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Preface
The book entitled “Soft Computing in Materials Development and Its Sustainability 
in the Manufacturing Sector” embraces innovations in the area of soft computing in 
mechanical, materials and manufacturing processes, proposed by various research-
ers, scientists, professionals, and academicians. Through this book an attempt has 
been made to overcome numerous problems faced by the students related to soft 
computing and engineering, ultimately to bestow sound knowledge. The drafted 
book’s presentation is basic, clear and simple to comprehend. This book empha-
sizes the application of numerous soft computing techniques in various engineering 
materials including metals, polymers, composites, biocomposites, fiber composites, 
ceramics, etc. along with their property characterizations and potential applications 
of these materials. Despite this however, a significant gap exists between the actual 
theories and software systems therefore, this book is motivated from the scarcity of 
wider aspects relating to advanced materials, materials manufacturing and process-
ing, optimization and sustainable development, tribology for industrial application 
and diverse engineering applications. All the chapters were subjected to a peer-
review process by the researchers working in the relevant fields. The chapters were 
selected based on their quality and their relevance to the title of the book. This book 
will result in an excellent collection of current technical strategies and enable the 
researchers working in the field of advanced material and manufacturing processes 
to explore current areas of research and educate future generations.

This book is a result of several people’s hard work and efforts which has brought 
forth this successful record. It is very imperative to acknowledge their contribution in 
shaping the structure of the book. Hence, all the editors would like to express special 
gratitude to all the reviewers for their valuable time invested in reviewing process 
and for completing the review process in time. Their valuable advice and guidance 
helped in improving the quality of the chapters selected for the publication in the 
book. Finally, we would like to thank all the authors of the chapters for the timely 
submission of the chapter during the rigorous review process.

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, 
please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

mailto:info@mathworks.com
http://www.mathworks.com
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2 Soft Computing in the Manufacturing Sector

1.1 � INTRODUCTION: NEED FOR CONDITION MONITORING

The degradation of life and quality of industrial equipment is caused due to increased 
vibration, temperature, and other parameters like pressure. Condition monitoring is 
done to avoid the rapid degradation of equipment life by giving appropriate mainte-
nance at an equal interval of time or when it is required. Condition monitoring is also 
useful for the diagnosis of the device. Now, most of the industries are moving towards 
the preventive and predictive monitoring of machines for the proper functioning of pro-
cesses and reliable system operation. Predictive maintenance is something that helps in 
predicting the future status of the equipment knowing its current and past status [1–3]. 
This makes the system more reliable than traditional condition monitoring after fault 
occurrence. The use of data of the equipment using data analysis techniques and predic-
tive algorithms is discussed by Horrell et al. [3] for achieving predictive maintenance of 
the equipment. Various time-domain (current, voltage, vibration trends with time and 
their amplitudes and phase) and frequency-domain techniques (Fast Fourier Transform 
(FFT) and Wavelet Transform (WT)) are used for the diagnosis of equipment faults 
[4–6]. These are helpful in the diagnosis of faults but the diagnosis is done at the time 
of occurrence of a fault or after the occurrence of faults, not before the occurrence of 
the fault. The authors [6] have observed that the vibration parameter is very effective 
to monitor the health status of rotating equipment. The traditional method of vibration-
based condition monitoring used in industries is based on the concept of the threshold 
value, which is set as a target. Once the equipment vibration reaches the threshold 
value, the maintenance team plans the maintenance schedule. The fault is diagnosed 
by looking at the peak value and corresponding frequency of peak amplitude, which 
indicate the type of faults like unbalance, misalignment, looseness, or any damage. 
This method is not reliable as it may cause a sudden stop of the process and a huge 
loss to be faced. Various cost-effective and reliable monitoring systems are proposed 
by various researchers [7–9], which are focused on condition-based monitoring sys-
tems. The role of machine learning in predictive maintenance is discussed by Toh et al. 
[10]. The concept of predictive maintenance and its advantages for industries to move 
towards industry 4.0 is explained by various authors [11–14]. The big data analysis and 
development in recent technologies of data collection, its storage, pre-processing, and 
Internet of Things (IoT) have helped a lot the industries to move towards digitalization 
of processes [15, 16].

With the development in machine learning and data science, preventive and pre-
dictive maintenance are now feasible to forecast when equipment problems may occur 
in the future and prevent them with appropriate action, which makes the system more 
reliable and helps to achieve better performance of the working equipment. There are 
various supervised and unsupervised machine learning techniques, which are useful 
in predicting the target parameter based on the historical data of the equipment [17–
19]. The unsupervised machine learning techniques are used when one does not have 
the data on different fault conditions of the equipment. On the other side, supervised 
machine learning techniques are useful in predicting the future health status when pre-
vious condition data are available as historical data. The most commonly used unsu-
pervised techniques are Principal Component Analysis (PCA) and Clustering, whereas 
the supervised techniques are Regression, Classification, and Curve fitted model,  
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which helps to model the predictive algorithm for the predictive maintenance of the 
machine [17–19]. There are three types of maintenance, which are generally imple-
mented in industries: (i) reactive maintenance, (ii) preventive maintenance and (iii) 
predictive maintenance [20]. Reactive maintenance is when the maintenance is done 
after the fault has occurred; preventive maintenance is the one in which the mainte-
nance is done within a fixed time interval like once in a month, 6 months or in a year; 
and predictive maintenance is the one in which the fault condition is predicted and 
the maintenance schedule is forecasted using that prediction. The predictive main-
tenance is advantageous as compared with the other two [21]. It helps in scheduling 
the maintenance only when the equipment needs it. This results in saving main-
tenance costs by avoiding unnecessary maintenance and also makes the condition 
monitoring system more reliable. Proper maintenance scheduling can be achieved 
if the monitoring system can estimate the remaining useful life of the equipment. 
The remaining useful life estimation gives an indication of life left for the equipment 
when any of its health indicators will reach the threshold value of breakdown con-
dition. There are various regression-based techniques available, which are suitable 
for different applications [22]. Among them, the most commonly used and afford-
able method is Gaussian Process Regression. To predict the health condition and 
the remaining useful life of a gyroscope, the author has used an improved Gaussian 
Process Regression with a physical degradation model which predicts the gyroscope 
drift and also estimates the remaining useful life [22]. In the available literature [23],  
the independent effect of the indicators is used to predict the target variable for 
condition monitoring and ignoring the coupling effect between different signals 
or parameters, which is the reason for not getting the accurately predicted result. 
This problem can be solved by implementing Multi-signal and Multi-feature Fusion 
(MSMFF) which will improve the prediction accuracy. Along with the predictive  
model and algorithm, signal processing plays an important role in predictive mainte-
nance and fault diagnosis. The Ding et al. has explained the signal-processing scheme 
in detail. In a research article, the authors have explained the procedure systemati-
cally through filtering of noise from the raw signal, features extraction and selection 
and manifold learning-based features fusion and finally ended with the regression 
model for Remaining Useful Life (RUL) estimation considering the coupling effects 
between the variables and their relationship with the RUL estimator [23]. By condi-
tion monitoring of the equipment, one can find the equipment wear and the remain-
ing useful life in time. A researcher has proposed an integrated prediction model 
based on trajectory similarity and support vector regression, which is also a com-
monly used regression technique [24]. Along with the predictive model, the authors 
have explained the results in the time domain and also carried out wavelet analysis.

In this chapter, a regression model-based algorithm is proposed for predic-
tive maintenance and remaining useful life estimation. The proposed algorithm 
is validated using the historical data of the fan-motor system used in the industry. 
Section 1.2 covers the methodology used to implement the concept and procedure 
carried out. The computation procedure is carried out using MATLAB software 
and discussed in Section 1.3. The results obtained are discussed in Section 1.4. 
Finally, the observation of the considered case study of the fan-motor system is 
concluded along with some future scopes of the proposed work.
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1.2 � METHODOLOGY: APPROACHES FOLLOWED 
FOR PREDICTIVE MAINTENANCE

This section discusses the steps followed in developing the predictive maintenance 
algorithm, useful life estimating models and introduction to the case study consid-
ered in this chapter.

1.2.1 � Steps for Predictive Maintenance

The following are the steps involved in predictive maintenance:

•	 Collect sensors data of Induced Draft (ID) fan-motor system.
The sensors data are exported and collected from IBA Analyzer which 

helps to export the dat type file into another form like txt or csv. The dat 
type data file is opened in IBA and then exported in the desired signals with 
a desirable time gap of data in txt or csv file.

•	 Predict and fix failures before they arise.
•	 Import and analyze historical sensor data.
•	 Train model to predict when failures will occur.
•	 Deploy model to run on live sensor data.
•	 Predict failures in real-time.

The methodology starts from exporting various sensors data from IBA Analyzer 
software to the data standardization in WEKA software, feature selection and ends 
with the predictive maintenance algorithm using MATLAB software.

During data collection, it should be known whether the collected data is of nor-
mal operating condition or fault condition. If we get only normal data, it means that 
scheduled maintenance is done regularly and no failure has occurred. In another 
case, if we are getting failure data, it means that the system has faced failures; the 
data is collected to train the model to avoid such faults in the future by predicting 
them before they occur.

1.2.2 �A  Brief Introduction to Fitting Model

In the curve fitting toolbox in MATLAB, one can define custom linear equations 
that use linear least-squares fitting. Linear least-squares fitting is more efficient and 
usually faster than non-linear fitting. Curve Fitting ToolboxTM is a programme that 
lets us fit curves and surfaces to data using a tool and functions. The toolkit can 
be used to perform exploratory data analysis, pre- and post-process data, compare 
possible models, and eliminate outliers. Regression analysis can be done using the 
given library of linear and non-linear models, or we may create unique equations. 
To increase the quality of our fits, the library includes optimal solver settings and 
starting circumstances. Non-parametric modelling techniques such as splines, inter-
polation, and smoothing are also supported by the toolkit. Several post-processing 
methods can be used to display, interpolate, and extrapolate data, estimate confi-
dence intervals and calculate integrals and derivatives after creating a fit.
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1.2.3  Estimation of Remaining Useful Life

Typically, the Remaining Useful Life (RUL) is estimated for a system by developing 
a model that can perform the estimation based upon the time evolution or statistical 
properties of condition indicator values. Predictions based on these models are sta-
tistical estimates with a margin of error. They give a probability distribution for the 
test machine’s RUL. After finding potential condition indicators, the next stage in 
the algorithm-design process is to create a model for RUL prediction. This phase is 
frequently iterative with the process of selecting condition indicators since the model 
we create uses the time evolution of condition indicator values to forecast RUL.

�1.2.4  Case Study: Induced Draft (ID) Fan-Motor System

The vibration sensors are connected to the bearings of fans and motors to measure 
the vibration level on the horizontal axis only. If there is a problem with the fan-
motor system, the vibration level will rise which can be observed in the online moni-
toring system. The measurement points of vibration in the ID fan-motor system are 
shown in Figure 1.1, which are Motor Driving End (MDE), Motor Non-driving End 
(MNDE), Fan Driving End (FDE), and Fan Non-driving End (FNDE). There are lots 
of sensors data coming from the equipment that are analyzed in IBA Analyzer to see 
the real-time values of the data and check whether these are under the normal opera-
tional limit or not. Few sensor signals are shown in Figure 1.2, which are the sensor 
data of the selected ID fan-motor system. This way of monitoring the equipment is 
not reliable as it is very complex and time-consuming to see the plot of each sensor 
data. The monitoring system needs to be reliable and simple.

When the condition monitoring system can anticipate the health status of the 
monitoring equipment as well as the requirement for maintenance, it will become 
reliable. Machine learning algorithms are useful for preventative maintenance of 
the equipment.

FIGURE 1.1  Schematic diagram of the fan-motor system and measurement points of vibra-
tions. The vibrations in three orthogonal directions are measured — horizontal, vertical, and 
axial directions. The vibrations of four ends are measured — MNDE, MDE, FDE, and FNDE —  
as shown here by numbers 1, 2, 3, and 4, respectively (a–d).
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1.3 � COMPUTATIONAL PROCEDURE

This section discusses the procedure followed for developing the predictive mainte-
nance algorithm including data pre-processing, features selection, fitted model devel-
opment, its validation, outlier detection, and RUL estimation.

1.3.1 �D ata Pre-processing

It is very necessary to know the data variables, which will help in knowing the working 
condition and characteristics of equipment with its parameters. The correlation between 
the parameters of any equipment before doing any physical or data-based modelling 
of the equipment is to be known first. The selected parameters are given in Table 1.1, and 
the correlation diagram between parameters is shown in Figure 1.3.

(a) (b)

(c) (d)

FIGURE 1.2  ID fan-motor sensors data plots in IBA Analyzer: (a) speed and damper 
position of ID fan, (b) vibrations of fan and motor at driving and non-driving ends,  
(c) temperatures of fan and motor at driving and non-driving ends, (d) current and power 
of fan
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1.3.2 �F eature Selection for Predictive Maintenance

First, the highly correlated variables are selected for the feature selection process. 
Figure 1.3 shows the correlation matrix of the different variables (sensors data).

The highly correlated parameters observed from Table 1.2 are tabulated in Table 1.3.

1.3.3 �V ariation of Vibration with Other Selected Variables

At this stage, out of five parameters, four can be the predictors for the predictive 
model and the fifth one (i.e., vibration) is taken as the target parameter. Now, it is 

FIGURE 1.3  Correlation matrix of the fan-motor parameters (sensors data) — x-axis: 
parameters; y-axis: parameters

TABLE 1.1
Selected Sensor Data (Parameters) for Predictors

Parameters

FanSp Fan Speed

DP Damper Position

FVDE Fan Vibration of Driving End

FVNDE Fan Vibration of Non-driving End

FCur Fan Current

FPower Fan Power

MTDE Motor Temperature Driving End

MTNDE Motor Temperature Non-driving End

FTDE Fan Temperature of Driving End

FTNDE Fan Temperature of Non-driving End

MVDE Motor Vibration of Driving End

MVNDE Motor Vibration of Non-driving End
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checked which parameters fit as predictors. Then, the vibration signal is plotted with 
other parameters to get some useful information regarding predictors. The nature 
of variation shows whether the parameter fits as a predictor or not. The variation of 
vibration with other parameters is shown in Figures 1.4–1.8.

It can be noted that the two different values of vibration at the same damper posi-
tion are obtained. To understand this situation, we need to correlate the third variable 
that is affecting the vibration along with the damper position. So, we will move to 
the 3D plot for getting this problem solved. It is also known that the current/power is 
highly proportional to Damper Position (DP), so this need not be checked.

Note that current and power values are not giving any specific or useful infor-
mation for the vibration change, so these two variables are not useful for prediction 
purposes. To solve the problem of the third variable, which is affecting the vibra-
tion along with the damper position, a 3D plot of vibration with respect to other 
selected predictors is used and it is found that the third variable is speed, which is 
shown in Figure 1.9.

It is now understood that the third variable (i.e., speed) should be considered along 
with the damper position to study the variation in vibration. The DP, speed and vibra-
tion are correlated and this is the reason why the two different vibration values at the 
same DP are obtained because in those cases the speed was different. Now, we can 
move to our prediction model taking these variables as selected features.

TABLE 1.2
The Correlation Coefficients Between the Variables. It Ranges 
from 0 to 1, Where 0 Means Unrelated Variables and 1 Means 
Highly Correlated Variables.

Parameters Correlation Coefficients

current-power 1

vib-speed 0.9–1.0

temp-speed 0.1–0.3

current/power-speed 0.97–1.0

DP-speed 0.7

vib-DP 0.7

temp-DP 0.3–0.5

current/power-DP 0.7

TABLE 1.3
The Highly Correlated Parameters with Units. The Parameters, 
Which Have High Correlation Coefficient, Are As Follows.
Current Ampere

Power Kilowatt

Vibration mm/sec

Speed RPM

Damper position %
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FIGURE 1.4  Fan vibration driving end versus time — x-axis: Time (seconds); y-axis: Fan 
vibration driving end (mm/sec)

FIGURE 1.5  Fan vibration driving end versus fan speed — x-axis: Fan speed (rpm); y-axis: 
Fan vibration (mm/sec)
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FIGURE 1.6  Fan vibration driving end versus damper position — x-axis: Damper position 
(%); y-axis: Fan vibration (mm/sec)

FIGURE 1.7  Fan vibration driving end versus current. These parameters are giving an 
almost linear curve showing a proportionality nature.
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FIGURE 1.8  Fan vibration driving end versus power. These are also proportional and give 
almost linear relationships.

FIGURE 1.9  3D plot of fan vibration, damper position, and speed. The damper position, 
the speed, and the vibration of the driving end of fan are shown on z-axis, x-axis, and y-axis, 
respectively. The three parameters show the reason for getting different vibrations at the same 
damper position.
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1.3.4 �F itted Model

The details of the fitted polynomial type model are given in Table 1.4. The type of 
polynomial is 1–2 that is a quadratic polynomial of variables x and y.

The fitted model and its residual plot are shown in Figure 1.10, in which the target 
parameter is FVDE (Fan Vibration of Driving End) and predictors are speed and 
damper position.

TABLE 1.4
Details of Polynomial Fitted Model. A Quadratic Polynomial Is Fitted As 
Shown Below.
Linear Model Poly12; x = DP, y = Speed
f(x, y) = p00 + p10 * x + p01 * y + p11 * x * y + p02 * y^2

Coefficients with 95% confidence bounds:
p00 = 0.3525(0.2318, 0.4733)
p10 = 0.001337(−0.001501, 0.004176)
p01 = −0.001025(−0.001353, −0.0006971)
p11 = −2.032e-06(−5.565e-06, 1.516e-06)

Goodness of fit:
R-square = 0.9399, RMSE = 0.1459

FIGURE 1.10  Plot of the fitted model and its residual. The quadratic model fitted is approxi-
mately the same as the actual data with minimum residual.
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1.3.5 � Model Validation

For validating our fitted model, we check the value of FVDE randomly for particular 
values of damper position and speed as given in Table 1.5.

As a conclusion, we are getting the perfect result from our fitted model. So, we 
will continue our prediction process with this model.

1.3.6 �D etecting Outliers

In Figure 1.11, the fitted model is shown with the prediction intervals across the 
extrapolated fit range. This prediction interval is indicating that if the vibration 
points are going out of this range then there will be some problems.

TABLE 1.5
Model Validation at Particular DP and Speed. The Fitted Model Is Validated 
with the New Data to Predict the Vibration at That Condition

DP (%) Speed (rpm) Predicted vib. (FVDE) (mm/sec) Actual vib. (FVDE) (mm/sec)

70 1300 0.7868 0.78

80 1450 1.5776 1.57

86 1500 1.8832 1.87

FIGURE 1.11  Prediction normal range. The prediction is done based on 95% of the confi-
dence interval on the data. The actual data and the predicted data are approximately the same.
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At full load, the maximum vibration value of FVDE under normal working con-
ditions is found to be in the range of 1.34–1.65. From the data, it is found that the 
maximum vibration value of FVDE under full load conditions is less than or equal  
to 1.8. If the vibration value is greater than 1.8, then there may be some problems. We 
will try to find out these vibration points from the data using this model and, using 
these values, we will determine the time left to reach the threshold limit of vibration 
if the vibration is continuously increasing due to some faults.

First, we need to know the value of DP and speed at the high vibration points 
which are shown in Figure 1.12. The values of DP are found to be 86–86.08%.  
The values of speed are found to be 1495–1515 rpm.

1.3.7  �Remaining Useful Life Estimation using PCA

Using PCA and a suitable degradation model (linear or exponential), we can estimate 
the RUL of any equipment using at least 6 months of data on the equipment. The 
RUL technique is useful to predict the next similar fault condition to occur. We mod-
elled a linear degradation model to monitor the health status of an ID fan and we used 
only 1-day data just to check our model. We set 1.8 as the threshold value of vibration 
in the worst case for checking our model in estimating the remaining useful cycle.

The component condition indicator is measured after 1000 seconds. Using the 
learned linear deterioration model, we can now forecast the component’s remain-
ing useful life at this moment. The RUL is the expected time for the degradation 
feature to reach the set threshold (1.8). The RUL is expected to be about 9916 sec-
onds, implying a total predicted life duration of 9916 + 1000 seconds. We took 1000 

FIGURE 1.12  Damper position and speed at high vibration (> 1.8). These data points are 
helpful in finding the RUL of the equipment.
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seconds to monitor the component condition and update the deterioration model after 
each observation. Using the current lifetime value contained in the model, we fore-
casted the component’s RUL after 1000 cycles. This time the RUL is 5291, so the 
total RUL is 5291 + 1000 seconds.

This is not appropriate to calculate the RUL; we should calculate the time to be 
taken to reach the threshold limit of vibration because we have most of the data under 
normal conditions or under minor failure conditions but we don’t have any major fail-
ure data. Here, we are going to find how many data points are outliers; if the vibration 
is increasing for a time range greater than 300 seconds (5 minutes), then these points 
should be considered for further estimation. So, firstly, we will plot the increased 
vibration points that are sustaining more than 5 minutes, as shown in Figure 1.13.

Figures 1.13 and 1.14 show the outlier vibrations and their histogram plot, respec-
tively. These vibration points are sustaining more than 5 minutes; now, we need to 
estimate the time left for the vibration to reach its threshold value. The threshold 
value set for this is 3 mm/sec, which is changeable. The estimated time to reach the 
threshold value is discussed in the next section.

1.4 � RESULTS AND DISCUSSION

The time left for the increased vibrations to reach the threshold value is found to be 
approximately 1600 minutes. The threshold value can be changed based on the vibra-
tion severity of the equipment. Here, the threshold value is set at 3 mm/sec. The time 
left to reach the threshold is shown in Figure 1.15.

FIGURE 1.13  High vibration points (> 1.8). These outliers indicate the faulty condition of 
the equipment.
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Now, we have to know the operating conditions — DP and speed at these increased 
vibration points. According to our predicted normal range, the value of vibration at 
max DP and speed is 1.5016; but, actually, the maximum vibration found is 1.9274.

FIGURE 1.14  Histogram plot of high vibration points. This plot is helpful in knowing the 
number of times the peak vibration has occurred.

FIGURE 1.15  Time to reach the threshold value of vibration amplitude of 3. The number of 
cycles is indicated on x-axis, and the amplitude of the vibration is indicated on y-axis.
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DP corresponding to max vibration = 86.08% 
Speed corresponding to max vibration = 1495.5 rpm 
The predicted normal value of vibration at these values of DP and speed = 1.4548 
Actual max vibration = 1.9274
If the difference is negative, that means the actual value of vibration is larger than 

the predicted normal value, so we need to check the problem behind this. Since here 
the difference is negative, we confirmed that there is some problem; now, we need 
to check if we are going to decrease DP or speed or both then whether the vibra-
tion is decreasing or not. In this case, we will decrease both DP (by 3%) and speed  
(by 10 rpm) to see whether the vibration is decreasing or not.

With time, the threshold value of vibration increases because, for old equipment,  
3 mm/sec vibration will be reached early. After successful maintenance and monitor-
ing, the threshold value is again decreased. When the equipment is replaced, then also 
the threshold value is decreased because, for new and proper working equipment, the 
high vibration is not natural. The RUL is also affected according to the change in 
threshold value and condition of the equipment. If the equipment has not been properly 
maintained and 3 mm/sec vibration is natural, then the threshold will be increased.

1.4.1 �P redicted Solution to Decrease Vibration

In order to utilize the predicted solution to decrease the vibration, some steps are 
required to be followed. The steps are as mentioned below:

•	 Request the operator to follow the predicted solution given in Table 1.6 to 
decrease the vibration. In this case, we will decrease both DP (by 3%) and 
speed (by 10 rpm) to see whether the vibration is decreasing or not.

•	 If vibration is not decreasing by this method, then the maintenance team 
will go to the site for further diagnosis using FFT and orbit plot methods.

The RUL with respect to time is shown in Figure 1.15. The proposed model is validated 
by predicting the range of vibration for the next 3500 seconds and plotted with the actual 
vibration and found to be approximate to each other as shown in Figure 1.16.

TABLE 1.6
Predicted Solution to Decrease Vibration. This Table Suggests the Operator 
to Change the Damper Position and Speed to Get the Minimum Vibration 
and Time for Fault Diagnosis

Changing DP and Speed

Decrease in DP = 83.0822
Decrease in speed = 1485.5
Predicted vibration = 1.4338

Decrease in DP = 80.0822
Decrease in speed = 1475.5
Predicted vibration = 1.4130
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1.4.2 � Benefits of Using the Supervised Machine Learning Technique

This chapter has introduced the supervised machine learning technique to diagnose 
the health status of ID fan-motor system. For using this type of technique, one must 
have the historical data of the target component or equipment. If the historical data is 
not available, one can use unsupervised machine learning techniques such as PCA, 
clustering, etc. In the case of the supervised learning technique, if one has a huge 
historical data set, it becomes very easy to prepare the fitted model. The whole data 
set is generally divided into three parts — one part for training the model, the second 
part for testing the fitted model, and the third one for validating the prepared model. 
This way one gets surety for the accuracy of the fitted model and gets accurate results 
of condition monitoring of the equipment. This is the main advantage of using the 
supervised machine learning technique.

1.5 � CONCLUSION AND FUTURE SCOPE

Following the old condition monitoring technique, one cannot get reliable operation 
of equipment if they follow the fixed scheduled date for the maintenance of the equip-
ment. The supervised machine learning-based condition monitoring method for the 
ID fan-motor system is more reliable since it can predict future problems and pre-
vent equipment failure. It is also useful for predicting maintenance schedules well 
before a problem arises. As a result, supervised machine learning approaches enhance 
plant efficiency and performance. Other equipment monitoring can also benefit from 

FIGURE 1.16  The plot of predicted vibration range and the actual vibration (FVDE) with 
time. The 95% confidence interval is used for prediction.
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these  approaches. The only thing that differs is the features selection. If one can 
select the features, which are useful in indicating the target variable, then it is easy to 
implement the supervised learning techniques for every equipment of the plant.

The following are the future scopes of this project work:

•	 The supervised machine learning techniques can be useful in making a 
Digital Twin when they will be applied to any digital model of the equipment.

•	 The results of the proposed polynomial fitted model technique can be com-
pared with other techniques like the Artificial Neural Network Model, etc.
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2 Predictive Approach to 
Creep Life of Ni-based 
Single Crystal Superalloy 
Using Optimized 
Machine Learning 
Regression Algorithms
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2.1 � INTRODUCTION

Ni-based single crystal superalloys have been used widely at elevated temperature 
applications like gas turbine blades/vanes and isothermal forging dies, etc., where the 
materials have to be operated at almost 70% of their melting temperature (0.85–0.88 
homologous temperature). Due to positive mechanical and creep properties even 
at high temperatures, these materials are generally known as “High Temperature 
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Materials”. The major deformation mechanism during creep is responsible for the 
grain boundary sliding. Henceforth, the research focus has been shifted towards 
single crystal from polycrystalline creep resistance materials. The presence of inter-
molecular precipitated phases (γʹ) embedded into the matrix phase (γ) produces this 
impact. In general, the phases present in Ni-based superalloys like γ phase (Face 
Centered Cubic), γʹ phase (Face Centered Cubic ordered L12 crystal structure), γʺ 
phase (Body Cubic Tetragonal ordered D022 crystal structure), Topological Closed 
Packed (TCP) phases and sometimes carbides and borides. The addition of alloying 
elements in different stoichiometric ratios leads to the evolution of these phases cer-
tainly (Long, Mao et al. 2018, Cui, Yu et al. 2018) [1,2].

Often, ten alloying elements, including Cobalt(Co), Chromium(Cr), Molybdenum(Mo), 
Niobium(Nb), Hafnium(Hf), Tungsten(W), Aluminum(Al), Titanium(Ti), Tantalum(Ta), 
Rhenium(Re) and Ruthenium(Ru), have been used in Ni-based superalloys to improve 
oxidation resistance and increase mechanical strength along with enhanced long-ranged 
microstructural stability. Upon adding Re, there forms a cluster of atoms within the 
matrix phase which hinders the dislocation motions and increases the phase stability. 
This results in two different generations of Ni-based superalloys with varying composi-
tional percentages. However, considering the risk of formation of TCP phases by adding 
Re as alloying element leads to the addition of Ru in the next two different generations 
with invincible creep properties. Thus, the different generations of Ni-based superalloys 
evolve the new applications with different chemical compositions as shown in Table 2.1.

The impact on the microstructural parameters like critical flow stress of disloca-
tions, stacking fault, volume fraction of secondary intermetallic phases, anti-phase 
boundary energy, etc., (Dang, Zhao et al. 2016, Bolton 2017) [1,3,4] upon addition 
of alloying element is significant and the effects produced by the addition of each 
individual alloying element can be seen from Table 2.2.

Maclachlan and Knowles (2001) [13] predicted stress fracture properties of differ-
ent generations of superalloys considering the features relevant to creep deformation. 
Prasad (Prasad, Rajagopal et al. 2006) [14,15] estimated the creep behaviour based on 
dislocation motion between interfacial regions of phases and its damage caused under 
different load conditions. A better understanding of creep behaviour was done by 
Fedelich (Fedelich et al. 2012, Jiang et al. 2020, Perez prado et al. 2000) [5,6,7] with 
the help of γʹ rafting during microstructural changes. For the low level to intermediate 
temperatures, a combination of Creep Constitutive Modelling techniques along with 
CALPHAD (Calculation of Phase Diagrams) calculations by Kim (Kim, Kim et al. 
2016) [8] results in the best possible outcomes in creep properties estimations.

TABLE 2.1
Chemical Composition of Different Ni-based Superalloys Generations

Generation Ni Cr Co Al Ti Mo W Re Ru

First 62.6 9 8 3.7 4.2 2 6 – –

Second 61.8 7 8 6.2 – 2 5 3 –

Third 57.4 4.2 12.5 5.75 0.2 1.4 6 5.4 –

Fourth 66.9 3 6 6 – 3 6 5 2

Fifth 59.2 4.6 6.1 5.6 – 2.4 5 6.4 5
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Being a recent trend subset of artificial intelligence, Machine Learning Algorithms 
(Liu et al. 2020) [9] stepped into the materials area in determining the combination 
of new alloys and their properties with less effort and expense (J. Wu et al. 2020,  
T Zhao et al. 2017, Long et al. 2018) [10,11,12]. The data-driven algorithms in Machine 
Learning predict the creep life of Ni-based superalloys concerning all the effecting 
factors and their relationship with creep behaviour (Liu, Wu et al. 2020) [12,16]. 
The effecting factors range in three specific domains like Chemical compositional 
parameters, Heat treatment environmental parameters and Microstructural evolution 
parameters (Ross et al. 1995, Royer et al. 1998, Snyder et al. 2012) [17,18,19].

Some of the milestones in this computational materials science include the work 
(Venkatesh and Rack 1999) [20] using Back-propagation Neural Network (BPNN) 
to predict the creep life of Inconel 690 and (Yamazaki et al. 1987, Yoo et al. 2002) 
[21,22] using Bayesian Neural Network with Markov chain Monte Carlo methods to 
estimate the creep mechanisms of Ni-based superalloy using specific relevant effect-
ing factors as features.

2.2 � CREEP MECHANISMS IN Ni-BASED SUPERALLOYS

The microstructural evolution of matrix and precipitated phases (γ/γʹ phases) results in 
three different regimes of creep that would occur in Ni-SXs generally. The creep mecha-
nisms involved within these regimes inherently correlate with the interactions between 
the dislocations and their movement inside the material. In principle, the dislocation-
free zone of γ matrix experiences the multiplication of dislocations initially with respect 
to external temperature and stress. A short ordered interval exists where dislocations try 
to homogenize within those strained matrix channels and plasticity follows along the γ/
γʹ interfacial vicinity. As the shift of mechanical properties takes place from elastic to 
plastic behavior, the primary creep can be identified by the onset of plastic flow.

The creep/strain rate initially increases with the accumulation of dislocation-
assisted strains, which are generated due to the activities associated with the dislo-
cation, later decreases with the increase in dislocation density at the γ/γʹ interfaces. 
The dislocation network hinders the motion of dislocations with the combinational 
hardening and softening effects produced by the multiplication of dislocation density 
forest and plastic flow of dislocation respectively. When the equilibrium point exists 
with the balancing of the hardening and softening effects, the decrease in strain rate 
is very significant up to a very low level and maintains near consistency which in 
return results in secondary creep initiation. Due to the lower creep strain, the sec-
ondary regime which is a steady state creep rate lasts long interval when the creep 

TABLE 2.2
Effects/Roles of Alloying Elements in Ni-based Superalloys

Effects/Roles Alloying Elements

Formation of γʹ phase Al, Ti

Formation of topologically closed phases Cr, Mo, W, Re, Co

Rise in lattice misfit between phases Re, Ti, Mo, Ru

Solid solution strengthening Cr, Mo, W, Re, Ta, Co

Increase in solvus temperature of γʹ phase Co
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life is concerned. Furthermore, the increase in creep rate takes place with further 
inoculation of creep strains during steady state creep. This leads to the concentration 
of high stress fields which then propagates the shearing effect of dislocations into 
the precipitated γʹ phase creating anti-phase boundary (a planar defect which is to 
be considered as most important fatigue defect) and disturbs the γ/γʹ microstructure. 
Hence, within no specific time interval, the ultimate fracture of the alloy takes place 
with a drastic increase in strain rate with creep strain.

The phenomenon related to microstructure occurring within the three different 
creep regimes inside the alloy strongly rely on the dislocation movements and their 
interactions with the γ/γʹ microstructure. This indicates the sensitiveness of tempera-
ture and applied stress towards the evolution of γ/γʹ microstructure and reliability 
against the dislocation motion. In principle, diffusion plays a vital role in dislocation 
activities and temperature, a most important thermodynamical parameter involv-
ing the diffusion of solutes, has its prior influence by activating the slip systems for 
the motion to happen. At high temperatures (over 1100 °C), fast degradation of γ/
γʹ microstructure invokes with the multiplication of dislocations that generates the 
plastic strains. In order to have long order secondary creep rate, the low level applied 
stress can be accessed so that the activation barrier energy for the motion of dislo-
cation is not enough to produce slip and rests inside the γ channels which in return 
would cause the creep deformation only by the adaptation of strains in the γ phase. 
Moreover, on the other hand, the shearing of γʹ precipitates which causes the failure 
also results from the adaptation of strains in the γ phase. In certain cases, the creep 
life in every creep stage can be decreased by applying high level stresses but can 
accelerate the creep process, specifically in the secondary creep stage.

With the aid of high applied stress, the domination of the dislocation softening 
effect overweighs the hardening process while the creep deformation occurs under 
high temperature and high stress conditions. Hence, only continuous tertiary creep 
exhibits with accelerating creep in Ni-SX. The controversial proportion is observed 
against creep life with applied stress since no steady state creep is achieved and 
ends up in shorter creep life in case of high stress creep when compared with lower 
stress. Similar mechanisms can be achieved when considering temperature assists 
creep deformation. However, they would appear different at lower temperatures rela-
tively (nearly 973 K). The experimental research works suggest that the plasticity is 
reduced due to less number of dislocations in microstructure at these temperatures. 
Henceforth, the accommodations of serrated creep strains are enough to generate the 
deformation at low stress and at high applied stresses, the creep deformation seems 
to be significant.

