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Introduction:  
Why this book actually is different

Who is this book for?

This book is for anyone learning statistical analysis for the first time. You might 
be learning statistics as part of your studies or because you need to do some 
analysis and don’t know where to start. Whatever your reason for learning 
statistics, this book provides a gentle introduction to the basic concepts and 
techniques you need to know as a beginner.

If you are being taught statistics, you might have been recommended this 
book by one of your teachers. But even if it hasn’t been recommended to you, 
it might still be useful to fill in any ‘gaps’ in the texts on your reading list. I have 
written it to work well as a stand-alone resource, but it can also be helpful as a 
supplement to other learning materials.

If you need to conduct some statistical analysis for the first time – for whatever 
reason – this book will get you off to a good start. You’ll need to use some 
software to do the actual calculations, but there are many resources available 
to help you with this, including videos on my own YouTube channel (see 
www.youtube.com/@patrickkwhite/videos). The most important concepts 
and techniques needed to start doing basic statistical analysis are covered here.

Why do we need another statistics textbook?  
And how is this one different?

Many people find learning statistics both difficult and unenjoyable. If you’re one 
of these, don’t worry, you’re certainly not alone. As someone who has taught 
statistical analysis to students for over 20 years, I have met thousands of students 
studying many different subjects, and lots of them were nervous about taking 
my class. In fact, most of them wouldn’t have been taking my class at all if it 
wasn’t a compulsory part of their studies. So I’m very familiar with the kind 
of anxieties students have, and I’ve learned from experience about the things 
that they find difficult.

Some of the students I teach have taken statistics classes before. Most had 
managed to pass their assessments, but often felt that they hadn’t understood 
enough about the subject to do their own analysis, and certainly didn’t feel 
excited about doing statistics. What these students are often surprised to learn 
is that I had the same experience. I also had to take statistics classes, passed 
the exams, but didn’t feel confident to do statistical analysis, and I didn’t really 
understand what statistics could do for me.

http://www.youtube.com/@patrickkwhite/videos
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It was only later that I started to learn more about statistics. This was thanks 
to a chance meeting with a teacher who made all the concepts I found so 
difficult much easier to understand. This started a journey that led to me 
teaching introductory statistics to students of all kinds. Because I had initially 
struggled to understand what I was taught in statistics classes, I could empathise 
with students when they didn’t understand things, and this allowed me to relate 
closely to their experience.

I only started to really learn statistics quite late on, after I already had some 
academic experience under my belt. By that time, I had the confidence to 
question how things worked and why we did them in a particular way. This 
mindset has informed my approach to teaching, where I focus on what I believe 
to be the most important concepts and skills for getting students ready to do their 
own analysis, rather than simply covering what has traditionally been taught.

Although I’ve very much enjoyed teaching statistical analysis, one of my 
frustrations has been that I’ve never found a textbook that fits well with this 
goal. My reading lists for students were largely made up of short sections 
from a range of texts, but there weren’t any texts that matched up well with 
what I wanted to teach. Eventually I gave up waiting for someone to write 
a book that would fill this gap, and decided that the best thing was to write 
one myself.

What I found lacking in many introductory texts was a straightforward 
explanation of basic statistical concepts. While I believe that the fundamentals 
of statistics can be explained in a way that almost everyone can understand, 
certain ideas and concepts can be tricky for some people to understand at first. 
But it’s vital that students fully understand these ideas before moving on to more 
advanced techniques. My experience is that many students move on to much 
more complicated statistical analyses before they have a complete understanding 
of some of the basics. In this book I concentrate on the fundamental concepts 
and techniques that will allow you to look for interesting patterns in your data, 
and try to ensure that you develop a good understanding of what you’re doing 
and why you’re doing it.

(Almost) no equations and no screenshots

Something else that frustrated me as a teacher was the number of unnecessary 
equations, even in ‘introductory’ textbooks. Because computers have been 
used to ‘do the math’ for us for over half a century, you don’t need to know 
any of these equations to do statistical analysis. Including lots of equations in a 
textbook can put some students off the whole area of statistics and, importantly, 
it can distract from the conceptual understanding that is much more important. 
There are a few equations in this book – but only a few – and they’re very simple 
ones. I’ve only included them when there’s no alternative and when they are 
needed to understand something I’m trying to explain. And even if you skip 
over these equations, you’ll still be able to do almost all of the analyses I cover, 
and also interpret the results.
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Lots of books are tied to particular software packages, which means that 
they’re of limited use if you don’t have access to that program (some of which 
can be expensive). Including software screenshots means that these books tend 
to be longer, cost more to buy and go out of date when the software is updated. 
It seems a bit odd to still be publishing books with software tutorials in them 
when there are thousands of videos available on YouTube and elsewhere on the 
internet (including some made by me!). Learning to use software from a video 
tutorial is, anyway, much easier than learning it from a book.

You’ll be able to conduct the techniques covered in this book using any 
statistical software package, or programming language, that’s available to you. 
My YouTube videos cover IBM’s Statistical Package for the Social Sciences 
(SPSS®), but there are good video tutorials covering all the software packages 
out there, and they’re mostly available for free.

What can statistics do for me?

Many students I teach are only learning about statistics because they have to: they 
probably wouldn’t have chosen to take my class if it wasn’t compulsory. I imagine 
that lots of people reading this book are in a similar situation. But understanding 
statistics can be both useful and empowering. Even if you never do any statistics 
again, knowing about how statistics work means that you’ll be better informed 
when you read anything that has statistical information in it. And using statistics 
gives you the power to find things out about the world that are useful and 
important. There are, of course, many other valuable ways of doing research, 
but there are some things that we can only discover by using statistical analysis.

Learning statistics doesn’t have to be difficult and unenjoyable. Some of 
my students who take my classes reluctantly admit that, although they were 
dreading it, they actually find it to be fun. I hope that you not only find this 
book useful in terms of developing your skills and knowledge, but also that it 
increases your confidence and sparks your enthusiasm to use and understand 
basic statistical analysis. And while this book may not turn every reader into a 
fan of statistics, I hope that you will at least be left with a feeling that statistics 
can be useful, and that many of the fundamental concepts and techniques are 
actually quite straightforward.

How to use this book

This book is intended to be used in two different ways. If statistics is completely 
new to you, it’s probably best to start at the beginning and read each chapter 
sequentially. Some of the later chapters build on what’s covered in earlier chapters 
and, after the first two chapters that introduce the basic concepts, Chapters 3 
to 8 move from simple to more complicated analyses.

However, if you’ve done some statistics before, and want to brush up on or 
revisit certain topics, I’ve written all the chapters so they work as a ‘stand-alone’ 
resource that can be read separately.
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Glossary, exercises and boxes

I’ve provided a glossary (and index) at the end of the book, and some exercises 
throughout the book, to support your learning. It’s not necessary to use either 
of these features, but some of you may find them helpful.

Glossary

You’ll notice that some of the words in the main text are in bold type. Each 
of these terms has a corresponding entry in the glossary at the end of the 
book. The glossary gives a brief definition of each term, and also lists the page 
numbers where this term is mentioned throughout the book. The glossary may 
be particularly useful if you are ‘dipping into’ particular chapters or sections, 
rather than reading the whole book from start to finish.

Exercises

Some of the chapters include exercises. The answers to these can be found at the 
end of each chapter. These exercises are intended to consolidate your learning 
and also to link the concepts and techniques covered in each chapter to your 
own interests and the topics that you study.

Boxes

In each chapter there are a number of boxes. These boxes were designed to 
answer questions that my students sometimes ask. You don’t need to read the 
contents of the boxes to understand the topics covered in each chapter, but they 
contain additional information that you might find interesting and/or useful.

Accompanying resources

Although this book is written to work as a stand-alone text, I have provided 
links to other resources that compliment what it provides, including datasets 
and software tutorial videos.

Datasets

Most of the analyses in this book were conducted using data from open 
access datasets that are available to the public. You can download these 
and replicate my analyses or try out some of your own. I have included 
full details of these at the end of each chapter, but most can be found 
at: https://ukdataservice.ac.uk/learning-hub/teach-with-real-data

https://ukdataservice.ac.uk/learning-hub/teach-with-real-data
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Software tutorial videos

Although none of the content of this book is tied to any particular software 
package or programming language, the videos on my YouTube channel 
(www.youtube.com/@patrickkwhite/videos) show you how to do most of the 
analyses covered in this book using software published by IBM called SPSS® 
(Statistical Package for the Social Sciences). I originally recorded these videos 
for my own teaching, and at the time I write this (April 2023) they have had 
over 912,000 views. I used SPSS® because it is the most user-friendly software 
package available at the university where I teach, and it is one of the most 
widely available packages for statistical analysis, and not because I necessarily 
believe it to be better or worse than any other software on the market. All the 
analyses covered in this book can be conducted using any software that you have 
available, including Microsoft Excel and free-to-use software such as JASP and 
Jamovi (although doing statistics in Excel is a bit awkward at times).

http://www.youtube.com/@patrickkwhite/videos
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1

Everybody’s talking about it: important 
terms explained in everyday language

WHAT IS THIS CHAPTER FOR?
In this chapter I introduce you to some language that researchers use when 
they discuss methods, research design and data analysis. Understanding 
this language is important because, although I try to avoid ‘jargon’ wherever 
possible in this book, there are some technical terms that you need to be 
familiar with if you’re going to conduct your own research or read other 
people’s. And you’ll also find these terms used in other research methods and 
statistics textbooks, so it’s useful to know what they mean. I try to explain 
these terms in everyday language and to keep the discussion as simple and 
as straightforward as possible.

WHAT DOES IT COVER?
Most of the terms covered in this chapter relate to research methods in 
general, rather than being specific to statistical analysis. However, these ideas 
aren’t always explained fully or clearly, either in general methods or statistics 
textbooks. I have covered what I think are the most important concepts to 
understand when you’re conducting or reading reports of statistical analysis. 
Many other terms are included in the glossary at the end of the book.

WHAT WILL YOU LEARN?
You’ll learn about what the following terms mean and why they are 
important:

case	 population	 sample
variable	 relationship	 dependent and independent variables
cause and effect

Before we start thinking about statistical analysis, it’s important to make sure 
we’re speaking the same language about research in general. In this chapter I 
introduce some important terms that you’ll come across when reading about 
data collection and analysis. These terms are explained in detail here and other 
common terms (highlighted in bold in the text) are explained more briefly in 
the glossary at the end of the book. If you’re already familiar with all the terms 
listed above, you might want to go straight to Chapter 2. Or if you are familiar 
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with most, but not all, of them, you can skip to the relevant sections before 
moving on.

Key terms

Social researchers use particular words when they write about their methods, 
research design and analysis. Although some – or all – of these may be familiar 
to many of you, in my experience students often find them confusing. To make 
sure you can follow the discussions in the rest of the book, I want to make sure 
that you understand the most important terms before we go any further. The 
first three terms – case, population and sample – all relate to who (or what) is 
being studied in our research. The next group of terms are about how things 
are different and similar (variables and relationships). The last terms – cause and 
effect – are important for all kinds of research, and we’ll get a bit philosophical 
when we discuss these, because they’re still argued about fiercely by philosophers, 
statisticians and social researchers alike.

Case

In social research we usually look at more than one example of the thing we’re 
interested in. This is because we’re often interested in how things differ or vary 
– what’s called ‘variation’. Lots of research focuses on people as individuals, and 
so in these studies it’s people who are our ‘cases’. Each person is a case, and we 
collect information from, or about, every one of them. But cases don’t have to 
be individual people. They can also be groups of people, such as families or work 
teams. Or they can be institutions, such as schools, prisons, hospitals or businesses. 
They can be streets, cities, regions or countries. They can even be events, such as 
crimes, medical operations, school lessons or car journeys. The most appropriate 
case for your research will depend on exactly what you’re trying to find out.

You might have more than one type of case in your research. National censuses, 
for example, often collect data on more than one type of case. While some 
questions are asked about each individual in a household, other questions are 
asked about the household as a whole.

It’s important to be clear about what your cases are before you do any analysis. 
This is because your cases are the units that will be used in your analyses, what’s 
called your unit of analysis. For example, if you wanted to compare the 
differences in people’s educational qualifications, then individual people would 
be your cases because each person has a particular set of qualifications, and your 
analyses would be based on the differences between these people. But if you 
were interested in researching household income, both your case and unit of 
analysis would be households rather than individual people. Although every 
person in that household might have a different income (and some may have no 
income at all), the unit of analysis would be the household, so the income of all 
those living in each household would have to be combined before comparing 
the income of different households.
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Educational attainment could also be researched using different units of 
analysis, depending on the question you wanted to answer. I have already used 
the example of comparing the attainment of individuals, but we might want to 
compare attainment between schools, regions or even countries. Even though 
the results for a school would be made up of the combined attainment of the 
students in that school, if we want to compare schools, then each school would 
be a single case that could be compared with other institutions. The ‘units’ we 
analysed would therefore be schools.

Population

When you hear the term ‘population’ in everyday life, it usually refers to the 
people who are living in a country, region or city. It’s common to hear news 
stories about the size of the world’s population, or reports about how fast 
the population of Kuwait, for example, is growing. And we might talk about 
the population of London, New York or Beijing to refer to the residents of 
those cities.

In social research, the term ‘population’ can refer to the people who live in a 
particular geographical area, but it has both a wider and more specific meaning 
than this. Although we often just say ‘population’, the term ‘population of 
interest’ is a better description of what the concept actually refers to.

I explained in the last section that there are different types of ‘case’, and what 
your cases are in a particular study will depend on exactly what you’re trying 
to find out. Broadly speaking, your population – or population of interest – 
contains all the cases you’re interested in. So, if you were interested in looking at 
the attainment of young people currently in compulsory schooling in the UK, 
your population wouldn’t be the entire population of the UK, because most of 
these people aren’t still in school. Ideally, it would be every student who is still 
in compulsory schooling, and your cases would be individual students.

If, on the other hand, you were interested in the economic performance 
of businesses in the US state of Wisconsin, your population would be every 
business in that state, and your cases wouldn’t be people but businesses. Each 
business would be a single case. Or you might be interested in the number of 
car accidents in the city of Tokyo in the past year. Your cases would be accidents 
rather than the people or cars involved in the accidents, and your population 
would be made up of all the accidents occurring in that year.

While the idea of a population – or population of interest – might sound 
reasonably straightforward, it’s important to make a distinction between what 
our ideal population might be and what our actual population is for a particular 
study. When the term ‘population’ is used in its strict, technical sense, it either 
refers to all the cases for which you have data, or all the cases that had a chance 
of being included in your research.

Although it’s becoming more common, it’s still quite unusual for researchers 
to use every case in a population in their research. This is either because data 
on every case are not available, or because it would be too expensive and time-
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consuming to collect these data. As I explain in the next section, it’s more likely 
that researchers will select a number of cases from that population to make up 
what is called a sample. But if you don’t have – or don’t collect – data on the 
whole population of interest, ideally all the cases in this population should have 
had some chance of being included in your study.

So although you may ideally be interested in finding out about every school 
student in the UK, if every student doesn’t have a chance of ending up in 
your study, strictly speaking your population isn’t ‘school students in the UK’. 
Depending on who could have been included in your research, it may be ‘school 
students in the London borough of Hackney’, or ‘students in six secondary 
[high] schools in Oxford’, but it wouldn’t be all school students in the UK.

But why is this important? Isn’t this just splitting hairs? Does it really matter 
how we use the word ‘population’? Isn’t the main thing to let people know 
who or what we’re interested in studying?

It’s actually very important to use – and think about – the term ‘population’ 
in the correct way. This is because the concept of a population is connected to 
two closely related topics in research: sampling and generalisation. In the next 
section we’ll look at these terms in more detail, and I’ll explain how they’re 
linked to the idea of a population.

Sample

Research can be very expensive and time-consuming, especially if the data you 
need don’t already exist and you have to collect them as part of your project. 
Because of practical considerations – usually involving the time and money 
available to us – we often have to make compromises. One of the most common 
compromises is not collecting data from everyone in our population of interest, 
but only from a selection of cases.

Selecting cases from a population is called ‘sampling’. The cases that have 
been selected are called a ‘sample’. There are several different ways of selecting a 
sample, each with its own advantages and disadvantages. There isn’t the space in 
this book to discuss them in any detail, but I have recommended some resources 
on sampling at the end of the chapter.

Whatever method of sampling you have used, it’s important to be clear about 
exactly what population you have selected your sample from. Having a sample is 
never as good as having data on your whole population, because with population 
data you don’t have to worry about how well your sample ‘represents’ your 
population. If you have data on every case you are interested in, you can say 
something definitive about your population as a whole. But if you only have a 
sample, you have to think about representativeness: whether the results of your 
research would be the same as the results you would have got if you’d collected 
data from every case in your population.

Most research is carried out using samples, rather than population data. Even 
very large and well-funded studies, such as the Crime Survey for England and 
Wales (CSEW) or the US National Longitudinal Study of Adolescent to Adult 
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Health (Add Health), rely on samples. There are some exceptions, such as 
censuses and some administrative datasets, but sample-based studies still dominate 
most areas of social research.

Because population data is relatively uncommon, and social researchers are so 
reliant on sample data, it’s important to understand the concepts of populations 
and samples. These terms are used in relation to statistical analysis, and you’ll 
come across them in research methods and statistics texts, as well as in reports 
of research findings.

Variable

A variable is just something that varies: something that is different for different 
cases. Ethnicity is a variable because not everybody belongs to the same ethnic 
group. Time spent in full-time education is also a variable because some people 
continue in education for longer than others. Income is another example, as 
different people have different amounts of money coming in each week, month 
or year. Statistics is all about variation, and that’s why the idea of a variable is 
central to statistical analysis.

Understanding the idea of a variable can be easier if you think about what 
the opposite would be. In many countries, government agencies and other 
organisations have encouraged cyclists to wear helmets to reduce the risk of 
serious head injuries in the event of an accident. Publicity campaigns have 
often included statistics showing that when cyclists are involved in an accident, 
those wearing helmets are less likely to be killed or suffer serious head injuries 
compared to those who weren’t wearing helmets.

In most countries wearing a helmet is a choice left up to the individual. A 
study looking at whether wearing a helmet is beneficial might involve, among 
other things, comparing the injuries of cyclists wearing helmets with those not 
wearing them. In such research, helmet wearing is a variable: some people will 
wear helmets and others will not. However, in some countries – such as Australia 
– it’s against the law not to wear a helmet. In these countries it wouldn’t really 
be possible to conduct the kind of research I just described because everyone 
(apart from, presumably, a few law-breakers) has to wear a helmet. So, while 
wearing a helmet in the USA or the UK is a variable – some people do and 
some don’t – in Australia it’s a constant: everybody has to do it. We couldn’t 
compare the injury rates between cyclists who do and don’t wear helmets in 
Australia because everyone wears one.

The idea of a constant is used in some of statistical analysis – as I explain 
in Chapter 8 – but it’s not something you need to worry about too much at 
this stage. The important thing for the moment is that you understand what a 
variable is.

Some of my students confuse cases with variables, so it’s useful to clarify the 
difference between the two. Your cases are the individual units of analysis – 
such as people, groups, places, events or institutions – that you’re interested in 
studying. Variables are the characteristics or qualities of those cases. If your case 
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is an individual person, a variable relating to them might be their age or their 
ethnicity. If your case is a prison, a variable might be the number of inmates in 
that prison or its geographic location. Whatever kind of research you do, it’s 
likely that you will have a number of different cases. There will also be some 
variables that you’re interested in. Ideally, for each of your cases there will be 
information about all of these variables. One of the things you’ll learn to do later 
in this book is to examine the relationships between those variables. You might 
find Exercise 1.0 helpful to practise making the distinction between these ideas.

EXERCISE 1.0

Think back to some research that you’ve read about, and consider the following 
questions. Being able to answer them will depend on the authors having provided 
all the necessary information, but being able to notice if important information is 
missing from research reports is a valuable skill to develop:

a)	 What were the cases (or units of analysis) in the study?

b)	 What was the population of interest?

c)	� Did the authors have data on all cases in the population of interest, or did they 
select a sample?

d)	 What were the variables that the researchers analysed in the study?

Relationship

A relationship is simply a link between two (or more) variables. This is probably 
the most common way social researchers describe a link between two things, but 
other words such as association are also used. When we look at one variable 
at a time, we’re examining variation, but we’re not finding out anything about 
a relationship, because a relationship can only exist between at least two things. 
But if we analyse two or more variables together, we’re able to examine the 
relationship between them.

Looking at one variable at a time is called univariate analysis, and in Chapters 
3 and 4 we’ll see why this can be useful, and look at common ways of doing 
this type of analysis. Many of the other chapters cover techniques to look for 
relationships between two variables – what’s called bivariate analysis. Although I 
don’t cover multi-variable analysis in any detail in this book, I do recommend 
some resources for this group of techniques, which are used to look at the 
relationship between more than two variables.

‘Relationship’ is a word that can describe quite different sorts of connections 
between variables. As I explain in later chapters, the type of statistical analysis 



Important terms explained in everyday language

13

you need to do will vary depending on the type of data you have, but regardless 
of which technique you use, you can still describe any link between two or 
more variables as a relationship. ‘Relationship’ is a fairly general term, so as long 
you’re describing some sort of connection between variables, it’s unlikely that 
you’ll be using it incorrectly.

There are, however, words that are specific to certain types of relationship, 
and you need to be much more careful when using these. Probably the most 
misused term is correlation. This should only be used to describe the results 
of a particular method of statistical analysis that we cover in Chapter 7. This 
analysis can only be used on data of a certain type, and produces a particular kind 
of description of a relationship between variables. In media reports, journalists 
often use the term ‘correlation’ to describe any relationship between variables, 
but I would encourage you to avoid doing this. People will probably understand 
what you mean if you use the term like this, but I hope that what you learn in 
this book will help you to use technical language correctly.

Dependent and independent variables

When you conduct analysis into the relationship between variables, you usually 
need to be clear about which of your variables are dependent variables and which 
are independent variables. Students often find these two terms confusing, but the 
difference is important for several reasons. First, it helps you think about your 
analysis and what is called the ‘direction’ of any relationship you are examining. 
(We’ll look at this later.) Second, these terms are used in textbooks, research 
reports and software packages, and you’ll need to understand them to use these 
resources effectively. And lastly, you’ll need to use these terms to explain your 
analysis in your research report.

Unless you have had some research methods training, the terms ‘dependent 
variable’ and ‘independent variable’ probably don’t mean much to you. They’re 
not particularly intuitive and new researchers can find them difficult. Luckily, 
there are some alternatives: outcome variable and explanatory variable. Because 
‘outcome’ and ‘explanation’ are words that we use in our everyday lives, it might 
be easier for you to think in these terms.

In our research, we’re often interested in a particular outcome – such as how 
much people get paid in their jobs – and so could look for explanations as to 
why some people get paid more or less than others. Possible explanations might 
be: the type of work someone does; their educational qualifications; how 
much experience they have; the hours they work; and so on. So the outcome 
variable would be their pay and the explanatory variables would be their job 
type, education, experience and any other factors that we think might affect 
how much someone gets paid.

So how are outcome and explanatory variables related to dependent and 
independent variables? ‘Outcome variable’ and ‘dependent variable’ are different 
names for the same thing, as are ‘explanatory variable’ and ‘independent variable’. 
If you find the terms ‘dependent’ and ‘independent’ difficult, it may be easier 
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for you to first think in terms of outcomes and explanations and then translate 
these to dependent and independent variables as and when you need to. Another 
way of thinking about these terms is that the dependent variable depends on 
the independent ones. Using our example from above, how much you are paid 
depends on your qualifications, experience and working hours.

Cause and effect

As we have been thinking about relationships, it’s a good idea to have a brief 
discussion of cause and effect, or what is also known as causality. Textbooks 
often warn about the dangers of assuming that one thing is directly caused by 
something else. It’s always important to remember that just because we might 
observe a difference between groups or an association between variables, this 
doesn’t necessarily mean that differences in one thing are being caused by a 
difference in the other.

To use a common textbook example, fire engines are more likely to be seen 
outside burning houses than outside houses that aren’t on fire. But even young 
children don’t think that this means that fire engines cause fires. As we all know, 
fire engines arrive at a burning building because people call the fire service to 
extinguish a fire. But it also makes no sense to say that fires ‘cause’ fire engines. 
In reality, there is a chain of events in which the sight (or smell) of a fire ‘causes’ 
people to phone the fire service, which, in turn, ‘causes’ fire engines to be 
despatched to the site of the fire. Even this description is a bit of a simplification, 
and you could probably break these events down into many more stages.

Causality is a tricky area and in social research we’re sometimes dealing with 
variables whose relationship is much less clear than the appearance of fire engines 
at fires. Having said that, it’s important to remember that if we label variables as 
‘dependent’ and ‘independent’, or ‘outcome’ and ‘explanatory’, we’re implying 
that there is some kind of causal relationship between them. And when we 
say that one variable depends on another, or that differences in one variable can 
be explained by variation in another, we’re using causal language to describe 
these relationships.

There’s a big difference between looking for causal relationships and providing 
evidence demonstrating a causal link between two (or more) things. But it’s 
important to remember that the terms we use in our research, and the analyses 
we conduct, are often linked very closely to the idea of causality. And although 
we must be careful about making causal claims, it’s important to remember that 
we’re often looking for causal links between variables.

Descriptions can be very valuable, and we need to make sure we’ve described 
something accurately before we try to explain why it has occurred. However, 
descriptions only get us so far. For example, we might discover that people 
with higher levels of qualifications tend to earn more money than those with 
lower levels of qualifications. But this would only be interesting if we thought 
that people earned more because they had higher levels of qualifications (or, 
alternatively, because their higher earnings had allowed them to study for higher 
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qualifications). If we’re only prepared to describe this situation, and not even 
speculate about a causal connection, then we are just pointing out what might 
be a coincidence.

Most importantly for readers of this book, however, is the fact that when you 
are conducting particular statistical analyses, you have to specify which of your 
variables is the dependent variable and which are independent variables. To work 
this out you need to think about the possible causal relationships between the 
two. Exercise 1.1 will help you think through causality in your own research.

EXERCISE 1.1

If you are carrying out your own research, or have been asked to produce a research 
proposal or some research questions, you might find this exercise helpful:

a)	� Look at your research questions and examine all the words you have used very 
carefully. Identify any words that suggest causal links between two variables.

b)	� Think about which of the variables would be the dependent and independent 
variables. What has led you to think that the dependent variable is an effect 
(or outcome) and why do you believe that the independent variable, or 
variables, could be causes (or explanations)? Why wouldn’t it be the other 
way around?

Thinking about your research in terms of dependent and independent variables

One of the benefits of thinking about your data in terms of dependent and 
independent variables is that it forces you to reflect on how you think the world 
works and the implications of this for both the analyses you conduct and the 
conclusions you draw. To follow up on the earlier example about earnings, if 
you looked at the working-age adult population of most countries, you would 
find that there is a relationship between earnings and age. There is what is called 
a positive relationship between these two variables, which means that as one 
goes up, so does the other, and vice versa. If I asked you which of these two 
variables was the dependent variable and which was the independent variable 
– or the outcome variable and the explanatory variable – hopefully you would 
conclude that earnings had to be the outcome, and age might explain that 
outcome. So earnings would be the dependent variable and age would be the 
independent variable.

But why do you come to this conclusion?
What you already know about the world would lead you to think that there 

was something about getting older that allowed you to earn more. (But you 
probably wouldn’t conclude that moving to a lower paid job could slow down, 
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or reverse, the ageing process!) In fact, you might have gone a bit further 
than this and started thinking about what exactly it is about getting older that 
allows most people to earn more. You know that you don’t earn more simply 
by ageing, but you may know that workers are sometimes rewarded for long 
service, for increased experience, because of promotions or career changes, 
and so on. So the relationship between age and earnings isn’t a direct one, but 
gaining experience and moving up the career ladder takes time, and workers 
will get older while doing this.

Sometimes it’s not quite as clear which is the independent and which is  
the dependent variable. Several years ago, there was a great deal of media  
coverage of a research finding that eating fast food was linked to depression. 
There’s a link to information about the study at the end of this chapter, but 
before you look at this, it’s useful to think about the ways that these two things 
could be linked.

One possible relationship between fast food and depression is that eating fast 
food makes suffering from depression more likely. It could be one of many 
different things that increases the risk of depression. Here, depression would 
be the outcome and fast food would be an explanatory factor: the dependent 
variable would be depression and the independent variable would be eating 
fast food.

However, there are other ways in which these two variables could be related. 
It could be that if you are suffering from depression, you are more likely to eat 
fast food. In this case, eating fast food would be the outcome and depression 
would be the explanation. The relationship would be in the opposite direction 
to the first possibility, and so eating fast food would be the dependent variable 
and depression would be the independent variable.

The key question for researchers in this area is ‘which came first?’ Sometimes 
this is easy to answer. For example, educational qualifications gained at school 
usually come before income from a full-time job, so if we were looking at the 
relationship between these two things, it would be clear that income would have 
to be the outcome, as it came later. However, as with the example of fast food 
and depression, it’s not always as easy to work out. In fact, the study collected 
data over time, and was designed to see if eating fast food preceded developing 
depression. But, as a commentary on the findings warns:

The tendency to consume fast food and develop depression may 
both have stemmed from some common factor, rather than fast 
food directly causing depression. For example, participants with the 
highest fast food consumption were generally all single, younger and 
less active, which may have influenced both their diet and their risk 
of depression. (NICS Well, 2023)

As this example shows, there can be pairs (or groups) of variables where it’s not 
clear which are the dependent (outcome) or independent (explanatory) variables. 
Exercise 1.2 gives you a chance to think about two more pairs of variables.
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EXERCISE 1.2

Think about the relationship between each of the two pairs of variables listed 
below. Can you come up with explanations as to why each variable in a pair could 
be either the dependent or independent variable?

a)	� The political party that people vote for and where they read about news and 
current affairs.

b)	� The strength of people’s religious belief and their attendance at organised 
religious events.

From the examples I have discussed in this section, you can see that when 
we conduct an analysis, we not only have to think about the techniques that 
we are going to use; we also have to think about how the relationships we 
are investigating fit into what we already know about how the world works. 
This is true for all analysis of any type but, as we will see in later chapters, it is 
something you must decide before conducting certain types of statistical analysis.

Summary

This chapter has introduced you to some of the key terms you’ll come across 
when reading about research. It’s important that you understand them all properly 
before reading the chapters that follow, as I’ll go on to use many of these terms. In 
the next chapter we’ll look closely at numbers, think about what they represent, 
and consider how they can be used as ‘tools’ that can help us find things out.

References
NICS Well (2023) ‘Fast food “linked” to depression’, www.nicswell.co.uk/ 
health-news/fast-food-linked-to-depression

Useful resources
Robert de Vries provides a very good discussion of why sampling is important 
in research and how it can affect the conclusions that you can draw:

de Vries, R. (2019) Critical Statistics: Seeing Beyond the Headlines, London: Red 
Globe Press [Chapter 3: ‘Samples, Samples Everywhere…’].

A useful short discussion of different methods of sampling by Stephen Gorard 
can be found here:

Gorard, S. (2013) Research Design: Creating Robust Approaches for the Social Sciences, 
London: SAGE [Chapter 6: ‘Identifying the Sample or Cases’]. The same book 
has an in-depth discussion of causality.

http://www.nicswell.co.uk/health-news/fast-food-linked-to-depression
http://www.nicswell.co.uk/health-news/fast-food-linked-to-depression


Straightforward Statistics

18

Answers to exercises

Exercise 1.0
Your answers to these questions will depend on the particular study that you 
are thinking about. However, this is a useful set of questions to think about 
when you are reading any research report, and also when you are planning your 
own research.

Exercise 1.1
Your answers to these questions will depend on your own research questions. 
However, hopefully you’ll have found this exercise useful. You can use this set 
of questions any time you are carrying out your own research.

As I won’t know your research questions, I can’t anticipate your answers to 
question (b). However, for question (a), there are a number of commonly used 
words and phrases (apart from ‘cause’) that suggest some kind of causal link:

effect of
led to
engender
result in/of
generate

affect
bring about
induce
produce
make

shape
give rise to
result in
trigger
create

This list is far from exhaustive, but I hope it gives you an idea of how many of 
the words and phrases we use in research suggest some kind of causal relationship.

Exercise 1.2
a) As with the example of fast food and depression, in this example there is no 
obvious order to these behaviours. Although in most countries you can’t vote 
until you’re 18, but you can access news outlets at almost any age, it might 
seem that reading news comes before voting and so would be an explanatory 
(independent) variable. But being able to do something and actually doing it 
are two different things. Not many school children will be regular readers of the 
news. To make things more complicated, people don’t always vote at their first 
opportunity, and so the age at which someone votes for the first time may vary.

Because different news outlets have particular political leanings, it’s plausible 
that they influence people to vote for particular parties or candidates. But it’s 
also reasonable to believe that people might read certain news sources because 
they reflect their political views. It’s likely that, to a certain extent, both things 
happen. Because of this, it’s hard to say which is the most obvious dependent 
or independent variable.

b) People with strong religious beliefs may be more likely to attend organised 
religious events, such as services and other rituals. People with less strong beliefs, 
and those who have no beliefs at all, might be less likely to attend these. If, 
for the sake of argument, we accept that this is the case, does this help us with 
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working out the causal order of these two variables? It could be the case that 
going to organised religious events strengthens people’s religious beliefs. If you 
go to these events, you may learn more about your religion and mix with other 
members of your faith, and this could lead to stronger religious beliefs.

But it’s very difficult work out which comes first. Although you could argue 
that people are unlikely to attend a religious event if they had no religious 
beliefs to start with, they may just be curious, accompanying friends or family 
members, or attending a wedding or other social event. For example, very young 
children are often taken to religious events by their parents well before they can 
understand what these events are about. As with the previous example, it’s not 
easy to work out which would be the dependent and independent variable. 
It is plausible to say that religious beliefs (as an independent variable) explain 
attendance at religious events (the dependent variable). But it also makes sense 
to say that attendance at religious events (as an independent variable) leads to 
stronger religious beliefs (the dependent variable). The important thing is that 
we think these things through before we do any analysis, and discuss any difficult 
issues when we write up our results.
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What are numbers really about?

WHAT IS THIS CHAPTER FOR?
In this chapter I introduce the idea of numbers as tools that you can  
use whenever they are helpful. I look at the different ways in which  
numbers are used in both research and everyday life. I also examine the 
limitations of numbers, and show how they can be used inappropriately or 
in misleading ways.

WHAT DOES IT COVER?
I start the chapter by explaining the different ways we use numbers as ‘tools’ 
to help us record and understand the things around us. Next, I explain how 
these differences in how we use numbers affect how we can analyse our 
data, and I introduce the idea of ‘level of measurement’, which is central to 
statistical analysis.

WHAT WILL YOU LEARN?
•	 When using numbers is useful and when it’s not
•	 How to recognise when numbers are being used in different ways
•	 How to distinguish between numbers that have real numeric value and 

those that are being used as labels
•	 What ‘levels of measurement’ are, and how this can affect the analyses  

you conduct

It might seem strange to dedicate a whole chapter of a book about statistical 
analysis to looking at numbers. After all, you’re probably reading this book for 
one of the following reasons:

1.	 You have to learn about statistics for a course you are studying.
2.	 You’re conducting some research and need to know how to analyse the data.
3.	 You might even just be interested in learning about statistics!

Regardless of which category you fit into, you either want to or have to conduct 
some statistical analysis. So why don’t I just get on with it and show you how 
to do statistics?
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There are two good reasons. First, I want to spend a bit of time pointing out 
what I think are some important misconceptions about using (or not using) 
numbers in research. And second, you need to be clear about the different ways 
we use numbers before you can do any statistical analysis at all. But if you’re 
short on time, or just really want to do some statistics as soon as possible, you 
can skip to the section called ‘Three ways we use numbers’ later in the chapter.

Two types of research? Two types of researcher?

If an alien visitor arrived on Earth and was quarantined in the research methods 
section of a university library, they might end up thinking that there are two 
types of human: those who are just interested in numbers and those who are only 
interested in other types of information, such as words and pictures. Depending 
on what they read, they might also discover a third group: people who tried 
to convince the two other groups that you could use numbers alongside other 
types of information and that doing so wouldn’t cause the sky to fall in.

This isn’t a world you would recognise as a native inhabitant of Earth, but it 
might be familiar from the research methods classes you have taken, or from 
the many textbooks in which research designs, methods of data collection 
and analysis, and even researchers themselves are divided into ‘quantitative’ or 
‘qualitative’ types.

This division is very common and I’m sure many of you will be familiar with 
these terms. However, I don’t believe that this is a very useful division, and it 
often results in many students and researchers completely avoiding the use of 
statistics or even very simple numeric data. The message often seems to be that 
if you aren’t a ‘quantitative’ researcher, there is no reason to use numbers (and 
lots of reasons not to use them!).

A divide between ‘quantitative’ and ‘qualitative’ research seems to be ‘baked 
in’ to a lot of thinking about research, but it’s also an idea that’s been widely 
criticised, and many commentators have argued that it prevents us from doing 
the best possible research. I feel that the disadvantages of this division outweigh 
its advantages and that it acts as a barrier to using statistics for many students 
and researchers. (The qualitative–quantitative divide has been fiercely debated 
for a very long time. I’ve included some references to further reading on this 
topic at the end of the chapter, in case you are interested in finding out more 
about this debate.)

Exercise 2.0 is designed to help you see the problems with dividing up research 
in this way, and to show those of you who are nervous about statistics that you 
probably use numbers in your daily life more than you think.

My guess is that, whenever you are trying to find something out, and whatever 
you are trying to find out, you use the information that you think is the most 
relevant. I would be surprised if you rejected information just because it either 
did or didn’t contain numbers. Doing so would be rather odd, wouldn’t it?
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EXERCISE 2.0

a)	� Think about the last time you did some research in your daily life to find 
something out. This might have been choosing a course at university, finding 
the best way to visit a friend who lives far away, or anything else.

i.	 What different types of information did you use?

ii.	 Why did you choose each piece of information?

iii.	 Did you ignore any information because it contained numbers?

iv.	 Did you reject any information because it didn’t contain numbers?

b)	� Now answer the same questions ((i) to (iv)) for something you wanted to find 
out as a social researcher.

So, if you are trying to find the best way to visit a friend, you might compare 
different types of public transport. Some of the data you’d come across would 
be numeric, such as the time of the journey, the cost of the fare, how frequently 
the service runs, and how far away the stations or stops are from your home 
and your destination. But you’d also have to combine this information with 
some non-numeric data, such as whether you prefer travelling by bus or train, 
whether you’d have to change trains, or if you get travel sickness sitting in the 
back of the bus. You might also consider whether your friend could meet you 
at the time that you are scheduled to arrive.

You would combine these pieces of information and use your judgement to 
come to a decision. The important point is that, in most areas of research – 
whatever you are researching – there are usually useful data that are numeric 
as well as useful data that aren’t. Being able to use that numeric data can help 
you find out more about what you’re interested in, and knowing more about 
numbers and statistics can help you with this.

One way to think about numbers – and statistics – is as tools that we can use 
when they are helpful to us and that we can ignore when they’re not the right 
tools for the job.

Three ways we use numbers

Although it’s something you probably take for granted and haven’t given much 
thought to, we generally use numbers in three different ways. It’s important 
to be clear about the differences between these three uses because they have 
implications for how we do statistical analysis. The ways that we use numbers 
can be summarised as: counting, measuring and labelling.
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Counting

One way we use numbers is to count things. Counting is probably one of the 
first things you learned to do as a small child, and it’s incredibly useful. It forms 
the basis of some important types of statistical analysis and, especially in the social 
sciences, is often the only way we can quantify particular things. For example, 
criminologists might want to know how many burglaries were recorded in a 
particular city over the course of the last year. To find out whether burglaries 
are ‘common’ or ‘rare’ they may go on to compare the number of burglaries 
with the number of other types of crime. These numbers can then be used to 
calculate other measures such as percentages, proportions, ratios and crime rates, 
all of which we discuss in more detail in Chapter 3. There are also statistical 
techniques for looking at the relationships between the different things that 
have been counted, and we’ll look at those in Chapter 5.

Measuring

A second way we use numbers is to measure things. Measuring is different to 
counting, because it’s only possible if we have a scale we can use to measure the 
thing we’re interested in. Throughout history, people have developed many scales 
that have become almost universally accepted, such as those used to measure 
distance, money and time. We could use metres, miles or feet to measure 
distance, height or length: it wouldn’t matter which measure we used, as each 
one of these can be converted into any of the others. It also wouldn’t matter if 
we used US dollars, Japanese yen or Indian rupees to measure monetary value; 
while their value in relation to each other is affected by exchange rates, at any 
one time we could convert one currency to the other. We could also measure 
time in seconds, minutes, hours, days or years.

Natural scientists use lots of different scales to measure things. Some of these 
are controversial, but many have become universal. In the social sciences, things 
are a little different. Apart from those relating to time, distance and money, 
there are relatively few widely accepted scales available to social researchers, 
possibly because of the nature of the things we study. Researchers in the field 
of health use measures such as weight, blood pressure, calories consumed, and 
so on, but most of these have been developed in the natural sciences. Social 
psychologists have developed scales to measure attitudes or aspects of personality, 
but it’s often the case that different scales are used by different researchers, and 
there can several competing measures in a particular area of study. Unlike in 
the natural sciences, there are few measures that have been adopted universally 
within psychology itself, let alone outside of it.

We’ll look at some of the problems that can be encountered when creating 
scales and measures later in this chapter. The important point to make here is 
that many of the things we study in the social sciences can’t easily be measured 
with scales and, as we’ll see in later chapters of this book, this affects the kinds 
of analysis that we can do.
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Labelling

The last way we use numbers is to label things. These numbers are not ‘real 
numbers’ but are used to identify things and distinguish them from each other. 
One example is phone numbers. If your friend has a higher phone number than 
you, this doesn’t mean they have a better phone line than you – these numbers 
just distinguish your phone line from theirs. Your ‘phone number’ could just as 
well be made up of letters as numbers. It could even be a sequence of colours 
or pictures. As long as there were enough combinations to differentiate between 
everyone’s phone lines, we could use any system we wanted.

Another example is the number printed on the back of a sportsperson’s jersey 
or vest. In some sports, particular numbers indicate the position the player 
has taken on the field or court, but this isn’t universal, and certain numbers 
have become identified with particular players (such as the number 23 for the 
basketball player Michael Jordan). You can’t do meaningful calculations with 
these numbers. It’s not the case that the player with number 20 on their jersey is 
twice as a good as the player with number 10 on their back; they’re just playing 
in different positions or have chosen (or been given) different numbers. In either 
case the ‘number’ has no numeric value – it’s just a label to help spectators and 
commentators identify players.

It’s important not to confuse ‘numbers’ that are used to label things (phone 
lines, players, etc) with ‘real numbers’ that represent a measurement. This 
might sound like a mistake that you’d never actually make, but, because of the 
nature of the software that we use to help us conduct statistical analysis, it’s 
often the case that we have to label our data with numbers in exactly this way. 
In a spreadsheet containing all our data, we’re likely to have some numbers 
that represent measurements and some that are just used as labels. This can 
sometimes be confusing, so you need to be aware of it and recognise when 
numbers actually represent numerical values and when they are just being 
used as labels.

In the next section we’ll look closely at how these different ways of using 
numbers affect what kind of analyses we can conduct. I show you how, by 
asking some simple questions, you can identify exactly which way numbers are 
being used. You’ll then be in a good position to choose the most appropriate 
analyses to conduct.

Types of number and types of variable

So how do these different ways in which we use numbers affect the analysis 
we do? The answer to this question relates to something called levels of 
measurement. I’ve already touched on this topic when we looked at the 
difference between ‘measuring’ and ‘counting’ in the last section. As long as we 
recognise when numbers are being used as labels – and don’t treat these as ‘real 
numbers’ – the most important distinction is between counting and measuring.
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Continuous and discrete data

If you’re measuring a variable using a true scale, then your data is likely to be 
continuous. What this means is that a value for that variable could be anywhere 
along a continuum. To use a simple example – if you’re measuring someone’s 
height with a tape measure, in theory their height could fall anywhere along the 
tape. If you could measure with enough accuracy, there are an infinite number of 
possible values between the tallest person alive and the shortest. Another example 
would be the time it takes to run 100 metres. World records are usually only 
specified to the nearest hundredth of a second, but it’s possible to measure time 
more accurately than this in practice, and theoretically time could be measured 
with infinite precision. Money is another example. When you buy something in 
a shop or online, you usually only pay in whole units – such as pennies or cents. 
But in banking and trading currencies are sometimes calculated to a fraction 
of the smallest unit available as cash. These are all examples of continuous data 
and so, measured in these terms, height, time and money can be considered to 
be continuous variables.

