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Preface

Calculi of temporal logic are widely used in modern computer sci-
ence. The temporal organization of information flowing in the differ-
ent architectures of laptops, the Internet, or supercomputers would
not be possible without appropriate temporal calculi. But the situa-
tion is similar to modern artificial intelligence (AI) and other digital
technologies. In the age of digitalization and high-tech applications,
people are often not aware or have forgotten that temporal logic is
deeply rooted in the philosophy of modalities, which dates back to
antique philosophers, such as Aristotle and Theophrast.

At the dawn of the modern scientific era, Leibniz and others came
up with the first ideas of formal calculi and machine-based decision
procedures, which culminated in the proof theory of the 20th century,
connected with names such as Hilbert, Gentzen, Gödel, and Turing.
The debates on mathematical foundations at that time underline
the important role of constructive and intuitionistic procedures for
proof theory, which are also convenient for computational algorithms
in computer science. Becker and Gödel discovered a link between
intuitionistic and modal logic. Automatic reasoning in modern AI
and robotics would not be possible without the constructive methods
of proof theory and mathematical logic.

Therefore, a first goal of this book is to become aware of these
roots in philosophy and proof theory (Section 1.1). A deep under-
standing of these roots opens avenues to the modern calculi of tem-
poral logic, which have emerged by the extension of modal logic
by temporal operators (Section 1.2). Chapter 2 is dedicated to the
computational foundations of temporal logic in different calculi with
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vi Temporal Logic: From Philosophy and Proof Theory

increasing complexity, such as basic modal logic (BML) (Section 2.1),
linear-time temporal logic (LTL) (Section 2.2), computation tree
logic (CTL) (Section 2.3), and full computation tree logic (CTL*)
(Section 2.4).

Chapter 3 highlights the proof-theoretical foundations of tempo-
ral logics. A fundamental role for proof-theoretical interpretations
of the temporal calculi is played by the sequent calculus of Gentzen
(Section 3.1). The tableau-based calculus (Section 3.2), automata-
based calculus (Section 3.3), game-based calculus (Section 3.4), and
dialogue-based calculus (Section 3.5) are more or less inspired by a
Gentzen-style sequent calculus. They are applied as proof-theoretical
interpretations to the calculi of the modal and temporal logics, which
were introduced in Chapter 2. It is remarkable that these different
interpretations of temporal logics have different advantages but also
different disadvantages for different purposes, especially in computer
science. Therefore, it makes sense to have these different approaches
of proof theory to temporal logics.

Chapter 4 provides an outlook on trend-setting applications of
temporal logics in future technologies, such as AI and quantum tech-
nology. Modern machine learning is based on statistical learning the-
ory and stochastic procedures, which need control policies for safety
and security. At this point, formal tools of temporal calculi come in to
certify AI programs, which are characterized by complex information
flow in machine learning (Section 4.1).

In quantum technology, quantum physics and computer science
are growing together. Traditional temporal logics assume classical
physics and its concept of time as self-evident. But we have to con-
sider the different concepts of time in the different physical theories.
They have been studied in different temporal logics of, for example,
relativistic physics (Section 4.2). For quantum technologies, modal
and temporal operators significantly depend on basic concepts such
as quantum parallelism in quantum computers and entanglement in
quantum communication (Section 4.3). Temporal logics are obviously
deeply embedded in current digital technologies. Therefore, the chap-
ter concludes with an outlook on the societal impact of temporal



Preface vii

logic, which is needed to handle the increasing complexity in a com-
putational, high-tech world of Big Data (Section 4.4).

The book is written by the two authors with respect to
their earlier and ongoing studies and complementary competence.
Stefania Centrone wrote Sections 1.2 and 3.1. Klaus Mainzer wrote
Sections 1.1, 2.1–2.4, 3.2–3.5, and 4.1–4.4.
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Chapter 1

Philosophical Roots
of Temporal Logic

1.1. The Concept of Time

Pre-Socratic natural philosophers, such as Parmenides and Heracli-
tus, formulated basic questions of time that influence the discussion
even today. Is the world, as Heraclitus believed,1 in constant becom-
ing and time an irreversible process like the flow of a river? Or is every
change, as Parmenides believed, only apparent and time a reversible
parameter of an inherently unchanging world?

Zeno’s famous paradox of the arrow of time illustrates the prob-
lem: “If everything that behaves in a uniform manner is either in con-
stant rest or constant motion, but everything that moves is always
in the now, then the flying arrow is without motion.” Thus, during
the duration of a moment, an arrow in motion takes a route from
which it does not move away during that moment. Also, in the next
moment, it covers this distance, from which it does not move away
during this moment. But how can it then move away at all, however
small the distance between two moments may be?2

Mathematically, the criticism of Zeno’s paradox is simple if (as
in modern physics) the flight distance of the arrow is understood
as a real number continuum. Then, there is simply no “next” moment

1Diels-Kranz (1960/1961).
2Ferber (1981).

1
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because the points in the continuum are dense, so between two adja-
cent points, an intervening point can always be given (e.g., by halving
the distance between them).

Democritus’ atomic theory can be understood as a consequence
of the Heraclitean doctrine of change and the Parmenidean principle
of unchangeable being. While objects such as stones, plants, and
animals are, according to Democritus, aggregates of atoms, which can
change in time and combine into new atomic groupings, atoms and
empty space are timeless, uncreated, and eternal. The task of physics,
according to Aristotle, is to explain the principles and functions of
diversity and change in nature.

1.1.1. Aristotelean temporal logic

The general principle that makes an individual being, such as a
stone, a plant, or an animal, what it is, Aristotle calls the form.
That which is determined by the form is called matter. Form and
matter, however, do not exist by themselves but are principles of
nature obtained by abstractions. Matter is therefore also called the
possibility (“potency”) of being formed. Only by the fact that mat-
ter is formed, reality arises. Movement is determined as change, as a
transition from possibility to reality, or as “actualization of potency.”
According to Aristotle, movement includes all goal-oriented processes
in nature, such as the fall of a stone to the Earth, the growth of a
tree from seed to final form, and the development of man from infant
to adult.

This offers the following solution to Zeno’s paradox of the arrow of
time. In doing so, Aristotle criticizes Zeno’s definition of the present.
The present, Aristotle argues, is no more part of time than a point
is part of a distance. Rather, one must think of the present as a
potential, non-actual cut in the time continuum that separates the
future from the past. In that case, the present is not a point in time
in which the arrow is actual but only a possibility. In fact, the arrow
performs a continuous movement.

Aristotle is the first philosopher to formulate the concept of con-
tinuum precisely. Time, he says, is continuously connected in the
now. But time has no existence of its own. Real are only the move-
ments of nature. The now of a moment is a cut in the continuum of
movement. Since one can potentially make an unlimited number of
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cuts in the continuum, countably many moments result without ever
being able to exhaust the continuum.

“Time,” says Aristotle, “is not, however, motion, but what is
countable about it.”3 As a measure of time, Aristotle proposes cir-
cular motion, against which other motions can be measured. The
assumed spherical motions of the stars and planets are for him a ref-
erence system to measure, for example, hours, days, and years. The
uniform circular motion is considered the basic measure of ancient
and medieval astronomy.

Against the background of his philosophy of time and continuum,
Aristotle develops a logic of temporal modalities. Real is what is now
realized (i.e., true) at the moment. Possible is what is realized (i.e.,
true) at a present or future time. Necessary is what is realized at
the present and in any future time. Thus, the now-relativization is
characteristic in his definition of modalities.

While Stoic logic subscribes to this definition of the modalities of
time, the Megaric school of philosophy uses the modalities of possi-
bility and necessity even without now-relativization. Possible is what
is realized at a certain time. Necessary is what is realized at any time.

The Aristotelian analysis of the sentence “Tomorrow a sea battle
will take place” became famous.4 It is already true that tomorrow
a sea battle will take place or that tomorrow a sea battle will not
take place. Does it not include that either it is already true that a
naval battle will take place tomorrow, or that it is already true that
a naval battle will not take place tomorrow? Does it not include,
then, that whichever of the two statements (of which we do not yet
know which) will be true tomorrow is already true today?

In the symbolism of temporal logic, p denotes a state, such as
“a naval battle is taking place.” The symbol Np is supposed to
mean that the state denoted by p will take place tomorrow. As a
time measure, for example, at noon, the highest position of the sun
can be indicated. The symbol N¬p then means that the negation
¬p of the state denoted by p takes place tomorrow, i.e., p does not
take place. The symbol ∨ stands for the logical or-connection of two
statements describing two states. Then, the symbol N(p ∨ ¬p) says

3Aristotle (1956, p. 219b).
4Aristotle (1994, pp. 27–97).
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that it is already true that the state described by p will exist or
not exist tomorrow. But does it follow that, according to the Aris-
totelian problem, Np ∨ N¬p, i.e., is it already true that the state
denoted by p will exist tomorrow or that its negation ¬p will exist
tomorrow?

1.1.2. Linear and branching temporal logic

Modern logicians, such as G. H. von Wright, have shown that the
answer to this question depends on the topology of time evolution on
which we base the world. In a linear conception of time, the time seg-
ments (e.g., days) are arranged sequentially on a straight line. Each
node in Fig. 1.1(a) stands for the overall state (i.e., a conjunction of
many partial states) of the world at a given time interval. The filled
node (•) stands for the now updated overall state. The subsequent
nodes denote future overall states, and the previous ones denote past
overall states. In this time model, the subsequent states are uniquely
determined without alternative. Therefore, in this world, it is true
now that a naval battle will take place tomorrow or that no naval
battle will take place tomorrow.

But if we assume the possibility of several future development
branches, we get the picture of a time tree as in Fig. 1.1(b), where
the actualized now (•) is followed by several possible overall states in
the next temporal period (e.g., days), which again can be followed by
several possible overall states in the next but one temporal period,
etc. The dotted lines indicate the possibility of a future development
branch. The dotted lines also indicate that in past time periods, sev-
eral possibilities may have existed, which were not realized, however.
The past is therefore a linearly arranged sequence of total states to
the following time periods.

The assertion that N(p ∨ ¬p) is true at a given temporal period
holds in both development models. At the present time interval (•), in
both Figs. 1.1(a) and 1.1(b), it is true that the partial state, denoted
by p, either is or is not a component of any overall state following in
the next time interval (tertium non datur). However, the assertion
that Np∨N¬p is true at a given time interval is generally true only
in the linear world (Fig. 1.1(a)). Indeed, in the case of a branched
future world (Fig. 1.1(b)), it would have to be true at the present time
interval that the partial state denoted by p is part of any subsequent
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(a)  

(b) 

Fig. 1.1. (a) Linear time. (b) Branching tree of time.

overall state in the next time interval (Np), or it would have to
be true that the partial state denoted by p does not belong to any
subsequent overall state (N¬p).5

In the example of an ancient sea battle, the condition of the
already present truth Np is probably never satisfied. However, one
can easily think of conditions where N¬p is already true today. For
example, all ships are distributed in the world today in such a way
that they could not possibly be gathered into a fleet tomorrow. If
N¬p is true, then the truth of Np ∨N¬p also follows.

Linear and branching time are relevant for several arguments and
positions in the history of philosophy. According to William of Ock-
ham (1288–1347), propositions about the future have a definite truth
value, although only God can know them. But Ockham did not
support determinism or fatalism that denies human free will. The
question arises whether the branching-time model needs to assume a
privileged branch.6 Obviously, Ockham rejected the Aristotelian idea
that, in order to preserve the contingency of the future, future con-
tingents must be deemed neither true nor false. Later, C. S. Peirce
(1839–1914) criticized the assumption that future contingents can
have definite truth values. For Peirce, only the present and past are
actualized. The future is open to possibility and necessity.

5von Wright (1974, pp. 161–178).
6Santelli (2022).



6 Temporal Logic: From Philosophy and Proof Theory

1.1.3. Temporal logic of modern physics

The debate on Aristotelian temporal logic illustrated that concepts of
temporal modalities often depend on physical assumptions. In mod-
ern physics, the Ptolemaic planetary model with its uniform circular
motions is no longer a reference system for time measurement. Celes-
tial bodies are understood as reference systems in which clocks mea-
sure time. To the question “What is time?” Einstein had answered
succinctly, “Time is what a clock measures.” According to this, celes-
tial bodies in the Universe are moving reference systems with space
and time coordinates, in which lengths are measured with scales and
time with clocks. Newton still assumed the “resting” Universe as
absolute space with absolute time, with which all moving clocks can
be synchronized.

According to Einstein’s special theory of relativity, time mea-
surement is no longer absolute but becomes path dependent. Every
moving body therefore has its own relativistic time (“proper time”).
Thus, there is no absolute distinction between the past, present, and
future but only relative to the observer who has his or her proper
time. This relativistic insight is reflected in a famous quotation of
Einstein which he mentioned at the occasion of the death of his
Swiss friend Michele Besso in March, 1955:

Now he has also preceded me a little with his farewell to this
strange world. That means nothing. For us believers in physics,
the distinction between past, present and future has only the
significance of an illusion, albeit a stubborn one.

As a physicist, Einstein does not mean a subjective time of expe-
rience but a metrically, topologically, and objectively precise concept
of time. For St. Augustine, the distinction of past, present, and future
is only in the mind (“soul”) of an observer:

But this much is now clear and distinct: neither the future nor
the past “is,” and not actually can be said: times “are” three:
past, present, and future; . . . For it is these times as a kind of
trinity in the soul, and elsewhere I do not see them; and there
is the presence of the past, namely memory; the presence of
the present, namely sight; the presence of the future, namely
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expectation. If we are allowed to speak in this way, then I also
see three times and admit: yes, there are three.7

In general relativity, spatio-temporal reference systems that are
under the influence of gravitational forces are taken into account.
This causes space-time to be “curved.” In Section 3.1, it is shown
what changes this results in for temporal modalities in the temporal
logic.

On the basis of the general theory of relativity, the cosmologi-
cal standard models for the possible developments of the Universe
can be derived mathematically. The differences between linear- and
branched-time logic with time trees must be taken into account.
Some models allow finite and infinite temporal evolutions with an
initial singularity (“Big Bang”) and final singularity (“Big Crush”).
In the Christian tradition of philosophy, an initial beginning of
time (“Creation”) and an ending of time (“Day of Judgment”) were
already assumed (e.g., by St. Augustine). Black holes, whose exis-
tence follows from general relativity, are also physically time singu-
larities in which time evolutions (trajectories) end. In the dawning
age of space travel, time travel has become interesting and is theo-
retically possible in some models. Particularly noteworthy is Gödel’s
solution to Einstein’s gravitational equation, which allows for circular
time trajectories.

For a physical decision on these time models, however, quantum
mechanics must also be taken into account. According to Heisen-
berg’s uncertainty principle, time measurement depends on Planck’s
quantum of action: The more precisely the time of a quantum system
(e.g., an elementary particle) is measured, the more the measured
value of its energy scatters and vice versa. Time and energy are con-
jugate quantities in quantum mechanics. The path of an elementary
particle from an initial location to a future location is no longer
determined by a unique time trajectory (line). Rather, according to
Feynman’s path integral, all possible connecting paths between the
two locations must be taken into account (“summed up”).

7Augustine (2016, Book XI).
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Classical physics, relativity, and quantum mechanics, however,
leave untouched an important aspect of time that is essential to
our everyday understanding of time. We experience time as irre-
versible: We are born, age, and die. The reversal has never been
observed. In contrast, the basic laws of classical physics, relativity,
and quantum mechanics are time-invariant, i.e., they also allow for
the reversible time transformation t→ −t. In thermodynamics, how-
ever, irreversible processes are studied: Milk poured into coffee mixes
into latte. The reversal has never been observed. Traditional tem-
poral logic often assumes an everyday understanding of time with
irreversible development that would first have to be physically jus-
tified by statistical mechanics and thermodynamics. In that case, as
shown in Section 3.1, time can no longer be understood as a param-
eter (parameter time) but as an operator that describes irreversible
entropy processes of complex statistical systems near and far away
from thermal equilibrium (operator time).

1.2. Toward Formal Systems of Temporal Logic

From the late 19th to the early 20th century, new concepts of tempo-
ral logic were developed against the background of new philosophical
tendencies and emerging formal logic. Therefore, on the historical
path to formal systems of temporal logic, we start with the remark-
able, but less considered, philosophical and formal studies of the
mathematician and philosopher Oskar Becker in 1930. In an essay
titled “On the Logic of Modalities,” he states8:

Considered from the standpoint of modalities [. . .] the problem
of mathematics and temporality [. . .] receives a strong, though
unilateral, clarification. [. . .] The “logic” of modalities has a
deep relation to temporality.

This section sets out to formally explore the relation between
modalities and temporality based on Becker’s considerations.

8Becker (1930, p. 43, op.). Henceforth, page numbers of references to Becker
(1930) are from the original pagination.



Philosophical Roots of Temporal Logic 9

Let us first state that temporal propositions contain some refer-
ence to time conditions. Classical logic consists of timeless proposi-
tions, such as:

A: “The sun is a star.”
B: “The sun is rising.”
C: “The sun is setting.”

Proposition A is timeless since it is true in the past, present, and
future. Propositions B and C refer to the time condition “now.”
While formulas of classical logic refer to static states and properties,
formulas of temporal logic describe sequences of state changes.

A temporal logic results from an extension of a classical proposi-
tional or predicate logic through temporal operators which introduce
temporalized modalities.9 There are at least four temporal operators,
G, H, F, and P:

— G (Guarantee): GA: the proposition that A will be always true.
— H (History): HA: the proposition that A was always true.
— F (Future): FA: the proposition that A will be true.
— P (Past): PA: the proposition that A has been true.

The operators “G” and “H” denote necessity both in the past and
the future. The operators “F” and “P” denote possibility both in the
past and the future. For the sake of simplicity, we denote them by
the operators normally used in the current logic of alethic modalities:
necessity (�) and possibility (♦), with an index “p” or “f” to refer
to the past or the future, respectively. Thus:

— G (Guarantee): �fA: the proposition that A will be always true.
— H (History): �pA: the proposition that A was always true.
— F (Future): ♦fA: the proposition that A will be true.
— P (Past): ♦pA: the proposition that A has been true.

In principle, classical logic can express temporal properties too
but through complicated formulas with quantifiers relating to points
of time.

9See van Benthem (1983).
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Linear time refers to sequences of states. If linearity of time
is assumed, additional operators, such as “next” and “until,” can
be introduced. In this case, each state has exactly one future. In
branching-time logic, a state can have several futures that refer to
a branching tree of states. Tree models are used to model nondeter-
ministic developments.

Before coming to a formal system of temporal logic, we analyze
Becker’s text against the background of the main philosophical ques-
tions about the nature and the properties of time10: Does time have
a beginning or an end? Is time linear and directional, branching, or
circular? Does Becker comprehend time as instant-based or interval-
based? Does he take time to be discrete, dense, or continuous? Does
our perception of time depend on the structure of consciousness?
Does it depend on physical measurement? It turns out that Becker’s
analysis is inspired by mathematical intuitionism. The final ques-
tion is: How do we best choose a formal language that is suitable to
express Becker’s ideas about time? The formal systems in question
are even remarkable for applications in linguistics, computer science,
and artificial intelligence.

1.2.1. Modo recto and modo obliquo

“One can [. . .] say” — so says Becker in “On the Logic of
Modalities” — “that the philosophical ‘discovery’ of the ‘modi
obliqui,’ possibility and necessity, which have acquired their onto-
logical acknowledgement only after the ‘modus rectus,’ the ‘truth’
(reality) (and its opposite, the ‘falsity’ or ‘unreality’), represent a
first step towards the discovery of the ‘authentic’ temporality. For,
the characteristic ‘modi’ of the latter, the future and the ‘past,’ can
be literally designated as ‘modi obliqui temporales’ as opposed to the
temporal ‘modo recto,’ that is, the ‘present.’”11

Let us first note that the passage just quoted says that (i) there
is an authentic temporality, even if Becker doesn’t say what it is,
that (ii) the alethic modalities, possibility and necessity, pave the
way to discover such an authentic temporality, and that (iii) the
characteristic modi of the latter are the future and the past.

10Mainzer (2002).
11Becker (1930, p. 43).
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What about modo recto/modo obliquo? Modo recto/modo obliquo
is a terminology that, as readers familiar with the Austrian-Polish
tradition would know, is often associated with the name of Franz
Brentano. Roughly, one represents something modo recto if one
refers directly to it and modo obliquo if it is a secondary object
of one’s intention. So, if one thinks of Dr. Bernard Bolzano’s edi-
fying speeches to the academic youth, one represents, according to
Brentano, the edifying speeches modo recto and the academic youth
modo obliquo. We will later confront Brentano’s use of the expres-
sions modo recto/modo obliquo at a variance with Becker’s. For the
moment, we just state that they are different and focus on the latter.

According to Becker, the expressions modus rectus — obliquus
come from Latin grammar and correspond to the verbal moods rather
than to the verbal tenses: The indicative is the “direct” mood, the
subjunctive is the “indirect” (or “oblique”) mood. The indicative cor-
responds to the actuality and the subjunctive to the non-actuality
of a process that takes place over time. Becker singles out, prima
facie, three modalities: contingency (recto), possibility and necessity
(obliquo), and three temporal dimensions: present, past, and future.
He writes12:

The expressions “modus rectus — obliquus” [. . .] are [. . .]
modelled [. . .] on the names of the “verbal modes” [. . .]. The
“tempora” of the verb, not its modi, seem to denote linguisti-
cally the temporal modalities. However, the “tempora” only
denote the non-analysed or already constituted temporality,
that is a temporality that has already been subsumed under
the schema of an objective process (event). The origin of time,
the “enactment-character [vollzugsmäßige Weise]” of its pecu-
liar “temporalizing itself [Sich-Zeitigens]” is rather rendered
through the modi verbi.

Thus, let us state that Becker’s considerations are guided by the use
of verbal moods and not of verbal tenses in natural language, at a
variance with most temporal logics, as, for instance, Prior’s logics,
which are rather inspired by the use of tenses in natural language.
Becker seems to take the verbal modes to be the syntactic expression
of the conceptual pair realis — irrealis: The indicative is seen as the
syntactic expression of the realis and the subjunctive as the syntactic

12Becker (1930, p. 43, fn.).
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expression of the irrealis. In her book, The Languages of Native North
America, Marianne Mithun characterizes the difference as follows:
“The realis portrays situations as actualized, as having occurred or
actually occurring, knowable through direct perception. The irrealis
portrays situations as purely within the realm of thought, knowable
only through imagination.”13

Summing up, according to Becker, the alethic modalities of pos-
sibility and necessity have an inner connection with the temporal
modalities of future and past as opposed to the present. The future
and the past are marked as modi obliqui temporales, and the present
is marked as modo recto. Obliqui alludes to the fact that both the
future and past are non-factual or non-actual. For instance, what is
in the future has not yet occurred and can therefore only be in the
realm of possibility. But also, what is located in the past has already
occurred and is therefore non-actual. It seems to be a common trait of
natural languages to render the opposition between realis and irrealis
by means of the distinction between indicative and subjunctive.

1.2.2. Intuitionism and the relationship of modalities

and temporality

Becker writes: “The origin of time [. . .] is rather rendered through
the modi verbi.” When he talks of time this way, Becker refers to
time as a structure of the mind.

“Time” — so says Kant in his Critique of Pure Reason — “is not
an empirical concept that is somehow drawn from experience.”14 We
would not perceive simultaneity or succession if our consciousness
would not structure what reaches our sense organs through time.
Only if the sense of time is given a priori, before any experience, it is
possible to represent several things existing at one and the same time
(simultaneously) or in different times (successively). Kant conceives
time as a necessary a priori structure of our consciousness. This
means that we continuously organize what we experience through
time.

13Mithun (1999, p. 173).
14Kant (1787, p. B46).
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Kant assumed that human understanding is made possible by two
forms of intuition, which are given to the subject before (a priori)
any empirical experience (1787):

(1) Human subjects have an intuition of spatial forms which are
constructed step by step through certain rules (e.g., a circle and
ruler in geometry).

(2) Human subjects have an intuition of sequential temporal points
which are constructed step by step by adding a unit according
to the rule of counting in arithmetic.

On the one hand, the spatial and temporal forms of intuition enable
the human subject to understand empirical objects and events in
space and time. For Kant, human subjects are equipped a priori
with an intuitive understanding of space and time, which makes pos-
sible their orientation in the world. On the other hand, the spatial
and temporal forms of intuition provide the schemes of geometric
and arithmetic constructions and, by that, the foundations of math-
ematics.

Kant illustrates the temporal form of intuition by an unlimited
sequence of points:

., .., . . . , . . . ,

which is extended step by step by a unique point. In our tempo-
ral intuition, these points represent a sequence of present moments
(“now”) which are passing in a linear order. Formally, this process
corresponds to the construction of the natural numbers 1, 1+1, 1+1+
1, . . . or in the usual abbreviation of decimal numbers 1, 2, 3, . . .
according to the rule of counting.

After Kant, the mathematician Leopold Kronecker (1823–1891)
claimed that natural numbers are “made by God,” but “all the rest”
is made by humans (according to Weber, 1893).15 Independent of
Kronecker’s reference to God, Kant argues on the same line: Natu-
ral numbers are given to the subject by the temporal form of intu-
ition and its arithmetical scheme of counting. “All the rest” must
be reduced to the fundamental form of arithmetical construction.

15Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.
(Weber, 1893, p. 19).
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Thus, for Kant and Kronecker, infinity is not given but only a façon
de parler (Poincaré) or “regular idea” (Kant) for the unlimited pro-
cess of counting.

According to Brouwer, mathematical truth is founded by con-
structions of a “creative subject.”16 In his intuitionistic foundation
of mathematics, he followed Kant’s explanation of human under-
standing by human subjects. Brouwer derived radical consequences
for the truth of theorems and their proofs: In temporal intuition,
only finite sequences of natural numbers can be constructed.17 Thus,
for Brouwer, mathematical truth depends on finite stages of realiza-
tion in time by a creative subject. Later, Georg Kreisel suggested the
following formal definition.18

A creative subject has a proof of proposition A at stage m (in
short:

∑
�m A) iff

(CS1) For any proposition A,
∑
�m A is a decidable function of A,

i.e.,

∀x ∈ N

(∑
�x A ∨ ¬

∑
�x A

)
;

(CS2) ∀x, y ∈ N(
∑
�x A→ (

∑
�x+y A));

(CS3) ∃x ∈ N(
∑
�x A)↔ A.

The idea that only finite initial segments of infinite sequences
are given leads to Brouwer’s concept of choice sequences.19 A choice
sequence means a process which is not necessarily predetermined by
some law or algorithm:20

(i) α lawless sequence :≡ at any stage of α0, α1, α2, . . ., only finitely
many values of α are known.

(ii) α lawlike sequence :≡ all values of α are known by a law (i.e.,
algorithm).

Lawless sequences can be illustrated by sequences of casts with a
die after some already realized casts in the beginning. The die can be

16Brouwer (1907).
17See Mainzer (2018, Chapter 6).
18See Kreisel (1967), Sundholm (2014).
19See Mainzer (1977).
20See Troelstra (1968), Dummett (1977).
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thrown in arbitrarily many times. Nevertheless, at any stage, only
finitely many casts are known, and the following cast is unknown. In
lawlike sequences, all stages are predetermined by a law. An example
is the sequence of even natural numbers with law αn = 2n or the
sequence of decimal places of real number π.

A radical departure from classical mathematics occurred when
choice sequences were allowed in real analysis. If real numbers are
defined by fundamental sequences to be given by choice sequences,
then the statement “all total functions from R to R are continuous”
can be proven intuitionistically. At first glance, this statement seems
to be false in classical mathematics. But the meaning of the condition
“function f from R to R is total” is obviously much stronger if R
is extended to real numbers defined via fundamental sequences as
choice sequences21 (Brouwer, 1927). Therefore, we get a different
intuitionistic meaning of classical concepts.

In intuitionistic mathematics, infinite objects are considered as
ever growing and never finished. Therefore, sets need a new founda-
tion. The intuitionistic analog of a set is a so-called spread, which
is defined as a countably branching tree labeled with natural num-
bers or other finite objects and containing only infinite paths. A fan
is a finitely branching spread. A branch is an intuitionistic choice
sequence, i.e., an infinite sequence of numbers (or finite objects) cre-
ated step by step by a law (algorithm) or without a law (e.g., coin).
A lawless sequence is ever unfinished. The only available information
about a lawless sequence at any stage is the initial segment of the
sequence created thus far.

Here, temporal logic comes in because, for Brouwer as well as for
Becker, time sequences and sequences of numbers are closely con-
nected: “The reason why number and time belong together is obvi-
ous: The infinite series of numbers is — by its infinity — determined
by the potentiality and with that by futureness. Again, the special
character of the ‘obliquitas’ is decisive.”22

Thus, following Brouwer and Becker, future is realized in finite
stages, such as intuitionistic spreads, i.e., countably branching trees
with infinite paths. Only the initial parts of the trees are given as

21Brouwer (1927).
22Becker (1930, p. 46).
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past and presence. Intuitionistically, continuity of time is essential.
Concerning the spreads of branching paths in the future, they are
realized in finite steps. Becker states in the end of his essay23: “The
idea of a path contains finity [. . .] the most abstract and ‘most free’
sciences of mathesis universalis are primarily and principally deter-
mined by the concept of finity.”

1.2.3. Becker’s modal-logical interpretation

of intuitionism

In his 1930 essay, “On the Logic of Modalities,” Becker was the first
logician and mathematician to put forward the idea of a modal inter-
pretation of intuitionistic logic, more precisely, the idea of a possible
sound and faithful translation of intuitionistic logic into modal logic.
However, the first actual translation is to be found in a one-page cel-
ebrated and influential paper entitled “An interpretation of the intu-
itionistic propositional calculus” written in 1933 by Kurt Gödel.24

The basic idea of Gödel is similar to the one Becker outlines in his
essay. Becker suggests adding to classical logic the predicates “(. . .)
is provable,” “(. . .) is such, that its negation is provable,” and
“(. . .) is undecided.” Such predicates should express Brouwer’s prim-
itive logical concepts.

Similarly, Gödel’s idea is to add to the language of classical propo-
sitional logic the unary operator “it is provable that (. . .),” denoted
by “B,” and to an axiomatic calculus for classical propositional
logic three axioms and one rule of inference. The axioms correspond
exactly to the modal schemas K, T , and 425 that characterize modal
logics that are nowadays standard, and the rule of inference is the
necessitation rule that is contained in all normal modal systems.

Note, incidentally, that both Becker and Gödel seem to take the
predicate “(. . .) is provable” and the operator “it is provable that
(. . .)” as conveying the same piece of information. Actually, the pred-
icate “(. . .) is provable” denotes the property of a proposition to
be provable, while the operator “it is provable that (. . .)” takes a

23Becker (1930, p. 51).
24Gödel (1933).
25For a formal definition of the normal modal logics and an explanation of their
characterizing axioms see Chapter 3.
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proposition as input and gives a different proposition as output.
(Unfortunately, this practice of systematically neglecting the dif-
ference between predicate and operator is, even nowadays, quite
widespread among logicians.)

Gödel writes26:

One can interpret Heyting’s propositional calculus by means
of the notions of the ordinary propositional calculus and the
notion “p is provable” (written “Bp”), if one adopts for that
notion the following system S of axioms:

1. Bp → p

if it is provable that p, then it is true that p

2. Bp → ((B(p → q) → Bq)

if it is provable that p and it is provable that p implies q,
then it is provable that q

3. Bp → BBp

if it is provable that p, then it is provable that it is provable
that p

In addition, [. . .] the new rule of inference is to be added

A

BA

From A, it is provable that A may be inferred

By substituting throughout the operator “B” (“it is provable that
(. . .)”) by the operator “�” (“it is necessary that (. . .)”), one obtains
one of the modal logical systems that are nowadays standard, namely
Lewis’s system S4.

Becker did also tentatively consider a number of possible ways
to extend Lewis’s S3 in order to get a modal system with a finite
number of irreducible modalities, or even an infinite number of irre-
ducible modalities, yet all pairwise comparable with respect to logi-
cal strength. In the current context, the most interesting of Becker’s
“experiments” is the one he discusses at length in Section 5, Part I,
of his essay.27 Becker tackles here in a more abstract way the problem
of “completing” Lewis’s calculus in such a way that in the resulting

26Gödel (1933, p. 301).
27Becker (1930, pp. 25–30).
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system, let us call it SM,28 independently from the number (finite
or infinite) of irreducible modalities, any two (positive) modalities
(i.e., combinations of the two elementary modalities � and ♦) be
comparable with respect to logical strength:

One can try to free oneself from all requirements that are
imposed by special material assumptions, and introduce solely
the most general formal conditions of a calculus of modalities.
Firstly, one can drop the requirement that the reduction to a
finite number of primitive modalities be possible. [. . .]

One will, however, keep the general requirement of a linear rank
order of modalities, whereby the implicational relation of any
two distinct modalities is univocally determined. Otherwise, a
modality could no longer be univocally determined by its “rank
of logical strength.” Such requirement should be in any case the
upper bound of our formal freedom.

Now, the question is, on the one hand, whether Lewis’s calculus
[S3] satisfies this requirement and, on the other hand, whether
suitable axioms for a theory of the rank order of modalities can
be established independently from Lewis’s calculus. The answer
to the first question is negative, while the answer to the second
question is positive.29

At the end of a rather elaborate argument, he arrives at the claim
that a stepwise generalization of Brouwer’s schema:

B1 = �(A→ �♦A),
B2 = �(A→ ��♦A),
B3 = �(A→ ���♦A),
...

provides an infinite number of axiomatic conditions, which added to
a given base modal calculus (which he does not explicitly specify)
together with three meta-rules (R1)− (R3),

30 produce a calculus SM
whose modalities, although infinite in number, are linearly ordered.

28Centrone and Minari (2019, p. 54).
29Becker (1930, p. 25).
30These rules impose that the logical strength relations between (composed)
modalities be suitably preserved under “multiplication” of modalities.
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He leaves as an open problem the question whether all these infinite
modalities of SM are irreducible.

Concerning SM, Becker’s proof that the (supposedly infinite)
modalities of this system are linearly ordered is very clever and cor-
rect. Unfortunately, he did not notice that, if the base calculus is
Lewis’s S3, already the first two schemas, B1 and B2, of the infinite
sequence of schemas {Bn}n≥0 he postulated, together with the rule
R2, are sufficient to prove the schema �(�A → �♦A) — and thus
to make SM equivalent to the normal modal system S5.

However, it can be proved31 that by choosing a suitable (semanti-
cally characterized) base modal system weaker than S2 (and incom-
parable with S1), Becker’s “system SM” does not collapse into S5
while having the properties that Becker expected.

1.2.4. Intuitionism and formal systems

of temporal logic

There is a rich variety of models of time: Is time instant-based or
interval-based, or is it discrete, dense, or continuous? Does time
have a beginning or an end? Is time linear, branching,32 or circular?
These models must satisfy appropriate formal systems of temporal
logic. The flow of time is defined by a model T = 〈T,≺〉 with a
(nonempty) set T of time instants and a binary relation ≺ of prece-
dence.33 In a discrete (forward, resp. backward) model, each time
instant which has a successor, resp. predecessor, also has an imme-
diate successor, resp. predecessor. In dense models, there is another
instant between any two subsequent time instants. In an instant-
based model of time T = 〈T,≺〉, many properties can be formulated
as first-order sentences, such as reflexivity, irreflexivity, transitivity,
asymmetry, linearity, beginning, end, no beginning, no end, density,
and discreteness.

Second-order sentences with quantification over sets are required
for properties, such as continuity and well-ordering. Here, the differ-
ent meaning of classical and intuitionistic sets as spreads comes in.

31See Centrone and Minari (2022).
32See Belnap (1992).
33Galton (2008, p. 3).
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Obviously, Becker argues for an intuitionistic semantics of temporal
logic with spreading temporal developments in finite steps.

If events with duration are under consideration, it is sometimes
more convenient to use interval-based models instead of instant-based
models of time.34 Interval-based models avoid the paradox of Zeno’s
flying arrow: If at each instant the flying arrow stands still, how is
movement possible? An example that also requires interval-based rea-
soning is: “The housebreaker was robbing the house, when the police
came.” Interval-based models are richer than instant-based models of
time because, besides temporal precedence ≺ between time instants,
they also consider inclusion and overlapping of time intervals. From
a mathematical point of view, instants can be considered as infinites-
imal small intervals.

The first formal system TL of temporal logic was introduced by
Prior,35 who was motivated by the use of tense in natural languages.
That reminds us of Becker’s analysis of modo recto and modo obliquo.
In TL, the propositional language with atomic propositions and clas-
sical logical connectives is extended by Prior with four temporal
operators:

P : “It was the case that . . . ” (with P for “past”),

F : “It will be the case that . . . ” (with F for “future”),

G: “It always will be the case that . . . ,”

H: “It always was the case that . . . .”

The operators G and H can be defined by P and F and vice versa
with

G :≡ ¬P¬ H :≡ ¬F¬.

If π is an infinite path in a spread, then these operators can be
combined, for example:

π |= FGϕ : “At a certain instant, ϕ is true at all future states of the
path,”

π |= GFϕ : “ϕ is true at infinitely many states on the path.”

34See Allen and Hayes (1989).
35See Prior (1957).
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Thus, the syntax of TL is specified with the grammar

ϕ,ψ := a|⊥|¬ϕ|ϕ ∨ ψ|Pϕ|Fϕ with atomic formula a.

A model is given by T = 〈T,≺, V 〉 with a frame (Kripke) 〈T,≺〉 and
valuation function V which assigns a truth value to each pair (a, t) of
an atomic formula and a time value. T |= ϕ[t] means that ϕ is true
in a model T = 〈T,≺, V 〉 at time t. The following formal system is
called the minimal temporal logic Kt.

36 Axioms:

ϕ (with ϕ tautology of first-order logic)

G(ϕ→ ψ)→ (Gϕ→ Gψ),

H(ϕ→ ψ)→ (Hϕ→ Hψ),

ϕ→ GPϕ,

ϕ→ HFϕ,

with rules of deduction

ϕ→ ψϕ

ψ
(modus ponens),

ϕ

Gϕ
(with ϕ tautology),

ϕ

Hϕ
(with ϕ tautology),

An example which can be derived is Becker’s rule:

ϕ→ ψ

Tϕ→ Tψ

with a tense T for any sequence of operators G,H,F, and P. A trans-
lation from statements of TL into first-order logic with one free
variable t representing the present instant of time can be defined
recursively.

36Rescher and Urquart (1971, Chapter VI).
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Additional axioms can be taken to represent further assumptions
of time. Examples37 are

Transitivity (TRANS): Gϕ → GGϕ, Hϕ → HHϕ,
FFϕ→ Fϕ, or PPϕ→ Pϕ;

Reflexivity (REF): Gϕ → ϕ, Hϕ → ϕ, ϕ → Fϕ,
or ϕ→ Pϕ;

Linearity (LIN): (PFϕ∨FPϕ)→ (Pϕ∨ϕ∨Fϕ);
Well-ordering with transitivity
(WELLORD):

H(Hϕ→ ϕ)→ Hϕ;

Time without end (NOEND): F� or Gϕ→ Fϕ;

Induction (IND): Fϕ ∧G(ϕ→ Fϕ)→ GFϕ.

Minimal temporal logic Kt can now be extended to systems of
temporal logic, for example:

K4t := Kt +TRANS : all transitive frames,

S4t := Kt +REF+ TRANS : all partial orderings,

Lt := Kt +TRANS + LIN : all strict linear orderings,

Nt := Lt+NOEND+ IND +WELLORD : 〈N, <〉 natural numbers.

