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Preface

This textbook, addressed to graduate students and young researchers in
mechanics, has been developed from the class notes of different courses in
continuum mechanics that I have been delivering for several years as part
of the Master’s program in MMM: Mathematical Methods for Mechanics
at the University Paris-Saclay.

Far from being exhaustive, as any primer text, the intention of this book
is to introduce students in mechanics and engineering to the mathematical
language and tools that are necessary for a modern approach to continuum
theoretical and applied mechanics. The presentation of the matter is hence
tailored for this scientific community, and necessarily, it is different, in
terms of language and objectives, from that normally proposed to students
of other disciplines, such as physics, especially general relativity, or pure
mathematics.

What has motivated me to write this textbook is the idea of collecting
in a single, introductory book a set of results and tools useful for studies in
mechanics and presenting them in a modern, succinct way. Almost all the
results and theorems are proved, and the reader is guided along a tour that
starts from vectors and ends at the differential geometry of surfaces, passing
through the algebra of tensors of second and fourth orders, the differential
geometry of curves, the tensor analysis for fields and deformations, and the
use of curvilinear coordinates.

Some topics are specially treated, such as rotations, the algebra of
fourth-order tensors, which is fundamental for the mechanics of modern
materials, or the properties of differential operators. Some other topics
are intentionally omitted because they are less important to continuum
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mechanics or too advanced for an introductory text. Though in some
modern texts, tensors are directly presented in the most general setting
of curvilinear coordinates, I preferred here to choose a more traditional
approach, introducing first the tensors in Cartesian coordinates, normally
used for classical problems. Then, an entire chapter is devoted to the
passage to curvilinear coordinates and to the formalism of co- and
contravariant components.

The tensor theory and results are specially applied to introduce some
subjects concerning differential geometry of curves and surfaces. Also, in
this case, the presentation is mainly intended for applications to continuum
mechanics and, in particular, in view of courses on slender beams or
thin shells. All the presentation of the topics of differential geometry is
extensively based on tensor algebra and analysis.

More than a hundred exercises are proposed to the reader, many of
them completing the theoretical part through new results and proofs. All
the exercises are entirely developed and solved at the end of the book in
order to provide the reader with thorough support for his learning.

In Chapter 1, vectors and points are introduced and also, with a
small anticipation of some results of the second chapter, applied vectors
are visited. Chapter 2 is completely devoted to the algebra of second-
rank tensors and the succeeding Chapter 3 to that of fourth-rank tensors.
Intentionally, these are the only two types of tensors introduced in the book:
They are the most important tensors in mechanics, and they allow us to
represent deformation, stress, and the constitutive laws. I preferred not to
introduce tensors in an absolutely general way but to go directly to the
most important tensors for applications in mechanics; for the same reason,
the algebra of other tensors, namely of third-rank tensors, is not presented
in this primer text.

The analysis of tensors is done using first-differential geometry of
curves, in Chapter 4, for differentiation and integration with respect to
only one variable, then introducing the differential operators for fields and
deformations, in Chapter 5.

Then, a generalization of second-rank tensor algebra and analysis in
the sense of the use of curvilinear coordinates is presented in Chapter 6,
where the notion of metric tensor, co- and contravariant components, and
Christoffel’s symbols are introduced.

Finally, Chapter 7 is entirely devoted to an introduction to the
differential geometry of surfaces. Classical topics such as the first and second
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fundamental forms of a surface, the different types of curvatures, the Gauss—
Weingarten equations, or the concepts of minimal surfaces, geodesics, and
the Gauss—Codazzi conditions are presented, with all these topics being of
great interest in mechanics.

I tried to write a coherent, almost self-contained manual of mathematical
tools for graduate students in mechanics with the hope of helping young
students progress in their studies. The exposition is as simple as possible,
sober, and sometimes minimalist. I intentionally avoided burdening the
language and the text with nonessential details and considerations, but I
have always tried to grasp the essence of a result and its usefulness.