Another kind of data, called discrete data, is very similar to continuous data. 
The difference between continuous data and discrete data is that discrete data 
can only take on certain values (often, but not always, whole numbers). So, to 
use the example above, if we are paying for something in cash, usually we can 
only pay to the value of a whole penny or cent.

Another example might be marks awarded to a student in an assessment. It’s 
common for tests to be marked out of 100, with the result given as a percentage. 
When I mark essays, I give marks as a whole number (for example, 67%). 
These marks aren’t really continuous, as I don’t award marks that include a 
fraction of a per cent or that are expressed to a number of decimal places. So, 
my marking produces discrete data because there are only 101 possible different 
marks (from 0% to 100%), rather than the (theoretically) infinite number with 
a continuous scale.

Some statistical techniques have been designed to be used with variables that 
are continuous. However, in most cases you can also use these techniques with 
discrete data. This is because, although cash might only be available in whole 
units of currency, and marks may only be awarded as whole percentages, fractions 
of a cent or percentage make sense to us. Although there aren’t any coins that 
are smaller than a penny or cent, the idea of ‘a quarter of a cent’ or ‘0.73 cents’ 
isn’t something that is confusing to us. If we have a savings account, we’d want 
our bank to give us all the interest we’d earned, even if the calculation hadn’t 
ended up on a whole number. The same applies for when we combine the 
results of more than one assessment to calculate a student’s overall mark. Even 
though I only award marks in whole percentages, we understand what it means 
when a student gets an average mark of 66.5% once the results of more than 
one assessment have been combined, and we would consider them to have a 
higher mark than someone who only got 66%.
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If you have continuous or discrete data, every case should have a number 
of its own, and that number should be a ‘real number’ that we could use to 
do meaningful calculations (more on this later). So, for example, each of my 
students would have a particular mark in their test. Or each runner in a race 
would have their own finishing time. This is important, as it’s not the same as 
when we have a different type of data – called ‘categorical data’.

Categorical data

Categorical data are different to continuous and discrete data because for any 
individual case, there isn’t a ‘real number’ associated with the thing that you’re 
interested in. Rather than assigning each case a number (like we might for 
someone’s age in years, or their annual salary), each case can only be given a 
label or put into a category.

A simple example of categorical data is the type of fuel that a car runs on. 
Every car runs on a particular fuel or a combination of different fuels. The 
categories might be, for example: petrol, diesel, electricity and hybrid. If I asked 
you what type of fuel your car ran on, you would use one of these words (or 
say something similar) to describe the fuel. You would be unlikely to give me 
a number for the type of fuel, as this wouldn’t make any sense (although some 
fuels do have numbers attached to them). Because you (and everyone else in my 
study) are providing me with data in the form of a label or category, the data 
I am collecting would be categorical data. You have told me what category of 
fuel your car runs on.

If, on the other hand, I asked you how economical your car was, you could 
give me an answer in miles-per-gallon or litres-per-100 km. As you are giving me 
a number – one that I could sensibly do arithmetic with – these data would be 
continuous, because we could assign a meaningful number to each respondent’s 
car, and that number could be anywhere along a continuum. It would make 
sense, for example, to say that your car gets 45 miles to the gallon.

Lots of the variables that social researchers are interested in are categorical. 
Many of these relate to people’s backgrounds and social characteristics, such 
as social or occupational class, gender, sexual orientation, religious affiliation, 
employment status, and so on. For example, it’s common for social researchers 
to be interested in how people’s race or ethnicity affects their lives. Participants 
in surveys are often asked to assign themselves to a category that is closest to 
their racial or ethnic identity or background. As I explain in Box 2.0, researchers 
don’t always agree about what these categories are, how many there should be, 
and what they are called – and there are often differences between countries and 
over time. But, however race and ethnicity are conceptualised and defined, the 
important thing for our discussion is that people would identify with a label or 
description rather than a number. A participant in the 2011 UK Census might 
choose to identify as British Indian, but they couldn’t put a number on their 
ethnicity: that just wouldn’t make any sense.
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Box 2.0: How categories of race and ethnicity vary between 
countries and over time

As the ideas of race and ethnicity aren’t straightforward, the categories available 
to respondents have changed over time and vary between countries. For example, 
the 2011 UK Census provided respondents with 13  different ethnic categories 
that they could choose from, as well as a chance to specify an answer that was 
not listed. The 2010 US  Census was quite different. It included five categories 
for ‘race’, but respondents could specify more than one of these, including the 
option of ‘writing in’ a category that wasn’t listed. As well as picking a category 
for race, they could specify ‘Hispanic or Latino’ or ‘Not Hispanic or Latino’ as 
an additional ‘ethnicity’. Previous censuses in both countries have had different 
numbers of categories available for respondents and have also labelled some of 
these categories differently. How race and ethnicity is categorised not only varies 
between countries but has also changed over time. This reflects the different 
histories of these countries but has also been influenced by changes in the way 
that we think about the concepts of race and ethnicity.

Two types of categorical data: nominal and ordinal

Working out whether your data are categorical, or whether they are continuous 
or discrete, is the first step towards working out what kind of analysis you need 
to do. For most techniques that I cover in this book, this is probably the most 
important consideration.

However, there are two different types of categorical data – nominal data and 
ordinal data – and this difference sometimes matters when choosing analyses 
or when presenting your results. But the difference between the two types is 
easy to understand, and you’ll be familiar with it from the way you think about 
categories in your daily life.

The key difference is that nominal data is divided into categories that don’t 
have any order or hierarchy, while ordinal data is also divided into categories that 
do have a clear order. The examples below should help you see the difference 
between the two.

Ethnicity is an example of nominal data. If we produce a list of different 
ethnic groups, there wouldn’t be any clear order that we would put them in. 
We might group some categories together, but none of them would be seen as 
being ‘higher’ or ‘lower’ than any other group. Data on educational attainment, 
however, might be different. If you asked people about their highest level of 
educational attainment, you might give them the following options:

•	 PhD or doctorate
•	 Master’s degree
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•	 Undergraduate degree
•	 High school diploma
•	 No qualifications

Ignoring for a moment whether this covers all the available options, there is 
a clear hierarchy here. In most education systems, a PhD is a higher level of 
education than a Master’s degree, which is, in turn, higher than an undergraduate 
degree, and a high school diploma is lower than all of these. But having a high 
school diploma is a higher level of attainment than having no qualifications 
at all. Because there is a clear order to these categories, these data are known 
as ordinal.

So, we have two types of categorical data: nominal and ordinal. What these 
have in common is that data for a particular case will fit into a category (such 
as an ethnic group or level of education). This is different from continuous or 
discrete data, where each case will have a meaningful number attached to it 
(such as age in years, or a percentage score in a test).

Labelling categories using numbers

Earlier in this chapter I pointed out that one of the things that confuses  
students when they first start doing statistical analysis is that we sometimes 
label categories with numbers. This is sometimes just to save us writing out  
category names in full, but it is often because the spreadsheets in statistics 
software only accept numbers, or are designed to be used most effectively with 
numeric data.

Box 2.1: More levels of measurement?

Most statistics textbooks tell you about at least four different levels of 
measurement: ratio, interval, ordinal and nominal. This typology was first 
suggested by Stanley Stevens in 1946, and has become a standard element in most 
curricula and textbooks.

Ratio and interval measurements are both continuous, and so the difference 
between them doesn’t matter when you are choosing your analysis. Distinguishing 
between them makes things more complicated but doesn’t affect what analysis 
you do, so I haven’t explained the difference here. If you’re interested, you can have 
a look at the original article or read a shorter explanation on Wikipedia.

To take an example I used earlier, we might have data on the type of fuel used 
by different cars. This is categorical data, but these categories might be labelled 
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with different numbers to enable the data to be easily processed by the software 
we are using:

1.	 Petrol (gasoline)
2.	 Diesel
3.	 Hybrid
4.	 Electricity

The numbers attached to each category of fuel don’t have any numerical value 
at all. It’s not the case that ‘Hybrid’ is worth ‘three times’ more than ‘Petrol’, as 
this wouldn’t make any sense. They are simply labels, just like a phone number 
or a number on a sports jersey. In this example, they don’t even tell us anything 
about order, as the data on fuel type is nominal, and we could have attached 
any number to each of the four categories. All the numbers do is allow the 
software to distinguish between the separate categories without using words.

The example of level of education is slightly different because it is ordinal data:

1.	 PhD or doctorate
2.	 Master’s degree
3.	 Undergraduate degree
4.	 High school diploma

Although these numbers show the order of a hierarchy, they are not the same 
as the numbers in continuous or discrete data, and shouldn’t be confused with 
them. Again, they don’t have any real numeric value and are only used here as 
labels for those categories. They shouldn’t be used for doing any arithmetical 
calculations as the data is still fundamentally categorical.

In the discussion that follows I’m going to contrast using numbers as labels 
with assigning what I will call ‘real numbers’ to each case. When I talk about a 
‘real number’, what I mean is that this number is something we could sensibly 
use to do calculations. This includes things like someone’s age in years, their 
income, the distance they travel to work, and so on. But it wouldn’t include 
someone’s phone number or their bank card number, which are just used to 
differentiate their phone line or bank account from someone else’s.

Telling the difference between different levels of measurement

If you’re trying to work out whether data are categorical, discrete or continuous, 
the first thing to do is ask yourself the following:

Can I assign a ‘real number’ to each case?

If you can answer ‘yes’ to this question, then your data are continuous or discrete. 
If you answer ‘no’, then your variable is probably categorical. Let’s go back to 
the example about which fuel powers a particular car:
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Can I assign a ‘real number’ to the type of fuel a car runs on?

No. We can only talk about types of fuel in terms of categories: petrol, 
diesel, electricity and hybrid combinations. We can’t assign a number to 
each case that we could do maths with. Any number we assigned would 
just be a label.

We have answered ‘no’ to the question. We can therefore conclude that 
these are categorical data.

Compare this with the next example, which was the fuel consumption of a 
particular car:

Can I assign a ‘real number’ to the fuel consumption of a car?

Yes. Each car has a particular fuel consumption that could be measured 
as miles per gallon or litres per 100 km. We could assign a number to 
each case and use these numbers for calculations.

We have answered ‘yes’ to the question. We can therefore conclude that 
these are continuous or discrete data.

These examples are quite straightforward, but it’s not always so easy to work 
out whether some variables are categorical or whether they are continuous or 
discrete. Age is a good example of this, as it is often collected and presented as 
both discrete and categorical data.

Some variables can have different levels of measurement depending on how 
the data is collected

If I asked you how old you were, you would probably give me an answer in  
years. Age in years is a ‘real number’ that we could use to do calculations, as 
it would make sense to say that someone who is 20 years old is twice the age 
of someone who is only 10 years old. It’s also true that the difference between 
age 7 and 10 is three years, and that this is the same absolute distance as the 
difference in years between 10 and 13. Fractions of a year also make sense – lots of  
children will tell you that they are four-and-a-half or five-and-three-quarters 
years old!

So, age in years qualifies as discrete data. (It could be continuous data,  
but as we tend to collect it in whole years – at least from adults – it only  
takes discrete values.) You have a number for each person and you can use 
this number to do mathematical calculations that make sense. You could also 
use it with statistical techniques that require continuous data, because it makes 
sense to think of fractions of a year or people being at various points between 
their birthdays.

But it’s not always this simple. Data on age are often collected or presented as 
age groups. You’ve probably filled in a form or questionnaire where the answers 
you can select from look something like this:
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What is your age?	 Under 18	 
18 to 24	 
25 to 34	 
35 to 44	 
45 to 54	 
55 to 64	 
65 and over	 

If we collect our data like this, do we still end up with continuous or discrete 
data? Or are these data categorical? Let’s see by using our test:

Can we assign a ‘real number’ to the age of a person?

We’ve seen that we can do this if we collect the data for age in years. However, 
by collecting data using the question format above, we don’t get an exact age 
for each person. In fact, we get a mixture of numbers and words. If we have 
continuous or discrete data, we should be able to do some calculations with 
it and come out with a sensible answer. But for someone placed in the ‘18 to 
24’ category, we wouldn’t know which number to use. People in this category 
could be 18, they could be 24, or they could be any age in between. So, ‘18 to 
24’ is the label for a category, rather than a numeric value.

When we collect data as age groups we actually end up with categorical data. 
There are some good reasons why you might decide to collect data on age as 
categorical data rather than continuous or discrete data, but it’s important to 
bear in mind that how you collect your data can have implications for how 
you can analyse them, and so you need to think about your analysis right at 
the beginning of your research. (If you are using data that someone else has 
collected, you don’t get any choice in this. But it’s still important to work out 
what the level of measurement is, because you’ll need to know this to work 
out what analysis you can use.)

Don’t be caught out when looking at data that have already been analysed

One of the things that sometimes catches my students out is when they see 
categorical data that have already been analysed. Occasionally, they look at these 
results and mistake categorical data for continuous or discrete data.

Table 2.0 shows the number and proportion of students enrolled on different 
degree programmes who take one of my classes:

Table 2.0: Number and proportion of students enrolled on different degree programmes

Degree programme Sociology Criminology Politics Total

Number of students 43 94 27 164

Percentage 26.2 57.3 16.5 100.0
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If we wanted to decide whether data on degree programme studied was 
categorical, or continuous or discrete, we need to apply our test:

Can we assign a ‘real number’ to the choice of degree programme?

Looking at Table 2.0 you might be tempted to say that we can. After all, we 
can see some numbers in the table that have already been assigned to these data. 
And we could use these numbers to do calculations. It would make sense to 
say that there are more than twice as many criminology students as there are 
sociology students in my class. We can see from the table that 94 (57.3%) of 
my students are on criminology degree programmes, but only 43 (26.2%) are 
studying sociology. We have some real numbers for these data, so data on degree 
programme must be continuous or discrete, right?

Well, no. The confusion here is between assigning a meaningful number to 
each case and using numbers to summarise what is happening with the cases as a 
whole (after they have been counted up). Our question should really have been:

Can a ‘real number’ be assigned to each student’s choice of degree  
programme?

When we answer this question, and think about the answer that a student would 
give when asked about what degree subject they are studying, we soon realise 
that they couldn’t give a number, only a label such as ‘politics’. A ‘real number’ 
can’t be assigned to each case, and so the data must be categorical.

If you want to practice working out whether a variable is categorical or 
continuous, Exercise 2.1 might be helpful.

EXERCISE 2.1

Think about the following variables that might be used in a research project. For 
each one, decide whether it is categorical, discrete or continuous:

a) 	 The amount of time students spent studying in the library in a single semester.

b) 	 The number of times students visited the library in a single semester.

c) 	 The religion that a person currently identifies with.

d) 	 An employee’s occupational group.

The use of rating scales: when are data really continuous?

Now that we’ve looked at the difference between categorical and continuous 
data in some detail, you’ll hopefully have the skills you need to be able to work 
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out what kind of data you have before you start doing any analysis. But before 
we move on to another topic, we need to look at a common way in which data 
are collected that makes this decision a bit more difficult.

You’ve probably seen a question in a questionnaire set out like this:

Question 2.0
Raising taxes for those earning salaries of over £100,000 is a fair way of 
generating income for essential services.

Strongly 
disagree

Disagree Don’t know/ 
Undecided

Agree Strongly 
agree

    

This type of question often asks people how much they agree or disagree with 
a statement, but it can also take slightly different forms. They are used for 
everything from asking people how happy they feel about some aspect of their 
life to how much they like using a particular product. In the Crime Survey 
for England and Wales (CSEW), for example, respondents are asked to select 
answers about the level of worry they have – from ‘Very worried’ to ‘Not at all 
worried’ – about being the victim of different types of crime.

On the face of it, the data produced by this kind of question are clearly 
categorical. If you asked Question 2.0 to someone verbally, they would answer 
with one of the five words or phrases provided. They might say ‘Agree’, for 
example. And as there’s a progression in levels of agreement from ‘Strongly 
agree’ at one extreme to ‘Strongly disagree’ at the other, we can also say that 
these data are ordinal.

As we’ll see in Chapter 3, one way of starting your analysis with the data 
produced by this item could be simply to count how many of your respondents 
selected each category and perhaps also calculate the percentages. You could 
then use these figures to work out both the strength and direction of feeling 
about raising taxes for high earners.

However, some researchers go further than this and attach numbers to each 
response. This is sometimes done alongside the answer options, as can be seen 
in Question 2.1, or sometimes data are collected from questions that look like 
Question 2.0, and the numbers are added by the researchers after the data have 
been collected.

Question 2.1
Raising taxes for those earning salaries of over £100,000 is a fair way of 
generating income for essential services.

Strongly 
disagree

Disagree Don’t know/ 
Undecided

Agree Strongly 
agree

1 2 3 4 5
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There are many variations on this type of question, both in terms of the number 
of possible responses and how many of these responses are anchored to labels 
(such as ‘Agree’). In Question 2.2 there are 10 answer options, but there isn’t 
what is called an ‘anchor label’ for each possible response – only one at each 
end to indicate the direction the numbers take. This type of scale is called 
unanchored, in contrast to Questions 2.0 and 2.1, where the responses are 
‘anchored’ to labels describing what they represent.

Question 2.2
Raising taxes for those earning salaries of over £100,000 is a fair way of 
generating income for essential services.

Disagree Agree
1 2 3 4 5 6 7 8 9 10

Unanchored scales are more difficult than anchored ones to interpret in terms 
of their ‘real world’ meaning, because it’s not exactly clear what each response 
means and how it is different from the other options. When you choose an 
option that is marked ‘Agree’, it’s fairly clear what your answer means. But, 
for Question 2.2, how should we interpret an answer of ‘3’? And how is this 
answer different to ‘2’ or ‘4’? This is an issue I’ll return to below.

Seeing these numbers is usually an indication that the researcher plans to treat 
the data generated from this question as continuous (or at least discrete) data. 
Doing this allows them to do different types of analyses. They can go further 
than counting up the number of respondents who selected each option and do 
things such as calculating mean averages and other statistical analyses that we 
cover later in the book. These analyses can not only be conducted for all the 
respondents’ answers to a particular question, but can also be used to calculate 
the respondents’ scores for all or some of the questions combined.

Box 2.2: Use and abuse of the term ‘Likert scale’

The most famous versions of these items and scales are named after a psychologist 
called Rensis Likert (pronounced ‘Lick-ert’) who first proposed using them, in the 
early 1930s, to measure people’s attitudes (Likert, 1932). Likert had some very 
strict rules about the use of these scales, but nowadays the term ‘Likert scale’ is 
often used more loosely to describe any type of rating scale.

If you’re interested in reading the debate about what does and doesn’t count as a 
‘Likert scale’, you might want to read a short critique of these kind of ‘rating’ scales 
by Jamieson (2004), and a much longer response by Carifio and Perla (2007), 
who go into some detail about what counts as a true Likert scale. I’ve listed these 
articles at the end of the chapter.
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But what kind of data is being produced here? Is it really continuous (or discrete), 
or is it actually categorical? The best way of working this out is to look at how 
these numbers are created and whether we think they behave as ‘real numbers’. 
But there are also some issues about the wording of the answers provided in this 
kind of question that we need to think about.

Let’s use Question  2.1 as an example. All the answers relate to levels of 
agreement and disagreement. Unlike something like time, money or distance, 
there’s no widely accepted scale for agreement and disagreement. But if we 
say that we agree with something, or that we disagree with it, or that we’re 
undecided, most people will understand what we mean by this. We aren’t likely 
to confuse the meaning of any of these answers with each other: they are all 
different in ways we can easily understand. Three of the five answer options in 
Question 2.1 are both easily understood and clearly different from each other.

If we treat the data produced by Questions 2.0 or 2.1 as categorical in our 
analyses, this would be reasonably straightforward. Leaving aside for a moment 
the issue of how useful it is to distinguish between ‘Agree’ and ‘Strongly agree’, 
treating the data as ordinal is fairly uncontroversial. People answering ‘Strongly 
disagree’ obviously have different views than those answering ‘Strongly agree’, 
and the options between are placed in a sensible order between the two extremes.

However, if we treat the data as continuous or discrete, we are making some 
much stronger assumptions about the relationship between the different possible 
answers. Let’s look at Question 2.1 again.

Question 2.1
Raising taxes for those earning salaries of over £100,000 is a fair way of 
generating income for essential services.

Strongly 
disagree

Disagree Don’t know/ 
Undecided

Agree Strongly 
agree

1 2 3 4 5

If we treat the numbers attached to each answer option as ‘real numbers’, 
and analyse them in the same way as we would sums of money or periods of 
time, we are treating these numbers the same as, for example, US dollars or 
kilometres. It’s fine to say that someone with US$1,000 has twice as much 
money as someone with US$500, or that a train journey of 60 km is half 
as long as one taking 120 km. But what about saying that someone who 
answered ‘Agree’ to Question 2.1 having twice the ‘agreement’ of someone 
who answered ‘Disagree’? And would they agree four times as much as 
someone who answered ‘Strongly disagree’? Can we really ‘measure’ degrees 
of agreement in this way?

Having options that aren’t anchored to labels, such as in Question 2.2, makes 
things even more difficult. We’ve already considered that there may be a problem 
with people’s understanding of what, for example, an answer of ‘3’ really means 
to different people. But this becomes even more important if we’re going to 
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do some calculations with this figure. This is because now we’re not just saying 
that an answer of ‘3’ is different to an answer of ‘4’, but that this difference has 
a precise numerical value of one unit (or, to put it differently, that the numbers 
are ‘equal interval’).

Question 2.2
Raising taxes for those earning salaries of over £100,000 is a fair way of 
generating income for essential services.

Disgree Agree
1 2 3 4 5 6 7 8 9 10

If we treat data produced with this type of question as continuous or discrete, 
we’re making two important assumptions:

1.	 Each option means exactly the same to each respondent.
2.	 There are equal intervals between the answer options that we give them.

If we then combine the answers to these questions to make a scale, we also 
assume that:

3.	 All the questions are of equal importance.

It’s very common for researchers to use ‘rating scale’ questions like this. And 
many researchers treat the answers given by respondents as continuous or discrete 
data in their analyses. It’s also common for these answers to be combined to 
produce a scale that is intended to measure, for example, someone’s fear of crime, 
their trust in the government or attitude to drug use. However, it’s important 
to understand that when we do this we are making assumptions, both about 
people’s shared understanding of the question-and-answer options as well as the 
relationship between these different answer options.

There has been a great deal of debate over the years about whether data 
produced by these types of questions can be treated as continuous or not. If 
you’re unsure whether data like this really is continuous, it may be safer and 
simpler to either treat these data as categorical, or even to use a different method 
to collect data on this topic.

Summary

In this chapter we looked in detail both at what numbers really are and at the 
different ways we use them. I hope it has given you the knowledge to make the 
most important distinction between the types of data – or ‘levels of measurement’ 
– we use for statistical analysis: categorical and continuous data. As we have 
seen, sometimes it’s easy to work out what kind of data you have, but in some 
cases it’s more difficult or ambiguous.
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In the next chapter we get started with the ‘nuts and bolts’ of analysis by looking 
at why you would want to analyse a variable on its own, and how you do this 
with different kinds of data.
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Answers to exercises

Exercise 2.0
a) This exercise is intended to get you to think about how you use numbers 
in everyday life, and in what situations we tend to use numbers and in what 
situations we don’t. Thinking about the differences between these situations, 
and the reasons why we use numbers in some of them but not in others, is 
good practice for when you are doing research, when you will be faced with 
decisions about when it’s sensible to quantify something and use numbers to 
represent it (and when it’s not).
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What are numbers really about?

b) This question asked you to think specifically about some of the things we 
might study as social researchers. Although this is a slightly different context, 
your thinking should be similar. Just because you’re now thinking about things 
we’re interested in as researchers, rather than your day-to-day life, there’s no 
need to change the way you come to a decision about whether it’s sensible to 
use numbers or not. After all, as social researchers, we study the same world 
we live in!

Exercise 2.1
In this exercise we asked you to decide whether each of four variables was either 
categorical, discrete or continuous.

a) These data (and therefore the variable) would be continuous. The amount of 
time a student spends in the library could be measured – at least in theory – to 
the smallest fraction of a second.

b) The number of times students visited the library in a single semester is a 
discrete variable. You might go to the library 21 times and one of your friends 
may only go 7 times. It makes sense to say that you’ve visited the library 14 more 
times (or three times as often). You can’t have a fraction of a visit – you either 
went to the library or you didn’t. So this variable would also be discrete, because 
the number of visits can only take certain values – in this case, whole numbers.

c) If I asked you what religion you identified with you would have to give me 
a label, rather than a number, even if this was to say that you weren’t religious. 
Because of this, the variable ‘religious identification’ would be categorical: we 
don’t ‘measure’ religion; we describe religious groups using their names. But 
is it nominal or ordinal data? Ordinal data, as the name suggests, has an order, 
and as it doesn’t make sense to put religions in any kind of order, this would be 
a nominal categorical variable.

d) Occupational groups are usually labelled (for example, ‘professional’, 
‘administrative’, etc), and so are categorical. These labels can be numeric 
(‘114’, ‘242’, in the Standard Occupational Classification 2000 classification, 
for example), but they are not ‘real’ numbers. (Think of them in the same way 
as telephone numbers or the numbers on the back of sports jerseys.) Whether 
these data are ordinal or nominal will vary between different classifications. 
Some classifications are hierarchical and have an order – and so are ordinal – and 
others do not – and so are nominal.
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3

Absolute beginnings: starting statistical 
analysis one variable at a time

WHAT IS THIS CHAPTER FOR?
Following on from the last chapter, where we looked at the different ways 
we use numbers, in this chapter I introduce some techniques for analysing 
one variable at a time. This is called univariate analysis. You usually need to 
start your analyses by using univariate techniques, so this chapter helps you 
begin the process of ‘doing statistics’.

WHAT DOES IT COVER?
I explain why these kinds of analyses should be the starting point for the 
analysis of any dataset, and show you some of the different statistical 
techniques for examining categorical and continuous data. In this chapter 
we look at using frequencies and percentages with categorical data and using 
averages with continuous and discrete data.

WHAT WILL YOU LEARN?
•	 Why you always need to start with univariate analysis
•	 Which univariate statistical techniques you can use with categorical and 

continuous or discrete data
•	 What these techniques can (and can’t) tell you about the distribution of 

a variable
•	 How to choose the best statistics to use in different circumstances

WHAT CONCEPTS AND TECHNIQUES ARE COVERED?
•	 Frequency counts
•	 Percentages and other proportional measures
•	 Averages: the mean, median and mode

This is statistical analysis!

In Chapters 1 and 2 I introduced some important terms and concepts that you 
need to be familiar with before you start analysing your data. In this chapter 
we’re finally going to start learning how to conduct some statistical analyses. 
Even if you’ve never done any statistics before, you might be surprised to see 
how many of the techniques we cover are familiar to you already, perhaps from 
school or work, or just from life in general. There are a couple of trickier ideas 
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towards the end of the chapter, but not all the concepts and techniques I discuss 
are likely to be completely new to you. As with quite a few of the things I cover 
in this book, you might have already done some statistical analysis without even 
realising it.

Why look at only one variable?

However good you become at doing statistical analysis, and however sophisticated 
the techniques you go on to use, you should always start your analysis by looking 
at each of your variables separately. Looking at one variable at a time is called 
univariate analysis. When we look at the relationship between two variables, 
this is called bivariate analysis, and when we look at the relationship between 
three or more variables at once, this is called multi-variable analysis. It’s quite 
easy to remember what these terms mean because a unicycle has one wheel and 
a bicycle has two. And if a piece of clothing is multi-coloured, then it’s usually 
more than two different colours.

But why do we have to start by looking at each different variable separately? 
Aren’t we most interested in the relationships between variables? So shouldn’t 
we start doing bivariate or multi-variable analysis as soon as possible?

It’s true that most reports of research using statistical analysis focus on the 
relationships between variables. The ‘story’ of the research that is written up 
usually concentrates on these relationships. However, you’ll see that these reports 
usually also include the results of some univariate analyses, even if only in a 
single table or hidden away at the end, in an appendix. Researchers include 
these results because they are a vital part of the process of analysis and because 
they know that other researchers might want to see them.

There are three main reasons why univariate analysis is important. Some 
univariate analyses can produce useful findings in themselves, especially in new 
areas of research where there isn’t much existing data. But univariate analysis 
serves two other vital purposes: helping the researcher ‘get to know’ the data 
they are using and identifying any problems with the data early on.

Sometimes one variable is important

There are times when data on a single variable can be important and useful. 
The number of people currently unemployed, the average house price or the 
longest time someone has waited for an operation are all figures that tell us 
something important about the society we live in. During the coronavirus 
pandemic that started in late 2019, the number of new cases, the number of 
hospital admissions and the number of deaths each day were all statistics that 
were crucial for informing the government’s and the public’s response in each 
affected country. All these figures are the results of univariate analyses.

But univariate analysis is usually just the starting point for further analyses. 
For example, we might want to know how unemployment has varied over 
time, so that we can see how good or bad the current situation is in relative 
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terms. We could be interested in how house prices vary between regions. Or 
we may want to know the differences in waiting times for different operations. 
Finding out these things would require the bivariate analyses we look at in later 
chapters. But for now, we’re going to concentrate on why you need to look at 
each variable separately, and what doing this can tell you.

Getting to know your data

It’s often the case that univariate analysis – on its own – won’t reveal any 
particularly interesting stories in your data. The unemployment rate might be 
well known, for example, and what you are really interested in is finding out 
how unemployment varies between people from different social backgrounds. 
You’d need to use bivariate (or multi-variable) analysis to do this. But, as I’ll 
explain, this doesn’t mean that you won’t need to conduct any univariate analysis.

Whatever kind of research you do, and whatever type of analysis you plan to 
conduct, it’s always good to become familiar with your dataset. This is the case 
whether you are going to do some statistics or use another analytical technique. 
For example, if you had conducted some interviews, you would probably read 
through the transcripts a few times before starting doing any kind of coding. 
The same is true for conducting statistical analysis: you need to get to know 
your data before looking at the relationships that you’re interested in. Univariate 
analysis can help you with this.

Getting to know your data using univariate analysis can give you an idea about 
what each of your variables ‘looks like’. For a categorical variable, this can tell 
you how many cases are in each category, and whether there are any categories 
that have no cases in them at all. For continuous or discrete variables, it can tell 
you where the ‘middle’ of the data are, how spread out the data are, and what 
the largest and smallest values are.

In your dataset you will have both dependent (outcome) and independent 
(explanatory) variables. My examples of univariate analysis so far have focused 
on dependent variables – the outcomes we are interested in. Even if you think 
you have a good idea what the data for these variables will look like, you’ll still 
need to do some analysis to check. But you’ll also need to look at each of your 
independent variables in order to ‘get to know’ them, too.

Knowing what your data look like can also help you make assessments about 
how representative your dataset is of your population. Even if you start with 
population data or a random sample, you might not end up with a representative 
sample, for various reasons. If you’ve used a non-random sampling strategy, it’s 
quite likely that your sample will be different from your population in some 
way. Using univariate analysis to find out about the distribution of each of your 
variables can help you with this. Smith (2008) shows you how you can compare 
the demographic characteristics of your sample with aggregate data to 
judge the representativeness of your data.
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Are there any potential problems?

Univariate analysis can also alert you to issues that might affect the analyses you 
conduct later. The most obvious potential issue is missing data. Regardless 
of how you collected your data, or whether you are using data collected by 
someone else, it’s likely that you don’t have data for every variable for every case. 
This will affect your analysis, because if there isn’t data on a particular variable 
for a particular case, that case cannot be included in any of the analyses using 
that variable. If you’re planning on doing multi-variable analysis, this is even 
more of a problem, as you have more variables being analysed at any one time, 
and you can only include cases that have data on every one of these variables.

Reporting missing data is good practice when you write up your results. 
You need to report what proportion of your cases was included in each of your 
analyses, and how many could not be included because of missing data. You also 
need to think about how missing data may have affected your results. Gorard 
(2021) gives some useful advice about this.

An issue that can cause slightly different problems is an implausible value. An 
implausible value is one that is either impossible or very unlikely. For example, if 
you collected data on people’s age in years, a value of 256 would be implausible 
because nobody lives that long. A value of 108 is possible, but unlikely. For the 
first value, you would have to try to find out what the real age of this person 
is, perhaps by checking if there was a mistake when the data was transcribed or 
entered. If this is not possible, this value would have to be removed from the 
dataset and you would effectively have missing data for age for this particular 
case. For the second value – 108 – ideally you would confirm whether this is 
a correct value, but again, this may not be possible. If you doubt that the value 
is correct, you may want to consider removing it. This is only a concern for 
continuous or discrete variables, but can also mean that a case may not be able 
to be used in certain analyses.

One issue that can affect the categorical variables in your dataset is small 
numbers of cases – or no cases at all – in certain categories. If there aren’t any 
cases in a category, this won’t cause problems for the mechanics of your statistical 
analysis, but it may mean that your dataset isn’t representative of your population 
of interest. For example, if your population includes people from a particular 
ethnic group, but no one in your sample belongs to that ethnic group, then 
this group won’t be represented in your findings. Very small groups are more 
likely to be missing from your sample, and unless your sampling strategy has 
taken this possibility into account, it’s not unheard of for a whole group to be 
unrepresented in a sample.

It’s more common to end up with a sample that has a small number of cases 
in some categories. It is the absolute number of cases in a category that is 
important for statistical analysis, so don’t worry about there being an imbalance 
of cases in different categories (that’s exactly what we’d expect for many variables 
in a completely representative sample). But small numbers of cases in categories 
can be a problem for some analyses. I’ll discuss this problem in greater detail 
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in later chapters, but it’s worth making a note of any groups containing small 
numbers of cases when you’re doing your univariate analysis, so that this doesn’t 
surprise you later on.

So what do you need to do to ‘get to know’ your data? In the next section 
we’ll start to look at the different techniques that are available for different 
types of data.

Two types of data, two approaches to analysis

In the last chapter we saw that there are two main ways in which we use 
numbers. We either put cases into categories, creating categorical data, or we 
assign numbers to each case by making some kind of ‘measurement’, creating 
continuous or discrete data. Although we discussed other ways we use numbers, 
these two are the most common, and working out whether a variable is 
categorical or continuous is the first thing you have to do when deciding what 
statistical techniques you can use.

I have a categorical variable: what can I do?

If you have a categorical variable, there are only a small number of tools for 
univariate analysis, but the good news is that you’ll probably already be familiar 
with them. They will usually be the same whether your categorical data is 
nominal or ordinal, so you don’t need to worry about that difference; if 
you’ve got data where you’ve assigned cases to categories, then these are the 
techniques you can use.

Imagine that I wanted to find out about people’s religious affiliations in the 
city where I worked at the time of the 2011 Census. We can double-check that 
religious affiliation is a categorical variable by asking what sort of answer people 
would give if we asked them about their religion: they would give you a label or 
description (in words) rather than a real number, so this means that the variable 
is categorical. We can also check that I should be doing univariate analysis. I’m 
only interested in data for a single year (rather than, say, change over time), so 
only one variable is involved, and univariate analysis is what is required.

Univariate analysis of categorical variables can give us information on two 
things: the number of cases in each category (frequencies or counts) and the 
proportion of cases in each category (often shown as percentages). As I discuss 
below, both of these can be useful in different ways in different circumstances.

Looking at percentages

Table 3.0 shows data from the UK Census on the religious affiliation of people 
living in Leicester for the year 2011. These are population data, rather than data 
collected from a sample, so include almost everyone living in the city in that year.

Looking at the percentages in the column on the right of the table is the easiest 
way to understand the relative size of each of the religious groups. Because the 
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percentages add up to a total of 100, the proportions can be understood quite 
easily, simply because 100 is a relatively small number that we’re all familiar with.

Percentages are also easy to convert into fractions. One per cent is actually 
one-hundredth, so percentages are already fractions, but some percentages are 
easier than others to translate into other fractions. You might have worked out 
that the 32.4% of Leicester residents who identify as Christian represent just 
under one-third of the population of the city. And those with no religion make 
up somewhere between one-fifth and one-quarter of the population, at 22.8%. 
Percentages and fractions are both proportional measures that make it easier for 
us to understand how cases are shared out – or distributed – between categories.

Box 3.0: Other measures of proportion

Although percentages and fractions are probably the most common proportional 
measures, and perhaps the ones you are most familiar with, there are other 
measures that can be more helpful in particular circumstances.

Relatively rare events, such as being a victim of a particular crime, are sometimes 
expressed in rates per 1,000 people. For example, in data from the 2020/21 Crime 
Survey for England and Wales (CSEW), 2 in 1,000 people had their vehicle stolen. If 
this was expressed as a percentage, it would be 0.2%. Using rates per 1,000 people 
allows us to visualise this in terms of ‘whole’ people, which is a bit more intuitive.

You aren’t restricted to just using rates per 1,000 cases either. You can use any 
number that’s useful. You might have noticed that, during the COVID-19 pandemic, 
infection rates were often reported as rates per 100,000 people. As with rates per 

Table 3.0: Population of Leicester, by religious affiliation, 2011

Number Percentage

Christian 106,872 32.4

No religion 75,280 22.8

Muslim 61,440 18.6

Hindu 50,087 15.2

Religion not stated 18,345 5.6

Sikh 14,457 4.4

Other religion 1,839 0.6

Buddhist 1,224 0.4

Jewish 295 0.1

Total 329,839 100.0

Note: Data may not add up to exactly 100% due to the rounding of decimal places in each group.
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1,000, this allows us to end up with whole numbers of cases, which are easier to 
visualise. On the day I’m writing this (in 2022), in Portugal there were 67 new cases 
of coronavirus per 100,000 members of the population. If this was expressed as a 
percentage, it would be a much less user-friendly 0.00067%.

How useful are frequencies?

In the middle column of Table 3.0 there are data on the number of people 
in each religious group. Here the title of the column is ‘Number’, but this is 
often shortened to ‘N’. As I explained earlier, these numbers are also referred 
to as frequencies or counts. As we shall see, whereas we look at the data on 
proportions to tell us how the cases are shared out between categories, how we 
use the data on frequencies can vary depending on what those cases represent.

Because the data in Table 3.0 are from the UK Census, they are not a sample 
but represent (very close to) every person living in Leicester in that year. So we 
can see that 1,224 people described themselves as Buddhist. This is the actual 
number of people in this religious group, and although it might be affected by 
non-response and missing data, it is hopefully a reasonably accurate estimate. 
The key point here is that, because these are population data, we can treat 
the numbers in each category as estimates of the absolute size of each of the 
religious groups.

When we are dealing with data for a sample, we have to treat these figures 
slightly differently. If we have a perfectly representative sample, we can treat 
the percentages as representative of the wider population that the sample was 
drawn from. However, we can’t treat the frequencies in the same way, as they 
reflect the sample size rather than the actual number of cases in the population 
the sample was drawn from. Without some extra information, and some further 
calculations, the frequencies for categories in research using samples can’t tell 
us about the absolute size of those groups. The example below will help show 
you exactly what I mean by this.

Table 3.1 shows the results of an analysis I conducted with Crime Survey 
for England and Wales (CSEW) data for the closest year to the UK Census 
data I used in Table 3.0. As with the Census data, the variable I analysed was 
religious affiliation. However, the CSEW uses sample data, so it doesn’t include 
everyone in England and Wales. But it does have a very large sample – more 
than 46,000 cases in 2011–12 – and this sample is carefully designed to be as 
representative as possible.

So it’s reasonably safe to assume that the CSEW data is representative of 
England and Wales more widely, and that the percentages in each category reflect 
the wider population. However, the frequencies (in the middle column) are 
different from those in Table 3.0 in that they don’t represent the actual number 
of people in England and Wales with a particular religious affiliation, only the 
number in the sample. There are 228 Buddhists in our sample, but there will 
be many more than this in the population of England and Wales.



Straightforward Statistics

48

So how do we use this information? If these frequencies don’t reflect the actual 
number of people in each religious group, is it okay just to ignore them? Not 
quite. It’s still important to look at the frequencies in each category in sample 
data, but for a different reason: you need to look out for categories with small 
numbers of cases.

The problem with small numbers

As we will see in later chapters, when you go on to do bivariate or multi-variable 
analysis involving categorical variables, a small number of cases in a category can 
be an issue. It can cause problems for some analyses or mean that you can’t use 
a particular type of analysis at all. This is because small numbers are volatile: a 
small change in absolute terms can be a very large change proportionally. For 
example, if I started a new religion and could only convince one of my friends 
to join, we would have a membership of two. But if the next year I convinced 
another of my friends to join, I would have increased the membership by 50%. 
Just one new person joining my new religion made a very large proportional 
difference. However, if someone living in Leicester in 2011 had changed their 
religious affiliation to Muslim, the number of Muslims would change from 
1,211 to 1,212, an increase of less than 0.1%. Changes to, or differences in, 
the frequency of cases in a category have a very different effect in categories 
with small and large numbers of cases. In categories with very small numbers 
of cases, this can make a change or difference look much more dramatic than 
it actually is. And with sample data, it also raises questions about whether this 
proportional difference or change would be reflected in the population that the 
sample had been selected from.

It’s important to point out that the relative number of cases in each category 
doesn’t matter for most analyses. Many of my students assume that for any 
analysis to be ‘fair’, all the groups need to include the same number of cases. 
But if you think about what most societies looks like, you really wouldn’t 
expect all the categories in many variables to have the same number of cases. 
In a representative sample – or in population data – the number of people in 

Table 3.1: Respondents’ religious affiliation (frequencies and percentages)

Number Percentage

Christian 34,516 75.2

No religion 8,805 19.2

Muslim 1,211 2.6

Other religion 642 1.4

Hindu 518 1.1

Buddhist 228 0.5

Total 45,920 100.0

Source: Crime Survey for England and Wales 2011–2012
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each religious group isn’t likely to be the same because, in each society, some 
religions are more popular than others. This would also be true for ethnic 
groups, social classes and many other commonly used variables. As we will see 
in later chapters, statistical analyses using categorical data take into account that 
the number of cases in different categories is often not equal. The only thing 
you need to worry about is if there is a very small absolute number of cases in 
a particular category.

I have a continuous or discrete variable: what can I do?

As you have seen, looking at the distribution of categorical variables is relatively 
straightforward. When you have a continuous or discrete variable, however, 
things are a little more complicated. There are more techniques available to 
you, some of which are alternatives to choose between and some of which 
are complimentary.

If you think about the differences between categorical and continuous 
variables, it’s easy to see why we need to use different techniques for continuous 
data. Categorical variables have a finite number of categories, so we can look at 
the number of cases in each category, count them up, and calculate proportions. 
In the Census data in Table 3.0 there are nine different categories for religious 
affiliation (including ‘No religion’). It’s possible to have more than nine 
groups – we could create categories for the individual religions in the ‘Other 
religion’ group, for example – but we would eventually get to a point where 
all the religions had been accounted for, and we’d end up with a set number 
of categories.

Continuous variables are different because there is an infinite number of 
possible answers that can be associated with each case (in theory, at least). For 
example, if we were interested in people’s annual income from their jobs, it could 
take any value from zero upwards. It was reported that in 2021 the CEO of the 
travel company Expedia was the world’s highest paid employee, with a salary 
of US$94.6 million. Although it is clearly unusual to earn anywhere near that 
amount (this is an example of an outlier – an idea we’ll be discussing later in 
this chapter), the amount people earn could – even in practice – be anywhere 
between zero and this incredibly large figure.

Because there are so many different possibilities for people’s income, counting 
the number of people who earn the same amount isn’t likely to be helpful. In 
fact, there is so much variation in what people earn that it’s unlikely that very 
many people would earn exactly the same as someone else (apart from, perhaps, 
those working full-time minimum-wage jobs). If we used each different income 
as a category, we could end up with thousands of categories. Many of these 
might only have one case in them, so clearly this wouldn’t be very useful.

As we use frequencies to calculate percentages, if we’re not going to count how 
many people earn the same amount, then we won’t be using any percentages 
either. And if we’re not using either of the two techniques we used with 
categorical variables, what can we do?
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There are two groups of statistical analyses that we can use with continuous 
(and discrete) variables. They help us understand two different things about 
how a variable is distributed:

•	 What the average value is
•	 How spread out the data are

In this chapter we’re going to concentrate on averages. In the next chapter I 
look at the various techniques for telling you how spread out the data are.

