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Preface

Since the publication of the first edition of this book almost 25 years ago,
there have been monumental changes in how we interact with experimental
data as scientists. We can now store it more securely, visualize it in new
ways, share and collaborate on it, and more deeply interpret it, thanks to
new and constantly improving data processing tools coming on stream.
The spreadsheet today as a data processing tool is very accessible and
can visualize calculations and help make theory and experimental data
come to life so that it is meaningful to the student. This new edition of
the book retains its guided tutorial approach for teaching undergraduate
and postgraduate students a range of chemistry topics that incorporate
aspects of data analysis and also provide for visualizations of fundamental
concepts.

In this edition, we have included additional datasets along with guided
tutorials for the student to work through independently. The datasets and
guided tutorials are designed around Excel but, if Excel is not available,
the exercises can also be navigated in other spreadsheet programmes,
e.g. Google Spreadsheets or LibreOffice Calc. Similar functionalities are
available across all these programmes.

We have expanded the content on some important topics such as statis-
tical treatment of data and calibration in analytical chemistry, for example,
that were not included in the previous edition. The book brings the student
from the basics of navigating a spreadsheet for simple data processing oper-
ations in a step-by-step manner, to advanced data processing and analysis
for small and medium-sized datasets. The chapters are intended to give
students practical experience in performing spreadsheet calculations and
visualizing experimental results. There is an emphasis on letting the learner
gain enough familiarity and experience to enable them use spreadsheets



�

� �

�

viii Preface

independently, and in other scientific contexts, while at the same time
encouraging the student to examine data objectively and critically interpret
it as an experimental scientist. This book provides an experiential ‘learn by
doing’ approach to gain conceptual insights as well as practical expertise in
data analysis in chemistry topics.
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Navigation of the Book

There are six concise chapters in this book that take the learner from basic
spreadsheet navigation to complex data analysis approaches reasonably
quickly. The book is designed to start at the basics so that no prior expe-
rience of spreadsheets or Excel is required. The book is not intended to
be passively read, but instead to be actively used while sitting in front
of a computer. Each chapter sets out its own learning objectives and is
divided into sub-sections that are focussed on covering basic theory needed
to understand the scientific concepts and datasets in the accompanying
guided tutorials. Additional questions are given at the end of each chapter
to push the student in applying spreadsheet procedures in other scientific
contexts.
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This book is accompanied by a companion website.

www.wiley.com/go/morrin/spreadsheetchemistry2

This website includes:

Students’ resources

● Worksheets
● Further Exercises

Teachers’ resources

● Worksheets
● Further Exercises
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Introduction to Excel

In this chapter, students will learn to:

● Undertake basic operations in an Excel worksheet
● Perform mathematical calculations on worksheet data using formulas

and functions
● Understand and apply relative and absolute cell referencing
● Visualize and interpret data sets in the form of charts

Excel is a Microsoft spreadsheet application widely used to store, organize,
process and analyze many forms of data, including experimental data. It
offers great flexibility and is, in many respects, unrivalled in terms of its
functions as applicable to scientific experimental data. Researchers use
spreadsheet applications such as Excel to work with experimental data. For
example, they will transfer data to a spreadsheet such as Excel to:

● Store and organize experimental data
● Manipulate data using mathematical functions
● Visualize data, for example, through charts and tables
● Perform statistical analysis of data
● Apply curve fitting with linear and non-linear regression

Besides Excel, other examples of spreadsheet applications exist including
free, open source software packages such as LibreOffice Calc and Google
Spreadsheets. They operate in a similar manner to Excel in general, but dif-
fer in some features and hence functionality. Microsoft® Excel® has the most
features and is currently more widely used than these open source alterna-
tives. That said, the landscape is rapidly changing and these open source

Spreadsheet Applications in Chemistry Using Microsoft® Excel®: Data Processing and Visualization,
Second Edition. Aoife Morrin and Dermot Diamond.
© 2022 John Wiley & Sons, Inc. Published 2022 by
Companion Website:

http://www.wiley.com/go/morrin/spreadsheetchemistry2
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2 1 Introduction to Excel

software packages are increasing in maturity and popularity. If you have
access to Excel, it is the spreadsheet software program of choice. As such,
the tutorials in this book are designed specifically around Excel. However,
if Excel is not accessible, open source alternatives are a good option to work
through the tutorials to learn approaches to processing experimental data.

This chapter introduces basic standard worksheet operations in Excel
that will be needed for the later chapters. The tutorial exercises have been
designed around Excel for PC. If you are using Excel for Mac, you can
expect minor deviations from the tutorial instructions, as formats and
styles, and locations of commands and options can differ between the two
versions. Likewise, accessing tools and commands may differ if you are
using an early version of Excel. However, most functionality is equivalent
between versions and so all tutorials here can be undertaken using any
version of Excel. Of course, it is advisable to upgrade Office if you are using
a particularly archaic version. Once you are up and running with Excel,
it is worth spending time working through the tutorials in this chapter to
ensure that the more basic spreadsheet functions of Excel are understood
before moving to the more advanced topics and tutorials in later chapters.

1.1 Navigating the Workbook

1.1.1 The Worksheet

Launching Excel brings you into a workbook containing a set of spread-
sheets. Excel refers to each spreadsheet within a workbook as a ‘worksheet’.
Some basic aspects of the worksheet are labelled in Figure 1.1.

The Ribbon menu gives access to all tools and commands. Within the
Ribbon tab, you can see several tabs – Home, Insert, Page Layout, Formula,
Data, Review, and View. Each of these has their own Ribbon display, which

Ribbon menu – for access to tools and

commands

Contextual commands will appear here

e.g. for editing charts 

Formula bar – for viewing and editing a

selected cell
Ribbon display – dependent on

selected tab

Figure 1.1 Highlighted aspects of Excel worksheet for navigation.
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comprises groups of buttons representing a variety of commands that are
displayed when each tab is selected.

Contextual tabs are special types of tabs that appear only when an
object is selected, such as a chart or a shape. These contextual tabs contain
commands specific to whatever object you are currently working on. For
example, after you add a shape to a worksheet, a new Format tab appears as
a Contextual tab. These tabs only activate when you work with particular
objects. You will use these tabs regularly in the tutorials in this book.

The Formula bar is the toolbar at the top of the worksheet window that
can be used to enter or copy an existing formula into cells. It is labelled with
the function symbol fx. By clicking the Formula bar, or when you type the
equal (=) symbol in a cell, the Formula bar will activate.

1.1.2 Worksheet Tools

You can navigate the Excel worksheet fairly intuitively using standard
Office365 operations. The first tutorial here will use an already populated
worksheet to show you some of the tools available.

Tutorial 1.1 Using Basic Formatting and Analysis Commands

In this tutorial, you will work with a data set relating to the Periodic
Table to learn some basic formatting and analysis commands in Excel.

● Open the workbook 1.1_Periodic Table.xls.
● In the worksheet, you will see columns of data related to the periodic table.

Expand the width of the columns so that all text in each of the columns can
be seen. To do this, bring the mouse cursor to where the row and column
headers meet – see Figure 1.2. By clicking here you will select the whole
worksheet. Then double-click any one of the column partition lines. This
will readjust all column widths so that you can visualize the data clearly.

● Now take a look at column D – Atomic Mass. The values in the cells have 7
decimal places reported which is unnecessary for our purposes. To reduce
the number of significant figures, first highlight the data by clicking at the
top of column D. Right click and select Format Cells. In the pop-up dia-
logue box, select Number and enter 3 in the Decimal Places box. Press
OK.

● Next, format the columns of data into a table so that you can sort the
data. Highlight columns A to I and under the Home tab, click Format
as Table. Choose a style you like in the dialogue box that pops up. Ensure
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Column

partition lines

Row and column

headers meet

Figure 1.2 Periodic table worksheet highlighting row and column formatting
navigation.

Header Row is ticked in the Table Style Options under the contextual
Design tab.

● Next, sort the data in increasing order of atomic radius. Select the greyed

icon in G1 to the right of text Atomic Radius. Click on Smallest to
Largest and exit out of the box.
⚬ Also try sorting the data indifferent ways according to the different

properties listed.
● You can visualize the data by creating charts to represent the data. Try

graphing Atomic Number against Atomic Mass. To do this, highlight
columns C and D. Click the Insert tab and then click Scatter chart type
as shown in Figure 1.3. This type of chart is very common when working
with experimental data.

● To format the chart, select the chart and double click into each axis title
and chart title to edit the text.

● Click on the x-axis, and right click and select the Format Axis option.
Select Tick Marks and in the Major Type box, and select Inside to add
tick marks to the x-axis. Repeat this for the y-axis.

● Gridlines are the light grey horizontal and perpendicular lines that divide
the chart area into squares to form a grid. To delete these, click on one of
the horizontal gridlines, and then right click and select Delete. Repeat
this step for the vertical gridlines.

● Click through the previews in the chart styles to change the layout or
style to one you like. Depending on your chosen style, your chart might
look something like in Figure 1.4.

● Using the same approach, create charts to visualize the dependence of
electronegativity and atomic radius on atomic number. Decide yourself
on the chart type and format and design that you use.

● Save and close the 1.1_Periodic Table.xls workbook.
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Figure 1.3 Generating a scatterplot in an Excel worksheet.
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Figure 1.4 Formatted chart showing the linear relationship between atomic mass
and atomic number.

1.2 Mathematical Operations on Cells

1.2.1 Formulas and Functions

Once data is entered into a worksheet, operations can be performed to pro-
cess the data. Excel performs mathematical operations using formulas and
functions. Formulas can be written into the formula bar and always begin
with an equals sign (=).
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6 1 Introduction to Excel

These formulas and functions act on specified cells in a worksheet, where
variables can be defined in other cells that are referenced. There are two
types of cell references used by Excel: relative and absolute. Relative and
absolute behave differently when copied and filled from other cells. Using
a letter-number combination, e.g. A2, to describe a cell is known as rela-
tive referencing. By default, all cell references are relative references. These
references change based on position relative to the original cell when the
formula is copied and pasted into another cell. The effect is to keep the rela-
tive addresses between cells referenced in a formula, in effect making these
variables.

In contrast, absolute referencing uses the format $letter$number, e.g.
$A$2, and remains constant when copied and filled from other cells. If the
absolute reference $A$2 had been used as the address, then this address is
maintained in the formula across all cells, effectively rendering it a constant
(the value of the number in cell A2).

The following tutorials have examples of using both relative and absolute
referencing.

Tutorial 1.2 Entering a Simple Formula into a Worksheet

In this tutorial, you will generate model temperature data and convert
it from Celsius to both Fahrenheit and Kelvin using relative referencing.

● Open a new workbook and name as 1.2_Temperature.xls.
● To set up the worksheet, enter the titles Celsius, Fahrenheit, and Kelvin in

A1, B1, and C1, respectively.
● Adjust column widths A-C so all titles are visible.
● Bold the titles by highlighting and click on the Bold icon under the Home

tab.
● Enter the centigrade temperature range from 0 to +100 in increments of 5

into column A according to the Fill→Series… technique as described in
the sub-bullets here:
⚬ Enter 0 into A2.
⚬ On the Home tab, in the Editing group, click Fill→Series... to open

up the Series dialogue box (Figure 1.5).
⚬ Select Series in as Columns and Type as Linear.
⚬ Use 5 as Step value and 100 as Stop value.
⚬ Press OK.
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Figure 1.5 Series
dialogue box for inputting
detail for generating data
series.

● In B2, enter the conversion formula from Celsius to Fahrenheit,
starting with an equals sign, and using A2 as the centigrade variable
= (A2*9/5)+32.

● Fill all corresponding values for data in column A into column B by hov-
ering the cursor over the small square on the bottom right corner of B2
(known as the fill handle) until it becomes a black cross and double click
on your mouse (Figure 1.6).

● In C2, enter the conversion formula from Celsius to Kelvin, again starting
with an equals sign, and using A2 as the centigrade variable = A2+273.15.

● Fill down the column as before to report all Kelvin values.
● Save and close the 1.2_Temperature.xls workbook.

Figure 1.6 Conversion of
cursor to black cross
symbol for auto-filling
cells.
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It is important to note that all Excel formulas follow the same rules
of algebra, regarding the order of operations. If there is more than one
set of brackets or parentheses, the inner-most set will be computed first.
Exponent operations will then be calculated. Multiplication and division
calculations will be performed next. Finally Excel will then complete
any addition and subtraction in the formula.

It can be a good practise to use brackets whenever you can in Excel
formulas to structure the equation, even if the use of brackets is super-
fluous. The use of brackets can help you not only avoid calculation errors
but also better understand the formula you are applying.

1.2.2 Entering Functions

Functions in Excel are accessed through the Formulas tab under Insert
Function. A comprehensive range of mathematical, statistical, and scien-
tific functions are available. These all have the general syntax:

= FunctionName(arguments)

For example, = SIN(number) calculates the sine of a number (where the
number is an angle in radians) and = SUM(number 1, number 2,…) calcu-
lates the summation of the numbers in the cells defined by the argument.
Functions can be entered into cells using the Insert Function button, or by
typing the function directly into the Formula Bar or cell. Here, we will use
the Insert Function dialogue box to write some formulas.

Tutorial 1.3 Entering a Function into a Worksheet

In this tutorial, you will use the functions AVERAGE and STDEV to
describe a set of replicate experimental data.

● Open the workbook 1.3_Sensor Repeatability.xls. You will see a set of
data relating to the anodic current responses of a platinum electrode to
10 repeated measurements of a standard solution of hydrogen peroxide
(5 mM).

● Calculate the mean and standard deviation of the data using the AVER-
AGE and STDEV functions:
⚬ Click on B13 and then click Insert Function under the Formulas tab.
⚬ In the search box that pops up, search for the function AVERAGE, high-

light it, and double click.
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Figure 1.7 Entering a function in a specific cell worksheet.

⚬ With the cursor in the box Number1, select B2:B11. The result will be
returned in the dialogue box. Look to the bottom of the dialogue box
pop-up for specific information on the selected function and arguments
(Figure 1.7).

⚬ Press OK to enter the calculated value into B13.
⚬ To calculate the standard deviation of the set of data, select cell B14 and

following the same steps as above but this time search for and select the
STDEV function. You should return a value of 0.33236205. In order to
reduce down the number of decimal places used, select the cell and right
click. From the drop-down menu, select Format Cells. Then select the
Category: Number. Enter the number of decimal places you require
(three in this case) and press OK to give just three significant figures
in B14.

⚬ Enter the relative standard deviation (RSD) in B15 by typing the for-
mula = B14/B13*100. Reduce down the number of decimal places to 1
according to the instructions given above.

● Save and close the 1.3_Sensor Repeatability.xls workbook.

Note: As you become more accustomed to particular formulas, you can enter
them directly, without the need for the Insert Function dialogue box. For
example, the AVERAGE function can also be entered directly into a cell by
typing = AVERAGE(B2:B11) in B13 and pressing Enter.

Functions in Excel can also be nested, which means placing one function
within another. Generally, this is more of a requirement in logic decisions
than mathematical calculations. However, they do have their use in scien-
tific data processing. For instance, calculating a formula based on a function
inside another function, e.g.

= STDEV(AVERAGE(A1:A5),(AVERAGE(B1:B5),(AVERAGE(C1:C5))
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calculates the standard deviation of the set of average values taken from the
3 columns of data.

The following tutorials introduce more functions as well as nesting calcu-
lations within functions.

Tutorial 1.4 Using Nested Functions

In this tutorial, you will transform angle data from degrees to radians
units in order to compute the sine function for the angles.

● Open a new workbook and save the file as 1.4_Degrees.xls.
● In the first worksheet, in cell A1, enter the title Degrees and below this

enter the x range (0–360∘) in column A, incrementing every 10∘.
● As the sine function, y = sin(x), stipulates that x must be in radians, the

data must be converted to radian units. Enter the title Radians in B1. Con-
vert the degree values in column A to radian values in column B using the
RADIANS() function available via Insert Function. Once the formula is
entered in B2, fill down in column B to convert the entire data set.

● In C1, enter the title Sin(x) and calculate sin(x) in C2 with the Insert
Function dialogue box, using B2 as the value for x in radians. Fill this
formula down column C over the full data range using the default relative
referencing.

● The alternative here is that these arguments can be nested to merge the
steps of calculating radians and sine function together. To demonstrate
this, in D1, enter the title Sin(x)_Nested. In D2 select the SIN function
using Insert Function and type the function RADIANS(A2) into the
arguments box. Alternatively, you can directly type = SIN(RADIANS(A2))
into the cell. Exit out of the dialogue box and fill down the column. By
nesting the arguments in this way, the worksheet needs only contain two
columns of data.

● Save and close the 1.4_Degrees.xls workbook.

Using nested arguments is a matter of preference in Excel. Performing cal-
culations in a stepwise fashion in columns, rather than combining several
transformations in a single step, can have advantages when it comes to trou-
bleshooting calculations.

Tutorial 1.5 Entering Functions for Template Design

In this tutorial, you will get more practise entering formulas using rel-
ative and absolute referencing by designing a template for assigning
elemental composition in organic compounds.



�

� �

�

1.2 Mathematical Operations on Cells 11

● Open the workbook 1.5_Organic Compounds.xls where you will see a
template setup with three tables. The chemical formulas for methanol,
ethanol, and acetic acid are entered in the first table. Populate the rest of
this table by entering the number of carbons in each of the corresponding
compounds in column C, the number of hydrogens in each of the
corresponding compounds in column D, and the number of oxygens in
each of the corresponding compounds in column D.

● Now in F1, enter a formula to calculate the molecular weight of methanol.
You should use relative referencing to address the number of C, H, and
O’s and then absolute referencing to address the cells with the relevant
atomic mass values. Therefore, the formula entered in F1 should read
= C2*$N$2+D2*$N$3+E2*$N$4.

● Fill this formula down column F. Notice that the cell references for the
number of atoms will change down the column (relative referencing is
used as these are variables) but the cell references to the atomic mass val-
ues remain fixed (absolute referencing is used as these are constants).

● Next populate the second table with relative composition information.
Enter the formulas to calculate the percent composition of C, H, and O
for methanol in row B. Enter = C2*$N$2/F2*100 in H2, again taking note
of the use of relative and absolute referencing. Enter corresponding for-
mulas for %H and %O also. In K2, sum up the percentages across the row
(H2:J2) and the value returned should be 100. Now highlight cells H2:K2
and fill down the table to populate the % compositions for the rest of the
compounds.

● Report just two decimal places in the cells in the second table by setting
this number to two.

● Your final worksheet should look something like in Figure 1.8, depending
on how you decide to format it.

● Save and close the 1.5_Organic Compounds.xls workbook.

Methanol

Ethanol

Acetic Acid

C H O %C %H %O

1 4 1

2 6 1

2 4 2

C

H

O

Atomic Mass

12.011

1.008

15.999

Formula Total Mass

CH3OH

C2H5OH

CH3COOH

32.042

46.069

60.052

Total

37.49

52.14

40.00

12.58

13.13

6.71

49.93

34.73

53.28

100.00

100.00

100.00

Figure 1.8 Populated template tables for assigning elemental composition in
organic compounds.
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1.3 Charts

Graphing experimental data on charts is routinely used as a way of under-
standing and visualizing data. Originally, Excel was not the platform of
choice for performing this function, as the graphing options were clearly
designed for financial analysis and many basic operations required by
the scientific community were not offered. However, recent versions have
redressed this situation and Excel can now easily cope with scientific
requirements and offers some advanced features such as optimization mod-
elling using the add-in Solver, which, as we shall see in Chapter 6, can be
used for advanced curve fitting. While Excel does not challenge the features
offered in specialized statistical and mathematical packages, it has broad
applicability and requires the user to enter the mathematical functions to
be performed. From a teaching point of view, it provides a powerful tool
for teaching undergraduate science students and for helping them explore
graphically the dependence of various parameters in equations.

1.3.1 Creating Charts

Charts are used to represent data visually and typically take the form of a
graph, a diagram, or a table. There are several chart types in Excel includ-
ing pie, column, bar, area, and scatter charts. The scatter chart is often used
to construct a graph. Excel charts are created using commands under the
Insert tab and can be edited in the Chart Design and Format contextual
tabs, allowing you good flexibility to tailor every aspect of your chart. Charts
can be embedded in a worksheet or placed in a separate chart sheet under
its own Sheet tab.

Tutorial 1.6 Constructing a Scatter Chart

In this tutorial, you will generate some model data and use a scatter
chart to visualize the data.

● Open up a new workbook and name the file 1.6_E vs. Time.xls.
● To set up the worksheet, enter the titles Time (s) and E (V) in cells A1 and

B1, respectively.
● Enter 0 into A2.
● To generate your model data for the Time (s) column, select the range

A2:A35 and use the Fill→Series… technique (see Tutorial 1.2) to bring up
the Series dialogue box. Tick the column and linear choices and enter a
Step Value of 30 to increment every 30 s.
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● To generate corresponding values for E(V), enter 0.1 in B2. Select the range
B2:B35, select Fill→Series... and tick Column and Linear options. Enter
a Step Value of 0.005.

● The data set is now ready to be plotted. Select the range A2:B35 or alterna-
tively, select the two column headings A and B. Selecting the data range
before defining the chart type is just one route to constructing a graph and
it simplifies the process. The column selection technique should only be
used when no other data except that to be graphed are contained in the
columns; otherwise editing the data series will be necessary.

● Click the Insert tab, and then click the Scatter symbol and select the
chart option Scatter. This type of chart is very common when working
with experimental data.

● The chart will appear as an embedded chart in the worksheet. Using the
Chart Design and Format contextual tabs, the chart can be customized
and formatted (Figure 1.9).

● Add tick marks to the axes using the Add Chart Element command
under the Chart Design tab. Select Axis→More axis options. In the
Format Axis dialogue box that pops up to the right of the screen, click on
Tick Marks. Select Inside for Major Type.

● Add axis titles in a similar manner using the Add Chart Element
command. Select Axis Titles→Primary Horizontal. A default title
‘Axis Title’ will appear under the x-axis. Click into this textbox, clear the
text and enter Time (s). Similarly, add the appropriate axis title to the
y-axis.

● Remove the gridlines using Add Chart Element→Gridlines. Unclick
Major Primary Horizontal and Major Primary Vertical.

● Change the default title text to ‘Model Potential Data’ by clicking into the
title text and editing it.

● Your scatter chart should look similar to Figure 1.10, depending on your
selected formatting options.

● Many other aspects of the chart can be customized using the Format
contextual tab. Explore the formatting options here. Under the Chart
Design tab, there are pre-set Quick Layouts and Styles you can use
also. Experiment with formatting of your chart using these functions to

Figure 1.9 Chart design contextual tab showing chart style options.
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Figure 1.10 Scatter chart style for plotting data.

understand the full design capability of Excel. Settle on a style you are
happy with.

● Save and close the 1.6_E vs. Time.xls workbook.

1.3.2 Charting Mathematical Functions

This section reinforces techniques introduced earlier through graphing
common mathematical functions that are routine for Excel users from
scientific backgrounds.

Tutorial 1.7 Graphing a Simple Function

In this tutorial, you will generate data and chart the function y = Ax2.
Relative and absolute referencing will be used in the generation of
the data.

● Open a new workbook and name the file as 1.7_y = Ax^2.xls.
● Enter the titles x and y in cells A1 and B1, respectively.
● Enter the title Constant A in C1, and enter 2 in C2.
● Enter the value 0 in A2 as the first value of x.
● To enter a data series in column A, first highlight A2. In the Editing group

under the Home tab, click Fill→Series· · · Ensure Columns is selected
and enter a Step value of 5 and a Stop value of 500. Press OK and data is
generated for x with an increment of 5 over the required range.

● Split the screen by going to the View tab and selecting the Split com-
mand. This can be a useful way to view different areas of large data sets
simultaneously.
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⚬ Drag the vertical divider bar over to the far right until it disappears, as
we will not be using it in this exercise.

⚬ Scroll down in the lower screen portion until the final row in the series
is in view (i.e. row 102).

● Enter the formula for y in cell B2 (= $C$2*A2^2). The caret, ^, represents
raising the preceding number to the power of the following number. In
this case, the preceding number is given by the relative reference A2 (i.e.
x = 0). Press ENTER to execute the calculation and the result 0 should be
returned in B2. As an alternative approach to entering a formula, instead
of typing a cell reference into a formula as before, click on the cell to enter
the cell reference into the formula. In this case the process is as follows:
⚬ In B2, enter =.
⚬ With the cursor still flashing in B2, select C2 and press F4 to change

this from a relative to an absolute reference. (Continued pressing of F4
toggles through four variations of a cell reference, from absolute column
and absolute row to relative column and relative row.)

⚬ Type the multiply operator *.
⚬ Select A2.
⚬ Type ^2. Press ENTER.

● Fill all corresponding values for data in x (Column A) into y (Column B) by
hovering the cross-hair over the bottom right corner of B2 until it becomes
black and then double click.

● To chart the data as a graph, highlight the full range A1 to B102 by clicking
on A1 in the upper split pane, hold down the SHIFT key, and click on B102
in the lower split pane. Then, under the Insert tab, select the scatter chart
option with a sub-type of line chart (without markers).

● To perform further formatting, double click into the element of the chart
that you want to format and work through the dialogue box that pops up to
the right of the worksheet. For example, change the x-axis scale to 0–500
by double clicking on the x-axis to bring up the Format Axis dialogue box.
Use 500 as your maximum value under Axis Options→Bounds. Alter-
natively, you can edit or format a chart by selecting the chart, and under
the contextual tab Chart Design, all formatting options are available, e.g.
chart elements can be edited under Add Chart Element.

● When you are finished formatting your chart, save and close the workbook
1.7_y = Ax^2.xls.

Tutorial 1.8 Adding Additional Plots to an Existing Chart

In this tutorial, you will learn how to add additional data series to an
existing graph.
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● Make a copy of file 1.7_y=Ax^2.xls and rename as 1.8_y=Ax^2.xls. In this
new workbook, highlight columns A, B, and C and copy and paste them
into columns E, F, and G, respectively.

● Click on F2 and modify the formula so the reference for the constant A is
now G2 and fill down the column.

● Change the value of A in G2 from 2 to 6. Check the data in column F
changes as a result of changing this value.

● In the chart, assign a legend to the existing series. You can add a leg-
end using Add Chart Element under the Chart Design tab. The default
name for that data series will be Series 1. In order to edit the legend text,
right click on the chart and click Select Data. A dialogue box called Select
Data Source should appear. This contains the source data of the chart.
Under Legend Entries (Series), select ‘Series 1’ and select Edit. An Edit
Series dialogue box will appear (Figure 1.11), and under Series name, type
A = 2, and press OK.

● Now, add the additional series A= 6 to the chart. Select Add in the Legend
Entries (Series) box. Enter A = 6 as the Series Name. In the Series X values
box, click on the data source button and highlight the data in column
E. Press the data source button again to return to the dialogue box. In the
Series Y values box, include all the data in column F. Press OK.

● Press OK again in the Select Data Source box.
● Repeat the steps earlier to add a third series to the chart where A = 10.
● To edit the default fonts used in the chart or axes titles (e.g. use superscript

for the 2 in the chart title), highlight the text you would like to format,
and right click. Select Font… and a dialogue box will pop up where you
can select the appropriate format command. After formatting, your chart
should look something like that in Figure 1.12.

● Save the file as 1.8_y = Ax^2.xls and close the workbook.

Figure 1.11 Edit Series
dialogue box.
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Figure 1.12 Chart plotted with additional data series.

1.3.3 Linear Regression

Trendline in Excel is the tool that is used to add a best-fit regression line
to your data. The type of trendline that you choose depends on your data.
Trendlines that you can choose from in Excel include linear, exponential,
logarithmic, and polynomial. Linear trendlines are often applicable, but
much data can be described more effectively with other types.

Adding a trendline to data in Excel enables you to visually see if an exper-
imental data set has a linear (or other) fit. You can label the trendline, edit
its properties and forecast the trend beyond the data range if required. You
can set the intercept value and output the equation of the line with a corre-
sponding Pearson’s correlation coefficient (R2).

Tutorial 1.9 Performing Linear Regression on a Set of Data by Insertion
of a Trendline

In this tutorial, you will apply a linear regression model o experimental
data.

● Open the workbook 1.9_E vs. Time.xls to see a set of data for the time
dependency of the measured voltage of a galvanic cell. The data is already
charted and you should see a clear linear trend in the data points. Activate
the chart by clicking on it.
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● To add a trendline, in the Design tab, click Add Chart Element→
Trendline→Linear.

● Double click on the trendline to bring up the Format Trendline dialogue
box to the right of the screen.

● Click on Trendline Options and select Linear. Also, tick Display
Equation on chart and Display R-squared value on chart.

● A linear regression equation and the R2 value should appear on your chart.
The trendline can be further customized and formatted from within the
Format Trendline dialogue box. Spend some time working through the
options to find a style (e.g. colour, thickness, etc.) of trendline that can be
seen clearly when overlaid on the data.

● Save and close the 1.9_E vs. Time.xls workbook.

1.4 Summary

This chapter demonstrates many of the basic aspects of functionality in
Excel that should be of interest when processing experimental data. It is
not intended to be exhaustive, but rather highlights the more common
data processing basics used by the scientific community. In the proceeding
chapters, you will employ these basic operations when learning more
specialized features in Excel as they relate to processing and analyzing
scientific data.

1.5 Further Exercises

1.5.1 Stoichiometry

Excel worksheets can be used as templates to perform quantitative
chemistry calculations. For example, based on a balanced chemical
equation, you can use Excel to calculate the amount of a product substance
that will form if beginning with a specific amount of one or more reactants.

For example, if 5 g of Fe2O3(s) is mixed with an excess of CO(g), how
many grams and molecules of Fe(s) and CO2(g) will form according to the
following equation?

Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g) (1.1)

● Start by generating the table shown in Figure 1.13 in a worksheet.
● Using simple formulas, solve for the number of moles of Fe2O3(s).
● Convert all molar values into scientific notation and present all relevant

values within the table to have three decimal places.
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1

3

2

3

Stoichiometry Grams Molecular Weight Moles Molecules

Fe
2
O

3
(s)

CO (g)

Fe (s)

CO
2
 (g)

5.000

Excess

159.690

28.010

55.845

44.010

Figure 1.13 Tabulated data for computing stoichiometric quantities of products
in equation (1.1).

● Use this template design to investigate how changing your starting value
of Fe2O3 from 5.00 to 6.00 g effects the products.

1.5.2 Sine Wave

Many applications involving trigonometry in chemistry require use of the
sine wave function. It can be used to model sound, light, and electromagnetic
waves. In this exercise you will chart a sine wave to visualize some aspects
of it.

● Open the workbook 1.6.2_Sine Function.xls and generate a scatter chart
plotting the sine function (Sin 𝜃) against 𝜃o. (In order to select the relevant
data, you can use the CTRL button to highlight columns A and C only.)
Note that the title in column C is used as the default title and legend in
the chart – you can change this if you like.

● The function is periodic, repeating itself every 360∘ (or 2𝜋 radians) and is
defined for any angle, positive or negative. It has an amplitude of 1, i.e. it
ranges from −1 to 1.

● Add a second data series to the chart with a phase shift of 90∘. Hint: You
will need to generate a new set of 𝜃 values in another column (= 𝜃+90∘).

● Now create a new chart where the sine function plotted against 𝜃o has
twice the amplitude of the original function (2Sin 𝜃). What is the effect
seen in the plot?

● Create another chart where the sine function plotted against 𝜃o has half
the period of the original function (Sin 2𝜃). What is the effect seen in the
plot?

● Enter axes titles and format your charts before saving and closing the
workbook.

1.5.3 Bragg’s Law

Bragg’s law is one of the most frequently encountered relationships in chem-
istry that involves a trigonometric function. It describes the angle at which a
beam of X-rays of a particular wavelength, 𝜆, diffract from a crystalline sur-
face in which the lattice planes are separated by a distance d. Reflected X-ray
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beams constructively interfere and so only appear at certain angles, 𝜃. The
first of these angles is described by an integer representing the order of the
diffraction, n. Thus for first order reflection, n = 1; second order reflection,
n = 2; etc. The Bragg equation, which governs this behaviour, is:

n𝜆 = 2d sin 𝜃 (1.2)

In this exercise you will set up a template to investigate the Bragg equation
and then use this template to calculate lattice plane distances in a crystal.

● Open up a new workbook where you will set up a template that will allow
you investigate the relationships governed by Bragg’s equation. Save this
file as 1.6.3_Bragg.xls.

● Enter the parameters n, 𝜆, d, and 𝜃 in cells A1:A4. In order to enter Greek
symbols, under the Insert tab, click on Symbol and a dialogue box will
pop up. Select Font: Symbol and all Greek character notations will be dis-
played. Click on the desired character and press Insert to enter the symbol
into the cell.

● Assign a corresponding set of values for n, 𝜆, d, and 𝜃, in B1:B4 in the
first instance where d is the unknown. For n, 𝜆, and 𝜃, assign values of
1 initially. In the cell assigned to d, enter a version of equation (1.2) that
allows you to solve for d. Be very careful about the use of your brackets!!
Use absolute referencing when referring to the cells containing values for
n, 𝜆, and 𝜃. Give this set of cells a title such as ‘Calculation of d given 𝜃’

● Similarly, assign another set of cells elsewhere in the worksheet for values
for n, 𝜆, d, and 𝜃, where 𝜃 is the unknown. Here, you will need to calcu-
late the inverse sine function. To do this, use the function ASIN(number),
where number refers to the sine of the angle you want and must have a
value between −1 and +1.

● Use this template to calculate the lattice plane distance (d) in a lithium
fluoride (LiF) crystal where the first order reflection from X-rays of wave-
length 0.707 Å occurs at 34.68∘. Based on these same conditions, calculate
the angle at which X-rays will be diffracted for the second order reflection.

1.5.4 Nernst Equation

A number of analytical techniques require measurement data to be trans-
formed in some manner before a calibration graph can be constructed.
One common example is potentiometry, in which the measured response
(electrode potential, E) is related to the logarithm of the corresponding ion
activity (a) or concentration (C) via the Nernst equation [equation (1.3)]. For
a simple electrochemical cell involving a single metal species being reduced
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at an electrode, the equation for the reaction for Mn+ +ne− can be written as:

E = Eo + RT
nF

ln CMn+ (1.3)

where
E Measured potential, V
E∘ Formal potential, V
R Universal gas constant, 8.314 JK−1 mol−1

T Temperature, K
F Faraday constant, 96485.3 c mol−1

CM
n+Concentration of metal species, Mn+, M

● Open a new workbook and name as 1.6.4_LOG and LN.xls.
● Set up a table of constants somewhere in the worksheet as below

(Figure 1.14):
● Enter the column heading CM

n+(M) in the top row of a column. Create a
series of concentration values from 0.05 to 1.00 M in increments of 0.05
going down the column.

