

WORKING WITH

grep, sed, AND awk

Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED

WARRANTY

By purchasing or using this book and its companion files

(the “Work”), you agree that this license grants permission

to use the contents contained herein, but does not give you

the right of ownership to any of the textual content in the

book or ownership to any of the information, files, or

products contained in it. This license does not permit

uploading of the Work onto the Internet or on a network (of

any kind) without the written consent of the Publisher.

Duplication or dissemination of any text, code, simulations,

images, etc. contained herein is limited to and subject to

licensing terms for the respective products, and permission

must be obtained from the Publisher or the owner of the

content, etc., in order to reproduce or network any portion

of the textual material (in any media) that is contained in

the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and

anyone involved in the creation, writing, production,

accompanying algorithms, code, or computer programs

(“the software”), and any accompanying Web site or

software of the Work, cannot and do not warrant the

performance or results that might be obtained by using the

contents of the Work. The author, developers, and the

Publisher have used their best efforts to ensure the

accuracy and functionality of the textual material and/or

programs contained in this package; we, however, make no

warranty of any kind, express or implied, regarding the

performance of these contents or programs. The Work is

sold “as is” without warranty (except for defective materials

used in manufacturing the book or due to faulty

workmanship).

The author, developers, and the publisher of any

accompanying content, and anyone involved in the

composition, production, and manufacturing of this work will

not be liable for damages of any kind arising out of the use

of (or the inability to use) the algorithms, source code,

computer programs, or textual material contained in this

publication. This includes, but is not limited to, loss of

revenue or profit, or other incidental, physical, or

consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is

expressly limited to replacement of the book and only at the

discretion of the Publisher. The use of “implied warranty”

and certain “exclusions” vary from state to state, and might

not apply to the purchaser of this product.

Companion files also available for downloading from the

publisher by writing to info@merclearning.com

mailto:info@merclearning.com

WORKING WITH

grep, sed, AND awk

Pocket Primer

Copyright ©2023 by MERCURY LEARNING AND INFORMATION LLC. All rights

reserved.

This publication, portions of it, or any accompanying software may not be

reproduced in any way, stored in a retrieval system of any type, or transmitted

by any means, media, electronic display or mechanical display, including, but

not limited to, photocopy, recording, Internet postings, or scanning, without prior

permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION

22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

1-800-232-0223

O. Campesato. Working with grep, sed, and awk Pocket Primer.

ISBN: 978-150152-151-5

The publisher recognizes and respects all marks used by companies,

manufacturers, and developers as a means to distinguish their products. All

brand names and product names mentioned in this book are trademarks or

service marks of their respective companies. Any omission or misuse (of any

kind) of service marks or trademarks, etc. is not an attempt to infringe on the

property of others.

Library of Congress Control Number: 2023934889

232425321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,

corporations, etc. For additional information, please contact the Customer

Service Dept. at 800-232-0223(toll free).

All of our titles are also available in digital format at numerous digital vendors.

Companion files are available for download by writing to the publisher at

info@merclearning.com. The sole obligation of MERCURY LEARNING AND

INFORMATION to the purchaser is to replace the book, based on defective

materials or faulty workmanship, but not based on the operation or functionality

of the product.

mailto:info@merclearning.com
http://www.merclearning.com/
mailto:info@merclearning.com

I’d like to dedicate this book to my parents

– may this bring joy and happiness into

their lives.

Contents

Preface

Chapter 1 Working with grep

What is the grep Command?

Meta Characters and the grep Command

Escaping Meta Characters with the grep Command

Useful Options for the grep Command

Character Classes and the grep Command

Working with the –c Option in grep

Matching a Range of Lines

Using Backreferences in the grep Command

Finding Empty Lines in Datasets

Using Keys to Search Datasets

The Backslash Character and the grep Command

Multiple Matches in the grep Command

The grep Command and the xargs Command

Searching Zip Files for a String

Checking for a Unique Key Value

Redirecting Error Messages

The egrep Command and fgrep Command

Displaying “Pure” Words in a Dataset with egrep

The fgrep Command

Delete Rows with Missing Values

A Simple Use Case

Summary

Chapter 2 Working with sed

What is the sed Command?

The sed Execution Cycle

Matching String Patterns Using sed

Substituting String Patterns Using sed

Replacing Vowels from a String or a File

Deleting Multiple Digits and Letters from a String

Search and Replace with sed

Regular Expressions with sed

Datasets with Multiple Delimiters

Useful Switches in sed

Working with Datasets

Printing Lines

Character Classes and sed

Removing Control Characters

Counting Words in a Dataset

Back References in sed

One-Line sed Commands

Populate Missing Values with the sed Command

A Dataset with 1,000,000 Rows

Numeric Comparisons

Counting Adjacent Digits

Average Support Rate

Summary

Chapter 3 Working with awk

The awk Command

Launching awk Commands and File Extensions

Built-In Variables that Control awk

How Does the awk Command Work?

Three Important Code Blocks in awk Commands

Different Ways to Print Text

Working with the -F Switch in awk

Splitting Strings into Characters

The PROCINFO Array

Ignore Case in awk

Working with OFS, ORS, and Linefeed versus “\n”

Linefeed versus “\n”

Basic awk Examples with Text Files

Display the Contents of a File

Omit the Header Line of a File

Display a Range of Lines in a Text File With NR

Display a Range of Lines Based on Strings

Insert Blank Lines

Remove Blank Lines

Specifying the Number of Fields

Changing the Field Separator FS

Exclude Fields

Switch Adjacent Fields

Display Fields in Reverse Order

Count Non-Empty and Empty Rows

Detecting Transfer Protocols

Detecting Number Formats

Working with Record Lengths

Aligning Text with the printf() Statement

Working with Loops in awk

A for Loop in awk

Exponents in a for Loop

A for Loop with a break Statement

Working with while Loops in awk

A do-while Loop in awk

Conditional Logic and Control Statements

The break, continue, and next Keywords in awk

The exit Keyword

Conditionally Displaying Fields

Logical Operators in awk

Logical Operators and Partial Matches

Checking for Leap Years

Formatting Output

Floating Point Output

Inserting a Thousands Separator

Scientific Notation

Rounding and Truncating Numbers

Rounding Numbers

Truncating Numbers

Numeric Functions in awk

Convert Base 10 to Binary

Built-In String Functions in awk

Convert Strings to Lowercase in awk

Convert Strings to Uppercase in awk

Convert Strings to Mixed Case in awk

Counting Lines that Match a Character

Working with the match() Function

Characters and Hexadecimal Numbers in awk

Non-Printable Characters

Hexadecimal Numbers

Summary

Chapter 4 Working with awk, Part 2

Working with Arrays in awk

Initializing and Printing the Contents of an Array

Initializing and Deleting the Contents of an Array

Adding an Array of Numbers

Find the Maximum and Minimum of an Array of Numbers

Concatenating an Array of Strings

Generating Arrays from Input Strings

The split() Function with Linefeed Strings

Using the split() Function with the case Statement

The patsplit() Function

Multi-Dimensional Arrays

Higher Dimensionality Arrays

Calculating Invoice Totals (1)

Calculating Invoice Totals (2)

Calculating Invoice Averages

Counting Fields in Text Files

Displaying the Number of Fields in Text Files

Deleting Alternate Lines in Datasets

Print a Range of Strings in Datasets

Print a Range of Dates in Datasets

Merging Lines in Datasets

Printing File Contents as a Single Line

Joining Groups of Lines in a Text File

Joining Alternate Lines in a Text File

Reversing the Lines in a File

Working with Duplicate Lines in a File

Display Duplicate Rows

Remove Duplicate Rows

Uniformity of Data Values

Count Duplicate Fields in a File

Calculating Invoice Totals

Printing Lines Using Conditional Logic

Duplicate and Unique Rows in Text Files

Splitting Filenames with awk

One-Line awk Commands

Useful Short awk Scripts

Printing the Words in a Text String in awk

Count Occurrences of a String in Specific Rows

Well-Known Sorting Algorithms

The Bubble Sort

Find Anagrams in a List of Words

Sort an Array in O(n) Complexity

Find the Median of an Array of Numbers

Linear Search

Binary Search (Iterative)

Binary Search Walkthrough

Code for a Binary Search (Iterative)

Binary Search (Recursive)

Summary

Chapter 5 Working with awk, Part 3

Bit Operations in awk

Logical AND

Logical OR

Logical XOR

Logical NOT

Logical Left Shift

Logical Right Shift

Reverse a String

Find Palindromes

Check for Unique Characters

Check for Balanced Parentheses

Printing a String in a Fixed Number of Columns

Printing a Dataset in a Fixed Number of Columns

Aligning Columns in Datasets

Aligning Columns and Multiple Rows in Datasets

Displaying a Subset of Columns in a Text File

Subsets of Columns Aligned Rows in Datasets

Longest/Shortest Words in Datasets

Counting Word Frequency in Datasets

Displaying Only “Pure” Words in a Dataset

Delete Rows with Missing Values

Working with Multiline Records in awk

CSV Files with Multirow Records

Processing Multiple Files with awk

Inner Join of Two Files in awk

Logical Operators in awk

A Simple Use Case

Another Use Case

Date Conversion

A Dataset with 1,000,000 Rows

Numeric Comparisons

Counting Adjacent Digits

Average Support Rate

What is Recursion?

Arithmetic Series

Calculating Arithmetic Series (Iterative)

Calculating Arithmetic Series (Recursive)

Calculating Partial Arithmetic Series

Geometric Series

Calculating a Geometric Series (Iterative)

Calculating Arithmetic Series (Recursive)

Factorial Values

Fibonacci Numbers

Euclid’s Algorithm (GCD)

Lowest Common Multiple of Two Positive Integers

Composite versus Prime Numbers

Factors of Positive Integers

Goldbach’s Conjecture

Environment Variables in awk

Summary

Chapter 6 Regular Expressions

What are Regular Expressions?

Metacharacters

Character Sets

Working with “^” and “\”

Character Classes

POSIX Character Classes

Generic Character Classes

Regular Expressions in awk

Matching Strings with the Dot “.” Metacharacter

Matching Strings with the “^” Metacharacter

Matching Strings with the “$” Metacharacter

Matching Strings with the “|” Metacharacter

Matching with ?, +, or * Metacharacters

Matching Subgroups with ?, +, or * Metacharacters

Matching with Character Classes

Working with Postfix Arithmetic Operators

Working with the sub() Function in awk

Examples Using the sub() Function

Working with the gsub() Function

Removing Digits with the gsub() Function

Removing Characters with the gsub() Function

Removing Consecutive Characters with the gsub() Function

Removing Complements of Strings with the gsub() Function

Removing Metacharacters with the gsub() Function

Removing Spaces in Text Fields

Splitting Strings with Regular Expressions

Dynamic Regular Expressions

Regular Expressions Involving Text Files

Counting Comments with Regular Expressions

Combining grep with awk

Combining sed with awk

Removing HTML Tags

The gensub() Function and Captured Groups

Summary

Index

PREFACE

WHAT IS THE GOAL?

The goal of this book is to introduce readers to three

powerful command line utilities that can be combined to

create simple yet powerful shell scripts for performing a

multitude of tasks. The code samples and scripts use the

bash shell, and typically involve small text files, so you can

focus on understanding the features of grep, sed, and awk.

Aimed at a reader new to working in a bash environment,

the book is comprehensive enough to be a good reference

and teaches new tricks to those who already have some

experience with these command line utilities.

This book takes introductory concepts and demonstrates

their use in simple yet powerful shell scripts. Keep in mind

that this book does not cover “pure” system administration

functionality.

IS THIS BOOK IS FOR ME AND WHAT WILL I

LEARN?

This book is intended for general users as well as anyone

who wants to perform a variety of tasks from the command

line.

You will acquire an understanding of how to use grep, sed,

and awk whose functionality is discussed in the first five

chapters. Specifically, Chapter 1 introduces the grep

command, Chapter 2 introduces the sed command, and

Chapters 3 through 5 discuss the awk command. The sixth

and final chapter introduces you to regular expressions.

This book saves you the time required to search for

relevant code samples, adapting them to your specific

needs, which is a potentially time-consuming process.

HOW WERE THE CODE SAMPLES CREATED?

The code samples in this book were created and tested

using bash on a MacBook Pro with OS X 10.15.7 (macOS

Catalina). Regarding their content: the code samples are

derived primarily from scripts prepared by the author, and

in some cases, there are code samples that incorporate

short sections of code from discussions in online forums.

The key point to remember is that the code samples follow

the “Four Cs”: they must be Clear, Concise, Complete, and

Correct to the extent that it is possible to do so, given the

size of this book.

WHAT YOU NEED TO KNOW FOR THIS BOOK

You need some familiarity with working from the

command line in a Unix-like environment. However, there

are subjective prerequisites, such as a desire to learn shell

programming, along with the motivation and discipline to

read and understand the code samples. In any case, if

you’re not sure whether or not you can absorb the material

in this book, glance through the code samples to get a feel

for the level of complexity.

HOW DO I SET UP A COMMAND SHELL?

If you are a Mac user, there are three ways to do so. The

first method is to use Finder to navigate to Applications >

Utilities and then double click on the Utilities

application. Next, if you already have a command shell

available, you can launch a new command shell by typing

the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new

command shell on a MacBook from a command shell that is

already visible simply by clicking command+n in that

command shell, and your Mac will launch another command

shell.

If you are a PC user, you can install Cygwin (open source

https://cygwin.com/) that simulates bash commands or use

another toolkit such as MKS (a commercial product). Please

read the online documentation that describes the download

and installation process.

If you use RStudio, you need to launch a command shell

inside of RStudio by navigating to Tools > Command Line,

and then you can launch bash commands. Note that custom

aliases are not automatically set if they are defined in a file

other than the main start-up file (such as .bash_login).

WHAT ARE THE “NEXT STEPS” AFTER FINISHING

THIS BOOK?

The answer to this question varies widely, mainly because

the answer depends heavily on your objectives. The best

answer is to try a new tool or technique from the book out

on a problem or task you care about, professionally, or

personally. Precisely what that might be depends on who

you are, as the needs of a data scientist, manager, student,

or developer are all different. In addition, keep what you

learned in mind as you tackle new data cleaning or

manipulation challenges. Sometimes knowing a technique is

possible will make finding a solution easier, even if you have

to re-read the section to remember exactly how the syntax

works.

If you have reached the limits of what you have learned

here and want to get further technical depth on these

commands, there is a wide variety of literature published

and online resources describing the bash shell, Unix

programming, and the grep, sed, and awk commands.

CHAPTER 1

WORKING WITH GREP

This chapter introduces you to the versatile grep command

that can process an input text stream to generate a desired

output text stream. This command also works well with

other Unix commands. This chapter contains many short

code samples that illustrate various options of the grep

command.

The first part of this chapter introduces the grep

command used in isolation, in conjunction with meta

characters (such as ^, $, and so forth), and with code

snippets that illustrate how to use some of the options of

the grep command. Next, you will learn how to match

ranges of lines, how to use the back references in grep, and

how to “escape” meta characters in grep.

The second part of this chapter shows you how to use the

grep command to find empty lines and common lines in

datasets, as well as the use of keys to match rows in

datasets. Next, you will learn how to use character classes

with the grep command, as well as the backslash (\)

character, and how to specify multiple matching patterns.

You will learn how to combine the grep command with the

find command and the xargs command, which is useful for

matching a pattern in files that reside in different

directories. This section contains some examples of

common mistakes that people make with the grep

command.

The third section briefly discusses the egrep command

and the fgrep command, which are related commands that

provide additional functionality that is unavailable in the

standard grep utility. The fourth section contains a use case

that illustrates how to use the grep command to find

matching lines that are then merged to create a new

dataset.

What is the grep Command?

The grep (“Global Regular Expression Print”) command is

useful for finding strings in one or more files. Several

examples are here:

grep abc *sh displays all the lines of abc in files with

suffix sh.

grep –i abc *sh is the same as the preceding query,

but case-insensitive.

grep –l abc *sh displays all the filenames with suffix

sh that contain abc.

grep –n abc *sh displays all the line numbers of the

occurrences of the string abc in files with suffix sh.

You can perform logical AND and logical OR operations with

this syntax:

grep abc *sh | grep def matches lines containing

abc AND def.

grep "abc\|def" *sh matches lines containing abc OR

def.

You can combine switches as well: the following command

displays the names of the files that contain the string abc

(case insensitive):

grep –il abc *sh

In other words, the preceding command matches filenames

that contain abc, Abc, ABc, ABC, abC, and so forth.

Another (less efficient way) to display the lines containing

abc (case insensitive) is here:

cat file1 |grep –i abc

The preceding command involves two processes, whereas

the “grep using –l switch instead of cat to input the files

you want” approach involves a single process. The

execution time is roughly the same for small text files, but

the execution time can become more significant if you are

working with multiple large text files.

You can combine the sort command, the pipe symbol,

and the grep command. For example, the following

command displays the files with a “Jan” date in increasing

size:

ls -l |grep " Jan " | sort -n

A sample output from the preceding command is here:

-rw-r--r-- 1 oswaldcampesato2 staff 3 Sep

27 2022 abc.txt

-rw-r--r-- 1 oswaldcampesato2 staff 6 Sep

21 2022 control1.txt

-rw-r--r-- 1 oswaldcampesato2 staff 27 Sep

28 2022 fiblist.txt

-rw-r--r-- 1 oswaldcampesato2 staff 28 Sep

14 2022 dest

-rw-r--r-- 1 oswaldcampesato2 staff 36 Sep

14 2022 source

-rw-r--r-- 1 oswaldcampesato2 staff 195 Sep

28 2022 Divisors.py

-rw-r--r-- 1 oswaldcampesato2 staff 267 Sep

28 2022 Divisors2.py

Meta Characters and the grep Command

The fundamental building blocks are the regular expressions

that match a single character. Most characters, including all

letters and digits, are regular expressions that match

themselves. Any meta-character with special meaning may

be quoted by preceding it with a backslash.

A regular expression may be followed by one of several

repetition operators, as shown here:

"." matches any single character.

"?" indicates that the preceding item is optional and will be

matched at most once: Z? matches Z or ZZ.

"*" indicates that the preceding item will be matched zero

or more times: Z* matches Z, ZZ, ZZZ, and so forth.

"+" indicates that the preceding item will be matched one

or more times: Z+ matches ZZ, ZZZ, and so forth.

"{n}" indicates that the preceding item is matched exactly

n times: Z{3} matches ZZZ.

"{n,}" indicates that the preceding item is matched n or

more times: Z{3} matches ZZZ, ZZZZ, and so forth.

"{,m}" indicates that the preceding item is matched at

most m times: Z{,3} matches Z, ZZ, and ZZZ.

"{n,m}" indicates that the preceding item is matched at

least n times, but not more than m times: Z{2,4} matches

ZZ, ZZZ, and ZZZZ.

The empty regular expression matches the empty string

(i.e., a line in the input stream with no data). Two regular

expressions may be joined by the infix operator (|). When

used in this manner, the infix operator behaves exactly like

a logical “OR” statement, which directs the grep command

to return any line that matches either regular expression.

Escaping Meta Characters with the grep

Command

Listing 1.1 displays the content of lines.txt that contains

lines with words and metacharacters.

Listing 1.1: lines.txt

abcd

ab

abc

cd

defg

.*.

..

The following grep command lists the lines of length 2

(using the ^ to begin and $ to end, with operators to restrict

the length) in lines.txt:

grep '^..$' lines.txt

The following command lists the lines of length two in

lines.txt that contain two dots (the backslash tells grep to

interpret the dots as actual dots, not as metacharacters):

grep '^\.\.$' lines.txt

The result is shown here:

..

The following command also displays lines of length 2 that

begins and ends with a dot. Note that the * matches any

text of any length, including no text at all, and is used as a

metacharacter because it is not preceded with a backslash:

grep '^\.*\.$' lines.txt

The following command lists the lines that contain a period,

followed by an asterisk, and then another period (the * is

now a character that must be matched because it is

preceded by a backslash):

grep '^\.*\.$' lines.txt

Useful Options for the grep Command

There are many types of pattern matching possibilities with

the grep command, and this section contains an eclectic

mix of such commands that handle common scenarios.

In the following examples, we have four text files (two .sh

and two .txt) and two Word documents in a directory. The

string abc is found on one line in abc1.txt and three lines

in abc3.sh. The string ABC is found on two lines in in

ABC2.txt and four lines in ABC4.sh. Notice that abc is not

found in ABC files, and ABC is not found in abc files.

ls *

ABC.doc ABC4.sh abc1.txt ABC2.txt

abc.doc abc3.sh

The following code snippet searches for occurrences of the

string abc in all the files in the current directory that have

sh as a suffix:

grep abc *sh

abc3.sh:abc at start

abc3.sh:ends with -abc

abc3.sh:the abc is in the middle

The “-c” option counts the number of occurrences of a

string: even though ABC4.sh has no matches, it still counts

them and returns zero:

grep –c abc *sh

The output of the preceding command is here:

ABC4.sh:0

abc3.sh:3

The “-e” option lets you match patterns that would

otherwise cause syntax problems (the “–” character

normally is interpreted as an argument for grep):

grep –e "-abc" *sh

abc3.sh:ends with -abc

The “-e” option also lets you match multiple patterns:

grep –e "-abc" -e "comment" *sh

ABC4.sh:# ABC in a comment

abc3.sh:ends with -abc

The “-i” option is to perform a case insensitive match:

grep –i abc *sh

ABC4.sh:ABC at start

ABC4.sh:ends with ABC

ABC4.sh:the ABC is in the middle

ABC4.sh:# ABC in a comment

abc3.sh:abc at start

abc3.sh:ends with -abc

abc3.sh:the abc is in the middle

The “-v” option “inverts” the matching string, which means

that the output consists of the lines that do not contain the

specified string (ABC does not match because -i is not used,

and ABC4.sh has an entirely empty line):

grep –v abc *sh

Use the “-iv” options to display the lines that do not

contain a specified string using a case insensitive match:

grep –iv abc *sh

ABC4.sh:

abc3.sh:this line won't match

The “-l” option is to list only the filenames that contain a

successful match (note this matches contents of files, not

the filenames). The Word document matches because the

actual text is still visible to grep, it is just surrounded by

proprietary formatting gibberish. You can do similar things

with other formats that contain text, such as XML, HTML,

CSV, and so forth:

grep -l abc *

abc1.txt

abc3.sh

abc.doc

The “-l” option is to list only the filenames that contain a

successful match:

grep –l abc *sh

Use the “-il” options to display the filenames that contain

a specified string using a case insensitive match:

grep –il abc *doc

The preceding command is very useful when you want to

check for the occurrence of a string in Word documents.

The “-n” option specifies line numbers of any matching

file:

grep –n abc *sh

abc3.sh:1:abc at start

abc3.sh:2:ends with -abc

abc3.sh:3:the abc is in the middle

The “-h” option suppresses the display of the filename for a

successful match:

grep –h abc *sh

abc at start

ends with -abc

the abc is in the middle

For the next series of examples, we will use columns4.txt,

as shown in Listing 1.2.

Listing 1.2: columns4.txt

123 ONE TWO

456 three four

ONE TWO THREE FOUR

five 123 six

one two three

four five

The "-o" option shows only the matched string (this is how

you avoid returning the entire line that matches):

grep –o one columns4.txt

The "-o" option followed by the "-b" option shows the

position of the matched string (returns character position,

not line number. The "o" in “one” is the 59th character of

the file):

grep –o –b one columns4.txt

You can specify a recursive search, as shown here (output

not shown because it will be different on every client or

account. This searches not only every file in directory /etc,

but every file in every subdirectory of etc):

grep –r abc /etc

The preceding commands match lines where the specified

string is a substring of a longer string in the file. For

instance, the preceding commands will match occurrences

of abc as well as abcd, dabc, abcde, and so forth.

grep ABC *txt

ABC2.txt:ABC at start or ABC in middle or end in

ABC

ABC2.txt:ABCD DABC

If you want to exclude everything except for an exact

match, you can use the –w option, as shown here:

grep –w ABC *txt

ABC2.txt:ABC at start or ABC in middle or end in

ABC

The --color switch displays the matching string in color:

grep --color abc *sh

abc3.sh:abc at start

abc3.sh:ends with -abc

abc3.sh:the abc is in the middle

You can use the pair of metacharacters (.*) to find the

occurrences of two words that are separated by an arbitrary

number of intermediate characters.

The following command finds all lines that contain the

strings one and three with any number of intermediate

characters:

grep "one.*three" columns4.txt

one two three

You can “invert” the preceding result by using the –v switch,

as shown here:

grep –v "one.*three" columns4.txt

123 ONE TWO

456 three four

ONE TWO THREE FOUR

five 123 six

four five

The following command finds all lines that contain the

strings one and three with any number of intermediate

characters, where the match involves a case-insensitive

comparison:

grep -i "one.*three" columns4.txt

ONE TWO THREE FOUR

one two three

You can “invert” the preceding result by using the –v switch,

as shown here:

grep –iv "one.*three" columns4.txt

123 ONE TWO

456 three four

five 123 six

four five

Sometimes you need to search a file for the presence of

either of two strings. For example, the following command

finds the files that contain start or end:

grep -l 'start\|end' *

ABC2.txt

ABC4.sh

abc3.sh

Later in the chapter, you will see how to find files that

contain a pair of strings via the grep and xargs commands.

Character Classes and the grep Command

This section contains some simple one-line commands that

combine the grep command with character classes.

echo "abc" | grep '[:alpha:]'

abc

echo "123" | grep '[:alpha:]'

(returns nothing, no match)

echo "abc123" | grep '[:alpha:]'

abc123

echo "abc" | grep '[:alnum:]'

abc

echo "123" | grep '[:alnum:]'

(returns nothing, no match)

echo "abc123" | grep '[:alnum:]'

abc123

echo "123" | grep '[:alnum:]'

(returns nothing, no match)

echo "abc123" | grep '[:alnum:]'

abc123

echo "abc" | grep '[0-9]'

(returns nothing, no match)

echo "123" | grep '[0-9]'

123

echo "abc123" | grep '[0-9]'

abc123

echo "abc123" | grep -w '[0-9]'

(returns nothing, no match)

Working with the –c Option in grep

Consider a scenario in which a directory (such as a log

directory) has files created by an outside program. Your task

is to write a shell script that determines which (if any) of the

files that contain two occurrences of a string, after which

additional processing is performed on the matching files

(e.g., use email to send log files containing two or more

errors messages to a system administrator for

investigation).

One solution involves the –c option for grep, followed by

additional invocations of the grep command.

The command snippets in this section assume the

following data files whose contents are shown below.

The file hello1.txt contains the following:

hello world1

The file hello2.txt contains the following:

hello world2

hello world2 second time

The file hello3.txt contains the following:

hello world3

hello world3 two

hello world3 three

Now launch the following commands, where warnings and

errors are redirected to 2>/dev/null, and therefore you will

not see them:

grep -c hello hello*txt 2>/dev/null

hello1.txt:1

hello2.txt:2

hello3.txt:3

grep -l hello hello*txt 2>/dev/null

hello1.txt

hello2.txt

hello3.txt

grep -c hello hello*txt 2>/dev/null |grep ":2$"

hello2.txt:2

Note how we use the “ends with” $ metacharacter to grab

just the files that have exactly two matches. We also use the

colon :2$ rather than just 2$ to prevent grabbing files that

have 12, 32, or 142 matches (which would end in :12, :32

and :142).

What if we wanted to show “two or more” (as in the “2 or

more errors in a log”)? In this case, you would use the invert

(-v) command to exclude counts of exactly 0 or exactly 1.

Grep -c hello hello*txt 2>/dev/null |grep -v ':[0-

1]$'

hello2.txt:2

hello3.txt:3

In a real world application, you would want to strip off

everything after the colon to return only the filenames.

There are a many ways to do so, but we will use the cut

command, which involves defining : as a delimiter with -

d":" and using -f1 to return the first column (i.e., the part

before the colon in the return text):

grep -c hello hello*txt 2>/dev/null | grep -v ':

[0-1]$'| cut -d":" -f1

hello2.txt

hello3.txt

Matching a Range of Lines

The head and tail commands display a range of lines in a

text file. Now suppose that you want to search a range of

lines for a string. For instance, the following command

displays lines 9 through 15 of longfile.txt:

cat -n longfile.txt |head -15|tail -9

The output is here:

 7 and each line

 8 contains

 9 one or

 10 more words

 11 and if you

 12 use the cat

 13 command the

 14 file contents

 15 scroll

This command displays the subset of lines 9 through 15 of

longfile.txt that contain the string and:

cat -n longfile.txt |head -15|tail -9 | grep and

The output is here:

 7 and each line

 11 and if you

 13 command the

This command includes a whitespace after the word and,

thereby excluding the line with the word command:

cat -n longfile.txt |head -15|tail -9 | grep "and

"

The output is here:

 7 and each line

 11 and if you

Note that the preceding command excludes lines that end in

“and” because they do not have the whitespace after “and”

at the end of the line. You could remedy this situation with

an “OR” operator including both cases:

cat -n longfile.txt |head -15|tail -9 | grep "

and\|and "

 7 and each line

 11 and if you

 13 command the

However, the preceding allows “command” back into the

mix. Hence, if you really want to match a specific word, it is

best to use the -w tag, which is smart enough to handle the

variations:

cat -n longfile.txt |head -15|tail -9 | grep -w

"and"

 7 and each line

 11 and if you

The use of whitespace is safer if you are looking for

something at the beginning or end of a line. This is a

common approach when reading contents of log files or

other structured text where the first word is often important

(a tag like ERROR or Warning, a numeric code, or a date).

This command displays the lines that start with the word

and:

cat longfile.txt |head -15|tail -9 | grep "^and "

The output is here (without the line number because we are

not using cat -n):

and each line

and if you

Recall that the “use the file name(s) in the command,

instead of using cat to display the file first” style is more

efficient:

head -15 longfile.txt |tail -9 | grep "^and "

and each line

and if you

However, the head command does not display the line

numbers of a text file, so the “cat first” (cat -n adds line

numbers) style was used in the earlier examples when you

wanted to see the line numbers, even though this style is

less efficient. Hence, add an extra command to a pipe if it

adds value, otherwise start with a direct call to the files you

want to process with the first command in the pipe

(assuming the command syntax is capable of reading in

filenames).

Using Backreferences in the grep Command

The grep command allows you to reference a set of

characters that match a regular expression placed inside a

pair of parentheses. For grep to parse the parentheses

correctly, each has to be preceded with the escape

character “\.”

For example, grep 'a\(.\)' uses the “.” meta character

to match ab or a3 but not 3a or ba.

The backreference \n, where n is a single digit, matches

the substring previously matched by the nth parenthesized

sub-expression of the regular expression. For example, grep

'\(a\)\1' matches aa and grep '\(a\)\2' matches aaa.

When used with alternation, if the group does not

participate in the match, then the backreference makes the

whole match fail. For example, grep 'a\(.\)|b\1' does

not match ba or ab or bb (or anything else really).

If you have more than one regular expression inside a pair

of parentheses, they are referenced (from left to right) by

\1, \2, . . ., \9:

grep -e '\([a-z]\)\([0-9]\)\1' is the same as this

command:

grep -e '\([a-z]\)\([0-9]\)\([a-z]\)'

grep -e '\([a-z]\)\([0-9]\)\2' is the same as this

command:

grep -e '\([a-z]\)\([0-9]\)\([0-9]\)'

The easiest way to think of it is that the number (for

example, \2) is a placeholder or variable that saves you

from typing the longer regular expression it references. As

regular expressions can become extremely complex, this

often helps code clarity.

You can match consecutive digits or characters using the

pattern \([0-9]\)\1. For example, the following command

is a successful match because the string 1223 contains a

pair of consecutive identical digits:

echo "1223" | grep -e '\([0-9]\)\1'

Similarly, the following command is a successful match

because the string 12223 contains three consecutive

occurrences of the digit 2:

echo "12223" | grep -e '\([0-9]\)\1\1'

You can check for the occurrence of two identical digits

separated by any character with this expression:

echo "12z23" | grep -e '\([0-9]\).\1'

In an analogous manner, you can test for the occurrence of

duplicate letters, as shown here:

echo "abbc" | grep -e '\([a-z]\)\1'

The following example matches an IP address, and does not

use backreferences, just the \d and \. The following are

regular expressions to match digits and periods:

echo "192.168.125.103" | grep -e '\(\d\d\d\)\.\

(\d\d\d\)\.\

 (\d\d\d\)\.\(\d\d\d\)'

If you want to allow for fewer than three digits, you can use

the expression {1,3}, which matches 1, 2, or 3 digits on the

third block. In a situation where any of the four blocks might

have fewer than three characters, you must use the

following type of syntax in all four blocks:

echo "192.168.5.103" | grep -e '\(\d\d\d\)\.\

(\d\d\d\)\.\

 (\d\)\{1,3\}\.\(\d\d\d\)'

You can perform more complex matches using

backreferences. Listing 1.3 displays the content of

columns5.txt that contains several lines that are

palindromes (the same spelling from left-to-right as right-to-

left). Note that the third line is an empty line.

Listing 1.3: columns5.txt

one eno

ONE ENO

ONE TWO OWT ENO

four five

The following command finds all lines that are palindromes:

grep -w -e '\(.\)\(.\).*\2\1' columns5.txt

The output of the preceding command is here:

one eno

ONE ENO

ONE TWO OWT ENO

The idea is as follows: the first \(.\) matches a set of

letters, followed by a second \(.\) that matches a set of

letters, followed by any number of intermediate characters.

The sequence \2\1 reverses the order of the matching sets

of letters specified by the two consecutive occurrences of \

(.\).

Finding Empty Lines in Datasets

Recall that the metacharacter ^ refers to the beginning of a

line and the metacharacter $ refers to the end of a line.

Thus, an empty line consists of the sequence ^$. You can

find the single empty in columns5.txt with this command:

grep -n "^$" columns5.txt

The output of the preceding grep command is here (use the

-n switch to display line numbers, as blank lines will not

otherwise show in the output):

3:

More commonly, the goal is to strip the empty lines from a

file. We can do that just by inverting the prior query (and

not showing the line numbers)

grep -v "^$" columns5.txt

one eno

ONE ENO

ONE TWO OWT ENO

four five

As you can see, the preceding output displays four non-

empty lines, and as we saw in the previous grep command,

line #3 is an empty line.

Using Keys to Search Datasets

Data is often organized around unique values (typically

numbers) to distinguish otherwise similar things: for

example, John Smith the manager must not be confused

with John Smith the programmer in an employee dataset.

Hence, each record is assigned a unique number that will be

used for all queries related to employees. Moreover, their

names are merely data elements of a given record, rather

than a means of identifying a record that contains a

particular person.

With the preceding points in mind, suppose that you have

a text file in which each line contains a single key value. In

addition, another text file consists of one or more lines,

where each line contains a key value followed by a quantity

value.

As an illustration, Listing 1.4 displays the contents of

skuvalues.txt and Listing 1.5 displays the contents of

skusold.txt. Note that an SKU is a term often used to refer

to an individual product configuration, including its

packaging, labeling, and so forth.

Listing 1.4: skuvalues.txt

4520

5530

6550

7200

8000

Listing 1.5: skusold.txt

4520 12

4520 15

5530 5

5530 12

6550 0

6550 8

7200 50

7200 10

7200 30

8000 25

8000 45

8000 90

The Backslash Character and the grep

Command

The \ character has a special interpretation when it is

followed by the following characters:

"\b" = Match the empty string at the edge of a word.

"\B" = Match the empty string provided it is not at the

edge of a word, so:

‘\brat\b’ matches the separate word “rat” but not

“crate,” and

‘\Brat\B’ matches “crate” but not “furry rat.”

"\<" = Match the empty string at the beginning of

word.

"\>" = Match the empty string at the end of word.

"\w" = Match word constituent, it is a synonym for

‘[_[:alnum:]]’.

"\W" = Match non-word constituent, it is a synonym for

‘[^_[:alnum:]]’.

"\s" = Match whitespace, it is a synonym for

‘[[:space:]]’.

"\S" = Match non-whitespace; it is a synonym for

‘[^[:space:]]’.

Multiple Matches in the grep Command

In an earlier example, you saw how to use the –i option to

perform a case insensitive match. However, you can also

use the pipe (|) symbol to specify more than one sequence

of regular expressions.

For example, the following grep expression matches any

line that contains one as well as any line that contains ONE

TWO:

grep "one\|ONE TWO" columns5.txt

The output of the preceding grep command is here:

one eno

ONE TWO OWT ENO

Although the preceding grep command specifies a pair of

character strings, you can specify an arbitrary number of

character sequences or regular expressions, as long as you

put "\|" between each thing you want to match.

The grep Command and the xargs Command

The xargs command is often used in conjunction with the

find command in bash. For example, you can search for the

files under the current directory (including subdirectories)

that have the sh suffix and then check which one of those

files contains the string abc, as shown here:

find . –print |grep "sh$" | xargs grep –l abc

A more useful combination of the find and xargs

command is shown here:

find . -mtime -7 -name "*.sh" –print | xargs grep

–l abc

The preceding command searches for all the files (including

subdirectories) with suffix sh that have not been modified in

at least seven days, and pipes that list to the xargs

command, which displays the files that contain the string

abc (case insensitive).

The find command supports many options, which can be

combined via AND as well as OR to create very complex

expressions.

Note that grep –R hello . also performs a search for

the string hello in all files, including subdirectories, and

follows the “one process” recommendation. The find . –

print command searches for all files in all subdirectories,

and you can pipe the output to xargs grep hello to find

the occurrences of the word hello in all files (which involves

two processes instead of one process).

You can use the output of the preceding code snippet to

copy the matching files to another directory, as shown here:

cp ｀find . –print |grep "sh$" | xargs grep –l abc

｀ /tmp

Alternatively, you can copy the matching files in the current

directory (without matching files in any subdirectories) to

another directory with the grep command:

cp ｀grep –l abc *sh｀ /tmp

Yet another approach is to use a backtick so that you can

obtain additional information:

for file in ｀find . –print｀
do

 echo "Processing the file: $file"

 # now do something here

done

If you pass too many filenames to the xargs command, you

will see a “too many files” error message. In this situation,

try to insert additional grep commands prior to the xargs

command to reduce the number of files that are piped into

the xargs command.

If you work with NodeJS, you know that the node_modules

directory contains a large number of files. In most cases,

you probably want to exclude the files in that directory

when you are searching for a string, and the -v option is

ideal for this situation. The following command excludes the

files in the node_modules directory while searching for the

names of the HTML files that contain the string src and

redirecting the list of file names to the file src_list.txt

(and also redirecting error messages to /dev/null):

find . –print |grep –v node |xargs grep –il src

>src_list.

 txt 2>/dev/null

You can extend the preceding command to search for the

HTML files that contain the string src and the string

angular with the following command:

find . –print |grep –v node |xargs grep –il src

|xargs grep

 –il angular >angular_list.txt 2>/dev/null

You can use the following combination of grep and xargs to

find the files that contain both xml and defs:

grep -l xml *svg |xargs grep -l def

A variation of the preceding command redirects error

messages to /dev/null, as shown here:

grep -l hello *txt 2>/dev/null | xargs grep -c

hello

Searching Zip Files for a String

There are at least three ways to search for a string in one or

more zip files. As an example, suppose that you want to

determine which zip files contain SVG documents.

The first way is shown here:

for f in ｀ls *zip｀
do

 echo "Searching $f"

 jar tvf $f |grep "svg$"

done

When there are many zip files in a directory, the output of

the preceding loop can be very verbose, in which case you

need to scroll backward and probably copy/paste the names

of the files that actually contain SVG documents into a

separate file. A better solution is to put the preceding loop

in a shell and redirect its output. For instance, create the file

findsvg.sh whose contents are the preceding loop, and

then invoke this command:

./findsvg.sh 1>11 2>22

Notice that the preceding command redirects error message

(2>) to the file 22 and the results of the jar/grep command

(1>) to the file 11 (and obviously, you can specify different

filenames).

Checking for a Unique Key Value

Sometimes you need to check for the existence of a string

(such as a key) in a text file, and then perform additional

processing based on its existence. However, do not assume

that the existence of a string means that that string only

occurs once. As a simple example, suppose the file

mykeys.txt has the following content:

2000

22000

10000

3000

Suppose that you search for the string 2000, which you can

do with findkey.sh whose contents are displayed in Listing

1.6.

Listing 1.6: findkey.sh

key="2000"

if ["｀grep $key mykeys.txt｀" != ""]
then

foundkey=true

else

 foundkey=false

fi

echo "current key = $key"

echo "found key = $foundkey"

Listing 1.6 contains if/else conditional logic to determine

whether the file mykeys.txt contains the value of $key

(which is initialized as 2000). Launch the code in Listing 1.6,

and you will see the following output:

current key = 2000

found key = true

linecount = 2

While the key value of 2000 does exist in mykeys.txt, you

can see that it matches two lines in mykeys.txt. However, if

mykeys.txt were part of a file with 100,000 (or more) lines,

it is not obvious that the value of 2000 matches more than

one line. In this dataset, 2000 and 22000 both match, and

you can prevent the extra matching line with this code

snippet:

grep –w $key

Thus, in files that have duplicate lines, you can count the

number of lines that match the key via the preceding code

snippet. Another way to do so involves the use of wc –l,

which displays the line count.

Redirecting Error Messages

Another scenario involves the use of the xargs command

with the grep command, which can result in “no such . . .”

error messages:

find . –print |xargs grep –il abc

Make sure to redirect errors using the following variant:

find . –print |xargs grep –il abc 2>/dev/null

The egrep Command and fgrep Command

The egrep command is extended grep that supports added

grep features like + (1 or more occurrence of previous

character), ? (0 or 1 occurrence of previous character) and |

(alternate matching). The egrep command is almost

identical to the grep -E, along with some caveats that are

described online:

https://www.gnu.org/software/grep/manual/html_node/Basic-

vs-Extended.html

One advantage of using the egrep command is that it is

easier to understand the regular expressions than the

corresponding expressions in grep (when it is combined with

backward references).

The egrep (“extended grep”) command supports

extended regular expressions, as well as the pipe (|) to

specify multiple words in a search pattern. A match is

successful if any of the words in the search pattern appears,

so you can think of the search pattern as “any” match.

Thus, the pattern ‘abc|def’ matches lines that contain

either abc or def (or both).

For example, the following code snippet enables you to

search for occurrences of the string abc as well as

occurrences the string def in all files with the suffix sh:

egrep -w 'abc|def' *sh

The preceding egrep command is an “or” operation: a line

matches if it contains either abc or def.

You can also use metacharacters in egrep expressions.

For example, the following code snippet matches lines that

start with abc or end with four and a whitespace:

egrep '^123|four $' columns3.txt

A more detailed explanation of grep, egrep, fgrep is online:

https://superuser.com/questions/508881/what-is-the-

difference-between-grep-pgrep-egrep-fgrep

Displaying “Pure” Words in a Dataset with

egrep

For simplicity, let’s work with a text string and that way we

can see the intermediate results as we work toward the

solution. Let’s initialize the variable x as shown here:

x="ghi abc Ghi 123 #def5 123z"

The first step is to split x into words:

echo $x |tr -s ' ' '\n'

The output is here:

ghi

abc

Ghi

123

#def5

123z

The second step is to invoke egrep with the regular

expression ^[a-zA-Z]+, which matches any string

consisting of one or more uppercase and/or lowercase

letters (and nothing else):

echo $x |tr -s ' ' '\n' |egrep "^[a-zA-Z]+$"

The output is here:

ghi

abc

Ghi

If you also want to sort the output and print only the unique

words, use this command:

echo $x |tr -s ' ' '\n' |egrep "^[a-zA-Z]+$" |sort

| uniq

The output is here:

123

123z

Ghi

abc

ghi

If you want to extract only the integers in the variable x, use

this command:

echo $x |tr -s ' ' '\n' |egrep "^[0-9]+$" |sort |

uniq

The output is here:

123

If you want to extract alphanumeric words from the variable

x, use this command:

echo $x |tr -s ' ' '\n' |egrep "^[a-zA-Z0-9]+$"

|sort | uniq

The output is here:

123

123z

Ghi

abc

ghi

Note that the ASCII collating sequences places digits before

uppercase letters, and the latter are before lowercase

letters for the following reason: 0 through 9 are hexadecimal

values 0x30 through 0x39, and the uppercase letters in A-Z

are hexadecimal 0x41 through 0x5a, and the lowercase

letters in a-z are hexadecimal 0x61 through 0x7a.

Now you can replace echo $x with a dataset to retrieve

only alphabetic strings from that dataset.

The fgrep Command

The fgrep (“fast grep”) is the same as grep –F and

although fgrep is deprecated, it is still supported to allow

historical applications that rely on them to run unmodified.

In addition, some older systems might not support the –F

option for the grep command, so they use the fgrep

command. If you really want to learn more about the fgrep

command, perform an Internet search for tutorials.

Delete Rows with Missing Values

The code sample in this section shows you how to use the

awk command to split the comma-separated fields in the

rows of a dataset, where fields can contain nested quotes of

arbitrary depth.

Listing 1.7 displays some of the rows in titanic.csv and

Listing 1.8 displays the content of the file delete-empty-

cols-grep.sh that shows you how to create a new dataset

that contains only rows that are fully populated with data

values.