There’s no such thing as an average

Most people reading this book will be familiar with the idea of the average. We 
use this term in our everyday conversations and you might have come across it 
in maths lessons at school. Averages are also referred to as measures of central 
tendency. When we do statistical analysis we have to be careful about how we 
think and write about averages, for two reasons. First, there are several different 
averages, and they all tell us slightly different things. Second, the meaning we 
give to the term ‘average’ in our everyday lives doesn’t always match any of 
these different measures.

My dictionary gives the following meanings for ‘average’: standard; normal; 
typical; regular. It defines ‘on average’ as meaning: usually; ordinarily; generally; 
for the most part; typically; on the whole. But while these are the meanings we 
give to the term ‘average’ in our conversations, the three averages we’re going 
to look at give us quite specific pieces of information that don’t quite match up 
to any of these particular definitions. To avoid confusion, it’s often best to refer 
to the specific average that you’re using. In the sections below, we’re going to 
look at the mean, the median and the mode.

What most people ‘mean’ by average

When most people talk about an average in the mathematical sense, they are 
probably referring to what’s called the arithmetic mean. This is often just 
shortened to the mean (although, technically, there are other kinds of mean). 
The arithmetic mean is the most commonly used average (or measure of  
central tendency), but it’s not always the best one to use. The mean is calculated 
by adding up the values of each case and dividing by the number of cases  
we have.

Table 3.2 lists the names and ages of 10 people.
If we wanted to calculate the mean age for this group, we would need to do  

the following calculation (or, more likely, get our computer software to do it 
for us):

30 48 29 28 25 22 50 40 30 65

10
36 7

          .
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The answer will be in the same units as the original data on age, so the mean 
age of the group is 36.7 years old. Before we move on to look at the other 
two measures of central tendency – and see how these are different – let’s look 
at what the mean tells us, what it doesn’t tell us, and some of its advantages 
and disadvantages.

The first thing you might notice from the answer to the equation is that, 
although all the respondents rounded their age to a whole year, the mean came 
out as a decimal. It’s often the case that a mean won’t reflect an actual value in 
the dataset and it can also, as is the case here, take on a decimal value when all the 
cases have values that are whole numbers. Neither of these things is necessarily 
a problem, but there are circumstances where it’s not ideal. We’ll look at some 
of these situations later in this chapter.

As you can see from the equation, one of the characteristics of the mean is that 
it uses all the data provided in a variable. This might seem like the ‘fairest’ way 
to calculate an average, as every single age has been included in the calculation. 
However, as we shall see, this is sometimes an advantage and sometimes a 
disadvantage, depending on the distribution of the variable.

To see why including all the cases isn’t always a good thing, let’s look at the 
same data again, but with an extra case added:

30 48 29 28 25 22 50 40 30 65 118

11
44 1

           .

I’ve added in Kane Tanaka, who was 118 years old at the time of writing (2022). 
Kane certainly stands out as being quite a lot older than the other 10 people in 
our group. Because of this, she might be considered what is called an outlier. 
An outlier ‘lies outside’ most of the values. In this case you can see that there 
is quite a large gap in age between Kane, at 118 years old, and the next oldest 
person, Peggy, at age 65.

Because calculating the mean uses the value from every case, outliers can 
make the mean a misleading figure. We can see that just by adding Kane to our 
group, the mean age increased from 36.7 to 44.1. And most of the group – 7 
of the 11 people – are aged below that mean. So although the mean represents 
the group arithmetically, it might not be the best way to convey what the age 
of the group looks like overall. We’ll come back to outliers – and other things 
that can affect how useful the mean is – later in the chapter.

Table 3.2: Respondents’ age in years

Name Age in years Name Age in years

Leo 30 Zion 22

Kareem 48 Cara-Beth 50

Nora 29 Dennis 40

Samarria 28 Ishod 30

Brianna 25 Peggy 65
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Thinking back to our common-sense understandings of the ‘average’, what 
does the mean tell us? Does it tell us what is ‘normal’ or ‘typical’? Does it tell 
us what is ‘usually’ the case or what happens ‘generally’?

Well, it doesn’t quite do any of these things. It’s an arithmetic calculation of 
the middle or centre of the data (hence ‘central tendency’), but this centre isn’t 
necessarily a ‘typical’ value or what ‘usually’ happens. It’s clearly not usual or 
typical in the example above, as no actual case has the value of 44.1 years. In 
fact, the mean is more than four years away from the nearest actual age of the 
11 people. So, while the mean is clearly one measure of the ‘middle’ of the data 
– and it can be a very useful measure – we need to be careful not to confuse 
what it really tells us with some of the commonplace meanings we attach to 
the idea of an ‘average’.

A different type of middle

We can think of the mean as the ‘arithmetic centre’ of the data in a variable, 
but there is another measure of central tendency that identifies the centre in a 
different way. The median is calculated by taking the value of the middle case 
when all the cases are arranged in order of value, from largest to smallest or 
vice versa. If we look at these same 11 people, we can see that the median age 
is 30 years old:

22 25 28 29 30 40 48 50 65 118, , , , , , , , , ,30

The median, at 30, seems like a better summary of the ages of the people group. 
It’s closer to most of the other people’s ages than the mean is, and two people 
are actually 30 years old. In this case, because we have an outlier, the median 
might be our preferred measure to use.

But let’s go back to the original data in Table 3.2 and see what the median 
would be for those 10 people:

22 25 28 29 30 30 40 48 50 65, , , , , , , , ,

We have a bit of a problem here, because there isn’t a middle value in the 
dataset. When a variable has an odd number of cases, identifying the median is 
very straightforward. But if you have an even number of cases, things are a little 
more complicated. To work out the median we have to look at the two middle 
cases (because there isn’t a single middle case). We then have two possibilities. If 
those cases have the same value – as they do in our example – then the median 
is simply the value that those two cases share. If they have different values, we 
calculate the value halfway between (by calculating a mean).

In our example above, things work out quite nicely as the two middle values 
are both 30, so that would be our median:

22 25 28 29 40 48 50 65, , , , , , , , ,30 30
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But if we had data where things didn’t work out so neatly, we’d have to calculate 
the middle value. The median here would be 29.5 (calculated as 29 + 30/2):

22 25 28 30 40 48, , , , , , ,29 30

Thinking back to our everyday understanding of ‘average’, what does the 
median tell us? I wrote earlier that we can think of the mean as the ‘arithmetic 
middle’ of the data. The median also represents the middle of the data, but it is 
the middle when the values for the cases are placed in numerical order. Again, 
it’s not exactly the ‘typical’ or ‘usual’ value, but it is another useful measure 
that works well in some circumstances. Before we look at when the mean and 
median work best and when they aren’t so good, there is one more measure of 
central tendency to consider: the mode.

The most common value

The mode is probably the most straightforward average. It’s simply the value 
that occurs most often in a variable. If we look at our original data on age 
again, we can see that the mode is 30 (which, in this case, also happens to be 
the median for this variable):

22 25 28 29 40 48 50 65, , , , , , , , ,30 30

But let’s imagine that the data was slightly different and looked like this:

22 25 28 29 40 48, , , , , , , , ,30 30 50 50

In this dataset there isn’t one mode. There are two people aged 30 and two 
aged 50, so we’ve got two modes. This isn’t necessarily a problem, but it means 
we can’t represent the mode of this variable with a single figure. It’s possible 
to have more than two modes in some datasets or, when no two values are the 
same, you might have no mode at all. As with the median, sometimes the data 
isn’t ideal for identifying the mode.

One of the modes is right in the centre and one is actually the highest 
value (and so nowhere near the middle). So the mode isn’t really a measure of  
the ‘centre’ of the data, even though it’s a measure of central tendency. It is  
just the most commonly occurring value, which might not be very representative 
of the variable at all. Again, what the different averages tell you is quite specific, 
and it doesn’t quite match up with the way we use the term ‘average’ in our 
daily lives.

In these examples, we saw why the mean might not always be the best average 
to use, but we also saw some of the weaknesses of the median and mode. So 
let’s now use some examples to see how useful these three measures are in 
different circumstances.
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Example 1: Marathon runners

Imagine that we wanted to find out the average time it took for the competitors 
in a marathon to finish running the race. We know that calculating an average is 
appropriate, because time is a continuous variable: it can take any value and can 
be divided into sub-units, such as a fraction of a second. But how do we decide 
which average to use? Thinking about what generally happens in running races 
can help us with this decision. But we would also need to have some specialist 
knowledge about marathon finishing times.

Think about what the finish line of a marathon looks like when runners  
come to the end of the race. You’ll notice that people very rarely finish at 
exactly the same time. Running events are usually taken very seriously, and 
runners’ finishing times are often recorded to the nearest hundredth of a 
second. This means that almost every finisher will have a slightly different 
finishing time. This is important in deciding which measure of central 
tendency will be the most useful, as it rules out the mode. If everyone has a 
slightly different finishing time, there won’t be a mode at all. And if a couple 
of people just happen to have exactly the same time, this would probably 
just be a coincidence, and wouldn’t tell us anything useful about the overall 
distribution of finishing times.

This leaves us with two options: the mean and the median. Remember that 
one of the strengths of the mean is that it uses all the information available 
to us about our variable. As the mean would be calculated using every single 
runner’s finishing time, it is the most comprehensive measure. Because of 
this, we would usually choose to use the mean unless we could think of a 
good reason not to. We saw earlier that having outliers in our data can cause 
problems for the mean. Are we likely to have outliers in our marathon data? 
We can probably guess the answer without having to look at the data itself. A 
marathon is just over 26 miles, which obviously takes quite a long time to run. 
The current world record is just under two hours, so there aren’t going to be 
many people finishing in a quicker time than that. Also, organised marathons 
usually involve closing roads and city streets, and the organisers shut down 
the event after about seven hours, so you couldn’t get a finishing time after 
that. We can be fairly sure, then, that all the finishing times will be between 
two and seven hours, and there won’t be any extreme outliers affecting the 
calculation of the mean.

Another problem that can affect the mean is if the data are skewed. We’ll look 
at the concept of skew in more detail later, but, in simple terms, the distribution 
of data in a variable (such as a finishing time) is skewed if most of the cases are 
relatively high or relatively low. If most of the runners finished with times of 
between two and four hours, but the remaining minority was spread out between 
four and seven hours, the distribution of the finishing times would be skewed. 
(In this case they would have what is called a positive skew.)

We could see whether marathon finishing times are skewed by looking at our 
data on a graph called a histogram. But as I haven’t actually collected any data 
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on this, a quick search on the internet gave me the answer. It turns out that 
data on marathon finishing times don’t tend to be skewed. Most people have 
middling finishing times, with relatively small numbers getting very fast or very 
slow times. In fact, marathon finishing times often appear as a ‘bell’ shape in a 
histogram, showing that they are normally distributed. (I discuss the normal 
distribution in more detail in the next chapter.)

So, we’ve established that our data are unlikely to have any extreme outliers 
or be skewed, and that most – if not all – of the values are likely to be different. 
In this case, the mean seems to be the most sensible average to use. It uses the 
most information, and none of the reasons we might avoid it are relevant to 
our data on marathon finishing times.

Example 2: Earned income

Our second example is earned income, which we identified as a continuous 
variable earlier in this chapter. Imagine that we want to find out what the  
average income is for people in a particular country. Again, before we even 
examine what the data on income look like (or, more technically, how these  
data are distributed), it’s useful to think about what we know already 
about income.

We know that people’s income varies a lot, with some people having very 
low incomes, perhaps only receiving welfare benefits or working in minimum 
wage jobs, and some people being paid very large amounts of money. There 
are many different possible income levels between these two extremes. Even 
if we rounded up people’s income to the nearest dollar, pound or euro, there’s 
plenty of scope for many thousands of different values for any particular person’s 
income. Because of this huge variation, for the same reasons we discussed in 
relation to marathon finishing times, we can again rule out the mode as the best 
measure. In fact, in this example the mode is quite likely to be the income of 
people working full-time and earning the minimum wage. This might be useful 
information, but it doesn’t tell us anything about the rest of the population who 
earn more than this.

Let’s consider our other options: the mean and the median. Because the mean 
uses all the available information, we should use it unless we have a good reason 
not to. But, in the case of income, there are two very good reasons not to use 
it: skew and outliers.

The example of the employee in the USA who earns US$94.6 million, that I 
discussed earlier, shows us that there can be extreme outliers in data on income. 
People who earn tens of millions of dollars clearly earn many times the amount 
that most people do. There are relatively few people who earn many millions 
of dollars, but their earnings are so high that they exert quite a strong influence 
on the value of the mean. The mean will always be ‘correct’, in terms of being 
the arithmetic ‘middle’ of the data, but if there are extreme outliers, it may not 
be the most effective measure to show us what a ‘typical’ income might look 
like. Extreme outliers tend to ‘pull’ the mean towards them and away from the 
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rest of the data. What that means in this case is that the mean average income 
would be a lot higher than the income of most people.

Another reason for not using the mean is the fact that income data tends to 
have a skewed distribution: it’s usually positively skewed. As I explained earlier, 
this means that relatively more cases have lower values than higher values. In 
simple terms, the data is ‘bunched up’ towards lower incomes and ‘stretched 
out’ towards the higher incomes. Figure 3.0 shows an example of positively 
skewed data on income. (It actually shows household disposable income, rather 
than earned income, but it has the same kind of skewed distribution, and so 
the same issues apply.)

You can see that the bars tend to be higher on the left side of the graph, 
indicating that the most common levels of disposable income are between 
£15,000 and £40,000. There are people who have much higher levels of 
disposable income than this, but the shorter heights of the bars to the right side 
of the graph show that there are many fewer of them.

The two vertical dotted lines on the graph show us the mean and median 
values for disposable income in this dataset. The median value, at £29,900, is 
lower than the mean, which is £36,900. Depending on which of these we use, 
the ‘average’ level of disposable income looks quite different.

Figure 3.0: A positively skewed distribution
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With skewed data, it’s generally recommended to use the median. As always, 
both values are ‘technically’ correct, but because they tell us slightly different 
things, we need to think about what exactly it is we want to find out. Although 
the mean uses all the data available to us, because the data are skewed, and 
because there are likely to be outliers, the people earning more in the dataset 
exert quite a bit of influence over the value of the mean. This ends up in a 
situation in which most people earn less than the mean, so the mean doesn’t 
really tell us what people ‘typically’ earn.

While the median doesn’t use all the information that the mean does, we 
know that there will always be the same number of people with values (in  
this case, income) above the median as there will be with values below the 
median. In this case, where we are concerned about the effect of skew and 
outliers on the mean, using the middle value might be a better indication of 
what is ‘typical’ in terms of income. We can see in our graph that the median 
isn’t the most common value (and we have already seen why the mode wouldn’t 
work), but it probably gives us the most useful idea of what the ‘average’ 
income is.

Example 3: Student flats

Our last example involves a property investor who wants to build some 
apartments for students. She has decided that, to save money on architects’ fees 
and to speed up construction, she wants to build all the apartments to the same 
specification, with the same number of bedrooms. Because of this she wants to 
find out how many bedrooms the ‘average’ student apartment has. We know 
that the mean makes use of the most information, so let’s look at that measure 
first and see if there’s any reason not to use it.

One of the disadvantages of the mean is that, because it is the result of an 
arithmetic calculation, it often turns out to be a value that doesn’t exist in the 
dataset. In other words, it’s quite likely that no cases in the data share their value 
with the mean. This wasn’t a problem for our marathon finishing times because 
we can all imagine what, for example, 3 hours 47 minutes and 34 seconds is 
like, even if no one actually finished in that time. That time gives us a good 
idea of the ‘typical’ finishing time, and it would work perfectly well as a target 
for someone running their first marathon. For these purposes, it doesn’t matter 
whether anyone had ever finished a marathon in that exact time.

If, however, we got information on all the student apartments in a particular 
city, found out how many bedrooms they all had, and then calculated the mean, 
we might have a problem. If the mean number of bedrooms was 3.64, that’s 
not very helpful for our property developer. Does she build apartments with 
three or four bedrooms? You might think that, because the mean is closer to 
four than three, she should build apartments with four bedrooms. But because 
the mean is the result of an arithmetic calculation, it’s possible to get a mean of 
3.64 in a dataset with no four-bedroom apartments at all. You could even get 
that same mean when there were no apartments with three or four bedrooms. 
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Our developer could build her apartments and find out that no one wanted to 
rent them!

The median is usually our second choice after the mean, so let’s see how useful 
it would be here. If there are an odd number of cases in our dataset, we would 
end up with a median value that actually existed in our data: in this example, 
an actual number of bedrooms. This is useful not only because it would be a 
whole number – you can’t build a fraction of a bedroom – but also because we 
know that there would be an actual apartment in our city with that number of 
bedrooms. If there was an even number of cases, however, this might not be 
the case: if there was no ‘true’ median but the two middle numbers were three 
and four, we would face the same problem as we did with the mean: not ending 
up with a whole number.

But even if we had a true median that was a whole number and represented 
an actual number of bedrooms in a real apartment, the median might not be 
the most helpful measure. It’s possible for the median to be three and for there 
to be only one three-bedroom student apartment in the city. The middle value 
isn’t necessarily a popular value.

In this case, the mode would probably be our best bet. As I said earlier, the 
mode isn’t used very often but sometimes it’s well suited to a particular variable. 
There are two reasons why it works well here. First, we don’t have much 
variation in the possible values. The number of bedrooms must be a whole 
number (unlike disposable income or marathon times, which can be measured 
to several decimal places). There is also a practical limit to the range of sizes of 
student apartments: there can’t be less than one bedroom (or one room, if we 
count studio apartments), and there probably won’t be many that have more 
than 10 bedrooms. The mode works best when a variable has only a relatively 
small number of different values, as it does in this example.

When choosing the best average to use we also have to consider what we’re 
trying to find out. Our property developer really wants to find out what the 
most popular size of student apartment is, so the mode is ideal because that’s 
exactly what it does.

The only possible issue would be if there were two or more modes. This 
is unlikely in a large dataset, but it’s still possible. It might not matter for our 
property developer, however, because she is only concerned that the apartments 
she builds are reasonably popular. Her final decision would probably be 
influenced by other factors, such as initial costs, availability of land, and so on. 
It’s important to remember that the results of statistical analyses are only the 
first step in moving towards a conclusion. We always have to think about the 
wider context before we can decide the implications of these results. This is a 
topic we return to in the last chapter of this book.

Exercise 3.0 asks you to think about which average you might use with three 
different variables.
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EXERCISE 3.0

Think about the following variables. Without searching on the internet to find out, 
estimate how the data might be distributed for each of them. Considering this 
distribution, decide what would be the most appropriate average to use for each 
variable, and why this would be the case:

a) 	 Goals in football (soccer) matches.

b) 	 Views of videos on YouTube.

c) 	 Points scored by each team in basketball games.

Summary

In this chapter I introduced you to some basic techniques for conducting 
univariate analysis. We looked at using frequencies and percentages with 
categorical data, and using averages with continuous and discrete data.

In the next chapter we’re going to look at some more techniques for examining 
the distribution of continuous and discrete variables.
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Useful resources
My YouTube SPSS® tutorials covering univariate analysis can be found 
at: https://youtu.be/5Fdpy7IlNZg

These three chapters provide useful examples of the use (and misuse) of different 
kinds of averages:

Blastland, M. and Dilnot, A. (2008) The Tiger That Isn’t: Seeing Through a World 
of Numbers, London: Profile [Chapter 5: ‘Averages: The White Rainbow’].

de Vries, R. (2019) Critical Statistics: Seeing Beyond the Headlines, London: Red 
Globe Press [Chapter 5: ‘What Does It Mean to Be Average?’].

Huff, D. (1954) How to Lie with Statistics, London: Penguin [Chapter 2: ‘The 
Well-Chosen Average’].

Answers to exercises

Exercise 3.0
a) Football (or soccer, if you’re from North America) matches aren’t often very 
high scoring. It’s not uncommon for matches to finish with no goals at all, and 
fairly unusual for any team to score more than three or four goals. Because of 
this, we could say that there isn’t a great deal of variation in the number of goals 
scored (at least relative to some other sports). Goals only make sense in terms of 
whole numbers, too, as the idea of ‘half a goal’ wouldn’t make sense. In terms of 
choosing an average, the mean doesn’t look like a great measure, as it often results 
in a number with decimal places. The median and mode are both contenders, 
as they usually result in a value that is in the dataset (which, in this case, is a 
whole number). There’s a chance that there wouldn’t be a true median, but if 
we’re looking at a large number of games this is unlikely. However, according to 
FootyStats (https://footystats.org/stats/common-score), the vast majority of games 
have between 0 and 3 goals. This lack of variation suggests that the mode could 
be the most useful measure. At the time of writing (2022), the mode was 2 goals.

b) As someone with a YouTube channel I’m very aware that most videos on 
YouTube don’t get viewed that many times. Channels that have many billions 
of views exist, but they are certainly in the minority. This means that the 
distribution of views per video is probably positively (or right) skewed (although 
I couldn’t find data on the internet to categorically confirm this). There are 
also some clear outliers, such as ‘Gangnam Style’, which had so many views it 
broke the counter. Because of this, the mean probably isn’t the best average to 
use, as it doesn’t work well with skewed data or outliers. There are hundreds 
of millions of videos (800 million, according to some estimates) with a large 
variation in the number of views, so the mode wouldn’t be the best average 
to use either. In this case, it looks like the median would be the most suitable 
average. It also has the advantage that it can often produce a figure that exists 
in the data (as a whole number).

https://youtu.be/5Fdpy7IlNZg
https://footystats.org/stats/common-score
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c) In contrast to football (soccer) matches, basketball games tend to be relatively 
high scoring, with teams scoring 100+ points on a regular basis. According 
to data from Basketball-Reference.com (www.basketball-reference.com), the 
mean number of points scored by a team in National Basketball Association 
(NBA) games from 1946 to 2017 was around 100. The same data show that 
the distribution of points in games during this period wasn’t far off a perfect 
normal distribution, so the mean would probably be the best average to use. 
If having a measure that resulted in a whole point was important, the median 
would also be a contender, and shouldn’t be too far off the mean (because of 
the normal distribution).

http://www.basketball-reference.com
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What you see is only half the story: 
why you need more than averages 

to describe distributions

WHAT IS THIS CHAPTER FOR?
In the last chapter we looked at some basic techniques to analyse a single 
categorical or continuous variable. In this chapter I present some more 
techniques for univariate analysis of continuous and discrete variables that 
complement those covered in the last chapter.

WHAT DOES IT COVER?
In this chapter we go beyond looking at averages and I explain why measures 
of spread – or ‘dispersion’ – are just as important. I start with some very 
basic concepts that you’ll already be familiar with, such as minimum and 
maximum values, and move on to more sophisticated measures. I also show 
how averages can be used with measures of spread to give us a useful overview 
of the distribution of a variable. I end by looking at some common types – 
or shapes – of distribution and explain why you need to know about them.

WHAT WILL YOU LEARN?
•	 Why averages can be misleading
•	 How measures of spread can add to our understanding of the distribution 

of a variable
•	 Why the shape of a distribution is important and what the most common 

shapes look like

WHAT CONCEPTS AND TECHNIQUES ARE COVERED?
•	 Minimum and maximum values
•	 Range
•	 Mean deviation and standard deviation
•	 Normal distribution
•	 Positively and negatively skewed distributions

What averages can and can’t tell us

We’ve seen how averages (measures of central tendency) can help us find 
out ‘typical’ or ‘middle’ values for a variable. We’ve also seen that each of these 
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measures – the mean, the median and the mode – tells us something slightly 
different, and which measure is most suitable depends on what the data look 
like and what you want to find out.

Averages can be a very useful way of summarising one aspect of the distribution 
of a variable, but it’s important to remember that a ‘central’ or ‘typical’ value 
isn’t the whole story: it’s rare that we’d only be interested in the ‘middle’ of 
the data. In the next section we’re going to look at another group of statistical 
techniques that can tell us something else about the distribution of a variable: 
how the data are spread out.

Measures of spread and what they can tell us

Although we might be interested in finding the average value for a variable, we’ll 
probably also be interested in some other qualities of the distribution. We want 
to know how our variable ‘varies’ and we need other measures to tell us about 
that. In this section we’re going to look at some different statistical techniques 
called measures of spread. The technical name you might come across is measures 
of dispersion, but dispersion is just another name for spread.

As was the case with some of the statistics we’ve looked at previously – such 
as frequencies, percentages and maybe the mean – you’ll probably be familiar 
with some of these measures of spread. You may not even have realised that by 
using them you were ‘doing statistics’. The first few are quite easy to understand, 
but the last two we look at can be quite tricky.

At the extremes: minimum and maximum values and the range

Two of the simplest measures of spread are the minimum and maximum values. 
These are just the highest and lowest values for a variable in your dataset. As a 
teacher, I’m always interested to know the highest mark that has been achieved 
in a test, and also the lowest mark. Along with other information, this helps 
me decide if the test is too difficult or too easy. As researchers, we are often 
interested in the ‘extremes’: the highest and lowest; the fastest and slowest; the 
biggest and smallest.

There is another common measure of spread called the range. This is just 
the distance between the highest and lowest value in our variable. For students’ 
test scores, if the minimum value (the lowest score) was 15 and the maximum 
value (the highest score) was 85, to calculate the range we simply subtract 15 
from 85 to get 70.

Minimum and maximum values, and the range, can be useful starting points 
when you look at the spread of your variable. But they can’t tell us much about 
how spread out the data are in general. This is because they don’t provide us 
with any information about how many cases had values close to the minimum 
or maximum values: we only know that at least one case had the minimum 
value and at least one case had the maximum value. So is there anything else 
that we can do?
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Remember that one of the advantages of the arithmetic mean is that it uses 
all the data from a variable to calculate a ‘typical’ value for a variable. We saw 
that although in some circumstances this could actually be a disadvantage, much 
of the time we could think of the mean as the average that best represented the 
data in terms of what is ‘typical’.

There are also some measures of spread that use the values from every case 
to calculate a measure of how spread out the data in a variable are in general. 
In the next section we’ll look at two of these – the mean deviation and the 
standard deviation – and see how they can be used to help us understand spread.

The mean deviation: the average distance from the average

Unlike minimum and maximum values, which only tell us about the highest 
and lowest values in a variable, the mean deviation (MD) tells us how spread 
out the data are on average. It’s a concept that can be quite hard to grasp at first 
because it’s calculated using two different averages: it measures the average 
distance from the average. As you might guess from its name, it uses the mean 
average, and so it measures the mean distance from the mean.

What does this look like in practice? And how can we use this information? 
Let’s look at some examples. We’ll use data on age, like we did in Chapter 3, 
but I’ve made a little change in the data we used in Table 3.2 just to make the 
maths easier to follow. I’ve also put the data in Table 4.0 in order, to make the 
distribution of ages clearer.

Because there are only 10 values in the table, it’s quite easy for us to see how 
the ages are spread out in this very small dataset. But when we’re working with 
datasets with hundreds or thousands of cases, there is far too much information 
for us to be able to interpret it ‘by eye’. Calculating averages and measures of 
spread provides us with much more precise assessments of the distribution of a 
variable, and also makes it easier for us to compare the distribution of different 
variables (something we’ll come back to in Chapter 6).

The mean age in this dataset is 37. The minimum value is 22, the maximum 
value is 65, and the range is 43 (calculated by subtracting 22 from 65). But what 
would the mean deviation be? And how would we work it out?

Table 4.0: Respondents’ age in years (ordered)

Name Age in years Name Age in years

Zion 22 Leo 33

Brianna 25 Dennis 40

Samarria 28 Kareem 48

Nora 29 Cara-Beth 50

Ishod 30 Peggy 65
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To calculate the mean deviation for these ages, you would have to do 
the following:

1.	 Calculate the mean for the variable. We’ve already done this and we know 
that it’s 37.

2.	 Calculate how far each person’s age is above or below the mean. This is the 
absolute deviation of each case from the mean.

3.	 Add up all of the deviations, ignoring whether they are above or below the 
mean. You should use positive rather than negative numbers for numbers 
below the mean. This is what is meant by absolute numbers.

4.	 Divide the total of these absolute deviations by the number of cases, just like 
when you are calculating a mean average. The result is the mean deviation.

Let’s do this for a few cases. You can see the results of this in Table 4.1.
We know that our mean average age is 37. And we know that Zion is 22 years 

old. So, the absolute deviation of Zion’s age from the mean age is 37 – 22 = 15. 
Brianna is 25, so that’s 12 years away from the mean age (37 – 25 = 12). Samarria 
is 28, so that’s 9 years away from the mean age. And so on. We need to do this 
calculation for all the cases until we have an absolute deviation for each of them.

We now use these absolute deviations to calculate a different type of mean: 
the mean deviation. This is calculated in the same way as the arithmetic mean 
we initially calculated. But instead of adding up all the individual ages and 
dividing the total by the number of people in our dataset, we add up the distance 
of each person’s age from the mean and then divide the total by the number of 
people. This tells us how far, on average, the ages of our cases are spread out 
(or ‘deviate’) from the mean. The larger the mean deviation, the more spread 
out your data are. The smaller the mean deviation, the more closely clustered 
around the mean they are.

Table 4.1: Respondents’ age in years (mean age and mean deviation)

Name Age in years Absolute deviation

Zion 22 15

Brianna 25 12

Samarria 28 9

Nora 29 8

Ishod 30 7

Leo 33 4

Dennis 40 3

Kareem 48 11

Cara-Beth 50 13

Peggy 65 28

Total 370 110

Mean = 37 Mean deviation = 11
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Another way of thinking about the mean deviation is a measure of how good 
the mean would be as a prediction for the value of any of the other cases. The 
smaller the mean deviation, the more likely it is that the mean would be close 
to the value of any other case that you might choose. Or, to put it differently, 
smaller mean deviations suggest that, overall, the mean is a more representative 
measure of the values in the dataset.

The standard deviation

Even if you’ve done some statistics before or have read research reports 
containing the results of statistical analysis, you probably won’t have heard of 
the mean deviation. But you might have come across a similar measure, the 
standard deviation.

So what is the standard deviation? How is it different from the mean deviation? 
And why are you more likely to know about the standard deviation than the 
mean deviation?

The mean deviation (MD) and the standard deviation (SD) are both measures 
of spread. And they both tell you how much the values of a variable are spread 
out in general. In fact, they measure almost the same thing, and if you compare 
the MD and SD for any particular variable in a dataset, you’ll see that the two 
measures have very similar values.

Both the MD and the SD have been around for a long time, but the SD 
became more popular from the early 20th  century, and has since been the 
measure that is commonly used in mainstream statistical analysis. The transition 
was quite controversial at the time and, according to Gorard (2005), the reasons 
for preferring the SD may not be relevant for practical research today.

The SD is more difficult to calculate than the MD. This isn’t really a problem 
for doing any actual analysis, as a computer will calculate the SD for you. But it 
does mean that, unless you’re confident with maths, showing you how it’s worked 
out is unlikely to help you understand what the SD is and why it can be useful.

Perhaps the most important difference between the MD and the SD is that 
the MD has a reasonably straightforward interpretation – the mean distance 
from the mean – and the SD does not. This is the reason I teach my students 
about the MD, even if I know lots of them won’t use it in practice: it’s easier 
to understand how the MD is calculated and what it means. And, as I explain 
below, it can be interpreted in almost the same way.

The exact definition of the SD is much more complicated and doesn’t have 
the same kind of ‘real-world’ interpretation as the MD: any definition of the SD 
inevitably sounds like a long sentence of mathematical and statistical language. 
But because the SD is so widely used, you need to know about it. It will be 
the figure you see in most publications, and it’s also connected to other useful 
statistical techniques that I cover later in this book. As some software packages 
don’t even have an option to calculate the MD (Microsoft Excel does, but IBM 
SPSS® doesn’t), you’ll probably have to use the SD if you do any statistical 
analysis yourself.
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So what is the SD? And how is it calculated? You can look up the equation 
on Wikipedia or in almost any statistics textbook, so I’m not going to show it 
here, but the technical description is as follows:

The square root of the arithmetic mean of the squares of the deviations 
from the arithmetic mean.

That definition probably hasn’t helped you work out what it’s measuring  
and why it might be useful, but it’s actually not all that different from how 
the MD is worked out. What I’m going to say now will probably have some 
statisticians tearing their hair out, but, for all intents and purposes, in real-life 
situations you can interpret the SD as the average distance from the average. 
It’s not quite correct but it’s near enough. The SD will always be a slightly 
larger value than the MD, but the two figures will be close in relative terms. 
In the absence of an easy-to-interpret definition of the SD, this ‘rough’ 
interpretation works fine.

What’s most important is not whether you use the SD or MD, but how these 
measures can help us understand our data, and to demonstrate this, we’re going 
to look at a real study that got a lot of coverage in the news media. We’ll see 
how paying attention to different measures led to different headlines in different 
articles that covered the findings.

In late 2021, many news outlets reported the same story. Here are a few of 
their headlines:

Dogs can understand more than 200 words and phrases. (T. Whipple, in 
The Times, 7 December 2021)

Dogs know up to 215 words and phrases, study finds. (C. Magloire, for 
Sky News, 8 December 2021)

Clever canines can understand an average of 89 words. (BBC Newsround, 
8 December 2021)

There are links to these articles at the end of this chapter, and to the original 
publication by Reeve and Jacques (2022), if you want to read them in full. 
However, I want to concentrate on the news headlines for the time being. Then 
we’ll look at the academic article where the original research was published, to 
get some further information and to show how the SD can be useful.

The first thing you might notice about the headlines is that all three quote 
different figures: 200, 215 and 89. The difference between 200 and 215 isn’t that 
important: one headline just uses a round number. The important difference 
is these two words: ‘up to’. The second headline clearly signals that 215 must 
refer to the maximum number of words that were understood by a dog in the 
study. But the first headline could be interpreted as saying that all dogs can 
understand 200 words, which isn’t what the study found.
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The last headline refers to the average number of words understood by dogs in 
the study: 89. If you read the full study, you can see that this is the mean average, 
and the actual value is 88.75. So this might be a better estimate of what any 
particular dog is likely to understand. The study also tells you that the minimum 
number of words understood by a dog in the study was 15.

One thing we’ve learned about the mean is that it doesn’t tell us what 
proportion of cases takes that value or a value close to it. Similarly, we don’t 
know how many dogs had word comprehension levels close to the minimum 
and maximum values. None of these measures tell us what proportion of dogs 
could understand around 89 words or how many dogs understand many more 
or many fewer words. To find this out, we need to use another measure, one 
that gives us an idea of how representative the mean is, or, to put it another 
way, lets us know how far out the data are spread out from the mean in general. 
In other words, we need a measure like the MD or SD.

As we might expect from an academic analysis, the authors of this study 
included the SD in one of their tables: 37.58. Let’s round that up to 38 to 
make things simpler. This means that, roughly, the average distance from the 
mean average was 38. As the average number of words known was 89 and the 
average distance from that mean was 38, this tells us that the data were spread 
out quite a lot. It also tells us that the mean isn’t likely to be a great predictor 
of the number of words known by a particular dog.

This isn’t a bad thing, though. Some data are spread out by their very nature. 
A relatively large SD (or MD) just tells us this. The SD is useful because it’s a 
measure of how far the data are spread out in general, in contrast to measures 
like minimum or maximum values that only tell us where the extremes of the 
data lie. If this study is correct, the SD simply tells us that there is quite a lot 
of variation in the number of words that different dogs understand. This might 
‘typically’ be around 89 words, but a lot of dogs understand many more or many 
fewer words than this.

So the headlines aren’t wrong, but they don’t give the whole picture. Even 
though some of the articles mentioned the minimum and maximum values and 
the mean average, none of them mentioned the SD. This is probably because it’s 
quite a tricky concept, but it is (alongside the MD) the best way of answering 
the question: how likely is my dog to understand the average number of words?

Even when interpreted as ‘the average distance from the average’, the SD 
and MD are still a bit abstract. While we might understand what this means 
mathematically, it’s still difficult to translate into a practical sense of how spread 
out the data are. Where the SD and MD become really useful is when comparing 
how spread out the data are in different groups. If we compared the variation 
in word comprehension between purebreed and crossbreed dogs, the average 
for each group might be different. But the variation in word comprehension 
might also be different for the two types of dog, and the SD and MD would 
be the best way to compare this. We look at these kinds of comparison later, 
in Chapter 6. In some situations, however, the SD can give us a more intuitive 
picture of how spread out our data are. We’ll look at this next, when we examine 
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the different ways in which data are commonly distributed, and how one of 
these distributions relates to the SD.

The shapes of distributions

We’ve seen how we can use statistical measures to summarise the distribution 
of a variable. However, there are other – more direct – ways of finding out 
what the distribution of our data looks like. And the simplest is to just to look 
at the data on a graph. We can use something called a histogram to do this. 
We saw one of these earlier, Figure 3.0 in Chapter 3, when we looked at the 
distribution of income.

There are an infinite number of ways that the data in a variable can be 
distributed. The advantage of looking at a histogram is that it gives you an 
(almost) direct view of that distribution. It can also tell you if the ‘shape’ of your 
data looks like some of the common ways in which data are distributed, some 
of which have names. If you can recognise that your variable is distributed in 
a particular way, you can then just refer to the name of this distribution rather 
than having to show a graph when you’re writing about it. You’ll also see these 
different types of distribution mentioned in research reports, so it’s useful to be 
familiar with their names, even if you’re not going to do any analysis of your own.

One of the most commonly occurring distributions is what is called the 
normal distribution or Gaussian distribution. I mentioned the normal 
distribution earlier when we were looking at averages. But what does this term 
mean? And why is it important?

The normal distribution

Figure 4.0 shows data on around 8,000 high schools in California. Each of the 
cases in this dataset represents an individual school. (Remember that even though 
our cases are often people, this isn’t always the case.) Figure 4.0 is a histogram, 
like the one we saw in Chapter 3 that showed data on income. Each of the 
bars covers a range of values, in this example representing the average years of 
teaching experience for the teachers in every school in the dataset.

You can see that the bars make up a shape a bit like a ‘bell’. This shows that 
they are what we call ‘normally distributed’. The black line on the graph shows 
what the data would look like if they followed the perfect mathematical normal 
distribution. We can see that the bars showing our data don’t quite match this 
line, so our data aren’t perfectly normally distributed – but they are pretty close.

At this point you might be wondering where this ‘normal distribution’ 
came from and why we’re interested in it. There are two answers to this:  
one mathematical and one from the world around us. In the mathematical  
world, the normal distribution is a concept that exists in theory, a bit like a 
perfect circle.

But the normal distribution doesn’t only exist as a mathematical idea; we can 
also see it in data from the natural and social worlds. The birth weight of babies 
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is normally distributed, as are adults’ heights and their shoe sizes. So are the 
retirement ages of players in the National Football League (NFL) in the USA 
and daily changes in stock market prices. The normal distribution is interesting 
to us not because of its origins in mathematics, but because variables that we’re 
interested in might be normally distributed.

The normal distribution and the standard deviation

There is one part of the mathematics of the normal distribution that’s useful to us, 
however. Normally distributed data has a special relationship with the standard 
deviation and one that can be helpful to know about when we’re looking at 
the distribution of a variable. You will always find this relationship in normally 
distributed data, regardless of the variable you are looking at. But it’s only the 
case in normally distributed data – it’s not true for variables that have other 
kinds of distributions (which we look at in more detail later).

Figure 4.1 shows this relationship. You might recognise the bell-shaped curve 
of the normal distribution that we saw in Figure 4.0, but the rest of the graph 
probably won’t make much sense until I’ve explained what it means.

It just happens to be the case that, if – and only if – the data for a variable are 
normally distributed, the following things are true:

a)	 About two-thirds of all the cases will have values between one standard 
deviation below the mean and one standard deviation above the mean.

b)	 Around 95% of all the cases will have values between two standard deviations 
below the mean and two standard deviations above the mean.

Figure 4.0: A normally distributed variable
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c)	 Nearly all the cases – more than 99% – will have values between three standard 
deviations below the mean and three standard deviations above the mean.

When I first explain this relationship to my students, they usually have two 
questions: Why is this the case? And how is this information helpful?

The answer to the first question is quite straightforward. The relationship 
between the normal distribution and the standard deviation is just a mathematical 
law. Going back to our example of a perfect circle, you might remember from 
maths at school that the area of a circle is always πr 2: the radius of the circle, 
multiplied by itself, and then multiplied by pi (3.14159…).

This formula always works, whatever the size of a circle. The same is true for 
the relationship between the normal distribution and the standard deviation 
shown in Figure 4.1. Whatever your variable is, whatever the value of the mean 
and standard deviation, the relationships (a) to (c) described above will always 
be true if your data for that variable are normally distributed. You can use this 
information both to help you understand the distribution of a variable and to 
communicate that distribution to others.

A simple example will help show how we can use this information. Imagine 
I measure the height of all the students in my class and the average (mean) 
height is 160 cm. I also calculate the SD and it is 20 cm. I create a histogram 
and it shows me that the data I have collected on the height of my students are 
normally distributed. Because the data are normally distributed, we can apply 
the rules (a), (b) and (c) listed earlier and shown in Figure 4.1.

It’s useful at this point to think about the SD not just as approximately ‘the 
average distance from the average’, but as a unit of measurement in itself. As in 

Figure 4.1: The normal distribution and the standard deviation
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Source: Dan Kernler
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this case our SD happens to be 20 (and as we are measuring height in centimetres, 
our SD is actually 20 cm), let’s think of each SD as a unit of 20 cm.

Rule (a) says that around two-thirds (or 68.3%, to be exact) of all cases have 
values between one SD below and one SD above the mean. In our example 
of students’ heights we start with the following figures: mean = 160 cm; SD 
= 20 cm. Because our data are normally distributed, it will be the case that 
approximately two-thirds of students will have heights that are between 160 cm 
minus 20 cm and 160 cm plus 20 cm. If we do the maths we can see that two-
thirds of students would have heights of between 140 cm (160 cm – 20 cm) 
and 180 cm (160 cm + 20 cm).

Rule (b) states that around 95% of all cases would have values between two 
SDs below and two SDs above the mean. Our mean is still 160 cm and our SD 
is still 20 cm. To find out the range of heights that will apply to 95% of students, 
we need to do a similar calculation. But this time, instead of adding one SD to 
the mean to find the upper end of that range and taking one SD from the mean 
to find the lower limit, we need to add two SDs and subtract two SDs. For our 
variable – students’ height – we know that the SD is 20 cm. Two SDs is 20 cm 
× 2 = 40 cm. We can take this away from the mean – which is still 160 cm – 
using the following calculation: 160 cm – 40 cm = 120 cm. The calculation for 
the upper end of the range is just as simple: 160 cm + 40 cm = 200 cm. This 
tells us that 95% of students’ heights would fall between 120 cm and 200 cm.

The calculation for rule (c) is very similar, apart from the fact that you need 
to subtract and add three SDs, and it gives the range for roughly 99% of all 
students’ heights.

We now know these mathematical rules that always apply to normally 
distributed data. It doesn’t matter what your variable is – it could be marathon 
finishing times, scores on a test or the height of students – if the data are normally 
distributed, these rules apply. And it doesn’t matter what your mean and SD 
are: you just use them to calculate the different ranges that correspond with 
different proportions of cases. But how do we use this information?

Much of what we do in statistical analysis is about working out what our 
data look like and communicating it to others. When we’re talking to people 
who understand some basic statistical concepts, just telling them the mean and 
the SD will provide them with a reasonable understanding of the distribution 
of a variable. If our data are normally distributed, telling them this will further 
increase their understanding of this distribution. And, as most people who 
have studied statistics learn about the relationship between the mean and SD in 
normally distributed data, these three pieces of information can be combined 
to give quite a comprehensive picture of a variable.

You might notice that I’m not being particularly precise when choosing 
the figures that correspond to the proportions of cases that fall within one, 
two and three SDs. I’ve written ‘two-thirds’, when the actual number to one 
decimal place is 68.3%. I’ve written 95% instead of 95.5% and 99% instead of 
99.7%. This is because the very precise percentages in Figure 4.1 only apply 
to the perfect theoretical normal distribution. This distribution doesn’t exist in 
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practice, and it’s common to hear people talk about ‘approximately normally 
distributed data’. In reality, data will never be perfectly normally distributed 
and is likely to look something like the histogram in Figure  4.0. Because 
‘real-life’ data won’t be perfectly normally distributed, the precise percentages 
in Figure 4.1 won’t be completely accurate. That’s why it’s unnecessary to be 
so precise: the actual figures will be slightly different, but we know that they 
will be somewhere close.