It is my most sincere hope that the reader who dares to persevere
through the pages of this book will find a benefit to his studies in continuous
mechanics. This is, eventually, the goal of this primer text.
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Chapter 1

Points and Vectors

1.1 Points and vectors

We consider in the following a point space £ whose elements are points p.
In classical mechanics, £ is identified with the Fuclidean three-dimensional
space, wherein events are intended to be set. On &, we admit the existence
of an operation, the difference of any couple of its elements:

q—p, p,q€E.

We associate with £ a vector space V whose dimension is dim)y = 3 and
whose elements are vectors v representing translations over &:

Vp,qe &, A veV| g—p=v.

Any element v € V is hence a transformation over £ that can be written
using the previous definition as

VWweV, v:E=Elqg=v(p) = q=p+V.

We remark that the result of the application of the translation v depends
upon the argument p:

q=p+Vv Fp1+Vv=aq,

whose geometric meaning is depicted in Fig. 1.1. Unlike the difference, the
sum of two points is not defined and is meaningless.
We define the sum of two vectors u and v as the vector w such that

(u+v)(p) = ulv(p)) = w(p).
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p i

Figure 1.1: Same translation applied to two different points.

Figure 1.2: Sum of two vectors: the parallelogram rule.

This means that if

q=v(p) =p+v,

r=u(q) =q+u=w(p),

see Fig. 1.2, which shows that the above definition actually coincides with
the parallelogram rule and that

u-+v=v-+u,

as is obvious, for the sum over a vector space commutes. It is evident that
the sum of more than two vectors can be defined iteratively, summing up
a vector at a time to the sum of the previous vectors.

The null vector o is defined as the difference of any two coincident

o:=p—p Vpe§,

o is unique and the only vector such that

v+o=v Vve
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In fact,

Vpeé&, v+o=v+p—p - p+Vv+o=p+vVv < v+4+o=vV.

A linear combination of n vectors v; is defined as the vector?
wi=Fkv;,, keR, i=1...,n

The n + 1 vectors w, v;, i = 1,...,n, are said to be linearly independent
if there does not exist a set of n scalars k; such that the above equation is
satisfied and are said to be linearly dependent in the opposite case.

1.2 Scalar product, distance, orthogonality

A scalar product on a vector space is a positive definite, symmetric, bilinear
form. A form w is a function

w:VxV =R,

i.e. w operates on a couple of vectors to give a real number, a scalar. We

indicate the scalar product of two vectors u and v as?

w(u,v) =u-v.

The properties of bilinearity prescribe that, Vu,v € V and Vo, 8 € R,

u-(av+pfw)=au-v+pu-w,

(au+pv) - w=au-w+ v -w,
while symmetry implies that

u-v=v-u Yu,vey.
Finally, the positive definiteness means that
v-v>0 VYWwelV, v.-v=0 < v=o.
Any two vectors u, v € V are said to be orthogonal <=

u-v=0.

IWe adopt here and in the following the Einstein notation for summations: All the times
when an index is repeated in a monomial, then the summation with respect to that index,
called the dummy index, is understood, e.g. k;v; = Zl kiv;. We then say that the index
i is saturated. If a repeated index is underlined, then it is not a dummy index, i.e. there
is no summation.

2The scalar product w(u, v) is also indicated as < u, v >.
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Thanks to the properties of the scalar product, we can define the Fuclidean
norm of a vector v as the nonnegative scalar, denoted equivalently by v
or |vl:

Theorem 1. The norm of a vector has the following properties: Yu,v €
V,keR,

lu-v| <wuwv (Schwarz’s inequality);
|lu+v| <u+wv (Minkowski’s triangular inequality);
[kv| = |k|v.
Proof. Schwarz’s inequality: 1t is sufficient to prove that
(u-v)?<u-uv-v.

Let x = v-v and y = —u-v. Then, by the positive definiteness of the scalar
product, we get

(zu+yv) - (zu+yv) =0,

which implies that

z?u-u+2ryu-v+y’v-v=(v-v)2u-u—-2v-v(u-v)

2
+v-v(u-v)? >0

supposing v /£~ o (otherwise, the proof is trivial), we get the thesis on
dividing by v - v.