2.3 � CREEP LIFE OF Ni-BASED SUPERALLOYS

Creep rupture life plays a vital role in determining the service life along with the 
mechanical and creep properties of Ni-based single crystal superalloy materials. The 
creep life of superalloys is the property that describes the sustainability of application 
and is most crucial to be determined to understand the creep behavior. However, the 
parameters that have their impact on the creep life are significant in number which 
ranges in three specific domains like Chemical compositional parameters, Heat 
treatment environmental parameters and Microstructural evolution parameters like 
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lattice misfit, volume fraction of Ni3Al, elastic constant like shear modulus, stacking 
fault energy and diffusion coefficient. In this study, focusing on lattice misfit and its 
impacts on creep life of different generations of Ni-based superalloys indicates the 
microstructural dependence on creep rupture life.

2.4 � LATTICE MISFIT IN Ni-BASED SUPERALLOYS

The interfacial coherency, also known as the lattice misfit (δ), is what gives a superal-
loy its invincible creep qualities. It may be expressed as follows:

	 δ =
+ 

− 

γ γ

γ γ

′

′

a a

a a

2
	 (2.1)

where parameters aγʹ and aγ denote the lattice constants of γʹ phase and γ phase, 
respectively. The value of lattice constants of the two phases decides the sign of lat-
tice misfit between those two phases. Certainly, there exists positive, negative and 
sometimes zero lattice misfit resulting in considerable impacts on creep properties. 
The site preference or the partition of alloying elements is the one that replicates the 
lattice misfit correlation with the alloying elements. Among the elements, Cr, Mo, 
Ru, Re, and W try to get into the matrix phase as their atomic radii are not much 
different from that of Ni. On the other hand, solutes such as Al, Ta and Ti, having 
larger atomic size than other elements in the matrix phase, settle in γʹ phase and 
promote the ordered precipitated phases which thus increases the lattice constant. 
Replacement and occupying of the sites of basic Ni-Al structure can be relatively 
occurred by these large solute atoms and shows a positive impact on the lattice con-
stant of γʹ phase. However, some of the matrix phase partitioning elements with large 
atomic radius relative to Ni can increase the lattice constant of the matrix, but not 
greater than that of the precipitate phase. Thus at ambient temperature, most Ni-SXs 
show positive lattice misfits.

Meanwhile, due to the significant thermal expansion coefficient of γ phase, the 
transformation of the positive sign of lattice misfits to negative could be seen and this 
change in lattice misfit results in coarsening of the γʹ precipitates because the stress 
concentration gradient near the interface between the two phases behaves like activa-
tion force which allows γʹ precipitates to start growing. A decrease in lattice misfit 
indicates the loss of coherency and kinetics of coarsening. The formation of cuboids 
from the initial shape of spheres accounts for the expense of surface energy. To 
diminish the surface energy, almost closely spherical γʹ precipitates can be produced 
by near zero lattice misfit. Compensating the elastic strain and the lattice distor-
tion energy associated with it, the lattice misfit increases with the interfacial energy 
leading to the cubical change of γʹ precipitation. The interfacial coherency will be 
constant with low lattice misfit and thus stabilizes the interface with low interfacial 
energy. However, the advantage behind having a cuboidal shape towards creep prop-
erties was shown in the minimization of elastic moduli of γ/γʹ phases along <1 0 0> 
direction. In the viewpoint of superalloy design, the enhancement of lattice misfit 
results from the larger atomic size elements like W and Mo. A threshold favourable 
lattice misfit value of around 0.4 was observed in many Ni-SXs, and it is noted that 
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the medium level of lattice misfit seems to be advantageous to creep properties in 
the case of Ni-based superalloys. However, abnormal coarsening of γʹ particles at the 
expense of inherent interface due to overdraft of lattice misfit results in the micro-
structure instability. Therefore, the compositional impact of alloying elements should 
be optimized in adverse contents for most Ni-SXs.

2.5 � MACHINE LEARNING ALGORITHMS FOR CREEP LIFE

Due to uncertainty in the evolution of microstructural coefficients of random phases, 
the creep mechanisms in each generation may vary accordingly and estimating 
creep life will be difficult in practice. The techniques used for estimating the creep 
life can be categorized into Time Temperature Parameter (TTP) method and Creep 
Constitutive Method (CCM), where TTP models like Larson Miller (LM) parameter 
(Bolton et al. 2017, Ciu et al. 2018) [1,2] estimate the creep life by extrapolating the 
short range order creep data onto the long range order creep master curves which 
lacks the invincible information of alteration in microstructural aspect. However, 
CCM techniques rely on crystallographic plasticity theory and internal continuous 
state mechanics for the best prediction.

The study includes the research effort in which a new model called Divide-and-
conquer Self-adaptive (DCSA) has been introduced. The DCSA has indulged the 
art of using different regression algorithms like Random Forest (RF) algorithm, 
Support Vector Machine (SVM) algorithm, Linear Regression (LNR) algorithm, 
Ridge Regression (RR) algorithm, Lasso Regression (LR) algorithm onto the dataset 
containing all the effecting factors of three domains as input features and creep life 
as the dependent target variable. Using this approach, we can relate the correlation 
between the features to the creep life of different generations. Unfortunately, litera-
ture has not considered the microstructural effecting parameters like lattice misfit 
between coherent interfacial regions of phases and their impact on creep life. This 
study includes lattice misfit (constrained) along with all other effecting factors in 
previous work and correlates the sensitiveness of features on creep life.

2.6 � MATERIALS AND METHODOLOGY

The dataset used in this prediction has been mined from several literatures and 
database warehouses (Long et al. 2018, D.M. Knowles et al. 2001, Ning et al. 2019, 
Prasad et al. 2006, Reed et al. 2006) [12,13,14,15,16] which was normalized using 
Standard Scaler algorithm before working on it. The resources have been using com-
putational materials science platformed software like VIEN ab initio, Quantum 
Expresso which is based on first principle calculations with the aid of Density 
Functionality Theory (DFT) solving Schrodinger equation representing ground state 
atom energy. Kohn Sham’s one electron equation is resolved by Green’s Function 
technique. Coherent Potential Approximation (CPA) is used for calculating total 
energies through Exact Muffin Tin Orbitals (EMTO) methods with s, p, d and f 
orbitals in the basis set. Generalised Gradient Approximation (GGA) brings up the 
electronic exchange correlation potential parameter.

With 100 sample records of Ni-based superalloy generations containing effecting 
factors as features, the K means clustering algorithm been used to divide the dataset 
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into clusters based on creep mechanisms. Each cluster, thereafter, is being split into 
train and test dataset, over cross fold technique, from sklearn module in ML. The 
training dataset of each individual cluster is operated by five regression algorithms to 
build a predictive model. The optimized predicted model is derived from the regres-
sion algorithm having precise R2 values. To avoid overfitting of candidate models, we 
used Principle Component Analysis (PCA) in conjunction with k-fold cross-validation 
upon individual clusters to arrive at the best model selection as shown in the Figure 2.1

The dataset contains the effecting factors on the creep life as material attributes 
are shown in Table 2.3.

TABLE 2.3
Symbols/Designation and Material Attributes in the Dataset

Designation Material Attribute Designation Material Attribute

Ni Mass percent of Ni 1lat The first level aging time (h)

Re Mass percent of Re 2lat The second level aging time (h)

Co Mass percent of Co AtT Alloy treatment temperature (°C)

Al Mass percent of Al 1laT The first level aging temperature (°C)

Ti Mass percent of Ti 2laT The second level aging temperature (°C)

W Mass percent of W T Test temperature (°C)

Mo Mass percent of Mo S Test stress (MPa)

Cr Mass percent of Cr г Stacking fault energy (mJ/m2)

Ta Mass percent of Ta DL Diffusivity (m2/s)

C Mass percent of C G Shear modulus (GPa)

B Mass percent of B L Lattice constant (nm)

Y Mass percent of Y Ni3Al Molar percentage of γ’ phase

Nb Mass percent of Nb Cn Constrained lattice misfit

Hf Mass percent of Hf

Stt Solution treatment time (h)

FIGURE 2.1  Ensemble method used for prediction of creep life of Ni based superalloy
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2.7 � RESULTS AND DISCUSSION

Being on random scales, the dataset is scaled upon to normalized scale and opti-
mized by the Principle Component Analysis technique which leads to reducing the 
attributes/features errors and plots as shown in Figure 2.2. After dividing the dataset 
into different clusters based on their creep mechanisms, five regression algorithms 
have been passed over each cluster to check the best fit predictive model and thereaf-
ter split into training and testing dataset. The fitness value used here is R2 validation 
to optimize the prediction for each individual cluster. The following Table 2.4 values 
indicate the selection of regression algorithms towards each cluster.

Clearly, we can conclude that except for cluster 3, the optimized regressor for 
the remaining clusters is the Gaussian Process regression algorithm whereas linear 
regression best fits with cluster 3 to predict the target variable. Based on the chemical 
composition of Re wt.%, the clusters represent the different generations of Ni-based 
superalloys as shown in Table 2.5.

FIGURE 2.2  Principle component analysis of features

TABLE 2.4
R2 Values of Each Cluster Onto Different Regression Algorithms

Method Cluster-0 Cluster-1 Cluster-2 Cluster-3 Cluster-4

Linear regression 0.6808 0.7125 0.8988 0.8720 1.0000

Ridge regression 0.6432 0.5630 0.8794 0.7187 0.9999

Lasso regression 0.6808 0.7664 0.8799 0.8726 0.9999

SVM 0.9399 0.9998 0.9541 0.7881 0.9999

GPR 0.9999 0.9999 0.9999 0.9999 0.9999
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2.7.1 �I mportance of Features 

The creep mechanism of each Ni-based superalloy generation relies on several factors 
uniquely bringing the features which are important to be considered while determin-
ing the creep rupture/stress rupture life of the superalloy. The correlation coefficients 
of each effecting factor as a parameter onto the creep life imply the positive and/
or negative impact. The following figures show the importance of features of each 
cluster (generations) that should be considered while fabrication and aging treatment.

The first two clusters (clusters 0 and 1) representing second generation Ni-based 
superalloy, with an addition of 3% of Re with a slight change in Co mass percent, 
mostly rely on the chemical composition of alloying elements when concerned with 
creep rupture life. As shown in Figures 2.3 and 2.4, the mole fraction of Ni3Al, which 
is the precipitated phase, shows a negative effect on creep life along with the mass 
percent of Ni, Al, W, Mo, and Cr. This indicates the inverse proportion impact of 
these parameters onto the service life of superalloys. However, the impact of temper-
ature and applied stress should also be considered into account with a slight negative 
correlation with respect to creep rupture life.

The solution treatment temperature with possible aging treatment temperature 
shows positive curvature which replicates the phase transformation and strengthening 
mechanisms regime onto the creep life. Upon adding Re alloying element, the hinder-
ing effect for dislocations occurs as the cluster formations took place in the matrix 
phase and the lattice parameter in the matrix phase changes towards positive sign. This 
leads to the lattice misfit, up to some extent, along the γ/γʹ coherent interfacial region.

Temperature and applied stress in the orientation of slip planes play a vital role 
in the fifth and third generations as shown in Figure 2.5. To stabilize the phases 
and hinder the evolution of TCP, Ru is added in the case of fourth and fifth genera-
tions and this leads to an increase in lattice misfit between interfacial regimes which 
increases the creep life as it increases.

In the case of first generation Ni-based superalloys, the absence of Re element 
invokes the negative effect of constrained lattice misfit as shown in Figure 2.6. The 
aging temperature for the precipitate to be evolved has also negative correlation onto 
the creep life but has positive correlation with aging time. 

TABLE 2.5
Generation Description of Each Cluster Based on Re wt.%

Cluster ID Generation Description

0 Second generation
3% Re

1 Second generation
3% Re with Co % difference

2 Fifth and third generations
7.2% Re

3 First generation
0% Re

4 Fourth generation 
4.5% Re
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Overall, the above-shown graphs indicate that clusters 0 and 1 (i.e., second gen-
eration superalloy) have negative impact on the mole fraction of γʹ phase, which in 
return increases with decreasing the creep life. With the addition of Re alloying 
element in the fifth and third generations, the constrained Lattice misfit improves 
drastically and leads to an increase in creep rupture life with a dense dislocation 
network around a coherent interface. However, the applied stress has a positive reli-
ance on creep behavior in the fourth generation containing Re more than 4 wt.% and 

FIGURE 2.3  Feature importance of cluster 0 representing the second generation with 3% 
(wt.) Re

FIGURE 2.4  Feature importance of cluster 1 representing the second generation with modi-
fication in Co wt%
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with slight impedance in other generations, as shown in Figure 2.7. The temperature 
dependence of creep life in the fifth and third generations shows highly advanta-
geous towards increase in creep rupture life; whereas in the first, second, and fourth 
generations, it damages the creep life nature with increase. In addition, stacking fault 
energy and shear modulus of second generation expresses their impacts positively on 
creep life; whereas in the third and fifth generations, shear modulus plays a critical 
role. Furthermore, the alloying elements added in different generations have their 
unique identity and effect on different mechanisms, as shown in Table 2.2.

FIGURE 2.5  Feature importance of cluster 2 representing the fifth and third generations

FIGURE 2.6  Feature importance of cluster 3 representing the first generation with no pres-
ence of Re
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When imposed on a test dataset of eight sample records containing the same fea-
tures as the train dataset and plots, a linear curve graph with actual and predicted 
values on the x-axis and y-axis, respectively, is shown in Figure 2.8 as a validation. 

2.8 � CONCLUSIONS

The recent prediction approach of creep life of Ni-based single crystal superalloy 
effectively emphasizes the following conclusions:

FIGURE 2.7  Feature importance of cluster 4 representing the fourth generation with 
4.5% (wt.) Re. The ensemble method used in this study predicts the creep life of Ni based 
superalloys.

FIGURE 2.8  Prediction plot of ensemble method used on a new dataset.
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	 1.	Being the effecting factors of creep rupture life of Ni-based superalloys 
large in number significantly, creep constitutive models based on integrated 
computational materials science techniques have been absorbed to generate 
the material properties data.

	 2.	Ensemble methods of machine learning have been implemented in order to 
characterize different generations of Ni-based superalloys with respect to 
parameter effecting their creep life and creep mechanisms.

	 3.	The regression method used in this study possesses two basic steps from 
clustering the generations based on creep mechanisms to fitting the best 
optimized predictive model.

	 4.	The validation of optimized model is done based on R2 technique as a fitness 
model for the selection of the best predictive regressor upon each cluster.

	 5.	With the addition of Re alloying element, the constrained lattice misfit 
increases which, in return, shows a positive impact on creep life, especially 
in the fifth and third generations. However, temperature and externally 
applied stress show invincible correlation with creep life in all the genera-
tions accordingly along with other parameters.

	 6.	The predicted values on a new set of data points containing all the effecting 
factors as features give the precise values within the limit of actual values 
concluding further validation of the present ensemble technique.

2.9 � FUTURE SCOPE

Comparatively, with the help of recent technology emerging in the trending world 
of engineering solutions, we established an effective technique for the prediction of 
creep life of Ni-based single crystal superalloys. There is a significant improvement, 
instead of relying on conventional experiments, where reduction in economic aspect 
and time effort can be achieved for alloy design. This machine learning assisted pre-
dictive approach can be imported to consider other relevant effects occurring inside 
the material during the creep deformation such as activation energy, site formation 
energy, etc., and this will be the focus of the future work.

2.9.1 �D ataset and Code Availability

The datasets and the code are available on github website using the following link: 
https://github.com/polimetl/Ensemble-Methods.git.

ABBREVIATIONS

ML Machine Learning
DCSA Divide-and-conquer self-adaptive
BPNN Back-propagation neural network
CALPHAD CALculation of PHAse Diagram
TTP Time Temperature Parameter method
CCM Creep Constitutive Method

https://github.com
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3.1 � INTRODUCTION

Milling is a machining process that progressively removes material from a work-
piece, by the use of rotating multi-point cutting tools, to produce custom-designed 
components. For geometrically complex part designs, precise prediction of surface 
roughness and material removal rates ensure efficient time utilization and good prod-
uct quality [1]. Aluminium 6061 alloy is one of the most commonly used aluminium 
alloys which finds purpose in several heavy industry applications like aircraft com-
ponents, automobile parts, weapon casings, and high vacuum chambers. Ensuring 
low allowance values with utmost precision is desirable in these respective manufac-
turing industries. During milling, operators use their experience to find the optimal 
set of parameters to have a satisfactory product finish. Adjusting the milling param-
eters to ensure the optimum finish just on the basis of experience can compromise the 
productivity of the process. The ANN is a significant approach for the prediction of 
such milling parameters as it has the ability to decode complex relationships, similar 
to a neural system [2].
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The ANN technique is successfully implemented in machining processes as 
an optimization technique, along with other machine learning techniques such as 
Genetic Algorithm, Particle Swarm Optimization, Ant Colony Optimization, etc. [3].  
The ANNs usually suffer from overtraining and overfitting [4], but they can be 
mitigated using appropriate network architecture and techniques like regulariza-
tion. They require greater computation resources. According to recent research 
[5], neural networks can extract relevant information in the presence of irrelevant 
data and can see through noise and distortion. The results of a previous paper [6] 
proved that the ANN performs best under conditions of high noise and low sample 
size. The ANN can be used to model complex non-linear relationship between 
dependent and independent variables [7]. Also, to develop the ANN, less formal 
statistical training is required. The ANNs are unaffected by missing data and 
learn by examples, making real-time modelling possible. Discrete outputs can 
also be predicted irrespective of minute errors in the inputs, with fast learning 
and good accuracy [8]. Even though some instances show unexplainable networks 
and reduced trust, such predictions help reduce research and experimental setup 
time and costs, as the model can be tweaked for a large array of materials and 
parameters.

3.2 � LITERATURE REVIEW

Khorasani et al. [9] predicted accurately the dynamic roughness of surface during 
finishing and rough milling using ANNs. They took material type, cutting parameters, 
coolant fluid, white noise, and input parameters were taken as the X and Z compo-
nents of milling machine vibrations. Accuracy of 99.7% and 99.8% was achieved for 
recall and testing processes.

Agarwal et al. [10] developed a hybrid cutting force model for end milling opera-
tion. The hybrid model was adopted to capture adequate process knowledge. They 
concluded that using the hybrid model, the cutting force could be predicted accu-
rately compared to other machine learning algorithms, which predicted higher nor-
mal cutting forces. According to the authors, the results can be improved further 
using Reinforcement learning and Recurrent Neural Networks.

Serin et al. [11] developed an algorithm based on Deep Multi-layer Perceptron 
(DMLP) to predict specific cutting energy and roughness of surface for AL 7075 
slot milling. Using Analysis of Variance (ANOVA) they examined the effect of 
input and output parameters. Results indicated that depth of cut and feed per tooth 
were the most influential parameters. They were able to achieve an accuracy of 
91.5% and 90.7% for quality and energy efficiency, respectively, and therefore yield 
accurate results.

Bandapalli et al. [12] used optimization techniques to estimate surface roughness 
— ANN, Group Method Data Handling and Multiple Regression Analysis for high-
speed micro end milling of Titanium alloy (Grade-5). The authors learnt that feed rate 
and depth of cut had the most influence on the surface roughness. They concluded 
that ANN trained on 70% of the data gave better predictions compared to GMDH and 
MRA. GMDH provided the least error of estimation.
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Al-Abdullah et al. [13] used the ANN to develop force and temperature models 
for bone milling of artificial tissues with cancellous properties. Feed rate and spindle 
speed were taken as input variables. Full Factorial Design of Experiments was used 
to collect the experimental data. Using the experimental results, it was found that the 
mean temperature of milling bur increases with feed rate and drops with increasing 
spindle speed. But fresh milled bone temperature drops by increasing spindle speed 
and feed rate.

Malghan et al. [14] predicted surface finish, cutting force, and power utilization for 
the milling process of 6061-4.5%Cu-5%SiCp composite. Three process parameters — 
feed rate, depth of cut, and spindle speed — were taken. The ANN model created was 
able to accurately learn the experimental data.

Daniel et al. [15] used the ANN to optimize particle size and mass fraction of SiC 
as well as feed, depth of cut, and cutting speed in milling of Al5059/SiC/MoS2. To 
analyze the impact of control factors on the response variable, the Taguchi S/N ratio 
method was used. The results demonstrated that the ANN outperformed regression 
models for every response parameter.

Dhobale et al. [16] developed an ANN model based on an Multi Layer Perceptron 
classifier to classify the tool conditions of face milling. The MLP classifier was 
able to achieve an accuracy of 97.33%. The authors concluded that the best tool 
for condition monitoring was a combination of the ANN and statistical feature 
extraction.

Mundada et al. [17] used the Simulated Annealing Algorithm and the ANN to 
optimize the surface roughness. Feed rate tool rake angle, cutting speed and nose 
radius were taken as input machining parameters. Results from the simulated 
annealing optimization technique indicated that for good surface finish, lower 
feed rate, medium values of rake angle and nose radius, and high cutting speed 
is required.

Sanjeevi et al. [18] proposed a methodology to use the ANN for the prediction 
of the roughness of the Al-6061 surface in Computer Numerical Control milling. 
Speed, feed rate, and depth of cut were taken to be the input variables. The ANN 
model was able to predict the roughness of the Al surface with 98.35% accuracy.

Parmar et al. [19] configured and trained the ANN model for the prediction of 
performance evaluation parameters such as machining time, material removal rate, 
tool life, torque, cutting force, and power. For the input parameters, mechanical 
properties of the used material and process variables of end milling were used. The 
ANN model developed provided 98.657% for Material Removal Rate, 95.705% for 
power, 97.315% for machining time, 99.189% for cutting force, 99.197% for torque, 
and 99.894% for tool life.

Very few literature studies are available for parameter monitoring of milling for 
Aluminium 6061 alloy using the ANN approach. Therefore, in the given research, 
milling of Aluminium 6061 alloy is modelled using the ANNs. Speed, feed rate 
and depth of cut are taken as input parameters. In the literature [20–22], it has been 
shown that feed rate, cutting speed and depth of cut are the most important param-
eters in determining the surface roughness and material removal rate with feed rate 
and cutting speed having the most influence. We performed exploratory data analysis 
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on the experimental data to study the impact of input parameters in Section 3.3. In 
Section 3.4, a brief introduction to the ANNs is given. And then in Section 3.5, we 
explain the ANN architecture and the hyperparameters that yielded the best results.

3.3 � EXPLORATORY DATA ANALYSIS

In this work, the ANN analysis has been performed on an experimental dataset [24] 
(Tables 3.1 and 3.2).

Taguchi method was employed as it is capable of studying the impact of all 
design factors on experimental response with a minimum of experiments [23]. In 
this analysis, the research done by [24] is being analyzed using the ANN tech-
nique. The experimental results derived in original experimental research [23] are 
in synchronization with the ANN predicted results. In the original research, three 
study input factors — Speed (932–1042 rpm), Depth of cut (1–3 mm), and Feed rate 
(95–145 mm/min), over three levels — were used.

TABLE 3.1
Dataset

Run Order Speed (rpm) Feed Rate (mm/min) Depth of Cut (mm) MRR (mm3/min) Ra (µs)

1 932 95 1 1140.00 1.52

2 932 95 1 1142.00 1.54

3 932 95 1 1143.00 1.51

4 932 120 2 3435.13 1.33

5 932 120 2 3432.99 1.29

6 932 120 2 3436.13 1.26

7 932 145 3 5220.00 1.47

8 932 145 3 5223.55 1.46

9 932 145 3 5221.00 1.44

10 1037 120 1 1359.96 1.33

11 1037 120 1 1357.00 1.25

12 1037 120 1 1359.01 1.28

13 1037 145 2 3422.00 1.29

14 1037 145 2 3425.00 1.33

15 1037 145 2 3428.00 1.30

16 1037 95 3 3005.29 1.33

17 1037 95 3 3007.53 1.33

18 1037 95 3 3005.71 1.33

19 1142 145 1 3359.83 1.29

20 1142 145 1 3358.29 1.33

21 1142 145 1 3359.83 1.29

22 1142 95 2 2251.01 1.10

23 1142 95 2 2254.01 1.09

24 1142 95 2 2251.01 1.10

25 1142 120 3 3467.00 1.33

26 1142 120 3 3469.50 1.33

27 1142 120 3 3465.00 1.28
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Exploratory data analysis was performed to evaluate the relation between the 
input and output variables. Figure 3.1 signifies the non-existence of observable trends 
between the input and target parameters. Due to this non-linearity between param-
eters, the given problem couldn’t be solved using regression techniques. Therefore, 
the ANNs were used owing to their ability to learn and model non-linear and com-
plex relationships. 

3.4 � ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs), also known as Neural Nets or Deep Neural 
Networks, are computing systems that are meant to simulate the working of a human 
brain. With the help of experience and data, the ANN improves itself using artificial 
neurons. The ANN consists of elementary units called neurons that take one or more 
inputs to produce an output [2].

TABLE 3.2
Neural Net Configuration

Factors Parameters

Network type Feed forward back propagation

Training function TRAINLM

Adaptive learning function LEARNGDM

Performance function MSE

Number of layers 5

Number of neurons in hidden layers 3–5

Transfer function TANSIG

Number of epochs 1000

FIGURE 3.1  Exploratory data analysis — trend lines between the input and response 
parameters in the dataset representing variance between different milling parameters
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At each node, the following computations are carried out.

	 * 1= +[ ] [ ] [ ]− Z W A bi i i i

	 ( )=[ ] [ ]A f Zi i

where

[ ]W i  — Weights of the connection
1[ ]−A i  — Output from the previous layer

[ ]b i  — Bias of the connection
f(x) — Non-linear activation function

A neural network comprises input, hidden, and output layers. A parallel group of 
neurons, without any interaction between them, makes up a layer. Neurons in the 
input layer are further connected to the layer of hidden units, which are then con-
nected to neurons in the output layer.

To tune the weights and the bias to minimize the loss function, and increase the 
model accuracy, the gradient descent-based back propagation technique is used.

3.5 � OUR MODEL

The nntool in MATLAB was used for creating the neural network for our desired 
optimization. The input and target datasets were created by segmentation of the orig-
inal dataset into, firstly, train and test data and then into input and response variables.

The following configuration was used to train the network. Levenberg–Marquardt 
algorithm was chosen as the training function for model curve fitting, due to its appli-
cations in solving non-linear problems (Figures 3.2 and 3.3). 

Stochastic gradient descent is the optimization algorithm used for adaptive learn-
ing as it minimizes the gradient and adjusts weights accordingly. Weights and biases 
are tuned in an iterative manner to obtain optimum values for the least error.

Speed

Feed Rate

Depth of Cut

MRR

Ra

FIGURE 3.2  Neural network architecture — feed rate, speed, and depth of cut — passed 
through two layers of 4 and 5 neurons, respectively, resulting in material removal rate and 
surface roughness.
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The loss function, for performance evaluation, is chosen as Mean Square Error. 
This sum of squared distances between the target and predicted values is minimum 
for the most accurate prediction.

Hyperbolic tangent sigmoid transfer function calculates the output of the layer 
from the net inputs, in less time and with sufficient accuracy.

Hyperparameters, like model depth, layer size, learning rate, and weight initial-
ization, were tuned iteratively for best results.

3.6 � RESULTS

The neural network architecture created is able to predict end milling parameters 
with high accuracy on, both, training and testing data, making the model generalized 
and reliable. The achieved accuracy of the model, as shown in Figure 3.4, was 99.91% 
on the training dataset and 99.89% on the testing data. The figure is a representation 
of how well the regression aligns with the data points.

Table 3.3 shows the predicted and original experimental values of surface 
roughness and material removal rate. Error was calculated in percentages for each 
value, to observe the minimal cumulative error. Low error values signify a well-
trained and generalized model. The predicted values show acceptable error and good 
accuracy.

The regression plots for the training, testing and validation datasets are shown in 
Figure 3.4. The graphs are a representation of the fitting of the model, where R is the 
square of the correlation between the predicted and response values. A value closer 
to 1 signifies a good fit for the model.

The plot from Figure 3.5 shows that the minimum value of the loss function was 
reached in the ninth epoch where Mean Squared Error (MSE) was obtained to be the 
lowest. This gave the best performance for our network. Figure 3.6 is a visualization 
of the gradient descent of the model for all epochs. The model converges to a perfect 
fit as the gradient decreases.    

Figures 3.7 and 3.8 visualize the marginal differences between the experi-
mental and predicted values of material removal rate and surface roughness. As 
suggested by the model accuracy, the predicted values align well with the experi-
mental ones, with minimum error. Thus, the network is capable of predicting 
surface roughness and material removal rate very close to experimental values on 
new data as well.

FIGURE 3.3  Neural network MATLAB schematic — detailed layout of the layers used in 
our ANN, created on MATLAB, with their respective activation functions and the number 
of neurons
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3.7 � CONCLUSION

In this study, the optimization of multi-response milling parameters of Al-6061 alloy 
was carried out. Taguchi L27 orthogonal array with three factors namely — Feed 
rate, Speed, and Depth of cut — was used. Optimization was done by examining 
the variance of these inputs parameters on output parameters — material removal 
rate and surface roughness. We concluded that due to non-linearity between the 

TABLE 3.3
Experimental vs Predicted Values

S. No.

Experimental Predicted % Error

MRR  
(mm3/min)

Ra 
(µs)

MRR  
(mm3/min)

Ra 
(µs)

MRR  
(mm3/min)

Ra 
(µs)

1 1140.00 1.52 1141.67 1.49 −0.15 2.11

2 1142.00 1.54 1141.67 1.49 0.03 3.38

3 1143.00 1.51 1141.67 1.49 0.12 1.46

4 3435.13 1.33 3436.12 1.46 −0.03 −9.62

5 3432.99 1.29 3436.12 1.46 −0.09 −13.02

6 3436.13 1.26 3436.12 1.46 0.00 −15.71

7 5220.00 1.47 5221.00 1.40 −0.02 5.08

8 5223.55 1.46 5221.00 1.40 0.05 4.43

9 5221.00 1.44 5221.00 1.40 0.00 3.10

10 1359.96 1.33 1358.66 1.31 0.10 1.20

11 1357.00 1.25 1358.66 1.31 −0.12 −5.12

12 1359.01 1.28 1358.66 1.31 0.03 −2.66

13 3422.00 1.29 3425.00 1.23 −0.09 4.81

14 3425.00 1.33 3425.00 1.23 0.00 7.68

15 3428.00 1.30 3425.00 1.23 0.09 5.55

16 3005.29 1.33 3006.41 1.25 −0.04 5.93

17 3007.53 1.33 3006.41 1.25 0.04 5.93

18 3005.71 1.33 3006.41 1.25 −0.02 5.93

19 3359.83 1.29 3359.06 1.23 0.02 4.53

20 3358.29 1.33 3359.06 1.23 −0.02 7.40

21 3359.83 1.29 3359.06 1.23 0.02 4.53

22 2251.01 1.10 2252.01 1.29 −0.04 −17.38

23 2254.01 1.09 2252.01 1.29 0.09 −18.45

24 2251.01 1.10 2252.01 1.29 −0.04 −17.38

25 3467.00 1.33 3467.16 1.23 0.00 7.86

26 3469.50 1.33 3467.16 1.23 0.07 7.86

27 3465.00 1.28 3467.16 1.23 −0.06 4.26

Cumulative error −0.06 −6.31
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parameters, regression techniques would yield poor results. Therefore, analyti-
cal models for material removal rate and surface roughness were developed using 
an ANN. Cumulative errors for each parameter were as low as 0.06% for material 
removal rate and 6.31% for surface roughness as the ANN model was able to predict 
with an accuracy of 99.91% on the training dataset and 99.89% on the test dataset. 
This signifies a well-fitted and generalized model.

FIGURE 3.4  Regression plots — model fitting visualization on training, test, validation, 
and overall data segments. High accuracy and good fit are observed.
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FIGURE 3.5  Validation performance of the ANN, as illustrated by MATLAB, emphasizing 
the point of lowest MSE

FIGURE 3.6  Gradient descent — MATLAB illustration of model convergence and decreas-
ing gradient as training progresses
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4.1  �INTRODUCTION

In the manufacturing arena, the joining of components is the pillar of the whole 
world’s necessity. The welded assembly impacts weld quality which rests on the joint 
limits [1]. In joining, weld bead geometry defines bead penetration, height, and width.  
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Generally, weld bead geometry quantifies by diverse measurement devices and sys-
tems [2]. The correct dimension of weld bead geometries indirectly forecasts the 
mechanical properties of the joined assembly. The weld bead geometry examination 
by radiographic testing plays important role in today’s joining industries. Mostly, 
weld bead geometry revealed ample information associated with penetration depth 
and is considered as a major parameter for weld quality joint [3]. Today, everywhere 
for measuring this kind of task, various tools are readily available that are specifically 
operated by human intervention and their accuracy, precision based on the visual 
capability of the operator [4]. Then for final judgment of weld quality totally rely on 
the operator’s skill set and many times found diversify the results through operator  
many times while estimating the results. In the era of digitization, already Industry 
4.0 is initiating its footprint in every sector of industry [1]. In automotive components 
manufacturing, still, many processes are operator dependent and many times found 
problematic for final quality check analysis. One of the most demanding techniques 
in this area is the welding of components while maintaining their sound quality joint. 
In spite of reliable welding machines and equipment, still, weld components are not 
achieving the demanded weld quality joints [5]. To overcome the dependency on 
the operator in the proposed work, the author developed two smart techniques for 
defining the sound weld quality joint named Microscopic image analysis and Real-
Time temperature dispersal measurement. The microscopic image analysis validates 
the promising results in comparison with manual techniques of defining weld bead 
geometry, whereas the Real-Time temperature dispersal measurement technique 
provides the online temperature during the welding at various locations of speci-
men for identifying the heating and cooling relations for sound weld quality joints. 
Finally, both the techniques found promising results during experimentation of vari-
ous materials through welding and are really beneficial for better implementation of 
Industry 4.0. The author delivered the work mainly in two parts. The first part is the 
investigation of weld bead geometry by manual experimentation and microscopic 
image analysis techniques. And the second part is the Real-Time temperature disper-
sal measurement during welding using data logger unit at various locations.