If your data aren’t normally distributed, you won’t be able to do the type 
of calculation that I did earlier. You can’t calculate the proportion of cases 
within one, two or three SDs below or above the mean when your variables 
aren’t normally distributed. But that’s okay. It’s useful when you can do these 
calculations, but it’s not a problem if your data won’t allow this. And even if 
your variable is normally distributed, you don’t have to do these calculations 
unless you think that the answer would be useful. Statistical packages don’t tend 
to calculate them by default, but they’re easy to do with a calculator. These 
calculations can help you think about how the data for a variable is spread out, 
but they’re not always crucial parts of your analysis.

Box 4.0: How ‘normal’ is the normal distribution?

In some ways it’s unfortunate that the Gaussian distribution has become known as 
the ‘normal distribution’, as the word ‘normal’ suggests that this is something that 
we should expect or aspire to. In fact, it’s not a ‘problem’ if the data for a variable 
are not normally distributed, if they are skewed, or if they have a completely 
differently shaped distribution. The data are what they are, and our job is to find 
out what they look like and to report it.

It’s true that, if your data are normally distributed, they will have a special 
relationship with the SD, and this can help you communicate things about what 
your data look like. It’s also true that it’s useful to know about the shape of the 
distribution of your variable before deciding which average would be the best one 
to use. It’s even true that some statistical procedures work best with normally 
distributed data or shouldn’t be used in other situations.

However, some people have argued that there is too much emphasis placed on 
the normal distribution, and this had led to misconceptions about its importance 
(Bruce, 2018) as well as misguided ideas about when normally distributed data 
is required (Williams et  al, 2013). While it’s important to pay attention to the 
distribution of your data, nothing has ‘gone wrong’ if the data in your variable isn’t 
normally distributed.
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Skewed distributions

Apart from the normal distribution, there are other common ways in which 
data from a variable are distributed, and some of these also have names. It can 
be useful to know about these distributions because the way in which a variable 
is distributed can affect the kind of statistical measures that are most appropriate. 
It’s also handy to know the names of these distributions, as it makes it quicker 
and easier to tell other people what your data look like.

A key idea relating to the shape of distributions is skew. We looked at this idea 
briefly when we were discussing the median (because the median works better 
than the mean with skewed distributions). Whereas the normal distribution is 
a symmetrical bell-like shape, skewed distributions are not symmetrical: the left 
and the right side don’t look the same. They look like ‘wonky’ versions of the 
normal distribution.

The distribution of people’s disposable income we saw in the last chapter in 
Figure 3.0 wasn’t symmetrical; more of the cases were over on the left side of the 
graph. This is because there is a relatively large number of people with a small 
amount of disposable income in comparison to the smaller number who have a 
lot of disposable income. This kind of distribution is called positively skewed 
or ‘right skewed’. The distribution of house prices tends to be positively skewed, 
as is the number of points scored by individual players in basketball games.

Figure 4.2 shows data on the same Californian schools we saw in Figure 4.0. 
The variable we’re interested in this time is the number of students in each 
school. We can immediately see that the bars in the histogram form a different 
shape to the one in Figure 4.0. Although there are some similarities – the bars 

Figure 4.2: A positively skewed distribution
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rise to form a peak and then fall – the most obvious difference is the lack of 
symmetry. Like the histogram on income we saw in Chapter 3 (Figure 3.0), the 
cases are clustered towards the left side of the graph. This means that most of  
the schools have less than 1,000 students, even though there are a small number 
of schools with much larger numbers of students. As with income, the data 
here are positively skewed.

You can recognise a positively skewed distribution by looking for two 
distinguishing characteristics. As well as cases being bunched up towards the left 
side of the histogram, there will be a long ‘tail’ of cases stretching towards the 
right side of the graph. This ‘tail’ on the right side is why this kind of distribution 
is sometimes referred to as ‘skewed to the right’.

Another type of skew is negative skew or left skew. This is when the 
asymmetry of the distribution is in the other direction: most of the cases are 
over on the right side of the histogram and there is a long ‘tail’ of cases on the 
left. The distribution of the age of retirement is negatively skewed, because 
most people don’t retire until relatively late in their lives. A sporting example 
of negative skew is the distance of long jumps performed by athletes in events 
such as the Olympics. Most of the jumps are clustered towards longer lengths, 
with very few athletes jumping shorter distances.

As I’ve already noted, the distribution of your variable is important because it 
can have implications for choosing the most appropriate statistical techniques. 
You can see in Figure 4.3 that, in skewed distributions, the three measures of 
central tendency can produce quite different values and could give different 
impressions about where the ‘centre’ of the data are or what might be a ‘typical’ 
value. The example of disposable income, which was positively skewed, showed 
us that the median was usually a more useful measure than the mean with 
skewed data.

Apart from affecting the kind of analyses you can do, the shape of the 
distribution of a variable helps you get a feel for what the data for that variable 
‘look like’. This is why I always recommend looking at a histogram for each of 
your continuous and discrete variables, as well as producing measures of central 

Figure 4.3: Normally distributed and skewed data and their relationship with the mean, 
median and mode
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tendency and spread. Looking at the data on a graph can help you think about 
the variable – not necessarily in terms of precise figures, but in terms of where 
in the distribution most of the cases lie, and what this means for a specific 
variable. In relation to the example of disposable income, the positively skewed 
distribution means that most people have income levels at the lower end of the 
range: they don’t have that much money to spend. But that distribution also 
shows us that there are a small number of people with very large amounts of 
disposable income. These are both important findings when thinking about 
issues such as poverty and economic inequality.

Knowing the names of common distributions also helps you communicate 
about your data more concisely. There are many other, less common, 
distributions, and I have only covered the main ones here. If you don’t think 
that the distribution of a variable fits one of these types, you can always show 
exactly what it looks like with a histogram. It’s quite convenient, however, to 
be able to use terms such as ‘normally distributed’, or ‘positively skewed’ and 
‘negatively skewed’ when they are appropriate, as it saves you having to use a 
graph to make your point.

Summary

In this chapter we’ve seen that there’s quite a bit more you can do with 
continuous and discrete data when it comes to univariate analysis. As we saw 
in Chapter 3, although averages can be a good starting point, looking at how 
the data are spread out can not only give you more information about how a 
variable is distributed, but also help you decide which average to use.

In the next chapter we start to look at how to examine the relationships between 
variables. We look at the relationship between two categorical variables first, 
and go on to discuss techniques for continuous and discrete variables in the 
chapters that follow.
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5

How the tables turn: 
examining relationships between 

categorical variables

WHAT IS THIS CHAPTER FOR?
In the previous two chapters we looked at examining variables individually – 
what is called univariate analysis. We saw that there are different techniques 
you can use, depending on whether a variable is categorical or continuous. 
In this chapter we start to explore ways to find out about the relationships 
between two different variables – bivariate analysis. As most variables in the 
social world are categorical, we start by looking at relationships between 
two categorical variables.

WHAT DOES IT COVER?
After briefly outlining the different types of bivariate analysis, I focus on a 
technique called cross-tabulation and show the different ways it can be used, 
and the different kinds of statistics that can be used to help determine the 
nature of the relationship between the two variables. I discuss the advantages 
and disadvantages of the different ways of using cross-tabulation, and show 
how to avoid some common pitfalls.

WHAT WILL YOU LEARN?
•	 What cross-tabulation is and why you’ve probably already done it
•	 How cross-tabulation is different – and similar – depending on the number 

of categories in your variables
•	 How percentages can help you make sense of differences between groups
•	 Why running percentages along rows and columns gives you different 

answers (to different questions)
•	 What expected counts are, where they come from, and how they can 

be useful

WHAT CONCEPTS AND TECHNIQUES ARE COVERED?
•	 Groups, sub-groups and totals
•	 Observed counts and expected counts
•	 Percentages (within and between groups)
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We’re finally looking at relationships!

In the previous chapters we looked at some key ideas and concepts, and covered 
some basic techniques to analyse individual variables one at a time. In this chapter 
and Chapters 6, 7 and 8 we look at different ways to examine relationships 
between two variables. This kind of analysis is called bivariate analysis as, instead 
of looking at just one variable, we’ll look at the relationship between two of 
them (as ‘uni’ means one and ‘bi’ means two).

When we looked at univariate analysis in previous chapters, we saw that 
different techniques were needed for categorical and continuous (or discrete) 
variables. This is also the case when we’re looking at the relationship between 
two variables. But because we have two variables – and each one of them 
could be a categorical variable or a continuous variable – things are a little bit 
more complicated. With univariate analysis we only had to decide whether 
our variable was continuous or categorical: we basically had two options. For 
bivariate analysis we have to make a two-stage decision.

To choose the most appropriate bivariate analysis, we have to do two things:

1.	 Work out whether each of our two variables is categorical or continuous.
2.	 Choose the appropriate bivariate technique for the combination of 

categorical or continuous variables that we have.

If you’ve read Chapter 2, you’ll already know how to work out whether your 
variable is continuous or discrete. (If you don’t know how to do this, and you 
haven’t read Chapter 2, this would be a good time to do so.) Once you’ve done 
this, you’ll be left with three possible combinations of your two variables:

•	 categorical and categorical
•	 categorical and continuous
•	 continuous and continuous.

Table 5.0 shows these combinations alongside the appropriate bivariate analyses 
for each one. In this chapter, we’re going to cover the first combination: two 
categorical variables. In the chapters that follow, we’ll look at the other two 
combinations and the bivariate analyses that are used for these.

Table 5.0: Combinations of variables and the appropriate bivariate analyses

Combination of variables Bivariate technique(s)

Categorical and categorical Cross-tabulation

Categorical and continuous Comparing distributions

Continuous and continuous Correlation and regression
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Categorical variables are everywhere

As I discussed earlier in the book, most variables in the social world are 
categorical. Categorical variables such as social class, race and ethnicity, gender, 
religious affiliation, marital status, employment status, and so on, are of interest to 
researchers from a wide range of disciplinary backgrounds. And many variables 
specific to areas such as education, health, work and employment, consumption, 
family and household, leisure, crime and the media are also categorical.

Because of this, it’s important to be familiar with techniques that you can use 
to examine the relationship between two categorical variables. The technique 
we’re going to look at – cross-tabulation – is one of the most commonly used 
bivariate analyses. In principle, it’s a very simple technique, and one that you’re 
probably familiar with, as it essentially involves creating a table of groups and 
sub-groups. You might have already conducted a cross-tabulation without 
even realising it. As with some of the other techniques we’ve covered in 
previous chapters, if you’ve done it before, you probably didn’t think of it as 
‘doing statistics’.

Let’s start with the simplest example possible, which is looking at the 
relationship between two categorical variables that only have two categories 
each. I’ll show you some examples with variables with more than two categories 
later. Before we look at cross-tabulation in detail, it might be useful to try to 
answer the questions in Exercise 5.0 for a little revision about the differences 
between categorical and continuous variables.

EXERCISE 5.0

Look at the following variables from the Labour Force Survey (LFS) teaching dataset:

•	 Ethnicity

•	 Religion

•	 Gross hourly pay

•	 Number of children aged 0–4 years

•	 Age when completed full-time education

a)	� Can cross-tabulation be used appropriately to analyse the relationship 
between any two of these variables? If so, which variables?

b)	� Why are only those pairs of variables suitable for cross-tabulation?
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Looking at the relationship between two variables with two categories

For the first example, I’m going to use data from the National Survey of Sexual 
Attitudes and Lifestyles (Natsal) 2010–12 teaching dataset. This dataset is open 
access and can be downloaded from the UK Data Service. We’re going to look 
at whether people who drink alcohol are more likely to smoke tobacco than 
those who don’t drink alcohol. Table 5.1 shows us the result of cross-tabulating 
the variables ‘Drink alcohol’ and ‘Smoke tobacco’.

Our table of results provides us with several useful pieces of information. First, 
in the bottom right cell it shows us the total number of cases in our analysis: 
15,155. We can also see, along the bottom row, how many of these people 
currently smoke tobacco (N = 4,223). The far-right column also breaks down 
the cases into those who drink alcohol (N = 12,333) and those who don’t 
(N = 2,822). However, you could have produced all this information simply 
by conducting some univariate analysis and doing frequency counts for each of 
the two variables separately.

Cross-tabulating the two variables provides more information by telling us 
how many cases are in each sub-group. As there are four different possible 
combinations of answers to the two questions, there are four different sub-
groups in our table:

•	 drink alcohol and smoke tobacco
•	 drink alcohol but don’t smoke tobacco
•	 don’t drink alcohol but smoke tobacco
•	 don’t drink alcohol and don’t smoke tobacco.

We now have the number of people who fall into each of these four groups. 
We can see, for example, that of the 15,155 people in the survey, 3,552 both 
drink alcohol and smoke tobacco. We can also see that 8,781 people drink 
alcohol but don’t smoke tobacco. The table also shows us that 671  people 
smoke tobacco but don’t drink alcohol and that 2,151 neither smoke tobacco 
nor drink alcohol. But what does that tell us about the relationship between 
drinking alcohol and smoking tobacco? Are people who drink alcohol more 
or less likely to also smoke tobacco?

Table 5.1: A cross-tabulation of two variables with two categories each 
(frequencies only)

Smoke tobacco

Yes No Total

Drink alcohol

Yes 3,552 8,781 12,333

No 671 2,151 2,822

Total 4,223 10,932 15,155
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How percentages can help

You may have already worked out an idea of the relationship between the two 
variables just by looking at the data in Table 5.1. But as this table only includes 
the number of cases in each group or sub-group – what are called the frequencies 
or counts – it’s not always easy to work out what’s going on. Luckily, we can 
make the table easier to interpret by using percentages to make the results 
simpler to understand.

Table 5.2 shows the same data as Table 5.1 but expressed as percentages rather 
than frequencies. Percentages can help us understand the patterns in the data 
more clearly, but we must be careful to interpret them correctly. Let’s see what 
we can learn from the data in this table.

If we look at the bottom row of Table 5.2, we can see that most respondents don’t 
smoke tobacco – just over 72% of them said that they didn’t. But we probably 
knew that already from our univariate analyses. What we really want to find 
out about is the relationship between drinking alcohol and smoking tobacco.

We can see that 28.8% of respondents who drink alcohol also smoke tobacco. 
We can also see that a slightly smaller proportion (23.8%) of those who don’t 
drink alcohol do smoke tobacco. So if we divide people up according to whether 
they drink alcohol or not, we can see that drinkers are slightly more likely to 
smoke than non-drinkers.

Table 5.3 shows the same data, again using percentages rather than frequencies. 
However, if you look closely, you’ll see that the percentages are different to 
those shown in Table 5.2. The figures in both tables are all correctly calculated 
percentages, so why are they different?

Table 5.2: A cross-tabulation of two variables with two categories each (percentages by 
rows only)

Smoke tobacco

Yes No Total

Drink alcohol

Yes 28.8% 71.2% 100.0%

No 23.8% 76.2% 100.0%

Total 27.9% 72.1% 100.0%

Table 5.3: A cross-tabulation of two variables with two categories each (percentages by 
columns only)

Smoke tobacco

Yes No Total

Drink alcohol

Yes 84.1% 80.3% 81.4%

No 15.9% 19.7% 18.6%

Total 100.0% 100.0% 100.0%
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By carefully comparing the tables we can see why the percentages in the cells 
are different. In Table 5.2, the percentages are calculated along the rows and in 
Table 5.3 they are calculated down the columns. Because of this they each tell 
us something slightly different. We can think of each table as providing answers 
to different questions.

So what exactly does each table tell us? This is much easier to see if we look 
at a row or column in isolation:

The top row of Table 5.2 shows data only for the participants who reported 
drinking alcohol. We can see that nearly 29% of these people smoke tobacco 
and just over 71% do not. This shows the proportion of drinkers who smoke 
and the proportion of drinkers who don’t smoke. To calculate these proportions, 
the respondents who drink alcohol were treated as a separate group and were 
divided into those who smoke and those who don’t.

The same was done to calculate the percentages in the second row. The 
percentages of smokers and non-smokers were calculated for only those 
respondents who reported not drinking alcohol. When we look at the second 
row of the table in isolation, we can see that of the people who didn’t drink 
alcohol, nearly 24% smoked and just over 76% didn’t smoke:

For the data in Table 5.2, the respondents were first separated into two groups: 
those who reported drinking alcohol and those who reported not drinking 
alcohol. The percentages of smokers and non-smokers were then calculated 
separately, first for drinkers and then for non-drinkers. But the percentages in 
Table 5.3 were calculated differently. Again, this is easier to see if we concentrate 
on one part of the table at a time:

Top row only

Smoke tobacco

Yes No Total

Drink alcohol Yes 28.8% 71.2% 100.0%

Second row only

Smoke tobacco

Yes No Total

Drink alcohol No 23.8% 76.2% 100.0%

First column only

Smoke tobacco

Yes

Drink alcohol

Yes 84.1%

No 15.9%

Total 100.0%
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Instead of separating out respondents into drinkers and non-drinkers and 
then calculating the percentage of each group who smoke, the percentages in 
Table 5.3 were calculated by separating out the respondents into smokers and 
non-smokers, and then calculating the proportion of each group that drinks 
alcohol. Although, at first, this might seem to be the same as what was done in 
Table 5.2, it is actually different and produces different outcomes.

In Table 5.2 we saw that the percentage of alcohol drinkers who also smoked 
is 23.8%. But the data in Table 5.3 tell us that the percentage of smokers who 
also drink alcohol is 84.1%. So why are these two figures so different and what 
do they tell us?

The explanation for the difference is that the two tables provide answers to 
two different questions:

Table 5.2: What proportion of alcohol drinkers also smoke tobacco?
Table 5.3: What proportion of tobacco smokers also drink alcohol?

These proportions are different because the groups that we use for the calculations 
are different. The percentages in the first row of Table 5.2 are calculated using 
only the respondents who reported drinking alcohol. The percentages in the 
first column of Table 5.3 are calculated using only the respondents who reported 
smoking tobacco.

If we look back at Table 5.1 we can see that the frequency (or count) of cases 
in the sub-group that both drink alcohol and smoke tobacco is 3,552. This 
number is used in the calculations of percentages in both Table 5.2 and Table 5.3. 
But in Table 5.2 it has been divided by 12,333 – the number of respondents 
who drink alcohol. In Table 5.3 it has been divided by 4,223 – the number of 
respondents who smoke tobacco. This is why the percentages in the two tables 
are different: they represent the percentage of the same sub-group (those who 
drink and smoke) within different groups (everyone who drinks vs everyone 
who smokes).

Which way do I run the percentages?

My students often find it difficult to decide which way to run the percentages 
in their tables. It’s important to remember that the percentages calculated by the 
software you are using will always be correct – they’ll just be an answer to a particular 
question. You must decide the question you want to answer before you can work 
out which way to run the percentages. For example, do you want to know the 
proportion of drinkers who smoke, or the proportion of smokers who drink? The 
answer to this question will depend on exactly what you’re trying to find out.

An example I use with my students comes from the Crime Survey for England 
and Wales (CSEW) 2011–12 teaching dataset. I ask them to find out whether 
full-time university and college students are more or less likely than the rest 
of the population to have experienced crime in the last year. They go on to 
produce results that look like either those in Table 5.4 or Table 5.5.
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Some of my students will end up with Table 5.4 and try to interpret the results. 
They might conclude that students are less likely to be victims of crime because 
only 3.6% of those who experienced crime were students. Sometimes this is 
their final answer but, occasionally, they will go on to notice that only 2.6% of 
those who had no experience of crime were students. This leaves them confused 
and unable to give a good answer to my question. Occasionally they’ll try to 
argue that students are both more and less likely to be victims of crime (which 
obviously can’t be true!)

The reason these students were confused is because they were running the 
percentages the wrong way to answer my question. Table 5.4 provides the answer 
to a different question: what proportion of participants who experienced crime 
were students? (It also provides the answer to another question: what proportion 
of participants who didn’t experience crime were students?) But as we know that 
most participants in this survey weren’t students – only 2.8% were, according 
to the total on the bottom row of the table – it’s not surprising (and not very 
interesting) to find out that they were the minority of those who experienced 
crime and the minority of those that didn’t.

Table 5.5 shows the results of the analysis that answer my original question. 
Here, the participants were divided into students and non-students, and the 
percentages of those who had and hadn’t experienced crime were calculated 
for students separately from non-students. We can see from these data that 
28.5% of students had experienced crime in the past year compared to only 
22.3% of non-students. So students were more likely to experience crime than 
non-students. Running the percentages this way provides all the information 
needed to answer my question.

Table 5.4: The relationship between being a student and experience of crime, example 1

Full-time student at university or college

Yes No Total

Experienced crime in the  
past year

Yes 3.6% 96.4% 100.0%

No 2.6% 97.4% 100.0%

Total 2.8% 97.2% 100.0%

Table 5.5: The relationship between being a student and experience of crime, example 2

Full-time student at university or college

Yes No Total

Experienced crime in the  
past year

Yes 28.5% 22.3% 22.5%

No 71.5% 77.7% 77.5%

Total 100.0% 100.0% 100.0%
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Percentages and frequencies

In Tables 5.2 to 5.5 I only included percentages. I did this to make it easier to 
focus on the figures I was explaining. However, when presenting results in a 
research report, percentages should usually be accompanied by frequencies, as 
can be seen in Table 5.6:

Including frequencies means that whoever reads the table can see the actual 
number of cases in each group and sub-group, as well as the total number 
of cases in the dataset. Percentages are sometimes used to disguise very small 
numbers of cases, and it’s important to be transparent about how many cases 
are in the analysis.

Box 5.0: How do I choose which variable should be on the rows 
and which should be on the columns of a cross-tabulation?

When you carry out a cross-tabulation, you need to choose which of your 
variables will run along the rows and which will run down the columns of your 
table. Whatever software you use to do your analysis, it will require you to make 
this choice.

The good news is that this choice won’t make any difference to your results. 
Your table will look different depending on your choice, but it won’t affect the 
frequencies in each sub-group. What is important, however, is that if you use 
percentages, you choose to run the percentages in a way that matches the question 
you want to answer. This match – between the position of the variable in the table 
and the direction in which you run the percentages – is what really matters.

Table 5.6: A cross-tabulation of two variables with two categories each (frequencies 
and percentages by rows)

Smoke tobacco

Yes No Total

Drink alcohol

Yes
3,552 
28.8%

8,781 
71.2%

12,333 
100.0%

No
  671 

23.8%
  2,151 
76.2%

  2,822 
100.0%

Total
4,223 
27.9%

10,932 
72.1%

15,155 
100.0%
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A different way of looking at the data: observed counts and 
expected counts

So far, we’ve looked at using frequencies (sometimes called observed counts) 
and percentages when cross-tabulating variables. We’ve seen that you need to 
run the percentages in the appropriate direction to answer a particular question, 
and making this decision can require a bit of thought.

Using frequencies and percentages is the most common approach when cross-
tabulating categorical variables. However, there is another way of examining 
the relationship between the variables that uses the data in the table in a slightly 
different way.

Table 5.7 shows the same data we have been using to look at the relationship 
between drinking alcohol and smoking tobacco. You might have noticed that 
the numbers at the top of the four cells in the middle of the table are the same 
as in Tables 5.1 and 5.6. These are the frequencies in each sub-group. For 
example, 3,552 of the people in the study both drink alcohol and smoke tobacco.

As I explained earlier in this chapter, the term frequency just refers to the number 
of cases in a particular group or sub-group. They are also referred to as counts 
– because you count up the number of cases – and are sometimes described as 
observed counts. The term ‘observed’ is used because these are the cases you 
actually have – and can see – in your dataset.

It might seem unnecessary to introduce a third term for what is essentially 
the same thing. We already know these numbers as frequencies and counts, so 
why make things more complicated? One reason is that – like frequencies and 
percentages – you will come across these words in the wider literature and when 
using software packages, so it’s important to know what they mean. But a more 
important reason, in terms of cross-tabulation, is to distinguish observed counts 
from expected counts.

Expected counts are the numbers in brackets (parentheses) in the cells 
representing the four sub-groups in Table 5.7. But what are expected counts? 
Where do they come from? And how can we use them to help us understand 
the relationship between these two variables?

Table 5.7: A cross-tabulation of two variables with two categories each (observed 
counts and expected counts)

Smoke tobacco

Yes No Total

Drink alcohol

Yes
3,552 

(3,437)
8,781 

(8,896)
12,333

No
671 

(786)
2,151 

(2,036)
  2,822

Total 4,223 10,932 15,155
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Just like the word ‘normal’ in the normal distribution, the term ‘expected’ 
can be a bit misleading in the context of expected counts. It doesn’t mean 
what we are expecting to see in our results (after all, we might all have different 
expectations about what we’d find out from the same analysis). It means what we 
would expect to see in our data if there was no relationship between the two variables.

But what does ‘no relationship’ mean? And what would it look like in the 
context of a cross-tabulation?

There are two ways that we can think about this. No relationship between the 
two variables that we’ve been looking at would mean you are no more likely 
to smoke tobacco if you drink alcohol (and vice versa). Or, to put it another 
way, knowing whether someone drinks alcohol wouldn’t be useful in helping 
you try to predict whether they smoke tobacco. Another way of thinking about 
this idea is that, if there was no relationship between the two variables, the cases 
would be shared out ‘fairly’ between the four sub-groups in the table. Expected 
counts show you what the data would look like if the cases were actually shared 
out ‘fairly’ in this way.

But how do we know what a fair share of cases would look like? And how 
are these expected counts calculated?

Calculating expected counts

Expected counts are calculated using the totals of the different groups in  
each variable. The totals in the final column of Table 5.8 show that 12,333  
of our participants drink alcohol and 2,822 don’t. We can see by looking at 
Table  5.3 that this means that 81.4% of our participants are drinkers. The  
bottom row of Table 5.8 also shows that 4,223 of our participants smoke tobacco 
and that 10,932 don’t, meaning that 27.9% are smokers (as can be seen in 
Table 5.2):

Knowing that 81.4% of our participants drink alcohol and that 27.9% smoke 
tobacco gives us the basic information to work out what proportion would both 
drink alcohol and smoke tobacco if there was no relationship between the two 
activities. If the cases are fairly shared out, 27.9% of 81.4% of all 15,155 cases 
should be people who both drink and smoke.

Table 5.8: A cross-tabulation of two variables with two categories each (expected 
counts and totals only*)

Smoke tobacco

Yes No Total

Drink alcohol

Yes (3,437) (8,896) 12,333

No (786) (2,036)   2,822

Total 4,223 10,932 15,155

Note: *Expected counts have been rounded to whole numbers.
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The simplest way to work out this number is to use the following formula:

(4,223/15,155) × 12,333 = 3,437

You could also work it out by calculating 27.9% of 15,155 and then calculating 
81.4% of the result. This is a bit more complicated, and because the decimals 
have been rounded up and down it doesn’t work out at exactly the same figure, 
but it would be close enough for the purposes of analysis. Remember that you 
don’t have to do any of these calculations yourself – the computer software package 
you are using will do these for you. You just need to select the option, or type 
the command, to include expected counts in your results.

You’ll notice that 3,437 is the number in brackets in the cell in Table 5.8 that 
contains the expected count of those who both drink alcohol and smoke tobacco. 
In Table 5.9, we focus on this cell and look at how you can use the observed count 
and the expected count to examine the relationship between these two variables.

In the bottom right cell of Table 5.9 we can see two figures. The figure 3,552 
is the number of participants in the study who both drink alcohol and smoke 
tobacco. We’ve seen this figure before in some of the other tables in this chapter, 
and we know that it is the ‘frequency’ or ‘observed count’. Below this figure, 
in brackets, is the ‘expected count’ that we’ve just calculated. Remember that 
the expected count is what the data would look like if there was no relationship 
between the variables. In our current example, that would be the number we’d 
see if there was no relationship between drinking alcohol and smoking tobacco.

Because the observed count – what is actually in our data – is different from 
the expected count – what the data would look like if there was no relationship 
– we can conclude that there is some kind of relationship between drinking 
alcohol and smoking tobacco. But what kind of relationship is it? And how do 
expected counts help us work this out?

When comparing the observed counts with the expected counts, we need to 
see whether the observed count is higher or lower than the expected count. In 
Table 5.9 the observed count is higher than the expected count. This means that 
there are more people who both drink and smoke in our study than we would 
expect there to be if there was no relationship between drinking and smoking. 
So, we can conclude from this that people who drink alcohol are more likely 
to smoke tobacco than those who don’t drink alcohol, and vice versa.

Table 5.10 shows the observed counts and expected counts for all four sub-
groups. We can see that the observed count for those who don’t drink alcohol 

Table 5.9: Observed counts and expected counts for participants who drink alcohol and 
smoke tobacco

Smoke tobacco

Yes

Drink alcohol Yes
3,552 

(3,437)
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and don’t smoke tobacco is larger than the expected count. This means that 
those who don’t drink alcohol are also more likely not to smoke tobacco. This 
makes sense given what we learned from our interpretation of Table 5.9: if 
people who drink are more likely to smoke, then people who don’t drink will 
be less likely to smoke.

We can also see that for both the other two sub-groups – those that smoke 
but don’t drink and those who drink but don’t smoke – the observed counts 
are smaller than the expected counts. This also fits in with our other findings: 
not doing one of these activities makes the other less likely. In summary, we 
could say that there is a positive association between drinking and smoking: 
if you do one of them, you’re more likely to do the other.

A simple example of expected counts

If you know how to interpret observed and expected counts, it’s not essential 
to understand exactly how they’re worked out. A computer software package 
will generate them for you, and the important thing is that you know what 
your results mean. But understanding where they come from does help some 
people better understand what they mean, so I always show my students how 
expected counts are calculated. Starting with very simple examples makes the 
idea of expected counts much easier to understand.

Imagine that the data we have on people’s smoking and drinking behaviours 
wasn’t like that in the tables we have already examined but instead, looked like 
the data in Table 5.11. You can see that there are 100 cases in total. Looking 
at the totals in the column on the far right, you can also see that 50 of these 
100 people drink alcohol and 50 of them don’t drink. The totals on the bottom 
row show that 50 participants smoke tobacco and the other 50 don’t smoke.

Table 5.11: An imaginary simple example of expected counts

Smoke tobacco

Yes No Total

Drink alcohol

Yes (25)   50

No   50

Total 50 50 100

Table 5.10: A cross-tabulation of two variables with two categories each (observed 
counts and expected counts)

Smoke tobacco

Yes No

Drink alcohol
Yes

3,552 
(3,437)

8,781 
(8,896)

No
671 

(786)
2,151 

(2,036)
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You’ll see that I haven’t put any observed counts in the cells representing the 
four sub-groups. These aren’t important for this example, so I’ve left them out 
to keep things simple. I have, however, put an expected count in the drink/
smoke sub-group. You’ll see that this expected count is 25. Without doing any 
calculations, can you see where this number came from?

Because I’ve used very simple numbers in this example, it’s much easier to see 
the logic of expected counts. If we know that half (50/100) of our participants 
drink alcohol and also that half (50/100) of our participants smoke tobacco, we 
can use those proportions to think about what a ‘fair’ or ‘even’ distribution of 
cases would look like. If there was no relationship between drinking and smoking, 
we would expect half of half of all our participants to both drink and smoke. 
Half of 100 is 50, and half of 50 is 25, which – as we can see in Table 5.11 – is 
our expected count for this sub-group.

In the case of this very simple example, the expected counts would also be 
25 in the other three sub-groups (because each one would be half of half of 
100). It’s very unlikely that the expected counts would all be the same with real 
data – I designed this example to be as simple as possible! While you would use 
the same logic and calculations, you’d usually be using different numbers for 
each cell, like the data shown in Table 5.8. But if you can understand where 
the expected count of 25 came from in Table 5.11, you understand the logic of 
how expected counts are worked out. The numbers are usually more difficult 
to work with, but the logic and maths is just the same.

Variables with more than two categories

In the examples of cross-tabulation I have used so far, all the categorical variables 
have only had two categories each. But many of the variables we are interested in 
have more than two categories. In the tables below I’ve shown another analysis 
from the National Survey of Sexual Attitudes and Lifestyles (Natsal). Like the 
previous analysis, it examines the relationship between drinking alcohol and 
smoking, but this time I have used variables that divide participants into more 
than two, simple ‘Yes’ and ‘No’ categories. Smoking is divided up into four 
categories, from ‘Non-smoker’ to ‘Heavy smoker’, and drinking alcohol is 
divided up into three categories, from ‘None’ to ‘More than recommended’.

I’ve run the analysis in two different ways. Table 5.12 shows a cross-tabulation 
with frequencies (observed counts) and percentages run down the columns, for 
each smoking status. Table 5.13 shows the same analysis, with both observed 
counts and expected counts.

As you can see, the only difference between these analyses and the ones we 
saw earlier is that the tables are bigger. This makes them slightly more difficult to 
interpret, simply because more numbers are involved. If you’re using percentages, 
you still need to decide which way to run them, and this needs to match the 
question you are asking. In Table 5.12 the percentages are run down the columns, 
and show the proportion of each group of smoker ‘types’ (from ‘Non-smoker’ 
to ‘Heavy smoker’) that fall into each category of alcohol consumption.
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Table 5.13 shows the same data but with observed counts (frequencies) and 
expected counts. We can do exactly the same thing as we did before, in terms 
of interpreting the results, by comparing the observed counts with the expected 
counts in any particular cell. Using expected counts can be useful when cross-
tabulating variables with a large number of categories, because you can draw a 
conclusion from each cell at a time, without having to refer to, and digest, the 
figures in a whole row or column.

The variables in Table 5.13 have only three categories for alcohol consumption 
and four categories for smoking status, resulting in 12 sub-categories. Some 
variables, such as social class or ethnicity, have many more categories, and 
tables of more than 20 categories are not uncommon. In analyses involving 
variables with many categories, using observed and expected counts can be a 
useful alternative to using frequencies and percentages. However, you should 
be careful to make sure that your conclusions match the analysis you are using, 
as the two different techniques produce subtly different types of information.

Table 5.12: A cross-tabulation with frequencies and column percentages

Current smoking status

Non- 
smoker

Ex- 
smoker

Light  
smoker

Heavy  
smoker Total

Alcohol  
consumption  
per week

None
2,475 
32.5%

786 
24.1%

646 
23.6%

468 
32.1%

4,375 
29.0%

Not more than  
recommended

4,628 
60.7%

2,154 
65.9%

1,696 
61.8%

728 
49.9%

9,206 
61.0%

More than  
recommended

521 
6.8%

327 
10.0%

401 
14.6%

263 
18.0%

1,512 
10.0%

Total
7,624 
100%

3,267 
100.0%

2,743 
100.0%

1,459 
100.0%

15,093 
100.0%

Table 5.13: A cross-tabulation with observed and expected counts*

Current smoking status

Non- 
smoker

Ex- 
smoker

Light  
smoker

Heavy  
smoker Total

Alcohol  
consumption  
per week

None
2,475 

(2,210)
786 

(947)
646 

(795)
468 

(423)
4,375

Not more than  
recommended

4,628 
(4,650)

2,154 
(1,993)

1,696 
(1,673)

728 
(890)

9,206

More than  
recommended

521 
(764)

327 
(327)

401 
(275)

263 
(146)

1,512

Total 7,624 3,267 2,743 1,459 15,093

Note: *Expected counts have been rounded to whole numbers.
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Summary

This is the first chapter in the book where we have looked at the relationship 
between two variables. All the techniques covered in this chapter can only be 
used with categorical data (whether this is nominal or ordinal).

In the next chapter we’ll look at what you can do when one of your variables 
is categorical and the other is either continuous or discrete.

Sources
Exercise 5.0 uses variables from the following dataset:

ONS (Office for National Statistics), University of Manchester, CMIST (Cathie 
Marsh Institute for Social Research), UK Data Service (2019) Quarterly Labour 
Force Survey, July–September 2018: Teaching dataset [data collection], ONS [original 
data producer(s)], SN: 8499, DOI: 10.5255/UKDA-SN-8499-1

Tables 5.1 to 5.3 and 5.6 to 5.13 were based on analysis of the British National 
Survey of Sexual Attitudes and Lifestyles, 2010–2012 Teaching dataset:

University of Manchester, CMIST (Cathie Marsh Institute for Social Research), 
UK Data Service (2021) National Survey of Sexual Attitudes and Lifestyles, 2010–
2012: Teaching dataset [data collection], University College London, Centre 
for Sexual Health and HIV Research [original data producer(s)], SN: 8735, 
DOI: 10.5255/UKDA-SN-8735-1

Tables 5.4 and 5.5 were based on analyses of the Crime Survey for England and 
Wales, 2011–2012 Teaching dataset:

ONS (Office for National Statistics), University of Manchester, Cathie Marsh 
Centre for Census and Survey Research, UK Data Service (2013) Crime Survey 
for England and Wales, 2011–2012: Teaching dataset [data collection], UK Data 
Service, SN: 7401, DOI: 10.5255/UKDA-SN-7401-1

Useful resources
I have made four videos on how to conduct cross-tabulation using SPSS®. These 
can be found here:

Introducing cross-tabulation: https://youtu.be/ZOGwysV9ZQY
Using percentages in cross-tabulation: https://youtu.be/PyDj4RHrmnI
Combining percentages and frequency counts in cross-tabulations: https://
youtu.be/ByluYl5LncQ

Observed and expected counts in cross-tabulations: https://youtu.be/
ybnFUiwO210

https://youtu.be/ZOGwysV9ZQY
https://youtu.be/PyDj4RHrmnI
https://youtu.be/ByluYl5LncQ
https://youtu.be/ByluYl5LncQ
https://youtu.be/ybnFUiwO210
https://youtu.be/ybnFUiwO210
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Hans Zeisel wrote a very useful chapter about deciding which way to run 
percentages in a cross-tabulation. Unfortunately, having run to six editions, his 
book is now out of print, but your library might have a copy:

Zeisel, H. (1985) Say it with Figures (6th  edn), New York: Harper & Row 
[Chapter 3: ‘In Which Direction Should Percents Be Run?’].

Answers to exercises

Exercise 5.0
a) The only pair of variables that can be appropriately analysed using cross-
tabulation is ethnicity and religion.

b) This pair of variables can be analysed using cross-tabulation because they are 
both categorical. None of the other variables in the list are categorical, so they 
cannot be used in a cross-tabulation.
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6

What does it all mean? Comparing 
distributions between groups

WHAT IS THIS CHAPTER FOR?
In the last chapter we looked at how to analyse the relationship between 
two categorical variables using cross-tabulation. In this chapter we’ll cover 
the techniques you’ll need when one of your variables is categorical, but the 
other is continuous or discrete.

WHAT DOES IT COVER?
We focus on a technique that is often referred to as ‘comparing means’. I 
explain why the mean is not always the appropriate average to compare, and 
show how comparing the measures of spread of different groups, combined 
with comparing the averages, provides a more complete understanding of 
the differences in the distribution of a variable between two groups.

WHAT WILL YOU LEARN?
•	 How comparing averages can help us see differences in the distribution of 

a continuous (or discrete) variable between different groups
•	 How to know which average to use in different circumstances
•	 Why it’s important to compare measures of spread as well as averages, 

and what the different measures of spread can tell us
•	 How the mean and the standard deviation can be combined to give a single 

measure of the difference between two groups

WHAT CONCEPTS AND TECHNIQUES ARE COVERED?
•	 Comparing means and medians
•	 Comparing standard deviations and other measures of spread
•	 Using means and standard deviations to calculate effect sizes

In previous chapters, we looked at a range of techniques to analyse one variable at a 
time (univariate analysis) and one technique to analyse the relationship between two 
variables: cross-tabulation. If you remember, cross-tabulation is only appropriate 
if you have two categorical variables. If any of your variables are continuous or 
discrete, you need to use a different method of analysis. In this chapter we’re going 
to look at techniques we can use to analyse the relationship between one categorical 
variable and another variable that is either continuous or discrete.
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Continuous or discrete variables are less common than categorical variables 
in many areas of the social sciences. However, it’s likely that there will be a few 
continuous or discrete variables in most datasets. Variables relating to time, money 
or space are commonly continuous, and variables that involve counting – the 
number of people in a household, for example – are often discrete.

You might want to see if, or how, the distribution of one of these continuous 
or discrete variables varies between groups. For example, you could compare 
the salaries of men and women. This analysis would involve a continuous 
variable (salary) and a categorical variable (gender). We know that we couldn’t 
use cross-tabulation for this analysis, because it only works with two categorical 
variables. So how could we analyse a relationship between a categorical and a 
continuous variable?

Analysing the relationship between a categorical and a 
continuous variable

When I’m teaching my students how to analyse the relationship between a 
categorical and a continuous variable, I set them a challenge. I get them to 
discuss, in small groups, how they would do this if they had to invent a technique 
themselves. My class used to be filled by students studying either criminology 
or sociology, so I would ask them the following question:

How could I work out whether sociology or criminology students did 
better on last year’s exam?

My students usually identify certain information as important. They recognise, 
for example, that the highest mark and the lowest mark from students studying 
each subject could be useful. But they also realise that this only tells them about 
the most and least successful students, and not about most students. They usually 
mull over the idea of adding up all the scores from one group and comparing 
them with the total scores from the other group. But they often sense that 
this wouldn’t be fair, because there are usually different numbers of students 
studying each subject.

In some years a group of students will get very excited because they think 
they’ve come up with a solution. Why don’t we calculate an average for each 
group, and see which average is higher? Surely that will tell us which group has 
done better? And that’s what statisticians do. The foundation of the technique 
we’re going to cover in this chapter is something that some of my students 
worked out how to do on their own!

Comparing means vs comparing distributions

This technique is widely known as ‘comparing means’. This description makes 
sense in terms of what is at its core – after all, my students correctly identified 
working out the average for each group and then comparing them as a good 
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way of finding out which group of students did better in the exam. However, 
I don’t really like the term ‘comparing means’ for two reasons.

First, as we saw in Chapter 3, the mean isn’t always the most appropriate 
average to use. If the distribution of your continuous variable is skewed, the 
median is usually a better measure of central tendency. So, in certain situations, 
it might be best to compare medians (or even modes) rather than comparing 
means. Second, as we saw in Chapter 4, as well as looking at averages, it’s also 
important to look at how the data for a continuous variable are spread out. This 
isn’t only true when you’re doing univariate analysis; it’s also the case when you’re 
comparing the distribution of a continuous variable between different groups. 
As well as comparing means or medians, it’s also useful to compare minimum 
and maximum values, ranges and standard deviations. For this reason, I prefer 
to describe this kind of analysis as ‘comparing distributions’.

For the examples below, I’m going to use data from the 2018 Labour Force 
Survey (LFS) teaching dataset from the UK Data Service. The LFS collects data 
on issues relating to work and employment from a large sample of people aged 
16 and over. As with most of the datasets used in this book, these data are open 
access and you can download them yourself if you want. I’ve provided more 
details about this dataset at the end of the chapter.

We’re going to look at whether people who were born in the UK work 
longer or shorter hours than people who were born outside the UK. This is a 
nice, simple example to start with as our categorical variable – where someone 
was born – has only two categories: born in the UK or born outside the UK. 
Because participants in the LFS could only specify the number of hours they 
worked each week to the nearest hour, the data on working hours is discrete 
rather than continuous. However, as I discussed in Chapter 2, we can usually 
use the same statistical techniques with discrete and continuous data. In this 
case, it’s fine to compare the distribution of a discrete variable between two 
groups because fractions of a working hour make sense in theory. The results 
of the analysis are shown in Table 6.0.

So what do these results tell us? If we start by looking at the first column of 
numbers in the table we can see that the total number of cases in our dataset is 
40,084. Of those, 33,866 were born in the UK and 6,218 were born outside 
the UK. We might have guessed that most of the workers in the UK were born 
in the UK, so it’s not surprising that these groups are different sizes. In terms of 
conducting our analyses, it doesn’t matter that these groups are different sizes, 
and this won’t affect the kind of conclusions that we can make. We would only 

Table 6.0: Comparing the distribution of two groups (number of cases and mean only)

Born in the UK

Working hours

N Mean

Yes 33,866 36.55

No   6,218 37.37

Total 40,084 36.68
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need to be concerned if the absolute size of one of our groups was very small, 
which is something that can cause problems in some statistical analyses.

The column on the right side of the table shows us the mean average working 
hours for everyone in the dataset and the means for those who were born in the 
UK and for those who were not. The overall mean is 36.68 hours. The mean for 
workers born in the UK is 36.55 and the mean for those born outside the UK 
is 37.37. We can see from this that workers born outside the UK work nearly 
one hour a week longer, on average, than workers who were born in the UK.

