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Preface

This textbook, addressed to graduate students and young researchers in

mechanics, has been developed from the class notes of different courses in

continuum mechanics that I have been delivering for several years as part

of the Master’s program in MMM: Mathematical Methods for Mechanics

at the University Paris-Saclay.

Far from being exhaustive, as any primer text, the intention of this book

is to introduce students in mechanics and engineering to the mathematical

language and tools that are necessary for a modern approach to continuum

theoretical and applied mechanics. The presentation of the matter is hence

tailored for this scientific community, and necessarily, it is different, in

terms of language and objectives, from that normally proposed to students

of other disciplines, such as physics, especially general relativity, or pure

mathematics.

What has motivated me to write this textbook is the idea of collecting

in a single, introductory book a set of results and tools useful for studies in

mechanics and presenting them in a modern, succinct way. Almost all the

results and theorems are proved, and the reader is guided along a tour that

starts from vectors and ends at the differential geometry of surfaces, passing

through the algebra of tensors of second and fourth orders, the differential

geometry of curves, the tensor analysis for fields and deformations, and the

use of curvilinear coordinates.

Some topics are specially treated, such as rotations, the algebra of

fourth-order tensors, which is fundamental for the mechanics of modern

materials, or the properties of differential operators. Some other topics

are intentionally omitted because they are less important to continuum

v
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vi Preface

mechanics or too advanced for an introductory text. Though in some

modern texts, tensors are directly presented in the most general setting

of curvilinear coordinates, I preferred here to choose a more traditional

approach, introducing first the tensors in Cartesian coordinates, normally

used for classical problems. Then, an entire chapter is devoted to the

passage to curvilinear coordinates and to the formalism of co- and

contravariant components.

The tensor theory and results are specially applied to introduce some

subjects concerning differential geometry of curves and surfaces. Also, in

this case, the presentation is mainly intended for applications to continuum

mechanics and, in particular, in view of courses on slender beams or

thin shells. All the presentation of the topics of differential geometry is

extensively based on tensor algebra and analysis.

More than a hundred exercises are proposed to the reader, many of

them completing the theoretical part through new results and proofs. All

the exercises are entirely developed and solved at the end of the book in

order to provide the reader with thorough support for his learning.

In Chapter 1, vectors and points are introduced and also, with a

small anticipation of some results of the second chapter, applied vectors

are visited. Chapter 2 is completely devoted to the algebra of second-

rank tensors and the succeeding Chapter 3 to that of fourth-rank tensors.

Intentionally, these are the only two types of tensors introduced in the book:

They are the most important tensors in mechanics, and they allow us to

represent deformation, stress, and the constitutive laws. I preferred not to

introduce tensors in an absolutely general way but to go directly to the

most important tensors for applications in mechanics; for the same reason,

the algebra of other tensors, namely of third-rank tensors, is not presented

in this primer text.

The analysis of tensors is done using first-differential geometry of

curves, in Chapter 4, for differentiation and integration with respect to

only one variable, then introducing the differential operators for fields and

deformations, in Chapter 5.

Then, a generalization of second-rank tensor algebra and analysis in

the sense of the use of curvilinear coordinates is presented in Chapter 6,

where the notion of metric tensor, co- and contravariant components, and

Christoffel’s symbols are introduced.

Finally, Chapter 7 is entirely devoted to an introduction to the

differential geometry of surfaces. Classical topics such as the first and second
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Preface vii

fundamental forms of a surface, the different types of curvatures, the Gauss–

Weingarten equations, or the concepts of minimal surfaces, geodesics, and

the Gauss–Codazzi conditions are presented, with all these topics being of

great interest in mechanics.

I tried to write a coherent, almost self-contained manual of mathematical

tools for graduate students in mechanics with the hope of helping young

students progress in their studies. The exposition is as simple as possible,

sober, and sometimes minimalist. I intentionally avoided burdening the

language and the text with nonessential details and considerations, but I

have always tried to grasp the essence of a result and its usefulness.

It is my most sincere hope that the reader who dares to persevere

through the pages of this book will find a benefit to his studies in continuous

mechanics. This is, eventually, the goal of this primer text.
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Chapter 1

Points and Vectors

1.1 Points and vectors

We consider in the following a point space E whose elements are points p.

In classical mechanics, E is identified with the Euclidean three-dimensional

space, wherein events are intended to be set. On E , we admit the existence

of an operation, the difference of any couple of its elements:

q − p, p, q ∈ E .
We associate with E a vector space V whose dimension is dimV = 3 and

whose elements are vectors v representing translations over E :
∀p, q ∈ E , ∃! v ∈ V| q − p = v.

Any element v ∈ V is hence a transformation over E that can be written

using the previous definition as

∀v ∈ V , v : E → E| q = v(p) → q = p+ v.

We remark that the result of the application of the translation v depends

upon the argument p:

q = p+ v � =p1 + v = q1,

whose geometric meaning is depicted in Fig. 1.1. Unlike the difference, the

sum of two points is not defined and is meaningless.

We define the sum of two vectors u and v as the vector w such that

(u+ v)(p) = u(v(p)) = w(p).

1
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2 Tensor Algebra and Analysis for Engineers

Figure 1.1: Same translation applied to two different points.

Figure 1.2: Sum of two vectors: the parallelogram rule.

This means that if

q = v(p) = p+ v,

then

r = u(q) = q + u = w(p),

see Fig. 1.2, which shows that the above definition actually coincides with

the parallelogram rule and that

u+ v = v + u,

as is obvious, for the sum over a vector space commutes. It is evident that

the sum of more than two vectors can be defined iteratively, summing up

a vector at a time to the sum of the previous vectors.

The null vector o is defined as the difference of any two coincident

points:

o := p− p ∀p ∈ E ;

o is unique and the only vector such that

v + o = v ∀v ∈ V .
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Points and Vectors 3

In fact,

∀p ∈ E , v + o = v + p− p → p+ v + o = p+ v ⇐⇒ v + o = v.

A linear combination of n vectors vi is defined as the vector1

w := kivi, ki ∈ R, i = 1, . . . , n.

The n + 1 vectors w, vi, i = 1, . . . , n, are said to be linearly independent

if there does not exist a set of n scalars ki such that the above equation is

satisfied and are said to be linearly dependent in the opposite case.

1.2 Scalar product, distance, orthogonality

A scalar product on a vector space is a positive definite, symmetric, bilinear

form. A form ω is a function

ω : V × V → R,

i.e. ω operates on a couple of vectors to give a real number, a scalar. We

indicate the scalar product of two vectors u and v as2

ω(u,v) = u · v.
The properties of bilinearity prescribe that, ∀u,v ∈ V and ∀α, β ∈ R,

u · (αv + βw) = αu · v + βu ·w,
(αu+ βv) ·w = αu ·w+ βv ·w,

while symmetry implies that

u · v = v · u ∀u,v ∈ V .
Finally, the positive definiteness means that

v · v > 0 ∀v ∈ V , v · v = 0 ⇐⇒ v = o.

Any two vectors u,v ∈ V are said to be orthogonal ⇐⇒
u · v = 0.

1We adopt here and in the following the Einstein notation for summations: All the times
when an index is repeated in a monomial, then the summation with respect to that index,
called the dummy index, is understood, e.g. kivi =

∑
i kivi. We then say that the index

i is saturated. If a repeated index is underlined, then it is not a dummy index, i.e. there
is no summation.
2The scalar product ω(u,v) is also indicated as < u,v >.
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4 Tensor Algebra and Analysis for Engineers

Thanks to the properties of the scalar product, we can define the Euclidean

norm of a vector v as the nonnegative scalar, denoted equivalently by v

or |v|:
v = |v| := √

v · v.
Theorem 1. The norm of a vector has the following properties: ∀u,v ∈
V , k ∈ R,

|u · v| ≤ u v (Schwarz′s inequality);

|u+ v| ≤ u+ v (Minkowski′s triangular inequality);

|kv| = |k|v.
Proof. Schwarz’s inequality: It is sufficient to prove that

(u · v)2 ≤ u · u v · v.
Let x = v ·v and y = −u ·v. Then, by the positive definiteness of the scalar

product, we get

(xu+ yv) · (xu+ yv) ≥ 0,

which implies that

x2u · u+ 2xyu · v + y2v · v = (v · v)2u · u− 2v · v(u · v)2

+v · v(u · v)2 ≥ 0;

supposing v � = o (otherwise, the proof is trivial), we get the thesis on

dividing by v · v.
Minkowski’s inequality: Because the two members of the inequality to

be proved are nonnegative, it is sufficient to prove that

(u+ v) · (u+ v) ≤ (u + v)2 = u2 + 2uv + v2.

This can be proved easily:

(u+ v) · (u+ v) = u · u+ 2u · v + v · v = u2 + 2u · v + v2

≤ u2 + 2|u · v| + v2 ≤ u2 + 2uv + v2,

in which the last operation follows from Schwarz’s inequality.

The proof of the third property is immediate, it is sufficient to use the

same definition of norm. �

We define the distance between any two points p and q ∈ E the scalar

d(p, q) := |p− q| = |q − p|.
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Points and Vectors 5

Similarly, the distance between any two vectors u and v ∈ V is defined as

d(u,v) := |u− v| = |v − u|.

Two points or two vectors are coincident if and only if their distance is null.

The unit sphere S of V is defined as the set of all the vectors whose

norm is one:

S := {v ∈ V| v = 1}.

1.3 Basis of V, expression of the scalar product

There is a general way to define a basis for a vector space of any kind. We

limit the introduction of the concept of basis to the case of V only, which

is of interest in classical mechanics. Generally, a basis B of V is any set of

three linearly independent vectors ei, i = 1, 2, 3, of V :

B = {e1, e2, e3}.

The introduction of a basis for V is useful for representing vectors. In fact,

once a basis B is fixed, any vector v ∈ V can be represented as a linear

combination of the vectors of the basis, where the coefficients vi of the

linear combination are the Cartesian components of v:

v = viei = v1e1 + v2e2 + v3e3.

Though the choice of the elements of a basis is completely arbitrary, the

only condition being their linear independency, we use in the following

only orthonormal bases, which are bases composed of mutually orthogonal

vectors of S, i.e. satisfying

ei · ej = δij ,

where the symbol δij is the so-called Kronecker’s delta:

δij =

{
1 if i = j,

0 if i � =j.
The use of orthonormal bases has great advantages; namely, it allows us to

give a very simple rule for the calculation of the scalar product:

u · v = uiei · vjej = uivjδij = uivi = u1v1 + u2v2 + u3v3.
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6 Tensor Algebra and Analysis for Engineers

In particular, it is

v · ei = vkek · ei = vkδik = vi, i = 1, 2, 3.

So, the Cartesian components of a vector are the projection of the vector

on the three vectors of the basis B; such quantities are the director cosines

of v in the basis B. In fact, if θ is the angle formed by two vectors u and

v, then

u · v = u v cos θ.

This relation is used to define the angle between two vectors,

θ = arccos
u · v
u v

,

which can be proved easily: Given two vectors u and v, we look for c ∈ R

such that the vector u− cv is orthogonal to v:

(u− cv) · v = 0 ⇐⇒ c =
u · v
v · v =

u · v
v2

.

Now, if u is inclined at θ on v, its projection uv on the direction of v is

uv = u cos θ,

and, by construction (see Fig. 1.3), it is also

uv = c v.

So,

c =
u

v
cos θ → u

v
cos θ =

u · v
v2

⇒ cos θ =
u · v
u v

.

We remark that while the scalar product, being an intrinsic operation,

does not change with a change of basis, the components vi of a vector are

Figure 1.3: Angle between two vectors.
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Points and Vectors 7

not intrinsic quantities, but they are basis-dependent: A change of the basis

makes the components change. The way this change is done is introduced

in Section 2.11.

A frame R for E is composed of a point o ∈ E , the origin, and a basis

B of V :
R := {o,B} = {o; e1, e2, e3}.

The use of a frame for E is useful for determining the position of a point

p, which can be done through its Cartesian coordinates xi, defined as the

components in B of the vector p− o:

xi := (p− o) · ei, i = 1, 2, 3.

Of course, the coordinates xi of a point p ∈ E depend upon the choice of o

and B.

1.4 Applied vectors

We introduce now a set of definitions, concepts, and results that are widely

used in physics, especially in mechanics. For that, we need to anticipate

some results that are introduced in the next chapter, namely that of cross

product, in Section 2.9, and of complementary projector, in Exercise 2,

Chapter 2. This slight deviation from the good rule of consistent progression

in stating the results is justified by the fact that, actually, the matter

presented hereafter is still that of vectors. The reader can, of course, come

back to the topics of this section once they have studied Chapter 2.

We call applied vector vp a vector v associated to a point p ∈ E . In
physics, the concept of applied vector3 is often employed, for example, to

represent forces4. We define the resultant of a system of n applied vectors

vp
i as the vector

R :=
n∑

i=1

vp
i .

We define the moment of an applied vector vp about a point o, called the

center of the moment, the vector

Mo := (p− o)× vp,

3In the literature, applied vectors are also called bound vectors.
4The fact that in classical mechanics forces can be represented by vectors is actually a
fundamental postulate of physics. Forces are vectors that cannot be considered belonging
to the translation space V ; nevertheless, the definitions and results found earlier are also

valid for vectors /∈ V .
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8 Tensor Algebra and Analysis for Engineers

Figure 1.4: Moment arm of an applied vector.

and the resultant moment of a system of n applied vectors vp
i about a point

o the vector

Mr
o :=

n∑
i=1

(pi − o)× vp
i .

We remark that R,Mo, and Mr
o are not applied vectors.

If u ∈ S| u× vp = o, then

b := |(I− u⊗ u)(p− o)| = |p− o| sin θ
is called the moment arm of vp with respect to the center o. It measures

the distance of o from the line of action, i.e. the line passing through p and

parallel to vp, cf. Fig. 1.4.

Theorem 2 (Transport of moment). if Mo1 is the moment of an

applied vector vp about a center o1, the moment Mo2 of vp about another

center o2 is

Mo2 = Mo1 + (o1 − o2)× vp.

Proof. Referring to Fig. 1.5,

Mo2 = (p− o2)× vp

= (p− o1 + o1 − o2)× vp = (p− o1)× vp + (o1 − o2)× vp

= Mo1 + (o1 − o2)× vp. �

A consequence of this theorem is that Mo1 = Mo2 ⇐⇒ vp × (o1− o2),

i.e. if vp and o1 − o2 are parallel. It follows from this that the moment

of an applied vector does not change when calculated about the points of

a straight line parallel to the vector itself or, more importantly, if vp is

translated along its line of action.
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Points and Vectors 9

Figure 1.5: Scheme for the transposition of the moment.

The above theorem can be extended to the resultant moment of a system

of applied vectors to give (the proof is quite similar)

Mr
o2 = Mr

o1 + (o1 − o2)×R. (1.1)

Also, in this case, the resultant moment does not change when R and o1−o2
are parallel vectors, but not exclusively, as another possibility is thatR = o:

For the systems of applied vectors with null resultant, the resultant moment

is invariant with respect to the center of the moment.

An interesting relation can be found if the two members of the last

equation are projected onto R, which gives

Mr
o1 ·R = Mr

o2 ·R : (1.2)

The projection of the resultant moment onto the direction of R does not

depend upon the center of the moment.

A particularly important case of the system with a null resultant is that

of a couple, which is composed of two opposite vectors v and −v, which

are applied to two points p and q:

vp = −vq.

Of course, by definition, R = o for any couple and, as a consequence, the

resultant moment Mr of a couple, called the moment of the couple and

simply denoted by M, is independent of the center of the moment (that is

why the index denoting the center of the moment is omitted): Referring to

Fig. 1.6,

M = (p− o)× vp + (q − o)× vq = (p− o)× v − (q − o)× v

= ((p− o)− (q − o)) × v = (p− q)× v.

If u ∈ S| u× v = o, then

bc := |(I− u⊗ u)(p− q)| = |p− q| sin θ
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10 Tensor Algebra and Analysis for Engineers

Figure 1.6: Scheme of a couple.

is the couple arm. We then have

M = |(p− q)× v| = |p− q|v sin θ = bcv.

The central axis A of a system of n applied vectors with R � =o is the

axis such that

Mr
a ×R = o ∀a ∈ A.

Theorem 3 (Existence and uniqueness of the central axis). The

central axis of a system of n vectors exists and is unique.

Proof. Existence: we need at least a point a ∈ E| MR
a = kR, k ∈ R ⇒

Mr
a ×R = o. From Eq. (1.1), ∀o ∈ E , we get

Mr
a×R = Mr

o×R+((o−a)×R)×R = Mr
o×R−R2(o−a)+(R·(o−a))R.

Then, if we take for o− a the vector

o− a =
Mr

o ×R

R2
,
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Points and Vectors 11

it is evident that we get

Mr
a ×R = o.

Hence, the point

a = o− Mr
o ×R

R2
∈ A.

So, because Mr does not change when calculated with respect to the points

of an axis parallel to R, A is the axis passing through a and parallel to R

whose equation is

p = a+ t R = o− Mr
o ×R

R2
+ t R, t ∈ R.

ˆ
Uniqueness: Suppose another axis Â � =A exists, which is necessarily parallel

to A. If q ∈ A, again using Eq. (1.1), we get

Mr
q ×R = Mr

a

ˆ

×R+ ((a− q)×R)×R.

In this equation, the left-hand side and the first term on the right-hand side

are null by the definition of central axis. Because (a−q)×R is perpendicular

to R and R � = o by hypothesis, the left-hand side is null if and only if

a = q ⇒ A = A. �

The central axis has another remarkable property.

Theorem 4 (Property of minimum of the central axis). The points

of the central axis minimize the resultant moment.

Proof. When Mr is calculated about a point a ∈ A, it is parallel to R,

which is not the case for any point q /∈ A. In this last case, hence, Mr

also has a component orthogonal to R. Then, by virtue of the invariance of

the projection of Mr onto R, Eq. (1.2), Mr gets its minimum value when

calculated about the points of A. �

Let us now consider the case of systems for which

Mr
o ·R = 0 ∀o ∈ E .

This is namely the case of systems of coplanar or parallel vectors (cf.

Exercise 1.5). Because in this case, for the points a ∈ A, it must be at
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12 Tensor Algebra and Analysis for Engineers

the same time Mr
a ·R = 0 and Mr

a ×R = o, so the only possibility is that

Mr
a = o ∀a ∈ A,

i.e. in this case, A is the axis of points that make the resultant moment

vanish.

Two systems of applied vectors are equivalent if they have the same

resultant R and the same resultant moment Mr
o about any center o ∈ E .

The equivalence does not depend upon the center o. In fact, by Eq. (1.1),

if two systems have the same R and the same Mr
o1 , with o1 a given point,

then also Mr
o2 will be the same ∀o2 ∈ E .

Theorem 5 (Reduction of a system of applied vectors). A system of

applied vectors is always equivalent to the system composed of the resultant

R applied at a point o and by a couple with moment M = Mr
o, with o any

point of E.

Proof. By construction, R is the same for the two systems; moreover, for

the equivalent system (resultant plus couple), it is

M+ (o− o)×R = M.

So, if the couple has a moment M = Mr
o, the two systems are equivalent.

�

In practice, this theorem affirms that it is always possible to reduce a

system of n applied vectors to only an applied vector equal to R and to a

couple or, if one of the two vectors composed of the couple is applied to

the same point of R, to two applied vectors. It is worth noting that the

equivalence of the two systems is preserved if a vector is translated along

its line of action because in such a case, R and Mr
o do not change.

Finally, a system of n applied vectors is said to be equilibrated if

R = o, Mr
o = o ∀o ∈ E .

We note that because R = o, the center o can be any point of E .

1.5 Exercises

1. Prove that the null vector is unique.

2. Prove that the null vector is orthogonal to any vector.

3. Prove that the norm of the null vector is zero.
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Points and Vectors 13

4. Prove that

u · v = 0 ⇐⇒ |u− v| = |u+ v| ∀u,v ∈ V .
5. Prove the linear forms representation theorem: Let ψ : V → R be a

linear function. Then, ∃! u ∈ V such that

ψ(v) = u · v ∀v ∈ V .
6. Consider a point p and two noncollinear vectors u,v ∈ S at p. Show

that a vector w is the bisector of the angle formed by u and v if and

only if w · u = w · v.
7. Show that in the case of systems composed of coplanar or parallel

applied vectors with R � =o,Mr
o ·R = 0 ∀o ∈ E .

8. Prove that any system of applied vectors with R = o is equivalent to

a couple.

9. Prove that a system of applied vectors all passing through a point p is

equivalent to R applied to p.

10. Prove that if for a system of applied vectors Mr
o = o, then the system

is equivalent to R applied to o. Then, show that if o ∈ A, this is the

case of coplanar or parallel vectors.

11. Prove that a system of applied vectors is equilibrated if and only if any

equivalent system is equilibrated.

12. Prove that two applied vectors form an equilibrated system if and only

if they are two opposite vectors applied to the same point.

13. Prove that a system of applied vectors is equilibrated if all the vectors

pass through the same point and R = o.
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Chapter 2

Second-Rank Tensors

2.1 Second-rank tensors

A second-rank tensor L is any linear application from V to V :
L : V → V | L(αiui) = αiLui ∀αi ∈ R, ui ∈ V , i = 1, . . . , n.

Though here, V indicates the vector space of translations over E , the

definition of tensor1 is more general, and in particular, V can be any vector

space.

Defining the sum of two tensors as

(L1 + L2)u = L1u+ L2u ∀u ∈ V , (2.1)

the product of a scalar by a tensor as

(αL)u = α(Lu) ∀α ∈ R,u ∈ V ,
and the null tensor O as the unique tensor such that

Ou = o ∀u ∈ V ,
then the set of all the tensors L that operate on V forms a vector space,

denoted by Lin(V). We define the identity tensor I as the unique tensor

such that

Iu = u ∀u ∈ V .

1We consider, for the time being, only second-rank tensors that constitute a very

important set of operators in classical and continuum mechanics. In the following, we
also introduce fourth-rank tensors.

15
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16 Tensor Algebra and Analysis for Engineers

Different operations can be defined for the second-rank tensors. We

consider all of them in the following sections.

2.2 Dyads, tensor components

For any couple of vectors u and v, the dyad2 u⊗ v is a tensor defined by

(u⊗ v)w := v ·w u ∀w ∈ V .
The application defined above is actually a tensor because of the bilinearity

of the scalar product. The introduction of dyads allows us to express any

tensor as a linear combination of dyads. In fact, it can be proved that if

B = {e1, e2, e3} is a basis of V , then the set of nine dyads,

B2 = {ei ⊗ ej , i, j = 1, 2, 3},
is a basis of Lin(V) so that dim(Lin(V)) = 9. This implies that any tensor,

L ∈ Lin(V), can be expressed as

L = Lij ei ⊗ ej , i, j = 1, 2, 3,

where Lijs are the nine Cartesian components of L with respect to B2. Lijs

can be calculated easily:

ei · Lej = ei · Lhkeh ⊗ ek ej = Lhkei · eh ek · ej = Lhkδihδjk = Lij .

The above expression is sometimes called the canonical decomposition of a

tensor. The components of a dyad can be computed as follows:

(u⊗ v)ij = ei · (u⊗ v) ej = u · ei v · ej = ui vj . (2.2)

The components of a vector v, resulting from the application of a tensor

L on a vector u, can now be calculated:

v = Lu = Lij(ei ⊗ ej)(ukek) = Lijukδjkei = Lijujei → vi = Lijuj.

(2.3)

Depending upon two indices, any second-rank tensor L can be repre-

sented by a matrix whose entries are the Cartesian components of L in the

2In some texts, the dyad is also called the tensor product; we prefer to use the term dyad

because the term tensor product can be ambiguous, as it is used to denote the product
of two tensors, see Section 2.3.
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Second-Rank Tensors 17

basis B:

L =

⎡
⎣L11 L12 L13

L21 L22 L23

L31 L32 L33

⎤
⎦ .

Because any u ∈ V , depending upon only one index, can be represented by

a column vector, Eq. (2.3) represents actually the classical operation of the

multiplication of a 3× 3 matrix by a 3× 1 vector.

2.3 Tensor product

The tensor product of L1 and L2 ∈ Lin(V) is defined by

(L1L2)v := L1(L2v) ∀v ∈ V .

By linearity and Eq. (2.1), ∀L,L1,L2 ∈ Lin(V),u ∈ V , we get

[L(L1 + L2)]v = L[(L1 + L2)v] = L(L1v + L2v)

= LL1v + LL2v = (LL1 + LL2)v → L(L1 + L2)

= LL1 + LL2.

We remark that the tensor product is not symmetric:

L1L2 �= L2L1;

however, by the same definition of the identity tensor and of tensor product,

IL = LI = L ∀L ∈ Lin(V).

The Cartesian components of a tensor L = AB can be calculated using

Eq. (2.3):

Lij = ei · (AB)ej = ei ·A(Bej) = ei ·A(Bhk(ej)k eh) = Bhkδjkei ·Aeh

= Bhkδjkei · (Apq(eh)q ep) = ApqBhkδjkδqhδip = AihBhj .

The above result simply corresponds to the row–column multiplication of

two matrices. Using that, the following two identities can be readily shown:

(a⊗ b)(c⊗ d) = b · c(a ⊗ d) ∀a,b, c,d ∈ V ,
A(a⊗ b) = (Aa) ⊗ b ∀a,b ∈ V , A ∈ Lin(V). (2.4)
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18 Tensor Algebra and Analysis for Engineers

Finally, the symbol L2 is normally used to denote, in short, the product

LL, ∀L ∈ Lin(V).

2.4 Transpose, symmetric and skew tensors

For any tensor L ∈ Lin(V), there exists just one tensor L�, called the

transpose of L, such that

u · Lv = v · L�u ∀u,v ∈ V . (2.5)

The transpose of the transpose of L is L:

u · Lv = v · L�u = u · (L�)�v ⇒ (L�)� = L.

The Cartesian components of L� are obtained by swapping the indices of

the components of L:

L�
ij = ei · L�ej = ej · (L�)�ei = ej · Lei = Lji.

It is immediate to show that

(A+B)� = A� +B� ∀A,B ∈ Lin(V),
while

u · (AB)v = Bv ·A�u = v ·B�A�u ⇒ (AB)� = B�A�.

Moreover,

u · (a⊗ b)v = a · u b · v = v · (b⊗ a)u ⇒ (a⊗ b)� = b⊗ a. (2.6)

A tensor L is symmetric ⇐⇒
L = L�.

In such a case, because Lij = L�
ij , we have

Lij = Lji.

A symmetric tensor is hence represented, in a given basis, by a symmetric

matrix and has only six independent Cartesian components. Applying

Eq. (2.5) to I, it is immediately recognized that the identity tensor is

symmetric: I = I�.
A tensor L is antisymmetric or skew ⇐⇒

L = −L�.
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Second-Rank Tensors 19

In this case, because Lij = −L�
ij, we have (no summation on the index i,

see footnote 1, Chapter 1)

Lij = −Lji ⇒ Lii = 0 ∀i = 1, 2, 3.

A skew tensor is hence represented, in a given basis, by an antisymmetric

matrix whose components on the diagonal are identically null in any basis;

finally, a skew tensor only depends upon three independent Cartesian

components.

If we denote by Sym(V) the set of all the symmetric tensors and by

Skw(V) that of all the skew tensors, then it is evident that ∀α, β, λ, μ ∈ R,

Sym(V) ∩ Skw(V) = O,

αA+ βB ∈ Sym(V) ∀A,B ∈ Sym(V),
λL+ μM ∈ Skw(V) ∀L,M ∈ Skw(V),

so Sym(V) and Skw(V) are vector subspaces of Lin(V) with

dim(Sym(V)) = 6, while dim(Skw(V)) = 3.

Any tensor L can be decomposed into the sum of a symmetric, Ls, and

an antisymmetric, La, tensor:

L = Ls + La,

with

Ls =
L+ L�

2
∈ Sym(V)

and

La =
L− L�

2
∈ Skw(V)

so that, finally,

Lin(V) = Sym(V)⊕ Skw(V).

2.5 Trace, scalar product of tensors

There exists one and only one linear form

tr : Lin(V) → R,

called the trace, such that

tr(a⊗ b) = a · b ∀a,b ∈ V .
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20 Tensor Algebra and Analysis for Engineers

For the same definition that has been given without making use of any basis

of V , the trace of a tensor is a tensor invariant, i.e. a quantity extracted

from a tensor that does not depend upon the basis.

Linearity implies that

tr(αA+ βB) = αtrA+ βtrB ∀α, β ∈ R, A,B ∈ Lin(V).
It is just linearity to give the rule for calculating the trace of a tensor L:

trL = tr(Lijei ⊗ ej) = Lijtr(ei ⊗ ej) = Lij ei · ej = Lijδij = Lii. (2.7)

A tensor is hence an operator whose sum of the components on the diagonal,

trL = L11 + L22 + L33,

is constant, regardless of the basis.

Following the same procedure above, it is readily seen that

trL� = trL,

which implies, by linearity, that

trL = 0 ∀L ∈ Skw(V). (2.8)

The scalar product of tensors A and B is a positive definite, symmetric

bilinear form defined by

A ·B = tr(A�B).

This definition implies that, ∀L,M,N ∈ Lin(V), α, β ∈ R,

L · (αM + βN) = αL ·M+ βL ·N,
(αL + βM) ·N = αL ·N+ βM ·N,
L ·M = M · L,
L · L > 0 ∀L ∈ Lin(V), L · L = 0 ⇐⇒ L = O.

These properties give the rule for computing the scalar product of two

tensors A and B:

A ·B = Aij(ei ⊗ ej) · Bhk(eh ⊗ ek) = AijBhk(ei ⊗ ej) · (eh ⊗ ek)

= AijBhk tr[(ei ⊗ ej)
�(eh ⊗ ek)] = AijBhk tr[(ej ⊗ ei)(eh ⊗ ek)]

= AijBhk tr[ei · eh(ej ⊗ ek)] = AijBhk ei · eh ej · ek
= AijBhkδihδjk = AijBij .
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Second-Rank Tensors 21

As in the case of vectors, the scalar product of two tensors is equal to the

sum of the products of the corresponding components. In a similar manner,

or using Eq. (2.4)1, it is easily shown that, ∀a,b, c,d ∈ V ,

(a ⊗ b) · (c⊗ d) = a · c b · d = aibjcidj ,

while by the same definition of the tensor scalar product,

trL = I · L ∀L ∈ Lin(V).

Similar to vectors, we define the Euclidean norm of a tensor L the

nonnegative scalar, denoted either by L or |L|:

L = |L| =
√
L · L =

√
tr(L�L) =

√
LijLij

and the distance d(L,M) of two tensors L and M the norm of the tensor

difference:

d(L,M) := |L−M| = |M − L|.

2.6 Spherical and deviatoric parts

Let L ∈ Sym(V); the spherical part of L is defined by

Lsph :=
1

3
trL I

and the deviatoric part by

Ldev := L− Lsph

so that

L = Lsph + Ldev.

We remark that

trLsph =
1

3
trL trI = trL ⇒ trLdev = 0,

i.e. the deviatoric part is a traceless tensor. Let A,B ∈ Lin(V), then

Asph ·Bdev =
1

3
trA I ·Bdev =

1

3
trA trBdev = 0, (2.9)

i.e. any spherical tensor is orthogonal to any deviatoric tensor.
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22 Tensor Algebra and Analysis for Engineers

The sets

Sph(V) :=
{
Asph ∈ Lin(V)| Asph =

1

3
trAI ∀A ∈ Lin(V)

}
,

Dev(V) := {
Adev ∈ Lin(V)| Adev = A−Asph ∀A ∈ Lin(V)}

form two subspaces of Lin(V); the proof is left to the reader. For what is

proved above, Sph(V) and Dev(V) are two mutually orthogonal subspaces

of Lin(V).

2.7 Determinant, inverse of a tensor

The reader is probably familiar with the concept of determinant of a matrix.

We show here that the determinant of a second-rank tensor can be defined

intrinsically and that it corresponds with the determinant of the matrix that

represents it in any basis of V . For this purpose, we first need to introduce

a mapping:

ω : V × V × V → R

is a skew trilinear form if ω(u,v, ·), ω(u, ·,v), and ω(·,u,v) are linear forms

on V and if

ω(u,v,w) = −ω(v,u,w) = −ω(u,w,v) = −ω(w,v,u) ∀u,v,w ∈ V .
(2.10)

Using this definition, we can state the following.

Theorem 6. Three vectors are linearly independent if and only if every

skew trilinear form of them is not null.

Proof. In fact, let u = αv + βw, then for any skew trilinear form ω,

ω(u,v,w) = ω(αv + βw,v,w) = αω(v,v,w) + βω(w,v,w) = 0

because of Eq. (2.10) applied to the permutation of the positions of the two

u and the two w. �
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Second-Rank Tensors 23

It is evident that the set of all the skew trilinear forms is a vector space

and that we denote by Ω, whose null element is the null form ω0,

ω0(u,v,w) = 0 ∀u,v,w ∈ V .

For a given ω(u,v,w) ∈ Ω, any L ∈ Lin(V) induces another form

ωL(u,v,w) ∈ Ω, defined as

ωL(u,v,w) = ω(Lu,Lv,Lw) ∀u,v,w ∈ V .

A key point3 for the following developments is that dimΩ = 1.

This means that ∀ω1, ω2 �= ω0 ∈ Ω, ∃λ ∈ R such that

ω2(u,v,w) = λω1(u,v,w) ∀u,v,w ∈ V .

So, ∀L ∈ Lin(V), there must exist λL ∈ R such that

ω(Lu,Lv,Lw) = ωL(u,v,w) = λL ω(u,v,w) ∀u,v,w ∈ V . (2.11)

The scalar4 λL is the determinant of L, and in the following, it will be

denoted as detL. The determinant of a tensor L is an intrinsic quantity of

L, i.e. it does not depend upon the particular form ω, nor on the basis of V .
In fact, we have never introduced, so far, a basis for defining detL, hence it

cannot depend upon the choice of a basis for V , i.e. detL is tensor-invariant.

Then, if ωa and ωb ∈ Ω, because dimΩ = 1, there exists k ∈ R, k � = 0,

such that

ωb(u,v,w) = k ωa(u,v,w) ∀u,v,w ∈ V ⇒
ωb(Lu,Lv,Lw) = k ωa(Lu,Lv,Lw) →

ωbL(u,v,w) = k ωaL(u,v,w).

Moreover, by Eq. (2.11), we get

ωa(Lu,Lv,Lw) = ωaL(u,v,w) = λaLω
a(u,v,w),

ωb(Lu,Lv,Lw) = ωbL(u,v,w) = λbLω
b(u,v,w)

3The proof of this statement is rather involved and outside of our scope; the interested
reader is referred to the classical textbook by Halmos on linear algebra, Section 31 (see
the bibliography). The theory of the determinants is developed in Section 53.
4More precisely, detL is the function that associates a scalar with each tensor (Halmos,

Section 53). We can, however, for the sake of practice, identify detL with the scalar
associated with L, without consequences for our purposes.
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24 Tensor Algebra and Analysis for Engineers

so that

λbLk ω
a(u,v,w) = λbLω

b(u,v,w) = ωbL(u,v,w)

= k ωaL(u,v,w) = λaLk ω
a(u,v,w) ⇐⇒ λaL = λbL,

which proves that detL does not depend upon the skew trilinear form but

only upon L.

The definition given for detL allows us to prove some important

properties. First of all,

detO = 0;

in fact, ∀ω ∈ Ω,

detO ω(u,v,w) = ω(Ou,Ov,Ow) = ω(o,o,o) = 0 ∀u,v,w ∈ V
because ω operates on three identical, i.e. linearly dependent, vectors.

Moreover, if L = I, then

det I ω(u,v,w) = ω(Iu, Iv, Iw) = ω(u,v,w)

if and only if

det I = 1. (2.12)

A third property is that ∀a,b ∈ V ,
det(a⊗ b) = 0. (2.13)

In fact, if L = a⊗ b, then

detL ω(u,v,w) = ω(Lu,Lv,Lw) = ω((b · u)a, (b · v)a, (b ·w)a) = 0

because the three vectors on which ω ∈ Ω operates are linearly dependent;

with u,v, and w being arbitrary, this implies Eq. (2.13).

An important result is the following.

Theorem 7 (Theorem of Binet). ∀A,B ∈ Lin(V),
det(AB) = detA detB. (2.14)

Proof. ∀ω ∈ Ω and ∀u,v,w ∈ V ,
λABω(u,v,w) = ω(ABu,ABv,ABw) = ω(A(Bu),A(Bv),A(Bw)) =

λAω(Bu,Bv,Bw) = λAλBω(u,v,w) ⇐⇒ λAB = λAλB ,

which proves the theorem. �
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Second-Rank Tensors 25

A tensor L is called singular if detL = 0, otherwise it is non-singular.

Considering Eq. (2.11), with some effort but without major difficulties,

one can see that, if in a basis B of V , we have L = Lijei ⊗ ej , then

detL =
∑
π∈P3

επ(1),π(2),π(3)L1,π(1)L2,π(2)L3,π(3),

where P3 is the set of all the permutations π of {1, 2, 3} and the εi,j,ks are

the components of Ricci’s alternator5:

εi,j,k :=

⎧⎨
⎩

1 if {i, j, k} is an even permutation of {1, 2, 3},
0 if {i, j, k} is not a permutation of {1, 2, 3},

−1 if {i, j, k} is an odd permutation of {1, 2, 3}.

The above rule for detL coincides with that for calculating the

determinant of the matrix whose entries are Lijs. This shows that, once a

basis B for V is chosen, detL coincides with the determinant of the matrix

representing it in B and, finally, that

detL = L11L22L33 + L12L23L31 + L13L32L21

− L11L23L32 − L22L13L31 − L33L12L21.
(2.15)

This result shows immediately that ∀L ∈ Lin(V), and regardless of B, we
have

detL� = detL. (2.16)

Using Eq. (2.15), it is not difficult to show that, ∀α ∈ R,

det(I+ αL) = 1 + αI1 + α2I2 + α3I3, (2.17)

where I1, I2, and I3 are the three principal invariants of L:

I1 = trL, I2 =
tr2L− trL2

2
, I3 = detL. (2.18)

5We recall that a permutation of an ordered set of n objects is even if it can be obtained

as the product of an even number of transpositions, i.e. exchange of places, of any
couple of its elements and it is odd if the number of transpositions is odd. For the
set {1, 2, 3}, the even permutations are {1, 2, 3}, {3, 1, 2}, {2, 3, 1}, while the odd ones

are {2, 1, 3}, {1, 3, 2}, {3, 2, 1}; any triplet having at least a repeated number is not a
permutation.
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26 Tensor Algebra and Analysis for Engineers

A tensor L ∈ Lin(V) is said to be invertible if there is a tensor L−1 ∈
Lin(V), called the inverse of L, such that

LL−1 = L−1L = I. (2.19)

If L is invertible, then L−1 is unique. By the above definition, if L is

invertible, then

u1 = Lu ⇒ u = L−1u1.

Theorem 8. Any invertible tensor maps triples of linearly independent

vectors into triples of still linearly independent vectors.

Proof. Let L be an invertible tensor and u1 = Lu,v1 = Lv,w1 = Lw,

where u,v, and w are three linearly independent vectors. Let us suppose

that there exist h, k ∈ R such that

u1 = hv1 + kw1.

Then, because L is invertible,

L−1u1 = L−1(hv1 + kw1) = hL−1v1 + kL−1w1 = hv + kw,

which goes against the hypothesis. Consequently, u1,v1, andw1 are linearly

independent. �
This result, along with the definition of a determinant, Eq. (2.11), and

Theorem 6, proves the following.

Theorem 9 (Invertibility theorem). L ∈ Lin(V) is invertible ⇐⇒
detL � = 0.

Using the theorem of Binet, Theorem 7, along with Eqs. (2.12) and (2.19),

we get

detL−1 =
1

detL
.

Equation (2.19) applied to L−1, along with the uniqueness of the inverse,

gives immediately that

(L−1)−1 = L,

while

B−1A−1 = B−1A−1AB(AB)−1 = (AB)−1.

The operations of transpose and inversion commute:

L�(L�)−1 = I = L−1L = I� = (L−1L)� = L�(L−1)� ⇒
(L−1)� = (L�)−1 := L−�.
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Second-Rank Tensors 27

2.8 Eigenvalues and eigenvectors of a tensor

If there exists a λ ∈ R and a v ∈ V , except the null vector, such that

Lv = λv, (2.20)

then λ is an eigenvalue and v an eigenvector, relative to λ, of L. It is

immediate to observe that, thanks to linearity, any eigenvector v of L is

determined to within a multiplier, i.e. that kv is an eigenvector of L too

∀k ∈ R. Often, the multiplier k is fixed in such a way that |v| = 1.

To determine the eigenvalues and eigenvectors of a tensor, we rewrite

Eq. (2.20) as

(L− λI)v = o. (2.21)

The condition for this homogeneous system having a non-null solution is

det(L− λI) = 0;

this is the so-called characteristic or Laplace’s equation. In the case of a

second-rank tensor over V , the Laplace’s equation is an algebraic equation

of degree three with real coefficients. The roots of the Laplace’s equation

are the eigenvalues of L; because the components of L, and hence the

coefficients of the characteristic equation, are all real, then the eigenvalues

of L are all real or one real and two complex conjugate.

For any eigenvalue λi, i = 1, 2, 3, of L, the corresponding eigenvectors

vi can be found by solving Eq. (2.21), once we set λ = λi.

The proper space of L relative to λ is the subspace of Lin(V) composed of

all the vectors that satisfy Eq. (2.21). The multiplicity of λ is the dimension

of its proper space, while the spectrum of L is the set composed of all of its

eigenvalues, each one with its multiplicity.

L� has the same eigenvalues of L because the Laplace’s equation is the

same in both the cases:

det(L� − λI) = det(L� − λI�) = det(L − λI)� = det(L− λI).

However, this is not the case for the eigenvectors that are generally different,

as a numerical example can show.

Developing the Laplace’s equation, it is easy to show that it can be

written as

det(L− λI) = −λ3 + I1λ
2 − I2λ+ I3 = 0,
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28 Tensor Algebra and Analysis for Engineers

which is merely an application of Eq. (2.17). If we denote L3 = LLL, using

Eq. (2.18), one can prove the following.

Theorem 10 (Cayley–Hamilton theorem). ∀L ∈ Lin(V),
L3 − I1L

2 + I2L− I3I = O.

A quadratic form defined by L is any form ω : V × V → R of the type

ω = v · Lv;
if ω > 0 ∀v ∈ V , ω = 0 ⇐⇒ v = o, then ω and L are said to be positive

definite. The eigenvalues of a positive definite tensor are positive. In fact,

if λ is an eigenvalue of L, which is positive definite, and v its eigenvector,

then

v · Lv = v · λv = λv2 > 0 ⇐⇒ λ > 0.

Let v1 and v2 be two eigenvectors of a symmetric tensor L relative to the

eigenvalues λ1 and λ2, respectively, with λ1 �= λ2. Then,

λ1v1 · v2 = Lv1 · v2 = Lv2 · v1 = λ2v2 · v1 ⇐⇒ v1 · v2 = 0.

Actually, symmetric tensors have a particular importance, specified by the

following.

Theorem 11 (Spectral theorem). The eigenvectors of a symmetric

tensor form a basis of V.
This theorem6 is of paramount importance in linear algebra: It proves that

the eigenvalues of a symmetric tensor L are real valued and, remembering

the definition of eigenvalues and eigenvectors, Eq. (2.20), that there exists a

basis BN = {u1,u2,u3} of V composed of eigenvectors of L, i.e. by vectors

that are mutually orthogonal and that remain mutually orthogonal once

transformed by L. Such a basis is called the normal basis.

If λi, i = 1, 2, 3, are the eigenvalues of L, then the components of L in

BN are

Lij = ui · Luj = ui · λjuj = λjδij ,

so finally in BN , we have

L = λiei ⊗ ei,

6The proof of the spectral theorem is omitted here; the interested reader can find a proof

of it in the classical text by Halmos, p. 155, see the suggested texts.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Second-Rank Tensors 29

i.e. L is diagonal and is completely represented by its eigenvalues. In

addition, it is easy to check that

I1 = λ1 + λ2 + λ3, I2 = λ1λ2 + λ2λ3 + λ3λ1, I3 = λ1λ2λ3.

A tensor with a unique eigenvalue λ of multiplicity three is said to be

spherical; in such a case, any basis of V is BN and

L = λI.

Eigenvalues and eigenvectors also have another important property: Let us

consider the quadratic form ω := v · Lv, ∀v ∈ S, defined by a symmetric

tensor L. We look for the directions v ∈ S, whereupon ω is stationary.

Then, we have to solve the constrained problem

∇v(v · Lv) = o, v ∈ S.

Using Lagrange’s multiplier technique, we solve the equivalent problem

∇(v,λ)(v · Lv − λ(v2 − 1)) = 0,

which restitutes the equation

Lv = λv

and the constraint |v| = 1. The above equation is exactly the one defining

the eigenvalue problem of L: The stationary values (i.e. the maximum

and minimum) of ω hence correspond to two eigenvalues of L and the

directions v, whereupon the stationarity coincides with the respective

eigenvectors.

Two tensorsA and B are said to be coaxial if they have the same normal

basis BN , i.e. if they share the same eigenvectors. Let u be an eigenvector

of A, relative to the eigenvalue λA, and of B, relative to λB . Then,

ABu = AλBu = λBAu = λAλBu = λABu = BλAu = BAu,

which shows, on the one hand, that Bu is also an eigenvector of A, relative

to the same eigenvalue λA; in the same way, of course, Au is an eigenvector

of B relative to λB. In other words, this shows that B leaves unchanged

any proper space of A and vice versa. On the other hand, we see that, at

least for what concerns the eigenvectors, two tensors commute if and only if

they are coaxial. Because any vector can be written as a linear combination
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30 Tensor Algebra and Analysis for Engineers

of the vectors of BN , and for the linearity of tensors, we have finally proved

the following.

Theorem 12 (Commutation theorem). Two tensors commute if and

only if they are coaxial.

2.9 Skew tensors and cross product

Because dim(V) = dim(Skw(V)) = 3, an isomorphism can be established

between V and Skw(V), i.e. between vectors and skew tensors. We establish

hence a way to associate in a unique way a vector to any skew tensor and

inversely. For this purpose, we first introduce the following.

Theorem 13. The spectrum of any tensor W ∈ Skw(V) is {0} and the

dimension of its proper space is 1.