Listing 1.7: titanic.csv

survived,pclass,sex,age,sibsp,parch,fare,embarked,

class,who,

 adult_male,deck,embark_town,alive,alone

0,3,male,22.0,1,0,7.25,S,Third,man,True,,Southampt

on,no,False

1,1,female,38.0,1,0,71.2833,C,First,woman,False,C,

Cherbourg,

 yes,False

1,3,female,26.0,0,0,7.925,S,Third,woman,False,,Sou

thampton,

 yes,True

1,1,female,35.0,1,0,53.1,S,First,woman,False,C,Sou

thampton,

 yes,False

0,3,male,35.0,0,0,8.05,S,Third,man,True,,Southampt

on,no,True

0,3,male,,0,0,8.4583,Q,Third,man,True,,Queenstown,

no,True

// rows omitted for brevity

0,3,male,25.0,0,0,7.05,S,Third,man,True,,Southampt

on,no,True

0,3,female,39.0,0,5,29.125,Q,Third,woman,False,,Qu

eenstown,

 no,False

0,2,male,27.0,0,0,13.0,S,Second,man,True,,Southamp

ton,no,True

1,1,female,19.0,0,0,30.0,S,First,woman,False,B,Sou

thampton,

 yes,True

0,3,female,,1,2,23.45,S,Third,woman,False,,Southam

pton,no,False

1,1,male,26.0,0,0,30.0,C,First,man,True,C,Cherbour

g,yes,True

0,3,male,32.0,0,0,7.75,Q,Third,man,True,,Queenstow

n,no,True

Listing 1.8: delete-empty-cols-grep.sh

#field5,field4,field3,"field2,foo,bar",field1,fiel

d6,

 field7,"fieldZ"

input="titanic.csv"

output="titanic_clean.csv"

row_count1=｀wc $input | awk '{print $1}'｀
echo "Number of input rows: $row_count1"

compare this code with the awk example in

chapter 6:

cat $input |grep -v ",," > $output

row_count2=｀wc $output | awk '{print $1}'｀
echo "Number of output rows: $row_count2"

echo

echo "=> First five rows in $input:"

cat $input |head -6 |tail -5

echo "-------------------------"

echo

echo "=> First five rows in $output:"

cat $output |head -6 |tail -5

echo ""

Listing 1.8 starts by initializing the variables input and

output with the values titanic.csv and

titanic_clean.csv, respectively. Next, the variable

row_count1 is initialized with the number of rows from the

input file, and then its value is printed.

The next code snippet uses a combination of the cat

command and the grep command to find all rows that do

not contain two consecutive commas (which represent

missing values) and redirect that list of rows into the output

file. In a similar fashion as the variable row_count1, the

variable row_count2 is initialized and its value is printed.

The next block of code in Listing 1.8 uses a combination

of the cat, head, and tail commands to extract the first six

rows of the input file and then the last five rows of the

preceding output, which extracts rows 2 through 6 instead

of rows 1 through 5.

Similarly, the final block of code in Listing 1.8 uses a

combination of the cat, head, and tail commands to

extract the first six rows of the output file and then the last

five rows of the preceding output, which extracts rows 2

through 6 instead of rows 1 through 5. Now launch the code

in Listing 1.8 and you will see the following output:

Number of input rows: 892

Number of output rows: 183

=> First five rows in titanic.csv:

0,3,male,22.0,1,0,7.25,S,Third,man,True,,Southampt

on,no,False

1,1,female,38.0,1,0,71.2833,C,First,woman,False,C,

Cherbourg,

 yes,False

1,3,female,26.0,0,0,7.925,S,Third,woman,False,,Sou

thampton,

 yes,True

1,1,female,35.0,1,0,53.1,S,First,woman,False,C,Sou

thampton,

 yes,False

0,3,male,35.0,0,0,8.05,S,Third,man,True,,Southampt

on,no,True

=> First five rows in titanic_clean.csv:

1,1,female,38.0,1,0,71.2833,C,First,woman,False,C,

Cherbourg,

 yes,False

1,1,female,35.0,1,0,53.1,S,First,woman,False,C,Sou

thampton,

 yes,False

0,1,male,54.0,0,0,51.8625,S,First,man,True,E,South

ampton,no,True

1,3,female,4.0,1,1,16.7,S,Third,child,False,G,Sout

hampton,

 yes,False

1,1,female,58.0,0,0,26.55,S,First,woman,False,C,So

uthampton,

 yes,True

Later, you will see how to perform the same task using the

awk command, and you might be surprised to learn that the

solution for this task is actually simpler using the grep

command than the awk command.

A Simple Use Case

The code sample in this section shows you how to use the

grep command to find specific lines in a dataset and then

“merge” pairs of lines to create a new dataset. This is very

much like what a “join” command does in a relational

database. Listing 1.9 displays the contents of the file

test1.csv that contains the initial dataset.

Listing 1.9: test1.csv

F1,F2,F3,M0,M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12

1,KLM,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.4

1,KLMAB,,0.05,,0.04,,0.05,,0.04,,,0.07,,,0.05

1,TP,,7.4,,7.7,,7.6,,7.6,,,8.0,,,7.3

1,XYZ,,4.03,3.96,,3.99,,3.84,4.12,,,,4.04,,

2,KLM,,0.9,0.7,,0.6,,0.8,0.5,,,,0.5,,

2,KLMAB,,0.04,0.04,,0.03,,0.04,0.03,,,,0.03,,

2,EGFR,,99,99,,99,,99,99,,,,99,,

2,TP,,6.6,6.7,,6.9,,6.6,7.1,,,,7.0,,

3,KLM,,0.9,0.1,,0.5,,0.7,,0.7,,,0.9,,

3,KLMAB,,0.04,0.01,,0.02,,0.03,,0.03,,,0.03,,

3,PLT,,224,248,,228,,251,,273,,,206,,

3,XYZ,,4.36,4.28,,4.58,,4.39,,4.85,,,4.47,,

3,RDW,,13.6,13.7,,13.8,,14.1,,14.0,,,13.4,,

3,WBC,,3.9,6.5,,5.0,,4.7,,3.7,,,3.9,,

3,A1C,,5.5,5.6,,5.7,,5.6,,5.5,,,5.3,,

4,KLM,,1.2,,0.6,,0.8,0.7,,,0.9,,,1.0,

4,TP,,7.6,,7.8,,7.6,7.3,,,7.7,,,7.7,

5,KLM,,0.7,,0.8,,1.0,0.8,,0.5,,,1.1,,

5,KLM,,0.03,,0.03,,0.04,0.04,,0.02,,,0.04,,

5,TP,,7.0,,7.4,,7.3,7.6,,7.3,,,7.5,,

5,XYZ,,4.73,,4.48,,4.49,4.40,,,4.59,,,4.63,

Listing 1.10 displays the content of the file joinlines.sh

that illustrates how to merge the pairs of matching lines in

joinlines.csv.

Listing 1.10: joinlines.sh

inputfile="test1.csv"

outputfile="joinedlines.csv"

tmpfile2="tmpfile2"

patterns to match:

klm1="1,KLM,"

klm5="5,KLM,"

xyz1="1,XYZ,"

xyz5="5,XYZ,"

#output:

#klm1,xyz1

#klm5,xyz5

step 1: match patterns with CSV file:

klm1line="｀grep $klm1 $inputfile｀"
klm5line="｀grep $klm5 $inputfile｀"
xyz1line="｀grep $xyz1 $inputfile｀"
$xyz5 matches 2 lines (we want first line):

grep $xyz5 $inputfile > $tmpfile2

xyz5line="｀head -1 $tmpfile2｀"
echo "klm1line: $klm1line"

echo "klm5line: $klm5line"

echo "xyz1line: $xyz1line"

echo "xyz5line: $xyz5line"

step 3: create summary file:

echo "$klm1line" | tr -d '\n' > $outputfile

echo "$xyz1line" >> $outputfile

echo "$klm5line" | tr -d '\n' >> $outputfile

echo "$xyz5line" >> $outputfile

echo; echo

The output from launching the shell script in Listing 1.10 is

here:

1,KLM,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.41,X

YZ,,4.03,3.96,,3.99,,3.84,4.12,,,,4.04,,

5,KLM,,0.7,,0.8,,1.0,0.8,,0.5,,,1.1,,5,K

LM,,0.03,,0.03,,0.04,

0.04,,0.02,,,0.04,,5,XYZ,,4.73,,4.48,,4.49,4.40,,,

4.59,,,

4.63,

As you can see, the task in this section is easily solved via

the grep command. Note that additional data cleaning is

required to handle the empty fields in the output.

This concludes the portion of the chapter devoted to the

grep command. The next portion discusses the sed

command, along with various examples that illustrate some

of its feature.

Summary

This chapter showed you how to work with the grep utility,

which is a very powerful Unix command for searching text

fields for strings. You saw various options for the grep

command, and examples of how to use those options to find

string patterns in text files.

Next, you learned about egrep, which is a variant of the

grep command, which can simplify and also expand on the

basic functionality of grep, indicating when you might

choose one option over another.

Finally, you learned how to use key values in one text file

to search for matching lines of text in another file, and

perform join-like operations using the grep command.

CHAPTER 2

WORKING WITH SED

This chapter introduces you to the versatile sed command,

which can process an input text stream to generate a

desired output text stream. This command works well with

other Unix commands. This chapter contains many short

code samples that illustrate various options of the sed

command.

The first section briefly introduces the sed command,

which is a command line utility that provides stream-

oriented functionality for managing data. This section also

shows you some simple patterns for matching strings.

The second section shows you how to substitute string

patterns, such as replacing vowels or deleting multiple digits

and letters from a string. You will also see how to perform

search and replace with sed.

The third section shows you how to replace multiple field

delimiters with a single delimiter, along with some useful

switches for sed. In addition, you will learn how to print

lines, work with character classes, and remove control

characters from a text string.

The final section introduces back references in sed,

followed by a set of one-line sed commands. This section

also shows you how to populate missing values in a dataset

and use sed to process a dataset that contains one million

rows.

What is the sed Command?

The name sed is an acronym for “stream editor,” and the

utility derives many of its commands from the ed line-editor

(ed was the first Unix text editor). The sed command is a

“non-interactive” stream-oriented editor that can be used to

automate editing via shell scripts. This ability to modify an

entire stream of data (which can be the contents of multiple

files, in a manner similar to how grep behaves) as if you

were inside an editor. (It is not common in modern

programming languages.) This behavior allows some

capabilities not easily duplicated elsewhere, while behaving

exactly like any other command (grep, cat, ls, find, and

so forth) in how it can accept data, output data, and pattern

match with regular expressions.

Some of the more common uses for sed include print

matching lines, delete matching lines, and find/replace

matching strings or regular expressions.

The sed Execution Cycle

Whenever you invoke the sed command, an execution cycle

refers to various options that are specified and executed

until the end of the file/input is reached. Specifically, an

execution cycle performs the following steps:

Reads an entire line from stdin/file.

Removes any trailing newline.

Places the line in its pattern buffer.

Modifies the pattern buffer according to the supplied

commands.

Prints the pattern buffer to stdout.

Matching String Patterns Using sed

The sed command requires you to specify a string to match

the lines in a file. For example, suppose that the file

numbers.txt contains the following lines:

1

2

123

3

five

4

The following sed command prints all the lines that contain

the string 3:

cat numbers.txt |sed –n "/3/p"

Another way to produce the same result is as follows:

sed –n "/3/p" numbers.txt

In both cases, the output of the preceding commands is as

follows:

123

3

As we saw earlier with other commands, it is always more

efficient to just read in the file using the sed command than

to pipe it in with a different command. You can “feed” it data

from another command if that other command adds value

(such as adding line numbers, removing blank lines, or other

similar helpful activities).

The –n option suppresses all output, and the p option

prints the matching line. If you omit the –n option then

every line is printed, and the p option causes the matching

line to be printed again. Hence, if you issue the following

command,

sed "/3/p" numbers.txt

the output (the data to the right of the colon) is as follows.

Note that the labels to the left of the colon show the source

of the data to illustrate the “one row at a time” behavior of

sed.

Basic stream output :1

Basic stream output :2

Basic stream output :123

Pattern Matched text:123

Basic stream output :3

Pattern Matched text:3

Basic stream output :five

Basic stream output :4

It is also possible to match two patterns and print

everything between the lines that match:

sed –n "/123/,/five/p" numbers.txt

The output of the preceding command (all lines between

123 and five, inclusive) is here:

123

3

five

Substituting String Patterns Using sed

The examples in this section illustrate how to use sed to

substitute new text for an existing text pattern.

x="abc"

$ echo $x |sed "s/abc/def/"

The output of the preceding code snippet is here:

def

In the prior command, you instructed sed to substitute ("s)

the first text pattern (/abc) with the second pattern (/def)

and no further instructions (/").

Deleting a text pattern is simply a matter of leaving the

second pattern empty:

$ echo "abcdefabc" |sed "s/abc//"

The result is here:

defabc

As you see, this only removes the first occurrence of the

pattern. You can remove all the occurrences of the pattern

by adding the “global” terminal instruction (/g"):

$ echo "abcdefabc" |sed "s/abc//g"

The result of the preceding command is here:

def

Note that we are operating directly on the main stream with

this command, as we are not using the -n tag. You can also

suppress the main stream with -n and print the substitution,

achieving the same output if you use the terminal p (print)

instruction:

$ echo "abcdefabc" |sed -n "s/abc//gp"

def

For substitutions, either syntax will do, but that is not

always true of other commands.

You can also remove digits instead of letters by using the

numeric metacharacters as your regular expression match

pattern:

$ ls svcc1234.txt |sed "s/[0-9]//g"

ls $ svcc1234.txt |sed –n "s/[0-9]//gp"

The result of either of the two preceding commands is here:

svcc.txt

Recall that the file columns4.txt contains the following

text:

123 ONE TWO

456 three four

ONE TWO THREE FOUR

five 123 six

one two three

four five

The following sed command is instructed to identify the

rows between 1 and 3, inclusive ("1,3), and delete (d")

them from the output:

$ cat columns4.txt | sed "1,3d"

The output is here:

five 123 six

one two three

four five

The following sed command deletes a range of lines,

starting from the line that matches 123 and continuing

through the file until reaching the line that matches the

string five (and also deleting all the intermediate lines).

The syntax should be familiar from the earlier matching

example:

$ sed "/123/,/five/d" columns4.txt

The output is here:

one two three

four five

Replacing Vowels from a String or a File

The following code snippet shows you how simple it is to

replace multiple vowels from a string using the sed

command:

$ echo "hello" | sed "s/[aeio]/u/g"

The output from the preceding code snippet is here:

Hullu

Deleting Multiple Digits and Letters from a

String

Suppose that we have a variable x that is defined as follows:

x="a123zAB 10x b 20 c 300 d 40w00"

Recall that an integer consists of one or more digits, so it

matches the regular expression [0-9]+, which matches one

or more digits. However, you need to specify the regular

expression [0-9]* to remove every number from the variable

x:

$ echo $x | sed "s/[0-9]//g"

The output of the preceding command is here:

azAB x b c d w

The following command removes all lowercase letters from

the variable x:

$ echo $x | sed "s/[a-z]*//g"

The output of the preceding command is here:

123AB 10 20 300 4000

The following command removes all lowercase and

uppercase letters from the variable x:

$ echo $x | sed "s/[a-z][A-Z]*//g"

The output of the preceding command is here:

123 10 20 300 4000

Search and Replace with sed

The previous section showed you how to delete a range of

rows of a text file based on a start line and end line using

either a numeric range or a pair of strings. As deleting is just

substituting an empty result for what you match, it should

now be clear that a replace activity involves populating that

part of the command with something that achieves your

desired outcome. This section contains various examples

that illustrate how to get the exact substitution you desire.

The following examples illustrate how to convert

lowercase abc to uppercase ABC in sed:

$ echo "abc" |sed "s/abc/ABC/"

The output of the preceding command is here (which only

works on one case of abc):

ABC

echo "abcdefabc" |sed "s/abc/ABC/g"

The output of the preceding command is here (/g" means

works on every case of abc):

ABCdefABC

The following sed expression performs three consecutive

substitutions, using -e to string them together. It changes

exactly one (the first) a to A, one b to B, one c to C:

$ echo "abcde" |sed -e "s/a/A/" -e "s/b/B/" -e

"s/c/C/"

The output of the preceding command is here:

ABCde

Obviously, you can use the following sed expression that

combines the three substitutions into one substitution:

$ echo "abcde" |sed "s/abc/ABC/"

Nevertheless, the –e switch is useful when you need to

perform more complex substitutions that cannot be

combined into a single substitution.

The “/” character is not the only delimiter that sed

supports, which is useful when strings contain the “/”

character. For example, you can reverse the order of

/aa/bb/cc/ with this command:

$ echo "/aa/bb/cc" |sed -n

"s#/aa/bb/cc#/cc/bb/aa/#p"

The output of the preceding sed command is here:

/cc/bb/aa/

The following examples illustrate how to use the w terminal

command instruction to write the sed output to both

standard output and also to a named file upper1 if the

match succeeds:

echo "abcdefabc" |sed "s/abc/ABC/wupper1"

ABCdefabc

If you examine the contents of the text file upper1, you will

see that it contains the same string ABCdefabc that is

displayed on the screen. This two-stream behavior that we

noticed earlier with the print (“p”) terminal command is

unusual, but sometimes useful. It is more common to simply

send the standard output to a file using the “>” syntax, as

shown below (both syntaxes work for a replace operation),

but in that case, nothing is written to the terminal screen.

The above syntax allows both at the same time:

$ echo "abcdefabc" | sed "s/abc/ABC/" > upper1

$ echo "abcdefabc" | sed -n "s/abc/ABC/p" > upper1

Listing 2.1 displays the content of update2.sh that replaces

the occurrence of the string hello with the string goodbye

in the files with the suffix txt in the current directory.

Listing 2.1: update2.sh

for f in ｀ls *txt｀
do

 newfile="${f}_new"

 cat $f | sed -n "s/hello/goodbye/gp" > $newfile

 mv $newfile $f

done

Listing 2.1 contains a for loop that iterates over the list of

text files with the txt suffix. For each such file, initialize the

variable newfile that is created by appending the string

_new to the first file (represented by the variable f). Next,

replace the occurrences of “hello” with the string goodbye in

each file f, and redirect the output to $newfile. Finally,

rename $newfile to $f using the mv command.

If you want to perform the update in matching files in all

subdirectories, replace the for statement with the following:

$ for f in 'find . –print |grep "txt$"'

Regular Expressions with sed

Listing 2.2 displays the contents of the CSV file

employees.csv that will be referenced in various sed

commands in this section.

Listing 2.2: employees.csv

empid,full_name,start_date,expenses

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

The following sed command displays the lines in

employees.csv that start with the digit 1:

$ sed -n "/^1/p" < employees.csv

1000,Jane Jones,12/05/2021,93.55

The following sed command displays the lines in

employees.csv that do not start with the digit 1:

$ sed -n "/^[^1]/p" < employees.csv

empid,full_name,start_date,expenses

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

The following sed command displays the number lines in

employees.csv that do not start with the digit 1:

$ sed -n "/^[^1]/p" < employees.csv | wc -l

3

However, the preceding sed command also includes the

header line, which we can remove via the following sed

command:

$ cat employees.csv | sed "1d" | sed -n "/^[^1]/p"

|wc -l

2

The following sed command displays the lines in

employees.csv that start with a sequence of digits:

$ sed -n "/^[0-9].*/p" < employees.csv

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

The following sed command displays the lines in

employees.csv that start with a sequence of digits followed

the letter J:

$ sed -n "/^[0-9].*J/p" < employees.csv

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

The following sed command displays the non-empty lines in

employees.csv:

$ sed -n "/./p" < employees.csv

empid,full_name,start_date,expenses

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

The following sed command displays the number of empty

lines in employees.csv:

sed -n "/^$/p" < employees.csv |wc -l

2

The following sed command displays the number of lines in

employees.csv that start with either a 1 or a 2:

sed -n "/^[1|2]/p" < employees.csv |wc -l

2

Datasets with Multiple Delimiters

Listing 2.3 displays the content of the dataset

delimiter1.txt that contains multiple delimiters “|,” “:,”

and “^.” Listing 2.4 displays the content of delimiter1.sh

that illustrates how to replace the various delimiters in

delimiter1.txt with a single comma delimiter “,”.

Listing 2.3: delimiter1.txt

1000|Jane:Edwards^Sales

2000|Tom:Smith^Development

3000|Dave:Del Ray^Marketing

Listing 2.4: delimiter1.sh

inputfile="delimiter1.txt"

cat $inputfile | sed -e 's/:/,/' -e 's/|/,/' -e

's/\^/,/'

As you can see, the second line in Listing 2.4 is simple yet

very powerful: you can extend the sed command with as

many delimiters as you require to create a dataset with a

single delimiter between values. The output from Listing 2.4

is shown here:

1000,Jane,Edwards,Sales

2000,Tom,Smith,Development

3000,Dave,Del Ray,Marketing

Do keep in mind that this kind of transformation can be a bit

unsafe unless you have checked that your new delimiter is

not already in use. For that, a grep command is useful (you

want the result to be zero):

$ grep -c ',' $inputfile

0

Useful Switches in sed

The three command line switches -n, -e, and -i are useful

when you specify them with the sed command. Specify -n

when you want to suppress the printing of the basic stream

output:

$ sed -n 's/foo/bar/'

Specify -n and end with /p' when you want to match the

result only:

$ sed -n 's/foo/bar/p'

We briefly touched on using -e to do multiple substitutions,

but it can also be combined with other commands. This

syntax lets us separate the commands in the last example:

echo 'myfoo-bar' | sed -n -e 's/foo/bar/' -n -e

's/bar/BAR/p'

A more advanced example that hints at the flexibility of sed

involves the insertion a character after a fixed number of

positions. For example, consider the following code snippet:

echo "ABCDEFGHIJKLMNOPQRSTUVWXYZ" | sed "s/.\

{3\}/&\n/g"

The output from the preceding command is here:

ABCnDEFnGHInJKLnMNOnPQRnSTUnVWXnYZ

While the above example does not seem especially useful,

consider a large text stream with no line breaks (everything

on one line). You could use something like this to insert

newline characters, or something else to break the data into

easier-to-process chunks. It is possible to work through

exactly what sed is doing by looking at each element of the

command and comparing to the output, even if you do not

know the syntax. (Tip: Sometimes you will encounter very

complex instructions for sed without any documentation in

the code.)

The output is changing after every three characters and

we know dot (.) matches any single character, so .{3}

must be telling it to do that (with escape slashes \ because

brackets are a special character for sed, and it will not

interpret it properly if we just leave it as .{3}. The n is clear

enough in the replacement column, so the &\ must be

somehow telling it to insert a character instead of replacing

it. The terminal g command means “to repeat.” To clarify

and confirm those guesses, take what you could infer and

perform an Internet search.

Working with Datasets

The sed utility is very useful for manipulating the contents

of text files. For example, you can print ranges of lines and

subsets of lines that match a regular expression. You can

also perform search and replace on the lines in a text file.

This section contains examples that illustrate how to

perform such functionality.

Printing Lines

Listing 2.5 displays the content of test4.txt (doubled-

spaced lines) that is used for several examples in this

section.

Listing 2.5: test4.txt

abc

def

abc

abc

The following code snippet prints the first 3 lines in

test4.txt (we used this syntax before when deleting rows,

but it is equally useful for printing):

$ cat test4.txt |sed -n "1,3p"

The output of the preceding code snippet is here (the

second line is blank):

abc

def

The following code snippet prints lines 3 through 5 in

test4.txt:

cat test4.txt |sed -n "3,5p"

$ The output of the preceding code snippet is here:

def

abc

The following code snippet takes advantage of the basic

output stream and the second match stream to duplicates

every line (including blank lines) in test4.txt:

$ cat test4.txt |sed "p"

The output of the preceding code snippet is here:

abc

abc

def

def

abc

abc

abc

abc

The following code snippet prints the first three lines and

then capitalizes the string abc, duplicating ABC in the final

output because we did not use -n and did end with /p" in

the second sed command. Remember that /p" only prints

the text that matched the sed command, where the basic

output prints the whole file, which is why def does not get

duplicated:

$ cat test4.txt |sed -n "1,3p" |sed "s/abc/ABC/p"

ABC

ABC

def

Character Classes and sed

You can also use regular expressions with sed. As a

reminder, here are the contents of columns4.txt:

123 ONE TWO

456 three four

ONE TWO THREE FOUR

five 123 six

one two three

four five

As our first example involving sed and character classes,

the following code snippet illustrates how to match lines

that contain lowercase letters:

$ cat columns4.txt | sed -n '/[0-9]/p'

The output from the preceding snippet is here:

one two three

one two

one two three four

one

one three

one four

The following code snippet illustrates how to match lines

that contain lowercase letters:

$ cat columns4.txt | sed -n '/[a-z]/p'

The output from the preceding snippet is here:

123 ONE TWO

456 three four

five 123 six

The following code snippet illustrates how to match lines

that contain the numbers 4, 5, or 6:

$ cat columns4.txt | sed -n '/[4-6]/p'

The output from the preceding snippet is here:

456 three four

The following code snippet illustrates how to match lines

that start with any two characters followed by one or more

E:

$ cat columns4.txt | sed -n '/^.\{2\}EE*/p'

The output from the preceding snippet is here:

ONE TWO THREE FOUR

Removing Control Characters

Listing 2.6 displays the content of controlchars.txt that

contains the ^M control character. The code sample in this

section shows you how to remove control characters via the

sed just like any other character.

Listing 2.6: controlchars.txt

1 carriage return^M

2 carriage return^M

1 tab character^I

The following command removes the carriage return and tab

characters from the text file ControlChars.txt:

$ cat controlChars.txt | sed "s/^M//" |sed "s/

//"

You cannot see the tab character in the second sed

command in the preceding code snippet; however, if you

redirect the output to the file nocontrol1.txt, you can see

that there are no embedded control characters in this new

file by typing the following command:

$ cat –t nocontrol1.txt

Counting Words in a Dataset

Listing 2.7 displays the content of WordCountInFile.sh that

illustrates how to combine various bash commands to count

the words (and their occurrences) in a file.

Listing 2.7: wordcountinfile.sh

The file is fed to the "tr" command, which

changes

uppercase to lowercase

sed removes commas and periods, then changes

whitespace

to newlines

uniq needs each word on its own line to count

the words

properly

Uniq converts data to unique words and the

number of times

they appeared

The final sort orders the data by the wordcount.

if ["$1" == ""]

then

 echo "Please specify an input file"

else

 cat "$1" | xargs -n1 | tr A-Z a-z | \

 sed -e 's/\.//g' -e 's/\,//g' -e 's/ /\ /g' | \

 sort | uniq -c | sort -nr

fi

The previous command performs the following operations:

List each word in each line of the file.

Shift characters to lowercase.

Filter out periods and commas.

Change spaces between words to linefeed.

Remove duplicates, prefix occurrence count, and sort

numerically.

Back References in sed

In the first part of the chapter describing grep, we

mentioned back references, and similar functionality is

available with the sed command. The main difference is that

the back references can also be used in the replacement

section of the command.

The following sed command matches the consecutive “a”

letters and prints four of them:

$ echo "aa" |sed -n "s#\([a-z]\)\1#\1\1\1\1#p"

The output of the preceding code snippet is here:

aaaa

The following sed command replaces all duplicate pairs of

letters with the letters aa:

$ echo "aa/bb/cc" |sed -n "s#\(aa\)/\(bb\)/\

(cc\)#\1/\1/\1/#p"

The output of the previous sed command is here (note the

trailing “/” character):

aa/aa/aa/

The following command inserts a comma in a four-digit

number:

$ echo "1234" |sed -n "s@\([0-9]\)\([0-9]\)\([0-

9]\)

 \([0-9]\)@\1,\2\3\4@p"

The preceding sed command uses the @ character as a

delimiter. The character class [0-9] matches one single

digit. Since there are four digits in the input string 1234, the

character class [0-9] is repeated 4 times, and the value of

each digit is stored in \1, \2, \3, and \4. The output from

the preceding sed command is here:

1,234

A more general sed expression that can insert a comma in

five-digit numbers is here:

$ echo "12345" | sed 's/\([0-9]\

{3\}\)$/,\1/g;s/^,//'

The output of the preceding command is here:

12,345

One-Line sed Commands

This section is intended to show more useful problems you

can solve with a single line of sed, and to expose you to

more switches and arguments so you can learn how they

can be mixed and matched to solve related tasks.

sed supports other options (which are beyond the scope

of this book) to perform many other tasks, some of which

are sophisticated and correspondingly complex. If you

encounter something that none of the examples in this

chapter cover, but seems like it is the sort of thing sed

might do, the odds are decent that it does. An Internet

search along the lines of “how do I do <xxx> in sed” will

likely either point you in the right direction or at least

identify an alternative bash command that will be helpful.

Listing 2.8 displays the content of data4.txt that is

referenced in some of the sed commands in this section.

Note that some examples contain options that have not

been discussed earlier in this chapter: they are included in

case you need the desired functionality (and you can find

more details by reading online tutorials).

Listing 2.8: data4.txt

hello world4

 hello world5 two

hello world6 three

 hello world4 four

line five

line six

line seven

Print the first line of data4.txt with this command:

$ sed q < data4.txt

The output is here:

hello world3

Print the first three lines of data4.txt with this command:

$ sed 3q < data4.txt

The output is here:

hello world4

hello world5 two

hello world6 three

Print the last line of data4.txt with this command:

$ sed '$!d' < data4.txt

The output is here:

line seven

You can also use this snippet to print the last line:

$ sed -n '$p' < data4.txt

Print the last two lines of data4.txt with this command:

$ sed '$!N;$!D' <data4.txt

The output is here:

line six

line seven

Print the lines of data4.txt that do not contain world with

this command:

$ sed '/world/d' < data4.txt

The output is here:

Print duplicates of the lines in data4.txt that contain the

word world with this command:

$ sed '/world/p' < data4.txt

The output from the preceding code snippet is here:

hello world4

hello world4

 hello world5 two

 hello world5 two

hello world6 three

hello world6 three

 hello world4 four

 hello world4 four

Print the fifth line of data4.txt with this command:

$ sed -n '5p' < data4.txt

The output from the preceding code snippet is here:

line five

Print the contents of data4.txt and duplicate line five with

this command:

$ sed '5p' < data4.txt

The output from the preceding code snippet is here:

hello world4

hello world5 two

hello world6 three

 hello world4 four

line five

line five

line six

line seven

Print lines four through six of data4.txt with this command:

$ sed –n '4,6p' < data4.txt

The output from the preceding code snippet is here:

hello world4 four

line five

line six

Delete lines four through six of data4.txt with this

command:

$ sed '4,6d' < data4.txt

The output from the preceding code snippet is here:

hello world4

hello world5 two

hello world6 three

line seven

Delete the section of lines between world6 and six in

data4.txt with this command:

$ sed '/world6/,/six/d' < data4.txt

The output from the preceding code snippet is here:

hello world4

hello world5 two

line seven

Print the section of lines between world6 and six of

data4.txt with this command:

$ sed -n '/world6/,/six/p' < data4.txt

The output from the preceding code snippet is here:

hello world6 three

 hello world4 four

line five

line six

Print the contents of data4.txt and duplicate the section of

lines between world6 and six with this command:

$ sed '/world6/,/six/p' < data4.txt

The output from the preceding code snippet is here:

hello world4

hello world5 two

hello world6 three

hello world6 three

 hello world4 four

 hello world4 four

line five

line five

line six

line six

line seven

Delete the even-numbered lines in data4.txt with this

command:

$ sed 'n;d;' <data4.txt

The output from the preceding code snippet is here:

 hello world4

hello world6 three

line five

line seven

Replace letters a through m with a “,” with this command:

$ sed "s/[a-m]/,/g" <data4.txt

The output from the preceding code snippet is here:

 ,,,,o wor,,4

 ,,,,o wor,,5 two

,,,,o wor,,6 t,r,,

 ,,,,o wor,,4 ,our

,,n, ,,v,

,,n, s,x

,,n, s,v,n

Replace letters a through m with the characters “,@#” with

this command:

$ sed "s/[a-m]/,@#/g" <data4.txt

The output from the preceding code snippet is here:

 ,@#,@#,@#,@#o wor,@#,@#4

 ,@#,@#,@#,@#o wor,@#,@#5 two

,@#,@#,@#,@#o wor,@#,@#6 t,@#r,@#,@#

 ,@#,@#,@#,@#o wor,@#,@#4 ,@#our

,@#,@#n,@# ,@#,@#v,@#

,@#,@#n,@# s,@#x

,@#,@#n,@# s,@#v,@#n

The sed command does not recognize escape sequences

such as \t, which means that you must literally insert a tab

on your console. In the case of the bash shell, enter the

control character ^V and then press the <TAB> key to insert

a <TAB> character.

Delete the tab characters in data4.txt with this command:

$ sed 's/ //g' <data4.txt

The output from the preceding code snippet is here:

 hello world4

hello world5 two

hello world6 three

hello world4 four

line five

line six

line seven

Delete the tab characters and blank spaces in data4.txt

with this command:

$ sed 's/ //g' <data4.txt

The output from the preceding code snippet is here:

helloworld4

helloworld5two

helloworld6three

helloworld4four

linefive

linesix

lineseven

Replace every line of data4.txt with the word pasta with

this command:

$ sed 's/.*/\pasta/' < data4.txt

The output from the preceding code snippet is here:

pasta

pasta

pasta

pasta

pasta

pasta

pasta

Insert two blank lines after the third line and one blank line

after the fifth line in data4.txt with this command:

$ sed '3G;3G;5G' < data4.txt

The output from the preceding code snippet is here:

hello world4

 hello world5 two

hello world6 three

 hello world4 four

line five

line six

line seven

Insert a blank line after every line of data4.txt with this

command:

$ sed G < data4.txt

The output from the preceding code snippet is here:

 hello world4

 hello world5 two

hello world6 three

 hello world4 four

line five

line six

line seven

Insert a blank line after every other line of data4.txt with

this command:

$ sed n\;G < data4.txt

The output from the preceding code snippet is here:

 hello world4

 hello world5 two

hello world6 three

 hello world4 four

line five

line six

line seven

Reverse the lines in data4.txt with this command:

$ sed '1! G; h;$!d' < data4.txt

The output of the preceding sed command is here:

line seven

line six

line five

 hello world4 four

hello world6 three

 hello world5 two

 hello world4

Populate Missing Values with the sed Command

The example in this section shows you how to update the

values in datasets without using Python or Pandas. Although

this approach is useful in some cases, Pandas does provide

significant functionality that is often simpler than a bash-

based counterpart.

Listing 2.9 shows you the content of missing-titanic-

ages.sh that shows you how to replace missing values in

the titanic.csv dataset with the string MISSING and then

count the number of rows whose age value is missing.

Listing 2.9: missing-titanic-ages.sh

newfile="titanic-sed.csv"

this command replaces missing values with

MISSING:

$ cat titanic.csv |sed "s/,,/,MISSING,/g" >

$newfile

$ cat $newfile | awk -F"," '

BEGIN { count = 0 }

{

 if ($4 ~ /MISSING/) { count += 1 }

}

END { print "number of missing age values:",count

}

'

Listing 2.9 initializes the variable newfile with the name of

the CSV file whose missing values are replaced with the

string MISSING, and the latter is performed by the

subsequent code snippet that starts with the cat command.

The next portion of Listing 2.9 is an awk script that

initializes the variable count with the value 0, and then

increments this value whenever a row is encountered with a

missing value for the age column. Launch the code in Listing

2.9 and you will see the following output:

number of missing age values: 177

A Dataset with 1,000,000 Rows

The code samples in this section shows you how to use grep

to perform various comparisons on a dataset that contains

1,000,000 rows.

Numeric Comparisons

Listing 2.10 shows you how to check for a specific number

(e.g., 58) and the occurrence of one, two, or three adjacent

digits in the first field of each row.

Listing 2.10: numeric_comparisons.sh

filename="1000000_HRA_Records_short.csv"

echo "first loop:"

rownum=0

matches=0

while read line

do

 field1=｀echo $line | cut -d"," -f1｀
 if [rownum > 0]

 then

 if [$field1 > 50]

 then

 matches=｀expr $matches + 1｀
 fi

 fi

 rownum=｀expr $rownum + 1｀
done < $filename

echo "matching records: $matches"

echo "second loop:"

rownum=0

matches=0

while read line

do

 field1=｀echo $line | cut -d"," -f1｀
 field4=｀echo $line | cut -d"," -f4｀
 field5=｀echo $line | cut -d"," -f5｀

 if [rownum > 0]

 then

 if [$field1 > 50 -a "$field5" == "Support"]

 then

 matches=｀expr $matches + 1｀
 fi

 fi

 rownum=｀expr $rownum + 1｀
done < $filename

echo "matching records: $matches"

Listing 2.10 initializes the variable newfile with the name of

the CSV file and then initializes some scalar values. Next, a

while loop processes each row (except for the first row) in

the CSV file and initializes the value of the variable field1

with the contents of the first field of the comma-delimited

CSV file. If field1 is greater than 50, then the variable

matches is incremented.

The next portion of Listing 2.10 is another while loop

processes each row (except for the first row) in the CSV file

and then extracts the first, fourth, and fifth fields with the

following code block:

field1=｀echo $line | cut -d"," -f1｀
field4=｀echo $line | cut -d"," -f4｀
field5=｀echo $line | cut -d"," -f5｀

Next, a conditional statement checks whether the value of

field1 is greater than 40 and the value of field5 equals

the string Support, as shown here:

if [$field1 > 40 -a "$field5" == "Support"]

If the preceding statement is true, the variable matches is

incremented. The final code snippet in the while loop

updates the value of the variable rownum and then the next

row in the CSV file is processed. Launch the code in Listing

2.10 and you will see the following output:

first loop:

matching records: 1001

second loop:

matching records: 153

Counting Adjacent Digits

Listing 2.11 shows you how to find a specific number (e.g.,

58) and the occurrence of one, two, or three adjacent digits

in the first field of each row.

Listing 2.11: adjacent_digits.sh

filename="1000000_HRA_Records.csv"

echo "first:"

grep 58 $filename |wc

echo

echo "second:"

grep "[0-9]" $filename |wc

echo

echo "third:"

grep "[0-9][0-9]" $filename |wc

echo

echo "fourth:"

grep "[0-9][0-9][0-9]" $filename |wc

Listing 2.11 initializes the variable filename with the name

of a CSV file, followed by four code blocks that contain a

combination of the grep command and the wc command.

The first block determines the number of rows that

contain the string 58, whereas the second code block

determines the number of rows that contain a digit in the

CSV file. The third block determines the number of rows that

contain two consecutive digits, whereas the fourth code

block determines the number of rows that contain three

consecutive digit in the CSV file. Launch the code in Listing

2.11 and you will see the following output:

first:

 161740 453166 25044202

second:

1000001 2799978 154857624

third:

1000001 2799978 154857624

fourth:

1000000 2799977 154857110

Average Support Rate

Listing 2.12 uses the bash commands echo, cut, and expr

to calculate the average rate for people who are over 50

and are in the Support department.

Listing 2.12: average_rate.sh

filename="1000000_HRA_Records.csv"

rownum=0

matches=0

total=0

num_records=0

min_rate=""

max_rate=0

while read line

do

 if [$rownum -gt 0]

 then

 field1=｀echo $line | cut -d"," -f1｀
 field4=｀echo $line | cut -d"," -f4｀
 field5=｀echo $line | cut -d"," -f5｀

 if [$field1 > 40 -a "$field5" == "Support"]

 then

 total=｀expr $total + $field4｀
 num_records=｀expr $num_records + 1｀

 if ["$min_rate" == ""]

 then

 min_rate=$field4

 fi

 if [$min_rate -gt $field4]

 then

 min_rate=$field4

 fi

 fi

 fi

 rownum=｀expr $rownum + 1｀
done < $filename

avg_rate=｀expr $total / $num_records｀
echo "Number of Records: $num_records"

echo "Minimum Rate: $min_rate"

echo "Maximum Rate: $max_rate"

echo "Sum of All Rates: $total"

echo "Average Support Rate: $avg_rate"

Listing 2.12 initializes the variable filename as the name of

a CSV file, followed by initializing a set of scalar variables.

The main portion of Listing 2.12 consists of a loop that

processes each row after the first row in the CSV file, and

then extracts the first, fourth, and fifth fields with the

following code block:

field1=｀echo $line | cut -d"," -f1｀
field4=｀echo $line | cut -d"," -f4｀
field5=｀echo $line | cut -d"," -f5｀

Next, a conditional statement checks whether the value of

field1 is greater than 40 and the value of field5 equals

the string Support, as shown here:

if [$field1 > 40 -a "$field5" == "Support"]

If the preceding statement is true, the variables total and

num_records are updated accordingly. Another pair of

simple if statements determines whether the values of the

variables min_rate and max_rate also need to be updated.

The final code snippet in the while loop updates the value

of the variable rownum, and then the next row in the CSV file

is processed.

The final code block displays the values of the scalar

variables that were initialized in the first section of this code

sample:

avg_rate=｀expr $total / $num_records｀
echo "Number of Records: $num_records"

echo "Minimum Rate: $min_rate"

echo "Maximum Rate: $max_rate"

echo "Sum of All Rates: $total"

echo "Average Support Rate: $avg_rate"

Launch the code in Listing 2.23 and you will see the

following output:

Number of Records: 153

Minimum Rate: 107

Maximum Rate: 1489

Sum of All Rates: 118610

Average Support Rate: 775

Summary

This chapter started with an introduction to the sed

command, along with examples of matching string patterns

and substituting string patterns. Then you learned how to

perform search and replace.

You also learned how to replace multiple delimiters in a

dataset with a single delimiter using the sed command.

Next, you learned about printing lines, removing control

characters, and how to work with character classes in sed.

In addition, you learned how to use back references in

sed, followed by a list of useful one-line sed commands.

Then you learned how to populate missing values in a

dataset. Finally, you learned how to work with a dataset that

contains one million rows of data.

CHAPTER 3

WORKING WITH AWK

This chapter introduces you to the awk command, which is a

highly versatile utility for manipulating data and

restructuring datasets. Awk is essentially a programming

language in a single command, which accepts standard

input, gives standard output, and uses regular expressions

and metacharacters in the same way as other Unix

commands. This functionality enables you to combine awk

with other command line tools. You can include commands

in awk scripts because its versatility can make an awk script

challenging to understand based on just a quick glance.

The first part of this chapter provides a brief introduction

of the awk command. You will learn about some built-in

variables for awk and how to manipulate string variables

using awk. Note that some of these string-related examples

can also be handled using other bash commands.

The second part of this chapter shows you while loops

and for loops in awk to manipulate the rows and columns in

datasets. Next, you will learn how to use conditional logic in

awk commands. This section also shows you how to delete

lines and merge lines in datasets, and how to print the

contents of a file as a single line of text. You will see how to

“join” lines and groups of lines in datasets.

The third section contains code samples that illustrate

how to use logical operators in awk, followed by a code

sample that shows you how to check whether a positive

integer is a leap year.

The fourth section explains how to specify different types

of format for output data, how to work with floating point

numbers, truncating and rounding numbers, and numeric

functions in awk.

The fifth section shows you how to convert strings to

lowercase, uppercase, and mixed case. Next, you will see

how to count lines that match a character and how to use

the match() function in awk. Finally, you will learn about

non-printable characters and hexadecimal numbers in awk.

Before you read this chapter, keep in mind that the

datasets in this chapter are intentionally very short so that

you can focus on learning the rich feature set of the awk

command. After you have completed this chapter, proceed

to the next chapter that contains more awk-based code

samples.

In case you are wondering, datasets containing 25

terabytes of data have been successfully processed via awk.

If you work with multi-terabyte datasets, most likely you will

process them in a cloud-based environment. Moreover, the

awk command is very useful for data cleaning tasks

involving datasets of almost any size.

The awk Command

The awk (Aho, Weinberger, and Kernighan) command has a

C-like syntax and you can use this utility to perform very

complex operations on numbers and text strings.

As a side comment, there is also the gawk command (that

is, GNU awk), as well as the nawk command (“new” awk), but

neither command is discussed in this book. One advantage

of nawk is that it allows you to set externally the value of an

internal variable.

You can find The One True Awk, which is the awk written

by Aho, Weinberger, and Kernighan, on GitHub:

https://github.com/onetrueawk/awk

Launching awk Commands and File Extensions

The awk command allows you to execute awk-based scripts

in several ways, along with several similar (yet different)

ways in which awk commands cannot be executed. Many

awk-based code samples in this book specify an input file,

which is described in a later section.

However, there are also awk scripts that do not involve an

input file, such as an awk script that calculates arithmetic

sums or geometric sums. Specifically, the following will not

work from the command line:

awk '{print "hello" }'

However, this does work:

echo "" | awk '{print "hello" }'

You can also invoke an awk script in which the first line is the

so-called “shebang” line that also includes the -f option for

awk. For example, suppose that the file q1.sh contains this

snippet that contains a shebang line and a BEGIN statement:

#!/usr/local/bin/awk -f

BEGIN {print "hello"}

Then you can launch the preceding awk command after

making q1.sh executable with chmod +x q1.sh:

./q1.sh

Yet another technique involves specifying the -f option from

the command line. For example, suppose that the file q2.sh

contains this snippet:

BEGIN {print "hello"}

Then you can launch q2.sh with the following command:

awk -f q2.sh

As you know, the following technique will also work, which is

the technique that is used throughout this book when an

input file is not specified:

echo "" | awk '{print "hello" }'

Another detail to keep in mind is the file extension for shell

scripts that contain awk commands. You will often see shell

scripts with the extension “sh,” and you will also see shell

scripts with the extension “awk,” which indicates that the

shell script contains an awk command. These are

conventions that you will often see in code samples that you

find during an Internet search.