However, as I said earlier, the mean might not be the best average to use. It’s 
usually fine when the data are normally distributed and there are no extreme 
outliers, and it does have the advantage of using data from every single case. 
As we would expect the mean and the median (and usually the mode) to have 
very similar values when the data are normally distributed, it might not make 
much difference which measure we used. Although, as we shall see, there are 
situations in which the mean isn’t the best average to compare.

Table 6.1 shows not only the number of cases in each group and the means, 
but also the medians. There are two things worth noting about the medians. First, 
they are all whole numbers. This is because the median often represents an actual 
value from the dataset, and in this dataset participants had to state their working 
hours to the nearest whole hour. (If you remember, the median is the value of 
the middle case when all the cases are put in order, from the lowest to the highest 
value.) Second, all three medians are slightly higher than the mean averages. But 
why is this the case? And what does it tell us about the distribution of this variable?

Figure 6.0 is a histogram showing the distribution of hours worked in a usual 
week. We would usually have looked at this when we were doing our exploratory 
univariate analysis, so by the time we did any bivariate analysis we would already 
know what the distribution of this variable looked like. Examining the way 
that a continuous or discrete variable is distributed is important, because it can 
help us decide whether the mean or the median is the best measure to compare 
between the two groups.

We can see that the data in Figure  6.0 aren’t quite normally distributed. 
Whereas the bars on the right side fit quite neatly with the black line that shows 
the perfect normal distribution, on the left side some bars aren’t quite high 
enough to reach the line and other bars are a little higher than the line. The 
distribution looks a little bit negatively skewed, which explains why the means 

Table 6.1: Comparing the distribution of two groups (number of cases, mean and 
median)

Born in the UK

Working hours

N Mean Median

Yes 33,866 36.55 38

No   6,218 37.37 40

Total 40,084 36.68 38
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are smaller than the medians. Given that there isn’t a great deal of difference 
between the mean and median values, it’s not a crucial decision in this case, as 
the overall conclusion wouldn’t change whichever measure we used (but the 
median does have the advantage of providing a value that actually exists in the 
data). However, as we shall see, in other cases the means and medians can tell 
very different stories. This is just one illustration of why exploratory univariate 
analyses are important, and shows why you should bear these results in mind 
when you conduct further analyses.

Once we have compared the averages of the two groups – using either the 
mean or the median – it’s useful to go on to look at some measures of spread. 
Table 6.2 shows four measures of spread (or ‘dispersion’): the standard deviation 
(SD); the minimum value; the maximum value; and the range.

Let’s start with the simplest measures: minimum and maximum values. You 
can see from Table 6.2 that there is no difference in the minimum and maximum 
working hours of those who were born in the UK and those who weren’t. 
However, before we conclude that there is really no difference between the 
groups in this respect, we need to think carefully about how the data might 
have been collected.

Figure 6.0: Histogram showing the distribution of hours worked in a usual week
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Table 6.2: Comparing the distribution of two groups (number of cases, standard 
deviation, minimum and maximum values, and range)

Born in the UK

Working hours

N SD Minimum Maximum Range

Yes 33,866 13.04 1 97 97

No   6,218 12.66 1 97 97

Total 40,084 12.99 1 97 97
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The minimum value is quite easy to explain. As the cases were all people who 
work, the minimum number of hours that could be reported was 1. And as there 
are many thousands of people in each group, it’s not surprising that at least one 
person in each group worked for only 1 hour a week. One of the limitations 
of minimum (and maximum) values is that they don’t give us any idea of how 
many cases took that value, although the histogram in Figure 6.0 suggests that, 
among the cases as a whole, not many people worked 5 hours or less.

There are several plausible explanations for the maximum values. The simplest 
is that the maximum number of hours worked by anyone in each group was 97. 
This is what the data show at face value, but there are some other possibilities. 
It could also be that these figures are just the result of the way the data were 
collected or recorded. It’s possible that either participants in the research were 
prevented from providing a value higher than 97, or that values of higher than 
97 were recoded before the data was released.

Figure 6.1 shows the original question from the 2018 LFS. This was very easy 
to find with a quick Google search, and there’s a link to the document at the 
end of this chapter. We can see that the researchers collecting the data combined 
any responses over 97 hours into a single category of ‘97 or more’. So, because 
of the way that these data were collected, we can’t draw any conclusions about 
whether the maximum number of hours worked by those born in the UK is 
different from the maximum number of hours worked by those who were born 
elsewhere. We should also bear in mind that this may also have had an impact 
on the mean values for each group, but it is unlikely to have affected the median 
(which is another good reason to compare the medians rather than the means). 
But, more generally, this shows that we need to be careful when interpreting 
statistical outputs, and that we should always be mindful of how the data have 
been collected and recorded.

There is one more measure of spread that we haven’t discussed yet: the standard 
deviation (SD). We looked at the standard deviation – and the closely related 
mean deviation (MD) – in Chapter 4. As I noted in that chapter, the SD 
doesn’t have a straightforward interpretation, and even though it’s pretty close 
to being the average distance of all the data points from the mean (which 

Figure 6.1: Question on working hours from the 2018 Labour Force Survey (LFS)

  

How many hours per week do you usually work in your (main) 
job/business (please exclude meal breaks)?

97 = 97 or more
99 = don’t know or refusal

IF (EVEROT=2) or (OWNBUS=1) OR (RELBUS=1)

TOTUS1 UK
EQ

FORCED

Applies to those not doing overtime or working for own/relative’s
business

ONS GOV EUL

Source: ONS (2018, p 73)
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is actually what the MD tells you), this can still be a fairly abstract idea when 
you’re looking at one variable on its own.

It’s easier to understand how useful the SD can be once we start comparing 
the distribution of a variable between different groups. This is because it can 
be a useful measure of whether the distribution of a variable is more spread 
out for one group than another, and what the difference in spread is between 
those two groups.

We can see from Table 6.2 that the overall SD of working hours – shown in 
the ‘Total’ row – is 12.99. But the SD for those born in the UK is a bit higher, 
at 13.04, and the SD for those born outside the UK is lower, at 12.66. This tells 
us that there is slightly more variation in the working hours of those who were 
born in the UK than there is among those who were born outside the UK.

As I explained in Chapter 4, the advantage of the SD over measures such as 
the minimum and maximum values and the range is that, like the mean, it is 
calculated using data from every case. Because of this, it is more representative 
of what is happening in your data – or in a particular group in your dataset. It’s 
a measure of the overall spread of the data, not just a measure of what the data 
look like at the extremes.

Before we move on, it’s important to note that limiting the upper value of 
working hours to 97 will have affected both the mean and the SD. However, 
given that it also affected the maximum value and range, the SD is a better 
measure of the overall spread of the data in each group.

Exercise  6.0 will help you practice working out when comparing the 
distributions of different groups is the most appropriate strategy for analysing 
the relationship between two variables.

EXERCISE 6.0

Consider the same variables from the Labour Force Survey (LFS) teaching dataset, 
as we did in the last chapter:

•	 Ethnicity

•	 Religion

•	 Gross hourly pay

•	 Number of children aged 0–4 years

•	 Age when completed full-time education

a)	 Can comparing distributions be used appropriately to analyse the relationship 
between any two of these variables? If so, which variables?

b)	 Why are only those pairs of variables suitable for comparing distributions?

c)	 In each pair, which would be the dependent and which would be the 
independent variable?
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Bringing everything together

So how do we combine all the information that we’ve looked at so far and  
draw some conclusions about the differences in distribution between the 
two groups?

Table 6.3 shows all the measures of distribution that we have discussed. Because 
of the way the data have been collected, the minimum and maximum values 
and the range don’t tell us as much as we’d like, but we can still conclude that 
there are workers from both groups who work only few hours a week and those 
who work 97 hours or more (which is a very long working week).

Given the slightly skewed distribution of working hours and considering the 
issues with data collection discussed above, the medians are probably the most 
useful averages to compare. We can see that the median number of working hours 
for workers born in the UK is 38 and the median for those born outside the UK 
is 40. This suggests a slightly larger difference than we get from comparing the 
means, but the direction of the relationship is the same using either measure, 
and the overall conclusion would be that, on average, those born outside the 
UK work only slightly more hours than those born in the UK.

The SDs give us an idea of how spread out the data on working hours are for 
each group. This is important because it tells us how much working hours vary 
within each group. Or, to put it another way, how similar – or different – the 
people in each group are in terms of how many hours they work.

The SDs in each group are quite similar. Workers born in the UK had a slightly 
higher SD than those born outside the UK. This means that there is marginally 
more variation in working hours for the former group compared to the latter. 
Another way of thinking about this is in terms of how close people’s working 
hours are to the mean number of working hours. People who are born outside 
the UK are a little bit more likely to have working hours that are close to the 
mean than those born in the UK.

Calculating an effect size

As we’ve seen, communicating the findings of statistical analyses often involves 
presenting more than one measure and explaining what story these figures tell us 

Table 6.3: Comparing the distribution of two groups (measures of central tendency and 
spread)

Born in the UK

Working hours

Mean Median SD Minimum Maximum Range

Yes 36.55 38 13.04 1 97 97

No 37.37 40 12.66 1 97 97

Total 36.68 38 12.99 1 97 97
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overall. However, in the case of the analysis we have just done – comparing the 
distributions of a continuous or discrete variable between two groups – there is 
a technique that we can use to combine some of these statistics into an overall 
measure of the difference between the two groups. There are several different 
techniques, all based on the same principles, that can calculate what is called 
a standardised mean difference effect size. The one that we are going to 
use is called ‘Cohen’s d’.

What all these techniques have in common is that they combine the means 
we calculated for each group with the SD for the variable as a whole to create 
a single figure that summarises how different the two groups are in terms of 
the distribution of a variable. For our example, this provides a measure of how 
different the working hours of those born in the UK are compared to those of 
people born outside the UK.

The formula for calculating Cohen’s d is as follows:

(Group 1 mean – Group 2 mean)/overall SD

For our example above, it doesn’t really matter which group is ‘Group 1’ and 
which group is ‘Group 2’. When calculating effect sizes that are only intended 
to describe the differences between groups, I usually subtract the smaller 
mean from the larger mean, so that the result is a positive number. But when 
calculating Cohen’s d, we do need to be sure to use the SD for the variable as 
a whole (although the type of SD used does vary between different versions of 
the standardised mean difference effect size).

If we designate those born outside the UK as Group 1 and those born in the 
UK as Group 2, using the figures in Table 6.3, our calculation would be as follows:

(37.37 – 36.55)/12.99 = 0.06

The answer, our effect size, is very close to zero and suggests that there isn’t 
much difference between the two groups. As is the case with most statistical 
results, there aren’t any hard and fast rules about what a ‘large’ difference would 
be. This depends on the area of study, what would be expected based on previous 
findings, and many other factors. However, it is safe to say that this result means 
that the two groups are very similar in terms of their hours of work.

If we compare the two histograms for the two groups, shown in Figures 6.2 
and 6.3, we can see that the shape of the two distributions is very similar. If we 
laid them on top of each other, almost all of the area of the bars in both charts 
would overlap. This is basically what effect sizes like Cohen’s d do – they give 
us an idea of how much the distributions of the two groups overlap.

In summary, we can say that whether someone was born in the UK or not 
makes only a small difference to the number of hours they work. Those born 
outside the UK work slightly more hours, and there is slightly less variation in 
working hours in this group compared to those who were born in the UK, but 
we haven’t found a great deal of difference between the two groups.
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Students are sometimes disappointed when they find no difference between 
groups, or a very weak relationship between variables. They often think that 
this means that they haven’t found anything out or that the analysis has ‘failed’ 
in some way. This couldn’t be further from the truth. Finding out that there 

Figure 6.3: Histogram for Group 2
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Figure 6.2: Histogram for Group 1
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is very little difference between groups or that a relationship is weak can be 
very important. This is especially the case if you were expecting a difference or 
relationship and are surprised by the result.

Box 6.0: A brief history of the ‘effect size’

The term effect size is used in relation to many different statistical outputs. 
Cohen’s  d is one example of a family of measures called ‘standardised mean 
difference’ effect sizes. These are based around the difference between the means 
in two different groups, with this difference being ‘standardised’ by dividing 
by a standard deviation. These measures are often used to analyse the data in 
studies using experimental designs, with one mean coming from a group that 
received a new treatment (the experimental group) and one group that received 
a conventional treatment or no treatment at all (the placebo group). However, 
they are also used to describe the differences between groups in non-experimental 
research. Other standardised mean difference effect sizes include Glass’s delta and 
Hedges’ g. I have used Cohen’s d here because it is the simplest measure, and is 
well suited to describing the differences between two groups.

A different example

Before moving on to look at comparing the means of more than one group, we’ll 
look at a different analysis from the same LFS dataset. This time we’ll compare 
the hourly wages of men and women. We can see from the results shown in 
Table 6.4 that, unlike with our previous example, there are some noticeable 
differences between the groups. As we are familiar with these outputs from the 
last example, I won’t go over them in so much detail.

The first thing you might notice is that there are fewer cases (9,478) than 
the previous analysis (that included 40,084). This may because people find it 
relatively easy to provide an estimate of the number of hours they work each 
week but may not know exactly how much they earn an hour if they are paid 
a yearly salary. If this analysis was part of a real research project, it would be 
important to do some extra research into the LFS to work out why there is 
a low response rate for this question, and what the implications might be for 
your findings.

Unlike with our previous example, where we wouldn’t expect the groups to 
be of equal sizes, we might expect there to be a similar number of male and 
female participants. We can see from the data in Table 6.4 that we haven’t quite 
got equal numbers in both groups, but the proportions aren’t far off. But we 
don’t need the numbers to be equally balanced – or even in proportion to the 
wider population – to do the analysis. Any calculations we are doing take into 
account the number of cases in each group, so any comparisons will be fair ones.
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In the next column of the table we can see the means. Here there is a noticeable 
difference between men and women, with men earning an average of £16.67 an 
hour and women taking home only £13.25 per hour. There is a slightly smaller 
difference between the medians, but the difference is still in favour of men.

Again, medians might be the best measure, as a histogram I produced told 
me not only that the data are positively skewed (as is often the case with the 
distribution of income), but also that there were some outliers: people who 
earned very high amounts per hour. Regardless of the average used, however, 
the general story is of men being paid more than women.

In this example the minimum and maximum values, and the range, tell us quite 
a lot. The highest hourly rate for men (£349.46) is approaching three times the 
highest rate for women (£128.50). The minimum values are rather odd, being 
less than a pound. As the lowest legal minimum wage (for apprentices) in 2018 
was £3.70, no one should have been earning less than that. However, many 
people work for ‘cash in hand’, and as surveys such as the LFS are very good at 
collecting data on people and activities that may not appear in official records, it 
is likely that some of the lower rates of pay reflect work that takes place ‘off the 
record’. However, the ranges do appear to show that there is greater variation 
in men’s pay than women’s pay, at least at the extremes.

Compared to the range, the SD provides a much better idea of the general 
spread of hourly pay in each group. We can see that men’s pay varies more than 
women’s pay by a considerable amount. This means that not only is women’s 
pay lower on average, but that it is generally closer to the female average than 
men’s pay is to the male average.

If we calculate an effect size (Cohen’s d ) using the formula we used previously 
and inputting the data from Table 6.4 we get a result of 0.32 in favour of men. 
This is a much more substantial difference than we saw in the last example, 
and suggests that there is a considerable difference between the amount men 
and women are paid.

What effect sizes look like

Figure 6.4 shows what different effect sizes look like in terms of how much 
overlap there would be between the two groups if the histograms of their 
distributions were laid over each other. Think of the curves in the diagrams as 
tracing the tops of the bars in a histogram for each group. The horizontal black 
line at the top of each graph shows the distance between the means of the two 

Table 6.4: Comparing the distribution of hourly wages between men and women

Hourly wage

N Mean Median SD Minimum Maximum Range

Men 4,468 16.67 13.45 12.62 0.38 349.46 349.08

Women 5,010 13.25 10.94   8.13 0.56 128.50 127.94

Total 9,478 14.86 12.03 10.63 0.38 349.46 349.08
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groups. (The numbers on the axis are arbitrary and just used for illustration.) 
Our effect size of 0.32 would look like something in-between the first two 
graphs. Although, as I mentioned earlier, there are no hard and fast rules about 
what counts as a ‘large’ effect, an effect size of 0.32 in differences in pay between 
groups would be considered reasonably large in most social science disciplines. 
And going back to the figures in Table 6.4, a £2 to £3 difference in hourly 
wages can make a large difference in terms of quality of life and the ability to 
balance a household budget.

Figure 6.4: Visualisation of different effect sizes calculated using Cohen’s d
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Source: Martin Héroux



Straightforward Statistics

110

Box 6.1: Cohen’s d, the normal distribution and standardisation

You might have noticed that, in Figure  6.4, the graph showing effect sizes has 
distributions that appear to be perfectly normally distributed. Strictly speaking, 
Cohen’s d and other similar standardised mean difference effect sizes assume that 
the data in each group are normally distributed. Because these effect sizes are 
standardised, the amount of overlap between the two groups can be calculated 
for any particular effect size. This overlap would always be the same, for any stated 
effect size, regardless of the variable you are using or the scale you used to measure 
that variable (a Cohen’s d of 0.5 will always mean 67% overlap in the groups, for 
example).

However, this is only true if the continuous variable in your analysis is normally 
distributed for both groups. If you use Cohen’s d or other similar measures with 
data that aren’t normally distributed, the overlap between the two groups won’t 
be quite the same as the figure you read in a textbook. You can still use this type 
of effect size with data that aren’t normally distributed – they are still an indicator 
of the size of the effect – but you should bear in mind that the results won’t 
necessarily have all the properties of, or be directly comparable with, effect sizes 
calculated with variables that are normally distributed.

Comparing distributions of more than two groups

So far, we’ve looked at two examples comparing the distribution between 
groups of a continuous or a discrete variable. In both of those examples, the 
categorical variable (sometimes referred to as the grouping variable in these 
kinds of analysis) had only two categories. But, as we saw in Chapter 5, many 
of the categorical variables we are interested in have more than two categories. 
This isn’t a problem, as we can still compare the distribution of a continuous 
variable between more than two groups. The only difference is that our tables 
become larger and, as I will explain later, we can’t calculate an effect size like 
Cohen’s d (at least not to compare more than two groups at once).

I conducted another analysis using the same LFS data, this time looking at the 
relationship between hourly wages and ethnicity. The results of the analysis are 
presented in Table 6.5. We can interpret the results in the same way as we did 
for the previous two examples. As usual, we also need to look for any issues in 
the data that might affect our analyses, and in this example these are different 
to those that arose in our previous analyses.

If we start with the means, we can see that there are some quite stark differences 
between the ethnic groups. LFS participants in the Bangladeshi ethnic group 
had the lowest mean hourly wage of £9.82, while those in the Chinese group 
earned nearly twice as much on average, with a mean of £18.79. The overall 
mean was £14.86, with quite a few groups having values close to this figure.
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As we already know that the distribution of hourly wages in our LFS data has 
a positively skewed distribution, and we also know that there are outliers, the 
median is the most useful measure to compare. As you can see in Table 6.6, 
while all the groups have a lower median than their mean, the order of the 
groups is slightly different depending on the average that we use. The choice of 
average to use doesn’t only affect our estimates of how much different groups 
are paid; in this case, it also changes the relative position of some of the groups 
in terms of the highest and lowest wages. This underlines how important these 
decisions can be, and why we should always pay attention to how the data for a 
continuous or a discrete variable are distributed. (It also shows why ‘comparing 
means’ isn’t a very useful description of this kind of analysis.)

Moving on to the measures of spread, we can interpret the data in the same 
way as in our previous examples. We’ve already highlighted some issues with 
the minimum values for this variable, so we won’t pay much attention to those 

Table 6.5: Comparing the distribution of hourly wages between several groups

Ethnicity

Hourly wage

N Mean Median SD Minimum Maximum Range

White 8,496 14.89 12.03 10.46 0.38 349.46 349.08

Mixed/Multiple ethnic groups 117 15.17 12.33   9.55 2.25   57.70   55.45

Indian 230 16.40 12.13 18.63 1.73 259.63 257.90

Pakistani 99 13.24 10.10 10.62 0.85   91.11   90.26

Bangladeshi 28 9.82   7.76   5.17 1.44   21.26   19.82

Chinese 58 18.79 15.67 12.70 3.75   61.50   57.75

Other Asian 99 13.04 10.02   8.53 1.60   48.58   46.98

Black/African/Caribbean/
Black British

238 13.56 11.87   7.30 3.35   60.00   56.65

Other ethnic group 108 13.88 11.30   8.16 3.89   40.06   36.17

Total 9,473 14.86 12.03 10.63 0.38 349.46 349.08

Table 6.6: Order of ethnic groups’ hourly wages using different averages

Mean Median

1. Chinese Chinese

2. Indian Mixed/Multiple ethnic groups

3. Mixed/Multiple ethnic groups Indian

4. White White

5. Other ethnic group Black/African/Caribbean/Black British

6. Black/African/Caribbean/Black British Other ethnic group

7. Pakistani Pakistani

8. Other Asian Other Asian

9. Bangladeshi Bangladeshi
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figures. However, the maximum values are interesting because they vary so much. 
They range from £21.26 per hour in the Bangladeshi group to £349.46 in the 
White group. It’s worth pointing out that the £349.46 figure is an outlier, as 
is the £259.63 for the Indian group, but even ignoring these two figures there 
is considerable variation between the other groups. It’s also interesting that 
the groups with the highest medians didn’t always have the highest maximum 
values. The Chinese group, for example, had the highest median hourly pay, 
at £15.67. But the maximum value for this group was £61.50, much lower 
than three other groups.

There is also variation in the SD. There is a general pattern of higher SDs 
among the highest paid groups, but the order of variation doesn’t strictly follow 
the order of pay (measured by either the mean or median). The greatest variation 
– by some distance – is among the Indian group and the least variation is in 
the Bangladeshi group. Although outliers affect the SD in a similar manner to 
the mean, the SD is still a useful indicator of the overall spread of the values.

Now that we’ve looked at the averages and measures of spread, let’s look at the 
number of cases in each of the groups. This is something that you would have 
done in your exploratory univariate analysis (see Chapter 3), but it’s important to 
take forward what you’ve learned from univariate analysis to inform the bivariate 
analysis that you do later. The most important point here is that the number of 
cases in some of the ethnic groups is quite small. The Bangladeshi group stands 
out, with only 28 cases, but the Chinese group is also quite small, with 58 cases. 
This is important because, notably, these are the lowest and highest paid groups.

The reason we need to look out for small groups is because small numbers are 
volatile. This is an idea that is mentioned throughout this book and relates to 
a central principle of statistical analysis: the relative size of different groups isn’t 
usually important, but small numbers of cases in any group can be a problem. 
This is because a group with a small number of cases is much more sensitive 
to any changes in the data than a large group. This means that whether a case 
is included in any particular analysis (or in a study in the first place) can have a 
relatively large impact on what the results might be.

To show you what this means in practice I’ve compared two groups from our 
dataset: Bangladeshi and Black/African/Caribbean/Black British. The first group 
has only 28 cases, whereas the second group has more than eight times that 
number, at 238. I removed the individuals with the three lowest hourly wages 
from each of the groups. You can see the difference this made in Table 6.7.

Unsurprisingly, removing the three cases with the lowest wages from the 
smaller group made more difference to the average for that group than taking 
the three lowest paid cases from the larger group did for that group’s average. 
The mean for the Bangladeshi group rose from £9.82 per hour to £10.61 per 
hour (a change of £0.79) while the mean for the Black/African/Caribbean/
Black British group only rose from £13.56 to £13.69 (a change of £0.13). 
Because both the changes were less than a pound, it might seem at first that the 
difference in changes between the two groups isn’t important. But the difference 
in relative terms is actually very large: the effect on the Bangladeshi group was 
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six times greater. And because we are often interested in relative differences, and 
in change, this could have an impact on the conclusions we make.

The other important consideration is what we’re measuring. The change that 
removing these cases made to the previous difference between the two groups 
might only be £0.66, but the variable is hourly pay. In a 37-hour week, this 
translates to a difference of £24.42, and over a year it would be £1,267.20. 
And this difference has been created by only three people in each group being 
excluded from the analysis. Non-response, drop-out and missing data are 
common in research and aren’t usually random: losing data at one end of a 
distribution isn’t an unlikely scenario. In terms of this example, people being 
paid cash in hand may be reluctant to provide information about their earnings 
because of possible implications for tax or benefits. And at the other end of the 
scale, high earners may be unwilling to divulge information about some sources 
of income because of a desire to avoid taxes. It’s important to avoid conducting 
analyses with small groups, if at all possible, in order to reduce the volatility 
associated with small numbers. It may be necessary, in some circumstances, 
to collapse two or more categories into a single group, or even to completely 
exclude very small groups from your analysis.

(Some readers might have noticed that in this example the median values 
were impacted much less by the removal of these three cases than were the 
mean values. While median values can be less volatile than mean values, this 
isn’t always the case – it will depend on the distribution of the data – so they 
shouldn’t be seen as a universal solution when small numbers of cases.)

Effect sizes with more than two groups

We saw earlier that standardised mean difference effect sizes, such as Cohen’s d, 
could be a useful way of summarising, in a single figure, the difference in the 
distribution of a variable between two groups. But in our latest example we 
have more than two groups. So can we still use this type of effect size? The 
answer is yes, and no.

This type of effect size can only be used with two groups, so you would 
have to choose two groups to compare to use this technique. In addition, you 

Table 6.7: How the volatility of small numbers can affect the results of statistical analyses

Ethnicity

Hourly wage

N Mean Median SD Minimum Maximum Range

Bangladeshi 28   9.82   7.76   5.17 1.44   21.26   19.82

Bangladeshi less 3 cases 25 10.61   8.00   4.88 6.35   21.26   14.91

Black/African/Caribbean/ 
Black British

238 13.56 11.87   7.30 3.35   60.00   56.65

Black/African/Caribbean/ 
Black British less 3 cases

235 13.69 11.95   7.26 4.26   60.00   55.74

Total 9,473 14.86 12.03 10.63 0.38 349.46 349.08
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couldn’t just use the data from Table 6.5 to do the calculation. The means from 
each of the two groups would be fine, but the ‘total’ SD in that table is for all 
the groups combined. The SD that you would need for the calculation would 
be the combined SD for only the two groups you were comparing. This figure 
can be generated relatively easily in most statistical software packages, but it’s 
important that you remember to do this.

Summary

In this chapter we’ve seen how you can analyse the relationship between one 
categorical variable and one continuous or discrete variable. All the examples 
have used real datasets, and I’ve highlighted some of the issues that can arise 
when you’re using real data. I also emphasised the importance of doing more 
than just ‘comparing means’, and using the various measures of central tendency 
and spread to tell you about the differences between groups. We also saw that, in 
certain circumstances, standardised mean difference effect sizes could be a useful 
way of summarising the different distributions of a variable between two groups.

In the next two chapters we look at techniques for analysing the relationship 
between two continuous or discrete variables.
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http://www.ons.gov.uk/file?uri=/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/methodologies/labourforcesurveyuserguidance/lfsvolume2jm18.pdf
https://scientificallysound.org/2017/07/27/cohens-d-how-interpretation
https://youtu.be/vw8pRKYTY7k
https://youtu.be/1mMRpfeWkVM
http://www.ons.gov.uk/file?uri=/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/methodologies/labourforcesurveyuserguidance/lfsvolume2jm18.pdf
http://www.ons.gov.uk/file?uri=/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/methodologies/labourforcesurveyuserguidance/lfsvolume2jm18.pdf
https://scientificallysound.org/2017/07/27/cohens-d-how-interpretation
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Comparing distributions between groups

Answers to exercises

Exercise 6.0
a) The following combinations of variables are suitable for comparing distributions:

Dependent variable	 Independent variable
Gross hourly pay	 Ethnicity
Gross hourly pay	 Religion
Number of children aged 0–4 years	 Ethnicity
Number of children aged 0–4 years	 Religion
Age when completed full-time education	 Ethnicity
Age when completed full-time education	 Religion

b) Each pair of variables has one categorical variable and one continuous (or 
discrete) variable.

c) The dependent variables are all continuous or discrete and the independent 
variables are categorical.
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7

You’re so predictable: using correlations

WHAT IS THIS CHAPTER FOR?
In this chapter I introduce some techniques for bivariate analysis, called 
correlations, which measure the predictability of a relationship. I explain how 
these techniques work, the situations in which they can be used, and how 
the results should be interpreted. Although I concentrate on techniques that 
can be used with continuous or discrete variables, I briefly introduce some 
techniques for other kinds of data. The concepts in this chapter are central 
to understanding regression analysis, which is covered next, in Chapter 8.

WHAT DOES IT COVER?
I focus on the idea of correlation, and look at the Pearson correlation 
coefficient in particular. I also cover other types of correlation, such as 
Spearman’s rho, that are used when your variables are not continuous 
or discrete. I discuss the importance of using scatterplots to examine 
relationships visually, and of thinking about what a relationship might look 
like before you conduct any analysis.

WHAT WILL YOU LEARN?
•	 When you can and can’t use different kinds of correlational analysis
•	 The strengths and weaknesses of correlation techniques
•	 How to interpret the results of correlation

WHAT CONCEPTS AND TECHNIQUES ARE COVERED?
•	 Positive and negative relationships
•	 Linear and non-linear relationships
•	 Strength of relationship
•	 Predictability
•	 Line of best fit
•	 Pearson’s r
•	 Spearman’s rho

You’ve probably heard the word ‘correlation’ before. And it’s likely that you’ve 
heard it used incorrectly. Journalists, politicians and even academics often use this 
term to refer to any kind of link between two different things. But, as I noted in 
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Chapter 1, this word has a very specific meaning, and in this chapter you’ll learn 
exactly what correlation is and how this type of analysis can be useful to you.

A correlation is a very useful way of describing a relationship between two 
variables, because it provides a measure of how much variation in one variable 
is matched by variation in the other: it tells you about the predictability of that 
relationship. We’ll look at exactly what this means later in this chapter and 
discuss when you can – and can’t – use correlations.

There are many different methods for establishing the level of correlation 
between two variables, but we’ll start with one of the most commonly used 
measures, the Pearson correlation coefficient (often called Pearson’s r). It’s called 
‘Pearson’ after its inventor, Karl Pearson, and is best suited to analysing the 
relationship between two continuous variables, although it can also usually be 
used with discrete data. You shouldn’t use this technique with categorical data 
of any kind, though. There are correlation coefficients that can be calculated 
for certain types of categorical data, and we’ll discuss some of these later in 
this chapter.

What is a correlation?

If I wanted to look at the relationship between the time my students spent 
studying and how well they did in an assessment, I could use a correlation to 
do this. The result – a correlation coefficient – would tell me how closely the 
amount of time students spent studying was related to the mark they achieved.

As with any study, there are things I’d have to think about when collecting the 
data. I’d have to be careful how I measured ‘studying’, and only count studying 
that was relevant to my course. If I was asking students to report their time 
studying, I might suspect that some of them wouldn’t be completely honest 
about this. But putting these issues aside, the data I collected would be suitable 
for calculating Pearson’s correlation coefficient because both variables are the 
appropriate level of measurement.

As we saw in Chapter 2, time spent studying is a continuous variable. My 
students could record the time they spent studying using a stopwatch or timers on 
their phones. I probably wouldn’t need them to record this to the exact second, 
but the fact that time can be meaningfully divided up into smaller and smaller 
units on a continuum – and we have accurate ways of measuring this – means 
that the variable is continuous and so is the appropriate level of measurement 
for Pearson’s correlation.

As I mark my students’ assignments out of 100%, ‘assignment mark’ isn’t 
truly continuous. For one thing, it’s ‘bounded’, because it can’t be higher 
than 100 or lower than zero. But, more importantly, I usually only give marks 
in percentages as whole numbers. Technically, this means that this variable is 
discrete. But these scores share some characteristics with continuous data, as it 
would make sense in theory to give someone a mark of 55.4% (and students 
sometimes end up with such a figure when a mean average mark is calculated 
from two or more marks). The only reason I don’t tend to mark in fractions of 
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a per cent is because I don’t believe I can differentiate students’ performance 
that accurately. So, even though this variable is discrete rather than continuous, 
it still meets the requirements for Pearson’s correlation.

Now that we’ve checked that our two variables are suitable for analysis using 
Pearson’s correlation, we could go ahead and calculate this statistic, which would 
always be a figure between –1 and +1. But before we look at the results of this 
calculation in detail, it’s worth thinking some more about what we’re really 
doing when we use correlations.

Visualising correlation

So how does correlation work? A good way to understand correlation is to 
think about it visually. If I entered each of my students’ assessment results into 
a spreadsheet, alongside the number of hours they had spent studying for our 
class, I would have two columns of numbers. For each student I would have a 
percentage between 0 and 100 for their assessment score and a value representing 
the number of hours (or minutes, seconds, and so on) they had studied. I could 
create a scatterplot like the one in Figure 7.0, in which every dot represented 
a student with a particular assessment score and a particular number of hours 
of study.

A correlation coefficient works out the extent to which variation in one 
variable matches variation in another. This is quite a difficult idea to understand 
at first, so it can be easier to visualise by thinking about it in terms of how close 
the points on a scatterplot are to a straight line. As well as plotting the points on 
the graph, I asked the software package to draw what is called a line of best 
fit through these data points to help you see this. The closer the data points 
are to a straight line, the easier it would be to predict values of one variable just 
by knowing the values of the other variable – in this case, to predict a student’s 
mark in a test from the time they spent studying.

Figure 7.0: The relationship between hours studied and assessment score

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12
Hours studied

Sc
or

e 
in

 a
ss

es
sm

en
t (

%
)



Straightforward Statistics

120

Although I have drawn a graph to present the idea of a correlation, when you ask 
the computer software to calculate a correlation, it only uses maths to calculate 
the correlation coefficient. The value of Pearson’s correlation for the data shown 
in Figure 7.0 is +0.61. The result of the calculations for Pearson’s correlation 
is called Pearson’s r, so we would say that r=0.61. I’ll discuss what this means, 
and how you interpret Pearson’s r, in the next section. But before reading any 
further, you might want to try answer the questions in Exercise 7.0. I’ve written 
a detailed discussion of the answers to these questions at the end of the chapter.

EXERCISE 7.0

Look at the scatterplot in Figure 7.0. Remember that each of the dots on the graph 
represents a different student. You can trace a line from each point straight down 
to see how long they studied for, and straight across to the left to see what mark 
they got in the assessment.

Try to answer the following questions:

a) 	� How would you describe, in everyday language, the relationship between how 
long a student spent studying and the mark they got?

b) 	� How accurately, in general terms, do you think you’d be able to predict a 
student’s mark if you only knew how long they studied for?

c) 	� Thinking about your answers to questions (a) and (b), do you think it’s 
worthwhile to spend a lot of time studying for an assessment?

If we used the correct technical terms, we’d say that there is a positive 
relationship between the two variables: students who study for longer tend 
to get better marks in their assessment. However, it’s not a perfect relationship: 
some students studied for longer than others but ended up getting a lower mark.

So why do we need to calculate a correlation coefficient at all? Wouldn’t it 
be easier just to draw a scatterplot like the one in Figure 7.0? Couldn’t we just 
look at this scatterplot and then describe what we see?

It is usually a good idea to have a look at your data on a graph or chart, and 
this is something we’ll return to at various points in the book. However, in 
some cases, scatterplots won’t show you a clear picture of a relationship for the 
following reasons.

Both scatterplots and correlation coefficients can give you useful information. 
But a correlation coefficient can often tell you things that you wouldn’t be able 
to work out by simply looking at a scatterplot. Because a correlation is calculated 
mathematically, it gives you a precise figure that is understood universally and can 
be used to make comparisons between the strengths of different relationships. 
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You can, of course, compare scatterplots from different analyses, but unless the 
relationships they show are very similar or very different, it can be difficult to 
describe what they have in common and what distinguishes them from each 
other. This is partly because, in some situations, statistical analyses are better 
at identifying relationships than the human eye and brain, and partly because 
of the kind of data we use in social research and the relationships that we tend 
to discover.

Many of the relationships in social research aren’t very strong and so can 
be difficult to see on a scatterplot. Although, as we will see in Chapter 9, the 
human brain is very good at picking out certain kinds of visual patterns, the 
relationship between two variables shown in a scatterplot is often very difficult 
to see clearly. But correlational analysis works out the relationship between two 
variables mathematically, and so it can identify (and quantify) relationships that 
would otherwise be very difficult – if not impossible – to detect by eye.

It’s also the case that we sometimes analyse datasets that contain a very large 
number of cases. There are lots of useful datasets that contain many thousands 
of cases, and sometimes even several million cases. When variables from very 
large datasets are plotted against each other on a scatterplot, you often just end 
up with a big ‘blotch’ on your graph. This is because there are so many points 
on the graph – each representing a single case – that, however small they are 
made, many will overlap with each other and obscure the relationship between 
the two variables. In these situations, a scatterplot provides you with very little 
useful information about the strength, or even the direction, of a relationship.

Figure 7.1 shows a weak correlation in a dataset with several thousand cases. As 
you can see, it would be impossible to work out the strength of the relationship 
just by eye. However, a correlation coefficient (in this case, r=0.085) can give a 

Figure 7.1: A weak correlation in a large dataset (r=0.085)
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precise idea of this. In the next section, I explain how to interpret correlation 
coefficients such as this one.

Negative and positive correlations, and what they can tell you

You might be able to work out the direction of a relationship by looking at a 
scatterplot like the one in Figure 7.0 but, in cases like that shown in Figure 7.1, 
even the direction of the relationship can be difficult to see. It’s very hard to 
estimate exactly how strong a particular relationship is just by looking at a 
scatterplot, and it’s also quite challenging to communicate to others exactly 
what you’ve seen. But a correlation coefficient can tell you, and those reading 
your research, both the direction of a relationship and exactly how closely two 
variables are related.

You can compare one correlation coefficient with another because it’s what’s 
called a standardised measure. We’ve seen standardised measures before – the 
standard deviation is an example of one. But you don’t need to worry too much 
about what this means: for the moment it’s enough to say that a correlation 
of +0.61, for example, means exactly the same whether you are looking at 
the relationship between age and income or the relationship between coffee 
consumption and blood pressure. It doesn’t matter that these two pairs of 
variables are very different to each other, and it wouldn’t matter what unit of 
measurement we used: a correlation of +0.61 always means the same thing in 
terms of how closely two things are related. In terms of the strength and direction 
of a relationship, a Pearson’s correlation coefficient means the same to a physicist 
as it does to an archaeologist, a geographer or a sociologist.

The plus sign in front of the 0.61 means it’s a positive correlation. In a positive 
correlation one variable tends to go up as the other rises, and vice versa. In the 
example shown in Figure 7.0, this means that students’ scores in their assessments 
tend to be higher if they spend more time studying. The figure of 0.61 refers 
to how closely the variation in one variable matches the variation in the other. 
It’s a measure of how predictable the relationship between the two variables is.

The minus and plus signs are very important. The plus sign isn’t always shown 
in the output of most statistical packages, or in research reports, so if a correlation 
coefficient doesn’t have a minus sign, you can usually assume that it’s positive. 
I’ve included them here in the text just to make things easier. We’ve already 
looked at a positive relationship so we’ll now see how negative correlations 
are different. In a negative relationship, larger values for one variable are 
associated with smaller values for the other. There might, for example, be a 
negative relationship between time students spend playing video games and the 
amount of time they spend studying in the library: students who spend more 
time playing video games would tend to spend less time studying in the library 
(see Figure 7.2).

Pearson’s r always takes a value between –1.0 and +1.0. A correlation of +1.0 
or –1.0 is a perfect correlation and means that the variation in one variable 
matches the variation in another variable exactly. Using our example, this 
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would mean that you could precisely predict a student’s assessment score by 
using only information about how long they had studied (and vice versa). In a 
perfect correlation, all the points on a scatterplot lie on a perfectly straight line 
(see Figure 7.3). In contrast, a correlation coefficient of zero would mean that 
there was no relationship at all between the two variables. The scatterplot for 
a correlation of zero would just look like a random scattering of data points.

It’s important to remember that a correlation of –1 is just as strong as a 
correlation of +1; the only difference is the direction of the relationship. Both 
relationships would show as a perfect straight line on a scatterplot, but they would 

Figure 7.2: A negative relationship
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Figure 7.3: A perfect linear relationship
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be sloping in different directions. On a conventionally formatted graph, where 
the x-axis and y-axis meet at zero on the bottom left, the line representing 
a positive correlation would slope upwards from left to right and the line 
representing a negative relationship would slope downwards from left to right.

Correlations of zero, +1 or –1 are very rare in practice. It’s much more likely 
that you will get a figure in between these points, and so usually correlations are 
stated to one or two decimal places. You’ll find various guidelines in textbooks 
stating what constitutes a ‘strong’, ‘medium’ or ‘weak’ correlation, but these 
definitions are arbitrary and not always useful in practice. For now, the most 
important point to remember is that correlations have a maximum value of +1 
or –1 and a minimum value of zero.

Non-linear relationships

One of the limitations of the Pearson’s correlation coefficient is that it’s only 
suited to identifying linear relationships. Linear relationships, as the name 
suggests, are relationships that can be best described on a graph by using a straight 
line. Both Figures 7.0 and 7.3 show linear relationships between the number of 
hours a student has spent studying for an assessment and the score they achieved 
in that assessment. Both datasets are completely fictional, but I’ve used them here 
to show some features of a linear relationships. In Figure 7.3, the line that I’ve 
asked the software to draw on the graph, called the line of best fit, goes through 
all the data points (represented by the circles). This is because it is a perfect linear 
relationship. This means that you could perfectly predict how well a student 
had done in their assessment using only data on how long they spent studying. 
However, in reality, data are more likely to look like what we see in Figure 7.0. 
In these data, the amount of time spent studying isn’t a perfect predictor of how 
well a student did in their assessment. However, the relationship is still roughly 
a linear one: it seems to be the case that, on average, assessment scores increase 
with time spent studying at approximately the same rate.

There are plenty of reasons to suspect that, if we actually examined real data, 
the relationship between how many hours students spend studying and the mark 
they achieve in their assessment might not be linear. First, there is the issue of the 
assignment being marked out of 100 – however many hours you study, you can’t 
score more than 100%. The dependent variable has what’s called a ‘ceiling’, so 
there is a limit to the highest mark you can attain. Having this kind of ‘ceiling’ 
for only one of the variables can lead to relationships becoming non-linear.

There’s also the issue of what are called ‘diminishing returns’. Not every hour 
that you study is likely to have the same value in terms of increasing your mark. 
The difference between having done no study at all and having done two hours 
study is likely to be quite large in terms of your ability to take the test. But the 
difference between having done 50 hours of study and 52 hours of study is 
unlikely to make as much difference to your outcome.

Before we draw any conclusions from the results of correlational analysis, it’s 
important for us think about these kinds of issues and to consider whether we 
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would expect the relationship we are examining to be linear. If the relationship 
is not linear, but we calculate a Pearson’s correlation coefficient anyway, we 
run the risk of misinterpreting the relationship between the two variables. 
To see how that might happen, and how it could be misleading, let’s look at 
some examples of non-linear relationships.

Anscombe’s quartet is a famous, and very useful, illustration of this problem. 
The ‘quartet’ refers to the four different scatterplots shown in Figure 7.4. They 
were created by Francis Anscombe and published in 1973.

As you can see, these scatterplots show four very different relationships between 
four pairs of variables. But you wouldn’t guess this if you just looked at the 
statistics. The means of the x values are all the same, as are the means of the y 
values. Variation from the mean is also similar for all the x variables as well as 
for all the y variables. However, most importantly for our current discussion, 
the Pearson’s correlation coefficient for all four pairs of variables is 0.816. If you 
had simply calculated correlation coefficients without first conducting some 
exploratory univariate analyses and then creating some scatterplots, you might 
have mistakenly concluded that the relationships between the variables in all 
four datasets were identical.

Before going on to look at the lessons we can learn from Anscombe’s quartet, 
it’s worth looking at each of the four scatterplots and trying to work out what 

Figure 7.4: Anscombe’s quartet
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is going on in each one. I’ve written Exercise 7.1 to help you with this. The 
answers are at the end of the chapter.

EXERCISE 7.1

Look carefully at the four scatterplots in Figure 7.4.

a)	 How well does the line in each graph represent the pattern in the data?

b)	 How would you describe the pattern taken by the data in each graph?