These temporal logic systems are decidable.38

Over discrete and linear models of time, the basic temporal logic
can be extended by a Next Time operator X and the operators Since
S and Until U. Xϕ is true at an instant of time t iff ϕ is true at the
immediate successor s(t) of t. The Next Time operator satisfies the
axioms

X(ϕ→ ψ)→ (Xϕ→ Xψ) and

X¬ϕ↔ ¬Xϕ.

The binary operator ϕSψ means that ϕ has been the case since a
time when ψ was the case. ϕUψ means that ϕ will be the case until
a time when ψ is the case. The extension of TL with these operators
lead to the linear-time temporal logic (LTL). LTL is interpreted over

37Galton (2008, p. 10).
38Rescher and Urquart (1971), Burgess and Gurevich (1985).
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the structure of natural numbers with a reflexive temporal ordering.
Obviously, LTL is appropriate for Becker’s intuitionistic assumptions
of time. Practically, LTL is convenient to express assertions on infi-
nite computations in computer science.

From an intuitionistic point of view, linear time only refers to one
path in a branching spread which represents alternative possibilities
for the future. A spread is graphically represented by a branching
tree. Openness of future means intuitionistically that the temporal
structure 〈T,≺〉 is never given as a closed infinity but growing in
finite steps: “The idea of a path contains finity [. . .].”39

It turns out that in a branching time, two alternative seman-
tics are possible for the future operator F , which were denoted by
Prior as Peircean and Ockhamist interpretations.40 In the Peircean
branching-time logic, the future operator F means that “it will neces-
sarily be the case that . . ..” Consequently, future truth is assumed as
truth in all possible futures. But with this understanding, the future
operator F can no longer be dual to the strong future operator G: Fϕ
is true at an instant t iff every temporal development passing through
t contains some later instant t′ at which ϕ is true. The strong future
operator G does not change its meaning (“It will necessarily always
be the case . . .”). Therefore, in the Peircean version, G must be sup-
plemented to the formal language as additional primitive operator
and cannot be reduced to F.

In Peircean temporal logic, the formula ϕ → HFϕ is no longer
valid. From an intuitionistic point of view, the principle of excluded
middle is crucial. The Peircean interpretation preserves the principle
of excluded middle as ϕ ∨ ¬ϕ, but it violates the principle of future
excluded middle Fϕ ∨ F¬ϕ. This principle means that, eventually,
either ϕ or ¬ϕ will be the case.

In the alternative Ockhamist interpretation, truth is not only rel-
ativized to a time instant in the temporal tree but also to a temporal
development (“history”) passing through this instant. The operator
F now means “With respect to the given history, it will be the case
that . . ..” Therefore, an Ockhamist tree model is a triple T = 〈T,≺, V
with tree 〈T,≺〉 and valuation function V which assigns a truth value

39Becker (1930, p. 51).
40Prior (1967).
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to each triple (a, t, h) of an atomic formula a, a time value t, and a
history h. Then, T , t, h |= ϕ[t] means that ϕ is true in a model
T = 〈T,≺, V 〉 at time t and history h.

All temporal formulae which are valid in linear models of time
are also true at all instant-history pairs, i.e., valid in the Ockhamist
sense. Therefore, the Ockhamist interpretation confirms the princi-
ple of future excluded middle Fϕ∨F¬ϕ if time does not end. It also
validates the formula ϕ → HFϕ. But the principle of the necessity
of the past Pϕ → � Pϕ is violated. Decidable and strongly com-
plete axiomatizations of intuitionistic temporal logic were recently
proven.41

1.2.5. Outlook on temporal logic in computer science

Logical systems of branching time are not only interesting philo-
sophically but also for computer science.42 Peircean and Ockhamist
branching-time temporal logics correspond to the computational tree
logics CTL43 and CTL∗.44 In computer science, branching time is
understood as a computation tree. In this case, histories have the
order type of natural numbers, such as in intuitionistic mathematics.
In computer science, trees of data are unfolded by discrete transition
systems which generate possible infinite computations.

In general, a transition system is defined by actions or processes
which realize transitions between system states. The infinite behavior
of transition systems can be expressed in terms of paths and com-
putation. Transition systems are ubiquitous in computer science and
can be specified as finite-state automata, pushdown automata, Tur-
ing machines, etc.45 Practically, all kinds of computers or clocks can
be considered as transition systems. Thus, transition systems deliver
an operational semantics of temporal logic.

The computation tree logic CTL∗ follows the Ockhamist inter-
pretation of temporal logic. The reflexive future operators G and U
and the Next Time operator X are interpreted on computation trees.

41Boudou et al. (2017), Chopoghloo and Monini (2021).
42See Gabbay et al. (1994, 2000), Bolc and Szalas (1995).
43Emerson and Clarke (1982).
44Emerson and Halpern (1985).
45Demri et al. (2016, Chapter 3).
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An evaluation is relativized to an instant of time defined as state
of a transition system and a history defined as a computation path.
The computation tree logic CTL follows the Peircean interpretation
of temporal logic. Each of the temporal operators G, U, and X is
immediately preceded by a modal operator � or ♦.

Philosophically, transition systems overcome the restriction of
temporal logic to the temporal structure of human consciousness.
A constructive and intuitionistic semantics of temporal logic is inter-
esting for cognitive systems with their conscious structure of time
in the tradition of Kant and Husserl, and Becker and Brouwer. But
it can also be realized by machines in computer science and arti-
ficial intelligence.46 For example, in computer science, the correct
behavior of a reactive program with nonterminating computations
requests to specify and verify the acceptable infinite executions of the
program. In concurrent programs with processors working in paral-
lel, their interaction and synchronization must also be specified and
verified.47 An infinite computation is formulized by the linear-time
logic LTL. Nondeterministic systems are modeled in a branching-
time logic. Besides LTL, CTL and CTL∗ are important logical tools
to specify and verify reactive and concurrent computational systems.

In artificial intelligence, nowadays, machine learning48 applica-
tions need temporal organization of computational processes. AI-
supported translation systems need an operational semantics of
tenses in natural languages. Cognitive robots (e.g., autonomous cars)
with self-organizing abilities need a kind of spatial–temporal rea-
soning. All that was, of course, not foreseen by Becker as future
applications of temporal logic. But his constructive and intuitionis-
tic approach opens a future perspective for an operational semantics
of temporal logic.

46Ohrstrom and Hasle (1995), Fischer et al. (2005).
47Pnueli (1977, pp. 46–57).
48Mainzer (2019, Chapter 11.1).
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Chapter 2

Computational Foundations
of Temporal Logic

In Section 1.2, we already mentioned transition systems (TSs) as
general models of computational systems. They consist of states
which represent certain configurations and transitions which repre-
sent possible state changes. Changes are determined by actions. In
this way, finite state machines, automata, pushdown systems, Tur-
ing machines, counter machines, and supercomputers can be mod-
eled. But real-life systems can also be modeled by TSs, such as
clocks, smartphones, vending machines, and robots. All kinds of com-
putational architectures, such as sequential, parallel, reactive, and
interactive processes (e.g., in robotics), can be realized by TSs. Geo-
metrically, they can be illustrated as directed graphs with labels on
vertices or edges, which allow software verification by model checking.

Definition of transition systems:1

A routed and interpreted transition system (ITS) is a structure

T =
(
S,
{

a−→
}
a∈Act

, L, s
)

consisting of

(1) a set S �= ∅ of states,
(2) a set Act of names (labels) of actions acting on states and pro-

ducing successor states,

1Demri et al. (2016, Section 3.1.1).
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(a)

(b)

Fig. 2.1. (a) A transition system for counting modulo 4. (b) Mono-transition
system (N, succ).

Source: Similar to Demri et al. (2016, Fig. 3.1).

(3) a binary transition relation
a−→⊆ S × S associated with every

action name a ∈ Act,
(4) a set PROP of atomic propositions holding in a particular set of

states,
(5) a labeling function L : S → P(PROP) assigning to every state s

the set L(s) of atomic propositions true at s (called the descrip-
tion label of that state),

(6) a designated initial state s called the root of T .

A simple example is a transition system with four states modeling the
development of an integer variable modulo 4 (Fig. 2.1(a)). The tran-
sition system has two actions, inc for increment and dec for decre-
ment, and no atomic propositions. The initial states are depicted by
an incoming arrow. In mono-transition systems, the action label is
replaced by a binary relation R on S. For example, in Fig. 2.1(b),
the mono-transition system (N, succ) generates 0, 1, 2, . . . with the
successor function succ on N.

A path π in a transition system T is a finite or an infinite sequence
of states and names of actions, which transform every state into its
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successor, s0
a0−→ s1

a1−→ s2 · · · . The path is rooted in s0. A path
with n transitions has length |π| = n. A finite path in a transition
system is a cycle if its first and last states coincide. A loop is a cycle
of length 1 with s

a−→ s.
A transition system is

(1) acyclic if it does not contain cycles,
(2) forest-like if it is acyclic and every state has at most one prede-

cessor state,
(3) tree-like if it is forest-like, in which at most one state has no

predecessor states. Such a state is called root and the transition
system is called tree.

A computation or trace in a transition system T = (S, { a−→}a∈Act, L)
is a sequence of state descriptions and actions along a path with

L(s0)
a0−→ L(s1)

a1−→ L(s2) · · · .

2.1. Basic Modal Logic

Basic modal logic (BML) is the simplest temporal logic for reasoning
about computational transition systems. Each transition relation of
a transition system is associated with a modal operator, stating what
must be true in all successors of the current state or what may be
true in some successors of the current state: The notation AXa relates
to all paths (A) starting from the current state to the next state (X)
with action a. The notation EXa relates to some path (E) starting
from the current state to the next state (X) with action a.2

2.1.1. Syntax of BML

In the formal language of BML, a BML formula is inductively defined
by

ϕ := p|⊥|¬ϕ|ϕ ∧ ϕ| EXaϕ,

2BML is a variant of the modal logic.
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Fig. 2.2. Transition system for proving the truth of certain BML formula.

Source: After Demri et al. (2016, Fig. 5.1).

with p ∈ PROP (set of propositions) and a ∈ Act (set of actions).
The other logical connectives are defined as usual. The dual modal
operator of EXa is defined by AXa := ¬EXa ¬ϕ for all a ∈ Act.

2.1.2. Semantics of BML3

The semantics of BML relates to the truth of a formula ϕ at a state

s of an ITS T = (S,
{

a−→
}
a∈Act

, L), i.e., T , s |= ϕ, which can be

defined inductively by

T , s �|= ⊥;
T , s |= p iff p ∈ L(s);
T , s |= ¬ϕ iff T , s �|= ϕ;

T , s |= ϕ ∧ ψ iff T , s |= ϕ and T , s |= ψ;

T , s |= EXa ϕ iff T , s′ |= ϕ for some s′ ∈ S with s
a−→ s′.

According to the definition of AXa, it follows that

T , s |= AXa ϕ iff T , s′ |= ϕ for every s′ ∈ S with s
a−→ s′.

For example, the truth of formula AXa⊥ ∧ AXbp ∧ ¬EXbp at state
s3 of a transition system T can be derived with the graph of T in
Fig. 2.2. The truth of formula p ∧¬q∧EXa(¬p ∧¬r) ∧EXa(p ∧ r) ∧
AXa¬q ∧AXb⊥ is derived at state s0.

3The semantics of ITSs deliver the possible world semantics of Kripke models
for modal logic in computer science. For Kripke models, compare, for example,
Hintikka (1962).
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Fig. 2.3. Algorithm MCBML for model checking of BML formulae.

Source: Demri et al. (2016, p. 117).

The semantic definitions of satisfiability, validity of a model, log-
ical validity, and logical implication for BML formulae can be intro-
duced with respect to the definition of |=. The logical problems of
model checking and validity testing cannot always be reduced to each
other at low computational costs. The algorithm MCBML (Fig. 2.3)
solves the (local) model-checking problem in polynomial time. It
is a straightforward implementation of the satisfaction relation |=.
MCBML works as a procedure for the recursive top-down labeling of
the states by subformulae with truth values. It can be proven that,
for a given BML formula ϕ, a finite transition system T , and a state
s in T , the algorithm MCBML returns the value true iff T , s |= ϕ.
Furthermore, the satisfiability problem of BML is decidable. It can
also be proven that any satisfiable BML formula is satisfied at the
root of a finite tree-like ITS.

2.1.3. Axiomatic system AxSysBML for BML

An axiomatic system AxSysBML for BML is given by the axioms of
propositional logic (PL) extended by axiom (K) for basic AX and
two rules of inference.
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Axioms of AxSysBML:

(PL) All axioms of PL
(K) AXϕ ∧AX(ϕ→ ψ)→ AXψ

Rules of inference:

(MP) Modus ponens: �ϕ, �ϕ→ψ
�ψ

(Nec) Necessitation: �ϕ
�AXϕ

2.2. Linear-Time Temporal Logic

Linear temporal logic (LTL) considers single computations in tran-
sition systems which are represented by linear models over infinite
sequences of states.4 Thus, LTL does not only relate to local prop-
erties, such as BML. But LTL cannot express branching-time
properties, such as computation tree logic (CTL), which will be stud-
ied in the following section. The language of LTL extends the classical
PL with temporal modalities for future states in computations. They
can be illustrated for current states ϕ in linear sequences of states.

The temporal operator Xϕ states that the next state satisfies ϕ. For
example, in a computer program, the formula alert→ Xhalt expresses
that after a current state of alert, the program should halt in the next
state. The formula Fϕ states that ϕwill be true sometime in the future
or at the current state. Gϕ means that all future states including the
current state satisfy ϕ. Gϕ and ¬F¬ϕ are equivalent. The binary
time operator Until (

⋃
) in the formula ϕ

⋃
ψ expresses that ϕ will be

true from now until ψ becomes true at some future state.

2.2.1. Syntax of LTL

In the formal language of LTL, an LTL formula is inductively defined
by

ϕψ := p|⊥|¬ϕ|ϕ ∧ ϕ|Xϕ|Fϕ|Gϕ|ϕ
⋃

ψ,

with p ∈ PROP (set of propositions).

4Gabbay et al. (1980); Pnuelli (1977).
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Fig. 2.4. Example of a LTL model.

2.2.2. Semantics of LTL

The models of LTL are infinite computations, which are illustrated as
sequences of labels with atomic propositions, as shown in Fig. 2.4.5

Formally, a linear model of LTL is defined by σ : N→ P(PROP).
For a linear model σ, a position i ∈ N and a formula ϕ, the satisfac-
tion relation |= can be defined inductively by

σ, i �|=;

σ, i |= p iff p ∈ σ(i);
σ, i |= ¬ϕ iff σ, i �|= ϕ;

σ, i |= ϕ ∧ ψ iff σ, i |= ϕ and σ, i |= ψ;

σ, i |= Xϕ iff σ, i + 1 |= ϕ;

σ, i |= Fϕ iff there is j ≥ i such that σ, j |= ϕ;

σ, i |= Gϕ iff for all j ≥ i we have σ, j |= ϕ;

σ, i |= ϕ
⋃
ψ iff there is j ≥ i such that σ, j |= ψ and

σ, k |= ϕ for all k with i ≤ k < j.

Truth σ |= ϕ of an LTL formula ϕ in an LTL model σ is defined by
σ, 0 |= ϕ.

2.2.3. Decidability problems of LTL6

Satisfiability and validity are associated with decision problems.

5Demri et al. (2016, p. 155).
6Demri et al. (2016, p. 159).
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Satisfiability problem SAT(LTL) for LTL:

Input: LTL formula ϕ

Question: Is there any model σ with σ |= ϕ?

Validity problem VAL(LTL) for LTL:

Input: LTL formula ϕ

Question: Is the case that |= ϕ?

For checking the satisfiability of an LTL formula ϕ, one can try to
find a small satisfiability witness. A brute force algorithm generates
all sequences of subsets in the closure clLTL(ϕ) of ϕ with a length
of at most 2|ϕ| + |ϕ| · 2|ϕ| and checks whether one of them is a small
satisfiability witness. This kind of algorithm is a decision procedure
for LTL satisfiability with double exponential time of computation.
Another procedure starts with a guess of a sequence with a length of
at most 2|ϕ| + |ϕ| · 2|ϕ| for checking whether it is a small satisfiabil-
ity witness. Figure 2.5 is a nondeterministic algorithm for checking
whether a given LTL formula has a small satisfiability witness.

The algorithm in Fig. 2.5 for satisfiability checking of LTL for-
mulae is correct and needs a space which is polynomial in the size of
the input formula.

For example, for the LTL formula ϕ = GFp ∧ GFq und Γ :=
{ϕ,GFp,GFq,Fp,Fq}, the following sequence can be checked by the
algorithm in Fig. 2.5 to be a small satisfiability witness with i = 2
and j = 4:

Γ ∪ {¬p,¬q}, Γ ∪ {¬p,¬q}, Γ ∪ {p,¬q}, Γ ∪ {¬p,¬q},
Γ ∪ {¬p, q}, Γ ∪ {p, q}, Γ ∪ {p,¬q}.

Until now, the temporal operators of LTL only refer to the future.
They can be extended by the counterparts of the past. The “next”
operator X has an analog in past time, which is called the “previous”
operator Y (“yesterday”): Yϕ states that the previous state satisfies
ϕ. The “until” operator

⋃
has an analog in past time, which is called

the “since” operator S: The binary time operator S in the formula
ϕSψ expresses that ψ is true at some past position, and since then,
ϕ holds true.
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Fig. 2.5. Algorithm for guessing a small satisfiability witness.

Source: Demri et al. (2016, p. 170).
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2.2.4. Axiomatic system AxSysLTL for LTL7

An axiomatic system AxSysLTL for LTL is given by the axioms of
PL extended by axioms for the temporal operators X, G, and

⋃
and

three rules of inference, as follows.

Axioms ofAxSysLTL:

(PL) All axioms of PL
(KX) X(ϕ→ ψ)→ (Xϕ→ Xψ)

(SER) X�
(FUNC) X¬ϕ↔ ¬Xϕ

(PostFPG) Gϕ→ (ϕ ∧XGϕ)
(GFPG) G(ψ → (ϕ ∧ Xψ))→ (ψ → Gϕ)

(PreFP⋃) (ψ ∨ (ϕ ∧X(ϕ
⋃
ψ)))→ (ϕ

⋃
ψ)

(LFP⋃) G((ψ ∨ (ϕ ∧ Xχ)→ χ)→ ((ϕ
⋃
ψ)→ χ)

Rules of Inference in AxSysLTL:

(MP) Modus ponens: �ϕ, �ϕ→ψ
�ψ

(NecX) Necessitation for X: �ϕ
�Xϕ

(NecG) Necessitation for G: �ϕ
�Gϕ

The axiomatic system AxSysLTL is sound and complete because
for every finite set of LTL formulae {ϕ1, . . . , ϕn, ϕ}, it holds that

ϕ1, . . . , ϕn �AxSysLTL
ψ if and only if ϕ1, . . . , ϕn |= ψ.

Therefore, every set of LTL formulae is satisfiable if and only if it is
consistent in AxSysLTL. Especially, �AxSysLTL

ψ if and only if ψ is a
valid LTL formula (|= ψ).

2.3. Computation Tree Logic

LTL is restricted to linear-time models with single computations of
transition systems. In CTL, the potential of temporal operators is

7LTL is a standard formalism to specify the behavior of computer systems for
formal verification. Cf. Demri et al. (2016, Section 6.8).
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combined with the ability to quantify over paths of computation,
which leads to branching-time logic.8 Examples of combinations of
temporal operators with path quantifiers have already been intro-
duced. The existence (E) of a run such that the next position (X)
satisfies p can be written as EX p and corresponds to modal operator
EX in the BML. The statement that for all (A) runs, the next posi-
tion (X) satisfies p can be written as AX p and corresponds to the
modal operator AX. The existence (E) of a run such that a future
position (F) satisfies p can be written as EFp. It means that there
is a reachable state which satisfies p. In the formula E(p

⋃
q), at

first, a run is existentially quantified (E) to witness the satisfaction
of p

⋃
q. The statement that for all runs (A) and for all positions, p

holds true can be written as AGp. Thus, the combination AG can be
understood as a temporal operator in branching-time logic consisting
of a universal quantifier over paths and a universal quantifier over
positions.

2.3.1. Temporal logic of reachability

In a transition system T = (S, { a−→}a∈Act, L), the reflexive and tran-

sitive closure s
a−→ ∗

t of the transition relation
a−→ means that there

exists a finite path s0
a−→ s1

a−→ · · · a−→ sn with n ≥ 0, s = s0, and

t = sn. Thus,
a−→ ∗

denotes the reachability relation for transitions of
type a. The reachability relation can be associated with a reachabil-
ity operator, resp. reachability modality, EFa, which means forward
reachability in the future (F) along some computation with a.

The temporal logic of reachability (TLR) is an extension of BML

with the reachability operators EFa for all transition relations
a−→

of transition system T .9 The syntax of TLR is inductively defined by

ϕ := p|⊥|¬ϕ|(ϕ ∧ ϕ)|EXaϕ|EFaϕ with p ∈ PROP.

As in BML, the dual of each modal operator can be defined by

AXaϕ := ¬EXa¬ϕ,
AGaϕ := ¬EFa¬ϕ.

8Clarke and Emerson (1981), Emerson (1990).
9Ben-Ari et al. (1981).
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Fig. 2.6. ϕ is true at every reachable state (AGϕ).

Source: Demri et al. (2016, Fig. 7.2).

The formulae of TLR are interpreted over rooted transition systems.
The satisfaction relation |= is defined by the conditions of BML
extended by the case

T , s |= EFaϕ if and only if T , s |= ϕ for some r ∈ S with s
a−→ ∗

r.

Intuitively, EFaϕ is true at the state s if ϕ is true at some state r
reachable from s along the transition relation

a−→.
According to the definition AGa, it follows that

T , s |= AGaϕ if and only if T , s |= ϕ for all r ∈ S with s
a−→ ∗

r.

Figure 2.6 illustrates that AGaϕ is true at the state s if ϕ is true at
every state r reachable from s along the transition relation

a−→ of a
transition system.

In BML, the satisfiability of TLR is decidable. An axiomatic
system AxSysTLR for the set of valid formulae of TLR extends
AxSysBML with an axiom to guarantee the seriality of the transi-
tion relation and axioms for the operator AG.10

10Demri et al. (2016, p. 253).
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Fig. 2.7. Illustration of AFϕ.

Source: Demri et al. (2016, Fig. 7.3).

Axioms of AxSysTLR:

(BML) All axioms of BML logic AxSysBML

(KAX) AX(ϕ→ ψ)→ (AXϕ→ AXψ)
(SER) EX�

(PostFPAG) AGϕ→ (ϕ ∧AXAGϕ)
(GFPAG) AG(ψ → (ϕ ∧AXψ))→ (ψ → AGϕ)

Rules of Inference in AxSysLTL:

(MP) Modus ponens: �ϕ, �ϕ→ψ
�ψ

(NecX) Necessitation for AX: �ϕ
�AXϕ

(NecG) Necessitation for AG: �ϕ
�AGϕ

According to PostFPAG, AGϕ is a post-fixpoint of the operator
ΓAG with ΓAG(ϑ) = ϕ∧AXϑ. GFPAG means that AGϕ is the greatest
post-fixpoint of the operator ΓAG.

2.3.2. Computation tree logic

TLR only claims reachability on some computations. CTL is an
extension of TLR which refers to all computations starting from the
current state, which is considered by the operator AF. Figure 2.7
illustrates AFϕ with an example.
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Fig. 2.8. Illustration of A(ϕ
⋃
ψ).

Source: Demri et al. (2016, Fig. 7.3).

The CTL is an extension of BML with modal operators for exis-
tential and universal reachability. They combine the existential, resp.
universal, path quantifier with the Until operator. The syntax of CTL
is inductively defined by

ϕ := p|⊥|¬ϕ|(ϕ∧ϕ)|EXϕ
∣∣∣E
(
ϕ
⋃
ϕ
)∣∣∣A

(
ϕ
⋃
ϕ
)

with p ∈ PROP.

In A(ϕ
⋃
ψ), the Until property (

⋃
) is combined with universal path

quantification (A). In this case, ψ must eventually hold for all paths,
and ϕ holds at every moment before that on all these paths (Fig. 2.8).

In CTL, the existential reachability operator of TLR can be
defined as EFϕ := E(�

⋃
ϕ). The universal reachability operator

is AFϕ := A(�
⋃
ϕ). The dual EGϕ := ¬AF¬ϕ states the existence

of a computation in which ϕ holds at every moment. Furthermore,
AGϕ := ¬EF¬ϕ.

The satisfaction relation |= is defined by the conditions of TLR
extended by the following cases:

T , s |= E(ϕ1
⋃
ϕ2) iff there is a path π which starts at s and i ≥ 0

such that π(0) = s, T , π(i) |= ϕ2, and for every
j ∈ [0, i− 1] it is T , π(j) |= ϕ1.

T , s |= A(ϕ1
⋃
ϕ2) iff for all paths π such that π(0) = s, there is

i ≥ 0 such that T , π(i) |= ϕ2, and for every
j ∈ [0, i− 1], it is T , π(j) |= ϕ1.
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The set of valid formulae of CTL is axiomatized by AxSysCTL.
11

(BML) All axioms of BML logic AxSysBML

(KAX) AX(ϕ→ ψ)→ (AXϕ→ AXψ)
(SER) EX�

(PreFPE
⋃) (ψ ∨ (ϕ ∧ EXE(ϕ

⋃
ψ)))→ E(ϕ

⋃
ψ)

(PreFPA
⋃) (ψ ∨ (ϕ ∧AXA(ϕ

⋃
ψ)))→ A(ϕ

⋃
ψ)

(LFPE
⋃) AG((ψ ∨ (ϕ ∧ EXχ)→ χ)→ (E(ϕ

⋃
ψ)→ χ)

(LFP⋃) AG((ψ ∨ (ϕ ∧AXχ)→ χ)→ (A(ϕ
⋃
ψ)→ χ)

2.4. Full Computation Tree Logic

In TRL and CTL, certain temporal operators, such as X and
⋃
,

were already combined with path quantifiers. In full computation tree
logic (CTL*), the definitions of LTL and CTL include state formulae
related to states and path formulae related to computations of an
ITS. In this sense, CTL* comprises the full branching logic.12

2.4.1. Syntax of CTL*

In the syntax of CTL*, state formulae ϕ and path formulae ϑ are
defined in mutual recursion by

ϕ := ⊥|p|¬ϕ|ϕ ∧ ϕ|Aϑ with p ∈ PROP,

ϑ := ϕ|¬ϑ|ϑ ∧ ϑ|Xϑ|ϑ
⋃
ϑ.

The existential path quantifier is defined by Eϕ := ¬A¬ϕ.

2.4.2. Semantics of CTL*

The semantics of CTL* relates to a transition system T with a sat-
isfaction relation |=s of state formulae and a satisfaction relation |=p

11Demri et al. (2016, p. 255).
12Emerson and Halpern (1983); Demri et al. (2016, pp. 2017–2018, 258).
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of path formulae:

T , ss �|= ⊥;
T , s |=s p iff p ∈ L(s);
T , s |=s ¬ϕ iff T , ss �|= ϕ;

T , s |=s ϕ ∧ ψ iff T , s |=s ϕ and T , s |=s ψ;

T , s |=s Eϑ iff there is a path π starting at s

such that T , π |=s ϑ;

T , s |=s Aϑ iff for all paths π starting at s,

it holds that T , π |=s ϑ;

T , π |=p ϕ iff T , π(0) |=s ϕ for state formulae ϕ;

T , π |=p ¬ϑ iff T , πs �|= ϑ;

T , π |=p ϑ ∧ ϑ′ iff T , π |=p ϑ and T , π |=p ϑ
′;

T , π |=p Xϑ iff T , π[1,+∞] |=p ϑ;

T , π |=p ϑ
⋃
ϑ′ iff there is i ≥ 0 such that T , π[i,+∞] |=p ϑ

′ and
for every j ∈ [0, i − 1], it is T , π[j,+∞] |=p ϑ

Since every state formula of CTL* is also a path formula, it is usual
to merge the two sorts and assume that all CTL* formulae are path
formulae.

The semantics of CTL* can be restricted to tree-like transition
systems. A uniformly branching tree has an equal number of branches
at every node. For a given number k, a k-branching tree is a uni-
formly branching tree with exactly k branches at every node. It
can be proven that every satisfiable state formula ϕ (in negation
normal form) of CTL* is satisfiable in a k-branching tree, with
k ≤ m + 1, with m number of existential path quantifiers occur-
ring in ϕ. Whereas model checking for CTL and TLR can be done
in polynomial time, we need exponential time for CTL*. A practical
application of model checking in CTL and CTL* is program veri-
fication in computer science. Program verification is important to
prevent critical states and to guarantee safety.

2.4.3. Axiomatic system AxSysCTL∗ for CTL∗
The axioms of AxSysCTL∗ for the full branching logic CTL*
includes the axioms of AxSysLTL for path formulae, axioms for the
path quantifiers, and an axiom for the interaction of A and X.
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Axioms of AxSysCTL∗:

All axioms of AxSysLTL

A(ϕ→ ψ)→ (Aϕ→ Aψ)

Aϕ→ AAϕ

Aϕ→ ϕ

Aϕ→ AEϕ

p→ Ap, for each atomic proposition p

AXϕ→ XAϕ

Rules of Inference in AxSysLTL:

(MP) Modus ponens: �ϕ, �ϕ→ψ

�ψ
(NecAX) Necessitation for AX: �ϕ

�AXϕ

(NecAG) Necessitation for AG: �ϕ
�AGϕ

(NecA) Necessitation for A: �ϕ
�Aϕ

The axiomatic system AxSysCTL∗ is sound and complete with
respect to the class of all (generalized) branching structures.13

2.4.4. Ockhamist CTL*

LTL was extended by past-time operators which do not change the
class of models. In a branching time, several aspects must be consid-
ered for representing the past. With respect to Ockham’s philosophy
of time (compare Sections 1.1 and 1.2), a tree-like representation with
a finite and linear past, but infinite and possibly branching (“open”),
future is assumed. Figure 2.9 is an illustration of the Ockhamist phi-
losophy of time in the framework of extended CTL*.14

13Reynolds (2001).
14Prior (1967) and Demri et al. (2016, p. 250).
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Fig. 2.9. A path in Ockhamist CTL*.

The extension of CTL* with this kind of Ockhamist past needs
an extended syntax with past operators Y and S:

ϕ := p|⊥|¬ϕ| (ϕ ∧ ϕ) |Xϕ|
(
ϕ
⋃
ψ
)
|Eϕ|Aϕ|Yϕ|(ϕSψ)

with p ∈ PROP.

In the semantics of the past-extended CTL*, the truth of formulae
is evaluated for a path and a position along the path:

T , π, i |= p iff p ∈ L(π(i));
T , π, i |= ¬ϕ iff T , π, i �|= ϕ;

T , π, i |= ϕ ∧ ψ iff T , π, i |= ϕ and T , π, i |= ψ;

T , π, i |= Eϕ iff there is a path T , π′ such that

T , π[0, i] = π′[0, i] and T , π′, i |= ϕ;

T , π, i |= Xϕ iff T , π, i + 1 |= ϕ;

T , π, i |= ϕ
⋃
ψ iff there is j ≥ i such that T , π, j |= ψ, and

for every k ∈ [i, j − 1], it is T , π, k |= ϕ;

T , π, i |= Yϕ iff i > 0 and T , π, i − 1 |= ϕ;

T , π, i |= ϕSψ iff there is j ≤ i such that T , π, j |= ψ, and

for every k ∈ [j − 1, i], it is T , π, k |= ϕ.



Chapter 3

Proof-Theoretical Foundations
of Temporal Logic

In the age of digitalization and Big Data, security and trust in
information flow and computational systems have become urgent
demands of technology and societal acceptance. Therefore, specifi-
cation and verification, model-checking, and satisfiability testing of
hardware and software are great challenges in computer science. Tem-
poral logic plays a substantial role in model-checking and verification
technology. But users in the digital world are often less aware that
verification, model-checking, and satisfiability are deeply rooted in
the logical foundations of proof theory. In this chapter, we continue
with early studies on the philosophical and proof-theoretical founda-
tions of computer science with respect to temporal logic.1

The first proof systems for temporal logic were developed with
Hilbert-style axiomatic calculi. In this case, proof systems are consti-
tuted with several axioms and rules of inference (compare Chapter 2).
But axiomatic systems of this style are only useful for formalization
of what has already been proved. They are not appropriate for the
search of proofs which are demanded for verification problems in com-
puter science. For proof searching, we need guidance by the propo-
sitions and theorems to be proved, which is missing in Hilbert-style
systems.

1Mainzer et al. (2018, 2022).

45
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Here, Gentzen-type systems come in. In the beginning of the
1930s, Gerhard Gentzen introduced a sequent calculus which over-
comes the lack of guidance of Hilbert-style systems by a special nota-
tion. At any step of derivation, the antecedent of a sequent shows the
open assumptions on which the formulas in the consequent depend. If
the proof search is terminating, then the decision problems in formal
systems can be solved. In the following, we start the proof analy-
sis in temporal logic with the Gentzen sequent calculus, which is
the historical “mother” of several related proof-theoretical systems,
such as tableaux-based, automata-based, and game-based calculi.
They have different advantages for the formal verification of efficient
algorithmic methods solving verification problems. In these cases,
the decision problems for temporal logic can be reduced to deci-
sion problems about tableaux, automata, and games, respectively.
For example, typical challenges are problems checking whether an
automaton accepts a certain computation or whether it recognizes a
certain language.

3.1. Gentzen Calculus and Temporal Logic

The proof-theoretic treatment of temporal logics (indeed, of many
other families of nonclassical logics as well) within Gentzen’s origi-
nal framework that was tailored for classical logic (and adaptable to
intuitionistic logic) is notoriously difficult. Since the 1980s, a lot of
hard work and ingenuity has been and still is being devoted to cap-
ture these logics with adequate, well-behaved “sequent-style” calculi.

As far as temporal logic systems are concerned, difficulties are
more challenging than those encountered in plain modal logic sys-
tems already at the level of the minimal system TL: This is due to
the intertwining of the two �-like operators H and G (and the two
associated ♦-like operators P and F) of TL, as is evident from the
two characteristic tautologies ϕ→ GPϕ and ϕ→ HFϕ of this logic.

In the following, after two preliminary sections in which we
explain what a sequent-style calculus is and which properties are
requested to make a sequent-style calculus into a “good” one, we
illustrate a selected number of interesting contributions concerning
the proof-theoretic, Gentzen-type approach to TL, LTL, and CTL
and discuss some problems as well.
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3.1.1. Gentzen’s calculus for classical propositional

logic in a nutshell

To answer the question “What is a sequent-style (or Gentzen-type)
calculus?” it is convenient to start by recalling the basics of Gentzen’s
original sequent calculus LK for classical predicate logic, introduced
in 1935.2 For the sake of simplicity, we confine to LK’s propositional
fragment LKp (primitive logical operators: ¬,∨,∧, and →) since the
temporal logics we are considering here are extensions of classical
propositional logic and do not feature individual quantification.

A sequent, according to Gentzen’s original definition, is a syntac-
tic object of the form

Γ⇒ Δ,

where Γ (the antecedent of the sequent) and Δ (the consequent)
are two finite, possibly empty lists, say ϕ1, . . . ϕn and ψ1, . . . ψm
(n,m≥ 0), of not necessarily distinct formulae.

According to Gentzen, the intended meaning of a sequent Γ⇒Δ
is represented by the conditional formula

∧
Γ →

∨
Δ, whose

antecedent is the conjunction of the formulae in Γ (an arbitrarily
fixed tautology � if Γ is empty) and whose consequent is the disjunc-
tion of the formulae in Δ (an arbitrarily fixed contradiction ⊥ if Δ
is empty). Thus, from a classical-semantics point of view, a sequent
is true if, whenever all formulae in its antecedent are true, at least
one formula in its consequent is also true.

Note that the list-forming comma “,” acts therefore as a
“structural” logical operator having a “positional meaning,” namely
a conjunctive one in the antecedent and a disjunctive one in the
consequent.

The calculus LKp features axioms (the so-called “initial
sequents”)

ϕ⇒ ϕ

and (one- or two-premise) inference rules. The latter are divided into
“structural” and “logical” rules.

2Gentzen (1935, pp. 176–210).
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The structural rules, Exchange (E), Weakening (W), Contraction
(C), and the “cut rule” (cut), do not deal with any specific logical
operator. E,W,C come in pairs and produce structural modifications
in the antecedent or in the consequent of a sequent; the cut rule
represents instead a generalized form of the modus ponens or of the
transitivity rule for the conditional:

Γ⇒ Δ
Wl,

ϕ,Γ⇒ Δ
Γ⇒ Δ

Wr,
Γ⇒ Δ, ϕ

Γ1, ϕ, ψ,Γ2 ⇒ Δ
El,

Γ1, ψ, ϕ,Γ2 ⇒ Δ

Γ⇒ Δ1, ϕ, ψ,Δ2
Er,

Γ⇒ Δ1, ψ, ϕ,Δ2

ϕ,ϕ,Γ⇒ Δ
Cl,

ϕ,Γ⇒ Δ

Γ⇒ Δ, ϕ, ϕ
Cr,

Γ⇒ Δ, ϕ

Γ⇒ Δ, ϕ ϕ,Π⇒ Σ
cut.

Γ,Π⇒ Δ,Σ

The logical rules, in turn, come in pairs for each logical operator ∗
(here, one of ¬,∨,∧,→) and introduce in the antecedent (∗l), resp.
in the consequent (∗r), of the conclusion, a complex formula whose
main operator is ∗:

Γ⇒ Δ, ϕ ¬l,¬ϕ,Γ⇒ Δ

ϕ,Γ⇒ Δ ¬r,
Γ⇒ Δ,¬ϕ

ϕi,Γ⇒ Δ ∧l(i=1,2),
ϕ1 ∧ ϕ2,Γ⇒ Δ

Γ⇒ Δ, ϕ Γ⇒ Δ, ψ ∧r,
Γ⇒ Δ, ϕ ∧ ψ

ϕ,Γ⇒ Δ ψ,Γ⇒ Δ ∨l,
ϕ ∨ ψ,Γ⇒ Δ

Γ⇒ Δ, ϕi ∨r(i=1,2),
Γ⇒ Δ, ϕ1 ∨ ϕ2

Γ⇒ Δ, ϕ ψ,Π⇒ Σ →l,
ϕ→ ψ,Γ,Π⇒ Δ,Σ

.
ϕ,Γ⇒ Δ, ψ →r.

Γ⇒ Δ, ϕ→ ψ

The formula which is displayed in the conclusion of a rule is called
the “principal formula,” while its subformula (or subformulae) which
is displayed in the premise(s) is called the “secondary formula (or
formulae).” The lists Γ,Δ, . . . contain the “context formulae.”

It is crucial to note that all the structural and logical rules, with
the sole exception of the cut rule, are such that any formula occurring
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in the premise(s) also occurs as a (proper or improper) subformula of
a formula in the conclusion — intuitively, no “piece of information”
(formula) is lost in the top-to-bottom direction. On the contrary, the
cut rule is not, in such a sense, “analytic”: the displayed formula
ϕ occurring in both premises, the so called “cut formula,” may not
appear in the conclusion and so is generally lost in the top-to-bottom
direction.

A formal derivation D in LKp of a sequent Γ ⇒ Δ is a finite
tree of sequents which is locally correct with respect to the axioms
(so each leaf node is an axiom) and the inference rules and has the
sequent Γ⇒ Δ as “end-sequent,” i.e., at the root.

A “cut-free derivation,” i.e., one in which there are no applications
of the cut rule, thus satisfies the fundamental

“Subformula property”: Any formula occurring somewhere in
the derivation is a subformula of a formula occurring in the
end-sequent of the derivation.