● Enter ln(CM
n+) in the top row of the column to the right and calculate

the natural logarithm of each of the concentration values in the previous
column.

● Enter E(V) in the top row of next column to the right and write the formula
for equation (1.3) for E in the cell below. Fill the cells down to complete
the column of calculated electrode potentials. Make sure to use absolute
referencing when entering addresses for each of your constants.

● Create a chart by plotting this electrode potential, E, against ln CM
n+

● By performing a regression analysis on the charted data, show that the
value for E∘ is 0.337 and the oxidation state, n of the metal species is 2.

● Visualize the dependence of E on CM
n+ by plotting E against log CM

n+

according to the logarithmic form of the Nernst equation:

E = Eo + 2.3026RT
nF

log CMn+ (1.4)

● Demonstrate equation (1.4) is equivalent to 1.3 by again calculating E∘ and
n and observing that the same values are calculated.

Figure 1.14 Tabulated values for constants in
the Nernst equation.

R

T

n 2

F

E°(Cu2+)

9.65E + 04

298.15

8.31451

0.337
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2

Statistical Analysis of Experimental Data

In this chapter, students will learn to:

● Use basic statistical functions in Excel
● Identify when and understand how to apply hypothesis testing in sci-

entific data analysis
● Navigate the Excel Analysis ToolPak add-in for performing parametric

hypothesis testing
● Perform non-parametric testing in Excel

Despite not being a dedicated piece of statistical software, Excel is quite
adept at performing basic statistical calculations. Extra functionality beyond
what Excel can execute is available through an add-in called Analysis
ToolPak. In this chapter, we shall firstly introduce some basic statistical
functions available in Excel and give examples of their application for
the analysis of scientific data. The majority of the chapter content will be
spent on tutorials that will guide you through using Analysis ToolPak
to demonstrate its capabilities. In order to allow you to apply statistical
analyses to your own data sets, we will cover hypothesis testing as it
relates to parametric and non-parametric testing. A basic understanding
of statistics is assumed and so students are encouraged to refer to more
specialized texts for a deeper understanding of the underlying statistical
theory than is presented here if needed. Students should also note that
detailed help is available from within Excel through the Help tab, which
gives extensive background to functions, including practical examples and
mathematical equations.

Spreadsheet Applications in Chemistry Using Microsoft® Excel®: Data Processing and Visualization,
Second Edition. Aoife Morrin and Dermot Diamond.
© 2022 John Wiley & Sons, Inc. Published 2022 by
Companion Website:

http://www.wiley.com/go/morrin/spreadsheetchemistry2
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2.1 Statistical Functions

A basic statistical analysis can be performed directly within Excel using the
Insert Function dialog box. Typically, the simpler statistical functions can
be easily accessed in this way, whereas hypothesis testing is probably better
implemented using Analysis ToolPak, as will be demonstrated later in this
chapter.

In order to see the list of available statistical functions in Excel, select
the Formulas tab, and under More Functions, select Statistical. Scroll
through the list and view the keyword names. An explanation for each func-
tion can be found when the mouse cursor is moved over the name of the
function. The arguments required for use of the function are displayed in the
title syntax statement. For further clarification on the definition and usage of
functions, select the hyperlink Tell me more at the bottom of the Formula
Builder dialogue box.

Tutorial 2.1 Generating Statistical Parameters to Describe a Small Data
Set

In this tutorial, you will calculate the sample mean (x), sample standard
deviation (s), and variance (s2) for a set of replicate measurements.

Blood sodium concentrations were measured for 8 replicate analyses of
a blood sample. Process the replicate data in a statistical manner.

● Open the workbook 2.1_Blood Sodium.xls. In the worksheet, n = 8, you
will see a table that gives values for blood sodium concentrations (mM)
obtained from 8 replicate measurements of a single blood sample.

● Calculate x for this replicate data. To do this, select an empty cell and
click Insert Function under the Formulas tab. Into the Formula Builder
search bar, type average and click Go. Highlight AVERAGE and click OK
at the bottom of the dialogue box. Staying within Formula Builder, click
into Number1 and select the range of values in the worksheet for which
you want to calculate x for (B2:I2). Click OK and the average value will be
returned in the worksheet cell (answer: x = 139.745 mM).
⚬ Once you get familiar with the functions, you can type the function

directly into the worksheet cell followed by a set of brackets. With the
cursor inside the brackets, highlight the data range of interest. The text
in the cell should read =AVERAGE(B2:I2). Press Enter.

● Similarly, calculate s in an adjacent worksheet cell using the STDEV
function. The text in the cell should read =STDEV(B2:I2) (answer:
s = 0.5716 mM).
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● Lastly, in another empty cell, calculate the variance in the data set using
the function VAR. The text in the cell should read =VAR(B2:I2) (answer:
s2 = 0.32677 mM).

● Save and close the workbook.

2.2 Analysis ToolPak

Analysis ToolPak is an Excel add-in programme that provides data analysis
tools, not only statistical, but also engineering and financial data analysis
tools. For the purposes of this chapter, the add-in has a range of functionality
that you can access, including performing hypothesis testing. These tests are
not directly available in the basic Excel software. Google Sheets offers an
add-in programme, XLMiner Analysis ToolPak with similar functionality to
Excel’s Analysis ToolPak.

Although the Analysis ToolPak is available on Excel, you need to man-
ually load it in order to use it. This is also the case on Google Sheets. In
Excel, this is accessed as an add-in. The following are the instructions for
loading it.

● Under the File tab, click Options, and click Add-Ins.
● In the Manage box, choose Excel Add-ins and press Go . . . .
● Tick the Analysis ToolPak to select it, and press OK.
● The Analysis ToolPak should install automatically and can be found

under the Data tab. If you cannot see it under the Data tab, restart Excel
and you should then be able to see it.

The following are some guided tutorials that are useful to help you learn to
navigate your way around Analysis ToolPak. These tutorials can be worked
through in Google Sheets also, although there may be some small differences
in the procedures.

Tutorial 2.2 Generating Statistical Parameters for Describing a Small
Data Set Using Analysis ToolPak

In this tutorial, you will generate a more detailed set of statistics for
describing the blood sodium data (n = 8) in Tutorial 2.1.

● Open up the workbook 2.1_Blood Sodium.xls again.
● To generate a set of descriptive statistics for this data set, select an empty

cell in the n=8 worksheet and open up the Analysis ToolPak by clicking
on Data Analysis on the Data tab.



�

� �

�

26 2 Statistical Analysis of Experimental Data

● From here, select Descriptive Statistics and click OK. With the cursor in
the Input Range box, select the data (A2:I2). Choose Grouped By: Rows.

● Tick Labels in first column.
● Select Output Range, and with your cursor in the dialogue box, select a

cell to the right of existing data in the worksheet.
● Tick Summary Statistics to instruct Excel to calculate statistical mea-

sures such as mean, mode, and standard deviation.
● Tick Confidence Level for Mean to specify you want a confidence level

calculated for the sample mean (this is set by default at 95%).
● Press OK to see the output displayed of the various parameters includ-

ing the confidence interval as given by a 95% confidence level (confidence
intervals are explained in the next section).

● Save and close the workbook.

2.3 Confidence Intervals and Limits

The confidence interval can be defined as a symmetric interval about the
mean x, with standard deviation, s. Upper and lower limits for this confi-
dence interval are given by:

x ± zs√
n

(2.1)

where
z 1.96 for a 95% confidence level

2.58 for a 98% confidence level
2.97 for a 99% confidence level

n number of repeat measurements
s sample standard deviation

Equation (2.1) is valid for large sample sets only (n> 30). This is because in
large sample sets, the sample standard deviation, s, can be approximated to
be the same as the population standard deviation, 𝜎. For smaller data sets
(n< 30), we cannot make this assumption and therefore cannot assume a
normal distribution about the mean. Instead, we need to calculate the lim-
its of the confidence interval for a population mean using a distribution
called the Students t-distribution. Upper and lower limits in this case are
given by:

x ±
tn−1s√

n
(2.2)
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where

tn−1 Students t-distribution for n−1 degrees of freedom

The Students t-distribution is a symmetric probability distribution centred
at zero, like the normal probability distribution. The difference is that the
t-distribution has a variance that depends on the degrees of freedom of
the standard error in the statistic of interest. If very few measurements
have been taken, the number of degrees of freedom is very small and the
t-distribution has a large variance and the width of the confidence interval
is large. Conversely, if the number of sample measurements is high, the
number of degrees of freedom is large and the t-distribution has a much
smaller variance and so the width of the confidence interval is reduced.

In Excel, a confidence interval can be obtained for a set of data using the
functions CONFIDENCE.NORM or CONFIDENCE.T. For large data sets
(n> 30), the former is used, which returns the confidence interval for a pop-
ulation mean using a normal distribution. For smaller data sets, the latter
should be used which returns the confidence interval for a population mean
using a t-distribution.

In Analysis ToolPak, confidence levels can be generated using Descrip-
tive Statistics. It is important to note, however, that by default, the add-in
uses the Students t-distribution according to equation (2.2), regardless of the
size of the data set.

Tutorial 2.3 Computing Confidence Intervals for Small and Large Data
Sets

In this tutorial, you will investigate confidence intervals for mean values
for small and large data sets.

First, generate the confidence interval for the mean blood sodium level
for the participant data (n = 8).

Also generate the confidence interval for the mean blood sodium level for
a larger participant group (n = 40) based on a data set where blood sodium
readings were collected for 40 healthy participants where each reading rep-
resents the blood sodium level for a single participant.

● Open up the workbook 2.1_Blood Sodium.xls and follow the following
instructions for small and large data sets.

n< 30

● Select an empty cell in the n=8 worksheet.
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● Here you are working with a small data set and so will calculate the
confidence interval for this data set using the function CONFIDENCE.T.
Compute the confidence interval for the data by typing the function
= CONFIDENCE.T(). With the cursor inside the brackets, the arguments
required should become visible. Enter 0.05 as the alpha (𝛼) value,1 enter
the standard deviation by highlighting B10, the cell that contains the
outputted standard deviation value generated by the Descriptive Statistics
in Tutorial 2.2, and finally enter the size of the data set by highlighting the
Count cell, B18. Make sure to have a comma between each of these argu-
ments. The text in the cell should read =CONFIDENCE.T(0.05,B10,B18).
Press Enter. You should return a confidence interval of 0.4779.

● To calculate the upper and lower confidence limits, you need to add and
subtract the confidence interval value to and from the data mean value.
Compute these limits in the cells below the confidence interval cell and
your outputted values should be as in Table 2.1:

● Vary the value of 𝛼 and generate the corresponding confidence interval
and upper and lower limits to understand the effect of this parameter on
the width on the confidence interval. What happens to the confidence
level width when α is increased to 0.1? Can you understand why this is
the case? Also investigate what effect a decreased sample size will have
on the confidence interval by removing some of the data points from the
sample data set.

n> 30

● Staying in 2.1_Blood Sodium.xls, select worksheet n=40, which contains
blood sodium data for 40 participants. As this data set has n > 30, it can be
considered a large data set. Generate Descriptive Statistics for this data
set in the same way as before.

● Next, calculate the confidence interval for this data set using the function
CONFIDENCE.NORM by typing the function =CONFIDENCE.NORM()

Table 2.1 Upper and Lower Confidence Limits for n = 8.

𝛼 0.05
Confidence.t 0.48
Upper CI 140.22
Lower CI 139.27

1 Alpha is related to %confidence level via the expression %confidence = (1-alpha)x100;
so an alpha value of 0.05 is equivalent to 95% confidence.
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Table 2.2 Upper and Lower Confidence Limits for n = 40.

𝛼 0.05
Confidence.norm 0.1265
Upper CI 140.26
Lower CI 140.00

(Table 2.2). You should return a value of 0.1265 (you need to specify 4
decimal places for this cell). Note that this value, based on a normal distri-
bution, is different from the confidence limit value given in the outputted
table from Descriptive Statistics. This is because the confidence interval
in the table is based on the t-distribution and so is calculated according to
the function CONFIDENCE.T, which does not hold for larger data sets.

● As before, generate your confidence limits and explore the effects on these
values when changing 𝛼 and sample size.

● Save and close the workbook.

2.4 Hypothesis Testing

A hypothesis test is a statistical test that is performed on sample data to
make inferences about one or more populations depending on the evidence
provided by the sample data. This sample data might be experimental data
generated to characterize or analyze a material or observation for example.
The hypothesis test examines two opposing hypotheses about a population:
the null hypothesis, H0, and the alternative hypothesis, H1. H0 is the state-
ment being tested. Usually the null hypothesis is a statement of ‘no effect’ or
‘no difference’. Based on the sample data, the hypothesis test measures how
compatible your data are with H0. In Excel and other statistical software
packages, a p-value is computed based on the data to determine statisti-
cal significance. The p-value is a measure of the probability of finding the
observed (or more extreme) result when H0 is true. The p-value is compared
to α (see table below) in order to decide whether to accept or reject H0.

If the p-value< the significance level, 𝜶,
then H0 is rejected

If the p-value> the significance level, 𝜶,
then H0 cannot be rejected

Different hypothesis tests use different test statistics based on the probabil-
ity model that is assumed in the null hypothesis. Common tests that we will
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look at here for small data sets include the t-test (which uses the t-statistic)
and the f -test (which uses the F-statistic).

The t-statistic is one of the most used statistics today and was developed by
mathematician and chemist William Gosset (1876–1937) while working at
the Guinness brewery in Dublin. He developed the first statistical methods
to deal with small sample sets which enabled Guinness to make decisions
on ingredients, allowing them to produce high-quality beer that consistently
tasted the same. Gosset got permission from Guinness to publish his find-
ings as long as he used a pseudonym ‘Student’. The Student’s t-distribution,
as it is called today, remains one of the cornerstones of modern statistics.
Although it was William Gosset after whom the term ‘Student’ is penned,
it was actually through the work of Sir Ronald Fisher that this distribu-
tion became well known as ‘Student’s t-distribution’ and ‘Student’s t-test’.
Sir Fisher, a friend of Gosset’s, was another important figure in twentieth
century statistics. The f -test is named in honour of Sir Fisher as he initially
developed this statistical approach when working of the analysis of variance
(ANOVA) method in the 1920s.

While basic statistical knowledge is assumed for working through this
book, some background theory is given here on hypothesis testing. How-
ever, students are encouraged to look to other resources to augment their
background knowledge of hypothesis testing as without the basics, these
tutorials will simply bring you through the process of performing hypoth-
esis testing, without a real understanding of which tests should be used in
which instances – this is often the real challenge for students when perform-
ing hypothesis testing. The table below gives a high-level overview of some
of tests we will cover later in this chapter, what their purpose is and gives
an example of when one might use a particular test. Following this, some
basics on the tests are given, as well as guided tutorials. Once you have com-
pleted these tutorials, it is suggested that you work through the additional
exercises at the end of the chapter to gain more experience in selecting and
performing hypothesis tests.

Hypothesis Test Purpose Example (Two-Tail)

One-sample
t-test

Tests whether a
sample mean is a
good estimate of
the population
mean.

The mass of active ingredient in a
tablet is analyzed in one sample
batch. Does this analysis show that
the mass of active ingredient in this
sample batch (sample mean) is
statistically the same (or different) to
the stated concentration (population
mean).
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Hypothesis Test Purpose Example (Two-Tail)

Two-sample
t-test

Tests whether
two sample
means are drawn
from the same
population.

The mass of active ingredient is
analyzed in two sample batches of
tablets. Does this analysis show that
the mass of active ingredient in each
sample batch (sample means 1 and 2)
are statistically the same (or
different).

f -test Tests whether the
variances of two
populations are
the same or
different.

The variance in the mass of active
ingredient is analyzed in two sample
batches of tablets (sample variances).
Does this analysis show that the
variance (or dispersion) in mass of
active ingredient in both batches
(population variances) is equivalent
(or not)?

Paired
t-test

Tests whether
two paired
sample means are
drawn from the
same population.

The mass of active ingredient is
analyzed in a number of batches of
tablets. After exposure to high
humidity, the same batches are
analyzed again. Is humidity affecting
the active ingredient in the tablets?

2.4.1 One-Sample t-Test

A one-sample t-test is the hypothesis test used to compare a sample (or
experimental) mean, x, with a true value, 𝜇 (also known as a population
mean), in order to decide if x is a good estimate of 𝜇. The sample mean is
the mean of your sample data – this might be the mean of the experimental
data that you generate in the laboratory for example. The population mean
is the true mean of the population that the sample is taken from. If the
sample data is collected randomly and sample size is large enough, then the
sample mean should be a good estimate of the population (or true) mean.
It is the one-sample t-test that will test if this is the case. If x and 𝜇 differ
by just a small amount, it is likely that it is only random error that accounts
for this difference. In this case, the sample mean is a good estimate of the
population mean. If this is not the case, in other words if there is a large
difference between x and 𝜇, then x is not a good estimate of 𝜇 and there
is a systematic effect present that is causing the sample mean and the true
value to be significantly different from each other.
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By comparing sample and population means using a one-sample t-test,
you will be able to decide whether there is sufficient evidence to show that
the difference between x and 𝜇 is significant or not (i.e. whether the differ-
ence between the two values arises due to systematic effect or if it is solely
due to random error). To do this comparison, you will propose a H0 and test
it. The H0 for a one-sample t-test will always be that the ‘sample mean is
equal to the population mean’, x =𝜇. Equation (2.3) is used to calculate the
t value for this test.

t =
(x − 𝜇)

√
n

s
(2.3)

where t has n−1 degrees of freedom (df ).
All forms of the t-test assume that you have sampled data from a popula-

tion that follows a normal distribution. However, these parametric tests do
actually perform reasonably well with continuous data that are non-normal
once the sample size is above approximately 15–20. If you have a smaller
sample size than this, (which is often the case in analytical science data
generation), and you have no basis for assuming the data follows a normal
distribution, a better option might be to use non-parametric hypothesis test-
ing (see Section 2.4.6.)

The Analysis ToolPak does not have an option to perform a one-sample
t-test directly. However, there are several ways it can be carried out. Two of
these ways are outlined here.

1. Compute a confidence interval of the sample mean. If the specified
population mean falls within this confidence interval, then the sample
mean is equal to this specified mean. In other words, if a 95% confidence
level is used and the true mean is found to fall within this interval, the
specified mean would not be rejected by a t-test at a significance level
of 0.05.

2. Using Analysis ToolPak, perform a two-sample t-test (assuming unequal
variances) whereby one data set will contain the sample data and the sec-
ond data set will contain the equivalent number of values, all equal to
the true or target value. By running this two-sample t-test at a signifi-
cance level of 0.05, a p-value will be generated, which is used to decide if
the true mean is equivalent to the population mean at a 95% confidence
level.

Examples of working through both approaches are given here in
Tutorial 2.4.
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Tutorial 2.4 Performing a One-Sample t-Test

In this tutorial, you will compare an experimental sample mean, x, with
a population mean, 𝜇, for the following analysis:

A wastewater treatment plant water sample was spiked with 50 ng mL−1

caffeine and subsequently quantified via liquid chromatography-ultraviolet
(LC-UV) analysis. The quantification was performed 100 times and the
results tabulated. Assuming no background level of caffeine in the sample,
decide if the results obtained are consistent with the spiked caffeine
concentration.

Before working through the solution, your null hypothesis must first be
defined: H0: 50 ng ml−1 falls within the CI of the sample mean (computed
from the experimental results), i.e. x = 𝜇 (at a 95% confidence level) and so
the sample mean is a good estimate of 𝜇

Confidence Interval Approach
● Open the workbook 2.4_Caffeine.xls and select worksheet Approach 1.
● In order to perform a t-test using this approach, first calculate x and s

for the sample set using Insert Function (or generate the Descriptive
Statistics for the data set).

● Using Insert Function, calculate the confidence interval for the
data using the CONFIDENCE.NORM function (alpha = 0.05, stan-
dard_dev = 0.145, size = 100). Remember that the confidence level
calculated in the Descriptive Statistics output will be based on the
function CONFIDENCE.T and hence not valid for large data sets (n> 30).
The answer returned should be 0.0270.

● As the sample mean is given as 49.76 ng mL−1, the corresponding 95%
confidence interval for the mean is (49.76− 0.0270, 49.76+ 0.0270), which
equates to (49.736, 49.789). You can easily compute these upper and lower
confidence limit values in blank cells.

● The question to answer now is whether the specified true population
mean, 50.00, lies within this interval or not. If the true mean lies with this
interval, H0 is accepted, i.e. 𝜇 = 50. Should you accept or reject H0 in this
instance? Interpret your finding.

● Save the workbook.

Analysis ToolPak Approach
● Open the workbook 2.4_Caffeine.xls again and copy and paste the original

data into a second worksheet and name the worksheet Approach 2.
● In the column to the right of the data, enter the title True Mean

(ng mL−1) in the top cell. In the second cell of this column, insert the
true mean value (50.00). Enter this same value down the full column.
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● Now select an empty cell in the worksheet and open up the Analysis
ToolPak. Scroll down and you will see that there are two types of
t-tests – one assuming equal variances and the other assuming unequal
variances. Select T-test: Two sample assuming unequal variances.

● In the dialogue box, select the Caffeine experimental data for Variable
1 Range and the true mean data for Variable 2 Range. You can opt to
include the title cells in your selection. If you do this, you must tick the
Labels box.

● Alpha should be set at 0.05 by default. Leave this as it is. Enter a value of
0 for the Hypothesized Mean Difference or by leaving it blank, Excel
will assume a value of 0 here.

● In Output Range, enter a cell reference that is to the right of your data in
the worksheet. This cell will be the upper left corner of the table that will
be outputted.

● When you press Enter, a table of data is generated. In this exercise, we are
only interested in the p-value (P(T<=t) two-tail). (See the following box
for an explanation on the use of one- and two-tail p-values). The p-value
is the probability that the absolute value of T is less than or equal to t. If
this p-value is lower than 5%, then it is statistically significant, i.e. >95%
chance that H0 is wrong. In this instance, the p-value is 5.01e-30, which
is >0.05. Indeed the degree of difference of the p-value from 𝛼 (0.05) indi-
cates the extent of rejection of the hypothesis.

● Thus we reject H0 and conclude that the sample mean and true mean are
different at the 95% confidence level. In other words, the results are not
consistent with the spiked caffeine concentration.

● Save and close the workbook.

When Should I Use One-Tail Testing and When Should I Use Two-Tail
Testing?

It is important to understand the difference between two-tail and one-tail
testing so that you can decide on which test statistic is appropriate for
your analysis. For t-tests, the choice of a one-tail and two-tail test should
be apparent from the wording of your initial hypothesis.

Two-tail testing is concerned with testing for a difference between two
means in either direction. For example, we might want to ask the question
‘Does the rate of a reaction change when the reaction is performed in
solvent A compared to solvent B?’

One-tailed (or one-sided) testing is concerned with testing for an
increase OR decrease in mean, e.g. if we do an experiment in which
we attempt to increase the rate of a reaction by the addition of a
catalyst, it is clear before we begin, that the only outcome of interest
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is whether the new reaction rate is greater than the existing one, and
only an increase need be tested for significance. A one-tailed test
has more statistical power to detect an effect in one direction that a
two-tailed test with the same design and significance level as you are
only considering an effect in a single direction.

2.4.2 f -Test

Variances, which are what this test concerns itself with, are a measure of
dispersion, or how far the data are scattered from the mean. The f -test
compares two variances measured in two sets of data to decide if the
variance is the same or different across two different populations. Variance
is the square of the standard deviation. Sample variance (s2) is an estimate
of the variance in the population that the sample is drawn from (𝜎2).
The test uses the sample standard deviations, s1 and s2, as estimates
of the population variances, 𝜎1 and 𝜎2, respectively. The test assumes
that the populations from which the samples were taken are normally
distributed.

We define H0 for this f -test as 𝜎1
2 = 𝜎2

2. We then test if s1
2 = s2

2 by sim-
ply taking their ratio, using equation (2.4) to calculate the F value. Larger F
values represent greater differences in dispersion.

F =
s2

1

s2
2

(2.4)

where

s1 > s2
df of the numerator is the df of the first data set (n1 − 1)
df of the denominator is the df of the second data set (n2 − 2).

By comparing variances in two sample data sets using an f -test, you will be
able to decide whether there is sufficient evidence to show that two samples
come from independent populations having equal variances (i.e. whether
the difference between the two sample variances arises due to a systematic
effect or if it is solely due to random error).

2.4.3 Two-Sample t-Testing

The two-sample t-test is used to determine if two population means (𝜇1
and 𝜇2) are equal. It is one of the most commonly used hypothesis tests. It
is applied to compare whether the average difference between two groups
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is really significant or if it is due to random chance. There are two types of
two-sample t-testing available, one where you assume equal variances for
the two population means you are comparing, and one where you assume
unequal variances for the population means. The test uses sample means,
x1 and x2, as estimates of 𝜇1 and 𝜇2, respectively, and it uses the single
measure of standard deviation as a pooled standard deviation as an estimate
of variability.

H0 is defined for this t-test as 𝜇1 = 𝜇2, or 𝜇1 − 𝜇2 = 0. We then test if
x1 − x2 differs significantly from 0. To do this, the two-sample t-test is used
to compare the result of x1 − x2 with the hypothesized mean difference of
0 in this case. If the difference between this result and 0 is large relative to
the estimated variability of the sample means, then the population means
are unlikely to be the same.

Equation (2.5) gives the formula used by Excel to calculate the t value for
this test when equal variances are assumed (even if the population means
are different).

t =
x1 − x2

s
√

1
n1

+ 1
n2

(2.5)

where

t n1 +n2 − 2 degrees of freedom
s pooled estimate of the standard deviation

In cases where the variances of the two data sets cannot be assumed to be
equal, you cannot pool the standard deviations and so equation (2.5) cannot
be applied. In these instances, Excel applies a different formula to compute
the t value. You will encounter this statistic in Tutorial 2.6.

Tutorial 2.5 Performing a Two-Sample t-Test (1)

In this tutorial, you will compare two data sets based on their experi-
mental sample means to decide if these sample means are drawn from
the same population or not.

pH-responsive hydrogels containing glucose oxidase swell dramatically in
the presence of glucose. The effect of incorporating catalase into the hydro-
gels on the swelling behaviour of the hydrogels was investigated. Average
swelling ratios were calculated for hydrogels with and without catalase at
10, 100, and 400 min. Assuming equal variances across data sets, decide
what is the earliest time point whereby a significant reduction in swelling
occurs in the presence of catalase.
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● Define your null hypothesis:
● H0: Catalase has no effect on the swelling behaviour of the hydrogel, i.e.

x1 − x2 = 0 (at a 95% confidence level) and so the sample mean is a good
estimate of 𝜇.

● Open the workbook 2.5_Hydrogel Swelling.xls where you will see the data
for swelling ratios measured as a function of time with and without cata-
lase. In a cell below the data, enter the title 10 min. Open up the Analysis
ToolPak and select t-test: Two-Sample Assuming Equal Variances.

● In the dialogue box, select the 10 min swelling ratio replicate data Without
Catalase for Variable 1 Range and the 10 min swelling ratio replicate
data With Catalase for Variable 2 Range.

● Alpha should be set at 0.05 by default. Leave this as it is. Enter a value of
0 for the Hypothesized Mean Difference, or by leaving it blank, Excel
will assume a value of 0 here.

● In Output Range, input the cell below your title cell 10 min as your cell
reference. This cell will be the upper left corner of the data table that will
be outputted.

● When you press Enter, a table of data is generated. In this exercise, we
are interested in the p-value (P(T<=t) one-tail). Why are you performing
a one-tailed test here? As before, the p-value is the probability that the
absolute value of T is less than or equal to t. If this p-value is lower than
5%, then it is statistically significant, i.e. >95% chance that H0 is wrong. In
this instance, the p-value is 0.2132. Therefore, you reject H0 and conclude
that at 10 min, there is a significant difference between the swelling ratios
when catalase is present and when it is not, at the 95% confidence level.

● Work through this same procedure for the 100 and 400 min data sets to
decide if catalase impacts the swelling at these times.

● Save and close the workbook.

Tutorial 2.6 Performing a Two-Sample t-Test (2)

In this tutorial, you will use hypothesis testing to decide if two data sets
are drawn from the same population or not.

Experimental data for the analysis of thiol in the lysate of normal and
rheumatoid patients is given. You need to decide if there is a difference in
thiol levels for the two sets of patients.

● Define your null hypothesis:
H0: There is no difference in the means of these two data sets, i.e. 𝜇1 = 𝜇2.
Specifically stated, H0 is that the rheumatoid condition does not affect the
levels of thiol in patient lysate.
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● Open up the workbook 2.6_Thiol in lysate.xls to see the two sets of
data for the analysis of thiol in the lysate of normal and rheumatoid
patients.

● Generate Descriptive Statistics for these two data sets. You can gener-
ate both sets of statistics at the same time by highlighting all the relevant
cells. (Note: In order to do this, you will need to include the blank cell
A8 as part of the input range – this will not make any difference to the
analysis).

● Visually compare the mean, standard deviation and variance values for
each data set to judge how similar or different the two data sets are in
terms of the data and the spread of data.

● Now apply a t-test to decide if the data sets are similar or different. Open up
the Analysis ToolPak again. Scroll down and you will see that there are
two types of t-tests – one assuming equal variances and the other assuming
unequal variances.

● The first step is to decide which of these tests should be used, i.e. whether
the variances in these data sets are statistically equal or unequal. Have
a look at the two variances that you are comparing (0.194 vs. 0.0057).
Subjectively, they do differ. However, you need an appropriate signifi-
cance test to arm you with evidence that they are indeed different. You
can generate this evidence by performing an f -test. To do this, you will
first need to pose another null hypothesis (and then test this using an
f -test):
H0: The population variances are equal (𝜎2

1 = 𝜎
2

2)
● Now test H0 with an f -test according to the instructions below.

⚬ In Analysis ToolPak, select f -test: Two Sample for Variances. In the
dialogue box, select the Rheumatoid data for Variable 1 Range and the
Normal data for Variable 2 Range. You can opt to include title cells in
your selection by ticking the Labels box.

⚬ Retain Alpha at 0.05.
⚬ In Output Range, enter a cell reference that is to the right of your data

in the worksheet. This cell will be the upper left corner of the table that
will be outputted.

⚬ Press OK. A table will be generated according to Table 2.3:
⚬ Check that the values for Mean, Variance, and Observations match

those generated in the Descriptive Statistics table from earlier. Observa-
tions are the same as the Count. The df value is the degrees of freedom
within the data set (n−1). F is calculated as the ratio of the variance
in the Rheumatoid data to the variance in the Normal data. Note: the
Number format has been adjusted for the cells to report the appropriate
number of significant figures. It is good practice to consider the
appropriate significant figures for the data in the outputted table and
adjust to suit.
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Table 2.3 Tabulated Data for f -test for Comparing Thiol
Levels in Blood of Normal and Rheumatoid Patient Data.

f -test Two-Sample for Variances

Rheumatoid Normal

Mean 3.465 1.921
Variance 0.194 0.006
Observations 6 7
df 5 6
F 33.9553
P(F<=f ) one-tail 0.0003
F Critical one-tail 4.3874

The Excel f -test dialogue box requires that the variance of the data input
as Variable 1 Range must be greater than the variance of the data input
as Variable 2 Range. Therefore, in the output table for the f -test, check
that the variance value in the first column>variance value in the second
column. If this is the case, the F Critical one-tail value returned will be
>1 and so is valid. If the F value is <1, although the p-value returned is
correct, the F value cannot be interpreted. Therefore, if F Critical one-tail
is <1, as good practice, repeat the test assigning the data in the opposite
manner to Variable 1 and Variable 2 Ranges in the dialogue box.

● To analyze this f -test output table, look at the p-value (P(F<=f) one-tail).
The p-value is the probability that the absolute value of F is less than or
equal to f . If this p-value is lower than the conventional 5%, then it is sta-
tistically significant, i.e. >95% chance that the null hypothesis is wrong.
In this instance, the p-value is 0.0003, which is significantly less than 0.05,
and so you reject H0.
⚬ Note that this f -test table only reports a one-tail p-value. The p-value

(0.0003) would need to be doubled (0.0006), if you were performing
a two-tail test. In this instance, a one-tail test is appropriate as you
already know that s1

2
> s2

2 and so you are only interested in whether
that inequality is significant or not.

● On account of the one-tail rejection of H0, you should conclude that the
variance within the rheumatoid data set is significantly greater than that
in the normal data set. In other words, there is a greater dispersion of thiol
levels in the rheumatoid population.

● Returning to the t-test, the aforementioned conclusion indicates that
you require the t-test assuming unequal variances. Open up Analysis
ToolPak again and run t-Test: Two-Sample Assuming Unequal
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Variances, selecting the normal and rheumatoid data sets as the two
variable ranges.

● In the output table, one-tail and two-tail p-values are returned. In this case,
you are interested in the two-tail p-value (make sure to consider why this
is the case), which is<0.05 (0.0004< 0.05). Therefore, H0 is rejected and so
you can conclude that the means of the two data sets are not equal. Thus,
at a 95% confidence level, thiol levels in blood are affected by rheumatoid
arthritis.

● Consider if H0 would still be rejected if a higher confidence level of
99.99% was used.

2.4.4 Paired Sample t-Test

The paired sample t-test is used for testing whether the mean of the differ-
ences between paired observations is equal to a target value. To test if a set
of paired observations are equivalent or not, you would set this target value
for the mean differences (𝜇d) to zero. This type of t-test has the power to sep-
arate out the variation due to the method from that due to variation in the
test samples. In these instances, the two-sample t-test is not appropriate as
it cannot separate out these two sources of variation.

The paired t-test can only be used when data is naturally paired. This
would arise for a circumstance where you have two sets of observations and
each observation/data point collected from a set of samples is paired with an
observation in a second set of samples. Examples of when this might arise
include comparing a set of samples before and after a particular treatment,
or comparing two different methods of analysis when applied to the same
set of samples. The paired t-test assumes that the differences between pairs
are normally distributed.