The code samples in this book use the “sh” extension for all

executable shell scripts, including those that contain awk

commands.

Built-In Variables that Control awk

The awk command provides variables that you can change

from their default values to control how awk performs

operations. Examples of such variables (and their default

values) include:

FS (" ")

RS ("\n")

IFS ("\n")

OFS (" ")

ORS ("\n")

NR

NF

SUBSEP

IGNORECASE

The variables FS and RS specify the field separator and

record separator, respectively, whereas the variables OFS

and ORS specify the output field separator and the output

record separator, respectively. If need be, you can change

the value of RS, such as text fields whose records span

multiple lines.

You can think of the field separators (IFS) as delimiters,

whereas the record separators behave in a way similar to

how sed treats individual lines. For example, sed can match

or delete a range of lines instead of matching or deleting

something that matches a regular expression. The default

awk record separator is the newline character, so by default,

awk and sed have similar ability to manipulate and

reference lines in a text file. In addition, NR contains the

number of the currently processed record and NF contains

the number of fields in the currently processed record.

Other built-in variables include FILENAME (the name of

the file that awk is currently reading), FNR (the current

record number in the current file), NF (the number of fields

in the current input record), and NR (the number of input

records awk has processed since the beginning of the

program’s execution).

Consult the online documentation for additional

information regarding these (and other) arguments for the

awk command.

How Does the awk Command Work?

The awk command reads the input files one record at a time

(by default, one record is one line). If a record matches a

pattern (specified by you), then an associated action is

performed (otherwise no action is performed). If the search

pattern is not given, then awk performs the given actions for

each record of the input. The default behavior if no action is

given is to print all the records that match the given pattern.

Finally, empty braces without any action does nothing; i.e.,

it will not perform the default printing operation. Note that

each statement in actions should be delimited by a

semicolon.

Three Important Code Blocks in awk Commands

The structure of an awk command consists of an optional

BEGIN block, the main block, and an optional END block. A

high-level outline of an awk command looks like this:

awk -F"," '

BEGIN { print "BEGIN"; x = 2; y = 5; }

{

 print "MIDDLE","x=",x,"y=",y

 x+=1

 y+=1

}

END { print "END:","x=",x,"y=",y }

' some_input_file.txt

Place the preceding code in a file called template.sh, and

then make this shell script executable by invoking the

following command:

chmod +x template.sh

You also need to replace some_input_file.txt with an

existing file: let’s call this file one.txt, which contains just

one line of text (the reason will be explained very soon).

Now you can launch the shell script template.sh from the

command line as follows:

./template.sh

You will see the following output after invoking the

preceding command:

BEGIN

MIDDLE x= 2 y= 5

END: x= 3 y= 6

Here is where it gets interesting: the number of times that

the main execution block (i.e., the portion after the BEGIN

block and before the END block) is executed equals the

number of lines in the text file one.txt! Experiment with

input files that have a different numbers of lines to convince

yourself.

However, the script template.sh does not require any

input file, so it makes sense to use a different technique

that does not require specifying an input file. As you saw,

this book uses the “echo” style for awk-based scripts that do

not require any external input. Feel free to modify those

shell scripts if you prefer to use one of the other techniques

that are available.

Different Ways to Print Text

The flexibility of the awk command allows you to print text in

various ways. Listing 3.1 displays the content of

split_awk.sh that shows you different awk commands that

generate the same output.

Listing 3.1: simple_awk.sh

echo "1st:"

echo "abc" | awk '{ print "full line:",$0 }'

echo

echo "2nd:"

echo "abc" | awk '{}'

echo

echo "3nd:"

echo "abc" | awk '{ print }'

echo

echo "4th:"

echo "abc" | awk '{ /abc/ }'

echo

echo "5th:"

echo "abc" | awk '{ if(/abc/) {print} }'

echo

echo "6th:"

echo "abc" | awk '{ if($0 ~ /abc/) {print} }'

echo

echo "7th:"

echo "abc" | awk '{ if($1 ~ /abc/) {print} }'

echo

echo "8th:"

echo "abc" | awk '{ if($1 == "abc") {print} }'

echo

echo "9th:"

echo "abc" | awk '{ if($0 == "abc") {print} }'

echo

error:

#echo "abc" | awk '{ /abc/ {print} }'

echo "10th:"

echo "abc def" | awk '{ if($0 ~ /abc/) {print $2}

}'

echo

echo "11th:"

echo "abc def" | awk '{ if($1 ~ /abc/) {print $2}

}'

echo

Listing 3.1 shows you various awk commands that are

similar yet contain important differences. The main details

to remember are listed here:

"==" performs an exact match

"~" performs a partial match

$0 is the entire input line

$1 is the first field and $2 is the second

field (and so on)

Now look at the code in Listing 3.1 again, and you can see

why all the awk commands that contain an if keyword will

generate an output. Moreover, the second and fourth awk

commands do not display any output because they do not

contain a print statement. Launch the code in Listing 3.1,

and you will see the following output:

1st:

full line: abc

2nd:

3nd:

abc

4th:

5th:

abc

6th:

abc

7th:

abc

8th:

abc

8th:

abc

9th:

def

10th:

def

Specify the “!” operator to negate the match. For example,

none of the following awk commands generates any output

because the “!” operator negates a match with the string

abc:

$ echo "abc" | awk '{ if($1 != "abc") {print} }'

$ echo "abc" | awk '{ if($1 !~ "abc") {print} }'

$ echo "abc" | awk '{ if($0 !~ "abc") {print} }'

$ echo "abc" | awk '{ if($0 != "abc") {print} }'

Working with the -F Switch in awk

This section contains some simple examples involving text

strings and the awk command (the results are displayed

after each code snippet). The -F switch sets the field

separator to whatever follows it, in this case, a space.

Switches will often provide a shortcut to an action that

normally needs a command inside a ‘BEGIN{} block):

$ x="a b c d e"

$ echo $x |awk -F" " '{print $1}'

a

$ echo $x |awk -F" " '{print NF}'

5

$ echo $x |awk -F" " '{print $0}'

a b c d e

$ echo $x |awk -F" " '{print $3, $1}'

c a

$ echo $x |awk -F" " '{NF = 3; print}'

a b c

$ echo $x |awk -F" " '{$3="pasta"; print}'

a b pasta d e

Now let’s change the FS (record separator) to an empty

string to calculate the length of a string, this time using the

BEGIN{} code block:

$ echo "abcde" | awk 'BEGIN { FS = "" } ; { print

NF }'

5

The following example illustrates several equivalent ways to

specify test.txt as the input file for an awk command:

awk < test.txt '{ print $1 }'

awk '{ print $1 }' < test.txt

awk '{ print $1 }' test.txt

Yet another way is shown here (but as we have discussed

earlier, it can be inefficient, so only do it if the cat

command adds value in some way):

$ cat test.txt | awk '{ print $1 }'

Splitting Strings into Characters

The previous section contains several awk commands that

you can invoke from the command line. In addition, you can

place an awk command in a shell script. Listing 3.2 displays

the content of split_chars.sh that splits input strings into

a sequence of characters.

Listing 3.2: split_chars.sh

echo abc def ghi | awk '

BEGIN { FS = "" }

{

 for (i = 1; i <= NF; i++)

 print "Field", i, "is", $i

}

'

Listing 3.2 contains an echo command that passes a string

to the awk command, which in turn specifies an empty string

for the field separator FS. Next, the awk command contains

a loop that iterates through each input field. Since FS is

initialized as “”, the number of fields equals the number of

characters in the input to the awk command. Launch the

code in Listing 3.2, and you will see the following output:

Field 1 is a

Field 2 is b

Field 3 is c

Field 4 is

Field 5 is d

Field 6 is e

Field 7 is f

Field 8 is

Field 9 is g

Field 10 is h

Field 11 is i

Notice that the following awk command does not split the

input strings into a sequence of characters, even though the

-FS flag is included:

$ echo "abc def" |awk -FS='' '{print}'

abc def

In addition, this awk command will not split strings into

characters:

$ echo "abc def" |awk '{FS=""; print}'

abc def

Although we have not discussed conditional logic, it is easy

to understand that the content of Listing 3.3 enhances

Listing 3.2 by displaying a separating string of dashes and a

blank line after each input field.

Listing 3.3: split_chars2.sh

echo abc def ghi | awk '

BEGIN { FS = "" }

{

 for (i = 1; i <= NF; i++) {

 printf("Field %d is %s\n", i, $i)

 if($i == " ")

 print "--------\n"

 }

}

Listing 3.3 contains an echo command that passes a string

to the awk command, which in turn specifies an empty string

for the field separator FS. Next, the awk command contains

a loop that iterates through each input field. Since FS is

initialized as “”, the number of fields equals the number of

characters in the input to the awk command.

During each iteration through the loop, the current field

position and the value of the field is printed. There is also a

conditional statement that printed a sequence of dashes

(“-”) whenever the current character matches a single white

space. Launch the code in Listing 3.3, and you will see the

following output:

Field 1 is a

Field 1 is a

Field 2 is b

Field 3 is c

Field 4 is

Field 5 is d

Field 6 is e

Field 7 is f

Field 8 is

Field 9 is g

Field 10 is h

Field 11 is I

The PROCINFO Array

The PROCINFO built-in array enables you to check the type of

field splitting that is performed on input lines. Listing 3.4

displays the content of procinfo.sh that shows you how to

make this determination.

Listing 3.4: procinfo.sh

echo "abc" | awk '

{

 if (PROCINFO["FS"] == "FS")

 print "Regular field splitting"

 else if (PROCINFO["FS"] == "FIELDWIDTHS")

 print "Fixed-width field splitting"

 else if (PROCINFO["FS"] == "FPAT")

 print "Content-based field splitting"

 else

 print "API input parser field splitting"

}

'

Listing 3.4 contains a main execution block with conditional

logic to check which of the three possible values of

PROCINFO["FS"] is in effect.

The value of PROCINFO["FS"] is FS when regular field

splitting is being used, whereas the value of

PROCINFO["FS"] is FIELDWIDTHS if fixed-width field splitting

is being used, or FPAT if content-based field splitting is

being used. Launch the code in Listing 3.4, and you will see

the following output:

Regular field splitting

Ignore Case in awk

The command line utilities grep and sed support the “i”

option that performs a case insensitive match. The awk

utility uses the IGNORECASE option that is specified inside

the body of the awk command. Here is an example:

$ echo aBC |awk '{ IGNORECASE=1; if($0 ~ /abc/)

print $0}'

aBC

Although other languages such as Python and Java support

the switch i to indicate a case insensitive match, if you

specify /i/ in the awk command, no output is displayed:

echo aBC |awk '{ if($0 ~ /abc/i) print $0 }'

Another option is to use the lowercase() built-in function to

perform a case insensitive match, as shown here:

$ echo aBC |awk '{if(tolower($0) ~ /abc/) print

$0}'

aBC

If you want to check whether a string contains all uppercase

letters, you can use the following awk command:

$ echo ABC |awk '{if($0 ~ toupper($0)) print $0}'

ABC

If you want to check whether a string contains all lowercase

letters, you can use the following awk command:

$ echo abc |awk '{if($0 ~ tolower($0)) print $0}'

abc

Another option is to use the lowercase() built-in function to

perform a case insensitive match, as shown here:

$ echo aBC |awk'{if(tolower($0) ~ /abc/) print

$0}'

aBC

Working with OFS, ORS, and Linefeed versus

“\n”

The awk command provides the built-in variables OFS and

ORS to specify the output field separator and output record

separator, respectively, whose default values are shown in

the following listing. Listing 3.5 displays the content of

ofs_ors.sh that shows you how to use these variables.

Listing 3.5: ofs_ors.sh

echo "Default values for OFS and ORS:"

echo "abc def" | awk 'BEGIN { print "OFS =

",OFS,"x",

 " ORS = ", ORS,"x" }'

echo "output string followed by 2 blank lines:"

echo "abc def" | awk 'BEGIN { OFS = "#"; ORS =

"\n\n" }

 { print $1, $2 }'

echo

echo "output string followed by Z as line

separator:"

echo "abc def" | awk 'BEGIN { OFS = "#"; ORS = "Z"

}

 { print $1, $2 }'

echo

echo "output string followed by Z as line

separator:"

echo "abc def" | awk 'BEGIN { OFS = "#"; ORS = "Z"

}

 { print $1, $2, "three\nfour" }'

echo

Listing 3.5 contains four awk command that set the value of

OFS and ORS, which are the output field separators and

output records separators, respectively. The first awk

command displays their default values, whereas the second

awk command sets their values equal to “#” and “\n\n,”

respectively.

The third and fourth awk commands set their values equal

to “#” and “Z,” respectively, and then display different

output strings. Launch the code and you will see the

following output:

output string followed by 2 blank lines:

Default values for OFS and ORS:

OFS = x ORS =

x

abc#def

output string followed by Z as line separator:

abc#defZ

output string followed by Z as line separator:

abc#def#three

fourZ

Linefeed versus “\n”

The sequence “\n” is treated as two characters when they

are embedded in an input string, whereas the print() built-

in function of awk will treat “\n” as a linefeed, as shown

here:

$ awk 'BEGIN { print "one\ntwo\nthree" }'

one

two

three

The printf command in conjunction with awk produces the

desired result:

$ printf "one\ntwo\nthree" | awk '{print}'

one

two

three

The printf command treats “\n” as a newline, which is why

the following command generates three output lines:

$ printf "one\ntwo\nthree"

one

two

three

As a result, the earlier printf that pipes its output to the

awk command also displays three output lines. By contrast,

compare the preceding output with the output from the

following of awk command:

$ echo "one\ntwo\nthree" | awk '{print}'

one\ntwo\three

Moreover, an echo command with a string that contains

embedded “\n” sequences that is piped to the awk

command that specifies -F"\n" also does not work:

$ echo "one\ntwo\nthree" | awk -F"\n" '{print}'

one\ntwo\nthree

$ echo "one\ntwo\nthree" | awk -F"\\n" '{ print}'

one\ntwo\nthree

$ echo "one\ntwo\nthree" | awk -F"\\\\n" '{

print}'

one\ntwo\nthree

Basic awk Examples with Text Files

This section contains a collection of awk scripts that will

familiarize you with the diverse set of tasks that you can

perform via awk. Listing 3.6 displays the content of

employees.csv that will be used in the awk code samples in

this section.

Listing 3.6: employees.csv

empid,full_name,start_date,expenses

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

Notice the blank lines in Listing 3.6, which are included

because some of the awk commands in this section show

you how to handle files that contain blank lines.

Display the Contents of a File

There are two simple ways to display the contents of a file

using the awk command. One way to do so is shown here:

$ awk 1 employees.csv

Launch the preceding command in a command shell to

convince yourself that the output from the preceding

command is the content of employees.csv. The digit 1 can

be replaced by any positive value (including floating point

numbers) and the result is the same. If you replace 1 with 0,

then nothing is printed. If you replace 1 with a negative

number, you will see a list of command line switches for the

awk command.

Since the default action of awk is to print a line, another

way to display the contents of the CSV file employees.csv is

shown here:

$ awk '{print}' employees.csv

However, the following code snippet is invalid because there

is no action specified:

$ awk employees.csv

awk: cmd. line:1: employees.csv

awk: cmd. line:1: ^ syntax error

Omit the Header Line of a File

The header line in a text file (if it is present) is the first line,

which means that the value of the built-in variable NR equals

1. Therefore, the following example prints the contents of

the CSV file employees.csv without the header line:

$ awk 'NR>1' employees.csv

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

Display a Range of Lines in a Text File With NR

You have already seen how to display the contents of a text

file, and yet another way to do so is by specifying NR, as

shown here:

$ awk 'NR' employees.csv

If you want to skip the first 3 rows and display the remaining

rows in a text file, you can use this command:

$ awk 'NR > 3' employees.csv

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

The following awk snippet is a slightly longer version of the

preceding awk command that does the same thing:

$ awk 'NR > 3 { print }' employees.csv

awk '/start/,/stop/{if($0 ~ /stop/){print}; if($0

!~ /stop/)

 {printf $0" "}}' file

Display a Range of Lines Based on Strings

The preceding section uses the built-in NR variable to

display a range of lines, and the following awk command

specifies text strings as a range of rows to display:

$ awk '/two/,/three/ {print}' text_lines.txt

this is line two

this is line one

this is line three

Insert Blank Lines

You can print a blank line after each line of a file by

changing ORS from the default of one new line to two new

lines, as shown here:

cat columns.txt | awk 'BEGIN { ORS ="\n\n" } ; {

print $0 }'

Alternatively, you can include one or more print (or

printf) statements in the body of an awk script, depending

on the number of blank lines that you want to appear in the

output after each input line. In fact, you can use conditional

logic to print a different number of blank lines after a given

input line.

Remove Blank Lines

The following code snippet prints lines that are not blank:

$ awk 'NF' employees.csv

empid,full_name,start_date,expenses

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

Specifying the Number of Fields

The following code snippet prints the number of fields in

each line:

awk '{print NF,":",$0}' employees.csv

1 : empid,full_name,start_date,expenses

2 : 1000,Jane Jones,12/05/2021,93.55

0 :

2 : 2000,John Smith,03/08/2020,87.23

0 :

2 : 3000,Dave Stone,07/15/2022,84.16

The following code snippet specifies “,” as the field delimiter

and also prints the number of fields in each line:

$ awk -F"," '{print NF,":",$0}' employees.csv

4 : empid,full_name,start_date,expenses

4 : 1000,Jane Jones,12/05/2021,93.55

0 :

4 : 2000,John Smith,03/08/2020,87.23

0 :

4 : 3000,Dave Stone,07/15/2022,84.16

The following code snippet prints the rows that contain more

than 2 fields:

$ awk -F"," '{if(NF > 2) print NF,":",$0}'

employees.csv

4 : empid,full_name,start_date,expenses

4 : 1000,Jane Jones,12/05/2021,93.55

4 : 2000,John Smith,03/08/2020,87.23

4 : 3000,Dave Stone,07/15/2022,84.16

Here is another way to write the preceding awk command

that is simpler to read:

$ awk -F"," '

{

 if(NF > 2)

 print NF,":",$0

}

' employees.csv

The following awk command also includes the record

number and the fields number using NR and NF,

respectively:

$ awk -F"," '

{

 if(NF > 2)

 print "Record",NR, "Field Count",NF,":",$0

}

' employees.csv

The output from the preceding awk command is shown here:

Record 1 Field Count 4 :

empid,full_name,start_date,expenses

Record 2 Field Count 4 : 1000,Jane

Jones,12/05/2021,93.55

Record 4 Field Count 4 : 2000,John

Smith,03/08/2020,87.23

Record 6 Field Count 4 : 3000,Dave

Stone,07/15/2022,84.16

Changing the Field Separator FS

The following code snippet uses the sed command to

generate a set of rows in which the “,” separator has been

replaced with a “#” field separator:

$ cat employees.csv |sed "s/,/#/g"

empid#full_name#start_date#expenses

1000#Jane Jones#12/05/2021#93.55

2000#John Smith#03/08/2020#87.23

3000#Dave Stone#07/15/2022#84.16

The following awk command displays a set of rows whose

field separator is a “#” symbol instead of a “,” symbol:

$ awk 'BEGIN { FS=","; OFS="#" } NF { print $1, $3

}' employees.csv

empid#start_date

1000#12/05/2021

2000#03/08/2020

3000#07/15/2022

The preceding awk command contains hard-coded fields,

whereas Listing 3.7 displays the content of

replace_delimiters.sh that shows you how to replace the

“,” delimiter with a “#” for text files that contain an

arbitrary number of fields.

Listing 3.7: replace_delimiters.sh

replace field delimiter "," with "#"

awk -F"," '

{

 for(i=1; i<=NF; i++) {

 printf("%s#",$i)

 }

 print ""

}

' employees.csv

Listing 3.7 contains an awk command that specifies a

comma “,” as a field separator. The main execution block is

a loop that iterates through each field in the current input

line. During each iteration the current field is printed, along

with a “#” character. Launch the code in Listing 3.6, and

you will see the following output:

empid#full_name#start_date#expenses#

1000#Jane Jones#12/05/2021#93.55#

2000#John Smith#03/08/2020#87.23#

3000#Dave Stone#07/15/2022#84.16#

The output from Listing 3.6 contains a trailing “#” character

that we can remove as follows:

$./replace_delimiter.sh |sed "s/#$//"

empid#full_name#start_date#expenses

1000#Jane Jones#12/05/2021#93.55

2000#John Smith#03/08/2020#87.23

3000#Dave Stone#07/15/2022#84.16

Listing 3.8 displays the content of

replace_delimiters2.sh that shows you how to replace

the “,” delimiter with a “#” for text files that contain an

arbitrary number of fields.

Listing 3.8: replace_delimiters2.sh

use a "@" as a field delimiter:

awk -F'[:#|^]'

'{printf("%s@%s@%s@%s\n",$1,$2,$3,$4)}'

 delimiter1.txt

use a space as a field delimiter:

#awk -F'[:#|^]' '{print $1, $2, $3, $4}'

delimiter1.txt

Listing 3.8 contains an awk command that specifies the

characters “:,” “#,” “|,” and “^” as field delimiters for the

input lines. The main execution block is a print()

statement that prints the fields $1, $2, $3, and $4 with an

“@” as a field delimiter. The second awk command has been

commented out, and the only difference is that a white

space is the field delimiter instead of an “@” character.

Launch the code in Listing 3.7, and then launch the code in

Listing 3.8, and you will see the following output:

1000@Jane@Edwards@Sales

2000@Tom@Smith@Development

3000@Dave@Del Ray@Marketing

Exclude Fields

The following code snippet excludes the third column:

$ awk '{$3=""; print $0}' FILE

Print all the other columns, but not the first and the second

ones:

$ awk '{$1=$2=""; print $0}' FILE

The following code snippet prints the even-numbered rows:

$ awk -F"," '{if (NR % 2 == 0) print}'

employees.csv

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

The following code snippet prints the even-numbered fields:

$ awk -F"," '{print $2,$4}' employees.csv

full_name expenses

Jane Jones 93.55

John Smith 87.23

Dave Stone 84.16

The following code snippet prints the even-numbered fields

in non-blank rows:

$ awk -F"," '{if(NF > 0) print $2,$4}'

employees.csv

full_name expenses

Jane Jones 93.55

John Smith 87.23

Dave Stone 84.16

The preceding code snippets only print the second and

fourth fields, whereas Listing 3.9 displays the content of

even_fields.sh, which prints the even-numbered fields for

rows that contain any number of fields.

Listing 3.9: even_fields.sh

awk -F"," '

{

 for(i=1; i<=NF; i+=2) {

 printf("%s:",$i)

 }

 print

}

' employees.csv

#one-line version:

#awk -F"," ' { for(i=1; i<=NF; i+=2) {

printf("%s:",$i) } print } ' employees.csv

Listing 3.9 contains an awk command that specifies a

comma (“,”) for the field separator. Next, the awk command

contains a loop that iterates through each input field and

uses the printf() statement to print the contents of the

even-numbered fields. Notice that the bottom line of code

specifies the CSV file employees.csv as the input file.

Launch the code in Listing 3.9, and you will see the

following output:

empid:start_date:empid,full_name,start_date,expens

es

1000:12/05/2021:1000,Jane Jones,12/05/2021,93.55

2000:03/08/2020:2000,John Smith,03/08/2020,87.23

3000:07/15/2022:3000,Dave Stone,07/15/2022,84.16

Listing 3.10 displays the content of even_fields2.sh that

prints the even-numbered fields for non-empty rows that

contain any number of fields.

Listing 3.10: even_fields2.sh

awk -F"," '

{

 if(NF > 0) {

 for(i=1; i<=NF; i+=2) {

 printf("%s:",$i)

 }

 print

 }

}

' employees.csv

Listing 3.10 contains almost the same code as Listing 3.9:

the only difference is that Listing 3.10 skips the first row of

the input file employees.csv. Launch the code in Listing

3.10, and you will see the following output:

empid:start_date:empid,full_name,start_date,expens

es

1000:12/05/2021:1000,Jane Jones,12/05/2021,93.55

2000:03/08/2020:2000,John Smith,03/08/2020,87.23

3000:07/15/2022:3000,Dave Stone,07/15/2022,84.16

Switch Adjacent Fields

Listing 3.11 displays the content of switch_fields.sh that

switches adjacent fields in employees.csv.

Listing 3.11: switch_fields.sh

switch adjacent fields

awk -F"," '

{

 if(NF > 0) {

 for(i=1; i<=NF; i+=2) {

 printf("%s#%s#",$(i+1),$i)

 }

 print ""

 }

}

' employees.csv

Listing 3.11 is similar to Listing 3.10, except that every field

is printed, along with a “#” as a field delimiter because of

the following code snippet:

printf("%s#%s#",$(i+1),$i)

Launch the code in Listing 3.10, and you will see the

following output:

full_name#empid#expenses#start_date#

Jane Jones#1000#93.55#12/05/2021#

John Smith#2000#87.23#03/08/2020#

Dave Stone#3000#84.16#07/15/2022#

Display Fields in Reverse Order

The following code snippet displays the fields in

employees.csv in reverse order:

$ awk -F"," '{print $4,$3,$2,$1}' employees.csv

expenses start_date full_name empid

93.55 12/05/2021 Jane Jones 1000

87.23 03/08/2020 John Smith 2000

84.16 07/15/2022 Dave Stone 3000

The following code snippet displays the fields of the non-

empty rows in employees.csv in reverse order:

$ awk -F"," '{if(NF > 0) print $4,$3,$2,$1}'

employees.csv

expenses start_date full_name empid

93.55 12/05/2021 Jane Jones 1000

87.23 03/08/2020 John Smith 2000

84.16 07/15/2022 Dave Stone 3000

The preceding examples contain hard-coded field values,

whereas Listing 3.12 will work for rows that contain any

number of fields.

Listing 3.12: reverse_fields.sh

print non-empty rows in reverse order

awk -F"," '

{

 if(NF > 0) {

 for(i=NF; i>=1; i--) {

 printf("%s,",$i)

 }

 print ""

 }

}

' employees.csv

Listing 3.12 reverses the order in which the fields of an input

line are printed because the for loop iterates from NF to 1,

as shown here:

for(i=NF; i>=1; i--) {

 printf("%s,",$i)

}

Launch the code in Listing 3.12, and you will see the

following output:

expenses,start_date,full_name,empid,

93.55,12/05/2021,Jane Jones,1000,

87.23,03/08/2020,John Smith,2000,

84.16,07/15/2022,Dave Stone,3000,

Notice that the rows in the preceding output have a trailing

“,” character, which we can remove by piping the output

from Listing 3.12 to the sed command, as shown here:

$./reverse_fields.sh |sed "s/,$//"

expenses,start_date,full_name,empid

93.55,12/05/2021,Jane Jones,1000

87.23,03/08/2020,John Smith,2000

84.16,07/15/2022,Dave Stone,3000

Count Non-Empty and Empty Rows

The following code snippet counts the number of non-empty

rows in employees.csv:

$ awk '/./ { count+=1 } END { print "Non-empty

rows:",count }' employees.csv

Non-empty rows: 4

The preceding awk command uses the metacharacter “.” to

match a single character, which means that the variable

count (whose initial value is 0 by default) is incremented for

each line that contains at least one character.

The following awk command counts the number of empty

lines:

$ awk '/^$/ { count+=1 } END { print "Empty

rows:",count }'

 employees.csv

Empty rows: 2

Detecting Transfer Protocols

Listing 3.13 displays the contents of protocols.txt, and

Listing 3.14 displays the contents of awk_protocols.sh

Listing 3.13: protocols.txt

http

https

ftp

Listing 3.14: awk_protocols.sh

awk '{ if ($1 ~ /http/) print "HTTP-like

protocol"}'

 protocols.txt

awk '{ if ($1 ~ /^http$/) print "Only HTTP

protocol"}'

 protocols.txt

awk '{ if ($1 ~ /http|https|ftp/) print $1}'

protocols.txt

Listing 3.14 contains three awk command, where the first

one prints a message if $1 matches the string http. The

second awk command checks if an input line starts with the

string https, after which another message is displayed. The

third awk command checks if $1 matches any of the three

strings in the pattern http|https|ftp, and then prints

another string if a match is successful. Note that the text file

protocol.txt is specified as the input file for each of the

three awk commands. Launch the code in Listing 3.14, and

you will see the following output:

Listing 3.14: awk_protocols.sh

HTTP-like protocol

HTTP-like protocol

Only HTTP protocol

http

https

Detecting Number Formats

Listing 3.15 displays the contents of numbers.txt, and

Listing 3.16 displays the contents of awk_numbers.sh.

Listing 3.15: numbers.txt

FA13

1234

192.168.12.40

Listing 3.16: awk_numbers.sh

awk '

{

 if($1 ~ /^[0-9]+$/) { print

"Decimal: ",$1}

 else if ($1 ~ /^[A-F|0-9]+$/) { print

"Hexadecimal:",$1}

 else if ($1 ~ /^[0-9]{3}.[0-9]{3}.[0-9]{2}.[0-9]

{2}$/) {

 print "IPV4: ",$1

 }

}

' numbers.txt

Listing 3.16 contains an awk command that contains if-else

logic to make comparisons of $1 with various patterns. The

first pattern is ^[0-9]+$, which matches any line that

consists exclusively of decimal digits. If a match occurs,

then a message is displayed.

The second code snippet contains the pattern ^[A-F|0-

9]+$, which matches any line that consists of any

combination of decimal digits and the uppercase letters A

through F, inclusive. This pattern matches any hexadecimal

number with an arbitrary number of digits.

The third pattern matches an IP address with a format

that involves a decimal delimiter that follows three digits,

another set of three digits, and then a pair of digits, which is

followed by another pair of digits. Note that a matching digit

is a hexadecimal digit. Launch the code, and you will see

the following output:

Hexadecimal: FA13

Decimal: 1234

IPV4: 192.168.12.40

Working with Record Lengths

Recall that the file text_lines.txt contains the following

data:

this is line one

this is line two

this is line one

this is line three

this is line four

The following awk command displays the lengths of each

line in text_lines.txt:

awk '{print length($0), $0}' text_lines.txt

16 this is line one

16 this is line two

16 this is line one

18 this is line three

17 this is line four

The following awk command displays all the lines whose

length is greater than 20:

$ awk 'length($0) > 16' text_lines.txt

this is line three

this is line four

The following awk command displays the length of the

longest line in text_lines.txt:

$ awk '{ if (length($0) > max) max = length($0) }

 END { print max }' text_lines.txt

18

The following awk command is a variation of the preceding

awk command that includes a comment:

$ awk '{ if (x < length($0)) x = length($0) }

 END { print "The longest line length = " x }'

 text_lines.txt

The longest line length = 18

The following awk command displays the total file size in the

current directory:

$ ls -l * | awk '{ x += $5 } END { print "total

bytes: " x }'

total bytes: 6572358

Aligning Text with the printf() Statement

Since awk is a programming language inside a single

command, it also has its own way of producing formatted

output via the printf() statement.

Listing 3.17 displays the contents of columns2.txt, and

Listing 3.18 displays the content of the shell script

AlignColumns1.sh that shows you how to align the columns

in a text file.

Listing 3.17: columns2.txt

one two

three four

one two three four

five six

one two three

four five

Listing 3.18: AlignColumns1.sh

awk '

{

 # left-align $1 on a 10-char column

 # right-align $2 on a 10-char column

 # right-align $3 on a 10-char column

 # right-align $4 on a 10-char column

 printf("%-10s*%10s*%10s*%10s*\n", $1, $2, $3,

$4)

}

' columns2.txt

Listing 3.18 contains a printf() statement that displays

the first four fields of each row in the file columns2.txt,

where each field is 10 characters wide.

The output from launching the code in Listing 3.18 is

here:

one * two* * *

three * four* * *

one * two* three* four*

five * six* * *

one * two* three* *

four * five* * *

Keep in mind that printf() is reasonably powerful and as

such has its own syntax, which is beyond the scope of this

chapter. A search online can find the manual pages and also

discussions of “how to do X with printf().”

Working with Loops in awk

The awk command supports the following types of loops:

for

while

do-while

The following subsections contain examples of each type of

loop in the preceding list.

A for Loop in awk

Listing 3.19 displays the content of Loop.sh that illustrates

how to print a list of numbers in a loop. Note that “i++” is

another way of writing “i=i+1” in awk (and most C-derived

languages).

Listing 3.19: Loop.sh

echo "" | awk '

BEGIN {}

{

 for(i=0; i<5; i++) {

 printf("%3d", i)

 }

}

END { print "\n" }

'

Listing 3.19 contains a for loop that prints numbers on the

same line via the printf() statement. Notice that a new

line is printed only in the END block of the code. The output

from Listing 3.19 is here:

0 1 2 3 4

Exponents in a for Loop

Listing 3.20 displays the content of awk-for-loop.sh that

shows you how to use a for loop in awk.

Listing 3.20: awk-for-loop.sh

echo "" | awk '

BEGIN {

 for(i=1; i<=10; i++)

 print "The cube of", i, "is", i*i*i;

} '

as a single line awk command:

awk 'BEGIN { for(i=1; i<=10; i++) print "The

cube of", i,

"is", i*i*i;}'

Listing 3.20 contains an awk command that starts with a

BEGIN block with a loop that iterates through the values

between 1 and 10, inclusive. Each iteration prints the value

of the loop variable as well as the cube of the loop variable.

Launch the code in Listing 3.20, and you will see the

following output:

The cube of 1 is 1

The cube of 2 is 8

The cube of 3 is 27

The cube of 4 is 64

The cube of 5 is 125

The cube of 6 is 216

The cube of 7 is 343

The cube of 8 is 512

The cube of 9 is 729

The cube of 10 is 1000

A for Loop with a break Statement

Listing 3.21 displays the content of awk-loop-break.sh that

illustrates how to use a break statement in a for loop in

awk.

Listing 3.21: awk-loop-break.sh

echo "" | awk '

{

 for(x=1; x<4; x++) {

 print "x:",x

 if(x == 2) {

 break;

 }

 }

}

'

The preceding code block prints output only until the

variable x has the value 2, after which the loop exits

(because of the break statement inside the conditional

logic). The following output is displayed:

x:1

x:2

Working with while Loops in awk

Listing 3.22 displays the content of awk-while-loop.sh that

shows you how to use a while loop in awk.

Listing 3.22: awk-while-loop.sh

echo "" | awk '

BEGIN {

 x=1; max=10

 while(1) {

 print "The cube of",x,"is",x*x*x

 if (x == max) break; x++;

 }

}'

as a single line awk command:

awk 'BEGIN { for(i=1; i<=10; i++) print "The

cube of", i,

"is", i*i*i;}'

Listing 3.22 contains an awk command with a BEGIN block

that initializes the variables x and max to 1 and 10,

respectively. Next, a while loop prints the value of x and x

cubed, and then increments the value of x. When x reaches

the value 10, an if statement causes the loop to terminate.

Launch the code in Listing 3.22, and you will see the

following output:

The cube of 1 is 1

The cube of 2 is 8

The cube of 3 is 27

The cube of 4 is 64

The cube of 5 is 125

The cube of 6 is 216

The cube of 7 is 343

The cube of 8 is 512

The cube of 9 is 729

The cube of 10 is 1000

A do-while Loop in awk

Listing 3.23 displays the content of awk-dowhile.sh that

shows you how to use a do-while loop in awk.

Listing 3.23: awk-dowhile.sh

echo "" | awk '

{

 x = 0

 do {

 print "x:",x

 x = x + 1

 } while(x < 4)

}

'

The preceding code block generates the following output:

x:0

x:1

x:2

x:3

Conditional Logic and Control Statements

Like other programming languages, awk provides support for

conditional logic (if/else) and control statements (for/while

loops). Listing 3.24 shows you how to use if/else logic.

Listing 3.24: if-else.sh

echo "" | awk '

BEGIN { x = 10 }

{

 if (x % 2 == 0) {

 print "x is even"

 }

 else {

 print "x is odd"

 }

}

'

The preceding code block initializes the variable x with the

value 10 and prints “x is even” if x is divisible by 2;

otherwise, it prints “x is odd.”

The break, continue, and next Keywords in awk

The following code snippet illustrates how to use next and

continue in a for loop in awk:

awk '

{

 /expression1/ { var1 = 5; next }

 /expression2/ { var2 = 7; next }

 /expression3/ { continue }

 // some other code block here

' somefile

When the current line matches expression1, then var1 is

assigned the value 5 and awk reads the next input line:

hence, expression2 and expression3 will not be tested. If

expression1 does not match and expression2 does

match, then var2 is assigned the value 7 and then awk will

read the next input line. If only expression3 results in a

positive match, then awk skips the remaining block of code

and processes the next input line.

Listing 3.25 displays the contents of next_lines.txt,

and Listing 3.26 displays the content of next_lines.sh that

illustrates the effect of the next keyword in an awk

command.

Listing 3.25: next_lines.txt

one two

one two three

one two three four

Listing 3.26: next_lines.sh

echo "" | awk '

{

 if($1 ~ /one/) {

 print "Skipping line:", NR

 next

 }

 print "lines containing 'one' are skipped"

}

' next_lines.txt

Listing 3.26 contains an echo command that passes an

empty string to the awk command, which in turn contains a

conditional statement that checks whether $1 matches the

string one. If there is a match, then a message is displayed,

and the next keyword causes awk to process the next input

line. Since every line in next_lines.txt contains the string

one, the second print statement will not be executed.

Launch the code in Listing 3.26, and you will see the

following output:

Skipping line: 1

Skipping line: 2

Skipping line: 3

Listing 3.27 displays the content of control_flow1.sh that

illustrates the effect of the break, continue, and next

keywords in a loop.

Listing 3.27: control_flow1.sh

echo "" | awk '

{

 printf("all values: ")

 for(i=0; i<5; i++) {

 printf("%s ",i)

 }

 print ""

 printf("break keyword: ")

 for(i=0; i<5; i++) {

 printf("%s ",i)

 if(i == 2)

 break

 }

 print ""

 printf("continue keyword: ")

 for(i=0; i<5; i++) {

 printf("%s ",i)

 if(i == 2)

 continue

 }

 print ""

 printf("next keyword: ")

 for(i=0; i<5; i++) {

 printf("%s ",i)

 if(i == 2)

 next

 }

 print ""

}

'

Listing 3.27 contains a for loop that prints numbers on the

same line via the printf() statement. Notice that a new

line is printed only in the END block of the code. The output

from Listing 3.27 is here:

all values: 0 1 2 3 4

break keyword: 0 1 2

continue keyword: 0 1 2 3 4

next keyword: 0 1 2

Listing 3.28 displays the content of control_flow2.sh that

places the conditional logic before the printf() statement

in each loop in Listing 3.28.

Listing 3.28: control_flow2.sh

echo "" | awk '

{

 printf("all values: ")

 for(i=0; i<5; i++) {

 printf("%s ",i)

 }

 print ""

 printf("break keyword: ")

 for(i=0; i<5; i++) {

 if(i == 2)

 break

 printf("%s ",i)

 }

 print ""

 printf("continue keyword: ")

 for(i=0; i<5; i++) {

 if(i == 2)

 continue

 printf("%s ",i)

 }

 print ""

 printf("next keyword: ")

 for(i=0; i<5; i++) {

 if(i == 2)

 next

 printf("%s ",i)

 }

 print ""

}

'

Listing 3.28 contains a for loop that prints numbers on the

same line via the printf() statement. Notice that a new

line is printed only in the END block of the code. The output

from Listing 3.28 is here:

all values: 0 1 2 3 4

break keyword: 0 1

continue keyword: 0 1 3 4

next keyword: 0 1

The exit Keyword

Listing 3.29 displays the content of exit_keyword.sh that

shows you how to use a while loop in awk.

Listing 3.29: exit_keyword.sh

echo "" | awk '

{

 for(i=1;i<10;i++) {

 if(i==1)

 exit 2

 elif(i==2)

 exit 4

 elif(i==3)

 exit 8

 print(i)

}

'

Listing 3.29 contains a for loop that iterates from 1 to 9

inclusive. prints numbers on the same line. Notice that when

the loop variable I equals 1, 2, or 4 that an exit statement

is executed with the values 2, 4, and 8, respectively. By

contrast, all the other values of the loop variable i are

printed. Now, launch the following command:

$./exit_keyword.sh; echo "rc=$?"

The output from the preceding command is shown here:

2

Conditionally Displaying Fields

Listing 3.30 displays the content of

conditional_fields1.sh that shows you how to use a

while loop in awk.

Listing 3.30: conditional_fields1.sh

awk '

{

 for (j=1; j<=NF; j++) {

 if (j < 3)

 continue

 printf("%s ", $j)

 }

}

' columns4.txt

Listing 3.30 contains an awk command with a for loop that

processes every field of every input line. If the value of the

loop variable j is less than 3, then the code simply returns

to the for statement and processes the next field. If j is not

less than 3, then the value of the current field is printed.

The file columns4.txt is specified for the input to the awk

command. Launch the code in Listing 3.26, and you will see

the following output:

TWO four THREE FOUR six three

Listing 3.31 displays the content of

conditional_fields2.sh that shows you how to use a

while loop in awk.

Listing 3.31: conditional_fields2.sh

awk '

{

 for (j=1; j<=NF; j++) {

 if (j < 3)

 continue

 printf("%s ", $j)

 if (j == NF) {

 print ""

 }

 }

}

' columns4.txt

Listing 3.31 contains an awk command that contains a for

loop that processes every field of every input line. If the

value of the loop variable j is less than 3, then the code

simply returns to the for statement and processes the next

field. If j is not less than 3, then the value of the current

field is printed. In addition, if the value of j equals the value

of NF, then a new line is printed. The file columns4.txt is

specified for the input to the awk command. Launch the

code in Listing 3.31, and you will see the following output:

TWO

four

THREE FOUR

six

three

Abcd

Logical Operators in awk

The logical operators &&, ||, and ! represent AND, OR, and

NOT, respectively. These operators are useful for creating

compound expressions to select a subset of the rows in a

text file that satisfy a set of logical criteria. For example, the

following code snippet uses || to exclude rows 2 and 3:

$ awk 'NR < 2 || NR > 4' employees.csv

empid,full_name,start_date,expenses

3000,Dave Stone,07/15/2022,84.16

The following code snippet uses && to display only rows 2, 3,

and 4:

$ awk 'NR > 1 && NR < 5' employees.csv

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

The following code snippet displays all rows except the

second row:

$ awk 'NR != 1' employees.csv

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

The following code snippet displays all rows that are not

greater than 2 (i.e., the first and second rows):

$ awk '!(NR > 2)' employees.csv

empid,full_name,start_date,expenses

1000,Jane Jones,12/05/2021,93.55

Logical Operators and Partial Matches

The preceding section showed you how to compose simple

expressions using logical operators, and this section

contains examples that combine logical operators with

partial matches.

For example, the following awk command matches the

rows in employees.csv whose name starts with the letter J:

$ awk -F"," '{if($2 ~ /J/) print}' employees.csv

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

The following awk command matches the rows in

employees.csv whose name do not start with the letter J:

$ $ awk -F"," '{if(($2 !~ /J/)&&(NF > 1)) print}'

employees.csv

empid,full_name,start_date,expenses

3000,Dave Stone,07/15/2022,84.16

The following awk command matches the rows in

employees.csv whose name starts with the letter J and

ends with the letter h:

$ awk -F"," '{if($2 ~ /J/ && ($2 ~ /h/)) print}'

employees.csv

2000,John Smith,03/08/2020,87.23

The following awk command matches the rows in

employees.csv whose name starts with the sequence Jan:

$ awk -F"," '{if($2 ~ /Jan/) print}' employees.csv

1000,Jane Jones,12/05/2021,93.55

The following awk command matches the rows in

employees.csv whose name starts with the letter J and

whose empid is greater than 1000:

$ awk -F"," '{if($2 ~ /J/ && ($1 > 1000)) print}'

employees.csv

1000,Jane Jones,12/05/2021,93.55

The following awk command matches the rows in

employees.csv whose name starts with the letter J or

whose empid is greater than 1000:

$ awk -F"," '{if($2 ~ /J/ || ($1 > 1000)) print}'

employees.csv

empid,full_name,start_date,expenses

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

The following awk command matches the rows in

employees.csv whose name starts with the letter J and

whose empid is greater than 2000 or whose empid equals

3000:

$

awk -F"," '{if(($2 ~ /J/ && ($1 > 1000))|| ($1 ==

"3000")) print}' employees.csv

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

The && operator has higher precedence than the ||

operator, which means that the following awk command has

the same output as the preceding awk command:

$

awk -F"," '{if($2 ~ /J/ && ($1 > 1000)|| ($1 ==

"3000"))

 print}' employees.csv

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

However, the following does require the given parentheses

if you want to perform the || operation separate from the

&& operation (and the output is different):

$ awk -F"," '{if($2 ~ /J/ && (($1 > 1000)|| ($1 ==

"3000")))

 print}' employees.csv

2000,John Smith,03/08/2020,87.23

The following awk command matches the rows in

employees.csv whose name starts with either Jane or John:

$ awk -F"," '{if($2 ~ /Jane|John/) print}'

employees.csv

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

In addition, you can display blank lines with the following

awk command:

$ awk -F"," '{if(NF == 0) print}' employees.csv

Invert the logic in the preceding awk command to display

the non-blank lines with the following awk command:

$ awk -F"," '{if(NF != 0) print}' employees.csv

empid,full_name,start_date,expenses

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

Remove the header line in the preceding output with the

following awk command:

$ awk -F"," '{if((NF != 0) && (NR > 1)) print}'

employees.csv

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

Count the number of non-blank data lines with the following

awk command:

$ awk -F"," '{if((NF != 0) && (NR > 1)) count++}

END { print count}' employees.csv

3

Checking for Leap Years

A nice example of nested conditional statements involves

checking for leap years. Listing 3.32 displays the contents of

dates.txt, and Listing 3.33 displays the content of

leap_years.sh that shows you how to determine whether a

year is a leap year.