LKp turns out to be valid and complete for classical propositional
logic. Indeed, given an axiomatic, Hilbert-style calculus C, which is
known to be classically valid and complete, it is an easy exercise to
prove that if a sequent Γ ⇒ Δ is LKp-derivable, then its associated
conditional formula

∧
Γ →

∨
Δ is C-provable and, conversely, that

if a formula ϕ is C-provable, then the sequent ⇒ ϕ is LKp-derivable.
Gentzen’s fundamental result (for the whole LK, here for LKp),

known as the “Hauptsatz” or “cut-elimination theorem,” says that
the cut rule is redundant; more precisely, Gentzen’s purely syntactic
proof of this result shows that any LKp-derivation D can be effec-
tively transformed (through a finite number of rewriting steps) into
a cut-free derivation D∗ of the same end-sequent of D. The calcu-
lus is thus fully analytic and allows systematic root-first, bottom-up
proof-searching.

There are many provably equivalent variants of Gentzen’s orig-
inal LKp. In the “multisets variant,” the antecedent and the con-
sequent of a sequent are taken to be finite multisets, and not lists,
of formulae to the effect that the structural exchange rules can be
trivially dispensed with. One may combine this variant with the one
in which all the sequents of the form ϕ,Γ⇒ Δ, ϕ (generalized initial
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sequents) are taken as initial sequents to the effect that (also) the
structural weakening rules can be dropped while still being provably
admissible.3

The most interesting among the multisets variants (which we need
in the following, when considering the labeled calculi for TL) is the
sequent calculus G3cp, inspired by the contributions of Ketonen and
Dragalin,4 in which there are no structural rules except the cut rule.
G3cp results from the multiset variant of LKp by modifying it as
follows:

• the structural rules Weakening and Contraction are dropped (and
Exchange, of course), so only the cut rule is retained;

• the axioms are taken in the generalized form ϕ,Γ ⇒ Δ, ϕ, with
the additional restriction that ϕ is an atomic formula (including
�,⊥);

• the two-premises logical rule→l, which in LKp is formulated in the
so-called “multiplicative” (context-free) version, is replaced by the
corresponding “additive” (context-sharing) version (such as ∧r,∨l
in LKp):

Γ⇒ Δ, ϕ ψ,Γ⇒ Δ →′
l;ϕ→ ψ,Γ⇒ Δ

• the two twin rules ∧l(i = 1, 2) as well as the two twin rules ∨l(i =
1, 2) are replaced by the two corresponding multiplicative rules
(such as →r in LKp):

ϕ,ψ,Γ⇒ Δ ∧′
l,ϕ ∧ ψ,Γ⇒ Δ

Γ⇒ Δ, ϕ, ψ ∨′
r.

Γ⇒ Δ, ϕ ∨ ψ
One can easily prove the equivalence of LKp and G3cp. Most impor-
tantly, one can (less easily) prove that the rules of weakening and
contraction are cut-free admissible and that all the logical rules are
invertible (with the preservation of the height of derivations and with-
out making use of cut) and, finally, that also G3cp admits syntac-
tic cut elimination. The additional key property of G3cp, i.e., the

3Some authors also use to define sequents as being of the form Γ ⇒ Δ with
Γ,Δ finite, possibly empty sets of formulae. In this way, the contraction rule is
trivialized, being hidden in the syntactic notion of a sequent. There are, however,
some drawbacks with this variant, which suggest not to adopt it.
4Ketonen (1944), Dragalin (1979). See also Troelstra and Schwichtenberg (2000).
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absence of the contraction rule (contraction, so to speak, is hidden
in the logical rules by the clever choice and mixture of additive and
multiplicative formulations), represents, from the point of view of the
efficiency of proof-searching, the great advantage of G3cp over LKp.

One last variant, which is worth recalling here (also for future
use), is often referred to as the “Tait-style” variant.5 It features
“one-sided sequents,” which are just finite, possibly empty multi-
sets Γ of formulae, to be intuitively interpreted by the corresponding
disjunctive formula

∨
Γ. Thus, the standard Gentzen sequent Γ⇒ Δ

corresponds to the one-sided sequent

¬Γ,Δ

(where ¬Γ := {¬ϕ | ϕ ∈ Γ}).
This variant fits well only with classical logic and extensions

thereof and benefits from the adoption of a propositional language
featuring literals (countably many positive and negative proposi-
tional variables p0, p1, . . ., resp. p0, p1, . . .) and, as primitive boolean
connectives, only the conjunction and the disjunction. The nega-
tion ¬ϕ of a formula ϕ is inductively defined via the double nega-
tion and De Morgan laws (¬pi := pi,¬pi := pi,¬(ϕ ∨ ψ) :=
¬ϕ ∧ ¬ψ,¬(ϕ ∧ ψ) := ¬ϕ ∨ ¬ψ), while the remaining connectives
are defined as usual. The advantage is a substantial economy in the
formulation of the calculus. For instance, the Tait version of LKp is
defined as follows:

Axioms (initial sequents): p, p.

Structural rules:

Γ
W,

Γ,Δ
Γ, ϕ, ϕ

C,
Γ, ϕ

Γ, ϕ ¬ϕ,Γ
cut.

Γ

Logical rules:

Γ, ϕ Γ, ψ ∧,
Γ, ϕ ∧ ψ

Γ, ϕ, ψ ∨.
Γ, ϕ ∨ ψ

5Tait (1968). Note that William Tait uses sets of formulae instead of multisets
of formulae.
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3.1.2. What is a (good) sequent-style calculus?

With a few exceptions (notably, intuitionistic logic6), most nonclas-
sical logics and families thereof — be they alternatives to classical
logic, such as relevant logics, many-valued logics, intermediate logics,
or extensions of classical logic, such as modal (�,♦) logics and tem-
poral logics — do not fit well, from the proof-theoretic point of view,
in Gentzen’s original framework as characterized, in particular, by
the adhesion to “standard” sequents Γ ⇒ Δ, possibly with inessen-
tial variations (such as one-sided sequents) or restrictions (such as
intuitionistic sequents) and to the coming in pairs (introduction in
the antecedent and in the consequent) of logical rules.

In some cases, one may easily devise ad hoc Gentzen-style infer-
ence rules in order to capture this or that nonclassical logic, but the
crucial problem is that these rules may not obey the subformula prop-
erty or that the resulting calculus may not admit cut elimination.

Just to give an example, consider the minimal normal modal logic
K (with � as primitive modal operator and ♦ϕ defined as ¬�¬ϕ).7
By adding to G3cp, the inference rule

Γ⇒ ϕ

�Γ⇒ �ϕ,Δ ,

one obtains the sequent calculus GK, which turns out to be adequate
for K. The above rule does not respect the pattern of Gentzen’s logi-
cal rules (introduction in the antecedent or introduction in the conse-
quent), yet GK is proof-theoretically well behaved, that is, it enjoys

6A sequent calculus for intuitionistic logic, named LJ, was introduced by Gentzen
(1935) through a rather simple modification of LK, consisting of the restriction
to sequents Γ ⇒ Δ, where Δ contains at most one formula. LJ enjoys (syntactic)
cut elimination, which entails the decidability of its propositional fragment LJp.
Sequent calculi for propositional intuitionistic logic that are more efficient than
Gentzen’s LJp from the point of view of proof-searching have been later devised
and investigated.
7K is axiomatized by adding to an axiomatic calculus for classical propositional

logic the axiom schema �(ϕ → ψ) → (�ϕ → �ψ) and the necessitation rule
ϕ

�ϕ .
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all the desirable properties: (syntactic) cut elimination and the sub-
formula property. On the other hand, for many well-known extensions
of K, among which is S5 (K + (�ϕ → ϕ) + (�ϕ → ��ϕ) + (ϕ →
�♦ϕ)), there is no (and, in a precise sense, there cannot be any)
adequate, more or less conventional sequent calculus.8

In his 2002 survey on the proof-theory of modal logics,9 Wans-
ing concluded that “no uniform way of presenting only the most
important normal modal and temporal propositional logics as ordi-
nary Gentzen calculi is known” and that, in any case, “the standard
approach fails to be modular: in general it is not the case that a
single axiom schema is captured by a single sequent rule (or a finite
set of such rules)”— and we can say that this verdict also applies to
other families of nonclassical logics.

Since the end of the 1980s, the proof-theoretical investigation of
nonclassical logics has gradually led to the introduction of a variety
of “nonconventional” Gentzen-type calculi or sequent-style calculi.

The key point is the replacement of Gentzen’s standard sequents
with other kinds of related syntactic objects, which we may sub-
sume under the category of “nonconventional sequents,” such as the
sequents adopted in “display” sequent calculi10 (which feature, fur-
ther to Gentzen’s comma, a number of additional structural opera-
tors), the “hypersequents” (of the form Γ1 ⇒ Δ1 | Γ2 ⇒ Δ2 | · · · |
Γn ⇒ Δn: finite lists, or sets, or multisets of conventional sequents),11

the “nested” sequents12 (see also the following section) and the “tree-
hypersequents”13 or the “labeled” sequents of Negri’s labeled sequent
calculi approach,14 just to mention a few — see Wansing’s 2002 chap-
ter for a detailed survey.

8See Takano (2018).
9Wansing (2002).

10Belnap (1982).
11Avron (1991), Cf. also Avron (1996).
12Brünnler (2006). See also Brünnler and Strassburger (2009) and Goré et al.
(2009).
13Poggiolesi (2011).
14Negri (2005).
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This deviation from Gentzen’s original format does not qualify a
sequent-style calculus for a certain logic L as a “good” one. Typically,
two major requirements have to be met, namely:

• the subformula property, and
• the cut-elimination theorem (better if is proved in a purely syn-

tactical way),

which together pave the way to (more or less efficient) proof-searching
algorithms. In certain cases, restricted exceptions to the subformula
property or deviations from full cut elimination (the so-called “ana-
lytic cut elimination”) may be tolerated.

In view of what we will see in the following section, we con-
clude with a concise presentation of the labeled sequent calculi
approach developed by Negri, which has been applied successfully
to modal and temporal logics and, in general, to (families of) log-
ics which are semantically characterized by a Kripke-style, relational
semantics.

In the nested sequents and the tree-hypersequents approaches,
notions of the relational semantics underlying a given logic are implic-
itly internalized in the syntax (basically, the deep sequents and tree-
hypersequents hide in a linear notation a tree-like structure whose
nodes are standard sequents). The labeled sequent calculi approach
is instead characterized by an explicit internalization of relational
semantic notions within the syntax. Let us consider, by way of exem-
plification, the labeled, Gentzen-style calculus for the minimal nor-
mal modal logic K.

Besides the usual modal formulae (here, for convenience, a propo-
sitional language with ⊥,∧,→,�,♦ as primitive logical operators is
adopted), one needs variables v0, v1, . . . and a binary predicate let-
ter R (the former, intuitively, ranging over the worlds or states of
an unspecified Kripke model and the latter denoting its accessibility
relation).

A relational atom has the form xRy, where x, y are variables.
A labeled formula has the form x : ϕ, where x is a variable and ϕ is a
formula (intuitive reading: ϕ is true at x). Finally, a labeled sequent
has the standard form Γ ⇒ Δ but now Γ,Δ are finite multisets of
labeled formulae and relational atoms.
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The labeled calculus G3labK is defined as follows.

Axioms (initial sequents):

x : p,Γ⇒ Δ, x : p, xRy,Γ⇒ Δ, xRy, x : ⊥,Γ⇒ Δ;

Structural rule:

Γ⇒ Δ, x : ϕ x : ϕ,Π⇒ Σ
cut;

Γ,Π⇒ Δ,Σ

Propositional logical rules:

x : ϕ, x : ψ,Γ⇒ Δ ∧l,
x : ϕ ∧ ψ,Γ⇒ Δ

Γ⇒ Δ, x : ϕ Γ⇒ Δ, x : ψ ∧r,
Γ⇒ Δ, x : ϕ ∧ ψ

Γ⇒ Δ, x : ϕ x : ψ,Γ⇒ Δ →l,
x : ϕ→ ψ,Γ⇒ Δ

x : ϕ,Γ⇒ Δ, x : ψ →r;
Γ⇒ Δ, x : ϕ→ ψ

Modal logical rules:

y : ϕ, x : �ϕ, xRy,Γ⇒ Δ
�l,

x : �ϕ, xRy,Γ⇒ Δ

xRy,Γ⇒ Δ, y : ϕ
�r (!!y),

Γ⇒ Δ, x : �ϕ

xRy, y : ϕ,Γ⇒ Δ
♦l (!!y),

x : ♦ϕ,Γ⇒ Δ

xRy,Γ⇒ Δ, x : ♦ϕ, y : ϕ
♦r,

xRy,Γ⇒ Δ, x : ♦ϕ

with a proviso in the rules marked with (!!y): The variable y must
not occur in the conclusion.

The axioms and the propositional logic rules need no special com-
ments, considering that the semantics of the Boolean operators is
local: They are just the corresponding axioms and rules of G3cp,
with the principal and secondary formula (or formulae) decorated
with one and the same label.

The modal rules, which come in pairs and so fully respect
Gentzen’s pattern, are also natural since they can be easily justi-
fied by looking at the clauses:

M, x � �ϕ if and only if M, y � ϕ for all y such that xRy,
M, x � ♦ϕ if and only if M, y � ϕ for some y such that xRy,
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defining the truth of a formula �ϕ or ♦ϕ at a world x in a
modelM.15

G3labK captures the modal system K (for all formulae ϕ: ϕ is a
K-tautology iff the sequent ⇒ x : ϕ is derivable in G3labK) and is
indeed a good sequent-style calculus: It respects the (suitably refor-
mulated) subformula principle and admits syntactical cut elimina-
tion. What is more important, G3labK is the basic labeled modal
calculus from which labeled sequent-style calculi for all the normal
modal systems M, extending the minimal one K, can be modularly
obtained, provided their corresponding frame condition in Kripke’s
semantics is expressible by universal formulae or geometric impli-
cations.16 For such M’s, the frame condition can be captured by
suitable sequent-style so-called “mathematical rules” which, added
to G3labK, give rise to a labeled sequent-style calculus G3labM that
is adequate for M and still enjoys the subformula property and cut
elimination.

Just to give one example, the following mathematical rules

xRx,Γ⇒ Δ
Ref,

Γ⇒ Δ

xRy,Γ⇒ Δ
Ser(y!!),

Γ⇒ Δ

xRy, yRx,Γ⇒ Δ
Sym,

xRy,Γ⇒ Δ

xRz, xRy, yRz,Γ⇒ Δ
Trs

xRy, yRz,Γ⇒ Δ

15The soundness of the rules (�l) and (�r), and analogously that of (♦l,♦r), is
proved as follows. Suppose the conclusion x : �ϕ, xRy,Γ ⇒ Δ of (�l) is false in a
Kripke model M. Then, for the worlds x, y satisfying xRy, one has that x � �ϕ—
so, by the semantics of �, y � ϕ — and also that each formula in Γ is true at
some world (not necessarily the same), while each formula in Δ is false at some
world (not necessarily the same). Hence, the premise y : ϕ, x : �ϕ, xRy,Γ ⇒ Δ
of the rule is false in that Kripke model.

Next, suppose the conclusion Γ ⇒ Δ, x : �ϕ of (�r) is false in a Kripke model
M. Then, each formula in Γ is true in some world (not necessarily the same),
while each formula in Δ is false in some world (not necessarily the same), and �ϕ
is false in the world x. This implies that there must be a world accessible from x,
in which ϕ is false. We are not entitled to make additional assumptions on this
world, so we pick one such y not occurring in the conclusion. Hence, the premise
xRy,Γ ⇒ Δ, y : ϕ of the rule is false in that Kripke model.
16A universal formula is a closed formula of the form ∀x1 . . .∀xnA, where
A is quantifier-free. A geometric implication is a formula of the form
∀x1 . . .∀xn(A→B), where A and B are →- and ∀-free.
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correspond, respectively, to the frame conditions of reflexivity, seri-
ality, symmetry, and transitivity. Thus, for example, the labeled cal-
culus G3labS5 defined as G3labK+{(Ref), (Sym), (Trs)} provides a
good sequent-style calculus for the modal system S5.

3.1.3. Sequent-style calculi for TL

To the best of our knowledge, the first systematic attempt to devise
a sequent calculus for Prior’s basic system TL of temporal logic is
due to Nishimura in 1980.17

The calculus GKt he introduces works with standard, set-based,
sequents, thus the only structural rules are Weakening and the cut
rule. The logical rules for the Boolean operators (primitive connec-
tives: negation and conditional) are those of LKp. The logical rules
for the primitive temporal operators H and G (P and F are taken as
defined) are two right-introduction rules, not accompanied by corre-
sponding left-introduction rules18:

Γ⇒ HΔ, ϕ
Gr,

GΓ⇒ Δ,Gϕ

Γ⇒ GΔ, ϕ
Hr.

HΓ⇒ Δ,Hϕ

One can easily see that these rules are sound with respect to the
Kripke semantics for TL, i.e., they preserve truth in an arbitrary
model. Suppose indeed that the conclusion of [Gr] is false in a TL-
model M. Then, there is an instant i in M at which all formulae
in GΓ are true and all formulae in Δ ∪ {Gϕ} are false. By i � Gϕ,
it follows that j � ϕ for some j > i. But then also, all formulae in
HΔ are false at j, whereas all formulae in Γ are true at j. Hence the
premise of [Gr] being false in M. The soundness of [Hr] is verified
analogously.

Thus, GKt is sound with respect to TL-validity. Nishimura proves
that it is also complete and so equivalent to the axiomatic charac-
terization of TL.

GKt is not, however, a good sequent calculus for TL. First, both
the rules [Gr] and [Hr] patently violate the subformula principle.
Next, the cut rule cannot be eliminated. For example, it is not dif-
ficult to realize that the characteristic TL-tautology ϕ → G¬H¬ϕ

17Nishimura (1980).
18GΓ is an abbreviation for {Gϕ | ϕ ∈ Γ} and, analogously, HΓ.
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(i.e., ϕ → GPϕ) cannot be derived in GKt without the application
of the cut rule.

By suitably modifying the rules [Gr] and [Hr], Nishimura also
provides a Gentzen-style formulation GK4t for TL+Transitivity that
shares, however, all the negative aspects of GKt.

To conclude, it is perhaps interesting to recall that Nishimura
also introduced in the same paper a second sequent calculus GHKt

provably sound and complete with respect to TL-validity. It is based
on nonconventional sequents (a kind of forerunners of hypersequents)
of the form

Γ1; Γ2; Γ3 ⇒ Δ1;Δ2;Δ3

(the Γ’s and Δ’s are finite sets of formulae; the “;” is a new structural
operator), intuitively corresponding to the standard sequent

HΓ1,Γ2,GΓ3 ⇒ HΔ1,Δ2, GΔ3

and so having the intended meaning of the temporal formula

∧
HΓ1 ∧

∧
Γ2 ∧

∧
GΓ3 →

∨
HΔ1 ∨

∨
Δ2 ∨

∨
GΔ3.

Unlike GKt, all the rules of GHKt now respect the subformula prin-
ciple. But unfortunately, the cut rule cannot be dispensed with, as
in GKt.

The sequent-style calculi for TL and some of its extensions (TL
plus one of Transitivity, Reflexivity, Connectedness, or combinations
thereof) introduced by Kashima in 199419 are instead examples (the
first ones, perhaps) of good sequent-style calculi for temporal logic:

• they enjoy cut elimination (although the given proof of the result
is only semantic and not syntactic), and

• all the other inference rules are analytic, i.e., they fully respect the
subformula principle.

The price to pay is to abandon Gentzen’s standard sequents and to
work instead with a peculiar elaboration of the Tait-style approach
(see the previous section).

19Kashima (1994).
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First of all, the propositional TL language is recasted in a conve-
nient form featuring, besides the literals and the Boolean operators
∧,∨, all the four Prior’s temporal operators H,G,P,F, and the defini-
tion of ¬ϕ is extended by the natural clauses: ¬Hϕ := P¬ϕ,¬Gϕ :=
F¬ϕ,¬Pϕ := H¬ϕ, ¬Fϕ := G¬ϕ.

Next, nonstandard sequents are adopted, namely one-sided,
nested sequents. More precisely, the class S of Kashima sequents
(henceforth, sequents), denoted by S,T, . . ., is defined inductively as
the smallest class such that:

— ϕ ∈ S, for any formula ϕ;

— if S ∈ S, then [ S ]p, [ S ]f ∈ S;
— if {Si}1≤i≤n ⊆ S (n ≥ 0), then S1,S2, . . . ,Sn ∈ S

(if n = 0, this is the empty sequent).

The meaning of a sequent S is given by the temporal formula S∗
inductively associated to it as follows:

— if S ≡ ϕ, S∗ := ϕ;

— ([ S ]p)∗ := HS∗ and ([ S ]f)∗ := GS∗;
— (S1, . . . ,Sn)

∗ := S∗1 ∨ . . . ∨ S∗n (⊥ if n = 0).

Kashima’s basic sequent system SKt, corresponding to TL, is now
obtained by adding to the Tait-style sequent calculus for LKp previ-
ously described the following

Structural rules:

Γ, [Δ ]f
turn1,

[ Γ ]p,Δ

Γ, [Δ ]p
turn2

[ Γ ]f ,Δ

and

Temporal inference rules:

Γ, [ϕ ]p
H,

Γ,Hϕ

Γ, [ϕ ]f
G,

Γ,Gϕ

Γ, [Δ, ϕ ]p
P,

Γ, [Δ ]p,Pϕ

Γ, [Δ, ϕ ]f
F.

Γ, [Δ ]f ,Fϕ

To exemplify the use of Kashima’s temporal rules, here is a
SKt-derivation of the formula (one element sequent) ¬p∨HFp, alias
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is the TL-tautology p→ HFp:

¬p, p
turn2

[¬p, p ]f
F

Fp, [¬p ]f
turn1.

¬p, [ Fp ]p
H¬p,HFp ∨¬p ∨HFp

Truth preservation of the temporal rules in an arbitrary TL model
can indeed be easily verified, and the soundness of Kashima’s calculus
SKt follows. Completeness, together with (semantic) cut elimination,
is proved by Kashima through a suitable adaptation of the known
canonical-tree construction technique. Given an input sequent S, the
associated search tree is proved to yield either a cut-free derivation
of S in SKt or a TL countermodel for S∗.

We conclude this section with a presentation of the labeled
sequent-style calculus G3labKt for the basic temporal system TL
and of its modular extensions corresponding to extensions of
TL derived from the addition of certain conditions on the tempo-
ral precedence relation.20

The labeled-sequents framework for plain modal logics has already
been already described, and its adaptation to basic temporal logics
is quite natural.

The propositional language features as primitives the proposi-
tional constants ⊥ (absurd), ∧ (conjunction), → (conditional), and
Prior’s temporal operators H,G,P,F; ¬φ is defined as ϕ→ ⊥.

The definitions of relational atoms, labeled formulae, and labeled
sequents remain unchanged, except that for obvious reasons, the rela-
tional symbol “R” is replaced by “<.”

G3labKt is now defined as follows:

Axioms (initial sequents):

x : p,Γ⇒ Δ, x : p, x < y,Γ⇒ Δ, x < y, x : ⊥,Γ⇒ Δ.

Structural rule (cut) and propositional logic rules: as in G3labK.

20Boretti (2008).
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Temporal logic rules:

y : ϕ, x : Hϕ, y < x,Γ⇒ Δ
Hl,

x : Hϕ, y < x,Γ⇒ Δ

y < x,Γ⇒ Δ, y : ϕ
Hr (!!y),

Γ⇒ Δ, x : Hϕ

y : ϕ, x : Gϕ, x < y,Γ⇒ Δ
Gl,

x : Gϕ, x < y,Γ⇒ Δ

x < y,Γ⇒ Δ, y : ϕ
Gr (!!y),

Γ⇒ Δ, x : Gϕ

y < x, y : ϕ,Γ⇒ Δ
Pl (!!y),

x : Pϕ,Γ⇒ Δ

y < x,Γ⇒ Δ, x : Pϕ, y : ϕ
Pr,

y < x,Γ⇒ Δ, x : Pϕ

x < y, y : ϕ,Γ⇒ Δ
Fl (!!),

x : Fϕ,Γ⇒ Δ

x < y,Γ⇒ Δ, x : Fϕ, y : ϕ
Fr.

x < y,Γ⇒ Δ, x : Fϕ

Just to give an example of how the calculus works, here is a derivation
in G3labKt of the labeled sequent x : ϕ → HFϕ (corresponding to
the TL tautology ϕ→ HFϕ):

y < x, x : ϕ⇒ y : Fϕ, x : ϕ
Fr

y < x, x : ϕ⇒ y : Fϕ
Hr

x : ϕ⇒ x : HFϕ →r.⇒ x : ϕ→ HFϕ

One can indeed prove that the calculus G3labKt is indeed, like
G3labK, a good sequent-style calculus for TL.

Now, G3labKt can be extended modularly and preserving all the
“good” properties by adding mathematical rules corresponding to
possible conditions on the temporal precedence relation < that are
expressible by universal formulae or geometric implications.

Just to give an idea of this method, consider, for instance (further
to the examples given for a generic R in the previous section), the fol-
lowing four conditions on < (the first two are expressed by universal
formulae, while the third and the fourth by geometric implications):

• Left linearity: ∀xyz(y < x ∧ z < x→ y < z ∨ y = z ∨ z < y);

• Right linearity: ∀xyz(x < y ∧ x < z → y < z ∨ y = z ∨ z < y);

• Density: ∀xy(x < y → ∃z(x < z ∧ z < y));

• Right directedness: ∀xyz(x < y ∧ x < z → ∃w(y < w ∧ z < w)).
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Note that, further to the relational symbol <, also the relation = of
equality occurs in three of the above four conditions. Accordingly,
one has to first generalize the notion of relational atom by including
also relational atoms of the form x = y. At the same time, suitable
mathematical rules for equality have to be added to the calculus
G3labKt (in the following, At denotes a relational atom):

x = x,Γ⇒ Δ
EqRef,

Γ⇒ Δ

y : p, x = y, x : p,Γ⇒ Δ
EqSub1,

x = y, x : p,Γ⇒ Δ

At[x/y], x = y,At,Γ⇒ Δ
EqSub2.

x = y,At,Γ⇒ Δ

Finally, one adds to the calculus one (or a combination) of the math-
ematical rules corresponding to the four properties above:

y < z, y < x, z < x,Γ ⇒ Δ y = z, y < x, z < x,Γ ⇒ Δ z < y, y < x, z < x,Γ ⇒ Δ
L-Lin,

y < x, z < x,Γ ⇒ Δ

y < z, x < y, x < z,Γ ⇒ Δ y = z, x < y, x < z,Γ ⇒ Δ z < y, x < y, x < z,Γ ⇒ Δ
R-Lin,

x < y, x < z,Γ ⇒ Δ

x < z, z < y, x < y,Γ ⇒ Δ
Dens (!!z),

x < y,Γ ⇒ Δ

y < u, z < u, x < y, x < z,Γ ⇒ Δ
R-Dir (!!u).

x < y, x < z,Γ ⇒ Δ

All the temporal sequent-style calculi obtained in this way admit
syntactic cut elimination.

3.1.4. Sequent-style calculi for LTL and CTL:

A challenge

One of the distinctive traits of LTL (and of course also of CTL and
CTL∗) with respect to TL, among many others, concerns already
Prior’s basic temporal operators G and F, which in these systems
acquire a precise infinitary meaning (in other words, they provide
the greatest, resp. the least, fixpoint of suitable operators), i.e., a
meaning which is intuitively expressed by the infinitary conjunction,
resp. disjunction:

(Gϕ): [ϕ∧]Xϕ ∧X2ϕ ∧ · · · ∧Xnϕ ∧ · · · ,

(Pϕ): [ϕ∨]Xϕ ∨X2ϕ ∨ · · · ∨Xnϕ ∨ · · · ,
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where X is the next-operator and Xnϕ (n ≥ 0) is an abbreviation for
n times︷ ︸︸ ︷
X · · ·Xϕ.21

This peculiarity has naturally led the initial search for sequent-
style calculi for these logics in the direction either of sequent-style
infinitary calculi (i.e., calculi featuring some rule with a countably
infinite number of premises) or of finitary calculi that, even though
admitting cut elimination, do not obey the subformula principle
because they contain some rules (the so-called invariant rules, which
exploit the greatest fixed point nature of G and U) that violate the
subformula property.

Let us illustrate each of these two different approaches with a
representative example. Preliminarily, note that due to the absence
in LTL of temporal operators looking to the past, there is no spe-
cial need to use nonstandard sequents (see the problem previously
discussed for TL).

The propositional fragment LTω of the infinitary sequent calculus
for the quantified version of LTL without the Until operator, intro-
duced by Kaway in 1987,22 is defined as follows.

The sequents are (as in Gentzen’s original calculus LKp) of the
form Γ⇒ Δ, where Γ,Δ are finite, possibly empty lists of formulae of
the propositional language, which contains the primitive connectives
¬,∧ and the temporal operators X,G,F.

The initial sequents and the structural rules are exactly those of
Gentzen’s LKp. The remaining rules are as follows, for each k, i ≥ 0:

21In LTL and its extensions, one can take G as a primitive operator together with
the Until operator U, or define it by means of U: Gϕ := ¬(�U¬ϕ). Most authors
adopt for G and U a “wide” semantic evaluation clause, according to which, for
example, Gϕ is true at an instant n ∈ ω iff ϕ is true at all instants m ≥ n (and
dually for Fϕ), while others keep instead for G the evaluation clause of TL that
excludes the present instant. This is the reason why the first conjunct (disjunct)
ϕ in the above infinitary formulae appears in square brackets. The choice between
the wide or the strict (present instant excluded) truth condition is in any case
a matter of preference, that is, it has no influence at all on the problem we are
discussing.
22Kawai (1987).
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Logical rules:

Γ⇒ Δ,Xkϕ ¬k
l ,

Xk¬ϕ,Γ⇒ Δ

Xkϕ,Γ⇒ Δ ¬k
r ,

Γ⇒ Δ,Xk¬ϕ

Xkϕi,Γ⇒ Δ ∧k
l (i=1,2),

Xk(ϕ1 ∧ ϕ2),Γ⇒ Δ

Γ⇒ Δ,Xkϕ Γ⇒ Δ,Xkψ ∧k
r .

Γ⇒ Δ,Xk(ϕ ∧ ψ)

Rules for G and F:

Xk+iϕ,Γ⇒ Δ
Gl

k,i,
XkGϕ,Γ⇒ Δ

{· · ·Γ⇒ Δ,Xk+jϕ · · · }j∈ω
Gr

k,
Γ⇒ Δ,XkGϕ

{· · ·Xk+jϕ,Γ⇒ Δ · · · }j∈ω
Fl

k ,
XkFϕ,Γ⇒ Δ

Γ⇒ Δ,Xk+iϕ
Fr

k,i.
Γ⇒ Δ,XkFϕ

Given the intended semantics, the inference rules are quite natural,
and their soundness can be easily verified.23

Note that the inference rules satisfy a weak version of the subfor-
mula property (one has to relax the notion of subformula by counting,
for example, Xkϕ among the subformulae of Xk¬ϕ, etc.) and, most
importantly, that the rules (Gr

k) and (Fl
k) have an infinite number

of premises.
Kaway’s LTω provably captures the U-free fragment of linear-

time temporal logic LTL and admits cut elimination. Other infinitary
sequent-style systems for LTL or systems in the neighborhood have
been devised, for example, by Baratella and Masini24 and, in the
framework of labeled sequent calculi, by Masini and Negri.25

23For instance, suppose the conclusion of (Gr
k) is false in a LTL-model M. Then,

all the Γ’s (Δ’s) are true (false) at the initial position 0, and also XkGϕ is false
at 0. Thus, Gϕ must be false at k; therefore, ϕ must be false at k + j for some
j ≥ 0. Therefore, Xk+jϕ is false at the initial position 0, so at least one of the
infinitely many premises of the rule is false in M.
24Baratella and Masini (2004). Cf. also Kamide (2006)
25Negri and Boretti (2010). In this paper the authors introduce and investigate
an interesting infinitary labeled sequent-style calculus for Prior’s “system 7.2”
(Prior, 1967, p. 178), which is characterized by the presence of both future and
past operators: X, Y (yesterday), G, and H. The intended underlying time flow
has the order-type ω∗ + ω of the integers 〈Z,<〉.
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The sequent calculus GLTL for full LTL introduced by Paech26

is instead finitary and admits cut elimination, but it contains an
invariant rule.

GLTL features standard, set-based sequents Γ⇒ Δ over a propo-
sitional language containing ¬,∨,X, and W as primitive Boolean,
resp. temporal, operators. Here, W is the so-called “weak until”’
(or “unless”) operator, whose semantics is that of the (strong) until
operator U but without the stop condition (so ϕWψ is equivalent to
Gϕ ∨ ϕUψ).

The initial sequents and the structural rules (Weakening and cut
only since the antecedent and the consequent of a sequent are sets
of formulae) of GLTL are those of Gentzen’s LKp, as well as the
introduction rules for ¬ and ∨ (except that (∨r) is taken in the
additive formulation). Finally, the introduction rules for X and W
are as follows, where XΓ := {Xϕ | ϕ ∈ Γ} and ∨Δ :=

∨
{ϕ | ϕ ∈ Δ}:

Γ⇒ Δ
X,

XΓ⇒ X∨Δ
X¬ϕ,Γ⇒ Δ ¬Xl,¬Xϕ,Γ⇒ Δ

Γ⇒ Δ,¬Xϕ
X¬r,

XΓ⇒ Δ,X¬ϕ

X(ψ ∨ (ϕ ∧ ϕWψ)),Γ ⇒ Δ
Wl,

ϕWψ,Γ⇒ Δ

Γ⇒ Δ,X(ψ ∨ (ϕ ∧ ϕWψ))
Wr,

Γ⇒ Δ, ϕWψ

Γ⇒ Δ, χ χ⇒ X(ψ ∨ (ϕ ∧ χ))
WInd,

Γ⇒ Δ, ϕWψ
where χ is a W-formula.

The three rules for X are quite natural and are easily seen to be
sound. The two rules (Wl) and (Wr) correspond to the LTL’s fixpoint
equivalence

ϕWψ ↔ ψ ∨ (ϕ ∧X(ϕWψ))

holding for the operator W, while the induction rule (WInd) is nec-
essary to capture the greatest fixpoint operator character of W. This
rule, however, is an example of an invariant rule which, due to the
presence of the W-formula χ in the premise, clearly violates the sub-
formula property — in other words, a cut restricted to formulae of
the form χ1Wχ2 is involved in this rule. From the point of view of

26Paech (1988).
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proof-searching, the presence of this rule sensibly reduces the advan-
tages given by the cut-elimination theorem for GLTL.

The challenge of devising finitary, cut-free, and invariant rules-
free sequent-style calculi for LTL and its extensions CTL and CTL∗
is still in the agenda of proof-theoretical investigations.27 As far as we
know, up to now, there are no significative results for the strongest
system CTL∗ in the literature. Some promising results have instead
been obtained for the two weaker systems, in particular those con-
tained in two (independent) papers by Brünnler and Lange,28 and
by Gaintzarain et al.29

The sequent-style calculi for both LTL and CTL introduced in
the former paper employ a particularly complex formalism based on
annotating fixpoint formulae with a “history” (a finite set of finite
sets of formulae) and cannot be easily illustrated here.

We thus conclude with the presentation of the finitary, cut-free,
and invariant rules-free sequent-style calculus FC for linear-time tem-
poral logic LTL introduced in the second paper.

The primitive logical symbols of the propositional language of FC
are the Boolean connectives ¬ and ∨ together with the propositional
constant ⊥ and the temporal operators X and U. The format for the
sequents is set-based and single-consequent, that is, a sequent has
the form

Γ⇒ ϕ,

where Γ is a finite, possibly empty, set of formulae and ϕ is a formula.
The sequent calculus FC is construed as follows:

Initial sequents: Γ, ϕ⇒ ϕ.

Structural rules:

Γ⇒ ϕ
W,

Γ,Δ⇒ ϕ

Γ,¬ϕ⇒ ⊥
dn,

Γ⇒ ϕ
Γ⇒ X⊥

X⊥.
Γ⇒ ψ

27An analogous challenge concerns other modal logics which contain fixpoint
operators, e.g., the common knowledge logic, the dynamic modal logic, and, more
generally, the μ-calculus.
28Brünnler and Lange (2008).
29Gaintzarain et al. (2007).
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Introduction rules for ¬ and ∨:
Γ⇒ ϕ ¬l,

Γ,¬ϕ⇒ ψ

Γ, ϕ⇒ ⊥ ¬r,
Γ⇒ ¬ϕ

ϕ,Γ⇒ χ ψ,Γ⇒ χ ∨l,
ϕ ∨ ψ,Γ⇒ χ

Γ⇒ ϕi ∨r (i=1,2).
Γ⇒ ϕ1 ∨ ϕ2

Introduction rules for X:

XΓ⇒ ϕ
X,

Γ⇒ Xϕ

Γ,X¬ϕ⇒ ψ ¬Xl,¬Xϕ,Γ⇒ ψ

Γ⇒ ¬Xϕ
X¬r.

Γ⇒ X¬ϕ
Introduction rules for U:

Γ, ψ ⇒ χ Γ, ϕ,¬ψ,X(ϑiUψ)⇒ χ
Ul (i=1,2)

Γ, ϕUψ ⇒ χ

(where ϑ1 := ϕ and ϑ2 := ϕ∧ (Γ¬ ∨χ), with Γ¬ :=
∨
{¬ξi | ξi ∈ Γ}),

Γ,¬ϕ⇒ ψ Γ, ϕ,¬X(ϕUψ) ⇒ ψ
Ur.

Γ⇒ ϕUψ

The cut rule is not included in the calculus: The authors prove indeed
the completeness of FC with respect to LTL’s semantics and so,
indirectly, the admissibility of the cut rule. Since all the rules are
finitary, and there are no invariant rules with hidden cuts, one may
say that FC meets the requirements of a well-behaved sequent-style
calculus for LTL.

The calculus is not, however, optimal, nor particularly elegant.
Note, for example, that the choice of single-consequent sequents
(which, as we said, are tailored for intuitionistic logic) forces the
inclusion of the rule (dn) among the structural rules. And note also
that a number of rules satisfy the subformula property only with
respect to a very loose notion of subformula, a fact which makes the
root-first, bottom-up proof-searching strategy quite inefficient.

3.2. Tableaux-Based Calculus and Temporal Logic

The main decision problems for temporal logic are satisfiability, valid-
ity, and model-checking. In order to check a formula ϕ for validity,
one can check ¬ϕ for satisfiability and invert the result because ϕ is
valid iff ¬ϕ is unsatisfiable. Satisfiability can be reduced to validity.
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Satisfiability-checking procedures can be realized by interpreted tran-
sition systems (ITSs).

3.2.1. What are tableaux?

In classical logic, a systematic search for a model of a formula can
be realized by a tree-like graph, which is called tableau. A tableau
search builds a graph step by step, following the syntactic struc-
ture of the formula and unfolding it into simpler formulae, until all
requirements corresponding to the truth of the formulae in the labels
are fulfilled. This method is similar to the proof search procedures in
Gentzen-style deductive systems because they also build proof trees.
Historically, the tableau procedure dates back to the Dutch logician
E. W. Beth (1908–1964), who noted the link between Gentzen’s work
and his tableaux.30

Tableaux of temporal formulae may arrive at nodes which carry
the same list of formulae in the label as nodes encountered before.
For decision problems, such as satisfiability, the search procedure of
a model must be terminated. Therefore, the notions of closed and
open tableaux must be defined.

In linear temporal logic (LTL), the tableau graph of formula
GFp ∧ GF¬p can be developed step by step.31 The tableau grows
as a directed graph, following the rules for generating new nodes
from existing ones. The nodes are sets of formulae. The generating
rules follow the formula decomposition rules for the Boolean connec-
tives, temporal operators, and a rule for creating a successor of the
current state with a label collecting all X-prefixed subformulae in the
label of that state.