We’ve seen that Pearson correlation coefficients can provide very specific 
information about both the direction and the predictability of a relationship. 
However, as Anscombe demonstrated, if you aren’t sure that the relationship is 
a linear one, then these coefficients can be misleading. And if you have a lot of 
cases, or there is only a weak relationship between the variables, you may not 
be able to see whether the relationship is linear by looking at a scatterplot. So 
what should you do when you have two continuous or discrete variables you 
want to analyse? You might find the following guidelines helpful:

a)	 Always think about the nature of the relationship first. Have you read 
anything that has provided useful information about the relationship?  
What does your everyday understanding of the world suggest? Based on  
what you already know, does it make sense that this relationship would 
be linear?

b)	 Examine the relationship visually by creating a scatterplot. If you have a 
hunch about what shape the relationship might be, you can look for evidence 
of this in the scatterplot. However, this may not be very helpful if you have 
lots of cases and/or the relationship is weak.

c)	 If, after completing tasks (a) and (b) from Exercise 7.1 you still believe 
that the relationship is likely to be linear, you can go ahead and calculate a 
Pearson’s correlation coefficient. But always bear in mind when interpreting 
your results that, unless you have clearly verified this on a scatterplot, there’s 
still a chance that the relationship isn’t linear.

Interpreting predictability: turning r into r-squared

I wrote earlier in this chapter that lots of textbooks provide guidelines about 
what counts as a ‘strong’ or ‘weak’ correlation. But I also warned you that these 
guidelines are fairly arbitrary and it can be quite challenging to communicate 
exactly what a particular correlation coefficient means to people who are 
unfamiliar with statistics. One of the problems with Pearson’s r is interpreting 

.
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it in ‘real-world’ terms. We know that a correlation of r=0.85 is stronger than 
one of r=0.61, but what do either of these actually mean?

A measure that is very important in the next chapter, where we discuss 
regression analysis, is called r-squared (r2). This measure is, quite literally, r, 
squared: Pearson’s r multiplied by itself. Its technical name is the coefficient 
of determination, but you probably won’t hear many people call it that. 
Although it’s simple to calculate – you can turn Pearson’s r into r-squared just 
by multiplying r by r – it’s actually very useful. This is because it has a much 
more intuitive meaning than Pearson’s r.

R-squared is intuitive because it can be interpreted in terms of percentages. It 
describes the percentage of variation in one variable that is matched by variation 
in the other variable. If we took the two figures above, r=0.85 and r=0.61, we 
can turn these into r-squared values just by using a calculator:

0.85 × 0.85 = 0.723
0.61 × 0.61 = 0.372

Our first r-squared value is just over 0.72. That would mean that around 72% 
of the variation in one of our variables is matched by variation in the other 
variable. So, if we were looking at the relationship between caffeine intake and 
blood pressure, this would mean that 72% of the variation in blood pressure was 
matched by variation in caffeine intake (and vice versa). We must remember, 
however, that neither Pearson’s r nor r-squared tell us whether changes in people’s 
blood pressure causes them to increase their caffeine consumption or the other 
way around (although you might want to think about which possibility would 
be mostly likely, and why you think this would be the case).

Our second r-squared is just over 0.37 and can be interpreted in the same 
way. If you remember, 0.61 was the Pearson’s r value in the relationship between 
time spent studying and score on a test, shown in the scatterplot in Figure 7.0. 
The r-squared value of 0.372 tells us that around 37% of the variation in test 
scores was matched by the variation in time spent studying. (In this example, 
you should be able to easily guess which variable is likely to have led to change 
in the other.)

You might remember from your school maths lessons that if you multiply a 
negative number by a negative number (or ‘square’ it) you always end up with 
a positive number. If, for example, you multiply minus 2 by minus 2, you get 
plus 4. Because of this, an r-squared value is always positive, even for a negative 
correlation. This makes sense because it measures the percentage of the variation 
in one variable that is matched by the variation in another variable, and this 
cannot be less than zero (that is, no match at all).

R-squared is a very useful measure, and it’s one we’ll discuss more in the 
next chapter. If you conduct a Pearson’s correlation in a software package, 
you’ll always get a value for r, but an r-squared value may not be automatically 
calculated for you. This isn’t really a problem, however, as it’s easy to calculate 
r-squared yourself once you have the value for Pearson’s r.
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Correlations for ordinal data and non-linear relationships

So far, the only correlation coefficient we’ve looked at is Pearson’s  r. I’ve 
concentrated on this particular measure for two reasons: it’s one of the most 
commonly used correlation coefficient, and it’s also central to the technique of 
regression analysis that we’ll be discussing in the next chapter. However, there 
are other correlation coefficients that can be used in different situations.

Spearman’s rho correlation coefficient (also called Spearman’s rank) can be 
used when one or more of your variables is ordinal rather than continuous 
or discrete. When a variable is ordinal, it works by considering the rank of a 
case – where it is in relation to the other cases – rather than its absolute value. 
Spearman’s coefficient can be used with the following types of variable pairs:

•	 One ordinal variable and one continuous/discrete variable
•	 Two ordinal variables
•	 Two continuous/discrete variables

An example of a relationship of the first type would be a student’s month of 
birth in the school year and their performance in a test, marked as a percentage 
score. This is an area of research that has gained a great deal of attention in recent 
years. Imagine that data were available on a student’s date of birth, but only for 
the month in which they were born. (This might be for issues of confidentiality, 
for example, to prevent individuals being identified.)

In the dataset, students would be ranked according to how near, or far away, 
their month of birth was from the start of the school year. The other variable 
would be a percentage score in the test for each student. Spearman’s rho would 
be the most appropriate correlation to use here, as one variable would be ordinal 
and the other would be discrete.

You might wonder why the month of birth variable in this example must be 
ordinal. Couldn’t we just give those students who were born in the first month 
of the school year a score of zero and the other students a value based on how 
many months later they were born? Wouldn’t this create discrete data that would 
be suitable for analysis with Pearson’s r?

We could do this, but we would be misrepresenting the true level of 
measurement for this variable. As we don’t know exactly when in each month 
students were born, we can’t really count the number of whole months they are 
away from the beginning of the school year, so we can only create an ordinal 
measure. For example, a student born on the 1st of October was born almost a 
month before a student born on the 31st of October but would be in the same 
category (‘October’). In contrast, a student born on the 30th of September 
would be born only one day before the student whose birthday was on the 
1st of October, but they would be in a different category (‘September’). So the 
categories aren’t providing a true measurement of the amount of time from 
the beginning of the school year that students were born. They are not ‘equal 
interval’ data so they can only provide us with an indicator of order. To get 
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discrete data we would need to have their date of birth (and for true continuous 
data, we would need their time of birth, too!).

If we were looking at the same issue but could only get data on a student’s 
month of birth and their academic performance measured as a rank – from the 
highest attaining student to the lowest – we could still use Spearman’s rho. We 
would have two ordinal-level variables, which meets the criteria for this kind 
of analysis.

The requirements for using Spearman’s rho are a bit more forgiving than 
for Pearson’s r, but there are still some rules about the distribution of the data. 
Although the relationship doesn’t have to be linear, it does have to be what’s called 
monotonic. This means that, overall, the relationship between the variables 
must be going in roughly the same direction. So if students’ attainment tends 
to increase in line with a later month of birth, this relationship doesn’t have to 
be linear, but this trend can’t change to decreasing with later months of birth 
part-way through the school year.

In Figure 7.5 the graphs A and B show monotonic relationships. You can see 
that the lines are by no means straight – and so the relationship between the 
two variables is not linear – but the slopes don’t change their angle to the extent 
where the direction of the relationship would change from positive to negative. 
Graph C, however, is non-monotonic because, depending on the value of the 
variables, the relationship changes from positive to negative. While Spearman’s 
rho would be fine to use with the relationships shown in graphs A and B, it 
wouldn’t be suitable for the relationship in graph C.

You’ll notice that in the list I made of situations where Spearman’s rho can be 
used, I included the example of a pair of continuous or discrete variables. You’d 
usually use Pearson’s r for this, but in some circumstances Spearman’s rho can 
be better. If you have two continuous or discrete variables, and your scatterplot 
indicates (or your thinking suggests) that the relationship is not linear, but it is 
monotonic, then Spearman’s rho would be the better measure to use. If the 

Figure 7.5: Monotonic and non-monotonic relationships
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Source: Oleg Alexandrov
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two variables shown in Figure 7.6 were both continuous or discrete, that would 
meet one of the requirements for using Pearson’s coefficient. But, as you can 
see, the relationship is not linear – it follows a curve that rises from left to right 
– it is curvilinear. Pearson’s r won’t accurately describe non-linear relationships, 
so it wouldn’t be the best technique to use in this case. However, this 
relationship is monotonic, and Spearman’s rho would work well with these 
two variables.

It’s also the case that Spearman’s rho is less sensitive to outliers. In Figure 7.4, 
you can see an outlier in the scatterplot showing the relationship between y

3
 

and x
3
. This outlier would affect the result of Pearson’s r much more than it 

would for Spearman’s rho, and so Spearman’s rho might have been a better option 
(but the result would then not take the same value as in the other graphs in 
Anscombe’s quartet).

There is another correlation coefficient that is similar to Spearman’s rho, 
which can also be used with ordinal or continuous/discrete variables: Kendall’s 
tau. There have been lengthy arguments between statisticians about which is 
better, and when, but there seems to be agreement that Kendall’s tau is better 
than Spearman’s rho when there are lots of ‘ties’ in the rank order.

Continuing the example we used, perhaps we’re also interested in possible 
links between educational attainment and birth order. We might suspect that 
there are differences between the attainment of first-born children and those 
born second, third, and so on. As there are going to be lots of ‘ties’ because 
there will be many children who are born first, second or third, in this kind of 
analysis Kendall’s tau will be the best one to use.

Figure 7.6: A scatterplot showing a monotonic relationship
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Summary

Many different correlation coefficients have been devised by statisticians, and 
it’s not possible to cover them all here. I’ve focused on the ones that are used 
most often by social researchers and also those that I think are the most useful. 
The coefficients that we’ve looked at in this chapter are all measures of how 
predictable values of one variable are from the values of another variable. And 
they all tell you the direction of the relationship: whether it is positive or negative. 
They also all produce values between +1.0 (a perfect positive relationship) and 
–1.0 (a perfect negative relationship). Because of this they can all be interpreted 
in roughly the same way (but Spearman’s rho and Kendall’s tau don’t have the 
equivalent of an ‘r-squared’).

In the next chapter we look at regression analysis. Many different types of 
regression analysis have been developed by statisticians, but the type we’re going 
to look at is called ordinary least squares (OLS) regression. OLS regression 
uses Pearson’s r but provides you with more information than a simple bivariate 
correlation. While the correlation coefficients we’ve looked at in this chapter are 
only measures of the predictability and direction of a relationship, regression analysis 
tells you how much – on average – one variable changes when the other one 
changes. Regression analysis also allows you to analyse the relationship between 
a dependent (outcome) variable and more than one independent (explanatory) 
variable in a single analysis: what is known as multi-variable analysis.
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Figure 7.6: Skbkekas, https://commons.wikimedia.org/wiki/File:Spearman_ 
fig5.svg, ‘Spearman fig5.svg’, https://creativecommons.org/licenses/by-sa/3.0/ 
legalcode

Useful resources
My YouTube SPSS® tutorial that covers correlation and regression can be found 
at: https://youtu.be/4bwRtnjQxw0

Answers to exercises

Exercise 7.0
a) The general trend is that students’ scores in the assessment go up the more 
they study. You can see this because the data points go from the bottom left of 
the scatterplot to the top right. This is reflected in the slope of the line. There 
is a positive relationship between how long students study for and the mark 
they get in the assessment.

b) You wouldn’t be able to predict every student’s mark accurately if you 
only knew how long they studied for. This is because there isn’t a perfect 
relationship between hours studied and assessment score. If you tried to do 
this for every student, you would be more accurate for some students than 
for others. The line on the graph is called a ‘line of best fit’ and represents 
the mathematical ‘best guess’ for all the cases combined. If you look closely, 
you’ll see that one data point sits almost exactly on this line. If you used the 
line to predict the values of one variable from the values of the other, you’d 
get very close for this case.

c) Because there isn’t a perfect relationship between the two variables, studying 
for a longer time won’t guarantee you a higher mark. However, it would seem a 
sensible strategy because students who studied longer usually got higher marks. 
But you’d expect a teacher to tell you that!

Exercise 7.1
Looking at each of the scatterplots one at a time, we can judge how well 
the straight line drawn through the data points summarises the relationship 
between the two variables. Remember that a correlation coefficient calculates 
how closely variation in one variable matches variation in the other based on 
a linear (or straight line) relationship. For the graph shown in Figure 7.7, the 
line isn’t too bad. It cuts right through some data points but misses other ones 
by a little bit, and there aren’t any data points that are really far from the line. 
You can see that it’s generally the case that as the value of y

1
 goes up, x

1
 also 

goes up, and so there must be a positive relationship between the two variables. 
If you tried to predict y

1
 with only information about x

1
, your estimate usually 

wouldn’t be too far off.

https://commons.wikimedia.org/wiki/File:Spearman_fig5.svg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://youtu.be/4bwRtnjQxw0
https://commons.wikimedia.org/wiki/File:Spearman_fig5.svg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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There is clearly something else going on in the graph in Figure 7.8. It’s obvious 
that the relationship between y

2
 and x

2
 isn’t linear; the data in the bottom left 

of the graph start to go up in what looks like a straight line, but then peak and 
change direction to make an arc. This is what’s called a curvilinear relationship. 
What this means is that the relationship between y

2 
and x

2 
changes as their values 

change. What starts as a positive relationship, when the values of y
2
 and x

2
 are 

between around 4 and 8, flattens off and then becomes a negative relationship 
when the values for each variable become larger.

Because the relationship between y
2
 and x

2
 isn’t linear, it’s not surprising that 

the straight line drawn on the graph doesn’t fit the data points very well. 
Although the figure produced by calculating Pearson’s coefficient (r=0.816) 
suggests a strong correlation between the two variables, this figure is based on 
a linear relationship and so provides a misleading account of the relationship.

In Figure 7.9, you can see that the relationship between y
3
 and x

3
 is, for the most 

part, a perfectly straight line. But the line doesn’t go through all the points, and 
has a slightly steeper angle than the line made by most of the data points. This 

Figure 7.8: A curvilinear relationship
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Figure 7.7: A linear relationship

12

10

8

6

4

4 6 8 10
x1

y 1
12 14 16 18

Source: Schutz/Anscombe



Straightforward Statistics

134

is because one of the data points is out of step with the others and has a much 
larger y

3
 value than you’d expect given the overall trend. This is what’s called 

an outlier, and it’s the reason why the relationship isn’t a perfect correlation. 
This single data point is the only thing stopping us from being able to perfectly 
predict values of y

3
 by only using information about x

3
 (or vice versa). As we’ll 

see when we discuss regression analysis in the next chapter, this outlier has also 
influenced the slope of the line of best fit, and this would affect our ability to 
predict how much y

3
 changes when x

3
 changes. It’s not unusual to have outliers 

in a dataset, so this is quite a common situation to come across.
The last scatterplot, shown in Figure 7.10, has a more unusual problem. The 

values for x
4
 are the same for all but one of the data points. For 10 of the cases, 

the value of x
4
 doesn’t change regardless of the value of y

4
. But there is also an 

outlier. This outlier has a different effect than in the previous example, and this 
effect is much more serious in terms of the impact it has on interpreting the 
data. While the relationship in Figure 7.9

 
is a positive one with a single case 

disrupting an otherwise perfect trend, in Figure 7.10 the value of x
4
 is the same 

(constant) for all but one of the cases, regardless of the value y
4
 takes. The 

correlation coefficient doesn’t give us the whole story in either case, but it is 
potentially misleading in its description of the relationship between y

4
 and x

4
.

Figure 7.9: An outlier
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Figure 7.10: Many constants and one outlier
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8

Where do we draw the line? 
How regression analysis can tell 

you more than correlation

WHAT IS THIS CHAPTER FOR?
In the last chapter I introduced the idea of a correlation and showed you some 
of the techniques for carrying out correlation analysis with different types of 
data. In this chapter I introduce a technique that is similar to correlation but 
provides you with more information: regression analysis. Regression analysis 
is important to know about as it forms the building blocks for many other 
types of statistical techniques.

WHAT DOES IT COVER?
We start by revisiting Pearson’s correlation that we covered in the last chapter. 
I show you the differences and similarities between correlation analysis and 
regression analysis, and explain what extra information regression analysis 
provides. I discuss the assumptions underlying regression analysis and how to 
check whether your data meet these. I also show you how to use the results 
of a regression analysis to make predictions, and end the chapter by briefly 
describing some of the more advanced forms of regression analysis that you 
can learn once you understand the basics.

WHAT WILL YOU LEARN?
You will learn about the following concepts:

•	 Line of best fit
•	 The regression line equation
•	 Predicted and observed values
•	 Residuals

You will learn to interpret the following outputs of regression analysis:

•	 R-squared
•	 Unstandardised coefficient
•	 Intercept
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What is regression analysis and how is it useful?

Regression analysis is a common statistical technique that is widely used in many 
different subject areas and academic disciplines. You’ll see that it shares quite 
a lot with correlation analysis, but regression analysis can tell us more about 
the relationships between the variables that we’re interested in. It’s a very useful 
technique to understand because it forms the basis for many other methods of 
analysis (particularly those that fall under the category of ‘statistical modelling’), 
and if you go on to do more advanced statistics, a good understanding of 
regression analysis will be very helpful.

I’m going to focus on the most basic form of regression analysis, what is 
called ordinary least squares (OLS) regression. I’m also going to restrict my 
detailed discussions to bivariate analysis: looking at the relationship between 
two variables. At the end of the chapter I briefly discuss more advanced forms 
of regression analysis.

How is regression analysis different to correlation analysis?

Before we look at regression analysis in detail, it’s worth reminding ourselves 
of what correlation can tell us and what it can’t tell us. If you haven’t read the 
previous chapter that focused on correlation, it might be worth doing so before 
you start this one.

Correlation is very useful, but it’s important to remember that it is primarily a 
measure of the predictability of the relationship between two variables. It provides 
us with information about how close the relationship between our variables is 
to a straight line. Although correlation analysis is conducted entirely through 
mathematical calculation, it helps to think of how our data would look on a 
scatterplot (and it’s good practice to look at your data graphically when you’re 
doing correlation or regression analysis). The closer the data points are to a 
straight line, the stronger the correlation, and the easier it would be to predict 
values of one variable using just data from the other variable. The further out 
the data points are spread, the weaker the correlation, and the harder it would 
be to make such predictions with any accuracy.

The results of a correlation analysis will also tell you the direction of the 
relationship. Correlation coefficients – the results of correlation analysis – are 
either positive or negative numbers and tell us whether high values in one 
variable tend to be associated with high values in the other variable (a positive 
correlation), or whether high values in one variable are associated with low 
values in the other variable (a negative correlation).

Although correlation analysis tells us how close our data is to a straight-line 
relationship, it doesn’t tell us anything else about that line. Crucially, it doesn’t 
tell us anything about the slope of that line: how steeply it rises or falls. The 
slope of the line tells us the extent to which values of the dependent variable 
tend to get larger or smaller as the independent variable gets larger (or, to put it 
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another way, how much the dependent variable changes when the independent 
variable changes). Regression analysis, however, does give us this information.

We might, for example, want to look at the relationship between how long 
people have been doing a job (their experience) and how much they are paid. A 
correlation analysis will tell us how variation in a worker’s experience matches 
variation in their pay (or, to put it another way, how well we can predict a 
worker’s pay from their experience). This is indicated by the strength of the 
correlation. It will also tell us whether people with more experience tend to 
have higher or lower pay. We can see this by looking at whether the correlation 
coefficient is a positive or negative number. But correlation analysis won’t 
tell us how much more (or less) workers tend to earn with each extra year of 
experience. In contrast, a regression analysis of the same relationship would 
provide all the information that a correlation does, but it would also tell us how 
much pay changes with experience. It can do this because, unlike correlation, 
it produces statistics about the line of best fit.

What is a line of best fit?

Even if you’ve never heard the term, you may have drawn a line of best fit  
before. If, at school, you plotted some points on a graph and then took a ruler  
and drew a line that ran roughly down the middle of them, you were drawing 
a line of best fit. In fact, you were actually doing a regression analysis (see 
Berk, 2004).

When we conduct regression analysis, we usually calculate the line of best fit 
mathematically (by getting a computer to crunch the numbers for us) rather 
than drawing it ‘by eye’. This makes sure that our line is completely accurate 
(which is hard with just a ruler and a pencil). But we’re essentially doing the 
same thing: drawing a line through the ‘middle’ of all the points on a graph. 
And this is the essence of regression analysis. Although you need to learn how 
to interpret the results and know about things such as assumptions, regression is 
really just about drawing straight lines. It’s a very important statistical technique, 
but in its basic form, it’s quite straightforward.

Before we start regression analysis: assumptions

In the last paragraph I mentioned the word ‘assumptions’. We’ve come across this 
idea before, mainly in relation to the types of data that can be used with different 
statistical techniques. An assumption for calculating a mean, for example, is that 
you have continuous or discrete data.

As with all the statistical techniques I’ve covered in this book, regression can 
only be used with certain types of data. The requirements for the most basic 
form of regression analysis are similar to Pearson’s correlation, but there are 
some additional ones. As with Pearson’s correlation, both variables must be 
continuous or discrete (the numbers used have to have equal intervals between 
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them throughout). And, just like Pearson’s correlation, the relationship you are 
examining must be linear (that is, it follows a straight line).

However, unlike correlation analysis, for regression analysis you have to specify 
a dependent and an independent variable. I discussed this briefly in the last 
chapter, but as it’s more important for regression analysis than for correlations, 
we’ll look into it in a bit more detail here.

Dependent and independent variables

Working out which is your dependent variable and which is your independent 
variable isn’t often a problem, but it can sometimes be tricky. As I noted in 
Chapter 1, when I first discuss the idea of dependent and independent variables, 
some people find it easier to think in terms of outcome variables and explanatory 
variables. If you can’t work out which is your dependent variable, it’s useful 
to think about what the outcome is, and what variables might explain that 
outcome. The outcome is your dependent variable, and explanatory variables 
are all independent variables.

Another way of thinking about it is that your dependent variable depends  
on your independent variables. The values of your dependent variable will  
vary because of changes in your independent variables: they are dependent 
on them.

Box 8.0: Regression assumptions and more advanced analyses

Although I have specified that regression analysis assumes that both variables 
are continuous (or discrete) and that the relationship is linear, these assumptions 
only hold for the most basic form of regression. It’s possible to get around these 
limitations and conduct regression analysis with categorical variables (both 
dependent and independent) and with relationships that aren’t linear. However, to 
do this you need to learn more advanced techniques that I don’t have the space to 
cover in this book. If you’re interested in the possibilities offered by these types of 
analyses, I suggest that you first read Miles and Shevlin’s (2001) book on regression 
analysis and then look at Roger Tarling’s (2009) text that covers many common 
types of statistical modelling.

Let’s start with an easy example that we looked at in the last chapter: how long 
students spend studying and the mark they get in the exam they were preparing 
for. In this example, the exam mark is an outcome that might be explained by 
how long someone spent studying. Your exam mark might depend – at least to 
some extent – on how long you studied. So, in this case, exam marks are the 
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dependent (outcome) variable and the time spent studying is an independent 
(explanatory) variable.

This is an easy example because one event clearly follows the other: you 
spend time studying before the exam takes places. It wouldn’t make sense for the 
amount of time you spent studying before the exam to depend on the mark that 
you later achieved. But, as I discussed in Chapter 1, there are pairs of variables 
where it’s not so clear which is the dependent and which is the independent 
variable (and sometimes, where it’s not possible to know).

The results of a correlation analysis don’t change depending on which variable 
you define as the dependent and which you define as the independent variable 
because they are only telling you about the predictability and direction of the 
relationship. But this isn’t the case with regression analysis, because it’s also 
telling you about how much one variable changes when the other changes, and 
your results won’t make any sense if you get your dependent and independent 
variables the wrong way around.

How does regression analysis work?

I’ve already explained that regression analysis involves calculating a line of best 
fit through your data. It’s often easier to think about regression in visual terms 
– as a line on a scatterplot – than in mathematical terms, so we’ll do this with 
our current example.

If we’re going to conduct a regression analysis using marks in an exam as our 
dependent variable and hours spent studying for that exam as our independent 
variable, we’ll have two pieces of relevant information for each student: their 
mark in the exam and the time they spent studying. If we created a scatterplot 
there would a data point (the dot on the scatterplot) for each student, which 
would indicate the mark they got (on the y-axis) and the hours they spent 
studying (on the x-axis). (The y-axis is always used for the dependent variable 
and the x-axis for the independent variable.) A regression analysis produces 
a line of best fit that runs down the middle of these data points. This line of 
best fit is calculated mathematically and is based on two important statistics, 
the unstandardised coefficient and the intercept, both of which I explain in 
detail below.

What information does regression analysis give you?

The two most important statistics that regression analysis produces are the 
r-squared and the unstandardised coefficient. It gives you other information, 
too, but I’m going to concentrate on these two measures for most of this chapter.
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Box 8.1: Why is it called OLS regression?

You will often see the type of regression analysis I focus on in this chapter referred 
to as OLS, or ordinary least squares, regression. You don’t need to know what OLS 
means in order to successfully carry out a regression analysis, but I’m going to 
provide an explanation just in case you are curious.

OLS refers to the way in which the line of best fit is worked out mathematically. 
The ‘least’ bit refers to the distance between the line of best fit and all the data 
points relating to the variables included in the analysis. The line of best fit – by 
definition – sits where these distances (residuals) are the smallest.

The ‘squares’ refers to something that is done when calculating these differences. 
For mathematical reasons, the distances above and below are squared, just as they 
are when a standard deviation is calculated.

It’s called ‘ordinary’ to differentiate it from other kinds of least squares analysis: it’s 
the most basic form of least squares analysis and was the first to be proposed, but 
other types of least squares analysis have been subsequently developed, and so 
the original type has come to be known as ‘ordinary’ least squares.

We saw in the last chapter that Pearson’s correlation produced a statistic called r. 
We also saw that squaring this figure (multiplying it by itself) produced r-squared, 
and that this statistic has a more intuitive interpretation than r. Regression is 
very similar to Pearson’s correlation and produces some of the same information. 
When you conduct regression analysis, most software packages will calculate an 
r-squared value, which – just like Pearson’s r – is an indicator of the predictability 
of the relationship between the dependent variable and the independent variable. 
R-squared can be any value between 0 and 1 (but no lower or higher). You 
might remember how to interpret the r-squared from the previous chapter, but 
we’ll look at in more detail in the next section.

With regression analysis we also get two figures relating to the line of best 
fit. The most useful of these is called the ‘unstandardised coefficient’. This is 
also known as the ‘slope’, as it is based on the angle of the line of best fit and 
tells us how steep this is. The unstandardised coefficient can be interpreted as 
the amount of change in the dependent variable with one unit change in the 
independent variable. For example, it might tell you how much, on average, 
students’ exam scores increased with every extra hour they studied. Unlike 
r-squared, the unstandardised coefficient can be any numeric value, in theory at 
least. We’ll see what this means in practice, when I use an example to illustrate 
this statistic. The other statistic we get is the intercept, which I discuss later in 
this chapter.
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The difference between r-squared and the unstandardised 
coefficient

It’s important not to confuse the unstandardised coefficient with the Pearson 
correlation coefficient (r) or the r-squared statistic. Although r and r-squared are 
both coefficients, they measure the predictability of the relationship between the 
two variables. The unstandardised coefficient (often called the ‘b’ coefficient) 
isn’t about predictability but about how much the values of one variable change 
when the values of the other variable change. Depending on what your variables 
are, you might interpret this as the ‘effect’ of the independent variable on the 
dependent variable. In terms of our example, this is how much, on average, 
students’ marks change for every extra hour they spend studying.

Figures 8.0 and 8.1 illustrate the difference between correlation (measured by 
r and r-squared) and slope (measured by the unstandardised coefficient). Each 
figure has data from three different scatterplots and the results of a regression 
analysis for Pearson’s r, r-squared and the unstandardised coefficient (labelled 
as ‘b’). Unlike for most of the examples in this book, these graphs haven’t 
been produced using one of the teaching datasets, so they don’t represent the 
relationships between any particular variables; the important thing to focus on 
is what the data look like in the scatterplots.

In Figure 8.0, you can see that data points in some scatterplots are more spread 
out than in others. In scatterplot A the data points all form a perfectly straight 
line. This is reflected in the r and r-squared values, which indicate a perfect 
correlation of 1.0. In scatterplot B the points are a bit more spread out, and so 
the r and r-squared values are a bit lower, at 0.8 and 0.64. The data points in 
scatterplot C are spread out further still, and so the corresponding r and r-squared 
values are even lower (at 0.4 and 0.16).

The different values of r and r-squared for scatterplots A, B and C reflect the 
different degrees of predictability in the relationship between the two variables. 
The relationship in scatterplot A is perfectly predictable. The relationship shown 
in scatterplot B is slightly less predictable, and that shown in scatterplot C is 
even less predictable.

Figure 8.0: Different correlations, same slope

A B C

r = 1.0 (r2 = 1.0) r = 0.8 (r2 = 0.64) r = 0.4 (r2 = 0.16)Correlation

Slope b = 1.0 b = 1.0 b = 1.0

Source: Denis Boigelot
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However, if we look at the unstandardised (b) coefficients for the slope, we 
can see that they are the same (b=1.0) for each of the three scatterplots. This 
means that the line of best fit for all three scatterplots would look very much 
like the line that the points form in scatterplot A. Although each of the three 
scatterplots shows relationships with different levels of predictability, they all 
have the same slope. Or, to put it another way, the average size of the effect of 
the independent variable on the dependent variable is the same for each of the 
three relationships.

In each of the three scatterplots shown in Figure 8.1 all the data points form 
a perfectly straight line. This is reflected in in the r and r-squared values, which 
are 1.0 for D, E and F. This means that, in each case, the values of the dependent 
variable are perfectly predictable from the values of the independent variable 
(and vice versa). But, unlike the three scatterplots A, B and C in Figure 8.0, the 
three scatterplots in Figure 8.1 have different slopes (1.0, 0.5 and 0.25). This 
means that, in each one, the size of the ‘effect’ of the independent variable on 
the dependent variable would be different. It is largest in D, smaller in E, and 
even smaller in F.

I hope these examples have helped clarify the difference between the 
predictability of a relationship and the ‘effect’ of the independent variable on 
the dependent variable. Both are important pieces of information, but they tell 
us different things. In the next section I discuss the results of some regression 
analysis with real data, so you can see how they are applied in practice.

An example of regression analysis: the relationship between 
income and expenditure

I’m going to use the example of the relationship between weekly income and 
weekly expenditure to show you how regression analysis works. I use scatterplots 
to show you what the data looks like visually, and then report the results of 
a regression analysis and explain how these figures relate to what you see on 
the graphs.

Figure 8.1: Same correlation, different slopes

D E F

r = 1.0 (r2 = 1.0) r = 1.0 (r2 = 1.0) r = 1.0 (r2 = 1.0)Correlation

Slope b = 1.0 b = 0.5 b = 0.25

Source: Denis Boigelot
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Figure 8.2 shows the relationship between household income and expenditure, 
using data from the publicly available 2013 Living Costs and Food Survey 
(LCF). While this might not seem to be the most exciting relationship to 
investigate – you would probably guess that households with higher levels of 
income tend to spend more – it makes for a good example because it meets 
the assumptions of regression analysis in that both variables are continuous and 
the relationship is linear. The fact that the relationship is sufficiently strong to 
be seen on a scatterplot is also useful.

Each of the data points in Figure  8.2 represents a household. For every 
household, you can read off an approximate value for the weekly income and 
weekly expenditure. You can see from the scatterplot that the relationship 
between income and expenditure is not perfectly predictable. Some people 
spend only a fraction of what they earn and others spend more money than 
they have coming in. The cases represented by dots towards the bottom right 
of the graph spent only a fraction of their income, whereas the expenditure 
of those in the top left of the graph exceeds their weekly income. However, 
as we might expect, in general, households that have higher incomes tend to 
have higher expenditure.

Although there is a fairly wide spread of dots on the scatterplot, you can see 
that they tend to cluster together and form a line running from the bottom left 
of the graph to the middle of the right edge. You could probably draw a line 
through this with a ruler ‘by eye’ to give a rough estimate of how much, on 
average, expenditure increases with household income. Figure 8.3 shows what 
that line looks like when it’s calculated mathematically, using regression analysis.

Figure 8.2: A linear relationship shown on a scatterplot
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Interpreting regression results: r-squared

Now that we’ve seen what regression looks like on a scatterplot, I’m going to 
look at the statistical information it provides us with in a little more detail. I’ll 
use the data on income and expenditure to illustrate how these statistics can 
help us understand the relationship between these two variables.

Table 8.0 shows the results from the regression analysis that produced the 
line of best fit shown in Figure 8.3. Any suitable software package will produce 
these results for you. As we know, both Pearson’s r and r-squared are measures 
of the predictability of the relationship. In terms of a scatterplot like the one in 
Figure 8.3, they tell us how close the data points are to a straight line. Pearson’s r 
is rarely reported when the results of regression analyses are written up, but 
I’ve included it here to show how it relates to r-squared: they are just the same 
information expressed in different ways.

Pearson’s r value for this relationship is 0.62. This would usually be considered 
to be a reasonably strong correlation. With correlations of this size or larger, 
it’s often possible to see the relationship on a scatterplot, as is the case in 
Figure 8.3. However, with weaker correlations – which are very common in 
social research – it can be difficult to make judgements about a relationship using 
only a scatterplot. As we saw in the last chapter, if there are many thousands of 
cases, as there are in some large datasets, it can be even more difficult to see the 

Figure 8.3: A line of best fit shown on a scatterplot
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Table 8.0: The results of a regression analysis

Pearson’s r R-squared Unstandardised coefficient Intercept

0.62 0.38 0.50 137.79
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nature of a relationship. This is one of the reasons, alongside accuracy, that we 
need to use maths to work out the line of best fit.

You’ll notice that in Table  8.0 the r-squared value is much smaller than 
Pearson’s r. Pearson’s r must be a value between –1.0 and +1.0 and, because 
squaring a number always results in a positive number, r-squared will always 
be somewhere between 0.0 and 1.0. Unless Pearson’s r is –1.0 or +1.0 (which 
is very rare), the r-squared will always be smaller. However, as I explained in 
the previous chapter, when discussing correlations, r-squared has a much more 
intuitive interpretation than Pearson’s r.

Box 8.2: Correlation, causation and dependent and independent 
variables

One of the first things you’re usually taught when you learn statistics is that 
‘correlation doesn’t mean causation’. In fact, this phrase has almost become a cliché 
in statistics teaching. There’s a good reason why statistics teachers have traditionally 
given this warning: a correlation between two things doesn’t necessarily mean 
that one variable caused the change in the other. It could be that the correlation 
is a complete coincidence, or that one of the variables is serving as an indicator for 
something else, which might be the true cause of change in the other variable.

However, there are problems with being too cautious about making causal 
connections between variables. As soon as we label one variable as dependent 
and one as independent (or as an outcome and explanatory), we are saying that 
one variable depends on the other variable. Just by doing this we are using causal 
language! We could just do correlation analysis and only discuss the predictability 
of a relationship, thereby avoiding suggesting any kind of causal link. But if we’re 
doing regression – where we have to specify a dependent and an independent 
variable – we are already implying that one variable has an effect on the other one. 
This is less of a problem with some relationships, such as that between time spent 
studying before an exam and the score in that exam that follows. Because one 
thing happens before the other, we have a good theoretical basis for thinking that 
change in one thing has led to change in the other, and not the other way round. 
However, for other relationships this may be less clear.

So we need to think carefully about the relationships we examine and consider 
whether we have a good theoretical basis for thinking that a relationship might 
be causal. Statistics can’t tell us this on their own – we must use our knowledge of 
how the world works to make this decision, and sometimes it’s not easy.

This is a very controversial, but important, issue that has been particularly topical 
in the past decade or so. I have provided a suggestion for further reading on this 
topic at the end of the chapter.
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As you can see from Table 8.0, the r-squared for this analysis is 0.38. While 
there isn’t a way of easily translating Pearson’s  r value into something more 
intuitive, the r-squared has a nice easy interpretation. R-squared values can 
be converted into percentages that describe the amount of variation in one 
variable that is matched by variation in the other. This ranges from 0% with 
an r-squared of 0.00 to 100% with an r-squared of 1.00. Our r-squared for 
the relationship between income and expenditure is 0.38, so that means that 
38% of the variation in a household’s expenditure is matched by variation in 
their income (and vice versa). Another way of describing the r-squared is as a 
measure of explanatory power. We might say that 38% of the variation in 
household expenditure is explained by the variation in household income (the 
explanatory variable).

The r-squared gives us a measure of the predictability of the relationship 
that we’re examining. In terms of our scatterplot, it describes how close the 
data points are to a straight line. If we had an r-squared of 1.0 (which would  
mean we also had a Pearson’s r of either –1.0 or +1.0), all of our data points 
would sit on a perfectly straight line. This means that household expenditure 
would be perfectly predictable from household income: for any particular 
income, our line of best fit would show the corresponding expenditure for 
that household.

Pearson’s r and r-squared aren’t affected by which variable in a pair is classified 
as the dependent variable and which is classified as the independent variable (as 
they’re still just measuring a bivariate correlation). Swapping the independent and 
dependent variables wouldn’t change the value of either statistic. However, for 
the statistics we are going to discuss next, you would almost always get different 
values depending on which variable was the dependent one. As I warned earlier, 
before you start a regression analysis you need to be clear about your dependent 
and independent variable.

Interpreting regression results: the unstandardised coefficient

One of the limitations of correlation analysis is that it only tells us whether our 
relationship is positive or negative and how predictable it is. What it doesn’t tell 
us, in relation to our current example, is how much more households with higher 
incomes spend compared to those with lower incomes. Regression analysis 
provides this information in the form of the unstandardised (b) coefficient.

As you can see in Table 8.0, the unstandardised coefficient for our analysis is 
0.50. So what does this mean?

In technical terms, the unstandardised coefficient shows how much the 
dependent variable changes when the independent variable increases by 1. 
For this information to be useful we need to know what units were used to 
measure both of our variables. Both of our variables – household expenditure 
and household income – are measured in UK pounds sterling. So a unit change 
in our independent variable is £1.00. Our unstandardised coefficient tells us 
that for every extra £1.00 in household income we can expect, on average, 
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household expenditure to go up by £0.50. If one household has £10 more in 
income than another household, on average they would spend £5 more. And 
if a household has £100 more income than another household, they would 
spend £50 more, on average.

Our regression analysis has not only told us how predictable our relationship 
is – like a correlation analysis would do – it has also told us how much one 
variable changes when the other changes. This is the central difference between 
the two techniques, and a very important one.

Taking regression analysis further: the intercept, the regression 
equation and making predictions

If you’re just doing a bivariate regression analysis and want to find out 
how predictable the relationship is, and how much the dependent variable 
changes when the independent variable changes, then the r-squared and the 
unstandardised coefficient are the main things you need to know.

However, regression analysis provides some additional information, and if 
you want to do more with regression analysis in the future, there are also some 
other concepts that are useful to understand. In this last section, I explore some 
of these measures and concepts, and look at more of what regression can do. 
It’s not essential reading if you’re only interested in the basics, but it might be 
interesting if you think you might take things further at some point.

Interpreting the results of regression analysis: the intercept

As I wrote earlier, in addition to the r-squared and unstandardised coefficient, 
regression analysis also produces a value called the intercept (or the constant). 
This is the value of the dependent variable (in our example above, that’s weekly 
expenditure) when the independent variable (household income) is zero.

The intercept can sometimes be a useful figure on its own, but it doesn’t 
always make sense. In my example from earlier, looking at how much difference 
studying makes to students’ exam results, it could be valuable information. As 
a teacher, I might be interested in how well students did, on average, when 
they hadn’t spent any time (that is, they had spent zero hours) studying for an 
exam. But if you were looking at the relationship between children’s height 
and weight, as surveys such as the National Child Development Study (NCDS) 
have done for many years, the intercept would represent a child’s weight when 
their height was zero. This wouldn’t make sense, as all children have a height 
above zero, however young they are. And in the example we looked at in 
Table 8.0, it’s unlikely that any of the households had a typical weekly income 
of zero, so knowing the expenditure of a household with no income probably 
isn’t very useful.
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Using the unstandardised coefficient and intercept to make predictions

So is the intercept useless information when it doesn’t make sense for the 
independent variable to be zero? It’s certainly true that the intercept isn’t often 
discussed when the results of regression analysis are reported. Most discussions 
concentrate on the unstandardised coefficients and the r-squared.

However, you do need the intercept if you’re going to use your regression 
analysis to make predictions, even in cases where it doesn’t make sense for 
the independent variable to equal zero. And you also need to know how the 
intercept and unstandardised coefficient fit into the equation for the regression 
line (the line of best fit). This is a useful equation to be familiar with, as it can 
help you understand regression more fully, and seeing how it can be used to 
make predictions is a good way of introducing you to it.

In our Living Costs and Food Survey (LCF) dataset we have information on 
many different households, each with a particular income and expenditure. Our 
regression analysis uses this information to calculate the average relationship 
between income and expenditure. As you can see from the scatterplot in 
Figure 8.3, the line of best fit isn’t quite right most of the time – if it was, all 
the data points would sit right on the line – but it’s a useful summary of what’s 
happening in general.

If we think of our regression line as a ‘model’ of the relationship between 
household income and expenditure, we can use it to make predictions (or 
estimations) for hypothetical examples that we don’t actually have data for. So, 
for example, I know from looking at the dataset that none of the households 
had an income of exactly £300. But, by using the information from our 
regression analysis, I can estimate the expenditure of a household with an 
income of £300.

The problem with doing this is that our statistical model – which is how 
we’re now thinking about our regression analysis – doesn’t have much predictive 
power. If you remember, the r-squared is 0.38, which means that only 38% 
of the variation in expenditure can be explained by variation in income. That 
38% is a long way from the 100% that we’d need to make perfect predictions. 
So you might not be confident to make predictions from this analysis if they 
had serious consequences, but let’s see how we would do it, so that I can show 
you how it works and how the intercept and unstandardised coefficient fit into 
the equation for the regression line.

Before we look at the equation in detail, you might want to try to answer 
the questions in Exercise 8.0, to make sure that you’re clear about the concepts 
of dependent variables, independent variables and the intercept. As usual, the 
answers are at the end of the chapter.



How regression analysis can tell you more than correlation

149

EXERCISE 8.0

Try to answer the following questions:

a) 	� In the example I used from the National Child Development Study, why 
would a child’s weight be the dependent variable and their height be the 
independent variable?

b) 	� Can you think of any relationships where the intercept would be useful 
information on its own? What about relationships where it would only be 
useful as part of an equation used to make predictions?

The equation for the regression line

To make predictions using the results of a regression analysis you need to input 
the correct figures into the equation for the regression line. This equation is 
the one that is used for any straight-line relationship, and you may have come 
across it when you studied maths at school.

The equation looks like this:

y = a + bx

In this equation the letters represent the following:

y is the dependent variable
a is the intercept
b is the unstandardised coefficient
x is the independent variable

If we replace the letters in the equation with what they stand for, we get 
the following:

dependent variable = intercept  
+ (unstandardised coefficient * independent variable)

And if we put in the information from our regression analysis (see Table 8.0), 
we get:

household expenditure = £137.79 + (£0.50 * household income)

So, to make a prediction for a household with an income of £300, this is what 
the calculation would look like:

£287.79 = £137.79 + (£0.50 * £300)



Straightforward Statistics

150

Given the information produced by our regression analysis, the best estimate 
we could make for an income of £300 is an expenditure of £287.79. Because 
our r-squared is quite low, it’s unlikely to be a very accurate prediction, but it’s 
one that is representative of the relationship in our data.

Observed values, predicted values and residuals

To demonstrate how inaccurate predictions made using the regression line 
equation can be when you don’t have a very high r-squared, we can use values 
from the dataset to test a prediction. This will introduce you to the concepts of 
observed values, predicted values and residuals, which are important to 
understand if you go on to do more advanced analyses.

We can see this when we use the regression equation to make a prediction for 
a case that we already have data on. One of the cases in the LCF has a household 
income of £400.08. If we input this into our regression line equation, we get 
the following:

£337.83 = £137.79 + (£0.50 * £400.08)

Our model predicts that a household with an income of £400.08 would have 
an expenditure of £337.83. However, the actual expenditure of this household 
was £451.88, so our prediction based on the regression line is quite far out. 
The difference between our predicted value (£337.83) and the actual ‘observed’ 
value (£451.88) is called the residual. The residual for this case would be the 
difference between the two figures (£114.05).