Listing 3.32: dates.txt

02/29/2000

02/29/2002

03/15/1900

12/08/1904

Listing 3.33: leap_year.sh

######################################

check for leap years

given a date mm/dd/yyyy

if year % 4 == 0:

if year % 100 == 0:

if year % 400 == 0:

print date,"is a leap year"

else:

print date,"is not a leap year"

else:

print date,"is not a leap year"

######################################

cat dates.txt | awk -F"/" '

{

 date=$0

 month=substr($0,1,2)

 day=substr($0,4,2)

 year=substr($0,7,4)

 print "month:",month,"day:",day,"year:",year

 if(year % 4 == 0) {

 if(year % 100 == 0) {

 if(year % 400 == 0) {

 print date,"is a leap year A"

 } else {

 print date,"is not a leap year B"

 if((day == 29) && (month == 2)) {

 print date,"is an invalid date ***"

 }

 }

 } else {

 print date,"is not a leap year C"

 if((day == 29) && (month == 2)) {

 print date,"is an invalid date ***"

 }

 }

 } else {

 print date,"is not a leap year D"

 if((day == "29") && (month == "02")) {

 print date,"is an invalid date ***"

 }

 }

 print "-------------\n"

}

'

Listing 3.33 contains an initial command block with

pseudocode that specifies how to determine whether a

positive integer is a leap year. The awk command in Listing

3.33 contains the implementation of the pseudocode, and

also specifies the file dates.txt as the input to the awk

command.

Notice that there are four print statements that have one

of the letters A, B, C, or D in the final portion of the output:

these have been included just to show the logical path of

execution that leads to the determination of whether a

given year is a leap year. Launch the code in Listing 3.33,

and you will see the following output:

Field 1 is a

month: 02 day: 29 year: 2000

02/29/2000 is a leap year A

month: 02 day: 29 year: 2002

02/29/2002 is not a leap year D

02/29/2002 is an invalid date ***

month: 03 day: 15 year: 1900

03/15/1900 is not a leap year B

month: 12 day: 08 year: 1904

12/08/1904 is not a leap year C

Formatting Output

The awk command supports several types of output formats.

The following list shows you the different format options

that are available and a brief description of their purpose:

%a, %A: prints a floating point number with C99

hexadecimal floating point format

%c: prints a number as a character

%d, %i: prints a decimal integer

%e, %E: prints a number in scientific (exponential)

notation

%f: prints a number in floating point notation

%F: similar to $f (POSIX extension)

%g, %G: prints a number in scientific notation or

floating point notation

%o: prints an unsigned octal integer

%s: prints a string

%u: prints an unsigned decimal integer

%x, %X: prints an unsigned hexadecimal integer

Listing 3.34 displays the content of formats.sh that shows

you how an integer is displayed using different formats

(many outputs are the same).

Listing 3.34: formats.sh

echo "123" | awk '

{

 print "=> number:",$0

 printf("a: %a\n", $0)

 printf("A: %A\n", $0)

 printf("c: %c\n", $0)

 printf("d: %d\n", $0)

 printf("e: %e\n", $0)

 printf("f: %f\n", $0)

 printf("F: %F\n", $0)

 printf("g: %g\n", $0)

 printf("G: %G\n", $0)

 printf("i: %i\n", $0)

 printf("o: %o\n", $0)

 printf("s: %s\n", $0)

 printf("u: %u\n", $0)

 printf("x: %s\n", $0)

 printf("X: %X\n", $0)

}

'

Listing 3.34 contains a set of printf() statements that

specify different formats for displaying the contents of $0,

which in this example is a string. Launch the code in Listing

3.34, and you will see the following output:

=> number: 123

a: 0x1.ecp+6

a: 0X1.ECP+6

c: {

d: 123

e: 1.230000e+02

f: 123.000000

F: 123.000000

g: 123

G: 123

i: 123

o: 173

s: 123

u: 123

x: 123

X: 7B

Listing 3.35 is similar to Listing 3.34, except that the input

$0 is a floating point number instead of a string.

Listing 3.35: formats2.sh

echo "123.45" | awk '

{

 print "=> number:",$0

 printf("a: %a\n", $0)

 printf("c: %c\n", $0)

 printf("d: %d\n", $0)

 printf("e: %e\n", $0)

 printf("f: %f\n", $0)

 printf("F: %F\n", $0)

 printf("g: %g\n", $0)

 printf("G: %G\n", $0)

 printf("i: %i\n", $0)

 printf("o: %o\n", $0)

 printf("s: %s\n", $0)

 printf("u: %u\n", $0)

 printf("x: %s\n", $0)

 printf("X: %X\n", $0)

}

'

Launch the code in Listing 3.35, and you will see the

following output:

=> number: 123.45

a: 0x1.edccccccccccdp+6

c: {

d: 123

e: 1.234500e+02

f: 123.450000

F: 123.450000

g: 123.45

G: 123.45

i: 123

o: 173

s: 123.45

u: 123

x: 123.45

X: 7B

Listing 3.36 displays the content of formats3.sh that shows

you how to perform left and right alignment for output

strings and numbers.

Listing 3.36: formats3.sh

awk '{ printf("%-10s\n", $1) }' thousands.txt

echo

awk '{ printf("%+10s\n", $1) }' thousands.txt

echo

awk '{ printf("%+10.5s\n", $1) }' thousands.txt

echo

awk '{ printf("%+10.5f\n", $1) }' thousands.txt

echo

Listing 3.36 contains four awk commands that print the rows

in the text file thousands.txt using different formats. The

first awk command specifies a left-justified format whereas

the second awk command specifies a right-justified format.

The third awk command also specifies a right-justified

format, with a decimal position for strings, which does not

affect the output. The fourth awk command specifies a left-

justified format for numbers, so the decimal position

appears in the output. Now launch the code, and you will

see the following output:

10

100

1000

10000

1000000

10000000

 10

 100

 1000

 10000

 1000000

 10000000

 10

 100

 1000

 10000

 10000

 10000

+10.00000

+100.00000

+1000.00000

+10000.00000

+1000000.00000

+10000000.00000

Floating Point Output

Listing 3.37 displays the content of numeric_strings.txt

that contains floating point numbers.

Listing 3.37: numeric_strings.txt

3.5

3.12

3.123

Listing 3.38 displays the content of numeric_strings1.sh

that illustrates how to add the rows of numbers in Listing

3.37.

Listing 3.38: numeric_strings.sh

#######################################

the format string specifies:

%f = format a floating point value

06 = 6 character field padded with leading

zeroes

.1 = 1 digit after the decimal point

.2 = 2 digits after the decimal point

.3 = 3 digits after the decimal point

#######################################

echo "" | awk '

{

 printf("%f :%06.1f\n", $1,$1)

 printf("%f :%06.2f\n", $1,$1)

 printf("%f :%06.3f\n", $1,$1)

 print "----------\n"

}

' numeric_strings.txt

Listing 3.38 contains three printf() statements that

specify slightly different floating point formats for each

floating point number in the file numeric_strings.txt.

Launch the code in Listing 3.38, and you will see the

following output:

3.500000 :0003.5

3.500000 :003.50

3.500000 :03.500

3.500000 : 3.5

3.500000 : 3.50

3.500000 : 3.500

3.120000 :0003.1

3.120000 :003.12

3.120000 :03.120

3.120000 : 3.1

3.120000 : 3.12

3.120000 : 3.120

3.123000 :0003.1

3.123000 :003.12

3.123000 :03.123

3.123000 : 3.1

3.123000 : 3.12

3.123000 : 3.123

Listing 3.39 displays the content of numeric_strings.txt

that contains floating point numbers.

Listing 3.39: numeric_strings2.txt

8.120

8.1230

8.12340

8.000

8.0000

1.

2.

3.

4.

5.

6.

7.

Listing 3.40 displays the content of numeric_strings1.sh

that illustrates how to add the rows of numbers in Listing

3.39.

Listing 3.40: numeric_strings2.sh

awk '/^[0-9]+[.][0-9][1-9]*0/'

numeric_strings2.txt

Listing 3.35 contains an awk command that involves the

following regular expression:

The left-most character is a digit, followed by

One or more digits may appear, followed by

A plus sign, followed by

A decimal point, followed by

A digit in the range [0-9], followed by

Zero or more digits, followed by

Terminating in the digit 0

Now launch the code in Listing 3.40, and you will see the

following output:

8.120

8.1230

8.12340

Inserting a Thousands Separator

Listing 3.41 displays the content of thousands.txt that

contains floating point numbers.

Listing 3.41: thousands.txt

10

100

1000

10000

1000000

10000000

Listing 3.42 displays the content of thousands-

separator.sh that illustrates how to round each number in

Listing 3.41.

Listing 3.42: thousands-separator.sh

awk '

{

 len=length($0); result="";

 for (i=0;i<=len;i++) {

 TH=substr($0,len-i+1,1) TH; if (i > 0 && i <

len && i % 3 == 0) { TH = "," TH }

 }

 printf("Initial: %10d formatted: %s\n",$0,TH)

}' thousands.txt

Listing 3.42 contains an awk command that initializes the

variables len and result with the length of the input string

and the “” string, respectively. The next portion is a loop

with a loop variable i that varies from 0 to the value of len,

inclusive. During each iteration, the variable TH is pre-

pended with the character in position len-i+1 of $0, as

shown here:

TH=substr($0,len-i+1,1) TH

If the loop variable i is between 0 and len (exclusive) and it

is also a multiple of three, then TH is pre-pended with a

comma (“,”). Notice that the loop proceeds in a right-to-left

fashion while processing the characters in the input string

$0, which is the manner in which commas are correctly

inserted into a positive integer. The final code snippet prints

the contents of the input string $0 and the formatted

version of $0 (i.e., as a comma-separated number). Launch

the code in Listing 3.42, and you will see the following

output:

Initial: 10 formatted: 10

Initial: 100 formatted: 100

Initial: 1000 formatted: 1,000

Initial: 10000 formatted: 10,000

Initial: 1000000 formatted: 1,000,000

Initial: 10000000 formatted: 10,000,000

Scientific Notation

Listing 3.43 displays the content of scientific1.sh that

illustrates how to work with scientific notation.

Listing 3.43: scientific1.sh

echo "=> 12.34e-5:"

echo 12.34e-5 | awk '{printf("%.10f\n", $1)}'

echo 12.34e-5 | awk '{printf("%.10f\n", $1*1e4)}'

echo 12.34e-12 | awk '{printf("%.15f\n", $1*1e4)}'

echo

echo "=> 12.34e-12:"

echo 12.34e-12 | awk -M -v PREC=134

'{printf("%.40g\n", $1)}'

echo

specify 40 decimal digits:

echo "=> 12.34e-12:"

echo 12.34e-12 | awk -M -v PREC=134

'{printf("%.40f\n", $1)}'

echo

echo "=> 5.0000000000e+02:"

echo "5.0000000000e+02" | awk

'{printf("%d\n",$0);}'

echo

echo "=> 1.234567000e+02:"

echo "1.234567000e+02" | awk

'{printf("%0.2f\n",$0);}'

echo

extract the exponent value (can be done with

"cut"):

echo '=> 12.34e-12:'

echo '12.34e-12' |awk -F"e" '{ print "Base: " $1 "

exponent: " $2 }'

echo

Listing 3.43 contains 8 awk commands, each of which

demonstrates how to format the output of scientific

numbers using the floating point format that you have seen

in previous code samples in this chapter. Compare each awk

command with its corresponding output below. Launch the

code in Listing 3.43, and you will see the following output:

=> 12.34e-5:

0.0001234000

1.2340000000

0.000000123400000

=> 12.34e-12:

1.234e-11

=> 12.34e-12:

0.0000000000123400000000000000000000000000

=> 5.0000000000e+02:

500

=> 1.234567000e+02:

123.46

=> 12.34e-12:

Base: 12.34 exponent: -12

Listing 3.44 displays the contents of mixed_numbers.txt,

and Listing 3.45 displays the content of Listing 3.40 that

illustrates how to compare decimal numbers and numbers

with scientific notation.

Listing 3.44: mixed_numbers.txt

7E-1

7E-2

7E-3

40

4E1

4000

4E3

40000

4000000

4E6

40000000

4E7

Listing 3.45: scientific2.sh

echo "=> Less than 1E-2:"

awk '($1 + 0) < 1E-2' mixed_numbers.txt

echo

echo "=> Greater than 1E3:"

awk '($1 + 0) > 1E3' mixed_numbers.txt

Listing 3.45 contains two awk commands: the first command

prints the lines in mixed_numbers.txt whose value is less

than 1E-2, whereas the second command prints the lines in

mixed_numbers.txt whose value is greater than 1E3.

Launch the code in Listing 3.45, and you will see the

following output:

10

=> Less than 1E-2:

7E-3

=> Greater than 1E3:

4000

4E3

40000

4000000

4E6

40000000

4E7

100

1000

10000

1000000

10000000

Rounding and Truncating Numbers

Rounding a number involves finding the closest integer

value to the given number, whereas truncating a number

involves removing the decimal portion (if any) of a given

number.

Rounding Numbers

Listing 3.46 displays the content of rounding_numbers.txt

that contains floating point numbers.

Listing 3.46: rounding_numbers.txt

3.12

3.5

3.9

-4.3

-4.5

-4.9

Listing 3.47 displays the content of rounding_numbers.sh

that illustrates how to round each number in Listing 3.40.

Listing 3.47: rounding_numbers.sh

awk '

{

 print "number:",$0,"rounded:",int($1 + 0.5)

}

' rounding_numbers.txt

Listing 3.47 contains an awk command that prints the value

of an input floating point number and its rounded value,

which is calculated by invoking the built-in function int()

on the value of $0 + 0.5. Launch the code in Listing 3.47,

and you will see the following output:

number: 3.12 rounded: 3

number: 3.5 rounded: 4

number: 3.9 rounded: 4

number: -4.3 rounded: -3

number: -4.5 rounded: -4

number: -4.9 rounded: -4

Truncating Numbers

Listing 3.48 displays the content of

truncating_numbers.sh that illustrates how to round each

number in Listing 3.47.

Listing 3.48: truncating_numbers.sh

awk '

{

 print "number:",$0,"truncated:",int($1)

}

' rounding_numbers.txt

Listing 3.48 contains an awk command that prints the value

of an input floating point number and its rounded value,

which is calculated by invoking the built-in function int()

on the value of $0. Launch the code in Listing 3.48, and you

will see the following output:

number: 3.12 truncated: 3

number: 3.5 truncated: 3

number: 3.9 truncated: 3

number: -4.3 truncated: -4

number: -4.5 truncated: -4

number: -4.9 truncated: -4

Numeric Functions in awk

The int(x) function returns the integer portion of a number.

If the number is not already an integer, it falls between two

integers. Of the two possible integers, the function will

return the one closest to zero. This is different from a

rounding function, which chooses the closer integer.

For example, int(3) is 3, int(3.9) is 3, int(-3.9) is -3,

and int(-3) is -3 as well. An example of the int(x)

function in an awk command is here:

awk 'BEGIN {

 print int(3.534);

 print int(4);

 print int(-5.223);

 print int(-5);

}'

The output is here:

3

4

-5

-5

The exp(x) function gives you the exponential of x, or

reports an error if x is out of range. The range of values x

can have depends on your machine’s floating point

representation.

awk 'BEGIN{

 print exp(123434346);

 print exp(0);

 print exp(-12);

}'

The output is here:

inf

1

6.14421e-06

The log(x) function gives you the natural logarithm of x, if

x is positive; otherwise, it reports an error (inf means

infinity and nan in output means “not a number”).

awk 'BEGIN{

 print log(12);

 print log(0);

 print log(1);

 print log(-1);

}'

The output is here:

2.48491

-inf

0

nan

The sin(x) function gives you the sine of x, and cos(x)

gives you the cosine of x, with x in radians:

awk 'BEGIN {

 print cos(90);

 print cos(45);

}'

The output is here:

-0.448074

0.525322

The rand() function gives you a random number. The

values of rand() are uniformly-distributed between 0 and 1:

the value is never 0 and never 1.

Often, you want random integers instead. Here is a user-

defined function you can use to obtain a random

nonnegative integer less than n:

function randint(n) {

 return int(n * rand())

}

The product produces a random real number greater than 0

and less than n. We then make it an integer (using int)

between 0 and n - 1.

Here is an example where a similar function is used to

produce random integers between 1 and n:

awk '

Function to roll a simulated die.

function roll(n) { return 1 + int(rand() * n) }

Roll 3 six-sided dice and print total number of

points.

{

 printf("%d points\n",

roll(6)+roll(6)+roll(6))

}'

Note that rand() starts generating numbers from the same

point (or “seed”) each time awk is invoked. Hence, a

program will produce the same results each time it is

launched. If you want a program to do different things each

time it is used, you must change the seed to a value that

will be different in each run.

Use the srand(x) function to set the starting point, or

seed, for generating random numbers to the value x. Each

seed value leads to a particular sequence of “random”

numbers. Thus, if you set the seed to the same value a

second time, you will get the same sequence of “random”

numbers again. If you omit the argument x, as in srand(),

then the current date and time of day are used for a seed.

This is how to obtain random numbers that are

unpredictable. The return value of srand() is the previous

seed. This makes it easy to keep track of the seeds for use

in consistently reproducing sequences of random numbers.

The time() function (not in all versions of awk) returns

the current time in seconds since January 1, 1970. The

function ctime (not in all versions of awk) takes a numeric

argument in seconds and returns a string representing the

corresponding date, suitable for printing or further

processing.

The sqrt(x) function gives you the positive square root

of x. It reports an error if x is negative. Thus, sqrt(4) is 2.

awk 'BEGIN{

 print sqrt(16);

 print sqrt(0);

 print sqrt(-12);

}'

The output is here:

4

0

nan

Convert Base 10 to Binary

Listing 3.49 displays the contents of baseten.txt, and

Listing 3.50 displays the content of decimal2binary.sh that

shows you how to convert decimal numbers to binary

values.

Listing 3.49: baseten.txt

10

100

1234

1023

10000

Listing 3.50: decimal2binary.sh

awk '

function dec2bin(dec, bin) {

 while(dec) {

 bin = dec % 2bin

 dec = int(dec/2)

 }

 return(bin)

}

{

 dec = $0

 bin = dec2bin($0)

 printf("Decimal %6d = Binary %12d\n",dec, bin)

}' baseten.txt

Listing 3.50 contains an awk command that defines the

function dec2bin() that converts a decimal number to its

binary representation. This function contains a while loop

that computes the modulus of the input parameter dec

divided by 2. The result is either 0 or 1, which is then pre-

pended to the string bin (which is initially an empty string).

Next, the variable dec is divided by 2, and the process

repeats until dec has the value 0, at which point the while

loop is complete and the string bin is returned.

The next portion of Listing 3.50 initializes the variable dec

with the value of $0 and invokes the function dec2bin with

$0. The result is used to initialize the variable bin, after

which the decimal value and the binary value of $0 are

printed. Note that the input field for this awk command is

the file baseten.txt that is shown in Listing 3.50. Launch

the code in Listing 3.50, and you will see the following

output:

Decimal 10 = Binary 1010

Decimal 100 = Binary 1100100

Decimal 1234 = Binary 10011010010

Decimal 1023 = Binary 1111111111

Decimal 10000 = Binary 10011100010000

Built-In String Functions in awk

There are several string functions that are available in awk,

some of which are listed here:

toupper()

tolower()

substr()

split()

sub()

gsub()

getline()

match()

The functions toupper() and tolower() convert strings to

uppercase and lowercase, respectively. The substr()

function allows you to extract a substring of a string. The

split() function enables you to split a given string into

substrings that dynamically populate an array, after which

you can select different substrings from that array. Chapter

6 contains an example of using the substring() functions

on date fields. The sub() and gsub() functions enable you

to perform search-and-replace on strings, which is discussed

later in this chapter.

Convert Strings to Lowercase in awk

The following awk command uses the toupper() function to

convert all letters in employees.csv to uppercase letters:

$ awk '{$0 = tolower($0); print }' < employees.csv

EMPID,FULL_NAME,START_DATE,EXPENSES

1000,JANE JONES,12/05/2021,93.55

2000,JOHN SMITH,03/08/2020,87.23

3000,DAVE STONE,07/15/2022,84.16

Convert Strings to Uppercase in awk

The following awk command converts all letters in

employees.csv to uppercase letters:

$ awk '{$0 = toupper($0); print }' < employees.csv

empid,full_name,start_date,expenses

1000,jane jones,12/05/2021,93.55

2000,john smith,03/08/2020,87.23

3000,dave stone,07/15/2022,84.16

Convert Strings to Mixed Case in awk

Suppose that we want to capitalize the first letter of each

person’s first name. Since the first names in employees.csv

is already mixed case, let’s convert all letters to lowercase

using a combination of the tr command and awk, as shown

here:

$ cat employees.csv | tr [A-Z] [a-z]

empid,full_name,start_date,expenses

1000,jane jones,12/05/2021,93.55

2000,john smith,03/08/2020,87.23

3000,dave stone,07/15/2022,84.16

Now we can convert the first letter of each person’s name to

uppercase, and then append the remaining portion of each

person’s name, as shown here:

$ cat employees.csv | tr [A-Z] [a-z] | awk

 '{ $2 = toupper(substr($2,1,1)) substr($2,2) }

$2 }'

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

Counting Lines that Match a Character

You can count the number of lines that begin with a given

character, such as the following awk command that counts

the number of lines that start with the digit 1:

$ awk '/^1/ { count+=1 } END { print "Rows

starting with 1:",count }' employees.csv

Rows starting with 1: 1

The following awk command counts the number of lines that

start with the digit 1 or 2:

$ awk '/^[1|2]/ { count+=1 } END { print "Rows

starting with 1 or 2:",count }' employees.csv

Rows starting with 1 or 2: 2

The following awk command counts the number of non-

empty lines that do not start with the digit 1:

$ awk '/^[^1]/ { count+=1 } END { print "Rows not

starting with 1:",count }' employees.csv

Rows not starting with 1: 3

The following awk command counts the number of lines that

start with one or more digits, followed by a comma, followed

by the letter J:

$ awk '/^[0-9]+,J/ { count+=1 } END { print "Rows

starting with a J in the second field1:",count }'

employees.csv

Rows starting with a J in the second field1: 2

Working with the match() Function

The match() function enables you to determine the start

and end indices in which a string matches a regular

expression; if no match occurs, then the values 0 and -1 are

returned. Here are examples:

$ echo "abcdef" | awk '{ match($1, "bcd"); print

RSTART, RLENGTH}'

2 3

$ echo "abcdef" | awk '{ match($1, "zbcd"); print

RSTART, RLENGTH}'

0 -1

Listing 3.52 displays the contents of the text file days.txt,

and Listing 3.53 displays the contents of days.sh.

Listing 3.52: days.txt

echo

yesterday

today

tomorrow

day

this

Listing 3.53: days.sh

awk '{ match($1,"day");printf RSTART "," RLENGTH

"\n" }'

 days.txt

Listing 3.53 contains an awk command that invokes the

built-in match() function to check whether the value of $1

contains the string days. If so, then a printf statement

displays the start and end position of the string days in $1

via the built-in variables RSTART and RLENGTH, respectively.

Launch the code in Listing 3.53, and you will see the

following output:

7,3

3,3

0,-1

1,3

0,-1

Keep in mind that the first index value is 1 (not 0).

Characters and Hexadecimal Numbers in awk

The awk command works as expected with printable

characters and decimal-valued numbers. However, there are

some considerations involved when working with non-

printable characters and hexadecimal numbers, as

discussed in the following subsections.

Non-Printable Characters

Most of the code samples in this book involve printable

ASCII characters, which includes uppercase letters,

lowercase letters, digits, and punctuation characters. In

addition, sometimes you might encounter non-printable

characters in a text file, in which case you need special

character sequences to match those characters in a regular

expression. Specifically, use the following sequences:

\t for a tab character (ASCII 0x09)

\r for a carriage return (0x0D)

\n for a line feed (0x0A)

Hexadecimal Numbers

A hexadecimal number is specified with the prefix \0x or \x,

such as \xA for decimal 10 and \xF for decimal 15. Hence,

the number 255 is represented as \xFF.

Next, the echo and printf commands handle

hexadecimal numbers in a different manner, as shown here:

$ awk 'BEGIN {print "\x61"}'

a

$ printf '\x61' | awk '{print}'

a

However, the following does not work as desired:

$ echo '\x61' | awk '{print}'

\x61

A workaround involves using awk with the strtonum() and

substr() built-in functions, as shown here:

$ printf '%s\n' '\x61' | awk -n '{printf "%c\n",

strtonum("0x" substr($0,3))}'

a

The gawk command supports a command line switch for

processing hexadecimal numbers, as shown here:

$ echo 0x12345678 | gawk --non-decimal-data '{

printf "%s: %x\n", $1, $1 }'

0x12345678: 12345678

The awk command, and the gawk command without the

preceding command line switch, return the value 0:

$ echo 0x12345678 | awk '{ printf "%s: %x\n", $1,

$1 }'

0x12345678: 0

$ echo 0x12345678 | gawk '{ printf "%s: %x\n", $1,

$1 }'

0x12345678: 0

$ echo 0x12345678 | gawk '{ printf "%s: %x -

%x\n", $1, $1,

 $ strtonum($1) }'

0x12345678: 0 – 12345678

Summary

This chapter introduced the awk command, which is

essentially an entire programming language that is available

as a single Unix command, along with many awk-related

features.

Then you learned about while loops and for loops in awk

to manipulate the rows and columns in datasets. Next, you

saw how to use conditional logic in awk commands. In

addition, you learned how to delete lines and merge lines in

datasets, and also how to print the contents of a file as a

single line of text.

Furthermore, you saw how to use logical operators in awk,

as well as a code sample that shows you how to check

whether a positive integer is a leap year. Next, you learned

how to specify different types of format for output data, how

to work with floating point numbers, truncating and

rounding numbers, and numeric functions in awk.

In addition, you saw awk-based code samples for

converting strings to lowercase, uppercase, and mixed case.

Finally, you learned how to work with non-printable

characters and hexadecimal numbers in awk.

CHAPTER 4

WORKING WITH AWK, PART 2

This chapter is the second of three chapters that contains

examples of various features of the awk command.

The first part of this chapter shows you how to perform

operations with arrays, such as initializing them and

displaying their contents. You will also learn how to add the

numeric values in an array and how to determine the

maximum and minimum numeric value in an array. In

addition, you will see how to initialize multi-dimensional

arrays.

The second section shows you how to perform various

tasks with datasets, such as deleting alternate lines,

printing a range of strings or dates in a dataset, and joining

alternate lines. You will also learn how to work with

duplicate rows in a dataset and how to ensure uniformity of

data values.

The third section explains how to implement the bubble

sort and how to determine whether a pair of strings are

anagrams. You will also learn how to sort an array in linear

time, which is possible under certain conditions. In addition,

you will see how to perform a linear search and a binary

search via an iterative algorithm as well as a recursive

algorithm.

Working with Arrays in awk

This section contains several subsections that show you how

to perform various operations involving arrays, such as

initializing, deleting, and iterating through the contents of

an array via the awk command.

Initializing and Printing the Contents of an

Array

Listing 4.1 displays the content of simple_array1.sh that

shows you how to initialize an array and use a for loop to

iterate through the values.

Listing 4.1: simple_array1.sh

awk "" | awk '

BEGIN {

 arr[0] = 10; arr[1] = 20; arr[2] = 30;

 printf("Contents of array:\n")

 print("arr[0]:",arr[0])

 print("arr[1]:",arr[1])

 print("arr[2]:",arr[2])

 print("arr[3]:",arr[3])

 printf("Contents of array:\n")

 for (var in arr) {

 printf("%s ", arr[var])

 }

 print ""

}

'

Listing 4.1 contains an awk command with a BEGIN block

that starts with the initialization the array arr with three

numeric values. The next portion of the BEGIN block

contains a set of print statements that prints the value of

each element of the array arr. In addition, a for loop prints

the contents of the array arr as a single line. Launch the

code in Listing 4.1 as follows:

awk -f simple_array1.sh

The preceding command generates the following output:

Contents of array:

arr[0]: 10

arr[1]: 20

arr[2]: 30

arr[3]:

Contents of array:

10 20 30

Initializing and Deleting the Contents of an

Array

Listing 4.2 displays the content of delete_array1.sh that

shows you how to initialize an array and use a for loop to

iterate through the values.

Listing 4.2: delete_array1.sh

echo "" | awk '

 BEGIN {

 arr[0] = 10; arr[1] = 20; arr= 30;

 # method #1:

 delete arr[0];

 delete arr[1];

 delete arr[2];

 # method #2:

 #for (var in arr) {

 # delete arr[var]

 #}

 # method #3 using gawk:

 # delete arr

 print "Contents of array:"

 arr[0] = 10; arr[1] = 20; arr= 30;

 for (var in arr) {

 printf("%s ", arr[var])

 }

 print ""

 }

'

Listing 4.2 contains an awk command with a BEGIN block

that starts with the initialization the array arr with three

numeric values. The next portion of the BEGIN block

contains a set of delete statements that delete each

element of the array arr. In addition, a commented-out for

loop shows you a scalable way to delete the elements of the

array arr. Launch the code in Listing 4.2 as follows:

$ awk -f delete_arr1.sh

The preceding command generates the following output:

Contents of array:

arr[0]: 10

arr[1]: 20

arr[2]: 30

arr[3]:

Contents of array:

10 20 30

Adding an Array of Numbers

Listing 4.3 displays the content of sum_array1.sh that

shows you how to initialize an array with numbers and

calculate the sum of the numbers in the array.

Listing 4.3: sum_array1.sh

echo "" | awk '

note that arris not initialized:

BEGIN { arr[0] = 10; arr= 20; arr[3] = 30; }

{

 sum = 0

 for (idx=0; idx<length(arr); idx++) {

 sum += arr[idx]

 }

}

END { print "Sum of array elements:",sum }

'

Listing 4.3 contains an echo command that passes a string

to the awk command, which in turn contains a BEGIN block

that initializes the array arr with three numeric values.

Next, the main execution block initializes the variable sum

with the value 0, followed by a loop that iterates through

each element of the array arr and adds each value to the

variable sum. The final portion of Listing 4.3 contains an END

block that prints the value of the variable sum. Launch the

code in Listing 4.3, and you will see the following output:

Sum of array elements: 60

Find the Maximum and Minimum of an Array of

Numbers

Listing 4.4 displays the content of max_min_array1.sh that

shows you how to initialize an array with numbers and

calculate the sum of the numbers in the array.

Listing 4.4: max_min_array1.sh

echo "" | awk '

BEGIN { arr[0] = 10; arr[1] = 20; arr[2] = 30;

max=0; min=0}

{

 min = arr[0]

 max = arr[0]

 for (idx=1;idx<length(arr);idx++) {

 if(max < arr[idx]) {

 max = arr[idx]

 }

 if(min > arr[idx]) {

 min = arr[idx]

 }

 }

}

END { print "Max:",max,"min:",min}

'

Listing 4.4 contains an echo command that passes a string

to the awk command, which in turn contains a BEGIN block

that initializes the array arr with three numeric values. This

block also initializes the variables max and min with the

values 0 and 99999, respectively.

The next portion Listing 4.4 is the main execution block

that contains a loop that iterates through the elements of

the array arr. During each iteration, the value of max is

updated if the current field is larger than the value of max. In

addition, the value of min is updated if the current field is

smaller than the value of min.

The last portion of Listing 4.4 consists of an END block that

prints the values of the variables max and min. Launch the

code in Listing 4.4, and you will see the following output:

Max: 30 min: 10

Concatenating an Array of Strings

Listing 4.5 displays the content of concat_array1.sh that

shows you how to initialize an array with strings and

concatenate the strings in the array.

Listing 4.5: concat_array1.sh

echo "" | awk '

BEGIN { arr[0] = "abc"; arr[1] = "def"; arr[2] =

"ghi"; }

{

 concat = ""

 for (idx=0;idx<length(arr);idx++) {

 concat = concat arr[idx]

 }

}

END { print "Concatenated array elements:",concat}

'

Listing 4.5 contains an echo command that passes an

empty string to the awk command, which in turn contains a

BEGIN block that initializes the array arr with four strings.

The next portion Listing 4.5 is the main execution block that

initializes the variable concat as an empty string, followed

by a loop that iterates through the elements of the array

arr. During each iteration, the current array element is

appended to the string variable concat.

The last portion of Listing 4.5 consists of an END block that

prints the string of concatenated array values. Launch the

code in Listing 4.5, and you will see the following output:

Concatenated array elements: abcdefghi

Generating Arrays from Input Strings

Previous sections showed you how to initialize an array with

strings, and the following sections show you how to use the

split() function to populate an array with values.

The split() Function with Linefeed Strings

The following awk commands show you how to work with

input strings that appear to contain a linefeed character.

The first awk command treats “\n” as a sequence of two

distinct characters “\” and “\n:”

$ echo "AAA\nBBB" | awk -F"\\\\n" '{print $1}'

AAA\nBBB

The following command specifies “-e” for the echo

command, which treats the sequence “\n” as a linefeed,

after which the awk command treats its input string as two

strings on separate input lines:

$ echo -e "AAA\nBBB" | awk -F"\\\\n" '{print $1}'

AAA

BBB

The preceding technique also works correctly when there

are embedded spaces, as shown in these examples:

$ echo "AAA \n BBB" | awk '{split($0,a,"\\\\n");

print a[1]}'

AAA

$ echo "AAA \n BBB" | awk '{split($0,a,"\\\\n");

print a[2]}'

BBB

Another approach involves the split() function that splits

$0 based on an escaped character sequence, as shown

here:

$ echo "AAA\nBBB" | awk '{split($0,a,"\\\\n");

print a[1]}'

AAA

$ echo "AAA\nBBB" | awk '{split($0,a,"\\\\n");

print a[2]}'

BBB

However, the preceding escaped character sequence does

not work when it is specified in the -F switch:

$ echo "AAA\nBBB" | awk -F"\\\\n" '{print $1}'

AAA\nBBB

Using the split() Function with the case

Statement

Listing 4.6 displays the content of switch1.sh that shows

you how to process an array of characters and use the

switch statement to determine the value of each character.

Listing 4.6: switch1.sh

echo "" | awk '

BEGIN { split("abcdef",arr, "") }

{

 for (idx=0;idx<4;idx++) {

 ch = arr[idx]

 #print "Processing character:",ch

 switch (ch) {

 case "a": print "=> found a"; break

 case "b": print "=> found b"; break

 case "c": print "=> found c"; break

 default: break

 }

 }

}

'

Listing 4.6 contains an echo command that passes a string

to the awk command, which in turn contains a BEGIN block

that invokes the split() method on a specified string to

populate the array arr with each character in the input

string.

The next portion Listing 4.6 is the main execution block

that contains a loop that iterates through the elements of

the array arr. During each iteration, the current array

element (which is a single character) is processed in a

switch statement that prints a message whenever the

current character is either a, b, or c. Launch the code in

Listing 4.6, and you will see the following output:

=> found a

=> found b

=> found c

The patsplit() Function

The split() function involves a separator, whereas the

patsplit() function matches a pattern between

separators. The following example involves the split()

function:

$ echo 'spicy,food' | awk '{n = split($0,a,/,/);

for(i=1;i<=n;i++) print a[i]}'

spicy

food

By comparison, the following awk command contains the

patsplit() function:

$ echo 'spicy,food' | awk '{n =

patsplit($0,a,/[^,]*/); for(i=1;i<=n;i++) print

a[i]}'

spicy

food

Multi-Dimensional Arrays

Listing 4.7 displays the content of multi_dim_array1.sh

that shows you how to initialize a multi-dimensional array

and then display its contents.

Listing 4.7: multi_dim_array1.sh

echo "" | awk '

BEGIN {

 row=1; col=1;

 arr[1,1] = 10; arr[1,2] = 20; arr[1,3] = 30;

 print "Contents of array:"

 for (var in arr) {

 printf("%s ", arr[var])

 }

 print ""

 arr[2,1] = 10; arr[2,2] = 20; arr[2,3] = 30;

 arr[3,1] = 10; arr[3,2] = 20; arr[3,3] = 30;

 print "Contents of array:"

 for (var in arr) {

 printf("%s ", arr[var])

 }

 print ""

}

'

Listing 4.7 contains an awk command that contains a BEGIN

block that initializes the variables row and col with the

value 1, and then initializes the initial row in the array arr

with three integer values. The next portion Listing 4.7 is a

for loop that prints the content of the array arr, followed

by two code snippets that initialize the second and third

rows of the array arr. The last portion of the BEGIN block

displays a single line of output that consists of all the

elements in the array arr. Launch the code in Listing 4.7 as

follows:

awk -f multi_dim_array1.sh

The preceding command generates the following output:

Contents of array:

10 20 30

Contents of array:

10 20 30 10 20 30 10 20 30

Listing 4.8 displays the content of multi_dim_array2.sh

that shows you how to initialize a multi-dimensional array

and then display its contents.

Listing 4.8: multi_dim_array2.sh

BEGIN {

 row=1; col=1; maxrow=4; maxcol=4;

 for(row=1;row<maxrow;row++) {

 for(col=1;col<maxcol;col++) {

 arr[row,col] = row+col

 }

 }

 print "Contents of array:"

 for (var in arr) {

 printf("%s ", arr[var])

 }

 print ""

 print "Contents of array:"

 for(row=1;row<maxrow;row++) {

 for(col=1;col<maxcol;col++) {

 printf("%d ", arr[row,col])

 }

 print ""

 }

}

Listing 4.8 contains an awk command that contains a BEGIN

block that initializes the variables row and col with the

value 1, and then initializes the variables maxrow and

maxcol with the value 4. The next portion of the BEGIN block

contains a nested look that initializes each “cell” of the

array arr with the sum of the current values of the two loop

variables.

The next portion of the BEGIN block contains a loop that

invokes the printf() statement to display a one-line string

consisting of the values of the elements in the array arr.

The final portion of the BEGIN block contains a nested loop

that prints the contents of the array arr, where each row of

arr is displayed on a separate line. Launch the code in

Listing 4.8 as follows:

$ awk -f multi_dim_array1.sh

The preceding command generates the following output:

Contents of array:

3 4 5 4 5 6 2 3 4

Contents of array:

2 3 4

3 4 5

4 5 6

Listing 4.9 displays the content of multi_dim_array3.sh

that shows you how to initialize a multi-dimensional array

and then display its contents.

Listing 4.9: multi_dim_array3.sh

echo "" | awk '

BEGIN {

 row=1; col=1; maxrow=4; maxcol=4;

 for(row=1;row<maxrow;row++) {

 for(col=1;col<maxcol;col++) {

 arr[row,col] = row+col

 }

 }

 print "Contents of array:"

 for (var in arr) {

 printf("%s ", arr[var])

 }

 print ""

 print "Contents of array:"

 for(row=1;row<maxrow;row++) {

 for(col=1;col<maxcol;col++) {

 printf("%d ",arr[row,col])

 }

 print ""

 }

 print "Contents of array:"

 for(row=1;row<maxrow;row++) {

 for(col=1;col<maxcol;col++) {

 printf("%s ",arr[row,col])

 }

 print ""

 }

}

'

Listing 4.9 is almost the same as the contents of Listing 4.8.

The only difference is another nested loop that displays the

contents of the array arr via the printf() statement that

specifies each array element as a string. The output is the

same as the earlier nested loop that prints the elements of

the array arr as integer values. Launch the code in Listing

4.9 as follows:

$ awk -f multi_dim_array3.sh

The preceding command generates the following output:

Contents of array:

3 4 5 4 5 6 2 3 4

Contents of array:

2 3 4

3 4 5

4 5 6

Contents of array:

2 3 4

3 4 5

4 5 6

Higher Dimensionality Arrays

Listing 4.10 displays the content of multi_dim_array3.sh

that shows you how to initialize a multi-dimensional array

and then display its contents.

Listing 4.10: higher_dim_array1.sh

echo "" | awk '

 BEGIN {

 row=1; col=1; dep=1;

 maxrow=4; maxcol=4; maxdep=4;

 for(row=1;row<maxrow;row++) {

 for(col=1;col<maxcol;col++) {

 for(dep=1;dep<maxdep;dep++) {

 arr[row,col,dep] = row+col+dep

 }

 }

 }

 print "Contents of array:"

 for (var in arr) {

 printf("%s ", arr[var])

 }

 print ""

 print "Contents of array:"

 for(row=1;row<maxrow;row++) {

 for(col=1;col<maxcol;col++) {

 for(dep=1;dep<maxdep;dep++) {

 printf("%d ", arr[row,col,dep])

 }

 print ""

 }

 print "--------"

 }

 }

'

Listing 4.10 is similar to Listing 4.9, except that the nested

loops are replaced with triply-nested loops that initialize the

contents of the array arr. Launch the code in Listing 4.10 as

follows:

$ awk -f higher_dim_array1.sh

The preceding command generates the following output:

Contents of array:

8 5 9 5 6 5 6 7 6 7 3 7 4 5 6 6 7 7 8 4 8 4 5 5 6

6 7

Contents of array:

3 4 5

4 5 6

5 6 7

4 5 6

5 6 7

6 7 8

5 6 7

6 7 8

7 8 9

Calculating Invoice Totals (1)

This section contains examples of awk commands that

generate reports. Listing 4.11 displays the contents of

invoices.txt, and Listing 4.12 displays the content of

invoices_totals.txt that calculates totals for each

customer.

Listing 4.11: invoices.txt

1000,10000,01/02/2022,123.45

1000,10100,04/03/2022,456.78

1000,10200,06/05/2022,999.99

2000,20000,01/02/2022,100.45

2000,20100,02/03/2022,222.78

2000,20200,03/05/2022,333.99

3000,30000,02/02/2022,500.45

3000,30100,05/03/2022,666.78

3000,30200,08/05/2022,777.99

Listing 4.12: invoices_totals.sh

cust_id, purch_id, date, amount

awk -F"," '

{

 # add a customer id:

 #print "customer id:",$1

 cust_ids[$1] = $1;

 # increment invoice:

 #print "invoice:",$4

 cust_invoices[$1] += int($4)

}

END {

 printf("Customer Invoice\n")

 for (i in cust_ids) {

 printf("%5s:

%7.3f\n",cust_ids[i],cust_invoices[i])

 }

}

' invoices.txt

Listing 4.12 contains an awk command whose main

execution block sets the value of the arrays cust_ids and

cust_invoices equal to the values of $1 and $4,

respectively. The final portion of Listing 4.12 contains an END

block that contains a loop that iterates through the

elements of the array cust_ids to print the value of the

array element and the corresponding array element in the

array cust_invoices. Launch the code in Listing 4.12, and

you will see the following output:

Customer Invoice

1000: 1578.000

2000: 655.000

3000: 1943.000

Calculating Invoice Totals (2)

Listing 4.13 displays the content of invoice_totals2.sh

that extends the example in the previous section to provide

more report-related information.

Listing 4.13: invoices_totals2.sh

cust_id, purch_id, date, amount

awk -F"," '

{

 # add a customer id:

 cust_ids[$1] = $1;

 # increment invoice:

 cust_invoices[$1] += int($4)

 # current invoice date:

 min_inv_dates[$1] = $3

 max_inv_dates[$1] = $3

 if(min_inv[$1] == "") {

 min_inv[$1] = $4

 }

 if(int($4) < min_inv[$1]) min_inv[$1] = $4;

 if(int($4) > max_inv[$1]) max_inv[$1] = $4;

}

END {

 printf("Customer Invoice Minimum Maximum

 Min Date Max Date\n")

 for (i in cust_ids) {

 printf("%5s: %7.2f

%9.2f %9.2f",cust_ids[i],

cust_invoices[i],min_inv[i],max_inv[i])

 printf("%15s %9s\n",min_inv_dates[i],

 max_inv_dates[i])

 }

}

' invoices.txt

Listing 4.13 contains the same code as Listing 4.12, along

with additional code blocks for keeping track of the

minimum and maximum invoice dates in the arrays

min_inv_dates and max_inv_dates, respectively. A pair of

conditional code snippets keep track of the maximum and

minimum invoice quantities. Another pair of conditional

statements updates these values accordingly.