The null hypothesis for this test is that the mean difference between paired
observations is zero, i.e. the difference data are drawn from a population
with mean (𝜇d) = 0. If the returned p-value for this paired t-test is lower than
𝛼, H0 cannot be rejected and it is concluded that the differences are drawn
from a population with 𝜇d = 0. In other words, the methods of analysis are
returning the same results for the test samples.

Tutorial 2.7 Performing a Paired Sample t-Test in Excel

In this tutorial, you will perform a paired sample t-test where two meth-
ods of analysis are compared by applying both methods to analyze the
same set of test materials.
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Data for the determination of paracetamol in tablet batches by two dif-
ferent methods – Ultraviolet (UV) and Infrared (IR) spectroscopy – is given.
Test whether there is any difference between the results obtained by the
two different analytical methods.

● Define your null hypothesis:
● H0: The mean difference between paired observations is zero; 𝜇d = 0. If

this is the case, you can infer that the means of the UV and IR data sets
are equal.

● Open up the workbook 2.7_Paracetamol Analysis.xls to see the data from
the two methods.

● Using the Analysis ToolPak, select t-Test: Paired Two Sample for
Means.

● Enter your two sets of data as the variable ranges.
● Hypothesized Mean Difference should be zero; Alpha = 0.05
● Output the report into the worksheet.
● Look at the P(T<=t) two-tail value and note that it is greater than 0.05.

Therefore, H0 cannot be rejected. It can be concluded that at a 95% confi-
dence level, there is no evidence to demonstrate a difference between the
UV and IR analysis of the tablets.

2.4.5 Analysis of Variance (ANOVA)

In this chapter so far, we have been comparing sample and population
means and variances of two data sets at most, to see if they differ sig-
nificantly. In analytical work, there are often more than two sets of data
that need to be taken into account. For example, if we measure the mean
dissolved oxygen (DO) levels in fresh water samples at several different
depths in a lake, can we test if the water depth is impacting the DO level?
We can investigate this type of problem using the analysis of variance
(ANOVA) approach. In such a case, there are two sources of variation in the
data set: (i) random error in the measurement of the DO levels and (ii) a
controlled factor – depth. ANOVA can be used to separate out random error
arising from the measurement and variation caused by the changing of this
controlled factor. In general terms, the hypothesis to be tested is whether
all samples are drawn from the same population or not. In this section, you
will look at Single-Factor Analysis for when there is one controlled factor
and Two-Factor Analysis for when there are two controlled factors you
want to investigate.
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Tutorial 2.8 ANOVA: Single Factor

In this tutorial, you will use ANOVA analysis to test analytical data to
see if the changing of a controlled experimental factor influences the
stability of a solution

The photooxidative stability of a coumarin dye was evaluated by mea-
suring the photoluminescence quantum efficiencies (PLQE) when the dye
was exposed to different environments – ambient room conditions, yellow
lighting and in the absence of air (n = 3) for fixed periods of time.

Determine whether the exposure conditions affect dye efficiency.

● Define your null hypothesis:
H0: There is no effect of the environmental conditions on the photooxida-
tive stability of the dye

● Open the workbook 2.8_Photostability.xls to view the data.
● To perform the ANOVA analysis, click on an empty cell below the data

and open up the Analysis ToolPak. There are three types of ANOVA that
can be performed – Single Factor, Two-Factor Without Replication, and
Two-Factor With Replication.

● Select Anova: Single Factor. This is the most appropriate AVOVA as you
are testing if a property of the dye (PLQE) is changing as a single factor is
varied, i.e. environmental exposure.

● In order to apply this test, it is important to decide whether the data you
want to analyze are grouped in columns or rows. In this example, the con-
trolled factor (i.e. storage condition) is changing as you move down the
rows, so the data is grouped in rows. (The data in the columns are repli-
cates of the same experiment).

● Enter the Input Range covering the entire data set (A2:D5). Included
here is the controlled factor description column so make sure to tick
Labels in first column. It is particularly useful to do this when per-
forming ANOVA in particular, for keeping track of the various factors in
the report.

● Alpha is set at 0.05 by default.
● Direct the output table into a convenient place in the worksheet and click

OK. The ANOVA report generated showing the Summary and ANOVA
tables is shown in Table 2.4.

● Examine the summary table first to ensure that the data has been grouped
correctly. In this case, 4 groups have been identified according to the differ-
ent storage conditions used. Count gives the number of replicates within
each group (3 in this instance).
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Table 2.4 Tabulated Data for ANOVA: Single Factor for Investigating if Different
Environmental Storage Conditions Impact the Stability of a Coumarin Dye.

Anova: Single Factor

Summary

Groups Count Sum Average Variance

Fresh dye 3 112.22 37.41 0.14
Stored at ambient 3 113.33 37.78 0.41
Stored under yellow lights 3 107.78 35.93 0.55
Stored in absence of air 3 102.22 34.07 0.55

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 25.5144 3 8.5048 20.6667 0.0004 4.0662
Within Groups 3.2922 8 0.4115
Total 28.8066 11

● The ANOVA table separates out the sources of variation – between groups
and within groups. SS and MS refer to the Sum of Squares and Mean Sum
of Squares, respectively. SS is defined as the sum, over all observations,
of the squared differences of each observation from the overall mean.
MS = SS/df where df refers to degrees of freedom (4 groups, 4−1 = 3 for
between groups; and 2 degrees of freedom in each group × 4 for within
group). The MS is an estimate of population variance that accounts for
the degrees of freedom used to calculate that estimate.

● F = MS(between groups)/MS(within groups) is the F-statistic of interest and
is 20.67 in this case. What is important here is that it is greater than
the Critical Value (F crit) of 4.07, meaning that the variance between
the different storage conditions (rows) is significantly greater than the
variance within the replicates (columns). Equally, you can look at the
p-value to decide if H0 should be rejected. In this case, H0 can be rejected
and it can be stated that at a 95% confidence level, the solution is not
stable for at least one of the storage conditions investigated.

● Save and close the workbook.

Note: It is only possible in this analysis to conclude that the dye solution is
not stable over at least one of the storage conditions tested. It is not possible
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to identify which storage condition(s) leads to instability using ANOVA. If
you quickly look at the data, you can of course see the problem with storage
in the absence of air! To statistically demonstrate this, a post-hoc analysis
could be carried out. This will identify the source(s) of the instability – it
involves splitting the data set down into smaller units and comparing their
variances. The Analysis ToolPak does not perform this type of analysis,
and so if this is of interest, you should consider using a more sophisticated
software package.

Tutorial 2.9 ANOVA: Two Factor (Without Replication)

In this tutorial, you will use ANOVA to test the significance of each of
two experimental variables with respect to an analytical response.

In a research project, four participating research laboratories across
Europe are asked to quantify the %Au in a Au-Si core–shell nanoparticle-
based material using standard methods. Each laboratory carries out
the analysis using three different methods (inductively coupled plasma-
spectrometry, atomic absorption spectroscopy, and electrochemical
stripping analysis) to quantify the %Au. Is there evidence to show that there
are differences between the laboratories and/or the different methods of
analysis?

● Define your null hypothesis:
H0: There are no significant differences across research groups or analyt-
ical methods used for testing %Au content

● Open the workbook 2.9_% Au Analysis.xls to see the data and identify the
data relating to the different factors.

● Using Analysis ToolPak, select ANOVA: Two-Factor Without Repli-
cation as now you are testing if the quantitative analysis of Au is
changing as two factors are varied, i.e. analysis technique and research
group. Select the whole table including title row and title column as the
Input Range and tick Labels.

● As before, summary and ANOVA tables are generated as the output
(Table 2.5). Confirm your data was set up for the analysis correctly by
verifying that the summary table is outputting the correct information.

● In the ANOVA table, F(Rows)>Fcrit(Rows). Therefore, there is evidence
of a difference in the methods.

● F(Columns)<Fcrit(Columns) so there is no evidence to suggest a signifi-
cant difference between research groups.

● The p-value column can also be used to interpret the results. The P-value
(Rows) <0.05 and so is significant for the methods used, i.e. there is
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Table 2.5 Tabulated Data for ANOVA: Two Factor Without Replication for
Investigating if Different Research Laboratories and Methods of Analysis Affect the
Quantification of Au in a Particular Sample.

Anova: Two-Factor Without Replication

Summary Count Sum Average Variance

ICP 4 7.99 1.9975 0.0009
GF-AAS 4 8.05 2.0125 0.0015
EC Stripping 4 8.34 2.0850 0.0012
Ireland 3 6.03 2.01 0.0016
Germany 3 6.07 2.0233 0.0030
France 3 6.14 2.0467 0.0036
UK 3 6.14 2.0467 0.0044

ANOVA

Source of Variation SS df MS F P-value F crit

Rows 0.0175 2 0.0088 6.6660 0.0299 5.1433
Columns 0.0030 3 0.0010 0.7526 0.5597 4.7571
Error 0.0079 6 0.0013
Total 0.0284 11

evidence of a difference in % Au found depending on which method is
used. The P-value (Columns) >0.05 and therefore is not significant for the
research groups, i.e. there is no significant difference in the data coming
from the different research groups.

● Save and close the workbook.

The various examples of statistical tests demonstrated in these previous
tutorials are known as parametric statistical tests and they all require that
samples be drawn from normal population data. That said, departures from
normality can be tolerated for t-tests but only when sample size is large
as discussed earlier. As well as this, ANOVA can tolerate some deviation
of departure from normality and is still valid even if not all groups can be
shown to follow a normal distribution, but not too highly skewed either.
For data sets that do not meet the requirements for parametric testing,
non-parametric testing is the alternative approach.
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2.4.6 Non-parametric Hypothesis Testing

For populations that are not normally distributed, there are non-parametric
hypothesis tests that do not rely on the populations that samples are drawn
from belonging to a particular distribution. As these tests make fewer
assumptions about the data, their applicability is much wider than corre-
sponding parametric tests. In particular, they may be applied in situations
where less is known about the data in question. There are non-parametric
statistical tests that are equivalent to most parametric tests. For example, the
Wilcoxon Signed Rank test can be applied as a non-parametric equivalent of
one-sample and paired t-tests, the Mann Whitney U-test is equivalent to the
two-sample t-test – it is used in mean testing where the data cannot be easily
reduced to a single set. The Kruskal–Wallis test is the equivalent of ANOVA.

The most common basis for choosing a non-parametric over a parametric
test is when you have a small sample size and you are not confident that you
have normally distributed data. However, there are additional criteria that
should also play a role in this decision because, as discussed earlier, paramet-
ric tests can in fact handle degrees of non-normality in data sets, even with
reasonably modest sample sizes. Skewness in data is a criterion that needs
consideration. When a sample distribution is skewed enough, the mean is
strongly affected by changes far out in the distribution’s tail, whereas the
median, as a non-parametric measure of central tendency, may more closely
reflect the centre of the distribution. If the mean accurately represents the
centre of your distribution and your sample size is large enough, consider
applying a parametric test as they are statistically more powerful, i.e. if the
data comes from a normal distribution you are less likely to reject H0 when
it is false. If the median better represents the centre of your distribution,
consider applying a non-parametric test even if you have a large sample size.

The median is the midpoint value separating the upper half of a data
set, from the lower half, when the data set is ordered numerically. It can
be calculated as the value of the ((n+ 1)th/2) observation if n is odd, and
the average of the nth and the ((n+1)th/2) observations if n is even.

Conversely, non-parametric tests have strict assumptions that you can’t dis-
regard, e.g. for grouped data, the spread or dispersion in the data should be
the same for each group. In contrast, parametric tests can perform well when
the spread across the groups is different.

Of course, in considering all these criteria, this ‘best representation’
can be subjective and a judgement call is required by the experimentalist.
Remember, parametric tests usually have more statistical power and so you
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are more likely to detect a real effect when using a parametric test. However,
if you have a very small sample size, or skewed data, you might be forced to
use a non-parametric test. With this in mind, when performing experiments,
it is a good idea to collect as much replicate data as possible as your chance
of detecting a significant effect when one exists can be very small when you
need to use a non-parametric test on account of having a small sample size.

Wilcoxon Signed Rank Test
The Wilcoxon signed rank test can be used as a non-parametric statistical
equivalent to a one-sample t-test. It can also be modified so that it can be
used as a non-parametric equivalent to a paired t-test. We will look at both
of these in the following tutorials. The assumptions made for this test are
that the data is taken from a continuous, approximately symmetric (but not
necessarily normal) population. A heavy-tailed distribution is an example of
this and can be regarded as a normal distribution with the addition of out-
liers. Figure 2.1 shows a histogram (compiled from data from 70 laboratories
on alumina content in a rock test material from a round of proficiency testing
[1]). The data can be seen to be heavy tailed (and more ‘peaky’) in compari-
son with the fitted normal distribution which is represented as a solid line)
and thus is deemed symmetric but not normal.

In these instances, the population mean and median for the data set are
the same and given by 𝜇. When the Wilcoxon signed rank test is used for
comparing an experimental finding with a true value, H0 will be that 𝜇 is
equal to some known value. The method of analysis is not based on the
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Figure 2.1 Heavy tailed histogram showing the alumina content in a rock test
material as measured in 70 different laboratories.
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actual values in the data, but rather the ranking of the data. Work through
the following tutorials to understand the method involved. Tutorials 2.10
and 2.11 will guide you through the setup of a worksheet template that you
can save and use later again for analyzing your own data using the Wilcoxon
signed rank test.

Tutorial 2.10 Using the Wilcoxon Signed Rank Test for Comparing an
Experimental Finding with a True Value

In this tutorial, you will use the Wilcoxon Signed Rank test to test for
significance.

A chemical reagent is stated to have a purity of 99.5%. Successive batches
of this reagent were analyzed and found to have purity levels of 98.5, 99.2,
97.6, 95.1, 98, 92.3, and 99.6%. Confirm that the data is symmetrically dis-
tributed, and use the Wilcoxon Signed Rank test to investigate if there is
evidence the purity of the material is lower than it should be.

● Define your null hypothesis:
H0: The mean/median value is 99.5%

● Open the workbook 2.10_Wilcoxon Signed Rank Test.xls.
● Enter the experimental data in Column A of the worksheet and enter the

stated purity (99.5) into each corresponding cell in Column B.
● In order to confirm if the data is symmetrically distributed, calculate the

mean and the median for this data by generating the Descriptive Statistics
table. The mean and the median values need to be equivalent for the data
to be symmetric, i.e. non-skewed. Look at the skewness value (−1.329),
also generated in the table. In order to decide if the skewness is large
enough to cause concern, you need to calculate a measure of the stan-
dard error of skewness. This can be measured using the formula 2 ×

√
6∕n.

To calculate this value, type =2*SQRT(6/7) into an empty cell in the work-
sheet. You should return a value of 1.85. If the skewness measure for your
data is less than this standard error value, then it indicates that the distri-
bution of the data is symmetric. Similarly, if the skewness is greater than
this amount, it indicates that the distribution of the data is non-symmetric.
The skewness reported by Excel is −1.329, so the data can be assumed to
be symmetric.

● Now, in order to proceed with the Wilcoxon test, you first need to compute
the differences between the experimental data values and the stated purity
value in Column C (Difference). In C2, enter =A2-B2 and fill down.

● In Column D (Sign), you need to assign a value of −1 to the difference
values in Column C that are negative, and +1 to the values that are
positive. To do this, use the IF() formula. The syntax is IF(logical_test,
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value_if_true, value_if_false) where the logical test in this case is C2> 0
and the value_if_true = 1 and the value_if_false = −1. Therefore D2
should read =IF(C2> 0,1,−1). Fill down the column.

● In Column E (Absolute Difference), compute the absolute values of the
difference values in Column C using the ABS() formula.

● In Column F (Rank), you need to rank the difference data using
the RANK() formula which will rank each number in a list by size.
RANK(number,ref.,order) is the syntax where number refers to the cell
that contains the number you want to rank, ref refers to the array of
numbers from which you want the rank to be based on, and order is a
number where 0 is interpreted as a descending order and any. In F2, enter
=RANK(E2,$E$2:$E$8,1). Fill down.

● Finally, a positive or negative sign needs to be assigned to the ranked data,
based on the Difference Data. In G2, enter =F2*D2 and fill down the col-
umn. Column G is now used to compute the test statistic. To do this, sum
the positive numbers and the negative numbers in G9 and G10, respec-
tively. The lower of these values (in absolute terms) is taken as the Test
Statistic which needs to be compared against a Critical Value. The rel-
evant Critical Values can be found in appendices of statistics textbooks
such as [2].

For Non-Parametric Testing:
If Test Statistic >Critical Value, H0 cannot be rejected

If Test Statistic ≤Critical Value, H0 is rejected

● For n = 7, the Critical Value is 3 for a one-tail test at a significance level
of 0.05. Remember, you are only interested in whether the purity of the
material is lower than it should be and hence you use a one-tail test.

● As the Test Statistic (1) <Critical Value (3), H0 is rejected. Therefore, there
is evidence that the purity of the material is lower than 99.5%.

● Save and close the workbook.

Tutorial 2.11 Use of the Wilcoxon Signed Rank Test as a Non-parametric
Equivalent to the Paired Sample t-Test

In this tutorial, you will perform a Wilcoxon Signed Rank Test to compare
two methods of analysis which are each used to analyze a series of test
materials.

Data for the determination of % magnesium is given and was determined
by two different methods for eight different health supplements. Is there
any evidence to suggest that there is a systematic difference between the
results obtained by the two different analysis methods?



�

� �

�

50 2 Statistical Analysis of Experimental Data

● Define your null hypothesis:
H0: There is no difference between the two methods of analysis, i.e. all
data is drawn from the same population.

● Open workbook 2.11_Wilcoxon Signed Rank Test_Paired Sample.xls. The
supplement analysis data is given in the first three columns.

● In column D (Difference), enter a formula to subtract each Supplement
No. data point in Column C from the corresponding data point in Column
B. This difference data is what you are testing for significance and the
analysis now follows the same procedure as in Tutorial 2.9.
⚬ Verify if the data are approximately symmetrically distributed or not.
⚬ Perform the test and you should return a value of 8 for the Test Statistic.

The Critical Value according to the Tables is 3 for a two-tail test at a
significance level of 0.05. Therefore, we cannot reject H0. How do you
interpret this? Also perform parametric testing on the data to see if you
reach the same conclusion.

● Save and close workbook. Note: The worksheet is now setup as useful tem-
plates for analysis of your own experimental data. Just make sure that if
you are applying this template in the future for a data set with a different n
value, make sure to make the appropriate adjustments including adjusting
the formula in the Rank column.

2.5 Summary

Having worked through this chapter, you should be convinced of the power
of Excel as a statistical analysis tool. In addition to being proficient in
building formulas, familiarity with the Analysis ToolPak is important for
effective use of Excel to statistically process data, albeit in only parametric
approaches. Some of the pitfalls in using parametric and non-parametric
testing have been discussed here and should arm the student with the
necessary information to make an informed choice when doing hypothesis
testing through Excel. Although the Analysis ToolPak does not currently
have a non-parametric analysis capability, some templates are developed
through the tutorials here to give the student some experience of this
approach. These templates can be used to analyze other data sets giving
access to this hypothesis testing in Excel.

2.6 Further Exercises

2.6.1 Alcohol Content in Blood

Return the 95% confidence interval for the mean alcohol content in a blood
sample given the following data: %C2H5OH: 0.084, 0.089, and 0.079. Perform
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the same calculation assuming the sample standard deviation, s is equal to
the population standard deviation, 𝜎.

2.6.2 Instrumentation Accuracy

A new analytical instrument is tested in a laboratory by determining the
mass (mg) of Cu contained in 1 g of a certified reference material (CRM).
The analysis certificate of the CRM states that the average mass of Cu is
4.54 mg/g of sample. Fifty samples of 1 g of the CRM were analyzed by the
new analytical instrument and the average reading was 4.4998 mg/g with
a standard deviation of 0.08596. At the 5% level of significance, can it be
concluded that the instrument is accurate?

2.6.3 Film Thickness

Table 2.6 gives tabulated values of thickness of a polymer film (nm) on a glass
substrate as measured by profilometry. These films were deposited by inkjet
printing and spin-coating. Investigate whether or not the variances between
the two data sets are equivalent? And then answer the question of whether
the optimized conditions for spin-coating and inkjet printing of polymer dis-
persion result in significantly different film thicknesses using a parametric
approach. Also use a non-parametric testing approach to investigate film
thickness differences.

2.6.4 Brunauer–Emmett–Teller (BET) Surface Area Analysis

Brunauer–Emmett–Teller (BET) surface area analysis was carried out on
carbon nanotube (CNT)-based films that were untreated and treated by

Table 2.6 Film Thicknesses of a Polymer Material
Deposited Using Spin-Coating and Inkjet Printing.

Spin-Coated Film
Thickness (nm)

Inkjet Printed Film
Thickness (nm)

772 782
785 773
754 778
785 765
765 789
753 797
759 782
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Table 2.7 Surface Areas Taken on CNT films, Both
Pristine and Argon-Plasma Treated.

Untreated
CNTs (m2/g)

Argon Plasma
Treated CNTs (m2/g)

184 281
192 406
194 362
192 327
185 327
191 376
207

argon plasma (m2/g). The measured surface areas are given in Table 2.7.
Does the argon plasma treatment increase the surface area of these CNT
film samples?

2.6.5 Fluorescence Quenching

Normalized fluorescence responses for quinine solutions in the absence
and presence of the quenching ion chloride are given. The quenching effect
of chloride was studied over a range of quinine concentrations. Open the
worksheet for Q5. Plot both sets of data on a single graph and include error
bars. Examine the graph and the data. Assuming the data are normally
distributed, investigate at what quinine concentration is there evidence to
suggest a significant quenching effect by the chloride ions.

2.6.6 Drinking Water Analysis

The concentration of Pb in drinking water samples (ppt) was determined by
two different methods for each of the four test samples (Table 2.8). Do the
two methods give similar values?

2.6.7 “Batch-to-Batch” Variance Analysis

Four batches of disposable, screen-printed electrodes are modified with
mediator and enzyme and tested for their amperometric redox-based
response to lactate (10 mM) where three electrodes are tested from each
batch. Before combining all of the data (Table 2.9), determine if the different
batches of electrodes give statistically different results.
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Table 2.8 Concentrations of Pb in Four Drinking
Water Samples as Measured by Two Different
Analytical Methods.

Sample Method 1 (ppt) Method 2 (ppt)

1 71 76
2 61 68
3 50 48
4 60 57

Table 2.9 Replicate Current Responses for Four Different Batches of
Screen-Printed Lactate Biosensors to 10 mM Lactate.

Replicate No.
Batch 1 Current
Response (𝛍A)

Batch 2 Current
Response (𝛍A)

Batch 3 Current
Response (𝛍A)

Batch 4 Current
Response (𝛍A)

1 10.2 10.6 10.3 10.5
2 10.4 10.8 10.4 10.7
3 10 10.9 10.7 10.4
Mean 10.2 10.77 10.47 10.53
Variance 0.04 0.02 0.04 0.02

2.6.8 Water Recovery

Table 2.10 shows the percentage of the total available interstitial water recov-
ered by centrifuging samples taken at different depths in sandstone. Does the
percentage of water recovered differ significantly when the depth of sam-
pling is changed?

Table 2.10 % of Total Available Interstitial Water Recovered in Samples Taken at
Different Depths in Sandstone Rock.

Depth of
Sample (m) % Water Recovered

1 33.3 33.3 35.7 38.1 31 33.3
2 43.6 45.2 47.7 45.1 43.8 46.5
3 73.2 68.7 73.6 70.9 72.5 74.5
4 72.5 70.4 65.2 66.7 77.6 69.8
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3

Regression Analysis

In this chapter, students will learn to:

● Perform linear regression modelling on experimental data
● Assess linear regression through data charting and statistical analysis.
● Use polynomial regression to test the ‘goodness of fit’ of regression
● Visualize precision in replicate measurements using error bars
● Apply non-linear regression modelling to data using built-in Excel

functions

Regression is very commonly used in the processing of experimental data
as a way to understand correlation and to validate experimental data.
With the increasing availability of these regression tools, one would assume
that the standard of data analysis would dramatically improve compared
with the past, when regression equations had to be laboriously built up
from a series of repetitive calculations. However, the opposite is often the
case, since students tend to use curve-fitting tools uncritically, even when a
cursory visual examination shows an applied fit or model to be unaccept-
able. Common examples include fitting a linear regression equation to data
that are clearly non-linear in character, or fitting a polynomial that passes
through all points, but does not follow the overall trend in the data.

Excel provides built-in tools for fitting linear and non-linear models to
data sets. Linear regression is used to demonstrate the strength of the rela-
tionship between x and y variables as well as measure the dispersion (or
scatter) in the data. This type of analysis is carried out by minimizing the
least-squares error between the y-test data and an array of predicted y-data
(calculated according to a linear regression equation) in order to identify the
best fit model.

Spreadsheet Applications in Chemistry Using Microsoft® Excel®: Data Processing and Visualization,
Second Edition. Aoife Morrin and Dermot Diamond.
© 2022 John Wiley & Sons, Inc. Published 2022 by
Companion Website:

http://www.wiley.com/go/morrin/spreadsheetchemistry2
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There are several ways in which regression parameters can be generated
in Excel that we will work through here. While this chapter focuses on using
built-in regression tools, Chapter 4 will take you through the generation and
analysis of linear calibration curves, used to characterize analytical methods
and to calculate the unknown concentration of analyte in sample.

3.1 Linear Regression and Visualization

One way that linear regression values can be generated in Excel is through
the worksheet function LINEST. This approach is straight forward and is a
complete linear least squares curve fitting routine that outputs fit values (e.g.
slope and intercept) as well as additional statistical detail for the line of best
fit, from a supplied set of x and y values. The syntax of the LINEST function
is LINEST (known_y’s, [known_x’s], [const], [stats]). [const] is an optional
logical argument that determine how the intercept (or constant) is treated.
[stats] is also an optional argument which specifies whether or not to return
additional regression statistics for the model.

Generated regression analysis data should always be presented alongside
a graphical visualization of the data points and the model. You need this
in order to pick up on any subtle features or hidden trends that cannot be
observed via the numerical outputs generated by a function alone.

Tutorial 3.1 Performing Linear Regression Using LINEST

In this tutorial, you will visualize quantitative peak area data and its
regression model, and calculate regression parameters using the LINEST
function.

Chromatographic peak area data for a quantitative LC analysis of caf-
feine standards was collected over the concentration range 10–110 ppm.
Calculate the linear regression parameters for the model.

● Open the workbook 3.1_LC Caffeine.xls to see chromatographic peak areas
measured for a range of caffeine concentrations.

● In order to visualize the data, plot the data as a scatter plot with caffeine
concentration on the x-axis (Figure 3.1).

● Insert a linear Trendline by clicking on Add Chart Element menu.
● Double click on the Trendline to bring up the Format Trendline dia-

logue box to the right of the screen. Tick Display equation on chart and
Display R-squared value on chart.
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Figure 3.1 Peak area against caffeine concentration and corresponding linear
regression model.

● The Trendline, the equation of the line and an R2 value should appear
on your chart. This Trendline can be further customized from within the
Format Trendline dialogue box. Spend some time working through the
options to find a style (e.g. colour, thickness, etc.) for the Trendline that
can be clearly visualized when overlaid on the scatter plot.

● Although some regression data is provided on the chart itself, it is prefer-
able to generate these values, along with a more in-depth statistical analy-
sis in the cells of the worksheet itself so that they can be further processed
if desired. This can be done using the LINEST function.

● To use this function, type =LINEST() into an empty cell in the worksheet.
With the cursor inside the brackets, the information required will become
visible.

● Select B2:B12 for known_y’s and type,. Then select A2:A12 for known_x’s.
Enter TRUE for const, and enter TRUE for stats. Press Enter to generate
the LINEST output (Table 3.1).
⚬ Entering the value TRUE for const allows the intercept to be treated

normally while the value FALSE will set the intercept value to zero.
⚬ Entering the value TRUE for stats results in a set of regression statis-

tics analysis being returned along with the slope and intercept values.
By setting this value to FALSE, only the slope and intercept values are
returned.

● The output of the LINEST function appears as tabulated data (with no
labels!) (Table 3.1). Column 1, from top to bottom, shows the slope, the
error in the slope, the coefficient of determination, the F statistic, and
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Table 3.1 Output of the LINEST Function as
Applied to the Calibration Data for Caffeine.

LINEST

71.58273 887.0364
2.538624 172.1779
0.988807 266.2532
795.0961 9
56364955 638016.7

the regression sum of squares. Column 2, from top to bottom, shows the
intercept, the error in the intercept, the standard error in the regression or
y-estimate, the degrees of freedom, and the residual sum of squares.

● Check the tabulated slope and intercept values are the same as those out-
putted on the chart.

● Include two additional data points (150, 10,001) and (250, 12,534) and
replot the full set of data on a new chart and perform a new regression
analysis. Quantify and discuss how these additional data points influence
the linear model.

● Save and close the workbook.

Another way to generate this linear regression analysis is obtained using the
Analysis ToolPak add-in (introduced in Section 2.3). It is possibly more
useful that the LINEST function as the data is output in a clearer manner
and there is also the option to generate a residuals plot which can give us
good information. The following tutorial illustrates the procedure.

Tutorial 3.2 Generating Linear Regression Parameters Using the Analy-
sis ToolPak

In this tutorial, you will perform the linear regression analysis for the
caffeine data using the Analysis ToolPak.

● Open the workbook 3.1_LC Caffeine.xls again where the data is already
plotted.

● To generate the regression analysis using the ToolPak, begin by selecting
the Data tab from the Ribbon and click on Data Analysis. Scroll down
to Regression and click OK. This opens up a new dialogue box.

● Enter the data ranges (including labels). Tick the box Labels.
● In Output Range, enter the cell address that will be the top left-hand cor-

ner of the tabulated data to be outputted.
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● Finally, check the options to display Residuals Plot and press OK.
⚬ This generates a detailed Summary Output (Figure 3.2), which

includes correlation coefficients, an ANOVA analysis, slope, and
intercept coefficients for the regression line, as well as the standard
error in the coefficients and residual values and accompanying plot.

The first table outputted in the Summary Output contains the Regression
Statistics. The R Square (R2) value describes the correlation in the data and
is 0.9888 in this case. For close-fitting regression lines, R2 will be close to
+1, typically >0.980 or better, as is the case here. There is a tendency, how-
ever, to put too much faith in the correlation coefficient’s significance, and
to assume, without any further analysis, that a high R2 signifies the linear
regression model is appropriate. Further Exercise 3.1 at the end of the chapter
provides a counter example to this, whereby, although the regression line
has a high correlation coefficient, the data itself shows evidence of being
curvilinear. Non-linear correlations can be further amplified in the residuals
plot which will be worked through below.

The second table in the Summary Output is the ANOVA table. We have
already introduced ANOVA in Chapter 2. Here, this ANOVA data provides
information on whether the linear regression model explains a significant
portion of the variation in the values of y. The value for F in this table is
the result of an F-test to test the H0: the regression model does not explain
the variation in y. In this case, the column labelled Significance F has the
relevant p-value of 4.315× 10−10, which is <0.05 (95% confidence), giving
strong evidence for rejecting H0 and concluding that there is sufficient evi-
dence that the regression model does explain the variance in y. Be aware
though, that, as is the case with R2, it has limitations with regards its inter-
pretation – a low probability for H0 is another piece of evidence to support
correlation in the data but does not in itself prove correlation.

The third table provides a summary of the regression model coefficients.
The values for the model’s coefficients – the slope and the y-intercept are
given, along with standard errors for these values. The t Stat and correspond-
ing P-value columns contain the results of 2 t-tests with the following null
hypotheses:

Row 1−H0: y-intercept = 0 and
Row 2−H0: slope = 0, respectively.

Both p-values are <0.05 in this case. We interpret this as both the slope and
the intercept are both statistically significant in explaining the variation in y.
It provides evidence that the x and y variables are related. Also given are the
95% confidence intervals for the slope and the y-intercept (Lower 95% and
Upper 95%).
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Figure 3.2 Regression analysis of the caffeine dataset using the Analysis ToolPak.
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The final piece of analysis in the Summary Output is the Residual Out-
put and the associated Residual Plot. Residuals provide a useful comparison
between successive individual values within a set of measurements, partic-
ularly when presented visually in the form of a plot. These plots can reveal
useful information about the quality of the data set, such as whether there is
a systematic drift in an instrument response over the time course of a set of
measurements, or if there might be cross-contamination between samples
of high and low concentration. Residuals are calculated as the difference
between the measured y-response (peak area in this case) and the y-response
estimated from the regression equation. Looking at the residual plot in this
case, the data appears to be randomly scattered about the x-axis and so it
provides further evidence that the linear model is appropriate. It is impor-
tant to note that there are a low number of data points in a set, and this is a
limitation to the degree of confidence we can have such a conclusion. In the
event that residual data shows evidence of underlying structure or patterns,
a non-linear model may be more appropriate. Decision-making around this
requires knowledge of the system under investigation and theoretical mod-
els developed to describe it (see Chapter 6 for more on this).

Given the evidence gathered from the Regression Analysis carried out,
there is significant evidence for the appropriateness of the linear fit for this
set of data. However, in other cases, this might not always be as apparent.
And of course, as the scientist in charge, your interpretation will have
some subjectivity. It is therefore vitally important that your conclusions are
strongly evidence based, using statistical approaches as outlined above and
in other sections of this text. As well as generating this evidence, in any data
fitting exercise, plotting and visualizing the data is imperative for identifying
underlying structure in the test data not described by the applied model.

3.2 Polynomial Regression for Testing Goodness
of Fit

Although calibration curves are commonly used for quantitative analysis,
there is no standard procedure for objectively testing the fit of calibration
curves in analytical chemistry. Although a residual analysis is useful as a
measure of a good fit, it is wholly subjective. Here, polynomial regression is
demonstrated as an approach that can be used to objectively test the fit of
calibration curves [1].

If a linear calibration curve is expected, a regression analysis of detector
response on concentration of the analyte and the square of the concentra-
tion of analyte can be used to test the significance of a ‘quadratic effect’.
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The test uses the H0: all errors are random. If a non-linear quadratic effect is
statistically significant (𝛼 < 0.05), H0 is rejected, and the calibration curve is
deemed non-linear. If the quadratic effect is not significant, the calibration
curve is deemed linear. H0: the y-intercept goes through the origin can then
be tested. A minimum of four different concentrations of standard solution
are required for this linearity test.