The line of best fit is calculated to minimise the total of the residuals. But 
unless you have a perfectly predictable model, there will always be some 
residuals. The double-headed arrow in Figure 8.4 shows the residual for one of 
the data points in the scatterplot showing the relationship between household 
income and household expenditure. Every single data point on the graph would 
also have a residual showing the distance between the value predicted for the 
dependent variable by the regression line, and the actual dependent variable 
value for that case.

Residuals aren’t only important as indicators of the predictability of your 
regression model (the smaller the residuals overall, the more predictive power 
the model has); they are also useful for various purposes in more advanced 
analyses. Understanding what they are, and why they are important, is helpful 
if you plan to do more advanced statistical modelling in the future. The same 
can be said for the regression line equation: you don’t need to know about it 
to conduct regression analysis, but knowing how the equation relates to the 
line of best fit you see on a scatterplot gives you a better overall idea of how 
regression analysis works.
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Doing more with regression analysis: multiple regression and 
logistic regression

One of the reasons that regression analysis is such an important method of analysis 
to understand is because it is the basis for many more advanced techniques 
that are usually described as types of statistical modelling. In this chapter we’ve 
concentrated on bivariate regression analysis, but OLS regression analysis can be 
conducted with more than one independent variable using a technique called 
multiple regression analysis. Including more than one independent variable in 
a single analysis can increase the predictive power of our statistical models, and 
sometimes help us estimate the effects of independent variables on our dependent 
variable more accurately. Multiple regression analysis is used very widely in 
social research, and is much easier to learn if you have a good understanding of 
the basic concepts involved in bivariate regression.

One of the limitations of OLS regression analysis is that it assumes that both 
(or all) of your variables are continuous or discrete. As we have seen, lots of 
variables that we’re interested in as social researchers are categorical, which 
might seem to pose a problem for conducting regression analysis. However, a 
technique called logistic regression allows you to use categorical variables as 
your dependent variables, and there are workarounds to allow you to include 
categorical variables as independent variables in most types of regression analysis 
and to model relationships that aren’t linear. I briefly discuss this issue in Box 8.0, 
where I recommend some texts that may be useful if you want to find out more 
about any of these methods of analysis.

Figure 8.4: A residual
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Summary

In this chapter we’ve seen how regression analysis can provide you with more 
information than a correlation analysis. As well as giving you information on 
the predictability of the relationship between two variables, as is the case with 
correlation analysis, regression analysis is useful because it also produces an 
estimate of the effect of the independent variable on your dependent variable. 
Bivariate OLS regression analysis is the basis on which many more types of 
statistical modelling are based, and is a vital building block in your understanding 
if you plan to pursue statistical analysis further.

This is the last chapter dealing with statistical analysis itself. The next chapter 
looks at how to display data in tables and visually, using graphs and charts. 
Chapter 10, the final chapter, then provides you with guidance on how to 
write up your results.
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Answers to exercises

Exercise 8.0
a) Children’s weight would have to be the dependent variable, and their height 
the independent variable, because your height can affect your weight, but 
your weight can’t affect your height. As you get taller, your weight will tend 
to increase. However, putting on weight isn’t usually responsible for making 
you taller.

b) There are many examples where the intercept can be useful information on its 
own. An example where a value of the independent variable being zero makes 
sense will produce an intercept that also makes sense. If we were interested in 
whether the amount of time people spent training influenced their finishing 
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time in a marathon, for example, a zero value for the independent variable makes 
sense. It probably wouldn’t be wise to try to run a marathon with zero hours 
training, but various celebrities have famously attempted this (although, at the 
time of writing, 2023, none have made it to the finishing line).

For any example where the independent variable equalling zero doesn’t make 
sense, the intercept will only be useful if you want to use the regression line 
equation to make predictions. However, some examples are trickier than others. 
If age is our independent variable, you might think that the intercept would 
always make sense, as we are all age zero at our birth. This would certainly be 
the case if we were looking at the relationship between age and height or weight. 
But zero age makes less sense if we were looking at age and alcohol consumption 
because, although it technically makes sense to have an age of zero, in most 
countries it’s illegal to give alcohol to young children (and certainly new-born 
babies!). We need to think through any specific example carefully before we 
can decide what role the intercept can play in our interpretation of the results.
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A graph is like a joke: if you have 
to explain it, it isn’t any good

WHAT IS THIS CHAPTER FOR?
The previous chapters in this book have all focused on analysing your data. In 
this chapter I introduce some principles for displaying numeric data in tables, 
charts and graphs that will help you present your data clearly and effectively.

Clear and effective data display is very important, but something that is 
often done badly. Displaying your data well can be quite straightforward if 
you follow a few guiding principles and, in general, simpler ways of displaying 
data are usually better. But some methods of data display are frequently 
misused, and others are rarely very useful.

WHAT DOES IT COVER?
In this chapter we’ll see how you can use different methods of displaying 
your data to help you understand and analyse your data, and to present your 
findings to others. We’ll look at the strengths and weaknesses of some of the 
most common ways that numeric data are displayed. I explain how to use 
different methods of data display appropriately and effectively, and help you 
to avoid common mistakes. I also provide some guidance on making decisions 
about when it’s useful or necessary to display your data visually, and when 
using a table or incorporating numeric data into your text is a better option.

WHAT WILL YOU LEARN?
•	 How to make decisions about whether you need to display data graphically 

or in a table, or whether it can be incorporated into the text
•	 What types of data display and visual effects to avoid
•	 How to effectively create the following methods of data display:

	– Tables
	– Bar charts
	– Line graphs
	– Scatterplots

Why we use graphs and charts

You’ll see numeric data displayed in tables, graphs and charts in all sorts of places: 
the news media, academic publications, on webpages and on social media. As 
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I discussed earlier in this book, journalists, politicians and researchers all like 
to use numbers to support their arguments, and this numeric data is often 
displayed visually. But while charts and graphs are used very frequently, they are 
not always used well. Sometimes the most effective method of displaying data 
hasn’t been chosen, and at other times the type of chart or graph that is used 
isn’t appropriate for the data. In this chapter we’ll explore the different methods 
you can use to display your data, their advantages and disadvantages, and when 
they should and shouldn’t be used. But before we look at specific methods for 
displaying numeric data, I want to help you decide when you need to display 
your data in a table, graph or chart, and when it’s not necessary, or may even 
be counterproductive.

How do I know when I need a graph, chart or table?

One of the most frequent mistakes my students make when they’re writing up 
a research report is to have too many tables, graphs and charts. Just as some of 
them believe that they need a particular number of sources in their bibliography, 
others think that there is a ‘standard’ number of tables and graphs that should 
be included in a report. As a result, they usually have far too many in their first 
drafts. If they ask me how many they should include, my answer is always the 
same: ‘It depends’.

A good principle to follow with data display is to always start with the simplest 
options. The first option you should consider is to simply include the figures 
directly in the text. If you only have a few numbers, this might be your best 
option. There are several reasons for this.

The first reason relates to what is called your ‘narrative’, or the story that you’re 
telling about your data. Whatever kind of research you’re doing, when you write 
up your findings you are telling a story (hopefully one that’s as close to the truth 
as possible). We look at this process in more detail in the next chapter, but for 
now it’s enough to say that we want that story to flow smoothly, so that the 
reader can follow our argument easily and without unnecessary interruptions.

Every time you include a table, graph or chart in your report you break the 
flow of your narrative and interrupt the story you’re telling. A reader will have 
to stop, examine the table, chart or graph, digest the contents, and then move 
on to the next paragraph. Ideally, you should keep these interruptions to a 
minimum, so any table, graph or chart that you include needs to compensate 
for the disruption by being a worthwhile or necessary interruption. You should 
only be using a table, graph or chart because you can’t tell part of your story 
properly using only text and numbers, or because it allows you to tell that part 
of your story much more effectively. And you shouldn’t include any table, graph 
or chart without first thinking about whether you really need one.

So how do you make this decision? I recommend a simple test: try to write 
up one of your results and include all the necessary numbers in the text. Then 
get someone else to read what you’ve written and ask them if they can follow 
both your argument and the figures you used to support it. If they can’t do this 
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– because they can’t hold all the numbers in their head – then you probably 
need to use some kind of table, graph or chart.

You might not always be able to use this test, as you won’t always have someone 
around who’s willing to read your work. The second-best thing is to read over 
your writing yourself, and try to put yourself in the shoes of someone who is 
reading it for the first time. This exercise is as much of a thought experiment 
as anything else – a way of you thinking about how many numbers you can 
incorporate in your text before it becomes too difficult to read. Sometimes it 
will be obvious that you need to display your data visually and at other times, 
when it’s less clear, the guidance provided in the rest of this chapter will help 
you come to a decision about how best to present your data.

What should I include and what should I leave out?

Once you’ve decided that you need a table, graph or chart, your next decision 
is what you need to include in it. We’ll look at specific examples later in this 
chapter, when we examine each of the commonly used types of data display, but 
there’s a general principle of balance that it’s important to follow. You should 
include all the data needed to support your argument and for your readers to 
assess any claims you are making, but no more data than is needed to do this.

We’ll look in more detail about how to make this kind of judgement over 
the course of the rest of this chapter. The most important point to emphasise 
here is that tables, graphs and charts should be primarily used to help your 
narrative, rather than being for ‘reference’. This doesn’t mean that you need to 
discuss every number or data point you’ve included in a graph, as some of this 
information will be needed for context. But try to avoid showing more data than 
are needed when you display data visually. If you feel that you need to include 
some more detailed information about your dataset or findings – for reasons of 
transparency, for example, or to include things that wouldn’t fit into the main 
report – consider putting them in an appendix at the end of your report rather 
than in the middle of a narrative describing your findings.

How do I make sure my table, graph or chart is as clear as 
possible?

Choosing the most appropriate method for displaying your data is one of the 
most important steps in making sure that you are telling your story as effectively 
as possible. However, once you’ve decided on a type of table, graph or chart, 
there are many more decisions you will have to make about exactly how it 
should be designed.

Modern software packages make it very easy to add textures, colours and other 
effects, but, as we’ll see when looking at some examples later in this chapter, 
simpler is usually better when it comes to displaying data visually. Remember that 
the primary goal of displaying your data visually is communication, not decoration. It 
may be fun to create full-colour 3D graphs and charts with fancy backgrounds, 
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but this won’t necessarily help, and can often hinder, communicating your 
findings effectively.

Tufte’s (2001, p  92) famous advice is to ‘above all show the data’. He 
distinguishes between data ink and non-data ink, and recommends keeping 
non-data ink to a minimum. ‘Data ink’ is anything in your table, graph or chart 
that provides information about your data. This isn’t restricted to the numbers 
in a table or the bars or lines on a chart or graph, but also things such as labels 
and titles. Non-data ink doesn’t just include obviously decorative things like 
logos or background textures, but also everything else that doesn’t contain a 
direct message about the data: things like grid lines in a table or reference lines 
on a graph. While it’s fairly simple to get rid of the decorative non-data ink, it’s 
much harder, for example, to decide on a suitable number (and thickness) of grid 
lines in a table. Few (2012) advises keeping only what is absolutely necessary to 
understand the data ink. There are no hard and fast rules for this, so you need 
to use your judgement: experiment with taking things out and adding them 
back in to help you decide what really needs to be included. It’s much more 
important that you pay attention to this matter than it is that you get the ‘right’ 
answer (as there probably isn’t one best way of doing this).

More difficult than minimising the amount of non-data ink is making sure 
there is no unnecessary data ink in your table or graph. Few (2012, p 143) warns 
that ‘not all information is equally important’, and recommends that you ‘give 
your readers what they need, and all that they need, but nothing more’. This 
means being selective about what data you include without leaving out crucial 
information. In the next section we’ll look at what to include and exclude 
from your tables and graphs in more detail, when we look at some of the most 
common ways of displaying data.

Some common ways of displaying data

Data display is a huge topic and there is only space to touch on the basics in this 
chapter. As usual, I’ve provided some recommendations for further reading at 
the end of the chapter. Here, I’m going to focus on the following commonly 
used methods of displaying numeric data:

•	 Tables
•	 Bar charts
•	 Pie charts
•	 Line graphs
•	 Scatterplots

There’s a section on each of these methods later in the chapter. But before we 
look at each of these in more detail, we need to discuss one of the most important 
decisions that has to be made when displaying your data: table or graph?



A graph is like a joke: if you have to explain it, it isn’t any good

159

Box 9.0: Graphs, charts and plots

So far in this chapter I’ve used the general terms ‘graphs’ and ‘charts’. The terms 
‘graphs’ and ‘charts’ both refer to ways of displaying data visually and, although 
there may technically be differences between them, I use them interchangeably as 
general terms throughout this chapter. They are used fairly loosely in the literature 
with, for example, some people using terms such as ‘bar chart’ and others calling 
the same thing a ‘bar graph’. My view is that the important distinction is between 
displaying data visually and displaying it as numeric values in a table or in a text. 
The exact terms used to describe different methods of data display aren’t nearly as 
important as using the techniques effectively.

Tables or graphs?

Once you’ve decided that simply incorporating your data directly into the 
text isn’t the best way of presenting your story, you’ll need to work out which 
method of displaying your data is the most appropriate. The first decision you’ll 
have to make is whether to display your data visually, in a graph or chart, or 
numerically, in a table. Few (2012) provides some useful guidance on this, and 
suggests that a good starting point is to think about how the reader will use 
the information. I’ve adapted his discussion to create a series of questions that 
can help you make this decision. Answering these might not always give you a 
definitive answer about whether you should use a graph or a table, but it will 
help guide your thinking.

Does the reader need to look up precise values?

Tables are primarily made up of numeric values, and sometimes these numbers 
are very important to the story you’re telling. Graphs and charts communicate 
visually, and while a limited number of individual values are often added to 
them, they are best used when the pattern or shape of a relationship is of more 
concern than the precise values that make it up. Numbers in a table can be as 
precise as is needed, and being able to see these values allows your reader to 
make comparisons and do further calculations. If particular, precise values in 
the data are the most important element in your story, this is one reason why 
a table might be more suitable than a graph or chart. If there are only small 
differences between groups, for example, but these differences are consequential, 
the precise values might be important information for your readers.

How complicated is the relationship I am trying to show?

While tables are fine for showing simple relationships, graphs are usually better 
when the relationship is complicated. As Few (2012, p 49) notes, graphs have a 
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‘unique power to reveal patterns of various types, including changes, differences, 
similarities, and exceptions’. It’s much easier to see a trend over time on a line 
graph, for example, that it is when looking at the figures in a table. And as we’ll 
see later in this chapter, a bar chart can immediately convey differences between 
many different categories. If your story is primarily about a relationship you have 
discovered, or differences between a large number of groups, a graph or chart 
might show this relationship or these differences much more effectively than a table.

How many different units of measurement do I need to show?

Graphs generally work best with only one or two different measures and can 
become difficult to read with multiple measures. Tables, on the other hand, can 
include lots of different measures because, unlike graphs, they’re not limited 
by having only two (or maybe three) axes. It’s quite common, for example, 
for a reader to want to see exact frequencies and exact percentages, which can 
be easier to present clearly in a table. When the exact values of three or more 
different measures need to be shown, a table tends to be a better option.

How large is the dataset I am presenting?

While it’s possible to show very large datasets in tables, when you have more 
than a relatively small number of data points to display, it will usually be easier 
to see patterns and relationships in the same data displayed as graph or chart. In 
general, large tables aren’t an effective method of telling a story. If you have a 
dataset that covers a large number of years, for example, any changes over time 
will be much easier to follow on a line graph. Few (2012, p 48) notes that ‘the 
patterns revealed by graphs enable readers to detect many points of interest in 
a single collection of information’ in a way that would be very difficult in a 
table. He uses the example of a scatterplot (which we will discuss in detail later 
in this chapter) to show how patterns and relationships can be clearly shown, 
even when many hundreds – or even thousands – of data points are included 
in a graph. A table showing the same data would be much more difficult to 
interpret, and would take up a great deal of space.

Table 9.0 is a modified version of the one Few (2012) provides, and summarises 
the key considerations when deciding whether to use a table or a graph.

Table 9.0: Reasons for using tables and graphs

Use tables when … Use graphs when …

•	 Individual values are important

•	 Comparing individual values is important

•	 Precise values are needed 

•	 There is more than one unit of measure 
(eg, individuals and households)

•	 Both detail and summary are needed

•	 A complex relationship is being shown

•	 Patterns and trends are being shown

•	 A large number of values need to be shown
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How to create a good table

As I wrote at the beginning of this chapter, modern software packages make 
it very easy to create graphs and charts with all sorts of colours, textures and 
effects. This can be a fun distraction from writing your report, but doesn’t 
usually result in better data display. Unfortunately for those of you with artistic 
flair, simple displays are usually best.

I don’t imagine that many people find creating tables to be fun. But while 
they’re not particularly exciting in a visual sense, it’s still important to pay 
attention to their design. Fortunately, there are probably fewer pitfalls in 
designing tables than there are with graphs and charts. There isn’t the room in 
this book to look at table design in detail, but, if you’re interested in pursuing 
this topic further, Few (2012) provides an extremely comprehensive discussion 
of all aspects of the process.

Here are a few ways that you can avoid common issues with table design:

•	 Only include the figures needed for the narrative: Tables should be essential for the 
narrative and shouldn’t be included just for reference. This doesn’t mean that 
you only include the numbers in a table that you refer to in your text – some 
numbers will be needed for context and comparison – but you shouldn’t 
include information that doesn’t relate to the point you’re making in your 
discussion. This requires some judgement, but, as always, thinking carefully 
about this decision will usually result in a better table.

•	 Be consistent with decimal places: It’s best to use the same number of decimal 
places for each measure in your table. You might use a different number of 
decimal places for different measures, but the important thing is that in any 
particular measure of variable, the same number of decimal places is used. 
This means that, if the numbers are also aligned properly, comparing the 
figures will be easier.

•	 Align the text and numbers: Numbers should usually be aligned (‘justified’) to 
the right side of each column. This means that they should all line up on 
the right, so that they can be easily compared. For this to be effective, you 
need to use the same number of decimal places for the figures in a particular 
column. Aligning the text is less crucial, but doing this in a thoughtful way 
makes a much neater looking table. Text is often aligned to the left in the 
first column of a table but can be centred in subsequent column headings.

•	 Keep the design simple: A general principle running through this chapter is 
that simplicity is usually better in data display. An important part of this is 
keeping non-data ink to a minimum. With tables this relates mostly to grid 
lines, so try to only include lines that are necessary, and don’t make lines too 
thick or too heavy.

Now that we’ve covered the basics of creating a table, in the next section we 
look at some methods for displaying data visually. We start with one of the most 
common methods: pie charts.
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Pies are for eating, not for displaying data

When asked to display some data showing the distribution of a categorical 
variable, many people’s first instinct is to create a pie chart. Pie charts are very 
popular and are often people’s ‘go-to’ preference for displaying this kind of 
data. It’s easy to see why they’re attractive, as they have an intuitive appeal: 
most people have cut up a pie, cake or pizza. Pie charts are often presented in 
colour and sometimes also with textures, and it’s quite common to see three-
dimensional (3D) versions. It’s easy to create charts like this using software 
packages that are used in most offices or educational settings, such as Microsoft 
Excel or Google Sheets.

Given their popularity, you might be surprised to find out that I never 
recommend using a pie chart to my students or colleagues. This isn’t because 
they don’t work (no one would use them if they were completely ineffective), but 
because I have not yet encountered a situation where they are the best method 
of data display. Where they do ‘work’, they are either unnecessary or could be 
replaced by a more effective way of displaying the same data.

I could easily end this section of the chapter here, by telling you never to use 
pie charts. But given that pie charts are so popular, I don’t want you just to take 
my word for it that pie charts aren’t often very useful. I want to show you why 
they aren’t. And if I haven’t convinced you by the end of this chapter, feel free 
to use them whenever and however you want.

I’m going to use some example data to demonstrate the weaknesses of pie 
charts. Most of this will be from the National Survey of Sexual Attitudes and 
Lifestyles (Natsal) dataset that I’ve used in previous chapters. I occasionally use 
hypothetical data to make particular points, but I’ll point out when this is the 
case. I realise that I’m spending quite a lot of time discussing a method of data 
display that I’m advising you not to use, but I think that it’s justified given the 
popularity of pie charts and the number of problems with them. I hope you 
find my arguments convincing, and save the pies in your life for eating.

Problem one: there are no axes on a pie chart (and only figures if you add them)

One of the problems inherent to pie charts is that, in their pure form, they don’t 
have any axes or contain any numbers. Axes are the lines on the edge of a graph 
that usually have labels and/or a scale. I discussed the x-axis and the y-axis in 
the last chapter (and will come back to these later). The axes are important on 
a line graph, bar chart or scatterplot because they help us estimate the values in 
that visual display. Because there are no axes on pie charts, this means that the 
numbers behind the visual display are either invisible to the reader or have to 
be added on as an ‘extra’.

Figure 9.0 shows a very basic pie chart. It displays the answers from a question 
about alcohol consumption from the Natsal dataset. The four categories each 
represent a different range of alcohol consumption. As you can see, there are 
no axes and no numbers on the main part of the chart.
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One problem with pie charts is that estimating accurate figures from the pie 
‘segments’ isn’t easy. We can get a rough sense of proportion in some cases, 
but this isn’t always possible. You can probably guess that the section for ‘1 to 
2 units’ is about a third of the whole pie (it’s actually 36%), for example. And 
the ‘7+’ and ‘3 to 4’ sections look like they each represent around a quarter of 
the whole pie, but it’s much harder to come up with a percentage or fraction 
for the ‘5 to 6’ segment (have a try). This is because we’re generally not very 
good at estimating angles and turning these into proportions, at least not unless 
they are obvious and simple (a half, a quarter, one third, and so on).

Unlike tables and other kinds of graphs, there are no figures that are an inherent 
part of a bar chart that can help us with this task. Frequencies and percentages 
can be added, of course, but I’ll discuss why this isn’t an ideal solution later in 
this chapter.

Problem two: it can be difficult to compare the size of different segments

As discussed earlier, the main advantage of displaying data visually is that the 
story – what is going on in the data – can be perceived almost immediately 
because of our brain’s ability to understand size, shape, order, and so on. A pie 
chart can give us a good idea of when the segments are very different from each 
other, as you can see in Figure 9.0 if you compare the segment representing 
‘1 to 2’ units of alcohol consumed with the segment showing ‘5 to 6’ units of 
alcohol: the ‘1 to 2’ segment is clearly much larger than the ‘5 to 6’ segment.

However, comparing the ‘3 to 4’ units of alcohol with the ‘7+’ category is 
more difficult. We can see that they are quite similar, but which one is bigger? 
And how much bigger is the larger segment? It’s quite hard to tell, and our 
interpretation can be affected by the colours or textures used in each segment. 
Judging proportions and comparing categories in pie charts can be quite hard, 

Figure 9.0: A basic pie chart

Average units of alcohol 
consumed when drinking

1 to 2

3 to 4

5 to 6

7+
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especially when segments are a similar size. But small differences can sometimes 
be very important in our research findings.

Problem three: pie charts don’t work well with lots of categories

The problem of both working out an approximate proportion of a segment and 
comparing segments of different sizes tends to get worse as more categories are 
represented in your pie chart. Figure 9.1 shows Natsal data on preferred source 
of contraception. As before, some of the segments are quite similar in size and 
are hard to differentiate, but, in this case, the number and size of the segments 
make this problem worse. Judging the approximate proportion taken up by some 
of the larger segments is reasonably straightforward. If you look at the largest 
segment in Figure 9.1, you might guess that it’s a bit larger than one-third of 
the whole ‘pie’ (it’s actually 38%) – but what about some of the smaller sections? 
Can you easily work out what proportion they represent? It’s quite hard to do. 
Interpreting graphs and charts should be easier than interpreting the figures in 
tables – the whole point is that they tell the story more immediately. If you have 
to struggle to work out proportions, differences or approximate figures from a 
graph or chart, it hasn’t served its purpose very well.

The more categories you have in a pie chart, the greater the chance that some 
segments will be small, hard to compare and difficult to interpret as proportions. 
As the number of segments increases, it also gets harder to create a pie chart 
without using colour – something that is less of an issue for bar charts, as we’ll 
see. Although most things we now read are available electronically, some are 
not, and we can sometimes only use black, white and grey to draw graphs and 
charts. This makes pie charts a bit less flexible in terms of where they can be used.

Figure 9.1: A pie chart with lots of categories

Preferred source of contraception

GP surgery

Pharmacy

Reproductive health clinic

GUM clinic

NHS website

Youth advisory clinic

None of these
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Problem four: three dimensions makes things worse, not better

Modern software has made it easy for anyone to make graphs and charts, and to 
add colours, textures and effects. Creating three-dimensional (3D) graphs has 
become very popular, and it’s common to see pie charts presented this way. As 
we shall see, however, 3D pie charts are even more difficult to interpret than 
conventional ones. This is because they distort the proportions that would be 
correctly shown in a two-dimensional (2D) graph, and make it almost impossible 
to judge the correct size of segments by eye.

Figure 9.2 shows the same data as we saw in Figure 9.0, but in a 3D rather 
than a 2D bar chart. In Figure 9.0, we saw that the segments for ‘3 to 4’ and 
‘7+’ were very similar in size and difficult to tell apart. In the 3D bar chart, 
however, the same two segments look very different. The segment closest to 
us, representing ‘7+’ units of alcohol, looks much bigger than the segment at 
the back right of the pie, which represents ‘3 to 4’ units of alcohol. But these 
two segments each account for 25% of cases: they should appear to be exactly 
the same size (as they did in Figure 9.0).

Presenting the data in a 3D pie chart has distorted the true proportions of the 
segments. It has achieved the exact opposite of what a graph or chart is supposed 
to do: accurately tell the story of the data. This has happened because a false 
sense of ‘perspective’ has been added to the pie chart. You might remember from 
your art classes that things that are further away appear smaller than things that 
are close to us. So if we draw a field of cows, the ones in the distance would 
be drawn smaller than the ones nearby, even if they were actually the same size. 
This is good practice if you’re painting a view of the countryside, but it doesn’t 
work with graphs and charts because there is no ‘close by’ or ‘far away’. Graphs 
and charts are an abstract representation of data rather than an attempt to capture 
what we see when looking at the material world.

Figure 9.2: A 3D pie chart

Average units of alcohol consumed 
when drinking 1 to 2 3 to 4 5 to 6 7+
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Figure 9.3 shows the same data in a different 3D pie chart. The only difference 
is that the pie has been rotated, so the segments that were previously at the 
front are now at the back. As you can see, the ‘3 to 4’ segment, which is now 
at the front, looks much larger than the ‘7+’ segment, which is now at the 
back. Compared to Figure 9.2, it gives the opposite impression of the relative 
proportions of these two categories. The story told by the data has changed 
just because I have changed the order in which the categories are represented 
in the pie chart.

I hope that you can see how this could potentially mislead readers, and how 
3D pie charts could be manipulated to misrepresent research findings. While I 
may be able to be convinced that there are occasions where pie charts could be 
useful, I don’t think that this will ever be the case for 3D pie charts.

Can we improve pie charts by adding numbers?

You might think that I’ve been a bit unfair to pie charts because, so far, the 
examples I have used haven’t had any numbers attached to them. Most of the 
pie charts you see have numbers attached to them, to help readers see the 
exact values, either as frequencies or percentages (and sometimes both). This 
is particularly helpful when some of the segments are of similar sizes or are 
very small.

If you’re going to add numbers to a pie chart, it makes most sense to add 
frequencies. The whole point of pie charts is to show proportions visually, 
so you should be able to see these by comparing relative size of the different 
segments. However, I’m going to argue that adding numbers to pie charts both 
reveals their inherent weaknesses and also detracts from much of their value as 
a visual display.

Let’s look first at adding percentages to pie charts, which is a fairly common 
practice. Figure 9.4 shows the same data on preferred source of contraception 
as we saw in Figure 9.1. The difference here is that I’ve added percentages 

Figure 9.3: The same 3D pie chart from a different angle

Average units of alcohol consumed 
when drinking 1 to 2 3 to 4 5 to 6 7+
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to each segment. This makes it easier for us to compare the sizes of the 
different segments and to judge the proportions represented by some of the 
smaller segments.

Has adding numbers solved some of the problems I raised earlier and 
transformed our pie chart into a useful way of presenting our data? Yes and 
no. It’s true that you can now make comparisons more easily and have access 
to exact percentages – but notice where your eyes go when you first look 
at the pie chart. I bet that most of you are drawn straight to the percentage 
figures themselves, rather than the pie. This almost makes the graphical part 
redundant, as you could have just presented the percentages in a table. There 
doesn’t seem to be much advantage to using a pie chart rather than a table in 
this case, and a table would have the advantage of presenting the percentages 
in a more orderly way.

Let’s try adding frequencies instead. As the pie charts already show proportions, 
frequencies add some additional information, rather than just helping you 
interpret the proportions more accurately. But, as you can see in Figure 9.5, 
where I’ve added frequencies to the pie chart we’ve been looking at, the numbers 
have to be scattered across the chart, rather than being in neat and easy-to-
read columns like they would be in a table. And it’s still difficult to judge the 
proportions of the smaller segments.

A solution to this could be to add both frequencies and percentages. However, 
this makes your pie chart very cluttered. It would be much more effective simply 
to put the frequencies and percentages into a table, as it is these figures that 
you’re paying most attention to. But tables aren’t always the best way to display 
data, so what other options do we have?

Figure 9.4: A pie chart with percentage values added
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What are the alternatives to pie charts?

Although tables are good for presenting precise figures and multiple measures – 
such as frequencies and percentages – they do lack the immediacy of graphs and 
charts. They’re not as good at telling the story of your data, and can be more 
of an interruption to your narrative if your readers have to spend time studying 
them. So what are the alternatives to pie charts for showing how many cases 
there are in different categories?

As I discussed earlier, if you only have a few figures, you may simply be able 
to incorporate them into your text. The data in Figure 9.0, which only relate 
to four different categories, could be incorporated into your text without 
providing too many numbers for the reader. There would be a maximum of 
four frequencies and four percentages, which you could present in pairs (for 
example, ‘25% of respondents [N = 2,656] consumed three to four units of 
alcohol when drinking’). But incorporating the data in Figures 9.4 and 9.5 into 
the text would probably result in a long list of numbers that would be hard for 
your readers to follow. There are seven different sources of contraception, which 
would result in up to 14 different frequencies and percentages to discuss. In this 
case a table or a graph would be a better option.

Figure 9.6 shows the same data as Figures 9.4 and 9.5 presented in a bar chart 
rather than a pie chart. This has several advantages. One important difference 
is that a bar chart has two axes: the one on the left with numbers (the y-axis) 
and the one on the bottom with the labels for each category (the x-axis). Both 
these axes help us interpret the data in the chart more easily.

Figure 9.5: A pie chart with frequencies added
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The y-axis, which on this chart shows frequencies, allows us to read off an 
approximate value from each bar. You can see, for example, that the number 
of people whose preferred source of contraception is a GP surgery is just over 
3,100. It’s easy to find the data for this category because the label, on the x-axis, 
is directly below the relevant bar.

These two features give bar charts several advantages over pie charts. First, 
you can read off the approximate value for any category without having to 
attach the appropriate figure to the bar (as you have to do for a pie chart 
segment). Second, you can immediately see which bar relates to which category, 
something that is much less immediate with pie charts, where you need to 
match the category label from a list (called a legend) to the appropriate segment. 
And last, because of the way bar charts are laid out, and unlike pie charts, you 
don’t need to use different colours, shades or textures to differentiate between 
categories, which can get increasingly complicated the more categories you 
are trying to represent.

It’s also the case that it’s much easier to judge the relative size of the bars in a 
bar chart than with the segments in a pie chart. For example, without referring 
to the frequencies shown on the y-axis, we can easily see that the ‘Pharmacy’ 
bar is roughly twice the size of the ‘Reproductive health clinic’ bar. And even 
when the difference in the size of the categories is very small, you can easily 
see which ones are larger and smaller. The bar for the ‘NHS website’ category 
is only slightly larger than the one for the ‘Youth advisory clinic’ category, 

Figure 9.6: A simple bar chart with frequencies
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but it’s immediately clear which one is bigger than the other. This is because 
bar charts work with our innate ability to recognise some kind of patterns or 
differences, and seeing how much a bar is ‘sticking out’ compared to another 
bar is something we can do well.

When you have more than a few categories, it’s not straightforward to 
estimate the percentage that each bar represents, but if this is the most important 
information, the y-axis can be used to indicate percentages rather than 
frequencies, or if frequencies are also needed, a y-axis indicating percentages 
can be added to the right side of the chart.

Figure 9.7 demonstrates how much more effective bar charts are at showing 
the difference in size of each category compared to pie charts. It’s difficult to 
distinguish the differences in sizes of the segments in each of the two pie charts. 
However, when looking at the bar charts, it’s much easier to see the relative sizes 
of each of the different categories in each chart. We can also see any differences 
between the two charts in the sizes of the categories A to E and we have the 
added advantage of being able to read off frequencies from the y-axis.

The flexibility of bar charts in their different forms

As well as being better at showing us the difference between the frequencies 
and percentages associated with different categories in a variable, it’s also the 
case that bar charts are much more flexible than pie charts, and can be used for 
a much wider range of purposes.

Figure 9.7: Pie charts versus bar charts
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One of the most useful types of bar chart is the clustered bar chart. These 
charts allow you to look at the relationship between two variables, rather than 
only looking at one variable at a time. Figure 9.8 compares the contraception 
source preferences between male and female respondents. You can immediately 
see that there are substantial gender differences, with GP surgeries being the 
preference of more than half of the female respondents, but only just over one-
fifth of the male respondents. In contrast, over 46% of men preferred to get 
their contraception from pharmacies, whereas only just over 20% of women 
indicated this preference.

Clustered bar charts have the same desirable properties as simple bar charts: 
the key advantage being that it’s very easy to compare the relative size of the 
bars. They still work well with a large number of categories, and can be used 
with both frequencies and percentages.

A commonly used alternative to the clustered bar chart is the stacked bar chart. 
These can be used to show both percentages and frequencies but are most 
commonly used to compare proportional differences between groups.

Stacked bar charts work best when there are relatively few categories for each 
group. In Figure 9.9 we have three categories of smoking behaviour – ‘Never 
smoked’, ‘Ex-smoker’, ‘Current smoker’ – and have compared two groups, 
male and female respondents. A stacked bar chart allows us to easily see that 
there are only very small differences in smoking behaviour between the male 
and female respondents.

Figure 9.8: A clustered bar chart
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Figure 9.10 shows a stacked bar chart with seven categories. However, as you 
can see, when the number of categories increases, and when some of the bars 
are quite different in size, it becomes more difficult to compare the size of the 
segments between different bars.

Figure 9.9: A stacked bar chart with three categories
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Figure 9.10: A stacked bar chart with seven categories
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Stacked bar charts vs clustered bar charts

The key advantage of clustered bar charts is the same as for simple bar charts: the 
bars all start from the same baseline. This means that they are easier to compare 
because it’s clear which bars stick out further and how much further they stick 
out. We lose some of this advantage when we use stacked bar charts because this 
is only the case for the category at the bottom end of each bar. The sections that 
are stacked on top of the bottom one don’t necessarily start at the same point, 
so aren’t quite as easy to compare. Reading values from the y-axis to help work 
out the size of each category is also harder for these sections.

Stacked bar carts can have their place, however. When used with percentages, 
they are better for comparing proportions than pie charts, as the figures on  
the y-axis make it easier to judge the proportion of the categories. They  
can also be used effectively with frequencies, as an alternative to clustered 
bar charts, although, for the reasons I have already explained, I tend to prefer 
the latter.

As you may have gathered from what you’ve already read, I believe that bar 
charts are one of the most useful and versatile methods of displaying data visually. 
I only have the space to introduce them very briefly in this chapter but have 
included further reading at the end of the chapter for those of you who may 
want to read more about them.

In the next section we’re going to look at another important method for data 
display: line graphs.

Line graphs

Line graphs can be a very useful method for displaying data. However, they have 
a very specific use, and are commonly misused. Figure 9.11 shows an example 
of the appropriate use of a line graph. The important feature of this graph is 
that is shows change over time. Line graphs are intended to show change over 
time and are very effective at doing this.

The simplest type of line graph has only one line, as is the case in Figure 9.11. 
This shows how one thing has changed, in this case, the number of COVID-19 
vaccine doses given at different points in time over a two-year period. The line 
gives us the idea of the trend – when there have been the highest and lowest 
numbers of doses administered, and during which periods there has been the 
most change. Our eyes follow the line from left to right, following the ‘story’ 
as it unfolds over time.

We can see, for example, that there was a rapid rise in the administration of 
vaccines shortly after they were authorised for use, in early December 2020. This 
peaked in the summer of 2021 and again in December 2021, perhaps because 
people were getting additional doses.
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Line graphs can have more than one line, however, and this allows us to compare 
different groups over time. Figure  9.12 shows the number of people using 
different social media platforms. Each of the lines represents a different social 
media platform, and, as you can see, you can include several different groups 
in a single line graph without making it difficult to read.

We can see that there has been a general growth in the overall use of social 
media, but that some platforms have grown faster than others. Facebook  
was the most popular platform in 2018 and has been the largest platform  
since it overtook YouTube in 2010. However, the popularity of Twitter has 
stalled, and newer platforms such as WhatsApp and TikTok have grown 
very quickly.

Apart from the different number of lines, there are some other important 
differences between these two line graphs. You’ll notice that there aren’t data 
for the entire period for any of the platforms. For TikTok there are only data 
for two years. There are two reasons for the different amount of data available 
for each platform, one of which you might have already guessed.

The most obvious reason for the differences is that Facebook is the only 
platform that has existed for the whole time period. Other platforms, such as 
Reddit, have been around for almost as long, but those such as Pinterest or 
TikTok are much newer. As it’s only possible to have users if a platform exists, 
this explains some of the data that are missing. Another reason why there is 
some missing data is because there wasn’t up-to-date data for all platforms 
when this graph was produced – there’s only data for 2019 for Facebook, 

Figure 9.11: A line graph with a single line
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Twitter and Pinterest. Despite this, the graph gives us a very good overview 
of the popularity of different social media platforms and how this has changed 
over time.

An important difference between the line graph shown in Figure 9.11 and 
the one in Figure 9.12 is the number of data points making up each line. In 
Figure 9.11 there are data for each day of the year, meaning that the data points 
are so close together that you can’t see any lines that join them. In contrast, there 
are only yearly data points in Figure 9.12, and it’s easy to see the dots and the 
lines that join them. Strictly speaking, we have no data between each of the data 
points, so we don’t really know what the trend was between them. However, 
we usually accept that the line is a simplification of what has happened between 
the data points, as we’re more interested in the longer term trends.

Misuse of line graphs

The two examples we’ve looked at so far are both appropriate uses of line graphs. 
This is because they show change over time, and it makes sense to follow the 

Figure 9.12: A line graph with multiple lines
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progress of the line from the left to the right of the graph. But it’s quite common 
to see line graphs misused, and sometimes it’s tricky to work out whether a line 
graph is an appropriate way to display your own data.

Figure 9.13 shows the Natsal data on contraception sources that we’ve seen 
before. This time it’s presented in a line graph. A line graph isn’t appropriate 
here, because there is no ‘progression’ from left to right in relation to the 
categories. If we put the categories in a different order, the shape of the line 
would change even though we would be using the same data. Line graphs don’t 
work as they’re supposed to if the line doesn’t show progress from one time 
period to the next. Also, each line in a line graph represents a single category, 
whereas the line in Figure 9.13 appears to link all the seven different categories 
of contraception source.

I hope that you can see that the data in Figure 9.13 are better suited to the 
bar chart we used earlier in this chapter. It would even be better to display them 
in a pie chart than in a line graph! The problem with the line graph is that it 
invites us to follow the line across the graph, and it suggests that there is some 
kind of change over time.

Figure 9.14 shows another line graph using Natsal data. This time it shows the 
number of participants who drank different amounts of alcohol. This example 
is a bit trickier because, unlike the data in Figure 9.13, there is an order in the 
categories of alcohol consumption (that is, it is an ordinal categorical variable). 
So it makes sense to have the categories in the order that you see in the graph. 

Figure 9.13: An inappropriate line graph
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However, just because they are ordered doesn’t mean that they should be joined 
with a line, as they are in Figure 9.14. Remember that in a line graph, the line 
represents how a single category has changed over time. But these data were 
all collected at one point in time, so there is no change over time to be shown 
in a graph. And each participant could only pick one category of alcohol 
consumption, so the line is joining up the responses of different participants 
even though there is no link between them.

Figure 9.15 shows results from another question in the Natsal study. Again, 
deciding whether a line graph is appropriate is not straightforward because 

Figure 9.14: Another inappropriate line graph
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Figure 9.15: A final inappropriate line graph
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there is an element of time in the data: how often people drank more than six 
units of alcohol. But, like the previous two examples, the data doesn’t measure 
change over time, and there is no link between each of the categories that relate 
to time. The people in the ‘Daily’ category, for example, are not the same 
people who are in the ‘Weekly’ category, and so these two groups shouldn’t 
be joined by a line.

Line graphs are a bit of a niche method of displaying data. They are very 
effective at displaying trends over time and can be used to compare change over 
time for many different groups in a single graph, and so it’s very useful to be 
familiar with them. But they shouldn’t be used in other circumstances.

Next we’re going to look at a type of graph that you’ll be familiar with if 
you’ve read the previous two chapters: scatterplots.

Scatterplots

In Chapters 7 and 8, where I covered correlation and regression analysis, I used 
scatterplots at various points to show the relationship between two continuous  
(or discrete) variables. I want to briefly revisit them here to discuss their uses, 
and also to highlight their limitations. There will be some overlap with what I 
covered in the previous chapters, so if you’ve read those you might want to skip 
over some of the content here, but I’ve tried to be reasonably comprehensive 
to make sure that this discussion works as a stand-alone section for anyone who 
hasn’t read the rest of the book.

Figure  9.16 shows the relationship between two continuous variables: 
household income and expenditure. Each of the dots on the scatterplot represents 
a particular case, and in this example that means a household. For any one of 

Figure 9.16: A scatterplot showing the relationship between two continuous variables
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these cases, you can estimate the approximate value for the household income 
and household expenditure by seeing where each dot sits in relation to the 
y-axis and x-axis.

Although you can see every case in your dataset on a scatterplot, we’re not 
usually interested in looking at all of these cases individually. Scatterplots tend 
to be used to give an overview of the relationship between two variables. This 
allows you to check whether the relationship is linear which, as we saw in 
Chapters 7 and 8, is very important if you’re going to go on to conduct any 
correlation or regression analysis. However, they can also be useful in identifying 
outliers – cases that are unusual (and that may even be errors).

Scatterplots can be very useful, but they work best in particular circumstances. 
They’re ideally suited to showing strong relationships in relatively small datasets. 
When there are thousands of cases and the relationship being shown is weak, it 
becomes difficult to see patterns in a scatterplot.

Figure 9.17 shows a scatterplot with 8,297 cases. The correlation between 
the two variables is very weak (r=0.09), and the graph doesn’t add much to our 
understanding. It’s not possible to see whether the relationship is linear (this is 
difficult to ascertain when relationships are not reasonably strong), and there’s 
so much overlap of the data points on the graph that we can’t tell how many 
dots are sitting on top of each other. (There are technical workarounds to this 
issue but they don’t always solve this problem and are beyond the scope of what 
is covered in this book.)

If you’ve read Chapters 7 and 8 you’ll remember that although, strictly speaking, 
correlation and regression analysis require you to have continuous variables, it’s 
usually fine to use these techniques when your data are discrete. This means that, 
while your data may be ‘equal interval’, in practice you only collect data that 

Figure 9.17: A scatterplot with thousands of cases and a weak relationship
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take certain values (it might be helpful to refer to Chapter 2 if these terms are 
unfamiliar to you). Data on the number of people in a household are discrete 
(you can’t have half a person), and a variable such as ‘years in full-time education’ 
would also be discrete. Unfortunately, discrete variables don’t always work as 
well in scatterplots as continuous variables.