Minkowski’s inequality: Because the two members of the inequality to
be proved are nonnegative, it is sufficient to prove that

(u+v) - (u+v) < (u+v)? = u? + 2uv + v°.
This can be proved easily:
(u+v)-(u+v)=u-u+2u-v+v-v=u?+2u-v+o?
§u2+2|u-v|+v2§u2+2uv+vz,

in which the last operation follows from Schwarz’s inequality.
The proof of the third property is immediate, it is sufficient to use the
same definition of norm. O

We define the distance between any two points p and ¢ € £ the scalar

d(p.q) == |p—ql = lg —pl.
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Similarly, the distance between any two vectors u and v € V is defined as
d(u,v) :=|lu—v|=|v—ul

Two points or two vectors are coincident if and only if their distance is null.
The unit sphere S of V is defined as the set of all the vectors whose
norm is one:

S:={veV|v=1}

1.3 Basis of V, expression of the scalar product

There is a general way to define a basis for a vector space of any kind. We
limit the introduction of the concept of basis to the case of V only, which
is of interest in classical mechanics. Generally, a basis B of V is any set of
three linearly independent vectors e;,7 = 1,2,3, of V:

B = {61762763}.

The introduction of a basis for V is useful for representing vectors. In fact,
once a basis B is fixed, any vector v € V can be represented as a linear
combination of the vectors of the basis, where the coefficients v; of the
linear combination are the Cartesian components of v:

V = v;€; = v1€] + v2€e9 + v3es.

Though the choice of the elements of a basis is completely arbitrary, the
only condition being their linear independency, we use in the following
only orthonormal bases, which are bases composed of mutually orthogonal
vectors of S, i.e. satisfying

e;-ej =0,
where the symbol d;; is the so-called Kronecker’s delta:
1 if i =j,
dij = e,
0 ifi A&j.
The use of orthonormal bases has great advantages; namely, it allows us to
give a very simple rule for the calculation of the scalar product:

u-v=1ue - v;e; = uivjéij = U;V; = U1V + U2V2 + U3V3.
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In particular, it is
vV-e, =uvper-€e = vl =v;, 1=1,23.

So, the Cartesian components of a vector are the projection of the vector
on the three vectors of the basis B; such quantities are the director cosines
of v in the basis B. In fact, if  is the angle formed by two vectors u and
v, then

u-v=uwv cosb.

This relation is used to define the angle between two vectors,

u-v
0 = arccos ,
u v
which can be proved easily: Given two vectors u and v, we look for ¢ € R
such that the vector u — cv is orthogonal to v:
u-v. o u-v

— v=0 <= ¢c=—=
(u—cv)-v c= 3

Now, if u is inclined at 6 on v, its projection u, on the direction of v is
Uy = U COSH,

and, by construction (see Fig. 1.3), it is also

Uy = C V.
So,
u u u u-v
c= —cosf — —cosf = 5 = cosf = .
v v v u v

We remark that while the scalar product, being an intrinsic operation,
does not change with a change of basis, the components v; of a vector are

u-cv

\4

\4

Figure 1.3: Angle between two vectors.
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not intrinsic quantities, but they are basis-dependent: A change of the basis
makes the components change. The way this change is done is introduced
in Section 2.11.

A frame R for £ is composed of a point o € &, the origin, and a basis
B of V:

R :={o,B} = {o;e1,e2,e3}.
The use of a frame for £ is useful for determining the position of a point

p, which can be done through its Cartesian coordinates x;, defined as the
components in B of the vector p — o:

zi:=(p—o0)-e, i=1,2,3.

Of course, the coordinates z; of a point p € £ depend upon the choice of o
and B.