When a state with an already existing label is generated, the
graph loops back to the already existing state with that label. When
a label with a contradictory pair of formulae is generated, the branch
terminates with a label ⊥. The tableau in Fig. 3.1 demonstrates that
the input formula is satisfiable and delivers a satisfying linear model.

If the search for a satisfying model terminates without success,
the tableau is pronounced “closed,” and the input set of formulae is
declared unsatisfiable. If the tableau method is sound, closure of the

30Beth (1955), De Jongh (2008).
31Wolper (1985).



Proof-Theoretical Foundations of Temporal Logic 69

Fig. 3.1. Tableau of a satisfiable LTL formula.32

tableau search must imply that the input set of formulae is unsatisfi-
able. If the search succeeds or never terminates, the tableau is called
“open.” If the input is not satisfiable, a complete tableau procedure
is supposed to terminate.

3.2.2. Basics of tableau construction in basic

modal logic33

The set of all subformulae of a formula η is denoted by sub(η),
resp. the set sub(Γ), of all subformulae of a set Γ of formulae. Basic
logical connectives in basic modal logic (BML) are �,⊥,¬,∧,∨,→,
EX, and AX.

There are four types of formulae (Fig. 3.2):

(1) A conjunctive formula is associated with the set of its conjunctive
components. For example, the conjunctive components of ϕ ∧ ψ
are ϕ and ψ. The only conjunctive component of ¬ϕ is ϕ.

32Demri et al. (2016, p. 469).
33Tableaux were adapted for modal logic by, for example, Kripke (1963).
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Fig. 3.2. Types and components of formulae in BML.34

(2) A disjunctive formula is associated with the set of its disjunctive
components.

(3) Formulae referring to truth in successor states are called succes-
sor formulae, which typically have the form Oϕ or ¬Oϕ, with
modal operator O for EX and AX in case of BML, temporal
logic of reachability (TLR), and computation tree logic (CTL)
and X in LTL. The only successor component of Oϕ is ϕ, resp.
¬ϕ, for ¬Oϕ. In general, the successor component of a formula
η is denoted by scomp(η).

(4) Literals are �, ⊥, atomic propositions, and negations of these.

The (extended) closure ecl(ϕ) of the formula ϕ is the least set of
formulae such that

(1) ϕ ∈ ecl(ϕ),
(2) ecl(ϕ) is closed under all conjunctive, disjunctive, and successor

components of the respective formulae in ecl(ϕ).35

Example: ecl(ϕ) = {ϕ, AXp, p,¬AXAXp,¬AXp,¬p}.
In classical propositional logic (PL), the formula decomposition

rules of tableau construction can be extracted from the truth tables
of the propositional connectives (Fig. 3.3).

The tableau construction in PL is a decomposition of an input
formula applying these rules. Step by step, a tree of nodes labeled by
sets of formulae is generated until a stage of saturation is reached. In
this case, no new formula can be produced on any branch of the tree

34Demri et al. (2016, p. 480).
35Fischer and Ladner (1979).
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Non-branching rules                                             Branching rules 
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, 

Fig. 3.3. Branching and non-branching rules of tableaux in propositional logic.36

by applying a rule to any of the formulae in the labels of the nodes
on that branch.

A branch is closed if it ends with either of �, ¬⊥, or a pair of ϕ
and ¬ϕ. Otherwise, the branch is open. A saturated tableau is called
open if it has at least one open branch, otherwise it is called closed.
The tableau system for PL is closed iff the input formula is not sat-
isfiable. For temporal formulae, the tableau of PL must be extended
with rules for temporal conjunctive and disjunctive formulae or their
negations.

A set of formulae is called patently inconsistent if it contains �,
or ¬⊥, or a pair of ϕ and ¬ϕ. A set Γ of formulae is fully expanded iff
(1) it is not patently inconsistent, (2) for every conjunctive formula
in Γ, all of its conjunctive components are in Γ, and (3) for every
disjunctive formula in Γ, at least one of its disjunctive components
is in Γ.

36Demri et al. (2016, p. 482).
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In classical PL, every open branch in a saturated tableau delivers
at least one satisfying truth assignment. It follows that every fully
expanded set of propositional formulae is satisfiable. In temporal
logic, not every fully expanded set is satisfiable because a contra-
diction may occur not only at the current state (“locally”) but else-
where in the model. Therefore, in temporal logic, it must be checked
whether at least one full expansion of the input formula set is sat-
isfiable. An example is the formula η = ¬(AXp → AXAXp), which
only has one full expansion {η,AXp,¬AXAXp}.

An ITS determines the truth value of every formula at every state.
We are interested in an information system that only contains just
enough information to determine the truth values of those formulae
that are directly concerned by the evaluation of the input formula
at the root of a tableau. A so-called Hintikka structure is a partly
defined ITS satisfying the input formula. It is represented by a graph
of nodes labeled by a set of formulae. These labels are fully expanded
subsets of the extended closure of a designated input formula. The
labeling of states must ensure that the Hintikka structure can gen-
erate a model of the input formula.

It can be proven that a formula η is satisfiable iff it is satisfiable in
a Hintikka structure for the extended closure ecl(η) of that formula.37

A finite set of BML formulae Γ is satisfiable in a Hintikka structure
for ecl(Γ). The tableau procedure for a given input formula attempts
to construct a graph representing sufficiently many possible Hintikka
structures for the input formula.

Soundness of the tableau procedure means that if the input for-
mula is satisfiable, then the final tableau is open. Completeness of
the tableau procedure means that if the input formula is not sat-
isfiable, then the final tableau is closed.38 By contradiction, com-
pleteness means that if the final tableau is open, the input formula
is satisfiable. The tableau procedure for testing satisfiability can be
modified to perform (local) model-checking: Given a finite ITS (T , s)
and a formula η, the model-checking tableau must decide whether
T , s |= η.

37Demri et al. (2016, p. 487).
38Demri et al. (2016, p. 496).
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3.2.3. Basics of tableau construction in linear

temporal logic39

Basic logical constants and connectives in LTL are only �,¬,∧ as
Boolean connectives and X,G,∪ as temporal operators. The other
Boolean symbols, ⊥,∨,→, and temporal operators, F,R, are defined
in the usual way. In temporal logic, eventualities must be consid-
ered, such as something that will happen eventually in the future
but without specifying exactly when. In LTL, eventualities are for-
mulae of the type ϕ∪ψ (especially, Fϕ and ¬Gϕ). The conjunctive,
disjunctive, and successor formulae in LTL and their components are
given in Fig. 3.4.

The tableau construction for LTL is analogous to that for BML,
with the extension of the rules to include decompensation rules for
the temporal operators in LTL (Fig. 3.5).

         Conjunctive                                          Disjunctive                                 Successor 

Formula     Components                      Formula         Components           Formula        Components 

, , 

, , 

, , 

Fig. 3.4. Types and components of formulae in LTL.40

Non-branching rules                                             Branching rules 

, 

Fig. 3.5. Branching and non-branching rules for the temporal operators in
LTL.41

39Wolper (1983, 1985).
40Demri et al. (2016, p. 499).
41Demri et al. (2016, p. 499).
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An example of an LTL formula is η = (p∪ q)∧Gr. The extended
closure of η is ecl(η) = {η, p∪q,Gr, p∧X(p∪q), q, r,XGr, p,X(p∪q)}.
In this case, there are two full expansions:

Δ1 = {η, p ∪ q,Gr, q, r,XGr},
Δ2 = {η, p ∪ q,Gr,∧X(p ∪ q), p,X(p ∪ q), r,XGr}.42

For a given input formula η ∈ LTL, the tableau procedure is
used to test the satisfiability of η. When the procedure reaches a
stabilization state, the tableau at that state is called the final tableau
for η. The tableau procedure returns “not satisfiable” if the final
tableau is closed, otherwise it returns “satisfiable.” Soundness of the
tableau construction means that if the input formula η is satisfiable,
the final tableau is open. Completeness of the tableau for LTL means
that for any formula η ∈ LTL, if the final tableau is open, then the
formula is satisfiable.43

The tableau construction for LTL can be adapted to TLR and
CTL.44 The syntax of TLR contains �,¬,∧,EX,AX, andEF as con-
nectives, which are extended in CTL by EG,EU, andAU. The oper-
ators ∨,→,AG,AF,ER, andAR are assumed to be definable. The
only eventualities in TLR are of type EFϕ, but there are two types
of eventualities in CTL:

— existential eventualities: EFϕ and E(ϕ∪ψ),
— universal eventualities: ¬EGϕ and A(ϕ∪ψ).

The conjunctive, disjunctive, and successor formulae in CTL and
their components are given in Fig. 3.6.

Decomposition rules for the temporal operators in CTL formulae
are presented in Fig. 3.7.

The expansion procedure of a CTL formula by the application
of the tableau rules in Fig. 3.7 is illustrated in the tree diagram of
Fig. 3.8. To simplify notations, the CTL input formula is replaced

42Demri et al. (2016, p. 500).
43Demri et al. (2016, p. 510).
44Ben-Ari et al. (1981); Pratt (1979, 1980).
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 Conjunctive     Disjunctive      

Formula     Components                                         Formula         Components            
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, , 

, , 

, 

                                                         Successor 

                             Formula                                         Component 

 (existential)                                         

 (universal)                                          

 (existential)                                      

 (universal)                                        

Fig. 3.6. Types and components of formulae in CTL.

by its set of conjuncts:

Γ = {EF¬p,A(p ∪ q),¬p→ EG¬q} with ϕ := EF¬p, ψ := A(p ∪ q),
andχ := EG¬q.

The extended closure of Γ contains the following formulae:

ecl(Γ) = Γ ∪ {¬p,EXϕ, q, p ∧AXψ, p,AXψ,χ,¬q,EXχ}.

In the expansion tree of Fig. 3.7, the non-branching steps are repre-
sented in single nodes. Some decompositions are abbreviated as

Ψ1 := {p ∧AXψ, p,AXψ},
Ψ2 := {χ,EXχ, p,¬q}.
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Non-branching rules                                               Branching rules 

, 

, 

Fig. 3.7. Branching and non-branching rules for the temporal operators in
CTL.45

Γ

Ψ

EX

Ψ Ψ Ψ

ΔΔ Δ Δ

Fig. 3.8. Full expansion tree of a CTL formula with tableau procedure.46

45Demri et al. (2016, p. 516).
46Demri et al. (2016, p. 517).
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Fully expanded sets of formulae are denoted by

Δ1 := Γ ∪ {EXϕ, p, q},
Δ2 := Γ ∪Ψ1 ∪ {EXϕ, p},
Δ3 := Γ ∪Ψ2 ∪ {EXϕ, q},
Δ4 := Γ ∪Ψ1 ∪Ψ2 ∪ {EXϕ}.

For a given input formula η ∈ CTL, the tableau procedure can
again be used to test the satisfiability of η. When the procedure
reaches a stabilization state, the tableau at that state is called the
final tableau for η. The tableau procedure returns “not satisfiable” if
the final tableau is closed, otherwise it returns “satisfiable.” Sound-
ness of the tableau construction means again that if the input formula
η is satisfiable, the final tableau is open. Completeness of the tableau
for CTL means that for any formula η ∈ CTL, if the final tableau
is open, then the formula is satisfiable.47 For full CTL∗ temporal
logic, tableaux procedures were also suggested for generalized tree
semantics.48

3.3. Automata-Based Calculus and Temporal Logic

A decision procedure in temporal logic can also be realized by
automata. A decision procedure with automata consists of two steps.
In the first step, an effective translation from logical formulae to cer-
tain automata must be found. In the second step, a corresponding
decision problem of automata must be identified. In LTL, for exam-
ple, an LTL formula describes a set of computation paths. From
a language-theoretic point of view, computation paths are infinite
words over an alphabet obtained as a power set of a finite set of
atomic propositions. In this sense, we seek for transformations of LTL
formulae into automata that recognizes languages over such words by
visiting accepting states infinitely often. The language of the automa-
ton Aϕ constructed from the temporal formula ϕ recognizes exactly

47Demri et al. (2016, p. 535).
48Reynolds (2007, 2009, 2011, 2013).
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those computation paths that are models of ϕ. Then, the satisfiabil-
ity of ϕ reduces to the nonemptiness of the language of Aϕ (i.e., the
existence of a model for ϕ). The two steps of the effective translation
from ϕ to Aϕ and an algorithm for checking Aϕ for nonemptiness
deliver a decision procedure for the satisfiability of the temporal logic.

In Fig. 3.1, a tableau procedure for LTL formula ϕ := GFp ∧
GF¬p was discussed. Intuitively, ϕ means that p must hold infinitely
often but also that p must not hold infinitely often. The satisfiability
problem of ϕ must first be transferred to an appropriate automaton.
The automaton in Fig. 3.9 accepts exactly those computation paths
which can be considered infinite words over the alphabet {∅, {p}},
which satisfy the condition expressed by ϕ . It can be verified that
the trace {p}∅∅{p}∅ · · · is accepted by this automaton.49

In short, the automata-based procedure means the reduction of
logical problems to automata-based decision problems in order to
use the advantages of decision procedures in automata theory: The
existence of a model for formula ϕ (satisfiability of ϕ) is reduced to
checking the existence of a word, resp. tree, accepted by an automa-
ton Aϕ (nonemptiness of Aϕ). The truth of ϕ in all models (valid-
ity of ϕ) is reduced to checking whether automaton Aϕ accepts all
words, resp. trees (universality of Aϕ). Entailment of one formula
ϕ by another formula ψ is reduced to checking whether all what is
accepted by automaton Aϕ is also accepted by the automaton Aψ.

The reduction of logical decision problems to automata-based
decision problems was first realized by the so-called Büchi automata

∅

∅, ∅

Fig. 3.9. Automaton associated with the LTL formula GFp ∧GF¬p.

49Demri et al. (2016, pp. 470–471).
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for the monadic second-order logic (MSO) over (N, <).50 LTL formu-
lae can be translated into alternating Büchi automata. CTL formulae
can be translated into nondeterministic Büchi automata.51

3.3.1. What are Büchi automata?

A Büchi automaton is a finite-state automaton accepting infinite
ω-words (i.e., ordinal number ω = {0, 1, 2, . . .}) instead of finite
words. Formally, a Büchi automaton is defined as a tuple A =
(Σ, Q,Q0, δ, F ) with a finite alphabet Σ, a finite set Q of states,
the set Q0 ⊆ Q of initial states, the transition relation δ as a subset
of Q × Σ×Q, and a set F ⊆ Q of accepting states. For q ∈ Q and
a ∈ Σ, the set of states q′ with (q, a, q′) ∈ δ is denoted by δ(q, a).
Automaton A is deterministic iff card(Q0) = 1 and card(δ(q, a))≤1
for all q ∈ Q and a ∈ Σ.

A run ρ of the Büchi automaton A is a sequence q0
a0−→q1

a1−→q2 · · · ,
with q0 ∈ Q0 and (qi, ai, qi+1) ∈ δ for every i ≥ 0. The label of the
run ρ is the word w = a0a1 · · ·Σω. For a run ρ, the infimum is defined
by

inf(ρ) := {q ∈ Q | for all i ∈ N there exists j > i such that q = qj}.

The run ρ is accepting if some state of F is repeated infinitely often
in ρ, i.e., inf(ρ) ∩ F �= ∅.
Büchi acceptance condition: The automaton A = (Σ, Q,Q0, δ, F )
accepts the language L(A) which consists of all ω-words w ∈ Σω for
which there exists an accepting run of A with label w.

A language L ⊆ Σω is Büchi-recognizable whenever there is a
Büchi automaton A such that L(A) = L. Figure 3.10 illustrates a
Büchi automaton A with L(A) = {w ∈ {a,b}ω | the letter a occurs
infinitely often}. The accepting states are doubly circled. A accepts
those words over {a,b} which have infinitely many a’s.

The size of a Büchi automaton A is defined by |A| := card(Σ) +
card(Q0) + card(δ) + card(F ). The decision algorithm for solving
the nonemptiness problem L(A) �= ∅ can be realized by reachability
checks.

50Büchi (1962).
51D’Souza and Shankar (2012).
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Fig. 3.10. Büchi automaton accepting the words over {a, b} which have infinitely
many a’s.52

3.3.2. Büchi automata for linear temporal logic53

The automata-based approach for LTL represents the set Mod(ϕ)
of models of a formula ϕ by ω-words w for which there exists an
accepting run of a Büchi automaton A with label w. Satisfiability
of an LTL formula ϕ is equivalent to the nonemptiness of the set
Mod(ϕ) of the models of ϕ. Thus, satisfiability of an LTL formula is
equivalent to the nonemptiness of a Büchi automaton.

The set of linear models of a formula ϕ over the the set Π of
atomic propositions is denoted by ModΠ(ϕ). It can be proven that,
for a given LTL formula ϕ, a Büchi automaton Aϕ can be effectively
constructed such that ModΠ(ϕ) = L(Aϕ), or in short, ϕ ≈ Aϕ for
Π = PROP(ϕ).

In the recursive construction of Aϕ, one has to first consider the
Boolean connectives. It can be proven that Büchi-recognizable sets
are effectively closed under union, intersection, and complementa-
tion. For LTL formulae ϕ1 and ϕ2, a finite set Π of atomic propo-
sitions with PROP(ϕ1) ∪ PROP(ϕ1) ⊆ Π, Büchi automata A1 and
A2 with ϕ1 ≈Σ A1 and ϕ2 ≈Σ A2, and a Büchi automaton B over
alphabet Σ, it holds that

(i) if L(B) = L(A1) ∪ L(A2), then ϕ1 ∨ ϕ2 ≈Σ B;
(ii) if L(B) = L(A1) ∩ L(A2), then ϕ1 ∧ ϕ2 ≈Σ B;

(iii) if L(B) = Σω \ L(A1), then ¬ϕ1 ≈Σ B.

The cases for the temporal operators X, F, and ∪ must be
treated separately. For an LTL formula ϕ, a finite set Π of

52Demri et al. (2016, p. 547).
53Vardi and Wolper (1986, 1994).
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atomic propositions with PROP(ϕ) ⊆ Π and a Büchi automaton
A = (Σ, Q,Q0, δ, F ) with ϕ ≈ΣA and Σ = P(Π), it holds that

(i) Xϕ ≈Σ A′ for a Büchi automaton A′ := (Σ, Q � {qnew},
{qnew}, δ′, F ) obtained from A by adding a new state qnew with

δ′ := δ � {qnew
a−→q0|a ∈ Σ, q0∈Q0};

(ii) Fϕ ≈Σ A′ for a Büchi automaton A′ := (Σ, Q � {qnew}, Q0 ∪
{qnew}, δ′, F ) obtained from A by adding a new state qnew with

δ′ := δ � {qnew a−→q0, qnew a−→q0|a ∈ Σ,q0∈Q0}.54

For LTL formulae ϕ1 and ϕ2, a finite set Π of atomic propositions
with PROP(ϕ1) ∪ PROP(ϕ1) ⊆ Π, and Büchi automata A1 and A2

with ϕ1 ≈Σ A1 and ϕ2 ≈Σ A2 with Σ = P(Π), there exists a Büchi
automaton B over alphabet Σ with ϕ1 ∪ ϕ2 ≈Σ B.

The advantage of inductive construction of an automaton Aϕ from
a formula ϕ is that we can apply the standard procedures of automata
theory. Aϕ accepts exactly the linear models from Mod(ϕ). In some
cases, a disadvantage is the size of Aϕ in the size of ϕ. The number

of states can be written as an exponential tower 22
..
.2
p(|ϕ|)

with linear
height and a polynomial ϕ.

3.3.3. Büchi tree automata for branching-time

logic CTL

Until now, we considered translations from LTL formulae to Büchi
automata accepting the models of the formulae. The idea is that
LTL models are ω-words and Büchi automata accept these models.
In branching-time logic, it is well known that CTL formulae are satis-
fiable iff they are satisfiable in infinite tree-like models with branching
factor bounded by the size of the formulae.

An infinite Σ, k-tree Tr is a mapping Tr :[1, k]∗ → Σ. A branch
Br starts at a node with a maximal (infinite) sequence such that for
two consecutive nodes, one is the predecessor of the other.55 A Büchi
tree automaton A for Σ, k-trees is a tuple A = (Σ, Q,Q0, δ, F ) with

54Demri et al. (2016, pp. 555–556).
55Tree automata, in general, were studied by Comon-Lundh et al. (2005).
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a finite (nonempty) set Q of states, set Q0 ⊆ Q of initial states, the
transition relation δ ⊆ Q×Σ×Qk, and set F ⊆ Q of accepting states.

A run ρ of the Büchi tree automaton A = (Σ, Q,Q0, δ, F ) on
a Σ, k-tree Tr is a Q, k-tree with ρ(ε) ∈ Q0 and (ρ(u),Tr(u),
ρ(u · 1), . . . , ρ(u · k)) ∈ δ for every u ∈ [1, k]∗. A run is accepting
iff for every branch in Tr, there is a state in F that occurs infinitely
often. The automaton A accepts the language L(A) of the infinite
Σ, k-tree Tr for which there is an accepting run of A on Tr.

In Fig. 3.11, an automaton A = (Σ, {q1, q2}, {q1}, δ, {q1}) is con-
sidered with alphabet Σ = {a,b}, δ = {(q1, a,q1, q1), (q2, a,q1, q1),
(q1, a,q2, q2), (q2, a,q2, q2)}, k = 2, and the set L of infinite Σ, k-trees
such that on every branch, the letter a occurs infinitely often.56 L(A)
is equal to language L.

The nonemptiness problem for Büchi tree automata is decidable
in polynomial time.

When a nondeterministic automaton is in a state q and reads a
letter a, then the transition function associates a set of possible states
to continue the run. The universal mode as a dual of the existential
mode in nondeterministic automata requires that all the runs from
a location in the set of possible states should lead to acceptance.
In alternating automata, both existential and universal modes are
allowed, and the transitions are defined by positive Boolean formulae
on the set of states. The Boolean formulae are defined with atomic
formulae connected with disjunction ∨ and conjunction ∧ only but

Fig. 3.11. Σ, 2-tree with its accepting run in an automaton A.

56Demri et al. (2016, pp. 599–600, 602).
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without negation ¬. Thus, a transition formula q1 ∨ q2 says that at
the next stage, there is a run starting with q1 or q2. A transition
formula q1∧q2 says that at the next stage, there are at least two
runs, one starting with state q1 and the other starting with q2. Runs
are words of nondeterministic automata which are replaced by trees
for alternating automata because of the universal mode.

Formally, in a nondeterministic Büchi automaton, the transition
relation δ ⊆ Q×Σ×Q is understood as a transition function of type
Q×Σ→ P(Q). Alternating automata use transition functions of type
Q× Σ→B

+(Q) with the set B+(Q) of positive Boolean formulae.57

An alternating automaton is:

(i) deterministic iff the image of transition function δ is restricted
to single states;

(ii) nondeterministic iff the image of transition function δ is
restricted to disjunctions of single states or to ⊥;

(iii) universal iff the image of transition function δ is restricted to
conjunctions of single states or to �.

For a translation from CTL formulae to automata which recog-
nize branching trees, the class of alternating Büchi tree automata is
introduced. In alternating automata, both existential and universal
modes are possible, and the transition function is defined by positive
Boolean formulae. In alternating Büchi tree automata, the atomic
formulae are not only related to states but to states with directions.
The directions are defined by elements in the interval [1, k].

Formally, an alternating Büchi tree automaton A for Σ, k-trees
is a tuple A = (Σ, Q, q0, δ, F ) with a finite (nonempty) set Q of
states, an initial state q0 ∈ Q, and a transition function δ : Q ×
Σ→B

+([1, k] × Q) with the set B
+([1, k] × Q) of positive Boolean

formulae built over [1, k] ×Q.
In that way, transitions can lead to several copies of the automa-

ton. For example, consider an alternating Büchi tree automaton A
with δ(q, a) = (1, q1) ∧ (1, q2) ∧ (2, q3) ∧ (2, q4). When A is in state q
and reads the node u of a Σ, k-tree Tr with Tr(u) = a, then A has
to satisfy the positive Boolean formula δ(q, a) with several copies of

57A translation of temporal logics into alternating automata is given by Muller
et al. (1988).
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itself. One copy moves to the successor node u · 1 with state q1 and
another one with state q2. Another copy moves to the successor node
u · 2 with state q3 and another one with state q4.

A CTL formula ϕ can be translated into an alternating Büchi tree
automaton Aϕ such that ϕ is satisfiable if and only if L(Aϕ) �= ∅.58
For a formal inductive proof of the structure of ϕ, the CTL for-
mula ϕ is assumed in negation normal form with Boolean connectives
∧ and∨, temporal operators EX, AX, EU, ERAX, AU, and AR, and
negation only in front of atomic propositions. Furthermore, it can
be proven that L(Aϕ) accepts exactly the Σ, k-trees which satisfy ϕ.
A formula ϕ is CTL satisfiable if and only if L(Aϕ) �= ∅.

3.4. Game-Based Calculus and Temporal Logic

After Gentzen’s sequent calculus and tableaux- and automata-based
procedures, game-based procedures deliver another tool kit for solv-
ing decision problems of temporal logic. Furthermore, from a philo-
sophical point of view, model-checking games are also of great value
to understand the meaning (semantics) of logical connectives, quan-
tifiers, and modal and temporal operators. A game is played between
two players on an underlying ITS and formula. The two players
decompose the formula and check the states in the ITS in order to
decide whether it holds. The simplest building block of a formula is a
literal, i.e., atomic propositions and their negations. The truth value
of a literal is obvious. Therefore, if the game has reached a position
with a literal, then it ends, and the winner is determined.

3.4.1. Game-based calculus of basis modal logic

At first, we consider BML formula in negation normal form with liter-
als, logical connectives ∧,∨ and modal operators EX, AX. The exis-
tential operators in BML are disjunction and existential modalities.
The universal operators in BML are conjunction and universal
modalities. A disjunction holds in a state if one of the two dis-
juncts holds there. Thus, if a proponent of a disjunction is attacked
by an opponent, then the proponent must defend the disjunction

58Demri et al. (2016, p. 609).
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with some disjunct. The satisfaction of the disjunction is witnessed
by some disjunct. A conjunction holds in a state if all the two dis-
juncts hold there. Thus, if a proponent of a conjunction is attacked
by an opponent with a request to defend one of the conjuncts, then
the proponent must be able to defend both conjuncts. The satisfac-
tion of a conjunction is witnessed by all conjuncts, but it is refuted
by some conjunct. The disjunction is refuted by all disjuncts.

In the case of modal operators, the satisfaction of EXψ at some
state s is witnessed by some successor of s that satisfies ψ. EXψ
can only be refuted by those successors which do not satisfy ψ. In a
model-checking game, one player aims at the satisfaction of a given
formula by a given ITS. The other player attempts to prove the oppo-
site. Therefore, the players are sometimes called “verifier” (V) and
“refuter” (R). A game can also be considered as a dialogue between
a “proponent” (P) and an “opponent” (O), defending and attacking
propositions according to the dialogue rules.

Formally, for a rooted ITS(T , s0) with T = (S,→, L) and a
BML formula ϕ in negation normal form, the model-checking game
GT (s0, ϕ) is defined as a two-player game in a game environment
(V,Own,E) with V = S × sub(ϕ) and Own(s, ψ) = 0 iff ψ is of the
form ψ1 ∨ ψ2 or EXψ.

The development of the game is represented in a game tree. The
nodes are pairs of states in the transition system ITS and subfor-
mulae. The satisfaction relation between a state s and a formula
ψ, which must be checked at any node, is denoted by s � ψ. The
rules of the BML model-checking games are given in in Fig. 3.12.59

The terminology underlines the similarity of the game-based calculus
with Gentzen’s sequent calculus. At a node with disjunctions, player

(∨) s � ψ1 ∨ ψ2

s � ψi
V (∧) s � ψ1 ∧ ψ2

s � ψi
R

(EX)
s � EXψ

t � ψ V, s→ t (EX)
s � AXψ

t � ψ R, s→ t

Fig. 3.12. The BML model-checking game rules.

59Demri et al. (2016, p. 120).
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2 10

Fig. 3.13. Graph of ITS for formula AX (p ∨ EX p).

V (verifier) chooses one of the disjuncts. At a node with conjunc-
tions, player R (refuter) chooses one of the conjuncts. In the case
of a modal operator, the players must choose a successor state of
the current one. Then, the successor state and the formula following
the modal operator must be checked, depending on whether it is the
existential or the universal operator.

The winning conditions in BML model-checking games are defined
for both players V and R. A play in the model-checking game
GT (s0, ϕ) is denoted by a sequence of nodes, π = π0, . . . , πn. The
final node πn cannot have a successor node. According to the game
rules, πn must represent one of four possible configurations to define
a winner of the play:

Player V wins the play π iff

(i) there is a state t and an atomic q such that πn = t � q and
q ∈ L(t), or πn = t � ¬q and q /∈ L(t);

(ii) there is a state t and a formula ψ such that πn = t � AXψ and
t has no successor in T .

Player R wins the play π iff

(i) there is a state t and an atomic q such that πn = t � q and
q /∈ L(t), or πn = t � ¬q and q ∈ L(t);

(ii) there is a state t and a formula ψ such that πn = t � EXψ and
t has no successor in T .

In order to illustrate winning strategies in model-checking games,
the BML formula ϕ = AX(p∨EX p) is considered with respect to the
(interpreted) transition system T with the graph shown in Fig. 3.13.

The game tree of the model-checking game GT (0, ϕ) with T is
represented in Fig. 3.14, which also considers the games GT (1, ϕ)
and GT (2, ϕ). The task is to check at which state, 0, 1, or 2, the
LTL formula ϕ is satisfied. In Fig. 3.14, the ending (winning) nodes
of player R are denoted by rounded rectangles and those of player
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Fig. 3.14. BML model-checking game.

V by rectangles.60 Obviously, R has a winning strategy which starts
from the sequent 0 � AX(p ∨ EXp). At first, the strategy moves to
1 � p ∨ EX p. Independent of the next step or the next two steps of
player V, the strategy arrives at 0 � p or 1 � p. In any case, R wins
the game according to the mentioned winning conditions.

It can be proven that, for a model-checking game GT (s0, ϕ) for an
(interpreted) transition system T with root s0 and a BML formula
ϕ, it holds that T , s0 � ϕ iff player V has a winning strategy for the
game starting with s0 � ϕ.

3.4.2. Game-based calculus and certification

of computer programs

As in a tableaux-based and automata-based interpretation, the game-
based approach is important for the decision problems of tempo-
ral logic. Model-checking and satisfiability-checking games can be
used to solve the model-checking and satisfiability-checking prob-
lems for temporal logic. A model-checking game clarifies whether a
given state of an ITS satisfies a temporal formula by proving the
existence of a winning strategy for the proponent of the formula.
A satisfiability-checking game clarifies whether a given formula is
satisfiable by checking whether the proponent of the formula has a
winning strategy.

The game-theoretic approach is helpful for program verification
in computer science. The model-checking problem can be used to

60Demri et al. (2016, pp. 121–122).
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prove whether a program is correct with respect to a property which
is represented in a temporal logic. If the property is satisfied in the
sense that model-checking returns true, then the program is cor-
rect in this case, and checks can be continued for further properties
of the program. If model-checking returns false, then the cause of
non-satisfaction must be clarified. In engineering and programming
praxis, engineers and programmers try to find the causes of errors
or bias in a dialogue with experts. Therefore, a game-based dialogue
between a proponent and an opponent is an appropriate procedure to
simulate the search for causes of failures. The game-based approach
is useful to deliver explanations. Winning strategies justify certifi-
cations that a program specification is realizable. After satisfiability
of temporal formulas in BML, it is a challenge to certify temporal
formulas of LTL, CTL, and CTL∗. Again, in these extended versions
of temporal logic, winning strategies must be found for certification
with satisfying models.

3.4.3. Game-based solution to the model-checking

problem for CTL∗61

For model-checking games for the full branching-time logic CTL∗,
we must consider the structure of a CTL∗ formula connected with
a total rooted transition system. Given a rooted transition system
T = (S,→, L, s0), a CTL∗ formula ϑ in negation normal form con-
sists of a path quantifier E or A, followed by a linear-time formula
(LTL) over propositional literals or smaller blocks. The CTL∗ model-
checking game is applied to a closure of formulae which are made up
from the input formula. The Fischer–Ladner closure fi(ϕ) of CTL∗

formula ϕ in negation normal form is defined as the smallest set that
satisfies the following conditions62:

(i) If ψ1 ∨ ψ2 ∈ fi(ϕ) or ψ1 ∧ ψ2 ∈ fi(ϕ), then {ψ1, ψ2} ⊆ fi(ϕ)
(ii) If Qψ ∈ fi(ϕ) for some Q ∈ {E,A,X}, then ψ ∈ fi(ϕ).
(iii) If ψ1 ∪ ψ2 ∈ fi(ϕ), then {ψ1, ψ2,X(ψ1 ∪ ψ2)} ⊆ fi(ϕ).
(iv) If ψ1Rψ2 ∈ fi(ϕ), then {ψ1, ψ2,X(ψ1Rψ2)} ⊆ fi(ϕ).

61Lange and Stirling (2000, pp. 115–125).
62Fisher and Ladner (1979, pp. 194–211).
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The model-checking game for the ITS T = (S,→, L, s0) and a
CTL∗ formula ϑ in negation normal form is defined by the following
conditions:

(i) With respect to Gentzen’s notation, the configurations of the
game are in the form of sequent s � E(Γ) or s � A(Δ) with
s ∈ S and Γ,Δ ⊆fi(ϕ). (Abbreviations are used such as Eψ
instead of E({ψ}) and A(ψ,Δ) instead of A({ψ} ∪Δ).)

(ii) The game starts with the sequent s � A(ϑ). (The A underlines
that the formula component of every configuration begins with
a path quantifier.)

(iii) The game rules are again represented in a Gentzen-style nota-
tion (Fig. 3.15).63

A formula set under an E-quantifier, resp. A-quantifier, must be
interpreted as a conjunction, resp. disjunction. Therefore, a sequent
s � EΓ can be considered as V’s strategy to begin a path in s on
which all formulae in Γ are true. A sequent s � AΔ must be con-
sidered as R’s obligation to begin a path in s in which none of the
formulae in Δ is true.

(E ∧)     

(A ∨)     

  if 

   if 

Fig. 3.15. Rules for the CTL∗ model-checking game.

63Lange and Stirling (2002, pp. 623–639), Demri et al. (2016, p. 667).
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The winning conditions for finite plays are defined for a transition
system T and a propositional literal �:

V wins a finite play, which reaches a sequent of the form

(i) s � E∅ or
(ii) s � A(�,Δ) such that T , s |= �.

R wins a finite play, which reaches a sequent of the form

(i) s � A∅ or
(ii) s � E(�,Γ) such that T , s � �.

The winning conditions for final plays are related to configurations
in which a sequent is true or false with appropriate interpretation. In
these cases, the formulae cannot be decomposed further by the game
rules.

An infinite play of a CTL∗ model-checking game consists of an
infinite sequence of sequents s0 � Q0Φ0, s1 � Q1Φ1, . . . . In an E-play,
there is some n ∈ N with Qi = E for all i ≥ n. In an A-play, there is
some n ∈ N with Qi = A for all i ≥ n. It can be proven that every
play is either an E-play or an A-play.

Formulae of successive sequents can be related by a connection
relation.64 If a sequent s′ � QΦ′ is derived from sequent s � QΦ by
a certain rule, then some ϕ ∈ Φ is said to be connected to ψ ∈ Φ′ if

(i) the rule replaces ϕ by ψ inside the outer path quantifier
(i.e., rules (E∧), (A∨), (E∨) and (A∨) with conjunctions
and disjunctions and rules (E∪), (A∪), (ER), and (AR) with
∪-formulae and R-formulae), or

(ii) the rule replaces ϕ by ψ, which becomes the new outer path
quantifier (i.e., rules (AQ) and (EQ) with formula Qψ), or

(iii) ϕ = Xψ with rule (EX) or (AX), or
(iv) ϕ = ψ, and the rule operates on a formula different to ϕ.

A thread is an infinite sequence ϕ0, ϕ1, . . . in an infinite play s0 �
Q0Φ0, s1 � Q1Φ1, . . . in a model-checking game for T , s0, and ϑ, with
ϕi ∈ Φi and ϕi connected to ϕi+1 for all i ∈ N. A thread is called a
μ-thread if there is some formula ϕ of the form ψ1 ∪ ψ2 and ϕ = ϕi

64Demri et al. (2016, pp. 670–671).
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for infinitely many i. A thread is called a ν-thread if there is some
formula ϕ of the form ψ1Rψ2. It can be proven (with König’s lemma)
that every infinite play has a thread.

The winning conditions for infinite plays are defined with
μ-threads and ν-threads:

V wins an infinite play λ in the model-checking game for CTL∗ if

(i) λ is an E-play and contains no μ-thread, or
(ii) λ is an A-play and contains a ν-thread.

R wins an infinite play λ in the model-checking game for CTL∗ if

(i) λ is an E-play and contains a μ-thread, or
(ii) λ is an A-play and contains no ν-thread.

The model-checking problem for CTL∗ can be solved by model-
checking games. Soundness is guaranteed because whenever V has a
winning strategy in the model-checking game, then the underlying
formula is satisfied in the transition system. Soundness can be proven
because whenever the underlying formula is satisfied in the transition
system, then V has a winning strategy in the model-checking game.

3.4.4. Game-based solution to the satisfiability

problem for CTL∗65

After the model-checking problem, the satisfiability problem should
be solved by a game-theoretic characterization for the full branching-
time logic CTL∗. A configuration for the CTL∗ satisfiability game
G(ϑ) on a CTL∗ state formula ϑ in negation normal form is charac-
terized by a set consisting of sets of formulae

EΓ1, . . . ,EΓn,AΔ1, . . . ,AΔm,Λ,

with sets Δi,Γj ⊆ fi(ϑ) for i = 1, . . . ,m and j = 1, . . . , n and set Λ
of literals.

The winning conditions of satisfiability games for finite plays are
defined by a formula ϑ in negation normal form.

65Friedmann et al. (2013, pp. 1–36).
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V wins a play of configurations (sequents) C0, C1, . . . in satisfiability
game G(ϑ) if there is an n ∈ N such that Cn consists of literals
�0, . . . , �k over atomic propositions without i, j such that �i = �j .

R wins a play of configurations (sequents) C0, C1, . . . in satisfiability
game G(ϑ) if there is an n ∈ N such that either

(i) there is some atomic proposition p with {p,¬p} ⊆ Cn, or
(ii) A∅ ∈ Cn.

With respect to the complexity of configurations in satisfiability
games CTL∗, there must be rules for every logical operator in any
position of a configuration.66 In Fig. 3.16, a set of the form Γ is inter-
preted conjunctively. A set of the form Δ is interpreted disjunctively.
Qϕ represents a path-quantified formula with Eϕ or Aϕ. XΓ, resp.
XΔ, means a set of formulae with each formula in Γ, resp. Δ, with
an X-operator in front. In rules (X) and (X−), Λ is assumed without
a proposition and its negation because otherwise the configuration
would be final and winning for R.

A block in a configuration is a literal or a formula set EΓ or AΔ.
In a satisfiability game G(ϑ), a connection relation can be defined
between blocks B andB′ of successive configurations Ci, Ci+1 in a

 (E ∧)     

(A ∨)     

Fig. 3.16. Rules for CTL∗ satisfiability games.

66Demri et al. (2016, p. 695).
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play C0, C1, . . .. There is a connection relation between B,Ci and
B′, Ci+1 if the rule applied between Ci and Ci+1

(i) did not operate on B and B′ = B, or
(ii) transformed B into B′.