Proof. This theorem states that zero is the only real eigenvalue of any

skew tensor and that its multiplicity is 1. In fact, let w be an eigenvector

of W relative to the eigenvector λ. Then,

λ2w2 = Ww ·Ww = w ·W�Ww = −w ·WWw

= −w ·W(λw) = −λw ·Ww = −λ2w2 ⇐⇒ λ = 0.

Then, if W � = O, its rank is necessarily 2 because detW = 0 ∀W ∈
Skw(V); hence, the equation

Ww = o (2.22)

has ∞1 solutions, i.e. the multiplicity of λ is 1, which proves the theorem.

�

The last equation also shows the way the isomorphism is constructed:

In fact, using Eq. (2.22), it is easy to check that if w = (a, b, c), then

w = (a, b, c) ⇐⇒ W =

⎡
⎣ 0 −c b

c 0 −a
−b a 0

⎤
⎦ . (2.23)

The proper space ofW is called the axis of W, and it is indicated by A(W):

A(W) := {u ∈ V| Wu = o}.
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Second-Rank Tensors 31

The consequence of what is shown above is that dimA(W) = 1. With

regard to Eq. (2.23), one can easily check that the equation

u · u =
1

2
W ·W (2.24)

is satisfied only by w and by its opposite −w. Because both these

vectors belong to A(W), choosing one of them corresponds to choosing an

orientation for E , see the next section. We always make our choice according

to Eq. (2.23), which fixes once and for all the isomorphism between V
and Skw(V) that corresponds to any vector w with one and only one

axial tensor W and vice versa, any skew tensor W with a unique axial

vector w.

It is worth noting that the above isomorphism between the vector spaces

V and Skw(V) implies that to any linear combination of vectors a and b

corresponds an equal linear combination of the corresponding axial tensors

Wa and Wb and vice versa, i.e. ∀a, b ∈ R,

w = αa + βb ⇐⇒ W = αWa + βWb, (2.25)

where W is the axial tensor of w. Such a property is immediately checked

using Eq. (2.23).

It is useful, for further development, to calculate the powers of W:

W2 = WW = −W�(−W�) = (WW)�= (W2)�, (2.26)

i.e. W2 is symmetric. Moreover, if we take w ∈ S, which is always possible

because eigenvectors are determined to within an arbitrary multiplier,

W2u = WWu = w × (w × u) = w · uw −w ·wu

= −(I−w⊗w)u ⇒ W2= −(I−w ⊗w);
(2.27)

we remark that W2u gives the opposite of the projection of any vector

u ∈ V onto the direction orthogonal to w, see Exercise 2.14.

Applying recursively the previous results,

W3 = WW2 = −W(I−w ⊗w) = −W+ (Ww)⊗w= −W,

W4 = WW3= −W2,

W5 = WW4= −W3,

etc.

(2.28)
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32 Tensor Algebra and Analysis for Engineers

An important property of any couple axial tensorW – axial vectorw ∈ S is

WW = −1

2
|W|2(I−w ⊗w), (2.29)

while Eq. (2.24) can be generalized to any two axial couples w1,W1 and

w2,W2:

w1 ·w2 =
1

2
W1 ·W2.

The proof of these two last properties is rather easy and left to the reader.

We define the cross product of two vectors a and b the vector

a× b = Wab,

where Wa is the axial tensor of a. If a = (a1, a2, a3) and b = (b1, b2, b3),

then by Eq. (2.23), we get

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

It is immediate to check that such a result can also be obtained using Ricci’s

alternator,

a× b = εijkajbkei , (2.30)

or even by computing the symbolic determinant,

a× b = det

⎡
⎣e1 e2 e3
a1 a2 a3
b1 b2 b3

⎤
⎦ .

The cross product is bilinear: ∀a,b,u ∈ V , α, β ∈ R,

(αa+ βb)× u = αa× u+ βb× u,

u× (αa + βb) = αu× a+ βu× b.

In fact, the first equation above is a consequence of Eq. (2.25), while the

second one is a simple application to axial tensors of the same definition of

tensor.

Three important results concerning the cross product are stated by the

following theorems.
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Second-Rank Tensors 33

Theorem 14 (Condition of parallelism). Two vectors a and b are

parallel, i.e. b = ka, k ∈ R ⇐⇒

a× b = o.

Proof. This property is actually a consequence of the fact that any

eigenvalue of a tensor is determined to within a multiplier:

a× b = Wab = o ⇐⇒ b = ka, k ∈ R,

for Theorem 13. �

Theorem 15 (Orthogonality property).

a× b · a = a× b · b = 0. (2.31)

Proof.

a× b · a = Wab · a = b ·W�
a a = −b ·Waa = −b · o = 0,

a×b · b = Wab · b = b ·W�
a b = −b ·Wab ⇐⇒ a× b · b = 0.

�

Theorem 16. a× b is the axial vector of the tensor (b⊗ a− a⊗ b).

Proof. First of all, by Eq. (2.6), we see that

(b⊗ a− a⊗ b) ∈ Skew(V).

Then,

(b⊗ a− a⊗ b)(a× b) = a · a× b b− b · a× b a = 0

for Theorem 15. �

Theorem 16 allows us to show another important result about cross

product.

Theorem 17 (Antisymmetry of the cross product). The cross

product is antisymmetric:

a× b = −b× a ∀a,b ∈ V . (2.32)

Proof. Let W1 = (b⊗ a− a⊗ b) be the axial tensor of a× b and W2 =

(−a ⊗ b + b ⊗ a) that of −b × a. Evidently, W1 = W2, which implies

Eq. (2.32) for the isomorphism between V and Lin(V). �
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34 Tensor Algebra and Analysis for Engineers

This property and, again, Theorem 16 lets us derive the formula for the

double cross product:

u× (v ×w) = −(v ×w)× u

= −(w ⊗ v − v ⊗w)u = u ·w v − u · v w. (2.33)

Another interesting result concerns the mixed product:

u× v ·w = Wuv ·w = −v ·Wuw = −v · u×w = w × u · v, (2.34)

and similarly,

u× v ·w = v ×w · u.

Using this last result, we can obtain a formula for the norm of a cross

product; if a = a ea and b = b eb, with ea, eb ∈ S, are two vectors forming

the angle θ, then

(a× b) · (a× b) = a× b · (a× b) = (a × b)× a · b
= −a× (a× b) · b = (−a · b a+ a2 b) · b = b · (a2I− a⊗ a)b

= a2 b · (I− ea ⊗ ea)b = a2b2 eb · (I− ea ⊗ ea)eb

= a2b2(1− cos2 θ) = a2b2 sin2 θ → |a× b| = ab sin θ.

(2.35)

So, the norm of a cross product can be interpreted, geometrically, as the

area of the parallelogram spanned by the two vectors. As a consequence,

the absolute value of the mixed product (2.34) measures the volume of the

prism delimited by three non-coplanar vectors, cf. Fig. 2.1.

Figure 2.1: Geometrical meaning of the cross and mixed products before (left) and after
(right) the application of a tensor L on the vectors u,v,w.
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Second-Rank Tensors 35

Because the cross product is antisymmetric and the scalar one is

symmetric, it is easy to check that the form

β(u,v,w) = u× v ·w
is a skew trilinear form. Then, by Eq. (2.11), we get

Lu× Lv · Lw = detL u× v ·w. (2.36)

Following the interpretation given above for the absolute value of the mixed

product, we can conclude that | detL| can be interpreted as a coefficient of

volume expansion7 cf. again Fig. 2.1. A geometrical interpretation can then

be given to the case of a non-invertible tensor, i.e. of detL = 0: It crushes

a prism into a flat region (the three original vectors become coplanar, i.e.

linearly dependent).

The adjugate of L is the tensor

L∗ := (detL)L−�.

From Eq. (2.36), we get hence

detL u× v ·w = Lu× Lv · Lw = L�(Lu× Lv) ·w ∀w
⇒ Lu× Lv = L∗(u× v).

2.10 Orientation of a basis

It is immediate to observe that a basis B = {e1, e2, e3} can be oriented in

two opposite ways8: For example, once two unit mutually orthogonal vectors

e1 and e2 are chosen, there are two opposite unit vectors perpendicular to

both e1 and e2 that can be chosen to form B.
We say that B is positively oriented or right-handed if

e1 × e2 · e3 = 1,

while B is negatively oriented or left-handed if

e1 × e2 · e3 = −1.

Schematically, a right-handed basis is represented in Fig. 2.2, where a left-

handed basis is represented too with a dashed e3.

7This result is classical and fundamental for the analysis of deformation in continuum
mechanics.
8It is evident that this is also true for one- and two-dimensional vector spaces.
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36 Tensor Algebra and Analysis for Engineers

ˆ

Figure 2.2: Right- and left-handed bases.

With a right-handed basis, by definition, the axial tensors of the three

vectors of the basis are

We1 = e3 ⊗ e2 − e2 ⊗ e3,

We2 = e1 ⊗ e3 − e3 ⊗ e1,

We3 = e2 ⊗ e1 − e1 ⊗ e2.

2.11 Rotations

In the previous chapter, we have seen that the elements of V represent

translations over E . A rotation, i.e. a rigid rotation of the space, is an

operation that transforms any two vectors u,v ∈ V into two other vectors

u, v̂ ∈ V in such a way that

u = û, v = v̂, u · v = û · v̂,

ˆ

(2.37)

i.e. a rotation is a transformation that preserves norms and angles. Because

a rotation is a transformation from V to V , rotations are tensors, so we can

write

v̂ = Rv,

with R the rotation tensor or simply rotation.

Conditions (2.37) impose some restrictions on R:

u · v̂ = Ru ·Rv = u ·R�Rv = u · v ⇐⇒ R�R = I = RR�.

A tensor that preserves the angles belongs to Orth(V), the subspace of

orthogonal tensors; we leave to the reader the proof that Orth(V) is actually
a subspace of Lin(V). Replacing in the above equation v with u shows
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Second-Rank Tensors 37

ˆ

immediately that an orthogonal tensor also preserves the norms. By the

uniqueness of the inverse, we see that

R ∈ Orth(V) ⇐⇒ R−1 = R�.

The above condition is not sufficient to characterize a rotation; in fact,

a rotation must transform a right-handed basis into another right-handed

basis, i.e. it must preserve the orientation of the space. This means that it

must be

e1 × ê2 · ê3 = Re1 ×Re2 ·Re3 = e1 × e2 · e3.

By Eq. (2.36), we get hence the condition9

detR(e1 × e2 · e3) = e1 × e2 · e3 ⇐⇒ detR = 1.

The tensors of Orth(V) that have a determinant equal to 1 form the

subspace of proper rotations or simply rotations, indicated by Orth(V)+ or

also by SO(3). Only tensors of Orth(V)+ represent rigid rotations of E10.

Theorem 18. Each tensor R ∈ Orth(V) has the eigenvalue ±1, with +1

for rotations.

Proof. Let u be an eigenvector of R ∈ Orth(V) corresponding to the

eigenvalue λ. Because R preserves the norm, we have

Ru ·Ru = λ2u2 = u2 → λ2 = 1.

We must now prove that there exists at least one real eigenvector λ. To this

end, we consider the characteristic equation

f(λ) = λ3 + k1λ
2 + k2λ+ k3 = 0,

whose coefficients ki are real-valued because R has real-valued components.

It is immediate to recognize that

lim
λ→±∞

f(λ) = ±∞.

9From the condition R�R = I and through Eq. (2.16) and the theorem of Binet, we

recognize immediately that detR = ±1 ∀R ∈ Orth(V).
10A tensor S ∈ Orth(V) such that detS = −1 represents a transformation that changes

the orientation of the space, like mirror symmetries do, see Section 2.12.
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38 Tensor Algebra and Analysis for Engineers

So, because f(λ) is a real-valued continuous function, actually a polynomial

of λ, there exists at least one λ1 ∈ R such that

f(λ1) = 0.

In addition, we already know that ∀R ∈ Orth(V), detR = ±1 and that,

if λi, i = 1, 2, 3 are the eigenvalues of R, then detR = λ1λ2λ3. Hence, the

following two are the possible cases:

(i) λ1 ∈ R and λ2, λ3 ∈ C, with λ3 = λ2, the complex conjugate of λ2;

(ii) λi ∈ R ∀i = 1, 2, 3.

Let us consider the case of R ∈ Orth(V)+, i.e. a (proper) rotation →
detR = 1. Then, in the first case above,

detR = λ1λ2λ2 = λ1[�2(λ2) + �2(λ2)].

But

�2(λ2) + �2(λ2) = 1

because it is the square of the modulus of the complex eigenvalue λ2. So,

in this case,

detR = 1 ⇐⇒ λ1 = 1.

In the second case, λi ∈ R

ˆ

∀i = 1, 2, 3, either λ1 > 0, λ2, λ3 < 0 or all of

them are positive. Because the modulus of each eigenvalue must be equal

to 1, either λ1 = 1 or λi = 1 ∀i = 1, 2, 3 (in this case, R = I).

Following the same steps, one can easily show that ∀S ∈ Orth(V) with
detS = −1, there exists at least one real eigenvalue λ1 = −1. �

Generally, a rotation tensor rotates the basis B = {e1, e2, e3} into the

basis B̂ = {e1, ê2, ê3}:

Rei = êi ∀i = 1, 2, 3 ⇒ Rij = ei ·Rej = ei · êj. (2.38)

This result actually means that the jth column of R is composed of the

components in the basis B of the vector êj of B̂. Because the two bases

are orthonormal, such components are the director cosines of the axes of B̂
with respect to B.
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Second-Rank Tensors 39

Geometrically, any rotation is characterized by an axis of rotation

w, |w| = 1, and by an amplitude ϕ, i.e. the angle through which the space is

rotated aboutw. By definition, w is the (only) vector that is left unchanged

by R, i.e.

Rw = w,

or, in other words, it is the eigenvector corresponding to the eigenvalue +1.

The question is then: How can a rotation tensor R be expressed by

means of its geometrical parameters, w and ϕ? To this end, we have a

fundamental theorem.

Theorem 19 (Euler’s rotation representation theorem). ∀R ∈
Orth(V)+,

R = I+ sinϕW+ (1 − cosϕ)W2, (2.39)

with ϕ the rotation’s amplitude and W the axial tensor of the rotation

axis w.

Proof. We observe preliminarily that

Rw = Iw + sinϕWw + (1− cosϕ)WWw = Iw = w, (2.40)

i.e. that Eq. (2.39) actually defines a transformation that leaves unchanged

the axis w, like a rotation about w must do, and that +1 is an eigenvalue

of R.

We need now to prove that Eq. (2.39) actually represents a rotation

tensor, i.e. we must prove that

RR� = I, detR = 1.

Through Eq. (2.28), we get

RR� = (I+ sinϕW + (1− cosϕ)W2)(I+ sinϕW + (1− cosϕ)W2)�

= (I+ sinϕW + (1− cosϕ)W2)(I− sinϕW + (1− cosϕ)W2)

= I+ 2(1− cosϕ)W2 − sin2 ϕW2 + (1− cosϕ)2W4

= I+ 2(1− cosϕ)W2 − sin2 ϕW2 − (1− cosϕ)2W2= I.

Then, through Eq. (2.27), we obtain

R = I+ sinϕW+ (1 − cosϕ)W2

= I+ sinϕW− (1 − cosϕ)(I−w ⊗w)

= cosϕI+ sinϕW + (1− cosϕ)w ⊗w.

(2.41)
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40 Tensor Algebra and Analysis for Engineers

To go on, we need to express W and w ⊗w; if w = (w1, w2, w3), then by

Eq. (2.23), we have

W =

⎡
⎣ 0 −w3 w2

w3 0 −w1

−w2 w1 0

⎤
⎦,

and by Eq. (2.2),

w ⊗w =

⎡
⎣ w2

1 w1w2 w1w3

w1w2 w2
2 w2w3

w1w3 w2w3 w2
3

⎤
⎦ ,

which on injecting into Eq. (2.41) gives

R =

⎡
⎢⎢⎢
⎢⎣

cosϕ + (1 − cosϕ)w2
1 −w3 sinϕ + w1w2(1 − cosϕ) w2 sinϕ + w1w3(1 − cosϕ)

w3 sinϕ + w1w2(1 − cosϕ) cosϕ + (1 − cosϕ)w2
2 −w1 sinϕ + w2w3(1 − cosϕ)

−w2 sinϕ + w1w3(1 − cosϕ) w1 sinϕ + w2w3(1 − cosϕ) cosϕ + (1 − cosϕ)w2
3

⎤
⎥⎥⎥
⎥⎦.

(2.42)

This formula gives R as a function exclusively of w and ϕ, the geometrical

elements of the rotation. Then,

detR = (w2 + (1− w2) cosϕ)(cos2 ϕ+ w2 sin2 ϕ),

and because w = 1, detR = 1, which proves that Eq. (2.39) actually

represents a rotation.

We eventually need to prove that Eq. (2.39) represents the rotation

about w of amplitude ϕ. To this end, we choose an orthonormal basis

B = {e1, e2, e3} of V such that w = e3, i.e. we analyze the particular case

of a rotation of amplitude ϕ about e3. This is always possible thanks to the

arbitrariness of the basis of V . In such a case, Eq. (2.38) gives

R =

⎡
⎣cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

⎤
⎦ . (2.43)
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Second-Rank Tensors 41

Moreover,

W =

⎡
⎣0 −1 0

1 0 0

0 0 0

⎤
⎦ , w ⊗w =

⎡
⎣0 0 0

0 0 0

0 0 1

⎤
⎦,

W2 = −(I−w ⊗w) =

⎡
⎣−1 0 0

0 −1 0

0 0 0

⎤
⎦.

Hence,

I+ sinϕW + (1− cosϕ)W2 =

⎡
⎣1 0 0

0 1 0

0 0 1

⎤
⎦+ sinϕ

⎡
⎣0 −1 0

1 0 0

0 0 0

⎤
⎦

+ (1 − cosϕ)

⎡
⎣−1 0 0

0 −1 0

0 0 0

⎤
⎦ =

⎡
⎣cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

⎤
⎦= R.

ˆ

ˆ ˆ ˆ

ˆ

(2.44)

�

Equation (2.39) gives another result: To obtain the inverse of R, it is

sufficient to change the sign of ϕ. In fact, becauseW ∈ Skw(V) and through

Eq. (2.26),

R−1 = R� = (I+ sinϕW + (1− cosϕ)W2)�

= I+ sinϕW� + (1− cosϕ)(W2)�

= I− sinϕW + (1− cosϕ)W2

= I+ sin(−ϕ)W + (1− cos(−ϕ))W2.

The knowledge of the inverse of a rotation also allows us to perform

the operation of change of basis, i.e. to determine the components of a

vector or of a tensor in a basis B̂ = {e1, ê2, ê3} rotated with respect to an

original basis B = {e1, e2, e3} by a rotation R (in the following equations,

the symbol ˆ indicates a quantity specified in the basis B̂). Considering
that

ei = R−1ei = R�ei = R�
hk(êh ⊗ êk)êi = R�

hkδkieh,

we get, for a vector u,

u = uiei = R�
kiuiek,

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



42 Tensor Algebra and Analysis for Engineers

i.e.

ˆ

ˆ ˆ ˆ

uk = R�
kiui → û = R�u.

We remark that, because R� = R−1, the operation of change of basis is

just the opposite of the rotation of the space (and actually, we have seen

that it is sufficient to take the opposite of ϕ in Eq. (2.39) to get R−1).

For a second-rank tensor L, we get

L = Lijei ⊗ ej = LijR
�
miem ⊗R�

njen = R�
miR

�
njLijem ⊗ ên,

i.e.

L̂mn = R�
miR

�
njLij = R�

miLijRjn → L̂ = R�LR.

We remark something that is typical of tensors: The components of

a r-rank tensor in a rotated basis B̂ depend upon the rth powers of the

director cosines of the axes of B̂, i.e. on the rth powers of the components

Rij of R.

If a rotation tensor is known through its Cartesian components in a

given basis B, it is easy to calculate its geometrical elements: The rotation

axis w is the eigenvector of R corresponding to the eigenvalue 1, so it is

found by solving the equation

Rw = w

and then normalizing it, while the rotation amplitude ϕ can be found using

(2.39) along with (2.27): Because the trace of a tensor is invariant, we get

trR = 3+ (1− cosϕ)tr(−I+w⊗w) = 1+ 2 cosϕ → ϕ = arccos
trR− 1

2
.

It is interesting to consider the geometrical meaning of Eq. (2.39). For this

purpose, we apply Eq. (2.39) to a vector u, see Fig. 2.3:

Ru = (I+ sinϕW + (1− cosϕ)W2)u

= u+ sinϕw × u+ (1− cosϕ)w × (w × u).

The rotated vector Ru is the sum of three vectors; in particular,

sinϕWu is always orthogonal to u, w, and (1 − cosϕ)W2u. If u ·w = 0,

then (1 − cosϕ)W2u is also parallel to u, see the sketch on the right in

Fig. 2.3.
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Figure 2.3: Rotation of a vector.

Let us consider now a composition of rotations. In particular, let us

imagine that a vector u is rotated first by R1 around w1 through ϕ1, then

by R2 around w2 through ϕ2. So, first, the vector u becomes the vector

u1 = R1u.

Then, the vector u1 is rotated about w2 through ϕ2 to become

u12 = R2u1 = R2R1u.

Let us now suppose that we change the order of the rotations: R2 first and

then R1. The final result will be the vector

u21 = R1R2u. (2.45)

Because the tensor product is not symmetric (i.e. it does not have the

commutativity property), generally,11

u12 �= u21.

In other words, the order of the rotations matters: Changing the order of the

rotations leads to a different final result. An example is shown in Fig. 2.4.

11We have seen, in Theorem 12, that two tensors commute ⇐⇒ they are coaxial, i.e. if
they have the same eigenvectors. Because the rotation axis is always a real eigenvector
of a rotation tensor, if two tensors operate a rotation about different axes, they are not

coaxial. Hence, the rotation tensors about different axes never commute.
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44 Tensor Algebra and Analysis for Engineers

Figure 2.4: Non-commutativity of the rotations.

This is a fundamental difference between rotations and displacements

that commute, see Fig. 1.2, because the composition of displacements is

ruled by the sum of vectors:

w = u+ v = v + u. (2.46)

This difference, which is a major point in physics, comes from the difference

in the operators: vectors for the displacements and tensors for the rotations.

Any rotation can be specified by the knowledge of three parameters.

This can be easily seen from Eq. (2.39): The parameters are the three

components of w that are not independent because

w = |w| =
√
w2

1 + w2
2 + w2

3 = 1

and by the amplitude angle ϕ. The choice of the parameters by which

to express a rotation is not unique. Besides the use of the Cartesian

components of w and ϕ, cf. Eq. (2.42), other choices are possible, let us see

three of them:

(i) Physical angles: The rotation axis w is given through its spherical

coordinates ψ, the longitude, 0 ≤ ψ < 2π, and θ, the colatitude, 0 ≤
θ ≤ π, see Fig. 2.5, the third parameter being the rotation amplitude ϕ.

Then,

w = (sin θ cosψ, sin θ sinψ, cos θ) → θ = arccosw3, ψ = arctan
w2

w1
,
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Figure 2.5: Physical angles.

and, Eq. (2.42),

R =

⎡
⎢⎢⎢
⎢⎢⎢
⎣

cψ2sθ2 + cϕ(cθ2 + sψ2sθ2) sψcψsθ2(1 − cϕ) − cθsϕ cψsθcθ(1− cϕ) + sψsθsϕ

sψcψsθ2(1 − cϕ) + cθsϕ sψ2sθ2 + cϕ(cθ2 + cψ2sθ2) sψsθcθ(1− cϕ) − cψsθsϕ

cψsθcθ(1− cϕ)− sψsθsϕ sψsθcθ(1 − cϕ) + cψsθsϕ cθ2 + cϕ(cψ2sθ2 + sψ2sθ2)

⎤
⎥⎥⎥
⎥⎥⎥
⎦
,

where cψ = cosψ, sψ = sinψ, cθ = cos θ, sθ = sin θ, cϕ = cosϕ, and

sϕ = sinϕ. We remark that all the components of R so expressed

depend upon the first powers of the circular functions of ϕ. Hence,

for what is said above, with this representation of the rotations, the

components of a rotated r-rank tensor depend upon the rth power of

the circular functions of ϕ, i.e. of the physical rotation, but not of ψ

nor of θ.

(ii) Euler’s angles: In this case, the three parameters are the amplitude of

three particular rotations into which the rotation is decomposed. Such

parameters are the angles ψ, the precession, θ, the nutation, and ϕ,

the proper rotation, see Fig. 2.6. These three rotations are represented

in Fig. 2.7. The first one, of amplitude ψ, is made about z to carry the

axis x onto the knots line xN , the line perpendicular to both the axes

z and ẑ, and y onto y; by Eq. (2.38), in the frame {x, y, z}, it is

Rψ =

⎡
⎣cosψ − sinψ 0

sinψ cosψ 0

0 0 1

⎤
⎦ .
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Figure 2.6: Euler’s angles.

Figure 2.7: Euler’s rotations, as seen from the respective axes of rotation.

The second one, of amplitude θ, is made about xN to carry z onto ẑ;

in the frame {xN , y, z}, it is

Rθ =

⎡
⎣1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤
⎦ ,

while in the frame {x, y, z},

Ro
θ = (R−1

ψ )�RθR
−1
ψ = RψRθR

�
ψ .
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The last rotation, of amplitude ϕ, is made about ẑ to carry xN onto

x̂ and y onto ŷ; in the frame {xN , y, ẑ}, it is

Rϕ =

⎡
⎣cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

⎤
⎦,

while in {x, y, z},

Ro
ϕ = (R−1

ψ )�(R−1
θ )�RϕR

−1
θ R−1

ˆ

ˆ

ψ = RψRθRϕR
�
θ R

�
ψ .

Any vector u is transformed, by the global rotation, into the vector

u = Ru.

But we can also write

u = Ro
ϕu,

where u is the vector transformed by the rotation Ro
θ,

u = Ro
θu,

and

ˆ

u is the vector transformed by the rotation Rψ:

u = Rψu.

Finally,

u = Ru = Ro
ϕR

o
θRψu → R = Ro

ϕR
o
θRψ,

i.e. the global rotation tensor is obtained by composing, in the opposite

order of execution of the rotations, the three tensors all expressed in

the original basis. However,

R = Ro
ϕR

o
θRψ = RψRθRϕR

�
θ R

�
ψRψRθR

�
ψRψ = RψRθRϕ,

i.e. the global rotation tensor is also equal to the composition of the

three rotations, in the order of execution, if the three rotations are

expressed in their own particular bases. This result is general and not

bounded to the Euler’s rotations nor to three rotations.
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48 Tensor Algebra and Analysis for Engineers

Performing the tensor multiplications, we get

R = ⎢

⎡

⎢
⎣

cosψ cosϕ− sinψ sinϕ cos θ − cosψ sinϕ− sinψ cosϕ cos θ sinψ sin θ

sinψ cosϕ+ cosψ sinϕ cos θ − sinψ sinϕ+ cosψ cosϕ cos θ − cosψ sin θ

sinϕ sin θ cosϕ sin θ cos θ

⎥

⎤

⎥
⎦.

ˆ

The components of a vector u in the basis B̂ are then given by

u = R�u = R�
ϕR

�
θ R

�
ψu

and those of a second-rank tensor by

L̂ = R�LR = R�
ϕR

�
θ R

�
ψLRψRθRϕ.

(iii) Coordinate angles: In this case, the rotation R is decomposed into

three successive rotations α, β, and γ, respectively, about the axes x,

y, and z of each rotation, i.e.

R = RαRβRγ

with

Rα =

⎡
⎣1 0 0

0 cosα − sinα

0 sinα cosα

⎤
⎦ , Rβ =

⎡
⎣cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ

⎤
⎦ ,

Rγ =

⎡
⎣cos γ − sinγ 0

sinγ cos γ 0

0 0 1

⎤
⎦,

so finally,

R = ⎢

⎡

⎢
⎣

cos β cos γ − cos β sin γ − sin β

cosα sin γ − sinα sinβ cos γ cosα cos γ + sinα sin β sinγ − sinα cos β

sinα sin γ + cosα sinβ cos γ sinα cos γ − cosα sin β sinγ cosα cos β

⎥

⎤

⎥
⎦.
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Second-Rank Tensors 49

Let us now consider the case of small rotations, i.e. |ϕ| → 0. In such a case,

sinϕ � ϕ, 1− cosϕ � 0,

and

R � I+ ϕW,

i.e. in the small rotations approximation, any vector u is transformed into

Ru � (I+ ϕW)u = u+ ϕw × u, (2.47)

i.e. by a skew tensor and not by a rotation tensor. The term (1−cosϕ)W2u

has disappeared, as it is a higher-order infinitesimal quantity, and the term

ϕw × u is orthogonal to u. Because ϕ → 0, the arc is approximated by

its tangent, the vector ϕw × u, see Fig. 2.8. Applying to Eq. (2.47) the

procedure already seen for the composition of finite amplitude rotations,

we get

u1 = R1u = (I+ ϕ1W1)u = u+ ϕ1w1 × u,

u21 = R2u1 = (I+ ϕ2W2)u1 = u1 + ϕ2w2 × u1

= u+ ϕ1w1 × u+ ϕ2w2 × u

+ϕ1ϕ2w2 × (w1 × u).

If the order of the rotations is changed, the last term becomes ϕ1ϕ2w1 ×
(w2 × u), which is, in general, different from ϕ1ϕ2w2 × (w1 × u): To be

Figure 2.8: Small rotations.
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50 Tensor Algebra and Analysis for Engineers

precise, small rotations also do not commute.12 However, for small rota-

tions, ϕ1ϕ2 is negligible with respect to ϕ1 and ϕ2: In this approximation,

small rotations commute. We remark that approximation (2.47) gives, for

the displacements, a law that is quite similar to that of the velocities of the

points of a rigid body:

v = v0 + ω × (p− o).

This is quite natural because

ω =
dϕ

dt
,

i.e. a small amplitude rotation can be seen as a rotation made with finite

angular velocity ω in a small time interval dt.

2.12 Reflexions

Let us consider now tensors S ∈ Orth(V) that are not rotations, i.e. such

that detS = −1. Let us call S an improper rotation. A particular improper

rotation whose all eigenvalues are equal to −1 is the inversion or reflexion

tensor:

SI = −I.

The effect of SI is to transform any basis B into the basis−B, i.e. with all the

basis vectors changed in orientation (or, equivalently, to change the sign of

all the components of a vector). In other words, SI changes the orientation

of the space. This is also the effect of any other improper rotation S that

can be decomposed into a proper rotation R followed by the reflexion SI
13:

S = SIR. (2.48)

Let n ∈ S, then
SR = I− 2n⊗ n (2.49)

is the tensor that operates the transformation of symmetry with respect to

a plane orthogonal to n. In fact,

SRn = −n, SRm = m ∀m ∈ V| m · n = 0.

12This can happen for some vectors all the times when w1 · u = w2 ·u, like for the case
of a vector u orthogonal to both w1 and w2; however, this is no more than a curiosity,
it has no importance in practice.
13The application of Binet’s theorem shows immediately that detS = −1, while

SIR(SIR)� = SIRR�S�
I = −I(−I)� = I: The decomposition in Eq. (2.48) actually

gives an improper rotation.
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Second-Rank Tensors 51

SR is an improper rotation; in fact, by Eq. (2.4),

(I− 2n⊗ n)(I − 2n⊗ n)� = (I− 2n⊗ n)(I− 2n⊗ n)

= I− 2n⊗ n− 2n⊗ n+ 4(n⊗ n)(n⊗ n) = I,

while by the same definition of trace and through Eqs. (2.13) and (2.17),

det(I− 2n⊗ n) = 1− 2tr(n⊗ n) + 4
tr2(n⊗ n)− tr(n⊗ n)(n⊗ n)

2

−8 det(n⊗ n) = −1.

Let S = SIR be an improper rotation, then

(Su)× (Sv) = (SIRu)× (SIRv) = det(SIR)
[
(SIR)−1

]�
(u× v)

= detSI detR(R−1S−1
I )�(u× v)

= −(−R−1I)�(u× v) = R(u× v).

The transformation by S of any vector u gives

Su = SIRu = −Ru,

i.e. it changes the orientation of the rotated vector; this is not the case

when the same improper rotation transforms the vectors of a cross product:

The rotated vector result of the cross product does not cause a change in

orientation, i.e. the cross product is insensitive to a reflexion. That is why, to

be precise, the result of a cross product is not a vector but a pseudo-vector:

It behaves like a vector apart from the reflexions. For the same reason, a

scalar result of a mixed product (scalar plus cross product of three vectors)

is called a pseudo-scalar because in this case, the scalar result of the mixed

product causes a change in sign under a reflexion, which can be checked

easily.

2.13 Polar decomposition

Theorem 20 (Square root theorem). Consider L ∈ Sym(V) and

positive definite, then there exists a unique tensor U ∈ Sym(V) and positive

definite such that

L = U2.
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52 Tensor Algebra and Analysis for Engineers

Proof. Existence: Consider L,U,V ∈ Sym(V) and positive definite and

L = ωiei ⊗ ei

a spectral decomposition of L, ωi > 0 ∀i. Define U as

U =
√
ωiei ⊗ ei;

then, by Eq. (2.4)1, we get

U2 = L.

Uniqueness: Suppose also that

V2 = L,

and let e be an eigenvector of L corresponding to the (positive) eigenvalue

ω. Then, if λ =
√
ω,

O = (U2 − λI)e = (U− λI)(U − λI)e,

and once we set

v = (U− λI)e,

we get

Uv = −λv ⇒ v = o ⇒ Ue = λe

because U is positive definite and −λ cannot be an eigenvalue of U because

λ > 0. In a similar way,

Ve = λe ⇒ Ue = Ve

for every eigenvector e of L. Because, based on spectral theorem, there

exists a basis of eigenvectors of L, U = V. �

We symbolically write that

U =
√
L.

For any F ∈ Lin(V), both FF� and F�F clearly ∈ Sym(V). If in

addition detF > 0, then

u · F�Fu = (Fu) · (Fu) ≥ 0,
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Second-Rank Tensors 53

with the zero value obtained ⇐⇒ Fu = o and, because detF > 0 ⇒ F

is invertible, ⇐⇒ u = o. As a consequence, F�F is positive definite. In a

similar way, it can be proved that FF� is also positive definite.

A particular tensor decomposition14 is given by the following.

Theorem 21 (Polar decomposition theorem). ∀F ∈ Lin(V)| detF >

0 exist and are uniquely determined by two positive definite tensors U,V ∈
Sym(V) and a rotation R such that

F = RU = VR.

Proof. Uniqueness: Let F = RU be a right polar decomposition of F;

because R ∈ Orth(V)+ and U ∈ Sym(V),

F�F = UR�RU = U2 ⇒ U =
√
F�F.

By the square-root theorem, tensor U is unique, and because

R = FU−1,

R is unique too.

Now, let F = VR be a left polar decomposition of F; by the same

procedure, we get

FF� = V2 → V =
√
FF�,

so V is unique, and also,

R = V−1F.

Existence: Let

U =
√
F�F,

so U ∈ Sym(V) and it is positive definite, and let

R = FU−1.

To prove that F = RU is a right polar decomposition, we just have to

show that R ∈ Orth(V)+. Since detF > 0, detU > 0 (the latter because

14This decomposition is fundamental to the theory of deformation of continuum bodies.
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54 Tensor Algebra and Analysis for Engineers

all the eigenvalues of U are strictly positive), by the theorem of Binet, also

detR > 0. Then,

R�R = (FU−1)�(FU−1) = U−1F�FU−1 = U−1U2U−1

= I ⇒ R ∈ Orth(V)+.
Now, let

V = RUR�,

then V ∈ Sym(V) and is positive definite, see Exercise 2.14, and

VR = RUR�R = RU = F,

which completes the proof. �

2.14 Exercises

1. Prove that

Lo = o ∀L ∈ Lin(V).
2. Prove that, if a straight line r has the direction of u ∈ S, then the tensor

giving the projection of a vector v ∈ V on r is u ⊗ u (the orthogonal

projector), while the one giving the projection on a direction orthogonal

to r is I− u⊗ u (the complementary projector), see Fig. 2.9.

3. For any α ∈ R, a,b ∈ V and A,B ∈ Lin(V), prove that

(αA)� = αA�, (A+B)� = A� +B�, (a⊗ b)A = a⊗ (A�b).

4. Prove that

L+O = L ∀L ∈ Lin(V).

Figure 2.9: Projected vectors.
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Second-Rank Tensors 55

5. Prove that

trI = 3, trO = 0.

6. Prove that, ∀A,B ∈ Lin(V),

tr(AB) = tr(BA).

7. Prove that, ∀L,M,N ∈ Lin(V),

L� ·M� = L ·M, LM ·N = L ·NM� = M · L�N.

8. Prove the assertions in Eq. (2.4).

9. Prove that any form defined by a tensor L can be written as a scalar

product of tensors:

v · Lw = L · v ⊗w ∀v,w ∈ V ,L ∈ Lin(V).

10. Prove that Sym(V) and Skw(V) are orthogonal, i.e. prove that

A ·B = 0 ∀A ∈ Sym(V), B ∈ Skw(V).

11. For any L ∈ Lin(V), prove that, if A ∈ Sym(V), then

A · L = A · Ls,

while if B ∈ Skw(V), then

B · L = B · La.

12. Let A,B,C,D ∈ Lin(V); prove that

A · (BCD) = (B�A) · (CD) = (AD�) · (BC).

13. Prove that L ·W = 0 ∀W ∈ Skw(V) ⇐⇒ L ∈ Sym(V).
14. Express by components the second principal invariant I2 of a tensor L.

15. Prove that if a = (a1, a2, a3),b = (b1, b2, b3), c = (c1, c2, c3), then

a× b · c = det

⎡
⎣a1 a2 a3
b1 b2 b3
c1 c2 c3

⎤
⎦ .

16. Prove the uniqueness of the inverse tensor.

17. Show, using the Cartesian components, that all the dyads are singular.
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56 Tensor Algebra and Analysis for Engineers

18. Prove that if L is invertible and α ∈ R− {0}, then
(αL)−1 = α−1L−1.

19. Prove that if W is the axial tensor of w, then

WW = −1

2
|W|2(I−w ⊗w).

20. Prove that for any two axial couples w1,W1 and w2,W2, we have

w1 ·w2 =
1

2
W1 ·W2.

21. Prove that ∀u,v ∈ V , u× v = o ⇐⇒ u⊗ v ∈ Sym(V).
22. Let L ∈ Sym(V) and positive definite and R ∈ Orth(V)+, then prove

that RLR� ∈ Sym(V) and that it is positive definite.

23. Prove that the spectrum of Lsph is composed of only

λsph =
1

3
trL

and that any u ∈ S is an eigenvector.

24. Prove that the eigenvalues λdev of Ldev are given by

λdev = λ− λsph,

where λ is an eigenvalue of L.
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Chapter 3

Fourth-Rank Tensors

3.1 Fourth-rank tensors

A fourth-rank tensor L is any linear application from Lin(V) to Lin(V):
L : Lin(V) → Lin(V) | L(αiAi) = αiLAi ∀αi ∈ R, Ai ∈ Lin(V),

i = 1, . . . , n.

Defining the sum of two fourth-rank tensors as

(L1 + L2)A = L1A+ L2A ∀A ∈ Lin(V),
the product of a scalar by a fourth-rank tensor as

(αL)A = α(LA) ∀α ∈ R,A ∈ Lin(V),
and the null fourth-rank tensor O as the unique tensor such that

OA = O ∀A ∈ Lin(V),
then the set of all the tensors L that operate on Lin(V) forms a vector

space, denoted by Lin(V). We define the fourth-rank identity tensor I as a

unique tensor such that

IA = A ∀A ∈ Lin(V).
It is apparent that the algebra of fourth-rank tensors is similar to that of

second-rank tensors, and in fact, several operations with fourth-rank tensors

can be introduced in almost the same way, in some sense the operations

shifting from V to Lin(V). However, the algebra of fourth-rank tensors is

richer than that of the second-rank ones, and some care must be taken.

In the following sections, we consider some of the operations that can

be done with fourth-rank tensors.

57
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58 Tensor Algebra and Analysis for Engineers

3.2 Dyads, tensor components

For any couple of tensors A and B ∈ Lin(V), the (tensor) dyad A ⊗B is

the fourth-rank tensor defined by

(A⊗B)L := B · L A ∀L ∈ Lin(V).
The application defined above is actually a fourth-rank tensor because of

the bilinearity of the scalar product of second-rank tensors. Applying this

rule to the nine dyads of the basis B2 = {ei ⊗ ej , i, j = 1, 2, 3} of Lin(V)
leads to the introduction of 81 fourth-rank tensors,

ei ⊗ ej ⊗ ek ⊗ el := (ei ⊗ ej)⊗ (ek ⊗ el),

that form a basis B4 = {ei ⊗ ej ⊗ ek ⊗ el, i, j = 1, 2, 3} for Lin(V). We

remark hence that dim(Lin(V)) = 81. A useful result is that

(ei ⊗ ej ⊗ ek ⊗ el)(ep ⊗ eq)

= (ek ⊗ el) · (ep ⊗ eq)(ei ⊗ ej) = δkpδlq(ei ⊗ ej). (3.1)

Any fourth-rank tensor can be expressed as a linear combination (the

canonical decomposition):

L = Lijkl ei ⊗ ej ⊗ ek ⊗ el, i, j = 1, 2, 3,

where Lijkls are the 81 Cartesian components of L with respect to B4. Lijkls

are defined by the operation

(ei ⊗ ej) · L(ek ⊗ el) = (ei · ej) · (Lpqrsep ⊗ eq ⊗ er ⊗ es)(ek ⊗ el)

= (ei ⊗ ej) · (Lpqrsδrkδslep ⊗ eq)

= Lpqrsδrkδslδipδjq = Lijkl.

The components of a tensor dyad can be computed without any difficulty:

A⊗B = (Aijei ⊗ ej)⊗ (Bklek ⊗ el) = AijBklei ⊗ ej ⊗ ek ⊗ el

⇒ (A⊗B)ijkl = AijBkl

so that, in particular,

((a⊗ b)⊗ (c⊗ d))ijkl = aibjckdl.

Concerning the identity of Lin(V),
Iijkl = (ei ⊗ el) · I(ek ⊗ el) = (ei ⊗ ej) · (ek ⊗ el) = ei · ekej · el

= δikδjl ⇒ I = δikδjl(ei ⊗ el ⊗ ek ⊗ el).
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Fourth-Rank Tensors 59

The components of A ∈ Lin(V), resulting from the application of L ∈
Lin(V) on B ∈ Lin(V), can now be easily calculated:

A = LB = Lijkl(ei ⊗ ej ⊗ ek ⊗ el)(Bpqep ⊗ eq)

= LijklBpqδkpδlq(ei ⊗ ej)

= LijklBkl(ei ⊗ ej) ⇒ Aij = LijklBkl.

(3.2)

Moreover,

L(A⊗B)C = L((A ⊗B)C) = L(B ·CA) = B ·C LA

= ((LA) ⊗B)C ⇒ L(A ⊗B) = (LA) ⊗B.

Using this result and Eq. (3.1), we can determine the components of a

product of fourth-rank tensors:

AB = Aijkl(ei ⊗ ej ⊗ ek ⊗ el)Bpqrs(ep ⊗ eq ⊗ er ⊗ es)

= AijklBpqrs(ei ⊗ ej ⊗ ek ⊗ el)(ep ⊗ eq)⊗ (er ⊗ es)

= AijklBpqrs[(ei ⊗ ej ⊗ ek ⊗ el)(ep ⊗ eq)]⊗ (er ⊗ es)

= AijklBpqrs[δkpδlq(ei ⊗ ej)]⊗ (er ⊗ es)

= AijklBklrs(ei ⊗ ej ⊗ er ⊗ es) ⇒ (AB)ijrs = AijklBklrs.

(3.3)

Depending upon four indices, a fourth-rank tensor L cannot be represented

by a matrix; however, we will see in Section 3.8 that a matrix representation

of a fourth-rank tensor is still possible and that it is currently used in some

cases, e.g. in elasticity.

3.3 Conjugation product, transpose, symmetries

For any two tensors A,B ∈ Lin(V), we call the conjugation product the

tensor A�B ∈ Lin(V) defined by the operation

(A�B)L := ALB� ∀L ∈ Lin(V).

As a consequence, for the dyadic tensors of B2,

(ei ⊗ ej)� (ek ⊗ el) = ei ⊗ ek ⊗ ej ⊗ el (3.4)

so that

(A�B)ijkl = AikBjl.
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60 Tensor Algebra and Analysis for Engineers

Moreover, by the uniqueness of the identity I, ∀A ∈ Lin(V),
(I� I)A = IAI� = A ⇒ I = I� I.

The transpose of a fourth-rank tensor L is the unique tensor L�, such that

A · (LB) = B · (L�A) ∀A,B ∈ Lin(V).
By this definition, setting A = ei ⊗ ej ,B = ek ⊗ el gives

(L�)ijkl = Lklij .

A consequence is that

A · (LB) = B · (L�A) = A · (L�)�B ⇒ (L�)� = L.

Moreover,

M · (A⊗B)�L = L · (A⊗B)M

= L ·AM ·B = M · (BA · L)
= M · (B⊗A)L ⇒ (A⊗B)� = B⊗A,

while, cf. Exercise 7, Chapter 2,

M · (A�B)�L = L · (A�B)M

= L ·AMB� = A�L ·MB� = M�A�L ·B�

= (M�A�L)� · (B�)� = L�AM ·B = AM · LB
= M ·A�LB = M · (A� �B�)L ⇒ (A�B)�

= A� �B�.

The property

(AB)� = B
�
A

�

can be proved in the same manner as the analogous property of the second-

rank tensors.

A tensor L ∈ Lin(V) is symmetric ⇐⇒ L = L
�. It is then evident that

L = L
� ⇒ Lijkl = Lklij ,

which are relations called major symmetries. These symmetries number 36

on the whole so that a symmetric fourth-rank tensor has 45 independent

components. Moreover,

A�B = (A�B)� = A� �B� ⇐⇒ A = A�,B = B�,

A⊗B = (A⊗B)� = B⊗A ⇐⇒ B = λA, λ ∈ R.