1.4 Applied vectors

We introduce now a set of definitions, concepts, and results that are widely
used in physics, especially in mechanics. For that, we need to anticipate
some results that are introduced in the next chapter, namely that of cross
product, in Section 2.9, and of complementary projector, in Exercise 2,
Chapter 2. This slight deviation from the good rule of consistent progression
in stating the results is justified by the fact that, actually, the matter
presented hereafter is still that of vectors. The reader can, of course, come
back to the topics of this section once they have studied Chapter 2.

We call applied vector vP a vector v associated to a point p € £. In
physics, the concept of applied vector? is often employed, for example, to
represent forces?. We define the resultant of a system of n applied vectors
v as the vector

n
R := E vl
i=1

We define the moment of an applied vector vP about a point o, called the
center of the moment, the vector

M, := (p—o0) x v,

3In the literature, applied vectors are also called bound vectors.

4The fact that in classical mechanics forces can be represented by vectors is actually a
fundamental postulate of physics. Forces are vectors that cannot be considered belonging
to the translation space V; nevertheless, the definitions and results found earlier are also
valid for vectors ¢ V.
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Figure 1.4: Moment arm of an applied vector.

and the resultant moment of a system of n applied vectors v about a point
o the vector

We remark that R, M,, and M are not applied vectors.
If ue S| uxv? =o, then

b:=|I-u®u)(p—o)|=|p—o|sinb
is called the moment arm of vP with respect to the center o. It measures

the distance of o from the line of action, i.e. the line passing through p and
parallel to vP, cf. Fig. 1.4.

Theorem 2 (Transport of moment). if M, is the moment of an
applied vector vP about a center o1, the moment M,, of vP about another
center oy 18

M,, = M,, + (01 — 02) x VvP.
Proof. Referring to Fig. 1.5,
M,, = (p—o02) x VP
=(p—o01+01—03) x VP =(p—o01) X VP 4 (01 — 02) x V¥

=M,, + (01 — 02) x VP. 0

A consequence of this theorem is that M,, = M,, <= v? X (01 — 02),
i.e. if vP and o1 — 02 are parallel. It follows from this that the moment
of an applied vector does not change when calculated about the points of
a straight line parallel to the vector itself or, more importantly, if v? is
translated along its line of action.
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02

VP

01

Figure 1.5: Scheme for the transposition of the moment.

The above theorem can be extended to the resultant moment of a system
of applied vectors to give (the proof is quite similar)

M22 = le + (01 — 02) x R. (11)

Also, in this case, the resultant moment does not change when R and 01 — 09
are parallel vectors, but not exclusively, as another possibility is that R = o:
For the systems of applied vectors with null resultant, the resultant moment
is invariant with respect to the center of the moment.

An interesting relation can be found if the two members of the last
equation are projected onto R, which gives

M, -R=M, -R: (1.2)

The projection of the resultant moment onto the direction of R does not
depend upon the center of the moment.

A particularly important case of the system with a null resultant is that
of a couple, which is composed of two opposite vectors v and —v, which
are applied to two points p and ¢:

vP = —vi,

Of course, by definition, R = o for any couple and, as a consequence, the
resultant moment M" of a couple, called the moment of the couple and
simply denoted by M, is independent of the center of the moment (that is
why the index denoting the center of the moment is omitted): Referring to
Fig. 1.6,

M=(p-o0)xvP4+(g—0o)xvi=(p—0)xv—(g—0) XV
=((p=0)=(g=0) xv=(p-q) xV.
If ue S| uxv=o,then
be:=|I-u®u)(p—q)|=|p—q|sind



Downloaded from www.worldscientific.com

10 Tensor Algebra and Analysis for Engineers

v /

be Ve
Figure 1.6: Scheme of a couple.

is the couple arm. We then have
M =|(p—q) xv|=|p—qlvsing = bev.

The central axis A of a system of n applied vectors with R /%o is the
axis such that

M, xR=0 VacA

Theorem 3 (Existence and uniqueness of the central axis). The
central axis of a system of n vectors exists and is unique.

Proof. Existence: we need at least a point a € ]| ME = kR, k € R =
M! x R = o. From Eq. (1.1), Yo € &, we get

M’ xR = M'xR+((0—a)xR)xR = M’ xR—R?*(0—a)+(R-(0—a))R.