A trace in an infinite play C0, C1, . . . of game G(ϑ) is an infinite
sequence of blocks B0, B1, . . . such that for all i ∈ N, there is a con-
nection relation between B,Ci and B

′, Ci+1. A trace Q0Δ0,Q1Δ1, . . .
is called E-trace if there is some n ∈ N with Qi = E for all i ≥ n.
In an A-trace, there is some n ∈ N with Qi = A for all i ≥ n. With
König’s lemma, it follows that every infinite play has a trace.

A thread is an infinite trace B0, B1, . . . is an infinite ϕ0, ϕ1, . . .
such that there is a connection relation between ϕi, Bi and ϕi+1, Bi+1

for all i ∈ N. Again, a thread is called a μ-thread if there is some
formula ψ of the form ψ1 ∪ ψ2 and some n ∈ N with ϕi = Xψ for
all i ≥ n. A thread is called a ν-thread if there is some formula ψ of
the form ψ1Rψ2. Every trace has at least one thread. Every thread
is either a μ-thread or a ν-thread.

The winning conditions for infinite plays are defined with
μ-threads and ν-threads. A trace is called good if

(i) it is an A-trace and contains a ν-thread, or
(ii) it is an E-trace and contains no μ-thread.

V wins an infinite play of the satisfiability game G(ϑ) if all its traces
are good. R wins if it contains a trace which is not good (“bad”).

Figure 3.17 illustrates a play in the satisfiability game for the
CTL∗ formula ϑ = p ∧ AG(p → EXFp) ∧ AFG¬p. The formula ϑ is

Fig. 3.17. Example of a play in a CTL∗ satisfiability game.67

67Demri et al. (2016, p. 698).
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unsatisfiable because it states the negation of a valid statement: If
p is true now and whenever p is true somewhere, and then it holds
again somewhere later, then there must be a path on which it is true
infinitely often.

In the play in Fig. 3.17, two rules for the temporal operators G
and F are applied, which can easily be derived from the list of rules
in Fig. 3.1668:

(AF)
A(Fϕ,Δ),Φ

A(ϕ,XFϕ,Δ),Φ
(AG)

A(Gϕ,Δ),Φ

A(ϕ,Δ),Φ A(XGϕ,Δ),Φ
R.

The first configuration in the play in Fig. 3.17 is equivalent to ϑ. The
derivation from the first configuration to the second one is realized
by the application of (AG) and (AF). The next step from the second
to the third configuration is done by the rules (A∨) and (AG). The
fourth configuration is derived by rule (AQ). With rule (X), the fifth
configuration is derived.

At each stage, after application of rule (X) with a resulting single
configuration only, V chooses whether to have p in the literal part of
the configurations. If V eventually chooses not to have p ever again,
then the play has a bad E-trace. If V chooses to have p in the only
infinite play, the resulting play may be such as in Fig. 3.17. The
lightly shaded blocks are an A-trace. The darkly shaded formulae in
this A-trace generate a μ-thread. Therefore, it is a bad A-trace. In
summary, in any case, R is the winner of this play. Whatever V will
choose, it leads either to contradicting literals or to bad E-traces or
A-traces.

The satisfiability games are sound and complete for the full
branching-time logic CTL∗. Completeness means that for every state
formula ϑ of CTL∗, if ϑ is satisfiable, the verifier V has a winning
strategy in the game G(ϑ). For soundness, it holds that for every
state formula ϑ of CTL∗, if verifier V has a winning strategy in the
game G(ϑ), then ϑ is satisfiable.

68Demri et al. (2016, p. 699).
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3.5. Dialogue-Based Constructive Temporal Logic

The game-based interpretation of logic is deeply rooted in the tra-
dition of philosophy. In order to find the truth, platonic philosophy
started with dialogues between teachers and students in a game of
attacks and defenses of arguments. The Socratic method of dialogues
had to obey logical rules, which were later systematized in the famous
textbooks of Aristotle, the father of logic. But, actually, the origin
of logic was and is embedded in the practice of argumentation with
lawyers, politicians, and ordinary people, which can be understood
as a game-based approach to logic. In the following, we consider
a dialogue-based interpretation of logic which can be extended to
modal and temporal logic. A dialogue on a statement between a pro-
ponent and an opponent is represented in tables which unfold the
sequents of formulae in a Gentzen-style manner.

With respect to applications in computer science, we consider
intuitionistic, resp. constructive, logic, which was already discussed
in Section 1.2. The reason is that linear and branching-time logic
is based on time trajectories and trees, which must be constructed
and calculated in a computer step by step, such as in intuitionis-
tic mathematics. Therefore, the classical alternative of either true or
false cannot be applied to quantified sentences. Classical approaches
to dialogue games were favored by Hintikka and Sandu.69 The fol-
lowing constructive approach was first suggested by Lorenzen and
Lorenz.70

3.5.1. Dialogue-based introduction of constructive

logical operators

Each logical operator must be characterized by an attack–defense
rule for the proponent and opponent of an assertion. If the pro-
ponent asserts a negation ¬A, then the opponent responds with a
counterattack A with a question mark, ?. Then, the proponent has

69Hintikka and Sandu (2009, pp. 341–343).
70Lorenz (1968, pp. 73–100).
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to defend her assertion by proving that the assumption of A leads to
a contradiction:

Assertion Attack Defense

¬ A A ?

A constructive defense of an existentially quantified assertion
∨xA(x) needs a concrete example s (e.g., object, machine state, tem-
poral point):

Assertion Attack Defense

∨xA(x) ? A(s)

For the attack of an all-quantifier, the opponent chooses any
object s:

Assertion Attack Defense

∧xA(x) s? A(s)

But if an all-sentence has been defended against an attack, the
assertion cannot be called true. It must be defended against all pos-
sible and allowed attacks in a dialogue. Therefore, at first, the rules
of attacking and defending must be defined for all logical opera-
tors. Junctors can no longer be defined by truth tables because the
connected sentences may also contain quantifiers. The rules for the
adjunction ∨ are in analogy to the existential quantifier:

Assertion Attack Defense

A ∨ B ? A
A ∨ B ? B

For the conjunction, in analogy to the all-quantifier, the opponent
can choose to attack the left part (L?) or the right part (R?):

Assertion Attack Defense

A ∧B L? A
A ∧B R? B

For an attack–defense rule of the junctor→, the opponent attacks
A → B by assuming the premise A but requesting a defense of the
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conclusion B. The defense of the proponent is B:

Assertion Attack Defense

A→ B A ? B

Obviously, this is a generalization of the negation rule because
intuitionistically ¬A :↔ A → ⊥. The controverse conditional ← is
defined by B ← A :↔ B → A. Thus, the corresponding attack–
defense rule requests:

Assertion Attack Defense

A← B B ? A

The other junctors can be defined by ∧,∨,→, and ← in the usual
way. A dialogue begins with the assertion of thesis which a proponent
writes down on the right-hand side of a tableau divided by a double
line. Then, the opponent attacks the thesis, and the dialogue contin-
ues by means of alternating defenses and attacks until atomic propo-
sitions are reached. In the dialogue tableau, verified propositions are
enclosed by brackets. An example is the thesis “All politicians are
stupid or clever,” or in symbols, ∧x(p(x)→ s(x) ∨ c(x)):

∧x(p(x)→ s(x) ∨ c(x))
Kennedy ? p(K)→ s(K) ∨ c(K)

p(K) ? ?

[p(K)] s(K) ∨ c(K)

? c(K)

?

If the asserted atomic proposition c(K) is falsified, then the pro-
ponent has lost the game. His thesis is not true.

3.5.2. Constructive dialogue games

The first rules of a dialogue game are the following.

Starting rule: The proponent begins by asserting a thesis. The
players make their moves alternatively.
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General rule: Each player may either attack a sentence asserted by
the other player or defend himself against an attack
by the other player.

So far, truth means defensibility of a thesis in a dialogue game against
any opponent. In the case of sentences without quantifiers, there are
always only finitely many strategies for the players. In this special
case, it can be decided whether there is a winning strategy for the
proponent. Then, the thesis is true. If the atomic propositions are
definitely true or false, the notion of truth coincides with the classical
notion of truth. The defensibility in the sense of the existence of a
winning strategy may not be decidable for quantified sentences.

Furthermore, there may be unclear situations of defense for iter-
ated implications71:

((A→ B)→ C)→ A

(A→ B)→ C ? A→ B ?2

A ?3

[A]

The proponent could defend her thesis by asserting A. But the
opponent could argue that she asserted A only in the attack against
A→ B. Therefore, the proponent should first defend herself against
this attack by asserting B. Consequently, the general rule should be
restricted in the following way.

Each player may either attack a sentence asserted by the other
player or she may defend herself against the last attack against which
she has not already defended herself.

It is a disadvantage of this rule that the opponent could indefi-
nitely repeat her attack and the proponent could never win the game.
Therefore, a limit of repetitions seems to be reasonable in the sense
that the opponent may attack a sentence at most m + 1 times for
an arbitrarily chosen m. With this restriction, a winning rule can be
defined as follows.

71Lorenzen (1969, p. 28).
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Winning rule: If the proponent cannot make any further move, the
proponent has won.

In order to avoid the somewhat artificial choice of a restrictive
number of attacks, the general rule can equivalently be changed in
the following way:

(i) The proponent may either attack a sentence asserted by the
opponent or she may defend himself against the last attack of
the opponent.

(ii) The opponent may either attack the sentence asserted by the pro-
ponent in the preceding move or she may defend herself against
the attack of the proponent in the preceding move.

With this rule, truth is defined as defensibility against every opposi-
tion. If the defensibility of a thesis depends on the empirical truths
of atomic propositions, then the thesis is called empirically true. For
example, consider the thesis “All seas in the world are polluted,” or
formally, with the atomic proposition a(y, x) (“y is in x”):

∧xseas∨ypollution a(x, y)
Atlantic ? ∨ypollution a(Atlantic, y)

? a(Atlantic, oil pollution)

?

In logic, there are theses which are defensible independent of the
meaning of propositions. These are the logically true formulae, for
example:

a→ a
a ?

The opponent would even lose the game if she can defend a as an
empirically true proposition. In this case, the proponent could defend
himself with the same proposition. Another example is the following
logically true formula:72

72Lorenzen (1969, pp. 32–33).



100 Temporal Logic: From Philosophy and Proof Theory

1 ¬(a ∧ ¬a)
2 a ∧ ¬a ? L ? 2

3 a R ? 2

4 ¬a a ? 4

In this case, again, the opponent must attack the proposition a
which she herself has asserted in line 3. Therefore, she has to give
up the game. Another famous example is the modus ponens. In this
case, two hypotheses are given, and the thesis has to be defended in
such a way that the proponent finally has to defend an elementary
proposition which has been asserted by the opponent:

1 ∧x(a(x)→ b(x))

2 ∧x(b(x)→ c(x)) ∧x(a(x)→ c(x))

3 y ? a(y)→ c(y)

4 a(y) ? y ? 1

5 a(y)→ b(y) a(y) ? 5

6 b(y) y ? 2

7 b(x)→ c(x) b(y) ? 7

8 c(x) c(x)

If a thesis can be defended under the assumption of hypotheses,
the hypotheses are called to logically imply the thesis. According to
formal logic, logical truth and logical implications are studied in a
formal variant of dialogical games.

3.5.3. Constructive formal dialogue games73

Formal dialogues do not start with true or false propositions but
with prime formulae a, b, . . . , a(x), b(y), . . . , a(x.y), . . .. The syntax is
given by the symbols of operators:

∧| ∨ | → | ¬ | ∧ x| ∨ x.

The attack–defense rules of the operators are the same as before.
For prime formulae p, the following rule with attack (?) and no

73Lorenzen (1969, pp. 36–37).
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defense is supplemented:

p|?|.

In formal games, the proponent is never allowed to attack a prime
formula. Now, the general and winning rules request for formal games
are as follows.

General rule for formal games:

(i) The proponent may either attack a composite formula of the
opponent or she may defend herself against the last attack of
the opponent.

(ii) The opponent may either attack the formula put forward by
the proponent in the preceding move, or she may defend herself
against the attack of the proponent in the preceding move.

Winning rule for formal games:

If the proponent has to defend a prime formula which has been put
forward by the opponent, the proponent has won.

With respect to formal calculi of intuitionistic, resp. constructive,
logic, the notion of dialogical defensibility delivers what is wanted.
An example is double negation, which is excluded in intuitionistic
logic as logically true:

1 ¬¬a a

2 ? ¬a ? 1

3 a ?

The proponent has no move besides repeating his attack of ¬¬a.
Therefore, he cannot win the game. In classical logic, the tertium non
datur a ∨ ¬a is assumed. Under this condition, the double negation
is formally defensible:

1 a ∨ ¬a
2 ¬¬a a

3 ? ? 1

4 ¬a ¬a ? 2

5 a ? a ? 4

Obviously, the opponent has to give up.
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In classical formal quantified logic, the formula ¬ ∧ x a(x) log-
ically implies ∨x¬a(x). In a formal dialogue game, ∨x¬a(x) is
only defensible with the additional hypotheses ∧x(a(x)∨¬a(x)) and
∨x (¬a(x) ∨ ¬ ∨ x¬a):

1 ∨x (¬a(x) ∨ ¬ ∨ x¬a(x))
2 ∧x(a(x) ∨ ¬a(x))
3 ¬ ∧ x a(x) ∨x¬a(x)
4 ? ?1

5 ¬ ∨ x¬a(x) ∧x a(x) ? 3

6 y ? y ? 2

7 a(x) ∨ ¬a(x) ? 7

8 ¬a(y) ∨x¬a(x) ? 5

9 ? ¬a(y)
10 a(y) ? a(y) ? 8

3.5.4. Constructive dialogue-based logic as Gentzen’s

intuitionistic calculus G374

The tableaux of dialogue games can be transformed into a Gentzen-
style calculus. Therefore, a dialogue tableau is written in one line as
a position:

A1

... as A1, . . . , An ‖ B
An B

A formal calculus can be given which delivers all the winning
positions. A formal system of hypotheses is denoted by Σ, and a
system Σ in which a formulaA occurs by Σ(A). For all prime formulae
p, there are winning positions Σ(p) ‖ p, which are used as initial
positions of the calculus.

In the second step, the rules must be given to derive winning
positions from winning positions. One example is the following rule

74Kleene (1967, §80).
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with → in the conclusion:

Σ, A ‖ B ⇒ Σ ‖ A→ B

Obviously, the opponent has only one attack

Σ A→ B

A ?

Then, there is the following defense:

Σ A→ B

A ? B

The corresponding rule has → in the hypotheses:

Σ(A→ B) ‖ A; Σ(A→ B), B ‖ C ⇒ Σ(A→ B) ‖ C

In position Σ(A → B) ‖ C, the opponent must attack C. Then,
the proponent can attack A→ B:

Σ(A→ B) C

? A ?

The opponent may only continue with

Σ(A→ B) C

. . . ? A ?

. . . ?

or with

Σ(A→ B) C

. . . ? A ?

B

If both positions are winning positions, then Σ(A → B) ‖ C is
also a winning position. In this manner, two rules can be introduced
for each logical operator ¬,→,∧x, and ∨x. For the junctors ∧ and∨,
there are even three rules because either the opponent or the propo-
nent can choose between two attack–defense rules. Thus, there are
4 · 2 + 2 · 3 = 14 attack–defense rules.
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These 14 rules together with the initial positions Σ(p) ‖ p form a
complete logical calculus: The hypotheses A1, . . . , An logically imply
B if and only if the position A1, . . . , An ‖ B can be derived in this cal-
culus. This calculus is the intuitionistic Gentzen calculus G3, which is
equivalent to Heyting’s calculus of intuitionistic logic. Obviously, the
Gentzen calculus G3 is an appropriate tool to study formal dialogical
games.

3.5.5. Dialogue-based modal logic75

The modal operator Δ (“necessity”) can be introduced with respect
to logical truth and implication. If a system Σ of sentences is accepted
as true, a logically implied sentence A (i.e., Σ |=A) must be accepted
as true. In this sense, A is said to be necessary relative to Σ. In short:
ΔΣA :↔ Σ |=A (with A as a modal-free sentence). If A is logically
true independent of the particular system Σ of sentences, it is said
to be necessary (i.e., ΔA). As a theorem of logical implication, it can
be proven that ΔA∧ΔB → Δ(A∧B) is true. With respect to modal
logic, it is said that ΔA ∧ ΔB modal-logically implies Δ(A ∧ B)
(in short: ΔA ∧ ΔB|=Δ(A ∧ B)). Modal logic studies the class of
modal-logical implications.

An example is the so-called rule of Aristotle, which can easily be
proven with the suggested interpretation of the Δ-operator:

A1 ∧ · · · ∧An logically implies B ⇒ ΔA1 ∧ · · · ∧ ΔAn logically
implies ΔB.

The convertible version is also valid:

ΔA1 ∧ · · · ∧ ΔAn logically implies ΔB ⇒ A1 ∧ · · · ∧An logically
implies B.

If ΔΣA1∧ · · · ∧ΔΣAn logically implies ΔΣB for all systems Σ, then,
especially, it holds for Σ = A1 ∧ · · · ∧An, which gives B.

Another implication of Aristotle, which can be easily justified in
this manner, requests:

ΔA logically implies A.

75Lorenzen (1969, Chapter 6).
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How can a compound sentence be defended as thesis if some
hypotheses are given? In a dialogue, the opponent may have put
forward a formula ΔA. Without the restriction that Σ is unknown,
the proponent could ask, relative to which Σ the necessity is asserted.
But, in modal logic, that is not allowed. Thus, the proponent may
only force the opponent to admit A if she has admitted ΔA:

ΔA | ?| A

If the proponent has put forward a Δ-formula ΔB, and if the oppo-
nent attacks with “?,” the proponent must defend ΔB as logically
implied by all formulae put forward by the opponent beforehand.
Only the rule of Aristotle is available for defending ΔB. Therefore,
the following rule is supplemented.

Δ-defense rule: If the proponent defends a Δ-formula, she may
attack only the Δ-formulae (without the beginning Δ) put forward
by the opponent beforehand.

The logical Gentzen calculus G3 can be extended to deliver all the
winning positions of the dialogical game with Δ. The following rule,
which corresponds to “ΔA logically implies A,” leads from winning
positions to winning positions:

(OΔ)S(ΔA), A ‖ B ⇒ S(ΔA) ‖ B

A system S(ΔA) of hypotheses with a Δ-formula ΔA is given. In
order to defend a thesis B, the proponent may attack ΔA. The oppo-
nent must defend herself by putting forward A. Thus, a new position
S(ΔA), A ‖ B arises.

Another rule which leads from winning positions to winning posi-
tions is a version of Aristotle’s rule:

(PΔ) A1, . . . , An ‖ B ⇒ S(ΔA1, . . . ,ΔAn) ‖ ΔB

A system S(ΔA1, . . . ,ΔAn) of hypotheses is given. In order to defend
a thesis ΔB, the proponent may try to defend B with the system
A1, . . . , An of hypotheses.

The Gentzen calculus for modal logic is consistent and complete
with respect to the dialogue-based interpretation of Δ.

In the philosophical tradition of Aristotle and Thephrastus, new
modalities were introduced for application in syllogisms with terms
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of the Δ-operator and negation only:

Δ′A: ↔ Δ¬A,
∇′A: ↔ ¬ΔA,
∇A: ↔ ¬Δ¬A

Δ and Δ′ are contraries. Δ,∇′ and Δ′,∇ are contradictories. There-
fore, ΔA logically implies ∇A, and Δ′A logically implies ∇′A, which
is illustrated in a modal square as follows.

In philosophical tradition, ∇ is understood as “possible,” �� A:↔
∇A ∧ ∇′A as “contingent.” Aristotle and Thephrastus understood
truth and falsity also as modalities, which are indicated by the oper-
ators X, resp. X′. They can be used to define contingent truth and
contingent falsity:

� A :↔ XA ∧ ∇′A (contingently true),
�

′A :↔ X′A ∧ ∇A (contingently false).

For these new modalities, another modal diagram with implica-
tions can be introduced (Fig. 3.18):

∆ ∆′

X′X

⋈

⋊ ⋊

Fig. 3.18. Modal diagram.76

76Lorenzen (1969, p. 67).
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3.5.6. Dialogue-based temporal logic

Since antiquity, necessary, possible, and contingent truth has been
discussed in temporal logic of everyday life and physics. Elemen-
tary propositions a(S, t) are related to systems S of physical objects
and time t. They are sometimes called empirical or material ele-
mentary propositions, which are verified or falsified by observations
and measurements. In classical physics, it is assumed that this kind
of propositions is either true or false independent of observations
and measurements. They are called value-definite. In observational
praxis, one has to consider the temporal sequence of observations and
measurements. Therefore, in a dialogue of proponent P and opponent
O, one has to consider the temporal order of attacks and defenses.
An example is the sequential conjunction a� b, which means “a and
then b.” The attack–defense rule is illustrated in the following dia-
logue scheme. The concerned line of attack is given in brackets:77

As the elementary propositions are assumed to be value-definite,
the dialogue can be illustrated in a temporarily ordered tree
(Fig 3.19)A. At the nodes, a and b are tested. a means that a is
false. The arrow marks the temporal sequence of the dialogue.

O P

1 a � b
2 1? (0) a

3 a? (1) [a]

4 2? (0) b

5 b? (4) [b]

Fig. 3.19. Temporal tree of consequential conjunction.

77Mittelstaedt (1986, p. 47).
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The temporal order of tests is uniquely determined. The temporal
difference δ = t2 − t1 may be arbitrarily small. In the limit δ → 0,
both temporal values coincide. This is the case of logical conjunc-
tion. Its dialogue-based scheme was already introduced. Contrary to
a dialogue tableau, a temporal tree contains all possible develop-
ments which are illustrated for the logical connectives ∧,∨, and¬ in
Fig. 3.20. In this case, it is an idealization of δ = t2 − t1 → 0.

Fig. 3.20. Temporal trees of logical connectives.78

78Mittelstaedt (1986, p. 53).
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In philosophical tradition, the assumptions of classical physics
were more or less understood as self-evident conditions of temporal
logic. But, actually, the concepts must be changed with respect to
modern physics, which will be considered in Section 4.2.
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Chapter 4

Applications and Outlook
of Temporal Logic

4.1. Temporal Logic in Artificial Intelligence

and Machine Learning

Formal reasoning in temporal logic delivers efficient tools to control
and certify data-driven learning procedures in artificial intelligence
(AI). Because of an explosion of data in practical applications of
machine learning, AI is endangered by biases and failures with-
out these certifications. This chapter starts with a survey on the
development of AI: The emergence of three paradigms can be
distinguished — symbolic, subsymbolic, and hybrid AI (Fig. 4.1). In
the following, the calculi of temporal logic will be combined as tools
of symbolic AI with subsymbolic AI in the new promising paradigm
of hybrid AI.

4.1.1. Symbolic AI

The first paradigm of AI has been dominated by symbolic logic,
and therefore, it is called symbolic AI. In the first phase of AI
research, the search for general problem-solving methods was suc-
cessful at least in formal logic.1 J. A. Robinson proposed the so-called
resolution method, according to which proofs can be found by logical

1Mainzer (1981, pp. 22–33, 133–134).
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hybrid cogni�ve
systems

sensor systems
(“percep�on“)

logical systems
(“reason“)

degrees of intelligence

automa�c proving and
knowledge-based systems

machine learning with
big data

combina�on of machine
learning with automa�c proving

and logical methods
hybrid AI

subsymbolic AI

symbolic AI

Turing test 1950

Fig. 4.1. From symbolic and subsymbolic to hybrid AI.

refutation procedures.2 Automatic reasoning with logical procedures
of satisfiability (SAT) opened practical applications of SAT-solving,
which are still used in industrial logistics (e.g., car production).3

To solve a problem with a computer, the problem must be trans-
lated into a programming language. A corresponding programming
language is called “Programming in Logic” (PROLOG), which has
been in use since the early 1970s.4 As an alternative to statements
and relations, knowledge can also be represented by functions and
classifications, such as those used in mathematics. Functional pro-
gramming languages, therefore, do not regard programs as systems
of facts and conclusions (such as PROLOG) but as functions of sets of
input values in sets of output values.5 One example is the functional
programming language LISP, which was developed by J. McCarthy
as early as the end of the 1950s during the first AI phase (McCarthy,
1960).

2Robinson (1965, pp. 23–41), Mainzer (1985, pp. 41–56).
3Biere et al. (2009).
4Hanus (1986).
5Church (1941).
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In LISP, knowledge is represented by data structures and knowl-
edge processing by algorithms as effective functions. Knowledge-
based expert systems are computer programs that store and
accumulate knowledge about a specific area, from which knowledge
automatically draw conclusions in order to offer solutions to concrete
problems in that area. In contrast to a human expert, the knowledge
of an expert system is limited to a specialized information base with-
out general and structural knowledge about the world.6

In 1969, the logician Howard observed that Gentzen’s proof sys-
tem of natural deduction can be directly interpreted in its intuition-
istic version as a typed variant of the mode of computation known as
λ–calculus.7 This basic insight of mathematical proof theory opened
avenues to new generations of interactive and automated proof assis-
tants. The proof assistant Coq is an example, which is based on the
calculus of inductive constructions (CiC), combining both a higher-
order logic and a richly typed functional language.8 There are more
proof assistants, such as Agda and Isabelle. From a practical point of
view, the disadvantage is the increasing complexity of AI programs,
which often cannot be handled by proof assistants with the accuracy
of mathematical proofs. Against the background of earlier studies,
practical limits of verification and certification in symbolic AI by
proof assistants were studied recently.9

4.1.2. Subsymbolic AI

Skills and intuition of human experts cannot be completely grasped
by formal knowledge-based systems in symbolic AI. The second
paradigm of AI is dominated by learning from Big Data of expe-
rience beyond the symbolic logic paradigm, and therefore, it is called
subsymbolic AI.

Statistical learning tries to derive a probabilistic model from a
finite amount of data in experience (e.g., observations and exper-
iments) by algorithms. Statistical reasoning attempts, conversely,
to derive properties of observed data from an assumed statistical

6Puppe (1988), Mainzer (1990).
7Howard (1969).
8Bertot and Castéran (2004).
9Mainzer et al. (2018), Mainzer and Kahle (2021).
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model by algorithms. Learning algorithms of machine learning10 are
based on statistical learning theory.11 The paradigm of formal logic
is replaced by the paradigm of statistics and probability theory. The
limits of probabilistic reasoning and learning stand in a long tradition
of epistemic debates since Hume and Kant.

Learning algorithms can be realized by technical neural net-
works.12 They are complex dynamical systems of firing and non-firing
neurons with (simplified) topologies like those in living brains. The
dynamics of neural nets can be modeled in phase spaces of synap-
tic weights with trajectories converging to attractors which represent
prototypes of patterns.13

4.1.2.1. Example: Neural networks

In feed-forward neural networks, neurons are represented as nodes
of a graph in layers (Fig. 4.2). In this case, each neuron of a layer
is connected with all neurons of the following layer through directed
edges (synapses). The neurons of a layer are not connected mutu-
ally. Exceptions are the input layer with neurons without input
connections and the output layer without output connections. The
layers between the input and output layers are called “hidden.” In
the graphic model of a neural network, each connection or edge is
weighted with a number which corresponds to the intensity of the
synaptic connection. Each neuron is characterized by an activation
function which defines the input–output relation for that neuron.

Mathematically, neural networks can be defined as functions
ν : In→Om which map a n-dimensional input domain In(n> 0)
on a m-dimensional output domain Om(m > 0).14 This kind of
network can compute, for example, an approximation of a func-
tion f : R

n → R with I = O = R. A network which classifies,
for example, 8-bit pictures of size h × v (with h horizontal and v
vertical) in two classes, can be defined by a function ν : Ih·v→O with
input domain I = {0, . . . , 255} for 28 = 256 possible 8-bit pictures

10Schölkopf and Smola (2002).
11Vapnik (1998).
12Schmidhuber (2015, pp. 61, 85–117).
13Mainzer (2002).
14Mainzer and Kahle (2022); Leofante (2018, p. 2).
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output layer

layer 3

layer 2

layer 1 

input layer

Fig. 4.2. Feedforward network with three hidden layers and an input and output
layer.

inputs                                    weights                         linear combination            activation function  

⋮ ⋮

Σ

Fig. 4.3. Activation of neurons.

and output domain O = {0, 1} for two classes denoted 0 and 1.
The mapping starts with an input from In, which is at first given
to the input layer and then through the hidden layers to the out-
put layer. Mathematically, linear combinations of the values of nodes
(neurons) and weights (synaptic connections) from the preceding lay-
ers are computed layer by layer. The activation functions are applied
on these results for the following neurons (Fig. 4.3).

Networks are distinguished by different activation functions. The
threshold function of a McCulloch–Pitts neuron has only the func-
tion value of 1 for inputs v ≥ 0, otherwise 0 (Fig. 4.4(a)). A piece-
wise linear function maps a bounded interval linearly and the outer
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(a) (b) (c) (d)

Fig. 4.4. Examples of activation functions.

intervals constantly (Fig. 4.4(b)). Sigmoid functions have a variable
gradient measure, which is expressed by the curvature of the graph
(Fig. 4.4(c)). A rectifier function (ReLU: rectifier linear unit) has the
positive values of their arguments, otherwise 0 (Fig. 4.4(d)).

4.1.3. Statistical and causal learning

Because of Big Data, neural networks with deep learning are endan-
gered to become a black box with an ever-increasing number of
parameters.15 Data correlations can provide indications of facts but
do not have to do so. Statistical learning and reasoning from data
is therefore not sufficient. Rather, one must recognize the causal
relationships between causes and effects behind the measured data.
These causal relationships depend on the laws of the respective
application domain. Therefore, in addition to the statistics of the
data, additional laws and structural assumptions of the application
domains are required, which are verified by experiments and inter-
ventions. Causal explanatory models (e.g., the planetary model or a
tumor model) fulfill the law and structural assumptions of a theory
(e.g., Newton’s gravitational theory or the laws of cell biology). In
causal reasoning, the properties of data and observations are derived
from causal models. Causal inference thus makes it possible to deter-
mine the effects of interventions or data changes (e.g., through exper-
iments). Causal learning, vice versa, tries to create a causal model
from observations, measurement data, and interventions (e.g., exper-
iments), which require additional laws and structural assumptions.16

It can be proved that a causal model includes a clear probabil-
ity distribution of the data but not vice versa: For causal models

15Knight (2017).
16Pearl (2009), Peters et al. (2017).
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(e.g., the planetary model), additional laws (e.g., the gravitational
law) must be assumed.17 The objective of causal learning is therefore
to discover the causal dependencies of causes and effects behind the
distribution of measurement and observation data.

4.1.3.1. Example: Reinforcement learning

In unsupervised learning, the algorithm learns to recognize new pat-
terns (correlations) from the set of inputs without “teachers.” In
supervised learning, the algorithm learns to determine a function
from given pairs of inputs and outputs (training). A “teacher” (e.g.,
trained prototype of a pattern) corrects deviations from the correct
function value to an output (e.g., recognition of learned patterns).
Reinforcement learning (RL) is in between: A robot is given a tar-
get (as in supervised learning). However, it must find the realization
independently (as in unsupervised learning). In the step-by-step real-
ization of the goal, the robot receives feedback from the environment
at each partial step as to how good or bad it is at realizing the goal.
Its strategy is to optimize this feedback.

Technically, this means the algorithm learns through experience
(trial and error) how to act in an (unknown) environment (world) in
order to maximize the utility of the agent.18 Mathematically, RL is a
dynamic system of an agent and its environment with discrete time
steps t = 0, 1, 2, . . .. At any time t, the world is in a state zt. The
agent chooses an action at. Then, the system enters the state zt+1

and the agent receives the reward bt (Fig. 4.5).
19

The agent’s strategy is defined by πt, wherein πt(z, a) is the prob-
ability that the action is at = a if the state is zt = z. Algorithms of
RL determine how an agent changes its strategy based on its expe-
riences (rewards). The goal of the agent is to optimize his feedback
in order to achieve the goal.

An example is a mobile robot which is supposed to pick up empty
beverage cans in an office and throw them in a trash can. The robot
has sensors to detect the cans and an arm with a gripper to grip the
cans. Its activities depend on a battery that occasionally needs to be

17Mooij et al. (2013).
18Sutton and Barto (1998), Russell and Norvig (2004).
19Mainzer (2019, p. 121).
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Fig. 4.5. Reinforcement learning of an agent from its environment.

recharged at a base station. The control system of the robot consists
of components for the interpretation of sensor information and for
the navigation of the robot arm and robot gripper. The intelligent
decisions for can search are realized by a reinforcement algorithm
that takes into account the charge level of the battery.

The robot can choose between three actions: active search for a
can in a certain time period, stationary hibernation and waiting for
someone to bring a can, and returning to base station to recharge
the battery. A decision is made either periodically or whenever cer-
tain events, such as finding a can, occur. The condition of the robot
is determined by the condition of its battery. The rewards are usu-
ally zero but become positive when the robot finds an empty can or
negative when the battery charge runs out.

Ideally, an agent is in a state that sums up all the past experiences
necessary to achieve its goal. Normally its immediate and present
perceptions are not sufficient for this. But the complete history of
all past perceptions is also not necessary. For the future flight of a
ball, it is sufficient to know its current position and speed. It is not
necessary to know its complete previous course. In such cases, the
history of the present state has no influence on future development.
If the probability of a state depends only on the preceding state and
a preceding action of the agent in that state, the decision process
satisfies the Markov property.

The Markov decision process (MDP) is determined by the Markov
property:

P (zt+1, rt+1|z0:t, a0:t, b0:t) = P (zt+1, rt+1|zt, at).



Applications and Outlook of Temporal Logic 119

The action model P (zt+1|zt, at) is the conditional probability dis-
tribution that the world changes from state zt to state zt+1 if the
agent selects the action at; rt+1 is the expected return in the next
step. Because computing and storage capacities are scarce and costly,
practical RL applications often require the Markov feature. Even if
the knowledge of the present state is not sufficient, an approximation
of the Markov property is favorable. For very large (“infinite”) state
spaces, the utility function of an agent must be approximated (e.g.,
state–action–reward–state algorithms (SARSA), temporal difference
learning, Monte Carlo methods, dynamic programming).

4.1.4. Hybrid AI

Increasing computational power and acceleration of communication
need improved consumption of energy, better batteries, miniaturiza-
tion of appliances, and refinement of display and sensor technology.
Under these conditions, intelligent functions can be distributed in a
complex network with many multimedia terminals.20 Together with
satellite technology and global positioning system (GPS), electron-
ically connected societies are transformed into cyberphysical sys-
tems.21 They are a kind of symbiosis of man, society, and machine
with digital and analog interfaces, which leads to “hybrid AI.”22

Knowledge-based systems (symbolic AI) are combined with machine
learning (subsymbolic AI). Communication is not only realized
between human partners with (“analog”) natural languages but in
digital codes with the things of this world. Cyberphysical systems
also mean a transformation into an Internet of Things (IoT). Things
on the Internet become locally active agents of complex dynamical
systems, i.e., communication networks.

Examples of locally active agents are robots combining AI func-
tions with knowledge-based programming and situational learning.
Only in this way, it will be possible for robots not only to skillfully
coordinate their actions with each other but also to plan and decide
how more sophisticated biological systems can be. Neuromorphic

20Mainzer (2017).
21Mainzer (2015).
22Mainzer (2016).
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computer structures are designed, which do not occur in this way
in nature but combine the advantages of neuronal systems of nature
with the advantages of technical computer structures.23 Neural quan-
tum computers are also conceivable, in which the enormous comput-
ing speed and storage capacity of quantum computers are combined
with neural networks.24 According to this, intelligence is an inter-
actively developing ability and not a static and rigidly programmed
property of an isolated system.

But how can one rely on cyberphysical systems with hybrid AI?
Statistical machine learning with neural networks works, but we can-
not understand and control the processes in the neural networks in
detail. Today’s machine learning techniques are mostly based only
on statistical learning, but that is not enough for safety-critical sys-
tems.25 Machine learning can be combined with proof assistants
(symbolic AI) and causal learning. As in cognitive systems, expe-
rience and learning from data need control over logical reasoning.

Verification of software has already been a crucial step in the
development of computer programs in software engineering26: After
requirement engineering, design, and implementation of a program,
different verification procedures have been applied in practice. A pro-
gram is said to be correct (“certified”) if it can be verified to follow a
given specification which is derived from the design of the program.
In symbolic AI, proof assistants were already considered, which prove
the correctness of a computer program in a consistent formalism like
a constructive proof in mathematics (e.g., Coq, Agda, MinLog).27

Obviously, proof assistants are the best formal verification of cor-
rectness for certified programs.

But, in industry and business practices, proof assistants seem to
be too ambitious because of the increasing complexity of AI software.
Therefore, industrial production is often content with ad hoc tests
or empirical test procedures, which try to find statistical correlations
and patterns of failures.28 A challenge is the verification of machine

23Mainzer and Chua (2013).
24Mainzer (2020).
25Klüppelberg et al. (2014).
26Bourque and Dupuis (2004).
27Mainzer et al. (2021).
28Bertolino (2000), Tretmans and Brinksma (2003).
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learning with neural networks and learning algorithms. The increas-
ing complexity of neural networks with an ever-increasing number of
parameters generate black boxes which seem only to be trainable by
Big Data and testable by ad hoc and empirical procedures.

But, in practice, we must also consider the costs of testing. Formal
proofs of complex software need an immense amount of time and man
power. On the other hand, it is risky to rely on ad hoc testing and
empirical testing only in safety-critical systems. For certification of
AI programs, we must aim at increasing accuracy, security, and trust
in software in spite of increasing complexity of civil and industrial
applications but with respect to the costs of testing (e.g., utility func-
tions for trade-off time of delivery vs. market value, cost/effectiveness
ratio of availability). There is no free lunch for the demands of safety
and security. Against the background of earlier studies on interdis-
ciplinary risk and AI standardization,29 one should aim at a scale of
sustainable degrees of certification for responsible and sustainable AI.

4.1.5. Reinforcement learning with temporal logic

A widely used method of machine learning is the RL method. The
idea is that an agent or robot searches a problem solution in a cer-
tain environment and gets rewards to improve its search in learning
steps. Thus, RL is an optimization process of problem-solving, which
mainly uses a stochastic MDP to converge to the problem solution.

Real-world applications are very complex and cannot be realized
in simple trial-and-error procedures. An example is the task of a
humanoid robot to learn how to drive a car.30 A reward function may
be the travel duration to a destination. But there are a huge number
of details which must also be considered, such as applications of gas
and brake, using the steering wheel and transmission, safety requests,
and, last but not least, reaching the destination on time. Humans do
not learn in a stupid, brute-force manner by testing all possibilities
of behavior but reduce complexity through incorporated rules which
encourage correct behaviors and penalize risky ones. They aim at
policies to maximize the reward functions.

29Wahlster and Winterhalter (2020).
30Li et al. (2017).



122 Temporal Logic: From Philosophy and Proof Theory

The incorporated rules of a reward function are called the spec-
ification of a task. The temporal coordination of these behaviors
is expressed by modal and temporal operators: One must do this
request before that request in order to fulfill a certain intention and
to avoid a certain obstacle which could eventually emerge under cer-
tain constraints, etc. Therefore, it is convenient to use formulae of
a temporal logic to describe the specification of a task. A tempo-
ral calculus can be used as a formal specification language to express
the requirements of what an agent or robot should do. A quantitative
semantics of the temporal calculus is used to transform temporal log-
ical formula into (real-valued) reward functions. Increasing rewards
transform to better satisfaction of the specifications. It can be proven
that better policies of behavior are learned faster by using rewards
of a temporal logic than by heuristic procedures of trial and error.