4.2 � ALLIED INVESTIGATION

Several authors contributed works on online weld superiority measurement by micro-
scopic image analysis techniques and temperature measurement. Bestard et al. [1] 
reviewed the arc welding to gather various detection methods for approximation of 
bead geometry. Singh et al. [2] measured weld bead geometry by image texture anal-
ysis techniques on the strength of its pixels. An image examination technique was 
used to effectively quantify five diverse regions on imprinted cross-sections of weld-
ing.. Bestard et al. [3] developed an image processing technique to estimate weld bead 
depth on its complete length and obtained facts assuring to active model size. The 
sensory fusion methods proposed for approximation of bead weld depth and width by 
novel data processing technique. Tomas et al. [6] proposed an exclusive photographic 
camera correction method through the jet of computer arithmetic regulate mecha-
nism planned for imaging technique composed allowing photographic camera loca-
tion relation to examining exterior and its orientation. They found fault of calibration 
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amount lesser than 1 pixel. Ghanty et al. [7] showed bead weld geometry by Artificial 
Neural Network (ANN) and studied the composite and individual models and found 
that the individual model is better for estimating the weld bead geometry. Patil et al. [8]  
presented temperature as the subtle pointer depth of penetration and quantified pen-
etration depth satisfactorily by image texture analysis technique. Soares et al. [5] 
proposed bead weld geometric analysis system using the hidden markov model to 
detect weld bead edges and estimate various evaluation phases to detect geomet-
ric failures. Moradpour et al. [9] implemented a machine vision system to measure 
weld bead geometry for steel plates. Using image analysis techniques acquired bet-
ter measurements as compared to the manual one. Chandrasekhar et al. [10] found 
the smart model compounding processing of the image by Adaptive network-based 
fuzzy inference system (ANFIS) to forecast bead width and penetration depth more 
precisely after Infrared (IR) thermal picture of weld pool arena. Finally, the ANFIS 
performance with lesser computation time was found better as compared to the 
ANN. Chokkalingham et al. [11] predicated penetration depth and bead weld from 
IR thermal pictures of pool weld by modelling of the ANN for online observing 
and regulating bead weld geometry. Wei et al. [12] developed a phase improvement 
technique based Real-Time ratio and assigned it to quantify the weld depth of the 
pool surface. At last, validation was performed based on simulation. Wang et al. [13]  
developed penetration weld specialist care methods by weld sound for features 
extraction and selections. The wavelet packet transforms methods were used to iden-
tify welding sound signals, and, finally, the ANN classified the various penetration 
states along with appreciable accuracy. Ghanty et al. [14] developed a fuzzy approach 
for the forecast of bead weld geometry. The fuzzy systems were found better than 
the ANN. Liu & He et al. [15,16] estimated penetration depth under different weld 
pools with the identification of the ANFIS model to relate the behind bead width and 
refer to an online forecast of the behind bead width in actual time. Jin & Sumesh 
et al. [17, 18] attempted comparison of arc sound by weld superiority and measured 
the absence of fusion and burn over defects. The raw information points taken from 
arc sound were transformed into amplitude signals and classified into three modules 
such as decent weld, weld by the absence of fusion, and burn over. Pathak & Shah 
et al. [19,20] proposed that texture examination maintained GLCMs  and estimated 
gap among pixels along with angle excessive position on final results. Patil et al. [21] 
presented techniques of local binary pattern to finalise pixel and adding by GLCM to 
explore statistical texture features. Patil et al. [22,23] used ANN and Support Vector 
Machine (SVM) classifiers to detect weld imperfections. Wang et al. [24] proposed 
gradient discovery filter, the variance method and GLCM allocated to eliminate the 
irregular background. The spline fitting improvement technique eliminates fuzzi-
ness. Furthermore, slope difference distribution-based threshold selection scheme 
selected and assigned to part laser lines from background. Patil et al. [8] assessed the 
relationship between penetration depth and temperature distribution in laser welding 
and found promising results. Lankapalli et al. [25] developed prototypical connect-
ing temperature circulation in the workpiece to the depth of penetration, weld speed, 
and width and measured temperature found varies sensitive indicator of penetration 
depth. Shannon et al. [26] investigated the keyhole steadiness by a rapid camera to 
regulate the weld joint quality. Hardt et al. [27] investigated the ultrasonic pulse 
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resonance examination to regulate weld pool proportions. John et al. [28] investi-
gated the acoustic discharge monitoring through laser welding and discovered for 
potential claims in Real-Time monitoring process. Miyamoto et al. [29] investigated 
light emission from plume observed by photosensors to regulate the laser weld joint 
quality. Watanabe et al. [30] examined the performance of the laser-made plasma by 
nursing the spectrum emission, acoustic release, and plasma producing potential to 
advance connections between signals and weld joint features.

4.3 � EXPERIMENTAL INVESTIGATION OF WELD BEAD GEOMETRY

Gas Tungsten Arc Welding (GTAW) was carried out on 304L stainless steel sheet of 
300 mm × 150 mm × 1.5 mm. The chemical and mechanical properties are shown in 
Table 4.1. Moreover, argon gas is used as a shielding medium to avoid atmospheric 
contamination. According to the investigation, voltage, current, and gas flow rate are 
independent input variables and major impacting variables on weld bead geometry 
as shown in Table 4.2, whereas the depth of penetration is found to be a dependent 
output variable. The 304L stainless steel sheet was cut into rectangular shape by 
Electrical Discharge Machining (EDM) of size 300 mm × 150 mm with thickness of 
1.5 mm. Lastly, GTAW beads made by welding using different combinations of volt-
age 5–7 V, current 30–40 A, and glass flow rate of 4.5–5.5 liters/minute as shown in 
Table 4.3. This Design of Experiment (DOE) was designated by welding variables of 
voltage, current, and gas flow rate with three levels each and determined penetration 
depth and width by L9 orthogonal array as shown in Table 4.4. The response function 
of the weld joint, stated as Y, is the function of voltage, current, and Gas Flow Rate 
(GFR), i.e., Y = f (V, I, GFR). The second-order polynomial equation represents the 
response surface for factors by
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The second order response model is stated as follows:
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TABLE 4.1
304L Stainless Steel Chemical and Mechanical Properties

C Si Mn P S Cr N Ni

0.03 0.75 2.00 0.045 0.03 19.00 0.10 8

Proof stress (0.2%): 170 Mpa Tensile strength: 
485 Mpa

Elongation: 
A5 (%) – 40

Hardness:  
HB 201 HRB 92
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where b0 is the constant of regression equation whereas constants such as , ,1 2 3b b b ,  
, ,11 22 33b b b , and , ,12 13 23b b b  are linear, quadratic, and interactive terms used. 

Subsequently, we calculate the coefficients and mathematical models assigned to 
advance and specified in (4.3) and (4.4). All facts are assigned to produce regression 
calculations to estimate the Depth of Penentration (DOP) and Bead Width (BW) 
through equation (4.3) and (4.4).

 
= − + + + +

+ − + −

937.6064 421.469* 44.1408* 0* 25.3234* 0.2441*
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2
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The weld trials were polished continuously at that time lapping and achieved by disc 
polishing. Finally, etchings through aqua regia 3:1 HNO3:HCL aimed at 30 seconds 
to 1 minute were done; and by an image analyzer, DOP and BW were calculated. We 
selected nine trials to weld by various process parameters and found their acceptable  
weld bead and penetration depth, as shown in Table 4.5.

TABLE 4.2
Process Ranges of 304L Stainless Steel

Sheet Thickness (mm) Voltage (V) Current (A) Gas Flow Rate (lit/min)

1.5 5–7 30–40 4.5–5.5

TABLE 4.3
Process Variable Quantity and Levels

Variables Sheet Thickness Voltage Current Gas Flow Rate

1 1.5 5 30 4.5

2 1.5 6 35 5

3 1.5 7 40 5.5

TABLE 4.4
Design Matrix Along with Variables Quantity

Sample 1 2 3 4 5 6 7 8 9

V 5 5 5 6 6 6 7 7 7

C 30 35 40 30 35 40 30 35 40

GFR 4.5 5 5.5 5 5.5 4.5 5.5 4.5 5

ST 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
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4.4 � WELD BEAD GEOMETRY PROCESSING AND 
TEXTURE FEATURES EXTRACTION

The proposed technique validates the approach of feature extraction to identify 
features of DOP and BW of weld sheet that represent the best images. Gray-level 
co-occurrence matrix (GLCM) widespread textures feature extraction system to regu-
late the texture association among pixels by acting process giving to second-order sta-
tistics in image. It possesses an image specified as matrix by the quantity of rows and 
columns as per grey standards image. The elements of matrix hinge on the frequency 
of two stated pixels. Together pixel sets can differ dependent on their zone. These 
matrix elements comprise second-order statistical values liable on grey value of rows 
and columns. If intensity values are extensive, transient matrix moderately huge and 
generates long method load. Through GLCM feature matrix efficiently signify with 
minimum parameters using properties. GLCMs are built with frequencies along with 
the number of pixels with fixed place and grey-level bonding. It classifies circulation 
of grey level proof near images to build them explicitly by path, different quantities 
and local surroundings. The weld picture I is [M] × [N] and its grey level [L], at that 
moment GLCM as span in dual pixels, θ accepted angle and extent of matrix [P] is 
[L] × [L] and [I] [x, y] is grey level of imaging (x, y), d is span between dual pixel. This 
training, choose four variables such as homogeneity, correlation, energy and contrast. 

TABLE 4.5
Metallographic Inspection of Weld Specimen
Weld Specimen 1 Weld Specimen 2 

DoP: 2.446 mm U.T.S: 562.48 N/mm2 DoP: 2.044 mm U.T.S: 506.19 N/mm2

Weld Specimen 3 Weld Specimen 4 

DoP: 2.708 mm U.T.S: 620.713 N/mm2 DoP: 2.335 mm U.T.S: 583.826 N/mm2

Weld Specimen 5 Weld Specimen 6 

DoP: 1.66 mm U.T.S: 469.197 N/mm2 DoP: 2.379 mm U.T.S: 589.2 N/mm2
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To get other data to approximate imperfections type, d = 1 and θ = {0°, 45°, 90°, 135°} 
selected to roughly calculate GLCMs of images, which standard to complete as shown 
in Figure 4.1. In the experiment, 12 grey-level images of 285 × 296 pixels were used. 
Primarily for digitization, recognized characteristics of images principle such as 
minor contrast among background and weld regions are used. Using preprocessing, 
eliminated noise enclosing in film and improved visibility through filters. In prepro-
cessing, selected area near the seam of images as ROI for further processing. Next, 
the ROI assigns contrast modifications to improve the intensity difference of assigned 
input and to highlight weld regions. This enables weld identifications to appropriate 
location and representation. At last, segmentation governs weld image superiority and 
calculated values of penetration depth and bead weld are shown in Table 4.6.
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Where σ σ  ;   ;  ;   are as follows  u ux y x y

	 ∑∑ ∑ ∑( ) ( )
= = = =

    ,  ;        ,
1 1 1 1

u i p i j u j p i jX

i

L

j

L

y

j

L

i

L

	 (4.10)

FIGURE 4.1  Pixel pair for grey level co-occurrence matrix.
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TABLE 4.6
Weld Bead Geometry Processing & Texture Feature Extraction by GLCM

Weld Image Filter 1 Filter 2

Weld Bead Geometry 
Measurement 

Segmented 
Image

Remove 
holes

Weld Image

Weld Image

Filter 1 Filter 2

Filter 1 Filter 2

Remove holes

Remove holes

Segmented Image

Segmented Image

Weld Bead Geometry 

Weld Bead Geometry 

1

2

3

(Continued)
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TABLE 4.6 (Continued)
Weld Bead Geometry Processing & Texture Feature Extraction by GLCM

Weld Image

Weld Image

Weld Image

Filter 1 Filter 2

Filter 1 Filter 2

Filter 1 Filter 2

Remove holes

Remove holes

Remove holes

Segmented Image

Segmented Image

Segmented Image

Weld Bead Geometry 

Weld Bead Geometry 

Weld Bead Geometry 

4

5

6
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4.5 � REAL-TIME TEMPERATURE DATA MEASUREMENT LOGGER

A temperature data measurement logger found consistent and precise facts gather-
ing device under critical environmental conditions as shown in Figure 4.2. The author 
developed handheld device that initially requires input as temperature measure by ther-
mocouple interface with temperature data logger. Once the process is initiated, access 
the real-time data and downloaded it directly to any device. Major list of components 
involved such as Microprocessor 89S52, Multiplexer 4051, RS232, ADC 320, LCD.  
The real-time temperature data measurement logger circuitry is shown in Figure 4.15.

4.5.1 � Microprocessor (89S52)

The AT89S52 is an effective control and reliable CMOS-based eight-bit microcon-
troller using eight K bytes of computer program flash-based memory. The features 
of AT89S52 such as flash of eight K bytes, RAM of 256 bytes, thirty-two I/O lines, 
watchdog clock, dual information indicators, trio sixteen-bit timer/counters, inter-
rupt architecture of 6 vector 2 level, a serial port of complete duplex, oscillator on 
chip and circuitry clock as shown in Figure 4.3.

ThermocoupleLCD

Transformer

MultiplexerMicrocontroller ADC

FIGURE 4.2  Real-time temperature data measurement logger.



59Smart Techniques for Quality Weld Joints

4.5.2 �O perational Amplifier

The author used two amplifier stages consisting of two operational amplifiers (op-
amp) LM 358. In the first op-amp input is given to three pins of op-amp (non-invert-
ing input). Two resistors of 10 k pot and 4.7 kohm form a voltage partition circuit. 
This circuit is used to increase the input impedance (resistance) of the overall circuit 
as shown in Figures 4.4 and 4.5. More input impedance is better for process and helps 
to reduce noise in the input signal. The next section consists of the two diodes (4148). 
These diodes are linked to protect the input of op-amp over voltage, once input volt-
age of first op-amp increases, the one of diodes goes in forward bias and conducts 

extra current to ground. The first op amp has a gain of +1
1

r

r
f  where, rf  =100 k, 1r  = 2 

therefore, + =2
100 k

2 k
50 is improvement of initial op-amp. Likewise, gain of the 

FIGURE 4.3  Microcontroller 89S52 circuitary.

FIGURE 4.4  Operational amplifier.
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second op-amp is apply as unity gain. It is basically used to reduce the output imped-
ance of circuit and also this op amp will invert the incoming signal and output of the 
second op-amp is then given to ADC 3202.

4.5.3 �T hermocouple Input and Output

There are two inputs to a thermocouple that are to be associated with the input of 
signal conditioning circuit as shown in Figure 4.6. For this reason, we have chosen 
two multiplexers 4051. The first multiplexer is to select the first input of the first 
thermocouple and the second multiplexer is used to select the second input of the 
first thermocouple. In the same way, we are joining the first input of the first to 

FIGURE 4.6  Thermocouple input 1 and 2 circuitry.

FIGURE 4.5  Operational amplifier with ADC3202 circuitary.
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eight thermocouples to the second multiplexer 4051. In this way, we can sample all 
the eight thermocouples via multiplexers. As explained earlier we are using the two 
multiplexers to choose from first to eight inputs of thermocouple. To do this, we are 
shorting the channel select lines of both the Multiplexer together and connecting 
them to the input/output pins of the microcontroller (Pin No. 2.5, 2.6, and 2.7) as 
shown in Figure 4.7. By choosing the binary combination we can choose the cor-
responding Channel Number 000 for the selection of thermocouple one, 001 for the 
selection of thermocouple two, up to selection of eight thermocouples. Finally, the 
output of two multiplexers is given to the input of signal conditioning circuit which is 
used to amplify the temperature signal. This amplified signal is further given to the 
12-bit analog to digital converter 3202 as shown in Figure 4.8.

4.5.4 �A nalog to Digital Converter Circuit (3202)

We have used 12 bits analog to digital converter works on SPI bus in our unit for bet-
ter resolution as shown in Figure 4.9. Chip select is linked to the I/O pin of microcon-
troller to select the ADC converter and the DIN pin as start of conversion. The clock 
is used to convert the analog data to digital and the DOUT pin is given to the input/
output pin of microcontroller. Finally, the digital data is available on the DOUT pin.

FIGURE 4.7  Channel selection circuitry.
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4.5.5 �LCD  Section

Primary Vcc and GND are one and two number of LCD pins used to energy 
the LCD with three milliampere current feeding. Furthermore, Vcc and GND 
is fifteen and sixteen number of LCD pins are used to energy rear light of LCD 

FIGURE 4.9  Circuit diagram of ADC 3202.

FIGURE 4.8  Thermocouple output circuitry.
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with hundred milliampere current as shown in Figure 4.10. Finally, total current 
consumption found 103 milliampere. To lessen current condition by linking a 
5-ohm resistance in sequence through rear light VCC pin. This resistance current 
consumption is a division of 100 ma/10 ohm = 10 ma. As a result, the new current 
feeding is the sum of ten milliampere and three milliampere beyond thirteen mil-
liampere as shown in Figure 4.10. The LCD has eight data and three control lines. 
Eight information lines of LCD pin number seven to fourteen linked to zero port of 
microcontroller 89S52 (P0.0 − P0.7). The control lines are as shown in Figure 4.11.  
These three lines are linked to two ports of 89S52 microcontroller (P2.5, P2.6, 
P2.7, respectively). The LCD RS is used for picking information or cipher list and 
LCDR/W is used to mark on LCD. LCDE is used for allowing or restricting the 
LCD as shown in Figure 4.11.

4.5.6 �R S 232 Interface with 89S52

RS 232 is an initiator IC to change microcontroller TTL judgement. It has two pairs 
of TTL and RS232 judgement. The first and second pair pin number is 7–10 and 
11–14 of RS 232 as shown in Figure 4.12. The system is capable to run on any of pair 
and also by using two serial ports used both the pairs simultaneously. By connecting 
four capacitors to RS232 get conversion of TTL judgement.

FIGURE 4.10  LCD circuitry.
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4.5.7 �T win Voltage Converter

The MAX 220–249 has dual inner care pumps changes +5 to ±10 volt for RS-232 
operation as shown in Figure 4.13. The initial and second convertor practices electri-
cal condenser C1 from positive five volts to positive ten-volt input on C3 at volt posi-
tive output and capacitor C2 to invert positive ten volts to negative ten volts on C4 at 
volt negative output. We used RS232 through connect two pairs of sequential devices, 
one device that works on serial. RS-232 chip is used to interface microcontroller to pc.

FIGURE 4.12  Circuit diagram of RS 232 interface with 89S52.

FIGURE 4.11  LCD connector circuitry.
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4.5.8 � Bridge Rectifier

The capacitor and bridge rectifier input filter developed free DC voltage used as input 
of IC 7805. As least terminate voltage is two volts for IC 7805, the voltage at initial 
fatal must as a minimum of seven volts. C1 is filter electrical condenser and C2 and 
C3 linked crosswise the controller to progress the temporary reply of regulator as 
shown in Figure 4.14. Assuming that two volts terminate voltage and the least DV 
voltage crosswise capacitor C1 must be up to seven volts (Figure 4.15).

4.6 � REAL-TIME TEMPERATURE DISTRIBUTION MEASUREMENT

Welding process contains heat movement over joining to reach the needed joint. 
Reliant upon heating and cooling series, divergent classes of microstructure initi-
ate in weld bead structure and heat pretentious area, and this summits to changing 

FIGURE 4.13  Circuit diagram dual charge-pump voltage converter.
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FIGURE 4.14  Circuit diagram of bridge rectifier and I/P filter.
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mechanical assets of varied weldment regions. In addition to the result of heat move-
ment in joining, there are added spectacle elaborate such as residual stresses, distor-
tion, chemical and physical variations to achieve a weldment of needed requirement 
to accomplish adequately in providing to hold the outcomes of heat over joining. This 
may be reached by stating the temperature movement over joining; hence, to work 
out the cooling pace in several commands with comparative to joint axis, the author 
introduced real-time temperatures circulation measurement logger unit. Mostly, it is 
a consistent and true information gathering device in any eco-friendly surroundings 
as shown in Figure 4.16. Eight K contact type of thermocouple used to quantify the 
operational temperature of workpiece bottom at diverse places over cyphering by 
visual basic. Schematic diagram of sensor position as shown in Figure 4.17. The core 
criteria concerning about mountings are to concealment entire area, i.e., span and 
height of sample for real-time measurement bottommost temperature. Once the pro-
cess started with set input process parameters by clicking the start button in the given 
system as shown in Figure 4.18. The online measurement of temperature captured 
by thermocouple and till continue until welding process is not initiated to stop other-
wise immediately sensors stop sensing the temperature and presented temperatures of 
appropriate location as shown in Table 4.7.

FIGURE 4.15  Real-time temperature data measurement logger circuitry.
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4.7 � RESULT AND DISCUSSION

In modern engineering, weld joint quality still cannot be definite due to the absence of 
efficient and operational welding imperfections monitoring techniques. To overcome this 
problem, online weld joint examination by radiographic testing is significantly needed 
for welding industries. The weld joint quality mainly on penetration depth and defect 
will majorly influence weld penetration depth. Though estimating the penetration depth, 
the identification of defect is majorly demanded in industry. This work proposed con-
ventional along with the proposed novel technique of image analysis for measurement 

FIGURE 4.16  K type thermocouple mounted on plate at different location.
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FIGURE 4.17  Sensor position for measurement of temperature distributions.
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of penetration depth and successfully explored the results of weld bead geometry. The 
nine-weld sample of a thick plate of 1.5 mm done experimentally by GTAW. The sev-
eral penetration depths at each weld sample by different method parameters mainly 
as current, voltage and shielding gas found most influencing penetration depth during 
actual experimentation. Moreover, during experimentation of second specimen, when 
the current rises up to 35 amperes as compared to 30 amperes of the first specimen 
with constant voltage and increase gas flow rate, immediately found increase level of 
penetration depth in weld joint. Furthermore, for specimen three along with constant 

FIGURE 4.18  GUI of real-time temperature dispersal measurement.

TABLE 4.7
Distributed Online Temperature Values

Temp. (°C) Temp1 Temp2 Temp3 Temp4 Temp5 Temp6 Temp7 Temp8

Time (seconds) Sensor1 Sensor2 Sensor3 Sensor4 Sensor5 Sensor6 Sensor7 Sensor8

1 200.6 191.76 121.38 102.68 87.66 85.66 82.34 78.67

5 253.64 191.42 173.74 120.34 145.28 102.34 97.92 63.92

9 243.44 212.16 186.32 140.3 117.6 93.16 87.72 57.8

13 226.1 224.74 184.28 135.26 113.22 82.96 74.12 62.22

17 244.8 198.88 185.3 108.12 98.45 89.42 77.52 60.18

21 267.58 230.91 223.04 184.28 118.66 106.76 94.92 73.92

22 231.54 225.42 216.24 194.82 165.34 128.18 118.32 62.22
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voltage and increase current and gas flow rate the penetration depth found lesser than 
weld specimen two and first. Whereas, the increased voltage with increase current and 
gas flow rate observed moderate penetration depth in specimen four, five and six as 
compared to earlier. Finally, the observation made due to low voltage level along with 
the increased combination of current and flow rate of gas for welding of 1.5 mm thick-
ness sheet is not melt properly or excessive melt. For the next trial with increased voltage 
level as compared to earlier along with variable current and gas flow rate the scattered 
depth of penetration in specimen seven, eight and nine found. Finally, this technique 
revealed some observations such as when voltage and current rises with increase sheet 
thickness, the penetration depth and bead length rise too. Furthermore, the shielding 
gas as an argon plays a significant role in influencing penetration depth and bead length. 
Moreover, the lesser welding speed generates more penetration depth and bead length. 
Finally, the penetration depth to length ratio rises when voltage and current in lesser 
level. Subsequently, the weld bead geometry measurement by conventional techniques 
was validated by extracting texture features of weld bead geometry using GLCM and 
observed more promising results as compared to the actual experimentation technique. 
The proposed texture features, such as homogeneity, energy, correlation and contrast 
releveled promising results of penetration depth. The offered image analysis techniques 
selected for features extraction and segmentation found precise for measurement of pen-
etration depth and bead length. At last, both techniques found with closer tolerance 
as shown in Figure 4.19. The outcomes validate features extraction by grey level co-
occurrence matrix discovered significantly better than other traditional methods and 
also fixes critical position evidence promisingly. Several authors projected mathemat-
ical models to understand temperature contours in the 304L SS sheet and observed 
temperature circulation is multipart pointer for weld pool profiles. The determined and 
through an experiment weld pool error percentage of profiles found 16%–18%, whereas 
the projected temperature distribution measurement discovered temperature is a delicate 
pointer of depth of penetration and found error percentage measured up to 2%–4%. 
The projected work discovered temperature shape falls suddenly neighbouring weld line 
and accordingly decreases to some extent within the zone isolated from weld portion. 

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9

 noitarteneP fo htpe
D

Welded Specimen 

FIGURE 4.19  Measurement of penetration depth through experimentation and GLCM 
technique.
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The thermal conductivity of solid materials upsurges the cooling amount with increased 
sheet size and increased welding velocity upsurges the cooling proportion too. Finally, 
the cooling proportion of material dropping with significance to distance from centre 
weld portion as temperature dispersed is dropping since the grain growth amount stur-
dily rests on temperature dispersed.

4.8 � CONCLUSION

We have found the following observations:

•	 Grey level co-occurrence matric revealed promising textures feature of 
weld bead geometry and was found closer to the experimental results.

•	 Experimental results confirmed the proposed grey level co-occurrence 
matrix technique by extracting weld seam shape and also determine critical 
location information.

•	 Measurement of penetration depth through experimentation and grey level 
co-occurrence matrix in image processing technique found satisfactorily.

•	 Experimental results of online temperature measurement found a steady 
indicator of depth of penetration and that the association is sensitive to 
assign sensor places.
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5.1 � INTRODUCTION

In the mid-90s, the decision by Intel to include six transistors static random access 
memory cell (STSRAMC) in its manufacturers caused damage to worldwide inde-
pendent STSRAMC suppliers. The largest STSRAMC (PC Cache) demand disap-
peared overnight, leaving only a few niche applications. Higher pricing and density 
constraints greatly limited the STSRAMC value proposal as a high-efficiency mem-
ory (lower access time, reduced standby power consumption). Since STSRAMC is 
equipped with four to six cell transistors, Dynamic Random-Access Memory Cells 
(DRAMCs) and the Flash memories cannot match (both have one transistor per cell); 
smaller transistors are equipped to reduce board density and lower costs per cell [1].  
STSRAMC is thus an inefficient option for conventional storage applications – which 
represent 98% of the industry. After Intel began incorporating STSRAMCs, most 
STSRAMC vendors either shut down or diversified their product portfolios beyond 
STSRAMCs. STSRAMC uses high performance, often in manufacturing, auto-
mobile and defence areas, shifts to particular applications [2]. Apart from being 
more economical, it was also a superior approach from a technical point of view – 
embedded STSRAMCs have more excellent access time than external STSRAMCs 
because access is the main element for cache memories (Figures 5.1 and 5.2). 

As processors get more robust, they need to boost cache memory accordingly. 
However, increasing embedded cache memory for each new process node simulta-
neously becomes a rising challenge. This means that the number of transistors per 
centimeter square is vast for smaller process nodes [5].

5.1.1 � The Return of STSRAMs to Mainstream Embedded Design

The irony of the return to STSRAMCs is that it’s being driven by a reversal of the 
clear trend that aimed to replace it. When Intel opted to incorporate STSRAMC, this 
was a prudent route to follow. Incorporated STSRAMCs have better access time than 
external STSRAMCs as access time is the essential component in the cache memory 
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5.11	� Abbreviations...................................................................................................98
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FIGURE 5.1  Technologies associated with IoT. (Reproduced from Li et al. [3] under the 
terms of the Creative Attribution Commons License 4.0 (CC-By 4.0). https://creativecom-
mons.org/licenses/by/4.0/.)
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but is also technologically more cost-effective [6]. As central processing units (CPUs) 
get more robust, they need to enhance cache memory accordingly. That indicates that 
the number of transistors per centimetre square is huge with fewer process nodes [7].

The STSRAMC region is more vulnerable to defects due to process variations 
because of the decrease in bit cells and higher transistor density. These defects reduce 
the processor chip’s total performance [8].

5.1.2 � Consumption of Power Increases

STSRAMC transistors will be sized smaller than the logical transistors if the 
STSRAMC bit cells are the exact sizes as the bit logic cells. The scale of the transis-
tors increases the leakage current, and hence the standby electricity demand rises. 
This problem can be addressed in two ways. One will have separate process technol-
ogy nodes in a chip processor or device for STSRAMC and logic areas. This will 
lead to a case where the STSRAMC is an essential part of a processor. The reason 
the processor chip should be shrunk will be defeated in such a situation. Another way 
will be the processor or controller to isolate the STSRAMC. Any technical advances 
are now accelerating this option [9].

5.1.3 � Wearable Electronics STSRAMCs

Today’s world contains a broad spectrum of microcontroller units (MCUs). A big 
surge in portable computing is the technology we are seeing now. Size and strength 

FIGURE 5.2  Design consideration for industrial IoT applications. (Reproduced from 
Gehrmann et al. [4], with permission from Springer Nature. Copyright (2021).)
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are essential considerations for wearables such as smartwatches and fitness bands. 
Due to the restricted board size, the MCU must be very compact and work on the 
smooth power supplied by portable batteries. The on-chip cache is constrained to 
meet the above specifications. In this case, the on-chip store is short, and an external 
supply is required [10]. STSRAMCs will be the most suitable choice for acting as an 
external cache for all memory options available. This comes out of comparison with 
DRAMC and lowers access time as DRAMC and Flash because of their lower sta-
tionary power usage. STSRAMCs would need to adapt to fit into the small wearable 
boards. Current STSRAMC parallel problems include:

•	 too many pins necessary for MCU communications
•	 too big for printed circuit board (PCB) fitting.

5.1.4 � STSRAMCs and Internet of Things

For recent decades, the STSRAMC space has been split into two distinct commodity 
families – swift and low power, each with its own set of characteristics, applications, 
and costs. The systems used by STSRAMCs need to be high-speed or medium, but 
not both. However, demand for high-performance devices with low electricity usage 
for complex operations when using portable electricity is growing. A new wave of 
medical equipment, manual instruments, consumer electronics products, network-
ing systems, and industrial controls drives this market across IoT [11]. IoT devel-
opment is conducted in two different ways – intelligent wearables and automation. 
STSRAMCs with a minimal footprint and low power consumption would be better 
serviced for wearables as described earlier. In parallel, the effect on industrial, eco-
nomic, big-scale, and the automation of individual homes into large manufacturers, 
and whole cities can be felt across the Internet of Things. In IoT implementations, 
STSRAMCs can maintain high-speed power while reducing energy consumption 
in a bit of packet. Microcontrollers from many important players, through specific 
modes like Deep Power-Down and Deep-Sleep, have already adapted to the evolving 
needs of these transversal systems. The peripherals and memory modules can also 
save power during these modes [12].

With the expansion of the VLSI industry, there is an increasing need for mobile 
devices and battery-operated embedded systems. Approximately 60%–70% of 
a chip’s area is taken up by cache memory, which is critical for data execution. 
Microprocessor speed decreases as chip usage rises [13]. Because one million tran-
sistors increase and degrade the efficiency of a single chip failure rate, the industry 
is attempting to develop a fast and efficient memory circuit to help with VLSI system 
development. In this article, the focus is on the sensory amplifier. Cache memories 
currently use more than half of the transistors in high-performance microprocessors, 
and this proportion is expected to rise in the future [14].

Consequently, the development of low-power, high-performance computers was 
given significant focus. The device can use STSRAMC memory cells that are the 
correct size for the system’s requirements because they are integrated within the 
STSRAMC. Efficiency gains occur when speed and power are increased. SA is a 
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critical component that responds to high frequency in all STSRAMC memory blocks. 
The setting of SA [15] determines the access time and power consumption of the mem-
ory. As an energy-operated circuit, SA speeds up a signal transmission from a mem-
ory cell’s perimeter logic circuit and converts any number of Boolean logic levels to 
digital logic levels [16]. Their output greatly influences memory access time and over-
all memory capacity degradation. Using complementary metal-oxide-semiconductor 
(CMOS) memories, as with other integrated circuits (ICs), may improve speed, power, 
and heat dissipation. These objectives are opposed in terms of SA memory architec-
ture [17]. As memory capacity increases, the bit-line parasite space also expands in 
most cases. Increasingly power-hungry memory has led to a rise in this bit line [18]. 
Agricultural, medical industrial, and internet-of-things uses of semiconductors have 
increased in the rising trend of a VLSI industry. Power consumption also rises as the 
IC’s functional properties improve with time [19]. Today’s modern technology neces-
sitates the use of products with minimal power dissipation. As a result of the mini-
mal number of plugs surrounding portable handles, they require a powerful battery 
backup system that consumes less energy when inactive [20].

Simple SA’s are cross-coupled CMOS inverter types. Both the input and the out-
put lines are active at the same time. Delay and power both dissipate a lot of energy. 
Because portable handle devices have fewer power plugs in the vicinity, they require 
a large battery backup that uses less energy when not in use; the memory cell and all 
of the STSRAMC blocks are essential in this work, even if STSRAMC SA does not 
attract widespread attention in modern technology [21]. STSRAMC and DRAMC 
material are read using sense amplifiers principally. According to their theory, an 
appropriate noise spectrum and high-quality information are what they mean by a 
memory cell’s substance. They have a high noise threshold. Many circuits require 
immediate sense amplifiers to achieve low latency, with memory bit-line reading 
being the most prevalent use [22,23].

5.2 � LITERATURE SURVEY

Zhao et al. developed carbon nanotube field transistors in a ternary STSRAMC sen-
sory amplifier in a novel proposal. The CNFET chirality controls the threshold volt-
age to grasp ternary logic. Simulation on HSPICE at 0.9V compares the results with 
a conventional ternary DRAMC and ternary STSRAMC [24].

Pahuja et al. described three distinct power reduction schemes in the STSRAMC 
and Charge-Recycling, Power Gating, and low-energy architecture incorporated in 
this article. This documentation contains 45 nm technology, showing that the average 
power decreased by one-tenth in amplifier design and decreased reading and write 
cycle latency of 64-bit SRAMC Array Architecture [25].

Kyung et al. described system-on-chip (SOC) models that have been noted for 
providing a set of multi-port memory IP blocks supporting multiple simultane-
ous operations in the same memory bank to increase performance. Conventional 
2-read/write 8T dual-port STSRAMC (2RW) has read and type troubles when both 
words are simultaneously activated in a single row. 1-read, 1-write 8T dual-port cells 
(1R1W) mitigate reading disruption by preventing load shared with internal storage 
nodes when the read word line is activated [26].
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YoungBac et al. VLSI circuits, mainly STSRAMCs used to form the SOC cache, 
are increasingly concerned about leakage power consumption in deep-submicron 
technology. This research proposes an 8T SRAM with low leakage power based on 
Carbon Nanotube Field-Effect Transistors [27].

Stefan et al. ICs are more prone to transistor ageing with chronic downgrades in 
CMOS technology due to biassed temperature instability. We compare the BTI effect in 
three modes, including low power (LP), middle power/output (MP), and high power, 
using a variety of voltages and supply temperatures (HP). The three prototypes’ SD 
is estimated for various working loads using 45 nm technology [28].

Bingyan et al. CMOS technology improve while transistor variations and incom-
patibilities increase, leading to the larger offset voltage. Broad offset voltage, higher 
dynamic power utilization through a reading process, and degradation of the cor-
rect decision rate of sensing and running speed can all improve speed. Because of 
transistor threshold voltage inaccuracy, the offset voltage is the essential measure for 
STSRAMC sense amplifiers (SAs). The author advocated using an approach known 
as digitizing multiple body bias offset cancellation. The threshold voltage mismatch 
of SA transistors in this system is corrected digitally and continuously by altering the 
body-biased voltage [29].