Let us now consider the case of a L ∈ Lin(V), such that

LA = (LA)� ∀A ∈ Lin(V).
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Fourth-Rank Tensors 61

Then, by Eq. (3.2),

Lijkl = Ljikl,

which are relations called left minor symmetries: A tensor L having the

left minor symmetries has values in Sym(V). On the whole, the left minor

symmetries number 27. Finally, consider the case of a L ∈ Lin(V), such
that

LA = L(A�) ∀A ∈ Lin(V);

then, again by Eq. (3.2), we get

Lijkl = Lijlk,

which are relations called minor right symmetries, whose total number

is also 27. It is immediate to recognize that if L has the minor right

symmetries, then

LW = O ∀W ∈ Skw(V).

We say that a tensor has minor symmetries if it has both the right and left

minor symmetries; the total number of minor symmetries is 45 because, as

can be easily checked, some of the left and right minor symmetries are the

same, so finally a tensor with the minor symmetries has 36 independent

components.

If L ∈ Lin(V) has major and minor symmetries, then the number of

independent symmetry relations is actually 60 (some minor and major

symmetries coincide), so in such a case, L depends upon 21 independent

components only. This is the case of the elasticity tensor.

Finally, the six Cauchy–Poisson symmetries1 are those of the type

Lijkl = Likjl.

A tensor having major, minor, and Cauchy–Poisson symmetries is com-

pletely symmetric, i.e. swapping any couple of indices gives an identical

component. In that case, the number of independent components is only 15.

1The Cauchy–Poisson symmetries have played an important role in a celebrated diatribe

of the 19th century in elasticity, that between the so-called rari- and multi-constant
theories.
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3.4 Trace and scalar product of fourth-rank tensors

We can introduce the scalar product between fourth-rank tensors in the

same way we did for second-rank tensors. We first introduce the concept

of trace for fourth-rank tensors once again using the dyad (here, the tensor

dyad):

tr4A⊗B := A ·B.
The easy proof that tr4 : Lin(V) → R is a linear form is based upon the

properties of scalar product of second-rank tensors, and it is left to the

reader. An immediate result is that

tr4A⊗B = AijBij .

Then, using the canonical decomposition, we have that

tr4L = tr4(Lijkl(ei ⊗ ej)⊗ (ek ⊗ el)) = Lijkl(ei ⊗ ej) · (ek ⊗ el)

= Lijklδikδjl = Lijij

and that

tr4L
� = tr4(Lklij(ei ⊗ ej)⊗ (ek ⊗ el)) = Lklij(ei ⊗ ej) · (ek ⊗ el)

= Lklijδikδjl = Lijij = tr4L.

Then, we define the scalar product of fourth-rank tensors as

A · B := tr4(A
�
B).

By the properties of tr4, the scalar product is a positive definite symmetric

bilinear form:

αA · βB = tr4(αA
�βB) = αβtr4(A

�
B) = αβA · B,

A · B = tr4(A
�
B) = tr4(A

�
B)� = tr4(B

�
A) = B · A,

A · A = tr4(A
�
A) = (A�

A)ijij = AklijAklij > 0 ∀A ∈ Lin(V),
A · A = 0 ⇐⇒ A = O.

By components,

A · B = tr4((Aklijei ⊗ ej ⊗ ek ⊗ el)(Bpqrsep ⊗ eq ⊗ er ⊗ es))

= tr4(AklijBpqrsδkpδlq(ei ⊗ ej)⊗ (er ⊗ es))

= AklijBpqrsδkpδlq(ei ⊗ ej) · (er ⊗ es)

= AklijBpqrsδkpδlqδirδjs = AklijBklij .
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Fourth-Rank Tensors 63

The rule for computing the scalar product is hence always the same as was

already seen for vectors and second-rank tensors: All the indexes are to be

saturated.

In complete analogy with vectors and second-rank tensors, we say that

A is orthogonal to B ⇐⇒
A · B = 0,

and we define the norm of L as

|L| :=
√
L · L =

√
tr4L�L =

√
LijklLijkl.

3.5 Projectors and identities

For the spherical part of any A ∈ Sym(V), we can write

Asph :=
1

3
trA I =

1

3
I ·A I =

1

3
(I⊗ I)A = S

sphA,

where

S
sph :=

1

3
I⊗ I

is the spherical projector, i.e. the fourth-rank tensor that extracts from any

A ∈ Lin(V) its spherical part. Moreover,

Adev := A−Asph = IA− S
sphA = D

devA,

where

D
dev := I− S

sph

is the deviatoric projector, i.e. the fourth-rank tensor that extracts from

any A ∈ Lin(V) its deviatoric part. It is worth noting that

I = S
sph + D

dev.

Moreover, about the components of Ssph,

Ssph
ijkl = (ei ⊗ ej) · 1

3
(I⊗ I)(ek ⊗ el) =

1

3
I · (ei ⊗ ej) I · (ek ⊗ el)

=
1

3
tr(ei ⊗ ej)tr(ek ⊗ el) =

1

3
δijδkl → S

sph

=
1

3
δijδkl(ei ⊗ ej ⊗ ek ⊗ el).
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64 Tensor Algebra and Analysis for Engineers

We remark that

S
sph = (Ssph)�.

We introduce now the tensor Is, restriction of I to A ∈ Sym(V). It can be

introduced as follows: ∀A ∈ Sym(V),

A =
1

2
(A+A�)

and

A = IA =
1

2
(IA+ IA�) =

1

2
(IijklAkl + IijklAlk)(ei ⊗ ej ⊗ ek ⊗ el);

because A = A�, there is insensitivity to the swap of indexes k and l, so

A =
1

2
(IijklAkl + IijlkAlk)(ei ⊗ ej ⊗ ek ⊗ el)

=
1

2
(δikδjl + δilδjk)Akl(ei ⊗ ej ⊗ ek ⊗ el).

Then, if we admit the interchangeability of indexes k and l, i.e. if we

postulate the existence of the minor right symmetries for I, then I = I
s,

with

I
s =

1

2
(δikδjl + δilδjk)(ei ⊗ ej ⊗ ek ⊗ el).

It is apparent that

Isijkl = Isklij ,

i.e. Is = (Is)� but also that

Isijkl =
1

jikl ,2
(δilδjk + δikδjl) = Is

i.e. Is has also the minor left symmetries; in other words, Is has the major

and minor symmetries, like an elasticity tensor, while this is not the case

for I. In fact,

Iijkl = Ijilk = δikδjl 	= δilδjk = Ijikl = Iijlk .

Because Ssph and Ddev operate on Sym(V), it is immediate to recognize

that it is also

D
dev = I

s − S
sph ⇒ I

s = S
sph + D

dev.

It is worth noting that

(Ddev)� = (Is − S
sph)� = (Is)� − (Ssph)� = I

s − S
sph = D

dev.
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We can now determine the components of Ddev:

Ddev
ijkl = Isijkl − Ssph

ijkl =
1

2
(δikδjl + δilδjk)− 1

3
δijδkl →

D
dev =

[
1

2
(δikδjl + δilδjk)− 1

3
δijδkl

]
(ei ⊗ ej ⊗ ek ⊗ el).

We remark that the result (2.9) implies that Ssph and Ddev are orthogonal

projectors, i.e. they project the same A ∈ Sym(V) into two orthogonal

subspaces of V , Sph(V) and Dev(V).
The tensor Ttrp ∈ Lin(V) defined by the operation

T
trpA = A� ∀A ∈ Lin(V)

is the transposition projector whose components are

T trp
ijkl = (ei ⊗ ej) · Ttrp(ek ⊗ el) = (ei ⊗ ej) · (el ⊗ ek) = δilδjk.

The following operation defines the symmetry projector Ssym ∈ Lin(V):

S
symA =

1

2
(A+A�) ∀A ∈ Lin(V),

while the antisymmetry projector Wskw ∈ Lin(V) is defined by

W
skwA =

1

2
(A−A�) ∀A ∈ Lin(V).

Also, Ssym and W
skw are orthogonal projectors because they project the

same A ∈ Lin(V) into two orthogonal subspaces of Lin(V): Sym(V) and

Skw(V), see Exercise 10, Chapter 2.

We prove now two properties of the projectors: ∀A ∈ Lin(V),

(Ssym +W
skw)A =

1

2
(A+A�) +

1

2
(A−A�) = A

= IA ⇒ S
sym +W

skw = I. (3.5)

Then,

(Ssym −W
skw)A =

1

2
(A+A�)− 1

2
(A−A�) = A�

= T
trpA ⇒ S

sym −W
skw = T

trp. (3.6)
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3.6 Orthogonal conjugator

For any U ∈ Orth(V), we define its orthogonal conjugator U ∈ Lin(V) as
U := U�U.

Theorem 22 (Orthogonality of U). The orthogonal conjugator is an

orthogonal tensor of Lin(V), i.e. it preserves the scalar product between

tensors:

UA · UB = A ·B ∀A,B ∈ Lin(V).
Proof. By the assertion in Exercise 12 of Chapter 2 and because U ∈
Orth(V), we have

UA · UB = (U�U)A · (U�U)B = UAU� ·UBU�

= U�UAU� ·BU� = AU� ·BU� = AU�U ·B = A ·B. �
Just as for tensors of Orth(V), we also have

UU
� = U

�
U = I.

In fact, see the assertion in Exercise 4:

UU
� = (U�U)(U� �U�) = UU� �UU� = I� I = I. (3.7)

The orthogonal conjugators also have some properties in relation with

projectors.

Theorem 23. S
sph is unaffected by any orthogonal conjugator, while D

dev

commutes with any orthogonal conjugator.

Proof. For any L ∈ Sym(V) and U ∈ Orth(V),

US
sphL = (U�U)

(
1

3
I⊗ I

)
L =

1

3
(trL)(U �U)I =

1

3
(trL)UIU�

=
1

3
(trL)I =

1

3
I · L I =

1

3
(I⊗ I)L = S

sphL.

Moreover,

S
sph

UL =

(
1

3
I⊗ I

)
(U�U)L =

1

3
(I⊗ I)(ULU�) =

1

3
(I ·ULU�)I

=
1

3
tr(ULU�)I =

1

3
tr(U�UL)I =

1

3
(trL)I =

1

3
I · LI

=
1

3
(I⊗ I)L = S

sphL.
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Thus, we have proved that

S
sph

U = US
sph = S

sph,

i.e. that the spherical projector S
sph is unaffected by any orthogonal

conjugator. Furthermore,

D
dev

UL = (Is − S
sph)UL = I

s
UL− S

sph
UL = UL− S

sphL = (U− S
sph)L

and

UD
devL = U(Is − S

sph)L = UI
sL− US

sphL = UL− S
sphL = (U− S

sph)L

so that

D
dev

U = UD
dev.

�

3.7 Rotations and symmetries

We ponder now how to rotate a fourth-rank tensor, i.e. what are the

components of

L = Lijklei ⊗ ej ⊗ ek ⊗ el

in a basis B′ = {e′1, e′2, e′3} obtained by rotating the basis B = {e1, e2, e3}
by the rotation R = Rijei ⊗ ej ,R ∈ Orth(V)+. The procedure is exactly

the same as already seen for vectors and second-rank tensors:

L = Lijklei ⊗ ej ⊗ ek ⊗ el = LijklR
�
pie

′
p ⊗R�

qje
′
q ⊗R�

rke
′
r ⊗R�

sle
′
s

= R�
piR

�
qjR

�
rkR

�
slLijkle

′
p ⊗ e′q ⊗ e′r ⊗ e′s,

i.e.

L′
pqrs = R�

piR
�
qjR

�
rkR

�
slLijkl.

We see clearly that the components of L in the basis B′ are a linear

combination of those in B, the coefficients of the linear combination

being fourth powers of the director cosines, Rijs. The introduction of the

orthogonal conjugator2 of the rotation R,

R = R�R,

2Here, the symbol R indicates the orthogonal conjugator of R and not the set of real

numbers.
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68 Tensor Algebra and Analysis for Engineers

allows us to give a compact expression for the rotation of second- and

fourth-rank tensors (for completeness, we also recall that of a vector w):

w′ = R�w,

L′ = R�LR = (R� �R�)L = R�L,

L′ = (R� �R�)L(R �R) = R�LR.

Checking the above relations with the orthogonal conjugator R is left to

the reader. It is worth noting that, actually, these transformations are valid

not only for R ∈ Orth(V)+ but more generally for any U ∈ Orth(V), i.e.
also for symmetries.

If byU, we denote the tensor of the change of basis under any orthogonal

transformation, i.e. if we put U = R� for the rotations, then the above

relations become

w′ = Uw,

L′ = ULU� = (U�U)L = UL,

L′ = (U�U)L(U �U)� = ULU�.

(3.8)

Finally, we say that L ∈ Lin(V) or L ∈ Lin(V) is invariant under an

orthogonal transformation U if

ULU� = L, ULU
� = L;

right multiplying both terms by U or by U and through Eq. (3.7), we get

that L or L are invariant under U ⇐⇒
UL = LU, UL = LU,

i.e. ⇐⇒ L and U or L and U commute. This relation allows, for example,

the analysis of material symmetries in anisotropic elasticity.

If a tensor is invariant under any orthogonal transformation, i.e. if the

previous equations hold true ∀U ∈ Orth(V), then the tensor is said to be

isotropic. A general result3 is that a fourth-rank tensor L is isotropic ⇐⇒
there exist two scalar functions λ, μ such that

LA = 2μA+ λtrA I ∀A ∈ Sym(V).
The reader is referred to the book by Gurtin (see references) for the proof

of this result and for a deeper insight into isotropic functions.

3Actually, this is quite a famous result in classical elasticity, the Lamé’s equation, defining

an isotropic elastic material.
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Fourth-Rank Tensors 69

3.8 The Kelvin formalism

As already mentioned, though fourth-rank tensors cannot be organized in

and represented by a matrix, nevertheless a matrix formalism for these

operators exists. Such a formalism is due to Kelvin4, and it is strictly related

to the theory of elasticity, i.e. it concerns Cauchy’s stress tensor σ, the strain

tensor ε, and the elasticity tensor E. The relation between σ and ε is given

by the celebrated (generalized) Hooke’s law:

σ = Eε.

Both σ, ε ∈ Sym(V) while E = E
�, and it also has the minor symmetries,

so E has only 21 independent components.5 In the Kelvin formalism, the

six independent components of σ and ε are organized into column vectors

and renumbered as follows:

{σ} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1 = σ11
σ2 = σ22
σ3 = σ33

σ4 =
√
2σ23

σ5 =
√
2σ31

σ6 =
√
2σ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
, {ε} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1 = ε11
ε2 = ε22
ε3 = ε33

ε4 =
√
2ε23

ε5 =
√
2ε31

ε6 =
√
2ε12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

The elasticity tensor E is reduced to a 6 × 6 matrix [E] as a consequence

of the minor symmetries induced by the symmetry of σ and ε; this matrix

is symmetric because E = E�:

[E]=

⎡
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎣

E11 = E1111 E12 = E1122 E13 = E1133 E14 =
√

2E1123 E15 =
√

2E1131 E16 =
√

2E1112

E12 = E1122 E22 = E2222 E23 = E2233 E24 =
√

2E2223 E25 =
√

2E2231 E26 =
√

2E2212

E13 = E1133 E23 = E2233 E33 = E3333 E34 =
√

2E3323 E35 =
√

2E3331 E36 =
√

2E3312

E14 =
√

2E1123 E24 =
√

2E2223 E34 =
√

2E3323 E44 = 2E2323 E45 = 2E2331 E46 = 2E2312

E15 =
√

2E1131 E25 =
√

2E2231 E35 =
√

2E3331 E45 = 2E2331 E55 = 2E3131 E56 = 2E3112

E16 =
√

2E1112 E26 =
√

2E2212 E36 =
√

2E3312 E46 = 2E2312 E56 = 2E3112 E66 = 2E1212

⎤
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎦

.

In this way, the matrix product

{σ} = [E]{ε} (3.9)

4W. Thomson (Lord Kelvin): Elements of a Mathematical Theory of Elasticity. Philos.
Trans. R. Soc., 146, 481–498, 1856. Later, Voigt (W. Voigt: Lehrbuch der Kristallphysik.
B. G. Taubner, Leipzig, 1910) gave another, similar matrix formalism for tensors, more

widely known than the Kelvin one but less effective.
5Actually, the Kelvin formalism can also be extended without major difficulties to tensors

that do not possess all the symmetries.
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70 Tensor Algebra and Analysis for Engineers

is equivalent to the tensor form of the Hooke’s law, and all the operations

can be done by the aid of classical matrix algebra,6 e.g. the computation

of the inverse of E, the compliance tensor.

An important operation is the expression of tensor U in Eq. (3.8) in

the Kelvin formalism; some tedious but straightforward operations give the

result:

[U] =

⎡
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

U2
11 U2

12 U2
13

√
2U12U13

√
2U13U11

√
2U11U12

U2
21 U2

22 U2
23

√
2U22U23

√
2U23U21

√
2U21U22

U2
31 U2

32 U2
33

√
2U32U33

√
2U33U31

√
2U31U32

√
2U21U31

√
2U22U32

√
2U23U33 U23U32 + U22U33 U33U21 + U31U23 U31U22 + U32U21

√
2U31U11

√
2U32U12

√
2U33U13 U32U13 + U33U12 U31U13 + U33U11 U31U12 + U32U11

√
2U11U21

√
2U12U22

√
2U13U23 U12U23 + U13U22 U11U23 + U13U21 U11U22 + U12U21

⎤
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

.

With some work, it can be checked that

[U ][U ]� = [U ]�[U ] = [I],

i.e. that [U ] is an orthogonal matrix in R6. Of course,

[R] = [U ]�

is the matrix that in the Kelvin formalism represents the tensor R = U�.
The change of basis for σ and ε are hence done through the relations

{σ′} = [U ]{σ}, {ε′} = [U ]{ε},
which when applied to Eq. (3.9) give

{σ} = [E]{ε} → [U ]�{σ′} = [E][U ]�{ε′} → {σ′} = [U ][E][U ]�{ε′},
i.e. in the basis B′,

{σ′} = [E′]{ε′},
where

[E′] = [U ][E][U ]� = [R]�[E][R]

is the matrix representing E in B′ in the Kelvin formalism. Though it is

possible to give the expression of the components of [E′], they are so long

that they are omitted here.

6Mehrabadi and Cowin have shown that the Kelvin formalism transforms second- and
fourth-rank tensors on R3 into vectors and second-rank tensors on R6 (M. M. Mehrabadi
and S. C. Cowin: Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl.
Math., 43, 15–41, 1990).
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3.9 The polar formalism for plane tensors

The Cartesian representation of tensors makes use of quantities that are

basis-dependent, and the change of basis implies algebraic transformations

rather complicate. The question of representing tensors using other quan-

tities than Cartesian components is hence of importance. In particular, it

should be interesting to represent a tensor making use of only invariants

of the tensor itself and of angles, which is the simplest geometrical way to

determine a direction.

In the case of plane tensors, this has been done by Verchery7 who

introduced the so-called polar formalism. This is basically a mathematical

technique to find the invariants of a tensor of any rank. Here, we give just a

short insight into the polar formalism of fourth-rank tensors, omitting the

proof of the results.8

The Cartesian components of a plane fourth-rank tensor T in a frame

rotated through an angle θ can be expressed as

T1111 = T0 + 2T1 +R0 cos 4(Φ0 − θ) + 4R1 cos 2(Φ1 − θ),

T1112 = R0 sin 4(Φ0 − θ) + 2R1 sin 2(Φ1 − θ),

T1122 = −T0 + 2T1 −R0 cos 4(Φ0 − θ),

T1212 = T0 −R0 cos 4(Φ0 − θ),

T1222 = −R0 sin 4(Φ0 − θ) + 2R1 sin 2(Φ1 − θ),

T2222 = T0 + 2T1 +R0 cos 4(Φ0 − θ)− 4R1 cos 2(Φ1 − θ).

In the above equations, T0, T1, R0, and R1 are tensor invariants, with

all of them nonnegative, while Φ0 and Φ1 are angles whose difference,

Φ0 − Φ1, is also a tensor invariant, so fixing one of the two polar angles

corresponds to fixing a frame. In particular, the tensor invariants have a

direct physical meaning (e.g. for the elasticity tensor, they are linked to

material symmetries and strain energy decomposition). We remark also

that the change of frame is extremely simple in the polar formalism: It is

sufficient to subtract the angle θ formed by the new frame from the two

polar angles.

7G. Verchery: Les invariants des tenseurs d’ordre 4 du type de l’élasticité, Proc. Colloque

EUROMECH 115, 1979.
8A detailed presentation of the method can be found in the work by Vannucci:

Anisotropic Elasticity, Springer, 2018.
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The Cartesian expression of the polar invariants can be found by

inverting the previous expressions:

T0 =
1

8
(T1111 − 2T1122 + 4T1212 + T2222),

T1 =
1

8
(T1111 + 2T1122 + T2222),

R0 =
1

8

√
(T1111 − 2T1122 − 4T1212 + T2222)2 + 16(T1112 − T1222)2,

R1 =
1

8

√
(T1111 − T2222)2 + 4(T1112 + T1222)2,

tan 4Φ0 =
4(T1112 − T1222)

T1111 − 2T1122 − 4T1212 + T2222
,

tan 2Φ1 =
2(T1112 + T1222)

T1111 − T2222
.

3.10 Exercises

1. Prove Eq. (3.4).

2. Prove that

(AB)� = B
�
A

�.

3. Prove that

A⊗BL = A⊗ L
�B.

4. Prove that

(A�B)(C�D) = AC�BD.

5. Prove Eq. (3.3) using the result of the previous exercise.

6. Prove that

(A⊗B)(C�D) = A⊗ ((C� �D�)B).

7. Prove that

(A�B)(C⊗D) = ((A�B)C)⊗D.

8. Let p ∈ S and P = p⊗ p, then prove that

P�P = P⊗P.

A9. Prove that, ∀ ∈ Lin(V),
IA = AI = A.
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10. Show that

(A⊗B) · (C⊗D) = A ·C B ·D.
11. Show that

S
sph =

I

|I| ⊗
I

|I| .

12. Show that

dim(Sph(V)) = 1, dim(Dev(V)) = 5.

13. Show the following properties of Ssph and Ddev:

S
sphSsph = Ssph,

DdevDdev = Ddev,

SsphDdev = DdevSsph = O.

14. Prove the results in Eqs. (3.5) and (3.6) using the components.

15. Show that

S
sph · Ssph = 1,

Ddev · Ddev = 5,

Ssph · Ddev = 0.

16. Make explicit the orthogonal conjugator SR of the tensor SR in Eq.

(2.49).

17. Using the polar formalism, it can be proved that the material symmetry

conditions in plane elasticity are all condensed into the equation

R0R1 sin 4(Φ0 − Φ1) = 0;

determine the different types of possible elastic symmetries.
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Chapter 4

Tensor Analysis: Curves

4.1 Curves of points, vectors and tensors

The scalar products in V , Lin(V), and Lin(V) allow us to define a norm,

the Euclidean norm, so they automatically endow these spaces with a

metric, i.e. we are able to measure and calculate a distance between two

elements of such a space and in E . This allows us to generalize the concepts

of continuity and differentiability already known in R, whose definition

intrinsically makes use of a distance between real quantities.

Let πn = {pn ∈ E , n ∈ N} be a sequence of points in E . We say that πn
converges to p ∈ E if

lim
n→∞ d(pn − p) = 0.

A similar definition can be given for sequences of vectors or tensors of any

rank. Through this definition of convergence, we can now make the concepts

of continuity and curve precise.

Let [a, b] be an interval of R; the function

p = p(t) : [a, b] → E
is continuous at t ∈ [a, b] if for each sequence {tn ∈ [a, b], n ∈ N}
that converges to t, the sequence πn defined by pn = p(tn) ∀n ∈ N

converges to p(t) ∈ E . The function p = p(t) is a curve in E ⇐⇒ it is

continuous ∀t ∈ [a, b]. In the same way, we can define a curve of vectors and

75
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76 Tensor Algebra and Analysis for Engineers

tensors:

v = v(t) : [a, b] → V ,
L = L(t) : [a, b] → Lin(V),
L = L(t) : [a, b] → Lin(V).

Mathematically, a curve is a function that lets correspond to a real value t

(the parameter) in a given interval, an element of a space: E ,V , Lin(V),
or L(V).

4.2 Differentiation of curves

Let v = v(t) : [a, b] → V be a curve of vectors and g = g(t) : [a, b] → R a

scalar function. We say that v is of the order o with respect to g in t0 ⇐⇒

lim
t→t0

|v(t)|
|g(t)| = 0,

and we write

v(t) = o(g(t)) for t→ t0.

A similar definition can be given for a curve of tensors of any rank. We then

say that the curve v is differentiable in t0 ∈]a, b[ ⇐⇒ ∃v′ ∈ V such that

v(t) − v(t0) = (t− t0)v
′(t0) + o(t− t0).

We call v′(t0) the derivative1 of v at t0. Applying the definition of

derivative to v′, we define the second derivative v′′ of v and recursively

all the derivatives of higher orders. We say that v is of class Cn if it is

continuous with its derivatives up to the order n; if n ≥ 1, v is said to be

smooth. A curve v(t) of class Cn is said to be regular if v′ 	= o ∀t. Similar

definitions can be given for curves in E , Lin(V), and Lin(V), thus defining
derivatives of points and tensors. We remark that the derivative of a curve

in E , defined as a difference of points, is a curve in V (we say, in short,

that the derivative of a point is a vector). For what concerns tensors, the

derivative of a tensor of rank r is a tensor of the same rank.

Let u,v be curves in V , L,M curves in Lin(V), L,M curves in Lin(V),
and α a scalar function, with all of them defined and at least of class C1

1The derivative is also written as
dv

dt
, v,t or also as v̇, with the last symbol being

usually reserved, in physics, to the case where t is time. For the sake of brevity, we omit

to indicate the derivative of v at t0 as v′(t0), writing simply v′.
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Tensor Analysis: Curves 77

on [a, b]. The same definition of the derivative of a curve gives the following

results, whose proof is left to the reader:

(u+ v)′ = u′ + v′,

(αv)′ = α′v + αv′,

(u · v)′ = u′ · v + u · v′,

(u× v)′ = u′ × v + u× v′,

(u⊗ v)′ = u′ ⊗ v + u⊗ v′,

(L+M)′ = L′ +M′,

(αL)′ = α′L+ αL′,

(Lv)′ = L′v + Lv′,

(LM)′ = L′M+ LM′,

(L ·M)′ = L′ ·M+ L ·M′,

(L⊗M)′ = L′ ⊗M + L⊗M′,

(L�M)′ = L′ �M + L�M′,

(L+M)′ = L′ +M′,

(αL)′ = α′L+ αL′,

(LL)′ = L′L+ LL′,

(LM)′ = L′M+ LM′,

(L ·M)′ = L′ ·M+ L ·M′.

We remark that the derivative of any kind of product is made according to

the usual rule of the derivative of a product of functions.

Let R = {o;B} be a reference frame of the euclidean space E , composed

of an origin o and a basis B = {e1, e2, e3} of V , ei·ej = δij ∀i, j = 1, 2, 3, and

let us consider a point p(t) = (p1(t), p2(t), p3(t)). If the three coordinates

pi(t) are three continuous functions over the interval [t1, t2] ∈ R, then, by

the definition given above, the mapping p(t) : [t1, t2] → E is a curve in E
and the equation

p(t) = (p1(t), p2(t), p3(t)) →
⎧⎨
⎩
p1 = p1(t)

p2 = p2(t)

p3 = p3(t)
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78 Tensor Algebra and Analysis for Engineers

Figure 4.1: Mapping of a curve of points.

is the parametric point equation of the curve: To each value of t ∈ [t1, t2],

it corresponds to a point of the curve in E , see Fig. 4.1.

The vector function r(t) = p(t) − o is the position vector of point p in

R; the equation

r(t) = ri(t)ei = r1(t)e1 + r2(t)e2 + r3(t)e3 →
⎧⎨
⎩
r1 = r1(t)

r2 = r2(t)

r3 = r3(t)

is the parametric vector equation of the curve: To each value of t ∈ [t1, t2],

there corresponds a vector of V that determines a point of the curve in E
through the operation p(t) = o+ r(t).

Similarly, if the components Lij(t) are continuous functions of a

parameter t, the mapping L(t) : [t1, t2] → Lin(V) defined by

L(t) = Lij(t)ei ⊗ ej , i, j = 1, 2, 3,

is a curve of tensors. In a similar way, we can give a curve of fourth-rank

tensors L(t) : [t1, t2] → Lin(V) by

L(t) = Lijkl(t)ei ⊗ ej ⊗ ek ⊗ el, i, j, k, l = 1, 2, 3.

It is noted that the choice of the parameter is not unique: The equation

p = p[τ(t)] still represents the same curve p = p(t) through the change of

parameter τ = τ(t).

The definition given above for the derivative of a curve of points p = p(t)

in t = t0 is equivalent to the following one2 (probably more familiar to the

2This is also true for the derivatives of vector or tensor curves.
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Tensor Analysis: Curves 79

Figure 4.2: Derivative of a curve.

reader):

dp(t)

dt
= lim
ε→0

p(t0 + ε)− p(t0)

ε
,

represented in Fig. 4.2, where it is apparent that r′(t) =
dp(t)

dt
is a vector.

An important case is that of a vector v(t) whose norm v(t) is constant

∀t:

(v2)′ = (v · v)′ = v′ · v + v · v′ = 2v′ · v = 0. (4.1)

The derivative of such a vector is orthogonal to it ∀t. The contrary is also

true, as is immediately apparent.

Finally, using the above rules and assuming that the reference frame R
is independent of t, we get easily that

p′(t) = p′i(t) ei,

v′(t) = v′i(t) ei,

L′(t) = L′
ij(t) ei ⊗ ej ,

L
′(t) = L′

ijkl(t) ei ⊗ ej ⊗ ek ⊗ el,

(4.2)

i.e. the derivative of a curve of points, vectors, or tensors is simply calculated

by differentiating the coordinates of the components. Using this result, it

is immediate to prove that

(L�)′ = L′�,
(L�)′ = L′�,
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80 Tensor Algebra and Analysis for Engineers

while for any invertible tensor L, we have (we state the following results

without proof3)

(L−1)′ = −L−1L′L−1,

(detL)′ = detL tr(L′L−1) = detL L�′ · L−1 = detL L′ · L−�.

Let Q(t) : R → Orth(V) be a differentiable function. We call spin tensor

the tensor S(t) defined as

S(t) := Q′(t)Q�(t).

Then, we have the following.4

Theorem 24 (Characterization of the spin tensor). S(t) ∈
Skw(V) ∀t ∈ R.

Proof. As Q(t) ∈ OrthV ∀t, then
QQ� = I ⇒ (QQ�)′ = Q′Q� +QQ�′

= I′ = O ⇒ QQ�′
= −Q′Q�,

so

S� = (Q′Q�)� = QQ�′
= −Q′Q� = −S. �

4.3 Integral of a curve of vectors and length of a curve

We define the integral of a curve of vectors r(t) between a and b ∈ [t1, t2]

the curve that is obtained by integrating each component of the curve:∫ b

a

r(t) dt =

∫ b

a

ri(t) dt ei.

If the curve is regular, we can generalize the second fundamental theorem

of the integral calculus:

r(t) = r(a) +

∫ t

a

r′(t∗) dt∗.

Because

r(t) = p(t)− o, r′(t) = (p(t)− o)′ = p′(t),

3The interested reader can find these proofs in the text by Gurtin, see the suggested

texts.
4The spin tensor and the following result are of importance in kinematics: If t is time

and Q(t) ∈ OrthV+, then the axial vector of S(t) is ω(t), the angular velocity.
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Tensor Analysis: Curves 81

Figure 4.3: Integral of a vector curve.

we also get

p(t) = p(a) +

∫ t

a

p′(t∗) dt∗.

The integral of a vector function is the generalization of the vector sum,

see Fig. 4.3.

Let r(t) : [a, b] → E be a regular curve, σ a partition of [a, b] of the type

a = t0 < t1 < · · · < tn = b, and

σmax = max
i=1,...,n

|ti − ti−1|.

The length �σ of the polygonal line whose vertices are the points r(ti) is

hence

�σ =
n∑
i=1

|r(ti)− r(ti−1)|.

We define the length of the curve r(t) the (positive) number

� := sup
σ
�σ.

Theorem 25. Let r(t) : [a, b] ⇒ E be a regular curve, then

� =

∫ b

a

|r′(t)|dt.
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82 Tensor Algebra and Analysis for Engineers

Proof. By the fundamental theorem of calculus,

r(ti)− r(ti−1) =

∫ ti

ti−1

r′(t)dt

so that, using Minkowski’s inequality,

|r(ti)− r(ti−1)| =
∣∣∣∣∣∣∣
∫ ti

ti−1

r′(t)dt

∣∣∣∣∣∣∣ ≤
∫ ti

ti−1

|r′(t)|dt,

whence

� ≤
∫ b

a

|r′(t)|dt. (4.3)

Because r′(t) is continuous on [a, b], ∀ε > 0 ∃δ > 0 such that |t− t| < δ ⇒
|r′(t) − r′(t)| < ε. Let t ∈ [ti−1, ti] and σmax < δ, which is always possible

by the choice of the partition σ; again by Minkowski’s inequality,

|r′(t)| ≤ |r′(t)− r′(ti)|+ |r′(ti)| < ε+ |r′(ti)|,
whence∫ ti

ti−1

|r′(t)|dt <
∫ ti

ti−1

|r′(ti)|dt+ ε(ti − ti−1) =

∣∣∣∣∣∣∣
∫ ti

ti−1

r′(ti)dt

∣∣∣∣∣∣∣+ ε(ti − ti−1)

≤
∣∣∣∣∣∣∣
∫ ti

ti−1

r′(t)dt

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫ ti

ti−1

(r′(ti)− r′(t))dt

∣∣∣∣∣∣∣+ ε(ti − ti−1)

≤ |r(ti)− r(ti−1)|+ 2ε(ti − ti−1).

Summing up over all the intervals [ti−1, ti], we get∫ b

a

|r′(t)|dt ≤ �σ + 2ε(b− a) ≤ �+ 2ε(b− a),

and because ε is arbitrary, ∫ b

a

|r′(t)|dt ≤ �,

which by Eq. (4.3) implies the thesis. �

Let t = f(τ) : [c, d] → [a, b] be a bijective function that operates the change

of parameter from t to τ . If rt(t) : [a, b] → V is a parametric equation of

a curve and rτ : [c, d] → V is a re-parameterization of the same curve, we

then have the following.
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Tensor Analysis: Curves 83

Theorem 26. The length of a curve does not depend upon its

parameterization.

Proof. Let rt(t) : [a, b] → E be a regular curve and t = f(τ) : [c, d] → [a, b]

be a change of parameter, then dt = f ′(τ)dτ and

� =

∫ b

a

|r′t(t)|dt =
∫ d

c

|r′t(f(τ))f ′(τ)|dτ =

∫ d

c

|r′τ (τ)|dτ.
�

A simple way to determine a point p(t) on a curve is to fix a point p0
on the curve and to measure the length s(t) of the arc of curve between

p0 = p(t = 0) and p(t). This length s(t) is called curvilinear abscissa5:

s(t) =

∫ t

0

|r′(t∗)|dt∗ =

∫ t

0

|(p(t∗)− o)′|dt∗. (4.4)

From Eq. (4.4), we get

ds

dt
= |r′(t)| > 0

so that s(t) is an increasing function of t, and the length of an infinitesimal

arc is

ds =
√
dr21 + dr22 + dr23 .

For a plane curve y = f(x), we can always put t = x, which gives the

parametric equation

p(t) = (t, f(t)),

or in vector form,

r(t) = t e1 + f(t) e2,

from which we obtain

ds

dt
= |r′(t)| = |p′(t)| =

√
1 + f ′2(t), (4.5)

which gives the length of a plane curve between t = x0 and t = x as a

function of the abscissa x:

s(x) =

∫ x

x0

√
1 + f ′2(t)dt.

5The curvilinear abscissa is also called arc length or natural parameter.
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84 Tensor Algebra and Analysis for Engineers

4.4 The Frenet–Serret basis

We define the tangent vector τ (t) to a regular curve p = p(t) as the vector

τ (t) :=
p′(t)
|p′(t)| .

By the definition of the derivative, this unit vector is always oriented as

the increasing values of t; hence, the straight line tangent to the curve in

p0 = p(t0) has the equation

q(t̄) = p(t0) + t̄ τ (t0).

If the curvilinear abscissa s is chosen as a parameter for the curve through

the change of parameter s = s(t), we get

τ (t) =
p′(t)
|p′(t)| =

p′[s(t)]
|p′[s(t)]| =

1

s′(t)
dp(s)

ds

ds(t)

dt
=
dp(s)

ds
→ τ (s) = p′(s).

(4.6)

So, if the parameter of the curve is s, the derivative of the curve is τ , i.e.

it is automatically a unit vector. The above equation, in addition, shows

that the change of parameter does not change the direction of the tangent

because it is only a scalar, the derivative of the parameter’s change, that

multiplies the vector. Nevertheless, in general, a change of parameter can

change the orientation of the curve.

Because the norm of τ is constant, its derivative is a vector orthogonal

to τ , see Eq. (4.1). That is why we call principal normal vector to a curve

the unit vector

ν(t) :=
τ ′(t)
|τ ′(t)| . (4.7)

ν is defined only on the points of the curve where τ ′ 	= o, which implies

that ν is not defined on the points of a straight line. This simply means

that there is not, among the infinite unit normal vectors to a straight line,

a normal with special properties, a principal one, uniquely linked to τ .

Unlike τ , whose orientation changes with the choice of the parameter, ν

is an intrinsic local characteristic of the curve: It is not affected by the choice

of the parameter. In fact, by the same definition, ν does not depend upon

the reference frame; then, because the direction of τ is also independent of

the parameter’s choice, the only factor that could affect ν is the orientation

of the curve, which depends upon the parameter. But a change in the

orientation affects, in (4.7), both τ and the sign of the increment dt so
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Tensor Analysis: Curves 85

that τ ′(t) = dτ/dt does not change, nor does ν, which is hence an intrinsic

property of the curve.

The vector

β(t) := τ (t)× ν(t)

is called the binormal vector; by construction, it is orthogonal to τ and ν,

and it is a unit vector. In addition, it is evident that

τ × ν · β = 1,

so the set {τ ,ν,β} forms a positively oriented orthonormal basis that can

be defined at any regular point of a curve with τ ′ 	= o. Such a basis is

called the Frenet–Serret local basis, local in the sense that it changes with

the position along the curve. The plane (τ ,ν) is the osculating plane, the

plane (ν,β) the normal plane, and the plane (β, τ ) the rectifying plane,

see Fig. 4.4. The osculating plane is particularly important: If we consider

a plane passing through three nonaligned points of the curve, when these

points become closer and closer, still remaining on the curve, the plane

tends to the osculating plane. The osculating plane at a point of a curve is

the plane that better approaches the curve near the point. A plane curve

is entirely contained in the osculating plane, which is fixed.

The principal normal ν is always oriented toward the part of the space

with respect to the rectifying plane where the curve is; in particular, for

a plane curve, ν is always directed toward the concavity of the curve. To

show that, it is sufficient to prove that the vector p(t+ ε)− p(t) forms with

Figure 4.4: The Frenet–Serret basis.
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86 Tensor Algebra and Analysis for Engineers

ν an angle ψ ≤ π/2, i.e. that (p(t+ ε)− p(t)) · ν ≥ 0. In fact,

p(t+ ε)− p(t) = ε p′(t) +
1

2
ε2p′′(t) + o(ε2)

⇒ (p(t+ ε)− p(t)) · ν =
1

2
ε2p′′(t) · ν + o(ε2),

but

p′′(t) · ν = (τ ′|p′|+ τ |p′|′) · ν = (|τ ′||p′|ν + τ |p′|′) · ν = |τ ′||p′|
so that, to within infinitesimal quantities of order o(ε2), we obtain

(p(t+ ε)− p(t)) · ν =
1

2
ε2|τ ′||p′| ≥ 0.

4.5 Curvature of a curve

It is important, in several situations, to evaluate how much a curve moves

away from a straight line in the neighborhood of a point. To do that, we

calculate the angle formed by the tangents at two close points, determined

by the curvilinear abscissa s and s + ε, and we measure the angle χ(s, ε)

that they form, see Fig. 4.5.

We then define the curvature of the curve in p = p(s) as the limit

c(s) = lim
ε→0

∣∣∣∣∣∣χ(s, ε)
ε

∣∣∣∣∣∣ .
The curvature is hence a nonnegative scalar that measures the rapidity of

variation in the direction of the curve per unit length of the curve (that

is why c(s) is defined as a function of the curvilinear abscissa); by the

same definition, the curvature is an intrinsic property of the curve, i.e.

Figure 4.5: Curvature of a curve.
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Tensor Analysis: Curves 87

independent of the parameter’s choice. For a straight line, the curvature is

identically null everywhere.

The curvature is linked to the second derivative of the curve; referring

to Fig. 4.5, it is

c(s) = lim
ε→0

∣∣∣∣∣∣χ(s, ε)
ε

∣∣∣∣∣∣ = lim
ε→0

∣∣∣∣∣∣sinχ(s, ε)
ε

∣∣∣∣∣∣ = lim
ε→0

∣∣∣∣∣∣2
ε
sin

χ(s, ε)

2

∣∣∣∣∣∣
= lim
ε→0

∣∣∣∣∣∣v(s, ε)
ε

∣∣∣∣∣∣ = lim
ε→0

∣∣∣∣∣∣τ (s+ ε)− τ (s)

ε

∣∣∣∣∣∣ = |τ ′(s)| = |p′′(s)|.

Another formula for the calculation of c(s) can be obtained if we consider

that

dτ [s(t)]

dt
=
dτ

ds

ds

dt
=
dτ

ds
|p′(t)| → dτ

ds
=

1

|p′(t)|
dτ

dt

so that

c(s) = |τ ′(s)| = 1

|p′(t)|
∣∣∣∣∣∣dτ
dt

∣∣∣∣∣∣ = |τ ′(t)|
|p′(t)| . (4.8)

A better formula can be obtained using the complementary projector onto

τ , i.e. the tensor I− τ ⊗ τ , introduced in Exercise 2, Chapter 2:

dτ

ds
=

1

|p′(t)|
dτ

dt
=

1

|p′(t)|
d

dt

p′(t)
|p′(t)| =

1

|p′|
p′′|p′| − p′

p′′ · p′
|p′|

|p′|2

=
p′′ − τ p′′ · τ

|p′|2 = (I− τ ⊗ τ )
p′′

|p′|2 .

Consequently,

c(s) =

∣∣∣∣∣∣dτ (s)
ds

∣∣∣∣∣∣ = 1

|p′|2 |(I− τ ⊗ τ )p′′|.

Now, we use Eq. (2.29) with w = τ ; denoting by Wτ the axial tensor of τ ,

then

WτWτ = −1

2
|Wτ |2(I− τ ⊗ τ ),

whence

I− τ ⊗ τ = −2
WτWτ

|Wτ |2 = −WτWτ ,

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



88 Tensor Algebra and Analysis for Engineers

because if τ = (τ1, τ2, τ3), then

|Wτ |2 = Wτ ·Wτ =

⎡
⎣ 0 −τ3 τ2
τ3 0 −τ1
−τ2 τ1 0

⎤
⎦ ·

⎡
⎣ 0 −τ3 τ2
τ3 0 −τ1
−τ2 τ1 0

⎤
⎦

= 2(τ21 + τ22 + τ23 ) = 2.

So, because Wτ ∈ Skw(V),
Wτ u = τ × u ∀u ∈ V .

Finally, using Eq. (2.33), the orthogonality property of cross product, Eq.

(2.31), and Eq. (2.35), we get

|(I− τ ⊗ τ )p′′| = | −WτWτp
′′| = | −Wτ (τ × p′′)| = | − τ × (τ × p′′)|

= |τ × (τ × p′′)| = |τ × p′′| = |p′ × p′′|
|p′|

so that, finally,

c =
|p′ × p′′|
|p′|3 . (4.9)

Applying this last formula to a plane curve p(t) = (x(t), y(t)), we get

c =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

,

and if the curve is given in the form y = y(x) so that the parameter t = x,

then we obtain

c =
|y′′|

(1 + y′2)
3
2

.

This last formula shows that if |y′| � 1, then

c  |y′′|.
This result is fundamental to the linearized (infinitesimal) theory of beams,

plates, and shells.

4.6 The Frenet–Serret formula

From Eq. (4.7) for t = s and Eq. (4.8), we get

dτ

ds
= cν, (4.10)

which is the first Frenet–Serret formula, giving the variation in τ per unit

length of the curve. Such a variation is a vector whose norm is the curvature
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Tensor Analysis: Curves 89

and that has as direction that of ν. We remark that, because t = s, by

Eq. (4.6), it is also that

p′′(s) = c(s)ν(s). (4.11)

Let us now consider the variation in β per unit length of the curve; because

β is a unit vector, we have

dβ

ds
· β = 0

and

β · τ = 0 ⇒ d(β · τ )
ds

=
dβ

ds
· τ + β · dτ

ds
= 0.

Through Eq. (4.10) and because β · ν = 0, we get

dβ

ds
· τ = −cβ · ν = 0

so that
dβ

ds
is necessarily parallel to ν. We then set

dβ

ds
= ϑν,

which is the second Frenet–Serret formula. The scalar ϑ(s) is called the

torsion of the curve in p = p(s). So, we see that the variation in β per unit

length is a vector parallel to ν and proportional to the torsion of the curve.

We can now find the variation in ν per unit length of the curve:

dν

ds
=
d(β × τ )

ds
=
dβ

ds
× τ + β × dτ

ds
= ϑ ν × τ + c β × ν,

so finally

dν

ds
= −c τ − ϑ β,

which is the third Frenet–Serret formula: the variation in ν per unit length

of the curve is a vector of the rectifying plane.

The three formulae of Frenet–Serret (discovered independently by

J. F. Frenet in 1847 and by J. A. Serret in 1851) can be condensed into the

symbolic matrix product⎧⎨
⎩

τ ′

ν ′

β′

⎫⎬
⎭ =

⎡
⎣ 0 c 0

−c 0 −ϑ
0 ϑ 0

⎤
⎦
⎧⎨
⎩

τ

ν

β

⎫⎬
⎭ .

The matrix in the equation above is called the matrix of Cartan, and it is

skew.
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90 Tensor Algebra and Analysis for Engineers

4.7 The torsion of a curve

We have introduced the torsion of a curve in the previous section, with the

second formula of Frenet–Serret. The torsion measures the deviation of a

curve from flatness: If a curve is planar, it belongs to the osculating plane,

and β, which is perpendicular to the osculating pane, is hence a constant

vector. So, its derivative is null, and by the second Frenet–Serret formula,

ϑ = 0.