4.1.6. Policy search in reinforcement learning

The search for satisfactory policies in RL is made precise in the
framework of MDP.31 An (infinite) MDP is a tuple (S,A, p,R) with
continuous set S ⊆ R

n of states, continuous set A ⊆ R
m of actions,

transition probability function p : S × A × S → [0, 1] such that
p(s, a, s′) is the probability of taking action a ∈ A at state s ∈ S end-
ing up in state s′ ∈ S or conditional probability p(s′|s, a), and reward
function R : r → R on state–action trajectory r = (s0, . . . , sT ).

In RL, the transition function p is not known by the learning
robot or agent. The reward function can be defined or learned. The
goal of RL is to find an optimal stochastic policy π∗ : S ×A→ [0, 1]
which maximizes the expected accumulated reward:

π∗ = argmaxπ Epπ(r)(R(r)),

with the trajectory distribution pπ(r), which results from following
policy π and reward R(r) for given r.

A policy can be represented by a parameterized model of, for
example, a neural network πθ with the set θ of weights as model

31Deisenroth (2013); Li et al. (2017).
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parameters. The policy search tries to find the optimal set of θ with

θ∗ = argmaxθ Epπθ (r)(R(r)).

4.1.7. Truncated linear temporal logic for

reinforcement learning32

A convenient formal language in RL should have the ability to trans-
form the specification of a learning task into a reward function. In
the work of Li et al. (2017), the formulae of a linear temporal logic
(LTL) refer to predicates of functional constraints f(s) < c with real
function f : Rn → R and constant c. The syntax of formulae in this
temporal logic is defined inductively as usual:

ϕ := �|f(s) < c|¬ϕ|ϕ ∧ ψ|ϕ ∨ ψ|♦ϕ|�ϕ|ϕ
⋃

ψ|ϕTψ|Xϕ|ϕ ⇒ ψ,

with predicate f(s) < c and Boolean connectives and temporal oper-
ators ♦ (eventually), � (always),

⋃
(until), T (then), X (next), and

⇒ (implication).
These formulae are evaluated with respect to finite time sequences

over a set S of states which are generated by an MDP. A sequence of
states from time t to time t+ k is denoted by st:t+k. The semantics
of the formulae is defined in the following way:

st:t+k |= f(s) < c :⇔ f(st) < c,

st:t+k |= ¬ϕ :⇔ ¬(st:t+k |= ϕ),

st:t+k |= ϕ ⇒ ψ :⇔ (st:t+k |= ϕ) ⇒ (st:t+k |= ψ),

st:t+k |= ϕ ∧ ψ :⇔ (st:t+k |= ϕ) ∧ (st:t+k |= ψ),

st:t+k |= ϕ ∨ ψ :⇔ (st:t+k |= ϕ) ∨ (st:t+k |= ψ),

st:t+k |= Xϕ :⇔ (st:t+k |= ϕ) ∧ (k > 0),

st:t+k |= �ϕ :⇔
∧
t′ ∈ [t, t+ k)st′:t+k |= ϕ,

32Li et al. (2017).
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st:t+k |= ♦ϕ :⇔
∨
t′ ∈ [t, t+ k)st′:t+k |= ϕ,

st:t+k |= ϕ
⋃
ψ :⇔

∨
t′ ∈ [t, t+ k)st′:t+k |= ψ

∧
∧
t′′ ∈ [t, t′)st′′:t+k |= ϕ,

st:t+k |= ϕTψ :⇔
∨
t′ ∈ [t, t+ k)st′:t+k |= ψ

∧
∨
t′′ ∈ [t, t′)st′′:t+k |= ϕ.

According to these definitions, the temporal operators have the fol-
lowing meaning:

st:t+k |= �ϕ, i.e., the specification defined by ϕ is always satisfied
in the state trajectory st:t+k if the specification of ϕ is satisfied for
every subtrajectory st′:t+k with t′ ∈ [t, t+ k).

st:t+k |= ♦ϕ, i.e., the specification defined by ϕ is eventually sat-
isfied in the state trajectory st:t+k if the specification of ϕ is satisfied
for at least one subtrajectory st′:t+k with t′ ∈ [t, t+ k).

st:t+k |= ϕ
⋃
ψ, i.e., the specification defined by ϕ “until” ψ is

satisfied in the state trajectory st:t+k if the specification of ϕ is sat-
isfied at every time step before ψ is satisfied, and ψ is satisfied at a
time between t and t+ k.

st:t+k |= ϕTψ, i.e., the specification defined by ϕ “then” ψ is sat-
isfied in the state trajectory st:t+k if the specification of ϕ is satisfied
at least once before ψ is satisfied between t and t+ k.

A trajectory s of duration k is said to satisfy a formula ϕ if
s0:k |= ϕ.

For RL, a specification of a formula ϕ must be transformed into
a real-valued function that can be used as reward. Therefore, a real-
valued function ρ(st:t+k, ϕ) depending on state trajectory st:t+k and
specification formula ϕ should measure how far st:t+k is from satis-
fying or violating the specification ϕ. The results of ρ are sometimes
called robustness degrees. They define the quantitative semantics of
the considered LTL calculus:

ρ(st:t+k,�) := ρmax (maximal robustness degree),

ρ(st:t+k, f(st) < c) := c− f(st),

ρ(st:t+k,¬ϕ) := −ρ(st:t+k, ϕ),
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ρ(st:t+k, ϕ ⇒ ψ) := max(−ρ(st:t+k, ϕ), ρ(st:t+k , ψ)),

ρ(st:t+k, ϕ ∧ ψ) := min(ρ(st:t+k, ϕ), ρ(st:t+k , ψ)),

ρ(st:t+k, ϕ ∨ ψ) := max(ρ(st:t+k, ϕ), ρ(st:t+k, ψ)),

ρ(st:t+k,Xϕ) := ρ(st+1:t+k, ϕ) (k > 0),

ρ(st:t+k,�ϕ) := min
t′∈[t,t+k)

ρ(st′:t+k, ϕ),

ρ(st:t+k,♦ϕ) := max
t′∈[t,t+k)

ρ(st′:t+k, ϕ),

ρ(st:t+k, ϕ
⋃
ψ) := max

t′∈[t,t+k)

(
min(ρ(st′:t+k, ψ), min

t′′∈[t,t′)
ρ(st′′:t′ , ϕ)

)
,

ρ(st:t+k, ϕTψ) := max
t′∈[t,t+k)

(
min(ρ(st′:t+k, ψ), max

t′′∈[t,t′)
ρ(st′′:t′ , ϕ)

)
.

Obviously, ρ(st:t+k, ϕ) > 0 implies st:t+k |= ϕ, and ρ(st:t+k, ϕ) < 0
implies st:t+k |= ϕ. An example illustrates the computation of the
robustness degrees of specifications. The formula ϕ = ♦ (s < 10)
is a specification with a one-dimensional state s and a state tra-
jectory s0:2 = s0s1 = [11.5]. The robustness degree is ρ(s0:1, ϕ) =
maxt∈{0,1}(10 − st) = max(−1, 5) = 5. In this case, ρ(st, ϕ) > 0
implies s0:1 |= ϕ and ρ(st, ϕ) = 5 is a measure for the margin of
satisfaction.

With respect to tasks of reinforcement learning, it is convenient
that a calculus of temporal logic L is defined over predicates which
specify tasks as functions of states. A quantitative semantics of the
calculus should introduce a continuous (real-valued) measure of sat-
isfaction. It is also convenient that the specification formulae are
evaluated over finite-state trajectories of variable length. This proce-
dure allows per-step evaluation according to the empirically available
data. Temporal operators can have time bounds but must not have
them. These criteria are fulfilled by the previous calculus. There-
fore, this calculus is called truncated linear temporal logic (TLTL).
There are other LTLs with different advantages and disadvantages,
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such as signal temporal logic (STL),33 metric temporal logic (MTL),
bounded temporal logic,34 and linear temporal logic on finite traces
(LTLf ).

35

4.1.7.1. Example: Goal reaching while avoiding obstacles36

In a first task, an end-effector should reach the goal position g but
simultaneously avoid two obstacles o1 and o1. The discrete and con-
tinuous rewards are given by

rdiscrete1 =

⎧
⎪⎨
⎪⎩

5, if dg ≤ 0.2,

−2, if do1,2 ≤ ro1,2 ,

0, otherwise,

rcontinuous1 = −c1dg + c2

2∑
i=1

doi ,

with Euclidean distance dg between the end-effector and the goal,
distance doi between the end-effector and obstacle i, and radius roi
of obstacle i.

The specification of the task is described by a TLTL formula ϕ1,
which requires eventually to always stay at goal g and always stay
away from obstacles, i.e.,

ϕ1 = ♦�(dg < 0.2) ∧� (do1 > ro1 ∧ do2 > ro2).

The resulting robustness degrees are computed by

ρ1(ϕ1, (xe, ye)0:T ) = min

(
max
t∈[0,T )

(
min
t′∈[t,T )

(
0.2− dtg

))
,

min
t∈[t,T )

(
dto1 − ro1 , d

t
o2 − ro2

))
,

with trajectory (xe, ye)0:T of the end-effector position and distance dt

at time t. The robustness degrees are automatically generated from
the quantitative semantics. Thus, it is only necessary to specify the
TLTL formula ϕ1.

33Donzé and Maler (2010).
34Latvala et al. (2004).
35De Giacomo and Vardi (2013).
36Li et al. (2017, pp. 4–5).
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4.1.7.2. Example: Pick-and-placement tasks of robots37

In the next task, a robot should place a piece of bread in a toaster.
The gripper position of the robot ranges continuously from 0 to 100,
with 0 being the fully closed position. The 21-dimensional state fea-
ture space contains seven joint angles and joint velocities, the pose
of the end-effector, and the gripper position. The eight-dimensional
action space includes seven joint velocities and the desired gripper
position. Actions are sent at 20Hz.

The specification ϕ2 of the task requires that the robot always not
hit the table or the toaster, eventually reaches the slot, and keeps
the gripper closed until the slot is reached, and if the slot is always
reached, it implies next that the gripper remains open always, i.e.,
the TLTL formula:

ϕ2 = � (¬(ψtable ∨ ψtoaster)) ∧ ♦ (ψslot) ∧ (ψgc
⋃
ψslot)

∧�(ψslot ⇒ X � (ψgo)),

with predicates ψtable, ψtoaster, and ψslot which describe the regions
with spatial constraints (xmin<xe<xmax) ∧ (ymin<ye<ymax) ∧
(zmin<ze<zmax) and position (xe, ye, ze) of the end-effector.38 Ori-
entation constraints are specified in a similar way. The predicates
ψgc and ψgo describe the conditions for the gripper to be closed and
opened, respectively.

The resulting robustness degree for the specification ϕ2 is given
by

ρ2(ϕ2, p
e
0:T ) = min

(
min
t∈[0,T )

(max(−ρ2(ψtable, p
e
t:T ),−ρ2(ψtoaster, p

e
t:T ),

max
t∈[0,T )

ρ2(ψslot, p
e
t:T ), max

t∈[0,T )
(
min(ρ2(ψslot, p

e
t:T ),

min
t′∈[0,T )

ρ2(ψgc, p
e
t′:t)

)
, min
t∈[0,T )

(
max(−ρ2(ψslot, p

e
t:T ),

min
t′∈[t+1,T )

ρ2(ψgo, p
e
t′:T )))

)
.

37Levine et al. (2016), Gu et al. (2016).
38Li et al. (2017, pp. 6–7).
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The robustness degrees are automatically generated by the quanti-
tative semantics if specification ϕ2 is given. If ρ2(ϕ2, p

e
0:T ) > 0, then

specification ϕ2 is satisfied.

4.1.8. Temporal logic LTL for reinforcement learning

The syntax of LTL is defined inductively as usual39:

ϕ := p|¬ϕ|ϕ1 ∧ ϕ2|Xϕ|ϕ1

⋃
ϕ2,

with atomic proposition p. The other Boolean connectives are defined
as usual in classical logic with ¬ and ∧. The logical constants true
and false can be defined as � := p∨¬p and ⊥ := ¬�. The temporal
modalities “eventually” and “always” can be defined with the “until”
operator as ♦ϕ := �

⋃
ϕ and �ϕ := ¬♦¬ϕ, respectively. The LTL

formula �♦ϕ states that ♦ϕ will always be true, or “eventually ϕ,”
is repeated forever. In this case, ϕmust be true infinitely many times.
Therefore, �♦ϕ means “infinitely often ϕ.”

LTL specifies properties of infinite-state trajectories. For a set AP
of atomic propositions, an infinite sequence, σ = σ(0)σ(1)σ(2) . . ., is
defined by the values of the function σ : N → 2AP, which includes
all propositions p ∈ AP that are true at time t ∈ N . The infinite
sequence σk = σ(k)σ(k+1)σ(k+2) . . . is the part of the sequence σ
starting at time k. The satisfaction relation |= between trajectory σ
and LTL formula ϕ is defined inductively as usual:

σ |= p ⇔ σ(0) (i.e, σ(0 |= p),

σ |= ¬ϕ⇔ σ � ϕ,

σ |= ϕ1 ∧ ϕ2 ⇔ σ |= ϕ1 and σ |= ϕ2,

σ |= Xϕ ⇔ σ1 |= ϕ,

σ |= ϕ1

⋃
ϕ2 ⇔

∨
k ≥ 0 σk |= ϕ2 and

∧
j < k σj |= ϕ1.

From a linguistic point of view, LTL specifies properties of the infi-
nite sequence σ = σ(0)σ(1)σ(2) . . . with symbols σ(i) ∈ 2AP = Σ.

39Lennarston and Quin-Shan Jia (2020).
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The infinite set {0, 1, 2, . . .} of natural numbers represents the small-
est infinite ordinal number ω. Therefore, σ ∈ Σω can be understood
as infinite symbolic words. Subsets L ⊆ Σω are called ω-languages,
which can also be used to specify properties equivalent to LTL spec-
ifications. In Section 3.3, it was explained that regular ω-languages
with infinite words can be recognized by Büchi automata, while finite
words of regular languages can be recognized by finite automata.

A Büchi automaton is defined as a tuple, B = (Q,Σ, δ, q0,Qm, qf ),
with a finite set Q of states, a finite set Σ ⊆ 2AP of symbols, transi-
tion function, δ : Q × Σ → 2S , initial state q0, a set Qm of marked
goal states, and a forbidden state qf . A Büchi automaton must
reach a marked state infinitely mans times, while a finite automa-
ton must reach it one time. In LTL, the acceptance condition of a
finite automaton can be expressed as ♦M with state label M for
all marked states. The acceptance condition of Büchi automaton is
described as �♦M . In Fig. 4.6, a marked state is represented by a
double circle. The forbidden state qf is represented by a cross, which
is reached for all non-accepted words.

In order to specify properties on state labels in temporal
logic, an MDP is defined for RL. An MDP is a tuple M =
(S,A, P, s0, AP, λ, ρ) with a countable set S of states, a finite set
A of actions and set A(s) of available actions in state s, transition
probability function P : S×A×S → [0, 1] such that P (s, a, s′) is the
transition probability for transition (s, a, s′) from state s to state s′
for action a ∈ A(s) with

∑
s′∈S P (s, a, s

′) = 1, initial state s0, a set

AP of atomic propositions, a state labeling function λ : X → 2AP ,
and a reward function ρ : S × A × S → R with the immediate
reward ρ(s, a, s′) after transition (s, a, s′). The function value λ(s) of
the labeling function λ indicates those atomic propositions which are
satisfied in state s.

In RL, an MDP should satisfy an LTL formula ϕ. Therefore,
the corresponding Büchi automaton Bϕ is synchronized with the
MDP M by the definition of a product model M ⊗ Bϕ.

40 For
M = (S,A, P, s0, AP, λ, ρ) and B = (Q,Σ, δ, q0,Qm, qf ), the syn-
chronization is defined by

M ⊗B := (S × Q,A, P⊗, (s0, δ(q0, λ(s0))), S × Qm, S × {q0}, ρ⊗),

40Baier and Katoen (2008).
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with transition probability

P⊗((s, q), a, (s′, q′)) =
{
P (s, a, s′), if q′ = δ(q, λs′)),
0, otherwise,

and reward

ρ⊗(s, q) = ρ(s) +

⎧
⎨
⎩
ρM > 0, if q ∈ Qm,

ρF < 0, if q = qf ,
0, otherwise.

The state label λ(s′) of the target state s′ in the MDP M should
satisfy the related transition label in the Büchi automaton B. In
this sense, a transition ((s, q), a, (s′, q′)) in the synchronized system
with transition probability P⊗ is restricted by the condition q′ =
δ(q, λ(s′)).

In Fig. 4.6, forbidden states are introduced for non-accepted
words. The safety specification �¬q requires that no state with label
q is accepted. In the Büchi automaton Bϕ, the forbidden state 2 mod-
els that a transition of the MDP M to a state with label q is not
accepted. In the reward function ρ⊗, a positive reward ρM > 0 is
related to marked states and a negative reward ρF < 0 to forbidden
states.

In Fig. 4.6, an MDP M has state labels p and q. For the spec-
ification ϕ = ♦ p ∧ �¬q, the corresponding Büchi automaton Bϕ
is shown with a forbidden state after transitions with label q. The
synchronization M⊗Bϕ has two marked states because specification
♦ p is fulfilled in state 2 as well as 3 in M.

In RL, learning is an optimization process which can be performed
with, for example, a so-called Q-function. A Q-function is an action-
value function Q : S × A → R that depends on both the system
state and possible actions. The function is estimated from system
data, where the next state and resulting reward are considered as
a result of a given action which is decided by the learning agent.
The optimization of a control policy is performed by a stochastic
procedure (e.g., dynamic programming) for the MDP. The policy is
determined by the Q-function. It selects actions such that marked
states, if possible, will be visited infinitely often. Forbidden states
are avoided. In this way, an LTL formula is satisfied.
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Fig. 4.6. Synchronization M⊗Bϕ of a Markov decision process M and a Büchi
automaton Bϕ.

41

4.2. Temporal Logic in Relativistic Physics

Traditional temporal logics assume classical physics and its concept
of time as self-evident. But we have to consider different concepts
of time in the different physical theories, such as classical physics,
relativistic physics, thermodynamics, and quantum physics. In mod-
ern physics, it is well-known that the concepts of time, space, and
matter change if research approaches the size of cosmic structures
or elementary particles, the velocity of light, and the gravitation of
black holes, i.e., in short, if measurements become more and more

41Lennarston and Quin-Shan Jia (2020, Fig. 1).
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dependent on Planck’s quantum constant and the constant of light
velocity.

In special relativity, the mathematical structure of space-time is
given by the four-dimensional Minkowskian geometry.42 The four-
dimensional points with three spatial and one temporal coordinate
are physically understood as events. According to Einstein, an event
y comes after an event x if a signal can be sent from x to y at most
with the speed of light. Physically, the causal connections between
events are defined in this way. Concerning temporal logic, the tem-
poral operator � of necessity relates to sentences on events which
“will always be.” It can be proven that modal sentences valid in
this space-time structure are the theorems of the modal calculus
S4.2. With respect to temporal logic, the modalities of this calculus
relate to a branching-tree temporal logic. With respect to physics,
the Minkowskian space-time of relativity theory is one of the most
significant nonlinear-time structures.

4.2.1. Temporal logic of time frames

The syntax of propositional modal logic consists of sentence letters
p, q, r, . . ., which are connected by Boolean connectives and the modal
operator � (“it is now and will always be the case that”). The modal
operator ♦ (“it will be at some time that”) is defined as usual with
� as ¬�¬.43

The semantics of this formal language relates to time frames.44

A time frame is defined as T = (T,≤) with a nonempty set
T of events and a reflexive and transitive ordering. A frame is
called directed iff any two elements of T have an upper bound. A
T -valuation is a function V which assigns to each sentence letter p
the set V (p) ⊆ T of events at which p is true. The valuation function
can be extended by inductive definition to all sentences A,B,C, . . .
defined with Boolean connectives. For modalities, it is defined as

t ∈ V (�A) if and only if t ≤ s implies s ∈ V (A),
t ∈ V (♦A) if and only if for some s ∈ V (A), it is t ≤ s.

42Mainzer (2010, Chapter III.1).
43Prior (1967).
44Goldblatt (1980).
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The reflexivity of ≤ expresses the meaning of modal operator �
(“it is and will always be”). A sentence A is valid in time frame
T = (T,≤) according to this definition:

T |= A iff V (A) = T for every T -valuation V .

Time frames may have an analogous structure, which is defined
with a homomorphic mapping. Time frames T = (T,≤) and T ′ =
(T ′,≤′) are called p-homomorphic (abbreviation: T � T ′) iff there
is a (surjective) function f : T → T ′ (p-homomorphism) with

(i) t ≤ s implies f(t) ≤′ f(s),
(ii) f(t) ≤′ v implies that there is some s ∈ T with t ≤ s and

f(s) = v.

For p-homomorphic time frames with T � T ′, it is T |= A only if
T ′ |= A for any sentence A.

A subset T ′ ⊆ T is called future-closed under ≤ if, for all t ∈ T ′
with t ≤ s, it is s ∈ T ′. A time frame T ′ = (T ′,≤′) with a future-
closed subset T ′ ⊆ T is called a subframe of time frame T = (T,≤).
Because of the transitivity of ≤, for each t, the set {s|t ≤ s} is the
base of a subframe of T generated by t. An element 0 ∈ T is called
an initial point of time frame T if 0 ≤ s is for all s ∈ T . Therefore, t
is an initial point of the subframe generated by t.

For subframe T ′ of T , it is T |= A only if T ′ |= A for any
sentence A.

The semantics of time frames can be related to the formal modal
calculus S4.2, which is axiomatized by the following formulae:

(i) �(A → B) → (�A → �B),
(ii) �A→ A,
(iii) �A→ ��A,
(iv) ♦�A→ �♦A

and rules

(i) modus ponens: A A→B
B ,

(ii) necessitation: A
�A .

Formula (i) is valid on all frames because it expresses a general prop-
erty of necessity independent of the properties of ≤. Formula (ii) is
valid because of the reflexivity of ≤. Formula (iii) is valid because of
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the transitivity of ≤. Formula (iv) is valid if ≤ is directed. Therefore,
the following version of soundness is true for the modal calculus S4.2
with respect to the semantics of time frames:

�S4.2 A implies that A is valid in all directed frames.

Completeness can also be proven for S4.2 in the following sense:

�S4.2 A implies that there is a finite generated and directed time
frame T with T � A.

The equivalence relation on T with

t ≈ s iff t ≤ s and s ≤ t

leads to clusters t̄ and s̄ as equivalence classes. They can be ordered
by an ordering

t̄ ≤ s̄ iff t ≤ s,

which is antisymmetric because s̄ ≤ t̄ and t̄ ≤ s̄ implies t̄ = s̄.
Therefore, a time frame can be represented as a partially ordered
collection of clusters.

A final element s in a time frame T with t ≤ s for all t ∈ T is
denoted by ∞. If time frame T is directed and finite, then it must
have at least one final point. All final points are ≈-equivalent and
belong to cluster ∞̄. A time frame T can be extended by a unique
final point ∞ /∈ T with T ∞ := (T ∪ {∞},≤) and appropriately
extended ordering ≤ of T for ∞. As the final point is an upper
bound for any two elements, time frame T ∞ is directed.

In order to construct an appropriate time frame for the
Minkowskian space-time of relativity, an infinite binary-branching
frame B = (B,≤) is introduced.45 The elements x ∈ B are finite
sequences x = x1x2, . . . , xn, with xi ∈ {0, 1} and length l(x) = n.
The empty sequence x = ∅ with l(x) = 0 is included.

The ordering for sequences x = x1x2, . . . , xn and y = y1y2, . . . , yn
is defined by

x ≤ y iff x is an initial element of y,

Iff n ≤ m, and y = x1x2, . . . , xnyn+1yn+2, . . . , ym.

45Goldblatt (1980).
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Fig. 4.7. Infinite binary-branching frame B = (B,≤).

Obviously, the infinite binary-branching frame is partially ordered
with ∅ as the initial point. The successors of x in B are the sequences
that extend x. There are exactly two immediate successors 0 and 1
of x. In Fig. 4.7, the tree of the infinite binary-branching frame B =
(B,≤) is illustrated. The length l(x) can be considered as the level
of x in B. In Section 1.2, this tree structure was already introduced
as a binary fan of intuitionistic mathematics.

It can be proven that the infinite binary-branching frame B is
p-homomorphic to any finite generated time frame.

Modal logic S4 contains the axioms of S4.2 without axiom
(iv). Any non-theorem for S4 is falsifiable on a finite gener-
ated reflexive and transitive frame. The infinite binary-branching
frame B is p-homomorphic to any finite generated time frame. For
p-homomorphic time frames with T � T ′, it is T |= A only if T ′ |= A
for any sentence A. Therefore, for any sentence A, it holds that

�S4 A if and only if B |= A.46

A characteristic frame for the calculus S4.2 can be found by exten-
sion of B with an infinite final cluster at the top of B. For an infinite
set Ω = {∞0,∞1, . . . ,∞n, . . .} of elements disjoint from B, a frame
BΩ = (B∪Ω,≤) is defined with an extended ordering ≤ with respect
to the elements of Ω.

It can be proven that BΩ � T (i.e., BΩ is p-homomorphic to T )
for any finite directed and generated frame T . It follows that

�S4.2 A if and only if BΩ |= A for anyA.46

46Goldblatt (1980, p. 225).
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4.2.2. Time frames of Minkowskian space-time

The metric of an n-dimensional Minkowskian geometry is defined by
μ(x) := x21 + x22 + · · · + x2n with n-tupel x = (x1, x2, . . . , xn) of real
numbers. In special relativity, it is n = 4, with spatial coordinates
x1, x2, x3 and time coordinate x4 = t which is distinguished by the
minus-sign in the Minkowskian metric.47

Mathematically, an n-dimensional space-time can be defined as a
frame T n = (Rn,≤) with

x ≤ y iff μ(y − x) ≤ 0 and xn ≤ yn for x, y ∈ R
n

iff

n−1∑
i=1

(yi − xi)
2 ≤ (yn − xn)

2 and xn ≤ yn for x, y ∈ R
n.

T n is a partially ordered and directed frame. An upper bound of
x and y is z := (x1, x2, . . . , xn−1, zn) with zn =

∑n−1
i=1 (yi − xi)

2 +
|xn|+ |yn|.

It can be proven that T n and T n+1 are p-homomorphic (i.e.,
T n � T n+1).48

Physically, Minkowskian space-time is T 4. Elements x and y are
called “events.” The relation x ≤ y means that a signal can be sent
from event x to event y with a speed at most that of light in the causal
future of x. The spatial and the time coordinates can be chosen such
that the speed of light is one unit of distance per unit of time. Then,
in the frame T 2, the future for each event e = (x, y) in the plane
consists of all events on or above upwardly directed rays of slopes +1
and −1 from e (Fig. 4.8).49

It can be proven that for any sentence A, it holds that

�S4.2 A iff T n |= A iff I |= A for the unit box I := [0, 1) × [0, 1).

In the time frame T n, a relation of events can be defined with

x ≺ y iff μ(y − x) ≤ 0 and xn ≤ yn.
50

47Mainzer (1988, pp. 39–44, Chapter 3.3: Minkowski’s spacetime).
48Goldblatt (1980, pp. 225–227).
49Goldblatt (1980, p. 227, Fig. 3).
50Goldblatt (1980, pp. 232–234).
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Fig. 4.8. Future in Minkowskian space-time T 2.

Physically, x ≺ y means that a signal can be sent from event x to
event y at less than the speed of light. For the reflexive relation

xRy iff x = y or x ≺ y,

the valid sentences on time frame (T n, R) are exactly the theorems
of the logical calculus S4.2.

The standard models of relativistic cosmology allow a mathemat-
ical solution that cosmic expansion will lead to a contraction of the
universe, with a final collapse to a singularity. In this case, any future
path in space-time will end in the singularity. Mathematically, in a
time frame, the existence of a singularity means∧

x
∨
y(x ≤ y ∧

∧
w(y ≤ w → y = w)).

In a directed partially ordered frame, there can be only one unique
final event y with the singularity condition. The reason is that if y
has no successors, then an upper bound for y and the other point
can only be y itself.

The calculus K2 extends the calculus S4.2 by the axiom

�♦A→ ♦�A.

This formula is valid on frames with the singularity condition.
In temporal logic, we must distinguish two irreflexive orderings

with different consequences for space-time. There is the already
defined ordering

x ≺ y iff μ(y − x) ≤ 0 and xn ≤ yn,

which must be distinguished from the after-relation in temporal logic

xay iff x �= y and x ≤ y.

The difference between both orderings becomes obvious in terms
of the validity of modal sentences. Concerning the after-relation a,
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    •                                                                                       

   •                                                         later

now now  

Fig. 4.9. Time-travel paths with respect to ordering ≺ (left) and a (right).51

two propositions A and B are considered, which hold in the future
at two points that can only be reached from now by traveling in
opposite directions at the speed of light (Fig. 4.9(left)). In this case,
♦A ∨ ♦B will be true now but never again. It follows that

♦A ∧ ♦B → ♦(♦A ∧ ♦B)

is not valid for the past-relation a.
For the≺-relation, the formula is true. The reason is that a slower-

than-light travel can always be realized with faster velocity. There-
fore, the traveler can wait for some time and travel to A and B at
a greater speed (Fig. 4.9(right)). This difference between the two
orderings is true for all time frames T n with n ≥ 2.

It is remarkable that the validity of modal sentences is dimen-
sion dependent in the Minkowskian geometry of relativity theory. In
three-dimensional space-time T 3, there are at least three points that
can only reached by traveling in different directions with the speed
of light. In Fig. 4.10, the future of an event e is illustrated by the
well-known Minkowskian right circular cone, which is centered in e.52

In (T 3, a) (also in (T n, a) with n ≥ 3), the following modal sentence
can be falsified for ij ∈ {1, 2, 3}:

(∧
i

♦pi

)
∧

⎛
⎝∧
i �=j

�(pi → ¬♦pj)

⎞
⎠→

∨
i �=j

(♦(♦pi ∧ ♦pj)).

But this sentence is true in (T n,≺) with n ≥ 2 and in (T 2, a).
The two-dimensional Minkowskian space-time consists of one space

51Goldblatt (1980, p. 234).
52Mainzer (1988, pp. 40–42).
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e

Fig. 4.10. Minkowskian future cone in T 3.

dimension and one time dimension. In the corresponding temporal
logic, there is an algorithm to determine whether a given temporal
formula is valid over the two-dimensional Minkowskian space-time or
not. For higher dimensions, such an algorithm of decidability is not
known.

4.2.3. Modal and temporal logics for continuous

and discrete space-time

In the studies of Minkowskian space-time, one can distinguish the
languages of modal and temporal logic. The language of modal logic
is the language L of propositional logic extended by the modal oper-
ator � of necessity. The language of temporal logic consists of the
language L of propositional logic extended by the temporal opera-
tors G (“necessarily in the future”) andH (“necessarily in the past”).
There are dual operators with the following definitions53:

♦ := ¬�¬ (“possibly”),

F := ¬G¬ (“possibly in the future”),

P := ¬H¬ (“possibly in the past”).

In general, the semantics of these formal languages can be defined
by Kripke models. A Kripke model is a structure M := (W,R, V ),
with set W of points (“worlds” or “times”), binary relation R on
W , and a function V from the set of propositional variables to the
set 2W of all subsets of W . For a propositional variable p the set

53Uckelman and Uckelman (2007).
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V (p) contains all worlds or times when the proposition p is true.
The semantic truth in a (Kripke) model is defined recursively for the
Boolean connectives ¬,∧,∨, and → in the usual way. For the modal
and temporal operators, the necessary truth in the future and in the
past of a formula ϕ in a world or time x of a Kripke model M is
defined by

M, x |= �ϕ iff M, y |= ϕ for all y with xRy,
M, x |= Gϕ iff M, y |= ϕ for all y with xRy,
M, x |= Hϕ iff M, y |= ϕ for all y with yRx.

The modal logic K consists of all axioms of propositional logic
and the modal axiom

�(p → q) → (�p → �q)
and the rules of modus ponens and inference of � �ϕ from � ϕ.

The corresponding temporal logic Kt consists of all axioms of
propositional logic extended by axioms of the temporal operators G
and H with

(i) H(p → q) → (Hp → Hq),
(ii) G(p → q) → (Gp → Gq),
(iii) p → HFp,
(iv) p → GPp

and the rules of modus ponens and inference of � Hϕ and � Gϕ from
� ϕ.

One can restrict to the modal language with the constraint that
the relation R must be reflexive and a proposition p true, resp. pos-
sible, at a point whenever p is necessary, resp. true, at that point.
One can also restrict to the temporal language with the constraint
that �p (necessarily p) is a definition for p∧Gp (p and p always true
in the future).

Mathematically, Kripke models can be considered for continuous
worlds W = R

n and discrete worlds W = Z
n. Continuous worlds are

interesting for the physical application of the Minkowskian space-
time (R4,�), with � as relation R of Kripke models. The set
{y|x � y} is the Minkowskian future light cone of event x. This is the
set of all future physical events which are accessible from x. Events
outside the future light cone are not accessible from x and there-
fore causally undetermined. Mathematically, (Rn,�) is isomorphic
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to (Rn,≤), which is the rotation of (Rn,�) with an angle of 45◦ in
Fig. 4.8 (for n = 2). Relation � is reflexive. There are two irreflexive
orderings ≺ and a in modal and temporal logic, which were already
studied in the previous section with their different consequences.

A modal logic of the frames (Rn,≤) with n ≥ 2 is S4.2, which
consists of calculus K and the modal axioms

(i) �p → ��p,
(ii) �p → p,
(iii) ♦�p → �♦p.

S4.2 is finitely axiomatizable and complete.54

The modal logic of the frames (Rn,≺)n ≥ 2 is L2, which consists
of K and the modal axioms

(i) ♦♦p → ♦p,
(ii) ♦(p ∨ ¬p),
(iii) (♦p ∧ ♦q) → ♦(♦p ∧ ♦q),
(iv) ♦�p → �♦p.55

Axiom (ii) expresses that there are no dead ends in the frames, and
every n-tupel can access another n-tupel. Axiom (iii) means a version
of density in the frames: For all x, y1 and y2, there is a z such that if
x ≺ y1 and x ≺ y2, then x ≺ z, z ≺ y1, and z ≺ y2.

It is remarkable that the modal logics of the reflexive and irreflex-
ive versions of frames Rn are the same for all dimensions n > 1. Con-
cerning the temporal after-operator a, no axiomatization of modal
or temporal logics is known for frames (Rn, a) for all n. It is only
known that the temporal logics for (Rn, a) must be distinct for all n.
Whereas the modal logics for (Rn,≤) is the same for all n ≥ 2, the
modal logics for (Zn,≤) and (Zn, a) are distinct for all n.56 Obvi-
ously, discrete structures seem to be much more complicated than
continuous ones.

54Goldblatt (1980, pp. 220–221).
55Shapirovsky and Shehtmann (2003, pp. 437–459).
56Phillips (1998, pp. 545–553).
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4.2.4. Conceptual foundations of general relativity57

A main requirement of this book is that temporal logic must consider
the change in the time concepts of physics from Aristotle and New-
ton to Einstein and the quantum world. The axioms of a calculus
in temporal logic depends on an intuitive understanding of concep-
tual foundations of time. Therefore, before analyzing formal systems
of temporal logic in general relativity, we start with a short infor-
mal reminder on the conceptual foundations of general relativity. In
special relativity theory, an absolute space-time frame is abandoned,
and all measurements and observations are taken relative to local-
ized frames of reference under the assumption of the velocity of light
as maximum speed. But accelerations according to Newton’s law of
gravitation are not considered. In general relativity theory, special
relativity is extended, and a relativistic gravitational law included.

When Einstein extended his investigation of space-time to accel-
erated reference frames in 1907, he assumed that the acceleration
effect of a reference frame cannot be distinguished from the effect of
a gravitational field. His thought experiment of an observer who is
in a closed box without contact with the outside world and can only
observe the movements of bodies in this box is well known. All masses
experience the same constant acceleration downward in a homoge-
neous gravitational field. Also, with respect to a box moving upward
with the same acceleration, free mass points of any mass experience
this acceleration downward. An observer in the box can therefore not
decide by measurement whether the box is constantly accelerated or
whether it is in a homogeneous gravitational field.

Equivalently, one can also say that the effects of a homogeneous
gravitational field on masses can be simulated in an indistinguish-
able way from those in reference to a suitably accelerated reference
frame. In other words, by referring to a freely falling reference frame
(e.g., an elevator), all effects of a homogeneous gravitational field can
be eliminated, i.e., weightlessness prevails.

So far, only the special case of homogeneous gravitational fields
has been considered. In an inhomogeneous gravitational field with

57Mainzer (2010, Chapter III.2).
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different gravitational effects, however, sufficiently small areas can
always be considered, in which gravitational effects hardly change
and whose effects can therefore be approximated by a homogeneous
gravitational field.

The equivalence principle therefore states that at least locally, i.e.,
in very small space-time sections in which the gravitational field does
not change, an inertial system can be chosen, whereby the gravita-
tional effect is canceled. Locally, therefore, the laws of special relativ-
ity apply without gravity. Einstein’s thought experiment is realized
today by passengers in an airplane, who experience weightlessness
during free fall in the Earth’s gravitational field (e.g., nosedive).

Even with frequency measurements on light beams, an observer
cannot distinguish between a constantly accelerated reference frame
and a homogeneous gravitational field. Like a thrown stone, light
loses its energy when it rises in the gravitational field against the
effect of a gravitational attraction. Its frequency decreases, and its
color shifts toward the red part of the spectrum, i.e., toward longer
wavelengths. If a beam of light is sent from a wall to the opposite
wall in a closed box at right angles to the direction of acceleration or
gravitational effect, it is indistinguishably curved toward the ground
in both cases. This is the case observed by Eddington in 1917 with
the deflection of light rays in the gravitational field of the sun.

According to the equivalence principle, there are again local effects
of gravitational fields that are globally inhomogeneous. Freely falling
bodies in inhomogeneous gravitational fields exhibit relative accelera-
tions among themselves. In the absence of gravity, free point particles
and light rays move with constant speed on straight lines, i.e., with-
out relative acceleration among themselves. If a gravitational field is
switched on, for example, by bringing a large mass into the vicinity,
these paths are bent or exhibit relative accelerations. Gravitational
effects thus correspond geometrically to orbital curvature. In this
sense, an inhomogeneous gravitational field corresponds globally to
a curved space-time.

At first, this is reminiscent of a well-known case of the spher-
ical geometry on the Earth’s sphere, as it is known in geodesy.
The straightest paths on the curved surface of the Earth (e.g., the
shortest connection between two places) are circular arcs. If one
chooses arbitrarily small sections, one obtains approximate distances:
An arc is mathematically composed of infinitesimally small straight
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lines. However, the geometry of straight lines is Euclidean. Therefore,
in Riemannian differential geometry of curved spaces (e.g., spherical
geometry on the surface of a sphere), it is said that Euclidean geom-
etry applies locally in infinitesimally small areas (i.e., approximately
also in the environment of an inhabitant of the Earth).

Similarly, Einstein’s equivalence principle of the general theory of
relativity with curved space-time demands that the uncurved (flat)
space-time of Minkowski geometry applies locally in infinitesimally
small areas, i.e., the physical laws are locally Lorentz-invariant as
in the special theory of relativity. In general, the physical laws are
covariant, i.e., they retain their shape (shape invariance) in general
(also curved) coordinate transformations.

The local Lorentz invariance determines the time and causality
relations in a general relativistic gravitational field: If a point (event)
can be connected to another point (event) by a time-like curve, then
a signal can be sent from this point to the other point but not vice
versa. In fact, Einstein’s gravitational equation also allows for solu-
tions in which time-like curves describe closed arcs. In such a world,
the physical paradox of an astronaut traveling into his own past
would occur. This case raises questions about relativistic cosmology.