Then, if we take for o — a the vector

M, xR
R? 7

0O—a=
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it is evident that we get

M, xR =o.
Hence, the point
M, xR
a=o0-— i{iQ e A.

So, because M" does not change when calculated with respect to the points
of an axis parallel to R, A is the axis passing through a and parallel to R
whose equation is

M, xR
p:a—l—tR:o—i{iQ—i—tR, teR.
Uniqueness: Suppose another axis A £~ A exists, which is necessarily parallel

to A. If ¢ € A, again using Eq. (1.1), we get
M; xR=M; xR+ ((a—q) xR) xR.

In this equation, the left-hand side and the first term on the right-hand side
are null by the definition of central axis. Because (a—q) x R is perpendicular
to R and R Ao by hypothesis, the left-hand side is null if and only if
a=q= A=A O

The central axis has another remarkable property.

Theorem 4 (Property of minimum of the central axis). The points
of the central axis minimize the resultant moment.

Proof. When M" is calculated about a point a € A, it is parallel to R,
which is not the case for any point ¢ ¢ A. In this last case, hence, M"
also has a component orthogonal to R. Then, by virtue of the invariance of
the projection of M" onto R, Eq. (1.2), M" gets its minimum value when
calculated about the points of A. 0

Let us now consider the case of systems for which
M)-R=0 VYoeé&.

This is namely the case of systems of coplanar or parallel vectors (cf.
Exercise 1.5). Because in this case, for the points a € A, it must be at
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the same time M, - R = 0 and M, x R = o, so the only possibility is that
M, =0 VacA,

i.e. in this case, A is the axis of points that make the resultant moment
vanish.

Two systems of applied vectors are equivalent if they have the same
resultant R and the same resultant moment M/ about any center o € £.
The equivalence does not depend upon the center o. In fact, by Eq. (1.1),
if two systems have the same R and the same My , with o1 a given point,
then also My, will be the same Vo, € £.

Theorem 5 (Reduction of a system of applied vectors). A system of

applied vectors is always equivalent to the system composed of the resultant

T
o’

R applied at a point o and by a couple with moment M = M
point of £.

with o any

Proof. By construction, R is the same for the two systems; moreover, for
the equivalent system (resultant plus couple), it is

M+ (0 —0) x R=M.

So, if the couple has a moment M = M, the two systems are equivalent.
O

In practice, this theorem affirms that it is always possible to reduce a
system of n applied vectors to only an applied vector equal to R and to a
couple or, if one of the two vectors composed of the couple is applied to
the same point of R, to two applied vectors. It is worth noting that the
equivalence of the two systems is preserved if a vector is translated along
its line of action because in such a case, R and M/, do not change.

Finally, a system of n applied vectors is said to be equilibrated if

R=o0, M)=0 VYoe&.

We note that because R = o, the center o can be any point of &£.

1.5 Exercises

1. Prove that the null vector is unique.
2. Prove that the null vector is orthogonal to any vector.
3. Prove that the norm of the null vector is zero.
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. Prove that

uv=0 < ju—-v|=|utv| Yuvel.

. Prove the linear forms representation theorem: Let b : V — R be a

linear function. Then, 3! u € V such that

Y(v)=u-v Yv eV

. Consider a point p and two noncollinear vectors u,v € § at p. Show

that a vector w is the bisector of the angle formed by u and v if and
onlyifw-u=w-v.

Show that in the case of systems composed of coplanar or parallel
applied vectors with R ~o,M/ -R =0 Yo € £.

. Prove that any system of applied vectors with R = o is equivalent to

a couple.

. Prove that a system of applied vectors all passing through a point p is

equivalent to R applied to p.

Prove that if for a system of applied vectors M| = o, then the system
is equivalent to R applied to o. Then, show that if o € A, this is the
case of coplanar or parallel vectors.

Prove that a system of applied vectors is equilibrated if and only if any
equivalent system is equilibrated.