The final portion of Listing 4.13 is an END block that

iterates through the elements in the cust_ids array and

points the corresponding values in the arrays cust_id,

cust_invoices, min_inv, max_inv, min_inv_dates, and

max_inv_dates. Launch the code in Listing 4.13, and you

will see the following output:

Customer Invoice Minimum Maximum Min Date Max

Date

1000: 1578.00 123.45

999.99 06/05/2022 06/05/2022

2000: 655.00 100.45

333.99 03/05/2022 03/05/2022

3000: 1943.00 500.45

777.99 08/05/2022 08/05/2022

Calculating Invoice Averages

Listing 4.14 displays the content of invoice_averages.sh

that calculates the average invoice for each customer.

Listing 4.14: invoices_averages.sh

cust_id, purch_id, date, amount

awk -F"," '

{

 #print "customer id:",$1

 # add a customer id:

 cust_ids[$1] = $1;

 # increment # of invoices:

 cust_counts[$1]++

 # increment invoice:

 #print "invoice:",$4

 cust_invoices[$1] += int($4)

}

END {

 printf("Customer Invoice Average\n")

 for (i in cust_ids) {

 printf("%5s: %7.2f %7.2f\n",cust_ids[i],

cust_invoices[i],cust_invoices[i]/cust_counts[i])

 }

}

' invoices.txt

Listing 4.14 contains the same code as Listing 4.13, along

with a code snippet in the END block that prints the average

invoice for each customer. Launch the code in Listing 4.14,

and you will see the following output:

Customer Invoice Average

1000: 1578.00 526.00

2000: 655.00 218.33

3000: 1943.00 647.67

Counting Fields in Text Files

This section contains examples of awk commands that count

and compare the number of fields of the rows in text files.

Listing 4.15 displays the content of variable_fields.txt

that is used in the awk commands.

Listing 4.15: variable_lines.txt

this is a line

second line is here

new york manhattan

san francisco downtown

deep dish chicago pizza

short line

Displaying the Number of Fields in Text Files

Listing 4.16 displays the content of field_counts1.sh that

illustrates how to print the number of fields in a line and

then the line itself.

Listing 4.16: field_counts1.sh

print number of fields

awk '

{

 print "NF:",NF,$0

}

' variable_lines.txt

#one-line version:

#awk ' { print "NF:",NF,$0} }' variable_lines.txt

Listing 4.16 contains an awk command that prints the

number of fields in each row, along with the contents of

each row. Launch the code in Listing 4.16, and you will see

the following output:

NF: 4 this is a line

NF: 4 second line is here

NF: 3 new york manhattan

NF: 3 san francisco downtown

NF: 4 deep dish chicago pizza

NF: 2 short line

Listing 4.17 displays the content of field_counts2.sh that

illustrates how to print the number of fields in a line and

then the line itself.

Listing 4.17: field_counts2.sh

awk '

BEGIN { arr= ""; first_count = 0 }

{

 arr[NR] = $0

 if(NR == 1) {

 first_count = NF

 print "=> Length of first line:",NF

 }

 if(NF == first_count) {

 print "Line",NR,"matches field

count",first_count

 } else if (NF > first_count) {

 print "Line",NR,"is longer

than",first_count,":",NF

 } else {

 print "Line",NR,"is shorter

than",first_count,":",NF

 }

}

END {

 print "=> Initial array:"

 for (i=1; i<=NR; i++) {

 print "Row",i,arr[i]

 }

 print "=> Sorted array:"

 row_count = asorti(arr, sorted)

 for (i=1; i<=row_count; i++) {

 print sorted[i] ":" arr[sorted[i]]

 }

}

' variable_lines.txt

Listing 4.17 contains the code in Listing 4.16, along with

additional code blocks that update the array variable arr

with each input line, followed by a code snippet that keeps

track of the number of fields in the first input line, followed

by a conditional code block that checks the number of fields

in each subsequent input line. The conditional code block

also displays an appropriate message when the number of

fields in each input line is the same as the first input line, as

well as input lines that have more fields and input lines that

have fewer fields than the first input line.

The last portion of Listing 4.17 is an END block that

contains two loops: the first loop printed all the input lines,

and the second loop prints the input lines in sorted order.

Launch the code in Listing 4.17, and you will see the

following output:

=> Length of first line: 4

Line 1 matches field count 4

Line 2 matches field count 4

Line 3 is shorter than 4 : 3

Line 4 is shorter than 4 : 3

Line 5 matches field count 4

Line 6 is shorter than 4 : 2

=> Initial array:

Row 1 this is a line

Row 2 second line is here

Row 3 new york manhattan

Row 4 san francisco downtown

Row 5 deep dish chicago pizza

Row 6 short line

=> Sorted array:

1:this is a line

2:second line is here

3:new york manhattan

4:san francisco downtown

5:deep dish chicago pizza

6:short line

Deleting Alternate Lines in Datasets

Listing 4.18 displays the contents of linepairs.csv, and

Listing 4.19 displays the content of deletelines.sh that

illustrates how to print alternating lines from the dataset

linepairs.csv that have exactly two columns.

Listing 4.18: linepairs.csv

a,b,c,d

e,f,g,h

1,2,3,4

5,6,7,8

Listing 4.19: deletelines.sh

inputfile="linepairs.csv"

outputfile="linepairsdeleted.csv"

awk ' NR%2 {printf "%s", $0; print ""; next}' <

$inputfile > $outputfile

Listing 4.19 specifies NR%2 to determine whether the current

record number NR is divisible by 2, in which case it prints the

current line and then specifies next to skip the next line in

the dataset. The output is redirected to the specified output

file, the contents of which are here:

a,b,c,d

1,2,3,4

Print a Range of Strings in Datasets

Listing 4.20 displays the contents of report.txt, and

Listing 4.21 displays the content of line_range.sh that

prints a range of lines from a CSV file.

Listing 4.20: report.txt

This is a sample report.

Some relevant details were presented yesterday.

Several people likes to work from home.

However, some people prefer the office.

In addition, parking is easier now.

The WFM topic has different appeal.

Listing 4.21: line_range.sh

awk '

 /Some/,/However/ { print }

' report.txt

echo "--------------------------"

echo ""

awk '

{

 if(NR > 1 && NR < 3) { print }

}

' report.txt

Listing 4.21 contains an awk command whose execution

block specifies the pattern /Some/,/However/ that acts as

a start-end pair of strings: awk will print the contents of the

row that starts with the token Some and ends with the token

However, as well as all the rows (if any) between this pair of

rows.

The next portion of Listing 4.21 displays a string

consisting of “-,” followed by another awk command that

prints the value of $2 for text lines that contain exactly two

fields. Note that both awk commands process the text file

report.txt. Launch the code in Listing 4.21, and you will

see the following output:

Some relevant details were presented yesterday.

Several people like to work from home.

However, some people prefer the office.

Some relevant details were presented yesterday.

Keep in mind that the first row containing Some is the first

row that is printed, and the first row that contains However

is the last row that is printed. Just to be clear, the following

text block shows the matching rows in bold:

This is a sample report.

Some relevant details were presented yesterday.

Several people likes to work from home.

However, some people prefer the office.

In addition, parking is easier now.

The following rows (shown in bold) match the pattern

/Some/,/However/ :

Some sample report.

Some relevant details were presented yesterday.

Several people likes to work from home.

However, some people prefer the office.

In addition, parking is easier now.

The following rows (shown in bold) also match the pattern

/Some/,/However/ :

Some sample report.

Some relevant details were presented yesterday.

Several people like to work from home.

However, some people prefer the office.

However, this does not match the pattern.

In addition, parking is easier now.

The following rows (shown in bold) also match the pattern

/Some/,/However/ :

Some relevant details were presented yesterday.

However, some people prefer the office.

In addition, parking is easier now.

Print a Range of Dates in Datasets

Listing 4.22 displays the contents of dates2.txt, and

Listing 4.23 displays the contents of dates3.txt.

Listing 4.22: dates2.txt

01/31/1000

02/29/1200

07/15/1800

03/21/1900

12/08/1904

02/29/2000

03/31/2024

Listing 4.23: dates3.txt

01:31:1000

02:29:1200

07:15:1800

03:21:1900

12:08:1904

02:29:2000

03:31:2024

Listing 4.25 displays the content of date_range.sh that

prints a range of lines from two text files.

Listing 4.25: date_range.sh

echo "Date range from dates2.txt:"

awk '

 /02\/29\/1200/,/02\/29\/2000/ { print }

' dates2.txt

this will not work:

#awk '

#BEGIN { start_date = "/02\/29\/1200"

end_date = "/02\/29\/2000"

#}

#{

/start_date/,/end_date/ { print }

#' dates2.txt

echo

echo "Date range from dates3.txt:"

awk '

 /02:29:1200/,/02:29:2000/ { print }

' dates3.txt

Listing 4.25 contains an awk command whose execution

block specifies two date ranges in the pattern

/02\/29\/1200/,/02\/29\/2000/ that act as a start-end

pair of dates: awk will print the contents of the row that

matches the pattern /02\/29\/1200/ up to the line of text

that matches the pattern /02\/29\/2000/, as well as all the

rows (if any) between this pair of rows). Note that this awk

command process the text file dates2.txt.

The next portion of Listing 4.25 contains a commented-

out code block that is self-explanatory. The final portion of

Listing 4.25 is similar to the first awk command: the

difference is that the dates in the former use the “/”

delimiter, whereas the dates in the latter use a “:” delimiter.

Note that this awk command processes the text file

dates2.txt. Launch the code in Listing 4.25, and you will

see the following output:

Date range from dates2.txt:

02/29/1200

07/15/1800

03/21/1900

12/08/1904

02/29/2000

Date range from dates3.txt:

02:29:1200

07:15:1800

03:21:1900

12:08:1904

02:29:2000

A slightly more common task involves merging consecutive

lines, which is the topic of the next section.

Merging Lines in Datasets

Listing 4.26 displays the contents of columns.txt, and

Listing 4.27 displays the content of ColumnCount1.sh that

illustrates how to print the lines from the text file

columns.txt that have exactly two columns.

Listing 4.26: columns.txt

one two three

one two

one two three four

one

one three

one four

Listing 4.27: ColumnCount1.sh

awk '

{

 if(NF == 2) { print $0 }

}

' columns.txt

Listing 4.27 is straightforward: if the current record contains

an even number of fields, then the current line is printed

(i.e., odd-numbered rows are skipped). The output from

launching the code in Listing 4.27 is here:

one two

one three

one four

If you want to display the lines that do not contain 2

columns, use the following code snippet:

if(NF != 2) { print $0 }

Printing File Contents as a Single Line

The contents of test4.txt are here (note the blank lines):

abc

def

abc

abc

The following code snippet illustrates how to print the

contents of test4.txt as a single line:

$ awk '{printf("%s", $0)}' test4.txt

The output of the preceding code snippet is here. See if you

can tell what is happening before reading the explanation in

the next paragraph:

abcdefabcabc

Explanation: %s here is the record separator syntax for

printf() with an ending quotation mark after it, which

means the record separator is the empty field “”. Our

default record separator for awk is /n (newline), what the

printf is doing is stripping out all the new lines. The blank

rows will vanish entirely, as all they have is the new line, so

the result is that any actual text will be merged together

with nothing between them. Had we added a space between

the %s and the ending quotation mark, there would be a

space between each character block, plus an extra space for

each new line.

Notice how the following comment helps the

comprehension of the code snippet:

Merging all text into a single line by removing

the new lines

$ awk '{printf("%s", $0)}' test4.txt

Joining Groups of Lines in a Text File

Listing 4.28 displays the contents of digits.txt, and

Listing 4.29 displays the content of digits.sh that “joins”

three consecutive lines of text in the file digits.txt.

Listing 4.28: digits.txt

1

2

3

4

5

6

7

8

9

Listing 4.29: digits.sh

awk -F" " '{

 printf("%d",$0)

 if(NR % 3 == 0) { printf("\n") }

}' digits.txt

Listing 4.29 prints three consecutive lines of text on the

same line, after which a linefeed is printed. This has the

effect of “joining” every three consecutive lines of text. The

output from launching digits.sh is here:

123

456

789

Joining Alternate Lines in a Text File

Listing 4.30 displays the contents of columns2.txt, and

Listing 4.31 displays the content of JoinLines1.sh that

“joins” two consecutive lines of text in the file

columns2.txt.

Listing 4.30: columns2.txt

one two

three four

one two three four

five six

one two three

four five

Listing 4.31: JoinLines1.sh

awk '

{

 printf("%s",$0)

 if($1 !~ /one/) { print " " }

}

' columns2.txt

The output from launching Listing 4.11 is here:

one two three four

one two three four five six

one two three four five

Notice that the code in Listing 4.31 depends on the

presence of the string “one” as the first field in alternating

lines of text – we are merging based on matching a simple

pattern, instead of tying it to record combinations.

To merge each pair of lines instead of merging based on

matching a pattern, use the modified code in Listing 4.32.

Listing 4.32: JoinLines2.sh

awk '

BEGIN { count = 0 }

{

 printf("%s",$0)

 if(++count % 2 == 0) { print " " }

} columns2.txt

Yet another way to “join” consecutive lines is shown in

Listing 4.33, where the input file and output file refer to files

that you can populate with data. This is another example of

an awk command that might be a puzzle if encountered in a

program without a comment. It is doing exactly the same

thing as Listing 4.32, but its purpose is less obvious because

of the more compact syntax.

Listing 4.33: JoinLines2.sh

inputfile="linepairs.csv"

outputfile="linepairsjoined.csv"

$ awk ' NR%2 {printf "%s,", $0; next;}1' <

$inputfile > $outputfile

Reversing the Lines in a File

Listing 4.34 displays the contents of clients.csv, and

Listing 4.35 displays the content of reverse_file.sh that

shows you how to reverse the contents of a text file.

Listing 4.34: clients.csv

clientid,fname,lname,start_date,expenses

1000,Jane,Jones,12/05/2021,93.55

1100,John,Jones,12/05/2021,93.55

2000,John,Smith,03/08/2020,87.23

2100,Jane,Smith,03/08/2020,87.23

3000,Dave,Stone,07/15/2022,84.16

3100,Dave,Smith,07/15/2022,84.16

Listing 4.35: reverse_file.sh

awk '{ arr[idx++] = $0 }

END {

 for (j=idx-1; j>=0;) {

 print arr[j--]

 }

}

' clients.csv

The output from launching Listing 4.35 is here:

3100,Dave,Smith,07/15/2022,84.16

3000,Dave,Stone,07/15/2022,84.16

2100,Jane,Smith,03/08/2020,87.23

2000,John,Smith,03/08/2020,87.23

1100,John,Jones,12/05/2021,93.55

1000,Jane,Jones,12/05/2021,93.55

clientid,fname,lname,start_date,expenses

If you want to omit the header line from the output, then

use Listing 4.36.

Listing 4.36: reverse_file2.sh

awk '{

 if(NR > 1)

 arr[idx++] = $0

}

END {

 for (j=idx-1; j>=0;) {

 print arr[j--]

 }

}

' clients.csv

The output from launching Listing 4.36 is here:

3100,Dave,Smith,07/15/2022,84.16

3000,Dave,Stone,07/15/2022,84.16

2100,Jane,Smith,03/08/2020,87.23

2000,John,Smith,03/08/2020,87.23

1100,John,Jones,12/05/2021,93.55

1000,Jane,Jones,12/05/2021,93.55

Working with Duplicate Lines in a File

There are several operations that you can perform regarding

duplicate lines in a text file: you can display duplicate rows

and also remove duplicate rows, both of which are discussed

in the following subsections.

Display Duplicate Rows

The preceding example shows you how to find the unique

rows, and the code sample in Listing 4.37 in this section

shows you how to find the duplicate rows.

Listing 4.37: find-duplicates.sh

filename1="duplicates.csv"

sorted="sorted.csv"

unique="unique.csv"

multiple="multiple.csv"

sorted rows:

cat $filename1 | sort > $sorted

unique rows:

cat $sorted | uniq > $unique

duplicates rows:

diff -u $sorted $unique |sed -e '1,3d' -e 's/^

 //' -e 's/-//' > $multiple

Listing 4.37 starts by initializing several scalar variables as

filenames that will contain CSV-based data. The remaining

portion of Listing 4.37 consists of two statements with the

cat command and another statement with the diff

command that populate the following three CSV files with

data:

sorted.csv

unique.csv

multiple.csv

The first cat command pipes the contents of

duplicates.csv to the sort command that in turn populates

the CSV file sorted.csv, which contains the sorted set of

rows from duplicates.csv. In addition, the duplicate rows

(if any) in sorted.csv will appear as consecutive rows in

sorted.csv.

The second cat command pipes the contents of

sorted.csv to the uniq command that in turn populates

unique.csv with the unique rows from sorted.csv so that

the rows in the file unique.csv are unique.

Finally, the diff command highlights the differences in

the contents of sorted.csv and unique.csv. The output of

the diff command is input for the sed command, which

deletes the first three lines, removes leading white spaces,

and also removes any hyphen (“-”) characters. In addition,

the output of the diff command is redirected to the sed

command that does three things:

Remove the first three text lines

Remove an initial space character

Remove an initial “-” character

After the sed command has completed, the output is

redirected to the file $multiple that contains the duplicate

rows. Launch the code in Listing 4.37, and then inspect the

contents of multiple.csv that are shown here:

Female,16,150,0

Female,16,150,0

Female,17,170,0

Female,17,170,0

Male,15,180,0

Male,15,180,0

Male,19,160,0

Male,19,160,0

Male,19,190,0

Male,19,190,0

Remove Duplicate Rows

Data deduplication refers to the task of removing row-level

duplicate data values. Listing 4.38 displays the contents of

duplicates.csv, and Listing 4.39 displays the content of

duplicates.sh that removes the duplicate rows and

creates the CSV file no_duplicates.csv that contains

unique rows.

Listing 4.38: duplicates.csv

Male,19,190,0

Male,19,190,0

Male,15,180,0

Male,15,180,0

Female,16,150,0

Female,16,150,0

Female,17,170,0

Female,17,170,0

Male,19,160,0

Male,19,160,0

Listing 4.39: remove-duplicates.sh

filename1="duplicates.csv"

filename2="no_duplicates.csv"

cat $filename1 | sort |uniq > $filename2

Listing 4.39 is straightforward: after initializing the variables

filename1 and filename2 with the names of the input and

output files, respectively, the only remaining code snippet

contains the Unix pipe (“|”) with a sequence of commands.

The left-most command displays the contents of the input

file, which is redirected to the sort command that sorts the

input rows. The result of the sort command is redirected to

the uniq command, which removes duplicates rows, and

this result set is redirected to the file specified in the

variable filename2.

Keep in mind that the sort followed by uniq command is

required: this is how the uniq command can remove

adjacent duplicate rows. Launch the code in Listing 4.39,

and you will see the output that is displayed in Listing 4.40.

Listing 4.40: no_duplicates.csv

Male,19,190,0

Female,16,150,0

Female,17,170,0

Male,15,180,0

Male,19,160,0

Male,19,190,0

Male,19,190,0

Uniformity of Data Values

An example of uniformity of data involves verifying that the

data in a given feature contains the same units measure.

For example, the following set of values have numeric

values that are in a narrow range, but the units of measure

are incorrect:

50mph

50kph

100mph

20kph

Listing 4.41 displays the content of same_units.sh that

illustrates how to ensure that items in a set of strings have

the same unit of measure.

Listing 4.41: same_units.sh

strings="120kph 100mph 50kph"

new_unit="fps"

for x in ｀echo $strings｀
do

 number=｀echo $x | tr -d [a-z][A-Z]｀
 unit=｀echo $x | tr -d [0-9][0-9]｀
 echo "initial: $x"

 new_num="${number}${new_unit}"

 echo "new_num: $new_num"

 echo

done

Listing 4.41 starts by initializing the variables strings and

new_unit, followed by a for loop that iterates through each

string in the strings variable. During each iteration, the

variables number and unit are initialized with the characters

and digits, respectively, in the current string represented by

the loop variable x.

Next, the variable new_num is initialized as the

concatenation of the contents of number and new_unit.

Launch the code in Listing 4.41, and you will see the

following output:

initial: 120kph

new_num: 120fps

initial: 100mph

new_num: 100fps

initial: 50kph

new_num: 50fps

Count Duplicate Fields in a File

Listing 4.42 displays the content of duplicate_fields.sh

that shows you how to count duplicate fields in a text file.

Listing 4.42: duplicate_fields.sh

awk -F"," '

{

 #clientid,fname,lname,start_date,expenses

 if(NR > 1) {

 client_dups[$1]++;

 fname_dups[$2]++;

 lname_dups[$3]++;

 date_dups[$4]++;

 expense_dups[$5]++;

 }

}

END {

for(client_id in client_dups)

 print "client id:",client_id

print "-----------\n"

for(fname in fname_dups)

 print "fname:",fname,"count:

"fname_dups[fname]

print "-----------\n"

for(lname in lname_dups)

 print "lname:",lname,"count:

"lname_dups[lname]

print "-----------\n"

for(date in date_dups)

 print "date:",date,"count: "date_dups[date]

print "-----------\n"

}

' clients.csv

The output from launching Listing 4.42 is here:

client id : 1000

client id : 1100

client id : 2000

client id: 2100

client id : 3000

client id : 3100

fname: Dave count: 2

fname: John count: 2

fname: Jane count: 2

lname: Stone count: 1

lname: Smith count: 3

lname: Jones count: 2

date: 12/05/2021 count: 2

date: 03/08/2020 count: 2

date: 07/15/2022 count: 2

Calculating Invoice Totals

Listing 4.43 displays the contents of line_items.csv, and

Listing 4.44 displays the content of line_items.sh that

calculates the amount due for a purchase order.

Listing 4.43: line_items.csv

item,unit_price,quantity

toothpaste,2.50,5

towels,5.95,2

soap,3.95,6

plates,1.75,8

microwave,60.00,1

chairs,20.00,4

Listing 4.44: line_items.sh

awk -F"," '

BEGIN { total = 0 }

{

 #item,unit_price,quantity

 if(NR > 1) {

 print "Line item:",$0

 item_price = $2 * $3

 print "Item cost:",item_price

 total += item_price

 }

}

END {

print "Amount due:",total

}

' line_items.csv

Listing 4.44 contains an awk command that specifies a

common “,” as the field separator, followed by a BEGIN

block that initializes the variables total and col with the

value 0. The BEGIN block also contains conditional logic that

processes every line after the header line. Inside the

conditional block, the item_price is initialized as the

product of $2 and $3, then its value is printed, and then the

variable total is incremented with the value of item_price.

The final portion of Listing 4.44 contains an END block that

prints the value of total. Launch the code in Listing 4.44,

and you will see the following output:

Line item: toothpaste,2.50,5

Item cost: 12.5

Line item: towels,5.95,2

Item cost: 11.9

Line item: soap,3.95,6

Item cost: 23.7

Line item: plates,1.75,8

Item cost: 14

Line item: microwave,60.00,1

Item cost: 60

Line item: chairs,20.00,4

Item cost: 80

Amount due: 202.1

Printing Lines Using Conditional Logic

Listing 4.45 displays the content of products.txt that

contains three columns of information.

Listing 4.45: products.txt

MobilePhone 400 new

Tablet 300 new

Tablet 300 used

MobilePhone 200 used

MobilePhone 100 used

The following code snippet prints the lines of text in

products.txt whose second column is greater than 300:

$ awk '$2 > 300' products.txt

The output of the preceding code snippet is here:

MobilePhone 400 new

The following code snippet prints the lines of text in

products.txt whose product is “new:”

$ awk '($3 == "new")' products.txt

The output of the preceding code snippet is here:

MobilePhone 400 new

Tablet 300 new

The following code snippet prints the first and third columns

of the lines of text in products.txt whose cost equals 300:

$ awk ' $2 == 300 { print $1, $3 }' products.txt

The output of the preceding code snippet is here:

Tablet new

Tablet used

The following code snippet prints the first and third columns

of the lines of text in products.txt that start with the string

Tablet:

$ awk '/^Tablet/ { print $1, $3 }' products.txt

The output of the preceding code snippet is here:

Tablet new

Tablet used

Listing 4.46 displays the content of the file line-

numbers.sh in which the line number precedes the contents

of each line of a text file.

Listing 4.46: line-numbers.sh

awk '

{

 print NR, $0

}

' < columns.txt

the one-line version:

awk ' { print NR, $0 } ' < columns.txt

Listing 4.46 contains an awk command that prints each line

of text from the text file columns.txt, preceded by the row

number of each line of text. Launch the code in Listing 4.46,

and you will see the following output:

1 one two three

2 one two

3 one two three four

4 one

5 one three

6 one four

Listing 4.47 displays the content of the file field-

counts.sh in which each output line is preceded by the

number of fields in that output line.

Listing 4.47: field-counts.sh

awk '

{

 print NF, $0

}

' < columns.txt

the one-line version:

awk ' { print NF, $0 } ' < columns.txt

Listing 4.47 contains an awk command that prints each line

of text from the text file columns.txt, preceded by the row

number of each line of text. Launch the code in Listing 4.47,

and you will see the following output:

3 one two three

2 one two

4 one two three four

1 one

2 one three

2 one four

Listing 4.48 displays the content of the file character-

counts.sh in which each output line is preceded by the

number of characters in that output line.

Listing 4.48: character-counts.sh

awk '

{

 print NF, length($0), $0

}

' < columns.txt

the one-line version:

awk ' { print NF, length($0), $0 } ' <

columns.txt

Listing 4.48 contains an awk command that prints each line

of text from the text file columns.txt, preceded by the

number of characters in each line of text. Launch the code

in Listing 4.48, and you will see the following output:

3 13 one two three

2 7 one two

4 18 one two three four

1 3 one

2 9 one three

2 8 one four

Listing 4.49 displays the content of the file short-rows.sh

in which rows are printed if they do not have a sufficient

number of fields, which in this example is 3.

Listing 4.49: short-rows.sh

awk '

BEGIN {

 field_count = 3;

 print "Minimum number of fields:",field_count

}

{

 if(NF < field_count) {

 print NF, $0

 }

}

' < columns.txt

Listing 4.49 contains an awk command that contains a

BEGIN block that initializes the variables field_count with

the value 3, followed by a simple print statement. The main

execution block contains a conditional statement that prints

the number of fields and the contents of a text line, for each

line in the text file columns.txt that contains fewer than

field_count columns. Launch the code in Listing 4.49, and

you will see the following output:

Minimum number of fields: 3

2 one two

1 one

2 one three

2 one four

Duplicate and Unique Rows in Text Files

Listing 4.50 displays the contents of the text file

text_lines.txt.

Listing 4.50: text_lines.txt

this is line one

this is line two

this is line one

this is line three

this is line four

The next code snippet is an awk command that displays

duplicate lines in the text file text_lines.txt:

$ awk 'arr1[$0]++' text_lines.txt

this is line one

The preceding code snippet refers to a dynamically created

array called arr1 that is initially empty. During each “pass”

through text_lines.txt, the value of arr1[$0] is

incremented only when there is another matching line in the

file. Hence, arr1[$0] contains a non-empty value, which

can only occur if a duplicate row is detected.

The next code snippet is an awk command that displays

unique lines in text_lines.txt:

$ awk '!arr1[$0]++' text_lines.txt

this is line one

this is line two

this is line three

this is line four

The next code snippet is an awk command that counts the

number of unique lines in the text file text_lines.txt:

$ awk '!arr1[$0]++' text_lines.txt |wc -l

4

Listing 4.51 displays the contents of the text file

datapoints.txt.

Listing 4.51: datapoints.txt

item1,4,6

item2,5,5

item3,4,6

item4,7,9

item5,8,8

Listing 4.52 displays the content of duplicate-fields.sh

that shows you how to print the rows in which the second

and third fields are the same.

Listing 4.52: duplicate-fields.sh

awk -F ',' '

{

 if($2 == $3) {

 print "Duplicate fields in

row",NR,":",$1,$2,$3

 }

}' datapoints.txt

Listing 4.52 contains an awk statement that specifies a

common “,” as a field separator, followed by the main

execution block that prints the values of $1, $2, and $3 for

any row in the text file datapoint.txt in which the second

and third field values are equal. Launch the code in Listing

4.52, and you will see the following output:

Duplicate fields in row 2 : item2 5 5

Duplicate fields in row 5 : item5 8 8

Splitting Filenames with awk

Listing 4.53 displays the contents of SplitFilename2.sh

that illustrates how to split a filename containing the “.”

character to increment the numeric value of one of the

components of the filename. Note that this code only works

for a filename with exactly the expected syntax. It is

possible to write more complex code to count the number of

segments, or alternately to just say “change the field right

before the .zip,” which would only require the filename had

a format matching the final two sections

(<anystructure>.number.zip).

Listing 4.53: SplitFilename2.sh

echo "05.20.144q.az.1.zip" | awk -F"." '

{

 f5=$5 + 1

 printf("%s.%s.%s.%s.%s.%s",$1,$2,$3,$4,f5,$6)

}'

The output from Listing 4.48 is here:

05.20.144q.az.2.zip

One-Line awk Commands

The code snippets in this section reference the text file

short1.txt, which you can populate with any data of your

choice.

The following code snippet prints each line preceded by

the number of fields in each line:

$ awk '{print NF ":" $0}' short1.txt

Print the right-most field in each line:

$ awk '{print $NF}' short1.txt

Print the lines that contain more than 2 fields:

$ awk '{if(NF > 2) print }' short1.txt

Print the value of the right-most field if the current line

contains more than 2 fields:

$ awk '{if(NF > 2) print $NF }' short1.txt

Remove leading and trailing whitespaces:

$ echo " a b c " | awk '{gsub(/^[\t]+|[

\t]+$/,"");print}'

Print the first and third fields in reverse order for the lines

that contain at least 3 fields:

$ awk '{if(NF > 2) print $3, $1}' short1.txt

Print the lines that contain the string one:

$ awk '{if(/one/) print }' *txt

As you can see from the preceding code snippets, it is easy

to extract information or subsets of rows and columns from

text files using simple conditional logic and built-in variables

in the awk command.

Useful Short awk Scripts

This section contains a set of short awk -based scripts for

performing various operations. Some of these scripts can

also be used in other shell scripts to perform more complex

operations. Listing 4.54 displays the content of the file

data.txt that is used in various code samples in this

section.

Listing 4.54: data.txt

this is line one that contains more than 40

characters

this is line two

this is line three that also contains more than 40

characters

four

this is line six and the preceding line is empty

line eight and the preceding line is also empty

The following code snippet prints every line that is longer

than 40 characters:

awk 'length($0) > 40' data.txt

Now print the length of the longest line in data.txt:

awk '{ if (x < length()) x = length() }

END { print "maximum line length is " x }' <

data.txt

The input is processed by the expand utility to change tabs

into spaces, so the widths compared are actually the right-

margin columns.

Print every line that has at least one field:

$ awk 'NF > 0' data.txt

The output from the preceding code snippet shows you how

to create a file whose contents do not include blank lines.

Print seven random numbers from 0 to 100, inclusive:

$ awk 'BEGIN { for (i = 1; i <= 7; i++)

 print int(101 * rand()) }'

Count the lines in a file:

$ awk 'END { print NR }' < data.txt

Print the even-numbered lines in the data file:

$ awk 'NR % 2 == 0' data.txt

If you use the expression 'NR % 2 == 1' in the previous

code snippet, the program would print the odd-numbered

lines.

Insert a duplicate of every line in a text file:

$ awk '{print $0, '\n', $0}' < data.txt

Insert a duplicate of every line in a text file and also remove

blank lines:

$ awk '{print $0, "\n", $0}' < data.txt | awk 'NF

> 0'

Insert a blank line after every line in a text file:

$ awk '{print $0, "\n"}' < data.txt

Printing the Words in a Text String in awk

Listing 4.55 displays the content of Fields2.sh that

illustrates how to print the words in a text string using the

awk command.

Listing 4.55: Fields2.sh

echo "a b c d e"| awk '

{

 for(i=1; i<=NF; i++) {

 print "Field ",i,":",$i

 }

}

'

The output from Listing 4.55 is here:

Field 1 : a

Field 2 : b

Field 3 : c

Field 4 : d

Field 5 : e

Count Occurrences of a String in Specific Rows

Listing 4.56 and Listing 4.57 display the contents data1.csv

and data2.csv, respectively, and Listing 4.58 displays the

content of checkrows.sh that illustrates how to count the

number of occurrences of the string past in column 3 in

rows 2, 5, and 7.

Listing 4.56: data1.csv

in,the,past,or,the,present

for,the,past,or,the,present

in,the,past,or,the,present

for,the,paste,or,the,future

in,the,past,or,the,present

completely,unrelated,line1

in,the,past,or,the,present

completely,unrelated,line2

Listing 4.57: data2.csv

in,the,past,or,the,present

completely,unrelated,line1

for,the,past,or,the,present

completely,unrelated,line2

for,the,paste,or,the,future

in,the,past,or,the,present

in,the,past,or,the,present

completely,unrelated,line3

Listing 4.58: checkrows.sh

files="｀ls data*.csv| tr '\n' ' '｀"
echo "List of files: $files"

awk -F"," '

(FNR==2 || FNR==5 || FNR==7) {

 if ($3 ~ "past") { count++ }

}

END {

 printf "past: matched %d times (INEXACT) ",

count

 printf "in field 3 in lines 2/5/7\n"

}' data*.csv

Listing 4.58 looks for occurrences in the string past in

columns 2, 5, and 7 because of the following code snippet:

(FNR==2 || FNR==5 || FNR==7) {

 if ($3 ~ "past") { count++ }

}

If a match occurs, then the value of count is incremented.

The END block reports the number of times that the string

past was found in columns 2, 5, and 7. Note that strings

such as paste and pasted will match the string past. The

output from Listing 4.58 is here:

List of files: data1.csv data2.csv

past: matched 5 times (INEXACT) in field 3 in

lines 2/5/7

The shell script checkrows2.sh replaces the term $3 ~

"past" with $3 == "past" in checkrows.sh to check for

exact matches, which produces the following output:

List of files: data1.csv data2.csv

past: matched 4 times (EXACT) in field 3 in lines

2/5/7

Well-Known Sorting Algorithms

Sorting algorithms have a best case, average case, and

worst case in terms of performance. Interestingly,

sometimes an efficient algorithm (such as quick sort) can

perform the worst when a given array is already sorted.

The following subsections contain code samples for the

following well-known sort algorithms:

bubble sort

selection sort

insertion sort

Merge sort

Quick sort

BucketSort

Shell Sort

Shell Sort

Heap Sort

BucketSort

InplaceSort

CountingSort

RadixSort

If you want to explore sorting algorithms in more depth,

perform an Internet search for additional sorting algorithms.

The Bubble Sort

A bubble sort involves a nested loop whereby each element

of an array is compared with the elements to the right of the

given element. If an array element is less than the current

element, the values are interchanged (“swapped”), which

means that the contents of the array will eventually be

sorted from smallest to largest value. Here is an example:

arr1 = np.array([40, 10, 30, 20]);

Item = 40;

Step 1: 40 > 10 so switch these elements:

arr1 = np.array([10, 40, 30, 20]);

Item = 40;

Step 2: 40 > 30 so switch these elements:

arr1 = np.array([10, 30, 40, 20]);

Item = 40;

Step 3: 40 > 20 so switch these elements:

arr1 = np.array([10, 30, 20, 40]);

As you can see, the smallest element is in the left-most

position of the array arr1. Now repeat this process by

comparing the second position (which is index 1) with the

right-side elements.

arr1 = np.array([10, 30, 20, 40]);

Item = 30;

Step 4: 30 > 20 so switch these elements:

arr1 = np.array([10, 20, 30, 40]);

Item = 30;

Step 4: 30 < 40 so do nothing

As you can see, the smallest elements two elements occupy

the first two positions in the array arr1. Now repeat this

process by comparing the third position (which is index 2)

with the right-side elements.

arr1 = np.array([10, 20, 30, 40]);

Item = 30;

Step 4: 30 < 40 so do nothing

The array arr1 is now sorted in increasing order (in a left-to-

right fashion). If you want to reverse the order so that the

array is sorted in decreasing order (in a left-to-right fashion),

simply replace the “>” operator with the “<” operator in the

preceding steps.

Listing 4.59 displays the content of bubble_sort1.sh that

shows you how to sort an array of numbers using the bubble

sort.

Listing 4.59: bubble_sort1.sh

echo "" | awk '

BEGIN {

 arr[0] = 30; arr[1] = 10; arr[2] = 200; arr[3]

= -13;

 printf("Array: ")

 for (i=0;i<length(arr);i++) {

 printf("%d ",arr[i])

 }

 print ""

}

{

 for (i=0;i<length(arr)-1;i++) {

 for (j=i+1;j<length(arr);j++) {

 if(arr[i] > arr[j]) {

 tmp = arr[i]

 arr[i] = arr[j]

 arr[j] = tmp

 }

 }

 }

}

END {

 printf("Sorted: ")

 for (i=0;i<length(arr);i++) {

 printf("%d ",arr[i])

 }

 print ""

}

'

You can manually perform the code execution in Listing 4.59

to convince yourself that the code is correct (hint: it is the

same sequence of steps that you saw earlier in this section).

Launch the code in Listing 4.59, and you will see the

following output:

Array: 30 10 200 -13

Sorted: -13 10 30 200

Find Anagrams in a List of Words

Recall that the variable word1 is an anagram of word2 if

word2 is a permutation of word1. Listing 4.60 displays the

content of the anagrams2.sh that illustrates how to check if

two words are anagrams of each other.

Listing 4.60: anagrams2.sh

echo "" | awk '

function sort_word(str1) {

 split(str1,chars,"")

 word = ""

 for (idx in chars) {

 word = word chars[idx]

 }

 return word

}

function is_anagram(str1, str2) {

 sorted1 = sort_word(str1)

 sorted2 = sort_word(str2)

 return (sorted1 == sorted2)

}

BEGIN {

 PROCINFO["sorted_in"]="@val_str_asc"

 words[1] = "abc"; words[2] = "evil"

 words[3] = "Z"; words[4] = "cab"

 words[5] = "live"; words[6] = "xyz"

 words[7] = "zyx"; words[8] = "bac"

}

{

 for(i=1; i<length(words)-1; i++) {

 for(j=i+1; j<length(words); j++) {

 result = is_anagram(words[i], words[j])

 if(result == 1) {

 printf("%10s and %10s => anagrams\n",

 words[i],words[j])

 } else {

 printf("%10s and %10s => not anagrams\n",

 words[i],words[j])

 }

 }

 }

}

'

Listing 4.60 defines the function is_anagram() that takes

parameters str1 and str2 whose sorted values are used to

initialize the variables sorted1 and sorted2, respectively.

The function returns the result of comparing sorted1 with

sorted2: if they are equal, then str1 is a palindrome.

The next portion of Listing 4.60 initializes the variable

words as a list of strings, followed by a nested loop. The

outer loop uses the variable i to range from 0 to

len(words)-1, and the inner loop uses the variable j to

range from i+1 to len(words). The inner loop initializes the

variable result with the value returned by the function

is_anagram() that is invoked with the strings words[i] and

words[j]. The two words are palindromes if the value of the

variable result is True. Launch the code in Listing 4.60,

and you will see the following output:

 abc and evil => not anagrams

 abc and Z => not anagrams

 abc and cab => anagrams

 abc and live => not anagrams

 abc and xyz => not anagrams

 abc and zyx => not anagrams

 evil and Z => not anagrams

 evil and cab => not anagrams

 evil and live => anagrams

 evil and xyz => not anagrams

 evil and zyx => not anagrams

 Z and cab => not anagrams

 Z and live => not anagrams

 Z and xyz => not anagrams

 Z and zyx => not anagrams

 cab and live => not anagrams

 cab and xyz => not anagrams

 cab and zyx => not anagrams

 live and xyz => not anagrams

 live and zyx => not anagrams

 xyz and zyx => anagrams

Sort an Array in O(n) Complexity

Listing 4.61 displays the content of simple_sort.sh that

shows you how to sort an array of numbers using the bubble

sort.

Listing 4.61: simple_sort.sh

echo "" | awk ' BEGIN {

 arr1[1] = 0; arr1[2] = 1; arr1[3] = 2;

 arr1[4] = 2; arr1[5] = 1; arr1[6] = 0;

 arr1[7] = 0; arr1[8] = 1; arr1[9] = 2;

}

{

 printf("Initial: ")

 for(i=1; i<=length(arr1); i++)

 printf("%s ",arr1[i])

 print ""

 for(i=1; i<=length(arr1); i++) {

 if(arr1[i] == 0)

 zeroes += 1

 }

 third = int(length(arr1)/3)

 for(i=1; i<=third; i++) {

 arr1[i] = 0

 arr1[third+i] = 1

 arr1[2*third+i] = 2

 }

 printf("Sorted: ")

 for(i=1; i<=length(arr1); i++) {

 printf("%s ",arr1[i])

 }

 print ""

}

'

Listing 4.61 initializes arr1 with a list of multiple

occurrences the values 0, 1, and 2, and then displays the

contents of arr1. The second loop counts the number of

occurrences the value 0 in the variable arr1. The third loop

uses a “thirds” technique to assign the values 0, 1, and 2 to

contiguous locations: all the 0 values appear first, followed

by all the 1 values, and then all the 2 values. The key word

in this task is “equal,” which is shown in bold at the top of

this section. Launch the code in Listing 4.61, and you will

see the following output:

Initial: 0 1 2 2 1 0 0 1 2

Sorted: 0 0 0 1 1 1 2 2 2

Find the Median of an Array of Numbers

Instead of using a bubble sort, you can use the built-in

sort() function in awk to sort numbers or strings. Listing

4.62 displays the content of median1.sh that shows you

how to find the median of an array of numbers using the

built-in sort() function.

Listing 4.62: median1.sh

echo "" | awk ' BEGIN {

 arr1[1] = 400

 arr1[2] = 5

 arr1[3] = 1

 arr1[4] = 123

 arr1[5] = 500

 arr1[6] = -55

 print "=> Initial array:"

 for(i=1;i<=length(arr1);i++) print i,":",arr1[i]

}

END {

 row_count = asort(arr1,arr2)

 print "=> Sorted array:"

 for(i=1;i<=length(arr2);i++) print

i,":",arr2[i]

 if (row_count % 2 != 0) {

 middle = int(row_count/2 + 0.5)

 median = arr2[middle]

 } else {

 median =

(arr2[row_count/2]+arr2[row_count/2+1])/2

 }

 print "=> Median value:",median

}

'

Listing 4.62 starts with an awk command that contains a

BEGIN statement that initializes arr1 with multiple integer

values and then displays its contents. The next portion of

Listing 4.62 invokes the built-in sort() function to popular

the array arr2 with the sorted contents of array arr1.

The final portion of Listing 4.67 contains a BEGIN

statement that displays the contents of arr2, followed by

conditional logic to determine the median. Recall that the

median of an array with an odd number of values is the

middle value of the array, whereas the median of an array

with an even number of values is the average of the two

“middle values” of the array. The final code snippet in the

END statement displays the median value in the array arr1.

Launch the code in Listing 4.62, and you will see the

following output:

=> Initial array:

1 : 400

2 : 5

3 : 1

4 : 123

5 : 500

6 : -55

=> Sorted array:

1 : -55

2 : 1

3 : 5

4 : 123

5 : 400

6 : 500

=> Median value: 64

Linear Search

Listing 4.63 displays the content of linear_search.sh that

shows you how to sort an array of numbers using the bubble

sort.

Listing 4.63: linear_search.sh

echo "" | awk ' BEGIN {

 item = 123

 arr1[1] = 1

 arr1[2] = 3

 arr1[3] = 5

 arr1[4] = 123

 arr1[5] = 400

}

{

 found = -1

 for(i=1; i<=length(arr1); i++) {

 if (item == arr1[i]) {

 found = i

 break

 }

 }

 if (found >= 0) {

 print "found",item,"in position",found

 } else {

 print item,"not found"

 }

}

'

Listing 4.63 starts with the variable found that is initialized

with the value -1, followed by the search item 123, and also

the array arr1 that contains an array of numbers. Next, a

loop that iterates through the elements of the array arr1 of

integers, comparing each element with the value of item. If

a match occurs, the variable found is set equal to the value

of the loop variable i, followed by an early exit.

The last portion of Listing 4.63 checks the value of the

variable found: if it is non-negative, then the search item

was found (otherwise, it is not in the array). Launch the

code in Listing 4.1, and you will see the following output:

found 123 in position 3

Keep in mind the following point: although the

array arr1 contains a sorted list of numbers, the

code works correctly for an unordered list as

well. Launch the code in Listing 4.63, and you

will see the following output:

found 123 in position 4

Binary Search (Iterative)

A binary search requires a sorted array and can be

implemented via an iterative algorithm as well as a

recursive solution. This type of search involves comparing

the middle element of an array of sorted elements with a

search element. If they are equal, then the item has been

found; if the middle element is smaller than the search

element, then the previous step is repeated with the right

half of the array. If the middle element is larger than the

search element, then the previous step is repeated with the

left half of the array. Eventually, the element will be found (if

it appears in the array) or the repeated splitting of the array

terminates when the subarray has a single element (i.e., no

further splitting can be performed).