Tutorial 3.3 Using Polynomial Regression to Objectively Test the Fit of
Calibration Curves

In this tutorial, you will use polynomial regression to test the linearity
of a calibration curve.

A spectrophotometric method for the determination of arsenic in
drinking water was developed using the arsenomolybdate colorimetric
method. Beer’s law predicts a linear calibration curve with the intercept
going through the origin. Therefore, regression analysis of absorbance on
concentration of arsenic and concentration of arsenic squared is used to
test the significance of a quadratic effect [1].

Absorbance Values Corresponding to As Concentration and (As Concentration)2

Absorbance
Concentration
of As (mg/L)

(Concentration
of As)2 (mg/L)2

0.000 0.0 0
0.022 14.0 196
0.054 28.6 818
0.100 57.1 3260
0.190 114.0 12996
0.386 229.0 52441

Beer’s law states that:

A = 𝜀lc (3.1)

where
A is absorbance
𝜀 is a molar absorptivity constant that depends on both wavelength and
substance (cm−1 M−1)
l is the length of the path travelled by light through the sample (cm)
c is the concentration of the absorbing species (M)
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Equation (3.1) says a linear calibration curve with the y-intercept going
through the origin is expected in spectrophotometric measurements.
Therefore, a plot of absorbance against analyte concentration should, in
the absence of any error, be fitted with a linear repression model going
through zero. However, because of random error, the model will likely not
go through exactly zero. Here you will use polynomial regression to test the
fit of the calibration curve itself. In well-behaved systems obeying Beer’s
law, absorbance will be directly proportional to concentration. Ideally in
these cases, the intercept should be zero, as the equation predicts that a zero
analyte concentration generates zero absorbance. However, in real systems,
a non-zero intercept often occurs which is related to the limit of detection.
This is discussed further in Section 4.1.2. It is important to recognize if the
intercept is significantly different from zero, to treat it as such, as forcing
the data through zero is incorrect in these cases. Regression through the
origin can increase accuracy and precision when samples have analyte
concentrations at or near the limit of detection. Testing if the y-intercept
goes through zero can help identify non-ideal systems, contaminated blanks
and standards as well as inadequate or failed background correction and
matrix effects in techniques such as spectroscopy.

● Open the workbook 3.3_Test of Fit.xls.
● Generate a scatter plot based on the experimental data given by plotting

the absorbance values against arsenic concentration (mg/L).
● To generate a polynomial regression model, add a Trendline using the

Chart Elements button (the plus sign icon) that appears to the right
of the chart when it is selected. In the Format Trendline dialogue box,
which is displayed when the Trendline is selected, choose a polynomial
Trendline, order 2.

● Tick the option to display the polynomial Trendline equation on the chart
(y = −4E-8x2 + 0.0017x + 0.0014).

● To obtain a statistical analysis on these regression parameters, generate
the statistical report for the data using Data Analysis_Regression.
Include the labels in your data selection. When selecting the data for the
X-Range, highlight cells B1:C7, which span the two columns, (mg/L) and
(mg/L)2. This is different to linear regression where you would just select
a single column. This is because you are using a quadratic equation, so
you will need data for y, x, and x2. Similarly, if you are using a cubic
equation, you would need data for y, x, x2, and x3.

● Look at the regression model coefficients table (bottom) in the outputted
report and you will see the coefficients for the intercept, mg/L, and
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(mg/L)2. The (mg/L)2 quadratic effect coefficient (−4.021 × 10−8) is
equivalent to 0 at the 95% confidence level as it has a 95% confidence
interval that includes 0 (−1.09 ×10−6 to 1.01 ×10−6). This quadratic term
can be taken as 0 which is in agreement with Beer’s law. Therefore, there
is no suggestion of systematic error. On account of this, the quadratic
term can removed from the model and a regression of absorbance on
arsenic concentration is used to test the significance of a linear effect.

● Create a new chart containing the same raw data and again using the
Chart Elements button, insert a Trendline, select a linear function and
display the equation on the chart (y= 0.0017x + 0.0016). Generate another
statistical report for the linear regression fit whereby this time the data
range to be selected for the X-Range is A2:A7.

● In the regression model coefficients table, you will be able to determine
that the slope or the linear effect coefficient (0.00168) is different from 0
at the 95% confidence level as it has a 95% confidence interval that ranges
from 0.00163 to 0.00173. Therefore, this linear term is valid for the model.
Secondly, the H0: the y-intercept (0.00159) goes through the origin must
be tested to check its validity. Again, use the 95% confidence interval to
test this. You will see that the y-intercept is equivalent to 0 at the 95% con-
fidence level as it has a 95% confidence interval that ranges from −0.00371
to 0.00690. Therefore, the intercept can be taken as zero. Both these con-
clusions agree with Beer’s law and do not suggest the presence of system-
atic error in the data. Therefore, the y-intercept can be removed from the
model and linear regression through the origin is used for the calibration
curve equation y = 0.0017x.

In summary, it can be concluded that the data obeys Beer’s law (Eq. (3.1)).
That is, the plot of absorbance vs. arsenic concentration is linear over the
given range and the y-intercept goes through the origin.

Polynomial regression can also be used to quantify the linear range in a
set of calibration data. If a linear calibration plot is expected, then increas-
ingly concentrated standard solutions should be analyzed until a significant
quadratic effect is observed, indicating the upper limit of the linear range
(see Further Exercise 3.7.1).

3.3 Error Bars

Generating replicate data is very important in all types of analyses in order to
understand the precision of a method. Adding error bars to a chart enables
the precision of individual measurements to be clearly visualized. Usually,



�

� �

�

3.4 Non-Linear Regression 65

the assumption is that there is no error in the x-data and we are only inter-
ested in the error in the y-data (response data). Excel has options for gen-
erating several types of error bars for a set of data, but here we describe the
one that is required to represent the experimental standard deviation and
therefore the precision in replicate y-data.

Tutorial 3.4 Adding Error Bars to Data

In this tutorial, you will visualize the precision of experimental data as
error bars on a chart based on the standard deviation in the replicate
(experimental) y-data.

● Open the 3.4_Error Bars.xls
● In column G, using Insert Function, compute the average values for the

replicate data across columns B to F for each x-index.
● In column H, generate the standard deviation values for the replicate data.
● Generate a scatterplot of x-index vs. average data.
● Select the data on the scatterplot and using the Chart Elements button,

add a Trendline to generate the linear regression. Tick Display equation
on chart and Display R-squared value on chart.

● Highlight the graph and select the contextual tab Chart Design.
● Click Add Chart Element→Error Bars→More Error Bar Options.
● In the Format Error Bars dialogue box, select Both for Direction, Cap for

End Style and Custom for Error Amount. You must specify the value for
the Custom Error Amount. Press Specify Value, and input H2:H14 for the
positive error value. For the negative error value, again highlight H2:H14.

● By default, Excel adds both horizontal and vertical error bars to the data
points. To fix this, in the chart delete the x-error bars by selecting these
horizontal error bars and pressing delete. You should now have a chart
showing y-error bars based on the standard deviation of the response data
(Figure 3.3).

● Format the chart to your liking and save and close the workbook.

3.4 Non-Linear Regression

Traditional approaches to modelling data are largely based on the lin-
earization of data. However, this can lead to problems where the model
describing the data is inherently non-linear, or where the lineariza-
tion process introduces data distortion. Excel has several non-linear
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Figure 3.3 Scatterplot showing response data against x-index. Error bars
represent the standard deviation for the measured data points.

built-in functions for fitting data (polynomials up to 6th order, logarith-
mic, exponential and moving average, etc.). There is also an option to
build more complex, user generated regression functions via the Solver
add-in (see Chapter 6). Non-linear fitting options should always be used
appropriately whereby the choice of fit is dictated by a robust scientific
rationale.

Tutorial 3.5 Non-linear Regression Using Excel Built-in Functions

In this tutorial, you will apply a non-linear regression model to model
potential relaxation in ion-selective electrodes (ISE) in experimental
data.

The use of ion-selective membrane electrodes for the detection of target
ions is an important electroanalytical technique. Carrying out this type of
analysis in a flow injection analysis (FIA) mode lends itself to automation
of the analytical process. FIA involves the injection of a sample ‘plug’
directly into a flowing stream which carries the sample to the analytical
detector, which could be an ISE, as in this case. As the sample plug passes
over this ISE, the measured membrane potential increases to an extent that
is related to the concentration of the analyte ion in accordance with the
Nernst equation (Further Exercise 1.6.4.). Once the sample plug passed by
the electrode surface, the concentration of the analyte in the flowing carrier
solution over the electrode rapidly drops to zero. For a short period of time,
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the electrode membrane remains populated with analyte ions, which then
transfer back into the flowing carrier solution, resulting in a decreasing
potential profile. This electrode membrane potential relaxation process is
non-linear and we will look to model this process in this tutorial.

● Open the workbook 3.5_Non-Linear Regression.xls.
● The first worksheet contains two sets of data obtained from FIA exper-

iments in which the relaxation of the electrode membrane potentials
(return to baseline) on two membrane electrode types, A and B, were
monitored. A and B represent different two sodium-selective ionophore
membrane cocktails drop-coated to glassy carbon electrodes. Replicate
data (n = 5) is given for each electrode.

● Compute the average and standard deviation of each point for both elec-
trodes in the first worksheet and generate individual scatter plots based
on these data sets.

● Fit exponential regression models to the plotted data using Add Trend-
line.

● Add y-error bars using the custom error option as described in Tutorial 3.4.
The resulting charts should be similar to those shown in the following text
(Figure 3.4):

● From these graphs we can see that:
⚬ The exponential model appears to fit the data for Electrode A better than

type B.
⚬ The fit is quite good for both data sets, except for the first point, which

exhibits a large positive deviation.
⚬ The standard deviation of the measurements generally improves with

time (more so with Electrode A).

At this point, assess if the single exponential model describes the relaxation
process adequately. Note that although Excel will output a value for R2, it
is actually not a valid measure of correlation when it comes to non-linear
regression. R2 is a measure of the variance explained by a model as a percent-
age of the total variance. Furthermore, for R2 to be valid, adding the variance
explained by the model to the variance explained by the error equals the total
error for the regression. This is not always the case for non-linear regres-
sion. Indeed, R2 values when used to describe correlation for non-linear
regression can be misleading as values can be high regardless of a good or
a bad fit. The standard error of regression can be a better statistic to assess
correlation.

In order to better fit the data for Electrode B, the exclusion of the first
data point (potentially also for Electrode A) from the data set and then
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Figure 3.4 Scatterplots showing membrane potential against time after injection
for Electrode A (Top) and Electrode B (Bottom). Error bars represent the standard
deviation of the response.

re-modelled using the single exponential fit should be considered. This
is justified on the basis that the initial point in an exponential series of
experimental data is often the most inaccurate as the rate of change at this
point is greatest. The size of error bars for these points is clearly much
larger than for the rest of the data and the points are well outside the trend.
In addition, the relaxation process follows a very fast initial step increase
in potential (not shown), and the two processes are certainly merged to an
unknown degree. If these justifications are accepted, then the initial point
can be considered to significantly skew the model and should be omitted.
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Figure 3.5 Scatterplot showing membrane potential against time after injection
for Electrode A (Blue) and Electrode B (Orange) and their corresponding
exponential fits. Error bars represent the standard deviation of the response.

● Figure 3.5 shows the data and exponential fits for both electrode types,
with the initial point deleted in each case. In the regression equations
given, the coefficient of x represents the rate constant, k, for the relaxation
process: 0.022 for electrode A and 0.014 for electrode B. The time constant,
𝜏, is the inverse of the rate constant. Therefore, the 𝜏 value for electrode A
is 45.5 s and electrode B is 71.4 s. Therefore, the relaxation process on B is
approximately 50% slower than on A. Perform this non-linear modelling
again, this time retaining the initial data point and assess what the impact
of the inclusion of that point is and consider why this is the case?

● It is important to note that the level of precision is not quantified here for
the 𝜏 values. In order to assess if there is a significant difference in the 𝜏

values here, the precision in the data would need to be compared. Given
that you have individual replicate data, consider how you might quantify
the precision of 𝜏 associated with each electrode?

3.5 Summary

From doing the tutorials in this chapter, it is clear that modelling data is part
of a larger process that requires the researcher to have background knowl-
edge of the subject area in order to justify both the modelling strategy (which
model to use, range of data to include, etc.) and the value returned by the
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model. And, as often is the case in research, there may be more than one
modelling approach and alternative interpretations of the results, and deci-
sions have to be justified, which in the end is what makes science interesting!

3.6 Further Exercises

3.6.1 Identifying the Linear Range in Calibration Data

Many instruments will only yield a linear response function over a certain
concentration range; beyond this region, the calibration curve will be
non-linear. It is therefore important to choose the correct region for linear
regression analysis in order to minimize errors due to non-linearity. Visual
inspection of the graph and selecting only those data points that appear
to lie within a linear portion is a common approach used for selection of
the appropriate range. A more objective way to find the linear portion in
the data is by calculating R2 values for successive sets of data points, and
observing the range for which there is a noticeable decrease in this value.
A residual analysis is possibly a more powerful method as it will provide
more information, for example by allowing you to examine the emergence
of structure in the residual data. However, this is still not objective. In
this exercise, you will use these approaches, together with a polynomial
regression to objectively determine the linear region of a data set.

Plot the fluorescence calibration data in Table 3.2 and examine for linear-
ity. Use the following approaches to identify the linear region in the data.

(i) Visual inspection of experimental data
(ii) Residual plot analysis

(iii) Polynomial regression

Do all methods identify the same region in the data?

3.6.2 Assessing Goodness of Fit

A spectrophotometric method was used to analyze standard samples of albu-
min and glycine. Each analysis was performed three times and the data [2]
is given in the workbook 3.7.2_Albumin and Glycine.xls.

Perform linear regression analysis on both sets of data using the Analysis
ToolPak. Plot the data, include error bars, and apply linear regression models
to the data. Using the information on correlation coefficients, residual plots,
and polynomial regression to discuss the calibration data in depth.
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Table 3.2 Tabulated Measured Fluorescence Intensities
for Fluorescein Over a Range of Concentrations.

C (pg/mL) Intensity

0 2.1
2 5.0
4 9.0
6 12.6
8 17.3
10 21.0
12 24.7
14 28.4
16 31.0
18 32.9
20 33.9

3.6.3 Choosing a Non-linear Fit

Determine whether the data described in 3.7.3_Growth.xls is best modelled
by a linear or a non-linear regression. If non-linear, decide what built-in
regression function might be a good fit for the data. Make sure your decision
is informed by evidence in the data. Remember that the correlation coeffi-
cient, R2, is only valid in linear regression and is not a useful measure of fit
to a non-linear regression.

3.6.4 Assessing Goodness of Fit through Polynomial
Regression

Graphite furnace atomic absorption spectrometry is often used for testing for
the presence of trace metals in matrices such as water and food. In this anal-
ysis, the detector measures time-integrated absorbance during an atomiza-
tion step. Non-linear calibration data can be observed in this type of analysis
and is most likely caused by factors including the loss of gas-phase analyte,
loss of analyte in matrix condensate, and by the magnetic field from Zeeman
background correction.

Calibration data generated by a graphite furnace method for the determi-
nation of cadmium in drinking water is given in workbook 3.7.4_Graphite
Furnace.xls. Using polynomial regression, objectively test the goodness of fit
of this data. A linear or quadratic calibration curve with the y-intercept going
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through the origin (0, 0) is expected. Therefore, a regression of absorbance
on concentration of arsenic, concentration of arsenic squared, and concen-
tration of arsenic cubed should be used to test the significance of a cubic
effect.
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4

Calibration in Excel

In this chapter, students will learn how to:

● Generate different types of calibration curves in Excel based on exper-
imental data

● Describe the analytical characteristics of calibration curves using
regression analysis

● Perform quantification using various calibration approaches
● Compare across different methods of analysis using regression and

Bland–Altman plots

In quantitative analysis, generating a calibration curve is a routine method
for determining the concentration of a substance in a sample. Chemical
analysis methods including chromatography and spectrometry relate the
instrument signal, y, to concentration, x, using an appropriate regression
model. The simplest and most often used in a linear model. In this chapter,
the three calibration strategies that are commonly associated with the linear
model, are described, namely;

External calibration, used where there are no matrix effects on the sample
analysis,

Internal calibration, used in cases with intrinsic variability of the response
signal or with possible losses of analyte during sample preparation, and

Standard addition calibration, used when matrix effects are significant.

Each is accompanied by tutorials demonstrating examples of their
application.

We have already learnt about chart construction and presentation in Excel
in Chapter 1. We have also seen in Chapter 3 how to perform and analyze the

Spreadsheet Applications in Chemistry Using Microsoft® Excel®: Data Processing and Visualization,
Second Edition. Aoife Morrin and Dermot Diamond.
© 2022 John Wiley & Sons, Inc. Published 2022 by
Companion Website:

http://www.wiley.com/go/morrin/spreadsheetchemistry2
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goodness of fit of a linear regression of data. Here we look a little more closely
at other information we can get from linear regression data for calibration
curves and the use of this data for the analysis of unknown concentrations
of target analyte as well as for the comparison of methods. Of course, above
and beyond the construction of calibration curves, it is critical that a student
can analyze the data to extract out analytical parameters of interest. Beyond
the analysis of data from single methods, we will also look at comparing data
from across analytical methods to determine agreement between methods.

4.1 Errors and Confidence Limits in Calibration

In any area of measurement science, there is always error in the measured
signal. This error can arise from external sources (e.g. noise) and can typi-
cally be accounted for using standard data processing techniques. However,
because there is always some randomness associated with measurement
error, this introduces some degree of uncertainty into the measurement,
which corresponds to a certain confidence limit within which we can say
the true value lies with a defined degree of confidence (95% is commonly
used). The consequence of this in terms of calibration is that results should
always be reported with the appropriate error interval. Thus, the linear
regression model for the calibration curve slope, m, and intercept, c, should
be reported with their errors, e.g. slope = m± sm and the intercept = c± sc,
where sm and sc are known as the standard error of the slope and the
standard error of the intercept, respectively. When a linear regression
analysis is performed in Excel using the Data Analysis ToolPak, sm and sc
values are automatically output.

When we have an estimated value and associated standard error for the
slope and intercept of a linear calibration, a Confidence Interval (CI) can
be included which is the numerical interval around the mean within which
the population mean can be expected to lie within a certain probability, e.g.,
95%. The confidence limits of this interval for the slope of the line and the
intercept are given by:

95% confidence limits for the slope = m ± tn−2sm (4.1)

95% confidence limits for the intercept = c ± tn−2sc (4.2)

where tn−2 = Students t-distribution for n−2 degrees of freedom.

These upper and lower 95% confidence limits for the slope and the inter-
cept are also generated in a regression analysis. It is important to note that
these equations are valid only if the errors in the slope and the intercept have
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a normal probability distribution and if the observations are independent.
The probability distribution for the error in the sample average, normalized
by the standard error in the sample average, is the t-distribution, which is
a symmetric probability distribution centred at zero, like a normal proba-
bility distribution. The difference is that the t-distribution has a variance
that depends on the degrees of freedom of the standard error in the statis-
tic of interest. If very few measurements are being considered, the number
of degrees of freedom is very small and the t-distribution has a large vari-
ance. Conversely, if many standard measurements (or data points) are used
for construction of the calibration curve, the number of degrees of freedom
is large and the t-distribution has a much smaller variance and the width of
the CI is reduced.

Tutorial 4.1 Performing External Calibration

In this tutorial, you will construct an external calibration curve for a
spectrophotometric Pb analysis.

Standards were prepared and analyzed for Pb content using Graphite
Furnace Atomic Absorption Spectroscopy (GFAAS) across a wide concen-
tration range. Plot the response data against concentration and perform a
linear regression analysis to construct the corresponding calibration curve.

● Open the workbook 4.1_Calibration and LOD.xls.
Using the data given, plot the data using a scatter graph (no line) and per-
form linear regression on the data by adding a linear trendline. Check
Display Equation on chart and Display R-squared value on chart
on chart options. Insert Error Bars based on standard deviation (refer to
Section 3.4) on the data points.

● Examine the data, regression line, and R2 value. How well does the data
fit the linear model? (Figure 4.1)

● Using the Data Analysis ToolPak, perform a regression analysis. In the
regression analysis dialogue box, make sure to tick the box to generate a
residual plot. Examine the residual plot for structure. What does the resid-
ual plot tell you about your data?

● Based on the residual plot data, identify the upper and lower ranges to
remove in order to isolate the linear range within the data. Replot the lin-
ear range on a new chart and review your calibration curve and regression
analysis, along with the residual error plot (Figure 4.2).

● Examine all outputted statistics in the regression analysis including the
standard errors and upper and lower 95% confidence limits for the slope
and the intercept. Does the intercept go through zero?
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Figure 4.1 Response data against Pb concentration and corresponding linear
regression model.
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Figure 4.2 Response data against Pb concentration for a limited concentration
range and corresponding linear regression model.

● Look at the p-values for both the slope and the intercept. The p-value for
each term tests the null hypothesis that the coefficient is equal to zero (no
effect). Should we accept or reject this null hypothesis that the slope and
intercept are equal to zero?

Note: Removing data points from the upper or lower ranges of the calibration
curve can only be justified if a clear difference from the best-fit line is apparent
and ideally with good scientific rationale. As an experimental scientist, under-
standing your data is key and excluding data, or indeed any other processing



�

� �

�

4.2 Limit of Detection in Calibration 77

of the data, must be scientifically justifiable. For example, stray light and poly-
chromatic radiation are well-known to cause non-linear deviations from Beer’s
law at high concentrations – this would be a good rationale to exclude higher
concentration data points in the linear calibration curve. See Section 3.3 for
the use of quadratic regression to objectively test for linearity.

4.2 Limit of Detection in Calibration

The limit of detection (LOD) is defined as the lowest amount of analyte in
the sample that can be detected by a method but not necessarily quantified
under stated experimental conditions. This can be interpreted as the amount
of analyte that gives a signal equal to the blank signal (yblank) plus three times
the standard deviation of the blank signal, sblank. Thus the signal at the LOD
(LOD(signal)) is given by the following equation:

LOD(signal) = yblank + 3sblank (4.3)

There are several ways to compute an LOD. The blank determination
method is a common way to estimate it experimentally. It is done by mea-
suring the signal obtained from an appropriate number of blank samples,
and computing their average, yblank, and standard deviation sblank. yblank is
then be subtracted from the analytical data, effectively reducing yblank to
zero. A calibration curve can then be constructed enabling signal values to
be converted to concentration. The LOD(signal) can be extracted from this
calibration curve by taking the signal equivalent to the 3sblank.

Alternatively, the LOD can be estimated directly from the calibration
curve using the linear regression model parameter estimates. The LOD can
then be computed (in units of concentration) using the following equation:

LOD(concentration) = 3s∕m (4.4)

where
s the standard deviation of the blank signal
m the slope of the calibration curve

When applying this equation, s is taken as the standard deviation of the
y-intercept of the regression line, i.e. the standard error of estimate.

The limit of quantitation (LOQ) is defined as the lowest concentration of
an analyte in a sample that can be determined with acceptable precision and
accuracy under the stated conditions. This is given by:

LOQ = 10s∕m (4.5)



�

� �

�

78 4 Calibration in Excel

Tutorial 4.2 Calculation of LOD and LOQ in External Calibration

In this tutorial, you will calculate LOD and LOQ values for the Pb analysis
data in Tutorial 4.1.

● Open up the workbook 4.1_Calibration and LOD.xls again where the cal-
ibration data and regression analysis have already been performed in the
previous tutorial.

● Examine the Summary Output that you will have generated, which is
shown below. The third table within the Summary gives the Intercept
and X Variable 1 Coefficients and the Standard Errors (along with other
statistical values). These coefficients are the linear regression parameters
where the X Variable 1 coefficient is the slope of the regression line and
so is taken as m in Eq. (4.4). The corresponding Standard Errors are given
also. The Standard Error of the intercept (or the standard error in y when
x = 0) is used for s in equation (4.4) (Table 4.1).

● Using these values, calculate the LOD for the analytical method (Ans:
0.473 mM).

● Calculate the LOQ for the method (Ans: 1.576 mM).

4.3 Random Errors and Confidence Limits

Once the slope and the intercept have been determined, it is very easy to
calculate the concentration corresponding to an instrument response. How-
ever, it is also important to calculate the error associated with that concentra-
tion, sx0

. Excel, unfortunately doesn’t automatically perform this non-trivial
calculation. The calculation of the error uses the following equation:

sx0
=

SE y∕x

m

√
1
k
+ 1

n
+

(y0 − y)2

m2(n − 1)
∑

(xi − x)2
(4.6)

where
sx0

error in the unknown concentration value
SE y∕x measure of the standard deviation of the data points in

the y-direction on either side of the calibration line
m slope of the regression line
k number of replicates
n no. of readings in calibration curve
y0 mean of the unknown y-values
y mean of all the calibration y-values∑

(xi − x)2 = s2 variance of all the x-values in the calibration line



Table 4.1 Regression Analysis for the Pb Dataset Using the Analysis ToolPak.

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.997969
R Square 0.995943
Adjusted R Square 0.995363
Standard Error 0.279913
Observations 9

ANOVA

df SS MS F Significance F

Regression 1 134.6317 134.6317 1718.304 1.24003E-09
Residual 7 0.548461 0.078352
Total 8 135.1802

Coefficients Standard Error t Stat P-Value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 3.112116 0.236044 13.18449 3.37E-06 2.553961215 3.67027 2.553961 3.67027
X Variable 1 1.497953 0.036137 41.45243 1.24E-09 1.412502878 1.583402 1.412503 1.583402
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Tutorial 4.3 Using a Calibration Curve to Calculate an Unknown Concen-
tration and its Random Error

In the tutorial, you will use the external Pb calibration curve from
Tutorial 4.1 to calculate the concentration of an unknown (x0) and the
standard error associated with this unknown concentration (sx0

). The
replicate instrument responses for the unknown sample containing Pb
were 4.3, 5.5, and 5.6 a.u.

● Open the workbook 4.1_Calibration and LOD.xls.
● Using the table given in the worksheet Error in x0, first enter the replicate

readings for Pb for the unknown sample into cells, y1, y2, and y3.
● Compute the average of these cells to give a value for the Average y-value,

y0 (5.133).
● Enter the values for the slope and intercept of the calibration curve by

addressing the appropriate cells in the Data worksheet.
● Now compute the Corresponding unknown concentration (x-value), x0,

using the coefficients for the slope and the intercept in the cells above
(1.349).

● SEy/x is computed using the formula STEYX (known y’s, known x’s).
Enter this formula into the corresponding cell using the calibration curve
y-values for the known y’s and the calibration curve x-values for the
known x’s (0.3204).

● Enter the value for k.
● Enter the value for n.
● Using the formula AVERAGE calculate the mean of the (calibration curve)

y-values, y0 (12.099).
● Using the formula VAR, calculate the variance of the x-values, s2

(Ans: 7.5).
● Now, compute sx0

using equation (4.6). This gives us the estimated uncer-
tainty in the x-direction of 0.158. This is effectively a standard deviation
uncertainty in the calculated value of x0 (0.1587) (Table 4.2).

● In order to calculate the corresponding CI for x0, we must first cal-
culate the appropriate t-value using the formula TINV (probability,
deg_freedom). We are assuming a 95% confidence level and the degrees
of freedom will be n−2. The value returned here is 2.365.

● Now, calculate the 95% confidence limits for the true value as given by

95% confidence limits for x0 = x0 ± tn−2sx0
(4.7)

This returns a CI (0.974, 1.725) whereby we can be 95% confident that the
true concentration of the unknown is within this interval.
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Table 4.2 Template for Computing Unknown Concentration and the
Associated Standard Error from an External Calibration Curve.

Measured y-value, y1 = 4.3
Measured y-value, y2 = 5.5
Measured y-value, y3 = 5.6

Average y-value, y0 = 5.1333
Regression Line Slope 1.4980

Regression Line Intercept 3.1121
Corresponding unknown concentration (x-value), x0 = 1.3493

Standard Error of Regression, SEy/x = 0.2799
No. of y readings, k = 4

No of calibration readings, n = 9
Mean of y-values, ybar = 12.0998

Sample variance of x-values, s2 = 7.5
sx0 = 0.1587

t-value(2-tailed, 95%, n-2) = 2.3646
Upper 95% CL 1.7247
Lower 95% CL 0.9740

4.4 Method of Internal Standard Calibration

This is the calibration method of choice to use when the instrumental
response or experimental procedure can introduce error. Sample-to-sample
variation can arise in analysis due to multi-step sample preparation,
variability in sample storage times, injection volume variability, detector
drift over course of analysis, etc. The purpose of the internal standard is
to behave similarly to the analyte but to provide a response that can be
distinguished from that of the analyte response. Ideally, any factor that
affects the analyte response will also affect the internal standard response to
the same degree. Thus the internal standard cannot be the same substance
as the analyte, but will have similar properties to the analyte. Practically, in
order to generate standards for an internal standard calibration method, a
set of standard analyte solutions over the concentration range of interest are
prepared where a constant amount of a known internal standard is added
to each solution. The responses for the standard analyte and the internal
standard are obtained and their ratio computed. This ratio–standard
analyte to internal standard response–is plotted against the concentration
of standard analyte and a regression analysis performed. The regression
line is used to compute the concentration of the unknown in the sample,
where the sample will also contain internal standard.
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Tutorial 4.4 Use of the Internal Standard Method to Generate a Calibra-
tion Curve

In this tutorial, you will generate a calibration curve for Pb analysis using
an internal standard method based on ICP emission responses. Cu (50
ppm) is used as the internal standard. Calculate the concentration of Pb
for an unknown sample containing 50 ppm Cu with a response ratio of
0.264.

● Open the workbook 4.4_Internal Standard.xls where analytical responses
to different calibration solutions containing different amounts of Pb and
fixed amounts of Cu are given.

● Calculate the response ratio (Pb/Cu) of each calibration solution in col-
umn D. Plot the response ratio against concentration of Pb using a scatter
graph (no line) and perform linear regression on the data by adding a lin-
ear trendline. Display the trendline equation and 2 on the chart.

● Compare this internal standard calibration curve with an external calibra-
tion curve based on Pb analyte response only. How does the calibration
approach used impact the regression?

● Use the internal standard calibration curve to calculate the amount of Pb
in the unknown sample (Ans:28 ppm).

4.5 Method of Standard Addition Calibration

The method of standard addition is another commonly used calibration
strategy where increasing amounts of analyte standard are spiked into
aliquots of the sample to be analyzed. It can be used if it is expected that the
matrix of a sample could influence the analytical sensitivity of a method
(i.e. the slope of the linear regression line) over the concentration range of
interest. It is important to note that the method of standard addition does
not overcome background interference which affects the intercept of the
regression plot. Background, or baseline interference must be eliminated
by additional measures before standard additions can be effective. Properly
implemented, standard addition eliminates variation in sensitivity across a
linear concentration range, with negligible effect on precision [1].

In practice, the detector signal for a sample solution is measured and
then known quantities of the analyte are spiked into this sample solution
and the change in signal measured for each addition. A plot of the detector
signal against added standard analyte concentrations is fitted with a linear
regression model. The original concentration of the analyte in the sample is
determined from the point at which the extrapolated regression line crosses
the x-axis.
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Tutorial 4.5 Use of the Standard Addition Method to Determine an
Unknown Concentration

In this tutorial, you will determine the concentration of cadmium in an
industrial waste stream using the standard addition calibration method.

A sample of industrial waste solution was analyzed for cadmium content.
Standard amounts of Cd2+ were added to aliquots of the sample to be ana-
lyzed and the total cadmium in these samples was determined by atomic
absorption spectroscopy. Using the collected data, calculate the concentra-
tion of cadmium in the original waste stream.

● Open the workbook 4.5_Standard Addition.xls and plot the data provided
using a scatter graph.

● Extend the x-axis minimum bound to −20 using Format Axis
● Perform a linear regression using the Add Trendline option and extend

the line backwards using Forecast. Play around with the number of peri-
ods until your trendline is extended enough that it intersects with the
x-axis (Figure 4.3).

● The regression line intersection with the x-axis represents the negative
value of the original concentration of cadmium. We can see visually that
the original concentration is about 18.0 g/ml.

● In order to calculate the precise concentration, use the linear regression
equation, and solve for when y = 0 to get a value of −17.3 g/ml. Using the
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Figure 4.3 Standard addition plot for calculating unknown Cd2+ concentration in
waste stream.
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mathematical approach based on the regression equation is always going
to be how you determine your unknown concentration, but it is good
practice to also construct the graph to visualize the calibration. For best
results, the total concentration added should be similar to the unknown
concentration – and so several experimental iterations may be required to
optimize the method. If the total concentration is too small, the intercept
is very near the origin and the slope very large in comparison; if too high,
the slope is very small – whereas if the concentration of the unknown
is approximately doubled with the addition of standard, the precision
of the slope and intercept of the regression line estimation is best, and
the standard deviation of the intercept (the unknown concentration) is
minimized.

4.6 Comparison of Analytical Methods

Before a new analytical method can be adopted, it should be validated
against an accepted ‘reference’ method (i.e. one that is already widely in
use and known to produce reliable analytical data). In method validation
studies, parallel measurements of unknown samples are made with the new
method and the established reference method. For comparing of the data
generated by the two methods, one may choose between several statistical
approaches. Performing a simple linear regression analysis of the response
data from the methods is a good approach that can provide insight into the
extent of agreement between the methods, albeit with some limitations.
Alternatively, Bland–Altman plots are useful for exploring inter-method
agreement, as these plots can reveal both systematic and random errors. The
following section will demonstrate and compare both these approaches.

4.6.1 Linear Regression Analysis

When two methods are to be compared over the same range of analyte
concentrations, an approach based on linear regression can be adopted.
By plotting the data from one method (i.e. reference) on the x-axis and
the other method (i.e. new) on the y-axis, a regression analysis can be
performed. The characteristics of that regression line tells how the methods
correlate in terms of their precision and overall agreement.