Mottaqiallah et al. reported that a lot of work is published in STSRAMC on influ-
ences from BTI, but many papers concentrate only on collecting a memory cell. 
SRAMC also includes peripheral circuits such as address decoders, sense enhance-
ments, and so on. This paper discussed the cumulative impact of BTI on the sensory 
amplifier of various technology nodes and changes in voltage temperature. For a range 
of tasks, the assessment measure is tested. This paper provides a quantification of BTI’s 
better influence on all technology scaling parameters in comparison to past work [30].

ByungKy et al. described that due to increased procedure variances and a reduc-
tion in supply tension, the read yield was discovered to be deteriorating. The author 
proposes a LOC-SA (latch offset sensory amplifier) that cancels the latch offset 
function, leading to considerable voltage growth time decreases and sensing speed 
increases [31].

Hanwool et al. described the increase in efficiency and minimization of power 
consumption using the same pull-up PMOS transistor to detect and pre-load the 
bit line. The guard employs a bit-line leak compensator with a minimum operating 
voltage [32].

5.3 � MOTIVATION AND OVERVIEW

The modern Digital system requires high-speed memories to store and retrieve a 
large amount of data. The 90% region of a chip is occupied by memory by 2017 by the 
2002 ITRS (International Technology Roadmap for Semiconductor). The operating 
speed increases; the chip size also increases, so the power consumption by the circuit 
becomes very important [33]. Increasingly, the speed of the VLSI chip is constrained 
by the signal latency of long interconnection lines. When using Current Differential 
Sense Amplifier (CDSA) rather than Voltage Differential Sense Amplifier (VDSA) 
signal transport methods, significant speed and power changes are feasible [34]. The 
memory cell size can also be minimized with the current mode sensing. Since most 
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memory-related activities are read operations, the memory’s net power dissipation is 
significantly reduced. SA’s dissipates a significant amount of short circuit power, a 
considerable amount of dynamic control [35].

5.4 � PROBLEM STATEMENT

One of the critical problems when developing a VLSI device is power dissipation. 
Dynamic power was the single biggest problem up to a specific time; but, as the scale 
of the technology function shrinks, static power as emotional power has become 
an important issue. However, suppose transistors are allowed to float. In that case, 
a device may have to wait a long time to consistently recover the missing state and 
suffer severely degraded performance for a device that needs a quick response even 
though in an inactive state; maintaining a state is therefore essential. Once again, the 
sleepy keeper process has excellent pace requirements but more static and dynamic 
capacity than the sleepy stack is needed.

5.5 � THE NEED FOR LOW POWER VLSI DESIGN

Power consumption in VLSI is still a big challenge as feature size shrinks and chip 
density and operation frequency increase [36]. It causes overheating, which decreases 
the chip lifetime and degrades the efficiency of the portable systems. The need for 
optimizing power consumption in a chip is intensified because of mobile networking 
devices and computer systems. As moving towards integrating VLSI circuits, the 
demand for low power grows day by day. Many aspects influence the power usage in 
the circuits [37,38].

•	 CBL increases as the number of memory cells per bit-line increases, while 
RBL increases as the bit-line length increases.

•	 Current records are lowered when more memory is incorporated on a single 
chip for heavy capacity. This results in a lower voltage swing on the bit-line 
and a rise in CBL.

•	 Low supply voltage results in a lower margin of noise.

5.6 � CACHE MEMORY DESIGN FOR SINGLE 
BIT STSRAM SA ARCHITECTURE

On STSRAMC transistor sizing, these two specifications place contrasting require-
ments [39] (Figure 5.3). 

5.6.1 � CWD Working and Schematic

The write-enabled signal (WE) enables CWD to pull the bit-line down from the 
pre-charge stage. CWD uses five PMOS (PM1, PM2, PM3, PM4, PM5) and five NMOS (NM1, 
NM2, NM3, NM4, and NM5). If WE let the input data make one transistor PM1 or NM1, 
a strong 0 is added as BTL and BTLBAR are discharged from the pre-charge to the 
ground stage [40] (Figure 5.4).
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5.6.2 � STSRAMC Working and Schematic

For a variety of reasons, the design considerations of STSRAMC are relevant. First, 
the architecture of the STSRAMC is essential for the safe and robust functioning of 
the STSRAMC [42]. Secondly, the STSRAMC designers are inspired to increase the 
packing density thanks to their continuous effort to improve the storage capacity of 
chips. The STSRAMC, therefore, needs to be as small and as stable, quick, powerful, 
and yield constraints as possible. The word line defines modes of operation. When 
all transistors are removed, and cells are separated [43]. The word line pulls high 
(WL = high) for reading and writes functions that allow access to access transistors 
(NM8 and NM9) to be enabled (Figure 5.5).

FIGURE 5.4  CWD schematic. (Reproduced from Geethumol et al. [41] under the terms of 
the Creative Attribution Commons License 4.0 (CC-By 4.0). https://creativecommons.org/
licenses/by/4.0/.)

FIGURE 5.3  Single bit STSRAMC SA architecture functional block diagram.

https://creativecommons.org
https://creativecommons.org
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5.6.3 � Sense Amplifiers

SA is a critical component of in-memory architecture. A new circuit class has emerged 
due to the wide variety of SAs found in semiconductor memories and their impact on 
the final design requirements. STSRAMCs don’t require data to refresh circuits after 
sensing, so long as the operation is non-destructive [45]. It is of two types:

	 (i)	 Differential Sense Amplifier (DSA)
	 (ii)	 Latch Sense Amplifier (LSA)

5.6.3.1 � DSA
Metal oxide semiconductor (MOS) sense amplifier circuits incorporate all of the 
components required for differential sensing. Using an amplifier, famous noise may 
be filtered out, and the actual difference between the two indicators is magnified. 
Due to large power dispersion and an inherent high offset, the main difference ampli-
fier is not in memories because of the slow operation rate [46].

5.6.3.1.1 � VDSA Working and Schematic
A voltage differential is created using BTL and BTLBAR pairs when the word line 
is pulled high. The sense amplifier is removed high (SAEN), which causes the cross-
coupled inverter to enter into a positive feedback loop to convert its differentials to 
maximum rail output, triggered when the appropriate differential depends on tech-
nology and circuit [47]. The sense amplifier output node connecting with the bit-line 
is zero while the other output SA1 stays elevated with a lower voltage, e.g., SA2. NMOS 
(NM10 and NM11) go into saturation when the sense amplifier is activated. The VDD 

FIGURE 5.5  STSRAMC schematic. (Reproduced from Arora, et al. [44], under the terms 
of the Creative Attribution Commons License 4.0 (CC-By 4.0). https://creativecommons.org/
licenses/by/4.0/.)

https://creativecommons.org
https://creativecommons.org
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input voltage of the entire NM11 device is higher than the Vgs voltage of the NM10 
device. There is a continuous positive feedback loop until the voltage SA2 is low 
enough for device NM12 to enter the linear zone and turn on the other inverter’s PM13 
to push the output very far [48] (Figure 5.6).

5.6.3.1.2 � CDSA Working and Schematic
This can minimize bit-line power pre-charge. The current mode sense amplifier 
functions in two steps: pre-charge and evaluation [50]. The bit lines are pre-loaded 
by a pre-charge circuit which attaches to the bit lines during the pre-loading stage. 
The SA1 and SA2 sense amplifier output nodes are pre-loaded by PMOS devices PM12 
and PM13. The PM12 and PM17 devices are ON during pre-loading, equalizing the 
sensing circuit inputs and outputs. YSEL is pulled low (YSEL = low) and (SAEN = high) 
during the evaluation phase [51]. A high benefit positive feedback amplifier forms 
the cross-connected inverters made of PM14, PM15, NM10, and NM11. Because of the 
positive feedback, either NM10 or NM11 are impeded to the NM10 or NM11 source ter-
minal, resulting in NM10 and NM11 beginning to source a portion of the difference. 
The power nodes are not connected to high-capacity bit lines, and they can react 
quickly, contrary to the sense amplifier. On bit lines, the CDSA will swing lower 
voltage [52] (Figure 5.7).

FIGURE 5.6  VDSA schematic. (Reproduced from Agrawal and Tomar [49], with permis-
sion from Elsevier. Copyright (2021).)
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5.6.3.1.3 � CTDSA Working and Schematic
CTDSA works by redistributing high-capacity bit lines to low-capacity amplifier out-
put nodes [53,54]. Because of the following equation, the voltage produced across 
the first element and its capabilities will equalize to a series of interactions between 
two capacitive elements in a charging device the voltage product across the second 
element and its voltage potential:

	 SMALL SMALL LARGE LARGE= =V C Q V C

Therefore, the voltage increase is achieved because a small voltage change over the 
sizeable capacitive element causes a more considerable voltage change across the 
minor capacitive component [55] (Figure 5.8).

5.6.3.2  �LSA
Pre-loading and equalizing the LSA in the high-gain metastable area are the first 
steps in the sensing process. Because an LSA does not separate its inputs and out-
puts, insulation transistors are required to prevent a 0-bit line from being completely 
unloaded, which consumes more power and time [57].

5.6.3.2.1 � VLSA Working and Schematic
Pass transistors NM12, PM8, and PM9, are turned on when the WL = High, but they 
are turned off when the sense amplifier signal is applied [58]. The random bit on the 

FIGURE 5.7  Current differential sense amplifier schematic. (Reproduced from Agrawal 
and Tomar [49], with permission from Elsevier. Copyright (2021).)
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internal nodes of the sense amplifier has a suitable voltage difference as the differ-
ential on the bit lines grows. When the SAEN sensing amplifier signal is asserted, the 
PM10, NM10, PM11, and NM11 cross-linked inverters increase the differential voltage 
to its maximum swing output [59] (Figure 5.9).

5.6.3.2.2 � CLSA Working and Schematic
SA is a critical circuit in cache memory design. In the reading process, one bit-line 
is released while the other bit-line is kept at a voltage that supplies power to the pro-
cessor [61]. SAEN is pulled high if both SA1 and SA2 begin discharge at high outputs. 
This results in a higher NM12 power than NM13 due to its higher Vgs. This makes it pos-
sible to discharge the V3 output faster than the V4. When the sense amplifier signal 
is low enough to power ON PMOS device PM16, the powerful positive feedback loop is 
triggered, which causes SA2 to be recharged and its output isolated from its inputs 
[62] (Figure 5.10).

5.7 � METHODOLOGY

The fundamental operational approach for leakage power reduction methods is cov-
ered in this section, such as Power Reduction Sleep Transistor Technique, Power 
Reduction Dual Sleep Technique, Power Reduction Forced Stack Technique, and 

FIGURE 5.8  CTDSA schematic. (Reproduced from Agrawal and Goyal [56], with permis-
sion from Springer Nature. Copyright (2021).)
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Power Reduction Sleep Stack Technique, which have been used to evaluate various 
parameters in the STSRAMC circuit [63,64]:

	 (i)	 State saving
	 (ii)	 State destructive

5.7.1 � Power Reduction Sleep Transistor Technique

The sleep transistor technique is the most widely used to reduce power consumption. 
Between VDD and the pull-up network in a circuit, PMOS is used in the sleep transistor 
approach I between the pull-down network and GND in-circuit, NMOS is used [65] 
(Figures 5.11 and 5.12).

5.7.2 � Power Reduction Dual Sleep Technique

The area requirements for this approach are maximized by using four transistors: two 
PMOS and two NMOS. Two extra pull-up and pull-down transistors in sleep mode in either 
an OFF or ON state have implemented the power reduction dual sleep technology [66].

FIGURE 5.9  VLSA schematic. (Reproduced from Agrawal [60], with permission from 
Springer Nature. Copyright (2021).)



86 Soft Computing in the Manufacturing Sector

5.7.3 � Power Reduction Sleepy Stack Technique

Another way to reduce power consumption is to use the stack method, which reduces 
the size of an existing transistor into two half-sized transistors. The generated inver-
sion distance between the two transistors minimizes the leakage current by switching 
off concurrently [67] (Figures 5.13 and 5.14).

5.7.4 � Power Reduction Forced Stack Technique

In this technique, both mos have the same input. In this technique, when PM0 is in 
the active region, NM0 is in the cut-off part [68–70]. Due to this, the circuit doesn’t 
have a power supply, which helps to consume less power.

FIGURE 5.10  CLSA schematic. (Reproduced from Agrawal [60], with permission from 
Springer Nature. Copyright (2021).)
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5.8 � RESULT AND DISCUSSION

This chapter discusses the methodology and results. As the feature size of tech-
nology decreases, the threshold voltage of MOS decreases because of the scale 
down the threshold voltage MOS transistor is turned on at a lower voltage. Hence, 

FIGURE 5.11  Power reduction sleep transistor technique schematic. (Reproduced from 
Agrawal and Tomar [49], with permission from Elsevier. Copyright (2021).)

FIGURE 5.12  Power reduction dual sleep technique schematic. (Reproduced from Agrawal 
and Tomar. [49], with permission from Elsevier. Copyright (2021).)
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the delay of the circuit decreases, and the power dissipation as the supply voltage 
decreases.

5.8.1 � Simulation of Single Bit STSRAMC VDSA Architecture

In the schematic, internal node voltages out and outb are initialized with the logic 0 
and 1. The pre-charge circuitry uses the low PCH signal to charge both bit lines. SA 
is activated when SAEN = high, which is a digital signal (Figure 5.15).

CWD output waveform can be described in four cases (Figures 5.16–5.18):

Case 1: WE are low, and Data is low BTL = high and BTLBAR = high,
Case 2: WE are high, Data is low, BTL = low, and BTLBAR = high.
Case 3: Data is high and WE are low, BTL = BTLBAR = high/2,
Case: 4 Data is high, WE are high, BTL = high, and BTLBAR = low.

FIGURE 5.13  Power reduction sleepy stack technique schematic. (Reproduced from 
Agrawal and Tomar [49], with permission from Elsevier. Copyright (2021).)

FIGURE 5.14  Power reduction forced stack technique schematic. (Reproduced from 
Agrawal and Tomar [49], with permission from Elsevier. Copyright (2021).)
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5.8.2 � Simulation of Single Bit STSRAMC CDSA Architecture

Signal activated the sense amplifier when SAEN is high. A Precharge signal (PCH) 
is used to pre-charge the bit lines to equalize the potential on both bit lines. In the 
schematic, the internal node voltages V1 and V2 are initialized with logic 0 and 1 
(Figures 5.19–5.22).

FIGURE 5.15  Single bit STSRAMC VDSA architecture schematic.

FIGURE 5.16  CWD output waveform.
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FIGURE 5.17  STSRAMC output waveform.

FIGURE 5.18  Single bit STSRAMC VDSA architecture output waveform.
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FIGURE 5.19  Single bit STSRAMC CDSA architecture schematic.

FIGURE 5.20  Single bit STSRAMC CDSA architecture output waveform.
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5.8.3 � Simulation of Single Bit STSRAMC CTDSA Architecture

FIGURE 5.21  Single bit STSRAMC CTDSA architecture schematic.

FIGURE 5.22  Single bit STSRAMC CTDSA architecture output waveform.
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5.8.4 � Simulation of Single Bit STSRAMC VLTSA Architecture

The input bit lines establish a voltage differential on the circuit’s internal nodes, which 
the circuit architecture relies on directly (Figures 5.23–5.29 and Tables 5.1–5.5).

FIGURE 5.23  Single bit STSRAMC VLTSA architecture schematic.

FIGURE 5.24  Single bit STSRAMC VLTSA architecture output waveform.
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5.8.5 � Simulation of Single Bit STSRAMC CLTSA Architecture

FIGURE 5.25  Single bit STSRAMC CLTSA architecture schematic.

FIGURE 5.26  Single bit STSRAMC CLTSA architecture output waveform.
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FIGURE 5.27  Chip design of single bit STSRAMC VDSA architecture.

FIGURE 5.28  Chip design of single bit STSRAMC CDSA architecture.

FIGURE 5.29  Chip design of single bit STSRAMC CTDSA architecture.
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5.9 � COMPARISON TABLE

TABLE 5.1
Single Bit Architecture Consumption of Power at R = 42.3 Ω, VDD = 1.2 V

S. No Parameters Architecture NoT DiS (ηs) CoP (µW)

1 SBSVDSA 30 13.51 13.16

2 SBSCDSA 33 18.81 16.44

3 SBSCTDSA 37 18.95 44.63

4 SBSVLSA 29 13.50 36.57

5 SBSCLSA 35 18.68 26.78

CoP, consumption of power; NoT, number of transistors; DiS, delay in sensing; SBSVDSA, single bit 
STSTAMC VDSA architecture; SBSCDSA single bit STSRAMC CDSA architecture; SBSCTDSA, 
single bit STSRAMC CTDSA architecture; SBSVLSA, single bit STSRAMC VLSA architecture; 
SBSCDSA, single bit STSRAMC CLSA architecture.

TABLE 5.2
Single Bit Architecture Consumption of Power at VDD = 1.2 V, R = 42.3 KΩ

S. No Parameters Architecture NoT DiS (ηs) CoP (µW)

1 SBSVDSA 30 13.51 11.34

2 SBSCDSA 33 18.81 18.81

3 SBSCTDSA 37 18.95 33.63

4 SBSVLTSA 29 13.50 14.32

5 SBSCLTSA 35 18.68 73.92

TABLE 5.3
Single Bit Architecture Consumption of Power When PRT Applying on 
VDSA, at C = 6.09 fF, and R = 42.3 KΩ 

S. No
Techniques Over VDSA  

in Architecture

Single Bit STSRAMC VDSA Architecture

NoT DiS (ηs) CoP (µW)

1 PRSST 32 13.51 11.29

2 PRFST 32 13.70 11.29

3 PRSST 33 13.50 11.29

4 PRDST 34 13.66 11.03

PRSST, power reduction sleep transistor technique; PRFST, power reduction forced stack technique; 
PDSST, power reduction sleep stack technique; PRDST, power reduction dual sleep technique.
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5.10 � CONCLUSION AND FUTURE SCOPE

In cache memory architecture, CWD, STSRAMC, and different types of sense ampli-
fiers such as VDSA, CDSA, CTDSA, VLSA, and CLSA have been described in this 
chapter, as well as all architectures with different SA’s implemented over cadence 
tool and power dissipation of all architectures have been calculated. In this chapter, 
cache memory architecture (CMA) with varying types of SA such as VDSA, CDSA, 
CTDSA, VLSA, and CLSA has been implemented and compared on different values 
of resistance (R) with other parameters such as consumption of power (CoP), delay in 
sensing (DiS) and a number of transistors (NoT). Results depicted that CMA having 
VDSA consumes the lowest power consumption (11.34 µW). Furthermore, techniques 
of power reduction (TPR) such as power reduction sleepy sleep transistor technique 
(PRSTT), power reduction sleepy forced stack technique (PRFST), power reduction 
sleepy stack technique (PRSST), and power reduction dual sleep technique (PRDST) 
are applied over different blocks of CMA to optimize power consumption. The con-
clusion arises that STSRAMC with forced stack technique and VDSA with dual sleep 

TABLE 5.4
Single Bit Architecture Consumption of Power on Applying PRT Over 
STSRAMC at C = 6.09 fF, and R = 42.3 KΩ 

S. No
Techniques over STSRAMC  

in Architecture

Single Bit STSRAMC VDSA Architecture

NoT DiS (ηs) CoP (µW)

1 PRSST 32 13.12 9.18

2 PRFST 32 13.64 9.10

3 PRSST 33 13.36 10.38

4 PRDST 34 13.51 10.13

TABLE 5.5
Single Bit Architecture Consumption of Power on Applying PRT Over 
STSRAMC and VDSA at C = 6.09 fF and R = 42.3 KΩ

S. No
Techniques Over STSRAMC and VDSA  

in Architecture

Single Bit STSRAMC VDSA  
Architecture

NoT DiS (ηs) CoP (µW)

1 Sleep transistor 34 12.75 9.27

2 Forced stack 34 13.14 9.20

3 Sleepy stack 36 12.75 8.46

4 Dual sleep 38 13.34 9.74

5 STSRAMC (forced stack) + VDSA (dual sleep) 36 12.14 8.078
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technique in CMA consumes the least power. It is also observed that VDSA has the 
lowest area, 30.48 × 62.613 mm2, compared to other SAs. In the future scope, this 
work can be done in the form of an array. A conclusion arise that CDSA with PRT 
consumes low power, but VDSA consumes the most insufficient power among all 
SA. So, in STSRAMC Array Architecture, researchers can use these amplifiers, and 
the power dissipation through the circuit can be further reduced by using other TPR. 
Researchers also implemented STSRAMC with forced stack technique in array in 
CMA.

5.11 � ABBREVIATIONS

STSRAMC	 Six Transistor Static Random-Access Memory Cell
VLTSA	 Voltage Latch Type Sense Amplifier
CLTSA	 Current Latch Type Sense Amplifier
VDSA	 Voltage Differential Sense Amplifier
CDSA	 Current Differential Sense Amplifier
CTDSA	 Charge Transfer Differential Sense Amplifier
TPR	 Techniques of Power Reduction
CMDSBA	 Cache Memory Design for Single Bit Architecture
DSA	 Differential Sense Amplifier
LSA	 Latch Sense Amplifier
PRSTT	 Power Reduction Sleepy Sleep Transistor Technique
PRFST	 Power Reduction Sleepy Forced Stack Technique
PRSST	 Power Reduction Sleepy Stack Technique
PRDST	 Power Reduction Dual Sleep Technique
DiS	 Delay in Sensing
CoP	 Consumption of Power
NoT	 Number of Transistors
CMA	 Cache Memory Architecture
VLSI	 Very Large Integrated Circuit
ICs	 Integrated Circuits
CMOS	 Complementary Metal Oxide Semiconductor
DRAMCs	 Dynamic Random Access Memory Cells
CPUs	 Central Processing Units
MCUs	 Microcontroller Units
PCB	 Printed Circuit Board
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6.1 � INTRODUCTION

Composites are materials that are composed of two different substances: matrix 
and reinforcement. Two phases together work on a macroscopic scale and improve 
the characteristics of composites. Composites are heterogeneous mixtures of two 
dissimilar substances with different compositions, properties, and morphology [1]. 
The characteristics of composites differ from their single components depending on 
where they were produced. Because of their better characteristics, such as reduced 
weight, improved surface finished, corrosion resistance, high tensile strength and 
higher fatigue strength, they are widely used in various applications[2]. The main 
aim is to concentrate on the benefits of various biomedical applications in relation to 
different manufacturing techniques of the polymer matrix-based composite materi-
als. Polymer matrix-based composites are widely used in several biomedical fields, 
mainly in the synthesis of artificial body parts, dental applications, tissue engineer-
ing, and regenerative medicine. When the matrix is synthetic polymer or natural 
biopolymer and the reinforcement substances are taken from natural fibers, polymer 
composites offer good mechanical properties and can be used in various biomedical 
fields [3].

The fibers of biobased origin are mostly naturally occurring fibers derived from 
plant origins. This kind of polymer matrix-based composites is bioefficient and envi-
ronmentally friendly, biodegradable, recyclable lightweight and comparatively cheap. 
Wood fibers are divided into two types: crystal cellulose fibers, which are generally 
less common, and hardwood and soft wood fibers [4]. Fibers that are not obtained 
from wood are made up of lignin and cellulose, which have good mechanical and 
physical properties and are used in various industries. Composites containing natural 
fibers help in the recovery of living body tissues or the transformation of undevel-
oped parts of the living body, and they were used in the past. The combination of 
several components that can enhance some required characteristics and outperform 
the individual single component [5].

Polymer matrix-based composites consist of two phases, at least one of which is 
polymer [6]. The combination of these several components results in basic physi-
cal characteristics that differ from the individual substance alone [7]. The primary 
objective that affects making of such kind of substances in vast areas such as con-
struction [8], aerospaces [9] and automotive [10] is the manipulation of their thermal 
and mechanical properties. Consequently, the importance of highly developed poly-
mer composite materials exceeds on a large scale, such as the thermal and mechani-
cal aspects, allowing different ways to develop a large variety of material processing 
methods and basic physical properties.

When considering FEM-based concepts, the deformation of an object is approxi-
mated using discretized methodology and is mainly utilized in deformation model-
ing, where the stress-strain relationship for the deformation is controlled by material 
parameters and constructive model [11]. The finite element method (FEM) describes 
the maximum deformation for off-road tires caused by contact forces generated by 
granular terrain while using the coupling method. Discrete element method (DEM) 
was used to gather information about the discontinuation in properties of the gran-
ule sand [12]. The DEM-FEM input parameters form the critical predefined condi-
tions for obtaining real simulation output, particularly in the case of granules [13]. 
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The complex structure is subdivided into smaller parts called as elements, and then 
the whole analysis required is carried out using proper simulation software. The 
obtained generated results are then approximated for the whole existing structure, 
and then the the result is validated.

6.2 � MATERIALS

The materials taken for investigation consisted of carbon fiber as a reinforcement 
and PVC foam, resin polyester and resin epoxy as matrices for simulation of required 
composite. The combination of carbon fiber and resin epoxy shows high damp-
ing property and can be used to minimize the vibration. Carbon fiber offers more 
strength to the composite.

6.2.1 � Materials Specifications

6.2.1.1 � Reinforcement
The reinforcement substance, carbon fiber, has a density and Poisson’s ratio of 
1800 kg/m3 and 0.2, respectively [14].

6.2.1.2 � Matrices
	 (i)	 Resin Epoxy

Resin epoxy is defined as a material that is used for several applications. 
It has a high damping property when combined with carbon fiber. The den-
sity was 1160 kg/m3 and the Poisson’s ratio was 0.35 [14].

	 (ii)	 Resin Polyester
Resin polyester is defined as synthetic resins which is manufactured by 

the reaction of polyhydric alcohols and dibasic organic acids. The density 
was 1200 kg/m3 and the Poisson’s ratio was 0.316 [14].

	(iii)	 PVC Foam
PVC foam is defined as an inter-crossed network of polymers. The den-

sity was 60 kg/m3 and the Poisson’s ratio was 0.3, respectively [14].

6.3 � METHODOLOGY

6.3.1 �V arious Steps Involved in Designing and Analysis of 
Carbon Fiber Reinforced Polymer Composite

•	 First, open the ANSYS software and reach to the Workbench platform of 
the ANSYS software.

•	 Select the proper analysis system in which analysis needs to be performed. 
We have selected the Static Structural Analysis for our simulation purpose.

•	 Click the engineering data option and select the required materials. If mate-
rial is not listed in the library, then there is option of adding the new mate-
rial along with their properties.

•	 After adding the required materials to the engineering data, go to the 
geometry option and open the design modeler. In this, draw the geometry 
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required for analysis. Because my analysis is based on a composite, we have 
made the composite composed of five layers using the add material and 
add frozen technique. In the case of add material layer, we have selected 
the reinforcement part, and in the case of add frozen part, we have selected 
matrix material.

•	 Moving on to the meshing option, we have meshed the generated composite 
sample using linear elements to split the structure into various smaller dif-
ferent elements.

•	 Applied the bending boundary conditions which were required for our anal-
ysis purpose.

•	 Finally, results were generated after the application of boundary conditions 
and the images of various generated results were saved.

We have performed the three-point bending test using the boundary conditions on the 
composite sample. The failure model used was based on von mises yield criterion/
equivalent stress yield criterion. This failure model was used to know about the exact 
deformation and equivalent stress at failure condition so that we can safely use the 
composite sample for application purpose.

The sample sizes were considered in one -third ratio obtained in dimensions of 
mobile photovoltaic car roof which has length as 0.48 m, width as 0.33 m and thick-
ness as 0.005 m [15].

6.3.2 �C omposite Sample

Sample is composed of alternate five layers of matrix and reinforcement, which can 
be seen in Figure 6.1. The other two samples were simulated by just changing the 

FIGURE 6.1  Composite sample.
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matrix materials as resin polyester for second and PVC foam for third sample respec-
tively (Figure 6.1). 

6.3.3 � Meshing

Linear meshing resulted in 3520 number of elements and 2,6005 number of nodes, 
as shown in Figure 6.2.

6.3.4 � Boundary Conditions

One end is fixed, and the opposite end is given displacement as zero. One of the faces 
connecting these two ends is subjected to compressive load of 400 N in Z-direction, 
as shown in Figure 6.3.

6.4 � RESULTS AND DISCUSSION

Because we have applied all of the required boundary conditions, the first pri-
ority is to know about the result. ANSYS 21 software simulated the composite 

FIGURE 6.2  Meshed composite sample.
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sample for required results. In result part, we have tried to calculate the total and 
directional deformation, and also equivalent and normal stresses. Different values 
of deformation and stress were obtained for the three composite samples. After 
obtaining the values, we were able to identify the best composite sample out of 
the three. Fig ures 6.4–6.15 show the result obtained after simulation for the three 
composite sample.

6.4.1 �C omposite Sample Having Carbon Fiber and Resin Epoxy

The maximum total deformation was 1.7233e-006 m and maximum directional 
deformation was 1.7222e-006 m, as shown in Figures 6.4 and 6.5.

The maximum equivalent stress was 5.0772e+005 Pa and maximum normal 
stress was 5.2392e+005 Pa and it has been shown in Figures 6.6 and 6.7.

FIGURE 6.4  Bending total deformation for Resin Epoxy Sample.

FIGURE 6.3  Boundary conditions.
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FIGURE 6.5  Bending directional deformation for Resin Epoxy Sample.

FIGURE 6.6  Bending equivalent stress for Resin Epoxy Sample.

FIGURE 6.7  Bending normal stress for Resin Epoxy Sample.
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6.4.2 �C omposite Sample Having Carbon Fiber and Resin Polyester

The maximum total deformation was 1.9096e-006 m and maximum directional 
deformation was 1.9086e-006 m, as shown in Figures 6.8 and 6.9.

The maximum equivalent stress was 5.54e+005 Pa and maximum normal stress 
was 5.7138e+005 Pa, as shown in Figures 6.10 and 6.11.

6.4.3 �C omposite Sample Having Carbon Fiber and PVC Foam

The maximum total deformation was 2.7458e-007 m and maximum directional 
deformation was 2.7451e-007 m, as shown in Figures 6.12 and 6.13.

The maximum equivalent stress was 1.6476e+005 Pa and maximum normal 
stress was 2.0646e+005 Pa, as shown in Figures 6.14 and 6.15.

Krishnamurthy et al. found that after applying a load of 800 N on the leaf spring 
made up of composite, the maximum value of deformation occurs at mid-point 
with value 0.20123 mm. Minimum value of deformation occurs on ends denoting 
equivalent elastic strain having minimum value near the mid-point which is equal to 
3.2392e-008unit [16].

FIGURE 6.8  Bending total deformation for Resin Polyester Sample.

FIGURE 6.9  Bending directional deformation for Resin Polyester Sample.
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FIGURE 6.10  Bending equivalent stress for Resin Polyester Sample.

FIGURE 6.11  Bending normal stress for Resin Polyester Sample.

FIGURE 6.12  Bending total deformation for PVC Foam Sample.
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FIGURE 6.13  Bending directional deformation for PVC Foam Sample.

FIGURE 6.14  Bending equivalent stress for PVC Foam Sample.

FIGURE 6.15  Bending normal stress for PVC Foam Sample.
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6.5 � CONCLUSIONS

After performing bending test on three composite samples and obtaining the defor-
mation and stresses values, we can conclude the following.

	 1.	Composite sample having carbon fiber and resin epoxy gave total defor-
mation of 1.7233e-006 m which is smaller when compared with other two 
composite samples.

	 2.	Composite sample having carbon fiber and PVC Foam gave least maximum 
value of equivalent stress of 1.6476e+005 Pa and least maximum value of 
normal stress of 2.0646e+005 Pa when compared with other two composite 
samples.

So, composite sample having carbon fiber and resin epoxy provided high life cycle 
because of its smaller total deformation and maximum stress bearing capacity.
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7.1 � INTRODUCTION

Even today, spare parts inventory control is normally done using the traditional 
approach of the thumb rule with the almost same degree of consideration by most of 
the petroleum and fertilizer industries. Normally, procurement of spare parts is first 
carried out during the project stage along with the equipment as recommended by the 
manufacturer and does not include a dedicated review by stakeholders. Spare parts 
inventory magnifies over time as a result of uneven risk consideration by the user 
department and a lack of team review. Because such industries have an average annual 
spare parts inventory ranging from 40,000 to 100,000 and associated cost from 100 
to 300 million USD, there is a huge scope for controlling sustainable stock levels with 
the use of tailor-made integrated multi-stock classification. Molenaers et al. (2012) 
reported in a case study for criticality classification research for spare parts of a pet-
rochemical complex that the physical levels of inventory are more than 100 thousand 
SKUs with an associated total stock value of about USD 120 million. As shown in 
Figure 7.1, individual departments are using selective aspects to control spare parts 
inventory. It leads to a better insight of single dimensions such as frequency of move-
ment of spares and unit price, but it cannot optimize to a sustainable stock level. Multi-
criterion classification for spare parts inventory with critical evaluation has become 
an essential feature for service departments of such industries to lead in terms of eco-
nomic sustainability. According to a study conducted by Wild (2002), instead of high 
stock availability, an optimum stock level of spare parts may be ensured.

Based on Figure 7.1, individual department is keen to control spare parts inventory 
for their criteria for the same spare parts inventory. The user department tries to safe-
guard spare parts inventory and may classify equipment based on vital, essential and 
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desirable (VED) selective control category irrespective of other criteria. Similarly, 
the procurement department focuses only on the pricing of spare items and to obtain 
discounts irrespective of movement and requirement of spare parts over lead time 
cycle, which is indicated as selective category high, medium and low (HML). Stores 
department emphasizes spare parts to be stocked based on their movement such as 
fast, slow and non-moving (FSN), rather than price and impact on plant production. 
The finance department focuses on the annual consumption value of all spares with 
the criteria of always better control (ABC) philosophy, which is based on the planned 
budget by user and procurement department. The disparity in specific considerations 
for the same spare parts leads to uneven spares inventory levels, procurement cycles 
and budget variations, all of which have an impact on the total spare parts inventory 
cost in the warehouse.

An approach of sustainable criteria of cost economics is considered to reduce the 
total spare parts inventory while ensuring their availability during business-centred 
maintenance practices. Reducing obsolesces and scraps gathered due to stock of non-
moving spare parts at the factory warehouse is also considered. Hence, to overcome 
the above flaws of the conventional practice of thumb rule and individual selective 
control aspect, a framework is proposed using an integrated multi-criterion selective 
micro-level group classifications of spare parts and associated them with an applica-
ble stocking policy. An overall stocking policy considering different scenarios appli-
cable to the industry practice is also developed as a part of the framework.