Conversely, if ϑ = 0 everywhere, β is a constant vector, and hence, the

osculating plane does not change and the curve is planar. So, we have that

a curve is planar if and only if the torsion is null ∀p(s).
Using the Frenet–Serret formulae in the expression of p′′′(s), we get a

formula for the torsion:

p′(t) = |p′|τ =
dp

ds

ds

dt
= s′τ ⇒ |p′| = s′ →

p′′(t) = s′′τ + s′τ ′ = s′′τ + s′2
dτ

ds
= s′′τ + c s′2ν →

p′′′(t) = s′′′τ + s′′τ ′ + (c s′2)′ν + c s′2ν ′

= s′′′τ + s′′s′
dτ

ds
+ (c s′2)′ν + c s′3

dν

ds

= s′′′τ + s′′s′cν + (c s′2)′ν − c s′3(cτ + ϑβ)

= (s′′′ − c2s′3)τ + (s′′s′c+ c′s′2 + 2c s′s′′)ν − c s′3ϑβ,

whence, through Eq. (4.9),

p′ × p′′ · p′′′ = s′τ × (s′′τ + c s′2ν) · [(s′′′ − c2s′3)τ

+ (s′′s′c+ c′s′2 + 2c s′s′′)ν − c s′3ϑβ]

= −c2s′6ϑ = −c2|p′|6ϑ = −|p′ × p′′|2
|p′|6 |p′|6ϑ

so that, finally,

ϑ = −p
′ × p′′ · p′′′
|p′ × p′′|2 .

We remark that while the curvature is linked to the second derivative of

the curve, the torsion is also a function of the third derivative.
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Tensor Analysis: Curves 91

Figure 4.6: Torsion of a curve.

Unlike curvature, which is intrinsically positive, the torsion can be

negative. In fact, again using the Frenet–Serret formulae,

p(s+ ε)− p(s) = ε p′ +
1

2
ε2p′′ +

1

6
ε3p′′′ + o(ε3)

= ετ +
1

2
ε2cν +

1

6
ε3(cν)′ + o(ε3)

= ετ +
1

2
ε2cν +

1

6
ε3(c′ν − c2τ − c ϑβ) + o(ε3)

⇒ (p(s+ ε)− p(s)) · β = −1

6
ε3c ϑ+ o(ε3).

The above dot product determines if the point p(s + ε) is located, with

respect to the osculating plane, on the side of β or on the opposite one, see

Fig. 4.6: If following the curve for increasing values of s, ε > 0, the point

passes into the semi-space of β from the opposite one, because 1/6 c ε3 > 0,

it will be ϑ < 0, while in the opposite case, it will be ϑ > 0.

This result is intrinsic, i.e. it does not depend upon the choice of the

parameter, hence of the positive orientation of the curve; in fact, ν is

intrinsic, but changing the orientation of the curve, τ , and hence β, change

in orientation.

4.8 Osculating sphere and circle

The osculating sphere6 to a curve at a point p is a sphere to which the

curve tends to adhere to the neighborhood of p. Mathematically, if qs is the

6The word osculating comes from the latin word osculo, which means to kiss; an

osculating sphere or circle or plane is a geometric object that is very close to the curve,
as close as two lovers are in a kiss.
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92 Tensor Algebra and Analysis for Engineers

center of the sphere relative to the point p(s), then

|p(s+ ε)− qs|2 = |p(s)− qs|2 + o(ε3).

Using this definition, discarding the terms of order o(ε3) and using the

Frenet–Serret formulae, we get

|p(s+ ε)− qs|2 = |p(s)− qs + εp′ +
1

2
ε2p′′ +

1

6
ε3p′′′ + o(ε3)|2

= |p(s)− qs + ετ +
1

2
ε2c ν +

1

6
ε3(cν)′ + o(ε3)|2

= |p(s)− qs|2 + 2ε(p(s)− qs) · τ + ε2 + ε2c(p(s)− qs) · ν

+
1

3
ε3(p(s)− qs) · (c′ν − c2τ − c ϑβ) + o(ε3),

which gives

(p(s)− qs) · τ = 0,

(p(s)− qs) · ν = −1

c
= −ρ,

(p(s)− qs) · β = − c′

c2ϑ
=
ρ′

ϑ
,

and finally,

qs = p+ ρ ν − ρ′

ϑ
β, (4.12)

so the center of the sphere belongs to the normal plane; the sphere is not

defined for a plane curve. The quantity ρ is the radius of curvature of the

curve, which is defined as

ρ =
1

c
.

The radius of the osculating sphere is

ρs = |p− qs| =
√
ρ2 +

(
ρ′

ϑ

)2

.

The intersection between the osculating sphere and the osculating plane at

the same point p is the osculating circle. This circle has the property of

sharing the same tangent in p with the curve, and its radius is the radius of

curvature, ρ. From Eq. (4.12), we get the position of the osculating circle

center q:

q = p+ ρ ν. (4.13)

An example can be seen in Fig. 4.7, where the osculating plane, circle, and

sphere are shown for a point p of a conical helix.
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Tensor Analysis: Curves 93

Figure 4.7: Osculating plane, circle, and sphere for a point p of a conical helix.

The osculating circle is a diametral circle of the osculating sphere only

when q = qs, so if and only if

ρ′

ϑ
= − c′

c2ϑ
= 0,

i.e. when the curvature is constant.

4.9 Evolute, involute and envelopes of plane curves

For any plane curve γ(s), the center of the osculating circle q describes

a curve δ(σ) that is called the evolute of γ(s) (s and σ are curvilinear

abscissa). A point q of the evolute is then given by Eq. (4.13). We call

involute of a curve γ(s) a curve μ(σ) whose evolute is γ(s). We call the

envelope of a family of plane curves ϕ(s, κ), κ ∈ R being a parameter, a

curve that is tangent in each of its points to the curve of ϕ(s, κ) passing

through that point.

Let us consider the evolute δ(σ) of a curve γ(s); the tangent to δ(σ) is

the vector, cf. Eq. (4.13),

τδ =
dq

dσ
=
dq

ds

ds

dσ
.

But, cf. again Eq. (4.13) and the Frenet–Serret formulae,

dq

ds
=
dp

ds
+
dρ

ds
ν + ρ

dν

ds
= τ +

dρ

ds
ν − ρ c τ =

dρ

ds
ν,
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94 Tensor Algebra and Analysis for Engineers

so

τδ =
dq

dσ
=
dρ

ds

ds

dσ
ν.

Because ∣∣∣∣∣∣ dq
dσ

∣∣∣∣∣∣ = |ν| = 1,

then

dρ

ds

ds

dσ
= 1 ⇒ dρ

ds
=
dσ

ds

and

τδ = ν.

The evolute, δ(σ), of γ(s) is hence the envelope of its principal normals

ν(s).

This result helps us in finding the equation of the involute μ(σ) of a

curve γ(s); let p = p(s) be a point of γ(s); then, if b ∈ μ(σ), it must be

that

(b− p) · ν = 0,

where ν is the principal normal to γ(s) in p because γ(s) is the evolute of

μ(σ), which implies, for the last result, that τ = νμ, with τ the tangent to

γ(s) in p and νμ the principal normal to μ(σ) in b, see Fig. 4.8.

Therefore,

b(s)− p(s) = f(s)τ (s) → b(s) = p(s) + f(s)τ (s),

with f = f(s) a scalar function of s; we remark that b = b(s), i.e. the arc

length s of γ(s) is the parameter also for μ(s), but in general, σ 	 =s. Upon
differentiation, we get

b′(s) = (1 + f ′(s))τ (s) + f(s)c(s)ν(s).

Then, because b′(s) = |b′(s)|τμ is orthogonal to νμ = τ , it is parallel to ν,

so it must be that

1 + f ′(s) = 0 ⇒ f(s) = a− s, a ∈ R.

Finally, the equation of the involute μ(s) to γ(s) is

b(s) = p(s) + (a− s)τ (s),

and we remark that the involute is not unique.
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Tensor Analysis: Curves 95

Figure 4.8: Evolute, δ, and involutes for a = 0, denoted by μ, and a = 1, dashed, of a
catenary γ.

4.10 The theorem of Bonnet

The curvature, c(s), and the torsion, ϑ(s), are the only differential param-

eters that completely describe a curve. In other words, given two functions

c(s) and ϑ(s), then a curve exists with such a curvature and torsion (we

remark that there are no conditions bounding these parameters). This is

proved in the following.

Theorem 27 (Bonnet’s theorem). Given two scalar functions c(s) ∈C1

and ϑ(s) ∈C0, there always exists a unique curve γ ∈C3 whose curvilinear

abscissa is s, curvature c(s), and torsion ϑ(s).

Proof. Let

e =

⎛
⎝ τ

ν

β

⎞
⎠

be the column vector whose elements are the vectors of the Frenet–Serret

basis. Then,

de(s)

ds
= C(s)e(s), (4.14)

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
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with

C(s) =

⎡
⎣ 0 c(s) 0

−c(s) 0 −ϑ(s)
0 ϑ(s) 0

⎤
⎦

the matrix of Cartan. Adding the initial condition

e(0) =

⎛
⎝ e1

e2
e3

⎞
⎠,

we have a Cauchy problem for the basis e(0). As known, such a problem

admits a unique solution, i.e. we can associate to c(s) and ϑ(s) a family of

bases e(s) (that are orthonormal because if one of them were not so, the

Cartan’s matrix should not be skew). Call τ (s) the first vector of the basis

e(s) and define the function

p(s) := p0 +

∫ s

0

τ (s∗)ds∗;

p(s) is the curve we are looking for (it depends upon an arbitrary point

p0, i.e. upon an inessential rigid displacement). In fact, because |τ | = 1, s

is the curvilinear abscissa of the curve. Then, it is sufficient to write the

Frenet–Serret equations identifying them with system (4.14). �

4.11 Canonic equations of a curve

We call the canonic equations of a curve at a point p0 the equations of the

curve referred to the Frenet–Serret basis in p0. For this purpose, we expand

the curve in a Taylor series of initial point p0:

p(s) = p0 + s p′(0) +
1

2
s2p′′(0) +

1

6
s3p′′′(0) + o(s3).

In the Frenet–Serret basis,

p′(0) = τ (0), p′′(0) = c(0)ν(0), p′′′(0) =
dcν

ds

∣∣∣∣∣∣
s=0

= c′(0)ν(0)− c2(0)τ (0)− c(0)ϑ(0)β(0),

so

p(s) = p0 + s τ (0) +
1

2
s2c(0)ν(0) +

1

6
s3(−c2(0)τ (0) + c′(0)ν(0)

−c(0)ϑ(0)β(0)) + o(s3).
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The coordinates of a point p(s) close to p0 in the basis (τ (0),ν(0),β(0))

are hence

p1(s) = s− 1

6
c2(0)s3 + o(s3),

p2(s) =
1

2
c(0)s2 +

1

6
c′(0)s3 + o(s3),

p3(s) = −1

6
c(0)ϑ(0)s3 + o(s3).

The projections of the curve onto the planes of the Frenet–Serret basis hence

have, close to p0 (i.e. retaining the first non-null term in the expressions

above), the following equations:

• On the osculating plane, ⎧⎨
⎩
p1(s) = s,

p2(s) =
1

2
c(0)s2,

or, eliminating s,

p2 =
1

2
c(0)p21,

which is the equation of a parabola.

• On the rectifying plane,⎧⎨
⎩
p1(s) = s,

p3(s) = −1

6
c(0)ϑ(0)s3,

or, eliminating s,

p3 = −1

6
c(0)ϑ(0)p31,

which is the equation of a cubic parabola.

• On the normal plane, ⎧⎪⎨
⎪⎩
p2(s) =

1

2
c(0)s2,

p3(s) = −1

6
c(0)ϑ(0)s3,

or, eliminating s,

p23 =
2

9

ϑ2(0)

c(0)
p32,

which is the equation of a semicubic parabola, with a cusp at the origin,

hence a singular point, though the curve p(s) is regular.
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4.12 Exercises

1. Using the same definition of the derivative of a curve, prove the relations

in Section (4.2).

2. Prove the relations in Eq. (4.2).

3. The curve whose polar equation is

r = a θ, a ∈ R,

is an Archimedes’ spiral, Fig. 4.9(a). Find its curvature c(θ) and its

length �(θ), and prove that any straight line passing through the origin

is divided by the spiral in segments of constant length 2π a (that is

why the Archimedes’ spiral is used to record disks).

4. The curve whose polar equation is

r = aebθ, a, b ∈ R,

is the logarithmic spiral. Prove that the origin is an asymptotic point

of the curve, find its curvature c(θ) and its length �(θ), and show

that the length of the segments in which a straight line by the origin

is divided by two consecutive intersections with the spiral varies as

a geometrical progression. Then, prove its equiangular property: The

angle α between p(θ) − o and τ (θ) is constant. Finally, show that the

evolute of the logarithmic spiral is a logarithmic spiral itself (and hence

that its involute is still a logarithmic spiral, that’s why Jc. Bernoulli

coined for this curve the Latin sentence eadem mutata resurgo.)

(a) (b)

Figure 4.9: The (a) Archimedes’ and (b) logarithmic spirals.
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5. The curve whose parametric equation is

p(θ) = a(cos θ + θ sin θ)e1 + a(sin θ − θ cos θ)e2,

with θ the angle formed by p(θ)−o and with the axis x1, is the involute

of the circle, see Fig. 4.10. Find its curvature c(θ) and its length �(θ),

and prove that its evolute is exactly the circle of center o and radius a

(that is why the involute of the circle is used to profile gears).

6. The curve whose parametric equation is

p(θ) = a cosωθe1 + a sinωθe2 + bωθe3

is a circular helix, i.e. a helix that winds on a circular cylinder of radius

a, see Fig. 4.11. Show that the angle ϕ formed by the helix and any

generatrix of the cylinder is constant (a property that defines a helix in

the general case). Then, find its length �(θ), its curvature c(θ), torsion

ϑ(θ), and the pitch d, i.e. the distance, on a same generatrix, between

two successive intersections with the helix. Prove then the Bertrand’s

theorem: A curve is a cylindrical helix if and only if the ratio c/ϑ =

const. Finally, prove that for the above circular helix, there are two

constants A and B such that

p′ × p′′ = Au(θ) +Be3,

with

u = sinωθe1 − cosωθe2;

then, find A and B.

Figure 4.10: The involute of the circle and its evolute, the circle.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



100 Tensor Algebra and Analysis for Engineers

Figure 4.11: The circular helix.

Figure 4.12: The cycloid and its evolute.

7. Find the equation of the cycloid, i.e. of the curve that is the trace of

a point of a circle of radius r rolling without slipping on a horizontal

axis, see Fig. 4.12. Calculate the length of the cycloid for a complete

round of the circle, determine its curvature, and show that the evolute

of the cycloid is the cycloid itself (Huygens, 1659).

8. The planar curve whose parametric equation is

p(t) = te1 + cosh te2

is the catenary (Jc. Bernoulli, 1690; Jn. Bernoulli, Leibniz, and

Huygens, 1691). It is the equilibrium curve of a heavy, perfectly flexible,

and inextensible cable. Calculate the curvature of the catenary and the

equation of its evolute and of its involutes (see Fig. 4.8).

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



Tensor Analysis: Curves 101

Figure 4.13: The tractrix and its evolute.

9. The planar curve whose parametric equation is

p(t) =

(
cos t+ ln tan

t

2

)
e1 + sin te2

is the tractrix (Perrault, 1670; Newton, 1676; Huygens, 1693). This is

the curve along which an object moves, under the influence of friction,

when pulled on a horizontal plane by a line segment attached to a

tractor that moves at a right angle to the initial line between the object

and the puller at an infinitesimal speed, see Fig. 4.13. Show that the

length of the tangent to the tractrix between the points on the tractrix

itself and the axis x is constant ∀t, calculate the length of the curve

between t1 and t2, calculate the curvature of the tractrix, and finally

show that its evolute is the catenary.

10. For the curve whose cylindrical equation is{
r = 1,

z = sin θ,

find the highest curvature and determine whether or not it is planar.

11. Let p = p(t) be the path of a moving particle of massm, with t being the

time. Define the velocity and the acceleration of p as, respectively, the

first and second derivative of p with respect to t. Decompose these two

vectors in the Frenet–Serret basis and interpret physically the result.

Recalling the second Newton’s principle of mechanics, what about the

forces on p?
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Chapter 5

Tensor Analysis: Fields

5.1 Scalar, vector and tensor fields

Let Ω ⊂ E and f : Ω → V . We say that f is continuous at p ∈ Ω ⇐⇒ ∀
sequence πn = {pn ∈ Ω, n ∈ N} that converges to p ∈ E , the sequence

{vn = f(pn), n ∈ N} converges to f(p) in V . The function f(p) : Ω → V is a

vector field on Ω if it is continuous at each p ∈ Ω. In the same way, we can

define a scalar field ϕ(p) : Ω → R and a tensor field L(p) : Ω → Lin(V).
A deformation is any continuous and bijective function f(p) : Ω → E , i.e.

any transformation of a region Ω ⊂ E into another region of E ; bijectivity
imposes that to any point p ∈ Ω corresponds one and only point in the

transformed region, and vice versa, which is the mathematical condition

expressing the physical constraint of mass conservation.

Finally, the basic difference between fields/deformations and curves is

that a field or a deformation is defined over a subset of E , not of R. In

practice, this implies that the components of the field/deformation are

functions of three variables, the coordinates xi of a point p ∈ Ω.

5.2 Differentiation of fields, differential operators

Let ψ(p) be a scalar, vector, or tensor field or also a deformation; we define

the directional derivative of ψ(p) in the direction of e ∈ S the limit

dψ(p)

de
:= lim

α→0

ψ(p+ αe)− ψ(p)

α
, α ∈ R.

The directional derivative measures the rate of variation of ψ(p) in the

direction of e. In the particular case of e = ei , i = 1, 2, 3, i.e. of the

103
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104 Tensor Algebra and Analysis for Engineers

directions of the basis {e1, e2, e3} of V , then
dψ(p)

dei
= lim

α→0

ψ(p+ αei)− ψ(p)

α

is the partial derivative of ψ with respect to xi, for example, if i = 1, then

dψ(p)

de1
= lim

α→0

ψ(x1 + α, x2, x3)− ψ(x1, x2, x3)

α
.

The partial derivative with respect to xi is usually indicated as
∂ψ

∂xi
or also

as ψ,i.

Let v(p) : Ω → V ; we say that v is differentiable in p0 ∈ Ω ⇐⇒
∃ gradv ∈ Lin(V) such that

v(p0 + u) = v(p) + gradv(p) u+ o(u)

when u → o. If v is differentiable ∀p ∈ Ω, gradv defines a tensor field on Ω

called the gradient of v. It is also possible to define higher order differential

operators using higher order tensors, but this will not be done here. If v is

continuous with gradv ∀p ∈ Ω, then v is of class C1 (smooth).

Let v be a vector field of class C1 on Ω. Then, the divergence of v is the

scalar field defined by

divv := tr(gradv),

while curlv is the unique vector field that satisfies the relation

(gradv − gradv�)u = (curlv) × u ∀u ∈ V .
The divergence of a tensor field L is the unique vector field divL that

satisfies

(divL) · u = div(L�u) ∀u = const. ∈ V .
Let ϕ(p) : Ω → R be a scalar field over Ω. Similar to the case of vector

fields, we say that ϕ is differentiable at p0 ∈ Ω ⇐⇒ ∃ gradϕ ∈ V such that

ϕ(p+ u) = ϕ(p) + gradϕ(p) · u+ o(u)

when u → o. If ϕ is differentiable ∀p ∈ Ω, gradϕ defines a vector field on Ω

called the gradient of ϕ. If gradϕ is differentiable, its gradient is the tensor

gradIIϕ called the second gradient or Hessian. It is immediate to show that

under the continuity assumption,

gradIIϕ = (gradIIϕ)�.

A level set of a scalar field ϕ(p) is the set SL such that

ϕ(p) = const. ∀p ∈ SL.
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Tensor Analysis: Fields 105

Considering hence two points p and p + u of the same SL, then by the

definition of differentiability of ϕ(p) itself, we see that gradϕ is a vector that

is orthogonal to SL at p. The curves of E that are tangent to gradϕ ∀p ∈ Ω

are the streamlines of ϕ; they have the property to be orthogonal to any

SL of ϕ ∀p ∈ Ω.

gradϕ allows us to calculate the directional derivative of ϕ along any

direction n ∈ S as

dϕ

dn
= gradϕ · n.

The highest variation of ϕ is hence in the direction of gradϕ, and |gradϕ| is
the value of this variation; we also remark that gradϕ is a vector directed

along the increasing values of ϕ.

Similarly, for a vector field v, the directional derivative along any

direction n ∈ S can be computed as

dv

dn
= gradv n.

Let ψ be a scalar of vector field of class C2 at least. Then, the laplacian

Δψ of ψ is defined by

Δψ := div(gradψ).

By the linearity of the trace, and hence of the divergence, we see easily that

the laplacian of a vector field is the vector field whose components are the

laplacian of each corresponding component of the field. A field is said to be

harmonic on Ω if its laplacian is null ∀p ∈ Ω.

The definitions given above for the differentiable field, gradient, and

class C1 can be repeated verbatim for a deformation f(p) : Ω → E .

5.3 Properties of the differential operators

The differential operators, gradient, divergence, curl, and laplacian, have

some interesting properties that are useful for calculations; they are

introduced in this section.

Theorem 28 (Gradient of products). Let ϕ, ψ be scalar and u,v,w be

vector fields, with all of them differentiable. Then:

(i) grad(ϕψ) = ϕ gradψ + ψ gradϕ,

(ii) grad(ϕv) = ϕ gradv + v ⊗ gradϕ,

(iii) grad(v ·w) = (gradw)�v + (gradv)�w.

(5.1)
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106 Tensor Algebra and Analysis for Engineers

Proof. The proof is based upon the definition of gradient itself1:

(i) (ϕψ)(p+ u) = ϕψ + grad(ϕψ) · u+ o(u),

but also,

(ϕψ)(p + u) = ϕ(p+ u)ψ(p+ u) = (ϕ+ gradϕ · u+ o(u))

× (ψ + gradψ · u+ o(u))

= ϕψ + ϕ gradψ · u+ ψ gradϕ · u+ o(u)

= ϕψ + (ϕ gradψ + ψ gradϕ) · u+ o(u),

so by comparison

grad(ϕψ) = ϕgradψ + ψgradϕ.

(ii) In the same way,

(ϕv)(p + u) = ϕv + grad(ϕv)u + o(u) = ϕv + grad(ϕv)u + o(u),

but also,

(ϕv)(p + u) = ϕ(p+ u)v(p + u) = (ϕ+ gradϕ · u+ o(u))

× (v + gradv u+ o(u))

= ϕv + ϕgradv u+ gradϕ · u v + o(u)

= ϕv + (ϕ gradv + v ⊗ gradv)u + o(u),

so comparing the two results, we get

grad(ϕv) = ϕ gradv + v ⊗ gradv.

(iii) In the same way,

(v ·w)(p + u) = v ·w + grad(v ·w)u+ o(u),

but also,

(v ·w)(p+ u) = v(p + u) ·w(p+ u) = (v + gradv u+ o(u))

· (w + gradw u+ o(u))

= v ·w + v · (gradw u) + (gradv u) ·w + o(u)

= v ·w + ((gradw)�v + (gradv)�w) · u+ o(u),

whence, by comparison of the two results,

grad(v ·w) = (gradw)�v + (gradv)�w. �

1For the sake of brevity, we omit to indicate the point p, e.g. we simply write ϕ for ϕ(p)

and gradϕ for gradϕ(p).
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Tensor Analysis: Fields 107

Another important result2 relating the gradient and the curl of a vector

field is as follows.

Theorem 29. If v is a differentiable vector field, then

(gradv)v = (curlv) × v +
1

2
gradv2.

Proof.

(curlv) × v = (gradv − (gradv�))v = (gradv)v − (gradv)�v

= (gradv)v − 1

2
((gradv)�v + (gradv)�v),

and by property (iii) of the previous theorem,

(gradv)�v + (gradv)�v = grad(v · v) = gradv2

so that

(curlv)× v = (gradv)v − 1

2
gradv2,

whence we obtain the thesis. �

The proof of the following properties of the gradient are left to the reader

as an exercise:

grad(v ·w) = (gradw)v + (gradv)w + v × curlw+w × curlv,

grad(u · v w) = (u · v)gradw + (w ⊗ u)gradv + (w ⊗ v)gradu,

gradv · gradv� = div((gradv)v − (divv)v) + (divv)2.

(5.2)

Theorem 30 (Divergence of products). Let ϕ,u,v,w,L be differen-

tiable scalar, vector, or tensor fields. Then:

(i) div(ϕv) = ϕdivv + v · gradϕ,
(ii) div(v ⊗w) = vdivw+ (gradv)w,

(iii) div(ϕL) = ϕdivL+ Lgradϕ,

(iv) div(L�v) = L · gradv + v · divL,
(v) div(v ×w) = w · curlv − v · curlw.

2This result is fundamental to fluid mechanics, as it allows us to get an interesting form

of the Navier–Stokes equations.
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108 Tensor Algebra and Analysis for Engineers

Proof. (i) Using the definition of divergence and property (ii) of

Theorem 28, we get

div(ϕv) = tr(grad(ϕv)) = tr(ϕ gradv + v ⊗ gradϕ)

= ϕ tr(gradv) + tr(v ⊗ gradϕ) = ϕ divv + v · gradϕ.
(ii) By the definition of divergence of a tensor, ∀a = const. ∈ V , and using

the previous property along with property (iii) of Theorem 28:

(div(v ⊗w) · a = div((v ⊗w)�a) = div(w ⊗ v a) = div(v · a w)

= v · adivw+w · grad(a · v)
= divw v · a+w · (gradv)�a+w · (grada)�v
= (vdivw + gradv w) · a.

(iii) By the definition of divergence of a tensor, ∀a = const. ∈ V , and using

property (i), along with property (iii) of Theorem 28:

div(ϕL) · a = div((ϕL)�a) = div(ϕL�a) = ϕdiv(L�a) + L�a · gradϕ
= ϕdivL · a+ a · Lgradϕ = (ϕdivL+ Lgradϕ) · a.

(iv) By the definition of divergence of a tensor and using the previous

property:

div(L�v) = div(L�vjej ) = div((vjL
�)ej ) = div(vjL

�)� · ej
= div(vjL) · ej = vjdivL · ej + L gradvj · ej
= v · divL+ (Lpqep ⊗ eq(gradvj)mem) · ej
= v · divL+ Lpqvj,mδqmδjp = v · divL+ L · gradv.

(v) This property can be proved making use of the expression of the cross

product with the Ricci’s alternator, given in Eq. (2.30):

curlv = εijkvk,jei

and

v ×w = εijkvjwkei ,

whence

div(v ×w) = div(εijkvjwkei) = εijk(vjwk),i = εijkvj,iwk + εijkwk,ivj .

Moreover,

w · curlv = wmem · εpqrvr,qep = εpqrvr,qwmδpm = εpqrvr,qwp = εqrpvr,qwp

and

v ·curlw = vmem · εpqrwr,qep = εpqrwr,qvmδpm = εpqrwr,qvp = −εqprwr,qvp,
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Tensor Analysis: Fields 109

so finally, comparing the last three results (all the subscripts are dummy

indexes, so their denomination is inessential),

div(v ×w) = w · curlv − v · curlw. �

The divergence has also the following properties:

div(gradv�) = grad(divv),

div((gradv)v) = gradv · gradv� + v · grad(divv),
div(ϕLv) = ϕL� · gradv + ϕv · divL� + Lv · gradϕ,

(5.3)

whose proofs can be a good exercise for the reader.

The relations of the gradient and divergence with the curl are given by

the following.

Theorem 31. Let ϕ and v be the scalar and vector fields of class C2.

Then:

(i) div(curlv) = 0,

(ii) curl(gradϕ) = o.

Proof. (i) Using again the Ricci’s alternator to represent the cross product,

div(curlv) = div(εijkvk,jei) = εijkvk,jdivei + εijkvk,ji = εijkvk,ji

= v3,21 + v1,32 + v2,13 − v2,31 − v3,12 − v1,23 = 0.

(ii) In a similar manner,

curl(gradϕ) = εijkϕ,kjei = ϕ32 + ϕ,13 + ϕ,21 − ϕ,23 − ϕ,31 − ϕ,12 = 0. �

The following theorem gives an interesting relation between the curl of a

vector and the divergence of its axial tensor.

Theorem 32 (Curl of an axial vector). Let w be a differentiable vector

field and W its axial tensor field. Then,

curlw = −divW.

Proof. Using properties (iv) and (v) of Theorem 30 and because W =

−W�, ∀a = const. ∈ V , we get

div(w × a) = a · curlw−w · curla = a · curlw,
div(Wa) = div(−W�a) = −W · grada− a · divW = −a · divW.

Now, because ∀a,w × a = Wa ⇒ div(w × a) = div(Wa), we get the

thesis. �
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110 Tensor Algebra and Analysis for Engineers

The way the curl of a curl3 is computed is given by the following theorem.

Theorem 33 (Curl of a curl). Let v be a vector field of class ≥C 2.

Then,

curl(curlv) = grad(divv)−Δv.

Proof. Using properties (iv) and (v) of Theorem 30, along with the first

of Eq. (5.3), ∀a = const. ∈ V , we get

div((curlv) × a) = a · curl(curlv) − curlv · curla = a · curl(curlv),

and by the definition of curl and laplacian,

div((curlv) × a) = div((gradv − (gradv)�)a) = div(gradv a)

− div((gradv)�a)

= (gradv)� · grada+ a · div(gradv)� − gradv · grada
− a · div(gradv)

= a · (div(gradv)� −div(gradv))= a · (grad(divv)−Δv),

whence, by comparison,

curl(curlv) = grad(divv)−Δv.
�

The proof of the following properties of the curl can be obtained using the

above results, and it is a good exercise:

curl(ϕv) = ϕcurlv + gradϕ× v,

curl(v ×w) = (gradv)w − (gradw)v + vdivw −wdivv.
(5.4)

Finally, we have a theorem also for the laplacian of a product.

Theorem 34 (Laplacian of products). Let ϕ, ψ,u,v be the scalar and

vector fields of class ≥C2. Then:

(i) Δ(ϕψ) = 2gradϕ · gradψ + ϕΔψ + ψΔϕ,

(ii) Δ(v ·w) = 2gradv · gradw + v ·Δw +w ·Δv.

3This relation is useful in fluid mechanics for writing the vorticity equation.
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Tensor Analysis: Fields 111

Proof. (i) Using property (i) of Theorems 28 and 30, we get

Δ(ϕψ) = div(grad(ϕψ)) = div(ϕ gradψ + ψ gradϕ) = div(ϕ gradψ)

+ div(ψ gradϕ)

= ϕ div(gradψ) + gradψ · gradϕ+ ψ div(gradϕ) + gradϕ · gradψ
= 2gradϕ · gradψ + ϕ Δψ + ψ Δϕ.

(ii) Using properties (iii) of Theorem 28 and (iv) of Theorem 30, we obtain

Δ(v ·w) = div(grad(v ·w)) = div((gradw)�v + (gradv)�w)

= div((gradw)�v) + div((gradv)�w)

= gradw · gradv + v · div(gradw) + gradv · gradw
+w · div(gradv)

= 2gradv · gradw + v ·Δw +w ·Δv. �

5.4 Theorems on fields

We recall here some classical theorems on fields and operators.

Theorem 35 (Harmonic fields). If v(p) is a vector field of class ≥ C2

such that

divv = 0, curlv = o,

then v is harmonic: Δv = o.

Proof. By the definition of curl,

curlv = o ⇒ gradv − (gradv)� = o ⇒ div(gradv − (gradv)�) = o,

and through Eq. (5.3)1, the definition of laplacian, and because by

hypothesis divv = 0, we have

div(gradv − (gradv)�) = Δv − grad(divv) = Δv. �

We state now without proof a lemma4 that, basically, allows us to transform

a volume integral on a domain Ω to a surface integral on the boundary

surface ∂Ω.

Theorem 36 (Divergence lemma). Let v(p) be a vector field of class

≥ C1 on a regular region Ω ⊂ E. Then,∫
∂Ω

v ⊗ n dA =

∫
Ω

gradv dV.

4In the following, ∂Ω indicates the boundary of Ω.
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112 Tensor Algebra and Analysis for Engineers

This lemma is fundamental for proving the three forms of the Gauss

theorem, which is of paramount importance in many fields of mathematical

physics.

Theorem 37 (Divergence or Gauss theorem). Let ϕ,v,L be, respec-

tively, a scalar, vector, and tensor field of class ≥ C1 on a regular region

Ω ⊂ E. Then:

(i)

∫
∂Ω

ϕn dA =

∫
Ω

gradϕ dV,

(ii)

∫
∂Ω

v · n dA =

∫
Ω

divv dV,

(iii)

∫
∂Ω

Ln dA =

∫
Ω

divL dV.

Proof. (i) ∀a = const. ∈ V , by the lemma of divergence,∫
Ω

grad(ϕa)dV =

∫
∂Ω

ϕa⊗ n dA = a⊗
∫
∂Ω

ϕn dA,

but also, by (ii) of Theorem 28,∫
Ω

grad(ϕa)dV =

∫
Ω

(ϕ grada+ a⊗ gradϕ)dV = a⊗
∫
Ω

gradϕ dV,

whence, by comparison,∫
∂Ω

ϕn dA =

∫
Ω

gradϕ dV.

(ii) Still, by the divergence lemma,

tr

∫
Ω

gradv dV = tr

∫
∂Ω

v ⊗ n dA =

∫
∂Ω

tr(v ⊗ n)dA =

∫
∂Ω

v · n dA,

but also,

tr

∫
Ω

gradv dV =

∫
Ω

tr(gradv)dV =

∫
Ω

divv dV,

so by comparison, ∫
∂Ω

v · n dA =

∫
Ω

divv dV.
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Tensor Analysis: Fields 113

(iii) ∀a = const. ∈ V , by the lemma of divergence, (iv) of Theorem 30 and

(ii) just proved,∫
Ω

div(L�a)dV =

∫
∂Ω

(L�a) · n dA =

∫
∂Ω

a · Ln dA = a ·
∫
∂Ω

Ln dA,

but also,∫
Ω

div(L�a)dV =

∫
Ω

(divL) · a+ L · grada dV = a ·
∫
Ω

divL dV,

so once again by comparison,∫
∂Ω

Ln dA =

∫
Ω

divL dV.

�

The following identities follow directly from the Gauss theorem:∫
∂Ω

v · Ln dA =

∫
Ω

(v · divL+ L · gradv)dV,
∫
∂Ω

(Ln)⊗ v dA =

∫
Ω

((divL)⊗ v + L(gradv�))dV,

∫
∂Ω

(w · n)v dA =

∫
Ω

(vdivw + (gradv)w)dV.

(5.5)

A direct consequence of the Gauss theorem is the following theorem.

Theorem 38 (Flux theorem). Let v(p) be a vector field of class ≥ C1

on an open subset R of E. Then,

divv = 0 ⇐⇒
∫
∂Ω

v · n dA = 0 ∀Ω ⊂ R.

Proof. It immediately follows from (ii) of the Gauss theorem. �

Another consequence of the Gauss theorem is the next theorem.

Theorem 39 (Curl theorem). Let v(p) be a vector field of class ≥ C1

on a regular region Ω ⊂ E. Then,∫
∂Ω

n× v dA =

∫
Ω

curlv dV.
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n

Figure 5.1: Scheme for the Stokes theorem.

Proof. If V is the axial tensor of v, by Theorem 32 and (iii) of the Gauss

theorem, ∫
∂Ω

n× v dA = −
∫
∂Ω

v × n dA = −
∫
∂Ω

Vn dA

= −
∫
Ω

divV dV =

∫
Ω

curlv dV.
�

The following classical theorems on fields are recalled here without proof.

Theorem 40 (Potential theorem). Let v(p) be a vector field of class

≥ C1 on a simply connected region Ω ⊂ E. Then,
curlv = o ⇐⇒ v = gradϕ,

with ϕ(p) a scalar field of class ≥ C2, the potential.

Theorem 41 (Stokes theorem). Let v(p) be a vector field of class ≥ C1

on a regular region Ω ⊂ E, Σ an open surface whose support is the closed

line γ and n ∈ S the normal to Σ, see Fig. 5.1. Then,∮
γ

v · d
 =
∫
Σ

curlv · n dA.

The parametric equation of γ must be chosen in such a way that

p′(t1)× p′(t2) · n > 0 ∀t2 > t1.

Theorem 42 (Green’s formula). Let ϕ(p), ψ(p) be two scalar fields of

class ≥ C2 on a regular region Ω ⊂ E, with n ∈ S the normal to ∂Ω. Then,∫
∂Ω

(
ψ
dϕ

dn
− ϕ

dψ

dn

)
dA =

∫
Ω

(ψ Δϕ− ϕ Δψ)dV.
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Tensor Analysis: Fields 115

5.5 Differential operators in Cartesian coordinates

The Cartesian expression of the differential operators can be found without

difficulty by applying the properties of such operators shown previously and

considering that the vectors on the Cartesian basis are fixed. Then,5

gradf = f,i ei ,

gradv = vi,jei ⊗ ej ,

divv = vi,i,

divL = Lij,jei ,

Δf = f,ii,

Δv = Δviei = vi,jjei ,

curlv = (v3,2 − v2,3)e1 + (v1,3 − v3,1)e2 + (v2,1 − v1,2)e3.

(5.6)

The so-called operator nabla ∇:,

∇ :=
∂·
∂xi

ei =
∂·
∂x1

e1 +
∂·
∂x2

e2 +
∂·
∂x3

e3, (5.7)

is often used to indicate the differential operators:

gradf = ∇f,
divv = ∇ · v,
curlv = ∇× v,

Δf = ∇2f.

5.6 Differential operators in cylindrical coordinates

The cylindrical coordinates ρ, θ, z of a point p whose Cartesian coordinates

in the (fixed) frame {o; e1, e2, e3} are p = (x1, x2, x3) are shown in Fig. 5.2.

5In what follows, and also in the following sections, f,v,L are, respectively, scalar, vector,

and tensor fields.
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116 Tensor Algebra and Analysis for Engineers

Figure 5.2: Cylindrical coordinates.

They are related together by

ρ =
√
x21 + x22,

θ = arctan
x2
x1
,

z = x3,

(5.8)

or conversely,

x1 = ρ cos θ,

x2 = ρ sin θ,

x3 = z.

(5.9)

We note that ρ ≥ 0 and that the anomaly θ is bounded by 0 ≤ θ < 2π.

A vector p− o = xiei in the cylindrical basis is expressed as

p− o = ρeρ + zez ,

and the rotation tensor transforming the Cartesian basis, {e1, e2, e3}, into
the cylindrical one, {eρ, eθ, ez}, is

Q =

⎡
⎢⎣
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎥⎦,
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Tensor Analysis: Fields 117

so the relations between the vectors of the Cartesian and the cylindrical

basis are

eρ = cos θe1 + sin θe2,

eθ = − sin θe1 + cos θe2,

ez = e3,

and vice versa:

e1 = cos θeρ − sin θeθ,

e2 = sin θeρ + cos θeθ,

e3 = ez .

(5.10)

The question is: How can we express the differential operators in the

(moving) frame {p; eρ, eθ, ez}? To this end, we can proceed as follows: From

Eq. (5.8),

f,i = f,ρ
∂ρ

∂xi
+ f,θ

∂θ

∂xi
+ f,z

∂z

∂xi
→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f,1 = f,ρ
x1
ρ

− f,θ
x2
ρ2
,

f,2 = f,ρ
x2
ρ

+ f,θ
x1
ρ2
,

f,3 = f,z.

(5.11)

So, by Eqs. (5.6)1 and (5.10),

gradf = fiei =

(
f,ρ

x1
ρ

− f,θ
x2
ρ2

)
(cos θeρ − sin θeθ)

+

(
f,ρ

x2
ρ

+ f,θ
x1
ρ2

)
(sin θeρ + cos θeθ) + f,zez .

Finally, by Eq. (5.9) and through some standard operations, we obtain

gradf = f,ρeρ +
1

ρ
f,θ eθ + f,zez .

The gradient of a vector field v can be obtained in a similar way: If

we denote by vCart the vector v expressed by its Cartesian components

(v1, v2, v3) and by vcyl the same vector expressed through the cylindrical
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118 Tensor Algebra and Analysis for Engineers

ones, {vρ, vθ, vz}, then, cf. Section 2.11,

vCart = Qvcyl →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
v1 = vρ cos θ − vθ sin θ,

v2 = vρ sin θ + vθ cos θ,

v3 = vz .

(5.12)

Applying Eq. (5.11) to these components, we get

vi,1 = vi,ρ
x1
ρ

− vi,θ
x2
ρ2
,

vi,2 = vi,ρ
x2
ρ

+ vi,θ
x1
ρ2
,

vi,3 = vi,z.

(5.13)

Injecting these expressions into Eq. (5.6)2 for vi,js and (5.10) for eis gives

finally6

gradv = vρ,ρ(eρ ⊗ eρ) +
1

ρ
(vρ,θ − vθ)(eρ ⊗ eθ) + vρ,z(eρ ⊗ ez )

+ vθ,ρ(eθ ⊗ eρ) +
1

ρ
(vθ,θ + vρ)(eθ ⊗ eθ) + vθ,z(eθ ⊗ ez )

+ vz,ρ(ez ⊗ eρ) +
1

ρ
vz,θ(ez ⊗ eθ) + vz,z(ez ⊗ ez ),

or, in matrix form,

gradv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
vρ,ρ

1

ρ
(vρ,θ − vθ) vρ,z

vθ,ρ
1

ρ
(vθ,θ + vρ) vθ,z

vz,ρ
1

ρ
vz,θ vz,z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦.

By the definition of divergence, we get immediately

divv = vρ,ρ +
1

ρ
(vθ,θ + vρ) + vz,z . (5.14)

Now, from Eq. (5.6), we see that divL is the vector whose components are
the divergence of the rows of the matrix representing L. So, we need first

6Though straightforward, the details of the calculations for this formula, as for the

following ones, are particularly long and tedious, which is why they are omitted here;
however, they are a good exercise for the reader.
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Tensor Analysis: Fields 119

to calculate the Cartesian components of L as functions of the cylindrical
ones, cf. Section 2.11:

LCart =QLcylQ
�→

⎧
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎨

⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎩

L11 = − sin θ(Lρθ cos θ − Lθθ sin θ) + cos θ(Lρρ cos θ − Lθρ sin θ),

L12 = cos θ(Lρθ cos θ − Lθθ sin θ) + sin θ(Lρρ cos θ − Lθρ sin θ),

L13 = Lρz cos θ − Lθz sin θ,

L21 = − sin θ(Lθθ cos θ + Lρθ sin θ) + cos θ(Lθρ cos θ + Lρρ sin θ),

L22 = cos θ(Lθθ cos θ + Lρθ sin θ) + sin θ(Lθρ cos θ + Lρρ sin θ),

L23 = Lθz cos θ + Lρz sin θ,

L31 = Lzρ cos θ − Lzθ sin θ,

L32 = Lzθ cos θ + Lzρ sin θ,

L33 = Lzz,

then, applying Eqs. (5.10) and (5.14) in Eq. (5.6)3 for the vectors vi =

(Li1, Li2, Li3), i = 1, 2, 3, we get, through long but standard operations

and after putting θ = 0 to obtain the components of divL in the basis

{eρ, eθ, ez},

divL =

(
1

ρ
((ρLρρ),ρ + Lρθ,θ − Lθθ) + Lρz,z

)
eρ

+

(
Lθρ,ρ +

1

ρ
(Lθθ,θ + Lρθ + Lθρ) + Lθz,z

)
eθ

+

(
1

ρ
((ρLzρ),ρ + Lzθ,θ) + Lzz,z

)
ez .

To obtain Δf = f,ii, we need to apply twice Eq. (5.11), which gives

f,11 =

(
f,ρ

x1

ρ
− f,θ

x2

ρ2

)
,1

= f,ρ1
x1

ρ
+ f,ρ

ρ− x1ρ,1
ρ2

− f,θ1
x2

ρ2
+ f,θ

2x2ρρ,1
ρ4

=

(
f,ρρ

x1

ρ
− f,ρθ

x2

ρ2

)
x1

ρ
+ f,ρ

ρ2 − x2
1

ρ3
−

(
f,ρθ

x1

ρ
− f,θθ

x2

ρ2

)
x2

ρ2
+ f,θ

2x1x2

ρ4

= f,ρρ cos
2 θ − 2f,ρθ

sin θ cos θ

ρ
+ f,ρ

sin2 θ

ρ
+ f,θθ

sin2 θ

ρ2
+ 2f,θ

sin θ cos θ

ρ2
,
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120 Tensor Algebra and Analysis for Engineers

f,22 =

(
f,ρ

x2

ρ
+ f,θ

x1

ρ2

)
,2

= f,ρ2
x2

ρ
+ f,ρ

ρ− x2ρ,2
ρ2

+ f,θ2
x1

ρ2
− f,θ

2x1ρρ,2
ρ4

=

(
f,ρρ

x2

ρ
+ f,ρθ

x1

ρ2

)
x2

ρ
+ f,ρ

ρ2 − x2
2

ρ3
+

(
f,ρθ

x2

ρ
+ f,θθ

x1

ρ2

)
x1

ρ2
− f,θ

2x1x2

ρ4

=f,ρρ sin
2 θ + 2f,ρθ

sin θ cos θ

ρ
+ f,ρ

cos2 θ

ρ
+ f,θθ

cos2 θ

ρ2
− 2f,θ

sin θ cos θ

ρ2
,

f,33 = f,zz.

So, adding these terms together, we finally have

Δf =
1

ρ
(ρf,ρ),ρ +

1

ρ2
f,θθ + f,zz.

The laplacian Δv of a vector field v, Eq. (5.6)6, can be obtained by following

the same steps for each one of the components in Eq. (5.12), which gives

Δv =

(
1

ρ
(ρvρ,ρ),ρ +

1

ρ2
vρ,θθ + vρ,zz − 1

ρ2
(vρ + 2vθ,θ)

)
eρ

+

(
1

ρ
(ρvθ,ρ),ρ +

1

ρ2
vθ,θθ + vθ,zz − 1

ρ2
(vθ − 2vρ,θ)

)
eθ

+

(
1

ρ
(ρvz,ρ),ρ +

1

ρ2
vz,θθ + vz,zz

)
ez .