The correlation coefficient, R2, tells us about association, which is a
measure of the amount of scatter about the best-fit regression line. How-
ever, undue focus on R2 alone as a measure of agreement can be misleading.
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Agreement between two methods should also be assessed by comparing the
linear regression line with the line of equality (y = x) whereby the line of
equality (the ideal outcome) has an intercept of 0 and a slope of 1. A linear
regression line fitting experimental data that approaches the line of equality
indicates a high degree of agreement between two methods. Deviations
from this indicate particular issues. For example, a regression line with
slope of 1 and a non-zero intercept indicates that the method plotted on the
y-axis generates results that are biased (offset) against the x-axis method by
a fixed value, equivalent to the magnitude of the intercept. Also if the slope
differs significantly from 1, the rate of change in the two sets of data (i.e.
sensitivity) is different. These scenarios can occur alone or together.

Tutorial 4.6 Regression Analysis for the Comparison of Two Analytical
Methods

In this tutorial, you will perform a regression analysis to compare a new
spectrofluorimetric method to quantify aldehyde content in excised tis-
sue samples with a commonly used assay method.

Human exposure to aldehydes is implicated in many diseases whereby
the presence of aldehydes can lead to alterations in cellular homeosta-
sis and cell death and contribute to disease pathogenesis. Compare a new
spectrofluorimetric aldehyde analysis method to the standard assay proto-
col of thiobarbituric acid reactive substances (TBARS) using a regression
analysis.

● Open the workbook 4.6_Method Comparison.xls to see the data given for
aldehyde levels measured spectrofluorimetrically and by the TBARS assay.

● Plot the two columns of data against each other using a scatter plot noting
that the assay is the reference method and so should be plotted on the
x-axis. Why is this the case? Looking at the data, why can’t we use a paired
t-test to analyze this dataset?

● Add a linear trendline to the data and generate the regression equation
and correlation coefficient. Alternatively, perform a regression analysis
using the Data Analysis ToolPak to obtain the information.

● How do you interpret the equation and R2 value? You may find it useful
to plot the line of equality (y = x) as an additional series so that you can
compare the experimental data visually to it.
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Tutorial 4.7 Regression Analysis for the Comparison of Two Analytical
Methods

In this tutorial, you will use regression analysis to compare an EPA refer-
ence method with a new methodology for the analysis of mercury levels
in fish tissue [2].

Washington State Department of Ecology analyzed laboratory duplicates
using US EPA Methods Alpha and Beta to determine if the laboratory meth-
ods affected the analytical results. Compare the data from the two analytical
methods.

● Open the workbook 4.7_Mercury in Fish.xls
● There are two columns of data reporting the analytical data (ppb Hg) for

the two methods. Plot the data using a scatter plot using Method Beta as
the reference method.

● On the same graph, plot the line of equality (y = x). To do this, enter data
for two extreme points of this line (0,0) and (500,500) and plot as a scatter
adding it as a series to the first series. Then add a trendline to this data and
generate the equation of the line to obtain slope and intercept coefficients
and the R2 values for both plots.

● How do the two analytical methods compare? (Figure 4.4)
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Figure 4.4 Linear regression analysis-based comparison of two different methods
(alpha and beta) for the analysis of mercury in fish.
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● From this chart, we can conclude on two aspects:
⚬ As the R2 value is <1, we can say that the sensitivities of the two

methods are different and that the Beta method is less sensitive that
the Alpha method.

⚬ It can be seen visually from the increasing deviations from the trendline
that as the mercury level increases, the bias between the two methods
is increases. Because of this concentration effect, we cannot compute
an average difference which means that we cannot summarize the
difference in the methods with a single number. It is important to
note that if there was no concentration effect observed, i.e. if the bias
between the two methods was constant, an average relative percent
difference between the two methods could be computed. This would
be done by generating the difference between each pair of values,
calculating the average of all these difference values and converting
this to a percentage.

To better describe the difference in methods in this case, another approach
called the Bland–Altman plot can be generated whereby an absolute differ-
ence is used to assess method comparability. We will look at this approach
in the next section.

4.6.2 Bland–Altman Plot Analysis

The Bland–Altman plot, also known as the difference plot, is used in
analytical and bio-analytical chemistry and is another method used in ana-
lyzing agreement between two methods. While simple regression analysis
can be informative, significant deviations from the line of equality points
to differences between the methods which require more investigation.
Bland and Altman first described their concept of using absolute difference
plots, in 1983 [3] and applied it first to clinical chemistry soon thereafter
[4]. Their method concerns the determination of the mean and absolute
difference between pairs of readings from the two different methods that
are being compared. Absolute differences are then plotted against their
corresponding means as a way to quantify agreement between the methods.
In order to carry out this analysis, the differences must approximate to
a Gaussian distribution (the t distribution when the sample number is
small) and if this is not the case, the raw data needs to be transformed
such that the differences then assume a Gaussian distribution. This can be
easily executed in Excel and is dealt with in the following tutorial. To work
through an example of a Bland–Altman plot where differences approximate
to a Gaussian distribution, you are referred to Additional Exercise 4.4.3.
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Tutorial 4.8 Bland–Altman Analysis

In this tutorial, you will generate a Bland–Altman plot to analyze the
agreement between two different methods.

Compare the method data in Tutorial 4.7 using a Bland–Altman analysis.

● Open the workbook 4.7_Mercury in Fish.xls again.
● In order to construct the Bland–Altman plot for this data, you need to

calculate the difference between methods and the average values of the
methods.
– First calculate the difference between methods in column C. Title

column C as Difference and into C3 enter = A3-B3. Fill down the
column.

– Calculate the average of the methods in column D. Apply the title Aver-
age to column D. Enter the formula = (A3+B3)/2 in D3 and fill down.

● Construct a scatter plot using column D (Average) as the x-axis and C (Dif-
ference) as the y-axis. Add a trendline (Figure 4.5).

In this plot, increasing deviations from the trendline are observed as the
Average of Methods values increase. This can also be picked up in the regres-
sion analysis done earlier but it is more apparent here. As such, the
Differences between methods does not approximate a Gaussian distribution
and so a logarithmic transformation of the data is necessary before it can
be analyzed.

Bland–Altman
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Figure 4.5 Bland–Altman plot to compare two different methods (alpha and
beta) for the analysis of mercury in fish.
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● Transform the Methods data to logarithms in columns E and F and
then subtract these values to generate the log transformed difference
data (Log(Alpha)-Log(Beta)) in column G and log transformed average
data (Average(LOG(Alpha), LOG(Beta)) in column H. Your spreadsheet
should look like this (Table 4.3):

● Plot your log transformed regression plot (column E against column F)
along with the line of equality. The plot should look like this (Figure 4.6):

● Generate the Bland–Altman (Log transformed) plot by plotting the log
transformed difference data in column G against the log transformed aver-
age data in column H (Figure 4.7).

● In this Bland–Altman (Log Transformed) plot, the data should meet three
criteria: (1) have random scatter, (2) slope of the linear regression line
should not differ significantly from 0 (however, owing to the [usually]

Table 4.3 Logarithmic Transformation of the Method Difference Data

Beta
(ppb)

Alpha
(ppb) Difference Average

LOG
(Beta)

LOG
(Alpha)

LOG(Alpha)-
LOG(Beta)

Average(LOG(Alpha),
LOG(Beta))

17 9.8 7.2 13.4 1.230 0.991 0.2392 1.1108
17 14 3 15.5 1.230 1.146 0.0843 1.1883
17 13 4 15 1.230 1.114 0.1165 1.1722
20 11 9 15.5 1.301 1.041 0.2596 1.1712
21 17 4 19 1.322 1.230 0.0918 1.2763
22 17 5 19.5 1.342 1.230 0.1120 1.2864
28 23 5 25.5 1.447 1.362 0.0854 1.4044
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Figure 4.6 Log transformed regression plot compared to line of equality.
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Figure 4.7 Bland–Altman (Log Transformed) plot.

smaller y scale relative to the x scale in absolute difference plots, the slope
of such data is often not too sensitive anyway), and (3) the correlation coef-
ficient should approximate zero. Check you are satisfied that this data
passes each of these criteria, and if so, calculate the mean and standard
deviation of the log transformed difference data (column G). The mean
will be the relative bias, and the standard deviation will be the estimate
of error. You should calculate the mean of the log transformed difference
data to be 0.1231, and the standard deviation to be 0.056.

● Since the differences are distributed normally, 95% of the differences
between methods lie within the mean± 1.96 standard deviations. There-
fore, you can calculate the 95% confidence limits for the data. For the
methods comparison, your log transformed CI should be (0.0133, 0.233).

● Plot the data with upper and lower CIs as follows (Figure 4.8).
● The mean for the actual difference measurement can be calculated by

computing the anti-log of the mean of the log transformed difference
data. The mean of the log transformed difference data was 0.1231 (this
was computed earlier). Calculate the anti-log of this number – you can
interpret this as the mean difference between methods Beta and Alpha
(10^0.1231 = 1.3278). Interpreting this number, method Beta exceeds
method Alpha by an average value of 32.78%.

● In a similar manner, the 95% CI for this ratio is calculated to be (1.0326,
1.7074). Thus, Method Beta exceeds Method Alpha by between 3.26 and
70.74%. This actual ratio data can be visualized by generating two new
columns of data – the anti-logs of Columns G and H – and plotting against
each other. Upper and lower confidence limits can also be added to the
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Figure 4.8 Bland–Altman (Log Transformed) plot including CIs.
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Figure 4.9 Methods ratio vs. average mercury concentration.

plot. Reproduce this plot in the following text to see how the individ-
ual data points demonstrate that there is indeed a significant difference
between methods Alpha and Beta for the analysis of Hg in fish tissue
(Figure 4.9).

4.7 Summary

This chapter presents examples of problem-driven practical approaches by
which to process calibration data in Excel. Although it is not exhaustive by
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any means, it should bring the student through the common approaches
used to analyze sets of calibration data and compare methods of analysis.
Proper interpretation of this processed data is of course key to equipping
the student to be truly critical of the methods they are developing and the
calibration data they are generating. Thus, as well as number crunching
through the tutorials in this chapter, it is important that the student can sit
back from the data and check outcomes by eye and using ball-park projec-
tions after calculations as an initial ‘sanity check’ on the outcomes before
doing a more detailed interpretation. This is important for students as they
should have a graphical (visually-based) or numerical (value-based) idea of
the expected outcome of any data processing that they perform which they
can then validate their results against before proceeding with concluding on
their data.

4.8 Further Exercises

4.8.1 Analysis of the Phenolic Content of Whiskey

An Irish whiskey sample was analyzed for phenolic aldehydes using cap-
illary electrophoresis with field amplified sample stacking [5]. Analysis of
standards and sample solutions for syringaldehyde and vanillin was carried
out in the same way. All solutions were injected directly onto the capillary
and pre-concentrated using field amplified sample stacking prior to analy-
sis using ultraviolet detection. External calibration and whiskey sample data
are given in 4.4.1_Whiskey.xls for syringaldehyde and vanillin.

Determine the average concentrations and associated errors for syring-
aldehyde and vanillin in the whiskey sample using the calibration and sam-
ple data given.

4.8.2 Determination of Pb in Drinking Water

In the European Union, the Drinking Water Directive regulates water
intended for human consumption and follows the World Health Organi-
zation (WHO) limit of 10 μg/L for lead in drinking water. The Directive
requires Member States to regularly monitor water quality and take correc-
tive action when necessary. Atomic absorption spectrophotometry can be
used to analyze Pb content of aqueous samples. The following table gives
atomic absorption data for the determination of Pb in drinking water using
a standard addition calibration method. The sample volume was 10 mL
and the concentration of Pb solution used for the standard additions was
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Table 4.4 Tabulated Experimental Data for the Standard
Addition Calibration Method for the Analysis of Pb

Volume of 11.1 ppm
Pb Added (mL)

Average
Response (a.u)

0 0.215
5 0.424
10 0.685
15 0.826
20 0.967

11.1 ppm. Calculate the concentration of Pb in the original drinking water
sample (Table 4.4).

4.8.3 Comparing Data Between Two Methods

The workbook 4.4.3_Bland Altman.xls shows a series of paired data [6]. In
the first column, a series of hypothetical variable measurements are shown,
obtained by method A. The data is sorted from smallest to largest. The
second column shows the measurements obtained for the same specimens
but with a second, different method, method B. Therefore, each row shows
paired data.

Compare the two methods using the regression approach. First generate
the regression line relating the two methods and evaluate whether or not
this indicates good agreement between the methods or not. Next, using the
Bland–Altman approach, quantify the agreement between the methods.

Note: Using a paired t-test to compare this data may also be an option. Do
be aware though that a paired t-test is only useful if there is an approximately
constant difference between the paired data across the full data set. Go ahead
and perform a paired t-test on this data and decide if it is reasonable (or not)
to analyze this data using this approach.
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5

Visualizing Concepts in Physical Chemistry

In this chapter, students will apply their data processing knowledge to
visualize concepts in chemistry in Excel on topics of:

● Ion activity
● Kinetics
● Arrhenius equation
● Metal–ligand equilibria
● Acid-based titrations

As a subject area, physical chemistry is primarily about relating the observed
chemistry of a system under study to physical laws. It is mathematically
intensive and can prove a difficult subject for many students. Spreadsheets
can play an important role in bringing mathematics to life, enabling students
to play interactively with equations and simultaneously observe the graph-
ical consequences of changing parameters within the equations. There are
many excellent general texts on physical chemistry such as that by Atkins [1]
that can provide numerous examples of spreadsheet-based calculations. We
will focus on using Excel to investigate specific topics have whereby enough
background is provided here to enable users to apply data processing tech-
niques to specific problems. This chapter will show how Excel can enable
students to visually explore the effect of variation of equation parameters
on the data and how this can be interpreted in terms of underlying physical
chemistry.

Spreadsheet Applications in Chemistry Using Microsoft® Excel®: Data Processing and Visualization,
Second Edition. Aoife Morrin and Dermot Diamond.
© 2022 John Wiley & Sons, Inc. Published 2022 by
Companion Website:

http://www.wiley.com/go/morrin/spreadsheetchemistry2
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5.1 Ion Activity and Concentration

Activity may be regarded as ‘effective concentration’, a concept that arises
from attempting to define the impact of surrounding ions on a particular
ion’s effect on its environment. Two extremes can be identified:

1. Isolated ions (i.e. at infinite dilution) that can exert their full influence in
electrostatics.

2. Dense ion population (i.e. concentrated electrolyte) in which each
individual ion’s effect is shielded to some extent, from the total environ-
ment by ions of opposite charge, which tends to congregate around a
counter ion.

The relationship between activity and concentration depends on the value
of the ion ‘activity coefficient’. A common approach to estimate the value
of the activity coefficient is to use the Debye–Hückel equation. The key
assumption here is that the central ion is a point charge and that the other
ions are spread around the central ion with a Gaussian distribution. The
valid range is limited to ionic strengths <0.01 M, which limits practical
application. A number of extensions of the Debye–Hückel equation have
been proposed to enable activity coefficient calculations at higher ionic
strengths. In this exercise, we will use the Davies equation [equation (5.1)],
an empirical extension of the Debye–Hückel equation) that enables activity
coefficient calculations up to ionic strengths of 0.5 M. All activity models,
including Davies, predict that the activity coefficient of an ion decreases as
the ionic strength increases. In the Davies equation, all ions of the same
charge are assumed to have the same activity coefficient.

log fi = −Az2
i

[ √
I

1 +
√

I
− 0.2I

]
(5.1)

where

zi charge number of the ion, i
A constant (0.512 at 25 ∘C in the case of water)
f i activity coefficient of i
I ionic strength

The ionic strength is defined as

I = 0.5
∑

ciz2
i (5.2)
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where

ci the concentration of any ion, i, of charge zi.

The activity coefficient is used to convert concentration to activity via the
equation:

ai = fici (5.3)

from which it is clear that as long as fi → 1, concentration and activity will
be approximately equal.

Tutorial 5.1 Investigation of the Effect of Electrolytes on the Activity
Coefficient of Ions in Aqueous Solution

In this tutorial, you will develop a worksheet to calculate activity coef-
ficients given by the Davies equation for electrolyte solutions of type
a3+/b−, a2+/b−, a+/b− where a and b represent the cation and the anion,
respectively.

● Open up the file 5.1_Activity.xls. The worksheet is set up here (Figure 5.1)
where concentration values of ions in solution are given. The parameters
Za and Zb represent the charge on the cation, a, and the charge on the
anion, b, for an electrolyte. The values of 3 and 1 for Za and Zb, respectively,
represent an electrolyte solution of type a3+/b−, such as FeCl3.

● Define names for cells containing the Za and Zb values (B2 and B3, respec-
tively) according to the text in cells A2 and A3. To do this, highlight B2
and under the Formulas tab, select Define Name. In the pop-up dia-
logue box, in the Name text field, type Za, and click OK. Repeat for cell
B3, naming it Zb.

Za 3

Zb

I fi

Named parameters

–1

Electrolyte

concentration, C Log(C) Log(I) Log(fi)

MASTER

0.000001

1.77828E-06

3.16228E-06

5.62341E-06

Figure 5.1 Worksheet setup to calculate activity coefficients for electrolyte
solutions.
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● Complete the Master table given in the worksheet.
● To do this, first calculate the log of the electrolyte concentrations (given in

column A) in column B by typing =LOG(A7) into B7. Fill down over the
required range.

● In C7, calculate ionic strength, I, using equation (5.2) by entering the for-
mula =0.5*((A7*-Zb*(Za^2))+(A7*Za*(Zb^2))), where A7 holds the value
of the electrolyte concentration, and Za and Zb are defined in the named
cells. Fill down over the required range.
⚬ Note: −Zb is included in the first term and Za included in second term

to take account of all ions in molecule. So for FeCl3, the number of Fe3+

cations is 1 (−Zb) and the number of Cl− anions is 3 (Za).
● Compute log(I) in D7 and fill down.
● Compute log of the activity coefficient, log(f i), in column E using

equation (5.1) by entering the following formula into cell E7
=−0.512*Za^2*((C7^0.5/(1+C7^0.5))-0.2*C7). Fill down over the required
range.

● Finally, calculate the activity coefficients, f i, for the corresponding con-
centration values of the ions in column F using the inverse log function
(=10^E7). Fill down over the required range.

● The completed worksheet should contain the values shown in Figure 5.2.
● Now, vary the values of Za and Zb and generate the new data for I and f i

based on these values. To tabulate this clearly, first enter headings in cells
G6−L6 according to the following text: I (Za=3, Zb=-1); I (Za=2, Zb=-1);
I (Za=1, Zb=-1); fi (Za=3, Zb=-1); fi (Za=2, Zb=-1); fi (Za=1, Zb=-1).

● Vary the magnitude of Za according to these headings, and each time, copy
and paste the generated data for I and f i into the relevant columns. For
example, when Za is assigned a value of 3 (and Zb is −1), copy and paste
(Special: Values) the values from columns C and F into G and J, respec-
tively. Repeat this for Za = 2 and Za = 1.

● Once you have populated the table going across, use a scatter plot to plot
f i (cation) vs. I for solution type a3+/b−.

MASTER

Electrolyte

concentration, C Log(C) I Log(I) Log(fi) fi
0.000001

1.77828E-06

3.16228E-06

5.62341E-06

–6

–5.75

–5.5

–5.25

0.000006

1.06697E-05

1.89737E-05

3.37405E-05

–5.22184875

–4.97184875

–4.72184875

–4.47184875

–0.011254139

–0.014992949

–0.019967344

–0.026580611

0.974419264

0.966066563

0.955064397

0.940631219

Figure 5.2 Populated worksheet for calculating activity coefficients for
electrolyte.
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Figure 5.3 Plot of activity coefficient as a function of ionic strength for solutions
containing different cation charges.

● Plot and compare the results obtained for different charges on the cation.
Format the y-axis with a maximum bound of 1.8. Format the x-axis to have
a logarithmic scale (base 10). Your plot should look like that in Figure 5.3.

Note: Limiting f i values to below ∼1.8 at the higher ionic strengths is recom-
mended as the ionic strength becomes very large very quickly above this value,
and so by including them, it gets difficult then to visualize behavior at lower
ionic strengths.

● Similarly, generate a set of data whereby the charge on the anion (Zb) is
varied, e.g. −3, −2, and −1, while holding Za constant at 1. Plot the data
in a similar manner as the previous.

● Finally, plot f i against log(C) for a3+/b−, a2+/b−, a+/b− and compare it with
the plot against I. Interpret your finding.

● Save and close the workbook.

The plots clearly demonstrate that at low ionic strengths (∼<10−5 M),
the activity coefficient is ∼1 for all solution types. The activity coefficient
decreases sharply for electrolyte concentrations above about 10−4 M. This
effect is more pronounced for more highly charged ions through the
charge factor in equation (5.1) and because of the more rapid increase in
ionic strength [equation (5.2)]. In general, it can be seen that this linear
relationship begins to break down for ionic strengths at ∼0.5 M, above
which the Davies equation no longer holds. Note that in the worksheet,
when Za is set to 1 (for solutions of type a+/b−), the concentration values
are the same as those for ionic strength.
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It is worth noting that for very highly charged ions, dissociation to
free ions does not actually tend to occur due to a hydrolysis process that
spontaneously takes place (nature abhors extreme charge!). To give an
example of this, iron(III) hydrolyses in water according to Fe3+ +H2O→
Fe2+(OH)+H+; which explains why solutions of ions such as Fe3+ and Al3+

are acidic.

5.2 Kinetics

Chemical kinetics is the study of reaction rates and involves studying the
relationship between factors such as reactant concentration, presence of cat-
alyst, temperature, and pressure – factors that affect the rate at which a
reaction proceeds. The optimization of reaction rates involves systematic
variations of these factors. This in turn can lead to an understanding of
the mechanisms of reactions and, by their analysis, an understanding of the
sequence of and what constitutes the critical steps in a multi-stage reaction.

At a fixed temperature, the relationship between reactant concentration
and rate is described by a rate law. For many reactions, the rate is found to
depend on the concentration raised to some power, usually 1 or 2, known
as the order. Investigations into the order of a reaction are therefore very
common.

5.2.1 First- and Second-Order Reactions

Many chemical reactions and processes such as radioactive decay can be
described using first-order kinetics. First-order reactions proceed at a rate
that depends linearly on only one reactant concentration and can be repre-
sented by the following differential equation:

Rate = −d[A]
dt

= k[A] (5.4)

where
Rate reaction rate (Ms−1)
[A] concentration of reactant A (M)
t time (s)
k rate constant (s−1)

Equation (5.4) predicts that the rate at which the concentration of A
decreases is directly proportional to the concentration of A and the propor-
tionality constant is the rate constant k. As [A] decreases with time, so too
will the rate of decrease of [A].
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The integrated form of equation (5.4) is:

[A] = [A]0e−kt or ln
(

[A]
[A]0

)
= −kt (5.5)

where

[A]0 concentration of reactant A at t = 0 (M)

A useful indication of the rate of a first-order chemical reaction is the
half-life, t1/2, of a substance, the time taken for the concentration of a
reactant to fall to half its initial value, i.e. the time taken for [A]0 to decrease
to 1/2[A]0. The equation for t1/2 is given as

t1∕2 = ln 2
k

(5.6)

As ln 2 is a constant (ln 2 ≈ 0.693), for a first-order reaction the half-life of a
reactant is independent of initial concentration, and depends solely on the
rate constant. In a first-order reaction, the length of each half-life is constant.

For a reaction that is second-order with respect to a single reactant, the
differential equation that describes these second-order kinetics is

d[A]
dt

= k[A]2 (5.7)

The integrated form of this equation can be derived as

1
[A]

= 1
[A]0

+ kt or
[A]0

[A]
= 1 + kt[A]0 (5.8)

and the half-life for second-order reaction kinetics is given by

t1∕2 = 1
k[A]0

(5.9)

Equation (5.9) tells us that the half-life of a second-order reaction is a func-
tion of the initial concentration of the reactant and the rate constant. As a
consequence, the length of the half-life gets longer as the reaction proceeds,
and the progress of the reaction will become considerably slower during
the latter stages in comparison to a first-order reaction with a similar rate
constant.

Tutorial 5.2 First-Order Kinetics Plots

In this tutorial, you will generate and plot model kinetic data for a
first-order reaction that has a rate proportional to the concentration of
reactant A and then graphically visualize the effects of different initial
concentrations of reactant, [A]0 and rate constants, k.
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● Open the workbook 5.2_First-Order Kinetics.xls. This worksheet has been
set up to plot the first-order kinetics equation (equation (5.5)). Values for
the initial concentration, A0, and rate constant, k, are defined as parame-
ters and their values assigned in cells G1 and G2, respectively.

● The time points are given in column A. To generate corresponding values
for [A], enter equation (5.5) (left hand side) into column B by entering the
formula =A0*EXP(-k*A2) in B2 where A0 is a named variable. Fill down
column B to generate values for [A] for each time point.

● To visualize the kinetic data, plot [A] vs. t (Figure 5.4) as a scatter plot.
From the graph, estimate the first half-life of the reactant, t1/2 (time at
which [A] diminishes to half its initial concentration) from the plot. Also,
calculate the t1/2 value according to equation (5.6) (Ans: 6.93 s).

● Estimate the second and third half-lives also, and the time at which the
reaction goes to completion from the plot. How does the half-life vary with
time?

● In order to linearize the data, in C2, calculate the natural logarithm of
[A]/[A0], where A0 is a named variable, using the formula =LN(B2/A0).
Fill down the range.

● Plot ln([A]/[A0]) vs. t as a scatter plot (Figure 5.5). According to
equation (5.5), the slope of this line will be –k.

● This chart shows this relationship when the values 0.1 and 1 are used for
k and [A]0, respectively. Try varying the value of A0 and investigate the
influence of this change on both charts. Justify what you see.

● Next, have a look at the effect of varying k on the progress of a reaction by
changing the rate constant value. To do this, set up additional parameters
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Figure 5.4 Plot of concentration against time for reactant A.
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Figure 5.5 First-order decay plot for the first-order kinetic data where k = 0.1 and
[A]0 = 1.

Table 5.1 Worksheet Setup for Entering Initial
Reactant Concentration and Rate Constant Values for
Investigation

A0 1
k0.1 0.1
k0.05 0.05
k0.01 0.01

for k (e.g. k0.05 and k0.01 for values of 0.05 and 0.01, respectively) using
the Name Manager (Table 5.1).

● To visualize the kinetic data for these different k values, generate [A] data
as before as a function of k in columns D and E, for k = 0.05 and k = 0.01,
respectively. Plot all data series against time on a single chart to see the
impact of changing k (Figure 5.6).

● It can be clearly seen that decreasing the rate constant value slows down
the kinetics of a reaction. A 10-fold decrease in the rate constant of a
first-order reaction has a major impact on the course of a reaction. In con-
trast to the situation when k = 0.1 s−1 (which is essentially complete in
<50 s), if k is decreased to 0.01 s−1, then there is ∼40% of A still unreacted
after 100 s.

● Save and close the workbook.
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Figure 5.6 Overlaid kinetic plots for a first-order reaction with different rate
constants.

Tutorial 5.3 Second-Order Kinetics Plots

In this tutorial, you will generate and plot model kinetic data for a
second-order reaction that has a rate proportional to the square of the
concentration of a single reactant. We will compare it to the first-order
equation plots for different initial concentrations of reactant and rate
constants.

● Open the workbook 5.3_Second order kinetics.xls. This worksheet has
been set up in a similar manner to 5.2_First order kinetics.xls where the
second-order kinetics equation (equation 5.7) is used in this case. The
initial concentration and rate constant have been defined as parameters
A0 and k and their values assigned to cells B1 and B2, respectively.

● For this second-order reaction, the fraction [A]0/[A] at time t needs to be
calculated. Do this in column F using equation (5.7), by entering the for-
mula =1+k*D3*A0 in F3, where A0 is the constant (set at 1) and filling
down the range.

● In column G, compute the inverse of the values in column F to get
[A]/[A]0, by entering the formula =1/F3, and fill down the range.

● Plot [A]/[A]0 vs. t to visualize the second-order rate data. From the plot,
estimate the first, second, and third half-lives of the reactant. How does
the half-life vary with time?

● Add in the equivalent data for the first-order plot from the workbook
5.2_First order kinetics.xls and compare these two plots (Figure 5.7). To
add in this data, ensure workbook 5.2_First order kinetics.xls is open:
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Figure 5.7 Overlaid kinetic rate data for first and second-order reactions.

⚬ Right click on the graph, and click Select Data
⚬ Click Add, and in the Edit Series dialogue box, include First Order as

Series Name, and then select A2:A52 from workbook 5.2_First order
kinetics.xls as Series X values.

⚬ With your cursor in the Series Y values text box, select B2:B52 again
from workbook 5.2_First order kinetics.xls.

⚬ Press OK to close the dialogue box and view the chart.

The resulting chart shows that a second-order reaction proceeds more slowly
than the first-order reaction and that divergence increases with time up to a
point (∼30 s), after which they begin to slowly converge again.

● In order to generate models for different values of k, in cells B3 and B4
enter values of 0.05 and 0.01 for k, respectively. Define these as parameters,
e.g. k2 and k3. Generate the [A]0/[A] and the [A]/[A]0 data for these new
values of k over the same timescale as before. Plot all the [A]/[A]0 data as
three series against time to visualize the effect of varying the rate constant,
k, on the second-order reaction profile. Compare these plots to those of
first-order kinetic profiles (Figure 5.8).

● Estimate the first t1/2 values for each of the rate constants by examin-
ing the relevant plots. Also calculate values for the first t1/2 based on
equation (5.9). Are both methods in agreement?

● In column E, adjacent to the Time column enter the title t[A]0 for the col-
umn. Calculate the t[A]0 values down the column by entering the formula
= D3*A0 and fill down the range.

● Now plot a linearized version of the second-order rate equation by
plotting [A]0/[A] vs. t[A]0 to visualize the second-order rate data for a k
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Figure 5.8 Overlaid kinetic plots for a second-order reaction with different rate
constants.
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Figure 5.9 Overlaid linearized plots for the second-order rate data for different
rate constants.

value of 0.1. Your plot should have an intercept of 1 and a slope of 0.1.
Also generate the [A]0/[A] data for k = 0.05 and k = 0.01 so that you can
plot [A]0/[A] for the different values of k as the following text (Figure 5.9).
What do you expect the slopes of these plots to be?

5.2.2 The Arrhenius Equation

The temperature dependence of a reaction can be used to determine the
activation energy, Ea, of the reaction via the Arrhenius equation. Ea is an
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important reaction parameter as it the minimum energy that molecules
must possess in order to react to form a product. The amount of times
molecules will collide in the orientation necessary to cause a reaction is also
important and is described by a pre-exponential factor, A. For many simple
reactions, reaction rate constants are inversely proportional to temperature
and obey the following relationship

ln k = ln A −
( Ea

RT

)
(5.10)

where

k rate constant
A pre-exponential factor
Ea activation energy (J mol−1)
R gas constant (8.314 J K−1 mol−1)
T temperature (K)

Values for A and Ea can be found by constructing an Arrhenius plot graphing
in K vs. 1/T. This plot will have an intercept of ln(A) and a negative slope of
–Ea/R.

Tutorial 5.4 Visualization of the Arrhenius Equation

In this tutorial, you will generate an Arrhenius plot for the second-order
decomposition of acetaldehyde over the temperature range 700–1000 K
using experimental data generated by measuring the rate constant of
the reaction at a number of temperatures.

● Open the workbook 5.4_Arrhenius.xls. Rate constant data for acetalde-
hyde decomposition is given for a range of temperatures.

● In order to plot the Arrhenius plot for this data, the data needs to be
transformed. Firstly, generate values for 1/T by entering the formula
= 1/A2*1000 in C2 and filling down over the range. In D2, calculate ln(k)
values by entering the formula =LN(B2) and fill down over the range.

● Now plot ln(k) against 1/T as a scatter plot and fit a linear regression line
to the data (Figure 5.10).

● Using the slope and the intercept values of the regression line, calculate
Ea and A for the reaction (A = 1.077× 1012 and Ea = 188.32 kJ mol−1).

● For visualization of the y-axis intercept on the plot, extend the trendline
backwards by 1 unit, and change the bounds of the y-axis to go from −10
to 30 as shown in the following text.
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Figure 5.10 Arrhenius plots for second-order decomposition data.

● In order to visualize the effect of k on Ea, copy and paste your table of
data to another area in the worksheet. Systematically vary the values of k
going down the column in this new table using a multiplier of 0.75. The
ln(k) values will automatically update. Plot these new ln(k) values against
1/T as a second series on your existing chart and calculate values for Ea
and A for this data.

You should be able to see that the plot with the steeper slope has the greater
Ea, which implies a stronger temperature dependence of the rate constant.
It is also clear from the chart that the experimental data is reasonably lin-
ear, but the bunching of the data means the estimate of the y-axis intercept
(ln(k)) will be subject to relatively large errors on account of any small inac-
curacy in the value of the slope, which will be further amplified through the
exponential relationship between the intercept and the value of A.

5.3 Metal–Complex Equilibria

Metal cations are Lewis acids, due in part to their positive charge which
attracts electrons. When they are dissolved in water, they react with water to
form hydrated complex ions such as [Co(H2O)6]2+ or [Ag(H2O)4]+. These
are referred to as metal–ligand complexes or coordination compounds. Neu-
tral molecules such as H2O and NH3 and anions such as CN−, CH3COO−

can act as ligands. A formation constant (also known as stability constant
or affinity constant) is an equilibrium constant for the formation of a
metal–ligand complex in solution. It is a measure of the strength of the
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interaction between the metal ion and the ligands that come together to form
the specific complex. The formation constant(s) provides the information
required to calculate the concentration(s) of the complex(es) in solution.

5.3.1 Generalized Metal–Ligand Equations

The formation of a complex involving a metal, M, and a ligand, L, can be
represented by the generalized expression

M + L ⇋ ML (5.11)

For which an equilibrium formation constant (Kf ) can be written as

Kf =
[ML]
[M][L]

(5.12)

A useful way of expressing the relative amounts of each form of the metal
(free or complexed) is as the existing fraction, or 𝛼, of each where

𝛼M = [M]
CM

and 𝛼ML = [ML]
CM

(5.13)

and as [M] + [ML] = CM , then 𝛼M + 𝛼ML = 1.
where
CM total concentration of M in all forms
[M] concentration of the free ion
[ML]concentration of the complex
[L] concentration of the free ligand

Where stepwise formation of successive complexes is involved, a series of
expressions of this type can be defined such as these for a four-step process

M + L 1
⇋ ML, Kf 1 = [ML]

[M][L]
(5.14)

ML + L 2
⇋ ML2, Kf 2 =

[ML2]
[ML][L]

(5.15)

ML2 + L 3
⇋ ML3, Kf 3 =

[ML3]
[ML2][L]

(5.16)

ML3 + L 4
⇋ ML4, Kf 4 =

[ML4]
[ML3][L]

(5.17)

where Kf1, Kf2, Kf3, and Kf4 = formation constants for [ML], [ML2], [ML3],
and [ML4] complexes, respectively.