7.2 � REVIEW OF RELEVANT LITERATURE

Three approaches have been undertaken in the review process of literature in order to 
obtain an overall perspective of a combination of theoretical research base ahead and 

FIGURE 7.1  Various Control Aspect methods used in different departments (framework 
part). (Individual selective control methods preferably used by different departments by 
industries i.e.VED, HML, FSN, XYZ and ABC.)
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to assess the practical need of industry perspective, as shown in Figure 7.2. Research 
papers were reviewed to know the methods used over two decades. The study indi-
cates the practice started with bathtub to the recent approach of selective control 
aspect. A general guideline for total spare parts inventory is also reviewed through 
the petroleum handbook and related reports. A pilot survey is also conducted through 
the survey by industry experts to assess the applicability of the multi-criterion clas-
sification approach for sustainable needs.

7.2.1 � Review of Research Papers

The focus of research studies from 1985 to 1990 was mainly on repair work and 
using maintenance bathtub practice to control spares. For example, a scheduled 
maintenance approach was described by Matta (1985) for armed force equipment on 
an individual basis or in batched during nonworking time.

Subsequently, research studies were carried out with a reliability approach from 
1991 to 1995 to curtail scheduled and uniform maintenance practices and to follow 
a policy based on the criticality of functional service of equipment. For example, 
the spare parts stocking policy proposed by Sheikh et al. (1991) considering the 
parameter of the criticality of equipment, cost of the item and lead time. Criticality 
was based on the consequences of the failure of equipment. This is categorized into 
three levels: production loss, system failure and only equipment stoppage. During 
this period, industries were also using manual bin systems for information, which 
was later switched over to computerized systems for efficient record keeping. A 
computer-based inventory spare parts control was proposed by Nagen et al. (1994) 
indicating better system efficiency over bin system and it provides an auto-trigger 
for the replenishment. Another study conducted by Vereecke & Verstra et al. (1994) 
described a linear algorithm, by simulating it using a Poisson distribution for dif-
ferent demand patterns of items by categorizing them based on requirements from 
stores as lumpy, slow and fast movers. This was conducted for a large chemical plant, 
located in Belgium. Better control was observed by using a single distribution and 
comparing the classified group reorder point as demand for 34,000 spare parts items.

Demand forecasting was an added dimension during the period 2006–2009, 
which was integrated with reliability. Also, a phase of the selective control aspect 

FIGURE 7.2  Literature review approaches ( framework part). (Literature review is carried 
out based on three approaches i.e. review of research papers, review of petroleum handbooks, 
report, etc. and pilot survey from industries.)
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of inventory was started. Kocaga & Sen (2007) conducted research by categorizing 
64 representative parts based on order demand into four categories as critical with 
immediate and with defined lead time and similarly for non-critical category respec-
tively. The approach of distinguishing lead time reflected 14% of saving in hand 
inventory and associated cost for a manufacturing unit of capital equipment keeping 
the same service level in the supply chain (SC). Another research was proposed by 
Eric & Rommert (2008) by classifying spare parts inventory-based criticality and on 
different reorder level points with reference to the average consumption pattern for 
an oil refinery. The results indicate better spare parts inventory control and saving 
potential in holding cost of about 6.5%. The research was also carried out by Donath 
et al. (2002) as an initiative of selective control approach by combining two selective 
categories as fast, slow and non-moving (FSN) along with high, medium and low-
value (XYZ) items. The items under the category NX need close monitoring prior to 
procurement and are kept with sustainable need avoiding longer stay in stores lead-
ing to as an obsolete/salvaged. Another research was conducted by Braglia (2004) 
using the methodology of analytical hierarchy process for multi-attributes of reli-
ability centred maintenance (RCM) to control the spare parts management specially 
to focus on shortage and leading to stoppage of production units and on the contrary 
some of the spare parts available in excess which may have stayed for a longer time 
in stores. A case study conducted for a paper industry revealed the reduction in inven-
tory based on this research.

Research studies conducted from 2010 onward were more or less focused on the 
selective aspect of inventory control along with reliability and forecasting.

The multi-criterion model approach was illustrated by Bosnjakovic (2010) 
wherein spare parts were ranked by value usages, criticality and demand pattern 
and classified based on similar attributes for efficient control and cost reduction. 
A model of an online condition monitoring system was proposed by Li & Ryan 
(2011) in predicting the deterioration process of the functioning part for rotating 
equipment, which was useful research to indicate the demand distribution of parts 
with time.

A multi-criterion model was proposed by Molenaers et al. (2012) using an ana-
lytical hierarchy process with criticality as a governing goal. Criteria considered 
under this were: probability of item failure, replenishment time, number of poten-
tial suppliers and availability of technical specification with output alternatives as 
VED. The basis of criticality levels classifies spare parts into four categories. The 
study was conducted for a petrochemical plant and is useful for the rationalization of 
spare parts inventory. A study conducted by Fu et al. (2012) for controlling the raw 
materials inventory used in the production using a combination of ABC and EOQ 
for a company manufacturing hinges and lockers based in Thailand. Another study 
conducted by Mitra et al. (2013) combined ABC and HML selective control tech-
niques for items producing electric multiple units (EMUs) for a coach manufacturing 
industry to optimize inventory based on combinations. A combination of VED and 
FSN control techniques was used by Sanjeev & Ciby (2014) to indicate the scope of 
better control of spare parts inventory for the chemical industry. Another study was 
conducted by Roda et al. (2014) in which spare parts were classified based on current 
needs for a copper mining industry.
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A study was carried out by Sagar et al. (2015) for controlling manufacturing parts 
of a tractor industry with a focus on reducing the inventory waste during processing 
by using a combination of selective control techniques ABC and VED. An analysis 
was carried out by Mitra et al. (2015) for a railway coach manufacturing industry, 
wherein items were categorized into six major categories to differentiate annual 
requirements to identify and control non-moving items. A study was conducted by 
Mehrotra & Basukala (2015) for annual medicine consumption using a combination 
of ABC & VED for a drug store of a hospital to ensure the availability of critical 
medicine for intensive care unit all the time and reduce the inventory of other items. 
Another study conducted by Moharana (2015) for classifying spare parts inventory 
using a multi-criterion approach based on a fuzzy-rule web-based model Fuzzy 
rule-based multi-criteria inventory control (FRMIC) considering the criteria of con-
sumption value, unit price, replenishment lead time and commonality. The model 
synergizes with enterprise resource planning (ERP) based on materials management 
modules (MMM) and generates an optimum stoking level of spare parts required.

A model was proposed by Devarajan & Jayamohan (2016) by combining FSN & 
XYZ control techniques to analyze and control non-moving and high-value items for 
a chemical factory. The use of different selective inventory control techniques was 
explained by Praveen et al. (2016) based on their characteristics & consumption cycle 
in the pharmacy sector. A conceptual study was conducted by Sharda & Gorana 
(2016) using a combination of selective control techniques VED and FSN based on 
petroleum industries. The research was found useful for better and micro-level con-
trol of spare parts and future research work. A case study was presented by Keran & 
Hadad (2016) using ABC classification for a maintenance garage. It was conducted 
using applicable 57 spare parts and the findings were useful for addressing shortages 
in some of the items and excess inventory for others. The different approach to spare 
parts inventory management was illustrated by Salwinder et al. (2016) for effective 
control from a different perspective and provides a useful indicator for managing 
spare parts inventory. A conceptual framework, based on the life cycle cost of equip-
ment, was proposed based on the use of spare parts till their economic life by Duran 
et al. (2016). It reveals the preposition of cash flow and the net present value of spare 
parts concerning equipment total cost.

An analysis was carried out by Yogesh et al. (2017) using combinations of ABC 
and HML control techniques for the sponge iron industry. The analysis indicates 
minimizing the high-value inventory items by critical evaluation of annual consump-
tion. A combination of ABC & VED selective inventory techniques was proposed by 
Sandeep et al. (2017) for controlling the drug inventory during the lead time and SC 
network by a pharmacy store to cater to small medical vendors.

A discrete simulation technique was proposed by Zhang et al. (2018) for control-
ling manufacturing inventory items. This study was conducted for the additive man-
ufacturing industry using demand characteristics for producing different types of 
additives. Combination of selective techniques VED & ABC analysis was proposed 
by Jonas & Ming (2018) through a thesis work to control the spare parts inventory 
and associated holding cost by strategic planning of maintenance action of different 
systems in the Swedish paper and pulp industry. Teixeira et al. (2018) described a 
policy for the categorization of spare parts in different groups taking both aspects of 
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maintenance and logistics and classifying them into three levels based on criticality 
and for managing the lead-time inventory. The study was supported with a pilot case 
for a multinational manufacturing company.

A multi-item inventory model of the combination of selective inventory con-
trol (SIC) and exchange curve(EC) based on the EOQ basic model was suggested 
by Shenoy & Mal (2019) for a small business perspective of India. The model was 
developed by combining the characteristics of selective inventory control and the 
exchange curve. The purpose of the model was to provide a better ordering policy for 
all items and also involve managers in decision-making. The model was developed 
for providing a solution that is robust and practical for micro, small and medium 
enterprises (MSMEs) in India. The study was validated with real cases of inventory 
items used in the automotive sector by combining ABC, FSN with import and local 
inventory items categorization and integrating with the exchange curve technique. 
Different classification based on selective inventory techniques for effective spare 
parts control was carried out based on different criteria according to the need of a 
firm by Chandra & Desai (2019). It also includes a literature survey based on selec-
tive techniques combination as single-criteria, bi-criteria & multi-criteria for inven-
tory classification. Further, it was revealed that bi-criteria are being utilized mainly 
in the medical field for considering the criticality of medicines using ABC and VED. 
Similarly, it was indicated that multi-criteria research studies on inventory con-
trol were conducted using Analytical Hierarchy Process (AHP), Fuzzy Analytical 
Hierarchy Process (FAHP) along ABC analysis conducted mainly for the automo-
tive sector. Another study by Malviya at el. (2020) was conducted for an automobile 
dealer for 306 spare parts items by integrated classification using selective categories 
of ABC, XYZ and FSN. It provides a direction for controlling delayed selling items 
and an indication of the red mark for not to order further. Research was conducted by 
Gurumurthy et.al. (2020) for a health sector considering the best quality treatment 
and low-operating cost using lean thinking. A methodology of MUSIC with a selec-
tive aspect of ABC, VED and SDE was considered for consumption value, criticality 
and lead time was used to classify medical supplies for a Cath lab. The outcome of 
this research was useful for controlling better inventory management and availability 
of them in time with improved quality treatment. A case study was carried out by 
Sengottuvelu (2021) using a multi-unit selective combining the technique of ABC, 
FSN and SDE for the inventory of 720 traded parts for an auto-connected system 
company warehouse. The study reveals 94 items are non-moving and about 50% are 
easily available from them and hence the stock is to be strictly controlled.

A Pareto chart shown in Figure 7.3 indicates the distinguished focus of the 
research studies carried out for various sectors belonging to the spare parts inventory. 
It indicates that maximum research papers belong to the manufacturing sector i.e. 
twenty-six (28), sixteen (16) for the service sector, fourteen (14) for defence, ten (10) 
for petroleum & fertilizer, four (04) on power sectors, four (4) on literature review 
and three (3) as general papers, respectively.

Research studies carried out in the manufacturing sector include paper, capital 
equipment, machines manufacturing, aircraft, steel, mining, electrical transmis-
sion and automobile. Similarly, service sector research studies include construc-
tion machines, durable goods, copiers, computer systems, medical, electronics and 
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electrical transformers and IT. Review papers studied under the defence sector 
include naval, shipping, airlines, aviation and radar system. Review papers studied 
under the petroleum and fertilizer sector cover similar manufacturing industries. 
Research review papers in the power sector include thermal and wind. The literature 
review papers cover the collection of different research studies carried out. Similarly, 
the general paper covers the details of different perspectives used in research papers.

7.2.2 � Review of Petroleum Handbook and Reports

The total cost of spare parts inventory should be 2%–3% of the total project cost of 
the petroleum industry as indicated in the handbook by Jones & David (2006). The 
total cost of the petroleum project industry on a global basis is USD 10 billion based 
on a bulletin report of petrochemical update (2018). Based on the same spare parts 
inventory total cost at a sustainable level could be in the range of USD 200–300 
million. In addition, total spare parts inventory items are in the range of 40,000 to 
100,000 as per the KPMG report by Koen (2014) in mega continuous manufacturing 
industries. A report by Cognizant insight (2012) indicates that the increase in revenue 
can be up by 20% by reducing the total inventory cost. Spare parts inventory man-
agement needs different stocking policies based on their distinguish requirement. 
This could not follow the similar policy as govern for raw materials and finished 
goods as indicated by Muller & Max (2003) in their book “Essentials of Inventory 
Management”.

FIGURE 7.3  Sector-wise published papers for spares inventory control (1990–2020). (Pareto 
chart showing a summary of sector-wise published research papers i.e. manufacturing service 
sector, defence, petroleum & fertilizer, power sectors, literature review and general papers 
respectively.)
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7.2.3 � Industry Need for Multi-Criterion Approach; A Pilot Survey

A survey was conducted to reveal the use of individual selective control techniques 
as current practice and the need for multi-criterion inventory control (MCIC) clas-
sification approach which may improve with distinguish need for stocking and lead 
to sustainability. In this regard, a pilot survey was conducted through an online ques-
tionnaire from fertilizer and petroleum industries in India and Gulf. A total of 70 
valid responses were received from 38 industries were received. These responses are 
plotted on a bar scale to know the current practice and need for MCIC classification.

Figure 7.4 indicates the use of different selective techniques for spare parts inven-
tory control by industries. It reveals that out of 140 total sample responses (combined 
sample maintenance and stores) indicates that 48 are not using any selective tech-
nique. 33 indicate FSN, 26 indicate ABC, 25 indicate VED and very few use HML 
based on the combined responses received, respectively.

Figure 7.5 indicates the use of a multi-criterion selective approach for spare 
parts inventory control by industries using combinations of selective techniques. It 
reveals that out of 140 total sample responses (combined sample maintenance and 
stores) indicates that only 35 responses indicate the use of a multi-criterion selective 
approach. A total of 72 responses indicate that organizations either do not in the 
practice of use or else do not know. Rest indicates the use of the individual selective 
technique.

The above data facts indicate that organizations are still in use of the conventional 
practice of the thumb rule. Very few of them are concerned with controlling spare 
parts inventory based on using individual selective inventory control aspects spe-
cially FSN in such industries. These organizations are less concerned about taking 
into consideration of HML selective aspect based on the responded data as shown in 
Figure 7.4. Similarly, data facts shown in Figure 7.5 indicate that emphasis on using 
a multi-criterion selective approach is very less. It shows that there is a need for a 
systematic framework with stocking policy and procedure using a multi-criterion 

FIGURE 7.4  Frequency of use of selective control analysis by industries (framework part). 
(Industry experts’ survey response for the use of different selective techniques by industries 
i.e ABC, VED, FSN and HML.)
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selective control technique. Also to reflect it as a better approach of controlling spare 
parts inventory as a cohesive chain of all departments leading to sustainability.

7.3 � PROBLEM STATEMENT AND BASIS OF 
PROPOSED FRAME WORK

Extensive literature review indicates that spare parts inventory was primarily con-
trolled by thumb rule practice and later by using the concept of reliability, forecasting 
and logistical characteristics, and in recent decades different selective perspectives of 
individual departments. The above approach results in the high, uneven stocking of 
spare parts inventory and enhancing inventory cost. Subsequently, from 2011 onward 
started using the multi-criterion approach in the research papers with combining two 
or three selective approaches such as VED, FSN and SDE and their corresponding 
parameters of equipment criticality, demand forecasting and logistics. This approach 
provided a beginning of uniform perspective as team goal of different departments 
for better control of manufacturing inventory and also spare parts inventory for phar-
maceutical and service sectors.

There is still a need for tailor-made research work for continuous and volumi-
nous production units especially fertilizer and petroleum industries due to the variety 
of equipment and having distinguished functional service. These equipment are in 
multiple double-digit numbers and need a precise review based on their service and 
equipment criticality and combining other selective control aspects for economic 
sustainability.

	 1.	To nullify an uneven consideration of risk considered for spare parts inven-
tory to safeguard against unpredicted probable failure of equipment and sys-
tem. This also leads sometimes to the overflow of the purchase requisition.

FIGURE 7.5  Use of multi-criterion selective approach by industries (framework part). 
(Industry experts’ survey response for use of the multi-criterion selective approach for spare 
parts inventory control by industries.)
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	 2.	The process of buying the spare parts as first fill is carried out along with 
equipment during the project stage as a normal practice. This practice 
includes the procurement of spare parts on a lumpsum basis between 4% 
and 5% of individual equipment and based on the recommendation of the 
original equipment manufacturer (OEM)/supplier. This leads to many spares 
more as required and few of them not covered remain as left out. It needs 
a prioritization-based integrated category of multi-criterion approach with 
spare parts review team (SPRT) of stakeholders. This also needs to guide/
share the proposed policy and procedure with lump-sum turnkey (LSTK) 
consultants and OEMs.

	 3.	Need for integrating multi-classification by considering the user, procure-
ment, stores and finance departments for all spare parts inventory.

	 4.	Need to have a structured stocking policy for each multi-classification lead-
ing to sustainable inventory stocks and cost.

	 5.	Need to prioritize the selective control techniques for developing an appro-
priate decision tree of spare parts inventory multi-criteria classification.

	 6.	Reducing the spare parts which do not use frequently and stay very long in 
stores becoming obsolete. This also leads to another aspect of sustainability 
by reducing the deterioration of the local environment of the warehouse.

7.4 � METHODOLOGY OF RESEARCH WORK AND PROCESS

In this chapter, a new model called multi-criterion inventory control (MCIC) is 
developed to classify spare parts inventory using the analytical hierarchy process 
technique along with indicating a stocking policy, respectively. It is based on eco-
nomic consideration of sustainability using inductive-based qualitative research. The 
complete research process is carried out in three stages as depicted in Figure 7.6. In 
the first stage, a framework of the MCIC model is proposed with integrated selective 
classification and perspective stocking policy. In the second stage, hypotheses are 
developed to demonstrate the significance of each integrated classification of spare 
parts inventory and their relevant stocking policy. These hypotheses are tested sta-
tistically using SPSS 20 for the responses received from industries experts’ obtained 
through a survey questionnaire. In the last stage, validation of the proposed frame-
work is carried out with real cases taken from two industries.

7.4.1 � Ranking of Selective Inventory Control 
Methods Using AHP Technique

AHP technique is used to rank and prioritize the three selective inventory control 
alternatives analogous output, shown in Figure 7.7. It is carried out to frame the logic 
decision tree diagram for multi-criteria classification.

7.4.1.1 � Assumptions for Framework
	 (a)	 The framework is based on the normal operating condition of the plant and 

equipment. Also considering normal deterioration levels of individual equip-
ment and excluding the requirement of spare parts during shutdown intervals.
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	 (b)	 A constant Lead-time period is assumed which is 1 week for local items, 1 
month for outside but within-country and 3–6 months for items to be procured 
from outside of the country except for an emergency. Lead time described as 
above in three categories is based on SDE Scare, difficult and easy category of 
selective control aspect. This aspect is not taken in the MCIC model, however, 
will be considered for sustainable stock of spare part inventory.

7.4.2 � AHP Process for Developing MCIC Model

A basic method given by Braglia et al. (2004) for the use of the multi-criteria clas-
sification provides the basis for the development of such classification. Subsequently, 
a few other models are described in the research papers for classifying spare parts 

FIGURE 7.6  Stages of research process (framework part). (Framework of research work 
is carried out in three stages i.e. framework, hypotheses analysis, and pilot cases analysis.)

Prioritization/ 
Alternative

Criteria

Goal Sustainable  spare parts stock and cost 
control

ECFR

VED FSN

SRF

HML

COI RT

FIGURE 7.7  Hierarchy AHP tree for sustainable spare parts stock and cost control (frame-
work part). (AHP process for prioritization of alternatives based on criteria for sustainable 
spare parts stock control.)
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based on using different criteria and different MCDM techniques. The AHP process 
is a powerful and flexible technique to integrate qualitative aspects and for assign-
ing weights to different criteria. Hence, it is taken for the proposed model MCIC to 
integrate and develop the decision tree.

Figure 7.7 indicates a hierarchal tree of the AHP process. It is decomposed into 
three levels namely goal, criteria and alternative. Criteria are equipment criticality and 
failure rate (ECFR), spare parts replacement frequency (SRF), cost of the item (COI) 
& replenishment time (RT) and governed under the ruling goal of sustainable spare 
parts stock and cost control. Selective techniques alternatives VED, FSN and HML 
are integrated into the decision tree for the classification of spare parts inventory 
based on the weight analysis. In the AHP process, the criteria considered are based on 
experts’ opinions, fulfilling the research gap with the tailor-made requirement. The 
brief importance of each criterion for spare parts classification is described as follows.

7.4.2.1 � Equipment Criticality and Failure Rate
Equipment criticality is classified in the above industries based on the consequences 
of equipment failure, which is categorized based on the VED selective control aspect. 
Failure of equipment affects the stoppage of production, and therefore it is a vital cat-
egory. Failure of equipment that affects stoppage of the local system is categorized as 
essential and similarly, mode of failure which stop only the equipment is categorized 
as desirable. Also, the functional service of equipment governs the rate of failure of 
equipment e.g., an acid service pump failure frequency will be more than water ser-
vices pump failure frequency. Hence, ECFR will govern more as compared to VED 
as an output alternative.

7.4.2.2 � Spares Replacement Frequency
The spare part replacement frequency is also governed by the factor ECFR. Spare 
parts replacement frequency are categorized based on selective inventory control 
FSN. Based on the opinion survey through industry experts’, the criteria of FSN are 
considered based on the movement of spare parts from stores. Movement of spare 
parts is less than a year is treated as fast, from a year to 3 years are treated as slow 
and more than 5 years are treated as a non-moving category of spare parts. SRF will 
govern more as compared to FSN as an output alternative.

7.4.2.3 � Cost of Item (COI)
In the integrated spare parts classification, the unit price also plays an important role 
and this needs a decision at strategic and tactical levels before procurement. The 
criteria for COI derived from experts’ opinion are as follows. The spare parts with 
a unit price of more than USD 5000 are treated as high-value items, between USD 
1500 and 5000 are treated as medium value and below USD 1500 are treated as low-
value items. COI governs the output criteria more as compared to HML selective 
inventory control.

7.4.2.4 � Replenishment Time (RT)
Spare parts stocking policy is also playing an important role with respect to replen-
ishment lead-time. Severe production downtime situations may arise due to supply 
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irregularities of spare parts and are not available sometimes during maintenance. 
The criteria for replenishment time are categorized based on SDE selective aspect 
and defined based on industry experts’ survey. The spare parts are categorized as 
a scare for procurement lead time is within 3–6 months, items treated as difficult 
which takes procurement lead time within 1 month and considered under an easy 
category which takes lead time within a week. Hence, RT governs the output criteria 
more as compared to FSN selective inventory control. However, SDE is considered 
for stocking policy, as defined in Table 7.5.

7.4.2.5 � Companywide Interchangeability/Commonality (CWI)
When identical spare parts are used in similar nature of equipment belonging to the 
different production plants of the same business unit is called companywide inter-
changeability. The total number of installed interchangeable parts in different equip-
ment on a companywide basis is another measure to define sustainable stock levels. 
All equipment does not fail simultaneously and hence stock level could be rational-
ized for such interchangeable spare parts. This criterion is not considered in the AHP 
process since this is a separate exercise to be carried out by the spare parts review 
team (SPRT) and is considered under the stocking category S3and S4 as defined in 
Table 7.5.

7.4.3 � Pairwise Comparison of Criteria

Pair-wise ranks are assigned against each criterion as indicated in Table 7.1, which 
is based on the average percentage weights obtained by industry experts through 
the structured questionnaire. These ranks are derived based on the average per-
centage for the criteria in the AHP process. The solution is given by the compu-
tation of the priority vector of the matrices and normalized eigenvector of the 
matrix. Table 7.1 shows the AHP judgment matrix checking for consistency and 
calculation of the weight of different criteria. Consistency index (C.I.) is observed 
as 0.03948. Random consistency indices (R.I.) is taken as 0.9 as a standard value 
for criterion 4. The consistency ratio (C.R.) is 0.0438 which is calculated from the 
value of C.I. and R.I. The CR calculated value is less than 0.1. Hence, the criteria’s 
comparison is having reliable for the goal of sustainable spare parts stock and cost 
control.

7.4.4 � Pairwise Comparison of Output Alternatives Based on Criteria

Pairwise comparison of selective inventory alternative is carried out for each 
criterion, by generating the pairwise matrix and keep because of impact con-
sideration. The final score is calculated for each alternative output and differ-
ent criteria, as shown in Table 7.2. Also, a final ranking of selective inventory 
alternatives is calculated based on the weight of criteria shown in Table 7.3. The 
final score shown in Table 7.3 is 0.556, 0.335 and 0.138 for VED, FSN and HML 
respectively. This analysis of prioritization of selective inventory criteria pro-
vides a direction for developing an integrated decision tree model of the multi-
criterion approach.
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7.5 � DECISION TREE MULTI-CRITERION 
INVENTORY CONTROL (MCIC) MODEL

The decision tree multi-criterion inventory control (MCIC) model is developed by 
integrating selective inventory control techniques VED, FSN and HML as shown in 
Figure 7.8. The decision tree is based on the ranking, as shown in Table 7.3, and is 

TABLE 7.1
Pairwise Comparisons of Criteria for Sustainable Spare Parts Stock and Cost 
Control

Criteria

Equip Failure 
& Criticality 

Rating 
(EFCR)

Spares 
Replacement 

Frequency 
(SRF)

Cost of 
Item 
(COI)

Replenishment 
Time (RT)

nth root 
of 

Product
Priority 

Vector (PV)

Equip failure 
& criticality 
rating

1 0.2 3 2 1.046635 0.220376634

Spares 
replacement 
frequency

8 1 3 5 2.942831 0.619634441

Cost of item 0.33333 0.333333 1 3 0.759836 0.159988925

Replenishment 
time

0.5 0.20000 0.33333 1 0.427287 0.089968384

Sum 4 1.733333333 7.333333 11.000000 4.749302 1.00

Sum*PV 0.881506 1.0740330 1.1732521 0.9896522 9.925891

λmax 4.1184439

CI 0.0394813

CR 0.0438681

Table indicates relative weight of factors (criteria) i.e.  EFCR, SRF, COI and RT considered for sustainable 
spare parts and cost control. 

TABLE 7.2
Final Score of Alternatives Based on Individual Criteria

Criteria EFCR SRF COI RT Score

Alternatives 0.2238 0.6196344 0.159989 0.088996 1.092385

VED 0.785391188 0.785391188 0.059412602 0.0549 0.67679

FSN 0.14881507 0.14881507 0.652226618 0.289744 0.255645765

HML 0.065793742 0.065793742 0.288360781 0.655355 0.159948966

Sum 1 1 1   1

Table shows the final score values for alternatives VED, FSN and HML.
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derived from the AHP technique. A stocking policy is also developed as a part of the 
framework, as shown in Table 7.5. A suitable stocking category is also assigned to 
each multi-classification group, as indicated in Figure 7.8. Suitability of the stocking 
category for each classification group is derived based on the responses received from 
industry experts and statistically tested through derived hypotheses in the Section 
4.3. The classification groups are verified for the proposed stocking policy with pilot 
cases based on the obtained data as shown in Tables 7.10 and 7.11 respectively.

7.5.1 � Description of Sustainable Stocking Category and Policy Guideline

Stocking categories are described as S0 to S5 as shown in Table 7.4. These are 
defined along with guidelines of stocking policy as essential and sustainable stock 
respectively. The essential stock is ist level and belongs to the requirement during 
maintenance of equipment. The sustainable stock is second and final level inclusive 

TABLE 7.3
Ranking Among the Alternatives Based on Weightage

Alternative/Output

Final Rank

Rank Weightage

VED 1 0.556802325

FSN 2 0.355894811

HML 3 0.138523526

Priortization of alternatives i.e. VED, FSN and HML respectively based 
on weightage.

FIGURE 7.8  Multi-criterion inventory control (MCIC) Model (framework part). (Multi cri-
terion inventory control ( MCIC) model with relevant stocking category for stocking policy.)
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of essential stock and requirement consideration for replenishment time, service level 
and cost of items.

7.6 � SUITABILITY OF STOCKING CATEGORY FOR GROUP 
CLASSIFICATION IN THE MCIC MODEL

Nine hypotheses are derived to statistically testing for suitability of assigned stock-
ing policy to each group of multi-classification of spare parts inventory as shown in 
Table 7.6. A statistical test is conducted for each hypothesis from the obtained valid 
data from industry experts’ using SPSS 20. A framework for sample size determina-
tion and response summary is followed in this section.

7.6.1 � Sample Size Determination

There are eighty-one (81) industries as per the directory of fertilizer of India and Gulf 
petroleum.

The following equation  7.1 is used for sample size determination applicable for 
finite population size with standard deviation from mean. This is taken from the 
“Research methodology by Kothari & Garg (2019)”.

	
1

2 2

2 2 2

σ
σ( )=

− +
n

Z N

N ME Z
p

p

	 (7.1)

TABLE 7.4
Stocking Category and Policy Guideline for Framework Model MCIC

Stocking 
Category

Stocking Policy

Essential Stock (Based on ECFR, SRF and 
Companywide Interchangeabilty (CWI)  etc.

Sustainable Stock (Based on  
COI, RT and Service Level)

S0 No stock of spare parts, but detail is included in 
the system for future order

One-Imported items after review 
by SP team

S1 Only one stock quantity for any number of  
installed quantity

Two-for imported  items after 
review by  SP team

S2 Stock level more than one based on installed 
quantity

Add two  or more quantities based 
on lead time, service level and 
frequency of use

S3 Stock level based on companywide 
interchangeability of item reviewed by SPT 

Add two  or more quantity based 
on lead time, service level and 
frequency of use

S4 Spare parts items categorize as not issued for 6 
years or long follow S0 stocking category and 
needs review  by SP team

One-Imported and/or to be 
procured outside local city, after 
review by SP team

S5 Capital and insurance spare: kept them in bonded 
ware house since, high value with unpaid  
custom  duty till not used for  equipment

Same and kept with preservation 
and with required steel structure

It is two level stocking policy for spare parts inventory i.e. essential stock and sustainable stock.
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where
n = Number of Sample Size to be found
Z-Score = 1.96 (Standard deviate from mean population)
N = 81 (Finite Number of Population)
σ2

p = 0.479583 (Standard Deviation of Population)
ME2 = 0.05 (Marginal Error)

Therefore, sample size will be:

	
1.96  81  0.479583

81 1 0.05 1.96 0.479583

2 2

2 2 2
( ) ( )

( )( ) ( ) ( )
=

− +
n 	

	  
75.122
1.09

=n 	

	 69.919=n 	

Therefore, the sample size is seventy for each maintenance and stores personnel. The 
total samples will be 140.

7.6.2 � Response Summary

Out of 162 questionnaires sent as total population, 70 valid responses are received 
from (maintenance and stores personnel) as shown in columns A, B and C respec-
tively of Table 7.5. The number of industries is taken from the online directory 
Petroleum industries in Gulf; (2016) and directory Fertilizers industries in India; 
(2017) respectively for the population. The survey was carried out from August 2018 
till the end of December 2019 to get responses from the industry experts.

7.6.3 � Hypotheses Design and Testing

Nine hypotheses are designed for analyzing the suitability of the proposed stocking 
policy for each group multi-classification, as shown in Table 7.6.

7.6.4 � Reliability and Normality Test for the Group of Hypotheses

The Cronbach’s alpha reliability test is carried out using SPSS 20 to ascertain the 
questionnaire consistency perspective to the hypotheses. The value obtained is 0.963 
which is more than the required value, i.e. 0.6, as shown in Table 7.7. Hence, it is 
confirming the effectiveness of the questionnaire and hypotheses H01 to H09.

Normality tests are carried out to ascertain the normality of response data. The 
P-value indicated in Table 7.8 for each hypothesis is less than .05. Hence, the data 
set based on experts’ responses are found skewed, i.e. not normally distributed. 
Therefore, a non-parametric one-sample test is adopted for the data set and hypoth-
eses testing.
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7.6.5 � Non-Parametric One-Sample Test for Hypotheses

Non-parametric one-sample test was carried out using SPSS 20 for hypotheses H01 
to H09. Table 7.9 is obtained from SPSS software which indicates that the stocking 
category of each group of multi-classification is in alignment and hence, accepts 
alternative hypotheses Ha1 to Ha09.

TABLE 7.7
Reliability Test of Stocking Policy Under Hypotheses H01 to H09

Cronbach’s Alpha (Value)
“Cronbach’s Alpha” based  

on (standardized items) No of Items

0.963 0.968 9

Cronbach Alpha reliability test results and value is 0.963 based on survey response of 
nine questions pertaing to hypotheses.

TABLE 7.8
Results of Tests of Normality Based on Experts’ Responses for Each Hypothesis

S. 
No Description

Kolmogorov-
Smirnova Shapiro-Wilk

Statistic df P Statistic df P

1  L1S54-Agreement on proposed stocking policy 
– S1/S4 – for  MCIC group – VFH, EFH & DFH

.286 70 0.001 0.715 70 0.005

2 L1S55-Agreement on proposed stocking policy 
S0/S4 – for  MCIC group – VSH, ESH & DSH

.280 70 .002 .751 70 .004

3  L1S56-Agreement on proposed stocking policy 
S0/S5 – for MCIC group – VNH, ENH & DNH

.271 70 .005 .847 70 .004

4  L1S57-Agreement on proposed stocking policy 
S1/S2 – for MCIC group – VFM, EFM & DFM

.223 70 .006 .855 70 .005

5  L1S58-Agreement on proposed stocking policy 
S3/S4 – for MCIC group – VSM, ESM & DSM

.249 70 .005 .824 70 .006

6  L1S59-Agreement on proposed stocking policy 
S4 – for MCIC group – VFL, EFL & DFL

.338 70 .004 .768 70 .004

7  L1S60-Agreement on proposed stocking policy 
S1/S3 – for MCIC group – VSL, ESL & DSL

.246 70 .005 .861 70 .004

8  L1S61-Agreement on proposed stocking policy 
S3/S4 – for MCIC group – VNL, ENL & DNL

.221 70 .004 .844 70 .004

9  L1S62-Agreement on proposed stocking policy 
S0/S4-for MCIC group – VNM, ENM & DNM

.377 70 .004 .727 70 .004

Note:	 Significance level is P < .05.
It shows results of K-S and Shapiro Wilk statistical test carried out using SPSS 20 for verifying responses 
are not following the normality curve.
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7.7 � PILOT CASES ANALYSIS: STOCKING LEVELS 
TRADITIONAL V/S PROPOSED, BASED ON MODEL

Two pilot cases are described below, belonging to the obtained company data from 
the Fertilizer and Petroleum industries of India and the Kingdom of Saudi Arabia, 
respectively. The proposed category and subsequent data set are part of the frame-
work in both Tables 7.10 and 7.11.

