation, 22, 23, 156, 159, 178,
215

sequential approach, 178, 182
variational approach, 178, 179

3D-Var, 181
4D-Var, 181

partial differential equation (PDE), 10, 23,
103, 104, 107, 115, 131, 142, 156, 159,
211, 229

parametrized, 225
particle filter, 214
PDE-constrained optimization, 38, 159, 179
principal component analysis (PCA), 226
probability density function (PDF), 204

posterior, 208
prior, 207

problem
coupled, 107, 112, 115, 126, 151
differential, 10
eikonal, 15, 192
electromechanics, 88, 121, 126, 131–134,

137, 193, 218, 230
electrophysiology, 107, 117, 127, 192
electropmechanics, 151
fluid, 10, 19, 25, 137, 139
fluid–structure interaction (FSI), 8, 19, 30,

32, 40, 45, 57, 66, 136, 141, 145, 146,
195

interface, 34, 148
linear, 51, 66, 226
non-linear, 31, 57, 66, 70, 74, 111, 151, 226,

228
solid, 10, 28, 121, 128–130, 139, 194

proper orthogonal decomposition (POD), 226

random field, 204
regularization

Levenberg–Marquardt–Tikhonov, 181
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Tikhonov, 195

sensitivity analysis, 204
shape derivative, 195
shape optimization, 156
sigma point, 188
singular value decomposition (SVD), 226
snapshot, 226
solid

anisotropic, 29
bulk modulus, 30
Cauchy stress tensor, 33
constitutive law, 28, 122, 140, 218
deformation gradient tensor, 28, 125
displacement, 10, 28, 34, 128, 139
exponential material, 29
Green–Lagrange strain tensor, 200
hyperelastic material, 28, 122, 230
incompressible material, 23, 29, 30, 123
isochoric material, 30
isotropic material, 29, 122, 200
membrane, 31, 34, 42, 66, 140
neo-Hookean material, 29
orthotropic material, 122, 230
Piola–Kirchhoff tensor, 28, 121, 125
Poisson ratio, 22, 28, 101
pre-stress, 32, 42
Saint Venant–Kirchhoff material, 28
shear modulus, 29, 32
shell, 31, 140
strain, 125
strain energy function, 30, 122, 126, 140, 199
stress, 32, 121
string, 31
Young’s modulus, 22, 28, 101, 194

state augmentation, 186
state estimation, 179, 215

torso, 113, 191, 193

uncertainty, 203
epistemic, 215
model, 215
observational, 215

uncertainty propagation, 157
uncertainty quantification (UQ), 157, 203

backward, 207
Bayesian inverse problem, 208
forward, 157, 204, 206
inverse, 158, 207

Bayesian filtering, 211
Bayesian inverse problem, 220
dynamical problem, 211
static problem, 208

statistical inversion, 207
unscented Kalman filter (UKF), 182, 188
unscented transformation, 188

vascular disease
aneurysm, 8, 23, 29, 55, 204
atherosclerosis, 8, 9, 41, 90, 194

hypertension, 194
occlusion, 8, 90, 156, 169, 172
plaque, 8, 41
stenosis, 4, 6, 11, 51, 54, 72, 169

vein, 3, 4, 6, 39, 79
pulmonary, 80
venae cavae, 80

vessel, 4, 6, 194, 216
adventitia, 7
collagen, 7, 29
compliance, 7, 22, 43
elastin, 7, 29
endothelium, 7
fibres, 29
intima, 7
lumen, 10, 21, 32
media, 7
thickening, 169
wall, 7, 10, 22, 27, 28, 32, 81, 139, 204
windkessel effect, 8

weak formulation, 27, 31, 33, 36, 37, 108, 109,
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