A generalized form of these stepwise formation equations and an overall
formation constant, 𝛽, can be defined as follows:

M + nL ⇋ MLn, 𝛽n = Kf 1Kf 2 …… ..Kfn (5.18)
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Overall formation constants can be computed for step 1, steps 1–2, steps
1–3, steps 1–4, and so on. From these equations, we can obtain expressions
for the concentration of each species containing the metal ion:

[ML] = 𝛽1[M][L]

[ML2] = 𝛽2[M][L]2

[ML3] = 𝛽3[M][L]3

[ML4] = 𝛽4[M][L]4 (5.19)

As CM = [M]+ [ML]+ [ML2]+ [ML3]+ [ML4], we can define the fraction of
each species present in the following manner:

𝛼M = [M]
CM

= 1
𝛽1[L] + 𝛽2[L]2 + 𝛽3[L]3 + 𝛽4[L]4

𝛼ML = [ML]
CM

=
𝛽1[L]

𝛽1[L] + 𝛽2[L]2 + 𝛽3[L]3 + 𝛽4[L]4

𝛼ML2
=

[ML2]
CM

=
𝛽2[L]2

1 + 𝛽1[L] + 𝛽2[L]2 + 𝛽3[L]3 + 𝛽4[L]4

𝛼ML3
=

[ML3]
CM

=
𝛽3[L]3

1 + 𝛽1[L] + 𝛽2[L]2 + 𝛽3[L]3 + 𝛽4[L]4 (5.20)

This gives the fraction of each species in terms of the formation constants
and the free (unbound) ligand concentration. Clearly, the concentration
of each metal species (MLn) can be found by multiplying the appropri-
ate right-hand side expressions in equations (5.20) by the total metal
concentration.

As an example of the formation of complex ions, consider the addition of
ammonia to an aqueous solution of the hydrated Cu2+ ion [Cu(H2O)6]2+.
Because it is a stronger base than H2O, ammonia replaces the water
molecules in the hydrated ion to form [Cu(NH3)4(H2O)2]2+, which is usu-
ally written as [Cu(NH3)4]2+. Addition of ammonia base to [Cu(H2O)6]2+

is accompanied by a dramatic colour change from light blue, to blue-violet
when [Cu(NH3)4]2+ is formed. This addition of ammonia base drives the
replacement of the water molecules and occurs in sequential steps where
Kf1, Kf2, Kf3, and Kf4 can be used to represent formation constants for each
subsequent addition of the four ammonia ligands. The following tutorial
will use this chemistry as a way to visualize the general effect on complex
concentrations in solution, as increasing concentrations of ligand are added
to a hydrated metal ion solution. The worksheet that we will generate here
provides an ideal space for exploring speciation.
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Tutorial 5.5 Graphical Exploration of the Complexation Behavior of
Metal Ions to Ligands in Aqueous Solution

In this tutorial, you will process data to visualize the relation-
ship between Cu–NH3 complex species to free and total ligand
concentrations in aqueous solutions.

● Open the workbook 5.5_Cu-NH3.xls.
● Equation (5.20) shows that we can calculate the fraction of each species

present from the concentration of the free ligand, [L], which is [NH3] in
this case, the overall formation constant (which is a product of the various
formation constants) and the total concentration of the metal, CM, which
is CCu in this case. We will begin therefore by defining formation constants
and total metal concentration as named parameters in the worksheet.

● Cells K2:K10 are to contain the named parameters and represent the
total copper ion concentration (CCu), the four formation constants (Kf1,
Kf2, Kf3, Kf4, taken from Tables), and the four overall formation constants
(𝛽1, 𝛽2, 𝛽3, 𝛽4), respectively. Define names for these cells according to the
text in the corresponding cells J2:J10 using Name Manager. Note that
Excel does not like brackets being used in Names. Defining the formation
constants and total metal ion concentration as parameters in this manner
makes variation of these quantities much easier later on, if one wishes to
explore the effect of each on the distribution of the respective forms of
the complex.

● Compute values for 𝛽1, 𝛽2, 𝛽3, 𝛽4 according to equation (5.18). For
example, 𝛽3 = Kf1*Kf2*Kf3.

● In column A, using a log scale, enter a range of free ammonia concentra-
tions from log[Cfree NH3] of −6 to 0 in steps of +0.2 using Fill → Series…,
beginning in A2. A logarithmic scale is usually used in these types of cal-
culations due to the broad concentration ranges involved.

● Convert this to [Cfree NH3] in column B by placing the formula =10^A2 in
B2 and fill down.

● Column C should contain the total concentration of Cu (CCu) that will
be plotted as a reference to the other curves. Use the named variable CCu
(value is in K2). Insert this into column C, using its name (=Ccu), so that
the entire column of values can be changed instantly through changing
the value in K2.

● In column D, calculate the concentration of each form of Cu2+ for each
concentration of free ammonia, beginning with [Cfree NH3] = 10−6 M.
For example, for a free ammonia concentration of 0.000001 M, the
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corresponding concentration of free copper ions, Cu2+, is given by the
formula =CCu/(1+B2*b1_+B2^2*b2_+B2^3*b3_+B2^4*b4_). Enter this
formula into D2.
⚬ This formula entered in column D for the concentration of the metal

species Cu2+ can be verified by noting that multiplying the first expres-
sion from equations (5.20) across by the total metal concentration will
give a value for [M].

Note: B2 in this formula is the concentration of free ligand [Cfree NH3], CCu
is the total concentration of copper ion and b1_, b2_, b3_ and b4_ are the
overall formation constants given by the parameters in K7:K10, as described
in equations (5.18).

● To calculate the concentration of [Cu(NH3)]2+ complex, the formula
=D2*b1_*B2 should be entered in E2. Likewise, formulas =D2*b2_*B2^2,
= D2*b3_*B2^3 and = D2*b4_*B2^4 should be entered into cells F2, G2,
and H2, for complexes [Cu(NH3)2]2+, [Cu(NH3)3]2+, and [Cu(NH3)4]2+,
respectively.

● Cells D2:H2 are then filled down over the range of free ligand concentra-
tions being investigated.

● Plot the data using the scatter with smooth lines and markers option,
with log[Cfree NH3] (column A) as the x-axis. Once plotted, apply a logarith-
mic scale to the y-axis by selecting the option in the Format Axis dialogue
box. Also in this dialogue box, format the axes so that the vertical axis
crosses the horizontal axis at a value of −6 and the horizontal axis crosses
at vertical axis at a value of 1E−17. Use the titles in each of the columns as
the legend entry names for each of the plots. Your final plot should look
like Figure 5.11:

● Examine this chart to understand that at low concentrations of free lig-
and ([Cfree NH3]< 10−5 M), the copper exists predominantly as free copper
ions, Cu2+. However, the free ion concentration drops sharply above about
[Cfree NH3]≈ 10−4 M, and from [Cfree NH3]≈ 10−2 M, the most highly com-
plexed form, [Cu(NH3)4]2+ dominates.

● While the chart earlier is useful to visualize the distribution of each Cu
species as a function of free ligand concentration, in practise very often we
are interested in the distribution of the various species as a function of total
ion concentration and total ligand concentration, as these are usually the
known parameters in an experimental situation. This distribution can be
visualized using the data calculated earlier. The total ligand concentration
[Ctotal NH3] can be obtained from

Ctotal NH3
= [NH3] + [Cu(NH3)]2+ + 2[Cu(NH3)2]2+

+ 3[Cu(NH3)3]2+ + 4[Cu(NH3)4]2+ (5.21)
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Figure 5.11 Visualization of the relationship between Cu-NH3 complex species to
free ligand concentration in aqueous solutions.

● In order to look at this relationship, we will generate a second data set.
In M1, enter the title [Ctotal NH3] which represents the left-hand side of
equation (5.21).

● Based on the right-hand side of equation (5.21), enter an appropriate for-
mula into M2 to give the total concentration of NH3 ([Ctotal NH3]) for a
concentration of free NH3 ([Cfree NH3]) of 1× 10−6 M. The value that you
should obtain is 2.12× 10−5. Fill down the column for the corresponding
values.

● In column N, enter the title Log[Ctotal NH3] and enter the formula to com-
pute the logarithm of the values in M.

● To simplify the graphing operation, the distribution of each species is
copied into columns O : S from the equivalent columns D : H, (along with
the corresponding column titles). To do this, select and copy the cell
range D1:H32. With O1 selected, right click and select Paste Special…
In the dialogue box, click on the Paste Link option to link the values in
these cells so that if a formation constant or the total metal concentration
is changed, both sets of values are affected.

● Chart the concentrations of the different Cu species vs. log[Ctotal NH3]
using a scatter with smooth lines and markers chart as shown in
the following text, again setting a logarithmic scale for the y-axis. This
chart enables the concentration of each species to be estimated if the total
metal and ligand concentrations are known (Figure 5.12).
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Figure 5.12 Visualization of the relationship between Cu-NH3 complex species to
total ligand concentration in aqueous solutions.

● Study the effect of changing the total copper ion concentration, the num-
ber of complexation steps (set the appropriate formation constants to zero
beginning with the highest order) and the relative formation constant val-
ues to explore limiting situations for ensuring that a particular complex
predominate in the solution.

5.4 Titration Curves

The generation of titration curves is a popular topic in undergraduate chem-
istry and it lends itself to worksheet investigations because of its graphical
nature. In this first section here, we will concentrate on weak acid-strong
base curves and derive the equations used to calculate titration curves.

The undergraduate textbook Quantitative Chemical Analysis by Harris
and Lucy [2] give an excellent summary of the theory of titrations and
acid–base equilibrium generally and also gives routines for assembling
theoretical curves from the equations. We build on this approach here to
develop a useful worksheet that limits the pH range of the calculations to
realistic values.

5.4.1 Derivation of the Titration Curve Equation

In general, we can represent the dissociation of a weak, monoprotic acid
(HA) by

HA ⇋ H+ + A−; Ka = [H+][A−]
[HA]

(5.22)
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where

A− the conjugate base of the weak acid
Ka the acid dissociation constant

The total concentration of acid (CA) is related to the amount of associated
and dissociated forms of the acid as

CA = [HA] + [A−] = 𝛼0CA + 𝛼1CA (5.23)

where

𝛼0 and 𝛼1 the fractions of the associated and dissociated forms of the
acid, respectively (𝛼0 + 𝛼1 = 1)

By substituting [A−] in equation (5.23) with [HA]Ka
[H+]

(from equation 5.22),
we can do some simple algebra to get an expression for [HA] in
equation (5.24a).

CA = [HA] +
[HA]Ka

[H+]
= [HA]

(
1 +

Ka

[H+]

)

Rearranging to bring [HA] to the left hand side

[HA] =
CA(

1 + Ka
[H+]

)

Multiplying the right-hand side above and below by [H+]

[HA] =
CA[H+]

[H+]
(

1 + Ka
[H+]

)

Rearranging the denominator on the right-hand side

[HA] =
CA[H+]

([H+] + Ka)

Taking CA outside the bracket on the right-hand side to get the final
expression

[HA] = CA

(
[H+]

([H+] + Ka)

)
(5.24a)

In a similar manner, we can derive the equivalent expression for [A−]

[A−] = CA

( Ka

[H+] + Ka

)
(5.24b)
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Substituting for the fraction of each form

𝛼0 =
(

[H+]
[H+] + Ka

)
(5.25a)

𝛼1 =
( Ka

[H+] + Ka

)
(5.25b)

During a titration, charge balance must be obeyed. In the case of the addition
of a strong base to weak acid – the expression for charge balance is

[Na+] + [H+] = [OH−] + [Cl−] (5.26)

At any point in the titration, the concentration of Na+ ions can be calculated
from the number of moles of base added divided by the total volume

[Na+] =
VBCB

VA + VB
(5.27)

where
V volume
C total concentration
Subscripts A and B represent the acid and base, respectively.

Likewise, the concentration of the dissociated acid, [Cl−], can be calcu-
lated from the number of moles of weak acid added divided by the total
volume, all multiplied by the fraction of acid existing in the dissociated
form, 𝛼1

[Cl−] =
(

VACA

VA + VB

)
𝛼1 (5.28)

Substituting equations (5.27) and (5.28) into equation (5.26), we obtain
VBCB

VA + VB
+ [H+] = [OH−] +

(
VACA

VA + VB

)
𝛼1 (5.29)

and solving for V B we arrive at

VB = VA

(
CA𝛼1 − [H+] + [OH−]

CB + [H+] − [OH−]

)
(5.30)

This equation enables us to calculate the volume of base (or titrant) that
needs to be added to achieve a particular pH. Assuming [H+] is known, then
[OH−] can be obtained (pOH = 14–pH). As CA and CB are known and 𝛼1
can be calculated from equation (5.25b), the volume of base can be calcu-
lated over the pH range of the titration and the two quantities then graphed
against each other to give the titration curve.

Thus, a titration curve is the plot of the pH of a solution vs. the volume
of the titrant (or base) added as the titration progresses. It is a good
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idea to estimate the pH range of the titration and to limit the values to
this range, rather than assume the full range 0–14. Otherwise changing
dissociation constants and concentrations can lead to very strange curves,
with infinitely large base volumes at the end and negative base volumes at
the start.

Tutorial 5.6 Construction of a Weak Acid-Strong Base Titration Curve

In this tutorial, you will generate a titration curve for the titration of
10 ml 0.1 M ethanoic acid with 0.1 M NaOH. We will then visualize
parameters such as pKa, equivalence point and equivalence point
volume and specifically examine the effect of pKa on the size of
inflection at equivalence for this weak acid-strong base titration.

● Begin by opening up a new worksheet and populating it as shown here in
Figure 5.13 where the upper left cell is A1.

● Using Name Manager, define names V A, CA, CB, and pKa for cells B2:B5
respectively, entered in cells A2:A5 as previously.

● Calculate Ka in B6 using the formula Ka = 10−pKa, and name it accordingly.
● Estimate the pH range of the titration by calculating approximate values

for the minimum and maximum pH values (pHmin and pHmax) in E1 and
E2, respectively.
⚬ Using Insert Function, estimate pHmin of the acid sample in E1

according to

pHmin = − log(
√

KaCA) (5.31)

2.88

10 12.52

0.1

0.1

4.76

Ka

a1

Named Parameters

Titration Curve for Weak Acid-Strong Base

pH(min)

pH(max)

[OH–][H+]pHVb pOH

pKa
Cb

Ca

Va

1.74E-05

Figure 5.13 Worksheet setup for calculating titration curve data for a weak
acid-strong base titration curve.
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(valid as long as Ka is not too large or the acid too dilute), by entering the
formula = −log((Ka*Ca)^0.5). This pH, which is calculated to be 2.88, will
be the starting pH that is plotted on the titration curve.

⚬ Likewise, estimate the maximum value for the pH titration range. For a
symmetrical curve, we can assume that for a monobasic-monoacidic sys-
tem (which is what we have here), the amount of base added must be
twice the initial number of moles of acid present. Half the base added is
neutralized by the end of the titration, and the total volume can be cal-
culated to give [OH−] in excess. This enables us to calculate the final pH.
The resulting formula is entered in E2 (= 14+LOG(Ca*Cb/(2*Ca+Cb))),
where Ca and Cb are named parameters. You should calculate this to be
12.52.

• Now generate a set of pH values in column B, starting at 2.88 and ending
at 12.50, using an increment of 0.074 pH units between subsequent data
points. (To do this, enter = 2.88 in B10 and =B10+0.074 in B11.) Fill down
to cell B140 which should correspond to a final value of 12.50.

• In columns to the right of the pH values, calculate corresponding
values for [H+], pOH and [OH−] using the formulas [H+] = 10^-pH,
pOH = 14-pH and [OH−] = 10^-pOH, espectively, and fill down the
ranges.

• Use equation (5.25b) to generate the set of values for α1 in column F. In
F10, enter the formula = Ka/(C10+Ka), where Ka is the named variable
in B6. Fill down the range.

• The volume of base needed to obtain a particular pH is calculated
using equation (5.30) and is entered into A10 using the formula
= Va*(Ca*F10-C10+E10)/(Cb+C10-E10). The formula can be filled down
over the range of pH values to give the base volumes required for each
pH value which are dependent on VA, CA, CB, and Ka.

• Plot the titration curve using a scatter with smooth line by plotting pH vs.
VB (Figure 5.14). Note that the first VB data point is a negative value and
is not relevant so should be excluded from the chart data.

This plot represents the weak acid-strong base curve for ethanoic acid
(HA) vs. NaOH for the starting conditions CA = 0.1 M, V A = 10 mL,
CB = 0.1 M, pKa = 4.76. Before NaOH is added, the solution consists of
ethanoic acid only. Before the equivalence point, there is a mixture of
ethanoic acid and ethanoate ions (or a mixture of HA and A− in general
terms), which is a buffer. At the half equivalence point, the slope is at a
minimum and is where the pH = pKa of ethanoic acid. The corresponding
point on the volume axis is the half equivalence point volume and is
5.0 mL – representing the volume of NaOH required to convert 50% of
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Figure 5.14 Weak acid-strong base titration curve.

ethanoic acid (HA) to ethanoate ion (A−), which is a weak base. The
equivalence point corresponds to the maximum slope in the curve and
is the pH at which the number of moles of ethanoic acid = number of
moles of NaOH. This is ∼pH 9 in this case which is expected for a weak
acid-strong base titration). The corresponding point on the volume axis
here is the equivalence point volume and is 10.0 mL – representing the
volume of NaOH required to convert all HA to A−. Above the equivalence
point volume, NaOH is in excess and the pH is now governed by the excess
OH− ions.

● Consider titrations of other weak acids (characterized by their different
pKas) with a strong base by changing the value of the acid’s pKa in the
worksheet. What happens the size of the inflection at equivalence point
when the pKa value is both increased and decreased? Can you explain this
effect?

● Save the workbook as 5.6_Ethanoic Acid.xls

As seen above, when the pKa of the acid is large, the location of the
equivalence point volume becomes increasingly difficult. Differentiation is
a well-known method for enhancing features in graphs and can be used
in this instance for a more accurate equivalence point determination.
As the equivalence point occurs at the point of maximum deflection,
it can be easily detected as the absolute maximum value of the first
derivative.

The first derivative of the pH data ΔpH/ΔV can be computed using
the finite difference approximation and then plotted as a measure of
the change in slope vs. the x ordinate. ΔpH/ΔV is computed by simple
subtraction of sequential pH values divided by the corresponding change
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in volume. This is very effective providing the number of data points is
large (and hence the increment is acceptably small). This first derivative
plot exhibits a maximum at the equivalence point volume. The second
derivative Δ(ΔpH/ΔV)/ΔV can also be used to determine the equivalence
point volume whereby this data, when plotted against volume of base, will
cross the x-axis at the equivalence point volume. In the following tutorial,
we shall work through the calculations and plotting of both ΔpH/ΔV and
Δ(ΔpH/ΔV)/ΔV against volume of base.

Tutorial 5.7 Determination of Equivalence Point Volume Using Deriva-
tives of the Titration Curve

In this tutorial, you will determine the equivalence point volume for the
titration curve for a weak acid (pKa = 9) vs. strong base via differentia-
tion of the titration curve.

● Continuing in the worksheet 5.6_Ethanoic Acid.xls, use a pKa value of 9.0
in place of that for ethanoic acid and observe the effect on the titration
curve. At this high pKa, we note that the sharpness at the inflection point
is greatly reduced making the equivalence point volume hard to identify.
Thus, to find the equivalence point for the titration curve, we can gener-
ate the first derivative plot which exhibits a maximum at the equivalence
point volume. To do this, we will compute the differential of the pH values
with respect to VB and plot these values against VB.

● Insert the title ΔpH/ΔV into cell G9.
● Leave G10 blank.
● In G11, compute the differential of the pH values in B11 and B10 with

respect to V B. The inputted formula should be =(B11-B10)/(A11-A10). Fill
down over the complete range to give you an approximation of the first
derivative of the data. G10 will not be assigned a value as we don’t have a
point of reference for that initial point.

● This data should be plotted against V B values where the first derivative
applies. The relevant values are the midpoints between adjacent V B val-
ues. Generate this data in column H using the title V B Midpoints. Again,
H10 should not be assigned a value.

● Add this as a new series to the titration curve plot by plotting ΔpH/ΔV vs.
V B Midpoints and examine the chart.

● You can see that because of the scaling, the first derivative plot is difficult
to interpret with respect to the original data. To improve data visualiza-
tion, add a secondary axis to the chart so that you can scale the two data
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Figure 5.15 Weak acid-strong base titration curve and first derivative to precisely
determine equivalence point volume for the titration.

series independently. To do this, right click on the First derivative data
series and select Format Data Series. Under Plot Series On, select Sec-
ondary Axis (Figure 5.15).

● The chart allows you to see the equivalence point clearly where the max-
imum of the derivative corresponds to the point of inflection on the titra-
tion curve.

● Now compute the second derivative Δ(ΔpH/ΔV)/ΔV in column I by
inputting the formula =(G11-G12)/(B12-B11) into I12 and fill down the
range. This data should be plotted against V B values, this time where the
second derivative applies. The relevant values are the midpoints between
adjacent V B Midpoint values. Generate this data in column J using the
title V B Midpoint’. J10:J11 should not be assigned values.

● Plot this data against V B on the existing chart. Calculus tells us that if the
first derivative of a function goes through a maximum, the second deriva-
tive passes through zero at the same point on the x axis. This will give
another measure of the equivalence point volume.

● Although we can see the Second Derivative plot, the magnitude of the val-
ues makes it difficult to track on the existing scale. Rescale the secondary
y-axis so that you can locate where this plot crosses the x axis at y = 0 to
get your estimate of the equivalence point volume based on the second
derivative data (Figure 5.16).

● Save and close the workbook.
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Figure 5.16 Weak acid-strong base titration curve and first and second
derivatives of the data.

5.4.2 Gran’s Plot

The Gran’s plot is an alternative method for locating the equivalence
point of a titration that has several advantages over the more conventional
titration curve method. It is a linear plot and least-squares regression
analysis can be employed to determine the best-fit slope (from which the
acid dissociation constant is obtained) and x-axis intercept (i.e. equivalence
point volume) with great accuracy (as many points can be used to determine
the regression parameters in contrast to the titration curve where only
one point is used). Also, statistical errors for the volume of base required
can be calculated from the regression line. Finally, the experimental data
can be taken well before the equivalence point and extrapolated to locate
the equivalence point volume which improves accuracy as measurements
around the equivalence point are prone to experimental error due to the
rapid change in pH which occurs for very small additions of base.

Consider that before the equivalence point, the fraction of remaining acid
to neutralized acid (f ) is given by

f = [HA]
[A−]

=
(

VE − VB

VB

)
(5.32)

where

V E the volume of base added at equivalence and it is assumed that the
acid exists mainly in the protonated form HA, which is valid for
weak acids that are not very dilute.
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Substituting for [HA] and [A−] using equations (5.24a) and (5.24b), we get

Ka = [H+]
(

VB

VE − VB

)
(5.33)

which can be rearranged to give

[H+]VB = KaVE − KaVB (5.34)

Hence, a plot of [H+]V B vs. VB will be linear with a slope of –Ka and a y-axis
intercept of KaV E.

Tutorial 5.8 Determination of Equivalence Point Volume Using a Gran’s
Plot

In this tutorial, you will generate a Gran’s plot from titration curve data
in order to determine equivalence point volume.

● Continuing in the worksheet 5.6_Ethanoic Acid.xls, use the same starting
values for V A, CA, CB and a pKa value of 4.76.

● Use column I for another data column titled Vb*[H+].
● In cell K10, insert the formula =A10*C10 and fill down the range
● Now plot V B[H+] vs. VB as a scatter graph and examine the plot

(Figure 5.17). It can be seen that the function deviates from linearity at
low and high NaOH volumes. Looking at this, it should be clear that the
Gran’s function cannot be computed for the entire data set, the function
is only valid mid-range.
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Figure 5.17 Gran’s plot to determine equivalence point volume.
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● To isolate the Gran’s region, limit the graphed data to a section of the linear
region by selecting the appropriate data ranges for the x- and y-values (i.e.
between 2 and 8 mL NaOH). Plot this region of the data on a new chart.
This linear region is known as the ‘Gran’s region’. The location of this
Gran’s region will vary with varying acid–base parameters.

● Now right click on the chart and Add Trendline to obtain the regression
line of this data. The trendline can be extrapolated using Forward Fore-
cast via the Format Trendline dialogue box. Forecast by a value of 3.0
and observe that the Trendline now extends over the x-axis. Display the
regression equation and correlation coefficient on the chart (Figure 5.18).

● Ka can be obtained from the slope (−1.73× 10−5) and V E can then be
derived from the y-axis intercept. You may need to use Format Axis →
Number → Category and select Scientific to display the appropriate
number of decimal places in the outputted regression equation.

● Vary the pKa value and examine the effect on the Gran’s plot. Note that
when the acid–base parameters (pKa, CA, CB, and V A) are varied, the range
of points selected for the Gran’s plot will need to be adjusted.

● Save and close the workbook.

5.4.3 Titrations Involving Polybasic Acids

Where more than one proton is available per mole of acid, the aforemen-
tioned approach can be easily extended. For example, the dissociation of the
polyprotic acid phosphoric acid (or other polyprotic acid) can be described
by the following reactions and corresponding expressions for the 1st, 2nd,

0 2 4 6 8 10 12 14
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0.0E+00

–4.0E–05
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R2 = 1.00E + 00

Figure 5.18 Isolated linear region of the Gran’s plot.
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and 3rd dissociation constants (Ka1, Ka2, Ka3):

H3A ⇋ H2A− + H+; Ka1 =
[H2A−][H+]

[H3A]
(5.35a)

H2A− ⇋ HA2− + H+; Ka2 = [HA2−][H+]
[H2A−]

(5.35b)

HA2− ⇋ A3− + H+; Ka3 = [A3−][H+]
[HA2−]

(5.35c)

where A represents PO4 if describing the dissociation of phosphoric acid
(H3PO4).

The fractions of acid existing in each form can be related via the following
equation:

CA = [H3A] + [HA2−] + [HA2−] + [A3−] = 𝛼0CA + 𝛼1CA + 𝛼2CA + 𝛼3CA

(5.36)

where

CA the total concentration of the acid in all forms
The subscript on each α denotes the number of protons removed.

By equating terms on the left hand side of equation (5.36) with the
right-hand side, we can write:

𝛼0 =
[H3A]

CA
(5.37a)

𝛼1 =
[H2A−]

CA
(5.37b)

𝛼2 = [HA2−]
CA

(5.37c)

𝛼3 = [A3−]
CA

(5.37d)

Substituting these expressions into the equations for the 1st, 2nd, and 3rd
acid dissociation constants (equations 5.35a–5.35c), we get

Ka1 =
[H+]𝛼1

𝛼0
(5.38a)

Ka2 =
[H+]𝛼2

𝛼1
(5.38b)

Ka3 =
[H+]𝛼3

𝛼2
(5.38c)
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We can now derive expressions for each fraction in terms of 𝛼0, the con-
centration of hydrogen ions and the dissociation constants

𝛼1 =
𝛼0Ka1

[H+]

𝛼2 =
𝛼1Ka2

[H+]
=

𝛼0Ka1Ka2

[H+]2

𝛼3 =
𝛼2Ka3

[H+]
=

𝛼0Ka1Ka2Ka3

[H+]3 (5.39)

and remembering that the sum of all fractions present equals 1, we can write

1 = 𝛼0 +
𝛼0Ka1

[H+]
+

𝛼0Ka1Ka2

[H+]2 +
𝛼0Ka1Ka2Ka3

[H+]3 (5.40)

which can be rearranged in terms of 𝛼0

𝛼0 = [H+]3

[H+]3 + [H+]2Ka1 + [H+]Ka1Ka2 + Ka1Ka2Ka3
(5.41)

Representing the denominator of equation (5.41) as D, we can similarly
arrive at expressions for the fractions of other species present by substitut-
ing equation (5.41) for 𝛼0 in the various expression in equation (5.39) to
arrive at

𝛼1 =
[H+]2Ka1

D
(5.42a)

𝛼2 =
[H+]Ka1Ka2

D
(5.42b)

𝛼3 =
Ka1Ka2Ka3

D
(5.42c)

From these expressions, we can calculate the fraction of each form of the
acid present at any pH using the acid dissociation constants.

A more generalized from of equation (5.30) enables us to calculate the
volume of base added (V B) at any pH during the titration

VB = VA

(CA
∑

n𝛼n − [H+] + [OH−]
CB + [H+] − [OH−]

)
(5.43)

where

n number of protons removed from the acid.

This expression enables us to relate the volume of base added (V B) to the
pH at any point during the titration and hence the titration curve can be
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calculated in the same way for the weak acid-strong base curve described
already.

Tutorial 5.9 Determination of Equivalence Point Volumes for the Titra-
tion of Polybasic Acids against Strong Base

In this tutorial, you will generate titration curves for polybasic acids
and determine equivalence point volumes using the first derivative
approach.

● Open up a new worksheet and populate it as shown in the following text
(Figure 5.19) where the upper left cell is A1.

● Define all named parameters V a, Ca, Cb, pKa1, pKa2, and pKa3.
● Calculate the Ka1 value in cell B8 using the formula Ka = 10−pKa, and name

it accordingly. Repeat this procedure for computing values for Ka2 and Ka3.
● Calculate pH(min) and pH(max) in a similar manner to that described in

Tutorial 5.6.
● In row 13, starting in column A, enter titles V B, pH, [H+], pOH, [OH−],
𝛼3, 𝛼2, 𝛼1, 𝛼0. Using the limits defined by pH (min) and pH (max), define
the pH range starting in B14, which should be set at pH(min) and should
be incremented by a value of 0.082 moving down the column until
pH(max) is reached. [H+] is calculated in column C, the pOH and [OH−]
in columns D and E, respectively, as done in the previous tutorial.

● The fractions of each form should be calculated in columns F : I using
equations (5.41) and (5.42a–c).

Va
Ca
Cb

Named Parameters pH(min)

pH(max)

pKa1

pKa2

pKa3

Ka1

Ka2

Ka3

10

0.1

0.1

2.15

7.2

12.4

Figure 5.19 Worksheet setup for calculating data for a polybasic acid titration
curve.
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● In columns J and K calculate sum(n𝛼n) and sum(𝛼n), respectively. The
accuracy of the fraction calculations can be checked in column K, which
is the simple summation of all the fractions present (= 1 if calculations are
correct).

● Finally calculate V B (see equation 5.43) by inserting the formula
= Va*((Ca*J14-C14+E14)/(Cb+C14-E14)), where V a, Ca, and Cb are
named parameters.

● Plot the titration curve using a scatter with smooth line by plotting pH vs.
V B as below. Note again, that the first V B data point is a negative value and
is not relevant so can be excluded from the chart data.

● In column L, calculate ΔpH/ΔV , starting in row 15 using the formula
= (B15-B14)/(A15-A14).

● In column M, calculate V B Midpoint values.
● Add a derivative plot as new series as before by plotting ΔpH/ΔV vs. V B

Midpoint, which can be named First Derivative. Use a secondary axis to
scale the First Derivative data. Your chart should look similar to that below
(Figure 5.20).

● The first two equivalence points are clearly identified in the titration curve
and the first derivative curves. The third equivalence point for the removal
of the third proton from the acid does not appear, as the HPO4

2− species
is too weak an acid to be deprotonated by NaOH (or alternatively, HPO4

2−

is a base of too similar a strength to NaOH).
● Below is a chart showing the fraction of each form of the acid present dur-

ing the course of the titration of H3PO4 against NaOH. At the beginning of
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Figure 5.20 Polybasic acid-strong base titration curve and first derivative to
precisely determine equivalence point volumes for the titration.
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Figure 5.21 Fraction of each form of acid present during the course of a titration
of the polybasic acid phosphoric acid against a strong base.

the titration, phosphoric acid exists mainly as H3PO4 (∼75%) and H2PO4
−

(∼25%). At the first equivalence point (10 mL NaOH added), the acid is
practically 100% H2PO4

−. At the second equivalence point (20 mL NaOH
added), the acidic species that dominates is HPO4

2−. With further addition
of base, the final proton is only partially removed (note the curvature of
this portion of the graph), and both HPO4

2− and PO4
3− co-exist in equilib-

rium. This type of chart is of great utility in understanding the relationship
between stepwise reactions and the extent of reaction. Try to generate this
chart yourself (Figure 5.21).

● Change the pKa values from the phosphoric acid pKa values to 2.5, 6.0 and
9.0 values. (Note: these values do not relate to any real acid but is useful to
see the impact of the changing pKa). You will see that a difference of about
3 units between each value is enough to ensure that each form of the acid is
essentially titrated in turn, provided a strong enough base is used to ensure
the third proton is removed. This is confirmed by the plot of the fraction
of each species present during the course of the titration, which shows
that each proton is almost completely titrated in turn. The plot also shows
that the third proton (𝛼3) begins to titrate before the second is complete
(α2 reaches about 0.95 after 20 mL NaOH added). This explains why the
second inflection is the least sharp in the first derivative curve.

● Change the pKa values again to 5.0, 7.0 and 11.0. Now the fraction of each
species plot shows that the acid exists almost completely as the H3A form
before the addition of any base (very little dissociation in water due to
the high pKa value. This explains why the titration curve shows only one
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significant inflection, at the point of almost complete removal of the sec-
ond proton after 20 mL of base is added.

● This exercise in variation of the pKa values should show you the impor-
tance of having a difference of around three units in successive pKa values,
if each species is titrated separately, and giving independent inflection
points.

● Finally, change the pKa values again to those of triprotic citric acid – 3.13,
4.77, and 6.40. Examine the fraction of each species plot – which proton(s)
are titrated to completion? Explain this behaviour in the context of the
differences between and the magnitudes of the pKa values.