Empirical confirmation of Einstein’s gravitational equation was
provided by light deflection, propagation delay, and perihelion rota-
tion. For time logic, time dilation due to gravitation is of great inter-
est. Clocks that are closer to the center of the earth and thus deeper
in the Earth’s gravitational field run, albeit minimally, but measur-
ably slower.

This gravitational time dilation, according to general relativity,
can be illustrated by a thought experiment with twins. A twin who
has been exposed to strong gravitation on the surface of a very dense
celestial body (e.g., neutron star) will be significantly younger than
his twin brother when he returns to Earth. This gravitational effect
on time must be distinguished from time dilation in special relativity,
which depends on relativistic kinematic effects.

Different developmental models of the universe can be derived
on the basis of the general theory of relativity.58 The first empiri-
cal evidence for a temporal evolution of the universe goes back to

58Weinberg (1972), Mainzer (2010, Chapter III.3).
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the astronomer Hubble. In 1929, he discovered that the speed of the
galaxies’ escape motion increases with the distance between a galaxy
cluster and its observer. This is how he interpreted the observation:
The light of very distant galaxies shifts to the red region of the spec-
trum, i.e., to longer wavelengths. The basis of this explanation is the
optical Doppler effect, according to which the wavelengths of light
emitted by a moving light source appear longer to an observer at rest
as the light source moves away and shorter as it approaches.

The cosmological principle assumes that all points in space physi-
cally undergo the same evolution correlated in time so that all points
at a fixed distance appear to an observer to be just at the same stage
of evolution. In this sense, the spatial state of the universe must
appear homogeneous and isotropic to the observer at all times in the
future and past.

The cosmological principle is based on the (simplified) assump-
tion that matter is distributed uniformly (homogeneously) on average
in the universe and that its properties remain the same, regardless
of an observer’s viewing direction (isotropy). In fact, homogeneity
and isotropy are statistically confirmed, at least approximately, by
observing the distribution of stars from Earth.

Assuming the cosmological principle, Einstein’s gravitational
equation gives rise to Friedmann’s standard models of cosmic evo-
lution. Mathematically, the three cases of positive, Euclidean (flat),
and negative curvature can be distinguished for homogeneous and
isotropic spaces. Flat curvature means no or zero curvature. Cosmic
evolution in the three standard models is described by the develop-
ment of the time-dependent “world radius” R(t) and an energy den-
sity function in a first-order differential equation that can be derived
from Einstein’s gravitational equation.

According to the singularity theorems of Penrose59 and Hawking60

(1970), it also follows from general relativity that the standard cosmic
models must have an initial space-time singularity with infinite cur-
vature. Cosmologically, it is interpreted as the “big bang” of the
universe. After that, the universe initially expands very rapidly (infla-
tionary universe), then slows down to the velocity of expansion which

59Penrose (1965).
60Hawking and Penrose (1970).
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has been observed by astronomers. In the standard model with posi-
tive curvature, the expansion reverses to a collapse, which represents
a final singularity. One then speaks of a closed universe. Analogously,
in the two-dimensional case, a spherical surface on a sphere with pos-
itive curvature is also “closed” and finite. For the other two standard
models with flat and negative curvatures, the expansion continues
indefinitely with greater or lesser speed. One then also speaks of open
(potentially infinite) universes. In the two-dimensional case, the flat
curvature corresponds to an unlimited Euclidean plane, while the
negative curvature corresponds to an unlimited saddle-like surface.

The singularity theorems also predict the possibility of very
small regions of relativistic space-time, where space-time can become
extremely curved and, therefore, gravity can become maximally
large. Astrophysically, these singularities are interpreted as “black
holes” preceded, for example, by the death of a large star through
gravitational collapse. For this purpose, a three-dimensional spatio-
temporal surface (“absolute event horizon”) is assumed, which “swal-
lows up” all incoming signals from outside and does not allow any
signals or particles to escape. In the center of this absolute event
horizon, the spatio-temporal singularity is assumed, in which the
curvature of space-time becomes infinite. It is therefore an absolute
end point for causal time signals.

A thought experiment with an astronaut approaching a black
hole explains the consequences. If this astronaut passes the (relative)
event horizon of the black hole and from then on sends a light signal
at equal intervals according to his clock to a space station outside
the event horizon, the light signals will be received there according to
the space station’s clock at ever greater intervals and with a red shift
to ever longer wavelength light until the astronaut’s time comes to
a standstill as seen from outside, and the light signals can no longer
be received because of infinite curvature and maximum gravity.

Finally, other cosmological principles have been proposed. The
partial cosmological principle, according to Gödel,61 is interesting for
the discussion of time. According to this principle, the universe is only
homogeneous but not isotropic. This solution also allows for Einstein’s
gravitational equation. The cosmic space-time associated with it has

61Gödel (1949).
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the possibility of closed, time-like world lines, which allow for high-
grade science fiction situations. In Gödelian space-time, an observer
could embark on a journey into the past, only to encounter his or her
own former self. However, the microwave background radiation as a
relic from the primeval times of the universe empirically refutes this
model since it is not only highly homogeneous but also isotropic.

But if the cosmological principle is correct, then the question
arises as to how the initial singularity of time and the high-degree
symmetry of the universe with homogeneity and isotropy are to be
explained physically. Obviously, the theory of relativity is no longer
sufficient for this. Modern cosmology rather merges with quantum
physics and elementary particle physics to form a research program
in which the temporal evolution of the universe is to be explained.

4.2.5. Temporal logics of general relativity

In the sixth task of his famous list of open mathematical problems
(1900), Hilbert requests an axiomatization of physics. Historically,
he suggested an axiomatization of general relativity in 1915, which
was (according to Einstein’s critic) physically false. An axiomatiza-
tion of special relativity can be introduced in first-order logic (FOL).
This formal language distinguishes two sorts of objects: There is a
sort Q of quantities (e.g., real numbers) with symbols + and ∗ for
operations and < for a 2-ary predicate. The other sort B concerns
physical “bodies” (e.g., masses, waves). There are special bodies,
such as observers Ob and photons Ph (as elements of light), which
are formally considered as 1-ary predicate symbols of sort B. An
elementary proposition “observer o observes body b at space-time
location p” has the predicative form W (o, b, p).

A model of this language is defined by M := (Q,+, ∗, <;
B,Ob, Ph;W ), with an ordered field (Q,+, ∗, <) (e.g., real numbers),
subsets Ob ⊆ B,Ph ⊆ B, and relation W ⊆ B×B×Qn (e.g., Q = R

and p = (p1, . . . , pn) ∈ R
n). Without going into the details, physi-

cal concepts of relativity can be translated into the terms of FOL.62

For example, a straight line from p ∈ Qn to q ∈ Qn with p �= q is
defined as the set {p + x ∗ (p − q)|x ∈ Q}. In this case, the symbols
+,−, and ∗ denote the usual operations of a vector space. The world

62Andréka et al. (2006).
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line of a body b as observed by an observer o is defined as the set of
space-time locations where o observes b to be present, i.e.,

wlineo(b) := {p ∈ Qn|W (o, b, p)}.

The spatial distance and time distance between p, q ∈ Qn is defined
by

space(p, q) :=

√
(p2 − q2)

2 + · · ·+ (pn − qn)
2 and

time(p, q) := |p1 − q1| =
√

(p1 − q1)
2.

Then, the speed to reach q from p can be defined by

speed(p, q) :=
space(p, q)

time(p, q)
, when time (p, q) �= 0.

An essential axiom of special relativity is the demand that the speed
of light is finite (nonzero) and isotropic (direction independent). This
so-called light axiom is formalized in an FOL formula:

∧
o∈Ob

∧
ph∈Ph

((wlineo(ph) is a straight line)∧

∧
p,q∈Qn

(p �= q → (speed(p, q) = 1 iff

∨
ph∈Ph

W(o, ph, p) ∧W(o, ph, q)))).

Roughly, the theory of special relativity consists of Newtonian
mechanics without the assumption of absolute time but extended
by the light axiom. There is a formal system of axioms with special
relativity as a model. In the sense of Tarski semantics, a formula ϕ of
this system is a semantic implication of a formal system Ax of axioms
(Ax |= ϕ) iff for every possible model M, it holds that if M |= Ax,
then M |= ϕ. In the Tarskian sense, the suggested formal system of
special relativity is consistent.

As mentioned in the preceding section, in general relativity, grav-
itation can be studied by acceleration effects. Therefore, in a formal
system of general relativity, new axioms are introduced for acceler-
ated observers as a new sort of objects besides inertial observers who
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move with inertial systems on straight lines. General relativity is
locally special relativity. Thus, a key axiom of accelerated observers
demands that at each moment, each accelerated observer sees the
nearby world for a short moment as an inertial observer does. The
FOL axiom system of general relativity has the (smooth) Lorentz
manifolds over ordered real, closed fields as models.63

4.2.6. Temporal logic of black holes

From a logical point of view, it is a main difference between the
axiom systems of special and general relativity that the special the-
ory has only one model of Minkowskian space-time, while the general
theory has many non-isomorphic ones. Cosmologically exotic mod-
els are black holes. Since their early mathematical derivation from
the Einsteinian theory, there are nowadays strong empirical evidence
of their existence in the universe. There are different mathematical
models of black holes which are allowed by the Einsteinian theory.
The simplest model is the Schwarzschild black hole because all masses
are assumed to be concentrated in one point. After an observer falls
into a Schwarzschild black hole, he or she can only survive for a
finite time before being crushed at the singularity point. A more
friendly type are the slowly rotating black holes. Their space-time
is mathematically defined by the Kerr-metric.64 There are forever
rotating “world lines,” where observers could survive. They could
have exciting consequences for temporal logic and decidability prob-
lems in theoretical computer science, which are now discussed.

In more detail, a Lorentzian manifold of general relativity (M,g)
consists of a smooth, oriented, and time-oriented four-manifold M
with a smooth Lorentzian metric g. The Lorentzian metric is a
solution to the Einsteinian equations with respect to a smooth
stress–energy tensor T on M . The length of an at least continuously
differentiable time-like curve γ : R → M is defined by

‖γ‖ =

∫

R

√
−g(γ̇(τ), γ̇(τ))dτ,

63Andréka et al., pp. 82–83.
64Hawking and Ellis (1973).
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which is physically understood as a world line of an observer moving
in (M,g). The image γ(R) is the class of events in M met by the
observer. The length ‖γ‖ of the world line is the proper time mea-
sured by the observer, which can be finite or infinite. The causal past
of an event q ∈ M contains the events from which an observer can
travel to q without exceeding the speed of light, i.e., formally,

J−(q) = {x ∈ M | there is a future-directed non-space-like

continuous curve joining x with q}.

The causal future J+(q) of event q can be defined similarly.
With respect to temporal logic, there is a remarkable space-

time with a world line of infinite proper time. Formally, a space-time
(M,g) is called Malament–Hogarth if there is a future-directed time-
like half curve γP : R+ → M , with ‖γP ‖ = ∞ and a point p ∈ M
(“Malament–Hogarth event”) with γP (R) ⊂ J−(p).65

In a Malament–Hogarth space-time, there is a future-oriented
time-like curve γO : [a, b] → M from a point q ∈ J−(p) in the causal
past of p to p with ‖γO‖ < ∞. The point q can be chosen in the
causal future of the past end point of γP .

The existence of world lines γP and γO in a Malament–Hogarth
space-time could be used for dramatic applications of computability
and decidability problems66: A physical computer P as a technical
realization of a Turing machine can be imagined to move along the
curve γP of infinite proper time (Fig. 4.11). In a Malament–Hogarth
space-time, this physical computer can perform arbitrarily long cal-
culations. But in this space-time, an observer can also be assumed
to be following the curve γO with finite proper time to meet the
Malament–Hogarth event p ∈ M in finite proper time. By the defini-
tion of a Malament–Hogarth event, it is γP (R) ⊂ J−(p). Therefore,
in p, the observer can get a decision after an arbitrarily long compu-
tation of the physical computer on world line γP because it can send
a signal to the observer on γO at arbitrarily late proper time.

65Hogarth (1992).
66Hogarth (1994), Etesi and Németi (2002).
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singularity 

Malament-
Hogarth event

observer falling into the
black hole 

inner horizon 

computer rota�ng on
an infinite world line 

Fig. 4.11. Computers overcome limits of computation in the Malament–Hogarth
space-time of a rotating black hole.67

A thought experiment illustrates how the temporal operators
“before” and “after” are concerned by the existence of a Malament–
Hogarth event in a physical space-time. If the computer on γP is
asked to check, for example, all theorems of set theory (ZFC) for
consistency, then this task can be realized because the world line
γP has infinite proper time. In the case of a contradiction, the com-
puter sends a signal to the observer on world line γO. Now, the time
of the signal’s reception is decisive with respect to the Malament–
Hogarth event: If the observer on γO receives a signal from γP before
the Malament–Hogarth event p, then he or she can conclude that
set theory is not consistent. If the observer does not get a signal
before p, then after p, he or she knows that set theory is consistent.
Starting the thought experiment in γO(a) = q and ending it in the
Malament–Hogarth event γO(b) = p, the observer on γO has proper
time to decide a question which is not decided in mathematics.

Is a Malament–Hogarth space-time only a mathematical solu-
tion to the Einsteinian equations, such as a Gödel universe with
travels in the past of the observer, but with less physical reality?68

Actually, there are physical hints that make Kerr black holes with
Malament–Hogarth space-time physically reasonable. The black hole
in the center of the Milky Way is a possible candidate. In this case,

67Etesi and Németi (2002).
68Etesi and Németi (2002), Melia (2000).
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a computer could be assumed to overcome limits of computability
and decidability of classical Turing machines. In mathematical the-
ory of computational complexity, there are hierarchies of degrees of
computability and decidability.69 In science fiction, one could imag-
ine a future generation of mankind which colonizes the Milky Way
and stations its computers on an infinite world line rotating about
a Kerr black hole. Anyway, this thought experiment underlines that
temporal logic cannot only be based on concepts of time in the tra-
dition of Aristotle and Newton. The situation is quite similar to the
temporal logic of quantum physics, which will be considered in the
following sections. There are also problems which would be solvable
if a physical quantum computer is realized (e.g., Shor algorithm in
quantum cryptography). But, of course, a quantum computer will be
realized much earlier than a computer “driven” by a black hole.

4.3. Temporal Logic in Quantum Computing

Quantum computing is one of the most promising future technolo-
gies of computing. It also deeply rooted in epistemic and foundational
concepts of quantum physics. Therefore, the basics of quantum com-
puting are explained conceptually before the question of temporal
logic in quantum computing is considered.70

4.3.1. Basics of quantum computing

In a classical computer, a bit is either 0 or 1. A quantum bit of
a quantum computer can be 0 as well as 1. Physically, a quantum
system (e.g., a photon) can be vertically and, simultaneously, hor-
izontally polarized. These alternative states are represented by the
vectors |0〉 and |1〉 in two-dimensional Hilbert space H over the com-
plex numbers. The non-superposed states |0〉 and |1〉 can be under-
stood as basic elements of the two-dimensional vector space H, i.e.,

|0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
.

69Mainzer (2018, Chapters 3 (Hierarchies of Computability), 11 (Complexity
Theory of Real Computing), 15 (Digital and Real Physics)).
70Mainzer (2020).
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According to the superposition principle of quantum mechanics,
the linear combination |ψ〉 = α|0〉 + β|1〉 with the complex numbers
α, β ∈ C is also a (superposed) state of this Hilbert space. α and β
are the amplitudes of a probability function, with |α|2+|β|2 = 1. This
superposition is called quantum bit (qubit). Intuitively, α indicates
the probability that this quantum system is in state |0〉. With the
rest probability β, the quantum system is in state |1〉. In a quantum
bit, there are, in general, not only two possibilities 0 and 1 such as
in a classical bit but infinitely many possibilities of probabilities that
one of both states, |0〉 or |1〉, can be realized.

In the case of quantum bits |ψ〉 = 1√
2
(|0〉+ |1〉) = 1√

2
|0〉+ 1√

2
|1〉,

it follows that | 1√
2
|2+ | 1√

2
|2 = 1

2 +
1
2 = 1, and therefore, the quantum

system is with 50% in state |0〉 and 50% in |1〉. But a measure-
ment leads to the collapse of the probability amplitude. According
to the postulates of quantum mechanics, one of the two possible
bit states is determined by measurement with the same probability.
But that means that the result of the measurement is random. After
the empirical confirmation of the Einstein–Podolsky–Rosen (EPR)
experiments, it is obvious that the reason is not incomplete knowl-
edge but principle randomness.

4.3.2. Quantum bits as state vectors of the Bloch

sphere

Quantum bits can intuitively be represented as state vectors of a
unit sphere with radius r = 1 (Bloch sphere).71 The computation
of quantum bits by the application of unitary operators corresponds
to the rotation of state vectors which determine the points on the
surface of the unit sphere uniquely (Fig. 4.12). The corresponding
states |ψ〉 can be characterized by three cartesian space coordinates
x, y, and z but also by polar coordinates of the corresponding vector
with the angles θ and φ, and x = cos(φ)sin(θ), y = sin(φ)sin(θ), and
z = cos(θ).

Each vector of the Bloch sphere must satisfy the normalization
condition x2+ y2+ z2 = 1. The two poles of the sphere on the z-axis

71Benenti et al. (2008, p. 103).
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Fig. 4.12. State vectors on the Bloch sphere.

are determined by |0〉 (north pole) and |1〉 (south pole). On the x-
axis, the two superpositions 1√

2
(|0〉+ |1〉) and 1√

2
(|0〉−|1〉) are repre-

sented. They are distinguished by a relative phase. Correspondingly,
1√
2
(|0〉 + i|1〉) and 1√

2
(|0〉 − i|1〉) can be distinguished on the y-axis.

4.3.3. Circuits with quantum operators

Applications of unitary operators in quantum mechanics correspond
to rotations of state vectors in the Bloch sphere. They are realized
in a quantum computer by quantum gates, which are building blocks
of the circuit in a quantum computer. Graphically, operators are
represented by boxes with lines for inputs and outputs.72

The 1-ary classical NOT-operator corresponds to the X-operator,
which flips the state |0〉 on the z-axis of the Bloch sphere into the
state |1〉 and vice versa. Therefore, it is called bit-flip operator.

The application of X :=
(

0 1
1 0

)
on |0〉 delivers

X|0〉 =
(
0 1

1 0

)(
1
0

)
=

(
0 + 0

1 + 0

)
=

(
0
1

)
= |1〉.

72Hidary (2019).
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The application of the X-operator is denoted by X|j〉 = |j ⊕ 1〉 with
j = 0, 1 and ⊕ as addition modulo 2. The corresponding circuit with
application on |0〉 is graphically denoted in the following way.

The Y -operator rotates the state vector around the y-axis. Y :=(
0 −i

i 0

)
applied to |1〉 delivers the state

Y |1〉 =
(
0 −i
i 0

)(
0

1

)
=

(
0− i

0 + 0

)
=

(−i
0

)
= −i|0〉.

The Y -operator is denoted as a quantum gate in the circuit of a
quantum computer as follows.

The Z-operator rotates the state vector around the z-axis. It is also
called phase-flip operator because it flips the state vector with radian

π, resp.180◦. The application of Z :=
(

1 0
0 −1

)
to |0〉 yields

Z|0〉 =
(
1 0

0 −1

)(
1

0

)
=

(
1 + 0

0 + 0

)
=

(
1

0

)
= |0〉.

The application of Z to |1〉 yields

Z|1〉 =
(
1 0

0 −1

)(
0

1

)
=

(
0 + 0

0− 1

)
=

(
0

−1

)
= −|1〉.

The Z-operator is denoted as a quantum gate in the circuit of a
quantum computer as follows.
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Together with the identity matrix and the ∓- and i-multiples, they
form the Pauli group.

The general phase-shift operator Rϕ lets the state |0〉 unchanged,
but it rotates the state |1〉 with angle resp. shift ϕ with Rϕ :=(

1 0

0 eiϕ

)
. The Rϕ-operator is denoted as a quantum gate in the cir-

cuit of a quantum computer as follows.

The Pauli operator Z is a special case of Rϕ for the shift ϕ = π.
Because of the Euler identity eiπ = −1, eiπ can be replaced by −1 in
the Z-matrix.

Two further phase shift operators are also the special cases of
the rotation operators Rϕ: For ϕ = π/2, the S-Operator S :=
( 1 0

0 i ) rotates the state around the z-axis by 90◦. The S-operator is
denoted as a quantum gate in the circuit of a quantum computer as
follows.

For ϕ = π/4, the T -operator T := ( 1 0

0 eiπ/4 ) rotates the state around
the z-axis by 45◦. Obviously, T 2 = S because both the rotations
by 45◦ successively yields 90◦ = 45◦ + 45◦. The T -operator is
denoted as a quantum gate in the circuit of a quantum computer as
follows.

An important gate is Hadamard operator H because it transforms
a quantum bit into a superposition of two states. The application of
H := 1√

2
( 1 0

0 −1 ) to |0〉 yields

H|0〉 = 1√
2

(
1 0

0 −1

)(
1

0

)
=

1√
2

(
1 + 0

1 + 0

)

=
1√
2

(
1

1

)
=

1√
2
(|0〉+ |1〉).
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The application of H to |1〉 yields

H|1〉 = 1√
2

(
1 0

0 −1

)(
0

1

)
=

1√
2

(
0 + 1

0− 1

)

=
1√
2

(
1

−1

)
=

1√
2
(|0〉 − |1〉).

The H-operator is denoted as a quantum gate in the circuit of a
quantum computer as follows.

With the identity operator I := ( 1 0

0 1 ), the introduced 1-ary operators
satisfy the equations HXH = Z,HZH = X, HYH = −Y , H† = H,
and H2 = I.

The square root of the X-, resp. NOT -gate, corresponds to a
1-ary operator which is represented by the following matrix:

√
X =

1

2

(
1 + i 1− i

1− i 1 + i

)
.

It follows that

X = (
√
X)2 =

1

2

(
1 + i 1− i

1− i 1 + i

)
1

2

(
1 + i 1− i

1− i 1 + i

)

=
1

4

(
0 4

4 0

)
=

(
0 1

1 0

)
.

This gate transforms the quantum state |0〉 into 1
2 ((1 + i)|0〉 + (1 −

i)|1〉) and |1〉 into 1
2 ((1 − i)|0〉 + (1 + i)|1〉). As quantum gate, this

operator is denoted as follows.

Square root gates can be generated for all gates. Therefore, a unitary
matrix must be found which, multiplied with itself, corresponds to
the desired gate.
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In the next step, 2-ary operators for 2-ary qubits are introduced.
The SWAP -operator swaps the 2-ary qubit |01〉 with |10〉 and vice
versa. The basis states of the Hilbert space are determined by the
vectors

|00〉 =

⎛
⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎠, |01〉 =

⎛
⎜⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎟⎠, |10〉 =

⎛
⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎠, and |11〉 =

⎛
⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎠.

After application to |01〉, the SWAP -operator yields

SWAP |01〉 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 + 0 + 0 + 0

0 + 0 + 0 + 0

0 + 1 + 0 + 0

0 + 0 + 0 + 0

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎠ = |10〉.

The SWAP -operator is denoted as a quantum gate in the circuit of
a quantum computer as follows.

A central role in quantum computing is played by the controlled
NOT (CNOT )–operator, which can entangle two qubits. In this
2-ary operator, the first qubit is understood as a control qubit and
the second one as a target qubit. If the control qubit is in state |0〉,
then the target qubit remains unchanged. If the control qubit is in
state |1〉, then the NOT -operator X is applied to the target qubit.
The CNOT -gate is used to generate entangled states. For example,
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CNOT applied to |01〉 yields

CNOT |01〉 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 + 0 + 0 + 0

0 + 0 + 0 + 0

0 + 0 + 0 + 0

0 + 0 + 1 + 0

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎠ = |11〉.

The CNOT -operator is denoted as a quantum gate in the circuit of
a quantum computer as follows.

Another control operator CZ applies the Z-operator to the target
qubit under the conditions of the CNOT -operator:

CZ :=

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ .

Contrary to the CNOT -operator, the control and target qubits can
be exchanged, i.e., the CZ-gate is symmetric. Therefore, in the
graphical representation of the circuit, the two lines are denoted with
a point as follows.

After the 1- and 2-ary operators, 3-ary operators are introduced:
One example is the Toffoli operator with two control qubits and a
target qubit. Therefore, it is also called CCNOT -operator. In order
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to change the target qubit, both control qubits must be in the state
|1〉. The first two qubits x and y satisfy the classical (Boolean) AND-
function in order to apply the NOT -function to the target qubit in
the case of x = 1 and y = 1:

(x, y, z) �→ (x, y, (z ⊗ xy)).

Applied to |110〉, the CCNOT -operator yields

CCNOT |110〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= |111〉.

In the graphical representation of the circuit, the Toffoli gate is illus-
trated with two lines for both control qubits and a line for the target
qubit as follows.

Another central 3-ary operator for quantum computing is the Fredkin
operator, which is also called the controlled SWAP -operator, i.e.,
CSWAP -operator. In this case, the first qubit is designated as the
control qubit and the other two qubits are designated as the target
qubits. If the control qubit is in the state |0〉, the target qubits remain
unchanged. However, if the control qubit is |1〉, then the two target
qubits are exchanged in the sense of the SWAP -operator. In the
graphical representation of the circuit model, the Fredkin gate is
shown with one line for the control qubit and two lines for the two
target qubits as follows.
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4.3.4. No cloning theorem

A classical computer can copy information and thus store it dur-
ing calculations. In the circuit model of the classical computer, the
COPY -gate was introduced for this purpose. Is there an analogous
quantum gate? A quantum copier is impossible within the framework
of quantum mechanics. If there were a quantum copier, then one
could produce two copies of the state of a quantum system in order
to measure the momentum of one copy and separately the location of
the other copy with arbitrary accuracy. However, this is impossible
according to the Heisenberg’s uncertainty relation. The so-called no
cloning theorem has far-reaching technical consequences. One of the
consequences is that data backup through copies, as we know it from
the classical computer, is impossible.73

4.3.5. Unitary transformations

Unitary transformations in quantum mechanics are reversible. This
does not generally apply to the gates of a classical circuit. For exam-
ple, the classical AND -gate assigns the output 0 to all three input
pairs 00, 01, and 10. In the output state 0, the gate has therefore
“forgotten” which input pair was actually assumed. The gate would
therefore have to be equipped with a kind of “memory” in order
to output the two respective input values in the output state. In
the given example of the AND -gate, this would be one of the three
possible output triples 0 01, 0 10, or 0 11. This would translate a
non-reversible (irreversible) calculation into a reversible (reversible)
calculation.

Another example is the XOR-gate. Here, an output of two output
values is sufficient, from which the result of the XOR application and
the two respective input values can be clearly deduced. The assign-
ment rule of the two input and output values is (x, y) �−→ (x, x⊕ y),
with the addition ⊕ (modulo 2) for bits. If the first input value is 0,
as in the cases 00 and 01, the output values remain unchanged: 00
and 01. If the first input value is 1, as in the cases 10 and 11, the
first output value remains 1 and the second output value takes the
opposite value, i.e., 11 for 01 and 10 for 11. According to this rule, it

73Homeister (2018, p. 83).



162 Temporal Logic: From Philosophy and Proof Theory

can be clearly inferred that, for example, for output 11 the input was
10, and correspondingly, for output 10 the input was 11, for output
01 the input was 01, and for output 00 the input was 00.

In fact, it can be shown, in general, that any classical calculation
can be translated into a reversible calculation. Any classical invert-
ible computation can then be simulated by a quantum circuit with
unitary transformations. In this sense, any classical computer can be
simulated by a quantum computer.

Translations of classical circuits in quantum circuits, however,
must be realized by unitary transformations. According to Church’s
thesis, a function f is computable if there is a circuit that computes
the function value f(x) for each input x. For quantum circuits this
means: Three registers |x〉|h〉|0〉 with input |x〉, the constant auxil-
iary bits |h〉, and an empty register |0〉 must be assigned the result
|x〉|hx〉|f(x)〉. Here, hx indicates that auxiliary bits can depend on the
input x. Since every reversible operation is a permutation of the input
bits, it is also unitary. In general, a superposition

∑
x αx|x〉|0〉 of

inputs by a quantum circuit of a quantum computer can be assigned
to an entangled state

∑
x αx|x〉|f(x)〉 of results.

4.3.6. Computation by circuits of a quantum

computer

Analogous to a classical circuit, a quantum circuit is composed of
quantum lines and quantum gates. One quantum bit is processed
in each quantum line. Quantum lines connect quantum gates that
perform unitary transformations. A quantum circuit Q thus realizes a
unitary transformation of an input |ψ〉 into an outputQ|ψ〉 composed
of quantum gates, as shown in the following.

Since quantum circuits perform reversible computations as unitary
transformations, the number of output channels is equal to the num-
ber of input channels. Quantum circuits consisting of parallel lines
are represented by tensor products of quantum operators correspond-
ing to quantum gates. A simple example is the following circuit
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Q = M(I2 ⊗ K) with the two quantum operators K and M , and
the identity operator I2. Here, Q for the input |ψ〉 = |x1x0〉 yields
the output Q|ψ〉 = |x′1x′0〉 as follows.

In summary, the quantum computation of a quantum computer starts
with the input of a quantum register R = |xn−1 · · · x1x0〉, which
consists of n quantum bits and is represented by a 2n-dimensional
vector space over the complex numbers. The set of vectors corre-
sponding to the numbers 0, 1, . . . , 2n − 1 and represented in binary
by |0 . . . 00〉, |0 . . . 01〉, . . . , |1 . . . 11〉, with |i〉 for i ∈ {0, 1}n, is chosen
as the basis of this vector space.

The state of a quantum register R is a vector

(
α0

.

.

.
α2n−1

)
of length 1.

This state vector represents a superposition R =
∑2n−1

i=0 αi|i〉 with

the normalization condition
∑2n−1

i=0 |αi|2 = 1. The computational
steps performed on quantum registers are unitary transformations
and thus reversible. They can be decomposed into unitary transfor-
mations in which, at most, two bits are involved. This decomposition
corresponds to tensor products.74

4.3.7. Reading out the results of a quantum computer

After the calculation by a quantum computer comes the reading of
the results. According to the postulates of quantum mechanics, read-
ing out the results corresponds to measuring a quantum register in
the state R =

∑2n−1
i=0 αi|i〉. If this state is measured with respect to

the basis |0〉|, 1〉, . . . , |2n−1〉, the result |i〉 is obtained with probabil-
ity |αi|2. Choosing an orthonormal basis |a0〉, |a1〉, . . . , |a2n−1〉 yields
a measurement of the register state R =

∑2n−1
i=0 α′

i|ai〉 with proba-
bility |α′

i|2 of the result |ai〉. The measurements of observables yield

74Benenti et al. (2008 p. 106), Homeister (2018, p. 52).



164 Temporal Logic: From Philosophy and Proof Theory

real numbers as eigenvalues. In the case of the quantum computer,
the measurement (“readout”) thus yields classical information as a
result.75

In quantum physics, a measurement is not a unitary (reversible)
transformation that transforms a superposition into another super-
position. According to the postulates of quantum mechanics, a super-
position rather “decays” into a probability distribution of its partial
states. In quantum mechanics, this subsequent state is also called a
“mixed” state in contrast to the “pure” state of a superposition. In
a quantum circuit, a special symbol is used for this purpose as the
termination of a calculation. The following diagram is considered as
an example of a circuit with measurement termination.

As an example of a quantum circuit with measurement termination,
two qubits ψ1 and ψ2 in the state |0〉 are to be prepared first. An
application of the Hadamard operator H to the first qubit transforms
it into a superposition of the states |ψ1〉 = 1√

2
(|0〉 + |1〉). Then, the

CNOT -operator is applied to ψ1 and ψ2. This transforms the two
qubits into an entangled state 1√

2
(|00〉+|11〉), which is not separable.

In the sense of quantum mechanics, this is an EPR (Bellian) state.
Then, ψ1 is measured with a 50% chance of obtaining 0 or 1 as a real
output (eigenvalue).

4.3.8. Architecture of quantum circuits

To establish the proximity of a quantum circuit to the technology of
a quantum computer, a three-dimensional model can be imagined,
in which the processing of quantum information proceeds in layers
of quantum gates from left to right. This illustrates the depth of the
quantum circuit. In the first input layer, the qubits in the prepared
state (indicated by up and down arrows for alternative bit states)
are shown on the left. In the second layer, Hadamard gates are used

75Hidary (2019 p. 34), Homeister (2018, pp. 29, 46).
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to transform the input into a superposition. In the following layers,
1- and 2-qubit gates, such as X,Y, T, and CZ are used. A measure-
ment then completes the calculation in the quantum circuit.

After measurement in a quantum circuit, classical bits can be read
out as classical information, which can be used for further processing
by classical computers, for example. According to the postulates of
quantum mechanics, the measurement is based on the probability
amplitudes of the quantum states of each qubit. A central question of
quantum computing is, therefore, how to predetermine which of the
qubits is the result of the calculation. Quantum algorithms, such as
the quantum Fourier transform, have been proposed for this purpose.

Superposition and entanglement open up completely new possibil-
ities for quantum algorithms that are closed to classical algorithms.
A classical computer with its classical gates can only solve one task
at a time. If several tasks are to be solved, then this can only happen
one after the other and not simultaneously (in parallel). In classical
supercomputers, one also speaks of “parallelism.” In this case, dif-
ferent tasks are solved very quickly one after the other by a circuit
network, or separate circuit networks are used that solve different
subtasks simultaneously. For technical reasons, however, the possi-
bilities for building separate parallel classical circuit networks are
limited.

In a quantum computer, in principle, any number of input data
from subtasks can be superimposed in a superposition and then
transferred by a single application of a quantum switching network
into a superposition that contains all possible solutions. Figure 4.13
illustrates for the example of an input sequence of four bits how all
24 = 16 possibilities are combined in a superposition. In general,
a sequence of n bits leads to a superposition with 2n possibilities.
However, reading out these possible solutions involves a quantum-
mechanical measurement in which the superposition collapses and
one of the possible solutions is randomly output with equal proba-
bility. If one wanted to try out all possible results in the superpo-
sition through brute force with classical algorithms, the computing
time would “shoot through the roof” exponentially depending on
the size of the superposition. How can the probability of the solution
sought be influenced before it is triggered? How can errors be mini-
mized in the process? These are the challenges of effective selection
of algorithms.
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Fig. 4.13. Superposition and quantum parallelism.

4.3.9. What does entanglement mean?76

Besides superposition, another important feature of the quantum
world, which makes modern quantum technology possible, is the
entanglement of quantum states.

In composite quantum systems, entangled states are observed,
which, along with superpositions, are among the fundamental differ-
ences between quantum physics, classical physics, and our everyday
understanding. In addition, entangled systems, along with superpo-
sitions, are fundamental to quantum computing. Behind this is the
observation that quantum systems can remain correlated even if they
are spatially separated and without physical interaction. Einstein
called this kind of “action in distance” “spooky” from the stand-
point of classical physics. In fact, however, the quantum-mechanical
formalism allows for these phenomena.

76Mainzer (2020, pp. 47–50).
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Several quantum systems can be combined into one overall sys-
tem. If two quantum systems are described by the state vectors of
two Hilbert spaces H1 and H2, then the entire system is represented
by the tensor product H = H1 ⊗ H2. According to the definition of
the tensor product, most states in the Hilbert space H do not consist
of tensor products of states from H1 and H2 but of their superpo-
sitions. States from H = H1 ⊗ H2 are written as |ψ〉 =

∑
ij cij|ij〉,

where index i refers to a state from H1 and j to a state from H2.
A state |ψ〉 in the Hilbert space H = H1⊗H2 of a quantum system

is called entangled or non-separable if |ψ〉 cannot be represented as a
tensor product with a state |α〉1 from H1 and a state |α〉2 from H2,
i.e., |ψ〉 �= |α〉1⊗|α〉2.

A state |ψ〉 in the Hilbert space H = H1 ⊗ H2 of a quantum
system is called separable if there is a state |α〉1 of H1 and a state
|α〉2 of H2 with |ψ〉 = |α〉1⊗|α〉2.

An example of entanglement is the state |ψ1〉 = 1√
2
(|00〉+|11〉). In

contrast, the state |ψ2〉 = 1√
2
(|01〉+ |11〉) is separable because |ψ2〉 =

1√
2
(|0〉+ |1〉)⊗|1〉. If two systems are entangled, then they cannot be

distinguished with individual state vectors of the two subsystems. In
everyday life and in classical physics, however, we naturally assume
that all bodies, such as the planets, belong to an overall system,
such as the planetary system, but can be described individually with
separate states and properties. What is the physical significance of
these consequences of the formalism of quantum mechanics?

For this purpose, we consider polarization experiments with pho-
tons. A polarization filter lets linearly polarized light through in the
horizontal direction but not in the vertical direction. The trans-
mission is indeterminate for polarization angles between 0◦ and
90◦. A photon source can send photon pairs in opposite directions to
polarization filters P1 and P2. Mathematically, the states of photons 1
and 2 are represented by the Hilbert spaces H1 and H2, respectively.

Let |ψ1〉 and |ψ2〉 be states from H1 with an observable A and
eigenvalues (measured values) a1 and a2, respectively. Let |ϕ1〉 and
|ϕ2〉 be states from H2 with an observable B and eigenvalues (mea-
sured values) b1 and b2s respectively. Then, in the composite system
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H = H1 ⊗H2,

|ψ〉 = 1√
2
(|ψ1〉 ⊗ |ϕ1〉+ |ψ2〉 ⊗ |ϕ2〉)

is also a state which, however, is not separable. In the entangled |ψ〉
state, the subsystems are correlated, i.e., in the states |ψ1〉 ⊗ |ϕ1〉,
respectively |ψ2〉 ⊗ |ϕ2〉, the observables A and B of the subsystems
can have the values a1 and b1 or a2 and b2 with equal probability of
1:2 but never a1 and b2 or a2 and b1. The photon pairs |ψ1〉 ⊗ |ϕ1〉,
resp. |ψ2〉⊗|ϕ2〉, indicate the states of the photon pair in the vertical
or horizontal direction linearly polarized. The overall state |ψ〉 is now
interpreted as the correlation of the polarization of the two photons.

Since |ψ〉 contains the states |ψ1〉 ⊗ |ϕ1〉 and |ψ2〉 ⊗ |ϕ2〉 in equal
parts, the probability that both photons are transmitted or not
transmitted is 50% in each case. It is excluded that one photon
is transmitted and the other is not. One can then say that both
photons are strictly correlated, i.e., they behave in strict agree-
ment, although they are spatially separated and without physical
interaction.

Quantum mechanics thus enables correlated (“entangled”) total
states of systems whose partial states cannot be “localized.” How
can this be reconciled with the “local” realism of classical physics,
according to which physical systems possess, at least in principle,
well-determined properties at every point in time and in every state,
independent of observation and measurement? In 1964, assuming
Einstein’s reality and locality principle, John Bell used classical
statistics to derive an inequality that takes into account all possi-
ble states in the EPR experiment.77 From this, predictions can be
derived that significantly contradict empirical measurement results
in the quantum-mechanical execution of the EPR experiment.78

4.3.10. Entanglement and quantum communication

Entanglement enables quantum communication. A teleportation can
transmit a quantum bit using a classical information channel if the

77Bell (1964).
78Aspect et al. (1981).



Applications and Outlook of Temporal Logic 169

ALICE BOB

Q

Fig. 4.14. Quantum teleportation with EPR source Q.