7.7.1 � Case-I

Sustainable proposed stocking for multi-classification groups based on MCIC v/s 
Traditional stock: Indian Fertilizer Industry

A pilot case of spare parts inventory is described in Table 7.10 for 14 items. The 
column-wise parameters are item-code, description, under company data column; 
unit cost, consumption of last 6 years (2011–2017) and traditional stock of items as of 
2018 are obtained as secondary data from industry for analysis purposes.

Multi-classification based on the framework of MCIC is indicated with an appli-
cable stocking category and a proposed sustainable stock. The total savings of USD 
68,910.0 is reflected based on current and proposed sustainable stock for all fourteen 
items. This can be enhanced by reviewing all applicable items. The unit price shown 
in USD is converted from INR based on the corresponding conversion rate during 
2011 and escalated based on the year 2020.

TABLE 7.9
Non-Parametric Test Results of Null Hypothesis H01 to H09

S. No Null Hypothesis Test Sig. Decision

1 L1S54-Agreement on proposed stocking policy 
– S1/S4 – for  MCIC  group – VFH, EFH & DFH

One-sample 
Chi-square test

0.004  Reject the null 
hypothesis

2 L1S55-Agreement on proposed stocking policy 
S0/S4 - for  MCIC  group- VSH, ESH & DSH

One-sample 
Chi-square test

0.002 Reject the null 
hypothesis

3 L1S56-Agreement on proposed stocking policy 
S0/S5 – for MCIC  group – VNH, ENH & DNH

One-sample 
Chi-square test

0.006 Reject the null 
hypothesis

4 L1S57-Agreement on proposed stocking policy 
S1/S2 – for MCIC group – VFM, EFM & DFM

One-sample 
Chi-square test

0.007 Reject the null 
hypothesis

5 L1S58-Agreement on proposed stocking policy 
S3/S4 – for  MCIC group – VSM, ESM & DSM

One-sample 
Chi-square test

0.001 Reject the null 
hypothesis

6 L1S59-Agreement on proposed stocking policy 
S4- for  MCIC  group- VFL, EFL & DFL

One-sample 
Chi-square test

0.003 Reject the null 
hypothesis

7 L1S60-Agreement on proposed stocking policy 
S1/S3 – for  MCIC  group – VSL, ESL & DSL

One-sample 
Chi-square test

0.004 Reject the null 
hypothesis

8 L1S61-Agreement on proposed stocking policy 
S3/S4 – for MCIC group – VNL, ENL & DNL

One-sample 
Chi-square test

0.005 Reject the null 
hypothesis

9 L1S62-Agreement on proposed stocking policy 
S0/S4 – for MCIC group – VNM, ENM & DNM

One-sample 
Chi-square test

0.004 Reject the null 
hypothesis

Note:	 Asymptotic significances are displayed. The significance level is 0.05.
Test results where alternative hypotheses are in line with framework and based on the survey responses.
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7.7.2 C ase-II

Sustainable stock levels using stocking category S3 for MCIC group VSM, ESM & 
DSM v/s Traditional stock.

A pilot case of the Petrochemical industry from the Kingdom of Saudi Arabia is 
taken for sustainable stock levels v/s traditional stock for the spare parts of the above 
multiclassification group, as shown in Table 7.11. The secondary data are obtained 
for 18 mechanical seals having stock recommendations against each of them based 
on company conventional data.

Companywide interchangeability is identified among them shown as six groups 
carried out based on the technical attribute review from the obtained data sheets and 
drawings of suppliers from the industry. Proposed sustainable stock levels for each 
group is considered based on stocking category S3. Item wise saving is indicated in 
the last column and the total saving is USD 45,760.0 About 10%–15% of items could 
be identified as having interchangeability and may provide a huge cost saving using 
this stocking policy with dedicated technical attribute review for the items belonging 
to this multi-classification group of MCIC model.

7.8 � CONCLUSIONS AND MANAGERIAL IMPLICATIONS

Petroleum and fertilizer industries have spare parts inventory ranging from 40,000 
to 100,000 with associated costs ranging from USD 200 to 400 million. In this 
research, a decision tree model MCIC is developed by integrating selective tech-
niques of VED, FSN and HML using the AHP process as shown in Figure 7.8. This 
model provides nine micro-level multi-group classifications of spare parts inventory 
with specific stocking category provides improved control over traditional thumb 
rule practice which is demonstrated through statistical testing of nine hypotheses. 
An in-depth review is carried out of the literature. It includes a review of research 
papers, reports published, petroleum handbooks and pilot analysis by experts of vari-
ous industries. In the last section, a study is carried out with two pilot cases for the 
spares parts inventory comparing traditional and proposed sustainable stocking poli-
cies. Sustainable stock levels in these pilot cases indicate saving of USD 68,910.0 and 
USD 45,760.0 respectively, which further leads to the higher potential of saving with 
systematic review by SPRT for total spare parts inventory.

7.8.1 � Managerial Implications

The framework provides a base to reduce and control excess inventory up to a level 
of 10%–20% and associated cost with permissible risk. Quality training is to be insti-
tuted for personnel of stores and maintenance department. It would reduce the con-
ventional practice and provide a wide spectrum of distinguishing approaches with 
sustainability in spare parts inventory control. SPRT review is to be carried out for 
identification of applicable interchangeable parts by review of technical specifica-
tion. This will lead to reduce the stocking of identical and similar items in different 
item codes. ERP-based materials management systems could not reveal the inter-
changeability of parts once codified in different item codes.
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7.8.2 � Future Perspective

The framework of this research is also useful for other mega business units like steel 
plants, power plants and similar other industries to reduce the spare parts inventory 
and its associated cost. A thorough analysis and identification of various inventory 
items of such capital-intensive units can be undertaken shortly.

7.9 � ABBREVIATIONS

ABC	 Always Better Control
AHP	 Analytical Hierarchy Process
CI	 Consistency Index
COI	 Cost of Item
CWI	 Companywide Interchangeability
CR	 Consistency Ratio
ECFR	 Equipment Criticality and Failure Rate
EC	 Exchange Curve
EOQ	 Economic Order Quantity
ERP	 Enterprise Resource Planning
FRMIC	 Fuzzy rule-based multi-criteria inventory control 
FSN	 Fast, Slow and Non-moving
HML	 High, Medium and Low
KSA	 Kingdom of Saudi Arabia
LSTK	 LumSum Turnkey
MCDM	 Multi-Criteria Decision Making
MCIC	 Multi-Criterion Inventory Control
MMM	 Materials Management Module
OEM	 Original Equipment Manufacture
P-Value	 Probability of obtaining results
PV	 Priority Vector
R.I.	 Random Consistency Indices
RT	 Replenishment Time
SC	 Supply chain 
SIC	 Selective Inventory Control
SPIR	 Spare Parts Interchangeability Record
SPRT	 Spare Parts Review Team
SPSS 20	 Statistical Product and Service Solutions Ver. 20
SRF	 Spare part Replacement Frequency
USD	 United State Dollar
VED	 Vital, Essential and Desirable
XYZ	 High value, medium value and low vale items at stores 
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8 Simulation of 
Deployment of 
Inflatable Structures 
Through Uniform 
Pressure Method

Aquib Ahmad Siddiqui, V. Murari, and Satish Kumar
Motilal Nehru National Institute of Technology Allahabad

8.1 � INTRODUCTION

Nowadays, inflatable structures are playing a crucial role in the space industry 
because of their lightweight, low stowage volume, and low cost. There have been 
many successful projects such as inflatable antennas, solar shades, solar sails, and 
gravity gradient booms. Even space station modules have been recently tested. A lot 
of literature is available on several aspects of inflatables such as the kinds of infla-
tion systems and deployment schemes, creating agravic conditions for deployment of 
structure experimentally, simulation of folding the inflatables for stowage, simulation 
techniques of inflation, the efficient finite element modeling for effective and cor-
rect results. The concerned inflatable structure in this chapter is a one-dimensional 
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cylindrical boom with both of its ends linearly seamed and having one z-fold in the 
middle. The pressure exerted by inflation gas within the structure is numerically 
simulated using a DLOAD subroutine in ABAQUS software. The inflation pressure 
is different in different pockets, and this variation regime can be decided using soft 
computing by stochastic methods. Data can be procured experimentally or by using 
heavy computation methods, e.g. SPH, CEL, CFD, etc. with different conditions like 
geometry, material properties, flow rate, etc. Using machine learning, these data can 
be processed and a relation between instantaneous angle (between the folds) and 
pressure distribution can be derived, as discussed in Section 8.2.

8.2 � SOFT COMPUTING AND SCOPE OF ARTIFICIAL 
INTELLIGENCE IN GENERATIVE DESIGN

A simple Uniform Pressure Method (UPM) has been implemented for deployment. 
The spatial variation of the pressure with respect to time has been modeled using clas-
sical thermodynamics. The load application on the surfaces is done by a DLOAD user 
subroutine in ABAQUS Implicit software. The pressure distribution majorly depends 
upon the interim angle formed between the folds of stowed inflatable structure. This 
relationship is not easy to establish since it includes high computational solid mechan-
ics theory because membrane structures can undergo large displacement which is 
nonlinear in nature. To overcome this complex computation, the use of soft computing 
can be very helpful. A large set of labeled data (experimental/computational) can be 
generated for the deployment with the variations of material, thickness, and inflation 
rate. These data can be derived either by conducting agravic experiments on zero g 
airplanes or with the technique prescribed by Wei et al. (2015). Also, one may obtain 
data through some high computational methods, e.g. Smooth Particle Hydrology 
(SPH), Combined Eulerian-Lagrangian (CEL), Computational Fluid Dynamics (CFD) 
to generate a large set of data for soft computing. Then these data will be analyzed 
to form correlations and patterns with respect to the aforementioned parameters to 
predict the best-suited relation between the pressure variation and the interim angle. 
This chapter is majorly focused on the development of learning cognitive skill of the 
inflation process. Further, the reasoning and the self-correction skills of AI can be 
worked upon using gathered data sets with respect to different parameters.

8.3 � INFLATIONMODEL

For the precise modeling of fluid-structure interaction, one can design the membrane 
part as computational solid mechanics (CSM) and the fluid by Navier–Stokes equa-
tions (CFD), which require high computational application. On the other hand, we 
can simply treat the structure by rigid body dynamics and fluid as ideal gas homoge-
neously spread in the structure by classical thermodynamics (Graczykowski, 2015). 
The inflation gas is considered as an ideal gas, which is assumed to fill into a rigid 
structure. Thus, the shape and the volume of structure remain constant and the same 
as it is in a fully deployed state. This is the simplest model with the least complexity 
as mentioned in (Graczykowski, 2015). As the mass flows inside the structure the 
pressure builds up according to the ideal gas equation. The pressure is applied by 
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the gas on the inner walls which varies spatially as well as with respect to time. The 
amount of gas is increasing with respect to time, therefore pressure exerted by the 
gas on the inner walls of inflatable is also increasing. During the transient state of gas 
filling or deployment, the pressure exerted in different regions varies. But when the 
cross-section area at the crease becomes big enough for the passage of gas, then these 
spatial variations of pressure erode away and become equal at all the sections since 
the gas gets equally distributed in the whole volume. During the deployment process, 
this variation depends on the allowability of passage of gas into different sections. 
The allowability depends on certain factors e.g. the interim cross-sectional area at 
the crease or passage, stiffness of the structure (due to material properties e.g. elastic 
properties and geometry e.g. span and thickness) and mass flow rate e.g. subsonic, 
sonic or supersonic, etc.

In the following discussed model, the structure is divided into certain finite vol-
umes or say pockets. As the gas enters through valve, it gets distributed in various 
pockets according to the allowability of passage at crease. Since the slow rate of the 
inlet of gas is considered for the deployment of inflatable, the inertial flow character-
istics of the gas are not much concerned. The pressure Pn in nth pocket is determined 
by the amount of gas present in it using the ideal gas equation.

	 =P
mRT
V

n
n

	 (8.1)

where R is gas constant, T is temperature and Vn is the volume of the nth pocket. Vn 
is constant because structure is assumed rigid for the inflation model.

Since RT and Vn are constants so basically pressure variation at any given time in 
different pockets depend only upon the mass distribution in them. So, all we have to 
find is the relation between allowability (of gas passage at crease) and the mass dis-
tribution in pockets at given time. This relation can be obtained with soft computing 
as mentioned in Section 8.2.

Figure 8.1 shows an inflatable structure with two pockets at a certain stage of time 
t. The inflation valve is attached to the rear end of pocket ‘b’.

V is total volume, Va and Vb are volumes of pocket a and pocket b, respectively.

	 = +     V V Va b	 (8.2)

FIGURE 8.1  State of inflatable structure with two pockets certain time t.
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Let m is mass flow rate, given by

	
( )=  

m
dm t

dt
	 (8.3)

m · t is the total mass of gas present in structure at time t. mta and mtb are mass of gas 
present in pockets a and b at time t. Also, the angle between the pockets a and b at 
this instant is θ.

The mass distribution will depend on the area of passage between the two pock-
ets. As the fold opens up this area increases and one can notice that this area majorly 
depends upon the interim angle (θ). This area at the crease is directly proportional to the 
interim angle θ. Thus, as θ increases the allowability of mass through fold also increases.

Now relationships between the angle and the mass distribution in pockets can be 
obtained with correlation from big data which is organized according to the param-
eters of the inflation process. Polynomial regressions are being used in this case to 
develop relationship. For the low allow ability situations, high order of polynomial 
(n) will be generated, expectedly.

Gas mass in a pocket is function of time t and angle θt. As the time increments 
values of angle keep changing. Since the relation between time and angle is not 
predictable analytically, thus the value of angle at any time is found out using the 
subroutine. Angle θt is computed within DLOAD subroutine at every time increment. 
Then using the t and θt values, gas mass distribution in the pockets is determined 
through the following expressions.

	
θ
θ
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θf is the limiting angle till which mass is distributed according to the aforementioned 
polynomials. When value of θt reaches θf, the mass distribution in all the pockets becomes 
independent of the angle, now they are distributed according to their volume fractions, 
which can be observed in Figure 8.2. This is because, the constriction in the passage area 
has now vanished, thus the pressure in the pockets will be equal from there onwards.

Since, at any instant of time, density of gas is assumed uniform and constant. 
Thus, the maximum amount of gas in each pocket (i.e. in a fully deployed state) is 
distributed as per the volume fraction as

	 χ χ= =   
V
V

V
V

a
a

b
b 	 (8.7)
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Now the mass distributions are as follows

	 χ= ⋅   m mtta a	 (8.8)

	 χ= ⋅ m mttb b	 (8.9)

Note that, since these polynomials are the function of time thus, they keep changing 
with each time increment. The amount of mass in pocket ‘a’ can be obtained cor-
responding to θt, by following the grey curve with respect to time. The amount of 
mass in pocket ‘b’ can be obtained corresponding to θt, by following the black curve 
with respect to time.

Now, since the mass distribution functions are established, the pressures in the 
pockets can be computed by ideal gas equation as follows.

	 ( ) =P t
m RT

V
a

ta

a

	 (8.10)

	 ( ) =P t
m RT

V
b

tb

b

	 (8.11)

8.4 � NUMERICAL SIMULATION

The finite element model is simulated in ABAQUS 2017 software in dynamic implicit 
mode. The element type of inflatable structure is M3D4R which is suitable for the 
membrane materials. This is a nonlinear analysis. There is no dedicated step for 

FIGURE 8.2  Mass distribution regime of gas in pockets a and b at time t.
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folding of structure. Rather, it is modeled as readily folded structure in its free state, 
made by stacking four 20 × 9 cm2 membranes. The corresponding edges of these four 
membranes are joined using tie constraint. User-defined loading DLOAD is used 
with the amplitude of 1 for defining the pressure load which varies with respect to 
position and time.

8.4.1 �D escription of CAE model

The discussed structure is a cylindrical tube of length 21cm and width 9 cm in its flat-
tened state, as shown in Figure 8.3. It has on z-fold in its middle. After full deployment, 
it acquires a length of almost 40 cm and diameter in its mid is 5.7 cm. The material is 
considered to be homogeneous and isotropic with Young’s modulus of 18e+6 N/m2. 
The thickness of the membrane is 0.0125 cm. There are 1512 M3D4R membrane ele-
ments, employed for the models which do not possess any bending stiffness. A self-
contact tangential behavior penalty friction is introduced between the surfaces with a 
coefficient of 0.01. For this model, the self-contact friction method is chosen since it 
produces a higher convergence rate and better deployment characteristics. The entire 
structure is treated as a single surface, with the self-contact norms being applied on 
both sides. It’s a straightforward technique to deal with the connections between the 
layers and between the skins at the same time. This is a simple and quick approach 
to use. Both the pockets are of equal volume, and therefore the volume fractions of 
both the pockets are 0.5. 

8.4.2 �C oncerned Inflation Models

The inflation gas enters through the rear end of the pocket ‘b’ as shown in Figure 8.1 
with constant mass flow rate m. As the mas enters the angle between the two pockets 
at the fold starts increasing. This angle is assessed using the subroutine and mass is 
distributed accordingly.

FIGURE 8.3  Depiction of all the interactions among the surfaces (squares depict friction 
interactions and circles depict tie constraints).
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First-order and second-order polynomial relations between mass and angle have 
been discussed in this chapter with the following attributes. Their respective curves 
are shown in Figures 8.4 and 8.5.

θo = 180°, it is the maximum value of θ when inflatable is fully deployed.
χa = χb= 0.5, because volume of both the pockets are equal.
θf = 90°, computed from equation 8.6. It means that mass is equally distributed 

after 90°.
For first-order polynomial function
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For second-order polynomial function
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FIGURE 8.4  Mass distribution of gas in pockets a and b at time t using linear polynomial 
function.
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When the value of θ hits θf the mass distribution in both the pockets become equal, 
which means that the area of gas passage at the fold has become big enough that, 
there is no constriction between the two pockets anymore. Thus, the load increases 
abruptly at this point.

Also, it is seen that, as the order increases, θf tends to shift towards θo. This sug-
gests that higher-order polynomial functions equations 8.14 and 8.15 are suitable for 
more constricted (or less allowability) fold situations, where the constriction area gets 
open at larger angles and with a smaller rate.

8.4.3 �U ser Subroutine

A DLOAD subroutine has been used in this dynamic implicit analysis. For every 
increment of time, the subroutine is called as many times as much there are elements 
in the model. Every time some iteration is performed and load is applied till the solu-
tion converges.

As per the proposed model, the magnitude of load acting on elements depends 
on the angle of fold at that instant of time. This angle is computed in two stages. In 
the first stage, the coordinates of a pair of elements present on each side of a pocket, 
one next to the crease and another a little farther away along its length are obtained, 
as shown in Figure 8.6a. Their respective coordinates are written in four differ-
ent external database files (one file for each coordinate) at every time increment.  

FIGURE 8.5  Mass distribution of gas in pockets a and b at time t using quadratic polyno-
mial function.
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When coordinates of all these four elements have been registered, then comes the 
second stage where all the four files are opened and the coordinates of these ele-
ments are read. Two vectors can be computed using these coordinates. These vectors 
almost lie in the planes of the adjacent pockets. Then, using the cosine rule, the angle 
between these two vectors is calculated. This is the angle between the two pockets at 
a certain time, as shown in Figure 8.6b.

The angle at every time increment is computed and written in an external data-
base so that their value can be procured to compute the magnitude of load Pa and Pb 
by equations 8.10 and 8.11 as discussed in the inflation model in Section 8.2. Since 
the range of elements of each pocket is known, so Pa and Pb can be applied to those 
elements of pocket ‘a’ and pocket ‘b’ respectively.

The flow chart of the complete methodology is as follows (Figure 8.7). 

8.5 � RESULTS AND DISCUSSION

8.5.1 � Simulation Result

The uncertainty observed during the analysis of the mechanical behavior of inflat-
able elements, is mainly due to the strong nonlinear phenomena, both in the material 
and the geometric since it is a large displacement problem. The mechanical behavior 
of inflatable structures shows a strong nonlinear dependence of the internal pressure 
because it is the internal pressure, due to which the deformation of the membrane is 
happening (Barsotti and Ligarò, 2014). As the internal pressure keeps growing up, 
the overall stiffness of the structure also keeps increasing. Also due to variation of 
internal pressure with respect to time and position, during the inflation process, one 
can notice that the structure undergoes more perturbation and displacement in space.

Deployment using first-order polynomial functions (Figures 8.8 and 8.9). 
The deployment starts with stress-free configuration where the structure is in a 

folded state. Thus, there is no stiffness initially in the structure. Then gas starts to 
rush in at a constant rate. It is the time when stiffness in the structure starts build-
ing up but differently at different positions. Initially, the pocket ‘b’ (attached to the 
valve) gets pressurized/stiffened at a faster rate due to more allowability to gas in 
this region, but the pressure in the farther pocket i.e. ‘a’ increases with a very slow 

FIGURE 8.6  (a) Selected elements of registered coordinates in first stage. (b) Computing 
vectors and angle between them in second stage.
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rate because of the large constriction present at the crease. As the inflation proceeds, 
the angle between the pockets grows, and thus the constriction area grows. Hence, 
increasing allowability of gas into pocket ‘a’. Later, pressure in ‘a’ also starts catch-
ing up with ‘b’. According to the model discussed in Section 8.3, when the θ hits the 
value of θf, the constriction comes to end. This is the point when pressures in both 
pockets become equal. Now the deployment starts to happen with uniform pressure 
throughout the internal surface of structure. Finally, when θ hits θo the structure gets 
fully deployed. Further to this point with an increase in the gas inlet, internal pres-
sure increases which start causing pre-tension in the membrane walls.

FIGURE 8.7  Flowchart of complete methodology.
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Deployment using second-order polynomial functions (Figures 8.10 and 8.11). 
The qualitative trends in both the cases are similar, i.e., in both the graphs the 

initial pressure rises in pocket ‘a’ is higher than ‘b’. Later, the pressure of ‘a’ catches 
up with ‘b’. Finally, when the θ becomes θf, both the pressures become equal. The ups 
and downs in the trends are also observed in the deployment process. This is incurred 
due to the variation in stiffness at the crease portion in the structure. This variation of 
stiffness is quantified by finding the angle between the pockets. Also, one can clearly 

FIGURE 8.8  Pressure variations in pockets a (black) and b (grey) with respect to time using 
first-order polynomial function

FIGURE 8.9  FE simulation results in sequence with first-order polynomial function.
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notice that the gap in the first-order polynomial function is relatively lower than in 
the second-order polynomial function. This happens due to the use of higher-order 
polynomial; thus, the appropriate formulation must be implemented according to the 
features of the structure and process, as discussed in Section 8.2.

FIGURE 8.10  Pressure variations in pockets a (black) and b (grey) with respect to time 
using second-order polynomial function.

FIGURE 8.11  FE simulation results in sequence with second-order polynomial function.
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8.5.2 �V alidation Experiment

The experimental results of Salma et al. (Salama, Kuo and Lou, 2000) have been 
taken for validation. They have considered a structure of the same geometric attri-
butes. The structure is folded in its middle in the stowed state. Deployment is done 
by a pneumatic pump attached to pressure regulator and flow meter. Pressure in 
each pocket is monitored by separate pressure gauges. The simulation results have a 
resemblance with their experimental results. However, some difference also shows 
up due to the following reasons.

There are quite some differences between the conditions of experiment and simu-
lation, experiment is carried out with slow inflation of structure for 1.5 minutes. This 
is computationally difficult to conduct in CAE analysis. Also, liberty in analysis has 
been taken in considering comparatively small Young’s modulus in order to reduce 
stiffness of the structure, to reduce computational difficulty. Gravity and ambiance 
pressure are neglected in the analysis. The membrane element considered in analysis 
M3D4R does not have bending stiffness but actually the membrane structures do 
possess very small bending stiffness. The pressure variation model is of very primi-
tive level that uses rigid body analysis and ideal gas equation.

Even after these limitations, a good agreement between the pressure curves in 
experiment and simulation is seen. So only a qualitative comparison between experi-
ment and simulation can be seen which shows that the trend of pressure variation 
looks very alike.

8.6 � CONCLUSION AND FUTURE SCOPE

An FE analysis for the deployment of simple inflatable structure has been done in 
this chapter. All the complexity of large displacement problem which is nonlinear in 
nature can be handled using soft computing and AI. Computing the cross-sectional 
area (at the crease) is cumbersome, so in place of that, an interim angle between folds 
has been employed during deployment. As this angle changes, the mass flow and thus 
the pressure across the crease also changes. In this chapter, the relation between this 
rate of change of pressure across the crease with respect to the interim angle has been 
successfully discussed. With the full development of artificial intelligence algorithm, 
correct function for pressure variation can be judicially selected as per the material 
properties and inflation conditions. This will be very helpful for generative design-
ing of inflation process and will be more sustainable because it will reduce a lot of 
experimental and computational consumption of resources without compromising 
much with the result.
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9.1 � INTRODUCTION

In a refrigeration system, the Coefficient of performance (COP) is termed as the ratio 
of desirable effect in the evaporator and work input to the compressor [1]. It can be 
depending upon fluids used in the vapour compression refrigeration (VCR) cycle. In 
refrigeration and air conditioning system (RAC), two types of fluid are used: one is 
refrigerant used as a cooling gas and the other is compressor oil to lubricate and cool 
the compressor as possible [2–6]. In RAC system including home refrigerator, chiller 
and automobile refrigeration, R134a is a commonly used alternative refrigerant. This 
refrigerant has been accepted in many countries as an alternative refrigerant. The 
polyolester (POE) oil, mineral oil and PAG oil are used as compressor oil but POE 
oil has great chemical polarity with R134a refrigerant. In order to enhance COP, 
heat transfer in the used fluid plays an important role. The heat transfer is enhanced 
to increase the transport properties of the fluid. Nanoparticles are introduced in the 
base fluid, either refrigerant or lubricant, to modify the transport properties of heat 
transfer flow [7–9]. The nanoparticle (range between 1 and 100 nm) is suspended 
in the base fluid to engineer a new class of fluid having good thermal properties 
called nanofluids. Choi and Eastman first introduced the concept of nanofluid in 1995 
[10–12]. Bi et al. [13] took TiO2-R600 as a nano refrigerant and found that the system 
works efficiently and smoothly. The energy is saved 9.60% when using 0.5 g nanopar-
ticles per liter of refrigerant. Hussen [14] took R22 refrigerant and investigated the 
effect of titanium-based mineral nano lubricant in a window-type RAC system. The 
result shows that the network on compressor is decreased and improved the perfor-
mance. Kumar et al. [15] did work on PAG-Al2O3 nano lubricant and R134a-Al2O3 
as a nano refrigerant in a VCR system. When 0.2% volume of concentration of alu-
minum dioxide is used in oil, then 10.32% less energy is required in comparison to 
simple PAG oil. Bi et al. [16] studied the performance of home refrigerators and used 
nano TiO2 embedded mineral oil and R134a refrigerant. The functionality in this 
condition works safely and a decrement of 26.1% energy consumption when using a 
TiO2 of 0.1% mass fraction with mineral oil in the context of without nanoparticles.

Manivannan et al. [17] use different machine learning algorithms to predict the 
air-conditioning load of a residential building on an hourly and daily basis. The data 
is taken from conventional smart meters and past weather data for training and test-
ing. The result shows that Random Forests gives the best result in terms of prediction 
in the context of other different algorithms. The value of R2 was founded at 87.3% and 
83.2% on an hourly and daily basis, respectively. Reddy et al. [18] investigated the 
domestic refrigerator performance in which a propane/butane mixture as a refriger-
ant in place of R134a refrigerant and got COP of a system. He used ANN and Fuzzy 
logic to get enthalpy at different point as a output and pressure as well as temperature 
as a input to get the maximum COP.

9.2 � EXPERIMENTAL SETUP

9.2.1 � Set Up and Performance Test

Our experiment was conducted on vapour compression test rig that is placed in RAC 
lab, which is shown in Figure 9.1. The test rig encompasses mainly four components. 
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These components are hermetically sealed compressor, air-cooled condenser, capil-
lary tube and evaporator. Fan is used to cool the condenser for heat transfer. The 
spiral coil of copper in the cylindrical form is used in the evaporator for cooling. Heat 
transfer in the condenser and evaporator is done through phase change. This type of 
heat transfer is known as latent heat transfer. Capillary tube is used as a throttling 
device in the RAC system. Copper is used for capillary tube. It is a long tube with a 
smaller inner diameter. It takes up less space due to several turns.

The turn is typically used as a circular shape, but in our experiment, we used as a 
cubic shape, as shown in Figure 9.2. The main objective of a capillary tube is to reduce 
refrigerant pressure from the higher side, resulting in a decrease in temperature.

The instalment of the pressure gauge and digital thermocouple has been done at 
the appropriate point to measure the pressure and temperature, respectively.

The spiral coil of the evaporator is immersed in water. Water is treated as a cooling 
load. The heat flux is constantly supplied by a heating rod of 2000 W capacity, and 
water is agitated to get desire and uniform temperature. The test is carried out with dif-
ferent prepared samples of POE-TiO2 nano lubricant and R134a refrigerant. The nano 

FIGURE 9.1  Setup of vapour compression refrigeration system.

FIGURE 9.2  Shape of capillary tube.
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lubricant is filled in the compressor through the service port firstly then R134a gas is 
charged in the VCR system. The system is allowed to stabilize for 15 minutes every 
time.

9.2.2 �P reparation of Nano Lubricant

Many input and output parameters are there in the area of RAC system. These parame-
ters were related to lubricant used in the compressor and refrigerant used in the VCR sys-
tem. The combination of nanoparticles and compressor oil is termed as nano lubricant. 
The methods used to achieve this combination are very important. There are mainly 
two methods to prepare nano lubricant: one is one-step method and other is two-step 
method. One-step method is very costly and is not used for commercial purpose. So, in 
this case, we used a two-step method to prepare nano lubricant, which is a versatile tech-
nique. The compressor oil used in this experiment was polyolester (POE) oil and nano 
particle titanium dioxide (TiO2) was taken i.e. manufactured by Reinste Nano venture 
Pvt. Ltd. New Delhi. In this method, ultrasonic vibrator is used for uniform distribution 
of nano particle and prepared sample is then kept for ultrasonic bath about 24 hours for 
agitation. Three samples of 0.5, 1.0 and 1.5 g of TiO2 and 1 L of POE oil are prepared for 
the experiment. The nano particle is weighted by digital weighing machine.

9.3 � MACHINE LEARNING MODELS

9.3.1 �G aussian Process Regression

It is a robust tool of machine learning to make a model of unknown functions. It 
is used to solve the regression problem which is non-parametric and kernel-based 
Bayesian approach.

9.3.2 � Support Vector Regression

It is a supervised learning algorithm of machine learning which is based on statistical 
theory. It is a technique to solve the regression as well as pattern recognition prob-
lems. A fit line is generated between the predicted and actual data in SVR.

9.4 � RESULTS AND DISCUSSION

Research deals the study of COP of the VCR system with pure form of basic refriger-
ant R134a with POE oil and nano lubricant POE-TiO2 with cubic capillary tube shape 
of copper. Titanium Dioxide (TiO2) of different concentration i.e. 0.5, 1.0 and 1.5 g 
is mixed in the POE oil. The VCR system starts above combination at different heat 
flux load i.e. 298, 303, 308, 313 and 318 K to check the effect of COP of the refrigera-
tion system. Figure 9.3 shows the effect of different load conditions, concentration of 
TiO2 on the COP of VCR system of the actual experimental data.

Figure 9.3 revels the influence of COP on the basis of evaporative load and con-
centration of titanium dioxide. The combination of R134a and POE oil, the COP of 
the system increases as the evaporative load rises from 295 to 318 K monotonically. 
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When added titanium dioxide nano particles in the POE oil in the concentration 
of 0.5, 1.0 and 1.5 g, the COP of the VCR system increases when evaporative load 
increases from 298 to 308 K after that it decreases to 318 K. The rate of increment in 
COP differs according to heat flux and concentration of nano particles.

For prediction purpose, different soft computing techniques are used in world-
wide today. However, in our study, the most emerging technique machine learning 
is used to predict the outcomes. In machine learning, there are different regression 
algorithms for predictions, but here support vector machine and Gaussian process 
regression with different kernel functions are used. PUK and RBF are kernel func-
tions which are used with above algorithms to predict the COP of experimental data. 
Hence, a machine learning model was developed with different combinations of algo-
rithms and kernels for predictions. The COP of predicted data verses actual data with 
ML models such as GPR_RBF, GPR_PUK, SVR_RBF and SVR_PUK of training 
and testing results are shown in the Figures 9.4 and 9.5, respectively. The developed 
models perform better performance in terms of prediction; kernel parameters are 
optimized, as shown in Table 9.1, and performance parameters such as coefficient of 
correlation (CC) and root mean square error (RMSE) are shown in Table 9.2.

Figure 9.4 gives the information of predicted COP and actual COP with different 
developed ML models of training set. Total twenty experimental data are taken for 
model development. The predicted COP is obtained from training of 75% of experi-
mental data (fifteen data points) of discussed models and these models are tested by 
25% experimental data (five data point), then these models are developed to work accu-
rately. After testing the models, the predicted COP is obtained, as shown in Figure 9.5.

The value of CC and RMSE of different trained as well as tested developed ML 
models are shown in Table 9.2. It is concluded that Gaussian process regression with 
PUK kernel works better in comparison to support vector regression with RBF kernel.

The predicted COP is very close to the experimental COP in training as well as 
testing data set. The intake parameter like concentration of titanium dioxide and 

FIGURE 9.3  Experimental COP with varying temperature (K) and concentration (g).
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evaporative load is a non-linear relationship of COP of VCR system. To perform bet-
ter non-linear relation, GPR and SVR with PUK kernel is most promising ML model. 
The value of CC = 0.9697 (RMSE = 0.0899) and CC = 0.9699 (RMSE = 0.0879) is 
obtained in GPR as well as SVR with PUK kernel function. In context of GPR and 
SVR, SVR with PUK performs better to obtain the predicted COP.

FIGURE 9.5  Predicted coefficient of performance versus actual coefficient of performance 
for the testing data.

FIGURE 9.4  Predicted coefficient of performance versus actual coefficient of performance 
for the training data.
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9.5 � CONCLUSION

In this research, the experimental and machine learning study reveals the perfor-
mance of VCR system with respect to application of nano lubricant with varying 
concentration of TiO2 and different heat flux in the evaporator. It is noted that with 
different concentration of titanium dioxide with POE oil as well as evaporative 
load, the COP of RAC is increased from 298 to 308 K after that it decreases to 318 
K. To forecast the COP, the machine learning technique is used, and different ML 
models such as GPR_RBF, GPR_PUK, SVR_RBF and SVR_PUK are developed 
from experimental data. The performance of these models is expressed in terms 
of CC and RMSE value. From these CC and RMSE value, it can be said that SVR 
with PUK performs well to predict the COP of the system from experimental data.
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10.1 � INTRODUCTION

SPIF entails a set of layer-by-layer plastic deformations that are used to shape a sheet into 
the desired component. To clamp the sheet rigidly, a fixture is used and the tool travels 
over the sheet as per the program command to achieve the final design of the component. 
The benefits of traditional sheet metal forming are that the process can be directly oper-
ated by CNC machines. As in traditional sheet metal forming, no die is needed. In the 
manufacturing phase, the removal of the die decreases the price per piece and rises the 
improvement in time for small manufacture runs as the need to create a die is excluded. 
Since its inception, the ISF process has seen many developments. Industries, such as 
Honda Motor Co., Ltd. & Amino Corp., teamed up to investigate die-less shaping as a 
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potential manufacturing process for car replacement panels. Toyota Motor Corporation 
& Amino Corporation collaborated to manufacture a high-style logo mark and sharp 
feature lines on the door panels of TOYOTA supercharger model iQ-GRMN using the 
ISF process [1]. Vanhove et al. [2] created thin shell clavicle implants using SPIF. Potran 
et al. [3] compared the denture geometry of casted and SPIF-based dentures, and the 
SPIF process gives the desirable and comfort fitting as per patient requirements.