Prove that two applied vectors form an equilibrated system if and only
if they are two opposite vectors applied to the same point.

Prove that a system of applied vectors is equilibrated if all the vectors
pass through the same point and R = o.



Downloaded from www.worldscientific.com

This page intentionally left blank



Downloaded from www.worldscientific.com

Chapter 2

Second-Rank Tensors

2.1 Second-rank tensors

A second-rank tensor L is any linear application from V to V:
L: V-V | L(aiui) :Oél'Llli VOZZ' E]R, u; EV, 1= ].,...,77,.

Though here, V indicates the vector space of translations over &, the

1

definition of tensor® is more general, and in particular, V can be any vector

space.
Defining the sum of two tensors as

(L1 +Ly)u =Liu+Lou YueV, (2.1)
the product of a scalar by a tensor as
(eL)u = a(Lu) Va e R,ueV,
and the null tensor O as the unique tensor such that
Ou=o0oVYueV,

then the set of all the tensors L that operate on V forms a vector space,
denoted by Lin(V). We define the identity tensor I as the unique tensor
such that

ITu=u YueV.

IWe consider, for the time being, only second-rank tensors that constitute a very
important set of operators in classical and continuum mechanics. In the following, we
also introduce fourth-rank tensors.

15
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Different operations can be defined for the second-rank tensors. We
consider all of them in the following sections.

2.2 Dyads, tensor components

For any couple of vectors u and v, the dyad? u ® v is a tensor defined by
(u@v)w:=v-wu Ywe .

The application defined above is actually a tensor because of the bilinearity
of the scalar product. The introduction of dyads allows us to express any
tensor as a linear combination of dyads. In fact, it can be proved that if
B = {e1, ez e3} is a basis of V, then the set of nine dyads,

82: {ei®ej7 7’7]: 17273}7

is a basis of Lin(V) so that dim(Lin(V)) = 9. This implies that any tensor,
L € Lin(V), can be expressed as

L:L'Lj e’i®ej7 7’;]: 172737

where L;;s are the nine Cartesian components of L with respect to B2. L;js
can be calculated easily:

€e; ~Lej =e€e; - Lhkeh X er €; = Lhkei ‘€h € -e; = Lhkéihajk = Lij.

The above expression is sometimes called the canonical decomposition of a
tensor. The components of a dyad can be computed as follows:

(Uu®vVv);; =e;-(URV)e;=u-e; Ve =u; v, (2.2)

The components of a vector v, resulting from the application of a tensor
L on a vector u, can now be calculated:

v=Lu= Lij (ei X ej)(ukek) = Lijukdjkei = Lijujei — VUV = Lijuj~
(2.3)

Depending upon two indices, any second-rank tensor L can be repre-
sented by a matrix whose entries are the Cartesian components of L in the

2In some texts, the dyad is also called the tensor product; we prefer to use the term dyad
because the term tensor product can be ambiguous, as it is used to denote the product
of two tensors, see Section 2.3.
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basis B:
Lyy Lz Ly
L= Ly Ly Lo3
L3 L3z Lss

Because any u € V, depending upon only one index, can be represented by
a column vector, Eq. (2.3) represents actually the classical operation of the
multiplication of a 3 x 3 matrix by a 3 x 1 vector.

2.3 Tensor product
The tensor product of Ly and Ly € Lin()V) is defined by
(L1L2)V = Ll(LQV) Vv e V.

By linearity and Eq. (2.1), VL, L1, Lo € Lin(V),u € V, we get

[L(Ll + L2)]V = L[(Ll + L2)V] = L(L1V + L2V)
= LL1V + LLQV = (LL1 + LLQ)V — L(Ll + LQ)
= LL; + LL,.

We remark that the tensor product is not symmetric:
L,L, 75 LoLy;
however, by the same definition of the identity tensor and of tensor product,
IL=LI=LVL € Lin(V).

The Cartesian components of a tensor L = AB can be calculated using
Eq. (2.3):

Lij = €; - (AB)ej = €; - A(Bej) = €; 'A(Bhk(ej)k eh) = Bhkéjkei . Aeh
= Bhurdjrei - (Apg(en)q €p) = ApgBrrdjrdqndip = AinBh;.