Binary Search Walkthrough

Let’s perform a walkthrough of a binary search that

searches for an item in a sorted array of integers.

Example #1: Let item = 25 and arr1 =

[10,20,25,40,100], so the midpoint of the array is 3. Since

arr1[3] == item, the algorithm terminates successfully.

Example #2: Let item = 25 and arr1 = [1,5,10, 15, 20,

25, 40], which means that the midpoint is 4.

First iteration: Since arr1[4] < item, we search the array

[20,25,40].

Second iteration: The midpoint is 1, and the corresponding

value is 25.

Third iteration: 25 and the array is the single element [25],

which matches the item.

Example #3: item = 25 and arr1 = [10, 20, 25, 40,

100,150,400], so the midpoint is 4.

First iteration: Since arr1[4] > 25, we search the array

[10,20,25].

Second iteration: The midpoint is 1, and the corresponding

value is 20.

Third iteration: 25 and the array is the single element [25],

which matches the item.

Example #4: item = 25 and arr1 = [1,5,10, 15, 20,

30, 40], so the midpoint is 4.

First iteration: Since arr1[4] < 25, we search the array

[20,30,40].

Second iteration: The midpoint is 1, and the corresponding

value is 30.

Third iteration: 25 and the array is the single element [20],

so there is no match.

As mentioned in the first paragraph of this section, a binary

search can be implemented with an interactive solution,

which is the topic of the next section.

Code for a Binary Search (Iterative)

Listing 4.64 displays the content of the binary_search1.sh

that illustrates how to perform a binary search with an array

of numbers.

Listing 4.64: binary_search1.sh

echo "" | awk ' BEGIN {

 arr1[1] = 1

 arr1[2] = 3

 arr1[3] = 5

 arr1[4] = 123

 arr1[5] = 400

 found = -1

 item = 123

 left = 0

 right = length(arr1)-1

 printf("array: ")

 for(k=1; k<=length(arr1); k++) {

 printf("%d ",arr1[k])

 }

 print ""

}

{

 while(left <= right) {

 mid = int(left + (right-left)/2)

 if(arr1[mid] == item) {

 found = mid

 break

 } else if (arr1[mid] < item) {

 left = mid+1

 } else {

 right = mid-1

 }

 }

 if(found >= 0) {

 print "found",item,"in position",found

 } else {

 print item,"not found"

 }

}

'

Listing 4.64 initializes an array of numbers and some scalar

variables to keep track of the left and right index positions

of the subarray that we will search each time that we split

the array. The next portion of Listing 4.64 contains

conditional logic that implements the sequence of steps that

you saw in the examples in the previous section. Launch the

code in Listing 4.64, and you will see the following output:

array: [1 3 5 123 400]

found 123 in position 3

Binary Search (Recursive)

Listing 4.65 displays the content of the

binary_search_recursive.py that illustrates how to

perform a binary search recursively with an array of

numbers.

Listing 4.65: binary_search_recursive.py

echo "" | awk '

function binary_search(data, item, left, right) {

 if(left > right) {

 return "Not Found"

 } else {

 # incorrect (can result in overflow):

 # mid = (left + right) / 2

 mid = int(left + (right-left)/2)

 if(item == data[mid]) {

 return "Found"

 } else if (item < data[mid]) {

 # recursively search the left half

 return binary_search(data, item, left, mid-

1)

 } else {

 # recursively search the right half

 return binary_search(data, item, mid+1,

right)

 }

 }

}

BEGIN {

 arr1[1] = 1

 arr1[2] = 3

 arr1[3] = 5

 arr1[4] = 123

 arr1[5] = 400

 items[1] = -100

 items[2] = 123

 items[3] = 200

 items[4] = 400

 found = -1

 item = 123

 left = 0

 right = length(arr1)-1

 printf("array: ")

 for(k=1; k<=length(arr1); k++) {

 printf("%d ",arr1[k])

 }

 print ""

}

{

 for(i=1; i<=length(items); i++) {

 item = items[i]

 left = 0

 right = length(arr1)-1

 result = binary_search(arr1, item, left,

right)

 print "item",item, result

 }

}

'

Listing 4.65 starts with the function binary_search() with

parameters data, item, left, and right that contain the

current array, the search item, the left index of data, and

the right index of data, respectively. If the left index left is

greater than the right index right then the search item

does not exist in the original array.

However, if the left index left is less than the right index

right, then the code assigns the middle index of data to

the variable mid. Next, the code performs the following

three-part conditional test:

If item == data[mid], then the search item has been

found in the array.

If item < data[mid], then the function

binary_search() is invoked with the left half of the

data array.

If item > data[mid], then the function

binary_search() is invoked with the right half of the

data array.

The next portion of Listing 4.65 initializes the sorted array

arr1 with numbers and initializes the array items with a list

of search items, and also initializes some scalar variables to

keep track of the left and right index positions of the

subarray that we will search each time that we split the

array.

The final portion of Listing 4.65 consists of a loop that

iterates through each element of the items array and

invokes the function binary_search() to determine

whether the current item is in the sorted array. Launch the

code in Listing 4.65, and you will see the following output:

array: [1 3 5 123 400]

item: -100 found: False

item: 123 found: True

item: 200 found: False

item: 400 found: True

Summary

The first part of this chapter showed you how to perform

operations with arrays, such as initializing them and

displaying their contents. Then you saw how to add the

numeric values in an array, and how to determine the

maximum and minimum numeric values in an array. In

addition, you saw how to initialize multi-dimensional arrays.

Next, you learned how to perform various tasks with

datasets, such as deleting alternate lines, printing a range

of strings or dates in a dataset, and joining alternate lines.

In addition, you learned how to work with duplicate rows in

a dataset and how to ensure uniformity of data values.

Furthermore, you saw how to implement the bubble sort

and how to determine whether a pair of strings are

anagrams. In addition, you learned how to sort an array in

linear time, which is possible under certain conditions. After

that, you saw how to perform a linear search and a binary

search via an iterative algorithm as well as a recursive

algorithm.

CHAPTER 5

WORKING WITH AWK, PART 3

This chapter is the third of three chapters that contain

examples of various features of the awk command.

The first part of this chapter starts with bit operations in

awk, such as calculating the AND, OR, and XOR of a pair of

positive integers. This section also contains code samples to

perform various string-related tasks, such as reversing a

string, checking for balanced parentheses, and column

alignment.

The second part of this chapter shows you how to delete

rows with missing values, how to process multiple files, and

perform date conversion. You will also learn how to work

with a dataset that contains one million records and how to

count adjacent digits in such a dataset.

The third portion of this chapter discusses recursion,

along with code samples for calculating values of arithmetic

series, geometric series, factorial values, and Fibonacci

numbers. In addition, you will see how to use Euclid’s

algorithm to find the greatest common divisor of two

positive integers, which can also be used to find the least

common multiple of two positive integers.

Bit Operations in awk

This section contains awk statements that perform bit

operations on numbers, some of which are listed below,

along with the associated awk function in parentheses:

AND (and)

OR (or)

XOR (xor)

NOT (compl)

Left shift (lshift)

Right shift (rshift)

Logical AND

Listing 5.1 displays the content of bitwise_and.sh that

shows you how to calculate the logical AND of two positive

integers.

Listing 5.1: bitwise_and.sh

awk 'BEGIN {

 num1 = 24

 num2 = 10

 printf "(%d AND %d) = %d\n", num1, num2,

and(num1, num2)

}'

Listing 5.1 contains an awk command with a BEGIN block

that initializes the variables num1 and num2 with the values

24 and 10, respectively. The next code snippet is a

printf() statement that displays the values of num1, num2,

and the logical AND value of num1 and num2. Launch the code

in Listing 5.1, and you will see the following output:

(24 AND 10) = 8

Logical OR

Listing 5.2 displays the content of bitwise_and.sh that

shows you how to calculate the logical OR of two positive

integers.

Listing 5.2: bitwise_or.sh

awk 'BEGIN {

 num1 = 24

 num2 = 10

 printf "(%d OR %d) = %d\n", num1, num2,

or(num1, num2)

}'

Listing 5.2 contains an awk command with a BEGIN block

that initializes the variables num1 and num2 with the values

24 and 10, respectively. The next code snippet is a

printf() statement that displays the values of num1, num2,

and the logical R value of num1 and num2. Launch the code in

Listing 5.2, and you will see the following output:

(24 OR 10) = 26

Logical XOR

Listing 5.3 displays the content of bitwise_xor.sh that

shows you how to calculate the logical XOR of two positive

integers.

Listing 5.3: bitwise_xor.sh

awk 'BEGIN {

 num1 = 24

 num2 = 10

 printf "(%d AND %d) = %d\n", num1, num2,

xor(num1, num2)

}'

Listing 5.3 contains an awk command with a BEGIN block

that initializes the variables num1 and num2 with the values

24 and 10, respectively. The next code snippet is a

printf() statement that displays the values of num1, num2,

and the logical XOR value of num1 and num2. Launch the code

in Listing 5.3, and you will see the following output:

(24 XOR 10) = 18

Logical NOT

Listing 5.4 displays the content of bitwise_not.sh that

shows you how to calculate the logical NOT of two positive

integers.

Listing 5.4: bitwise_comp.sh

awk 'BEGIN {

 num1 = 24

 num2 = 10

 printf("COMPLEMENT(%d) = %d\n", num1,

compl(num1))

}'

Listing 5.4 contains an awk command with a BEGIN block

that initializes the variables num1 and num2 with the values

24 and 10, respectively. The next code snippet is a

printf() statement that displays the values of num1, num2,

and the logical NOT value of num1 and num2. Launch the code

in Listing 5.4, and you will see the following output:

COMPLEMENT(24) = 9007199254740967

Logical Left Shift

Listing 5.5 displays the content of bitwise_lfshift.sh that

shows you how to calculate the logical left shift of a positive

integer.

Listing 5.5: bitwise_lshift.sh

awk 'BEGIN {

 num1 = 24

 printf("left shift %d = %d\n", num1,

lshift(num1))

}'

Listing 5.5 contains an awk command with a BEGIN block

that initializes the variable num1 with the values 24. The

next code snippet is a printf() statement that displays the

values of num1, num2, and the logical left shift value of num1.

Launch the code in Listing 5.5, and you will see the

following output:

lshift(24) by 1 = 48

Logical Right Shift

Listing 5.6 displays the content of bitwise_rshift.sh that

shows you how to calculate the logical right shift of a

positive integer.

Listing 5.6: bitwise_rshift.sh

awk 'BEGIN {

 num1 = 24

 printf("right shift %d = %d\n", num1,

rshift(num1))

}'

Listing 5.6 contains an awk command with a BEGIN block

that initializes the variable num1 with the value 24. The next

code snippet is a printf() statement that displays the

values of num1, num2, and the logical right shift value of

num1. Launch the code in Listing 5.6, and you will see the

following output:

rshift(24) by 1 = 12

Reverse a String

Listing 5.7 displays the content of reverse1.sh that shows

you how to sort an array of numbers.

Listing 5.7: reverse1.sh

echo "" | awk '

BEGIN {

 str1 = "abcdef"; rev = "";

 print "String: ", str1

}

{

 for(i=length(str1); i>=1; i--) {

 rev = rev substr(str1,i,1)

 }

}

END { print "Reversed:", rev}

'

Listing 5.7 contains an echo command that passes an

empty string to the awk command, which in turn contains a

BEGIN block that initializes the variable str1 and the

variable rev, and then prints the value of str1.

The next portion of Listing 5.7 is the main execution block

that contains a loop that processes the contents of the

variable str1 in a right-to-left fashion. During each iteration,

the variable rev (which is initially an empty string) is

updated by appending the current right-most character in

str1 to the variable rev. Launch the code in Listing 5.55,

and you will see the following output:

String: abcdef

Reversed: fedcba

Find Palindromes

Listing 5.8 displays the content of palindrome1.sh that

shows you how to determine whether a string is a

palindrome.

Listing 5.8: palindrome1.sh

echo "" | awk '

BEGIN {

 str1 = "abcdef"; rev = "";

 print "String: ", str1

}

{

 for(i=length(str1); i>=1; i--) {

 rev = rev substr(str1,i,1)

 }

}

END {

 if (rev == str1) {

 print "Palindrome: TRUE"

 } else {

 print "Palindrome: FALSE"

 }

}

'

Listing 5.8 contains the same initialization code as Listing

5.7, along with a new conditional code block in an END block

that compares the string str1 with the string rev. If the

strings are equal, then str1 is a palindrome, otherwise it is

not a palindrome. In both cases, an appropriate message is

displayed. Launch the code in Listing 5.8, and you will see

the following output:

String: abcdef

Palindrome: FALSE

Check for Unique Characters

Listing 5.9 displays the content of unique_chars.sh that

shows you how to determine whether a string contains

unique characters.

Listing 5.9: unique_chars.sh

#128 characters for ASCII and 256 characters for

extended ASCII

echo "" | gawk '

function unique_chars(str1) {

 char_set[0] = 0

 for(j=1; j<128; j++) {

 char_set[j] = 0

 }

 str1 = tolower(str1)

 for(i=1; i<length(str1); i++) {

 char = substr(str1,i,1)

 ord_char = ord[char]

 val = ordz - ord_char

 #print i,":",i,"val:",val,"char:",char

 if (char_set[val] == 1) {

 # found duplicate character

 return 0

 } else {

 char_set[val] = 1

 }

 }

 return 1

}

BEGIN {

 for(num=1;num<128;num++) {

 ord[sprintf("%c",num)] = num

 }

 ordz = ord["z"]

}

{

 arr1[1] = "first str1ing"

 arr1[2] = "second str1ing"

 arr1[3] = "friendly world"

 arr1[4] = "abcdefghijklmo"

 for(k=1; k<=length(arr1); k++) {

 str1 = arr1[k]

 unique = unique_chars(str1)

 if(unique == 0) {

 print "duplicate characters =>",str1

 } else {

 print "unique characters => ",str1

 }

 }

}

'

Listing 5.9 contains an echo command that passes an

empty string to an awk command, which in turn defines the

function unique_characters() that determines whether its

input parameter contains unique characters.

Specifically, the function unique_characters() converts

its parameter str to lowercase letters and then initializes

the 1x128 integer array char_set whose values are all 0.

The next portion of this function iterates through the

characters of the string str and initializes the integer

variable val with the offset position of each character from

the character z.

If this position in char_set equals 1, then a duplicate

character has been found; otherwise, this position is

initialized with the value 1. Note that the value False is

returned if the string str contains duplicate letters, whereas

the value True is returned if the string str contains unique

characters. Launch the code in Listing 5.9, and you will see

the following output:

duplicate characters => first str1ing

duplicate characters => second str1ing

duplicate characters => friendly world

unique characters => abcdefghijklmo

Check for Balanced Parentheses

Listing 5.10 displays the content of balanced_parens.sh

that shows you how to determine whether a string contains

balanced parentheses.

Listing 5.10: balanced_parens.sh

echo "" | awk '

function check_balanced(text) {

 counter = 0

 text_len = length(text)

 for(i=1; i<=text_len; i++) {

 ch = substr(text,i,1)

 if (ch == "(") {

 counter += 1

 } else {

 if (ch == ")") {

 counter -= 1

 }

 }

 if (counter < 0)

 break

 }

 return counter

}

{

 exprs= "()()()"

 exprs= "(()()())"

 exprs[3] = "()("

 exprs[4] = "(())"

 exprs[5] = "()()("

 for(idx=1; idx<=length(exprs); idx++) {

 str1 = exprs[idx]

 counter = check_balanced(str1)

 if (counter == 0) {

 print "balanced string: ",str1

 } else {

 print "unbalanced string:",str1

 }

 }

}'

Listing 5.10 starts with the iterative function

check_balanced()that uses conditional logic to check the

contents of the current character in the input string. The

code increments the variable counter if the current

character is a left parenthesis “(” and decrements the

variable counter if the current character is a right

parenthesis “).” The final code snippet in this function

returns the value of the variable counter. The only way for

an expression to consist of a balanced set of parentheses is

for counter to equal 0 when the loop has finished

execution.

The second part of Listing 5.10 contains the main

execution block that initializes the array exprs with variable

strings consisting of a combination of left and right

parentheses, followed by a loop that invokes the function

check_balanced() with each element of the array exprs.

Conditional logic displays a message indicating whether

each string is a palindrome. Launch the code in Listing 5.10,

and you will see the following output:

balanced string: ()()()

balanced string: (()()())

unbalanced string: ()(

balanced string: (())

unbalanced string: ()()(

Printing a String in a Fixed Number of Columns

Listing 5.11 displays the content of FixedFieldCount1.sh

that illustrates how to print the words in a text string using

the awk command.

Listing 5.11: FixedFieldCount1.sh

echo "aa bb cc dd ee ff gg hh"| awk '

BEGIN { colCount = 3 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % colCount == 0) {

 print " "

 }

 }

}

'

Listing 5.11 invokes the echo command to redirect a string

to an awk command that initializes the variable colCount to

3, followed by the main execution block that contains an

array that prints every input field. Note that a new line is

printed after three consecutive elements have been printed.

Launch the code in Listing 5.11, and you will see the

following output:

aa bb cc

dd ee ff

gg hh

Printing a Dataset in a Fixed Number of

Columns

Listing 5.12 displays the content of VariableColumns.txt

with lines of text that contain a different number of

columns.

Listing 5.12: VariableColumns.txt

this is line one

this is line number one

this is the third and final line

Listing 5.13 displays the content of Fields3.sh that

illustrates how to print the words in a text string using the

awk command.

Listing 5.13: Fields3.sh

awk '{printf("%s ", $0)}' | awk '

BEGIN { columnCount = 3 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0)

 print " "

 }

}

' VariableColumns.txt

Listing 5.13 starts with an awk command that displays the

content of the text file VariableColumns.txt as a single

output line because the printf statement omits the “\n”

character. If you want to print the exact contents of the text

file VariableColumns.txt, replace the printf statement of

the first awk command with following statement:

printf("%s\n", $0)

Launch the code in Listing 5.13, and you will see the

following output:

this is line

one this is

line number one

this is the

third and final

line

Aligning Columns in Datasets

If you have read the preceding two examples, the code

sample in this section is easy to understand: you will see

how to realign columns of data that are correct in terms of

their content, but have been placed in different rows (and

therefore are misaligned). Listing 5.14 displays the content

of mixed-data.csv with misaligned data values. In addition,

the first line and final line in Listing 5.14 are empty lines,

which will be removed by the shell script in this section.

Listing 5.14: mixed-data.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL,

Dave, Jones, 3000, FL, John, Jones,

4000, CA,

Dave, Jones, 5000, NY, Mike,

Jones, 6000, NY, Tony, Jones, 7000, WA

Listing 5.15 displays the content of mixed-data.sh that

illustrates how to realign the dataset in Listing 5.14.

Listing 5.15: mixed-data.sh

#---

1) remove blank lines

2) remove line feeds

3) print a LF after every fourth field

4) remove trailing ',' from each row

#---

inputfile="mixed-data.csv"

grep -v "^$" $inputfile |awk -F","

'{printf("%s",$0)}' | awk '

BEGIN { columnCount = 4 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(I % columnCount == 0) { print""" }

 }

'' > temp-columns

4) remove trailing'''' from output:

cat temp-columns | sed''s/, $/'' | sed''s/ $/'' >

$outputfile

Listing 5.15 starts with a grep command that removes blank

lines, followed by an awk command that prints the rows of

the dataset as a single line of text. The second awk

command initializes the columnCount variable with the

value 4 in the BEGIN block, followed by a loop that iterates

through the input fields.

After four fields are printed on the same output line, a

linefeed is printed, which has the effect of creating an

output dataset consisting of rows consisting of four fields.

The output from Listing 5.15 is here:

Sara, Jones, 1000, CA

Sally, Smith, 2000, IL

Dave, Jones, 3000, FL

John, Jones, 4000, CA

Dave, Jones, 5000, NY

Mike, Jones, 6000, NY

Tony, Jones, 7000, WA

Aligning Columns and Multiple Rows in

Datasets

The preceding section showed you how to “join” consecutive

rows from an input file to create a new output file. Listing

5.16 displays the content of mixed-data2.csv that contains

an initial blank row and a final blank row, followed by Listing

5.17 that displays the contents of aligned-data2.csv with

the correctly formatted dataset.

Listing 5.16: mixed-data2.csv

Sara, Jones, 1000, CA,

Sally, Smith, 2000, IL,

Dave, Jones, 3000, FL,

John, Jones, 4000, CA,

Dave, Jones, 5000, NY,

Mike, Jones, 6000, NY,

Tony, Jones, 7000, WA

Listing 5.17: aligned-data2.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL

Dave, Jones, 3000, FL, John, Jones, 4000, CA

Dave, Jones, 5000, NY, Mike, Jones, 6000, NY

Tony, Jones, 7000, WA

Listing 5.18 displays the content of mixed-data2.sh that

illustrates how to realign the dataset in Listing 5.16.

Listing 5.18: mixed-data2.sh

#---

1) remove blank lines

2) remove line feeds

3) print a LF after every 8 fields

4) remove trailing'''' from each row

#---

inputfile""mixed-data2.cs""

outputfile""aligned-data2.cs""

echo""=> Contents of input file""

cat $inputfile

grep -v""^"" $inputfile |awk -

""""''{printf""%"",$0)'' | awk''

BEGIN { columnCount = 4; rowCount = 2; currRow = 0

}

{

 for(i=1; i<=NF; i++) {

 printf""%s"", $i)

 if(i % columnCount == 0) { ++currRow }

 if(currRow > 0 && currRow % rowCount == 0)

 { currRow = 0; print""" }

 }

'' > temp-columns

4) remove trailing'''' from output:

cat temp-columns | sed''s/, $/'' | sed''s/ $/'' >

$outputfile

echo""=> Contents of output file""

cat $outputfile

echo

Listing 5.18 is similar to Listing 5.15. The program prints a

linefeed character after a pair of “normal” records have

been processed, which is implemented via the code that is

shown in bold in Listing 5.18. Launch the code in Listing

5.18, and you will see the following output:

=> Contents of input file:

Sara, Jones, 1000, CA,

Sally, Smith, 2000, IL,

Dave, Jones, 3000, FL,

John, Jones, 4000, CA,

Dave, Jones, 5000, NY,

Mike, Jones, 6000, NY,

Tony, Jones, 7000, WA

=> Contents of output file:

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL

Dave, Jones, 3000, FL, John, Jones, 4000, CA

Dave, Jones, 5000, NY, Mike, Jones, 6000, NY

Tony, Jones, 7000, WA

Now you can generalize Listing 5.18 very easily by changing

the initial value of the rowCount variable to any other

positive integer, and the code will work correctly without

any further modification. For example, if you initialize

rowCount to the value 5, then every row in the new dataset

(with the possible exception of the final output row) will

contain 5 “normal” data records.

Displaying a Subset of Columns in a Text File

Listing 5.19 displays the contents of the text file

products.txt, whose rows contain the same number of

columns.

Listing 5.19: products.txt

MobilePhone 400 new

Tablet 300 new

Tablet 300 used

MobilePhone 200 used

MobilePhone 100 used

Listing 5.20 displays the content of RemoveColumn.sh that

shows the contents of products.txt without the first

column from the text file.

Listing 5.20: RemoveColumn.sh

awk '{ for (i=2; i<=NF; i++) printf "%s ", $i;

printf "\n";

 }' products.txt

The loop ranges from 2 and NF inclusive, which excludes the

first input field. In addition, printf explicitly adds new lines

after a row of data fields has been printed. The output of the

awk command in Listing 5.20 is here:

400 new

300 new

300 used

200 used

100 used

Listing 5.21 displays the content of RemoveColumns.sh that

contains an awk statement that prints all but the third

column of a text file, followed by an awk statement that

prints all but the third and seventh columns of a text file.

Listing 5.21: RemoveColumns.sh

filename="aligned-data2.csv"

echo "=> contents of $filename:"

cat $filename

echo ""

print all but the third column:

echo "Skipping field 3:"

awk '

{

 for (i=1; i<=NF; i++) {

 if(i != 3) {

 printf("%s ", $i)

 }

 }

 print ""

}' $filename

echo ""

print all but the third and seventh columns:

echo "Skipping field 3 and field 7:"

awk '

{

 for (i=1; i<=NF; i++) {

 if((i != 3) && (i != 7)) {

 printf("%s ", $i)

 }

 }

 print ""

}' $filename

Listing 5.21 is an enhancement of the Listing 5.20, and it

starts by initializing the variable filename with the name of

a CSV file. Next, the loop in the first awk statement prints

each column of each row in the CSV file unless it is the third

column. The loop in the second awk statement prints each

column of each row in the CSV file unless it is the third

column or the seventh column. Launch the code in Listing

5.21, and you will see the following output:

=> contents of aligned-data2.csv:

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL

Dave, Jones, 3000, FL, John, Jones, 4000, CA

Dave, Jones, 5000, NY, Mike, Jones, 6000, NY

Tony, Jones, 7000, WA

Skipping field 3:

Sara, Jones, CA, Sally, Smith, 2000, IL

Dave, Jones, FL, John, Jones, 4000, CA

Dave, Jones, NY, Mike, Jones, 6000, NY

Tony, Jones, WA

Skipping field 3 and field 7:

Sara, Jones, CA, Sally, Smith, IL

Dave, Jones, FL, John, Jones, CA

Dave, Jones, NY, Mike, Jones, NY

Tony, Jones, WA

Subsets of Columns Aligned Rows in Datasets

The code sample in this section illustrates how to extract a

subset of the existing columns and a subset of the rows.

Listing 5.22 displays the content of sub-rows-cols.txt of

the desired dataset that contains two columns from every

even row of the file aligned-data.txt.

Listing 5.22: sub-rows-cols.txt

Sara, 1000

Dave, 3000

Dave, 5000

Tony, 7000

Listing 5.23 displays the content of sub-rows-cols.sh that

illustrates how to generate the dataset in Listing 5.22. Most

of the code is the same as Listing 5.21, with the new code

shown in bold.

Listing 5.23: sub-rows-cols.sh

#---

1) remove blank lines

2) remove line feeds

3) print a LF after every fourth field

4) remove trailing ',' from each row

#---

inputfile="mixed-data.csv"

outputfile="sub-rows-cols.csv"

echo "=> Contents of input file:"

cat $inputfile

grep -v "^$" $inputfile |awk -F","

'{printf("%s",$0)}' | awk '

BEGIN { columnCount = 4 }

{

 for(i=1; i<=NF; i++) {

 printf("%s ", $i)

 if(i % columnCount == 0) { print "" }

 }

}' > temp-columns

4) remove trailing ',' from output:

cat temp-columns | sed 's/, $//' | sed 's/$//' >

temp-columns2

cat temp-columns2 | awk ‘

BEGIN { rowCount = 2; currRow = 0 }

{

 if(currRow % rowCount == 0) { print $1, $3 }

 ++currRow

}’ > temp-columns3

cat temp-columns3 | sed ‘s/,$//’ | sed ‘s/ $//’ >

$outputfile

echo "=> Contents of output file:"

cat $outputfile

Listing 5.23 contains a new block of code that redirects the

output of Step #4 to a temporary file temp-columns2 whose

contents are processed by another awk command in the last

section of Listing 5.23. Notice that that awk command

contains a BEGIN block that initializes the variables

rowCount and currRow with the values 2 and 0, respectively.

The main block prints columns 1 and 3 of the current line

if the current row number is even, and then the value of

currRow is then incremented. The output of this awk

command is redirected to yet another temporary file that is

the input to the final code snippet, which uses the cat

command and two occurrences of the sed command to

remove a trailing “,” and a trailing space, as shown here:

cat temp-columns3 | sed ′s/,$//′ | sed ′s/ $//′ >

$outputfile

Launch the code in Listing 5.23, and you will see the

following output:

=> Contents of input file:

Sara, Jones, 1000, CA,

Sally, Smith, 2000, IL,

Dave, Jones, 3000, FL,

John, Jones, 4000, CA,

Dave, Jones, 5000, NY,

Mike, Jones, 6000, NY,

Tony, Jones, 7000, WA

=> Contents of output file:

Sara, 1000

Dave, 3000

Dave, 5000

Tony, 7000

There are other ways to perform the functionality in Listing

5.22; the main purpose is to show you different techniques

for combining various bash commands.

Longest/Shortest Words in Datasets

Listing 5.24 displays the contents of report.txt, and

Listing 5.25 displays the content of longest_word.sh that

illustrates how to count the frequency of words in a file.

Listing 5.24: longest_word.sh

This is a sample report.

Some relevant details were presented yesterday.

Several people likes to work from home.

However, some people prefer the office.

In addition, parking is easier now.

The WFM topic has different appeal.

Listing 5.25: longest_word.sh

awk '

{

 longest=0

 shortest=""

 for(i=1; i<=NF; i++) {

 if(length($i) > longest) longest = length($i)

 if(shortest == "") shortest = length($i)

 if(length($i) < shortest) shortest =

length($i)

 }

 print "Sentence: ",$0

 print "Longest: ",longest,"Shortest:

",shortest,"\n"

}

' report.txt

Listing 5.25 starts by initializing the variables longest and

shortest with the values 0 and "", respectively. The next

portion of code contains a loop that iterates through the

fields of each sentence. A conditional code block updates

the values of longest and shortest whenever the current

field is longer than or shorter than, respectively, the current

values of longest and shortest. The output from Listing

5.25 is here:

Sentence: This is a sample report.

Longest: 7 Shortest: 1

Sentence: Some relevant details were presented

yesterday.

Longest: 10 Shortest: 4

Sentence: Several people likes to work from home.

Longest: 7 Shortest: 2

Sentence: However, some people prefer the office.

Longest: 8 Shortest: 3

Sentence: In addition, parking is easier now.

Longest: 9 Shortest: 2

Sentence: The WFM topic has different appeal.

Longest: 9 Shortest: 3

Counting Word Frequency in Datasets

Listing 5.26 displays the content of WordCounts1.sh that

illustrates how to count the frequency of words in a file.

Listing 5.26: WordCounts1.sh

awk '

Print list of word frequencies

{

 for (i = 1; i <= NF; i++)

 freq[$i]++

}

END {

 for (word in freq)

 printf "%s\t%d\n", word, freq[word]

}

' columns2.txt

Listing 5.26 contains a block of code that processes the

lines in columns2.txt. Each time that a word (of a line) is

encountered, the code increments the number of

occurrences of that word in the hash table freq. The END

block contains a loop that displays the number of

occurrences of each word in columns2.txt. The output from

Listing 5.26 is here:

two 3

one 3

three 3

six 1

four 3

five 2

Listing 5.27 displays the contents of columns4.txt, and

Listing 5.28 displays the content of WordCounts2.sh that

performs a case insensitive word count.

Listing 5.27: columns4.txt

123 ONE TWO

456 three four

ONE TWO THREE FOUR

five 123 six

one two three

four five

Listing 5.28: WordCounts2.sh

awk '

{

 # convert everything to lower case

 $0 = tolower($0)

 # remove punctuation

 #gsub(/[^[:alnum:]_[:blank:]]/, "", $0)

 for(i=1; i<=NF; i++) {

 freq[$i]++

 }

}

END {

 for(word in freq) {

 printf "%s\t%d\n", word, freq[word]

 }

}

' columns4.txt

Listing 5.28 includes the following code snippet that

converts the text in each input line to lowercase letters:

$0 = tolower($0)

The output from launching Listing 5.28 with columns4.txt

is here:

456 1

two 3

one 3

three 3

six 1

123 2

four 3

five 2

Displaying Only “Pure” Words in a Dataset

For simplicity, let’s work with a text string and that way we

can see the intermediate results as we work toward the

solution. This example will be familiar from prior chapters,

but now we see how awk does it.

Listing 5.29 displays the content of onlywords.sh that

contains three awk commands for displaying the words,

integers, and alphanumeric strings in a text string.

Listing 5.29: onlywords.sh

x="ghi abc Ghi 123 #def5 123z"

echo "Only words:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

 if($0 ~ /^[a-zA-Z]+$/) { print $0 }

}

' | sort | uniq

echo

echo "Only integers:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

 if($0 ~ /^[0-9]+$/) { print $0 }

}

' | sort | uniq

echo

echo "Only alphanumeric words:"

echo $x |tr -s ' ' '\n' | awk -F" " '

{

 if($0 ~ /^[0-9a-zA-Z]+$/) { print $0 }

}

' | sort | uniq

echo

Listing 5.29 starts by initializing the variable x as a space

separated set of tokens:

x="ghi abc Ghi 123 #def5 123z"

The next step is to split x into words:

echo $x |tr -s ' ' '\n'

The output from the preceding code snippet is shown here:

ghi

abc

Ghi

123

#def5

123z

The third step is to invoke awk and check for words that

match the regular expression ^[a-zA-Z]+, which matches

any string consisting of one or more uppercase and

lowercase letters (and nothing else):

if($0 ~ /^[a-zA-Z]+$/) { print $0 }

The output from the preceding code snippet is here:

ghi

abc

Ghi

Finally, if you also want to sort the output and print only the

unique words, redirect the output from the awk command to

the sort command and the uniq command.

The second awk command uses the regular expression

^[0-9]+ to check for integers and the third awk command

uses the regular expression ^[0-9a-zA-Z]+ to check for

alphanumeric words. The output from launching Listing 5.29

is here:

Only words:

Ghi

abc

ghi

Only integers:

123

Only alphanumeric words:

123

123z

Ghi

abc

ghi

You can replace the variable x with a dataset to retrieve only

alphabetic strings from that dataset.

Delete Rows with Missing Values

The code sample in this section shows you how to use the

awk command to split the comma-separated fields in the

rows of a dataset, where fields can contain nested quotes of

arbitrary depth.

Listing 5.30 displays a subset of the rows in titanic.csv,

and Listing 5.31 displays the content of the file delete-

empty-cols-awk.sh that shows you how to create a new

dataset whose rows are fully populated with data values.

Listing 5.30: titanic.csv

survived,pclass,sex,age,sibsp,parch,fare,embarked,

class,who,

 adult_male,deck,embark_town,alive,alone

0,3,male,22.0,1,0,7.25,S,Third,man,True,,Southampt

on,no,

 False

1,1,female,38.0,1,0,71.2833,C,First,woman,False,C,

 Cherbourg,yes,False

1,3,female,26.0,0,0,7.925,S,Third,woman,False,,Sou

thampton,

 yes,True

1,1,female,35.0,1,0,53.1,S,First,woman,False,C,Sou

thampton,

 yes,False

0,3,male,35.0,0,0,8.05,S,Third,man,True,,Southampt

on,no,True

0,3,male,,0,0,8.4583,Q,Third,man,True,,Queenstown,

no,True

// rows omitted for brevity

0,3,male,25.0,0,0,7.05,S,Third,man,True,,Southampt

on,no,True

0,3,female,39.0,0,5,29.125,Q,Third,woman,False,,Qu

eenstown,

 no,False

0,2,male,27.0,0,0,13.0,S,Second,man,True,,Southamp

ton,no,

 True

1,1,female,19.0,0,0,30.0,S,First,woman,False,B,Sou

thampton,

 yes,True

0,3,female,,1,2,23.45,S,Third,woman,False,,Southam

pton,no,

 False

1,1,male,26.0,0,0,30.0,C,First,man,True,C,Cherbour

g,yes,True

0,3,male,32.0,0,0,7.75,Q,Third,man,True,,Queenstow

n,no,True

Listing 5.31: delete-empty-cols-awk.sh

input="titanic.csv"

output="titanic_clean.csv"

row_count1='wc $input | awk '{print $1}''

echo "Number of input rows: $row_count1"

compare the awk code with the grep example in

chapter 5:

awk -F"," '

{

 if ($0 !~ /,,/) { print $0 }

}’ < $input > $output

row_count2=｀wc $output | awk '{print $1}'｀
echo "Number of output rows: $row_count2"

echo

echo "=> First five rows in $input:"

cat $input |head -6 |tail -5

echo "-------------------------"

echo

echo "=> First five rows in $output:"

cat $output |head -6 |tail -5

echo ""

Listing 5.31 starts by initializing the variables input and

output with the values titanic.csv and

titanic_clean.csv, respectively. The next code snippet is

an awk command that extracts the rows from the CSV file

that do not contain two consecutive commas (which indicate

a missing field value) and redirects those rows to the output

file.

The next code snippet initializes the variable row_count2

with the rows 2 through 6 of the input file and displays their

contents, followed by a code snippet that performs the

same operation using the input file. Launch the code in

Listing 5.31, and you will see the following output:

Number of input rows: 892

Number of output rows: 183

=> First five rows in titanic.csv:

0,3,male,22.0,1,0,7.25,S,Third,man,True,,Southampt

on,no,

 False

1,1,female,38.0,1,0,71.2833,C,First,woman,False,C,

 Cherbourg,yes,False

1,3,female,26.0,0,0,7.925,S,Third,woman,False,,Sou

thampton,

 yes,True

1,1,female,35.0,1,0,53.1,S,First,woman,False,C,Sou

thampton,

 yes,False

0,3,male,35.0,0,0,8.05,S,Third,man,True,,Southampt

on,no,True

=> First five rows in titanic_clean.csv:

1,1,female,38.0,1,0,71.2833,C,First,woman,False,C,

 Cherbourg,yes,False

1,1,female,35.0,1,0,53.1,S,First,woman,False,C,Sou

thampton,

 yes,False

0,1,male,54.0,0,0,51.8625,S,First,man,True,E,South

ampton,

 no,True

1,3,female,4.0,1,1,16.7,S,Third,child,False,G,Sout

hampton,

 yes,False

1,1,female,58.0,0,0,26.55,S,First,woman,False,C,

 Southampton,yes,True

As a quick refresher, the file delete-empty-cols-grep.sh

contains the following code snippet that skip any records

that contain two consecutive commas, which indicate a

missing value for a feature:

$ cat $input |grep -v ",," > $output

Although the awk command is more powerful than grep, you

can sometimes perform the same task with less (and more

intuitive) code using the grep command. Hence, it is

worthwhile for you to gain proficiency in grep, sed, and

awk so that you can create shell scripts that are clear and

concise, and can also be enhanced (or debugged) with less

effort.

Moreover, you can take advantage of the power of in

grep, sed, and awk to perform pre-processing on datasets

before you perform data cleaning tasks using utilities such

as Pandas.

Working with Multiline Records in awk

Listing 5.32 displays the contents of employees.txt, and

Listing 5.33 displays the content of employees.sh that

illustrates how to concatenate text lines in a file.

Listing 5.32: employees.txt

Name: Jane Edwards

EmpId: 12345

Address: 123 Main Street Chicago Illinois

Name: John Smith

EmpId: 23456

Address: 432 Lombard Avenue SF California

Listing 5.33: employees.sh

inputfile="employees.txt"

outputfile="employees2.txt"

echo "=> Input file:"

cat $inputfile

awk '

{

 if($0 ~ /^Name:/) {

 x = substr($0,8) ","

 next

 }

 if($0 ~ /^Empid:/) {

 #skip the Empid data row

 #x = x substr($0,7) ","

 next

 }

 if($0 ~ /^Address:/) {

 x = x substr($0,9)

 print x

 }

}

' < $inputfile > $outputfile

echo "=> Output file:"

cat $outputfile

The output from launching the code in Listing 5.33 is here:

=> Input file:

Name: Jane Edwards

EmpId: 12345

Address: 123 Main Street Chicago Illinois

Name: John Smith

EmpId: 23456

Address: 432 Lombard Avenue SF California

=> Output file:

Jane Edwards, 123 Main Street Chicago Illinois

John Smith, 432 Lombard Avenue SF California

Now that you have seen awk code snippets and shell scripts

containing the awk command that illustrate various types of

tasks that you can perform on files and datasets, you are

ready for some use cases. The next section (which is the

first use case) shows you how to replace multiple field

delimiters with a single delimiter, and the second use case

shows you how to manipulate date strings.

CSV Files with Multirow Records

This section contains a CSV file with multirow records such

that each field is on a separate line (e.g., survived:0)

instead of comma-separated field values for each record.

The solution is surprisingly simple when we use awk: set

RS equal to the string pattern that separates records. In our

case, we need to set RS equal to \n\n, after which $0 will

contain the contents of each multiline record. In addition,

specify FS='\n' so that get each line is treated as a field

(i.e., $1, $2, and so forth).

Listing 5.34 displays the contents of the CSV file

multi_line_rows.csv, and Listing 5.35 display the

contents of multi_line_rows.sh.

Listing 5.34: multi_line_rows.csv

survived:0

pclass:3

sex:male

age:22.0

survived:1

pclass:1

sex:female

age:38.0

survived:0

pclass:3

sex:male

age:35.0

survived:1

pclass:3

sex:female

age:27.0

Listing 5.35: multi_line_rows.sh

filename="multi_line_rows.csv"

cat $filename | awk '

BEGIN { RS="\n\n"; FS="\n" }

{

 # name/value pairs have this format:

 # survived:0 pclass:3 sex:male age:22.0

 split($1,arr,":"); printf("%s,",arr[2]);

 split($2,arr,":"); printf("%s,",arr[2]);

 split($3,arr,":"); printf("%s,",arr[2]);

 split($4,arr,":"); printf("%s\n",arr[2]);

}'

The main idea in Listing 5.35 is shown in bold, which

specifies the value of RS (record separator) as two

consecutive linefeed characters and then specifies FS (field

separator) as a linefeed character. The main block of code

splits the fields $1, $2, $3, and $4 based on a colon (“:”)

separator, and then prints the second field, which is the

actual data value.

Note that arr[1] contains the name of the fields, such as

survived, pclass, sex, or age, whereas arrcontains the

value of the fields. Launch the code in Listing 5.35, and you

will see the following output:

0,3,male,22.0

1,1,female,38.0

0,3,male,35.0

1,3,female,27.0

There is one more detail: Listing 5.35 does not display the

header line with the names of the fields. Listing 5.36 shows

you how to modify Listing 5.34 to generate the header line.

Listing 5.36: multi_line_rows2.sh

filename="multi_line_rows.csv"

cat $filename | awk '

BEGIN { RS="\n\n"; FS="\n"; count=0 }

{

 if(count == 0) {

 count += 1

 split($1,arr,":"); header = arr[1]

 split($2,arr,":"); header = header "," arr[1]

 split($3,arr,":"); header = header "," arr[1]

 split($4,arr,":"); header = header "," arr[1]

 print header

 }

 # name/value pairs have this format:

 # survived:0 pclass:3 sex:male age:22.0

 split($1,arr,":"); printf("%s,",arr[2]);

 split($2,arr,":"); printf("%s,",arr[2]);

 split($3,arr,":"); printf("%s,",arr[2]);

 split($4,arr,":"); printf("%s\n",arr[2]);

}'

Listing 5.36 initializes the variable count with the value 0,

followed by a conditional block of code that constructs the

contents of the variable header (which will contain the

names of the fields) by sequentially concatenating the field

names. The contents of header are printed, and since the

value of count has been incremented, this block of code is

executed only once, which prevents the header line from

being repeatedly displayed. Launch the code in Listing 5.36,

and you will see the following output:

survived,pclass,sex,age

0,3,male,22.0

1,1,female,38.0

0,3,male,35.0

1,3,female,27.0

Other variations of the preceding code are also possible,

such as changing the display order of the fields. Listing 5.37

displays the fields in reverse order: age, sex, pclass, and

survived.

Listing 5.37: multi_line_rows3.sh

filename="multi_line_rows.csv"

cat $filename | awk '

BEGIN { RS="\n\n"; FS="\n"; count=0 }

{

 # fields displayed in reverse order:

 if(count == 0) {

 count += 1

 split($4,arr,":"); header = arr[1]

 split($3,arr,":"); header = header "," arr[1]

 split($2,arr,":"); header = header "," arr[1]

 split($1,arr,":"); header = header "," arr[1]

 print header

 }

 # name/value pairs have this format:

 # survived:0 pclass:3 sex:male age:22.0

 split($1,arr,":"); survived = arr[2];

 split($2,arr,":"); pclass = arr[2];

 split($3,arr,":"); sex = arr[2];

 split($4,arr,":"); age = arr[2];

 # fields displayed in reverse order:

 printf("%s,%s,%s,%s\n",age, sex, pclass,

survived)

}'

Listing 5.37 contains a conditional block of code that

constructs the contents of the variable header by

sequentially concatenating the field names in reverse order.

The contents of header are printed, and since the value of

count has been incremented, this block of code is executed

only once, which prevents the header line from being

repeatedly displayed.

The second block of code constructs an output string by

initializing the variables survived, pclass, sex, and age,

and then printing them in reverse order. Launch the code in

Listing 5.37, and you will see the following output:

age,sex,pclass,survived

22.0,male,3,0

38.0,female,1,1

35.0,male,3,0

27.0,female,3,1

Processing Multiple Files with awk

Listing 5.38, Listing 5.39, and Listing 5.40 display the

contents of the text files file1.txt, file2.txt, and

file3.txt, respectively.