Finally, injecting Eqs. (5.10), (5.12), and (5.13) into Eq. (5.6)7 gives

curlv =

(
1

ρ
vz,θ − vθ,z

)
eρ + (vρ,z − vz,ρ)eθ +

(
1

ρ
((ρvθ),ρ − vρ,θ)

)
ez .

(5.15)

5.7 Differential operators in spherical coordinates

The spherical coordinates r, ϕ, θ of a point p, whose Cartesian coordinates

in the (fixed) frame {o; e1, e2, e3} are p = (x1, x2, x3), are shown in Fig. 5.3.
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Tensor Analysis: Fields 121

Figure 5.3: Spherical coordinates.

They are related together by

r =
√
x21 + x22 + x23,

ϕ = arctan

√
x21 + x22
x3

,

θ = arctan
x2
x1
,

or conversely,

x1 = r cos θ sinϕ,

x2 = r sin θ sinϕ,

x3 = r cosϕ.

We note that r ≥ 0 and that the anomaly θ is bounded by 0 ≤ θ < 2π

while the colatitude ϕ by 0 ≤ ϕ ≤ π.

The procedure to determine the expression of the differential operators

in spherical coordinates, i.e. in the (moving) frame {p; er, eϕ, eθ}, is

identical to that used for the cylindrical coordinates, but the analytical

developments are even more complicated and long, so they are omitted

here and only the final formulae are given as follows:

gradf = f,rer +
1

r
f,ϕeϕ +

1

r sinϕ
f,θeθ,
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122 Tensor Algebra and Analysis for Engineers

gradv = vr,rer ⊗ er +
1

r
(vr,ϕ − vϕ)er ⊗ eϕ +

1

r

(
1

sinϕ
vr,θ − vθ

)
er ⊗ eθ

+ vϕ,reϕ ⊗ er +
1

r
(vϕ,ϕ + vr)eϕ ⊗ eϕ

+
1

r

(
1

sinϕ
vϕ,θ − vθ cotϕ

)
eϕ ⊗ eθ

+ vθ,reθ ⊗ er +
1

r
vθ,ϕeθ ⊗ eϕ

+
1

r

(
1

sinϕ
vθ,θ + vr + vϕ cotϕ

)
eθ ⊗ eθ,

or in matrix form,

gradv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vr,r
1

r
(vr,ϕ − vϕ)

1

r

(
1

sinϕ
vr,θ − vθ

)

vϕ,r
1

r
(vϕ,ϕ + vr)

1

r

(
1

sinϕ
vϕ,θ − vθ cotϕ

)

vθ,r
1

r
vθ,ϕ

1

r

(
1

sinϕ
vθ,θ + vr + vϕ cotϕ

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

divv =
1

r2
(r2vr),r +

1

r sinϕ
((vϕ sinϕ),ϕ + vθ,θ),

divL =

(
1

r2
(r2Lrr),r +

1

r
Lrϕ,ϕ +

1

r sinϕ
Lrθ,θ − Lϕϕ + Lθθ

r
+

cotϕ

r
Lrϕ

)
er

+

(
1

r2
(r2Lϕr),r +

1

r
Lϕϕ,ϕ +

1

r sinϕ
Lϕθ,θ +

1

r
Lrϕ

+
cotϕ

r
(Lϕϕ − Lθθ)

)
eϕ

+

(
1

r2
(r2Lθr),r +

1

r
Lθϕ,ϕ +

1

r sinϕ
Lθθ,θ

+
1

r
Lrθ +

cotϕ

r
(Lϕθ + Lθϕ)

)
eθ,

Δf =
1

r2
(r2f,r),r +

1

r2 sinϕ

(
f,θθ
sinϕ

+ (f,ϕ sinϕ),ϕ

)
,
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Δv =

(
vr,rr +

2vr,r
r

+
vr,ϕϕ − 2vϕ,ϕ

r2
+
vr,ϕ − 2vϕ
r2 tanϕ

+
1

r2 sinϕ

(
vr,θθ
sinϕ

− 2vθ,θ

)
− 2vr

r2

)
er

+

(
vϕ,rr+

2vϕ,r
r

+
vϕ,ϕϕ+2vr,ϕ

r2
+
vϕ,ϕ−vϕ cotϕ
r2 tanϕ

+
1

r2 sin2 ϕ
(vϕ,θθ−2vθ,θ cosϕ)−vϕ

r2

)
eϕ

+

(
vθ,rr+

2vθ,r
r

+
vθ,ϕϕ
r2

+

(
vθ,ϕ+

2vϕ,θ
sinϕ

)
1

r2 tanϕ

+
1

r2 sinϕ

(
vθ,θθ
sinϕ

+2vr,θ

)
− vθ

r2 sin2 ϕ

)
eθ,

curlv =

(
1

r sinϕ
((vθ sinϕ),ϕ − vϕ,θ)

)
er

+

(
1

r sinϕ
vr,θ − 1

r
(rvθ),r

)
eϕ

+

(
1

r
((rvϕ),r − vr,ϕ)

)
eθ.

5.8 Exercises

1. Prove the relations of Eq. (5.2).

2. Prove the properties of the divergence in Eq. (5.3).

3. Prove the properties of the curl in Eq. (5.4).

4. Prove the identities in Eq. (5.5).

5. Prove that
dϕ

dn
= gradϕ · n, dv

dn
= gradv n ∀n ∈ S.

6. Prove the results of Eq. (5.6).

7. Consider a rigid body B and a point p0 ∈ B. From the kinematics of

rigid bodies, we know that the velocity of another point p ∈ B is given

by

v(p) = v(p0) + ω × (p− p0),

with ω the angular velocity. Prove that

ω =
1

2
curlv, divv = 0.
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124 Tensor Algebra and Analysis for Engineers

8. In the infinitesimal theory of strain, a deformation is isochoric when

divu = 0, u being the corresponding displacement vector. Determine

which, among the following ones, are locally or globally isochoric

deformations:

i. u = α(x1, x2, x3), α ∈ R, |α|  1;

ii. u = β(x2 + x3, x1 + x3, x1 + x2), β ∈ R, |β|  1;

iii. u = γ(x1x2, x2x3, x3x1), γ ∈ R, |γ|  1;

iv. u = δ(sin x1,− cosx2, sinx3), δ ∈ R, |δ|  1.

9. In fluid mechanics, the condition divv = 0, with v being the velocity

field, characterizes incompressible flows. Verify that the following veloc-

ity fields, given in cylindrical coordinates, correspond to incompressible

flows (α ∈ R):

i. source or sink: v =
α

ρ
eρ;

ii. vortex: v =
α

ρ
eθ;

iii. doublet: v =
α

ρ2
(cos θeρ + sin θeθ).

10. A flow with curlv = o is said to be irrotational; check that the flows in

the previous exercise are irrotational.
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Chapter 6

Curvilinear Coordinates

6.1 Introduction

All the developments in the previous chapters are intended for the case

where algebraic and differential operators are expressed in a Cartesian

frame, i.e. with rectangular coordinates. The points of E are thus referred

to a system of coordinates taken along straight lines that are mutually

orthogonal and with the same unit along each one of the directions of the

frame. Though this is a very important and common case, it is not the only

possibility, and in many cases, non-rectangular coordinate frames are used

or arise in the mathematical developments (a typical example is that of the

geometry of surfaces, see Chapter 7). A non-rectangular coordinate frame

is a frame where coordinates can be taken along non-orthogonal directions

or along some lines that intersect at right angles but that are not straight

lines, or even when both of these cases occur. This situation is often denoted

in the literature as that of curvilinear coordinates; the transformations to

be done to algebraic and differential operators in the case of curvilinear

coordinates is the topic of this chapter.

6.2 Curvilinear coordinates, metric tensor

Let us consider an arbitrary origin o of E and an orthonormal basis e =

{e1, e2, e3} of V ; we indicate the coordinates of a point p ∈ E with respect

to the frame R = {o; e1, e2, e3} by xk : p = (x1, x2, x3). Then, we also

consider another set of coordinate lines for E , where the position of a point

p ∈ E with respect to the same arbitrary origin o of E is now determined by

125
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x1

x2

x3
z3

z2

z1

o

Figure 6.1: Cartesian and curvilinear coordinates.

a set of three numbers zj : p = {z1, z2, z3}. Nothing is a priori required of

coordinates zj , namely they do not need to be a set of Cartesian coordinates,

i.e. referring to an orthonormal basis of V . In principle, the coordinates zj

can be taken along non-straight lines that do not need to be mutually

orthogonal at o and also with different units along each line. That is why

we call zjs curvilinear coordinates, see Fig. 6.1. Any point p ∈ E can be

identified by either set of coordinates; mathematically, this means that there

must be an isomorphism between xks and z
js, i.e. invertible relations of the

kind

zj = zj(x1, x2, x3) = zj(xk), xk = xk(z
1, z2, z3) = xk(z

j) ∀j, k = 1, 2, 3,

(6.1)

exist between the two sets of coordinates. The distance between two points

p, q ∈ E is1

s =
√
(p− q) · (p− q) =

√
(xpk − xqk)(x

p
k − xqk),

but this is no longer true for curvilinear coordinates:

s � =
√

(zj
p − zj

q
)(zj

p − zj
q
).

However, if p→ q, we can define

dxk = xpk − xqk, dzj = zj
p − zj

q
,

so using Eq. (6.1)2,

dxk =
∂xk
∂zj

dzj . (6.2)

1The distance between two points p and q is still defined as the Euclidean norm of (p−q),
i.e. it is independent of the set of coordinates.
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Curvilinear Coordinates 127

The (infinitesimal) distance between p and q will then be

ds =
√
dxkdxk =

√
∂xk
∂zj

∂xk
∂zl

dzjdzl =
√
gjldzjdzl,

where

gjl = glj =
∂xk
∂zj

∂xk
∂zl

(6.3)

are the covariant2 components of the metric tensor3 g ∈ Sym(V). We note

that, as g defines a positive quadratic form (the length of a vector), it is a

positive definite symmetric tensor, so

detg > 0. (6.4)

Coming back to the vector notation, from Eq. (6.2), we get4

dx = dxiei =
∂xi
∂zk

dzkei;

introducing the vector gk,

gk :=
∂xi
∂zk

ei, (6.5)

we can write

dx = dzkgk.

We see hence that a vector dx can be expressed as a linear combination of

the vectors gk; these form therefore a basis, called the local basis. Generally,

gk /∈ S, and it is clearly tangent to the lines zj = const. This can be seen

in Fig. 6.2 for a two-dimensional case:

dx = lim
Δx→0

Δx = lim
Δx→0

xi(z
1, z2 +Δz2, z3)− xi(z

1, z2, z3)

Δz2
Δz2ei

=
∂xi
∂z2

eidz
2 = g2dz

2.

Then,

gk · gl = ∂xi
∂zk

ei · ∂xj
∂zl

ej =
∂xi
∂zk

∂xj
∂zl

δij = gkl, (6.6)

2The notion of co- and contravariant components is detailed in the next section.
3As usually done in the literature, we indicate the metric tensor by g, i.e. a lowercase

letter, though it is a second-rank tensor, not a vector.
4The differential dx is a vector because it is the difference of two infinitely close points;

that is why it is not necessary to denote it in bold letters.
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o

z1=const.

z2=const.

e1

e2

g1 g2

x

x(z 1,z 2) x(
z1

, z
2 +

z2
)

Figure 6.2: Tangent vectors to the curvilinear coordinates lines.

i.e. the components of the metric tensor g are the scalar products of the

tangent vectors gks. If the curvilinear coordinates are orthogonal, i.e. if

gh · gk = 0 ∀h, k = 1, 2, 3, h � =k, then g is diagonal. If, in addition, gk ∈
S ∀k = 1, 2, 3, then g = I: It is the case of Cartesian coordinates. As an

example, let us consider the case of polar coordinates:

{
x1 = r cos θ,

x2 = r sin θ,

⎧⎨
⎩
z1 = r =

√
x21 + x22,

z2 = θ = arctan
x2
x1
.

Hence, from Fig. 6.3,

g1 =
∂x1
∂z1

e1 +
∂x2
∂z1

e2 = cos θe1 + sin θe2 = er,

g2 =
∂x1
∂z2

e1 +
∂x2
∂z2

e2 = −r sin θe1 + r cos θe2 = reθ.

We remark that |g1| = 1 but |g2| � = 1, and it is variable with the position.

6.3 Co- and contravariant components

A geometrical way to introduce the concept of covariant and contravariant

components is to consider how to represent a vector v in the z−system.

There are basically two ways, cf. Fig. 6.4, referred, for the sake of simplicity,

to a planar case:

(i) Contravariant components: v is projected parallel to z1 and z2; they

are indicated by superscripts: v = (v1, v2, v3).

(ii) Covariant components: v is projected perpendicularly to z1 and z2;

they are indicated by subscripts: v = (v1, v2, v3).
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r=
const.

e2

er=g1

e1

e

re =g2

=co
ns

t. 
   

   
r

Figure 6.3: Tangent vectors to the polar coordinates lines.

x1

2

x2

z1

1

z2

v1

v2

vx1

vx2

v

x1

2

x2

z1

1

v1

vx1
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Figure 6.4: Contravariant (left) and covariant (right) components of a vector in a plane.

Still referring to the planar case in Fig. 6.4, if the Cartesian components5

of v are v = (vx1 , v
x
2 ), we get{

v1 = h(vx1 sinα2 − vx2 cosα2),

v2 = h(−vx1 sinα1 + vx2 cosα1),

{
v1 = vx1 cosα1 + vx2 sinα1,

v2 = vx1 cosα2 + vx2 sinα2,
(6.7)

and conversely,{
vx1 = v1 cosα1 + v2 cosα2,

vx2 = v1 sinα1 + v2 sinα2,

{
vx1 = h(v1 sinα2 − v2 sinα1),

vx2 = h(−v1 cosα2 + v2 cosα1),
(6.8)

with

h =
1

sin(α2 − α1)
.

5In the following, we use the superscript x to indicate a Cartesian component: vxi is the

ith Cartesian component of v ∈ V and Lx
ij the ijth Cartesian component of L ∈ Lin(V).
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x1

2

x2

z1

1

z2

z1

z2

x1

x2 p

Figure 6.5: Relation between Cartesian and contravariant components.

It is apparent that the Cartesian coordinates are at the same time co-

and contravariant. Still, on a planar scheme, we can see how to pass from

a system of coordinates to another one, cf. Fig. 6.5. For a point p, the

Cartesian coordinates (x1, x2) are related to the contravariant ones by

x1 = z1 cosα1 + z2 cosα2,

x2 = z1 sinα1 + z2 sinα2,

and conversely,

z1 = h(x1 sinα2 − x2 cosα2),

z2 = h(−x1 sinα1 + x2 cosα1).

So, differentiating, we get

∂x1
∂z1

= cosα1,
∂x1
∂z2

= cosα2,

∂x2
∂z1

= sinα1,
∂x2
∂z2

= sinα2

and

∂z1

∂x1
= h sinα2,

∂z1

∂x2
= −h cosα2,

∂z2

∂x1
= −h sinα1,

∂z2

∂x2
= h cosα1.

Injecting these expressions into Eqs. (6.7) and (6.8) gives

v1 = vx1
∂x1
∂z1

+ vx2
∂x2
∂z1

,

v2 = vx1
∂x1
∂z2

+ vx2
∂x2
∂z2

,

→ vi =
∂xk
∂zi

vxk (6.9)
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and

v1 = vx1
∂z1

∂x1
+ vx2

∂z1

∂x2
,

v2 = vx1
∂z2

∂x1
+ vx2

∂z2

∂x2
,

→ vi =
∂zi

∂xk
vxk . (6.10)

Now, if we calculate

ghiv
i = ghi

∂zi

∂xk
vxk

from Eq. (6.3) and by the chain rule,6 we get

ghiv
i =

∂xj
∂zh

∂xj
∂zi

∂zi

∂xk
vxk

=
∂xj
∂zh

∂xj
∂xk

vxk =
∂xj
∂zh

δjkv
x
k =

∂xk
k = vh,

∂zh
vx

i.e. we obtain the rule of lowering of the indices for passing from contravari-

ant to covariant components:

vh = ghiv
i.

Introducing the inverse7 to ghi as

ghi =
∂zh

∂xk

∂zi

∂xk
, (6.11)

we get, again using the chain rule,

ghivi = ghi
∂xk

k =
∂zh

∂zi
vx

∂xj

∂zi

∂xj

∂xk
∂zi

vxk

=
∂zh

∂xj

∂xk
∂xj

vxk =
∂zh

∂xj
δjkv

x
k =

∂zh

k = vh,
∂xk

vx

which is the rule of raising of the indices for passing from covariant to

contravariant components:

vh = ghivi.

6The reader can easily see that, in practice, the chain rule allows us to handle the

derivatives as fractions.
7To prove that the contravariant components gpq are the inverse of the covariant ones,

gpq, is direct:

gpqgpq =
∂zp

∂xk

∂zq

∂xk

∂xj

∂zp
∂xj

∂zq
= δjkδjk = 1.
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Again applying the chain rule, by Eq. (6.9), we get

∂zi

∂xl
vi =

∂zi

∂xl
∂xk
∂zi

vxk =
∂xk
∂xl

vxk = δklv
x
k ,

i.e.

vxk =
∂zi

∂xk
vi, (6.12)

which is the converse of Eq. (6.9). In a similar way, we get the converse of

Eq. (6.10):

vxk =
∂xk
∂zi

vi. (6.13)

Let us now calculate the norm v of a vector v; starting from the Cartesian

components and using the last two results,

v =
√
v · v =

√
vxkv

x
k =

√
∂zi

∂xk
vi
∂zj

∂xk
vj =

√
∂zi

∂xk
∂zj

∂xk
vivj =

√
gijvivj ,

or also,

v =
√
v · v =

√
vxkv

x
k =

√
∂xk
∂zi

vi
∂xk
∂zj

vj =

√
∂xk
∂zi

∂xk
∂zj

vivj =
√
gijvivj

and even,

v =
√
v · v =

√
vxkv

x
k =

√
∂zi

∂xk
vi
∂xk
∂zj

vj =

√
∂zi

∂xk

∂xk
∂zj

vivj

=
√
δijviv

j =
√
vivi.

Through Eq. (6.13) and by the definition of the tangent vectors to the lines

of curvilinear coordinates, in Eq. (6.5), for a vector v, we get

v = vxi ei = vk
∂xi
∂zk

ei = vkgk.

We see hence that the contravariant components are actually the com-

ponents of v in the basis composed of gks, the tangents to the lines of

curvilinear coordinates. In a similar manner, if we introduce the dual basis
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whose vectors gk are defined as

gk :=
∂zk

∂xi
ei (6.14)

and proceeding in the same way, we obtain that

v = vxi ei = vk
∂zk

∂xi
ei = vkg

k,

i.e. the covariant components are actually the components of v in the dual

basis. Finally, for a vector, we have, alternatively,

v = vxi ei = vkgk = vkg
k. (6.15)

Just as for gks, we have

gh · gk =

(
∂zh

∂xi
ei

)
·
(
∂zk

∂xj
ej

)
=
∂zh

∂xi

∂zk

∂xj
δij =

∂zh

∂xi

∂zk

∂xi
= ghk;

moreover,

gh · gk =

(
∂zh

∂xi
ei

)
·
(
∂xj
∂zk

ej

)
=
∂zh

∂xi

∂xj
∂zk

δij =
∂zh

∂xi

∂xi
∂zk

=
∂zh

∂zk
= δhk,

and by the symmetry of the scalar product,

δ kh := gh · gk = gk · gh = δkh.

The last equations define the orthogonality conditions for the g vectors.

Using these results and Eq. (6.15), we also have

vk = δkhv
h = gk · vhgh = gk · v = gk · vhgh = gkhvh,

vk = δ hk vh = gk · vhgh = gk · v = gk · vhgh = gkhv
h,

thus finding again the rules of raising and lowering of the indices.

What was done for vectors can be transposed, using a similar approach,

to tensors. In particular, for a second-rank tensor L, we get

Lij =
∂zi

∂xh

∂zj

∂xk
Lxhk,

Lij =
∂xh
∂zi

∂xk
∂zj

Lxhk

(6.16)

for the contravariant and covariant components, respectively, while we can

also introduce the mixed components:

Lij =
∂zi

∂xh

∂xk
∂zj

Lxhk,

L j
i =

∂xh
∂zi

∂zj

∂xk
Lxhk.

(6.17)
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Conversely,

Lxhk =
∂xh
∂zi

∂xk
∂zj

Lij ,

Lxhk =
∂zi

∂xh

∂zj

∂xk
Lij ,

Lxhk =
∂xh
∂zi

∂zj

∂xk
Lij ,

Lxhk =
∂zi

∂xh

∂xk
∂zj

L j
i .

(6.18)

Also, for L, the rule of lowering or raising the indices is valid:

Lij = gihgjkLhk, Lij = gihgjkL
hk. (6.19)

From Eq. (6.18) and by the same definitions of gij , Eq. (6.3), and g
ij , Eq.

(6.11), we get

L = Lxijei ⊗ ej =
∂xi
∂zh

∂xj
∂zk

Lhkei ⊗ ej = Lhkgh ⊗ gk

and

L = Lxijei ⊗ ej =
∂zh

∂xi

∂zk

∂xj
Lhkei ⊗ ej = Lhkg

h ⊗ gk.

In a similar manner, the tensor mixed components are also found:

L = Lxijei ⊗ ej =
∂xi
∂zh

∂zk

∂xj
Lhkei ⊗ ej = Lhkgh ⊗ gk

and

L = Lxijei ⊗ ej =
∂zk

∂xj

∂xi
∂zh

L k
h ei ⊗ ej = L k

h gh ⊗ gk.

We see hence that a second-rank tensor can be given with four different

combinations of coordinates; even more complex is the case of higher-order

tensors, which will not be treated here.
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Still, by Eqs. (6.3) and (6.11) and applying the chain rule to δij =
∂zi

∂zj
,

we get

gij =
∂xk
∂zi

∂xk
∂zj

=
∂xh
∂zi

∂xk
∂zj

δhk,

gij =
∂zi

∂xk

∂zj

∂xk
=
∂zi

∂xh

∂zj

∂xk
δhk,

δij =
∂zi

∂xh

∂xk
∂zj

δhk,

δ ji =
∂xh
∂zi

∂zj

∂xk
δhk.

(6.20)

So, applying Eq. (6.18) to the identity tensor, we get

I = δijei ⊗ ej =
∂xi
∂zh

∂xj
∂zk

Ihkei ⊗ ej = Ihkgh ⊗ gk,

but by Eqs. (6.16) and (6.20),

Ihk =
∂zh

∂xi

∂zk

∂xj
δij = ghk,

so finally,

I = ghkgh ⊗ gk.

Proceeding in a similar manner, we can also get

I = ghkg
h ⊗ gk = δhkgh ⊗ gk = δkhg

h ⊗ gk.

We see hence that ghks represent I in covariant coordinates, ghks in the

contravariant ones, and δkhs and δ
h
k s in mixed coordinates.

6.4 Spatial derivatives of fields in curvilinear coordinates

Let ϕ be a spatial8 scalar field, ϕ : E → R. Generally,

ϕ = ϕ(zj(xi)),

or also,

ϕ = ϕ(xj(z
k)),

8The term spatial here refers to differentiation with respect to spatial coordinates, which

can be Cartesian or curvilinear.
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where xjs, z
ks are, respectively, Cartesian and curvilinear coordinates

related as in Eq. (6.1). By the chain rule,

∂ϕ

∂xj
=

∂ϕ

∂zk
∂zk

∂xj
, (6.21)

and inversely,

∂ϕ

∂zk
=

∂ϕ

∂xj

∂xj
∂zk

.

We remark that the last quantity transforms like the components of a

covariant vector, cf. Eq.(6.9).

The gradient of ϕ is the vector that in the Cartesian basis, cf. Eq. (5.6)1,

is given by

∇ϕ =
∂ϕ

∂xj
ej ,

so by Eqs. (6.14) and (6.21), we get that in the dual basis,

∇ϕ =
∂ϕ

∂zk
∂zk

∂xj
ej =

∂ϕ

∂zk
gk.

We see hence that in curvilinear coordinates, the nabla operator, Eq. (5.7),

is defined by

∇(·) = ∂ ·
∂zk

gk. (6.22)

The contravariant components of the gradient can be obtained by the

covariant ones upon multiplication by the components of the inverse

(contravariant) metric tensor, Eq. (6.11):

ghk
∂ϕ

∂zk
=
∂zh

∂xi

∂zk

∂xi

∂ϕ

∂xj

∂xj
∂zk

= δij
∂ϕ

∂xj

∂zh

∂xi
=

∂ϕ

∂xj

∂zh

∂xj
→ ∇ϕ =

∂ϕ

∂xj

∂zh

∂xj
gh.

Let us now consider a vector field v : E → V ; we want to calculate the spatial
derivative of its Cartesian components. By the chain rule and Eq. (6.13),

we get

∂vxi
∂xj

=
∂vxi
∂zk

∂zk

∂xj
=
∂zk

∂xj

∂

∂zk

(
∂xi
∂zh

vh
)

=
∂zk

∂xj

(
∂xi
∂zh

∂vh

∂zk
+

∂2xi
∂zk∂zl

vl
)

=
∂zk

∂xj

∂xi
∂zh

(
∂vh

∂zk
+
∂zh

∂xm

∂2xm
∂zk∂zl

vl
)
,

whence

∂zh

∂xi

∂xj
∂zk

∂vxi
∂xj

=
∂vh

∂zk
+
∂zh

∂xm

∂2xm
∂zk∂zl

vl. (6.23)
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Comparing this result with Eq. (6.17)1, we see that the first member

actually corresponds to the components of a mixed tensor field, which is

the gradient of the vector field v, that we write as

vh;k =
∂vh

∂zk
+ Γhklv

l, (6.24)

where the functions

Γhkl =
∂zh

∂xm

∂2xm
∂zk∂zl

(6.25)

are the Christoffel symbols. We immediately see that Γhkl = Γhlk. The

quantity vh;k is the covariant derivative of the contravariant components

vh. The proof that the Christoffel symbols can also be written as

Γhkl =
1

2
ghm

(
∂gmk
∂zl

+
∂gml
∂zk

− ∂gkl
∂zm

)
(6.26)

is left to the reader as an exercise.

Proceeding in a similar way for the covariant components of v but now

using Eqs. (6.12) and (6.17)1, we get

vh;k =
∂vh
∂zk

− Γlkhvl,

which is the covariant derivative of the covariant components vh.

Using Eqs. (6.23) and (6.24), we conclude that, cf. Eq. (5.6)3,

divv =
∂vxi
∂xi

= vh;h.

Then, applying the operator divergence so defined to the gradient of the

scalar field ϕ, we obtain, in arbitrary coordinates z, the Laplacian Δϕ as

Δϕ =

(
ghk

∂ϕ

∂zk

)
;h

=
∂

∂zh

(
ghk

∂ϕ

∂zk

)
+ Γhhjg

jk ∂ϕ

∂zk
. (6.27)

Using the definition of the nabla operator in curvilinear coordinates,

Eq. (6.22), jointly to the fact that, cf. Section 5.5,

Δf := div∇ϕ = ∇ · ∇ϕ,
we get the following representation of the Laplace operator in curvilinear

coordinates:

Δ(·) = ∇ · ∇(·) =
(

∂

∂zk

(
∂(·)
∂zh

gh
))

· gk =
∂2(·)
∂zk∂zh

gh · gk + ∂gh

∂zk
∂(·)
∂zh

· gk

=
∂2(·)
∂zk∂zh

ghk +
∂gh

∂zk
· gk ∂(·)

∂zh
.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



138 Tensor Algebra and Analysis for Engineers

Let us now calculate the spatial derivatives of the components of a second-

rank tensor L: By Eqs. (6.18)1 and (6.25), we get

∂Lxij
∂xk

=
∂zh

∂xk

∂

∂zh

(
∂xi
∂zn

∂xj
∂zp

Lnp
)

=
∂zh

∂xk

∂xi
∂zn

∂xj
∂zp

(
∂Lnp

∂zh
+ ΓnhrL

rp + ΓphrL
nr

)
,

which implies that

∂Lnp

∂zh
+ ΓnhrL

rp + ΓphrL
nr =

∂xk
∂zh

∂zn

∂xi

∂zp

∂xj

∂Lxij
∂xk

. (6.28)

So, using Eq. (6.16), we can conclude that the expression

Lnp;h =
∂Lnp

∂zh
+ ΓnhrL

rp + ΓphrL
nr (6.29)

represents the covariant derivative of the contravariant components of the

second-rank tensor L. In a similar manner, this time by Eq. (6.18)2, we

obtain the covariant derivatives of the covariant components of L:

∂Lnp
∂zh

− ΓrnhLrp − ΓrphLnr =
∂xk
∂zh

∂xi
∂zn

∂xj
∂zp

∂Lxij
∂xk

,

i.e.

Lnp;h =
∂Lnp
∂zh

− ΓrphLnr − ΓrnhLpr. (6.30)

The same procedure with Eqs. (6.18)3,4 gives the covariant derivatives of

the mixed components9 of L:

Lnp;h =
∂Lnp
∂zh

+ ΓnhrL
r
p − ΓrphL

n
r ,

Lnp;h =
∂Lnp
∂zh

− ΓrphL
n
r + ΓnhrL

r
p.

(6.31)

If in Eqs. (6.28) and (6.29) we set p = h, we get

Lnh;h =
∂Lnh

∂zh
+ ΓnhrL

rh + ΓhhrL
nr =

∂xk
∂zh

∂zn

∂xi

∂zh

∂xj

∂Lxij
∂xk

= δkj
∂zn

∂xi

∂Lxij
∂xk

=
∂zn

∂xi

∂Lxij
∂xj

,

which are the components of the contravariant vector field divL.

9Equations (6.29)–(6.31) represent the different forms of the components of an operator

depending upon three indices, i.e. of a third-rank tensor: ∇L, the gradient of L.
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6.5 Exercises

1. Write g and ds for cylindrical coordinates.

2. Write g and ds for spherical coordinates.

3. Find the length of a helix traced on a circular cylinder of radius R

between the angles θ and θ + 2π.

4. A curve is traced as a quarter circle of radius R, see Fig. 6.6, with ρ

proportional to θ. When the quarter circle is rolled into a cone, the

curve appears as indicated in the figure. Determine the length 	 of the

curve, first using the polar coordinates in the plane of the quarter circle,

then the cylindrical ones for the case of the curve on the cone (exercise

given in the book by Müller, see the suggested texts).

5. Calculate g for a planar system of coordinates composed of two axes z1

and z2 inclined, respectively, at α1 and α2 on the axis x1. Then, find

the vectors gk and gk, k = 1, 2, check the orthogonality conditions

gh k , determine the norm of these vectors, and design them.· gk = δh

6. Calculate gis for a system of spherical coordinates.

7. In the plane, elliptical coordinates are defined by the relations

x1 = c cosh z1 cos z2, x2 = c sinh z1 sin z2, z1 ∈ (0,∞), z2 ∈ [0, 2π);

show that the lines z1 = const. and z2 = const. are confocal ellipses and

hyperbole, determine the axes of the ellipses in terms of the parameter

c, discuss the limit case of ellipses that degenerate into a crack, and

determine its length. Finally, find g,g1, and g2.

8. Determine the co- and contravariant components of a tensor L in

cylindrical coordinates.

Rx1

x2 R

R0

h

(z)

x1
x2

x3

Figure 6.6: Curve in a plane and on a cone.
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9. Determine the co- and contravariant components of a tensor L in

spherical coordinates.

10. Show that

trL = Lxii = gijL
ij = gijLij = Lii = L j

j .

11. Prove Eq. (6.26).

12. Prove the lemma of Ricci:

∂gjk
∂zh

= Γijhgik + Γikhgji.

13. Using Eq. (6.26), find the Christoffel symbols for the cylindrical,

spherical, and elliptical (in the plane) coordinates.

14. Write the Laplacian Δf of a spatial scalar field f in cylindrical and

spherical coordinates.

15. Prove that

gnp;h = gnp;h = 0.
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Chapter 7

Surfaces in E

7.1 Surfaces in E, coordinate lines and tangent planes

A function f(u, v) : Ω ⊂ R
2 → E of class ≥C1 and such that its Jacobian

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

∂f3
∂u

∂f3
∂v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

has maximum rank (rank[J] = 2) defines a surface in E , see Fig. 7.1. We

say also that f is an immersion of Ω into E and that the subset Σ ⊂ E
image of f is the support or trace of the surface f .

As usual, we indicate the derivatives with respect to the variables u

and v by, for example,
∂f

∂u
= f,u, etc. The condition on the rank of J is

equivalent to impose that

f,u(u, v)× f,v(u, v) � =o ∀(u, v) ∈ Ω. (7.1)

This allows us to introduce the normal to the surface f is the vector N ∈ S
defined as

N :=
f,u × f,v
|f,u × f,v| . (7.2)

A regular point of Σ is a point where N is defined; if N is defined ∀p ∈ Σ,

then the surface is said to be regular.
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142 Tensor Algebra and Analysis for Engineers

Figure 7.1: General scheme of a surface and of the tangent space at a point p.

A function γ(t) : G ⊂ R → Ω whose parametric equation is γ(t) =

(u(t), v(t)) describes a curve in Ω whose image, through f , is the curve, see

Fig. 7.1,

γ̂(t) = f(u(t), v(t)) : G ⊂ R → Σ ⊂ E .

As a special case of curve in Ω, let us consider the curves of the type v = v0
or u = u0, with u0, v0 being some constants. Then, their image through f are

two curves f(u, v0), f(u0, v) on Σ called coordinate lines, see again Fig. 7.1.

The tangent vectors to the coordinate lines are, respectively, the vectors

f,u(u, v0) and f,v(u0, v), while the tangent to a curve γ̂(t) = f(u(t), v(t)) is

the vector

γ̂′(t) = f,u
du

dt
+ f,v

dv

dt
, (7.3)

i.e. the tangent vector to any curve on Σ is a linear combination of the

tangent vectors to the coordinate lines. We remark that the tangent vectors

f,u(u, v0) and f,v(u0, v) are necessarily non-null and linearly independent as

a consequence of the assumption on the rank of J and hence of the existence

of N, i.e. of the regularity of Σ. They determine a plane that contains the

tangents to all the curves on Σ passing by p = f(u0, v0) and form a basis

on this plane, called the natural basis. Such a plane is the tangent plane to

Σ in p and is indicated by TpΣ; this plane is actually the space spanned by

f,u(u, v0) and f,v(u0, v) and is also called the tangent vector space.
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Surfaces in E 143

Let us consider two open subsets Ω1,Ω2 ⊂ R
2; a diffeomorphism1 of

class Ck between Ω1 and Ω2 is a bijective map ϑ : Ω1 → Ω2 of class Ck

with also its inverse of class Ck; the diffeomorphism is smooth if k = ∞.

Let Ω1,Ω2 be two open subsets of R2, f : Ω2 → E a surface, and ϑ :

Ω1 → Ω2 a smooth diffeomorphism. Then, the surface F = f ◦ ϑ : Ω1 → E
is a change in parameterization for f . In practice, the function defining the

surface changes, but not Σ, its trace in E . Let (U, V ) be the coordinates in

Ω1 and (u, v) in Ω2. Then, by the chain rule,

F,U = f,u
∂u

∂U
+ f,v

∂v

∂U
,

F,V = f,u
∂u

∂V
+ f,v

∂v

∂V
,

or denoting by Jϑ the Jacobian of ϑ,

{
F,U
F,V

}
= [Jϑ]

�
{
f,u
f,v

}
,

whence, making the cross product, one gets immediately

F,U × F,V = det[Jϑ] f,u × f,v.

This result shows that the regularity of the surface, condition (7.1), the

tangent plane, and the tangent space vector do not depend upon the

parameterization of Σ. From the last equation, we also get

N(U, V ) = sgn(det[Jϑ]) N(u, v);

we say that the change in parameterization preserves the orientation if

det[Jϑ] > 0 and that it inverses the parameterization in the opposite case.

7.2 Surfaces of revolution

A surface of revolution is a surface whose trace is obtained by letting a

plane curve, say γ, rotate around an axis, say x3. To be more specific and

without loss of generality, let γ : G ⊂ R → R2 be a regular curve of the

1The definition of diffeomorphism, of course, can be given for subsets of Rn, n ≥ 1; here,

we bound the definition to the case of interest.
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144 Tensor Algebra and Analysis for Engineers

plane x2 = 0, whose parametric equation is

γ(u) :

{
x1 = ϕ(u),

x3 = ψ(u),
ϕ(u) > 0 ∀u ∈ G. (7.4)

Then, the subset Σγ ⊂ E defined by

Σγ :=
{
(x1, x2, x3) ∈ E|x21 + x22 = ϕ2(u), x3 = ψ(u), u ∈ G

}
is the trace of a surface of revolution of the curve γ(u) around the axis x3.

A general parameterization of such a surface is

f(u, v) : G× (−π, π] → E|
⎧⎨
⎩
x1 = ϕ(u) cos v,

x2 = ϕ(u) sin v,

x3 = ψ(u).

(7.5)

It is readily checked that this parameterization actually defines a regular

surface:

f,u =

⎧⎨
⎩
ϕ′(u) cos v
ϕ′(u) sin v
ψ′(u)

⎫⎬
⎭ , f,v =

⎧⎨
⎩

−ϕ(u) sin v
ϕ(u) cos v

0

⎫⎬
⎭ → f,u × f,v

=

⎧⎨
⎩

−ϕ(u)ψ′(u) cos v
−ϕ(u)ψ′(u) sin v

ϕ(u)ϕ′(u)

⎫⎬
⎭

so that

|f,u × f,v| = ϕ2(u)(ϕ′2(u) + ψ′2(u)) � = 0∀u ∈ G

for being γ(u) a regular curve, i.e. with γ′(u) � =o ∀u ∈ G. A meridian is

a curve in E intersection of the trace of f , Σγ , with a plane containing the

axis x3; the equation of a meridian is obtained fixing the value of v, say

v = v0: ⎧⎨
⎩
x1 = ϕ(u) cos v0,

x2 = ϕ(u) sin v0,

x3 = ψ(u).

A parallel is a curve in E intersection of Σγ with a plane orthogonal to x3;

the equation of a parallel, which is a circle with center on the axis x3, is
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Surfaces in E 145

Figure 7.2: Surfaces of revolution: (from left) sphere, catenoid, pseudo-sphere, and

hyperbolic hyperboloid.

obtained by fixing the value of u, say u = u0:⎧⎨
⎩
x1 = ϕ(u0) cos v,

x2 = ϕ(u0) sin v,

x3 = ψ(u0),

or also, {
x21 + x22 = ϕ(u0)

2,

x3 = ψ(u0);

the radius of the circle is ϕ(u0). A loxodrome or rhumb line is a curve on Σγ
crossing all the meridians at the same angle.2 Some important examples of

surfaces of revolution are:

• the sphere:

f(u, v) :
[
−π
2
,
π

2

]
× (−π, π] → E|

⎧⎨
⎩
x1 = cosu cos v,

x2 = cosu sin v,

x3 = sin v;

• the catenoid:

f(u, v) : [−a, a]× (−π, π] → E|
⎧⎨
⎩
x1 = coshu cos v,

x2 = coshu sin v,

x3 = u;

• the pseudo-sphere:

f(u, v) : [0, a]× (−π, π] → E|

⎧⎪⎨
⎪⎩
x1 = sinu cos v,

x2 = sinu sin v,

x3 = cosu+ ln
(
tan

u

2

)
;

(7.6)

• the hyperbolic hyperboloid:

f(u, v) : [−a, a]× (−π, π] → E|
⎧⎨
⎩
x1 = cosu− v sinu,

x2 = sinu+ v cosu,

x3 = v.

2This concept is important for marine and aerial navigation.
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146 Tensor Algebra and Analysis for Engineers

7.3 Ruled surfaces

A ruled surface (also named a scroll) is a surface with the property that

through every one of its points, there is a straight line that lies on the

surface. A ruled surface can be seen as the set of points swept by a moving

straight line. We say that a surface is doubly ruled if through every one of

its points, there are two distinct straight lines that lie on the surface.

Any ruled surface can be represented by a parameterization of the form

f(u, v) = γ(u) + vλ(u), (7.7)

where γ(u) is a regular smooth curve, the directrix, and λ(u) is a smooth

curve. Fixing u = u0 gives a generator line f(u0, v) of the surface; the

vectors λ(u) � =o describe the directions of the generators. Some important

examples of ruled surfaces are:

• Cones: For these surfaces, all the straight lines pass through a point,

the apex of the cone, choosing the apex as the origin, then it must be

λ(u) = kγ(u), k ∈ R →
f(u, v) = vγ(u);

• Cylinders: A ruled surface is a cylinder ⇐⇒ λ(u) = const. In this case,

it is always possible to choose λ(u) ∈ S and γ(u) a planar curve lying

in a plane orthogonal to λ(u); in fact, it is sufficient to choose the curve

γ∗(u) = (I− λ(u)⊗ λ(u))γ(u);

• Helicoids: A surface generated by rotating and simultaneously displacing

a curve, the profile curve, along an axis is a helicoid. Any point of the

profile curve is the starting point of a circular helix. Generally, we get a

helicoid if

γ(u) = (0, 0, ϕ(u)), λ(u) = (cosu, sinu, 0), ϕ(u) : R → R;

• Möbius strip: It is a ruled surface with

γ(u) = (cos 2u, sin 2u, 0), λ(u) = (cosu cos 2u, cosu sin 2u, sinu).

7.4 First fundamental form of a surface

Let us consider two vectors of TpΣ, say w1,w2; we want to calculate their

scalar product in terms of their components in the natural basis {f,u, f,v}
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Figure 7.3: Ruled surfaces: (from left) elliptical cone, elliptical cylinder, helicoid, and

Möbius strip.

of TpΣ. If w1 = a1f,u + b1f,v and w2 = a2f,u + b2f,v, then

w1 ·w2 = a1a2f
2
,u + (a1b2 + a2b1)f,u · f,v + b1b2f

2
,v,

which can be rewritten in the form

I(w1,w2) = w1 · gw2,

where3

g =

[
f,u · f,u f,u · f,v
f,v · f,u f,v · f,v

]

is precisely the metric tensor g of Σ, cf. Eq. (6.6). In fact, f,u and f,v are

the tangent vectors to the coordinate lines on Σ, i.e. they coincide with the

vectors gks.

I(w1,w2) is the first fundamental form (or simply the first form) of

f(u, v). If w1 = w2 = w = af,u + bf,v, then

I(w) = w2 = a2f2,u + 2abf,u · f,v + b2f2,v.

By the same definition of scalar product, I(w1,w2) is a positive definite,

bilinear, symmetric form ∀w ∈ TpΣ.

Through I(·, ·), we can calculate some important quantities regarding

the geometry of Σ:

• Metric on Σ: ∀ds ∈ Σ,

ds2 = ds · ds = I(ds),

3Often, in texts on differential geometry, tensor g is indicated as

g =

[
E F

F G

]

,

where E := f,u · f,u, F := f,u · f,v , G := f,v · f,v .
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148 Tensor Algebra and Analysis for Engineers

so if

ds = f,udu + f,vdv,

then

ds2 = f2,udu
2 + 2f,u · f,vdu dv + f2,vdv

2. (7.8)

• Length � of a curve γ : [t1, t2] ⊂ R → Σ: We know, from Eq. (4.4), that

the length of a curve is the integral of the tangent vector:

� =

∫ t2

t1

|γ′(t)|dt =
∫ t2

t1

√
γ′(t) · γ′(t)dt

and hence, see Eq. (7.3), if we call w = (u′, v′) the tangent vector to γ,

expressed by its components in the natural basis,

� =

∫ t2

t1

√
u′2f2,u + 2u′v′f,u · f,v + v′2f2,vdt

=

∫ t2

t1

√
(u′, v′) · g (u′, v′)dt

=

∫ t2

t1

√
I(w)dt. (7.9)

• Angle θ formed by two vectors w1,w2 ∈ TpΣ:

cos θ =
w1 ·w2

|w1||w2| =
I(w1,w2)√
I(w1)

√
I(w2)

.

• Area of a small surface on Σ: Let f,udu and f,vdv be two small vectors

on Σ, forming together the angle θ that are the transformed through4

f : Ω → Σ, of two small orthogonal vectors du, dv ∈ Ω; then, the area dA
of the parallelogram determined by them is

dA = |f,udu× f,vdv| = |f,u × f,v|du dv =
√

f2,uf
2
,v sin

2 θdu dv

=
√
f2,uf

2
,v(1 − cos2 θ)du dv =

√
f2,uf

2
,v − f2,uf

2
,v cos

2 θdu dv

=
√
f2,uf

2
,v − (f,u · f,v)2du dv =

√
detgdu dv.

4For the sake of conciseness, from now on, we indicate a surface as the function f : Ω → Σ,

with f = f(u, v), (u, v) ∈ Ω ⊂ R
2 and Σ ⊂ E.
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Surfaces in E 149

The term
√
detg is hence the dilatation factor of the areas; recalling

Eq. (6.4), we see that the previous expression has a sense ∀f(u, v), i.e.
for any parameterization of the surface.

7.5 Second fundamental form of a surface

Let f : Ω → Σ be a regular surface, {f,u, f,v} the natural basis for TpΣ, and

N ∈ S the normal to Σ defined as in (7.2). We call the map of Gauss of Σ

the map ϕΣ : Σ → S that associates to each p ∈ Σ its N : ϕΣ(p) = N(p).

To each subset σ ⊂ Σ, the map of Gauss associates hence a subset σS ⊂ S,
Fig. 7.4 (e.g. the Gauss map of a plane is just a point on S).

We want to study how N(p) varies at the varying of p on Σ. The idea

is that the change of N(p) on Σ is related to the curvature of the surface.5

For this purpose, we calculate the change in N per unit length of a curve

γ(s) ∈ Σ, i.e. we study how N varies along any curve of Σ per unit of length

of the curve itself; that is why we parameterize the curve with its arc length

s.6 Let N = Ni(u, v)ei; then, if τ ∈ S is the tangent to the curve,

dN

ds
=
dNi(u(s), v(s))

ds
ei =

(
∂Ni
∂u

du

ds
+
∂Ni
∂v

dv

ds

)
ei

= ∇Ni · τei = (ei ⊗∇Ni)τ = (∇N) τ =
dN

dτ
.

x1

x2

x3

o

x1

x2

x3

p S

S

N(p)

N(p)

(p)

o

Figure 7.4: The map of Gauss.