The above result simply corresponds to the row—column multiplication of
two matrices. Using that, the following two identities can be readily shown:

(a®@b)(ced)=b-cla®d) Va,b,c,deV,

_ (2.4)
A(a®b)=(Aa)®b Va,beV, A € Lin(V).
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Finally, the symbol L? is normally used to denote, in short, the product
LL, VL € Lin(V).

2.4 Transpose, symmetric and skew tensors

For any tensor L € Lin(V), there exists just one tensor LT, called the
transpose of L, such that

u-Lv=v-L'u Vu,veV. (2.5)
The transpose of the transpose of L is L:
u-Lv=v-L'u=u-L")'v = @LHT =L

The Cartesian components of LT are obtained by swapping the indices of
the components of L:

Li=e L'ej=e;-(L")"e;=¢e; Le; = Lj;.
It is immediate to show that
(A+B)" =AT +B" VA Bc Lin(V),
while
u-(ABjv=Bv-A'u=v-B'ATu = (AB)'=BTA".
Moreover,
u-(a@b)v=a-ub-v=v-(b®aju = (a@b)' =b®a. (2.6)

A tensor L is symmetric <

L=L".
In such a case, because L;; = LZ—TJ—, we have
Li; = Lj;.

A symmetric tensor is hence represented, in a given basis, by a symmetric
matrix and has only six independent Cartesian components. Applying
Eq. (2.5) to I, it is immediately recognized that the identity tensor is
symmetric: I=17.

A tensor L is antisymmeltric or skew <

L=-L".
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In this case, because L;; = —L

ij» We have (no summation on the index i,
see footnote 1, Chapter 1)

Lij = 7Lj1' = LEZOVZ: 1,2,3.

A skew tensor is hence represented, in a given basis, by an antisymmetric
matrix whose components on the diagonal are identically null in any basis;
finally, a skew tensor only depends upon three independent Cartesian
components.

If we denote by Sym(V) the set of all the symmetric tensors and by
Skw(V) that of all the skew tensors, then it is evident that Vo, 8, \, u € R,

Sym(V) N Skw(V) = O,
aA + B € Sym(V) VA, B € Sym(V),
AL + uM € Skw(V) VL, M € Skw(V),
so Sym(V) and Skw(V) are vector subspaces of Lin()V) with
dim(Sym(V)) = 6, while dim(Skw(V)) = 3.
Any tensor L can be decomposed into the sum of a symmetric, L®, and
an antisymmetric, L*, tensor:

L=L°+L°
with
L=l +2LT € Sym(V)
and
Lo -k _2LT € Skw(V)

so that, finally,

Lin(V) = Sym(V) & Skw(V).

2.5 Trace, scalar product of tensors

There exists one and only one linear form
tr: Lin(V) — R,
called the trace, such that

tr(a®@b)=a-b Va,be ).
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For the same definition that has been given without making use of any basis
of V, the trace of a tensor is a tensor invariant, i.e. a quantity extracted
from a tensor that does not depend upon the basis.

Linearity implies that

tr(aA 4+ fB) = atrA + ptrB Va,5 € R, A,B € Lin(V).
It is just linearity to give the rule for calculating the trace of a tensor L:
trL = tr(L;je; ® ;) = L;jtr(e; @ ej) = L;j €;-€j = L;;0;5 = Ly, (2.7)
A tensor is hence an operator whose sum of the components on the diagonal,
trL = L1y + Loy + L33,

is constant, regardless of the basis.
Following the same procedure above, it is readily seen that

trLT = trL,
which implies, by linearity, that
trL =0 VL € Skw(V). (2.8)

The scalar product of tensors A and B is a positive definite, symmetric
bilinear form defined by