Listing 5.38: file1.txt

deep dish potato garlic pizza file1 line1

deep dish potato garlic pizza file1 line2

deep dish potato garlic pizza file1 line3

Listing 5.39: file2.txt

deep pepperoni pizza file2 line1

deep pepperoni pizza file2 line2

deep pepperoni pizza file2 line3

deep pepperoni pizza file2 line4

deep pepperoni pizza file2 line5

Listing 5.40: file3.txt

deep dish pizza file1 line1

deep tandoori chicken pizza file3 line1

deep tandoori chicken pizza file3 line2

deep tandoori chicken pizza file3 line3

deep tandoori chicken pizza file3 line4

deep tandoori chicken pizza file3 line5

deep tandoori chicken pizza file3 line6

deep tandoori chicken pizza file3 line7

Listing 5.41 displays the content of single-line1.sh that

shows you how to print a single line from a text file.

Listing 5.41: single-line1.sh

echo "Print a single line from ONE file:"

awk 'FNR == 2 {print}' file1.txt file2.txt

Listing 5.41 contains an echo command that prints a

message, followed by an awk command that prints only the

second line in the second input file (which happens to be

file2.txt). Launch the code in Listing 5.41, and you will

see the following output:

Print a single line from ONE file:

deep dish potato garlic pizza file1 line2

Listing 5.42 displays the content of single-line2.sh that

shows you how to print a single line from multiple text files.

Listing 5.42: single-line2.sh

echo "Print one line from MULTIPLE files:"

awk 'FNR == 2 {print}' 'ls file*txt'

Listing 5.42 contains almost the same code as Listing 5.41:

the only difference is that the awk command process the

files that are in the output of 'ls file*txt' instead of

simply specifying file1.txt and file2.txt. Launch the

code in Listing 5.42, and you will see the following output:

Print one line from MULTIPLE files:

deep dish potato garlic pizza file1 line2

deep pepperoni pizza file2 line2

deep tandoori chicken pizza file3 line2

Listing 5.43 displays the content of single-line3.sh that

shows you how to print a single line from multiple text files,

as well as the file name that contains each output line.

Listing 5.43: single-line3.sh

echo "Print one line from MULTIPLE files:"

awk 'FNR == 2 {print}' ls file*txt

Listing 5.43 contains almost the same code as Listing 5.42:

the only difference is that the awk command processes the

files in the output of ls file*txt instead of 'ls

file*txt'. Launch the code in Listing 5.43, and you will see

the following output:

Print one line from MULTIPLE files:

file1.txt: deep dish potato garlic pizza file1

line2

file2.txt: deep pepperoni pizza file2 line2

file3.txt: deep tandoori chicken pizza file3 line2

Listing 5.44 displays the content of count-

tokens.sh that shows you how to count the number

of times that a token appears in the second field

in multiple text files.

Listing 5.44: count-tokens.sh

echo "Count the same token in MULTIPLE files:"

awk '

BEGIN { count = 0; token = "chicken" }

{

 if($3 ~ token) {

 count += 1

 }

}

END { print "Token:",token,"token count:",count }

' file*txt

Listing 5.44 contains an echo command that displays as a

message, followed by an awk command that contains a

BEGIN block that initializes the variables count and token

with the values 0 and chicken, respectively. The main

execution block contains conditional logic that checks if the

value of $3 matches the value of token, in which case the

value of count is incremented.

The last portion of code in Listing 5.44 is an END block

that prints the values of the string token and the variable

count. Launch the code in Listing 5.44, and you will see the

following output:

Count the same token in MULTIPLE files:

Token: chicken token count: 7

Listing 5.45 displays the content of count-tokens2.sh that

shows you how to count the number of times that a token

appears in the second field in multiple text files and also

count the number of processed lines.

Listing 5.45: count-tokens2.sh

echo "Count the same token in MULTIPLE files:"

awk '

BEGIN { count = 0; token = "chicken" }

{

 if($3 ~ token) {

 count += 1

 }

}

END { print "Token:",token,"token count:",count

 print "Number of processed lines: ",NR

}

' file*txt

Listing 5.45 is almost the same as Listing 5.44: the only

difference is the code snippet in the END block that displays

the number of lines NR that have been processed. Launch

the code in Listing 5.45, and you will see the following

output:

Count the same token in MULTIPLE files:

Token: chicken token count: 7

Number of processed lines: 15

Inner Join of Two Files in awk

The code sample in this section performs an action that is

called an “inner join” in RDBMS parlance. Listing 5.46

displays the contents of the CSV file customers.csv, and

Listing 5.47 displays the contents of the CSV file

purchase_orders.csv.

Listing 5.46: customers.csv

1000,Jane Jones, 1234 Appian Way

2000,John Smith, 5678 Main Street

3000,Dave Stone, 3333 Birch Avenue

Listing 5.47: purchase_orders.csv

1000,11100,2023/02/05,$125.00

1000,11200,2023/02/13,$480.00

2000,12100,2023/03/09,$312.00

2000,12200,2023/03/25,$567.00

Listing 5.48 displays the content of join2.sh that shows

you how to join the contents of customers.csv and

purchase_orders.csv via the Unix join command.

Listing 5.48: join2.sh

https://shapeshed.com/unix-join/

file1="customers.csv"

file2="purchase_orders.csv"

echo "Joining $file1 and $file2:"

join -1 1 -2 1 -t"," $file1 $file2

echo ""

Use "-o" to specify the order of the output

fields:

echo "A different ordering of the output fields:"

join -1 1 -2 1 -t"," -o 1.1,1.2,1.3,2.2,2.1 $file1

$file2

Listing 5.48 starts by initializing the variables file1 and

file2 to reference the CSV files customers.csv and

purchase_orders.csv, respectively. The next section of

code invokes the join command that performs a join on the

files file1 and file2, based on the contents of the first

field of both of these files.

The final portion of Listing 5.48 contains another code

snippet that also invokes the join command for the same

pair of CSV files, and also specifies the columns from file1

and file2 to display as output. Launch the code in Listing

5.48, and you will see the following output:

Joining customers.csv and purchase_orders.csv:

1000,Jane Jones, 1234 Appian

Way,11100,2023/02/05,$125.00

1000,Jane Jones, 1234 Appian

Way,11200,2023/02/13,$480.00

2000,John Smith, 5678 Main

Street,12100,2023/03/09,$312.00

2000,John Smith, 5678 Main

Street,12200,2023/03/25,$567.00

A different ordering of the output fields:

1000,Jane Jones, 1234 Appian Way,11100,1000

1000,Jane Jones, 1234 Appian Way,11200,1000

2000,John Smith, 5678 Main Street,12100,2000

2000,John Smith, 5678 Main Street,12200,2000

Listing 5.49 displays the content of duplicate-fields.sh

that shows you how to print the rows in which the second

and third fields are the same.

Listing 5.49: duplicate-fields.sh

awk -F ',' '

{

 if($2 == $3) {

 print "Duplicate fields in

row",NR,":",$1,$2,$3

 }

}' datapoints.txt

Listing 5.49 contains an awk command that prints the lines

in which the values of $2 and $3 are the same in the text

file datapoints.txt. Launch the code in Listing 5.49, and

you will see the following output:

Duplicate fields in row 2 : item2 5 5

Duplicate fields in row 5 : item5 8 8

However, before we look at the awk script, let’s look at the

Unix command that performs the same task on two files,

customers.txt and purchase_orders.txt.

Logical Operators in awk

The awk command provides the logical operators, OR, AND,

and NOT, which are expressed with ||, &&, and !,

respectively. In addition, you can combine these logical

operators to define complex Boolean expressions. The

following example uses the logical AND operator:

awk '$3 > 10 && $4 < 20 {print $1, $2}'

datapoint.txt

The following example uses the logical OR

operator:

awk '$3 > 10 || $4 < 20 {print $1, $2}'

datapoint.txt

Listing 5.50 displays the content of the text file

datapoints2.txt.

Listing 5.50: datapoints2.txt

item1,4,6,1000

item2,5,5,8000

item3,4,6,4000

item4,7,9,7000

item5,8,8,9000

Listing 5.51 displays the content of duplicate-fields2.sh

that shows you how to print the rows in which the second

and third fields are the same and the first field equals a

given token.

Listing 5.51: duplicate-fields2.sh

awk -F ',' '

{

 if(($2 == $3) && ($4 == 9000)) {

 print "Duplicate fields in row matching",

$4":",$0

 }

}' datapoints2.txt

Listing 5.51 is almost the same as Listing 5.49: the

difference is that the conditional block contains compound

logic that displays input lines in which $2 and $3 are equal

and the value of $4 is 9000. Launch the code in Listing 5.51,

and you will see the following output:

Duplicate fields in row matching 9000:

item5,8,8,9000

A Simple Use Case

The code sample in this section shows you how to use the

awk command to split the comma-separated fields in the

rows of a dataset, where fields can contain nested quotes of

arbitrary depth.

Listing 5.52 displays the content of the file quotes3.csv

that contains a “,” delimiter and multiple quoted fields.

Listing 5.52: quotes3.csv

field5,field4,field3,"field2,foo,bar",field1,field

6,field7,

 "fieldZ"

fname1,"fname2,other,stuff",fname3,"fname4,foo,bar

",fname5

"lname1,a,b","lname2,c,d","lname3,e,f","lname4,foo

,bar",

 lname5

Listing 5.53 displays the content of the file delim1.sh that

illustrates how to replace the delimiters in quotes3.csv with

a “,” character.

Listing 5.53: delim1.sh

#inputfile="quotes1.csv"

#inputfile="quotes2.csv"

inputfile="quotes3.csv"

grep -v "^$" $inputfile | awk '

{

 print "LINE #" NR ": " $0

 printf ("-------------------------\n")

 for (i = 0; ++i <= NF;)

 printf "field #%d : %s\n", i, $i

 printf ("\n")

}' FPAT='([^,]+)|("[^"]+")' < $inputfile

The output from launching the shell script in Listing 5.53 is

here:

LINE #1:

field5,field4,field3,"field2,foo,bar",field1,

 field6,field7,"fieldZ"

field #1 : field5

field #2 : field4

field #3 : field3

field #4 : "field2,foo,bar"

field #5 : field1

field #6 : field6

field #7 : field7

field #8 : "fieldZ"

LINE #2:

fname1,"fname2,other,stuff",fname3,"fname4,foo,

 bar",fname5

field #1 : fname1

field #2 : "fname2,other,stuff"

field #3 : fname3

field #4 : "fname4,foo,bar"

field #5 : fname5

LINE #3:

"lname1,a,b","lname2,c,d","lname3,e,f","lname4,

 foo,bar",lname5

field #1 : "lname1,a,b"

field #2 : "lname2,c,d"

field #3 : "lname3,e,f"

field #4 : "lname4,foo,bar"

field #5 : lname5

LINE #4: "Outer1 "Inner "Inner "Inner C" B" A"

Outer1",

 "XYZ1,c,d","XYZ2lname3,e,f"

field #1 : "Outer1 "Inner "Inner "Inner C" B" A"

Outer1"

field #2 : "XYZ1,c,d"

field #3 : "XYZ2lname3,e,f"

LINE #5:

As you can see, the task in this section is very easily solved

via the awk command.

Another Use Case

The code sample in this section shows you how to use the

awk command to reformat the date field in a dataset and

change the order of the fields in the new dataset. For

example, consider the following input line in the original

dataset:

Jane,Smith,20140805234658

The reformatted line in the output dataset has this format:

2014-08-05 23:46:58,Jane,Smith

Listing 5.54 displays the content of the file dates2.csv that

contains a “,” delimiter and three fields.

Listing 5.54: dates2.csv

Jane,Smith,20140805234658

Jack,Jones,20170805234652

Dave,Stone,20160805234655

John,Smith,20130805234646

Jean,Davis,20140805234649

Thad,Smith,20150805234637

Jack,Pruit,20160805234638

Listing 5.55 displays the content of string2date2.sh that

converts the date field to a new format and shifts the new

date to the first field.

Listing 5.55: string2date2.sh

inputfile="dates2.csv"

outputfile="formatteddates2.csv"

rm -f $outputfile; touch $outputfile

for line in ｀cat $inputfile｀
do

 fname=｀echo $line |cut -d"," -f1｀
 lname=｀echo $line |cut -d"," -f2｀
 date1=｀echo $line |cut -d"," -f3｀

 # convert to new date format

 newdate=｀echo $date1 | awk ｀{ print
substr($0,1,4)

 "- "substr($0,5,2)"- "substr($0,7,2)"

"substr($0,9,2)":"

 substr($0,11,2)":"substr($0,13,2)}'｀

 # append newly formatted row to output file

 echo "${newdate},${fname},${lname}" >>

$outputfile

done

Listing 5.55 initializes the inputfile and outputfile

variables with the names of the two CSV files. The next code

snippet removes those files, thereby ensuring that they are

empty. The next portion of Listing 5.55 contains a loop that

iterates through the rows in the input file, and initializes the

variables fname, lname, and date1 with the contents of the

first, second, and third fields, respectively, of each input

line.

The next code block constructs the variable newdate via

an awk statement that extracts the appropriate contents of

each input row using the substr() function. The final

portion of Listing 5.55 appends a new string to the

outputfile that consists of the comma-separated values of

newdate, fname, and lname. Launch Listing 5.55, and you

will see the following output:

2014-08-05 23:46:58,Jane,Smith

2017-08-05 23:46:52,Jack,Jones

2016-08-05 23:46:55,Dave,Stone

2013-08-05 23:46:46,John,Smith

2014-08-05 23:46:49,Jean,Davis

2015-08-05 23:46:37,Thad,Smith

2016-08-05 23:46:38,Jack,Pruit

Date Conversion

Listing 5.56 displays the contents of mixed_currency.csv,

and Listing 5.57 displays the content of

convert_currency3.sh that illustrates how to replace a “,”

with a “.” and vice versa when it is necessary so that strings

have a valid USD currency format. Keep in mind that the

code does not check strings for invalid date formats.

Listing 5.56: mixed_currency.csv

product1|1129.95

product2|2110,99

product3|2.110,99

product4|2.110.678,99

product5|1,130.95

Listing 5.57: convert_currency3.sh

filename="mixed_currency.csv"

echo "=> INITIAL CONTENTS OF CSV FILE:"

cat $filename

echo

echo "=> UPDATED CONTENTS OF CSV FILE:"

awk -F"|" '

BEGIN { modified=0 }

{

 comma = index($2,",")

 period = index($2,".")

 OLD2=$2

 if(comma > 0 && period == 0) {

 gsub(/,/,".",$2)

 modified += 1

 #print "comma(s) but no period:", $2

 }

 else if(comma > period) {

 # replace right-most "," with "Z"

 gsub(/,/,"Z",$2)

 # replace "." with ","

 gsub(/\./,",",$2)

 # replace "Z" with "."

 gsub(/Z/,".",$2)

 modified += 1

 #print "comma(s) before period:", $2

 }

 NEW2=$2

 printf("OLD: %18s NEW: %15s\n",OLD2, NEW2)

}

END { print "=> Modified lines:",modified }

' < mixed_currency.csv

Listing 5.57 starts by initializing the variable filename as

mixed_currency.csv and then displays its contents. The

next portion of Listing 5.57 is an awk script that initializes

the variables comma and period with the index of a comma

(“,”) and period (“.”) for every input line from the file

mixed_currency.csv. Unlike other programming languages,

there is no explicit loop keyword in the code: instead, it is an

implicit aspect of the awk programming language (which

might take some time to become accustomed to this style).

The next block of conditional code checks for the

presence of a comma and the absence of a period: if so,

then the gsub() function replaces the comma (“,”) with a

period (“.”) in the second field, which is the numeric portion

of each line in Listing 5.57, and the variable modified is

incremented. For example, the input line product3|2110,99

is processed by the conditional block and replaces the

contents of $2 (which is the second field) with the value

2110.99.

The next portion of code checks for the presence of a

comma and a period where the location of the comma is on

the right side of the period: if so, then three substitutions

are performed. First, the right-most comma is replaced with

the letter Z, after which the period is replaced with a

comma, and then the Z is replaced with a period. Launch

the code in Listing 5.57 with the following code snippet:

$./convert-currency3.sh

You will see the following output:

=> INITIAL CONTENTS OF CSV FILE:

product1|1129.95

product2|2110,99

product3|2.110,99

product4|2.110.678,99

product5|1,130.95

=> UPDATED CONTENTS OF CSV FILE:

OLD: 1129.95 NEW: 1129.95

OLD: 2110,99 NEW: 2110.99

OLD: 2.110,99 NEW: 2,110.99

OLD: 2.110.678,99 NEW: 2,110,678.99

OLD: 1,130.95 NEW: 1,130.95

=> Modified lines: 3

A Dataset with 1,000,000 Rows

The code samples in this section show you how to use awk

to perform various comparisons on a dataset that contains

1,000,000 rows.

Numeric Comparisons

The code snippet in this section illustrates how to check for

a specific number (e.g., 58) and the occurrence of one, two,

or three adjacent digits in the first field of each row.

Listing 5.58 displays the content

numeric_comparisons.sh that shows you how to work with

a dataset that contains 1,000,000 rows.

Listing 5.58: numeric_comparisons.sh

filename="1000000_HRA_Records.csv"

echo "first:"

awk -F"," '{ if($1 > 50) { print $1 } }' <

$filename | wc

echo

echo "second:"

awk -F"," '{ if($1 > 50 && $5 > 70) { print $4 }

}'

 < $filename | wc

Listing 5.58 initializes the variable filename with a CSV

filename, followed by an awk command that counts the

number of rows in which the first field is greater than 50.

The second and final awk statement counts the number of

rows whose first field is greater than 50 and whose fifth field

is greater than 70. Launch the code in Listing 5.58, and you

will see the following output:

first:

 232161 232161 696484

second:

 232161 232161 696484

third:

 232161 232161 1011843

Counting Adjacent Digits

The code sample in this section illustrates how to check for

a specific number (e.g., 58) and the occurrence of one, two,

or three adjacent digits in the first field of each row.

Listing 5.59: adjacent_digits.sh

filename="1000000_HRA_Records.csv"

echo "first:"

awk -F"," '{ if($1 ~ /58/) { print $1} }' <

$filename |wc

echo

echo "second:"

awk -F"," '{ if($1 ~ /[0-9]/) { print $1} }'

<$filename |wc

echo

echo "third:"

awk -F"," '{ if($1 ~ /[0-9][0-9]/) { print $1} }'

 < $filename |wc

echo

echo "fourth:"

awk -F"," '{ if($1 ~ /[0-9][0-9][0-9]/) { print

$1} }'

 < $filename |wc

Listing 5.59 initializes the variable filename with a CSV

filename, followed by three awk commands. The first awk

command counts the number of rows whose first field

contains the string 58. The second awk command counts the

number of rows whose first field contains a digit, and the

third awk command counts the number of rows whose first

field contains three consecutive digits. Launch the code in

Listing 5.59, and you will see the following output:

first:

 23199 23199 69597

second:

1000000 1000000 3000000

third:

1000000 1000000 3000000

fourth:

 0 0 0

Average Support Rate

The code sample in this section illustrates how to check for

a specific number (e.g., 58) and the occurrence of one, two,

or three adjacent digits in the first field of each row.

Listing 5.60: average_rate.sh

filename="1000000_HRA_Records.csv"

awk -F"," '

BEGIN { total = 0; num_records = 0 }

{

 if($1 > 40 && $5 == "Support") {

 total += $4

 num_records += 1

 }

}

END {

 avg_rate = total/num_records

 print "Number of Records: ",num_records

 print "Average Support Rate:",avg_rate

}

' < $filename

Listing 5.60 initializes the variable filename with a CSV

filename, followed by an awk statement that calculates the

total value in the fourth field of the rows whose first field is

greater than 40 and whose fifth field equals the string

Support.

The final portion of Listing 5.60 calculates the avg_rate,

which is the total value divided by the number of matching

rows. Next, the avg_rate and num_records are displayed.

Launch the code in Listing 5.60, and you will see the

following output:

Number of Records: 77482

Minimum Rate: 100

Maximum Rate: 1500

Average Support Rate: 798.935

What is Recursion?

Recursion-based algorithms can provide elegant solutions to

tasks that would be difficult to implement via iterative

algorithms. For some tasks, such as calculating factorial

values, the recursive solution and the iterative solution have

comparable code complexity.

As a simple example, suppose that we want to add the

integers from 1 to n (inclusive), and let n = 10 so that we

have a concrete example. If we denote S as the partial sum

of successively adding consecutive integers, then we have

the following:

S = 1

S = S + 2

S = S + 3

. . .

S = S + 10

If we denote S(n) as the sum of the first n positive integers,

then we have the following relationship:

S(1) = 1

S(n) = S(n-1) + n for n > 1

The next section contains code samples for calculating the

sum of the first n positive integers using an iterative

approach and then with recursion.

Arithmetic Series

This section shows you how to calculate the sum of a set of

positive integers, such as the numbers from 1 to n,

inclusive. The first algorithm uses an iterative approach and

the second algorithm uses recursion.

Before delving into the code samples, there is a simple

way to calculate the closed form sum of the integers from 1

to n, inclusive, which we will denote as S. Then there are

two ways to calculate S, as shown here:

S = 1 + 2 + 3 + . . . + (n-1) + n

S = n + (n-1) + (n-2) + . . . + 2 + 1

There are n columns on the right side of the preceding pair

of equations, and each column has the sum equal to (n+1).

Therefore, the sum of the right side of the equals sign is n*

(n+1). Since the left side of the equals sign has the sum

2*S, we have the following result:

2*S = n*(n+1)

Now divide both sides by 2, and we get the well-known

formula for the arithmetic sum of the first n positive

integers:

S = n*(n+1)/2

Incidentally, the preceding formula was derived by a young

student who was bored with performing the calculation

manually: that student was Karl F. Gauss (in third grade).

Calculating Arithmetic Series (Iterative)

Listing 5.61 displays the content of the arith_sum.sh that

illustrates how to calculate the sum of the numbers from 1

to n, inclusive, using an iterative approach.

Listing 5.61: arith_sum.sh

echo "" |awk '

function arith_sum(num)

{

 sum = 0

 for(i=1; i<=num; i++) {

 sum += i

 }

 return sum

}

BEGIN {

 max = 20

 for(j=1; j<=max; j++) {

 sum = arith_sum(j)

 print "Sum from 1 to",j," = ",sum

 }

}

'

Listing 5.61 starts with the function arith_sum() that

contains a loop that iteratively adds the numbers from 1 to

n. The next portion of Listing 5.61 also contains a loop that

iterates through the numbers from 2 to 20, inclusive, and

then invokes arith_sum() with each value of the loop

variable to calculate the sum of the integers from 1 to that

value. Launch the code in Listing 5.61, and you will see the

following output:

sum from 1 to 2 = 3

sum from 1 to 3 = 6

sum from 1 to 4 = 10

sum from 1 to 5 = 15

sum from 1 to 6 = 21

sum from 1 to 7 = 28

sum from 1 to 8 = 36

sum from 1 to 9 = 45

sum from 1 to 10 = 55

sum from 1 to 11 = 66

sum from 1 to 12 = 78

sum from 1 to 13 = 91

sum from 1 to 14 = 105

sum from 1 to 15 = 120

sum from 1 to 16 = 136

sum from 1 to 17 = 153

sum from 1 to 18 = 171

sum from 1 to 19 = 190

sum from 1 to 20 = 210

Modify the code in Listing 5.62 to calculate the sum of the

squares, cubes, and fourth powers of the numbers from 1 to

n, along with your own variations of the code.

Calculating Arithmetic Series (Recursive)

Listing 5.63 displays the content of the

arith_sum_recursive.sh that illustrates how to calculate

the sum of the numbers from 1 to n, inclusive, using a

recursion.

Listing 5.63: arith_sum_recursive.sh

echo "" |awk '

function arith_sum(num)

{

 if(num == 0) return num

 else {

 return num + arith_sum(num-1)

 }

 for(i=1; i<=num; i++) {

 sum += i

 }

}

BEGIN {

 max = 20

 for(j=1; j<=max; j++) {

 sum = arith_sum(j)

 print "Sum from 1 to",j," = ",sum

 }

}

'

Listing 5.63 starts with the recursive function arith_sum(),

which uses conditional logic to return n if n equals the value

0 (which is the terminating case); otherwise, the code

returns the value of n plus the value of arith_sum(n-1).

Launch the code in Listing 5.63, and you will see the same

output as shown in the previous section.

Calculating Partial Arithmetic Series

Listing 5.64 displays the content of arith_partial_sum.sh

that illustrates how to calculate the sum of the numbers

from m to n, inclusive, where m and n are two positive

integers such that m <= n, using an iterative approach.

Listing 5.64: arith_partial_sum.sh

echo "" |awk '

function arith_sum(m,n)

{

 if(m > n) return 0

 else {

 return n*(n+1)/2 - m*(m+1)/2

 }

}

BEGIN {

 max = 10

 for(i=1; i<max; i++) {

 for(j=i+1; j<=max; j++) {

 sum = arith_sum(i,j)

 print "Arithmetic sum from",i,"to",j," =

",sum

 }

 }

}

'

Listing 5.64 is straightforward: the function

arith_partial_sum()returns the sum of squares from 1 to

n minus the sum of the squares from 1 to m. This function is

invoked in a loop in the second part of Listing 5.64, which

calculates the difference of the sum of squares from 2 to 20.

Launch the code in Listing 5.64, and you will see the

following output:

arithmetic sum from 2 to 2 = 2

Arithmetic sum from 1 to 2 = 2

Arithmetic sum from 1 to 3 = 5

Arithmetic sum from 1 to 4 = 9

Arithmetic sum from 1 to 5 = 14

Arithmetic sum from 1 to 6 = 20

// details omitted for brevity

Arithmetic sum from 7 to 9 = 17

Arithmetic sum from 7 to 10 = 27

Arithmetic sum from 8 to 9 = 9

Arithmetic sum from 8 to 10 = 19

Arithmetic sum from 9 to 10 = 10

Now that you have seen some examples involving

arithmetic expressions, let’s turn to geometric series, which

is the topic of the next section.

Geometric Series

This section shows you how to calculate the geometric

series of a set of positive integers, such as the numbers

from 1 to n, inclusive. The first algorithm uses an iterative

approach and the second algorithm uses recursion.

Before delving into the code samples, there is a simple

way to calculate the closed form sum of the geometric

series of integers from 1 to n, inclusive, where r is the ratio

of consecutive terms in the geometric series. Let S denote

the sum, which we can express as follows:

S = 1+ r + r^2 + r^3 + . . . + r^(n-1) + r^n

r*S = r + r^2 + r^3 + . . . + r^(n-1) + r^n +

r^(n+1)

Now subtract each term in the second row from the

corresponding term in the first row, and we have the

following result:

S - r*S = 1 - r^(n+1)

Factor S from both terms on the left side of the preceding

equation, and we obtain the following result:

S*(1 - r) = 1 - r^(n+1)

Divide both sides of the preceding equation by the term (1-

r) to get the formula for the sum of the geometric series of

the first n positive integers:

S = [1 - r^(n+1)]/(1-r)

If r = 1, then the preceding equation returns an infinite

value, which makes sense because S is the sum of an

infinite number of occurrences of the number 1.

Calculating a Geometric Series (Iterative)

Listing 5.65 displays the content of the geom_sum.sh that

illustrates how to calculate the sum of the numbers from 1

to n, inclusive, using an iterative approach.

Listing 5.65: geom_sum.sh

echo "" |awk '

function geom_sum(num, ratio)

{

 partial = 0

 power = 1

 for(i=1; i<=num; i++) {

 partial += power

 power *= ratio

 }

 return partial

}

BEGIN {

 max = 10

 ratio = 2

 for(j=2; j<=max; j++) {

 prod = geom_sum(j, ratio)

 print "Geometric sum for ratio",ratio,"from

1 to",j,

 " = ",prod

 }

}

'

Listing 5.65 starts with the function geom_sum() that

contains a loop that calculates the sum of the powers of the

numbers from 1 to n, where the power is the value of the

variable ratio. The second part of Listing 5.65 contains a

loop that invokes the function geom_sum() with the values

2, 3, . . ., n and a fixed value of 2 for the variable ratio.

Launch the code in Listing 5.65, and you will see the

following output:

geometric sum for ratio= 2 from 1 to 2 = 3

geometric sum for ratio= 2 from 1 to 3 = 7

geometric sum for ratio= 2 from 1 to 4 = 15

geometric sum for ratio= 2 from 1 to 5 = 31

geometric sum for ratio= 2 from 1 to 6 = 63

geometric sum for ratio= 2 from 1 to 7 = 127

geometric sum for ratio= 2 from 1 to 8 = 255

geometric sum for ratio= 2 from 1 to 9 = 511

geometric sum for ratio= 2 from 1 to 10 = 1023

Calculating Arithmetic Series (Recursive)

Listing 5.66 displays the content of

geom_sum_recursive.sh that illustrates how to calculate

the sum of the geometric series of the numbers from 1 to n,

inclusive, using recursion. Note that the following code

sample uses “tail recursion.”

Listing 5.66: geom_sum_recursive.sh

echo "" |awk '

function geom_sum(num, ratio, term, sum)

{

 if(num == 1) {

 return sum

 } else {

 term *= ratio

 sum += term

 return geom_sum(num-1,ratio,term,sum)

 }

}

BEGIN {

 max = 10

 ratio = 2

 sum = 1

 term = 1

 for(j=2; j<=max; j++) {

 prod = geom_sum(j, ratio, term, sum)

 print "Geometric sum for ratio",ratio,"from

1 to",j,

 " = ",prod

 }

}

'

Listing 5.66 contains the function geom_sum() that takes

four parameters: n (the current value of the upper range),

ratio (which is the exponent 2 in this code sample), term

(which is the current intermediate term of the sum), and sum

(the target sum).

As you can see, the code returns the value 1 when n

equals 1; otherwise, the values of term and sum are

updated, and the function geom_sum() is invoked whose

only difference is to decrement n by 1.

This code sample illustrates tail recursion, which is more

efficient than regular recursion, and perhaps a little more

intuitive as well. The second part of Listing 5.66 contains a

loop that invokes the function geom_sum() as the loop

iterates from 2 to max, inclusive. Launch the code in Listing

5.66, and you will see the same output as shown in the

previous section.

Factorial Values

Listing 5.67 displays the content of factorial.sh that

calculates a set of factorial values.

Listing 5.67: factorial.sh

awk '

function factorial(n) {

 return (n > 1 ? n * factorial(n-1) : n)

}

BEGIN {

 for(x=2; x<15; x++) {

 result = factorial(x);

 print "factorial",x," =",result

 }

}

'

Listing 5.67 starts with an awk command defining the

recursive function factorial() that calculates the factorial

value of its integer-valued input parameter. The next portion

of Listing 5.67 is a BEGIN block containing a for loop that

iterates through the values 2 and 14, inclusive. During each

iteration, the factorial function is invoked with the loop

parameter and the result is displayed. Launch the code in

Listing 5.67, and you will see the following output:

factorial 2 = 2

factorial 3 = 6

factorial 4 = 24

factorial 5 = 120

factorial 6 = 720

factorial 7 = 5040

factorial 8 = 40320

factorial 9 = 362880

factorial 10 = 3628800

factorial 11 = 39916800

factorial 12 = 479001600

factorial 13 = 6227020800

factorial 14 = 87178291200

Fibonacci Numbers

Listing 5.68 displays the content of fibonacci.sh that

calculates a set of Fibonacci numbers.

Listing 5.68: fibonacci.sh

awk '

function fibonacci(n) {

 return (n > 1 ? fibonacci(n-1) + fibonacci(n-2)

: n)

}

BEGIN {

 for(x=2; x<15; x++) {

 result = fibonacci(x);

 print "Fibonacci",x,"=",result

 }

}

'

Listing 5.68 starts with an awk command defining the

recursive function fibonacci() that calculates the

Fibonacci number of its integer-valued input parameter. The

next portion of Listing 5.68 is a BEGIN block the contains a

loop that iterates through the values 2 and 14, inclusive.

During each iteration, the fibonacci function is invoked

with the loop parameter and the result is displayed. Launch

the code in Listing 5.68, and you will see the following

output:

Fibonacci 2 = 2

Fibonacci 3 = 3

Fibonacci 4 = 5

Fibonacci 5 = 8

Fibonacci 6 = 13

Fibonacci 7 = 21

Fibonacci 8 = 34

Fibonacci 9 = 55

Fibonacci 10 = 89

Fibonacci 11 = 144

Fibonacci 12 = 233

Fibonacci 13 = 377

Fibonacci 14 = 610

Euclid’s Algorithm (GCD)

Euclid’s algorithm enables you to find the greatest common

divisor (GCD) of two positive integers. Listing 5.69 displays

the content of gcd1.sh that calculates the GCD of two

positive integers.

Listing 5.69: gcd1.sh

echo "" | awk '

function gcd(num1, num2) {

 if(num1 % num2 == 0) {

 return num2

 } else if (num1 < num2) {

 #print "Switching",num1,"and",num2

 return gcd(num2, num1)

 } else {

 #print "Reducing",num1,"and",num2

 return gcd(num1-num2, num2)

 }

}

BEGIN {

 arr1[0] = 24; arr1[1] = 36; arr1[2] = 50;

arr1[3] = 100;

 arr2[0] = 10; arr2[1] = 18; arr2[2] = 11;

arr2[3] = 64;

}

{

 for(i=0; i<length(arr1); i++) {

 num1 = arr1[i]

 num2 = arr2[i]

 result = gcd(num1,num2)

 print "The GCD of",num1,"and",num2,"=",result

 }

}

'

Listing 5.69 starts with an awk command defining the

function gcd() that calculates the GCD of its two integer-

valued input parameters. This function implements the

Euclidean algorithm whereby the order of the parameters is

switched to ensure that the first parameter is greater than

or equal to the second parameter. When the second

parameter equals 0, the first parameter is the GCD, and its

value is returned. The next block of code in Listing 5.69 is a

BEGIN block that initializes the arrays arr1 and arr2 with a

set of integer values (both arrays have the same length).

The next portion of Listing 5.69 is main execution block

that contains a loop that iterates through the elements of

the array arr1. During each iteration, the current value of

arr1 and the corresponding value in arr2 are used to

initialize the values of the variables num1 and num2,

respectively. The next code snippet initializes the variable

result with the value that is returned from invoking the

function gcd() with the arguments num1 and num2. Launch

the code in Listing 5.69, and you will see the following

output:

The GCD of 24 and 10 = 2

The GCD of 36 and 18 = 18

The GCD of 50 and 11 = 1

The GCD of 100 and 64 = 4

Lowest Common Multiple of Two Positive

Integers

Listing 5.70 displays the content of lcm1.sh that determines

the lowest common multiple of a pair of positive integers.

Listing 5.70: lcm1.sh

echo "" | awk '

function gcd(num1, num2) {

 if(num1 % num2 == 0) {

 return num2

 } else if (num1 < num2) {

 #print "Switching",num1,"and",num2

 return gcd(num2, num1)

 } else {

 #print "Reducing",num1,"and",num2

 return gcd(num1-num2, num2)

 }

}

BEGIN {

 arr1[0] = 24; arr1[1] = 36; arr1= 50; arr1[3] =

100;

 arr2[0] = 10; arr2[1] = 18; arr2= 11; arr2[3] =

64;

}

{

 for(i=0; i<length(arr1); i++) {

 num1 = arr1[i]

 num2 = arr2[i]

 result = gcd(num1,num2)

 lcm = num1*num2/result

 print "The LCM of",num1,"and",num2,"=",lcm

 }

}

'

Listing 5.70 starts with the definition of the function gcd()

that you saw in Listing 5.69, followed by the same BEGIN

block that is shown in Listing 5.69.

The next portion of Listing 5.70 is the main execution

block that contains a loop that iterates through the

elements of the array arr1. During each iteration, the

current value of arr1 and the corresponding value in arr2

are used to initialize the values of the variables num1 and

num2, respectively. The next code snippet initializes the

variable result with the value that is returned from

invoking the function gcd() with the arguments num1 and

num2.

The final code snippet initializes the value of lcm, which

equals the lowest common multiple of num1 and num2.

Launch the code in Listing 5.70, and you will see the

following output:

The LCM of 24 and 10 = 120

The LCM of 36 and 18 = 36

The LCM of 50 and 11 = 550

The LCM of 100 and 64 = 1600

Composite versus Prime Numbers

Listing 5.71 displays the content of prime1.sh that

determines whether a positive integer is composite or

prime.

Listing 5.71: prime1.sh

echo "" | awk '

function divisors(num) {

 for(i=2; i<=num/2; i++) {

 if(num % i == 0) {

 #print "divisor:",i

 return 1

 }

 }

 return 0;

}

BEGIN { max = 20; }

{

 for(x=3; x<max; x++) {

 result = divisors(x);

 if(result == 0) {

 print x,"is prime"

 } else {

 print x,"is not prime"

 }

 }

}

'

Listing 5.71 defines the function divisors() that contains a

loop that iterates from 2 to the input parameter num divided

by 2. During each iteration, a conditional statement checks

whether num is divisible by the loop variable x: if so, then

num is composite and the value 1 is returned. If the loop

completes without returning a value, then num is a prime

number, and the value 0 is returned.

The next portion of Listing 5.71 contains a BEGIN block

that initializes the variable max to 20, followed by the main

execution block that contains a loop that iterates through

the values 3 through max-1, inclusive. During each iteration,

the function divisors() is invoked with the value of the

loop variable x. The final portion of code contains a

conditional code block that prints a message based on

whether the variable x is a prime number. Launch the code

in Listing 5.71, and you will see the following output:

3 is prime

4 is not prime

5 is prime

6 is not prime

7 is prime

8 is not prime

9 is not prime

10 is not prime

11 is prime

12 is not prime

13 is prime

14 is not prime

15 is not prime

16 is not prime

17 is prime

18 is not prime

19 is prime

Factors of Positive Integers

Listing 5.72 displays the content of prime_factors1.sh that

determines the prime factors of a positive integer.

Listing 5.72: prime_factors1.sh

echo "" | awk '

function divisors(num) {

 factors = ""; div = 2

 while(num > 1) {

 if(num % div == 0) {

 factors = factors " " div

 num /= div

 } else {

 div += 1

 }

 }

 return factors;

}

 BEGIN { arr[0] = 24; arr[1] = 7; arr[2] = 96 }

{

 for(i=0; i<length(arr); i++) {

 num = arr[i]

 result = divisors(num)

 print "Factors of",num,":",result

 }

}

'

Listing 5.72 starts with the function prime_factors() that

initializes the variables factors and div with the values “”

and 2, respectively. The next portion of this function

contains a while() loop that executes as long as its input

parameter num is greater than 1. During each iteration, a

conditional code block checks if num divided by div equals

0: if true, then the variable factors is updated by appending

the value of div to factors, after which num is divided by the

value of div. However, if num is not divisible by div, then

the value of div is incremented by 1. The preceding logic

enables us to find multiple prime divisors that are equal. For

example, the number 12 has prime factors 2, 2, and 3.

The next portion of Listing 5.72 is a BEGIN block that

initializes the array arr with three positive integers. The

next portion of Listing 5.72 is the main execution block that

contains a loop that iterates through the elements of the

array arr. During each iteration, the divisors() function is

invoked with the current element of arr, whose return value

is used to initialize the variable result. The final code

snippet of this code block displays the current value of x

and its prime divisors. Launch the code in Listing 5.68, and

you will see the following output:

Factors of 24 : 2 2 2 3

Factors of 7 : 7

Factors of 96 : 2 2 2 2 2 3

Goldbach’s Conjecture

Goldbach’s conjecture states that every even number

greater than 2 can be expressed as the sum of two odd

prime numbers.

Listing 5.73: goldbach_conjecture.sh

echo "" | awk '

function prime(num) {

 div = 2

 while(div < num) {

 if(num % div != 0) {

 div += 1

 } else {

 return COMPOSITE

 }

 }

 return PRIME

}

function find_prime_factors(even_num) {

 for(num=3; num<int(even_num/2); num++) {

 if(prime(num) == 1) {

 if(prime(even_num-num) == 1) {

 print even_num , " = " , num , "+" ,

(even_num-num)

 }

 }

 }

}

BEGIN { PRIME = 1; COMPOSITE = 0; upper_bound =

30; }

{

 for(idx=4; idx<upper_bound; idx++) {

 find_prime_factors(idx)

 }

}

'

Listing 5.73 starts with the function prime() that

determines whether the parameter num is a prime number.

Next, the function find_prime_factors() contains a loop

whose loop variable num iterates from 3 to half the value of

the parameter even_num. If num is a prime number, then the

conditional logic in Listing 5.73 invokes prime() with the

number even_num-num.

If both num and even_num are prime, then they are a

solution to Goldbach’s conjecture because the sum of these

two numbers equals the parameter even_num. Launch the

code in Listing 5.73, and you will see the following output:

8 = 3 + 5

10 = 3 + 7

12 = 5 + 7

14 = 3 + 11

16 = 3 + 13

16 = 5 + 11

18 = 5 + 13

18 = 7 + 11

20 = 3 + 17

20 = 7 + 13

22 = 3 + 19

22 = 5 + 17

24 = 5 + 19

24 = 7 + 17

24 = 11 + 13

26 = 3 + 23

26 = 7 + 19

28 = 5 + 23

28 = 11 + 17

Environment Variables in awk

All versions of awk support the built-in variables FS, NFS, RS,

NR, FILENAME, OFS, and ORS. Moreover, the environment

variables ARGC and ARGV enable you to pass parameters

from the command line to the given awk script. Keep in mind

the following regarding ARGC and ARGV:

ARGC is the number (“count”) of arguments.

ARGV is an array of the arguments passed to the awk

script.

The index for ARGV is from 0 through ARGC.

ARGV[0] is the awk utility.

LISTING 5.74 displays the content of command_line.sh

that shows you how to pass parameters to an awk

script.

awk '

 BEGIN {

 print "ARGC = ",ARGC

 for (i = 0; i < ARGC; i++)

 print "ARGV[",i,"]: ",ARGV[i]

 }

{

}

' 1 2 3

Listing 5.74 contains an awk command starting with a BEGIN

block that prints the number of arguments ARGC, followed by

a loop that iterates from 1 to ARGC-1, inclusive. During each

iteration, the value of the current input argument is printed.

Note that the list of input arguments is 1, 2, and 3, which is

shown in the final portion of Listing 5.74. Launch the code in

Listing 5.70, and you will see the following output:

awk -f command_line.sh 1 2 3

ARGC = 4

ARGV[0]: awk

ARGV[1]: 1

ARGV[2]: 2

ARGV[3]: 3

Summary

This chapter started with bit operations in awk, such as

calculating the AND, OR, and XOR of a pair of positive

integers. Then you learned how to perform various string-

related tasks, such as reversing a string, checking for

balanced parentheses, and column alignment.

In addition, you learned how to delete rows with missing

values, how to process multiple files, and perform date

conversions. Next, you learned how to work with a data set

that contains one million records, and how to count adjacent

digits in such a dataset.

You also learned about recursion, along with code

samples for calculating values of arithmetic series,

geometric series, factorial values, and Fibonacci numbers.

Moreover, you learned how to use Euclid’s algorithm to find

the GCD of two positive integers, which also enabled you to

find the least common multiple of two positive integers.

Finally, you learned how to display the values of command

line parameters using ARGC and ARGV in an awk command.

CHAPTER 6

REGULAR EXPRESSIONS

This chapter explores regular expressions, a very powerful

language feature in many programming languages (such as

JavaScript and Java). Consequently, the knowledge that you

gain from the material in this chapter will be useful to you

outside of awk. Although you have seen examples of regular

expressions in previous chapters, this chapter consolidates

those code samples and provides a more extensive

discussion of the variety of regular expressions that you can

define in an awk command. As a result, this chapter contains

a mixture of code blocks and complete code samples, with

varying degrees of complexity, that are suitable for

beginners as well as people who have had some exposure to

regular expressions.

There is also a good chance that you have used regular

expressions in commands that you have launched from the

command line on a laptop, whether it be Windows, Unix, or

Linux-based systems. Examples of such comments involve

the DIR command on Windows for listing files with a given

suffix, and the ls command for performing the same action

on a Linux machine or MacBook. In this chapter, you will

learn how to define and use more complex regular

expressions than the regular expressions that you have

used from the command line.

The first part of this chapter discusses metacharacters

and character classes, followed by code samples that define

regular expressions with digits and letters (uppercase as

well as lowercase), and how to use character classes in

regular expressions.

The second portion contains code samples with regular

expressions involving metacharacters, such as “.,” “^,” “$,”

and “|.” In addition, you will also learn how to match subsets

of strings via regular expressions.

The third portion of this chapter shows you how to use the

built-in sub() and gsub() functions in awk to remove digits,

characters, and consecutive characters via awk commands.

The fourth portion of this chapter shows you how to split

strings with regular expressions, how to define dynamic

regular expressions, and how to count comments in text

fields. Then you will learn how to combine the grep and sed

commands, which you learned in Chapter 1 and Chapter 2,

with the awk command. Finally, you will see how to use the

gsub() command with captured groups.

One additional point about this chapter: you will

encounter many concepts and facets of regular expressions

that might make you feel overwhelmed with the density of

the material if you are a novice. However, practice and

repetition will help you become comfortable with regular

expressions.

What are Regular Expressions?

Regular expressions are referred to as REs, regexes, or

regex patterns, and they enable you to specify expressions

that can match specific “parts” of a string. For instance, you

can define a regular expression to match a single character

or digit, a telephone number, a zip code, or an email

address. You can use metacharacters and character classes

(defined in the next section) as part of regular expressions

to search text documents for specific patterns. As you learn

how to use REs, you will find other ways to use them, as

well.