5.5 Summary

Physical chemistry including titration curves and chemical equilibria pro-
vides a very rich source of material for which the worksheet approach is ideal
as a learning tool. It enables the understanding of fairly complex mathemati-
cal relationships at undergraduate level. This understanding greatly benefits
from the graphical visualization environment which, as demonstrated here,
can easily be built by the students using Excel. The templates generated here
can be used by researchers for their own experimental data sets that might be
relevant in their own work as well as equipping them to build new templates
for other physical chemistry concepts and understanding.

References

1 Atkins P, Paula J de, Keeler S. Atkins’ Physical Chemistry. 11th edition.
Oxford; New York: OUP Oxford; 2014.

2 Harris D, Lucy CA. Quantitative Chemical Analysis. 10th edition.
Macmillan Learning; 2020.



�

� �

�

131

6

Regression Analysis Using Solver

In this chapter, students will learn to:

● Apply the principles of optimization and non-linear least-squares
fitting to experimental data

● Fit complex models to different types of experimental data using the
Solver add-in

● Objectively interpret non-linear regression modelling in terms of how
it describes experimental data

The built-in regression tools in Excel described in Chapter 3 are used for
fitting simple models (e.g. linear, exponential, polynomial) to data using
the least squares method. These models are built-in as options to readily
apply. However, in many instances, more complex models are necessary
for fitting to datasets, which are not part of built-in regression tools. This
type of ‘bespoke’ regression modelling can be carried out using the Excel
add-in Solver. While Solver-type programme add-ins are coming on-stream
in web-based open source programmes such as Google Sheets and Libre
Calc, at the time of print, they are not as advanced as Excel’s add-in and not
suitable for working through the tutorial content in this chapter.

The Solver add-in is a powerful routine that fits data with non-linear func-
tions or models using an iterative algorithm which minimizes the sum of the
squared difference between experimental and predicted (model) data. The
sum of the squared difference is quantified via the sum of the squares of
the residuals (SSR). One of the more robust algorithms it uses the General-
ized Reduced Gradient (GRG) non-linear algorithm and is designed to solve

Spreadsheet Applications in Chemistry Using Microsoft® Excel®: Data Processing and Visualization,
Second Edition. Aoife Morrin and Dermot Diamond.
© 2022 John Wiley & Sons, Inc. Published 2022 by
Companion Website:

http://www.wiley.com/go/morrin/spreadsheetchemistry2
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general purpose, constrained, convex and non-convex, smooth problems. It
gives the user good control over parameter values and ranges over which
they can test. Upon running the search algorithm, an optimum solution to
the model will (ideally) be found, based within the constraints of the model
and algorithm used.

In terms of Solver seeking to minimize the SSR value during the optimiza-
tion process, it is important to note that although it seeks to reach a zero
value (to get a perfect fit), for real experimental datasets, which will always
have some level of noise, the SSR will never reach zero (and so the model will
never directly overlay the experimental data). Instead it will reach a value
that represents the effect of the noise on the signal. Of course, the user can
define very complex polynomials or interpolations that will also model the
noise, but these expressions are of little theoretical use if one is interested in
the fundamental processes underlying the signal. And in the end, it is once
again up to the scientist themselves to judge whether a particular model is
appropriate for fitting to a particular dataset, and whether the fit obtained is
acceptable or not.

A series of tutorials are presented here and designed to demonstrate the
mechanics of performing non-linear regression using Solver. Each tutorial
has an associated worksheet. As you work through the tutorials, you will
quickly see the process of setting up the worksheet and running Solver
where the models are specific to the experimental data being modelled. In
the tutorials here, you will be provided with the model to be fitted to the
data but in practise, when fitting your own data, it may be that you need to
identify a suitable model yourself. Nevertheless, these tutorials will give the
student great experience at building models and running Solver to generate
optimized model parameters as a fit for the experimental data.

In order to visualize the iterative nature of the model, the experimental
data and model should be plotted together on a chart prior to the optimiza-
tion being carried out. By doing this, the student will see graphically how the
optimization proceeds. Once optimization is finished and a minimum SSR
value is reached, the fit of the model to the data can be visualized on the
chart. Alongside this, Solver returns optimized values for the model regres-
sion parameters.

Modelling experimental data informs theoretical interpretations of the
data and enables confirmation or rejection of a hypothesis through pre-
dictions generated via models. Indeed, the case often arises where several
different models could be reasonably used to fit a set of data. In these cases,
it is the scientist-in-charge that will need to make a judgement on the best
model to use, based on their knowledge of the experimental conditions and
underlying behaviours of the systems being investigated.
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6.1 Using Solver

The Solver add-in programme is installed in the same manner as the Data
Analysis add-in and is available under the Data tab. The following steps
describe the general process for using Solver to model experimental data and
will be the steps that are followed in all optimizations that are performed
using Solver.

● The data to be modelled (Y i) must first be entered into the worksheet.
This dataset is typically experimentally generated numbers that are being
tested for their agreement with a particular theoretical model.

● Model regression parameters are defined and initial values assigned.
● The function describing the theoretical model is used to generate pre-

dicted values, (Ŷi), using the initial parameter values.
● The goodness of fit between the experimental data and predicted values is

determined by means of the SSR:

SSR =
∑

(Yi − Ŷi)2 (6.1)

● The values of the model parameters are varied iteratively by the particular
search algorithm selected to search for variations in the model parameters
that generate a decrease in SSR.

● The search process is terminated when one of several conditions is
reached, such as time allocated and number of iterations, no further
improvement can be obtained, or, ideally, the SSR falls below the
acceptable threshold set by the user.

● Optimized model regression parameters are returned by Solver that can
be used to describe the experimental dataset.

Tutorial 6.1 Worksheet Setup and Execution of Solver

In this tutorial, you will be introduced to Solver by using it to model
experimental gas chromatography data generated at different flow rates
with the van Deemter model.

In chromatography, the van Deemter equation [Equation (6.2)] relates
the height equivalent to a theoretical plate (HETP) of a chromatographic
column to the various flow and kinetic parameters that cause peak broad-
ening, as follows:

y = Ax + B
x
+ C (6.2)
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where

y is plate height (m),
x is flow rate (m s−1),
A is the Eddy-diffusion parameter related to channelling through a
non-ideal packing (m),
B is the diffusion coefficient of the eluting particles in the longitudinal
direction resulting in dispersion (m2 s−1),
C is the resistance to mass transfer coefficient of the analyte between
mobile and stationary phase (s).

● Open up the workbook 6.1_van Deemter.xls. In the worksheet, there is a
dataset relating plate height to flow rate which you will model.

● Firstly, chart the data as a scatter plot (plate height vs. flow rate) in order
to visualize the experimental Plate Height data (Figure 6.1).

● Next you will set up the worksheet using the following steps so that Solver
can be executed.
⚬ Set up columns. To the right of the Plate Height data, set up column

titles Model Data, Residuals, and Residuals^2.
⚬ Generate the parameters table. In order to build the model, model

regression parameters (A, B, C) must be defined. Set up a table to the
right of the new columns (e.g. across cells G1:H4) as shown below,
where A, B, and C refer to the parameters from equation (6.2). Set each
of these parameters to an initial value of 1. To do this, enter a value of
1 to the right of each of the named parameters in the table (H2:H4)
(Figure 6.2).
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Figure 6.1 Van Deemter plot of experimental data.
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Figure 6.2 Worksheet parameters table
setup.

A

B

C

Parameters

Figure 6.3 Model formula entry to generate model data.

⚬ Assign names to the parameter values. In order to generate the model
data, we need to name these parameters as A, B, and C. This is done by
first selecting the six cells in the table (G2:H4), so that you are selecting
the cells containing the names and corresponding values. Now, under the
Formulas tab, click Create from Selection. Tick left column to create
names from the values selected and press OK.

⚬ Enter the model formula. Now you are ready to formulate the model in
column C under Model Data. In the first instance, the van Deemter
model [equation (6.2)] should be entered into C2. To do this, click on
C2 and enter equation (6.2) into the formula bar (=(A*A2)+(B/A2)+C_
where A, B, and C_ are the model parameters) (Figure 6.3). A, B, and
C_ refer to cells H1, H2, and H3, respectively, and can be entered into
the formula by directly typing, or by clicking on the relevant cell while
entering the formula.

⚬ Calculate the residuals. Calculate the residual values (the difference
between the model and the experimental data value) in the column titled
Residuals by entering the formula =C2-B2 in D2 and filling down to end
of dataset (row 15).

⚬ Calculate the square of the residuals. In column E, calculate the square of
the residual values by entering =D2^2 in E2 and filling down.

⚬ Enter the SSR equation formula into a target cell. In H6, calculate the
sum of all cell values in column E – this is the SSR value [equation (6.1)]
and is a measure of the cumulative error between the experimental and
model datasets. This cell (H6) – containing the SSR – is what we will
instruct Solver to minimize.

• Your worksheet is now setup for Solver (Figure 6.4).
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Figure 6.4 Worksheet setup for running Solver to model the van Deemter data.
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Figure 6.5 Van Deemter plot of experimental data and model before
optimization.

● Plot the model data as a new series on your existing chart (plate height
vs. flow rate) as shown in Figure 6.5. It can be seen that, using the ini-
tial parameter values (1,1,1), the model does not fit the experimental data.
Note the large SSR value also – the fact that this value is very large indi-
cates that using the current parameters, the model is not fitting the data.

● Activate Solver under the Data tab and you will be presented with the
Solver Parameter dialogue box (Figure 6.6) which you need to populate
to search for parameter values that minimizes the SSR cell value, so that
the model is optimized to fit the experimental data.

● Solver Parameters that can be set are the following:
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Figure 6.6 Solver
parameter
dialogue box.

⚬ Set Objective specifies the target cell to be maximized, minimized, or
set to a certain value. In this case the target cell is the cell containing
the SSR value, (H6), and it is set to be minimized.

⚬ By Changing Variable Cells specifies the cells that will be varied by
the search algorithm in order to minimize the SSR value (H6). The vari-
able cells are those that contain the initial model parameters (H2:H4).

⚬ Subject to the Constraints allows you to specify constraints that can
be applied to limit the search space explored by the optimization algo-
rithm. As is usual in iterative search procedures based on gradient-type
algorithms, efficiency is best if the search is initiated near the global
solution of the problem and the unknown variables are restricted in
value to realistic ranges. This strategy is required because these search
algorithms may fail to locate the optimum solution to the problem, par-
ticularly if the error surface is rough (e.g. relatively large noise ampli-
tude in the data), leading to many local minima in which the algorithm
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may become trapped, or if the model is relatively complex and capa-
ble of returning several different combinations of parameter values that
give good fits to the data. Clearly therefore, one must be able to justify
both the search strategy adopted and the parameter values returned by
the model from a general knowledge of the problem under investigation
and the quality of the experimental data.
To add constraints, click Add, to bring up the Add Constraint dialogue
box. In this tutorial there are no constraints that need to be stipulated
but you may need to set constraints in other situations.

⚬ Make Unconstrained Variables Non-Negative should be ticked to
limit the search space to positive numbers only, if appropriate. This box
can be ticked in this instance as all model parameters must be positive.

⚬ Select a Solving Method – there are three options to select from
here: Simplex LP, Evolutionary and GRG Nonlinear. Simplex LP is
used for linear problems and Evolutionary is used for problems that
are non-smooth and non-convex. The GRG Nonlinear method will be
the one we use here – it is used to find locally optimal solutions to a
reasonably smooth, well-scaled, non-convex model. In basic terms, it
looks at the gradient of the Objective function (SSR) as the initial model
parameter values change and determines it has reached an optimum
solution when the partial derivatives equal zero. Critically, the method
is highly dependent on the initial values input by the user for the
model parameters and will seek the solution at the optimum value
nearest these initial values. As a relatively fast method, its drawback
is that it does not necessarily find a globally optimized solution but
rather seeks the solution local to the initial values. Thus, again having
a good knowledge of the problem under investigation is ideal so that a
reasonable initial estimate of the model parameters can be the starting
point for the cells that will be varied by Solver.

⚬ Options displays the Solver Options dialogue box where you can vary
specific features of the Solver method used, if desired. For example, you
may select ‘Show Iteration Results’. This option also allows you to view
the dynamics of the search process. Make sure this option is deselected
if you prefer to override this dynamic display, and Solver will proceed
directly through iteration cycles, and although you as the user do not
see the dynamics of the fitting process graphically, the value of SSR can
be seen to decrease steadily during optimization.

⚬ Solver’s constraint precision is also specified under Options. Solver
uses a default level of precision of 1e−6 to decide when to stop its
search. You will need to consider if this is appropriate for the problem
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that you are trying to solve as it may need to be changed in certain
circumstances – see Further Exercises 6.3.4.

● Once you have ensured the correct inputs have been set, press Solve.
The search begins at the initial parameter values, i.e. 1,1,1. At this stage
the model (line) is visually well-displaced from the experimental data
(squares) on the chart. Solver will perform its iterative process to vary
these values to more closely fit the data.

● At regular intervals, the fitting process may be interrupted by Solver
and you will be asked whether to proceed with further iterations. Press
Continue to resume the process. The iterations will continue and Solver
Results will be returned. When Solver completes this process, optimized
model parameter values will be returned in your table (A= 0.02; 𝛽 = 14.37;
C = 2.57).
⚬ You will see that the SSR value reduces from 47692 to 3.66, indicating

the good fit has been found between the experimental data and the van
Deemter model. For good fits, the SSR will minimize as seen here, but
will never actually reach 0 because experimental data always has an
associated error.

⚬ Your chart should also show you that Solver has successfully reached
a relevant solution as your model will closely match your experimental
data (Figure 6.7).

As explained already, the ability of Solver (using the GRG Nonlinear Solv-
ing Method) to locate the optimum model solution is heavily dependent on
the starting parameter values, as well as model size and constraints. This is
because the Solving Method used is based on a directed or supervised search
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Figure 6.7 Van Deemter plot of experimental data and model after optimization.
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algorithm and so can only expect to find a locally optimized solution (as
opposed to a globally optimized solution) for problems that are non-convex.
You should look at the effect of changing the parameter values in the tuto-
rial previous example so that the model data is very far away from the test
data. Also have a look at inserting starting constraints. In certain situations,
the algorithm may not be able to locate the experimental data. This happens
if the variations in the parameter values during iterations stop generating
significant further decreases in the SSR. This will occur in cases where the
search does not generate an overlap between the regions of the experimen-
tal and model data, leading to no decrease in the SSR. If this happens over
a number of iterations, the algorithm assumes that the best fit possible has
been reached and the search process is terminated. The important lesson is
that even with a very simple fitting problem such as that shown here, you
as the scientist-in-charge must play a role in directing the search procedure
through setting reasonable initial values for the model parameters as well as
through constraints that limit the search to realistic ranges of values. Make
sure that in doing this, however, you must always be able to justify the search
strategy and demonstrate that it is not simply a reflection of personal prej-
udices, for example, limiting a search so that it cannot return a value for a
certain parameter that you does not wish it to have!

6.1.1 Chromatography

Tutorial 6.2 Modelling the Gaussian Peak

In this tutorial, you will use Solver to model Gaussian-shaped peak data.

The Gaussian peak can be modelled using the equation:

yi = H exp
[−(xi − 𝜇)2

2𝜎2

]
+ B (6.3)

where

H peak height above baseline
xi ith point on x axis
yi value of the function at x = xi
𝜇 distance along x axis to peak maximum
𝜎 standard deviation of the peak
B baseline offset from zero
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● Open up the workbook 6.2_Gaussian.xls. In the worksheet there is a
dataset that you will model. Firstly, chart the chromatographic data as a
line plot (Absorbance vs. Time) so that you can visualize the data.

● Next set up the worksheet using the same set of steps set out in Tutorial
6.1 so that you can run Solver.
⚬ Set up columns. Enter titles on the three columns to the right of the

data – Model Data, Residuals, and Residuals^2.
⚬ Generate the parameters table. Enter the parameters relevant

to equation (6.3); namely H, 𝜇, 𝜎, B, e.g. in cells G2:G5. Starting
values for these parameters of 8, 40, 8 and 0 should be entered into
H2:H5. Name all these parameters so

⚬ Assign names to the parameter values. Highlight G2:H5 and click Create
from Selection under the Formulas tab. Tick left column to create
names from the values selected and press OK.

⚬ Enter the model formula. Enter equation (6.3) into C2 (first cell of your
Model Data column) by typing =H*EXP(−((A2-m)^2/(2*(s^2))))+B
where H, 𝜇, 𝜎, and B are the model parameters in the table that you
have already named.

⚬ Calculate the residuals. In the column titled Residuals, in cell D2, enter
the formula =C2-B2 and fill down to end of dataset (row 200).

⚬ Calculate the square of the residuals. Calculate the square of the residual
values in column E by entering =D2^2 in E2 and filling down.

⚬ Enter the SSR equation formula into a target cell. In a blank cell, e.g. H7,
calculate the sum of all values in cells in column E. The SSR is what will
now be sought to be minimized by Solver.

● Now that your worksheet is setup, plot the model data as a new series
on the existing chart as shown in Figure 6.8. It can be seen that using
the initial parameter values, the model does not fit the experimental data.

● Now open Solver under the Data Tab. You will be presented with the
Solver Parameter dialogue box that you will set up to run Solver. Again,
the steps here are similar to those described in Tutorial 6.1 and so refer
back to Tutorial 6.1 for more detail.
⚬ First define the Objective cell as G7, which should be minimized

by changing cells G2:G5 subject to the constraints: m≤200; m≥40;
s≤100; s≥5.

⚬ All other conditions should be set as per Tutorial 6.1.
⚬ Press Solve. Solver Results should be returned. The chart below shows

the model after Solver has been run, indicating an excellent fit to the
experimental data. The Solver-optimized values returned for the param-
eters are given in the parameters table (H = 9.99, 𝜇 = 54.95, 𝜎 = 5
and B = 0.33).
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Figure 6.8 Experimental chromatography data and model before optimization.
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Figure 6.9 Chromatography data and fitted model after optimization.

⚬ Note when the algorithm optimizes, the SSR decreases from 474.12
to 3.76, which is another indicator of a good fit between the experi-
mental and the model data. The Gaussian model overlays with the
experimental data, and importantly, the baseline noise in the experi-
mental data is removed (Figure 6.9). In general, for good fits, the SSR
minimizes as seen here, but will not reach zero because of baseline
noise like in this example.
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Tutorial 6.3 Resolving Gaussian Peaks

In this tutorial, you will demonstrate the worksheet setup and execution
of Solver for modelling data containing overlapping Gaussian peaks.

This is a situation that commonly occurs in both chromatography
and spectroscopy where co-elution of peaks makes it difficult to be quanti-
tative when analyzing data. Two species that co-elute in chromatography
will give rise to overlapping peaks that may be difficult to detect particularly
if one of the peaks is significantly larger than the other. In this situation,
the smaller peak may manifest itself as a shoulder on the side of the
larger peak. An analogous situation can occur in spectroscopy where two
absorbance bands overlap.

In this example, simulated data showing two unresolved Gaussian
peaks is provided. Two sets of simulated data are given, each describing
a different Gaussian peak according to equation (6.3). These two sets
of data are summed together to give a dataset containing two unresolved
Gaussian peaks, which can be described using equation (6.4). This is a
simple summation of two Gaussian peaks where the baseline offset, B, is a
measure of the total offset.

yi = H1 exp
[−(xi − 𝜇1)2

2𝜎1
2

]
+ H2 exp

[−(xi − 𝜇2)2

2𝜎2
2

]
+ B (6.4)

where
H1 height of peak 1 above baseline
H2 height of peak 2 above baseline
𝜇1 position of peak 1 maximum along x-axis
𝜇2 position of peak 2 maximum along x-axis
𝜎1 standard deviation of peak 1
𝜎2 standard deviation of peak 2
B total baseline offset from zero on y axis
xi ith point on x axis
yi value of the function at x = xi

● Open up the workbook 6.3_Overlapping Gaussians.xls and plot the data
given. This dataset contains two unresolved Gaussian-shaped peaks and is
plotted below.



�

� �

�

144 6 Regression Analysis Using Solver

● Now set up the worksheet for running Solver to characterize these
unresolved Gaussian peaks. You will model the data according
to equation (6.4), which describes the summation of two independent
Gaussian peaks.
⚬ Generate the parameters table. Gaussian 1 (first peak) and Gaussian 2

(second, smaller peak) model parameters are already set up in parame-
ter tables with starting values 110, 50, 20, and 0 for parameters H1, 𝛍1,
𝛔1, B1 and 40, 100, and 25 for H2, 𝛍2, and 𝛔2, respectively.

⚬ Assign names to the parameter values. Name all parameters as before
using Formulas_Create from Selection.

⚬ Enter the model formula. Enter models separately for Gaussian 1
and Gaussian 2 according to equation (6.3) in columns C and D,
respectively. Use B1 as the total baseline offset parameter. In column
E, sum the two Gaussians together [as per equation (6.4)] where E4
is given by =C4+D4-B1_. (B1_ is subtracted from the summation
to account for the fact that two baseline offsets have been summed
in when adding them together.)

⚬ Calculate the residuals. This will be the difference between your exper-
imental data (column B) and your summed model (columns E).

⚬ Calculate the square of the residuals.
⚬ Enter the SSR equation formula into a target cell.

● Plot your summed model (against time) as a second series on the chart
(Figure 6.10). In this case the model and experimental data are not too far
apart (this is down to an educated guess of starting values for the param-
eters).

● Open and set up the Solver dialogue box as in earlier tutorials.
⚬ As this is a relatively complex task with seven parameters to be

independently optimized, it will take quite a few iterations to solve
the problem. The search returns a solution to the problem (SSR= 607.5),
and optimized parameters describing each peak should be reported
(H1 = 97.76, 𝜇1 = 47.20, 𝜎1 = 22.08, B1 = 4.56, H2 = 35.82, 𝜇2 = 106.42
and 𝜎2 = 24.02). The good fit is seen visually in your chart (Figure 6.11).
It is important to note that the exact theoretical values are not obtained
as the algorithm tries to minimize cumulative error across the entire
dataset which includes noise that the model cannot account for,
and therefore differences between model and experimental data are
to be expected.

● On your chart add two additional series for the individual Gaussian peaks
(column C and column D) (Figure 6.12). Vary the model parameters
to change the shapes of Gaussians 1 and 2 (and hence also the model plot
which is the sum of the two Gaussians). For example, see if you can fully
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Figure 6.10 Unresolved Gaussian peaks in a simulated dataset and model before
optimization.
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Figure 6.11 Unresolved Gaussian peaks in a simulated dataset and model after
optimization.

deconvolute the two peaks by changing the values of 𝛍1 and 𝛍2 to push
the peaks further apart. Similarly, you can broaden or narrow the peaks
by varying the values of 𝛔1 and 𝛔2.

Examples like these are very useful for teaching the principles of opti-
mization and non-linear least-squares fitting to graduate students, and in
particular, in highlighting the need for direction by the user of the process
because initial conditions can easily be set that do not allow the algorithm
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Figure 6.12 Unresolved Gaussian peak data overlaid with the corresponding
plots of the individual peak data series and modelled unresolved peaks after
optimization.

to locate the desired minimum. Lessons such as these are useful to under-
stand the limits of modelling. It might be worth exploring the data a little
more, for example, one could increase the noise amplitude in the data or
vary the starting parameter values to investigate when Solver is no longer
capable of deconvoluting the data into two discrete Gaussian peaks. The
lesson here is important – when dealing with your own real experimental
data, modelling is very often more complicated than shown here for several
reasons.

1. There may be several possible theoretical models (or none at all) that can
be applied to describe the data.

2. The data will have a certain amount of noise, which makes an exact fit
impossible, and even worse, may mask the analytical feature of interest
entirely.

3. Optimum parameter values can only be estimated rather than deter-
mined.

Hence, modelling more complex, real experimental datasets is inherently
subjective and more open to dispute than with well-behaved data such
as that presented here, which is what makes it a more interesting exercise.
The classic quote ‘Essentially, all models are wrong, but some are useful.’ [1]
encapsulates this beautifully.
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Tutorial 6.4 Fitting Chromatographic Peak Data

In this tutorial, you will build three different models to describe a chro-
matographic peak and fit these models to the experimental data. We
will compare the fits obtained by the different proposed models.

Chromatography (and flow-injection) peaks are characterized by a
Gaussian shape distorted by tailing that occurs on the falling portion
of the peak due to various phenomena including the mobility differences
of analytes at the core and walls of the separation column. Equations such
as the exponentially modified Gaussian (EMG) and the tanks-in-series
(TNK Series) can be used to model this distortion of the standard Gaussian
peak shape. This has important application in the analysis of peak purity
for example (e.g. by comparing the shape parameters of experimental
peaks to that of a typical peak obtained with the analyte under normal
conditions). In this tutorial, you will fit the Gaussian, EMG, and TNK Series
models to an experimental data set containing a chromatographic peak
in order to assess the optimum model for this specific dataset.

Gaussian Model
● Open up the first worksheet in workbook 6.4_HPLC.xls where chromato-

graphic data is given and plotted on a chart (Figure 6.13).
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Figure 6.13 Chromatographic peak data plotted as a scatterchart.



�

� �

�

148 6 Regression Analysis Using Solver

● It can be seen that a peak elutes at ∼10 s, rises quickly to a maximum at
around 16 s and decays to the original baseline by about 30 s. The trailing
end of the peak is clearly visible between 20 and 30 s.

● The Gaussian equation [equation (6.2))] will be used here to model the
shape of the peak in this data. You will need to set up the worksheet in the
same manner as before in order to do this. Follow the worksheet setup
procedure set out in the previous tutorials using the following conditions:
⚬ H, 𝜇, 𝜎, B should be defined as the parameters in the parameters table.

Use starting values of H = 2000, m = 20, s = 3, B = 50.
⚬ Use the formula for the Gaussian model according to equation (6.2)

(=H*EXP(-((A2-m)^2/(2*(s^2))))+B), entering the formula initially
in C2.

⚬ Generate the residuals and residuals squared values in the same way as
described in earlier tutorials, and then enter the formula for calculating
the SSR value in a target cell.

⚬ No constraints are necessary when running Solver in this instance.
● Now plot the model data as a new series on the existing chart as shown in

the following text. It can be seen that using the initial parameter values,
the model does not fit the experimental data.

● You are now ready to run Solver. Once Solver runs, your parameter values
optimize. Take note of how far from the starting parameter values they
are, and also how sensible they are, e.g. does the optimized H parameter
agree with your visual estimate of peak height? You should return an SSR
value of 173549 and the plot of the data and the model together should
look like that in Figure 6.14. Decide if the Gaussian model is a good fit for
this experimental data.

● Now look at the %Error between the experimental data and the model.
The error of the fit at each point on the peak can be expressed as a percent-
age of the maximum peak height. Calculate this in a blank column (e.g.
column K). Enter =D2/1940*100 into e.g. K2, where 1940 is an estimate of
maximum peak height in absorbance units (maximum peak height minus
the background signal). Fill down the range. This normalizes the residual
error in terms of the analytical signal, and hence enables a good feel for
the magnitude of the error to be obtained. Plot this data on a new chart
against time.
⚬ The error obtained for the Gaussian model varies between−6% and+8%

of the peak height and oscillates sharply over the entire duration of the
peak (∼10–30 s). Particularly worrying is the large and variable error
around the position of the peak maximum which is the usual parameter
for determining the amount of substance present. Clearly, the model
only approximates the shape of the peak and returns an unacceptable
error at the peak maximum.
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Figure 6.14 Chromatographic peak data plotted as a scatterchart overlaid with
optimized model based on the Gaussian equation.

Exponentially Modified Gaussian (EMG) Model
The EMG model is commonly used for describing chromatographic peak
shapes with tailing. This model takes account of complex dilution effects
post-column that distort the Gaussian peak shape. After an analyte moves
through the chromatographic column, it passes the detector and can
undergo extra-column effects due to exponential dilution that influences
peak shape. In the EMG model, the detector cell is treated mathematically
as a mixing chamber. The EMG function is obtained by the convolution of
a Gaussian function and an exponential decay function and is given by the
following equation.

EMGi = EMG(i−1) +
⎛
⎜⎜⎝
(yi − EMG(i−1))

⎛
⎜⎜⎝

1 − e
(
− dt

𝜏

)

W

⎞
⎟⎟⎠

⎞
⎟⎟⎠

(6.5)

where

EMGi represents the ith point in the EMG function at x = xi
yi represents the ith point in an unconvoluted Gaussian function array (see
equation 6.3)
EMG(i−1) represents the (i−1)th point in the EMG function at x = x(i−1)
dt = sampling time interval
𝜏 = time constant of the exponential decay
W =weighting factor
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● Copy and paste the experimental data and Gaussian model data (columns
A–C) from the worksheet Gaussian into a new worksheet and name the
worksheet EMG.

● Setup the worksheet in the usual manner where the Gaussian model func-
tion in column C is a function in the EMG model you will build.
⚬ As usual, set up your columns for EMG Model, Residuals, and Resid-

uals^2.
⚬ H, 𝜇, 𝜎, B should be defined in the parameters table along with addi-

tional parameters tau and W . Use starting values of H = 2000, m = 20,
s = 3, B = 50, 𝜏 = 1, W = 1. It is important here to make sure you name
all these parameters, including the ones already named in the previous
sheet so that the parameters all link to names in this worksheet.

⚬ The EMG model formula should be entered in column D according
to equation (6.5). Leave the cell corresponding to EMG1 (e.g. D2)
blank. The second point, EMG2, should then be entered in D3 using
the formula =D2+((C3-D2)*(1-(EXP(-1/tau)))/W) and filling down the
column.

⚬ The residuals column needs to take account of the additional column of
data and should be generated by entering =B2-D2 in E2 and fill down
the column. Calculate the square of the residuals data and the SSR value
as usual.

⚬ Now you are ready to run Solver. Using the starting parameters above,
run Solver. You will return a set of optimized parameters and an
SSR value of 18628). Compare your optimized parameters and your
SSR value to those outputs by the Gaussian model. The SSR value is
approx. a magnitude lower than in the case of the Gaussian model,
again indicating a better fit with experimental data. The optimized
parameter values according to this model gives an improved visual fit
(Figure 6.15) with the experimental data compared with the Gaussian
model, particularly at the decay region of the Gaussian peak. This is
because the EMG model takes into account distortion effects attributed
to post-column dilution effects which the classical Gaussian model
does not.

⚬ Also visualize the %Error for the EMG model. Comparing this with the
%Error for the Gaussian model, it can be seen that the maximum and
minimum %Errors are ∼+2 and −2% across the time range again indi-
cating a better quality of fit for the peak.

Tanks-in-Series (TNK Series) Model
This model is a type of plate model that is directly analogous to the tanks in
series model for non-ideal flow systems. In this model, the column is divided
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Figure 6.15 Chromatographic peak data plotted as a scatterchart overlaid with
optimized model based on the exponentially modified Gaussian equation.

up into a series of small artificial cells, each with complete mixing. Each
mixing chamber serves to distort the initial ideal square wave concentration
profile of the sample plug it travels of the detector. The model is described
by the following equation:

TNKi = H
⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

1

Tn

(
xi
Tn

)N−1

⎞
⎟⎟⎟⎠

(
1

(N − 1)!

)
e
(

−xi
Tn

)⎤⎥⎥⎥⎦
+ B (6.6)

where

TNKi represents the ith point in the TNK function at x = xi
H scaling factor
Tn mean residence time of an element of fluid in any one mixing

tank, n
xi ith point on x axis
N number of tanks
B baseline offset

● Copy and paste the experimental data (columns A and B) from the Gaus-
sian worksheet into a new worksheet and name it TNK.

● Set up the worksheet as before where equation (6.6) will be used to model
the data. Use the following conditions:
⚬ T, N, B, H should be defined as the parameters. Define the names and

use starting values of 0.7, 25, 10, and 14,000 for T, N, B, and H, respec-
tively.
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Figure 6.16 Chromatographic peak data plotted as a scatterchart overlaid with
optimized model based on the tanks-in-series equation.

⚬ In column C, enter the TNK model. Title the column TNK. In C2, enter
the formula H*(1/T*((A2/T)^(N-1)))*((1/FACT(N-1))*EXP(-A2/T))+B
to represent equation (6.6) and fill down the column.

⚬ Generate the residuals and residuals squared values in the same way as
described in earlier tutorials, and then enter the formula for calculating
the SSR value in a target cell.

● Plot the experimental and model data on a chart.
● Run Solver. No constraints need to be defined.
● The parameters will optimize and the SSR value should minimize to

19935. Figure 6.16 shows the plot of the data and the model together that
you should generate. How is the data fitting? Compare this fit visually
with the fits for the Gaussian and EMG models.

● Generate the %Error between the experimental data and the model as
before. This should tell you that the %Error for the model varies between
∼+3 and −3% across the data set.

Comparing the charts and the %Error generated by each model, it should
be clear that the EMG model gives the best fit to the peak data, particularly
in the region of the peak maximum and peak decay. This best fit decision
can also be justified by the EMG model having the lowest SSR value after
optimization.
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6.1.2 Spectroscopy

Tutorial 6.5 Modelling of a Fluorescent Decay Process Using Solver

In this tutorial, you will model fluorescence decay process behaviours
for a ruthenium compound before and after protein attachment.

One of the most common models used in processing experimental data
is an exponential decay or growth. Examples include radioactive decay
and reaction kinetics. In these situations, the objective is usually to study
how the rate at which a reactant is disappearing (or product is appearing)
varies with the amount or concentration of that substance. Very often,
the kinetics will be first order (i.e. the rate is directly proportional to the
amount of that substance present). For a substance A being converted to a
product P.

A → P (6.7)

−d[A]
dt

= k[A] (6.8)

The negative sign on the rate of change of the concentration of A ([A])
with time notes that the amount of A present is decreasing with time. Exper-
iments are directed at estimating the value of the rate constant, k. Lineariza-
tion involves integrating the differential equation (6.9), which gives

ln[A] = ln [A]0 − kt (6.9)

where

[A]0 initial concentration of A

A plot of ln[A] against t is therefore a straight-line with slope –k,
and intercept ln[A]0. Unfortunately, the equivalent strategy in growth
processes involves estimation of the amount of a particular product
at t=>∞, which requires waiting an infinite amount of time. Now for many
processes, particularly fast reactions, t approaches ∞ in reasonable time
periods, but this will not be the case for reactions that are slow, and for
these cases, linearization will not be possible. An alternative approach is
to fit a non-linear model based on the first order exponential expression
to the dataset. This is the approach adopted here.