5For curves, the curvature is linked to the change in τ , but for surfaces this should not

be meaningful, as τ is not unique ∀p ∈ Σ while N is.
6Actually, it is also possible to introduce the following concepts more generally for

any parameterization of the curve; anyway, for the sake of simplicity, we just use the
parameter s in the following.
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150 Tensor Algebra and Analysis for Engineers

The change in N is hence related to the directional derivative of N along

the tangent τ to γ(s), which is a linear operator on TpΣ. Moreover, as

N ∈ S, then, cf. Eq. (4.1),
N ·N,u = N ·N,v = 0 ⇒ N,u,N,v ∈ TpΣ.

We then call the Weingarten operator LW : TpΣ → TpΣ the opposite of the

directional derivative of N:

LW (τ ) := −dN
dτ

.

Hence,

LW (f,u) = −N,u, LW (f,v) = −N,v. (7.10)

Because LW is linear, then there exists a tensor X on TpΣ such that

LW (v) = Xv ∀v ∈ TpΣ. (7.11)

For any two vectors w1,w2 ∈ TpΣ, we define the second fundamental form

of a surface, denoted by II(w1,w2), the bilinear form

II(w1,w2) := I(LW (w1),w2).

Theorem 43 (Symmetry of the second fundamental form).

∀w1,w2 ∈ TpΣ, II(w1,w2) = II(w2,w1).

Proof. Because I and LW are linear, it is sufficient to prove the thesis for

the natural basis {f,u, f,v} of TpΣ, and by the symmetry of I, it is sufficient

to prove that

I(LW (f,u), f,v) = I(f,u,LW (f,v)),

i.e. that

I(−N,u, f,v) = I(f,u,−N,v)

and in the end that

N,u · f,v = f,u ·N,v.

For this purpose, we recall that

N · f,u = 0 = N · f,v.
So, differentiating the first equation by v and the second one by u, we get

N,v · f,u = −N · f,uv = N,u · f,v. (7.12)

�
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The second fundamental form defines a quadratic, bilinear symmetric form:

II(w1,w2) = I(LW (w1),w2) = I(w1,LW (w2))

= I(w1,Xw2) = w1 · gXw2 = w1 ·Bw2,

where

B := gX. (7.13)

In the natural basis {f,u, f,v} of TpΣ, by Eq. (7.12), it is7

Bij = II(f,i, f,j) = I(LW (f,i), f,j) = −N,i · f,j = N · f,ij ; (7.14)

tensor X can then be calculated by Eq. (7.13):

X = g−1B. (7.15)

By Eq. (7.14), because f,ij = f,ji or simply because II(·, ·) is symmetric,

we get that

B = B�.

7.6 Curvatures of a surface

Let f : Ω → Σ be a regular surface and γ(s) : G ⊂ R → Σ be a regular curve

on Σ parameterized with the arc length s. We call the curvature vector of

γ(s) the vector κ(s), defined as

κ(s) := c(s)ν(s) = γ′′(s),

where ν(s) is the principal normal to γ(s). By Eq. (4.11), it is also

κ(s) = γ′′(s).

Then, we call the normal curvature κN (s) of γ(s) the projection of κ(s)

onto N(s), the normal to Σ:

κN (s) := κ(s) ·N(s) = c(s) ν(s) ·N(s) = γ′′(s) ·N(s).

Theorem 44. The normal curvature κN (s) of γ(s) ∈ Σ depends uniquely

on τ (s):

κN (s) = τ (s) ·Bτ (s) = II(τ (s), τ (s)). (7.16)

7In many texts on differential geometry, the following symbols are used:

L = f,uu ·N = −f,u ·N,u,

M = f,uv ·N = −f,u ·N,v ,

N = f,vv ·N = −f,v ·N,v .
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Proof.

γ(s) = γ(u(s), v(s)) → τ (s) = γ′(s) = f,uu
′ + f,vv

′;

therefore, τ = (u′, v′) in the natural basis and

κ(s) = γ′′(s) = f,uu
′′ + f,vv

′′ + f,uuu
′2 + 2f,uvu

′v′ + f,vvv
′2,

and finally, by Eqs. (7.2) and (7.14),

κN (s) = γ′′(s) ·N(s) = B11u
′2 + 2B12u

′v′ +B22v
′2 = τ ·Bτ

= II(τ , τ ). �

Now, if s = s(t) is a change in parameter for γ, then

γ′(t) = |γ′(t)|τ (t),
so by the linearity of II(·, ·), we get

II(γ′(t),γ′(t)) = |γ′(t)|2II(τ (t), τ (t)) = |γ′(t)|2κN (t)

and finally,

κN (t) =
II(γ′(t),γ′(t))
I(γ′(t),γ′(t))

.

To each point p ∈ Σ, it corresponds uniquely (in the assumption of

regularity of the surface f : Ω → Σ) to a tangent plane and a tangent

space vector TpΣ. In p, there are infinite tangent vectors to Σ, all of them

belonging to TpΣ. We can associate a curvature to each direction t ∈ TpΣ,

i.e. to each tangent direction, in the following way: Let us consider the

bundle H of planes whose support is the straight line through p and parallel

to N. Then, any plane H ∈ H is a normal plane to Σ in p; each normal

plane is uniquely determined by a tangent direction t, and the (planar)

curve γNt := H ∩ Σ is called a normal section of Σ. If ν and N are,

respectively, the principal normal to γNt and the normal to Σ in p, then

ν = ±N

for each normal section. We have, in this way, defined a function that to

each tangent direction, t ∈ TpΣ associates the normal curvature κN of the

normal section γNt:

κN : S ∩ TpΣ → R| κN (t) =
II(t, t)

I(t, t)
.

By the bilinearity of the second fundamental form, κN (t) = κN (−t).
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A point p ∈ Σ is said to be a umbilical point if κN(t) = const. ∀t, it is a
planar point if κN (t) = 0 ∀t. In all the other points, κN takes a minimum

and a maximum value on distinct directions t ∈ TpΣ.

Because B = B�, by the spectral theorem, there exists an orthonormal

basis {u1,u2} of TpΣ such that

B = βjuj ⊗ uj ,

with βj the eigenvalues of B. In such a basis, by Eq. (7.13), we get

κN(ui) =
II(ui,ui)

I(ui,ui)
=

ui ·Bui

ui · gui =
ui · gXui

ui · gui , i = 1, 2.

Then, because {u1,u2} is an orthonormal basis, g = I and

κN (ui) = ui ·Xui, i = 1, 2,

i.e. X and B share the same eigenvectors. Moreover, cf. Section 2.8, we

know that the two directions u1 and u2 are the directions whereupon

the quadratic form in the previous equation gets its maximum, κ1, and

minimum, κ2, values, and in such a basis,

X = κiui ⊗ ui.

We call κ1 and κ2 the principal curvatures of Σ in p and u1,u2 the principal

directions of Σ in p, see Fig. 7.5.

We call the Gaussian curvature K the product of the principal

curvatures:

K := κ1κ2 = detX.

By Eq. (7.15) and the theorem of Binet, it is also

K =
detB

detg
. (7.17)

We define the mean curvature H of a surface8 f : Ω → Σ at a point p ∈ Σ

the mean of the principal curvatures at p:

H :=
κ1 + κ2

2
=

1

2
trX.

Of course, a change in parameterization of a surface can change the

orientation, cf. Section 7.1, which induces a change in N into its opposite

one and, by consequence, in the sign of the second fundamental form and

hence in the normal and principal curvatures. These last are hence defined

to less the sign, and the mean curvature too, while the principal directions,

umbilicality, flatness, and Gaussian curvature are intrinsic to Σ, i.e. they

do not depend on its parameterization.

8The concept of mean curvature of a surface was introduced for the first time by Sophie

Germain in her celebrated work on the elasticity of plates (1815).
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x2
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Tpu2
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p u1

Figure 7.5: Principal curvatures.

7.7 The theorem of Rodrigues

The principal directions of curvature have a property that is specified by

the following.

Theorem 45 (Theorem of Rodrigues). Let f(u, v) be a surface of class

at least C2 and λ = (λu, λv) ∈ TpΣ, then

dN(p)

dλ
= −κλλ (7.18)

if and only if λ is a principal direction; κλ is the principal curvature relative

to λ.

Proof. Let λ be a principal direction of TpΣ. Because N ∈ S, then

dN

dλ
·N = 0; (7.19)

moreover,

dN

dλ
= ∇N λ =

⎡
⎣ 0 0 0

0 0 0

N,u N,v 1

⎤
⎦

⎧⎨
⎩
λu
λv
0

⎫⎬
⎭ = N,uλu +N,vλv. (7.20)
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Let μ = (μu, μv) be the other principal direction of TpΣ, then

λ · μ = 0 → I(λ,μ) = II(λ,μ) = 0.

Moreover,

dN

dλ
· μ = −II(λ,μ) = 0,

which implies, together with Eq. (7.19),

dN

dλ
= αλ. (7.21)

Therefore,

dN

dλ
· λ = −II(λ) = αλ · λ = αI(λ)

and finally,

α = −II(λ)
I(λ)

= −κλ.

Contrarily, if we assume Eq. (7.21), as before, we get α = −κλ, and to end,

we just need to prove that λ is a principal direction. From Eqs. (7.20) and

(7.21), we get

λuN,u + λvN,v = −κλ(λuf,u + λvf,v).

Projecting this equation onto f,u and f,v gives the two equations

Lλu +Mλv = κλ(Eλu + Fλv),

Mλu +Nλv = κλ(Eλu +Gλv),
(7.22)

with the symbols E,F,G, L,M , and N defined in Notes 3 and 7 and used

here for the sake of conciseness. Let w = (wu, wv) ∈ TpΣ and consider the

function

ζ(w, κλ) = II(w)− κλI(w);

it is easy to check that ζ, ∂ζ
∂wu

and ∂ζ
∂wv

take zero value for w = λ0, with

λ0 the eigenvector of the principal direction relative to κλ, which gives the

system of equations ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

II(λ0)− κλI(λ0) = 0,

∂II(λ0)

∂wu
− κλ

∂II(λ0)

∂wu
= 0,

∂II(λ0)

∂wv
− κλ

∂II(λ0)

∂wv
= 0.
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Developing the derivatives and making some standard operations,

Eq. (7.22) is found again, which proves that λ is necessarily the principal

direction relative to κλ. �

This theorems hence states that the derivative of N along a given direction

is a vector parallel to such a direction only when this is a principal direction

of curvature.

7.8 Classification of the points of a surface

Let f : Ω → Σ be a regular surface and p ∈ Σ a non-planar point. Then, we

say that

• p is an elliptic point if K(p) > 0;

• p is a hyperbolic point if K(p) < 0;

• p is a parabolic point if K(p) = 0.

We remark that, by Eq. (7.17), because detg > 0, Eq. (6.4), the value of

detB is sufficient to determine the type of a point on Σ.

Theorem 46. If p is an elliptical point of σ, then there exists a neighbor-

hood U ∈ Σ of p such that all the points q ∈ U belong to the same half-space

into which E is divided by the tangent plane TpΣ.

Proof. For the sake of simplicity and without loss of generality, we can

always chose a parameterization f(u, v) of the surface such that p = f(0, 0).

Expanding f(u, v) into a Taylor’s series around (0, 0), we get the position

of a point q = f(u, v) ∈ Σ in the neighborhood of p (though not indicated

for the sake of brevity, all the derivatives are intended to be calculated at

(0, 0)):

f(u, v) = f,uu+ f,vv +
1

2
(f,uuu

2 + 2f,uvuv + f,vvv
2) + o(u2 + v2).

The distance with sign d(q) of q ∈ Σ from the tangent plane TpΣ is the

projection onto N, i.e.:

d(q) =
1

2
(f,uuu

2 + 2f,uvuv + f,vvv
2) ·N+ o(u2 + v2)

=
1

2
(B11u

2 + 2B12uv +B22v
2) + o(u2 + v2),

or, equivalently, once we set w = uf,u + vf,v,

d(q) = II(w,w) + o(u2 + v2). (7.23)
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If p is an elliptic point, the principal curvatures have the same sign because

K = κ1κ2 > 0 ⇒ the sign of II(w,w) does not depend upon w, i.e. upon

the tangent vector. As a consequence, the sign of d(q) does not change with

w ⇒ ∀q ∈ U, Σ is on the same side of the tangent plane TpΣ. �

Theorem 47. If p is a hyperbolic point of Σ, then for each neighborhood

U ∈ Σ of p, there are points q ∈ U that are in half-spaces on the opposite

sides with respect to the tangent plane TpΣ.

Proof. The proof is identical to that of the previous theorem until Eq.

(7.23); now, if p is a hyperbolic point, the principal curvatures have opposite

signs, and by consequence d(q) changes of sign at least two times in any

neighborhood U of p⇒, there are points q ∈ U lying in half-spaces on the

opposite sides with respect to the tangent plane TpΣ. �

In a parabolic point, there are different possibilities: Σ is on one side of the

space with respect to TpΣ, as for the case of a cylinder, or not, like, for

example, for the points (0, v) of the surface, see Fig. 7.6,

⎧⎨
⎩
x = (u3 + 2) cos v,

y = (u3 + 2) sin v,

z = −u.

This is also the case for planar points: e.g., the point (0, 0, 0) is a planar

point for both the surfaces

z = x4 + y4, z = x3 − 3xy2,

but in the first case, all of the surface is on one side of the tangent plane,

while it is on both sides for the second case (the so-called monkey’s saddle),

see Fig. 7.7.

Figure 7.6: Elliptic (left), hyperbolic (center), and parabolic (last two on the right)

points.
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158 Tensor Algebra and Analysis for Engineers

Figure 7.7: Two different planar points.

7.9 Developable surfaces

Let us now consider a ruled surface f : Ω → Σ as in Eq. (7.7); then,

f,u = γ′ + vλ′, f,v = λ, f,u× f,v = γ′ ×λ+ vλ′ ×λ, f,uv = λ′, f,vv = o.

Consequently, B22 = N · f,vv = 0 ⇒ detB = −B2
12: The points of Σ are

hyperbolic or parabolic. Namely, the parabolic points are those with

B12 = N · f,uv =
f,u × f,v
|f,u × f,v| · f,uv = 0

⇐⇒ (γ′ × λ+ vλ′ × λ) · λ′ = γ′ × λ · λ′ = 0.

We remark that the ruled surfaces made of parabolic points have null

Gaussian curvature everywhere: K = 0.

Let us consider ruled surfaces having only parabolic points; then, we

have the following.

Theorem 48. For a ruled surface f(u, v) = γ(u) + vλ(u), the following

are equivalents:

(i) γ′,λ,λ′ are linearly dependent;

(ii) N,v = o.

Proof. Condition (ii) implies that N does not change along a straight line

lying on the ruled surface ⇒ f,u× f,v = γ′×λ+vλ′×λ does not depend on

v as well. This is possible ⇐⇒ γ′ × λ and λ′ × λ are linearly dependent,

i.e. ⇐⇒
(γ′ × λ)× (λ′ × λ) = (λ′ × λ · γ′)λ− (λ′ × λ · λ)γ′ = (λ′ × λ · γ′)λ = o,

i.e. when λ,λ′, and γ′ are coplanar, which proves the thesis. �

We say that a ruled surface is developable if one of the conditions of

Theorem 48 is satisfied. A developable surface is a surface that can be
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Figure 7.8: Ruled surface of the tangents to a cylindrical helix.

flattened without distortion onto a plane, i.e. it can be bent without

stretching or shearing or vice versa and it can be obtained by transforming

a plane. We remark that only ruled surfaces are developable (but not all

the ruled surfaces are developable).

It is immediate to check that a cylinder or a cone are developable sur-

faces, while the helicoid, hyperbolic hyperboloid, or hyperbolic paraboloid

are not. Another classical example of developable surface is the ruled surface

of the tangents to a curve: Let γ(t) : G ⊂ R → E be a regular smooth curve;

then, the ruled surface of the tangents to γ is the surface f(u, v) : G×R → Σ

defined by

f(u, v) = γ(u) + vγ′(u).

Figure 7.8 shows the ruled surface of the tangents to a cylindrical helix.

7.10 Points of a surface of revolution

Let us now consider a surface of revolution f : Ω → Σγ as in Eq. (7.5) and,

for the sake of simplicity, let u be the natural parameter of the curve in Eq.

(7.4) generating the surface. Then,

ϕ′2(u) + ψ′2(u) = 1, ψ′′(u)ϕ′(u)− ψ′(u)ϕ′′(u) = c(u).

We can then calculate:

• the vectors of the natural basis:

f,u =

⎧⎨
⎩
ϕ′(u) cos v
ϕ′(u) sin v
ψ′(u)

⎫⎬
⎭ , f,v =

⎧⎨
⎩

−ϕ(u) sin v
ϕ(u) cos v

0

⎫⎬
⎭ ;

• the normal to the surface

N =

⎧⎨
⎩

−ψ′(u) cos v
−ψ′(u) sin v

ϕ′(u)

⎫⎬
⎭ ;
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160 Tensor Algebra and Analysis for Engineers

• the metric tensor (i.e. the first fundamental form):

g =

[
1 0

0 ϕ2(u)

]
;

• the second derivatives of f :

f,uu =

⎧⎨
⎩
ϕ′′(u) cos v
ϕ′′(u) sin v
ψ′′(u)

⎫⎬
⎭ , f,uv =

⎧⎨
⎩

−ϕ′(u) sin v
ϕ′(u) cos v

0

⎫⎬
⎭ ,

f,vv =

⎧⎨
⎩

−ϕ(u) cos v
−ϕ(u) sin v

0

⎫⎬
⎭ ;

• tensor B (i.e. the second fundamental form):

B =

[
c(u) 0

0 ϕ(u)ψ′(u)

]
;

• the Gaussian curvature K:

K = detX =
detB

detg
=
c(u)ψ′(u)
ϕ(u)

.

Therefore, the points of Σγ where c(u) and ψ′(u) have the same sign are

elliptic, but hyperbolic otherwise.9 Parabolic points correspond to inflexion

points of γ(u) if c(u) = 0 or to points with horizontal tangent to γ(u) if

ψ′(u) = 0.

As an example, let us consider the case of the pseudo-sphere, Eq. (7.6).

Then,

ϕ(u) = sinu, ψ(u) = cosu+ ln tan
u

2
.

Some simple calculations give

ψ′(u) = − sinu+
1

sinu
, c(u) = −| tanu|

| cotu| ;

as a consequence,

K =
c(u)ψ′(u)
ϕ(u)

= − (− sinu+ 1
sinu )| tanu|

sinu| cotu| = −1.

Finally, K = const. = −1, which is the reason for the name of this surface.

9Recall that in a revolution surface, ϕ(u) > 0 ∀u.
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7.11 Lines of curvature, conjugated directions, asymptotic

directions

A line of curvature is a curve on a surface with the property of being

tangent, at each point, to a principal direction.

Theorem 49. The lines of curvature of a surface are the solutions to the

differential equation

X21u
′2 + (X22 −X11)u

′v′ −X12v
′2 = 0.

Proof. A curve γ(t) : G ⊂ R → Σ ⊂ E is a line of curvature ⇐⇒
γ′(t) = f,uu

′ + f,vv
′

is an eigenvector of X(t) ∀t, i.e. ⇐⇒ there exists a function μ(t) such that

X(t)γ′(t) = μ(t)γ′(t) ∀t.
In the natural basis of TpΣ, this condition reads as (we omit the dependence

upon t for the sake of conciseness)[
X11 X12

X21 X22

] {
u′

v′

}
= μ

{
u′

v′

}
,

which is satisfied ⇐⇒ the two vectors at the left- and right-hand sides are

proportional, i.e. ⇐⇒

det

[
X11u

′ +X12v
′ u′

X21u
′ +X22v

′ v′

]
= 0 → X21u

′2 + (X22 −X11)u
′v′ −X12v

′2 = 0.
�

As a corollary, if X is diagonal, then the coordinate lines are, at the same

time, principal directions and lines of curvature.

Theorem 50. A curve γ(u) : G ⊂ R → Σ is a line of curvature ⇐⇒ the

surface

f(u, v) = γ(u) + vN(γ(u)), (7.24)

is developable.

Proof. From Theorem 48, f(u, v) is developable ⇐⇒ γ′ · N × N′ = 0.

Because γ′ and N′ ∈ TpΣ, which is orthogonal to N, the surface will be

developable ⇐⇒ γ′ ×N′ = o. Moreover, writing

γ′ = f,uu
′ + f,vv

′,
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162 Tensor Algebra and Analysis for Engineers

it is

N′ = N,uu
′ +N,vv

′ = −LW (γ′),

hence f(u, v) is developable ⇐⇒ LW (γ′) × γ′ = o, i.e. when γ′ is a

principal direction. �

The curve in Eq. (7.24) is called the ruled surface of the normals.

Let p be a non-planar point of a surface f : Ω → Σ and v1,v2 two

vectors of TpΣ. We say that v1 and v2 are conjugated if II(v1,v2) = 0.

The directions corresponding to v1 and v2 are called conjugated directions.

Hence, the principal directions at a point p are conjugated; if p is an

umbilical point, any two orthogonal directions are conjugated.

The direction of a vector v ∈ TpΣ is said to be asymptotic if it is

autoconjugated, i.e. if II(v,v) = 0. An asymptotic direction is hence a

direction where the normal curvature is null. In a hyperbolic point, there

are two asymptotic directions; in a parabolic point only one; and in an

elliptic point, there are no asymptotic directions. An asymptotic line is

a curve on a surface with the property of being tangent at every point

to an asymptotic direction. The asymptotic lines are the solution to the

differential equation

II(γ′,γ′) = 0 → B11u
′2 + 2B12u

′v′ +B22v
′2 = 0;

in particular, if B11 = B22 = 0 and B � =O, then the coordinate lines are

asymptotic lines. Asymptotic lines exist only in the regions where K ≤ 0.

7.12 Dupin’s conical curves

The conical curves of Dupin are the real curves in TpΣ whose equations are

II(v,v) = ±1, v ∈ S.
Let {u1,u2} be the basis of the principal directions. Using polar coordi-

nates, we can write

v = ρeρ, eρ = cos θu1 + sin θu2.

Therefore,

II(v,v) = ρ2II(eρ, eρ) = ρ2κN (eρ),

and the conicals’ equations are

ρ2(κ1 cos
2 θ + κ2 sin

2 θ) = ±1.
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Figure 7.9: The conical curves of Dupin (from left): elliptic, hyperbolic, and parabolic

points.

With the Cartesian coordinates ξ = ρ cos θ, η = ρ sin θ, we get

κ1ξ
2 + κ2η

2 = ±1.

The type of conical curves depend upon the kind of point on Σ:

• Elliptical points: The principal curvatures have the same sign → one of

the conical curves is an ellipse, the other one the null set (actually, it is

not a real curve).

• Hyperbolic points: The principal curves have opposite signs → the conical

curves are conjugated hyperbolae whose asymptotes coincide with the

asymptotic directions.

• Parabolic points: At least one of the principal curvatures is null → one

of the conical curves degenerates into couple of parallel straight lines,

corresponding to the asymptotic direction, the other one is the null set.

The three possible cases are depicted in Fig. 7.9.

7.13 The Gauss–Weingarten equations

Let f : Ω → Σ be a surface; for any point p ∈ Σ, consider the basis

{f,u, f,v,N}, also called the Gauss’ basis. It is the equivalent of the Frenet–

Serret basis for the surfaces. We want to calculate the derivatives of the

vectors of this basis, i.e. we want to obtain, for the surfaces, something

equivalent to the Frenet–Serret equations.

Generally,N ∈ S andN·f,u = N·f,v = 0, but f,u, f,v /∈ S and f,u ·f,v �= 0.

In other words, we are dealing with a case of non-orthogonal (curvilinear)

coordinates. So, if w is the coordinate along the normal N, let us call, for
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the sake of convenience,

u = z1, v = z2

while, for the vectors,

f,u = f,1 = g1, f,v = f,2 = g2,

with g1,g2 exactly the g vectors of the coordinate lines on Σ. Then,

∂gi
∂zj

· gi = 1

2

∂(gi · gi)
∂zj

=
1

2

∂gii
∂zj

,

∂gi
∂zi

· gj = ∂(gi · gj)
∂zi

− ∂gi
∂zj

· gi = ∂gij
∂zi

− 1

2

∂gii
∂zj

,

i, j = 1, 2,

where for the last equation, we have used the identity

∂gj
∂zi

= f,ji = f,ij =
∂gi
∂zj

, i, j = 1, 2.

Using Eq. (6.26), it can be proved that it is also10

∂gi
∂zj

· gh = Γhij i, j, h = 1, 2.

Moreover, by Eq. (7.14),

∂gi
∂zj

·N = f,ij ·N = Bij i, j = 1, 2,

and by Eqs. (7.10) and (7.11),

∂N

∂zi
· gj = −LW (gi) · gj = −Xgi · gj = −Xji, i, j = 1, 2,

while, because N ∈ S, then from Eq. (4.1),

∂N

∂zi
·N = 0 ∀i = 1, 2.

10The proof is rather cumbersome and it is omitted here; in many texts on differential
geometry, the Christoffel symbols are just introduced in this way, as the projection of
the derivatives of vectors gis onto the same vectors, i.e. as the coefficients of the Gauss

equations.
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Finally, the decomposition of the derivatives of the vectors of the basis

{f,u, f,v,N} onto these same vectors gives the equations

∂gi
∂zj

= Γhijgh +BijN,

∂N

∂zj
= −Xijgi,

i, j = 1, 2; (7.25)

these are the Gauss–Weingarten equations (the first one is due to Gauss

and the second to Weingarten).

Now, if we make the scalar product of the Gauss equations by g1 and

g2, i.e.

gk · ∂gi
∂zj

= gk · (Γhijgh +BijN), i, j, k = 1, 2,

we get the following three systems of equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Γ1
11g11 + Γ2

11g21 =
1

2

∂g11
∂z1

,

Γ1
11g12 + Γ2

11g22 =
∂g12
∂z1

− 1

2

∂g11
∂z2

;

(7.26)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Γ1
12g11 + Γ2

12g21 =
1

2

∂g11
∂z2

,

Γ1
12g12 + Γ2

12g22 =
1

2

∂g22
∂z1

;

(7.27)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Γ1
22g11 + Γ2

22g21 =
∂g12
∂z2

− 1

2

∂g22
∂z1

,

Γ1
22g12 + Γ2

22g22 =
1

2

∂g22
∂z2

.

(7.28)

The determinant of each one of these systems is simply detg � = 0→ it is

possible to express the Christoffel symbols as functions of the gijs and of

their derivatives, i.e. as functions of the first fundamental form (the metric

tensor).

7.14 The theorema egregium

The following theorem is a fundamental result due to Gauss:

Theorem 51 (Theorema egregium). The Gaussian curvature K of a

surface f(u, v) : Ω → Σ depends only upon the first fundamental form of f .
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Proof. Let us write the identity

∂2g1

∂z1∂z2
=

∂2g1

∂z2∂z1

using the Gauss equations (7.25)1:

Γ1
11g1,2 + Γ2

11g2,2 +B11N,2 + Γ1
11,2g1 + Γ2

11,2g2 +B11,2N

= Γ1
12g1,1 + Γ2

12g1,2 +B12N,1 + Γ1
12,1g1 + Γ2

12,1g2 +B12,1N,

where, for the sake of shortness, we have abridged
∂(·)
∂zj

by (·),j . Then, we
use again Eqs. (7.25) to express g1,1,g1,2,g2,2,N,1 and N,2; after doing

that and equating to 0, the coefficient of g2, we get

B11X22 −B12X21 = Γ1
11Γ

2
12 + Γ2

11Γ
2
22 + Γ2

11,2 − Γ1
12Γ

2
11 − Γ2

12Γ
2
12 − Γ2

12,1;

by Eq. (7.13), we get that

B11 = g11X11 + g12X21, B12 = g11X12 + g12X22,

which on injecting into the previous equation gives

g11 detX = Γ1
11Γ

2
12 + Γ2

11Γ
2
22 + Γ2

11,2 − Γ1
12Γ

2
11 − Γ2

12Γ
2
12 − Γ2

12,1. (7.29)

Setting equal to zero the coefficient of g1, a similar expression can also be

obtained for g12. Because g is positive definite, it is not possible that g11 =

g12 = 0. So, remembering that K = detX and the result of the previous

section, we see that it is possible to express K through the coefficients of

the first fundamental form and of its derivatives. �

7.15 Minimal surfaces

A minimal surface is a surface f : Ω → Σ having the mean curvature

H = 0 ∀p ∈ Σ. Typical minimal surfaces are the catenoid and the helicoid.11

Other minimal surfaces are the Enneper’s surface:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x1u− u3

3
+ uv2,

x2 = v − v3

3
+ u2v,

x3 = u2 − v2,

and the Costa’s and Schwarz’s surfaces, see Fig. 7.10.

11Minimal surfaces have some interesting applications in the mechanics of tensile

structures composed of prestressed membranes. Also, it can be shown that a soap film,
when not bounding a closed region, takes the form of a minimal surface.
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Figure 7.10: The minimal surfaces of (from left) Enneper, Costa, and Schwarz.

Theorem 52. The non-planar points of a minimal surface are hyperbolic.

Proof. This is a direct consequence of the definition of mean curvature H

and of hyperbolic points: H = 0 ⇐⇒ κ1κ2 < 0. �

Let f : Ω → Σ be a regular surface and Q a subset of Ω with its boundary

∂Q a closed regular curve in Ω; then, R = f(Q) ⊂ Σ is a simple region of Σ.

Let h : Q → R be a smooth function. Then, we call the normal variation

of R the map ϕ : Q× (−ε, ε) → E defined by

ϕ(u, v, t) = f(u, v) + t h(u, v)N(u, v).

For each fixed t, ϕ(u, v, t) is a surface with

ϕ,u(u, v, t) = f,u(u, v) + t h(u, v)N,u(u, v) + t h,u(u, v)N(u, v),

ϕ,v(u, v, t) = f,v(u, v) + t h(u, v)N,v(u, v) + t h,v(u, v)N(u, v).

If the first fundamental form of f is represented by the metric tensor g,

we look for the metric tensor gt representing the first fundamental form of

ϕ(u, v, t) ∀t:
gt11 = ϕ,u ·ϕ,u = g11 + 2t h f,u ·N,u + t2(h2N2

,u + h2,u),

gt12 = ϕ,u ·ϕ,v = g12 + t h(f,u ·N,v + f,v ·N,u) + t2(h2N,u ·N,v + h,uh,v),

gt22 = ϕ,v ·ϕ,v = g22 + 2t h f,v ·N,v + t2(h2N2
,v + h2,v),

and by Eq. (7.14),

gt11 = g11 − 2t h B11 + t2(h2N2
,u + h2,u),

gt12 = g12 − 2t h B12 + t2(h2N,u ·N,v + huh,v),

gt22 = g22 − 2t h B22 + t2(h2N2
,v + h2,v),

whence

detgt = detg − 2th(g11B22 − 2g12B12 + g22B11) + o(t2).
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Then, by Eq. (7.15), we get easily that

g11B22 − 2g12B12 + g22B11 = 2H detg

so that

detgt = detg(1− 4thH) + o(t2).

We can now calculate the area A(t) of the simple region Rt = ϕ(u, v, t)

corresponding to the subset Q:

At =

∫
Q

√
detg(1− 4thH) + o(t2)dudv.

For ε� 1, At is differentiable, and its derivative at t = 0 is[
dAt

dt

]
t=0

= −
∫
Q

2hH
√
detgdudv.

Theorem 53. A surface f : Ω → Σ is minimal ⇐⇒
[
dAt

dt

]
t=0

= 0 ∀R ⊂
Σ and for each normal variation.

Proof. If f is minimal, the condition is clearly satisfied (H = 0).

Conversely, let us suppose that ∃p = f(u, v) ∈ Σ|H(p) � = 0. Consider

r1, r2 ∈ R such that |H | � = 0 in the circleD2 with center p and radius r2
and |H | > 1

2 |H(p)| in the circle D1 with center p and radius r1. Then, we

chose a smooth function h(u, v) such that (i) h = H inside D1, (ii) hH > 0

inside D2, and (iii) h = 0 outside D2. For the normal variation defined by

such h(u, v), we have

−
[
dAt

dt

]
t=0

=

∫
D2

2hH
√
detgdu dv ≥

∫
D1

2H2
√
detgdu dv

≥
∫
D1

H(p)2

2

√
detgdu dv =

H(p)2

2
A(f(D1))

⇒
[
dAt

dt

]
t=0

< 0,

which contradicts the hypothesis. �

The meaning of this theorem justifies the name of minimal surfaces: These

are the surfaces that have the minimal area among all the surfaces that

share the same boundary.
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7.16 Geodesics

Let f : Ω → Σ be a surface and γ(t) : G ⊂ R → Σ a curve on Σ. A vector

function w(t) : G→ Tγ(t)Σ is called a vector field12 along γ(t). We call the

covariant derivative of w(t) along γ(t) the vector field Dγw(t) : G → V
defined as13

Dγw := (I−N⊗N)
dw

dt
,

i.e. the projection of the derivative of w onto Tγ(t)Σ. It is always possible

to decompose w(t) into its components in the natural basis {f,u, f,v}:
w(t) = w1(t)f,u(γ(t)) + w2(t)f,v(γ(t)).

Differentiating, we get (a prime here denotes the derivative with respect

to t)

w′ = w′
1f,u + w1(f,uuu

′ + f,uvv
′) + w′

2f,v + w2(f,uvu
′ + f,vvv

′),

and using the Gauss equations, Eq. (7.25)1, we obtain (summation of the

dummy indexes, where u1 stands for u and u2 for v)

w′ = f,kw
′
k + (Γkijf,k +BijN)wiu

′
j , i, j, k = 1, 2

so that the projection onto Tγ(t)Σ, i.e. Dγw(t), is

Dγw = (w′
k + Γkijwiu

′
j)f,k. (7.30)

A parallel vector field w along γ is a vector field having Dγw = o ∀t. A
regular curve γ is a geodesic of Σ if the vector field γ′ of the vectors tangent
to γ is parallel along γ.

Theorem 54. A curve γ is a geodesic of Σ ⇐⇒ ν ×N = o.

Proof. If γ is a geodesic, then the derivative of its tangent γ′ has a

component only along N, i.e. γ′′ × N = o ⇒ γ′ · γ′′ = 0. The principal

normal to γ, ν, is orthogonal to γ′ ⇒ ν×N = o. Vice versa, if ν×N = o,

then γ′′ is orthogonal to γ′ ⇒ Dγγ
′ = o, i.e. γ is a geodesic. �

Theorem 55. If γ is a geodesic, then |γ′| = const.

Proof. In a geodesic, γ′ · γ′′ = 0 ⇒ d(γ′ · γ′)
dt

= 0 ⇒ |γ′| = const. �

12More precisely, w(t) is a curve of vectors; however, it is normally called a vector field

along a curve.
13The operator that gives the projection of w onto a vector orthogonal to N ∈ S, i.e.
onto Tγ(t)Σ, is I−N⊗N, cf. Exercise 2, Chapter 2.
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170 Tensor Algebra and Analysis for Engineers

This result shows that in a geodesic, the parameter is always the natural

parameter s. Let γ(s) be a curve on Σ parameterized by the arc length s.

We call the geodesic curvature of γ(s) the function

κg := Dγτ · (N× τ ),

where τ = γ′ ∈ S is the tangent vector to γ. Because N × τ ∈ S lies in

TγΣ, the component of τ ′ orthogonal to TγΣ gives a null contribution to

κg, so we can also write

κg = τ ′ · (N× τ ).

Theorem 56. A regular curve γ(s) is a geodesic ⇐⇒ κg = 0 ∀s.

Proof. If γ is a geodesic, clearly κg = 0. Vice versa, if κg = 0, then τ , τ ′

and N are linearly dependent, i.e. coplanar. Because τ ′ · τ = N · τ = 0 ⇒
τ ′ ×N = o ⇒ by Theorem 54, γ is a geodesic. �

Let us now write Eq. (7.30) in the particular case of w = γ′, i.e. w1 =

u′, w2 = v′:

Dγw = (u′′k + Γkiju
′
iu

′
j)f,k;

therefore, the geodesics are the solutions to the system of differential

equations {
u′′ + Γ1

11u
′2 + 2Γ1

12u
′v′ + Γ1

22v
′2 = 0,

v′′ + Γ2
11u

′2 + 2Γ2
12u

′v′ + Γ2
22v

′2 = 0.
(7.31)

It can be shown that ∀p ∈ Σ and ∀w(p) ∈ TpΣ, the geodesic is unique.

Let p be a point of a regular surface f : Ω → Σ and α(v) : G ⊂ R → Σ

a smooth regular curve on Σ, with v being the natural parameter and such

that p = α(0). Consider the geodesic γv passing through q = α(v) and such

that γ′
v(0) = N(α(v))× τ (v), with τ (v) the (unit) tangent vector to α(v).

Consider the map f(u, v) : Ω → Σ defined by posing f(u, v) = γv(u); this

is a surface whose coordinates (u, v) are called semigeodesic coordinates.

Let us see the form that the first fundamental form (i.e. the metric tensor

g), the Christoffel symbols, and the Gaussian curvature take in semigeodesic

coordinates. Curves f(u, v0) = γv0(u) are geodesics, and u is hence their

natural parameter. Therefore, f,u ∈ S ⇒ g11 = 1. Then, fuu(u, v0) is the

derivative of the tangent vector to a geodesic f(u, v0) = γv0(u) ⇒ fuu(u, v0)

does not have a component along the tangent, hence Eq. ⇒ Γ1
11 = Γ2

11 =

0. Then, by Eq. (7.26)1, we get g12,u = 0 ⇒ g12 does not depend upon
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u ⇒ g12(u, v) = g12(0, v) ∀u. Moreover, let θ be the angle between the

curve α, i.e. between the coordinate line f(0, v), whose tangent vector is

f,v(0, v), and the geodesic γv(u), whose tangent vector at (0, v) is γ′
v(u).

Then, θ =
π

2
because γ′

v(0) = N(α(v))×τ (v). As a consequence, g12(0, v) =

0 ⇒ g12(u, v) = 0 ∀(u, v) ∈ Ω. Finally, setting g22 = g,

g =

[
1 0

0 g

]
,

with g > 0 because g is positive definite. Through systems (7.26)–(7.28),

we obtain

Γ1
12 = 0, Γ2

12 =
g,u
2g
, Γ1

22 = −g,u
2
, Γ2

22 =
g,v
2g
,

and using Eq. (7.29), we obtain

K = detX = −g,uu
2g

+
g2,u
4g2

.

Given two points p1, p2 ∈ Σ, we define the distance d(p1, p2) as the infimum

of the lengths of the curves on Σ joining the two points. We end with an

important characterization of geodesics.

Theorem 57. Geodesics are the curves of minimal distance between two

points of a surface.

Proof. Let γ : G ⊂ R → Σ be a geodesic on Σ, parameterized with

the arc length, and α a smooth regular curve through p and orthogonal

to γ. Through α, we set up a system of semigeodesic coordinates in a

neighborhood U of p. With an opportune parameterization α(t) in such

coordinates, we can get p = f(0, 0) and γ described by the equation v = 0.

Let q ∈ U be a point in γ, and consider a regular curve connecting p with

q. The length �(p, q) of such a curve is

�(p, q) =

∫ q

p

√
u′2 + g v′2dt ≥

∫ q

p

u′dt = |uq − up|.

Observing that p = (up, 0), q = (uq, 0), we remark that |uq − up| is exactly
the length of γ between p and q because γ is parameterized with its arc

length. �
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172 Tensor Algebra and Analysis for Engineers

There is another, direct and beautiful, way to show that geodesics are the

shortest path lines: the use of the method of calculus of variations.14

The length �(p, q) of a curve γ(t) ∈ Σ between two points p and q is given

by the functional (7.9); it depends upon the first fundamental form, i.e.

upon the metric tensor g on σ. For the sake of conciseness, letw = (w1
,t, w

2
,t)

be the tangent vector to the curve γ(w1, w2) ∈ Σ. Then,

�(p, q) =

∫ q

p

√
I(w)dt =

∫ q

p

√
w · gwdt.

The curve γ(t) that minimizes �(p, q) is the solution to the Euler–Lagrange

equations

d

dt

∂F

∂w,t
− ∂F

∂w
= o → d

dt

∂F

∂wk,t
− ∂F

∂wk
= 0, k = 1, 2,

where

F (w,w,t, t) =
√
w · gw =

√
gijwi,tw

j
,t.

It is more direct, and equivalent, to minimize J2(t), i.e. to write the Euler–

Lagrange equations for

Φ(w,w,t, t) := F 2(w,w,t, t) = gijw
i
,tw

j
,t.

Therefore,

∂Φ

∂wk,t
= 2gjkw

j
,t,

∂Φ

∂wk
=
∂ghj
∂wk

wh,tw
j
,t,

d

dt

∂Φ

∂wk,t
= 2

(
gjkw

j
,tt +

dgjk
dt

wj,t

)
= 2

(
gjkw

j
,tt +

∂gjk
∂wl

wl,tw
j
,t

)
,

j, h, k = 1, 2.

14The reader is referred to texts on the calculus of variations for an insight into this
matter, cf. the suggested texts. Here, we just recall the fundamental fact to be used in
the proof concerning geodesics: Let

J(t) =

∫ b

a
F (x,x′, t)dt

be a functional to be minimized by a proper choice of the function x(t) (in the case of

the geodesics, J = �(p, q)); then, such a minimizing function can be found as a solution

to the Euler–Lagrange equations

d

dt

∂F

∂x′ − ∂F

∂x
= o.
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The Euler–Lagrange equations are hence

gjkw
j
,tt +

∂gjk
∂wh

wh,tw
j
,t −

1

2

∂ghj
∂wk

wh,tw
j
,t = 0, j, h, k = 1, 2,

which can be rewritten as

gjkw
j
,tt +

1

2

(
∂gjk
∂wh

+
∂ghk
∂wj

− ∂ghj
∂wk

)
wh,tw

j
,t = 0, j, h, k = 1, 2.

Multiplying by glk, we get

glkgjkw
j
,tt +

1

2
glk

(
∂gjk
∂wh

+
∂ghk
∂wj

− ∂ghj
∂wk

)
wh,tw

j
,t = 0, j, h, k, l = 1, 2,

and finally, because

glkgjk = δlj

and by Eq. (6.26), we get

wl,tt + Γljhw
j
,tw

h
,t, j, h, l = 1, 2.

These are the differential equations whose solution is the curve of minimal

length between two points of Σ; comparing these equations with those of a

geodesic of Σ, Eq. (7.31), we see that they are the same: The geodesics of

a surface are hence the curves of minimal distance on the surface.

The Christoffel symbols of a plane are all null; as a consequence, the

geodesic lines of a plane are straight lines. In fact, only such lines have a

constant derivative.

Through systems (7.26)—(7.28), we can calculate the Christoffel sym-

bols for a revolution surface, Eq. (7.5), which are all null excepted

Γ2
12 =

ϕ′

ϕ
, Γ1

22 = −ϕ ϕ′,

so the system of differential equations (7.31) becomes⎧⎪⎨
⎪⎩
u′′ − ϕ ϕ′v′2 = 0,

v′′ + 2
ϕ′

ϕ
u′v′ = 0.

(7.32)

It is direct to check that the meridians (u = t, v = v0) are geodesic lines,

while the parallels (u = u0, v = t) are geodesics ⇐⇒ ϕ′(u0) = 0.
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7.17 The Gauss–Codazzi compatibility conditions

Let us consider a surface Σ whose points are determined by the vector

function r : Ω ⊂ R
2 → Σ ⊂ E , r(α1, α2) = xi(α1, α2)εi, with εi, i =

1, 2, 3, the vectors of the orthonormal basis of the reference frame R =

{o; ε1, ε2, ε3} and the parameters α1, α2 chosen in such a way that the

lines α1 = const., α2 = const. are the lines of curvature, i.e. the tangent

at each point to the principal directions of curvature and hence mutually

orthogonal.15 With such a choice, cf. Eq. (7.8),

ds2 = A2
1dα

2
1 +A2

2dα
2
2,

with

A1 =
√
r2,α1

=

√
dxi
dα1

dxi
dα1

,

A2 =
√
r2,α2

=

√
dxi
dα2

dxi
dα2

,

which are the so-called Lamé’s parameters. We remark that along the lines

of curvatures, i.e. the lines αi = const., i = 1, 2, which in short from now

on, we call the lines αi, it is

ds1 = A1dα1,

ds2 = A2dα2,

and hence,

λ1 =
ds1
dα1

= A1e1,

λ2 =
ds2
dα2

= A2e2

(7.33)

are the vectors tangent to the lines of curvature. Let

e1 =
1

A1
r,α1 , e2 =

1

A2
r,α2 , e3 = e1 × e2(= N); (7.34)

these three vectors form the orthonormal (local) natural basis e =

{e1, e2, e3}. We always make the choice of α1, α2 such that e3 is always

directed toward the convex side of Σ if the point is elliptic or parabolic or

toward the side of the centers of negative curvature if the point is hyperbolic.

15Here, the symbol r is preferred to f , like α1 to u and α2 to v, to recall that we
have made the particular choice of coordinate lines that are lines of curvature. All the
developments could be done in a more general case, but this choice is made to obtain

simpler relations, which preserves anyway the generality.
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We consider a vector v = v(p), p ∈ Σ,

v = v1e1 + v2e2 + v3e3,

and we want to calculate how it transforms when p changes. To this end,

we need to calculate how e1, e2, e3 change with α1, α2. Let q ∈ Σ be a point

in the neighborhood of p on the line αi, and let us first consider the change

in e3 in passing from p to q. Because p and q belong to the same line αi,

by the theorem of Rodrigues, we get (no summation on i in the following

equations)

∂e3
∂λi

= −κiλi, i = 1, 2,

i.e. by Eq. (7.33),

∂e3
∂αi

=
Ai
Ri

ei,

with

Ri = − 1

κi

the (principal) radius of curvature along the line αi. The minus sign in the

previous equation is due to the choice made above for orienting e3 = N,

which gives always N = −ν, with ν the principal normal to the line αi.

This result can also be obtained directly, see Fig. 7.11:

o

Ri

e3(p) e3(q)

de3

q line 
i

p

Figure 7.11: Variation of N = e3 along a line of curvature.
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176 Tensor Algebra and Analysis for Engineers

e3(q) = e3(p) + de3

and in the limit of q → p, de3 tends to be parallel to q − p and

lim
q→p

(q − p) = λi = Aiei.