The SPIF method is schematically represented in Figure 10.1. Thickness of the 
formed part using this process follows the sine law of thinning as given in equation 10.1:

	 α α( )= ⋅ π − = ⋅sin /2 sint t tf i i 	 (10.1)

where ti – initial thickness and tf – final thickness, and α is the semi cone angle [4].
Thickness strain in the formed parts using the SPIF process is estimated more effi-

ciently using the FEM. The thickness of the saturation point is measured using the 
thickness strain of the final triangular mesh elements [5]. Yang et al. [6] investigated and 
validated the efficacy of various finite element techniques for predicting sheet thinning 
in formed parts. Yamashita et al. [7] used a dynamic explicit finite element program 
called DYNA3D to numerically evaluate the deformation behavior utilizing multiple tool 
paths. They noticed that a spiral tool path produces a more consistent thickness distribu-
tion in the result. Blaga and Oleksik [8] investigated the impact of the forming method 
by selecting the location of forming tool in the first step in three distinct trajectories. The 
most critical element in thinning ratio is determined to be the forming angle. Using a 
tool path with consistently spaced pressing points, thinning may be effectively reduced. 
Sequential limit analysis was utilized by Mirnia et al. [9] to analyze thickness distribution 
in SPIF. They conclude that more increases in pitch can reduce the minimum thickness. 
The innovative hybrid incremental sheet forming (HISF) technique demonstrated prom-
ising results in terms of improving thickness distribution. Researchers, such as Jagtap and 
Kumar [10], proposed a two-step hybrid incremental sheet forming (HISF) procedure.  
Experiments on the thinning and formability of Al-1050 material sheets are carried 
out. They observed that the shape of the preform tool has a major impact on thickness 
distribution [11]. It is concluded that in the HISF process, the amount of stretching and 

FIGURE 10.1  Schematic representation of symmetric SPIF.
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preform tool radius also have a considerable impact on thickness distribution. Stretching 
causes greater plastic deformation, which leads to more local thinning [12]. Joseph [13] 
studied the thickness deformation and formability of aluminum 5052. The authors per-
formed an FLD analysis for the formability of sheet. There is an influence of tempera-
ture on the formability and thickness distribution sheet. It was found that sheet annealed 
at higher than room temperature results in better thickness distribution. Salem et al. [14] 
studied the effect of tool path on thickness and formability of sheet. The impact of the 
tool path on total strain along the formed part is determined using experimental and 
simulation models. A bending zone is visible near the clamed sheet at the cone forming 
process, with constant thickness reduction followed by severe thinning region. Nirala 
and Agrawal [15] found that ISF result in improved formability as compared to the 
forming or deep drawing methods. A thickness prediction model was also developed 
to predict the thickness of formed parts. More et al. [16] discussed the influence of 
process parameters on performance characteristics such as sheet formability, thickness 
and surface finish.

From the reviewed literature, it is found that the FEM method is useful to pre-
dict the localized thinning and thickness spread in the formed parts using the SPIF 
process. It helps in planning the SPIF process which increases the process perfor-
mance and results in forming accurate and sound sheet metal parts. The present work 
involves numerical analysis of thinning in part formed using the SPIF technique. 
Experiments are performed to confirm the results of the FEM analysis. The simula-
tion plan is designed according to the Box–Behnken experimental design. Analysis 
of variance (ANOVA) is used for statistical analysis. The finding of the simulation 
results is validated by the experimental results.

10.2 � MATERIALS AND METHODOLOGY

In the current work, experiments are implemented on the aluminum alloy Al-6061 blanks. 
The blank sheet dimensions are 85 mm × 85 mm × 0.8 mm. Because of its excellent 
strength-to-weight ratio and formability, aluminum is widely utilized in the automotive 
and aerospace industries. Table 10.1 lists the mechanical properties of the aluminum blank. 
3D model of the conical frustum to be formed is designed using Autodesk Fusion 360 soft-
ware. Helical tool path is generated for forming conical frustum using the SPIF process.

10.2.1 �FEA  Modeling

ABAQUS/Explicit platform was used for the FEA modeling, which is well known 
in the industry for nonlinear analysis. The sheet is assumed to be a deformable shell, 
and the tool is assumed to be analytical rigid. Import G-code from Fusion 360’s 
CAM tools. Isotropic and elastic-plastic sheet materials were assumed [7]. In all non-
linear simulations, the boundary condition must be defined. In this case, as shown in 
Figure 10.3, the sheet edges were encastre in all DOF, and the analytical rigid body 
forming tool was given displacement/rotation in X, Y, and Z smooth step directions. 
For the study, an explicit linear S4R 4-node thick shell type 1 mm element size mesh 
was used. Scale to target time increment 0.01 and scale factor mass uniformly to 
satisfy target was used to minimize CPU time in mass scaling.
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10.2.2 �E xperimental Setup

The experiment was carried out on an AMS mcv-350 three-axis vertical milling machine 
with a FANUC 0I-MF numeric control machine, as shown in Figure 10.4. Al 6061 mate-
rial sheet sizes of 85 mm × 85 mm × 0.8 mm was used according to fixture specification. 
A hemispherical end headed 8 mm diameter tool made of HSS is used to form the per-
fect shape according to the tool direction. The spindle speed was set to 2000 rpm and the 
tool and ramp feed rate was set to 300 mm/min. Figure 10.2 shows a spiral tool path that 
was used to save time. In Table 10.2, there are more input process parameters.

10.2.3 �FEA  Simulation Plan

The response surface method (RSM) is used to plan the FEA simulation in this chap-
ter [17]. The optimum parameters of the SPIF process should be chosen to create 

TABLE 10.1
Material Property

Properties Value

Sheet material Al-6061

Density 2.7 g/cm3

Young’s modulus (E) 68,000 MPa

Tensile yield strength 370 MPa

Poisson’s ratio 0.33

Thermal conductivity 166 W/m/K

Elongation 10.280%

Sheet thickness 0.8 mm

FIGURE 10.2  Cone shape geometry.
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conical frustum sufficient quality of final sheet thickness without failures. The simu-
lation plan employs a three-level Box–Behnken DOE method. Higher-order response 
surfaces are created using Box–Behnken designs, which need fewer runs than a tra-
ditional factorial technique [18]. The thickness of the formed part is measured using 
ABAQUS/Explicit software [19]. The minimum thickness along formed surface is 
used as the response. Table 10.2 lists the constant parameters. Table 10.3 shows the 
factors and their level, which are utilized in the experiment design.

FIGURE 10.3  Boundary condition applied on sheet and tool.

FIGURE 10.4  Experiment setup.
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10.3 � RESULT AND DISCUSSION

10.3.1 �FEA  simulation

The thickness of parts formed by the SPIF process can be approximately predicted 
using the traditional spinning process’ sine law of thinning (equation 10.1). The thick-
ness of the conical frustum is measured along the formed wall in the FEA simulation, 
as presented in Figures 10.5 and 10.6. Figures 10.5 and 10.6 show the thickness along 
the formed wall from the clamped edge to the center of the conical frustum. As pre-
sented in Figure 10.5, to determine the minimum thickness of the formed part, a path 
is generated by collecting points along the edges of the mesh and determining the sheet 
thickness at a specific point. During the simulation, points were monitored to deter-
mine the final sheet thickness of formed parts [20]. Simulated part thickness ranges 
between 0.49 and 0.53 mm along the formed wall, which is approximately validated by 
the sine law of sheet thinning. As a result, the simulations results are in good accord 
with the sine law predictions. Simulated thickness is smaller than the thickness antici-
pated by the sine law of thinning. Similar outcomes were presented by Yang et al. [6].

The maximum forming height of the formed conical frustum is 23.2 mm. In the 
FEA simulation, the maximum height was found to be 22.79 mm, which is very close to 
the actual value. The maximum height of the part formed using simulation is depicted 
in Figure 10.7 and forming height achieved experimentally is shown in Figure 10.8.

10.3.2 �I nfluence of Control Parameters on Minimum Thickness

Simulations were planned using Box–Behnken DOE method. The influence of three-
process parameters specifically pitch (p), tool diameter (d) and feed ( f) on minimum 
thickness is studied. The results are analyzed using ANOVA. ANOVA is done using 

TABLE 10.2
Constant Parameters

Parameters Dimensions

Cone Diameter 45 mm

Wall angle 48°
Height of cone 25 mm

Spindle speed 2000 rpm

Tool path Spiral

TABLE 10.3
Process Parameters

Process Parameters

Unit

Actual values

Levels 1 2 3

Tool diameter (mm) 5 6.5 8

Pitch (mm) 0.35 0.55 0.75

Feed (mm/min) 300 450 600
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FIGURE 10.5  Thickness distribution.

FIGURE 10.6  Thickness vs true distance along path plot.

FIGURE 10.7  Maximum deformation.
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the statistical software tool Minitab 19.0 student’s version. The analysis is conducted 
with a 95% confidence interval. Table 10.4 displays the results of an ANOVA for 
minimum thickness (t). The R2 value of 99.66% and the normal probability plot 
demonstrate that regression fitness is a statistically significant measurement.

The final regression equation to predict minimum thickness is given as follows:

t p d f p p d d

f f p d p f d f

= + − − − +

+ + − −

0.4507 0.7321 0.02372 0.000257 0.5928 * 0.001461 *

0.000001 * 0.00458 * 0.000225 * 0.000006 *� (10.2)

Figure 10.9 shows the normal probability plot graph. Figures 10.10a and 10.11a dem-
onstrate the effect of tool size as well as pitch on thickness. From the figures, it is 
found that a small value of tool diameter and intermediate value of pitch results 
in maximum thickness. In incremental forming, smaller tools are combined with 
small pitch values, which results in less rubbing against the blank sheet. As tool size 
increases, the tool rubs more frequently against the blank sheet which reduces the 
sheet thickness. Similar results are also presented by Jagtap et al. [20].

Figures 10.10b and 10.11b show the result of pitch and feed on minimum thick-
ness. It is found that intermediate values of pitch and maximum value of feed result 
in maximum thickness. While using small tools and small pitch values, the rubbing 
of tool against the sheet is more. As the pitch goes on increasing, vertical tool travel 
after every layer formed is more. For the intermediate pitch value, the repeated rub-
bing of the tool against sheet in the same area is considerably reduced resulting in 

FIGURE 10.8  Height gauge.
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TABLE 10.4
ANOVA Table for Minimum Thickness

Source Degrees of freedom Adjusted SS Adjusted MS F-Value P-Value

Parameter 9 0.004031 0.000448 161.73 0.000

Linear 3 0.000998 0.000333 120.16 0.000

p 1 0.000023 0.000023 8.47 0.033

d 1 0.000434 0.000434 156.58 0.000

f 1 0.000541 0.000541 195.42 0.000

p*p 1 0.002076 0.002076 749.64 0.000

d*d 1 0.000040 0.000040 14.41 0.013

f*f 1 0.000520 0.000520 187.61 0.000

p*d 1 0.000008 0.000008 2.73 0.159

p*f 1 0.000182 0.000182 65.81 0.000

d*f 1 0.000007 0.000007 2.63 0.166

Error 5 0.000014 0.000003

Pure error 2 0.000000 0.000000

Total 14 0.004045

R2 99.66%

Adj – R2 99.04%

FIGURE 10.9  Normal probability plot.
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less thickness reduction. Further, as pitch value goes on increasing, the vertical tool 
travel is more. The increased vertical tool movement results in more plastic strain in 
the blank sheet, which further reduces the wall thickness of the formed part. Figures 
10.10a, 10.11a and b, and 10.10b confirm the trends. At lower feed values, more thick-
ness reduction is observed, as shown in Figures 10.10c and 10.11c.

10.4 � CONCLUSION

A conical frustum of aluminum alloy 6061 was formed using the SPIF method. The 
thickness reduction and formation height of the conical frustum are studied using 
a FEM simulation model created in ABAQUS/Explicit software. Using the Box–
Behnken DOE technique, the influence of process parameters is studied. Experiments 
and published results are used to validate the results. From the research, the subse-
quent conclusions can be derived:

	 1.	The thickness of the formed part is influenced by all process factors, includ-
ing pitch, tool size, and feed.

	 2.	Maximum thickness is obtained with a small tool size, intermediate pitch, 
and maximum feed value.

	 3.	The simulated model’s results are substantially close to the experimental 
results. As a result, a similar model will be beneficial in analyzing the influ-
ence of various process parameters and responses.

(a) (b)

(c)

FIGURE 10.10  Contour plots (a) Minimum thickness vs TD, pitch. (b) Thickness vs pitch, 
feed. (c) Thickness vs TD, feed.
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ABBREVIATION

SPIF	 Single-point incremental forming
CNC	 Computer numerical control
FEM	 Finite element method
ANOVA	 Analysis of variance
DOF	 Degree of freedom
RSM	 Response surface method
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Opportunities and 
Challenges Overcome 
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11.1 � INTRODUCTION

The fourth industrial revolution and the introduction of sustainable production meth-
ods are two major changes that will affect all consumption and production prospects 
in this century. This began historically with the use of steam energy and mechanical 
mechanisms in the first industrial revolution. Then various industries adopted the 
concept of mass production and assembly lines. With the introduction of Robotics 
technology in various stages of production in 1969, automation and information 
technology became the focus of the third industrial revolution. Current revolution is 
based on the technology as shown in Figure 11.1. 
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11.2 � DEFINITION AND FRAMEWORK

11.2.1 �I ndustry 4.0

Industry 4.0, also known as fourth industrial revolution, is the constant automated 
application of advanced smart technology in the conventional industrial and manu-
facturing process. Communication between machines on an industrial scale rein-
forced with the Internet of Things brings about more automation, connectivity and 
self-control. Intelligent gadgets are being implicated which can completely analyze 
and diagnose problems without the need for human involvement.

11.2.2 � Smart Manufacturing

Intelligent manufacturing includes a variety of technologies, including cyber-physical 
manufacturing systems, Internet of Things, robotics/automation, big data analysis, 
turning the concept of data-driven networks into reality. But, it does not replace 
people with machines and AI in the workshop, rather it empowers them by intelligent 
design of solutions tailored to specific areas.

11.3 � MODERN TECHNOLOGIES ASSISTING SMART  
MANUFACTURING

For manufacturing to be smart, it must incorporate modern technological advances 
in its production process. Some of the basic parameters of a brilliant system, and its 
role in smart manufacturing is shown below.

FIGURE 11.1  A timeline of industrial revolution.
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11.3.1 �D igital Manufacturing

It is defined as a combined and comprehensive approach to manufacturing which revolves 
around computer systems and automation. It allows virtual simulation on digital models 
without any experiment or prototypes and hence assisting in decision-making. It affects 
every facet of manufacturing from design and production to service and feedback.

11.3.2 �A rtificial Intelligence and Machine Learning

With the onset of the augmented age, biological intuition combined with power-
ful algorithms and high-performance computers have the capability of transform-
ing the entire process of design, manufacturing, logistics and consumer feedback 
mechanisms. Generative design is one such technique that allows detailed descrip-
tions created by humans to be incorporated into artificial intelligence algorithms as 
presented in Figure 11.2. The information can include various parameters, such as 
available production resources, budget, and time. The algorithm checks all possible 
options and generates several optimal solutions. Right now, Artificial intelligence 
is completely objective and has to start from ground zero every time. There are no 
unproven assumptions, which are different from what humans might have. But they 
have shown unparalleled ability of optimization, decision making and to respond to 
various types of physical input. 

11.3.3 �I nternet of Things

The Internet has been around for a while, and in its entire lifespan it has been mostly 
about connecting computers and through that connecting people, hence it may be 
termed as Internet of people. A smart factory incorporates IoT by linking every 
entity, every piece of machinery into an internet cloud letting them interact with each 
other allowing the entire factory to behave like one single unit with various parts 
working in synergy to complete a given task.

FIGURE 11.2  Representational image comparing conventional and generative design.
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11.3.4 � Big Data and Analytics

Big data analysis can help manufacturers determine the current status and product 
defects in real time, making products more consumer-friendly, understanding the 
buying habits of the population at large and unleashing the potential of data-driven 
predictive production and marketing. To fulfil the demands of a wide variety of cli-
ents, the manufacturers want to tailor their product designs based on this knowledge.

11.4 � CHALLENGES OF SMART MANUFACTURING AND FOURTH  
GENERATION INDUSTRIES

11.4.1 � Security of Computer-Based Systems

Smart system requires a network connection and is especially organized through 
the Internet. It is necessary to implement system-wide data and information security 
in multiple places, with a universally unique identification number and full-proof 
data encryption and protection. Therefore, every connection in the network must be 
shielded from external attacks and data abuse.

11.4.2 � Multilingualism and Diversity

In a diverse world like ours, smart manufacturing processes should be capable of 
managing multilingual operations, interpreting any type instruction supplied in any 
language into machine language, thus allowing it to function without excluding any 
demographic.

11.5 � CONCLUSION

Fouth-generation industries are bringing about an advancement of manufacturing 
capacity and are improving the operations via sturdy integration of physical and 
network capabilities, compounded by the evolution of big data and its analysis. 
One of the challenging factors of intelligent manufacturing systems is the compat-
ibility between old machinery and systems with new technology. The effective 
deployment of smart technologies in the actual industrial area requires appropriate 
development of intuitive artificial intelligence augmented with big data processing, 
CP systems, augmented, virtual reality, IoT, automated machines and other related 
technologies. This will optimize the manufacturing thus putting less burden on the 
environment as well.
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12.1 � INTRODUCTION

Metal matrix composites (MMCs) play a significant role in the manufacturing sector’s 
growth because of their excellent properties such as high strength, toughness, corro-
sion resistance, stiffness, etc. These materials’ demand is increasing progressively in 
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many sectors viz defence, aerospace, medical and automobile industries [1]. In gen-
eral, in MMCs, abrasive materials are used as a reinforcement material that causes 
severe tool wear in conventional machining [2]. Consequently, machining of MMCs 
is very expensive.

End milling machines are used for light milling operations, producing small 
holes, and cutting slots. The end milling operation is preferably performed on a verti-
cal milling machine. A multi-tooth cutter known as end mill, rotates along the axis 
with respect to the workpiece. This milling operation is one of the most utilized 
material removal operations in various manufacturing industries due to its faster 
metal removal ability and reasonably fine surface finish [1–2]. Numerous machining 
factors affect the surface finish and tool flank wear. The surface integrity of the work 
part is most significant in the functional behaviour of the components undergone in 
the milling process. Surface finish is an imperative factor as it affects the practical 
properties of the machined component. Here is the need for advanced materials that 
can fulfil the requirement of automotive and aerospace industries, High-performance 
applications in these manufacturing industries have been significantly increased 
using MMCs. These are the new class of materials that are being preferred for their 
improved properties as compared to conventional metals and alloys [3–7].

To obtain a fine surface, the selection of machining parameters is the most vital 
part of the machining method. This experimental study observes the cut quality of 
machined part, based on three machining parameters by the combined effect of the 
analysis of variance (ANOVA) and multi-criterion-decision-making methodology 
(MCDM). The aluminium alloy LM24 reinforced with 2 wt.% of B4C fabricated by 
using an ultrasonic-assisted stir casting technique. LM24/2%B4C composite is used 
as workpiece material for end milling operation. Composite material is a combina-
tion of base alloy and reinforced particulates of material, which is composed of two 
or more elements that are dissimilar in shape and chemical composition and are 
insoluble in each other. In this investigation, the “Technique for Order Preference by 
similarity to Ideal Solution” (TOPSIS) approach was utilized to optimize the multi-
response characteristic of end milling of LM24/2%B4C composite material.

The Taguchi methodology is a frequently used optimization technique for 
improving quality. However, this method has limitation that it can optimize only 
one-response characteristic. There are many MCDM methods available, such as 
TOPSIS, utility concepts and grey relational analysis, etc. However, it was observed 
that these techniques were applied by a few researchers for different manufacturing 
processes. Further, a few studies are available on the optimization of end milling 
machining parameters with MCDM. Thus, this investigation intended to examine 
end milling machining parameters by changing the level of the spindle speed, feed 
rate, and depth of cut (DOC) while machining of LM24/2%B4C composite material, 
the output MRR and Ra were measured as a response characteristic.

Among the different MCDM methods, TOPSIS is found to be the most effec-
tive technique. Ravikumar et al. predicted optimal drilling condition by using Grey 
Taguchi-based TOPSIS technique (GT-TOPSIS) [8]. Kasdekar and Vishal solved the 
multi-response parameter optimization problem in electrical discharge machining by 
using entropy-based TOPSIS [9]. Yuvaraj and Kumar utilized TOPSIS for the opti-
mization of multi-response characteristics in an abrasive water jet (AWJ) machine. 
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It was reported that multi-response characteristics can be enhanced by the TOPSIS 
approach [10]. Sivapirakasam et al. implemented the combination of Taguchi and 
fuzzy TOPSIS to optimize electrical discharge machining parameters for green 
manufacturing [11]. Asokan and Senthil Kumar reported that TOPSIS with AHP is 
helpful in selecting the optimal parameters setting for turning the Inconel 718 [12].

12.2 � MATERIALS AND METHOD

12.2.1 �F abrication of Composite Material

LM-24 (Al-Si8Cu3.5), as given in Table 12.1, is utilized as an alloy material for 
matrix of composite. Small pieces of LM-24 square rod were used for easily placing 
the alloy inside the crucible. A very hard boron–carbon ceramic material, Boron 
carbide (B4C), was used as reinforcement particulates (Table 12.2). Metal matrix 
composites are formed by using the stir casting technique. Approximately 1.430 kg 
of aluminium alloy LM24 were cut into pieces by using Grinder. Heating of base 
aluminium alloy in ceramic crucible at a temperature of 700°C and allowed into the 
molten form. A thermocouple is used for measuring the raised temperature of fur-
nace. At 570°C, the alloy started melting measuring the temperature using thermo-
couple. Now, the reinforcement particle 28 g weighted by digital weighing machine 
preheated at 400°C in pre-heater to extract gases and moisture content present in the 
particles. Base alloy was completely melt at 670°C. 2 wt.% of magnesium wrapped in 
aluminium foil in like small capsules, as shown in Figure 12.1a, approximately 14 g. 
To increase the wettability, it was added to the molten metal. Stirring was started to 
homogenize the temperature and at every stage before and after adding the reinforce-
ment into the molten alloy took place. The mechanical stirring was performed up to 

TABLE 12.1
Properties of LM 24 Alloy
1 Density 2.7 g/cm3

2 Melting point 580°C

3 Poisson’s ratio 0.3

4 Modulus of elasticity 70–80 GPa

TABLE 12.2
Properties of Boron Carbide

Properties Description

Chemical formula B4C

Molar mass 55.255 gm/mole

Appearance Black powder (greyish black)

Density 2.45 gm/cm3

Particle size 400 mesh or 37 microns
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10 minutes. The rotational speed of stirrer was constant at 250 rpm, and it can stir 
the melted metal from the bottommost of the crucible, as shown in Figure 12.1(b).  
The reinforcement particles that were preheated, mixed at the rate of 10–20 g/min 
into molten metal. The molten metal was then kept in a crucible in a static condition 
for approximately 30 seconds, and later, it was transferred into the flat mold.

12.2.2 �E xperimental Procedure

LM24/B4C was utilized as a workpiece material and carbide as a tool material. Feed 
rate, speed, and DOC were noted down as input factors, whereas MRR and RA were 
noted down as output parameters. Various input process parameters (Table 12.3) were 
selected by extensive evaluation of the literature review. Literature review and subse-
quent pilot experimentation were the basis of the selection of input machining param-
eters. Parameters such as speed, feed rate, and DOC are vastly used among milling 
researchers. Experiments are carried out in accordance with the RSM technique uti-
lized in experimental design. The computation of the codes as functions of range of 
interest with each factor having a central composite design where in the three input 
variables have five levels between ±2 coded values. We performed twenty experimen-
tal runs. The number of tests needed to perform is selected with the standard 2k full 
factorial central composite design. Value of α is taken as 1.682 throughout the work.

(a) (b)

(c) (d)

FIGURE 12.1  (a) Show a physical picture of magnesium powder. (b) Show a physical process 
of mechanical stirring with crucible. (c) Show a physical picture of vertical milling machine. 
(d) Show a physical picture of work samples made by ultrasonic-assisted stir casting technique.
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The end milling operation was performed on a vertical milling machine, as shown 
in Figure 12.1c. The tool used is the carbide tool having 8 mm diameter with four 
flutes. The workpiece composite material in the form of a rectangular shape is shown 
in Figure 12.1d. Measurement of surface roughness is computed using Surtronic 3+ 
instrument at 0.4 mm cut off. Ra, which is the universally recognized and vastly uti-
lized international parameter of roughness.

12.3 � METHODOLOGY

The standard procedure of the TOPSIS methodology for narrowing down the best 
substitute from the ones available is as follows:

•	 First, the objective is determined, and following those the pertinent appraisal 
attributes are identified.

•	 From the normalized decision matrix. Rij , the corresponding normalized 
value, can be denoted as:

	

∑
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	 (12.1)

•	 A set of weights wj  (for j = 1 … n) is used for deciding on the comparative 

rank of varying attributes with respect to the objectives. Such that ∑ = 1wj .

•	 Next, the weighted normalized matrix Vij was calculated by

	 = × V R wij ij j	 (12.2)

•	 Next, the ideal (best) and ideal (worst) solutions were obtained by

	 { }( ) ( )= ′ =+
max € , min € 1,2,V V j J V j J i mij ij

	 { }= + + + + +
, , , ,1 2 3 4V V V V Vm 	 (12.3)

	 { }( ) ( )= ′ =−
min € , max € 1, 2,V V j J V j J j nij ij 	 (12.4)

TABLE 12.3
Input Parameters and Level

Parameters L1 L2 L3 L4 L5

Speed (rpm) 248.75 380 572.50 765 896.25

Feed (mm/min) 26.14 50 85 120 143.86

Depth cut (mm) 4.32 5 6 7 7.68
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where beneficial attributes are linked with ( )=+
1, 2,J N j and non-

beneficial attributes are linked with ( )= =−
1 1, 2,J N j.

+  Vj  = ideal (best) value, −  Vj  = negative ideal (worst) value.
•	 The Euclidean distance is used to show separation of each alternative from 

the ideal one and was calculated as.
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•	 The relative proximity, Pi, of a given alternative to the ideal solution may 
be obtained by:
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•	 A set of alternatives was obtained in the downward order, according to the 
value of Pi. This indicates the most ideal and least ideal solution. Pi may also 
be known as composite performance alternative [13–14].

12.4 � RESULT AND DISCUSSION

End milling due to conventional machining procedures undoubtedly gives better out-
comes than other conventional machining methods. Through better results, the high 
initial cost is compensated. It was performed on LM24/B4C workpiece using a car-
bide cutting tool. The influence of the selected machining parameters on responses 
was evaluated and is explained in the following sections.

12.4.1 �E xperimental Result

The experiments of milling machining on LM24/2%B4Cp composite metal matrix 
in automatic vertical milling machine were investigated.

12.4.2 �ANOVA  Result for Response MRR

The results were examined for ANOVA for the tailored RSM quadratic model and 
ANOVA for each individual term on the performance characteristics are presented in 
Table 12.4 The examination of variance was used to understand the significance and 
influence of the cutting parameters on output characteristic MRR.

F-value of the model suggests that the model is significant, as given in Table 12.4. 
In this analysis feed, DOC and interaction between feed*doc, are significant for MRR. 
The “Lack of Fit” F-value of 4.48 exhibits that there is very less noise in the process.  
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In this analysis, it was found that R2 is 0.9952, it means the mathematical model is 
99% efficient. “Adeq Prec” calculates the S/N ratio. This ratio can be desirable if it 
is greater than 4.

12.4.3 �ANOVA  for RA

The outcomes were studied for ANOVA to suited RSM linear model and ANOVA for 
each term on the responses are presented in Table 12.5. The examination of variance 
was utilized to know the significance and influence of the cutting parameters on the 
response variable RA.

F-value of the model suggests that the model is significant as given in Table 12.5. 
In this analysis, speed and DOC are significant for RA.

12.4.4 �T he Effect of Machining Parameters on the Responses

The nature of surface plot as shown in Figure 12.2 depends on the moment of 
feed and DOC. Upon increasing the DOC and the feed leads to MRR increased. 
Whenever DOC is fixed at any point, then MRR varies according to the variation 
of feed for the range of 50–120 mm/rev. Also, when feed is fixed at any point, then 
MRR varies according to the variation of DOC 5–7 mm. When one parameter is 
fixed, the moment of MRR is slow but when both the parameters that is DOC and 

TABLE 12.4
ANOVA for Quadratic Model

Source Sum of Squares Df Mean Square F Value
p-value
Prob > F

Model 3.858E+006 9 4.287E+005 229.11 <0.0001 Significant

A-A 322.36 1 322.36 0.17 0.6869

B-B 2.911E+006 1 2.911E+006 1556.00 <0.0001

C-C 5.230E+005 1 5.230E+005 279.52 <0.0001

AB 514.40 1 514.40 0.27 0.6115

AC 279.31 1 279.31 0.15 0.7073

BC 84569.45 1 84569.45 45.20 <0.0001

A2 9443.61 1 9443.61 5.05 0.0485

B2 3.342E+005 1 3.342E+005 178.60 < 0.0001

C2 172.44 1 172.44 0.092 0.7677

Residual 18711.19 10 1871.12

Lack of fit 15297.29 5 3059.46 4.48 0.0627 Not significant

Pure Err 3413.90 5 682.78

Cor total 3.877E+006 19

Std. Dev 43.26 R2 0.9952

Mean 983.19 Adj R2 0.9908

C.V.% 4.40 Pred R2 0.9680

PRESS 1.242E+005 Adeq Prec 51.900
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feed increase MRR increases rapidly to the maximum. From Figure 12.3 surface 
plot shows the outcome of the rotational speed and DOC on the surface finish. The 
surface roughness is seen to be very sensitive to DOC. As DOC in the range of 
5–7 mm increased the roughness increased to maximum then by speed. The surface 
roughness slightly affected by cutting speed. When the cutting speed is increased to 
maximum and DOC at minimum value RA is minimum. Thus, to get better surface 
finish the machining parameters at a speed 380 rpm, DOC at 5 mm.

TABLE 12.5
ANOVA for RA

Source Sum of Squares Df Mean Square F Value
p-value
Prob > F

Model 7.23 3 2.41 13.83 0.0001 significant

A-A 3.37 1 3.37 19.37 0.0004

B-B 0.37 1 0.37 2.13 0.1638

C-C 3.48 1 3.48 20.00 0.0004

Residual 2.79 16 0.17

Lack of fit 2.14 11 0.19 1.49 0.3455 Not significant

Pure Err 0.65 5 0.13

Cor Total 10.02 19

Std. Dev. 0.42 R2 0.7217

Mean 1.85 Adj R2 0.6695

C.V. % 22.54 Pred R2 0.5362

PRESS 4.65 Adeq Prec 12.504
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FIGURE 12.2  A three-dimensional graph showing surface plot in which increment of MRR 
on Y-axis, decrement of depth of cut on X-axis and increment of feed on Z-axis.
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12.5 � OPTIMIZATION OF MILLING PARAMETERS

12.5.1 �TOP SIS Algorithm

	 1.	First, determine the purpose and found the appropriate evaluation attributes. 
Taking the responses from experimental results as MRR and surface rough-
ness known as Attributes. Experimental run and experimental result data are 
identified in column as attributes. It is in the non-normalized form and units.

	 2.	Obtained the normalized decision matrix and it can be shown as follows:

	

∑
=

=

2

1

R
a

a

ij
ij

ij

i

m

	 3.	Using this formula obtained a normalized decision matrix for MRR and 
RA. As shown in Table 12.6.

	 4.	Decided on the comparative rank (i.e. weights) equally as 0.05 for differ-
ent 20 attributes with respect to the objective. Attain the weighted normal-
ized matrix Vij (Table 12.7). It is calculated through the multiplying of every 
single component of column of the matrix both for MRR and RA with its 
corresponding weight wj (0.05). The weighted normalized matrix Vij is cal-
culated by equation 12.2.
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FIGURE 12.3  A three-dimensional graph showing surface plot in which increment of sur-
face roughness on Y-axis, decrement of speed on X-axis and increment of feed on Z-axis.
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	 5.	The best and worst ideal solutions are obtained by equations 12.3 and 12.4 
respectively.

Ideal (best) solution for MRR, in this case, higher MRR is appreciated 
(“higher-is-better”), max. value of MRR is considered the best solution. In 
the case of RA, ideal (best) solution is minimum RA value. It means “lower 
is better” is considered the best solution for RA. The ideal (worst) solution 
will be vice-a-versa for both cases. The best and worst ideal solution of 
responses is given in Table 12.8.

	 6.	The difference in measures is obtained. Euclidean equation is used to give 
the difference of each alternative from the ideal one.
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	 7.	Calculate the comparative closeness of a certain substitute to the ideal 
answer, Pi is measured by:

TABLE 12.6
Normalized Decision Matrix

Run MRR Ra Normalized MRR Normalized Ra

18 825 1.692 0.171244 0.190817

14 1187.62 3.385 0.246513 0.381747

6 700 2.064 0.145298 0.23277

8 1773.34 2.025 0.36809 0.228371

12 2127.2 1.828 0.44154 0.206155

16 868.54 1.304 0.180282 0.14706

1 500 1.564 0.103784 0.176382

3 1130 2.36 0.234552 0.266151

13 576 1.32 0.119559 0.148864

15 838 1.648 0.173942 0.185855

10 912 0.88 0.189302 0.099243

7 1789.9 2.22 0.371527 0.250363

5 685.71 2.75 0.142332 0.310134

17 848 2.1 0.176018 0.23683

20 894.28 2.33 0.185624 0.262768

2 475 0.55 0.098595 0.062027

4 1200 1.16 0.249082 0.13082

9 976.86 3.076 0.202765 0.346899

11 478.28 0.987 0.099276 0.11131

19 878 1.8 0.182245 0.202997
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	 8.	 In this step, a set of substitutes is articulated in a downward manner. The Pi 
showing the most favoured and least favoured possible solution (Table 12.9).