Fig. 4.15. Quantum circuit of quantum teleportation.79

communication partners share an entangled bit pair. In Fig. 4.14,
Alice sends a qubit in the quantum state |ψ〉 to Bob, but she has
only a classical channel with two classical bits (shown by a double
line) available for this purpose, and she shares an entangled state
with Bob via an EPR source Q. She entangles the quantum bit to
be transmitted with her part of the EPR pair. Then, she measures
her bits and instantaneously changes Bob’s quantum bit. This is
not a contradiction to relativity because Alice’s and Bob’s parts are
entangled in a common quantum state. Finally, Alice sends her mea-
surement result to Bob using the classical channel.80

For the quantum teleportation in Fig. 4.14, a corresponding quan-
tum circuit can be constructed, as shown in Fig. 4.15. Alice has a
quantum bit |x〉 in the state |ψ〉 = α|0〉 + β|1〉, which she wants to
send to Bob. In addition, she has a quantum bit |a〉, while Bob has a
quantum bit |b〉. Both quantum bits are to be prepared in an entan-
gled state |ab〉 = 1√

2
(|00〉 + |11〉). As in Fig. 4.14, an EPR source is

79Benenti et al. (2008, p. 209).
80Keyl (2002, Chapter 4.1.2).
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used for this purpose, which generates an entangled photon pair, for
example, and sends one photon to Alice and another to Bob.81

This entangled state is the Bell state |φ+〉, which arises from the
state |00〉 by applying a Hadamard gate H and a CNOT -gate:

CNOT (H ⊗ I)|00〉 = 1√
2
(|00〉 + 11〉) = |φ+〉.

Thus, the input register |x〉|a〉|b〉 with the input states |ψ〉|0〉|0〉 is in
state

|ψ〉 ⊗ |φ+〉 = (α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉)

=
α√
2
(|000〉 + |011〉 + β√

2
(|100〉 + |111〉.

In the next step, the CNOT -gate is applied, which yields

CNOT (|ψ〉 ⊗ |φ+〉) = α√
2
(|000〉 + |011〉) + β√

2
(|110〉 + |101〉).

Then, the Hadamard gate leads to the quantum state

H

(
α√
2
(|000〉 + 011〉) + β√

2
(|110〉 + |101〉)

)

=
α√
2

(
1√
2
(|0〉 + |1〉)

)
((|00〉 + |11〉)

+
β√
2

(
1√
2
(|0〉 − |1〉)

)
((|10〉 + |01〉)

=
α

2
(|000〉 + |011〉 + |100〉 + |111〉)

+
β

2
(|010〉 + |001〉 − |110〉 − 101〉)

=
1

2
(|00〉(α|0〉 + β|1〉) + |01〉(β|0〉 + α|1〉)

+ |10〉(α|0〉 − β|1〉) − |11〉(β|0〉 − α|1〉)).
In the last transformation step, the possible result of the measure-

ment of the first two bits can already be seen. With a probability of

81Homeister (2018, p. 129), Benenti et al. (2008, pp. 208–210), Mainzer (2020,
p. 111).
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0.25%, Alice’s measurement yields one of the four possible results:
|00〉, |01〉, |10〉, or |11〉. Because of the entangled state, Bob’s bit
instantly switches to a state correlated with Alice’s result. From the
equation, we can see that the |00〉 result of Alice’s bit leads to the
α|0〉 + β|1〉 state of Bob’s bit, |01〉 to the state β|0〉 + α|1〉, |10〉 to
the state α|0〉 − β|1〉, and |11〉 to the state β|0〉 − α|1〉. So, for the
case |00〉 of the measurement result, Bob has obtained the quantum
bit |ψ〉 = α|0〉 + β|1〉.

In the other cases, |ψ〉 can be set up if the corresponding mea-
surement results are known. These measurement results are commu-
nicated to Bob as classical information consisting of two bits via the
classical channel between Alice and Bob (e.g., through telephone). In
the quantum circuit of Fig. 4.15, the transmission of the two classi-
cal bits is represented by a double line. Thus, in the case of 01, Bob
must exchange the amplitudes α and β of |0〉 and |1〉. This can be
achieved with the quantum gate X of a bit flip. In case 10, the minus
sign before the amplitude of |1〉 is achieved with the quantum gate
Z of the phase flip or the Pauli matrix σz. In case 11, the quantum
gates X and Z are to be applied.

It is clear that in the case of quantum teleportation, the infor-
mation present at the receiver end at the moment (via the EPR
entanglement) can only be accessed if the measurement result was
previously communicated via the classical channel. However, the
speed transmission of classical information is finite and at most as
fast as the speed of light. Nevertheless, the instantaneous transmis-
sion of quantum bits opens up revolutionary technologies. Quantum
communication can be realized by the transmission of quantum bits
over long distances, e.g., using satellite technology, and over minimal
distances in a quantum computer.

4.3.11. Temporal logic for quantum state

transformation

Temporal logics are appropriate tools to describe state transfor-
mations in possible worlds of the Kripke semantics or underlying
transition systems. The following temporal logic considers the trans-
formation of single qubits in quantum worlds by means of unary
quantum operators. For each qubit, unary quantum operators are
used to unfold a branching-temporal model of transformations. Let
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|ψ〉 = α|0〉+ β|1〉 be a given qubit of a quantum system. An atomic
proposition p is an encoding �|ψ〉 of the mathematical description of
the qubit. Concerning temporal operators, for example, the formula
E� p means that p is true at every time instant in some (E) possi-
ble future. With respect to tree-like and branching-temporal models,
formulae are equipped with labels that represent quantum systems,
states, quantum information, and paths. For example, (i, x, q) : p
means that p holds for quantum system i in state x with certain quan-
tum information q concerning the quantum system. Intuitively, quan-
tum bits (qubits) can be considered as agents which communicate
with one another. In the following quantum branching distributed
temporal logic (QBDTL), qubits are understood as agents with local
states.82 Thus, QBDTL is not an example of quantum logic83 but
can be considered a logical axiomatization of quantum theory.

The local language Li of an agent i is inductively defined by

Li := p|⊥|Li → Li|EXLi|E�Li|A�Li|@jLj,

with p ∈ Prop (class of atomic propositions), j ∈ Id (class of agent
identifiers), and j �= i, ⊥ falsum, and → implication. The formula
@jA (calling) means that agent i has just communicated (i.e., syn-
chronized) with agent j for whom A holds. Formula A is built from
temporal operators, synchronization, and propositional symbols with
Boolean connectives, which can be defined as usual.

Following Peircean branching-temporal logic, there are only tem-
poral operators as combinations of one single linear-time operator
immediately preceded by one single path quantifier:

(i) EXA (“Formula A is true at the next time instant in some pos-
sible future”),

(ii) E�A (“Formula A is true at every time instant in some possible
future”),

(iii) A�A (“Formula A is true at every time instant in every possible
future”).

The syntax of the global language QBDTL is inductively defined by

L := @i1Li1 | · · · |@inLin |,

82Ehrich and Caleiro (2000), Viganò et al. (2015, p. 11).
83Dalla Chiara (1986, pp. 427–469).
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with i1, . . . , i1 ∈ Id. The global @ikA means that A is true for agent
ik ∈ Id.

In agent technology, it is usual to consider the branching life cycle
of an agent for temporal logic. It makes also sense to consider the
“life cycle” of a qubit in the branching-temporal logic QBDTL. The
branching local life cycle of an agent i ∈ Id is an ω-tree with λi =
(Evi <i), the set Evi of local events of i, and binary relation <i⊆
Evi × Evi, which satisfies

(i) <i is transitive and irreflexive;
(ii) for each event e ∈ Evi, the set {e′ ∈ Evi|e′ <i e} is linearly

ordered by <i;
(iii) there is a smallest element 0i as root of λi;
(iv) each maximally linearly <i-ordered subset of Evi is order-

isomorphic to the natural numbers.

The semantics of QBDTL uses tree-like event structures for agents:84

In the branching tree of temporal logic, an immediate local successor
e′ of e is denoted by e′ →i e if e′ <i e, and there is no e′′ such that
e′ <i e′′ <i e. A sequence (e0, . . . , en) of local events with ek →i ek+1

for 0 ≤ k ≤ n − 1 is called a →i-path. An e-branch b = (e0e1, . . .)
of i is an infinite →i-path with e = e0. A restriction of →i to b is
denoted by →b

i . Bi is the set of all →b
i . The reflexive and transitive

closure of →b
i is denoted by →b∗

i .
A finite set ξ ∈ Evi down closed for local causality is called a local

state if e <i e
′ and e′ ∈ ξ then e ∈ ξ. Each nonempty local state ξ

is reached by the occurrence of an event last(ξ) from the local state
ξ \ {last(ξ)}. For an event e ∈ Evi, the set e ↓ i = {e′ ∈ Evi|e′ ≤i e}
with reflexive closure ≤i of <i is always a local state. For ξ �= ∅, it is
last(ξ) ↓ i = ξ.

A branching distributed life cycle is a family of local life cycles
λ = (λi = (Evi, <i))i∈Id such that

(i) ≤= (
⋃
i∈Id ≤i)

∗ defines a partial order of global causality on the
set Ev =

⋃
i∈Id Evi,

(ii) for e, e′ ∈ Evi: if e ≤ e′, then e ≤ie
′.

84Winkel and Nielsen (1995).
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The usual semantics of temporal logic with Kripke frames can be
specified for qubit states.85 An S5 Kripke frame is a structure (Q,U)
with a nonempty Q of qubit states and a binary equivalence relation
U on Q which is reflexive, symmetric, and transitive.

An S5 Kripke model is a triple M = (Q,U ,V) with S5 Kripke
frame (Q,U) and valuation function V : Q → 2Prop assigning to each
qubit state in Q a set of atomic propositions.

A QBDTL model is a triple μ = (λ,M, π) with a distributed life
cycle λ = (λi)i∈Id, an S5 Kripke model M = (Q,U ,V), and a family
π = (πi)i∈Id of local functions which associate to each local state a
qubit state in Q. For each i ∈ Id and set Ξi of local states of i, the
function πi : Ξi → Q is defined as follows:

(i) If ξ, ξ′ ∈ Ξi, last(ξ) →i last(ξ
′), π(ξ) = q and π(ξ′) = q′, then

qUq′.
(ii) If q, q′ ∈ Q, qUq′, and π(ξ) = q, then there exists ξ′ ∈ Ξi with

last(ξ) →i last(ξ
′) and π(ξ′) = q′.

(λi,M, πi) is denoted by μi.
The semantics of the global language QBDTL is defined by the

global satisfaction relation

|=μ @iA iff |=μi
i A iff |=μi,ξ

i A for every ξ ∈ Ξi,

with the local satisfaction relation at a local state ξ of i:

�
μi,ξ
i ⊥;

|=μi,ξ
i p iff p ∈ V(πi(ξ)) for p ∈ Prop;

|=μi,ξ
i A→ B iff |=μi,ξ

i A implies |=μi,ξ
i B;

|=μi,ξ
i A�A iff for all ξ′, last(ξ) ≤i last(ξ

′) implies |=μi,ξ
′

i A;

|=μi,ξ
i E�A iff there exists a last(ξ)-branch b such that for all ξ′,

last(ξ) →b∗
i last(ξ′) implies |=μi,ξ

′
i A;

85Viganò et al. (2015, pp. 12–13).
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|=μi,ξ
i EXA iff there exists ξ′ such that last(ξ) →i last(ξ

′) and

|=μi,ξ′
i A;

|=μi,ξ
i @jA iff last(ξ) ∈ Evi and |=μj ,last(ξ)↑j

i A.

The following abbreviations are purposeful for sets formulae:

|=μ Γ iff |=μ A for all A ∈ Γ,

Γ |=μ A iff |=μ Γ implies |=μ A,

Γ |= A iff Γ |=μ A for each QBDTL model μ.

After the definition of syntax and semantics of the temporal logic
QBDTL, the set Prop of proposition symbols can be introduced to
describe the behavior of quantum gates. Each propositional symbol
p ∈ Prop is the encoding �|ϕ〉 of a qubit |ϕ〉 ∈ Q in the QBDTL syn-
tax. The set Prop of propositional symbols contains the encodings
�|α|0〉 + β|1〉 as well as �U1(U2(· · · (Un(|α|0〉 + β|1〉)) · · · )) , with
Uj either a unitary transformation or the restriction of a CNOT -
operator. Different propositional symbols can describe equivalent
quantum states, such as �H|0〉 and �12(||0〉+|1〉) with the Hadamard
gate H and the same quantum state.

The simplest quantum circuit that acts on two agents is built
upon a single occurrence of the CNOT -gate. In Fig. 4.16, C is an
instance of the CNOT -gate with control input i and target input j,
which are set to |1〉 and |0〉, respectively. The CNOT -gate realizes
the negation of the target qubit. The time instants t1 and t2 refer to

Fig. 4.16. Instance C of the CNOT -gate with control input i and target
input j.86

86Viganò et al. (2015, p. 14).
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the temporal evolution of the inputs |1〉 and |0〉87:

t1 : @i(�|1〉 and @j(�|0〉 , (1)

t1 : @i(�|1〉 ∧ EX�|1〉 , (2)

t1 : @j(�|0〉 ∧@i(�|1〉 )) → EX�|1〉 ), (3)

t2 : @i(�|1〉 and @j(�|1〉 . (4)

Formula (1) is the input at time instant t1. Formula (2) means that
the control qubit of the CNOT -gate, resp. the first agent, has input
|0〉, and there exists a successor temporal state in which the state
remains unchanged because the CNOT -operator does not act on the
control qubit. Formula (3) describes the occurrence of the binary
gate which corresponds to the control, resp. synchronization, between
agents. Thus, the formula means that a control or QBDTL calling,
and the related operation occur as a consequence of agent synchro-
nization. Formula (4) is the output.

In the branching-temporal logic QBDTL, derivations should be
realized in a Gentzen-style with natural deductions. In order to for-
malize the system N (QBDTL) of natural deductions, the formulae
are equipped with labels referring to agents, states, quantum infor-
mation, and paths.88 In (i, x, q) : A, the label (i, x, q) refers to agents
i ∈ Id, local states x ∈ LabS of agents, and quantum information
q ∈ LabQ of agents. Further labels �, �1, �2, . . . ∈ LabB refer to the
successor relation between the local states in the local life cycle of
an agent i along a given branch.

The semantics of QBDTL must be extended by an interpre-
tation of the labels. Without going into the details, for a given
QBDTL model μ, an interpretation function of labels is a triple
J = (JS ,JQ,JB), with, for example, a set JS = (J i

S)i∈Id of func-

tions J i
S : LabS → Ξi for each i ∈ Id and JQ : LabQ → Q. For a

QBDTL model μ and an interpretation function I, the truth of a
labeled formula is defined by

|=μ,J (i, x, q) : A iff μi,J i
S(x) |=i A and πi(J i

S(x)) = JQ(q).

87Viganò et al. (2015, pp. 14–15).
88Gabbay (1996), Viganò (2000), Basin et al. (2011).
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Again, there are abbreviations, such as

|=μ,J Γ iff |=μ,J γ for all γ∈ Γ,

Γ |=μ,J γ iff |=μ,J Γ implies |=μ,J γ,

|=μ γ iff |=μ,J γ for every interpretation function J ,
|=μ Γ iff |=μ,J Γ for every interpretation function J ,
Γ |= γ iff Γ |=μ,J γ for every QBDTL−model M

and interpretation function J .

The rules of natural deductions in N (QBDTL) are given in the
Gentzen style. They can be classified as local life-cycle rules, dis-
tributed life-cycle rules, quantum transformations rules, and inter-
action rules. The local life-cycle rules infer formulae which are local
to an agent i with label si. These rules refer to classical connectives
with elimination (E) and introduction (I) rules, ⊥E, → I, and → E,
and the usual assumptions in natural deductions with brackets89:

[si : A → ⊥] [si : A]

...
...

sj : ⊥
si : ⊥

⊥E si : B

si : A → B
→ I

si : A → B si : A

si : B
→ E.

The rules for introduction and elimination of temporal operators A�,
E�, and EX are similar to the corresponding rules in labeled systems
of modal logic. For example, the elimination rule A�E of A� means
that if A�A is true in a state s′i and si is accessible from s′i along
some path (s′iR

∗si) with (closure) relation R∗, then it is possible to
conclude that A is true in state si:

s′i : A�A s′iR
∗si

si : A
A�E.

There are also rules for modeling properties of accessibility relations
and the induction principle underlying these relations.

For distributed life cycles of agents, the rules for the calling oper-
ator @ are intuitively obvious. For example, the introduction rule

89Viganò et al. (2015, p. 19, Fig. 1).
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@I means that if agent i in state si synchronizes (��) with agent j in
state sj, and A is true for j in that state, then i just communicated
with agent j90:

sj : A si �� sj
si : @jA

@I.

The quantum transformation rules model essential properties of
quantum operators. The reflexivity rule ref lU of unitary operator
U means that the class of unitary operators includes the identity
transformation. The symmetry rule symmU requires the reversibility
of the quantum transformation. The transitivity rule transU allows
the composition of several unitary operators as one unitary operator.
The rule prop means that if two composed labels (i, x, q) and (j, y, q)
have the same quantum information q, then each atomic proposition
that is true in (i, x, q) is also true in (j, y, q)91:

⋮ ⋮

⋮

.

There are also rules of natural deduction to model the interaction
between U and relation R. For example, the rule U ⇒ R means that
if qUq′ and the label (i, x, q) occur in the formula γ(j, y, q), then
(i, x, q) has a �-successor (i, y, q′). The rule R ⇒ U considers the
situation that if (i, y, q′) is a �∗-successor of (i, x, q), then also the

90Viganò et al. (2015, p. 20, Fig. 2).
91Viganò et al. (2015, p. 20, Fig. 3).
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quantum labels q and q′ are related by U92:

⊲

⋮ ⋮

⊲
∗

.

The notions of derivation and of open and discharged assumption are
defined, such as in natural deductions, as usual. The notion

Γ �N (QBDTL) (i, x, q) : A

means that there is a derivation of (i, x, q) : A in N (QBDTL) with
open assumptions in the set Γ of formulae. A derivation of (i, x, q) : A
in N (QBDTL) with all assumptions discharged is a proof of the
theorem (i, x, q) : A.

The formal system N (QBDTL) of natural deduction is sound wth
respect to the introduced semantics, i.e., Γ �N (QBDTL) (i, x, q) : A
implies Γ |= (i, x, q) : A for every set Γ and labeled formula (i, x, q) :
A. The proof is straghtforward with standard tools of proof theory
by induction on the structure of the derivations of (i, x, q) : A.

The proof of (weak) completeness of N (QBDTL) is more ambi-
tious, i.e., |= (i, x, q) : A implies �N (QBDTL) (i, x, q) : A for every

labeled QBDTL formula (i, x, q) : A.93 If |= (i, x, q) : A is assumed,
then (i, x, q) : ¬A is unsatisfiable. A decision procedure can be
defined, which is based on semantic tableaux with relation to the
derivability of formulae in N (QBDTL).94 Step by step, it can be
proven that if a global formula @j¬A is unsatisfiable, then there is
no Hintikka structure for @j¬A. If there is no Hintikka structure for
@j¬A, then the root of a tableau for @j¬A is “marked.” If a node
of a tableau is “marked,” then it is inconsistent.

Until now, the formal system N (QBDTL) of natural deduction is
limited by its local perspective. In a branching-temporal logic, only

92Viganò et al. (2015, p. 21, Fig. 4).
93Viganò et al. (2015, pp. 26–33).
94The proof is inspired by Ben-Ari et al. (1983), Emerson and Halpern (1985).
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the temporal evolution of local quantum states with respect to quan-
tum systems of qubits can be modeled. Obviously, the quantum phys-
ical property of superpositions are grasped in the qubits (“agents”)
but not the other essential property of entanglement. Entanglement
cannot be described by local states of quantum systems at distant
locations but only as nonlocal states. Thus, the notion of synchro-
nization of agents in N (QBDTL) is not sufficient because it relates
to local agents which “communicate.” Therefore, the quantum logic
must be extended by a propositional symbol entgi, which models the
information that agent i is entangled and no local information about
its quantum states is available.

In general, the growth of quantum technology needs secure quan-
tum programming languages. In order to minimize risks of failures in
programming, the verification of quantum programs is a great chal-
lenge of the future. A main challenge of quantum computing is the
control of complex temporal processes with superposition and entan-
glement. At this point, temporal logic comes in to verify quantum
programs.95 The calculi of quantum temporal logic need complete-
ness for reasoning in order to verify quantum programs. Furthermore,
polynomial time algorithms are necessary to compute the reachabil-
ity of computing processes and their average running time. In addi-
tion, the decidability of formulae in quantum temporal logic must be
studied.

4.4. Societal Impact of Temporal Logic

4.4.1. Generations of quantum technologies96

We are currently living in the second generation of quantum tech-
nology, in which basic principles of quantum mechanics are specifi-
cally implemented in quantum-mechanical devices (Fig. 4.17). This
includes the first prototypes of quantum computers, classical super-
computers with quantum simulation, quantum cryptography and
quantum communication, quantum sensor technology, and quantum
measurement technology (metrology). To solve a specific task, in
2019, a special quantum computer, called Sycamore, with 54 qubits

95Basin et al. (2011b).
96Mainzer (2020, Chapter 12).
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 NISQ 3rd generation of quantum
technology  

2nd generation of quantum
technology 

50 qubits 100 qubits 1000 000 qubits2000 flux qubits  

adiabatic quantum circuits

Fig. 4.17. Generations of quantum computers.

was able to demonstrate “supremacy” for the first time, i.e., the
superiority of a quantum computer over a classical supercomputer.
In the same year, a quantum computer with 20 qubits, IBM Q, had
already been presented earlier, which is based, at least in principle,
on the architecture of a universal multi-purpose computer. Both are
not yet directly applicable for commercial use, but they were built by
two of the largest IT corporations, IBM and Google, as milestones
on the way to a universal quantum computer with supremacy. In the
age of digitalization, the first classical digital universal computers
were available in 1941 with Zuse’s Z3 and in 1945–1946 with John
von Neumann’s ENIAC. Both opened up the development of a broad
spectrum of digital technology at that time. With a universal quan-
tum computer, the third generation of quantum technology would
begin (Fig. 4.17).

Such a universal quantum computer, which could realize, for
example, the Shor algorithm for the factorization of large numbers,
would require millions of qubits. Because of the sensitivity of such
quantum algorithms to noise, it would have to be able to carry out
technically highly complex error corrections. Today, it has already
been shown that a quantum computer with over 50 qubits can solve
tasks at a speed that is not feasible for the fastest classical super-
computers. This means that there are already quantum computers
that achieve feats that classical computers are incapable of. On the
other hand, they are not yet large enough to realize a fault-tolerant
application of the known quantum algorithms.

This era between quantum computers with 50–100 qubits (e.g.,
Google’s Sycamore) and the first universal quantum computer
with 1,000,000 qubits and more was called “Noisy Intermediate-
Scale Quantum” (NISQ) by the American computer scientist John
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Preskill.97 It is “noisy,” i.e., determined by noise, because not enough
qubits are available for error correction, and it is in the “intermediate-
scale” because the qubit number is sufficient for supremacy proof but
not yet sufficient for a universal quantum computer. The currently
dawning NISQ era thus describes the transition from the second to
the third generation of quantum technology (Fig. 4.17).

A look at the emergence of the first digital computers shows the
enormous challenges that still need to be overcome before the first
universal quantum computers with supremacy can be developed in
the third generation of quantum technology. First, there is the hard-
ware technology, where superconducting materials are emerging as a
key component. The associated low-temperature physics seems most
likely to be able to guarantee superpositions and entanglement with
sufficient coherence time.

In the second generation of quantum technology, quantum com-
puters are already in commercial use that are not based on universal
quantum circuits along the lines of classical digital computers. This
refers to adiabatic computers or quantum annealers, which are being
used commercially by companies such as D-Wave. These include
faster calculations of traffic flow and solutions to other optimization
tasks.

As in the classical computer, the various levels of software build
on the hardware. On the theoretical side, the most advanced is the
mathematical algorithm theory based on the formalism of quantum
mechanics (e.g., Shor, Grover). It must be related to models of quan-
tum circuits, which in turn are based on the physical technology of
the hardware. Up to the user, however, the various programming lev-
els play a major role. There are initial approaches for commercially
and scientifically usable programming environments, as the examples
of Cirq by Google and Qiskit by IBM show.

In the second generation, quantum simulations are already highly
developed. They facilitate, for example, the detection of material
defects that have electromagnetic causes. In general, optical mate-
rial properties can be determined in this way. In order to produce
drugs efficiently and cost-effectively, complex molecular structures
must be calculated. Quantum simulation will prove indispensable for

97Preskill (2018).
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increasingly complex challenges in biotechnology. Finally, quantum
computers and quantum simulation will make AI applications more
efficient. Classical computers are clearly reaching their limits in the
application of learning and search algorithms in the age of Big Data.

In the development of digitization, first came the universal digital
computer in the 1940s and 1950s, and then digital communication
technology until the digital Internet in the 1990s. In the development
of quantum technologies, it is becoming apparent that quantum com-
munication with fiber optic cables, satellite technology and/or super-
conductors can be commercially deployed at the same time or even
earlier than the universal quantum computer. This is due to the
already highly developed technology of fiber optic cables, satellites,
and solid-state superconductors. However, quantum communication
with fiber optic networks requires “amplifiers” (quantum repeaters)
for long distances of over thousands of miles, the technical standards
for which are still pending. Whether at least a proof of concept will
be technically available in one or two years is currently still an open
question. In any case, quantum repeaters will be indispensable build-
ing blocks for the commercialization of quantum communication with
fiber optic networks. In contrast, satellite technology is expensive but
already technically mature.

A central challenge is also to secure data communication in time
with quantum cryptography before quantum computers break the
classical codes. Quantum-mechanical encryption guarantees absolute
security for data transfer — an indispensable prerequisite for, say,
financial transactions, especially if digital currencies are used in the
future. Prevention of manipulation of personal data, such as patient
records in social networks, also requires better security, which quan-
tum cryptography can provide. The age of digitalization has also
seen a growing dependence of civilization on digital infrastructures.
Cyberattacks can disrupt energy supply or logistical supply chains
at any time, for example. In this case, too, quantum communication
and quantum cryptography will be indispensable.

In summary, the development of the quantum computer also
shows that in research, the path can already be the goal: Not only is
the ultimate goal of the universal quantum computer revolutionary,
but on the way there, a broad spectrum of new quantum technolo-
gies is being developed. For example, quantum-based measurement
technology is opening up great economic potential, from navigation,
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geology, and Earth observation to medical diagnostics, industrial pre-
cision measurement technology, and military technology.

4.4.2. From logical–mathematical foundations

to machine learning and quantum technology

The example of quantum technology illustrates how the application
success of a technology can be deeply rooted in the logical founda-
tions of science. In the beginning, there were fundamental discussions
and thought experiments (e.g., entanglement), which were eventu-
ally translated into laboratory experiments. Ultimately, it is about
the transition from experimental setups in the laboratory to robust,
reliable and cost-effective devices. This requires supporting indus-
trial engineering technology that makes the construction of these
devices possible in the first place. This is referred to as “enabling
engineering.”98

Typical examples are quantum-compatible data acquisition and
fast electronics for data processing with high time resolution, low
dead times, optimized and parallelized data throughput, etc. with the
corresponding software. From the first generation of quantum tech-
nology, lasers and detectors were added. Enabling technology also
includes materials, components, and quantum technology devices
and processes for positioning and implanting individual atoms, ions
or molecules, vacuum technology, and optical precision assembly.
A mature enabling technology influences the future of an innovation.
In fact, the branch of development that can build on already highly
developed technology with standards and norms often prevails. In the
end, markets create a push-and-pull effect to steer technical develop-
ments in certain directions. Markets are no longer just about demon-
strating feasibility in principle (e.g., the supremacy proof of Google’s
Sycamore) but about turnover and sales of commercial goods.

In this context, the development of the quantum computer is
embedded in the development of quantum technologies, which in
turn are part of the global trend of digitalization. The concept of the
quantum computer is thus only a beacon of research development.

98Enabling technology in: Business Dictionary, http://www.businessdictionary.
com/definition/enabling-technology.html#ixzz2lrYdBsg3.

http://www.businessdictionary.com/definition/enabling-technology.html{#}ixzz2lrYdBsg3.
http://www.businessdictionary.com/definition/enabling-technology.html{#}ixzz2lrYdBsg3.
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The promise of the future “quantum computer,” however, does not
just mean a single device, such as Zuse’s Z3 or von Neumann’s
ENIAC at the time, which will be available at a certain point in
time, but the broad road of technological development that is already
changing markets and civilization.

Therefore, the sociological phrase of “disruptive” technologies is
misleading because it suggests a sudden event that only changes the
world when it arrives. In fact, it is a broadly diversified development
that appears rather continuously when the facts are known. Only to
those who do not know or do not understand the basics and back-
ground, the development must appear abrupt. It therefore requires
an in-depth logical–philosophical analysis and reflection to be able
to strategically assess and evaluate such technology trends correctly.

Why logic and philosophy? Since antiquity, they have been the ori-
gin of the sciences, which have become increasingly specialized over
the centuries. Even Newton, the founder of modern physics, had a
chair in natural philosophy. Newton called his main work Principia
Mathematica Philosophia Naturalis, i.e., mathematical principles or
foundations of natural philosophy. Since the Aristotelian tradition,
“natural philosophy” has encompassed what is now called natural
research. Observation and logical analysis, even the first mathemat-
ical models, already existed before Galileo.

This also applies to logic, which was highly developed and special-
ized in the Aristotelian tradition until the late Middle Ages. Modern
temporal logic builds directly on modal logic in the Aristotelian tra-
dition. In mathematical logic and basic research at the beginning
of the 20th century, however, logic also combined with mathematics
and became a subfield of mathematics in proof theory. The meth-
ods of proof theory were instrumental in founding the algorithms of
theoretical computer science.

In physics, especially meterology, observation and experiment
have been systematically linked with mathematical models since the
time of Galileo. But this was no more “disruptive” than the heliocen-
tric model of Copernicus. Apart from the fact that Greek astronomers
were already discussing the possibility of a heliocentric planetary
model, the development of natural science was extremely diversified
over a long period of time: The basic concepts and methods of nat-
ural science did not suddenly appear and were proclaimed like the
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Ten Commandments by a Moses of science. Thomas Kuhn’s distinc-
tion between “scientific revolutions” and “normal science” is at best
woodcut-like and justified from a sociologizing and psychologizing
perception. Anyone familiar with the development of logic in mod-
ern times knows that mathematical calculus and algorithm theory
did not appear “all at once” in the 20th century but developed step
by step from Leibniz via Bolzano, Boole, Peano, et al. to Frege and
Russell.

The criticism of the superficial talk of “disruption” also applies to
the appearance of quantum physics in the 20th century. Historically,
quantum mechanics had to develop from familiar concepts, proce-
dures, and ideas of classical physics, in which generations of physi-
cists were educated until the beginning of the 20th century. However,
classical mechanics does not correspond at all to our everyday ideas,
as is always claimed. That bodies reduced to points should move in
a vacuum on ideal mathematical curves is a highly abstract model
that even today must seem completely abstract and detached from
everyday experience to people before their first physics lessons. In
fact, Aristotelian physics describes phenomenologically our everyday
experience, according to which falling massive bodies sink to the
ground in the air surrounding us in a highly complex way, as in a
liquid. The model of classical mechanics was only easy to calculate
once the mathematical calculations and algorithms were available, in
which every A-level student must first be trained.

Those who take up physics studies, however, start with quantum
mechanics in the first semester, learn the linear algebra and func-
tional analysis of its mathematical calculi, and solve lots of practice
problems. With this practice, familiarity and habit with the physi-
cal models behind the problems will set in. Classical mechanics now
appears as a simplified model that only has approximate value in
special cases. As a matter of course, the quantum world is perceived
as the actual reality.

This is where a modern logic and philosophy of physics and tech-
nology comes in, with which the understanding of the concept of state
in the quantum world, the meaning of superposition, entanglement
and tunneling can be explained and deepened. Nothing about it is
“unnatural,” “puzzling,” or “disruptive.” In classical mechanics, too,
we know the phenomenon of only calculating without understanding
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the conceptual connections. This becomes apparent at the latest
when problems arise that deviate from the usual routine.

Therefore, it would also be näıve to take the classical understand-
ings of time and modalities in modal calculi and temporal calculi as
“natural.” Modern physics unmistakably shows that relativistic mod-
els and quantum physics are more “natural” than Newton’s world,
which is only a crude and simplistic approximation. A major aim of
this book is to show the dependence of modal and temporal logic on
physical models. In addition, the consideration of physical concepts
of time is necessary to develop effective control procedures of time
logic for practical applications of computer science. In practice, the
end goal is verification and certification procedures of, for example,
quantum programs to guarantee safe and responsible applications of
quantum computers.

So, even in quantum technology, it is dangerous to lose sight of
understanding the logical and quantum-physical basics. We then end
up shambling along with previously successful routines and become
“operationally blind” to new and unusual technical paths that the
potential of the basic quantum-mechanical concepts opens up. Logic
and philosophy thus aim at understanding the basics and thus con-
tribute to a better understanding of the application possibilities.
Philosophy of technology builds on this, dealing with the goals of
technology design.

Logic and philosophy thus still ask today, as in the times of Aris-
totle, about the principles and foundations of our knowledge and its
interdisciplinary connections in the various disciplines in order to be
able to decide and act responsibly. Since antiquity, logic, the foun-
dation of science and ethics, and philosophy have belonged together.
Problem- and practice-oriented networking with the sciences makes
up the special profile of philosophy in the globalized knowledge
society.

The decisive factor here is that logic and philosophy are anchored
in the minds of students, teachers, and professors of engineering, nat-
ural sciences, social sciences, and economics. Only through constant
contact between research and teaching can logic and philosophy be
prevented from taking off into the clouds of abstraction, becoming
entrenched in the history of their disciplines, and losing contact with
science. However, this is the only way to stimulate the necessary,
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fundamental discussion in the sciences on the part of philosophy.
However, this also presupposes that philosophers have been trained
in mathematics, computer science, physics, biology, sociology, and
economics, for example, in order to be accepted as competent in
these disciplines.

Philosophy must therefore by no means be reduced to its sub-
sidiary subject, ethics, as is unfortunately often the fashion today.
Aristotle wrote his little book, Nicomachean Ethics, on this subject,
but it was an extensive compendium of the basics of physics and logic
of his time. Only those who have understood the basics of science can
enter innovative new territory in technology and, building on this
basic knowledge, speak competently about ethical questions.99

The ethical challenges of technology can therefore only be met if
the basics are understood. This is particularly evident in the topic
of this book: As civilization becomes increasingly dependent on digi-
talization and AI, considerable security risks are raised. No one sees
through or can control in detail what goes on, for example, in the
nonlinear interactions of the neurons, synapses, and quantum bits of
a neural network in machine learning or quantum computing. There-
fore, these neural networks are “black boxes” for users and devel-
opers, raising fundamental questions of security, trust in technology,
and responsibility.

Artificial neural networks are extremely effective in dealing with
complex problems (real-world problems). What is missing, however,
are specifications and standards for the security of their outputs.
This is also true for quantum programming. For this, the black box
of neural networks and quantum computing must be better under-
stood, controlled and verified. The verification of neural networks and
quantum programs, however, is a hard problem of knowledge: even
the proof of simple properties turns out to be NP-complete within
the framework of complexity theory. The reasons for this are the size
of the practically applied networks (scaling) and the nonlinear acti-
vation functions of their neurons, which cannot be comprehended by
humans on this scale and at this speed. Since neural networks are
also subject to the dynamics of complex systems, they are often sen-
sitive to small disturbances and changes in their inputs, which can

99Mainzer (2018).



Applications and Outlook of Temporal Logic 189

build up to uncontrollable effects. The robustness and stability of
the networks is therefore closely related to their security. In tempo-
ral logic, complex bifurcations of the information processes have to
be analyzed, which also lead to nonlinear problems.

Different verifications can be specified for different classes of neu-
ral networks, which can be derived from various theories of logic
and mathematics.100 These include verification methods based on
the satisfiability of formulae of Boolean propositional logic (SAT:
satisfiability theories),101 satisfiability of formulae of first-level pred-
icate logic (SMT: satisfiability modulo theories), reduction to linear
problems (MIP: mixed integer linear programming), and robustness
of multi-layer perceptron networks (MLP: multi-layer perceptron).
SAT and SMT verifications combine the classical AI (symbolic AI)
of automated reasoning with machine learning.102 MIP is based on
the logic and algebra of linear programming. The robustness investi-
gations of MLP apply insights from the theory of complex dynamical
systems in machine learning.

However, with advances in quantum technology, there is a grow-
ing danger that quantum computers will crack the security codes on
which financial, economic and defense systems are based. The ver-
ification methods of machine learning must therefore be extended
to the possibilities of quantum computers and quantum communi-
cation. On the other hand, the fundamentals of quantum mechanics
also open up an absolutely secure quantum cryptology for quantum
communication networks. In the end, the goal must be the stan-
dardization (in Germany DIN standards and internationally, ISO
standards) of AI, quantum technology, and quantum computers, as
already exists in classical digitization technology. Temporal logic is
an important tool here that needs to be developed further.

Modern computing is composed of a variety of different comput-
ing technologies and is reminiscent of an ecosystem. In a biological
ecosystem, different plants and animals are adapted (adaptive) to or
compete with each other. In the technical sciences and sociology of
technology, this metaphor is used to describe a system of different

100Ehlers (2017).
101Biere et al. (2009).
102Pulina and Taccella (2012).
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technologies that are adapted to or compete with each other, such as
the ecosystem of computing.103 It consists of adaptive or competing
computing technologies for different purposes (e.g., quantum com-
puting, supercomputers, workstations, internet, social media, plat-
forms, PCs, laptops, smartphones). Quantum computing will be a
sub-technology that is particularly used for the rapid processing
of data-intensive and complex computing problems (e.g., particle
physics, climate models, life sciences, medicine).

All these different computing technologies pose different problems
for time logic to coordinate the information flows in time. To secure
them, proof-theoretical justifications will be indispensable. However,
it will not be sufficient, as in traditional temporal logic, to start from
the everyday understanding of time in the formalisms of time logic.
Since the 20th century, physics has fundamentally changed the mod-
ern understanding of time, which now also determines technology.
In time logic, we are only just beginning to grasp these differences
in proof theory, which needs interdisciplinary cooperation of proof
theory, computer science, physics, technology, and philosophy. This
book aims to motivate and contribute to this orientation in the foun-
dational research of temporal logic.

103Stahl (2022).
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K. Gödel. (1949). An example of a new type of cosmological solutions of
Einstein’s field equations of gravitation. Review of Modern Physics, 21,
447–450.

R. Goldblatt. (1980). Diodorean modality in Minkowski spacetime. Studia
Logic, 39, 219–236.
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alternating Büchi tree automaton, 83

AND-gate, 161

Aristotelian temporal logic, 2, 6

Aristotle, 2–3, 95, 104–106, 142, 152,
188

arrow of time, 1–2

Arthur Norman, 20

artificial intelligence, 25, 111

attack–defense rule, 95, 100, 103, 107

Augustine, 6

automata, 27

automata-based, 46

automata-based calculus, 77

axiom (K), 31

axiomatic system AxSysLTL, 36

axiomatic system AxSysBML, 31

axiomatic system AxSysCTL∗, 41–42

B

Baratella, Stefano, 64
basic modal logic (BML), 29–32,

37–38, 69–70, 72–73, 84–85, 88
Becker’s rule, 21
Becker, Oskar, 8, 10–12, 15–17,

19–20, 23, 25
Bell state, 170
Bell, John, 168
Besso, Michele, 6
Beth, Evert Willem, 68
big bang, 145
Big Data, 183
black holes, 7, 131, 146
Bloch sphere, 153–154
BML model-checking game, 87
Bolzano, Bernard, 11, 186
Boole, George, 186
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