The dataset for the single exponential modelled is obtained from
fluorescent emission decay life-time measurements of the compound
ruthenium-bis(2,2′-bipyridyl)(5-isothiocyanate-1,10-phenanthroline),
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([Ru(bpy)2(NCSphen)]2+). The compound absorbs at 455 nm and is char-
acterized by a fluorescence decay with a single time constant. Fluorescent
emission decay lifetime measurements of the same compound after
attachment of the protein, bovine serum albumin, are also carried out
and single and double exponential models applied [2]. Working through
this tutorial, you will see that binding of protein has little effect on the exci-
tation and absorbance wavelength, but the lifetime of fluorescent centres
near the binding sites are affected, leading to differing sets of fluorescent
emissions emanating from species bound in different environments. The
models used to fit the data were general single and double exponential
equations of the form

f (t) = [A(1 − e−kt)] + z (6.10)

where
f (t) fluorescence at time t
A pre-exponential factor
k rate constant (1/k = decay lifetime)
t time (s)
z baseline offset

And for the double exponential,

f (t) =
[
A1

(
1 − e−k1t)] + [

A2
(
1 − e−k2t)] + z (6.11)

where
f (t) total fluorescence at time t
A1, A2 pre-exponential factors
k1, k2 rate constants
t time (s)
z baseline offset

Note: The signal obtained from the reducing concentration of the fluores-
cence reactant is represented as an increasing signal that reaches an expo-
nentially limited maximum value of A+ z in the case of equation (6.10) and
A1 +A2 + z in the case of equation (6.11) for t=>∞. In fact, the time constant
of the fluorescence emission measured in these experiments is such that the pro-
cess is more or less finished after ∼10𝜇s.

Single Exponential Model Fit of Free ([Ru(bpy)2(NCSphen)]2+

● Open the workbook 6.5_Fluorescence.xls and select the first worksheet
Ru(bpy)-Single which gives the experimental data in the first three
columns. Column A is the time data in s, which is used directly in the
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model formulae. Column B is the time data in ns which is used for
charting the data. Column C is measured fluorescence intensity at time t.

● As usual, set up the worksheet for running Solver to fit the data using the
usual steps and with the following conditions
⚬ Generate your parameters table (e.g. in H2:I4) containing the model

parameter names and their corresponding starting values. Use starting
values of 20,000, 2000, and 20,000 for a, k, and z, respectively and assign
names.

⚬ Enter the model formula in D2 using equation (6.10) to generate the
model =a*(1-EXP(-k*A2))+z

⚬ Calculate the residuals, the square of the residuals and assign a target
cell for the SSR.

● Now graph your experimental data and model together in a chart so that
you can visualize the data.

● Open Solver and set up the dialogue box to optimize the parameter values.
● Once Solver converges, the SSR value returned should be 3.54× 106 and

the data and the model should now visually converge (Figure 6.17).

● Finally, in a column to the right of the parameters table, compute the
%Error between the experimental data and the model as before (expressed
as a % of the maximum response). Plot this %Error vs. time (Figure 6.18).

The charts generated illustrate the fit obtained using the single expo-
nential model with the compound and the residuals of the fit, respectively.
Note the timescale of the experiment (finished after 2 μs!). Clearly the
model parameters returned by Solver fit the data well, with the %Error
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Figure 6.17 Fluorescent decay behaviour for the free ruthenium compound
overlaid with an optimized model based on the single exponential equation.
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Figure 6.18 %Error over time between the free ruthenium experimental decay
data and the model fitted using the single exponential model.

never being greater than plus or minus 2.5%, which is quite acceptable
given the noise on the original signal and the time base of the experiment.
The time constant, 𝜏, obtained from the fit is 450 ns (=1/k) and is typical
of this material. Notice too, how the error in the residuals decreases with
time, a feature that arises from the relative difficulty in fitting the initial
points of the exponential model (where the signal is changing most rapidly)
compared with the latter portion of the curve, where the signal is tending
toward a constant value. Notice also how most of the variation in the
residuals from about 1 μs onwards follows an undulating pattern that is
probably dominated by the noise component of the signal.

Single Exponential Model Fit of Protein-Bound [Ru(bpy)2(NCSphen)]2+

● Open up the workbook 6.5_Fluorescence.xls again and select the work-
sheet Protein-Ru(bpy) Single Exp. In this worksheet, fluorescence emis-
sion decay lifetime measurements are taken as before, but this time the
species is not in its free state, it has been modified to be in a protein-bound
state. By fitting an exponential model to this data, we are investigating if
the bound protein has an effect on the parameter values including k.

● In a similar manner to before, set up the worksheet for running Solver
using the same starting values for the model parameters as earlier.

● As well as plotting the data, also compute and plot the %Error as before
(Figures 6.19 and 6.20).
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Figure 6.19 Fluorescent decay behaviour for the protein-bound ruthenium
compound overlaid with an optimized model based on the single exponential
equation.
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Figure 6.20 %Error over time between the protein bound ruthenium compound
experimental data and the model fitted using the single exponential model.

● Compare the data in terms of fits and errors for the fluorescence of the Ru
species with and without bound protein. Several differences are observed
when protein is bound:
⚬ The residual error is larger in the case of bound protein, particularly

during the initial part of the curve varying between about plus or minus
10%, and the SSR is 4.42× 107, compared with 3.54× 106 for the free
ligand.
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⚬ There is clearly some underlying structure in the residual error in the
range 0–1000 ns which suggests that the single exponential model is not
describing the early data accurately.

⚬ The residuals show a clear rising trend above about 1 μs, suggesting that
longer lifetime processes are occurring that are not described by the
model.

⚬ The latter part of the residuals (above ∼1 μs) shows an underlying reg-
ular undulation, which supports the suspicion that this feature arises
from noise in both instances.

Double Exponential Model Fit of Protein-Bound [Ru(bpy)2(NCSphen)]2+

● Copy the data in the worksheet Protein-Ru(bpy) Single Exp into a third
worksheet and name the worksheet Protein-Ru(bpy) Double Exp. Here
you will fit a double exponential model fit to the fluorescence emission
decay experimental data to investigate if it gives an improved fit compared
to the single exponential fit.

● In a similar manner to before, set up the worksheet for running Solver
using the following conditions:
⚬ Set up the parameters table defining the parameters in equation (6.11).

First delete all existing Names and define the new parameters A1, k, z,
A2, k2 with starting values of 20,000; 2000; 20,000; 20,000; 2000, respec-
tively.

⚬ Enter the equation for the model (in cell D2) by entering =
(A1_*(1-EXP(-k*A2)))+(A2_*(1-EXP(-k2_*A2)))+z. Fill down the
column.

● Plot your experimental data and model together to visualize the impact of
the changing parameter values and run Solver.

● The parameters will optimize and the SSR value returned should be
2.43× 107 and your experimental data and model should converge on
your chart (Figure 6.21).

● As before, generate the %Error and plot it in a new chart against time
(Figure 6.22).
It can be seen that fitting the double exponential model to the data

improves matters somewhat. In particular, analysis of the residual error
shows that the underlying structure in the early portion of the curve has
been removed (the residuals are more symmetrically dispersed about
0%Error) and the SSR has been almost halved to 2.43× 107.

The double exponential model returns two time constants 𝜏1 = 256 ns and
𝜏2 = 911 ns calculated as 1/k1 and 1/k2 respectively, with the error being
within ∼plus or minus 3% outside the initial 200 ns of the curve. Fitting
two exponentials to data obtained in these experiments is almost certainly
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Figure 6.21 Fluorescent decay behaviour for the protein-bound ruthenium
compound overlaid with an optimized model based on the double exponential
equation.
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Figure 6.22 %Error over time between the protein-bound ruthenium compound
experimental data and the model fitted using the double exponential model.

an approximation as a number of differing local molecular environments
(not just two) are likely to exist. Nonetheless, this type of approach can yield
important information on the relative populations of centres in the different
environments as they modify the emission characteristics (e.g. time con-
stants). One interpretation is that the data suggests there are two main envi-
ronments associated with more solvent exposed surface bound centres and
more protein dominated locations, although this is a matter of debate.
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In summary, the fit with the single exponential model is reasonably good,
and the time constants obtained are in the range expected. However, the cur-
vature in the residuals suggests there is some additional structure in the data,
thus prompting the use of the double exponential model to better describe
this data set. Note that a double exponential model will always give at least as
good a fit as a single exponential, but in this case can be justified on account
of the expected differing molecular environments in the system being stud-
ied. The message from this exercise is that curve fitting is almost more of
an art than an exact science, and that careful examination and interpreta-
tion of the residuals is required, which can only be achieved via an in-depth
knowledge of the theoretical background of the chemistry involved as well
as an appreciation of the limits of the experimental method used to generate
the data.

Tutorial 6.6 Ligand Replacement Reaction Modelling

In this tutorial, you will determine rate constants for a ligand replace-
ment reaction.

The study of ligand substitution reactions of transition metal complexes is
often a significant component of undergraduate courses in inorganic chem-
istry. The data in this tutorial will allow the students to beautifully visualize
were generated using UV–Vis spectroscopy to track the kinetics of a metal
complex replacement reaction. The experimental data consists of UV–Vis
scans taken over the wavelength range 340–500 nm every 5 s during a pho-
tolysis experiment (Figure 6.23). The metal complex is a chromium carbonyl
complex and involves the replacement of the solvent molecule (ethanol, S)
in the complex with a ligand (pyrimidine, py), which proceeds according to
the equation below

[Cr(CO)5S] + py
hv

−−−−−−→[Cr(CO)5py] + S (6.12)

Using a large excess of ligand ensures that the reaction is pseudo-first
order with respect to the Cr complex, and the rate constant can be estimated
from the decrease in [Cr(CO)5S] or the increase in [Cr(CO)5py]. The reactant
has a strong absorbance with the maximum at about 450 nm, and during the
experiment there is a large blue shift in the absorbance as the reaction pro-
ceeds, with an isosbestic point at ∼430 nm. The rate of the reaction is such
that it can be followed by the photodiode array spectrometer.

A plot of absorbance vs. time allows the observed rate constant to be deter-
mined using a first-order growth model:

Abs(t) = [A(1 − e−kt)] + B (6.13)
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Figure 6.23 Experimental UV–Vis scans taken of a chromium carbonyl complex
over the wavelength range 340–500 nm every 5 s during photolysis.

where
Abs(t) absorbance at time t
A scaling factor
B offset
k rate constant (s−1)
t time (s)

Provided the Beer–Lambert law holds, absorbance will be directly pro-
portional to concentration, and the rate constant can be obtained using
equation (6.13).

● Open up the workbook 6.6_Photodiode Array.xls. The UV–Vis wavelength
scan data is in the first worksheet and the data already plotted.

● Chart the data at a single wavelength, e.g. 380 nm over time. Do this by
selecting and copying the absorbance data at 380 nm (row 23) and pasting
it into a new worksheet. You will also need to copy and paste the corre-
sponding time data (row 2). Paste the row data into columns in the new
worksheet using Paste_Transpose.

● Graph the data on a chart as shown in the following text (Figure 6.24):

● Now you are ready to set up the worksheet for running Solver.
⚬ A, B, and k should be defined in a parameters table with starting values

of 0.1 in each case.
⚬ Generate the model data using equation (6.12).
⚬ Generate the residuals and residuals squared values and enter the for-

mula for calculating the SSR value in a target cell.
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Figure 6.24 Absorbance values plotted over time taken at 380 nm during the
photolysis of the chromium carbonyl complex.

● Plot the experimental and model data on the chart.
● Solver can be now run to optimize the parameters and minimize the SSR

value. No constraints need to be defined.
● Once Solver converges, an optimized value of 0.01712 s−l should be

returned for the rate constant k.
● In column J, generate the %Error between the experimental data and

the model where the error of fit at each point is expressed as a per-
centage of maximum net absorbance. This is obtained by entering
=D2/($C$26-$C$2)*100 into J2 and filling down. Plot the %Error against
time to show the error of the model. You will see there is evidence of
structure in the residuals but the %Error of the fit is very small (<0.2%
across the entire dataset; Figure 6.25).

● You can now easily calculate k at any of the wavelengths that were
scanned. Generate a copy of the worksheet 380 nm and substitute the
absorbance data for another wavelength below the isosbestic point
in place of 380 nm, e.g. 360 nm. Rename the worksheet. Replace the
absorbance data with the 360 nm data and run Solver to generate opti-
mized parameter values again. Altogether, select four more wavelengths
below the isosbestic point. Build up a table of rate constant values as
measured for each wavelength.

● Repeat this exercise for five more wavelengths above 425 nm – note that
you will have to change the model for this as the absorbance values are
now decreasing over time. How will the model change?
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Figure 6.25 %Error between the experimental data and the model.

● Note the fits and the values of the rate constants obtained above and below
the isosbestic point. Summarize the data by computing averages and stan-
dard deviations for the two sets of data and perform significance testing to
investigate if the optimized rate constant parameter changes significantly
as a function of wavelength?

6.1.3 Electrochemistry

Tutorial 6.7 Using Solver to Model Potentiometric Electrode Responses

In this tutorial, you will model ion-selective electrode (ISE) dynamic
response in flow-injection analysis to understand the response depen-
dence on flow rate.

An ISE is a transducer converting the activity of a specific ion dissolved
in a solution into an electrical potential. This measured voltage is theoreti-
cally dependent on the logarithm of the ion’s activity, according to the Nernst
equation (see Further Exercise 1.6.4.).

Here, we will model the dynamic responses of ISE electrodes within a
flow cell [3]. The peaks are generated on injection of various ion solutions
into the flowing background electrolyte. One approach is to use a logis-
tic – sigmoid model to characterize the rising portion of the ISE response
peak. This is achieved by extracting the data describing this portion of a
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peak and then using Solver to fit the model using the following sigmoid
equation:

E(t) =
[

a − d
(1 + e(−b(t−z)))

]
+ d (6.14)

where

E(t) electrode response at time t (mV)
a peak height (mV)
b slope coefficient
z time from beginning of the peak to the inflection on the rise (s)
d baseline offset (mV)
t time (s)

This model can give some indication of the rate of ion uptake at the mem-
brane surface as the sample plug passes, enabling comparisons to be made
for different experimental conditions (varying concentration of the primary
ion, effect of interference, injection volume, flow rate, etc.). The model
parameters in turn can be used as inputs in a further optimization of the
instrumental operating conditions (e.g. optimization of a combination of a,
b, z, and d in terms of flow rate and injection volume).

● Open workbook 6.7_Sigmoid_ISE.xls. The workbook contains data
for the K+ response of a valinomycin-based poly(vinyl chloride) (PVC)
membrane ISE. In this case, injections of a K+ standard were made at two
different flow rates (0.5 mL min−1 in worksheet FR 0.5 and 1.0 mL min−1

in worksheet FR 1.0).
● Set up both worksheets for Solver as usual, generating the parameters

table, the columns for the model, residuals and residuals squared and the
SSR target cell.
⚬ Use starting values of 60, 1, 10, 0 for parameters a, b, z, and d, respec-

tively, for both sets of flow rate datasets.
⚬ Build the model based on equation (6.14).

● Graph the experimental and model data together on charts in the separate
worksheets.

● When you are ready to run Solver, make sure not to tick the box Make
Unconstrained Variables Non-Negative as some of the parameter values are
expected to be negative in this case.

● In order to visualize the effect of flow rate, generate a chart overlaying
the optimized Sigmoid model and experimental data for the two differ-
ent flow rates. It shows the good fits obtained in both cases. Generate
the %Error plots and report the SSR values also (Figure 6.26).
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Figure 6.26 ISE dynamic response behaviour data overlaid with an optimized
model based on the sigmoid equation.

Figure 6.27 Optimized
model parameters
for each flow rate for the
valinomycin ISE.

b

Model parameters 1.0 mL min−10.5 mL min−1

Flow Rate

a (mV)

z (s)

d (mV)

57.91

0.23

8.68

–8.23

55.52

0.41

3.79

–10.13

The optimized model parameters for each flow rate for the valinomycin
ISE are compared below (Figure 6.27).

From these results, we can deduce that increasing the flow rate from 0.5
to 1.0 mL min−1 causes a slight reduction in peak height, an increase in the
slope of the rise of the peak (given by the increased magnitude of b from
0.23 to 0.41) and a reduced time to the rise inflection from ∼9 to 4 s. These
results suggest that doubling the flow rate does not reduce the sensitivity
of the response significantly (given by values for a) but will result in a faster
response (the slope factor is almost doubled and the time taken to get to point
of inflection halved). Characterizing peaks in this manner can be very useful
for instrumental optimization purposes, as mentioned, and for describing
peak shapes in terms of a few simple parameters. This characterization can
be useful for processing large numbers of peaks and for identifying the pos-
sible presence of impurities through the definition of a ‘typical’ analyte peak
as possessing these parameters within certain limits.
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Tutorial 6.8 Using Solver to Model Interferences in ISE Responses

In this tutorial, you will model the effect of cation interferences on the
response of an ISE based on the Nikolsky–Eisenman (N–E) equation.

Despite their name, the selectivity of ISEs is limited and their potential
is dependent not only on an ion of interest, known as the primary ion,
but also on other ions present in the sample, referred to as the interfering
ions. The effect of interfering ions on the response of an ISE is described
by the semi-empirical Nikolsky–Eisenman equation [equation (6.15)] in the
following text.

E = E0 + Slog
(

ai +
∑

Kpot
ij a

zi
zj

j

)
(6.15)

where
E the measured response from the ISE-reference

electrode cell (V)
E0 the standard cell potential (V)
ai, aj, and zi, zj the activity and charge of the primary ion (i)

and interfering ions (j), respectively
S the Nernst slope factor (≈60/zi mV per 10-fold change

in ai at standard temperature and pressure)
Kij

pot the potentiometric selectivity coefficient for ion j
with respect to the primary ion i

The selectivity coefficient, Kij
pot, is an important parameter for describ-

ing the overall ability of the electrode to reject interfering ions in sample
solutions, and for the electrode to function with acceptable error, ai must
dominate the summation within the brackets in equation (6.15). This means
that the selectivity coefficients should be very small for any possible inter-
fering ions in order to drastically reduce their contribution to the overall
signal.

Selectivity coefficients can be measured by the mixed solution method
in which the responses to solutions of varying primary ion activity are mea-
sured in the presence of fixed interfering ion activity.

Figure 6.28 lists cell potential data (mV) from solutions in which
the responses to Ca2+ are measured at a calcium-selective electrode in pure
CaCl2 solution and in CaCl2 containing a fixed concentration of the
interfering cation Li+. Calcium activity coefficients, aca, are calculated from
the ionic strength and the Davies equation (see Tutorial 5.1) and the activity
of each cation obtained.
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Figure 6.28 Tabulated cell potential data collected using a calcium-selective ISE.

–6 –5 –4 –3 –2 –1 0

log(ai)

P
o
te

n
it
a
l 
(m

V
)

E(Ca)

E(Ca+Li)

40

20

0

–20

–40

–60

–80

Figure 6.29 Cell potential data plotted against log(ai) measured using
the Ca-selective ISE for a pure CaCl2 solution and also a CaCl2 containing Li+.

Figure 6.29 shows a plot of the data, and the effect of the Li+ ion on the
electrode response can be clearly observed as a suppression of the response
to calcium below about 10−3 mol dm−3 CaCl2.

Usually, the selectivity coefficient is estimated by extrapolating the hor-
izontal portion of the mixed solution response until it intercepts with the
extrapolated Nernstian portion of the response and by finding the intercept
on the x-axis from this point. However, this approach is very subjective,
and the estimated coefficients are only rough guides to the performance
of an electrode under real conditions. A more satisfactory method is to fit
the N–E equation to the data for the mixed response.

● Open up the workbook 6.8_N-E.xls. The data in the table earlier is con-
tained in the first worksheet. C2:C7 and D2:D7 contain the potentials mea-
sured in the CaCl2 and mixed CaCl2/LiCl, respectively. Plot the data E(Ca)
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and E(Ca+Li) against the log(ai) values as two series on a single chart
as earlier.

● Model the E(Ca) data according to equation (6.15) by setting up the work-
sheet in the usual manner.
⚬ Generate a parameters table to define E0, S, Kij, Zi, Zj, and aj. Assign

an initial value of 1 to E0, S, Kij and values of 2, 1, 0.1 to Zi, Zj, and aj,
respectively. Use Create from Selection to set up parameters in the
name manager.

⚬ Enter the model equation =E0+S*LOG(B2+Kij*(aj^(Zi/Zj))) (in e.g. E2)
and fill down the range.

⚬ Generate the residuals and residuals squared. Also generate the SSR in a
target cell.

● Set Solver to minimize the SSR by varying the value of the standard cell
potential (E0), the electrode slope (S) and the selectivity coefficient (Kij).

● This method returns optimized values for the parameters (E0 = 47.515 mV,
S = 26.47 mV/decade, Kij

pot = 2.26× 10−3), which are in good agreement
with the observed performance of the electrode.

● Now model the E(Ca+Li) data using equation (6.15) using the same
approach.
⚬ The values returned by the model are E0 = 46.99 mV, S = 25.62 mV/

decade and Kij
pot = 3.57× 10−2 (Figure 6.30).

● A manual extrapolation of these parameters can also be done whereby
the Nernstian response portion of the data can be fitted with a linear
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Figure 6.30 Cell potential data plotted against log(ai) (measured using a
Ca-selective ISE for a pure CaCl2 solution and a CaCl2 containing Li+) overlaid
with optimized model data based on the Nikolsky – Eisenman equation.
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regression and the slope of the line would represent S and the intercept
E0. Kij

pot can also be manually extracted from the data by extrapolating
the horizontal portion of the mixed solution response until it intercepts
with the extrapolated Nernstian portion of the response and by finding
the intercept on the x-axis. Extract these values manually for your-
self and decide whether the manual extrapolation and the modelling
approach agree in terms of the extracted values. If they don’t agree, why
might this be?

● The sensitivity of the model to the selectivity coefficient Kij
pot can be inves-

tigated by varying it by a certain amount and observing the effect on the fit.
Investigate the sensitivity of the model to doubling and halving the selec-
tivity coefficient value. Clearly, the model can define the selectivity coef-
ficient to much greater precision than an empirical method.

6.1.4 Enzyme Kinetics

Tutorial 6.9 Modelling Enzyme Kinetics

In this tutorial, you will model Michaelis–Menten enzyme kinetics using
the Lineweaver–Burk and compare it with the use of non-linear regres-
sion modelling.

A common mechanism applied to the study of enzyme catalyzes reactions
is that proposed by Michaelis and Menten. Overall, the enzyme catalyzed
reaction can be represented as:

E + S → P + E (6.16)

where
E enzyme
S substrate
P product of the enzyme-catalyzed reaction

However, many experiments show that the rate of product formation is
dependent on the concentration of the enzyme, so, although the overall reac-
tion is as shown in equation (6.16), there must be an addition stage that
involves the enzyme. Michaelis and Menten proposed the following sim-
ple mechanism to explain the observed experimental dependency of rate
on enzyme concentration:

E + S
k1
←−→(ES)

k2−−→P + E (6.17)
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and the relationship between the reaction rate or velocity (V) and
the enzyme and substrate concentrations is:

V =
Vmax [S]
KM + [S]

(6.18)

where
KM Michaelis constant
V max maximum rate, which is in turn related to the total enzyme

concentration (E0) and the rate of decomposition of the bound
enzyme–substrate intermediate (ES) by:

Vmax = k2E0 (6.19)

Equation (6.19) can be linearized by taking reciprocals of each side
and rearranging:

1
V

=
(

KM

Vmax

)
1
[S]

+ 1
Vmax

(6.20)

A plot of 1/V vs. 1/[S] (Lineweaver–Burk plot) should therefore give a
straight line of slope KM/V max and intercept 1/V max. This has been the usual
method for interpreting enzyme kinetics experimental data for many years.
However, a double reciprocal plot like this tends to distort the data. For
example, error bars are distorted, and data collected at equal substrate
concentration intervals tend to bunch, producing a tendency to relatively
large errors in regression data. In addition, as the reciprocal of the substrate
concentration is used in the Lineweaver–Burk plot, a non-linear variation
in substrate concentration should be employed in the experiment to com-
pensate for the bunching effect of the plot which obviously arises if a linear
variation is used. Non-linear modelling of the data is therefore an attractive
alternative to the traditional Lineweaver–Burk plots and leads directly
to simpler experimental designs. The problem with the Lineweaver–Burk
plot is well illustrated here.

● Open the workbook 6.9_Enzyme kinetics.xls. In the first worksheet titled
Lineweaver–Burk, substrate concentration and rate data are in columns
A and B, respectively, and their reciprocals in columns C and D. Plot
the reciprocal of V (1/V) against the reciprocal of [S] (1/[S]) using a
scatter plot (Figure 6.31).

● The Lineweaver–Burk plot shows the data to be very bunched near
the x-axis, despite the attempt to space out the concentration intervals
in a non-linear manner. This is undesirable from the point of view
of linear regression analysis.
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Figure 6.31 Lineweaver–Burk plot of the enzyme kinetic data.

● Insert a linear regression line on the data to get values for the slope and the
intercept. By using equation (6.20), the intercept and slope of the regres-
sion line, V max and KM are calculated to be 10.002 and 0.20034, respec-
tively.

Now use the alternative, non-linear regression model approach to gen-
erate values for V max and KM and compare this approach with the
Lineweaver–Burk method.

● In the workbook 6.9_Enzyme kinetics.xls, select the second worksheet,
Non-Linear Regression.

● Set up the worksheet in the usual manner where the substrate (creati-
nine) concentration [S] and rate V data are given in cells A2:A7 and B2:B7
respectively.
⚬ Define V max and Km as parameters using starting values of 10 and 0.2,

respectively.
⚬ The model to be built should be according to equation (6.18).
⚬ Generate the residuals and residuals squared. Also generate the SSR in a

target cell.
● Plotting the experimental data using a scatterplot and add the model data

as a second series to the plot as a solid line.
● Set Solver to minimize the SSR target cell by varying V max and Km. No

constraints need be set.
● An excellent fit to the data is obtained and the values for V max and KM

are found to be 9.9992 and 0.2001, respectively, which is in excellent
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Figure 6.32 Plot of reaction rate and substrate concentration overlaid with its
optimized model based on the Michaelis–Menten equation.

agreement with results obtained using the manual Lineweaver–Burk
approach (10.0020 and 0.2003, respectively) (Figure 6.32).

Clearly, it is relatively easy to obtain high quality data from enzyme kinet-
ics experiments without having to resort to distorting the data by taking
reciprocals. For a useful discussion on the errors involved in fitting enzyme
kinetics data, and the propagation of errors in curve fitting generally, see [4].

6.2 Summary

The tutorials in this chapter demonstrate that Excel can be used for rea-
sonably advanced curve fitting and data analysis. An important message,
however, is that you must have a considerable knowledge of the subject of
the study if the results of the analysis are to be interpreted properly. The
graphical display of the fitting process that can be activated enables the fol-
lowing of the dynamics of the algorithm as it attempts to minimize the value
of the SSR (a measure of the residual error between the experimental data
and model). The datasets for each example presented in this chapter are all
available in worksheets and can be readily adapted for teaching and learning
purposes with differing levels of complexity. For example, students can be
given just the test data and the model equation, and asked to analyze the data
using Solver. Alternatively, students can be given the complete workbook
and asked to explore the limits of the algorithm by setting various initial
starting values for the model parameters or setting different constraints.



�

� �

�

6.3 Further Exercises 173

Solver is undoubtedly a useful data analysis tool, and while it does not
compare in performance with dedicated chemometrics or advanced scien-
tific data analysis packages, it does allow the user to model small datasets
that are quite complex with relative freedom. The fact that it comes bundled
with Excel (many users are probably unaware of its existence!) makes it an
attractive, accessible route to teaching the basic principles of curve fitting
and data analysis. In addition, we can assume that the current trend of adapt-
ing Excel for scientific data analysis will continue and given its accessibility,
it has a huge user base (unlike some of the more dedicated packages), and
so we can assume that time invested in working with Solver on non-linear
regression modelling will not be wasted.

6.3 Further Exercises

6.3.1 Influence of Noise in Regression Modelling of Gaussian
Peaks

When working with experimental data, there will always be some inherent
noise in the analytical signal. It is important to understand the implications
of the presence of this noise which can distort the accuracy and precision of
the data processing. The workbook for this exercise (6.3.1.xls) contains sim-
ulated data of a Gaussian function (worksheet 1: Gaussian and Noise). In the
workbook, noise is manually added to the Gaussian function to distort the
signal. The amount of distortion in the signal depends on the amplitude of
the noise. We will modulate the amplitude of the noise component to stim-
ulate a variable signal-to-noise ratio to investigate and visualize the effect it
has on the accuracy of regression modelling using Solver.

Columns A and B contain the original simulated dataset. Noise data has
been generated (column C) and the amplitude of the noise signal is scaled
based on a scaled noise value in cell K8 (0.05) and added to the simulated
data in column E (data+noise). The worksheet is set up for Solver whereby
column F contains the Gaussian model data based on starting parameters
defined in the worksheet for H, m, s, and B.

Begin by plotting and modelling the original simulated data [using
equation (6.3)] to convince yourself of the starting parameter values for H,
m, s, and B. Then plot and model the data+noise, to see the impact of the
scaled noise signal on the model parameters. How does the added noise
change the Solver-optimized parameters?

Investigate the impact of changing the magnitude of the scaled noise (e.g.
10, 1, 0.01) on the Solver-optimized regression parameters.
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As well as noise, the signal-to-noise ratio is also perturbed by the signal,
the peak height in this case. In chromatography for example, the peak height
is directly proportional to analyte concentration. In analysis, we are often
concerned with low concentration detection and so often need to process
data where the signal response is low. It is important to understand the ana-
lytical limitations in such data and so we will look at the impact of a noise
on reduced peak heights in terms of the modelling process. In the second
worksheet (worksheet 2: Small peak height) in the workbook, a second set
of data is given, where the simulated signal here is computed by dividing
all values in the original dataset by three resulting in a dataset with a lower
peak height and lower signal-to-noise ratio. Using this dataset, investigate
the effect of the noise signal (again, varying the noise scale in the same man-
ner as before) to understand how the modelling process is impacted when
we are working with low analytical signals (low peak heights in this case).

6.3.2 Binding Constant Determination for DNA Binding
of Complex

Luminosity data for the binding of a peptide-conjugated ruthenium complex
to DNA is given in workbook 6.3.2.xls [5]. In a typical experiment, aliquots of
DNA were titrated into solutions of Ru(II) and luminescence changes mea-
sured until further additions of DNA did not lead to any significant change
in luminescence. Emission and excitation slits were set to 10 nm for all mea-
surements. Calculate values for Kb and n in the worksheet by fitting the
parameters in the following equation:

Normalized luminosity =
b −

(
b2 − 4K2

b Ct[DNA]
s

)1∕2

2KbCt
(6.21)

where

b is defined as

b = 1 + KbCt +
Kb[DNA]

2s
(6.22)

and where

Kb the binding constant for the affinity of the complex to DNA
Ct the total Ru(II) concentration
s the binding site size in base pairs occupied by one complex at binding

Start by using initial parameters of 10,000,000 and 1 for Kb and s, respec-
tively.
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6.3.3 Modelling the Formation of Nanoparticles Using
the Avrami Equation

High-energy X-ray diffraction (HEXRD) was used to follow Agn nanoparti-
cle formation reaction in real time and to obtain time-resolved HEXRD peak
areas for the formation of Ag(111) [6]. The data is given in 6.3.3.xls. Model
this data to describe the crystallization kinetics using the Avrami equation:

y(t) = A(1 − e−ktn
) (6.23)

where

A scaling factor
k overall rate constant
t time
n Avrami coefficient

Start by using initial parameters of 10, 1× 10−6 and 4 for A, k, and n,
respectively. Redo the modelling of the data using the starting parameters
10, 1× 10−6 and 3 for A, k and n, respectively, to see the impact on the opti-
mized parameter values and note Solver’s ‘subjective nature’ based on the
starting parameters!

6.3.4 Solubility Calculations

In this exercise, we will use Solver to solve a polynomial equation where
the following cubic equation describes the solubility of Pb(IO3)2 in 0.10 M
Pb(NO3)2.

4x3 + 0.40x2 − 2.5 e−13 = 0 (6.24)

where

x equilibrium concentration of Pb2+

In order to set Excel up to solve this polynomial equation, enter the
formula above for the cubic equation into a cell in a new worksheet.
Define x as a parameter name with an initial value of 0. (We expect x to be
small – because Pb(IO3)2 is not very soluble – so setting our initial guess to
0 seems reasonable.) Set up Solver to vary the value of the parameter x until
the cubic equation equals 0. To do this, you will need to set the Objective
Cell to optimize to a value of 0 in the Solver dialogue box. The value you
return will be based on a constraint precision of 1e−6, which is the default
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constraint precision in Solver. Solver uses this constraint precision to decide
when to stop its search, which is calculated by the following equation

∣ expected value − calculated value ∣ × 100 ≤ precision(%) (6.25)

where
expected value is the Objective cell’s desired value (0 in this case)
calculated value is the function’s current value
precision is the value we enter in the box for Precision

Because our initial value of x = 0 gives a calculated result of 2.5× 10−13,
using Solver’s default precision of 1× 10−6 stops the search after just one
cycle. To overcome this, you need to set the constraint precision in Solver to
a smaller value so that this precision value does not limit your optimization
process. In this case here, set the precision to 1× 10−18 and run Solver again.
You should return a value of 7.91× 10−7 M for the solubility of Pb(IO3)2 in
Pb(NO3)2.
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Tut 3.5, Tut 6.7–Tut 6.8,
163–169

Elemental composition assignment
Tut 1.5, 11

Error bars 52, 64–65, Tut 3.4, Tut
3.5, 70, 75, 170

Exponentially-modified Gaussian
model 147, 149–151

f
Fluorescence spectroscopy Tut 6.5
Fluorimetry 52, 70, Tut 4.6
Formulas 5–8
F-test 59
Functions 5–11, 18

nested 9–10, Tut 1.4
template design Tut 1.5, 19

g
Gaussian peak model Tut 6.2, 140,

Tut 6.3, 143–147, 149–150,
173–174

h
Hypothesis testing 23–25, 29–50

i
Ion activity 96–100
Ion selective electrodes Tut, 3.5,
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