By the similitude of the triangles, it is evident that

|de3|
|e3| =

|q − p|
Ri

;

moreover,

de3 =
∂e3
∂αi

dαiei.

Finally, as |e3| = 1, we get again

∂e3
∂αi

=
Ai
Ri

ei. (7.35)

Implicitly, in this last proof, we have used the theorem of Rodrigues because

we have assumed that de3 is parallel to λi, as it is, because line αi is a line

of curvature.

We now move on to determine the changes in e1 and e2; for this purpose,

we remark that

∂r,α1

∂α2
=

∂2r

∂α2∂α1
=

∂2r

∂α1∂α2
=
∂r,α2

∂α1
,

so by Eq. (7.34), we get

∂(A1e1)

∂α2
=
∂(A2e2)

∂α1
. (7.36)

Let us study now
∂ej

∂αi
; as |ej | = 1, j = 1, 2,

∂ej
∂αi

· ej = 0 ∀i, j = 1, 2. (7.37)

Because e1 · e2 = 0,

∂e1
∂α1

· e2 =
∂(e1 · e2)
∂α1

− e1 · ∂e2
∂α1

= −e1 · ∂e2
∂α1

.

By Eq. (7.36), we get

∂e2
∂α1

=
1

A2

∂(A1e1)

∂α2
− 1

A2

∂A2

∂α1
e2,
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which when inserted into the previous equation gives, by Eq. (7.37),

∂e1
∂α1

· e2 = − 1

A2

∂(A1e1)

∂α2
· e1 + 1

A2

∂A2

∂α1
e2 · e1

= −A1

A2

∂e1
∂α2

· e1 − 1

A2

∂A1

∂α2
e1 · e1 = − 1

A2

∂A1

∂α2
.

Then, because e1 · e3 = 0,

∂e1
∂α1

· e3 =
∂(e1 · e3)
∂α1

− e1 · ∂e3
∂α1

= −e1 · ∂e3
∂α1

,

and by Eq. (7.35),

∂e3
∂α1

=
A1

R1
e1,

so finally,

∂e1
∂α1

· e3 = −A1

R1
.

Again, through Eqs. (7.36) and (7.37), we get

∂e1
∂α2

· e2 =
1

A1

∂(A2e2)

∂α1
· e2 − 1

A1

∂A1

∂α2
e1 · e2 =

A2

A1

∂e2
∂α1

· e2

+
1

A1

∂A2

∂α1
e2 · e2 =

1

A1

∂A2

∂α1

and also, by Eq. (7.35),

∂e1
∂α2

· e3 =
∂(e1 · e3)
∂α2

− e1 · ∂e3
∂α2

= −e1 · ∂e3
∂α2

= −A2

R2
e1 · e2 = 0.

The derivatives of e2 can be found in a similar way, and resuming, we have

∂e1
∂α1

= − 1

A2

∂A1

∂α2
e2 − A1

R1
e3,

∂e1
∂α2

=
1

A1

∂A2

∂α1
e2,

∂e2
∂α1

=
1

A2

∂A1

∂α2
e1,

∂e2
∂α2

= − 1

A1

∂A2

∂α1
e1 − A2

R2
e3,

∂e3
∂α1

=
A1

R1
e1,

∂e3
∂α2

=
A2

R2
e2.

(7.38)
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178 Tensor Algebra and Analysis for Engineers

Passing now to the second-order derivatives, imposing the equality of mixed

derivatives, gives some important differential relations between the Lamé’s

parameters Ai and the radii of curvatures Ri. In fact, from the identity

∂2e3
∂α1∂α2

=
∂2e3

∂α2∂α1

and Eqs. (7.38)5,6, we get

∂

∂α2

(
A1

R1
e1

)
=

∂

∂α1

(
A2

R2
e2

)
,

whence

∂

∂α2

(
A1

R1

)
e1 +

A1

R1

∂e1
∂α2

=
∂

∂α1

(
A2

R2

)
e2 +

A2

R2

∂e2
∂α1

.

Inserting now Eqs. (7.38)2,3 into the last result and rearranging the terms

gives [
∂

∂α2

(
A1

R1

)
− 1

R2

∂A1

∂α2

]
e1 −

[
∂

∂α1

(
A2

R2

)
− 1

R1

∂A2

∂α1

]
e2 = 0,

which to be true needs that the two following conditions be identically

satisfied:

∂

∂α2

(
A1

R1

)
− 1

R2

∂A1

∂α2
= 0,

∂

∂α1

(
A2

R2

)
− 1

R1

∂A2

∂α1
= 0.

(7.39)

The above equations are known as the Codazzi conditions. Let us now

consider the other identity

∂2e1
∂α1∂α2

=
∂2e1

∂α2∂α1
;

again using Eq. (7.38), with some standard operations, this identity can be

transformed to[
∂

∂α1

(
1

A1

∂A2

∂α1

)
+

∂

∂α2

(
1

A2

∂A1

∂α2

)
+
A1

R1

A2

R2

]
e2

+

[
∂

∂α2

(
A1

R1

)
− 1

R2

∂A1

∂α2

]
e3 = 0.

Again, for this equation to be identically satisfied, each of the expressions in

square brackets must vanish, which gives two more differential conditions,
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Surfaces in E 179

but of which only the first one is new, as the second one corresponds to

Eq. (7.39)1. The new condition is hence

∂

∂α1

(
1

A1

∂A2

∂α1

)
+

∂

∂α2

(
1

A2

∂A1

∂α2

)
+
A1

R1

A2

R2
= 0, (7.40)

which is known as the Gauss condition. The last identity

∂2e2
∂α1∂α2

=
∂2e2

∂α2∂α1

does not add any independent condition, which can be easily checked. The

meaning of the Gauss–Codazzi conditions, Eqs. (7.39) and (7.40), is that

of compatibility conditions: Only when these conditions are satisfied by

functions A1, A2, R1, and R2, then such functions represent the Lamé’s

parameters and the principal radii of curvature of a surface, i.e. only

in this case, they define a surface, except for its position in space. The

Gauss–Codazzi conditions are important in establishing the equations of

the classical theory of shells.

7.18 Exercises

1. Prove that a function of the type x3 = f(x1, x2), with f : Ω ⊂ R2 → R

smooth, defines a surface.

2. Show that the catenoid is the rotation surface of a catenary, then find

its Gaussian curvature.

3. Show that the pseudo-sphere is the rotation surface of a tractrice and

explain why the surface has this name (hint: look for its Gaussian

curvature).

4. Prove that the regularity of a cone f(u, v) = vγ(u) is satisfied at each

point except at the apex and at the points on the straight lines tangent

to γ(u).

5. Prove that the hyperbolic hyperboloid is a doubly ruled surface, and

determine the angle θ formed by two straight lines belonging to the two

sets of lines on the surface, see the left panel of Fig. 7.12.

6. Prove that the hyperbolic paraboloid whose Cartesian equation is x3 =

x1x2, right panel of Fig. 7.12, is a doubly ruled surface, and determine

the angle θ formed by two straight lines belonging to the two sets of

lines on the surface. Where does θ =
π

2
?
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180 Tensor Algebra and Analysis for Engineers

Figure 7.12: A hyperbolic hyperboloid (left) and a hyperbolic paraboloid (right).

7. Consider the parameterization

f(u, v) = (1 − v)γ(u) + vλ(u),

with

γ(u) = (cos(u−α), sin(u−α),−1), λ(u) = (cos(u+α), sin(u+α), 1).

Show that:

• for α = 0, one gets a cylinder with equation x21 + x22 = 1;

• for α =
π

2
, one gets a cone with equation x21 + x22 = x23;

• for 0 < α <
π

2
, one gets a hyperbolic hyperboloid with equation

x21 + x22
cos2 α

− x23
cot2 α

= 1.

8. Calculate the metric tensor of a sphere of radius R, write its first

fundamental form, and determine the area of the sector of a surface

between the longitudes θ1 and θ2 and the length of the parallel at the

latitude π/4 between these two longitudes.

9. Prove that the surface defined by

f(u, v) : Ω = R× (−π, π] → E| f(u, v) =

(
cos v

coshu
,
sin v

coshu
,
sinhu

coshu

)

is a sphere. Then, show that the image of any straight line on Ω is a

loxodromic line on the sphere.

10. Calculate the vectors of the natural basis, the tensors g,B,X, and the

first and second fundamental forms for the catenoid.
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Surfaces in E 181

11. Calculate the same for the helicoid of parametric equation

f(u, v) = γ(u) + vλ(u),

with

γ(u) = (0, 0, u), λ(u) = (cosu, sinu, 0).

12. Show that the catenoid and the helicoid are made of hyperbolic points.

13. Determine the geodesic lines of a circular cylinder.
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Suggested Texts

There are many textbooks on tensors, differential geometry, and calculus of

variations. The style, content, and language of such books greatly depend

upon the scientific community the authors belong to: pure or applied

mathematicians, theoretical mechanicians or engineers. It is hence difficult

to suggest some readings in the domain, and ultimately, it is mostly a matter

of personal taste.

This textbook is greatly inspired by some classical methods, style, and

language that are typical in the community of theoretical mechanics; the

following few suggested readings, among several possible others, belong to

such a kind of scientific literature. They are classical textbooks, and though

the list is far from being exhaustive, they constitute a solid basis for the

topics briefly developed in this manuscript, where the objective is to present

mathematics for mechanics.

A good introduction to tensor algebra and analysis, which greatly

inspired the content of this manuscript, are the two introductory chapters

of the classical textbook,

• M. E. Gurtin: An Introduction to Continuum Mechanics. Academic Press,

1981,

and also, in a similar style, the long article,

• P. Podio-Guidugli: A primer in elasticity. Journal of Elasticity, 58: 1–104,

2000.

183
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184 Tensor Algebra and Analysis for Engineers

A short, effective introduction to tensor algebra and differential geometry

of curves can be found in the following text of exercises on analytical

mechanics:

• P. Biscari, C. Poggi, E. G. Virga: Mechanics Notebook. Liguori Editore,

1999.

A classical textbook on linear algebra that is recommended is

• P. R. Halmos: Finite-Dimensional Vector Spaces. Van Nostrand Reynold,

1958.

In the previous textbooks, tensor algebra in curvilinear coordinates is not

developed; an introduction to this topic, especially intended for physicists

and engineers, can be found in

• W. H. Müller: An Expedition to Continuum Theory. Springer, 2014,

which has largely influenced Chapter 6.

Two modern and application-oriented textbooks on differential geome-

try of curves and surfaces are

• V. A. Toponogov: Differential Geometry of Curves and Surfaces – A

Concise Guide. Birkhäuser, 2006 and

• A. Pressley: Elementary Differential Geometry. Springer, 2010.

A short introduction to the differential geometry of surfaces, oriented

toward the mechanics of shells, can be found in the classical book

• V. V. Novozhilov: Thin Shell Theory. Noordhoff LTD., 1964.

For what concerns the calculus of variations, a valid textbook on the

matter (but not only) is

• R. Courant, D. Hilbert: Methods of Mathematical Physics. Interscience

Publishers, 1953.

Two very good and classical textbooks with an introduction to the calculus

of variations for engineers are

• C. Lanczos: The Variational Principles of Mechanics. University of

Toronto Press, 1949 and

• H. L. Langhaar: Energy Methods in Applied Mechanics. Wiley, 1962.
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Solutions to the Exercises

Chapter 1

1. Suppose o1 �= o2; then, apply to a point p the definition of vector null

for both of them.

2. Use v + o = v and obtain the scalar product with a vector w.

3. Obtain the norm of v + o = v and use the above result.

4. |u − v| = |u + v| ⇐⇒ |u − v|2 = |u + v|2 ⇒ (u − v) · (u − v) =

(u+ v) · (u+ v) ⇒ u · v = 0.

5. By linearity, ∀v = viei, ψ(v) = viψ(ei); moreover, u · v = uivi,

so setting u = ψ(ei)ei, ψ(v) = u · v. Uniqueness: Suppose ∃u1 �=
u2|ψ(v) = u1 · v = u2 · v ⇒ (u1 − u2) · v = 0 ∀v ⇐⇒ u1 − u2 = o ⇒
u1 = u2.

6. Let θu and θv be the angles formed by w with u and v, respectively;

then, w · u = w · v ⇒ uw cos θu = vw cos θv ⇒ cos θu = cos θv, as

u,v ∈ S;
θu = θv ⇒ cos θu = cos θv ⇒ uw cos θu = vw cos θv ⇒ u ·w = v ·w.

7. (i) Coplanar vectors: Let p be a point of the plane of the vectors ⇒
Mr

p ·R = 0 because R ∈ to the plane, while Mr
p = (pi − p) × vpi

is of course orthogonal to it. Then, let q be a point /∈ to the plane

of the vectors → Mr
q = Mr

p + (p − q) ×R ⇒ Mr
q ·R = Mr

p ·R +

(p− q)×R ·R = R×R · (p− q) = 0.

(ii) Parallel vectors: Let e ∈ S| vpi = αie ∀i = 1, . . . , n ⇒ R =∑n
i=1 αie ⇒

∀o ∈ E , Mr
o =
∑n

i=1(pi− o)×αie ⇒ Mr
o ·R = (

∑n
i=1 αi(pi− o))×

e · (∑n
i=1 αi)e = 0.

185
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186 Tensor Algebra and Analysis for Engineers

8. It is a direct consequence of the theorem of reduction of systems of

applied vectors for the case R = o, with o being any point.

9. If R is applied to p, then the system can be reduced to Rp plus

Mr
p =

∑n
i=1(p− p)× vpi = o.

10. (i) By the theorem of reduction, if R is applied to o, the system is

reduced to Ro and Mr
o ⇒ to only R if Mr

o = o.

(ii) Because for coplanar or parallel vectors ∀o ∈ A, Mr
o = o, then the

system is equivalent to R applied to any point of A.

11. If a system is equilibrated, then by definition, any equivalent system is

equilibrated. Conversely, if there exists another system equilibrated and

equivalent, then also the system in object is equilibrated by the relation

of equivalence, and this is true for any other equivalent system, which

hence must be equilibrated.

12. Let vp,vq = −(vp)q be two opposite vectors applied to p and q,

respectively ⇒ R = vp+vq = o; moreover, Mr
p = (q− p)⊗vq ⇒ ∀o � =

p, Mr
o = Mr

p + (p− o)×R = Mr
p ⇒ Mr

o = o ∀o ∈ E ⇐⇒ q − p = o.

13. If all the vectors pass through a point p, then the system is equivalent

to Rp (Exercise 9), and if R = o, then the system is equilibrated.

Chapter 2

1. ∀u,L,Lu = L(u + o) = Lu+ Lo ⇐⇒ Lo = o.

2. u ∈ S → (u ⊗ u)v = v cos θu; (I − u ⊗ u)v = v − v cos θu, which is

orthogonal to u : (I− u⊗ u)v · u = v · u− v · u u · u = o, as u ∈ S.
3. (i) ∀a,b ∈ V , a·(αA)b = (αA)�a·b, and by the linearity of the scalar

product, a · (αA)b = αa ·Ab = αA�a · b ⇒ (αA)� = αA�.
(ii) ∀a,b ∈ V , a · (A + B)b = (A +B)�a · b, and by linearity of the

scalar product and of tensors, a · (A + B)b = a ·Ab + a ·Bb =

A�a · b+B�a · b = (A� +B�)a · b ⇒ (A+B)� = A� +B�.
(iii) ∀u,v ∈ V u · (a⊗ b)Av = u · (a⊗ b)(Av) = (a⊗ b)�u · (Av) =

(b⊗a)u ·(Av) = A�(b⊗a)u ·v = A�(a·u b)·v = a·u A�b ·v =

((A�b)⊗ a)u · v = u · ((A�b)⊗ a)�v = u · (a⊗A�b)v.
4. By linearity and the definition of O : ∀u ∈ V , (L+O)u = Lu+Ou =

Lu ⇐⇒ L+O = L.

5. (i) trI = tr(δijei ⊗ ej ) = δijtr(ei ⊗ ej ) = δijei · ej = δijδij = δii = 3.

(ii) trL = tr(L+O) = trL+ trO ⇐⇒ trO = 0.

6. tr(AB) = tr((Aijei ⊗ ej )(Bhkeh ⊗ ek )) = AijBhktr((ei ⊗ ej )(eh ⊗ ek ))

= AijBhkej · ehtr(ei ⊗ ek ) = AijBhkej · eh ei cot ek = AijBhkδjhδik =
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Solutions to the Exercises 187

AijBji; in a similar way, we prove that tr(BA) = BijAji; because i, j

are dummy indexes, AijBji = BijAji ⇒ tr(AB) = tr(BA).

7. (i) L� ·M� = tr((L�)�M�) = tr(LM�) = tr(M�L) = M·L = L·M.

(ii) LM ·N = tr((LM)�N) = tr(M�L�N) = M · L�N;

|
= tr(N(LM)�) = tr((NM�)L�)
= tr(L�(NM�))
= L ·NM�.

8. (i) (a⊗b)(c⊗d) = ((a⊗b)(c⊗d))ijei⊗ej = (a⊗b)ik(c⊗d)kjei⊗ej
= aibkckdjei ⊗ ej = b · c aidjei ⊗ ej = b · c a⊗ d.

(ii) A(a⊗b) = A(a⊗b)ijei⊗ej = Aik(a⊗b)kjei⊗ej = Aikakbjei⊗ej
= (Aa)ibjei ⊗ ej = (Aa) ⊗ b.

9. L · u⊗ u = tr(L�(u⊗ u)) = tr((L�u)⊗ u) = L�u · u = u · Lu.
10. A = A�,B = −B� ⇒ A · B = A� ·B� = A · (−B) = −A ·B ⇐⇒

A ·B = 0.

11. (i) A = A� ⇒ A · L = A · (Ls + La) = A · Ls +A · La = A · Ls.
(ii) B = −B� ⇒ B · L = B · (Ls + La) = B · Ls +B · La = B · La.

12. (i) A · (BCD) = tr(A�BCD) = tr((B�A)�CD) = (B�A) · (CD).

(ii) A · (BCD) = (BCD) ·A = tr((BCD)�A) = tr(A(D�C�B�)) =
tr((AD�)(C�B�)) = tr((C�B�)(AD�)) = tr((BC)�(AD�)) =
BC ·AD� = AD� ·BC.

13. L ∈ Sym(V) ⇒ L · W = 0, as already proved. Now, if L · W =

0 ∀W ∈ Skw(V), suppose L /∈ Sym(V) ⇒ L = Ls + La ⇒ L · W =

Ls · W + La ·W = La ·W = 0; if in Skw(V), we chose W = La, we

get W · La = La · La = 0 ⇐⇒ La = O ⇒ L ∈ Sym(V).
14. I2 = 1

2 (tr
2L− trL2) = 1

2 (LiiLjj − LijLji)

= L11L22 + L11L33 + L22L33 − L12L21 − L13L31 − L23L32.

15. a×b ·c =

⎡
⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤
⎦
⎧⎨
⎩
b1
b2
b3

⎫⎬
⎭·
⎧⎨
⎩
c1
c2
c3

⎫⎬
⎭ = a2b3c1−a3b2c1+a3b1c2−

a1b3c2 + a1b2c3 − a2b1c3 = det

⎡
⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤
⎦ .

16. Let L1 �= L2 be two distinct inverse tensors of L; then, L1L = I =

L2L ⇒ L1L− L2L = O ⇒ (L1 − L2)L = O ∀L ⇐⇒ L1 − L2 = O ⇒
L1 = L2.

17. (a ⊗ b)ij = aibj ; it is then sufficient to write the matrix representing

(a⊗ b) and to compute its determinant.
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188 Tensor Algebra and Analysis for Engineers

18. (αL)−1(αL) = α(αL)−1L = I ⇒ (αL)−1L = 1
α I ⇒ (αL)−1LL−1 =

1
αIL

−1 ⇒ (αL)−1 = 1
αL

−1.

19. |W2| = W ·W = tr(W�W) = −tr(WW) = tr(I−w⊗w) = 3− 1 =

2 ⇒ WW = − 1
2 |W2|(I−w ⊗w).

20. Let w1 = (a1, b1, c1),w2 = (a2, b2c2); then, form W1,W2 and compute

the two scalar products.

21. u × v = o ⇐⇒ v = ku, k ∈ R. So, u × v = o ⇒ u ⊗ v = ku ⊗ u ∈
Sym(V). Conversely, if u⊗v ∈ Sym(V), then ∀w, w·v u = (u⊗v)w =

(v ⊗ u)w = w · u v ⇒ v = w·v
w·uu ⇒ u× v = o.

22. L = L� ⇒ (RLR�)� = RL�R� = RLR�; moreover, u · Lu > 0 ∀u
⇒ u · (RLR�)u = (R�u) · L(R�u) > 0.

23. (i) det(Lsph − λI) = det
(
1
3 trLI− λsphI

)
=
(
1
3 trLI− λsphI

)3
det I

=
(
1
3 trLI− λsphI

)3
= 0 ⇒ λsphi = 1

3 trL, i = 1, 2, 3.

(ii) (Lsph − λsphi I)v = o ∀i = 1, 2, 3 ⇒ (
Lsph − 1

3 trLI
)
v = o ⇒

(Lsph − Lsph)v = o ⇒ Ov = o, which is true ∀v.
24. det(Ldev−λdevI) = det(L−Ldev−λdevI) = det

(
L−( 13 trL+ λdev

)
I
)
=

det
(
L− (λsph + λdev

)
I
)
= 0 ⇒ λ = λsph + λdev is an eigenvalue of

L ⇒ λdev = λ− λsph.

Chapter 3

1. ∀L ∈ Lin(V), (ei ⊗ ej ) � (ek ⊗ el)L = (ei ⊗ ej )L(ek ⊗ el )
� = (ei ⊗

ej )L(el ⊗ ek ) = (ei ⊗ ej )((Lel )⊗ ek ) = ej · (Lel )ei ⊗ ek = Ljlei ⊗ ek ;

moreover (ei ⊗ ek ⊗ ej ⊗ el)L = (ei ⊗ ek ) ⊗ (ej ⊗ el)L = ((ej ⊗ el ) ·
L)(ei ⊗ ek) = ((ej ⊗ el) · (Lpqep⊗ eq))(ei ⊗ ek ) = Lpqδjpδlq(ei ⊗ ek) =

Ljlei ⊗ ek ⇒ (ei ⊗ ej )� (ek ⊗ el) = ei ⊗ ek ⊗ ej ⊗ el .

2. ∀L,M ∈ Lin(V), L · (AB)M = A�L · BM = B�A�L ·M ⇒ (AB)� =

B�A�.
3. ∀C ∈ Lin(V), (A ⊗BL)C = (A ⊗B)LC = B · LCA = L�B ·CA =

(A⊗ L�B)C.

4. ∀L ∈ Lin(V), ((A �B)(C �D))L = A �BCLD� = ACLD�B� =

(AC)� (D�B�)�L = (AC) � (BD)L.

5. Let A = Aijklei ⊗ ej ⊗ ek ⊗ el = Aijkl(ei ⊗ ek ) � (ej ⊗ el ) and

B = Bpqrsep ⊗ eq ⊗ er ⊗ es = Bpqrs(ep ⊗ er )� (eq ⊗ es).

Then, AB = AijklBpqrs((ei ⊗ ek ) � (ej ⊗ el ))((ep ⊗ er ) � (eq ⊗
es)) = AijklBpqrs((ei ⊗ ek )(ep ⊗ er )) � ((ej ⊗ el)(eq ⊗ es)) =

AijklBpqrsδkpδlq(ei ⊗ er )� (ej ⊗ es) = AijklBklrs(ei ⊗ ej ⊗ er ⊗ es).
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Solutions to the Exercises 189

6. ∀L ∈ Lin(V), (A⊗B)(C�D)L = (A⊗B)CLD� = B · (CLD�)A =

BD·(CL)A = C�BD·LA = (C��D�)B·LA = A⊗((C��D�)B)L.

7. ∀L ∈ Lin(V), (A�B)(C⊗D)L = D ·L(A�B)C = (D ·L)ACB� =

ACB�(D · L) = ((A�B)C)(D · L) = (((A�B)C)⊗D)L.

8. (P⊗P)ijhk = PijPhk = (p⊗ p)ij(p⊗ p)hk = pipjphpk
= piphpjpk = (p⊗ p)ih(p⊗ p)jk = PihPjk = (P�P)ijhk .

9. (i) IA = (I�I)A = (I�I)Aijkl(ei ⊗ej )⊗(ek ⊗el) = Aijkl((I�I)(ei ⊗
ej ))⊗ (ek ⊗ el) = Aijkl(I(ei ⊗ ej )I

�)⊗ (ek ⊗ el) = Aijkl(ei ⊗ ej ⊗
ek ⊗ el ) = A.

(ii) AI = Aijkl(ei ⊗ej )⊗ (ek ⊗el)(I� I) = Aijkl(ei ⊗ej )⊗ ((I� I)ek ⊗
el) = Aijkl(ei⊗ej )⊗(I(ek ⊗el))I

�) = Aijkl(ei⊗ej ⊗ek ⊗el) = A.

10. (A⊗B) · (C⊗D) = tr4((A⊗B)�(C⊗D)) = tr4((B⊗A)(C⊗D))

= tr4((B⊗A)C)⊗D = tr4(A·CB⊗D) = A·C tr4(B⊗D) = A·CB·D.
11. I

|I| ⊗ I
|I| =

I√
3
⊗ I√

3
= 1

3I⊗ I = S
sph.

12. ∀L ∈ Lin(V), L = Lsph+Ldev and Lsph = 1
3 trL I →, just one number

is sufficient to determine Lsph ⇒ dim(Sph(V)) = 1. Then, Ldev =

L−Lsph is determined by five numbers: dim(Dev(V)) = dim(Lin(V)−
Sph(V)) = 6− 1 = 5.

13. (i) S
sph

S
sph =

(
1
3I⊗ I

) (
1
3I⊗ I

)
= 1

9 (I⊗ I) = 1
9I · I I⊗ I = 1

3I⊗ I =

Ssph.

(ii) DdevDdev = (Is − Ssph)(Is − Ssph) = Is − 2Ssph + SsphSsph =

Is − Ssph = Ddev.

(iii) SsphDdev = Ssph(Is − Ssph) = Ssph − SsphSsph = Ssph − Ssph = O.

14. (i) Ssymijkl = (ei ⊗ ej ) · Ssym(ek ⊗ el) = (ei ⊗ ej ) · ek⊗el+el⊗ek

2

= 1
2 (δikδjl + δilδjk), W

skw
ijkl = (ei ⊗ ej ) ·Wskw(ek ⊗ el)

= (ei ⊗ ej ) · ek⊗el−el⊗ek

2 = 1
2 (δikδjl − δilδjk),

→ Ssymijkl +W skw
ijkl = δikδjl = Iijkl ⇒ Ssym +Wdev = I.

(ii) Ssymijkl −W skw
ijkl = δilδjk = T trpijkl ⇒ Ssym −Wdev = Ttrp.

15. (i) Ssph · Ssph =
(
1
3I⊗ I

) · (13I⊗ I
)
= 1

9 tr4((I⊗ I)�(I⊗ I))

= 1
9 tr4((I⊗ I)(I ⊗ I)) = 1

9 tr4((I⊗ I)I) ⊗ I = 1
9 tr4(I · I I⊗ I)

= 1
3 tr4(I

� ⊗ I) = 1
3I · I = 1.

(ii) Ddev ·Ddev = (Is−Ssph) ·(Is−Ssph) = Is ·Is−2Is ·Ssph+Ssph ·Ssph
= 1

4

(
δihδjk + δikδjh

)(
δihδjk + δikδjh

)−2
δihδjk+δikδjh

2
1
3δijδhk + 1

= 1
4

(
δihδih δjkδjk+2δikδjhδihδjk+δikδik δjhδjh

)− 1
3

(
δijδhkδihδjk+

δijδhkδikδjh
= δikδik = δjhδjh = δikδjhδihδjk = δijδhkδihδjk = δijδhkδikδjh

)
+1. Now, one should check that δihδih = δjkδjk

= 3 ⇒ Ddev · Ddev = 5.
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190 Tensor Algebra and Analysis for Engineers

(iii) S
sph · Ddev = S

sph · (Is − S
sph) = I

s · Ssph − S
sph · Ssph =

δihδjk+δikδjh
2

1
3δijδhk − 1 = 1

6

(
δihδjkδijδhk + δikδjhδijδhk

)−1 =
1
6

(
3 + 3

)−1 = 0.

16. SR = I− 2n⊗ n → SR = (I− 2n⊗ n)� (I− 2n⊗ n)

= I� I− 2(n⊗ n� I+ I� n⊗ n+ 4n⊗ n� n⊗ n)

= I− 2(n⊗ n� ei ⊗ ei + ei ⊗ ei � n⊗ n+ 4n⊗ n⊗ n⊗ n)

= I− 2(n⊗ ei ⊗ n⊗ ei + ei ⊗ n⊗ ei ⊗ n+ 4n⊗ n⊗ n⊗ n).

By components, (SR)ijkl = (I− 2n⊗ n)ik(I− 2n⊗ n)jl
= (δik−2nink)(δjl−2njnl) = δikδjl−2(δiknjnl+δjlnink)+4ninjnknl.

17. (i) R0 = 0: This is the case of the so-called R0-orthotropy.

(ii) R1 = 0: This is the case of the square symmetry (all the

components depend upon 4θ).

(iii) Φ0 − Φ1 = k π4 , k ∈ {0, 1}: This is the case of the two ordinary

orthotropies.

(iv) R0 = R1 = 0: This is the condition for isotropy. Nothing depends

upon θ ⇒ all the directions are equivalent and thus, at the same

time, the axes of elastic symmetry.

Chapter 4

1. (i) (u(t)+v(t))− (u(t0)+v(t0) = (t− t0)(u+v)′+o(t− t0), and also,

u(t) − u(t0) + v(t) − v(t0) = (t − t0)u
′ + (t − t0)v

′ + o(t − t0) ⇒
(u+ v)′ = u′ + v′.
The proof that (L+M)′ = L′+M′ and that (L+M)′ = L′+M′

can be done in a similar way.

(ii) We indicate, in short, α(t) = α,v(t) = v, α(t0) = α0,v(t0) =

v0, α
′(t0) = α′

0,v
′(t0) = v′

0 → αv−α0v0 = (αv)′0(t−t0)+o(t−t0);
moreover, α = α0 + α′

0(t− t0) + o(t− t0),v = v0 + v′
0(t− t0)

+ o(t− t0) ⇒ αv−α0v0 = (α0 +α′
0(t− t0)+ o(t− t0))(v0 +v′

0(t−
t0) + o(t− t0))− α0v0 = α′

0v0(t− t0) + v0o(t− t0) + α0v
′
0(t− t0)

+α′
0v

′
0(t− t0)2+v′

0(t− t0)o(t− t0)+α0o(t− t0)+α′
0(t− t0)o(t− t0)

+ o(t− t0)
2 = (α′

0v0 + α0v
′
0)(t− t0) + o(t− t0), so by comparison,

(αv)′ = α′v + αv′.
By the same technique, one can easily prove the differentiation

rule for all the product-like quantities: (u · v)′, (u × v)′, (u ⊗ v)′,
(αL)′, (Lv)′, (LM)′, (L · M)′, (L ⊗ M)′, (L � M)′, (αL)′,
(LL)′, (LM)′, (L ·M)′.

2. The proof is the same for all the cases; we just write that for v(t):

Using the two properties shown in the previous exercise, we get
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Solutions to the Exercises 191

v(t) = vi(t)ei ⇒ v′(t) = (vi(t)ei)
′ = v′i(t)ei + vi(t)e

′
i = v′i(t)ei because

ei does not depend on t.

3. (i) p(θ) = (aθ cos θ, aθ sin θ) → c = 2+θ2

a(1+θ2)
3
2
.

(ii) � = a
2 (θ

√
1 + θ2 + ln(θ +

√
1 + θ2)).

(iii) Let pi, pi+1 be two consecutive intersection points of the spiral (i

denotes the order of the intersection point) with a straight line

passing through the origin and inclined at θ; their distances from

the origin are ri = a(θ+2πi), ri+1 = a(θ+2π(i+1)) ⇒ |pi+1−pi| =
ri+1 − ri = 2πa that does not depend upon θ.

4. (i) r = a ebθ ⇒ r = 0 ⇐⇒ θ → +∞, for b < 0,−∞ for b > 0.

(ii) p(θ) = (a ebθ cos θ, a ebθ sin θ) → c = 1
a ebθ

√
1+b2

.

(iii) � = a
b

√
1 + b2ebθ.

(iv) With the same meaning as in the previous exercise, |pi+1 − pi| =
ri+1 − ri = a(e2πb − 1)eb(θ+2πi), i.e. the distance depends upon

the order of the intersection: ri+1

ri
= e2πb, which is a geometric

progression.

(v) τ = 1√
1+b2

(b cos θ − sin θ, b sin θ + cos θ) ⇒ (p− o) · τ = ab ebθ√
1+b2

⇒
cosϕ = (p−o)·τ

|p−o||τ | =
b√

1+b2
⇒ ϕ, the angle between τ and p − o, is

constant.

(vi) ν = 1√
cν =

1+b2
(−b sin θ − cos θ, b cos θ − sin θ) ⇒ q = p + 1

ab ebθ(− sin θ, cos θ) is a point of the evolute, whose polar equation

is hence r = ab ebθ, which is still a logarithmic spiral.

5. (i) c = 1
aθ .

(ii) � = 1
2aθ

2.

cν = a(cos θ, sin θ), which is(iii) ν = (− sin θ, cos θ) ⇒ p + ρν = p + 1

the parametric equation of a circle of center o and radius a.

6. (i) τ = 1√
a2+b2

(−a sinωθ, a cosωθ, b) ⇒ cosϕ = τ · e3 = b√
a2+b2

,

which is independent of θ.

(ii) � = ωθ
√
a2 + b2.

(iii) c = a
a2+b2 .

(iv) ϑ = − b
a2+b2 .

(v) Let pi, pi+1 be two points, the intersection of the same generatrix of

the cylinder with the helix, i.e. for, say, θ+i 2πω and θ+(i+1)2πω ⇒
d = (pi+1 − pi) · e3 = 2πb.

(vi) By definition, a curve is a helix ⇐⇒ τ ·e3 = const; differentiating

gives τ ′ · e3 + τ · e3 = τ ′ · e3 = 0 ⇒ by the first equation of

Frenet–Serret, cν · e3 = 0 ⇒ ν · e3 = 0 ⇒ β is tangent to the
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192 Tensor Algebra and Analysis for Engineers

cylinder and β · e3 = const. Moreover, differentiating again, ν ·
e3 + ν · e′3 = ν ′ · e3 = 0 ⇒ by the third equation of Frenet–Serret

(−cτ − ϑβ) · e3 = 0 ⇒ −cτ · e3 = ϑβ · e3 ⇒ c
ϑ = −β·e3

τ ·e3
= const.

Conversely, if p(s) is a curve with c
ϑ = α = const., through the first

and second equations of Frenet–Serret, we get ν = 1
cτ

′ = 1
ϑβ

′ ⇒
τ ′ = c

ϑβ
′ = αβ′ ⇒ (τ − αβ)′ = 0 ⇒ v = τ − αβ = const. ⇒

τ · v = 1 ⇒ τ forms with v a constant angle, and because v is a

constant vector, τ · e3 = const. ⇒ the curve is a helix.

(vii) p′ × p′′ = ω3(ab sinωθ,−ab cosωθ, a2) ⇒ A = abω3, B = a2ω3.

7. (i) p(θ) = R(θ − sin θ, 1− cos θ).

(ii) �(θ) = 4R
(
1− cos θ2

)⇒ �(2π) = 8R.

(iii) c = 1

2R
√

2(1−cos θ)
.

(iv) ν = 1√
cν = R(θ +

2(1−cos θ)
(sin θ, cos θ − 1) ⇒ q(θ) = p(θ) + 1

sin θ, cos θ− 1); this curve is the evolute of the cycloid, and it can

also be obtained as q(θ) = p(θ + π) − (π, 2R), i.e. it is the same

cycloid p(θ) translated by −(π, 2R).

8. (i) c = 1
cosh2 t

.

(ii) ν =
(− sinh t

cosh t ,
1

cosh t

)⇒ q(t) = p(t)+ 1
cν = (t−sinh t cosh t, 2 cosh t)

is the evolute.

(iii) s =
∫ |p′(t)|dt = sinh t, τ =

(
1

cosh t ,
sinh t
cosh t

) ⇒ b(t) = p(t) + (a −
s)τ =

(
t+ a−sinh t

cosh t , cosh t+ sinh ta−sinh t
cosh t

)
is the equation of the

involutes.

9. (i) τ = (cos t, sin t); tangent to the tractrix at p: z = p+ wτ =(
(1 + w) cos t+ ln

(
tan t

2

)
, (1 + w) sin t

)
. Intersection of g with x1

axis for w = −1 → g =
(
ln
(
tan t

2

)
, 0
)⇒ |p− g| = 1 ∀t.

(ii) � = ln sin t2
sin t1

.

(iii) c = tan t.

(iv) ν = (−sin t, cos t) ⇒ q = p + 1
cν =

(
ln
(
tan t

2

)
, 1
sin t

)
. Setting

σ = ln
(
tan t

2

) ⇒ tan t
2 = eσ, 1

sin t = coshσ ⇒ q = (σ, cosh σ),

which is the equation of a catenary.

10. (i) p(θ) = (cos θ, sin θ, sin θ) ⇒ p′(= − sin θ, cos θ, cos θ), p′′ =

(− cos θ,− sin θ,− sin θ) ⇒ c =
√
2

(1+cos2 θ)
3
2
⇒ cmax =

√
2.

(ii) p′′′ = (sin θ,− cos θ,− cos θ) ⇒ p′ × p′′ · p′′′ = cos θ − cos θ = 0 ⇒
ϑ = 0 ⇒ the curve is planar.

11. (i) v = ṗ, τ = ṗ
|ṗ| ⇒ ṗ = |ṗ|τ ⇒ v = vτ , v = |ṗ| is the scalar velocity.

(ii) a = p̈ = v̇ = (vτ )· = v̇τ + vτ̇ ; τ̇ = |τ̇ |ν; c = |τ̇ |
|ṗ| ⇒ |τ̇ | = |ṗ|c =

v
ρ ⇒ a = v̇τ + v2

ρ ν; v̇ is the tangential acceleration and v2

ρ the

centripetal acceleration.
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(iii) f = ma = mv̇τ + mv2

ρ ν = fττ + fνν; fτ = mv̇ is the tangential

force, which is responsible for the change in the scalar velocity;

fν = mv2

ρ is the centripetal force, which is responsible for the path

change.

Chapter 5

1. (i) By Eq. (5.1)3, grad(v · w) = (gradw)�v + (gradv)�w =

(gradw)�v + (gradw)v − (gradw)v + (gradv)�w + (gradv)w −
(gradv)w = (gradw)v + (gradv)w + ((gradw)� − gradw))v +

((gradv)� − gradv))w = (gradw)v + (gradv)w − (curlw)× v −
(curlv)×w = (gradw)v+ (gradv)w+ v× (curlw) +w× (curlv).

(ii) By Eqs. (5.1)2,3 and Exercise 3(iii), Chapter 2, grad(u · v w) =

u · v gradw+w⊗ grad(u · v) = u · v gradw+w⊗ ((gradu)�v+

(gradv)�u) = u · v gradw +w ⊗ (gradu)�v +w ⊗ (gradv)�u =

u · v gradw + (w ⊗ v)gradu+ (w ⊗ u)gradv.

(iii) By Theorem 30(i), div((gradv)v − (divv)v) + (divv)2 =

div((gradv)v) − div((divv)v) + (divv)2 = (gradv)� · gradv + v ·
div(gradv)� − (divv)2 − v · grad(divv) + (divv)2 = (gradv)� ·
gradv + v · div(gradv)� − v · div(gradv)� = (gradv)� · gradv.

2. (i) By Theorem 30(i), div(gradv)� = div(vj,iei ⊗ ej ) = vj,idiv(ei ⊗
ej ) + ei ⊗ ej gradvj,i = ei ⊗ ej vj,ikek = vj,ikδjkei = vj,ijei =

vj,jiei = (divv),iei = grad(divv).

(ii) By (iii) of the previous exercise and Theorem 30(i), div((gradv)v−
(divv)v) = gradv · (gradv)� − (divv)2 and also div((gradv)v −
(divv)v) = div(gradv)v) − div((divv)v) = div((gradv)v) −
(divv)2 − v · grad(divv), so comparing the two results,

div((gradv)v) = gradv · (gradv)� + v · grad(divv).
(iii) By Theorem 30(i) and (iv), div(ϕLv) = ϕdiv(Lv) +Lv · gradϕ =

Lv · gradϕ+ ϕL� · gradv + ϕv · divL�.
3. (i) By Theorem 28(ii) and Eq. (2.33), ∀a = const. ∈ V , (curl(ϕv)) ×

a = (grad(ϕv)−(grad(ϕv)�)a = (ϕgradv+v⊗gradϕ−(ϕgradv+

v⊗gradϕ)�)a = (ϕgradv+v⊗gradϕ−ϕ(gradv)�−gradϕ⊗v)a =

ϕ(curlv)× a+ a · gradϕ v− a · v gradϕ = ϕ(curlv)× a+ a× (v×
gradϕ) = ϕ(curlv)×a−(v×gradϕ)×a = (ϕcurlv−v×gradϕ)×a ⇒
curl(ϕv) = ϕcurlv + gradϕ× v.
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194 Tensor Algebra and Analysis for Engineers

(ii) Using Ricci’s alternator for the cross product, v×w = εpqrvqwrep
and curl(v × w) = εijk(v × w)k,jei = εijkεkqr(vqwr),jei =

εijkεkqr(vq,jwr + vqwr,j)ei = εkijεkqr(vq,jwr + vqwr,j)ei . Then,

because εkijεkqr = δiqδjr − δirδjq, we get curl(v × w) =

(δiqδjr − δirδjq)(vq,jwr + vqwr,j)ei = δiqδjr(vq,jwr + vqwr,j)ei −
δirδjq(vq,jwr+vqwr,j)ei = (vi,jwj+viwj,j)ei−(vj,jwi+vjwi,j)ei =

gradv w − gradw v + vdivw−wdivv.

4. (i) Through Theorem 30(iv), we get
∫
∂Ω v·Ln dA =

∫
∂Ω L�v·n dA =∫

Ω div(L�v)dV =
∫
Ω L · gradv + v · divL dV.

(ii) By Theorems 29 and 30(i), ∀a = const. ∈ V , ∫∂Ω(Ln) ⊗ v a dA =∫
∂Ω a · v Ln dA =

∫
Ω div(a · v L)dV =

∫
Ω a · v divL +

Lgrad(a ·v)dV =
∫
Ω a ·v divL+L(grada)�v+L(gradv)�a dV =∫

Ω
((divL)⊗ v + L(gradv)�)a dV.

(iii) By Theorem 30(ii),
∫
∂Ω

(w·n)v dA =
∫
∂Ω

(v⊗w)n dA =
∫
Ω
div(v⊗

w)dV =
∫
Ω
v divw+ (gradv)w dV.

5. (i) Take u = αn, n ∈ S → ϕ(p+ αn) = ϕ(p) + α gradϕ · n+ o(α) ⇒
dϕ
dn := limα→0

ϕ(p+αn)−ϕ(p)
α = gradϕ · n.

(ii) In a similar way, v(p + αn) = v(p) + α gradv n+ o(α) ⇒
dv
dn := limα→0

v(p+αn)−v(p)
α = gradv n.

6. (i) Applying the first proof of the previous exercise to n = ei , i =

1, 2, 3, we get immediately df
dei

:= f,i = gradf · ei := (gradf),i ⇒
gradf = f,iei .

(ii) Applying the second proof of the previous exercise to n = ej , j =

1, 2, 3, we obtain dv
dej

:= v,j = vi,jei = gradv ej = (gradv)ikei ⊗
ek ej = δkj(gradv)ikei = (gradv)ijei
⇒ (gradv)ij = vi,j ⇒ gradv = vi,jei ⊗ ej .

(iii) divv := tr(gradv) = tr(vi,jei⊗ej ) = vi,jtr(ei⊗ej ) = δijvi,j = vi,i.

(iv) ∀u = const. ∈ V , (divL) · u := div(L�u) ⇒ (divL)iui =

(L�u)j,j = (Lijui),j = Lij,jui ⇒ (divL)i = Lij,j ⇒ divL =

Lij,jei .

(v) Δf := div(gradf) = div(f,iei) = f,ii.

(vi) Δv := div(gradv) = div(vi,jei ⊗ ej ) = vi,jjei .

(vii) For the sake of brevity, let w = curlv; ∀u ∈ V ,

(curlv) × u := (gradv − gradv�)u ⇒
⎡
⎣ 0 −w3 w2

w3 0 −w1

−w2 w1 0

⎤
⎦
⎧⎨
⎩
u1
u2
u3

⎫⎬
⎭

=

⎛
⎝
⎡
⎣ v1,1 v1,2 v1,3v2,1 v2,2 v2,3
v3,1 v3,2 v3,3

⎤
⎦−

⎡
⎣ v1,1 v2,1 v3,1v1,2 v2,2 v3,2
v1,3 v2,3 v3,3

⎤
⎦
⎞
⎠
⎧⎨
⎩
u1
u2
u3

⎫⎬
⎭
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=

⎡
⎣ 0 v1,2 − v2,1 v1,3 − v3,1
v2,1 − v1,2 0 v2,3 − v3,2
v3,1 − v1,3 v3,2 − v2,3 0

⎤
⎦
⎧⎨
⎩
u1
u2
u3

⎫⎬
⎭⇒ curlv

=

⎧⎨
⎩
v3,2 − v2,3
v1,3 − v3,1
v2,1 − v1,2

⎫⎬
⎭ .

7. (i) v(p) = v(p0) + ω × (p − p0) ⇒ ∃Wω ∈ Skw(V)| v(p) =

v(p0) + Wω(p − p0), with Wω the axial tensor of ω. Moreover,

by the definition of gradient, v(p) = v(p0) + (gradv)(p − p0) ⇒
Wω = gradv ⇒ gradv = gradv+gradv�

2 + gradv−gradv�

2 = Wω =

−W�
ω ⇐⇒ gradv+gradv�

2 = O ⇒ gradv = gradv−gradv�
2 ⇒

v(p) = v(p0) +
gradv−gradv�

2 (p − p0) so, by the definition of curl,

v(p) = v(p0) +
1
2curlv × (p − p0), and comparing the two results,

we get ω = 1
2curl.