Figure 9.18 shows an example of the relationship between one continuous 
variable (current salary) and one discrete variable (whole years of education 
completed). You can see that years of education is a discrete variable because 
the data points form lines running vertically on the scatterplot. These data 
are from the USA, and the lines correspond to the points at which people 
have left full-time education. There are some older people who left school 
after eight years of education, but most stayed for 12 years or longer since 
the law changed. You can see that quite a few data points fall at 15 years and 
16 years of education, representing people who have graduated from three- or 
four-year degrees.

As you can see, the scatterplot works reasonably well, even though one of the 
variables is discrete (and is restricted to a small number of possible values). The 
spread of the data suggests that the relationship may not be linear, as it appears 
that salary increases disproportionately with each extra year of education. This 
is useful information, and in this case, the scatterplot has served the purpose 
well of allowing us to visually examine the relationship that we’re interested in.

Figure 9.19 shows us a relationship between two discrete variables. The data 
I used to create this graph comes from the 2011 ONS Opinions and Lifestyle 

Figure 9.18: A scatterplot with one discrete and one continuous variable
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Survey. The questions ask respondents to rate their satisfaction with various 
aspects of their lives on a scale from 0 to 10. (I realise that, in Chapter 2, I 
warned about the issues with assuming that such data was ‘equal interval’, but 
we’ll ignore that here, as we’re only concerned with how discrete data are 
displayed on a scatterplot.)

The scatterplot shown in Figure 9.19 looks a bit odd, with the data points 
forming a grid pattern. It’s important to point out that there are 1,124 cases in 
the Opinions and Lifestyle Survey, and they are all represented in this scatterplot. 
The problem is that many of these cases are sitting in exactly the same place 
on the scatterplot, and it’s impossible to see how many are represented at each 
point on the grid.

There are techniques that you can use to solve this problem, one of which is 
jittering the data. This randomly moves the data points by a very small amount, 
so that they don’t overlap in a perfect grid pattern. Figure 9.20 shows the same 
variables as Figure 9.19, but the data have been jittered. This is something that 
may be possible with the software you are using to analyse your data or create 
a graph, but isn’t always an easily accessible option.

Scatterplots can be a very useful technique for data display. They are sometimes 
used when reporting findings, but are more commonly used in the exploratory 
stages of analysis to examine a relationship visually and check for things such as 
the linearity of the relationship or whether there are any outliers. They work 
best with continuous data but can be used when one of your variables is discrete. 
If both variables are discrete, however, they aren’t useful unless you manipulate 
your data with techniques such as jittering.

Figure 9.19: A scatterplot with two discrete variables
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Summary

This chapter has provided an overview of the pros and cons of some of the most 
commonly used methods of displaying data. It has only scratched the surface of 
a vast topic, and I have provided some suggestions for further reading below.

The next, and last chapter continues this theme of presenting your results, and 
examines how best to write up the results of a statistical analysis.
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10

Telling statistical stories: how to 
present your findings and conclusions

WHAT IS THIS CHAPTER FOR?
Most of this book so far has been about how to conduct statistical analyses. 
In Chapter 9 we also looked at the use of tables, charts and graphs, and 
started thinking about how to present your results. In this chapter we 
take this one step further and look at how to write up your findings and 
conclusions as a coherent narrative that readers will find both accessible 
and appealing.

WHAT DOES IT COVER?
I provide some basic guidelines to help you present your statistical ‘story’, 
and point out some common mistakes made by those who are new to writing 
about statistics and presenting numeric data. I discuss what you must leave 
in and what you can leave out when writing up your findings and conclusions, 
and how to best structure your narrative.

WHAT WILL YOU LEARN?
•	 How to avoid a ‘shopping list’ approach to presenting statistical findings
•	 What you should write most about and what you can write less about
•	 The technical details that you need to include and those that you can 

leave out
•	 How to make sure that your conclusions are justified by your findings

All statistics textbooks tell you how to analyse your data and show you what 
the results of these analyses look like. You’ll see these results presented in their 
pages as lists of figures and as tables and graphs. Some, but not all, texts also 
cover the principles of good data display that we looked at in Chapter 9. But 
very few textbooks provide any guidance on how to turn all these figures, tables 
and graphs into a coherent and engaging narrative – the ‘story’ of your research 
findings. This is what we’re going to focus on here.

Remember that you’re telling a story

When you write up your results you’re telling the ‘story’ of your research. This 
is the case regardless of what kind of data you’ve collected and what type of 
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analyses you’ve conducted. When I use the term ‘story’ or ‘narrative’, I don’t 
mean that you’ll be making something up and creating a work of fiction. Most 
researchers try to report their findings as truthfully as possible (while realising 
that all research involves making judgements, and you can only ever give a partial 
account of what’s in your data). By writing up your results you’re telling the 
story of what you found out, and it’s useful to think of your writing as a narrative 
because this will help you present your findings in a way that is engaging and 
appealing to readers.

Presenting the results of statistical analysis is different in some ways to presenting 
the results of other types of analysis, but there are also some similarities. Statistical 
results will contain more numerical data and probably more tables, graphs and 
charts, and so they’ll look different to the results of, for example, the thematic 
analysis of interview data. But deciding how to present any research findings 
always involves making decisions about what you show the readers, in how 
much detail, and in what order. We’ll look at these differences and similarities 
in more detail throughout this chapter.

Curating your findings

To present the results of your research in a way that creates the best possible 
narrative, you need to ‘curate’ your findings. A curator uses their expertise to 
select, organise and present a collection of things, and ‘curate’ is a term more 
often associated with the contents of a museum or art gallery than of a research 
report. A well-curated exhibition will tell a good story about a collection of 
things. When you carry out a piece of research, you become an expert on your 
data, analysis and results, and when you’re writing up your findings, it’s useful 
to think of yourself as curating them. Seeing your results as a collection of ideas 
that need to be selected, organised and presented will help you build a good 
research narrative.

Being selective

Being selective about what you present to your readers is probably the most 
important consideration when writing up your findings. There are practical 
reasons why you might need to be selective – such as meeting a word limit – 
but being selective is also essential to creating a good narrative.

Writing up any type of analysis requires you to be selective

Being selective about what to include when reporting your results isn’t something 
that just applies to writing up statistical analyses. Regardless of the kind of data 
you have collected or the method you’ve used to analyse them, you’ll have to 
make decisions about what data you present to your readers. All analysis involves 
processes of selecting and summarising data, and it isn’t possible to show readers 
all the data and all the information on exactly how it was analysed. Before we 
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look in detail at presenting numeric and statistical results, it’s useful to think 
about how we might present the findings of research using other kinds of data.

If your research is based on analysing interview data, for example, you could 
find yourself with many thousands of words of interview transcripts. You’re also 
likely to have other important information about how you coded and analysed 
the data. If you presented all of this to readers, you’d give them a complete 
picture of the data and the analytic process, but it’s unlikely that it would be 
an engaging narrative. You’d end up with a very long document that probably 
wouldn’t be very interesting to read.

When writing up their results, researchers who analyse interview data 
usually present extracts from interview transcripts alongside a discussion of 
the importance of these extracts, how they relate to each other and to broader 
themes in the data, and how they relate to their research questions. They won’t 
usually have the space to include all the relevant extracts from the interview 
transcripts, and so they have to choose only the most important ones and will, 
by necessity, leave out some others. As with any analysis, readers only get to 
see some of the data, but researchers should try to make sure that what their 
readers see is a faithful representation of the most relevant information. Most 
of my students who analyse interview transcripts understand that they shouldn’t 
try to include all their data and all the details of their analytic process when they 
write up their results. And they usually realise that they need to tell the reader 
the most important details.

However, when students first present me with a report of the results of research 
based on statistical analysis, they are often less sure about what they should 
include. This means that they sometimes present me with a discussion of the 
results of every single analysis they have conducted. I call this the ‘shopping list’ 
approach. Not only do they include all the information about every analysis 
they have conducted, they provide roughly the same amount of detail for each 
one, and usually present these in the order that they conducted them.

Why doesn’t this approach work? Isn’t it best to include as much information 
as possible about your analysis so that it’s clear to your readers what you have – 
and haven’t – done? Not really. The problem is that this kind of report tends to 
be very long, is usually quite dull to read, and often doesn’t give a clear sense 
of the story they’re trying to tell. While being transparent about your data and 
analysis is important, it’s very hard to create a good narrative without being 
selective about what you include. In the following sections we’ll look at the 
different types of analysis, what they tell you, and how you should write them up.

Exploratory analyses: what they are for and how to write them up

As I noted earlier, writing up a statistical analysis isn’t completely different to 
writing up any other kind of analysis. Just as a researcher using interview data 
must decide which extracts to include or leave out in the write-up of their results, 
if you’re writing up the results of a statistical analysis you need to make similar 
decisions. But rather than thinking about which bits of an interview you’re 
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going to put in your report, you need to make decisions about which results of 
statistical analyses your readers need to see, and in how much detail. Just like with 
interview data, there usually simply isn’t the room to include everything (and 
tables and charts can take up a lot of space), but there are other reasons why you 
shouldn’t include all your analyses in your report, even if you do have the space.

Regardless of the kind of data you have, or the type of analysis you’re doing, 
you’ll probably start with some exploratory analysis. It’s important to start any 
analysis by ‘getting to know’ your data. With interview data this might involve 
reading through transcripts or listening to recordings and perhaps making some 
summary notes about each interview. With statistical analysis it usually involves 
conducting some univariate and bivariate analyses, and displaying your data 
using graphs and charts.

As we saw in Chapters 3 and 4, one reason we conduct exploratory statistical 
analysis is to work out whether there are any issues or problems with our data. 
It can be useful in flagging up any missing data or implausible values, for 
example. But you also want to know what our data look like in terms of the 
distributions of our variables and relationships between them. For example, 
you might want to look at the distribution of ages among your respondents 
to see how representative they are of your population. Or you may want to 
look at the relationship between two independent variables, to check whether 
they are both measuring something similar (for example, the number of years 
in education and the highest level of educational participation). The findings 
from your exploratory analyses can highlight any problems or issues with your 
data and put you in a better position to conduct further analyses in a thoughtful 
and considered way.

But many of these exploratory analyses will be ‘for your eyes only’. They are 
often fairly routine and don’t reveal anything unexpected or exciting. Because 
of this, your readers won’t need to know about all of them in detail, and will 
mostly just need to be reassured that you did explore your data thoroughly at 
the beginning of your analysis. You do need to tell your readers if you find 
something that affects either the analyses that you can conduct or the conclusions 
that you can draw, however. If there’s a large proportion of missing data for a 
variable, or if a variable is distributed in a way that you wouldn’t have expected, 
these are things that you should discuss at some point. But you don’t need to 
show the results of every single analysis that you’ve conducted. Writing up 
your exploratory analyses is definitely an area where you need to be selective, 
particularly in the amount of detail you go into.

Analyses that answer your research questions: why you still need to be selective

After you finish your exploratory analyses, you’ll start to conduct those analyses 
that directly contribute to answering your research questions. The results of 
these analyses are central to your statistical ‘story’ and are something your readers 
will need to know about. However, this doesn’t mean that you should report 
all of them in the same amount of detail. Being selective about how much you 
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say about each of your findings is as important as being selective about which 
analyses you include in your report.

Working out which results to include and how much detail to devote to 
each finding can be quite tricky. I understand why students think they need to 
include all the information about everything they’ve done. After all, we spend 
a lot of time telling them to be thorough and transparent. But writing a good 
narrative requires you not just to be thorough and transparent; it also requires 
you to make judgements about where you need to be comprehensive and where 
your readers need less information.

Thinking about your story

One way we can learn about effective narratives is by looking at some examples 
of those we encounter in our everyday lives: novels and news coverage. If we 
think about how a novel is written, we can get a good idea of what a good 
story looks like.

In a novel you’ll usually find lots of different characters, but the author doesn’t 
spend the same amount of time discussing each one. There will be characters 
that are central to the story that the author will write lots about and that will 
feature very regularly in the plot. But there will also be minor characters that 
don’t appear as frequently and aren’t discussed in as much detail. It doesn’t 
matter that we don’t find out as much about these characters as we do about the 
main characters, as they’re less important to the story. The same will be true for 
events that occur. Some events will be covered in great depth because they are 
very important to the plot, but lots of other things that happen are described 
in much less detail because they are more mundane but are necessary to make 
the plot make sense. And some things aren’t mentioned at all: we don’t need to 
know what every character had for breakfast each day!

In novels, not every event is presented in the order in which it occurred. 
You might get ‘flashbacks’ to events that happened in the past, for example. 
Or the focus might shift to a character or group that are doing something in 
one location, then back to some other characters that are somewhere else at a 
previous point in time, at the same time, or in the future. All these techniques 
are used to create a more interesting story.

If you look at news coverage, you’ll find that information is presented in a 
similar way. Some news stories will have more time or space dedicated to them 
than others because they are considered to be more important. In broadcast news, 
the most important stories are also presented first, regardless of how recently the 
events they report occurred. In the print media or on news websites, the most 
important stories are at the top of the front page and are given the most space. 
Just like the plot in a novel, the presentation of news is organised in a way to 
highlight what the editors have decided is most important and what they want 
their readers or viewers to pay most attention to.

When writing up your research findings, it’s useful to adopt the mindset of 
other kinds of story-writers, such as novelists and journalists. Presenting your 
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findings is very different from generating them, and so you need to take a 
different approach when writing them up.

What to keep in, what to leave out, and what to spend most time on

Before you present the results of your analyses, it’s worth trying to write down a 
short summary of the ‘story’ of your findings. What were your most important 
findings? Did you find what you had expected or were some of your results 
surprising? How do your results compare to those found by other researchers? 
The answers to these questions will help you decide what you keep in and leave 
out, and how much space you dedicate to discussing each of your findings.

You might find that what you thought were going to be the most important 
analyses turned out to be less exciting when you looked at the results. Some 
of your other analyses could have revealed unexpected findings and suddenly 
become the focus of your discussion. How you write up your results should, 
to some extent at least, be structured around what you have found out, and 
which of your findings are most important. What you judge to be the most 
important findings – for whatever reason – should be what you discuss in most 
detail. Other results can be reported in less detail, and you may even have some 
findings that aren’t interesting enough to be worth reporting at all.

There’s no magic formula for this. As is the case with using tables, graphs 
and charts (or not using them), the most important thing is to spend some time 
thinking about what are the most important parts of your findings, and to devote 
some time to planning how you structure your narrative.

Linking your results to the wider literature

Although you’ll probably be most interested in the results of your analyses, it’s 
important not to ignore how your findings relate to what is already known 
about the topic you’re researching. How interesting or important your findings 
are will depend to some extent on how similar or different they are to those 
from previous research, so you need to discuss your results in the context of 
the wider literature in the area. It’s usual to present your research findings after 
a review of the literature (and a discussion of your methods), so making links 
to what others have found out can help you place your own research findings 
in a broader context.

There are two common ways in which your research results can be linked to 
the wider literature. The simplest way is to present your results and then follow 
this with a separate discussion that compares them to existing research in the 
area. This is the approach that most of my undergraduate students take, and it’s 
reasonably easy to plan and write. A more ambitious approach is to discuss how 
your research fits with the wider literature as you are presenting your results. 
This is more difficult but creates a more coherent narrative and is, arguably, a 
more sophisticated way of writing the story of your research.
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Making judgements about your results

Engaging with the literature on the topic you’re researching doesn’t just allow 
you to link your results to previous findings. It also helps you make judgements 
about the implications of your own results. A common misconception among 
people who don’t do statistical analysis is that it’s the computer that does all the 
analysis. After all, as we have software to do all the hard work, when it comes 
to the maths, is there really much left for us to do in the way of thinking?

Computers can’t ‘think’, and doing statistics isn’t just a mechanical process

I hope that, if you’ve read any previous chapters of this book, you’ll have seen 
that doing statistical analysis isn’t just a ‘mechanical’ process, and that at every 
stage you need to make subjective judgements about things such as levels of 
measurement and how the data are distributed. These decisions are ones that 
aren’t always straightforward, but they also help keep things interesting. And 
even when you’ve got the ‘results’ of your analysis – all the tables and statistics 
the software has generated – the process doesn’t stop there. As I explain below, 
that’s when the real work of analysis really starts!

Computers are really good at crunching numbers. They can do it much 
faster than us and they don’t make mistakes. But, at this current point in time, 
computers aren’t very good at thinking. (We’re beginning to see more and 
more advances in artificial intelligence, but these haven’t yet impacted how we 
interpret basic statistics.) Most importantly, they don’t understand concepts, so 
they don’t know what your variables mean in any real sense. The data that you 
enter into a spreadsheet are just numbers to a computer. You might label them 
as ‘income’ or ‘occupation’, but a computer has no understanding of what 
‘income’ or ‘occupation’ are.

As well as not knowing what ‘income’ is, a computer also has no understanding 
of what a ‘good’ income might be, or even why we think that income is an 
important thing to study. So it can’t interpret the numbers that it generates. 
That’s our job as researchers.

How do we start to interpret the results that the software generates? And how 
do we know which of our findings are most important? Or whether any of 
them are important at all? This is where our understanding of the social world 
and the work of other researchers comes in.

Where our understandings come from and how they can help us interpret 
our results

When we begin researching a new topic, we sometimes start with only a 
‘common-sense’ understanding of that area. For example, when I started studying 
education, my initial ideas for research were guided by my own experience of 
teaching and learning, and the experiences of students and teachers I’d spoken 
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with. These led to me being curious about a number of questions, as well 
generating some hunches (or hypotheses) about what the answers might be.

But the social world isn’t always easy to understand, and unfortunately, we 
can’t just rely on our common sense to explain everything in it. Our experiences 
are always partial and some of the things that happen are counterintuitive, so 
we need to investigate the world in a systematic and transparent way. And we 
do that by conducting research.

As I noted in the last section, one of the first things we do when we start to 
study a new area is to read the literature on that topic. The ‘literature’ includes 
academic studies and writing, but also research conducted by other types of 
organisation, and also covers things like policy documents. Becoming familiar 
with this literature helps us to make sure that the research we’re planning hasn’t 
been done before, tells us what has already been found out, and helps us develop 
good research questions (see White, 2017). Most importantly for our current 
discussion, it can help us interpret the results of our statistical analysis in a more 
informed and considered way. In the next section we’ll look at how expert 
knowledge can help us make sense of statistical outputs.

Why context is essential for making judgements and interpreting results

As I’ve noted in previous chapters, guidelines in statistics textbooks about 
what are ‘large’ or ‘small’ differences or ‘weak’ and ‘strong’ associations are 
always arbitrary. It’s impossible to formulate general rules about what is a ‘large’ 
difference, or a ‘strong’ relationship, because this varies according to what is 
being researched and what we already know. We’ve already seen that computers 
can’t help you with these decisions because they don’t understand what you’re 
researching. So how can we make them? The simple answer is that it’s not 
always easy. This is another part of statistical analysis where you need to use 
your judgement.

The easiest way to demonstrate this is by using an example. Table 10.0 shows 
guidance from the Food Standards Agency (FSA) on different nutrients in food. 
The figures show how much or little of these nutrients a food product can 
contain before they consider it to be healthy or not.

This example demonstrates several important points. The first, and most 
obvious, is that particular quantities mean different things depending on the 

Table 10.0: Food Standards Agency guidance on nutrients

Per 100g ‘A lot’/‘Too much’ ‘A little’/‘Healthy’

Sugar 10.0g 2.0g

Fat 20.0g 3.0g

Saturates   5.0g 1.0g

Salt   1.3g 0.3g

Sodium   0.5g 0.1g

Source: The Times (2004, p 9)
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quality they represent. A food can have 2.0g of sugar per 100g and still be 
considered healthy. But 2.0g of sodium per 100g would be considered way 
too much. However, 2.0g looks the same in the output of statistical analysis, 
regardless of what is being measured. It is up to you, as the analyst, to recognise 
that this number means different things depending on what it refers to (in this 
case, sugar or salt content).

The second point is that this table contains specialist knowledge. These aren’t 
numbers that could be worked out with ‘common sense’ or ones that are widely 
known. It’s the type of information that you find in the specialist literature 
(academic or otherwise) and without which you couldn’t interpret your data 
properly. Having access to information like this is why you need to do a literature 
review before you collect and analyse your data.

The last point relates to the status of the information included in Table 10.0. 
You might have noticed that there’s a relatively large gap between the nutrient 
content of ‘Healthy’ foods and those that have ‘Too much’ of a certain nutrient. 
As we’ve seen already, a ‘Healthy’ level of sugar is 2.0g or less per 100g. And 
‘Too much’ is 10g or over per 100g. But what about foods that fall between 
2.0g and 10.0g per 100g?

There are several things going on here. One is that there isn’t a ‘tipping 
point’ where healthy foods suddenly become unhealthy. In terms of the content 
of different kinds of nutrients, foods will fall somewhere on a continuum, 
from healthy to less healthy, in terms of that particular nutrient. Researchers 
are sometimes asked to present their research findings in terms of ‘limits’ or 
‘thresholds’, but most know that any such figures will be arbitrary to some degree. 
It’s also the case that there are disagreements among researchers, particularly in 
some areas, and that it’s sometimes difficult to find consensus on important issues. 
(There are several different competing measures of ‘poverty’, for example.) The 
figures in Table 10.0 aren’t ‘set in stone’ and may be contested among experts 
or change over time as we learn more about nutrition.

Although I’ve used a reasonably simple example here, relating to food and 
nutrition, the same principles apply regardless of the topic you’re researching. 
When you interpret the results of a statistical analysis, you need to bear all these 
things in mind. Each statistic will need to be interpreted in terms of what is 
being measured, counted or compared, and what this figure means in relation 
to what we already know in the field. You’ll need to use your judgement for 
this, and you also need to be prepared for other people to have slightly (or even 
very) different interpretations of the same statistical results.

Other factors that might affect the interpretation of your results

There are other contextual factors than can also influence the interpretation of 
your findings. The size of a difference or strength of a relationship is important, 
but, as we saw in the previous example, this size or strength can only really be 
judged in relation to what we already know or expect. Researchers often get 
excited about larger differences and stronger relationships, but they aren’t always 
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more interesting than smaller or weaker ones. The direction of a relationship is 
important, too. A small difference or weak relationship that is in the opposite 
direction to all the previous evidence would be more interesting than a large 
difference or strong relationship that just confirms existing findings. For example, 
middle-class students have been considerably more likely to attend university than 
their peers from the working class for the entire history of higher education. If, 
next year, a researcher analysing the most recent data discovered that working-
class students were now slightly more likely to attend higher education than 
middle-class students, this would be an extremely important finding, even though 
the difference was very small and the relationship between class background 
and higher education entry could now be described as a weak one. What we 
expect to find can be an important influence on how we interpret what we 
actually discover.

There is another side to this coin, however, and ‘only’ finding out what 
we expect can also be important. The more often we find the same kind of 
differences or relationships in different contexts, the more confident we can be 
about some of our more general understandings about the social world. Poverty, 
for example, has been found to be related to reduced life chances in lots of 
different areas, such as education and health outcomes and being a victim of 
crime. The more times we confirm this with repeated studies, and the more 
areas in which we have evidence of the adverse effects of poverty, the more we 
can be confident that it is an underlying cause of disadvantage in other areas. 
Persistence and consistency can be important in building our confidence in our 
research findings, even if our results aren’t dramatic or surprising. But knowing 
what is considered as large or small and strong or weak, and knowing whether 
our research confirms what we already suspected, or whether our findings are 
dramatically new and different, all depends on being familiar with the work of 
other researchers. Only once you’ve put your results into the proper context can 
you move on to drawing conclusions about the implications of your research.

Discussing the limitations of your study and being modest about 
your claims

Constructing a convincing argument to support your conclusions is a process 
known as warranting your claims. It involves you acknowledging the 
weaknesses in the way your data has been collected and analysed, and requires 
you to consider alternative explanations for the results that you observed. You’ll 
probably need to qualify some of the claims you make, being clear that they might 
only apply in certain circumstances or be subject to other types of uncertainty. 
It’s important for all kinds of research, not just studies using statistical analysis, 
and isn’t a topic that’s often covered in research methods text. Although there 
isn’t space to cover warranting in detail in this chapter, I’ve written in more 
detail about this topic (White, 2017), and Gorard (2013) also provides some 
useful guidance.
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Summary

If you’ve got this far in this book, then you’re probably ready to go and conduct 
some statistical analysis for yourself. You’ll have learned some important statistical 
concepts and found out about the techniques you can use to analyse different 
types of data. You’ll also have learned how to present your data visually and, 
having read this chapter, may have started to think about how you will tell the 
story of your results.

I hope I’ve delivered on my promise to make learning statistical analysis as 
straightforward as possible. While there are some very tricky issues to consider 
when doing any kind of research, I’ve tried to show that the conceptual side 
of doing statistics isn’t as difficult as most people fear and that, with the help 
of computers to do the maths, most people can do useful statistical analyses 
themselves. Some of you might even have been surprised to find out that you 
enjoy doing statistics!

References
The Times (2004) ‘Stores in pledge to cut salt’, 26 February, www.thetimes.
co.uk/article/stores-in-pledge-to-cut-salt-jpwwhhfwpwl

Useful resources
I write in more detail about how to answer your research questions here:

White, P. (2017) Developing Research Questions (2nd  edn), London: Palgrave 
[Chapter 5: ‘How Do I Answer My Research Question?’].

I also discuss hypotheses on pages 61 to 65 of the same book.

Stephen Gorard provides a useful discussion of warranting research claims:

Gorard, S. (2013) Research Design: Creating Robust Approaches for the Social Sciences, 
London: SAGE [Chapter 4: ‘Warranting research claims’].

http://www.thetimes.co.uk/article/stores-in-pledge-to-cut-salt-jpwwhhfwpwl
http://www.thetimes.co.uk/article/stores-in-pledge-to-cut-salt-jpwwhhfwpwl




197

Glossary and index

This is a combination glossary and index. All the terms listed below are 
highlighted in bold in the main text, generally when they are first used in a 
chapter. Although most of these terms are explained in detail somewhere in 
the book, I have also provided a short definition of each term here that may be 
sufficient for readers who are not reading the book from start to finish, and only 
need a basic understanding of the term in order to progress with their learning.

Absolute deviation 
66

This is the distance of a value from another value as an 
absolute number. The absolute deviation of 10 from 
5 would be 5. The absolute deviation is used in the 
calculation of the mean deviation.

Absolute number 
44, 66

An absolute number is one where the sign (negative 
or positive) is ignored. It is always treated as a positive 
number.

Aggregate data  
43

Information about individual values that has already 
been summarised, for example, as frequencies and 
percentages. Aggregate data do not contain any 
information about individual cases in isolation.

Anchored response 
35

Questionnaire questions often ask respondents to 
select an answer from a range of options arranged in a 
hierarchical order. Anchored response options have a 
label attached to them, whereas ‘unanchored response’ 
options require respondents to select a number or 
position on a scale. The following is an example of a 
set of five anchored options: ‘Strongly agree’; ‘Agree’; 
‘Neither agree nor disagree’; ‘Disagree’; ‘Strongly 
disagree’. This set of anchored response options is 
commonly used to collect data on respondents’ levels 
of agreement to particular statements.

Association  
12, 91, 192

This is another word for a relationship between two or 
more variables. It can be used to describe a correlation, 
but is also used to describe differences between groups. 
The term ‘association’ is sometimes used to show that 
there may be uncertainty over whether the relationship 
is a causal one.
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Central tendency 
50, 63, 99

A measure of central tendency is an average. The 
common measures of central tendency are the arithmetic 
mean, the median and the mode. The term ‘central 
tendency’ is sometimes preferred over ‘average’ because 
of the many different ways the word ‘average’ is used in 
everyday conversation, only some of which correspond 
with the way the term is used in statistics.

Coding 
43

This is used to describe how data are organised and 
classified by researchers, either before or after they have 
been collected. It is used in all kinds of analyses with 
different types of data. Coding textual data involves 
sorting text into themes and categories. Numeric labels 
or values are often attached to different response options 
in questionnaire data as part of a process of coding that 
precedes statistical analysis.

Coefficient of 
determination 
127

The technical name for the statistic more commonly 
known as r-squared. This is the proportion of variation 
in the dependent variable that is matched by variation 
in the independent variable(s) in a correlation or 
regression analysis. It can take a value between 0 and 
1, with 0 corresponding to 0% and 1 corresponding 
to 100%.

Constant 
11, 134, 147

The opposite of a variable: it is something that doesn’t 
vary. Researchers are usually interested in variables, 
rather than constants, as things that stay the same aren’t 
often as interesting as things that change or differ. A 
regression line equation will always contain a constant 
term. This is sometimes useful information in its own 
right, but is always needed if the results of a regression 
analysis are used to make predictions about values of the 
dependent variable.

Correlation 
13, 136, 178

A correlation analysis is a statistical procedure for 
determining the predictability of a relationship between 
two variables. Correlations are most commonly 
calculated between continuous or discrete variables, but 
correlational techniques are also available to determine 
the relationships between ordinal variables and binary 
categorical variables.
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Curvilinear 
relationship 
130

Where the relationship between two (usually continuous 
or discrete) variables is not constant over the range of 
the values of those variables. An example might be the 
relationship between the number of hours students 
studied for an exam and the marks those students gained 
in that exam. The first hour of study is likely to be more 
valuable than the 100th hour of study, with extra hours 
of study having diminishing returns in terms of marks 
gained in the exam. As students can get no more than 
100% in the exam, there is also a limit to the extent that 
students can gain marks with extra study.

Data ink 
158

A term used to describe the parts of a graph, chart 
or table that show information. This can include data 
points, bars, data lines, and so on, but also labels. This 
is contrasted with ‘non-data ink’, which refers to the 
features that do not directly provide information on 
the data itself.

Data point 
102, 119, 136, 157

Strictly speaking, a data point is one piece of information 
about the value of a variable for a single case. However, 
it is often used to refer to a point on a graph or a figure 
in a table, which may represent more than one piece of 
information (such as a point on a scatterplot that shows 
the values of two variables for a single case).

Demographic 
characteristics 
43

The background characteristics of the people who 
often make up the cases in a sample or population. 
Characteristics relating to age, occupational and social 
class, ethnicity, religion and place of residence are often 
related to other aspects of people’s lives and life chances, 
and are commonly included in statistical analyses by 
social researchers.

Effect size 
105

Any measure that summarises the extent to which 
the dependent variable is affected, or changed, by the 
independent variable. Different types, or ‘families’, 
of effect sizes are used with different types of data. 
Standardised mean differences are used when comparing 
the distribution of a variable in two different groups, 
whereas coefficients are used in correlation and regression 
analysis. Odds and risk ratios can be used to judge the 
effect sizes in analyses using only categorical variables.
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Expected counts 
88

These are numbers that are sometimes included in a 
table showing the results of a cross-tabulation. Expected 
counts are usually shown alongside, and compared 
with, ‘observed counts’. Observed counts show how 
many cases there are in a particular sub-group in the 
data you have analysed. Expected counts, in contrast, 
show you how many cases you would ‘expect’ to have 
in that sub-group, if there was no relationship between 
the two variables you are analysing. If the expected 
counts are different from the observed counts, this 
shows that there is some kind of relationship between 
the two variables.

Explanatory power 
146

This refers to how well the results of a statistical analysis 
can predict values of the dependent variable. It is 
frequently used in relation to techniques for statistical 
modelling, such as regression analysis, where statistics 
such as r-squared are used to measure explanatory power.

Exploratory 
analysis 
188

Any analysis that is not aimed at addressing your research 
questions directly, but is intended to identify any issues 
with the data, and to prepare the ground for analyses 
that address the research questions more directly.

Gaussian 
distribution 
70

See ‘normal distribution’.

Grouping variable 
110

A different name for a categorical variable.

Histogram 
54, 100

A type of graph that shows the distribution of a 
continuous variable as bars, in a similar way to how a 
bar chart shows the distribution of a categorical variable. 
The difference between a histogram and a bar chart is 
that bar charts are not always ordered and have discrete 
categories (so are used with categorical data). The bars 
in a histogram represent different ‘ranges’ of the values 
of a continuous variable, and the size of these bars 
(technically known as the ‘bin size’) can be changed as 
required, in order to best represent the distribution of 
the variable graphically. Histograms are often used to 
check whether a variable is normally distributed or has 
a ‘skewed’ (or other shaped) distribution.
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Hypothesis 
192

Simply a ‘guess’ or ‘hunch’ about an answer to a question. 
It’s not necessary to have hypotheses for all research 
questions and research with hypotheses is not necessarily 
superior to research that starts with no hypotheses. I 
write more about hypotheses in my book about research 
questions, Developing Reseach Questions.

Implausible value 
44, 188

A value of a variable that appears unlikely to be valid. 
An example, for the variable ‘age’, would be someone 
with an age of 141  years. As no human has so far 
been recorded as living that long, this value would 
be suspected of being the result of a typographical or 
transcription error, rather than representing the true age 
of one of the participants in a study. Univariate analysis 
can help identify potential implausible values, which 
should be checked and amended or removed if they 
cannot be verified.

Intercept 
139

The point at which a line on a graph crosses one of 
the graph’s axes. It is an important concept in ordinary 
least squares (OLS) regression analysis as the regression 
line equation includes the intercept of the line of best 
fit with the y-axis.

Jittering 
181

This is a method of randomly changing the values of 
the data points on a scatterplot by a very small amount. 
This allows relationships to be seen between variables 
where the data can only take certain discrete values.

Legend 
169

In a graph or chart, a legend is a label that provides 
information about one of the variables shown in 
that graph or chart. It could, for example, describe 
the categories shown in a pie chart and show which 
categories are represented by which colours or textures 
in the chart.

Level of 
measurement 
25, 118, 191

A way of distinguishing between the different ways 
we use numbers with different types of data. The key 
distinction for most analyses is between data that are 
measured on a continuous scale and data that can only be 
assigned to categories. In 1946 Stanley Stevens proposed 
a typology with four different levels of measurement. 
This typology is widely used today, but is not without 
its critics.
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Line of best fit 
119, 137

A line that is drawn through the points on a scatterplot, 
showing the relationship between two variables in a 
way that minimises the distance from those points and 
the line itself. A line of best fit is usually calculated 
mathematically, and is also known as the regression line.

Mean deviation 
65, 102

The mean absolute deviation, or mean deviation, is a 
measure of spread (dispersion). It is the mean of the 
absolute distance of all the data points from the arithmetic 
mean of that variable. As it has an intuitive interpretation 
as ‘the average distance from the average’, it is easier to 
understand than the standard deviation, which is a much 
more commonly used measure of dispersion. 

Measures of spread 
101

Measures of spread, sometimes called measures of 
‘dispersion’, are statistics that show you how spread out 
the data for a variable are. Some of these are fairly simple, 
such as the minimum and maximum values, or the 
range – which is the distance between the minimum and 
maximum values. Measures such as the mean deviation 
and standard deviation are more complicated but give a 
better indication of how the data are spread out overall.

Missing data 
44, 113, 174, 188

Data that are missing from a dataset at the case or 
variable level. Missing data can be caused by participants 
not completing all the items on a data collection 
instrument, such as a questionnaire or test, or by 
declining to participate in a study. Missing data can 
reduce the number of cases that can be included in 
an analysis. The effect is cumulative in multi-variable 
analysis, and can affect representativeness in sample-
based studies.

Monotonic 
relationship 
129

A relationship where a change in one variable tends to 
be accompanied by a change in another variable, either 
in a positive or negative direction, but this relationship is 
non-linear. Correlation coefficients such as Spearman’s 
rho and Kendall’s tau were developed for analysing these 
kinds of relationships.

Multi-variable 
analysis 
12, 42, 131

Any analysis where there is a single dependent variable 
but more than one independent variable. It is often 
confused with multivariate analysis, where there is more 
than one dependent variable.
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Negative 
relationship 
122, 136

A relationship in which the values of one variable 
increase as the values of the other variable decrease (or 
vice versa).

Negative skew 
76, 100

Data are negatively skewed when the majority of cases 
have relatively high values but there is also a ‘tail’ made 
up of a smaller number of cases with low values. It is 
also known as ‘left skewed’.

Nominal data/
variable 
28, 45, 94

Categorical data that do not have a hierarchical order. 
Religious affiliation is an example of nominal data 
because, although people may be affiliated with different 
religious groups, these groups are not seen as ‘higher’ 
or ‘lower’ than each other.

Non-data ink 
158

Anything in a graph or chart that does not directly 
show information. This includes lines, grids and other 
features that do not represent data. Non-data ink should 
be kept to a minimum, both in terms of its amount and 
its visibility.

Normal 
distribution 
55, 70, 89, 100

The normal distribution (also known as the Gaussian 
distr ibution, after Carl Fr iedr ich Gauss) is the 
distribution of values of a continuous variable that take 
on a symmetrical bell shape when shown on a histogram. 
Many phenomena in nature – such as people’s height – 
are approximately normally distributed. Some statistical 
procedures assume that a variable is normally distributed, 
and the normal distribution is used as a comparator 
in some types of diagnostics to check if the data meet 
certain assumptions.

Observed count 
88

The number (or frequency) of cases in a particular group 
or sub-group. When cross-tabulating data, the observed 
count is sometimes compared to the expected count, 
which is the number of cases that would be expected 
in the group or sub-group if there was no relationship 
between the variables being analysed.

Observed values 
150

These are the actual values for particular variables for 
each case. They are what are ‘observed’ in the data. In 
regression analysis, observed values for the dependent 
variable are contrasted with the values that would be 
predicted, or estimated, using the line of best fit.
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Ordinal data/
variable 
29, 45, 94, 128, 176

Categorical data that have a hierarchical order. The level 
of someone’s education is an example of ordinal data 
in which subsequent levels of education are considered 
‘higher’ than previous ones (for example, ‘university 
degree’ being higher than ‘high school diploma’). 

Ordinary least 
squares (OLS) 
131, 136

This is a method for calculating the line of best fit in a 
linear regression model. It works by calculating a line 
of best fit that minimises the sum of the squares of the 
differences between that line and all the data points.

Outlier 
49, 100, 130, 179

A value for a variable that is very different from the 
values for most of the cases. An example could be a 
student taking an undergraduate degree at university 
who is 82  years old. Most students would be much 
younger than this, with the majority being in their late 
teens or early twenties. Outliers need to be checked 
to make sure they are valid data, rather than being the 
result of a transcription error or typo. In small datasets 
outliers can influence the results of some analyses, so 
are sometimes removed from the dataset before these 
analyses are conducted.

Placebo 
107

A placebo traditionally refers to a treatment that is 
designed to have no therapeutic or beneficial value, 
and is used to provide a valid comparison for the effect 
of a treatment. While this term originated in medical 
research, its use has expanded to include any studies 
with experimental designs.

Positive 
relationship 
15, 91, 120, 136

A positive relationship is an association between variables 
in which the values of one variable increase as the values 
of the other variable rise (and vice versa).

Positive skew 
54, 75, 108

Data are positively skewed when the majority of the 
cases have relatively low values but there is also a ‘tail’ 
made up of a small number of cases with high values. 
This distribution is also known as ‘right skewed’.

Predicted values 
150

The values predicted by a statistical model. One 
common example would be the values on a line of best 
fit produced by a regression analysis. In this example, 
the values of a dependent (outcome) variable can be 
estimated, to varying degrees of accuracy, using the 
values of the independent variable or variables.
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R-squared 
127, 139

The r-squared, technically known as the ‘coefficient 
of determination’, is a measure of the predictability 
of a relationship. It is related to Pearson’s r correlation 
coefficient and is simply this value multiplied by itself 
(squared). It is easier to interpret than Pearson’s r as it has 
an intuitive real-world interpretation as the proportion 
of variation in one variable that is matched by variation 
in another variable or variables.

Representativeness 
10, 43, 188

This is the extent to which data from a sample reflect 
the data in the population that the sample was selected 
from. Not all samples aim to be representative, but 
techniques such as random sampling are used to 
maximise representativeness when this is an important 
aim of a study.

Residual 
140, 150

The difference (or distance) between the value observed 
for a case in a dataset and the value predicted for that 
case by a statistical model. This term is usually used in 
relation to techniques such as regression analysis, but 
can also be applied to the results of univariate analysis 
using ‘models’ such as the arithmetic mean.

Scatterplot 
119, 136, 160

A graph showing the relationship between two 
continuous variables. It can provide an indication of 
the direction of a relationship (positive or negative), 
how predictable the relationship is (the correlation) 
and whether the relationship is linear or non-linear. 
Scatterplots are usually drawn in two dimensions and 
show the relationship between two variables. However, 
it is possible to draw them in three dimensions to show 
the relationship between one dependent variable and two 
independent variables. Scatterplots are not only used to 
determine the relationship between variables, but are also 
used for diagnostic purposes in multi-variable analyses.

Skew 
54, 75, 99

This is a measure of how a variable is distributed. It is 
usually applied to continuous variables, but can also be 
used with discrete and ordinal data. The distribution of 
a variable is skewed if, rather than having a symmetrical 
or flat distribution, the values are concentrated in the 
upper or lower ends of the distribution. A distribution 
concentrated in the upper ends of the distribution is 
described as negatively skewed (or left skewed) and 
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a distribution concentrated in the lower ends of the 
distribution is described as positively skewed (or right 
skewed).

Standardised mean 
difference 
105

A measure of effect size that can be used when 
comparing the distribution of a variable between two 
groups. Cohen’s  d is an example of a standardised 
mean difference. To calculate Cohen’s d, the difference 
between the arithmetic means of the two groups is 
divided by the standard deviation of the two groups 
combined to provide a standardised measure. Other 
measures of standardised mean difference, such as 
Glass’s delta and Hedges’ g, are variations on this type 
of effect size.

Sub-group 
81

A group within a group. If a variable is categorical, 
cases will be allocated to different groups. For example, 
we might divide people up into groups according to 
their religious identification. We might be interested 
in the way that people from different social classes 
are distributed between different religions. We could 
conduct an analysis using cross-tabulation that would 
produce data showing this. Hinduism would be a 
religious group, but members of the working class who 
identify as Hindu would be a sub-group.

Unanchored 
response 
35

An answer option for a questionnaire or test item where 
the respondent must select an answer that isn’t labelled 
but falls on a scale of some kind. The respondent is 
often asked to select a number on a scale that attempts 
to measure, for example, agreement or disagreement. 
There are usually ‘anchors’ at each end of the scale 
(‘Strongly agree’ and ‘Strongly disagree’, for example), 
but the answer options between these extremes do not 
have descriptive labels. Unanchored responses are more 
common when scales have a greater number of possible 
answer options. For example, a question in the Office 
for National Statistics (ONS) Opinions and Lifestyles 
Survey asks, ‘Overall, how satisfied are you with your life 
nowadays?’ Respondents can pick an answer that is a 
whole number ranging from 0 to 10. At one end of the 
scale, 0 is ‘anchored’ with the label ‘Not at all’ and at the 
other end 10 is ‘anchored’ with the label ‘Completely’. 
However, the numbers from 1 to 9 do not have labels 
attached to them and so are ‘unanchored’.
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Unit of analysis 
8

This refers to the type of case you are researching. In 
social research it is common for individual people to 
be units of analysis, but families, groups, organisations, 
institutions and events can also be units of analysis. 
A researcher studying crime, for example, may be 
interested in the experiences of victims of crimes. They 
could treat individual victims as their unit of analysis, but 
a different approach would be treating each crime as the 
unit of analysis. The choice between the two would be 
dependent on their research questions and would affect 
how the data were analysed.

Volatile 
48, 112

If something is volatile, it can change rapidly or 
unpredictably. In relation to statistical analysis, it is 
important to consider that small numbers are volatile. 
Analyses with small numbers of cases are considered 
volatile, as small changes or differences in absolute 
terms can be very large proportionally. For example, 
if a religious group is comprised of only the founding 
member in one year, but has five members the next year, 
the membership has increased by 400%.

Warrant 
194

The argument linking the results of your research to the 
conclusions that you draw from them. Some principles 
of warranting your conclusions are widely agreed, but 
others are more controversial. A good warrant will 
consider the design of a study, any weaknesses in both 
the data collection and analysis, the logic of the link 
between the findings and conclusions, and alternative 
explanations for those findings.

x-axis 
124, 139, 162

Sometimes called the ‘horizontal axis’, the x-axis runs 
from the left to the right of a chart or graph. It is usually 
placed at the bottom. Conventionally, it represents the 
values of independent variable (usually denoted by the 
letter ‘x’).

y-axis 
124, 139, 162

The y-axis is sometimes known as the ‘vertical axis’ of 
a graph or chart. It runs from the bottom to the top  
of a graph or chart, usually on the left side (and less often 
on the right). It is called the y-axis because it usually 
shows values for the y-variable, which, by convention 
is the dependent variable.
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