Metacharacters

The awk command supports a set of metacharacters, most

of which are the same as the metacharacters in other

scripting languages such as Perl, as well as programming

languages such as JavaScript and Java. The complete list of

metacharacters in Python is here:

. ^ $ * + ? { } [] \ | ()

The meaning of the preceding metacharacters is here:

? (matches 0 or 1): the expression a? matches the string a

(but not ab)

* (matches 0 or more): the expression a* matches the string

aaa (but not baa)

+ (matches 1 or more): the expression a+ matches aaa (but

not baa)

^

(beginning of line): the expression ^[a] matches the string

abc (but not bc)

$ (end of line): [c]$ matches the string abc (but not cab)

. (a single dot): matches any character (except newline)

Sometimes you need to match the metacharacters

themselves rather than their representation, which can be

done in two ways. The first way involves by “escaping” their

symbolic meaning with the backslash (“\”) character. Thus,

the sequences \?, *, \+, \^, \$, and \. represent the

literal characters instead of their symbolic meaning. You can

also “escape” the backslash character with the sequence

“\\.” If you have two consecutive backslash characters, you

need an additional backslash for each of them, which means

that “\\\\” is the “escaped” sequence for “\\.”

The second way is to list the metacharacters inside a pair

of square brackets. For example, [+?] treats the two

characters “+” and “?” as literal characters instead of

metacharacters. The second approach is obviously more

compact and less prone to error (it is easy to forget a

backslash in a long sequence of metacharacters). As you

might surmise, the methods in the re module support

metacharacters.

NOTE

The “^” character that is to the left (and outside) of a

sequence in square brackets (such as ^[A-Z]) “anchors” the

regular expression to the beginning of a line, whereas the

“^” character that is the first character inside a pair of

square brackets negates the regular expression (such as

[^A-Z]) inside the square brackets.

The interpretation of the “^” character in a regular

expression depends on its location in a regular expression,

as shown here:

“^[a-z]” means any string that starts with any lowercase

letter

“[^a-z]” means any string that does not contain any

lowercase letters

“^[^a-z]” means any string that starts with anything

except a lowercase letter

“^[a-z]$” means a single lowercase letter

“^[^a-z]$” means a single character (including digits) that

is not a lowercase letter

Character Sets

A single digit in base 10 is a number between 0 and 9

inclusive, which is represented by the sequence [0-9].

Similarly, a lowercase letter can be any letter between a

and z, which is represented by the sequence [a-z]. An

uppercase letter can be any letter between A and Z, which is

represented by the sequence [A-Z].

The following code snippets illustrate how to specify

sequences of digits and sequences of character strings

using a short-hand notation that is much simpler than

specifying every matching digit:

[0-9] matches a single digit

[0-9][0-9] matches 2 consecutive digits

[0-9]{3} matches 3 consecutive digits

[0-9]{2,4} matches 2, 3, or 4 consecutive digits

[0-9]{5,} matches 5 or more consecutive digits

^[0-9]+$ matches a string consisting solely of digits

You can define similar patterns using uppercase or

lowercase letters in a way that is much simpler than

explicitly specifying every lowercase letter or every

uppercase letter:

[a-z][A-Z] matches a single lowercase letter that is

followed by 1 uppercase letter

[a-zA-Z] matches any upper or lowercase letter

Working with “^” and “\”

The purpose of the “^” character depends on its context in

a regular expression. For example, the following expression

matches a text string that starts with a digit:

^[0-9].

However, the following expression matches a text string

that does not start with a digit because of the “^”

metacharacter that is at the beginning of an expression in

square brackets as well as the “^” metacharacter that is to

the left (and outside) the expression in square brackets

(which you learned in a previous note):

^[^0-9]

Thus, the “^” character inside a pair of matching square

brackets (“[]”) negates the expression immediately to its

right that is also located inside the square brackets.

The backslash (“\”) allows you to “escape” the meaning

of a metacharacter. Consequently, a dot “.” matches a

single character (except for whitespace characters),

whereas the sequence “\.” matches the dot “.” character.

Other examples involving the backslash metacharacter

are here:

\.H.* matches the string .Hello

H.* matches the string Hello

H.*\. matches the string Hello.

.ell. matches the string Hello

.* matches the string Hello

\..* matches the string .Hello

Character Classes

Character classes are convenient expressions that are

shorter and simpler than their “bare” counterparts that you

saw in the previous section. There are character classes that

are supported in programming languages such as Perl,

Python, and JavaScript (discussed in the first subsection)

and there are character classes that are supported in awk.

For example, the character class \d represents a single

(base 10) digit, which is supported in the first group of

programming languages. However, [[:digit:]] matches a

single (base 10) digit in awk. Similar comments apply to

character classes such as \D, \w, and \W.

POSIX Character Classes

POSIX classes differ from regular expression character

classes that we have discussed in the previous chapters in

this book. POSIX classes use a string to define a class, which

is probably more intuitive than the backslash style that you

will see in regular expressions in other languages such as

JavaScript and Java. For example, POSIX uses [[:digit:]]

to specify a digit instead of [0-9] or \d to represent a digit

in regular expressions. In addition, the POSIX standard

defines 12 character classes, some of which are listed here:

[:alpha:] Alphabetic characters

[:alnum:] Alphabetic characters and digits

[:digit:] Digits

[:xdigit:] Hexadecimal digits

[:blank:] Space and Tab

[:cntrl:] Control characters

For example, the following awk commands work with IPV4

addresses with a regular expression that use POSIX

character classes:

$ echo "192.168.10.13" |awk -F"." '/^[[:digit:]]+/

{ print $1 }'

#192

$ echo "ABC.168.10.13" |awk -F"." '/^[[:alnum:]]+/

{ print $1 }'

#ABC

You can use a combination of the printf command and

POSIX to correctly split the string in the following awk

command:

$ printf "a\n1\nb\n2\nc\n" | awk '/[[:digit:]]/'

1

2

However, replacing the printf command with the echo

command in the preceding awk command does not work:

$ echo "a\n1\nb\n2\nc\n" | awk '/[[:digit:]]/'

a\n1\nb\n2\nc\n

More information regarding POSIX character classes is

accessible online:

https://riptutorial.com/regex/example/17891/posix-

character-classes

https://www.regular-expressions.info/posixbrackets.html

The next section contains the corresponding awk commands

that do not use POSIX character classes.

Generic Character Classes

This section contains character classes that you will

encounter in other programming languages, such as Python

and JavaScript. Some convenient character sequences that

express patterns of digits and letters:

\d matches a single digit

\w matches a single character (digit or letter)

\s matches a single whitespace (space, newline, return, or

tab)

\b matches a boundary between a word and a non-word

\n, \r, \t represent a newline, a return, and a tab,

respectively

\ “escapes” any character

Based on the preceding definitions, \d+ matches one or

more digits and \w+ matches one or more characters, both

of which are more compact expressions than using

character sets. In addition, we can reformulate the

expressions in the previous section:

\d is the same as [0-9] and \D is the same as [^0-9]

\s is the same as [\t\n\r\f\v] and it matches any non-

whitespace character, whereas \S is the opposite (it

matches [^ \t\n\r\f\v])

\w is the same as [a-zA-Z0-9_] and it matches any

alphanumeric character, whereas \W is the opposite (it

matches [^a-zA-Z0-9_])

Another useful feature is the ability to specify the minimum,

maximum, or range of occurrences of a character, as shown

in the following examples:

\d{2} is the same as [0-9][0-9]

\d{3} is the same as [0-9]{3}

\d{2,4} is the same as [0-9]{2,4}

\d{5,} is the same as [0-9]{5,}

^\d+$ is the same as ^[0-9]+$

The curly braces (“{}”) are called quantifiers, and they

specify the number (or range) of characters in the

expressions that precede them. The following set of awk

commands contains examples of various matching patterns,

with the result of each awk command displayed as a

commented line:

echo "a.b.c 192.168.10.13" |awk '/^[a-zA-Z0-

9.-]+/

 { print $2 }'

#192.168.10.13

echo "aa.bb.cc 192.168.10.13" |awk '/^[a-zA-Z0-

9.-]+ /

 { print $2 }'

#192.168.10.13

echo "aa.bb.cc 192.168.10.13" |awk '/^[a-zA-Z0-

9.-]+ .*/

 { print $2 }'

#192.168.10.13

echo "aa.bb.cc 192.168.10.13" |awk -F"." '/^[a-zA-

Z0-9.-]+

 / { print $2 }'

#bb

echo "aa.bb.cc 192.168.10.13" |awk -F"." '/^[a-zA-

Z0-9.-]+

 .*/ { print $2 }'

#bb

Regular Expressions in awk

Regular expressions are very powerful in terms of the tasks

that you can solve in awk. This section contains subsections

that show you show simple example of working with regular

expressions, and later in this book, you will see more

complex examples of regular expressions in awk.

Matching Strings with the Dot “.”

Metacharacter

The following awk command uses the “.” character to

match a single character:

$ echo -e "pet\npat\nbat\npit\npot\nput" | awk

'/p.t/'

pet

pat

pit

pot

put

Notice the multiple occurrences of “\n” in the preceding awk

command: they serve as a linefeed, which means that the

preceding string is treated as 6 lines, each of which contains

a single string. However, only 5 of the strings match the

pattern p.t: the exception is the string bat, and therefore

that string is omitted from the output.

Listing 6.1 displays the content of remove_dots.sh that

removes all occurrences of the “.” character from an input

string.

Listing 6.1: remove_dots.sh

echo "aaa. bbb. ccc. a.b.c." | awk '

{

 for(i=1;i<=NF;i++) {

 if($i ~ /\./) gsub(/\./, "", $i);

 }

 print $0

}

'

Launch the code in Listing 6.1, and you will see the

following output:

aaa bbb ccc abc

A simpler solution does not require a loop. First, note that

the following awk command uses the sub() function to

remove the first occurrence of a period (“.”):

$ echo "aaa. bbb. ccc. a.b.c." | awk '{sub(/\./,

"");

 print $0}'

aaa bbb. ccc. a.b.c.

However, the following awk command uses the gsub()

function to remove all occurrences of a period (“.”):

$ echo "aaa. bbb. ccc. a.b.c." | awk '{gsub(/\./,

"", $0);

 print $0}'

aaa bbb ccc abc

Matching Strings with the “^” Metacharacter

The following awk command uses the “^” character to

match the beginning of a line:

$ echo -e "pet\npat\nbat\npit\npot\nput" | awk

'/^p.t/'

pet

pat

pit

pot

put

Once again, notice the multiple occurrences of “\n” in the

preceding awk command: they serve as a linefeed, which

means that the preceding string is treated as 6 lines, each

of which contains a single string. However, only 5 of the

strings match the pattern ^p.t: the exception is the string

bat, and therefore, that string is omitted from the output.

As another example, the long listing of a directory starts

with a “-” for ordinary files and a “d” for subdirectories.

Listing 6.2 displays the content of file_sizes.sh that

counts the number of bytes occupied by the files in the

current directory and also counts the number of

subdirectories.

Listing 6.2: file_sizes.sh

ls -l |awk '

BEGIN {

 total_bytes = 0;

 file_count = 0;

 directories = 0;

}

{

 if($1 ~/^-/) {

 total_bytes += $5

 file_count += 1

 } else if($1 ~/^d/) {

 directories += 1

 }

}

END {

 print "Directories:",directories

 print "File count: ",file_count

 print "Total size: ",total_bytes

}

'

Launch the code in Listing 6.2, and you will see

the following output:

Directories: 2

File count: 11

Total size: 881299

Matching Strings with the “$” Metacharacter

The following awk command uses the “^” character to

match the beginning of a line:

$ echo -e "pet\npat\nbat\npit\npot\nput" | awk

'/p.t$/'

pet

pat

pit

pot

put

Once again, notice the multiple occurrences of “\n” in the

preceding awk command.

Matching Strings with the “|” Metacharacter

The following awk command uses the “|” character to match

two possible patterns:

$ echo -e "pet\npat\nbat\npit\npot\nput" | awk

'/[p.t]|[b.t]/'

pet

pat

bat

pit

pot

put

The preceding awk command matches the string bat

because the regular expression [p.t]|[b.t] represents two

regular expressions p.t and b.t, which means that the

string bat appears in the output, as shown in bold above.

Matching with ?, +, or * Metacharacters

The metacharacter “?” matches 0 or 1 occurrences, whereas

the metacharacter “+” matches 1 or more occurrences, and

finally, the metacharacter “*” matches 0 or more

occurrences.

You might think that the metacharacter “?” has limited

value, but it is actually useful in some situations. For

example, you can use the metacharacter “?” to match 0 or

1 occurrences of a letter in a word, which is useful for words

that have slightly different spellings, such as “color” and

“colour,” “favor” and “favour,” “traveled” and “travelled,”

depending on whether you are using the US (for the former

spelling) or the UK (for the latter spelling) form of the word.

As another example, you can use a metacharacter to

match US postal codes, which have two potential patterns:

either (\d){5}, which matches five adjacent digits, or (\d)

{5}-(\d){4}. If you want one regular expression to handle

both patterns, you can use either of the following regular

expressions:

(\d){5}|(\d){5}-(\d){4}

(\d){5}|(-(\d){4})?

The first regular expression uses the “|” metacharacter to

specify both postal code patterns, and the second regular

expression uses the “?” metacharacter, which makes the

second sub expression optional, in which the regular

expression “reduces” to (\d){5}.

The following awk command uses the “?” metacharacter

to match multiple strings:

The following example matches Colour as well as Color.

We have made u as an optional character by using ?.

$ echo -e "Colour\nColor" | awk '/Colou?r/'

On executing this code, you get the following result:

Colour

Color

The following awk script uses the “+” metacharacter to

match multiple strings:

$ echo -e "111\n22\n123\n234\n456\n222" | awk

'/2+/'

On executing the above code, you get the following result:

22

123

234

222

The following awk script uses the “*” metacharacter to

match multiple strings:

The following example matches ca, cat, catt, and so on.

$ echo -e "ca\ncat\ncatt" | awk '/cat*/'

On executing this code, you get the following

result

ca

cat

catt

Matching Subgroups with ?, +, or *

Metacharacters

You can match a subgroup within a regular expression,

which is useful when you need to match a two-word

sequence, where the first word is the same in all cases.

Examples of such are “red sunset” and “red planet,” “eat

well” and “eat slow.” Here is an awk command that contains

grouping in a regular expression:

$ echo -e "Apple Juice\nApple Pie\nApple

Tart\nApple Cake" | awk

 '/Apple (Juice|Cake)/'

Apple Juice

Apple Cake

Matching with Character Classes

If we can match a simple pattern, you probably expect that

you can also match a regular expression, just as we did in

grep and sed. Listing 6.3 displays the content of

Patterns1.sh that uses metacharacters to match the

beginning and the end of a line of text in the file

columns2.txt.

Listing 6.3: Patterns1.sh

awk '

 /^f/ { print $1 }

 /two $/ { print $1 }

' columns2.txt

The output from launching Listing 6.3 is here:

one

five

four

Listing 6.4 displays the content of RemoveColumns.txt with

lines that contain a different number of columns.

Listing 6.4: columns3.txt

123 one two

456 three four

one two three four

five 123 six

one two three

four five

Listing 6.5 displays the content of MatchAlpha1.sh that

matches text lines that start with alphabetic characters as

well as lines that contain numeric strings in the second

column.

Listing 6.5: MatchAlpha1.sh

awk '

{

 if($0 ~ /^[0-9]/) { print $0 }

 if($0 ~ /^[a-z]+ [0-9]/) { print $0 }

}

' columns3.txt

The output from Listing 6.5 is here:

123 one two

456 three four

five 123 six

Listing 6.6 displays the contents of strings.txt, and

Listing 6.7 displays the content of regexs1.sh that matches

text lines that start with alphabetic characters as well as

lines that contain numeric strings in the second column.

Listing 6.6: strings.txt

a

abg

f

A

Z

Abg

Zafzcxv

ATqwer

A3432asdfwer

ATWRF

AFEG

Zafzcxv

aTqwer

a3432asdfwer

Listing 6.7: regexs1.sh

awk '{if($1 ~ /^[a-z]/) {print "Match ^[A-

Z]:",$0}}'

 strings.txt

echo ""

awk '{if($1 ~ /^[A-Z]/) {print "Match ^[A-

Z]:",$0}}'

 strings.txt

echo ""

awk '{if($1 ~ /^[A-Z]+/) {print "Match ^[A-

Z]+:",$0}}'

 strings.txt

echo ""

awk '{if($1 ~ /^[A-Z]+$/) {print "Match ^[A-

Z]+$:",$0}}'

 strings.txt

echo ""

awk '{if($1 ~ /^[^A-Z]+$/) {print "Match ^[^A-

Z]+$:",$0}}'

 strings.txt

echo ""

awk '{if($1 ~ /^[^A-Z]/) {print "Match ^[^A-

Z]:",$0}}'

 strings.txt

echo ""

awk '{if($1 ~ /^[^A-Z]+/) {print "Match ^[^A-

Z]+:",$0}} '

 strings.txt

Listing 6.7 contains 7 awk commands that match various

regular expressions against the rows in the text file

strings.txt, which contains 6 text lines. Hence, the output

consists of 7 blocks of text, each of which contains the lines

in strings.txt that match the associated regular

expression. Launch the code in Listing 6.7, and you will see

the following output:

Match ^[a-z]: a

Match ^[a-z]: abg

Match ^[a-z]: f

Match ^[a-z]: aTqwer

Match ^[a-z]: a3432asdfwer

Match ^[A-Z]: A

Match ^[A-Z]: Z

Match ^[A-Z]: Abg

Match ^[A-Z]: Zafzcxv

Match ^[A-Z]: ATqwer

Match ^[A-Z]: A3432asdfwer

Match ^[A-Z]: ATWRF

Match ^[A-Z]: AFEG

Match ^[A-Z]: Zafzcxv

Match ^[A-Z]+: A

Match ^[A-Z]+: Z

Match ^[A-Z]+: Abg

Match ^[A-Z]+: Zafzcxv

Match ^[A-Z]+: ATqwer

Match ^[A-Z]+: A3432asdfwer

Match ^[A-Z]+: ATWRF

Match ^[A-Z]+: AFEG

Match ^[A-Z]+: Zafzcxv

Match ^[A-Z]+$: A

Match ^[A-Z]+$: Z

Match ^[A-Z]+$: ATWRF

Match ^[A-Z]+$: AFEG

Match ^[^A-Z]+$: a

Match ^[^A-Z]+$: abg

Match ^[^A-Z]+$: f

Match ^[^A-Z]+$: a3432asdfwer

Match ^[^A-Z]: a

Match ^[^A-Z]: abg

Match ^[^A-Z]: f

Match ^[^A-Z]: aTqwer

Match ^[^A-Z]: a3432asdfwer

Match ^[^A-Z]+: a

Match ^[^A-Z]+: abg

Match ^[^A-Z]+: f

Match ^[^A-Z]+: aTqwer

Match ^[^A-Z]+: a3432asdfwer

Working with Postfix Arithmetic Operators

Listing 6.8 displays the content of mixednumbers.txt that

contains postfix operators, which means numbers where the

negative (and/or positive) sign appears at the end of a

column value instead of the beginning of the number.

Listing 6.8: mixednumbers.txt

324.000-|10|983.000-

453.000-|30|298.000-

783.000-

|20|347.000-

Listing 6.9 displays the content of AddSubtract1.sh that

illustrates how to add the rows of numbers in Listing 6.8.

Listing 6.9: AddSubtract1.sh

myFile="mixednumbers.txt"

awk -F"|" '

BEGIN { line = 0; total = 0 }

{

 split($1, arr, "-")

 f1 = arr[1]

 if($1 ~ /-/) { f1 = -f1 }

 line += f1

 split($2, arr, "-")

 f2 = arr[1]

 if($2 ~ /-/) { f2 = -f2 }

 line += f2

 split($3, arr, "-")

 f3 = arr[1]

 if($3 ~ /-/) { f3 = -f3 }

 line += f3

 printf("f1: %d f2: %d f3: %d line:

%d\n",f1,f2,f3, line)

 total += line

 line = 0

}

END { print "Total: ",total }

' $myfile

The output from Listing 6.9 is here. See if you can work out

what the code is doing before reading the explanation that

follows:

f1: -324 f2: 10 f3: -983 line: -1297

f1: -453 f2: 30 f3: -298 line: -721

f1: -783 f2: 20 f3: -347 line: -1110

Total: -3128

The code assumes we know the format of the file. The

split() function turns each field record into a length 2

vector, the first position equals a number, second position is

either an empty value or a dash, and then it captures the

first position number into a variable. The if statement just

sees if the original field has a dash in it. If the field has a

dash, then the numeric variable is made negative, otherwise

it is left alone. Then it adds the line up.

Working with the sub() Function in awk

The sub() and gsub() functions enable you to perform

search-and-replace on strings, which is discussed later in

the subsequent sections.

Examples Using the sub() Function

The following awk command uses the sub() function to

replace the first occurrences of the letter “a” with ABC:

echo aaaabcd | awk '{ sub(/a/, "ABC"); print }'

ABCaaabcd

The following awk command uses the sub() function to

replace multiple occurrences of the letter “a” with ABC:

$ echo aaaabcd | awk '{ sub(/a+/, "ABC"); print }'

ABCbcd

The following awk command uses the sub() function to

replace multiple occurrences of the letter “a” with ABC:

$ echo aaaabcd | awk '{ sub(/[a]+/, "ABC"); print

}'

ABCbcd

Working with the gsub() Function

The gsub() function enables you to perform search-and-

replace functionality, just like the sed command line utility

that you studied in Chapter 2. The following awk command

uses the gsub() function to replace spaces in an input

string with a hyphen:

$ echo "a bc" s awk '{ gsub(/ /, "-", $0); print

}'

a-bc

$ echo "a bc " | awk '{ gsub(/ /, "-", $0); print

}'

a-bc-

The following awk command inserts a hyphen between

every pair of characters:

$ echo "abc" | awk '{ gsub(//, "-", $0); print }'

-a-b-c-

Removing Digits with the gsub() Function

The following awk command removes the digits in an input

string:

$ echo "a1b2c3" | awk '{ gsub(/[0-9]/, "", $0);

print }'

Abc

The following awk command removes the digits 3 through 5

in an input string:

$ echo "a1b2c3" | awk '{ gsub(/[3-5]/, "", $0);

print }'

a1b2c

The following awk command removes the first initial digit in

an input string:

$ echo "123a4b5c678" | awk '{ gsub(/^[0-9]/, "",

$0); print }'

23a4b5c678

The following awk command removes all the initial digits in

an input string:

$ echo "123a4b5c678" | awk '{ gsub(/^[0-9]+/, "",

$0); print }'

a4b5c678

The following awk command removes the final digit in an

input string:

$ echo "123a4b5c678" | awk '{ gsub(/[0-9]$/, "",

$0); print }'

123a4b5c67

The following awk command removes all the trailing digits in

an input string:

$ echo "123a4b5c678" | awk '{ gsub(/[0-9]+/, "",

$0); print }'

123a4b5c

The following awk command removes all the digits in an

input string:

$ echo "123a4b5c678" | awk '{ gsub(/[0-9]+/, "",

$0); print }'

Abc

Removing Characters with the gsub() Function

The following awk command removes any of the letters t, h,

or e that appear as the first character of an input string:

$ echo "there" | awk '{ gsub(/^[the]/, "", $0);

print }'

here

The following awk command removes either of the letters t

or T that appear as the first character of an input string:

$ echo "there" | awk '{ gsub(/^[tT]/, "", $0);

print }'

here

The following awk command removes either of the letters t

or T that appear as the first character, followed by the

sequence “he,” of an input string:

$ echo "there" | awk '{ gsub(/^[tT]he/, "", $0);

print }'

re

The following awk command removes the lowercase letters

in an input string:

echo "ABCa1b2c3XYZ" | awk '{ gsub(/[a-z]/, "",

$0); print }'

ABC123XYZ

The following awk command removes the uppercase letters

in an input string:

 $ echo "ABCa1b2c3XYZ" | awk '{ gsub(/[A-Z]/, "",

$0); print }'

a1b2c3

The following awk command removes the uppercase letters

X through Z in an input string:

 $ echo "ABCa1b2c3XYZ" | awk '{ gsub(/[X-Z]/, "",

$0); print }'

ABCa1b2c3

The following awk command removes the uppercase letters

A, X, Y, and Z in an input string:

 $ echo "ABCa1b2c3XYZ" | awk '{ gsub(/[AX-Z]/, "",

$0); print }'

BCa1b2c3

The following awk command removes the lowercase letters a

and b as well as the uppercase letters A, X, Y, and Z in an

input string:

 $ echo "ABCa1b2c3XYZ" | awk '{ gsub(/[abAX-Z]/,

"", $0); print }'

BC12c3

The following awk command removes the lowercase letters

and the uppercase letters in an input string:

 $ echo "ABCa1b2c3XYZ" | awk '{ gsub(/[a-zA-Z]/,

"", $0); print }'

123

Removing Consecutive Characters with the gsub()

Function

The examples in an earlier section showed you how to

remove a single uppercase or lowercase letter, as well as all

uppercase or lowercase letters. However, you might need to

remove only consecutive uppercase (or lowercase

characters) instead of all occurrences of such characters.

For example, the following awk command removes two

consecutive uppercase letters in an input string:

$ echo "ABCa1b2c3XYZ" | awk '{ gsub(/[A-Z]{2}/,

"", $0); print }'

Ca1b2c3Z

The following awk command removes the initial occurrence

of three consecutive digits (1, 2, and 3) that are followed by

one or more lowercase letters in an input string:

$ echo "123a4b5c678" | awk '{ gsub(/^123[a-z]+/,

"", $0); print }'

4b5c678

Removing Complements of Strings with the gsub()

Function

The following awk command removes the everything except

for the digits 1, 2, and 3 in an input string:

$ echo "123a4b5c678" | awk '{ gsub(/[^123]/, "",

$0); print }'

123

Keep in mind that the occurrence of the “^” metacharacter

inside a pair of brackets is different from the occurrence of

the “^” metacharacter outside a pair of brackets. For

example, the following awk command removes any

character that does not start with any of the digits 1, 2, and

3 in an input string:

$ echo "123a4b5c678" | awk '{ gsub(/^[^123]/, "",

$0); print }'

123a4b5c678

The following awk command removes the trailing character

that matches any of the digits 6, 7, and 8 in an input string:

$ echo "123a4b5c678" | awk '{ gsub(/[678]$/, "",

$0); print }'

123a4b5c67

Removing Metacharacters with the gsub() Function

The following awk command removes the $ metacharacter

in an input string:

$ echo "a?b?c?" | awk '{ gsub(/?/, "", $0); print

}'

abc

The following awk command removes multiple

metacharacters in an input string:

$ echo "a@b#?c$d^" | awk '{ gsub(/[@#?$^]/, "",

$0); print }'

abc

Now compare the result of the following awk command that

omits the square brackets with the preceding awk command

that includes the square brackets:

echo "a@b#?c$d^" | awk '{ gsub(/@#?$^/, "", $0);

print }'

a@b#?c^

Removing Spaces in Text Fields

The following awk command uses the gsub() function to

replace the space between first names and last names with

a hyphen:

$ awk -F"," '$1 { gsub(/ /, "-", $2); print }'

employees.csv

empid,full_name,start_date,expenses

1000 Jane-Jones 12/05/2021 93.55

2000 John-Smith 03/08/2020 87.23

3000 Dave-Stone 07/15/2022 84.16

If there are multiple white spaces between first names and

last names, use the following modification of the preceding

awk command:

$ awk -F"," '$1 { gsub(/ +/, "-", $2); print }'

employees.csv

Splitting Strings with Regular Expressions

The following awk command splits an input string by

specifying the letter “a” as the delimiter:

$ echo "abcdef" |awk -F'a' '{print $1, "x", $2}'

x bcdef

The following awk command splits an input string by

specifying the letter “a” as the delimiter for a string that

contains multiple consecutive occurrences of the letter “a:”

$ echo "aaabcdef" |awk -F'a' '{print $1, "x", $2}'

x

The following awk command splits an input string by

specifying the regular expression “a*” as the delimiter:

$ echo "abcdef" |awk -F'a*' '{print $1, "x", $2}'

x bcdef

The following awk command splits an input string by

specifying the letters “bc” as the delimiter:

$ echo "abcdef" |awk -F'cd' '{print $1, "x", $2}'

ab x ef

The following awk command splits an input string by

specifying the letters “ae” as the delimiter:

$ echo "abcdef" |awk -F'[ae]' '{print $1, "x",

$2}'

x bcd

The following awk command splits an input string by

specifying the letters “ae” as the delimiter:

$ echo "aaabcdef" |awk -F'[ae]' '{print $1, "x",

$2}'

x

The following awk command splits an input string by

specifying the range of characters [a-c] as the delimiter:

echo "abcdef" |awk -F'[a-b]' '{print $1, "x", $2}'

x

Dynamic Regular Expressions

Dynamic regular expressions are expressions such as

[[:digit:]] that are evaluated and if need be, converted

to a string. Some dynamic regular expressions are listed

here:

[[:digit:]] matches a digit

[[:alpha:]] matches an uppercase or lowercase

letter

[[:alpha:]] matches an alphanumeric character

[[:punct:]] matches a punctuation mark

You can find additional information online:

https://support.google.com/a/answer/1371415?hl=en.

Listing 6.10 displays the content of dynamic_regex1.sh

that checks for the occurrence of digits in an input string.

Listing 6.10: dynamic_regex1.sh

echo "abc 123" | awk '

BEGIN {

 digits_regexp = "[[:digit:]]+"

}

 $0 ~ digits_regexp { print }

'

Listing 6.10 contains an awk command with a BEGIN block

that initializes the variable digits_regexp as the pattern of

one or more digits. The next code snippet checks whether

$0 matches the pattern defined in digits_regexp, and if so,

the contents of $0 are printed. Launch the code in Listing

6.10, and you will see the following output:

abc 123

Listing 6.11 displays the content of dynamic_regex2.sh

that checks for the occurrence of alphabetic characters in

an input string.

Listing 6.11: dynamic_regex2.sh

echo "abc 123" | awk '

BEGIN {

 alpha_regexp = "[[:alpha:]]+"

}

 $0 ~ alpha_regexp { print }

'

Listing 6.11 contains an awk command with a BEGIN block

that initializes the variable alpha_regexp as the pattern of

one or more alphanumeric characters. The next code

snippet checks whether $0 matches the pattern defined in

alpha_regexp, and if so, the contents of $0 are printed.

Launch the code in Listing 6.11, and you will see the

following output:

abc 123

Listing 6.12 displays the content of dynamic_regex3.sh

that checks for the occurrence of punctuation in an input

string.

Listing 6.12: dynamic_regex3.sh

echo "abc !@#" | awk '

BEGIN {

 punct_regexp = "[[:punct:]]+"

}

 $0 ~ punct_regexp { print }

'

Listing 6.12 contains an awk command with a BEGIN block

that initializes the variable punct_regexp as the pattern of

one or more punctuation characters. The next code snippet

checks whether $0 matches the pattern defined in

punct_regexp, and if so, the contents of $0 are printed.

Launch the code in Listing 6.12, and you will see the

following output:

abc !@#

Regular Expressions Involving Text Files

The preceding (rather long) section showed you how to

perform a multitude of simple tasks involving text files. This

section contains subsections with awk commands that

display rows that match a character, rows that match

multiple characters, and so forth. The code samples rely on

basic metacharacters, such as “^” that functions as “starts

with,” along with a regular expression, and “|” that functions

as an OR operator, as well as “!” that functions as a NOT

operator.

Counting Comments with Regular Expressions

Listing 6.13 displays the content of comments.txt with

various comment style for awk, C, and Python. Listing 6.14

displays the content of comments.sh that counts the

number of comments using different styles.

Listing 6.13: comments.txt

this is an awk and Python style comment

// this is a C-style comment

x = 1

y = 3

 # pound-style comment number two

 // another C-style comment

 # pound-style comment number three

 // a third C-style comment

""" python style comment """

Listing 6.14: comments.sh

awk '

BEGIN {

 c_count = 0; awk_count = 0;

 c_count2 = 0; awk_count2 = 0

 py_count = 0;

}

{

 if($0 ~ /^#/) { awk_count++ }

 else if ($0 ~ /^\/\//) { c_count++ }

 else if ($0 ~ /^"""/) { py_count++ }

 else if ($0 ~ /^[].*#/) { awk_count2++ }

 else if ($0 ~ /^[].*\/\//) { c_count2++ }

}

END {

 print "C-style comments: ",c_count

 print "awk-style comments:",awk_count

 print "C-style comments: ",c_count2

 print "awk-style comments:",awk_count2

 print "python-style comments:",py_count

}

' comments.txt

Listing 6.14 contains an awk command that starts with a

BEGIN block that initializes several scalar variables that are

used to count the number of occurrences of different types

of command statements.

The next portion of Listing 6.14 contains the main

execution block that contains conditional code snippets that

compare the first character in $0 with the characters //,

""", #, and //, which are comment statements for C,

Python, awk, and C again, respectively. Each time one of the

conditional code snippets matches such strings, the

corresponding scalar variable is incremented.

The final portion of Listing 6.14 contains an END block that

prints the values of the various scalar variables. Launch the

code in Listing 6.14, and you will see the following output:

C-style comments: 1

awk-style comments: 1

C-style comments: 2

awk-style comments: 2

python-style comments: 1

Combining grep with awk

Listing 6.15 displays the contents of employees.csv, and

Listing 6.16 displays the content of grep_awk.sh that

calculates the expenses for the employees in

employees.csv.

Listing 6.15: employees.csv

remove header line and blank lines with 'sed':

empid,full_name,start_date,expenses

1000,Jane Jones,12/05/2021,93.55

2000,John Smith,03/08/2020,87.23

3000,Dave Stone,07/15/2022,84.16

Listing 6.16: grep_awk.sh

grep ",J" employees.csv | awk -F"," '

{

 expenses += $4

}

END { print "Expenses

for",NR,"employees:",expenses }

'

Listing 6.16 starts with a grep command that matches the

lines in the CSV file employees.csv that contain the pattern

,J, and the matching lines are redirected to an awk

command that increments the scalar variable expenses with

the contents of $4.

The final portion of Listing 6.16 is an END block that prints

the number of matching rows as well as the value of the

variable expenses. Launch the code in Listing 6.16, and you

will see the following output:

Expenses for 3 employees: 264.94

Combining sed with awk

Listing 6.17 displays the content of sed_awk.sh that

calculates the expenses for the employees in

employees.csv.

Listing 6.17: sed_awk.sh

remove header line and blank lines with "sed":

cat employees.csv | sed -e '1d' -e '/^$/d' | awk -

F"," '

{

 expenses += $4

}

END { print "Expenses

for",NR,"employees:",expenses }

'

Listing 6.17 starts with the cat command that redirects the

contents of the CSV file employees.csv to a sed command

the removes the first line, and then redirects the remaining

lines to an awk command, which simply increments the

scalar variable expenses with the contents of $4.

The final portion of Listing 6.17 is an END block that prints

the number of matching rows as well as the value of the

variable expenses. Launch the code in Listing 6.17, and you

will see the following output:

Expenses for 3 employees: 264.94

Removing HTML Tags

Listing 6.18 displays the content of abc.html whose HTML

tags are removed by an awk command.

Listing 6.18: abc.html

<html>

<body>

<p>paragraph one</p>

<p>paragraph two</p>

<div>first div element</div>

<div>second div element</div>

</body>

</html>

The following awk command displays a message each time

that an HTML tag is encountered in the input to the awk

command:

$ cat abc.html | awk '{ if ($0 ~ /<.*>/) { print

"found a tag" } }'

found a tag

found a tag

found a tag

found a tag

found a tag

found a tag

found a tag

found a tag

The following awk command removes all HTML tags as well

as all the text:

$ cat abc.html | awk '{ gsub(/<.*>/, "", $0);

print }'

The reason is simple: the * meta character performs a

greedy match, which means that it will continue to match

beyond the first occurrence of a “>” character. See the

following site for more information:

https://stackoverflow.com/questions/68511098/awk-

multiline-non-greedy-matching-workaround

Listing 6.19 displays the content of remove_tags.sh that

shows you how to disable greedy matching to remove the

HTML tags and retain the text.

1.

2.

3.

4.

Listing 6.19: remove_tags.sh

awk '

{

 #disable greedy match for "*":

 gsub(/<[^>]*>/, "", $0); print

}

' abc.html

Listing 6.19 contains an awk command that invokes the

gsub() built-in function to remove any text that matches

the pattern <[^>]*>. This pattern will match text that

consists of the following parts:

the character “<”

followed by any character except the “>” character

followed by zero or more occurrences of anything other

than “>”

followed by a “>” character

For example, the HTML tags <HTML>, <BODY>, <html>,

<body>, and <p> match the regular expression <[^>]*>.

Launch the code, and you will see the following output:

paragraph one

paragraph two

first div element

second div element

However, the removal of the four <html> and <body> HTML

tags results in blank lines, which we can remove as follows:

./remove_tags.sh | sed '/^$/d'

The preceding command generates the following output:

paragraph one

paragraph two

first div element

second div element

We can also remove the initial white space from the

preceding command by invoking the following command:

$./remove_tags.sh | sed -e '/^$/d' -e 's/^ //'

paragraph one

paragraph two

first div element

second div element

The gensub() Function and Captured Groups

The gensub() function extends the gsub() with the ability

to specify regular expressions that “capture” portions of a

string by means of parentheses, and then refer to the

captured substring by specifying \N, where N can be

between 1 and 9 inclusive.

Listing 6.20 displays the content of gensub1.sh that

shows you how to capture and print one or more captured

groups via an awk command.

Listing 6.20: gensub1.sh

echo aabbbccc | awk '{ print gensub(/(a*)(b*)

(c*)/, "\\3 \\2

 \\1", "g", $1); }'

#result: ccc bbb aa

echo aabbbccc | awk '{ print gensub(/(a*)(b*)

(c*)/,

 "\\3Z\\2Y\\1X", "g", $1); }'

#result: cccZbbbYaaX

echo "aa bbb ccc" | awk '{ print gensub(/(a*) (b*)

(c*)/,

 "\\3 \\2 \\1", "g", $0); }'

#result: ccc bbb aa

echo "aa bbb ccc" | awk '{ print gensub(/(a*) (b*)

(c*)/,

 "\\3 \\2 \\1", "g", $1); }'

#result: aa

Listing 6.20 contains four awk commands, each of which has

a string as its input. The four awk commands match strings

that contain the following regular expressions:

(a*)(b*)(c*)

(a*)(b*)(c*)

(a*) (b*) (c*)

(a*) (b*) (c*)

In addition, each awk command displays one of the following

output strings when there is a matching input string:

\\3 \\2 \\1

\\3Z\\2Y\\1X

\\3 \\2 \\1

\\3 \\2 \\1

Launch the code, and you will see the output that is

displayed (as a comment) under each awk command in

Listing 6.20.

Summary

This chapter started with an explanation of metacharacters

and character classes, followed by code samples that define

regular expressions with digits and letters (uppercase as

well as lowercase), and also how to use character classes in

regular expressions. Next, you saw code samples with

regular expressions involving metacharacters, such as “.,”

“^,” “$,” and “|.” In addition, you learned how to match

subsets of strings via regular expressions.

In addition, you saw examples of the built-in sub() and

gsub() functions in awk to remove digits, characters, and

consecutive characters via awk commands. Then you

learned how to split strings with regular expressions, how to

define dynamic regular expressions, and how to count

comments in text fields.

Furthermore, you saw examples of combining the grep

and sed commands, which you learned in Chapter 1 and

Chapter 2, with the awk command. Finally, you learned how

to use the gsub() command with captured groups.

INDEX

A

Average support rate, 50–51

awk, 53–106

Balanced parentheses, 163

Bit operations, 157–159

Break, continue, and next keywords, 80–85

Built-in string functions, 102–105

Lowercase, 103

Match a character, 104

Match() function, 104–105

Mixed case, 103

Uppercase, 103

Calculating invoice averages, 120

Calculating invoice totals, 135–136, 117–118, 118–119

Conditional logic, control statements, 80

Convert base, 101–102

Count duplicate fields, 134–135

Counting fields, 120–122

CSV files, 180–183

Displaying subset, 168–169

Duplicate lines, 130–133

Environment variables, 209–210

Find palindromes, 161

Floating point output, 92–97

Formatting output, 89–92

F switch, 59–63

Generating arrays, 111–113

Higher dimensionality arrays, 116–117

Inner join, 186–187

Leap years, 87–89

Logical operators, 85–87, 187–188

Loops, 77–78

Median array numbers, 149–150

Multi-dimensional arrays, 113–116

Multiline records, 179–180

Numeric functions, 99–101

Ofs, ors, and linefeed, 63–65

Printing lines, conditional logic, 136–139

Processing multiple files, 183–185

Record lengths, 75–76

Regular expressions, 217–220

Reverse string, 160

Reversing lines, 129–130

Rounding, truncating numbers, 97–99

Scripts, 141–143

Sorting algorithms, 144–145

Splitting filenames, 140

Text files, 65–75, 139–140

Uniformity, data values, 133–134

Unique characters, 161

While loops, 78–79

Working with arrays, 107–111

B

Binary search, 151

Iterative, 151–153

Recursive, 153–155

Bubble sort, 145

C

C++ and beyond, 1–26, 157–210

Case

Another, 189–191

Simple use, 188–189

Characters, hexadecimal numbers, 105–106

Command

Awk, 54–59

Fgrep, 21–22

Sed, 27–52, 47–48

Commands

One-line, 141

Composite vs.Prime numbers, 205–206

Counting adjacent digits, 49–50

D

Dataset, 48–52

Pure, 175–176

Dataset, 1,00,000 rows, 193–195

Aligning columns, 166–167

Aligning columns, multiple rows, 167–168

Average support rate, 194–195

Counting adjacent digits, 194

Counting word frequency, 173–174

Deleting alternate lines, 122–123

Finding empty, 14

Longest and shortest words, 172–173

Merging lines, 126–129

Numeric comparisons, 193

Print dates, 124–126

Print strings, 123, 123–124

Subsets columns aligned, 170–172

Using keys, 14–15

Date conversion, 191–193

Delete rows, 22–24

Delete rows, 176–178

F

Factorial values, 202

Fibonacci numbers, 202–203

Function

Arith_sum(), 197

Gensub(), 236

Gsub(), 103, 192

Int(), 98

Is_anagram(), 148

Log(x), 99

Match(), 54

Print (), 64

Rand(), 100

Sin(x), 100

Sort(), 149

Split(), 102

Sqrt(x), 101

Srand(x), 101

Substr(), 102, 191

Substring(), 103

Time(), 101

Toupper(), 103

Unique_characters(), 162

Function

Split(), 111

G

Geom_sum()

Function, 200

Goldbach’s conjecture, 208–209

Greatest common divisor (gcd), 203

Grep command, 2

Backslash character, 15

C option, 9–10

Escaping meta, 3–4

Fgrep, egrep, 19–22

Matching range, 10–12

Meta characters, 3

Multiple matches, 15–16

Simple use case, 24–25

Unique key value, 18–19

Useful options, 4–9

Using backreferences, 12–13

Xargs command, 16–18

L

Less than, 155

Logical

And, 158

Left shift, 159

Not, 159

Or, 158

Right shift, 160

Xor, 158

Lowest common multiple, two positive integers, 204–205

N

Name, 181

Numeric comparisons, 48–49

O

Operator

!, 59

&&, 86

<, 146

>, 146

Infix, 3

||, 86

P

Positive integers, 207–208

Printing

Dataset, 165–166

Fixed numbers of columns, 164–165

R

Recursion, 195–196

Regular expressions, 211–238

Character classes, 215–217

Character sets, 213–214

Matching character classes, 221–224

Metacharacters, 212–213, 220–221

Splitting strings, 229–236

Reverse order, 183

Right side, 192

S

Sed

Back references, 40–41

Character classes, 38–39

Counting words, dataset, 40

Datasets, multiple delimiters, 35–36

Execution cycle, 28

One-line commands, 41–47

Regular expressions, 34–35

Removing control characters, 39

Search and replace, 32–34

Useful switches, 36

Working, 27–52

Working, datasets, 37–39

Series

Arithmetic, 196–199

Geometric, 199–202

Single output line, 165

T

The one true awk, 54

U

Using sed

Matching string, 28–29

Substituting string, 29–32

V

Value, 181

W

Working

Gsub(), 226–229

Postfix arithmetic operators, 224–225

Sub() function in awk, 225–226

Contents

Cover page

Half Titlte page

License, Disclaimer page

Title page

Copyright

Dedication

Contents

Preface

Chapter 1 Working with grep

Chapter 2 Working with sed

Chapter 3 Working with awk

Chapter 4 Working with awk, Part 2

Chapter 5 Working with awk, Part 3

Chapter 6 Regular Expressions

Index

	Cover page
	Half Titlte page
	License, Disclaimer page
	Title page
	Copyright
	Dedication
	Contents
	Preface
	Chapter 1 Working with grep
	Chapter 2 Working with sed
	Chapter 3 Working with awk
	Chapter 4 Working with awk, Part 2
	Chapter 5 Working with awk, Part 3
	Chapter 6 Regular Expressions
	Index