(ii) By the definition of divergence and Eq. (2.8), divv = tr(gradv) =

trWω = 0.

8. (i) divu = 3α→ nowhere isochoric.

(ii) divu = 0 → globally isochoric.

(iii) divu = γ(x1 + x2 + x3) = 0: isochoric on the points of the plane

x1 + x2 + x3 = 0.

(iv) divu = δ(cosx1 + sinx2 + cosx3) = 0: isochoric on the points of

the surface cosx1 + sinx2 + cosx3 = 0.

9. Using Eq. (5.14), we get:

(i) vθ = vz = 0, vρ =
α
ρ ⇒ divv = − α

ρ2 + α
ρ2 = 0.

(ii) vρ = vz = 0, vθ =
α
ρ ⇒ divv = 0.

(iii) vρ =
α cos θ
ρ2 , vθ =

α sin θ
ρ2 , vz = 0 ⇒ divu = − 2α cos θ

ρ3 + 2α cos θ
ρ3 =0.

10. Using Eq. (5.15), we get:

(i) vρ,θ = vρ,z = vθ,ρ = vθ,z = vz,ρ = vz,θ = 0 ⇒ curlv = o.

(ii) vρ,θ = vρ,z = vθ,z = vz,ρ = vz,θ = 0, vθ,ρ = − α
ρ2 ⇒ curlv

=
(
0, 0, αρ2 − α

ρ2

)
= o.

(iii) vρ,θ = −α cos θ
ρ2 , vρ,z = 0, vθ,ρ = − 2α sin θ

ρ3 , vθ,z = 0, vz,ρ = vz,θ =

0 ⇒ curlv =
(
0, 0, α cos θ

ρ3 − 2α cos θ
ρ3 + α cos θ

ρ3

)
= o.
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Chapter 6

1. Setting ρ = z1, θ = z2, z = z3, by Eq. (6.3), we get g =

⎡
⎣1 0 0

0 ρ2 0

0 0 1

⎤
⎦⇒

ds =
√
ghkdzhdzk =

√
dρ2 + ρ2dθ2 + dz2.

2. Setting r = z1, θ = z2, ϕ = z3, proceeding in a similar way, we get

g =

⎡
⎣1 0 0

0 r2 sin2 ϕ 0

0 0 r2

⎤
⎦⇒ ds =

√
ghkdzhdzk

=
√
dr2 + r2 sin2 ϕdθ2 + r2dϕ2.

3. For cylindrical coordinates, cf. Exercise 1, ds =
√
dρ2 + ρ2dθ2 + dz2,

and for a curve on a circular cylinder, ρ = R ⇒ dρ = 0 ⇒ ds =√
R2dθ2 + dz2; if the equation of the helix is p(θ) = R cos θe1 +

R sin θe2 + bθe3, then
dz
dθ = b⇒ dz = b dθ ⇒

ds =
√
R2 + b2dθ ⇒ � =

∫ θ+2π

θ

√
R2 + b2dθ = 2π

√
R2 + b2.

4. (i) r = 2R
π θ ⇒ dr = 2R

π dθ; ds =
√
dr2 + r2dθ2 = 2R

π

√
1 + θ2dθ ⇒

� =
∫ π

2

0
ds = 2R

π

∫ π
2

0

√
1 + θ2dθ = R

π [θ
√
1 + θ2 + arcsinhθ]

π
2
0 =(

1
4

√
4 + π2 + 1

πarcsinh
π
2

)
R ∼ 1.324R.

(ii) π
2R = 2πR0 ⇒ R0 = R

4 ⇒ h =
√
R2 −R2

0 = 15
4 R; ρ(z) =

R0

h z, z = h
2π θ ⇒ ρ(θ) = R0

2π θ ⇒ ρ(θ) = R
8π θ, z(θ) =√

15
8π Rθ ⇒ dρ = R

8πdθ, dz =
√
15

8π R dθ; equation of the

conical helix: p(θ) = ρ(z) cos θe1 + ρ(z) sin θe2 +
√
15θe3 =

R
8π

(
θ cos θe1 + θ sin θe2 +

√
15θe3

)⇒ ds =
√
dρ2 + ρ2dθ2 + dz2 =

R
8π

√
dθ2 + θ2dθ2 + 15dθ2 = R

8π

√
16 + θ2dθ ⇒ � =

∫ 2π

0 ds =
R
8π

∫ 2π

0

√
16 + θ2dθ =

R
8π

[
1
2θ

√
16 + θ2 + 8arcsinhθ4

]2π
0

∼ 1.324R.

5. (i) Referring to Fig. 6.5 and by Eq. (6.3), x1 = z1 cosα1 + z2 cosα2,

x2 = z1 sinα1 + z2 sinα2 ⇒ g =

[
1 cos(α2 − α1)

cos(α2 − α1) 1

]
.

(ii) By Eq. (6.5), g1 = cosα1e1 + sinα1e2, g2 = cosα2e1 + sinα2e2.

(iii) z1 = h(x1 sinα2 − x2 cosα2), z
2 = h(−x1 sinα1 + x2 cosα1), h =

1
sin(α2−α1)

⇒ by Eq. (6.14), g1 = sinα2

sin(α2−α1)
e1− cosα2

sin(α2−α1)
e2, g

2 =

− sinα1

sin(α2−α1)
e1 +

cosα1

sin(α2−α1)
e2.

(iv) g1 · g1 = cosα1 sinα2−sinα1 cosα2

sin(α2−α1)
= 1,

g2 · g2 = − sinα1 cosα2+sinα2 cosα1

sin(α2−α1)
= 1,
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g1 · g2 = − cosα1 sinα1+sinα1 cosα1

sin(α2−α1)
= 0,

g2 · g1 = cosα2 sinα2−sinα2 cosα2

sin(α2−α1)
= 0.

(v) |g1| = |g2| = 1, |g1| = |g2| = 1
| sin(α2−α1)| .

(vi)

2

x2

x1

1

g2

g1

g1

g2

6. Referring to Exercise 2 and by Eq. (6.5), we get g1 = cos θ sinϕe1 +

sin θ sinϕe2 + cosϕe3, g2 = −r sin θ sinϕe1 + r cos θ sinϕe2, g3 =

r cos θ cosϕe1 + r sin θ cosϕe2 − r sinϕe3.

7. (i) If z1 = const.⇒ x1 = a cos z2, x2 = b sin z2, with a = c cosh z1 =

const., b = c sinh z1 = const.⇒ x2
1

a2 +
x2
2

b2 = 1: family of ellipses all

with the same focuses xe = ±√
a2 − b2 = ±c.

(ii) If z2 = const. ⇒ x1 = A cosh z1, x2 = B sinh z1, with A =

c cos z2 = const., B = c sin z2 = const. ⇒ x2
1

A2 − x2
2

B2 = 1: family

of hyperbolae all with the same focuses xh = ±√
A2 +B2 = ±c⇒

xe = xh.

(iii) The axes of the ellipses are 2a = 2c cosh z1 and 2b = 2c sinh z1.

(iv) A crack along the horizontal axis corresponds to b → 0, which

happens ⇐⇒ z1 → 0 ⇒ cosh z1 → 1 and a → c ⇒ length of the

crack: 2c.

(v) Applying Eq. (6.3), we get g = c2

2

(
cosh 2z1 − cos 2z2

)
I.

(vi) By Eq. (6.5), g1 = c sinh z1 cos z2e1 + c cosh z1 sin z2e2, g2 =

−c cosh z1 sin z2e1 + c sinh z1 cos z2e2. We note that g1 · g2 = 0.

8. (i) By Eq. (6.16)1, setting z
1 = ρ, z2 = θ, z3 = z, we get

L11 = Lx11 cos
2 θ + (Lx12 + Lx21) sin θ cos θ + Lx22 sin

2 θ,

L12 = 1
ρ

(
(Lx22 − Lx11) sin θ cos θ + Lx12 cos

2 θ − Lx21 sin
2 θ
)
,

L13 = Lx13 cos θ + Lx23 sin θ,

L21 = 1
ρ

(
(Lx22 − Lx11) sin θ cos θ − Lx12 sin

2 θ + Lx21 cos
2 θ
)
,
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198 Tensor Algebra and Analysis for Engineers

L22 = 1
ρ2

(
Lx11 sin

2 θ − (Lx12 + Lx21) sin θ cos θ + Lx22 cos
2 θ
)
,

L23 = −Lx13 sin θ + Lx23 cos θ,

L31 = Lx31 cos θ + Lx32 sin θ,

L32 = −Lx31 sin θ + Lx32 cos θ,

L33 = Lx33.
(ii) The covariant components can alternatively be found by Eq. (6.16)2

or, using the results of the previous point, by Eq. (6.19)2; by this

latter way, using the result of Ex. 1, we get easily L11 = L11, L12 =

ρ2L12, L13 = L13, L21 = ρ2L21, L22 = ρ4L22, L23 = ρ2L23, L31 =

L31, L32 = ρ2L32, L33 = L33.

9. (i) First, the covariant components: By Eq. (6.16)2, setting z1 =

r, z2 = θ, z3 = ϕ, we get:
L11 = Lx11 cos

2 θ sin2 ϕ+ (Lx12 + Lx21) sin θ cos θ sin
2 ϕ

+ (Lx13 + Lx31) cos θ sinϕ cosϕ+ Lx22 sin
2 θ sin2 ϕ

+(Lx23 + Lx32) sin θ sinϕ cosϕ+ Lx33 cos
2 ϕ,

L12 = −r cos θ sin θ sin2 ϕLx11 + r sin2 ϕ(Lx12 cos
2 θ − Lx21 sin

2 θ)

+ r sin θ cos θ sin2 ϕLx22 + r sinϕ cosϕ(Lx32 cos θ − Lx31 sin θ),

L13 = r cos2 θ sinϕ cosϕLx11 + r sin θ cos θ sinϕ cosϕ(Lx12 + Lx21)

+ r sin2 θ cosϕ sinϕLx22 − r sin2 ϕ sin θLx23
+ r cos θ(Lx31 cos

2 ϕ− Lx13 sin
2 ϕ)

− r cosϕ sinϕLx33,

L21 = −r sin θ cos θ sin2 ϕLx11 + r sin2 ϕ(Lx21 cos
2 θ − Lx12 sin

2 θ)

+ r sin θ cos θ sin2 ϕLx22 + r sinϕ cosϕ(Lx23 cos θ − Lx13 sin θ),

L22 = r2 sin2 θ sin2 ϕLx11 − r2 sin θ cos θ sin2 ϕ(Lx12 + Lx21)

+ r2 cos2 θ sin2 ϕLx22,

L23 = −r2 sin θ cos θ sinϕ cosϕ(Lx22 − Lx11) + r2 sinϕ cosϕ

(Lx21 cos
2 θ − Lx12 sin

2 θ)

+ r2 sin2 ϕ(Lx13 sin θ − Lx23 cos θ),

L31 = r sinϕ cosϕ(Lx11 cos
2 θ + Lx22 sin

2 θ)

+ r sin θ cos θ sinϕ cosϕ(Lx12 + Lx21)

+ r cos θ(Lx13 cos
2 ϕ− Lx31 sin

2 ϕ)

+ r sin θ(Lx23 cos
2 ϕ− Lx32 sin

2 ϕ)− r sinϕ cosϕLx33,

L32 = r2 sin θ cos θ sinϕ cosϕ(Lx22 − Lx11)

+ r2 sinϕ cosϕ(Lx12 cos
2 θ − Lx21 sin

2 θ)

+ r2 sin2 ϕ(Lx31 sin θ − Lx32 cos θ),
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L33 = r2 cos2 ϕ(Lx11 cos
2 θ + Lx22 sin

2 θ)

+ r2 sin θ cos θ cos2 ϕ(Lx12 + Lx21)

− r2 cos θ sinϕ cosϕ(Lx13 + Lx31)

− r2 sin θ sinϕ cosϕ(Lx23 + Lx32) + r2 sin2 ϕLx33.
(ii) For the contravariant components, we use Eq. (6.19)1, after having

calculated gcont; this can be done either using Eq. (6.11) or simply

observing that gcov is diagonal (see Exercise 2) and that gpq =

1
gpq

⇒ gcont =

⎡
⎢⎣ 1 0 0

0 1
r2 sin2 ϕ 0

0 0 1
r2

⎤
⎥⎦⇒

L11 = L11, L
12 = L12

r2 sin2 ϕ
, L13 = L13

r2 , L
21 = L21

r2 sin2 ϕ
, L22 =

L22

r4 sin4 ϕ , L
23 = L23

r4 sin2 ϕ , L
31 = L31

r2 , L
32 = L32

r4 sin2 ϕ , L
33 = L33

r4 .

10. (i) trL = Lxhh, Eq. (2.7).

(ii) By Eq. (2.7)1 ⇒ Lxhh = ∂xh

∂zi
∂xk

∂zj L
ijδhk = gijL

ij .

(iii) By Eq. (2.7)2 ⇒ Lxhh = ∂zi

∂xh

∂zj

∂xk
Lijδhk = gijLij .

(iv) By Eq. (2.7)3 ⇒ Lxhh = ∂xh

∂zi
∂zj

∂xk
Lijδhk = δ ji L

i
j = Lii.

(v) By Eq. (2.7)4 ⇒ Lxhh = ∂zi

∂xh

∂xk

∂zj L
j
i δhk = δijL

j
i = L j

j .

11. 1
2g
hm
(
∂gmk

∂zl + ∂gml

∂zk − ∂gkl

∂zm

)
= 1

2
∂zh

∂xp

∂zm

∂xp

(
∂
∂zl

∂xp

∂zm
∂xp

∂zk + ∂
∂zk

∂xp

∂zm
∂xp

∂zl −
∂

∂zm
∂xp

∂zk
∂xp

∂zl

)
= 1

2
∂zh

∂xp

∂zm

∂xp

(
∂2xp

∂zl∂zm
∂xp

∂zk
+

∂xp

∂zm
∂2xp

∂zl∂zk
+

∂2xp

∂zk∂zm
∂xp

∂zl
+

∂xp

∂zm
∂2xp

∂zk∂zl
− ∂2xp

∂zm∂zk
∂xp

∂zl
− ∂2xp

∂zm∂zl
∂xp

∂zk

)
= ∂zh

∂xp

∂zm

∂xp

∂xp

∂zm
∂2xp

∂zk∂zl
=

∂zh

∂xp

∂2xp

∂zk∂zl
= Γhkl.

12. First, we remark that gimgik = ∂zi

∂xp

∂zm

∂xp

∂xq

∂zi
∂xq

∂zk
= δpq

∂zm

∂xp

∂xq

∂zk

= ∂zm

∂zk
= δmk, and similarly, gimgij = δmj . Then, Γ

i
jhgik + Γikhgji

= 1
2

(
gim
(
∂gmj

∂zh
+ ∂gmh

∂zj − ∂gjh
∂zm

)
gik+ gim

(
∂gmk

∂zh
+ ∂gmh

∂zk
− ∂gkh

∂zm

)
gji

)
= 1

2

(
gimgik

(
∂gmj

∂zh
+ ∂gmh

∂zj − ∂gjh
∂zm

)
+ gimgij

(
∂gmk

∂zh
+ ∂gmh

∂zk
− ∂gkh

∂zm

))
= 1

2

(
δmk

(
∂gmj

∂zh
+ ∂gmh

∂zj − ∂gjh
∂zm

)
+ δmj

(
∂gmk

∂zh
+ ∂gmh

∂zk
− ∂gkh

∂zm

))
= 1

2

(
∂gkj

∂zh + ∂gkh

∂zj − ∂gjh
∂zk +

∂gjk
∂zh +

∂gjh
∂zk − ∂gkh

∂zj

)
=

∂gjk
∂zh .

13. (i) gρρ = gzz = 1, gθθ = ρ2, and the other components are null ⇒
gρρ = gzz = 1, gθθ = 1

ρ2 ⇒ Γρθθ = 1
2g
ρm
(
∂gmθ

∂θ + ∂gmθ

∂θ − ∂gθθ
∂zm

)
=

− 1
2g
ρρ ∂gθθ

∂ρ = −ρ,Γθρθ = 1
2g
θm
(
∂gmρ

∂θ + ∂gmθ

∂ρ − ∂gρθ
∂zm

)
=

1
2g
θθ ∂gθθ

∂ρ = 1
ρ , and the other Γkij are null.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om



200 Tensor Algebra and Analysis for Engineers

(ii) grr = 1, gϕϕ = r2 sin2 ϕ, gθθ = r2 ⇒ grr = 1, gϕϕ = 1
r2 sin2 ϕ

, gθθ

= 1
r2 , and the other components are null ⇒

Γϕϕr =
1
2g
ϕm
(
∂gmϕ

∂r + ∂gmr

∂ϕ − ∂gϕr

∂zm

)
= 1

2g
ϕϕ ∂gϕϕ

∂r = 1
r ,

Γθθr =
1
2g
θm
(
∂gθm
∂r + ∂grm

∂θ − ∂gθr
∂zm

)
= 1

2g
θθ ∂gθθ

∂r = 1
r ,

Γrϕϕ = 1
2g
rm
(
∂gϕm

∂ϕ +
∂gϕm

∂ϕ − ∂gϕϕ

∂zm

)
= − 1

2g
rr ∂gϕϕ

∂r = −r,
Γrθθ =

1
2g
rm
(
∂gθm
∂θ + ∂gθm

∂θ − ∂gθθ
∂zm

)
= − 1

2g
rr ∂gθθ

∂r = −r sin2 ϕ,
Γθθϕ = 1

2g
θm
(
∂gθm
∂ϕ +

∂gϕm

∂θ − ∂gθϕ
∂zm

)
= 1

2g
θθ ∂gθθ

∂ϕ = cotϕ,

Γϕθθ =
1
2g
ϕm
(
∂gθm
∂θ + ∂gθm

∂θ − ∂gθθ
∂zm

)
= − 1

2g
ϕϕ ∂gθθ

∂ϕ = − sinϕ cosϕ,

Γϕrϕ = Γϕϕr,Γ
θ
rθ = Γθθr,Γ

θ
ϕθ = Γθθϕ, and the other Γkij are null.

(iii) g11 = g22 = c2

2 (cosh 2z
1 − cos 2z2) ⇒ g11 = g22 =

2
c2(cosh 2z1−cos 2z2) , and the other components are null

⇒ Γ1
11 = 1

2g
1m
(
∂g1m
∂z1 + ∂g1m

∂z1 − ∂g11
∂zm

)
= 1

2g
11 ∂g11

∂z1

= sinh 2z1

cosh 2z1−cos 2z2 ,

Γ1
12 = 1

2g
1m
(
∂g1m
∂z2 + ∂g2m

∂z1 − ∂g12
∂zm

)
= 1

2g
11 ∂g11

∂z2

= sin 2z2

cosh 2z1−cos 2z2 ,

and Γ2
12 = Γ2

21 = Γ1
11 = −Γ1

22,Γ
2
22 = Γ1

12 = Γ1
21 = −Γ2

11.

14. Applying Eq. (6.27), we get:
(i) Δf = ∂

∂ρ

(
gρk ∂f

∂zk

)
+ Γρρjg

jk ∂f
∂zk

+ ∂
∂θ

(
gθk ∂f

∂zk

)
+ Γθθjg

jk ∂f
∂zk

+

∂
∂z

(
gzk ∂f

∂zk

)
+ Γzzjg

jk ∂f
∂zk = ∂

∂ρg
ρρ ∂f
∂ρ + Γρρθg

θθ ∂f
∂θ + ∂

∂θg
θθ ∂f
∂θ +

Γθθθg
θθ ∂f
∂θ + Γθθρg

ρρ ∂f
∂ρ + ∂

∂z g
zz ∂f
∂z = ∂2f

∂ρ2 + 1
ρ2
∂2f
∂θ2 + 1

ρ
∂f
∂ρ + ∂2f

∂z2

= 1
ρ (ρ f,ρ),ρ +

1
ρ2 f,θθ + f,zz, which is the same already found in

Section 5.6.

(ii) Δf = ∂
∂r

(
grk ∂f

∂zk

)
+ Γrrjg

jk ∂f
∂zk

+ ∂
∂θ

(
gθk ∂f

∂zk

)
+ Γθθjg

jk ∂f
∂zk

+

∂
∂ϕ

(
gϕk ∂f

∂zk

)
+ Γϕϕjg

jk ∂f
∂zk = ∂

∂r g
rr ∂f
∂r + Γθθrg

rk ∂f
∂zk + ∂

∂θg
θθ ∂f
∂θ +

Γθθϕg
ϕk ∂f

∂zk
+ ∂

∂ϕg
ϕϕ ∂f

∂ϕ + Γϕϕrg
rk ∂f
∂zk

= ∂2f
∂r2 + 1

r2 sin2 ϕ
∂2f
∂θ2 + 2

r
∂f
∂r +

cotϕ 1
r2
∂f
∂ϕ + 1

r2
∂2f
∂ϕ2 = 1

r2 (r
2f,r),r + 1

r2 sinϕ

(
f,θθ
sinϕ + (f,ϕ sinϕ),ϕ

)
,

which is to be compared to the one given in Section 5.7.
15. (i) By Eqs. (6.11), (6.25), and (6.29), gnp;h = ∂gnp

∂zh
+ Γnhrg

rp

+ Γphrg
nr, gnp = ∂zn

∂xk

∂zp

∂xk
,Γnhr =

∂zn

∂xm

∂2xm

∂zh∂zr , Γ
p
hr =

∂zp

∂xt

∂2xt

∂zh∂zr

⇒ gnp;h = ∂
∂xk

∂zn

∂xh

∂zp

∂xk
+ ∂zn

∂xk

∂
∂xk

∂zp

∂zh
+ ∂zn

∂xm

∂
∂zr

∂xm

∂zh
∂zr

∂xq

∂zp

∂xq

+ ∂zp

∂xt

∂
∂zr

∂xt

∂zh
∂zn

∂xs

∂zr

∂xs
= ∂zn

∂xm

∂
∂zh

∂xm

∂xq

∂zp

∂xq
+ ∂zp

∂xt

∂
∂zh

∂xt

∂xs

∂zn

∂xs
= 0
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because, e.g., ∂z
n

∂zh = δnh,
∂xm

∂xq
= δmq etc., so their derivatives are

null.

(ii) By eqs. (6.3), (6.25), and (6.30), gnp;h = ∂2xk

∂zh∂zn
∂xk

∂zp +
∂xk

∂zn
∂2xk

∂zh∂zp − ∂zr

∂xm

∂2xm

∂zp∂zh
∂xq

∂zn
∂xq

∂zr − ∂zr

∂xt

∂2xt

∂zn∂zh
∂xs

∂zp
∂xs

∂zr =
∂2xk

∂zh∂zn
∂xk

∂zp + ∂xk

∂zn
∂2xk

∂zh∂zp
− δqm

∂2xm

∂zp∂zh
∂xq

∂zn − δst
∂2xt

∂zn∂zh
∂xs

∂zp =
∂2xk

∂zh∂zn
∂xk

∂zp + ∂xk

∂zn
∂2xk

∂zh∂zp
− ∂2xq

∂zp∂zh
∂xq

∂zn − ∂2xs

∂zn∂zh
∂xs

∂zp = 0.

Chapter 7

1. It is sufficient to pose x1 = u, x2 = v, x3 = f(u, v) ⇒ p(u, v) defines a

surface because as f(u, v) is smooth, p(u, v) is also smooth, and because

the Jacobian is [J ] =

⎡
⎣ 1 0

0 1

f,u f,v

⎤
⎦, then rank[J ] = 2.

2. Catenoid: f(u, v) :

⎧⎨
⎩
x1 = coshu cos v,

x2 = coshu sin v,

x3 = u;

Meridians: v = const.; if, for

example, v = 0 ⇒
⎧⎨
⎩
x1 = coshu,

x2 = 0,

x3 = u,

is a catenary in the plane (x1, x3).

f,u =

⎧⎨
⎩

sinhu cos v

sinhu sin v

1

⎫⎬
⎭ , f,v =

⎧⎨
⎩

− coshu sin v

coshu cos v

0

⎫⎬
⎭⇒ g =

[
cosh2 u 0

0 cosh2 u

]
.

f,u × f,v =

⎧⎨
⎩

− coshu cos v

− coshu sin v

sinhu coshu

⎫⎬
⎭ , |f,u × f,v| = cosh2 u⇒ N =

1
coshu

⎧⎨
⎩

− cos v

− sin v

sinhu

⎫⎬
⎭ ;

f,uv = f,vu =

⎧⎨
⎩

− sinhu sin v

sinhu cos v

0

⎫⎬
⎭ , f,uu =

⎧⎨
⎩

coshu cos v

coshu sin v

0

⎫⎬
⎭ ,

f,vv =

⎧⎨
⎩

− coshu cos v

− coshu sin v

0

⎫⎬
⎭⇒ B =

[−1 0

0 1

]
⇒ K = − 1

cosh4 u
.
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202 Tensor Algebra and Analysis for Engineers

3. Pseudo-sphere: f(u, v) :

⎧⎨
⎩
x1 = sinu cos v,

x2 = sinu sin v,

x3 = cosu+ ln
(
tan u

2

)
.

Meridians: v =

const.; if, for example, v = 0 ⇒
⎧⎨
⎩
x1 = sinu,

x2 = 0,

x3 = cosu+ ln
(
tan u

2

)
,

is a tractrix

in the plane (x1, x3).

f,u =

⎧⎨
⎩

cosu cos v

cosu sin v

− sinu+ 1
sinu

⎫⎬
⎭ , f,v =

⎧⎨
⎩

− sinu sin v

sinu cos v

0

⎫⎬
⎭⇒ g =

[
cos2 u
sin2 u

0

0 sin2 u

]
.

f,u × f,v =

⎧⎨
⎩

− cos2 u cos v

− cos2 u sin v

sinu cosu

⎫⎬
⎭ , |f,u × f,v| = | cosu| ⇒ N =

1
| cosu|

⎧⎨
⎩

− cos2 u cos v

− cos2 u sin v

sinu cosu

⎫⎬
⎭ ;

f,uu =

⎧⎨
⎩

− sinu cos v

− sinu sin v

− cosu− cosu
sin2 u

⎫⎬
⎭ , f,uv = f,vu =

⎧⎨
⎩

− cosu sin v

cosu cos v

0

⎫⎬
⎭ ,

f,vv =

⎧⎨
⎩

− sinu cos v

− sinu sin v

0

⎫⎬
⎭⇒ B =

[
− cos2 u

sinu| cosu| 0

0 cos2 u sinu
| cosu|

]
⇒

K = −1.

4. Cone: f(u, v) = vγ(u) ⇒ f,u = vγ′, f,v = γ → N � =o ⇐⇒ v � = 0 and

γ � =αγ′, i.e. everywhere except at the apex of the cone and on straight

lines tangent to γ.

5. The most general equation of the hyperbolic hyperboloid is

f(u, v) :

⎧⎨
⎩
x1 = a(cosu− v sinu),

x2 = b(sinu+ v cosu),

x3 = c v,

a, b, c ∈ R ⇒ f(u, v) = γ(u)+ vλ(u),

with γ(u) = a cosue1 + b sinue2,λ(u) = −a sinue1+ b cosue2+ ce3 ⇒

f(u, v) is a ruled surface. Fixing u = u0 ⇒
⎧⎨
⎩
x1 = a(cosu0 − v sinu0),

x2 = b(sinu0 + v cosu0),

x3 = c v,
equation of a bundle of straight lines belonging to f(u, v) as well as
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Solutions to the Exercises 203

⎧⎨
⎩
x1 = a(cosu0 − v sinu0),

x2 = b(sinu0 + v cosu0),

x3 = −c v.
The angle formed by the two straight lines

of the two sets is θ = arccos a
2 sin2 u0+b

2 cos2 u0−c2
a2 sin2 u0+b2 cos2 u0+c2

.

6. x3 = x1x2; setting u = x1, v = x2 ⇒ f(u, v) :

⎧⎨
⎩
x1 = u,

x2 = v,

x3 = u v,

is of the

type f(u, v) = γ(u) + vλ(v), with γ(u) = ue1,λ(u) = e2 + ue3.

The straight lines

⎧⎨
⎩
x1 = u0,

x2 = v,

x3 = u0 v,

and

⎧⎨
⎩
x1 = u,

x2 = v0,

x3 = u v0,

belong of course to

f(u, v); they form the angle θ = arccos u0v0√
(1+u2

0)(1+v
2
0)
; θ = π

2 ⇐⇒ 0 =

v0 = 0, i.e. at (0, 0, 0).

7. (i) γ(u) = (cos u, sinu,−1),λ(u) = (cosu, sinu, 1) ⇒ f(u, v) =

(cosu, sinu, 2v− 1), which is of the form f(u, v) = γ1(u)+ vλ1(u),

with γ1(u) = (cos u, sinu,−1),λ1(u) = (0, 0, 2) = const.⇒ f(u, v)

being a cylinder whose Cartesian equation is x21 + x22 = 1.

(ii) γ(u) = (sinu,− cosu,−1),λ(u) = (− sinu, cosu, 1) ⇒
f(u, v) = (2v − 1)(− sinu, cosu, 1), which is of the form f(u, v) =

γ2(u) + vλ2(u), with γ2(u) = (sinu,− cosu,−1),λ1(u) =

(−2 sinu, 2 cosu, 2) = −2γ2(u) ⇒ f(u, v) being a cone whose

Cartesian equation is x21 + x22 = x23.

(iii)

{
x1 = (1 − v) cos(u− α) + v cos(u+ α),

x2 = (1 − v) sin(u− α) + v sin(u + α), x3 = −(1− v) + v,
⇒{

x1 = cosu cosα− sinu sinα(2v − 1),

x2 = sinu cosα+ cosu sinα(2v − 1), x3 = 2v − 1.

Change in parameter w = sinα
cosα (2v − 1) ⇒⎧⎨

⎩
x1 = cosα(cos u− w sinu),

x2 = cosα(sinu+ w cosu),

x3 = w cosα
sinα ,

⇒
⎧⎨
⎩
x1 = a(cos u− w sinu),

x2 = a(sinu+ w cosu),

x3 = cw,

a =

cosα, c = cosα
sinα , which is the parametric equation of a hyperbolic

hyperboloid with Cartesian equation
x2
1

a2 +
x2
2

a2 − x2
3

c2 = 1 → x2
1+x

2
2

cos2 α −
x2
3

cot2 α = 1.

8. (i) A sphere of radius R : x21 + x22 + x23 = R2 ⇒ using the

spherical coordinates θ = u, ϕ = v for expressing the xis, we get

the parametric equation f(u, v) :

⎧⎨
⎩
x1 = R cos θ sinϕ,

x2 = R sin θ sinϕ,

x3 = R cosϕ,

⇒ f,u =
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204 Tensor Algebra and Analysis for Engineers

R(− sinu sin v, cos u sin v, 0),

f,v = R(cosu cos v, sinu cos v,− sin v) ⇒ g =

[
R2 sin2 v 0

0 R2

]
.

(ii) If w = af,u + bf,v ∈ TpΣ, I(w) = w · gw = R2(a2 sin2 v + b2).

(iii) A =
∫ θ2
θ1

∫ π
0

√
detgdu dv =

∫ θ2
θ1

∫ π
0

√
R4 sin2 vdu dv = 2R2(θ2−θ1).

(iv) Parallel: setting u = t, v = π
4 ,γ(t) :

⎧⎪⎨
⎪⎩
x1 = R√

2
cos t,

x2 = R√
2
sin t,

x3 = R√
2
,

⇒

γ′(t) :

⎧⎪⎨
⎪⎩
x1 = − R√

2
sin t,

x2 = R√
2
cos t,

x3 = 0,

⇒ γ′(t) = du
dt f,u + dv

dt f,v = f,u ⇒ in the

natural basis of TpΣ,w = (1, 0) is the tangent vector to the parallel

γ(t) ⇒ I(w) = w · gw = R2 sin2 v = R2

2 ⇒ � =
∫ θ2
θ1

√
I(w)dt =

R√
2
(θ2 − θ1).

9. (i) x2
1+x

2
2+x

2
3 = cos2 v

cosh2 u
+ sin2 v

cosh2 u
+ sinh2 u

cosh2 u
= 1

cosh2 u
+ sinh2 u

cosh2 u
= cosh2 u

cosh2 u
=

1 → Cartesian equation of a sphere of centre (0, 0, 0) and radius

R = 1.

(ii) Straight line in Ω :

{
u = u0 + a t,

v = v0 + b t;
⇒ curve on Σ : γ(t) :⎧⎪⎨

⎪⎩
x1 = cos(v0+bt)

cosh(u0+at)
,

x2 = sin(v0+bt)
cosh(u0+at)

,

x3 = sinh(u0+at)
cosh(u0+at)

,

or also, γ(t) = f(u(t), v(t)) ⇒ γ′(t) = du
dt f,u +

dv
dt f,v = af,u + bf,v.

x1
=Meridians: setting v = const. = v̂ ⇒ μ(u) = f(u, v̂); in fact, x2

tan v̂ = const. → equation of a vertical plane. Tangent to the

meridian μ(u) : μ′(u) = f,u ⇒ in the natural basis {f,u, f,v},γ′(t) =
(a, b),μ′(u) = (1, 0); cos θ = I(γ′,μ′)√

I(γ′)I(μ′)
.

fu =
(− cosh v sinhu

cosh2 u
,− sin v sinhu

cosh2 u
, 1
cosh2 u

)
, f,v =(− sin v

coshu ,
cos v
coshu , 0

)
⇒ g = 1

cosh2 u
I ⇒ I(γ′,μ′) = γ′ · gμ′ = a

cosh2 u
, I(γ′) = γ′ · gγ′ =

a2+b2

cosh2 u
, I(μ′) = μ′ · gμ′ = 1

cosh2 u
⇒ cos θ = a√

a2+b2
= const. ⇒

γ(t) is a loxodromic line on the sphere.

10. (i) Catenoid f(u, v) :

⎧⎨
⎩
x1 = ϕ(u) cos v,

x2 = ϕ(u) sin v,

x3 = ψ(u).

with ϕ(u) = coshu, ψ(u) =

u⇒ ϕ′(u) = sinhu, ϕ′′(u) = coshu, ψ′(u) = 1, ψ′′(u) = 0 ⇒
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f,u = (sinhu cos v, sinhu sin v, 1), f,v =

(− coshu sin v, coshu cos v, 0).

(ii) g = cosh2 uI.

(iii) f,u × f,v = (− cos v,− sin v,− sinhu), |f,u × f,v| = coshu⇒
N =

(− cos v
coshu ,− sin v

coshu ,− sinhu
coshu

)
.

f,uu = (coshu cos v, coshu sin v, 0), f,uv = f,vu = (− sinhu sin v,

sinhu cos v, 0), f,vv = −f,uu ⇒ B =

[−1 0

0 1

]
.

(iv) g−1 = 1
cosh2 u

I ⇒ X = g−1B = 1
cosh2 u

B.

(v) Let w = (a, b) ∈ TpΣ ⇒ I(w) = w · gw = cosh2 u(a2 + b2).

(vi) II(w) = w ·Bw = b2 − a2.

11. (i) Helicoid f(u, v) :

⎧⎨
⎩
x1 = v cosu,

x2 = v sinu,

x3 = u,

⇒ f,u = (−v sinu, v cosu, 1),

f,v = (cosu, sinu, 0).

(ii) g =

[
1 + v2 0

0 1

]
.

(iii) f,u × f,v = (− sinu, cosu,−v), |f,u × f,v| =
√
1 + v2 ⇒ N =

1√
1+v2

(− sinu, cosu,−v).
fuu = (−v cosu,−v sinu, 0), f,uv = f,vu = (− sinu, cosu, 0), f,vv =

(0, 0, 0) ⇒ B = 1√
1+v2

[
0 1

1 0

]
.

(iv) g−1 =

[ 1
1+v2 0

0 1

]
.⇒ X = g−1B =

⎡
⎣ 0 1

(1+v2)
3
2

1

(1+v2)
1
2

0

⎤
⎦ .

(v) Let w = (a, b) ∈ TpΣ ⇒ I(w) = w · gw = (1 + v2)a2 + b2.

(vi) II(w) = w ·Bw = 2ab√
1+v2

.

12. (i) Catenoid (see Exercise 2): K = − 1
cosh4 u

< 0 ∀u ⇒ hyperbolic

points.

(ii) Helicoid (see Exercise 11): K = detB
detg = − 1

(1+v2)2 < 0 ∀v ⇒
hyperbolic points.

13. The parametric equation of a circular cylinder of radius R → f(u, v) :⎧⎨
⎩
x1 = R cos v,

x2 = R sin v,

x3 = u,

with u = z, v = θ of a system of cylindrical coordinates.
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206 Tensor Algebra and Analysis for Engineers

Referring to Eq. (7.7), ϕ(u) = R,ψ(u) = u⇒ Eq. (7.32) is

{
u′′ = 0,

v′′ = 0,
⇒{

u(t) = αt+ α1,

v(t) = βt+ β1,
with α, α1, β, β1 = const. If α1 = β1 = 0, we

get the geodesic γ(t) passing through (R, 0, 0) for t = 0 ⇒ γ(t) :⎧⎨
⎩
x1 = R cos v(t),

x2 = R sin v(t),

x3 = u(t),

⇒
⎧⎨
⎩
x1 = R cos(βt),

x2 = R sin(βt),

x3 = αt,

⇒ equation of a helix if

α, β � = 0, of a circle (cross section) ifα = 0, β � = 0, and of a straight

line on the cylinder (generatrix) if α � = 0, β = 0.
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A

adjugate, 35
analytical mechanics, 184
angular velocity, 80
anisotropic elasticity, 71
anomaly, 116, 121
antisymmetry of the cross product,

33
antisymmetry projector, 65
applied vector, 7
arc length, 83
Archimedes’ spiral, 98
asymptotic line, 162
axial tensor, 31
axial tensor field, 109
axial vector, 32

B

basis, 5, 77, 119
basis of eigenvectors, 52
Bertrand’s theorem, 99
binormal vector, 85
Bonnet’s theorem, 95

C

calculus of variations, 183
canonic equations of a curve, 96
canonical decomposition, 16, 58
Cartesian components, 5, 117

Cartesian components of a tensor,
17

Cartesian coordinates, 130

catenary, 100

catenoid, 145

Cauchy–Poisson symmetries, 61

center of the moment, 7

central axis, 10

change in parameterization, 143

change of basis, 6, 41

change of parameter, 78

Christoffel symbols, 137, 173

Codazzi conditions, 178

colatitude, 44, 121

commutation theorem, 30

commutativity property, 43

compatibility conditions, 179

complementary projector, 54, 87

completely symmetric, 61

compliance tensor, 70

components, 118, 127

condition of parallelism, 33

cones, 146

conical curves of Dupin, 162

conical helix, 92

conjugated directions, 162

conjugation product, 59

continuity, 75

contravariant components, 128

207
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208 Tensor Algebra and Analysis for Engineers

coordinate lines, 142
couple, 9
covariant, 127
covariant components, 128
covariant coordinates, 135
covariant derivative, 137, 169
cross product, 32
cubic parabola, 97
curl, 107
curl of a curl, 110
curl of an axial vector, 109
curl theorem, 113
curvature of a curve, 86
curvature vector, 151
curve of vectors, 75
curves of minimal distance, 171
curves of points, 75
curvilinear abscissa, 83
curvilinear coordinates, 125–126
cusp, 97
cycloid, 100
cylinders, 146
cylindrical basis, 117

D

deformation, 103
derivative, 76
derivative of a point, 76
determinant, 22–23
developable surfaces, 158
deviatoric part, 21
deviatoric projector, 63
diffeomorphism, 143
differentiable function, 80
differentiable vector field, 109
differential geometry, 184
differential operators, vi, 121
dilatation factor of the areas, 149
directional derivative, 103
director cosines, 6, 67
distance, 4, 21
divergence, 104
divergence lemma, 111
divergence of a tensor field, 104
divergence of products, 107

divergence or Gauss theorem, 112

doubly ruled, 146
dual basis, 132

dyad, 16

dyadic tensors, 59

E

elasticity tensor, 71
elliptic point, 156

energy decomposition, 71
Enneper’s surface, 166

envelope, 93–94

equiangular property, 98
Euclidean norm, 21, 75

Euler’s angles, 45
Euler’s rotation representation

theorem, 39
Euler–Lagrange equations, 172

evolute, 93

F

first fundamental form, 147

flux theorem, 113
fourth-rank tensor, 57

Frenet–Serret formula, 88, 91
Frenet–Serret local basis, 85

G

Gauss condition, 179

Gauss equations, 164

Gauss theorem, 112
Gauss’ basis, 163

Gauss–Codazzi compatibility
conditions, 174

Gauss–Weingarten equations, 165
Gaussian curvature, 153

general parameterization, 144

generator line, 146
geodesic curvature, 170

geodesics, vii, 169
global rotation, 47

gradient, 104

gradient of the vector field, 137
Green’s formula, 114
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H

harmonic, 105
harmonic fields, 111
helicoids, 146
Hessian, 104
Hooke’s law, 69
hyperbolic hyperboloid, 145
hyperbolic paraboloid, 179
hyperbolic point, 156

I

identity tensor, 15, 135
immersion, 141
incompressible flows, 124
infinitesimal theory of strain,

124
integral of a curve, 80
intrinsic local characteristic, 84
intrinsic property, 86
invariant under an orthogonal

transformation, 68
inverse of a tensor, 22
invertibility theorem, 26
invertible tensor, 26
involute, 93–94
irrotational, 124
isochoric, 124
isomorphism, 30
isotropic, 68

K

Kelvin formalism, 69
kinematics of rigid bodies, 123
knots line, 45
Kronecker’s delta, 5

L

Lamé’s parameters, 174
Laplace’s equation, 27
laplacian, 105, 110, 120
laplacian of products, 110
left minor symmetries, 61
left polar decomposition, 53
lemma of divergence, 112
lemma of Ricci, 140

length of the curve, 81
line of curvature, 161
linear application, 15
linear combination, 29
linear forms representation theorem,

13
linearly independent vectors, 26
local basis, 127
logarithmic spiral, 98
longitude, 44
loxodrome, 145

M

Möbius strip, 146
major symmetries, 60
map of Gauss, 149
material symmetries, 71
matrix, 17
matrix form, 118
matrix of Cartan, 89
mean curvature, 153
meridian, 144
metric, 75
metric tensor, 127
minimal surfaces, vii, 166
Minkowski’s inequality, 82
minor right symmetries, 61
minor symmetries, 61
mirror symmetries, 37
mixed components, 133
mixed coordinates, 135
mixed product, 34
moment of the couple, 9
monkey’s saddle, 157
multiplicity, 30
mutually orthogonal subspaces,

22

N

natural basis, 142
natural parameter, 83
Navier–Stokes equations, 107
norm of a vector, 4
normal basis, 28
normal curvature, 151
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normal plane, 85, 152
normal section, 152
normal to the surface, 141
normal variation, 167–168
null form, 23
null Gaussian curvature, 158
null tensor, 15
nutation, 45

O

operator nabla, 115
orientation of a basis, 35
orientation of the space, 37
origin, 77
orthogonal conjugator, 66
orthogonal projector, 54, 65
orthogonal tensors, 36
orthogonality conditions, 133
orthogonality property, 33, 88
orthonormal, 38
orthonormal basis, 40
osculating circle, 92
osculating plane, 85
osculating sphere, 91

P

parabola, 97
parabolic point, 156
parallel, 144
parallel vector field, 169
parameter, 76
parametric point equation, 78
parametric vector equation, 78
partial derivative, 104
partition, 82
permutation, 25
planar point, 153
polar decomposition, 51
polar decomposition theorem, 53
polar formalism, 71
position vector, 78
positive definiteness, 3
potential theorem, 114
precession, 45
principal curvatures, 153

principal directions, 153
principal invariants, 25
principal normal, 94
principal normal vector, 84
profile curve, 146
proper rotations, 37
proper space, 27
pseudo-scalar, 51
pseudo-sphere, 145
pseudo-vector, 51

Q

quadratic form, 28–29

R

radius of curvature, 92
raising of the indices, 131
re-parameterization, 82
rectangular coordinates, 125
rectifying plane, 85
reflexion tensor, 50
regular curve, 81, 83, 170
regular point, 141
regular region, 113
resultant, 7
resultant moment, 9
rhumb line, 145
Ricci’s alternator, 25
right polar decomposition, 53
rigid displacement, 96
rotation, 36
rotation axis, 39
rotation of the space, 42
rotation tensor, 36
rotation’s amplitude, 39
ruled surface of the normals, 162
ruled surface of the tangents, 159
ruled surfaces, 146

S

scalar, 3
scalar field, 103
scalar product, 20
scalar product of fourth-rank tensors,
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Schwarz’s inequality, 4
Schwarz’s surfaces, 166
scroll, 146
second fundamental form, 150
second gradient, 104
second principal invariant, 55
second-order derivatives, 178
second-rank tensor, 15
semigeodesic coordinates, 170
similitude of the triangles, 176
skew tensor, 19
skew trilinear form, 24
small rotations, 49
spatial derivatives of fields, 135
spectral theorem, 28
spectrum, 27
sphere, 145
spherical coordinates, 120
spherical part, 21
spherical projector, 63
spin tensor, 80
square root theorem, 51
Stokes theorem, 114
streamlines, 105
support, 141
surface in E , 141
surface of revolution, 143
symmetric tensor, 18
symmetry, 3
symmetry projector, 65

T

tangent plane, 142
tangent vector, 84, 142
tangent vector space, 142
tensor algebra and analysis,

183

tensor field, 103
tensor invariant, 20
tensor product, 16, 17
tensor scalar product, 21
tensor theory, vi
tensor-invariant, 23
tensors, 15
theorem of Binet, 24
theorem of Rodrigues, 154, 175
theorema egregium, 165
theoretical mechanics, 183
torsion, 90
torsion of the curve, 89
trace, 19
trace for fourth-rank tensors, 62
tractrix, 101
translation, 1
transport of moment, 8
transpose, 18
transpose of a fourth-rank tensor, 60
transposition projector, 65
transpositions, 25

U

umbilical point, 153
uniqueness, 11, 52
uniqueness of the inverse, 26

V

vector, 1–2
vector field, 103
vector space, 2
vorticity equation, 110

W

Weingarten operator, 150
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