The proximity coefficient values of input parameters are given in Table 12.10. The 
optimum level of process parameters will be a number with the larger proximity 
coefficient value. According to the closeness of coefficient values, the most preferred 
feasible solution is 0.768316, and the least preferred feasible solution 0.106092.  
The comparative proximity is used to decide the optimal combination of machining 

TABLE 12.7
Weighted Normalized Decision Matrix

Run Normalized MRR
Weighted Normalized

0.05 × MRR Normalized Ra
Weighted Normalized

0.05 × Ra

18 0.171244 0.008562 0.190817 0.009541

14 0.246513 0.012326 0.381747 0.019087

6 0.145298 0.007265 0.23277 0.011638

8 0.36809 0.018404 0.228371 0.011419

12 0.44154 0.022077 0.206155 0.010308

16 0.180282 0.009014 0.14706 0.007353

1 0.103784 0.005189 0.176382 0.008819

3 0.234552 0.011728 0.266151 0.013308

13 0.119559 0.005978 0.148864 0.007443

15 0.173942 0.008697 0.185855 0.009293

10 0.189302 0.009465 0.099243 0.004962

7 0.371527 0.018576 0.250363 0.012518

5 0.142332 0.007117 0.310134 0.015507

17 0.176018 0.008801 0.23683 0.011841

20 0.185624 0.009281 0.262768 0.013138

2 0.098595 0.00493 0.062027 0.003101

4 0.249082 0.012454 0.13082 0.006541

9 0.202765 0.010138 0.346899 0.017345

11 0.099276 0.004964 0.11131 0.005565

19 0.182245 0.009112 0.202997 0.01015

TABLE 12.8
Best and Worst Ideal Solution

Ra MRR
+V 0.003101 0.018576
−V 0.019087 0.00493 
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parameters for maximizing of MRR and minimizing the RA. The ideal best input 
parameters optimized by the TOPSIS algorithm is experimental run 9. The opti-
mized multi-response milling parameters were obtained as which corresponds to 
design variables speed 248.75 rpm (L1), feed 85 mm/min (L3), and DOC 6 mm (L3).

12.6 � CONCLUSION

This work proposed to solve the multi-response parameter such as RA and MRR in 
end milling of LM24/2%B4C composite metal matrix using the TOPSIS Algorithm. 
ANOVA was performed to examine the important parameters for the multi-response 
characteristics in end milling operation. The following deductions were concluded 
from the study presented:

	 1.	The study helped in concluding that B4C particles can be used as reinforce-
ment material along with LM24 aluminium as a material of matrix for stir 
casting process.

	 2.	RSM was successfully applied to optimize the MRR and RA for selected 
input process parameters. It also reduces the total number of experiments 
quite significantly.

TABLE 12.9
Separation Decision Matrix

Run +Si
  −Si

 

18 0.01190604 0.0102135

14 0.01716434343 0.007396

6 0.01417 0.007806

8 0.008319 0.0155

12 0.008012356 0.001926

16 0.010464766 0.001242

1 0.014557035 0.01090

3 0.01229 0.01494

13 0.01332526 0.01169

15 0.011659 0.010493

10 0.009299 0.014835

7 0.009417 0.015144

5 0.01688 0.004195

17 0.01311252 0.008215

20 0.012758 0.00737

2 0.013646 0.015986

4 0.007022848 0.014629

9 0.0016555 0.00549

11 0.013833 0.013522

19 0.011800665 0.009867
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	 3.	This analysis was carried out by developing RA and MRR models using 
RSM. TOPSIS algorithm is used for optimizing the output characteristics.

	 4.	 It was observed that speed and DOC were the significant parameters for 
RA, while feed and DOC kept a significant effect for MRR.

	 5.	For RA, the combined effect of DOC and speed was significant, whereas for 
MRR, the combined effect of feed and DOC was significant.

	 6.	The optimum parameters setting of end milling of LM24/2%B4C for min. 
RA and max. of MRR were cutting speed 248.75 rpm (L1), feed 85 mm/min 
(L3), and DOC 6 mm (L3).
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13.1 � INTRODUCTION

The cellular lattice structures are predominantly creating impact in energy-absorbing 
applications for the protection of impact loads [1. The cellular lattice structures are 
filled with repeated unit cells (honeycomb [2],octahedral,dodecahedron, etc.) to 
accomplish the desired density with varying porosity. These structures are more 
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flexible to achieve properties like strength-weight ratio,low thermal expansion 
coefficient,and negative Poisson’s ratio [3]. Moreover,these lattice structures are 
widely used in various engineering applications such as ultra-light structures,sandwich 
structures,energy-absorbing devices [4],heat sinks,conformal cooling channels,even 
in orthopaedic implants and tissue engineering.

In additive manufacturing (AM) family,the fused deposition method (FDM) is one of 
the manufacturing processes,which builds a 3D component from CAD data using ther-
moplastic filament [5]. This filament is heated and extruded layer by layer until it finishes 
the part. The nozzle extrudes both support and model material as per the requirement. 
As per layer height,the build platform is lowered in successive manner. After comple-
tion of the final part,post-processing is required to get the final part. It has advantages 
like to manufacture tough and durable parts,ease of use,end-use of products,and no size 
limitation. Typically,ABS,PLA,PC, and Nylon materials are used. Likewise,the plastics 
parts can be fabricated by various AM processes such as vat-photo polymerisation for 
polymer resins,selective laser sintering for polymer powders,and sheet lamination for 
polymer sheets [5]. The FDM is the most widely used [6] method among all the AM 
techniques due to minimum wastageand consistent prototype accuracy.

Gorguluarslan etal. [7]proposed a framework of cellular lattice structures in 
design and fabrication. The cellular lattice structures are incorporated in a sandwich 
panel instead of honeycomb structures by Dong etal. [6]. The results were compared 
with honeycombs;however,the cellular lattice structure has shown great potential to 
sustain shear and compressive loads.

Stankovićetal. studied the anisotropic properties of additive manufactured lattice 
structures [7,8] and observed the build orientation. The orientation is one of the most 
significant parameters of additive manufactured components. Maskery etal. exam-
ined body-centred cube (BCC) and BCCz (reinforced variant) lattice structures and 
studied the deformation and energy absorption [9]. The BCCz lattices provide high 
modulus and plastic collapse strength than BCC. The BCCz provides more anisot-
ropy in mechanical properties while BCC possessesan anisotropy nature. Beyer and 
Figueroa studied that fabrication of cellular lattice structures with AMconsume less 
material [8,10]. The unit cell with vertical trusses in a cube type of design was close 
to the standard solid block,hexagonal designs resulted in higher yield strength. In 
addition,three types of structures considered such as square pyramidal,tetrahedral,and 
kagome. The kagome structure strength was close to a solid one.

The finite element analysis (FEA) was carried out on various AM parts to validate 
the results [7,11]. In this regard,Bhandari and Lopez-Anido,Ravari etal. conducted 
finite elemental analysis on a given lattice structure and compared with experimen-
tal data to envisage the effectsof strut diameter on the elastic modulus and other 
mechanical properties. These mechanical properties are able to predict with numeri-
cal simulations [2,3,11–13], and numerical simulations are able to decrease the exper-
imental effort [14].

In this chapter, the face-centred cubic (FCC) and star-type lattice structures are 
fabricated through the FDM technology with polylactic acid material. The mechan-
ical properties such as modulus of elasticity,compressive strength and strains are 
calculated experimentallyin X,Y,and Z directions. The experimental results are com-
pared with FEA results.
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13.2 � MATERIALS AND METHODOLOGY

The work discussed geometrical modelling,fabrication,FE analysis, and experimen-
tal testing of specimens. The total workflow is represented in Figure 13.1.

The PLA is a biodegradable and bioactive thermoplastic polymer derived from 
renewable sources [15]. It is currently the second most produced and consumed bio-
plastic in terms of volume. The PLA can accomplish the requirements of the automo-
tive industry such as mechanical performance,heat resistance,and durability [16,17].

13.2.1 � Modelling of Lattice Structures and Standard Block

The Rhinoceros software is used to model the cellular lattice structures with two 
types of unit cell configurations such as FCC and star with a strut diameter of 2 mm. 

FIGURE 13.1  Flow chart of complete methodology.

TABLE 13.1
Properties of Polylactic Acid (PLA) [15]

S.No Material Property Units Value

1 Density(ρ) kg/m3 1.25

2 Elastic modulus (E) MPa 3500

3 Poisson’s ratio(ν) – 0.36

4 Yield strength (σy) MPa 60
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FIGURE 13.2  Unit cell representation of FCC and star lattice structures.

FIGURE 13.3  ASTM standard compression specimen.
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Initially,the single unit cell size of 5mm3 × 5mm3 × 5 mm3 (L × L × L) is modelled 
then patterned in X and Y directions with a distance of 5 mm i.e. distance between 
each unit cell. This single layer was again patterned in Z-axis [18]. The final lattice 
structures are obtained with 30 mm3 × 30 mm3 × 30 mm3 which means that the height 
of the lattice structure is 30 mm in all dimensions as shown in Figure 13.2. The 
compressive strength of cellular lattice structures depends upon the strut diameter 
and cell size. In addition,the compressive standard specimen 12.7mm3 × 12.7mm3 × 
25.4 mm3 is modelled as per ASTM D695 [19] shown in Figure 13.3.  

13.2.2 � Specimen Fabrication

The CAD model was exported to Standard Tessellation Language (STL) file [12]. It 
represents the surface geometry of a 3D object with triangulated facets. The accuracy 
and resolution of the STL areimproved with an increase of triangles. The final STL was 
imported into slicing software called flash print,which helps to slice the STL file and 
generate geometry codes (G-codes) in a machine-readable format is “.x3g”. The machine 
is loaded with PLA filament with a diameter of 1.75 mm and the printing parameters are 
considered with a layer thickness is 0.1 mm,printing speed 50 mm/sec,travelling speed 
40 mm/sec,infill is 100% [20] and nozzle diameter is 0.4 mm. Finally,fabricated ASTM 
standard specimen and lattice structures are shown in Figure 13.4. 

13.2.3 � Mechanical Testing of Specimen

The compression test is significant in measuring the elastic and fracture behav-
iour of materials. The ASTM D695 standard test method is adopted for testing 
the standard block to observe mechanical properties of rigid plastics such as elas-
tic modulus,proportional limit,and compressive yield strength. As per standard,the 
tested sample is either cylindrical or cube. In this work,the cube size 12.7mm3 × 
12.7mm3 × 25.4 mm3 sample is considered for testing.

The computerised universal testing machine was set up in such a manner that the 
specimens rested on the bottom plate while the other plate applied compressive force 
from the top side. The maximum load considered for this test is 30 kN and the strain 
rate is maintained at 2 mm/min. The strain rate is considered relatively slow for the 
accuracy of data.

FIGURE 13.4  Lattice structure samples printed on FDM and standard block in X,Y,Z 
directions.
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The specimens are tested anisotropically in all directions such as X,Y, and Z 
directions. The load vs displacement is recorded during compression testing and 
converted to a stress–strain curve to estimate the mechanical properties. In terms 
of accuracy, the lattice specimen was tested until the breaking point and three 
specimens were considered in each direction and averaged the value. The linear 
portion of the stress–strain curve is used in calculating the value of elastic modulus 
and 2% offset curve was drawn to determine the yield strength of the specimen,the 
corresponding graphs are shown in Figure 13.5. The stress–strain curve describes 
three stages such as elastic deformation,plastic deformation,and fracture. The aver-
age anisotropic elastic modulus of ASTM standard specimen is 1000 MPa and cor-
responding yield strengths in X,Y,and Z directions are 57, 58, and 48 MPa as shown 
in Figure 13.5. 

13.3 � RESULTS AND DISCUSSION

The mechanical properties are strongly dependent on build direction and orientation. 
The specimens were printed in three directions such as X,Y,and Z,and the mechani-
cal properties were calculated based on directions.While conducting the mechanical 
testing on specimens,three regions were observed as shown in Figures 13.6 and 13.7.

	 1.	Linear elastic region: The elastic deformation is occurred due to the bend-
ing struts and this linear elasticity is characterised by elastic modulus.

	 2.	Plateau stress region: The unit cell struts begin to collapse and become 
denser under compressive loads. Due to densification,energy absorption is 
more in this region.

	 3.	Densification region: The stiffness of the lattice structure is increasing due 
to struts contact with each other.  

FIGURE 13.5  Stress–strain curve of ASTM standard specimen in X,Y,and Z directions.

FIGURE 13.6  Representation of different regions in FCC lattice structure.
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13.3.1 �F inite Element Method of Lattice Structures

The lattice structures are modelled in Rhinoceros software and exported to Ansys 
18.0 for FEA. The elastoplastic condition is considered for FEA. The elastic modulus 
helps to understand the elastic behaviour of the material,whereas the tangent modu-
lus represents the plastic behaviour of the material. The graph points were approxi-
mated and plotted in Excelin order to calculate the elastic modulus.

In Ansys software,the ten-node tetrahedral element is considered for analysis,and 
the material properties defined such as Elastic modulus 1000 MPa,density 1.25 kg/mm3,  
and Poisson’s ratio is 0.36. The model was fine-meshed and defined the boundary 
conditions are shown in Figure 13.8. The applied load was divided into hundred 
sub-steps and it was increasing to the level above which the load steps fail due to 
plastic deformation. The FEA results are converged with an element size of 0.1mm 
and the results are used to plot the load vs displacement in an excel spreadsheet.

These FEA results are analysed with experimental data. Due to the nonlinear 
behaviour of the material the specimen undergoes large deformation in Ansys. For 
this reason,the FE analysis of the lattice structure using solid elements is compared 
with experimental values. Typically,the lattice structure undergoes linear behaviour 
to nonlinear behaviour under compressive loads however linear behaviour is consid-
ered for evaluating the results. The corresponding deformation and equivalent stress 
results are shown in Figures 13.9 and 13.10.  

13.3.2 �C omparison of Experimental and Analysis Results of FCC and  
Star Lattice Structures

From the experimental data,the stress–strain curve follows an initial period of linear 
elasticity and when the structure begins to densification shows nonlinear behaviour 
under compressive loading. From the below graphs, it was noticed thatthe experi-
mental behaviour is followed the same trend in both X and Y directions as shown in 
Figures 13.11and13.12. Whereas in the Z direction the behaviour is altered because 
of anisotropic in nature. When compared with experimental results a less deviation is 
observed in the Z direction with FEAresults are shown in Figure 13.11. From Figure 
13.12, it is noticed that the experimental and FEA results have a large deviation of 
nearly 48% in all directions. 

FIGURE 13.7  Representation of densification region for star lattice structure.
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FIGURE 13.8  Mesh model of FCC lattice structure.

FIGURE 13.9  Total deformation and equivalent stresses of FCC lattice structure.
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From Table 13.2, the elastic modulus of both FCC and star lattice in the Z direc-
tion has the least value; this is because the layer is added in the Z direction while 
fabrication in a 3D printer. The values of elastic modulus in X and Y directions are 
expected to be similar, however, there is a little deviation in their elastic modulus. 
The FCC structure seems to be stronger than the star lattice while comparing elastic 
modulus, compressive yield strength, and strain.

For FE analysis,it is difficult to capture the layer-by-layer phenomenon effect in 
the Z direction. It is challenging to comment on the strength of a lattice structure in 

FIGURE 13.10  Total deformation and equivalent stresses of star lattice structure.

FIGURE 13.11  Comparison of experimental and FEA of FCC lattice in (a) X-direction (b) 
Y-direction (c) Z-direction.

FIGURE 13.12  Comparison of experimental and FEA of star lattice in (a) X-direction (b) 
Y-direction (c) Z-direction.
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all directions. However, it is noticed that the overall elastic modulus of FCC lattice 
is relatively higher than the star lattice structure and the FEA results are near to 
experimental observations. The difference in the FEA and experimental results for 
FCC lattice nearly 5%. In the case of star lattice,it was observed that 48% as shown in 
Table 13.2. The star lattice is showing the highest deviation because the FE model is 
considered homogenous and isotropic,however,the orientation of the strut is playing 
a key role in load-bearing capacity. In the FCC unitcell,the maximum load is bearing 
by vertical struts and the load is divided into four corners of star unitcell. Due to this 
maximum stress is concentrated at the meeting point of four struts in the star lattice 
structure.

13.4 � CONCLUSION

In this study FCC and star-type lattice structures were designed with the same 
parameters such as strut diameter and size of the specimen and the specimen is fab-
ricated through FDM with PLA material. Subsequently, the specimens are tested to 
evaluate the mechanical properties like Elastic modulus, compressive yield strength 
and strain. These experimental results are validated with Ansys software.

It was observed that the FCC lattice structure exhibits higher strength in both 
experimental and FEA results. The FEA results are relatively high with experimental 
values and it depends on meshing size and type of element. The finite element results 
are less accurate at predicting the elastic modulus values, in the case of FCC lattice 
structure,the difference is observed near 5% change and for star lattice up to 48% 
difference. Finally, it is concluded that the FCC lattice structure is more appropriate 
for mechanical applications.

ABBREVIATIONS

AM	 Additive manufacturing
FDM	 Fused deposition method
ABS	 Acrylonitrile Butadiene Styrene
PLA	 Polylatic acid
PC	 Polycarbonate

TABLE 13.2
Experimental and FEA Results of FCC and Star Lattice Structures

Direction Type

Elastic Modulus(MPa) Compressive Yield Strength(MPa)

Experimental FEA Experimental FEA

X-direction FCC lattice 130 139 9.37 12.3

X-direction Star lattice 123 67 6.1 6.2

Y-direction FCC lattice 138 145 9.24 12.3

Y-direction Star lattice 115 78 7.5 6.3

Z-direction FCC lattice 122 119 9.9 12.3

Z-direction Star lattice 110 59 7.1 6.22
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BCC	 Body-centred cube
BCCz	 Reinforced variant of body-centred cube
FEA 	 Finite element analysis
FCC	 Face-centred cubic
CAD	 Computer-aided design
3D	 Three dimensional
STL	 Standard Tessellation Language
G-codes	 Geometry codes
.x3g	 File extension
ASTM	 American Society for Testing and Materials
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14 Wear Measurement by 
Real-Time Condition 
Monitoring Using 
Ferrography
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14.1 � INTRODUCTION

For health improvement of machines,their maintenance as per directions is very neces-
sary. Throughcondition monitoring as a part of preventive maintenance [1], the life of 
machine components can be increased. Any component failure of machine results in 
machine breakdown which results in financial loss as well as loss of time. This leads 
to a bad effect on production. Hence condition monitoring [2,3] is used to identify the 
probable failure of components and rectify it as early as possible before they get failed.

Different condition monitoring techniques [4–6] used for maintenance are shown 
in Figure 14.1. Characteristics thatare used by these condition monitoring methods 
are shown in Table 14.1.

Some of these methods are as follows:

•	 Vibration monitoring: The analysis of vibrations [7,8] generated while the 
machine is in operating condition gives the health of the machine condition. 
If the vibration level is high,automatically life of machine will be reduced. 
Hence, it is important to detect small variations also in the pattern of vibra-
tion, and reasons foroccurrence must be diagnosed.

•	 Noise monitoring:Sound waves are monitored considering a particular situ-
ation. If high sound waves are produced, then there is a problem of masking.
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•	 Oil analysis: Oil analysis is used as lubricant examination done for detect-
ing wear particles [9–12] as shown in Figure 14.2.  

•	 In wear debris [13] collection large wear particles [14,15] are collected by 
filter and magnetic chip detector as shown in Figure 14.3. This examination 
indicatesabout wear of parts thatare moving. Sometimes electric chip detec-
tors are also used which consists of the electric circuit with detectors. Alarm 
is also there to indicate if the rate of wear particles is high.

•	 Smaller wear particles will be collected from floating oil. Thisexamination 
gives an early warning about part failure.For this two methods are used:
•	 SOAP (Spectroscopic Oil Analysis Procedure): In this method,the 

concentration of wear particles can be found rapidly. One drawback 
of this method is it will not give information regarding the shape of 
particles.

•	 Ferrographic oil analysis: In this method, wear particles [16–18] are 
deposited on ferrogram [19] accordingly to their sizes after oil passes-
through a magnetic chip detector [20]. This ferrogram [21,22] is then 
examined for wear particles’ shape,size, and concentration.

FIGURE 14.1  Condition monitoring techniques.

TABLE 14.1
Condition Monitoring Methods and Their Characteristics Used for Analysis

Technique Characteristics

Vibration analysis Monitoring frequency, amplitude, acceleration

Thermography Analyses infrared images

Noise analysis Monitoring sound waves

Oil analysis Ferrographic oil analysis and image processing for finding wear 
particles

Acoustic emission analysis Monitoring crack transmission, insufficient lubrication

Current and voltage monitoring Analyses electrical signals like current & voltage
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•	 Used oil condition is monitored for its colour change, viscosity change, 
whether there is the formation of foam, and increased or decreased water 
content.

FIGURE 14.2  Oil analysis.

FIGURE 14.3  Magnetic separation of particles [13].
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14.2 � WEAR MEASUREMENT

For wear measurement, some important parameters are considered, as shown in 
Figure 14.4. By varying these parameters, wear characteristics are analysed by using 
appropriate arrangement.  

•	 Geometry and material of contacting surfaces:
There are commonly used tribo-pairs instruments along with their 

motions like sliding or rotary motion as shown in Figure 14.5. From these 
most frequently used test rigs are pin on disk and four ball tester in tribology 
for various applications arrangements.

•	 Mode of lubrication: According to application requirements,wear mea-
surement can be done under dry [23] lubrication (no lubricant), moderate 

FIGURE 14.4  Wear measurement parameters.

FIGURE 14.5  Some arrangements of tribo pairs.
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[24] lubrication (quantity of lubricant is sufficient) or full lubrication (all 
parts are fully immersed in lubricant bath) mode.

•	 Sliding velocity: Velocity of moving parts [25] is constant or variable which 
is decided as per application. Generally, wear will be more in case of vari-
able velocity of sliding.

•	 Load: Load acting on parts will be constant or variable [26].

Before wear measurement, these parameters must be taken into account for accurate 
detection regarding wear characteristics.

14.3 � WEAR DEBRIS ANALYSIS

Used lubricating oil [27,28] from operating machines parts contains various metallic 
and non-metallic wear debris particles,due to friction and wear of components [28]. 

Figure 14.6 shows various characteristics considered for the wear debris analysis. 
Wear measurement is done from the contacting surfaces, chemical composition of 
particles [29], heat generation (formation of oxidation), and change in the condition of 
lubrication. Also in this figure, various methods used for this analysis are indicated.

FIGURE 14.6  Wear debris analysis characteristics & instruments used for analysis.
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Different types of wear are shown in Figure 14.7. Major wear considers adhesive 
wear, abrasive wear [30], corrosion [31] wear and surface fatigue wear. Minor wear 
includes fretting [32], erosion [33] etc. Generally wear cannot be eliminated. It can 
be reduced to a certain extent by different strategies to improve the life of machinery.

Laws related to wear state that:

•	 (Volume of wear) α (travel distance),
•	 (Volume of worn-out material) α (load),
•	 (Volume of worn-out material) 1/α (hardness of soft material).

Thus worn-out material particle characterictics were found by using ferrography [34] 
along with optical microscopy [35] and scanning electron microscope (SEM) [2] 
gives more accurate results. Ferrography consists of:

•	 Direct reading (DR) ferrograph [36],
•	 Dual ferrogram analyser,
•	 Bichromatic microscope/SEM [37],
•	 Image processing software like MATLAB,
•	 Data extraction algorithms like FECNN [38], BPNN [39].

Flow diagram of actual processes carried out in ferrography is shown in Figure 14.8. 
Ferrographic condition monitoring [40] is preventive maintenance done by collecting 
oil samples. These oil samples [41] are monitored by making ferrogram and under 
microscope images are captured. From these images analysis [35] of wear particles 
identification (qualitative analysis & quantitative analysis) [42] can be carried out.

FIGURE 14.7  Types of wear.
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By using this method,type of wear,its severity,wear characteristics such as par-
ticles size, their shape [43,44], distribution and concentration [45] can be found.

In ferrography [46] which type of wear occurred can be detected accurately. Wear 
severity [47] is calculated by the following formulae:

L: Reading of large particles quantity,
S: Reading of small particles quantity,
(L+S) gives concentration of wear particles.
(L−S) gives size distribution of particles.

•	 Wear Severity Index (WSI) = (L2−S2),
•	 Wear Particle Concentration (WPC) = (L + S),
•	 Percentage of Large Particles (PLP) = (L/L + S) × 100%.

If quantity of L and S is high, it will result in abnormal wear.

•	 Risk Priority Number (RPN) = (Severity × occurrences × Detection)

RPN defines failure will occur or not,also it states failure effect. In Table 14.2, failure 
severity on machine health with its % occurrence and probability of detection is 
summarised. RPM must be as low as possible to avoid failure of parts of machines. 
Thus health and reliability of components can be increased.

FIGURE 14.8  Flow diagram of ferrography.
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Severity of wear is indicated from 1 to 10 scale. As severity increases, a large 
quantity of wear occur. Hence, to increase the life of machine components,severity 
must be as low as possible.

14.4 � CASE STUDY

Ferrographic oil analysis method is used for I. C. engine wear Debris Analysis [40]. 
In this study,ferrography was used for the detection of wear particles by using Hero 
HF Deluxe bike engine oil. Used bike engine along with specifications are shown in 
Figure 14.9. By ferrographic analysis of wear particles, both qualitative and quantita-
tive parameters can be found.

In the experimentation,five oil samples were collected at the interval of 520, 2800, 
5156, 9500, and 10,144 km. Then wear particles obtained from the collected oil are 
analysed and the graphs are drawn for the comparative analysis. The results obtained 
from the collected oil sample after the predefined kilometres are shown in Figure 14.10.

In these graphs:

	 (a)	 Wear particle concentration (WPC),
	 (b)	 Wear particles generated in normal rubbing and
	 (c)	 Maximum size of particles generated in bearing,are shown for five collected 

samples.

TABLE 14.2
Failure Severity with % Occurence and Probability of Detection

Failure Severity Occurrences(%) Probability of Detection

No or minor failure, not significant 1 0 0–5

Minor failure, slight effect 2–3 0.001–0.005 6–25

Moderate failure 4–6 0.005–0.05 26–55

High failure causing problems 7–8 >0.20 56–75

Sufficient high failure effect on safety 9–10 10%–50% or more 76–100

FIGURE 14.9  Bike engine with specifications used for oil analysis [7].
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Wear particles rating also known as wear severity,is shown in Figure 14.11. The 
darkness of particles indicates oxidation. In the collected oil fine particles of minor size 
are seen. As shown in graph, (a) rating is ranging between 1 and 2, which shows the nor-
mal condition, (b) red oxides appear as a beach of red sandand the rating of these oxide 
particles is also very small which lies between normal ranges (c) sand/dirt/dust particles 
appearance will not get changed after heat treatment.If the quantity of these collected 
particles is high then wear severity will get changed from normal to critical condition.

Thus from this analysis, it is concluded thatwear particles are larger in size ini-
tially. After continuous use, size of wear particles gets reduced, but the quantity of 
small particles gets increased. Hence condition monitoring by ferrography is neces-
sary after specific time for identifying real-time wear measurement of components.

14.5 � CONCLUSION

This paper mainly emphasised the importance of ferrographic method which is used 
for condition monitoring for the health of machines resulting in an improved lifetime 
of the machine which reduces downtime of plant. In this method, analysis basically 
includes three steps:

•	 Decide the required size of debris group (large particles or small particles) 
for analysis;

(a) (b) (c)

FIGURE 14.10  (a) Graph showing WPC. (b) Wear particles in normal rubbing. (c) Wear 
particles in bearing [7].

(a) (b) (c)

FIGURE 14.11  (a) Rating of black oxide. (b) Rating of red oxide. (c) Rating of dirt/dust/
sand particles [7].
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•	 Focus on the characteristics of wear debris particles accordingly from fer-
rographic analysis;

•	 Set up a correlation between parameters of wear particles characteristics 
and severity of wear by suitable mathematical tools as well as with data 
extraction algorithms.

ABBREVIATIONS

DR	 Direct reading
AI	 Artificial Intelligence
HEMM	Heavy earth moving machines
SOAP	 Spectroscopic Oil Analysis Procedure
SEM	 Scanning electron Microscope
WSI	 Wear Severity Index
WPC	 Wear Particle Concentration
PLP	 Percentage of Large Particle
RPN	 Risk Priority Number
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15 Design, Modelling and 
Comparative Analysis 
of a Horizontal Axis 
Wind Turbine

Ninad Vaidya and Shivprakash B. Barve
Dr. Vishwanath Karad MIT World Peace University

15.1 � INTRODUCTION

The amount of energy produced from harnessing wind power has surpassed many mile-
stones. From a small amount of 159 GW in 2009 to a colossal leap of 650 GW in 2019 
[1], wind energy has become the personification of renewable energy and it is apparent by 
this paradigm shift observable today. It is estimated that exposure to particulate matter is 
responsible for 18.8% of global deaths in the year 2018. Global wind energy production 
expanded approximately 20% in 2019, with around 60 GW production capability added 
to the global production. India added 2.5 GW of wind power in the year 2019 [2–3].

Designing, developing and simulating an energy-producing wind turbine is a mul-
tiplex procedure. Multiple speculations are considered while designing a turbine.  
The most important speculation is the Blade Element Momentum Theory (BEM) 

CONTENTS

15.1	 �Introduction................................................................................................... 223
15.2	 �Analytical Design..........................................................................................224

15.2.1	 �Wind Observations (m/sec)................................................................224
15.2.2	 �Design Considerations.......................................................................224
15.2.3	 �Rotor Design......................................................................................224

15.3	 �Software Modelling and Analysis.................................................................224
15.3.1	 �Solidworks CAD Models and Renders..............................................224
15.3.2	 �Material Assignment.........................................................................225
15.3.3	 �Structural Analysis............................................................................225
15.3.4	 �Aerodynamic Analysis......................................................................226
15.3.5	 �Rotor Design......................................................................................226

15.4	 �Qblade Aerodynamic Simulations.................................................................226
15.5	 �Results and Discussions................................................................................. 227
15.6	 �Conclusions....................................................................................................228
References...............................................................................................................228

DOI: 10.1201/9781003154518-15

https://doi.org/10.1201/9781003154518-15


224 Soft Computing in the Manufacturing Sector

[4–7]. Multiple materials are used for the production of new wind turbines. It was 
concluded that composite materials such as carbon nanotubes, carbon fibre, fibre-
glass impregnated with polyester or alternatives like epoxy resin greatly improve 
efficiency over conventional materials [8–14].

Qblade is an explicitly designed software for the analysis of wind turbine blades 
[15–18]. Qblade aids in validating the numerical design’s accuracy by providing 
real-world simulation values. The use of models using Computer Aided Drafting 
(CAD) software was analysed in finite element analysis (FEA) software to deter-
mine various structural parameters such as tower thickness and blade thickness for 
structural assurance [19–25].

15.2 � ANALYTICAL DESIGN

Wind energy observations from over four locations were recorded by using a vane 
anemometer.

15.2.1 �W ind Observations (m/sec)

	 a.	Vavg = 6.5
	 b.	Vdesign = 8.5
	 c.	Cut in velocity = 4.5
	 d.	Cut out velocity = 18

15.2.2 �D esign Considerations

	 a.	Power Required = 1 KW
	 b.	Coefficient of Performance (Cp) = 45%
	 c.	Mechanical Efficiency (ηmech) = 85%
	 d.	Tip Speed Ratio = 6

15.2.3 �R otor Design

Rotor =1.5 m
Swept Area = 7.068 m2

Wind Power = 2658.63 W
Efficiency of Energy Transformation = 38.25%
Angular Speed ω = 34 Rad/s
Rotor Speed = 325 rpm
Torque τ = 29.38 Nm
Tower Height Ht = 4.5 m

15.3 � SOFTWARE MODELLING AND ANALYSIS

15.3.1 � Solidworks CAD Models and Renders

CAD model of rotor was designed in solidworks, and it is shown in Figure 15.1.
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15.3.2 � Material Assignment

The various material was assigned for various parts of rotor. Material AISI4130 was 
assigned to Hub, Hub rear, Yaw Rods and for Tower. A-Glass Fibre was assigned to 
Blade and PVC was assigned to Yaw.

15.3.3 � Structural Analysis

The tower is stress analysed in an FEA software ANSYS, and it is shown in Figure 15.2. 
It was illustrated that,

FIGURE 15.1  CAD model of rotor.

FIGURE 15.2  Structural analysis in ANSYS.



226 Soft Computing in the Manufacturing Sector

The force applied = 5600 N
Maximum deformation observed = 0.034 mm
Thus, the results confirm that the design is safe.

15.3.4 �A erodynamic Analysis

The wind turbine simulation and design framework were developed with the soft-
ware Qblade. Simulation of horizontal axis was utilized the BEM method and a 
Double Multiple Stream (DMS) algorithm is utilized in Qblade for the simulation of 
wind turbine performance. The data of Cl and Cd over numerous angles of attacks 
were required for simulation. The comparison of results of various air foil in relations 
of their Cl and Cd and Cl/Cd and angle of attack is shown via Figure 15.3.

15.3.5 �R otor Design

Qblade is required to input the various design considerations of the blade for rotor 
design. Once the basic blade shape is completed, sectional twist and air foil are to 
be assigned to each individual section. The blade design module is used for theh 
efficient design of rotors and blades. This rotor design is used in the final simulation. 
It is shown in Figure 15.4.

15.4 � QBLADE AERODYNAMIC SIMULATIONS

The design of the blades and the turbine form were specified. Various parame-
ters, such as form of power regulation, rotational speed, cut in and out velocity or 
generator efficiency, were specified. With specified setup, turbine was simulated.  

FIGURE 15.3  Airfoil comparison results in Qblade.
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With different tip speed ratios, dimensionless simulation was carried out. It was use-
ful for the comparison of different rotor geometries. Various parameters were simu-
lated with different blade pitch variations, rotational speeds, and incoming velocity. 
It was helpful to investigate turbine characteristics. Simulations results were avail-
able in the post-processor module.

The power results considering the wake loss, tip loss, wind drag, weight action of 
rotor and wind compressive force are shown in Figures 15.5 and 15.6.

15.5 � RESULTS AND DISCUSSIONS

The amount of power generated at the corresponding speed of rotation of the tur-
bine. Upon creating a varying wind field from 4 to 8.5 m/sec, Qblade performs a 

FIGURE 15.4  Rotor design in Qblade.

FIGURE 15.5  Verification of analytically found Cp in Qblade.
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simulation of the turbine in the generated wind field. Qblade aerodynamic simulation 
proves that in real-world conditions, the turbine can produce about 760 W/h of power 
under varying conditions.

15.6 � CONCLUSIONS

The wind turbine is analytically designed and results are verified using multiple 
simulation software. The structural analysis was done using ANSYS. The environ-
mental flow analysis was done using solidworks flow. The Aerodynamic analysis 
was done using Qblade.

The theoretical efficiency was found to be 38.45% which is a 7.25% improvement 
over standard HAWT efficiency. The simulation results determined power of 760W 
at mean speed, including losses.
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