A-B=tr(A'B).
This definition implies that, VL, M, N € Lin(V), «,8 € R,

L-(aM+ pN)=aL-M+ gL-N,
(L + M) -N=aL -N+M-N,
L-M=M-L,
L-L>0VLelLin(V), L-L=0 < L=0.
These properties give the rule for computing the scalar product of two
tensors A and B:
A -B=Ajj(e;®e;) Bu(en ®ex) = AijBur(e; @ ;) - (en @ ey)
= AijBui, tr(e; @ e)) " (e, ® ex)] = Ay Buy, tr[(e; @ e;)(en, © ey)]
= A;; Bk tr[e; - en(ej @ ey)] = AijBui € - ep € - €
= AijBridindji = AijBij.
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As in the case of vectors, the scalar product of two tensors is equal to the
sum of the products of the corresponding components. In a similar manner,
or using Eq. (2.4)1, it is easily shown that, Va,b,c,d € V,

(a®b) (C®d) = a-C b'd:aibjcl-dj,
while by the same definition of the tensor scalar product,
ttL=1-L VL € Lin(V).

Similar to vectors, we define the Fuclidean norm of a tensor L the
nonnegative scalar, denoted either by L or |L:

L= |L| = \/LL = \/tI‘(LTL) = \/LijLij

and the distance d(L, M) of two tensors L and M the norm of the tensor
difference:

d(L,M) := |L - M| = |M —L|.

2.6 Spherical and deviatoric parts
Let L € Sym(V); the spherical part of L is defined by
Lo = Lo 1
3
and the deviatoric part by
Ldev =L — Lsph
so that
L= Lsph + Ldev'
We remark that
1
trLP" = gtrL trl = trL,. = trL9’ =0,
i.e. the deviatoric part is a traceless tensor. Let A;B € Lin(V), then

1 1
Asph . Bdev — SrA T B = StrA trB9v = 0, (2.9)

i.e. any spherical tensor is orthogonal to any deviatoric tensor.
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The sets
1

Sph(V) = {ASPh € Lin(V)| A" = SITATVA € Lm(V)} :

Dev(V) := {A%" € Lin(V)| A% = A — A" VA € Lin(V)}
form two subspaces of Lin(V); the proof is left to the reader. For what is
proved above, Sph(V) and Dev(V) are two mutually orthogonal subspaces
of Lin(V).
2.7 Determinant, inverse of a tensor
The reader is probably familiar with the concept of determinant of a matrix.
We show here that the determinant of a second-rank tensor can be defined
intrinsically and that it corresponds with the determinant of the matrix that
represents it in any basis of V. For this purpose, we first need to introduce
a mapping:

w:VxVxV—->R

is a skew trilinear form if w(u,v,-),w(u,-,v), and w(-,u, v) are linear forms

on VY and if

wu,v,w) = —w(v,u,w) = —w(u,w,v) = —w(w,v,u) Yu,v,w € V.
(2.10)

Using this definition, we can state the following.

Theorem 6. Three vectors are linearly independent if and only if every
skew trilinear form of them is not null.

Proof. In fact, let u = av + Sw, then for any skew trilinear form w,
w(u,v,w) =w(av + pw,v,w) = aw(v,v,w) + Sw(w,v,w) =0

because of Eq. (2.10) applied to the permutation of the positions of the two
u and the two w. ([l
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It is evident that the set of all the skew trilinear forms is a vector space
and that we denote by €2, whose null element is the null form wy,

wo(u,v,w) =0Vu,v,w € V.

For a given w(u,v,w) € Q, any L € Lin(V) induces another form
wr(u,v,w) € Q, defined as

wr(u,v,w) = w(Lu,Lv,Lw) Vu,v,w € V.

A key point? for the following developments is that dim 2 = 1.
This means that Vwy,ws # wg € 2,3\ € R such that

wa(u,v,w) = Awy(u,v,w) Yu,v,w € V.
So, VL € Lin(V), there must exist Az, € R such that
w(Lu,Lv,Lw) =wi(u,v,w) = A\ w(u,v,w) Yu,v,w € V. (2.11)

The scalar* Ay, is the determinant of L, and in the following, it will be
denoted as det L. The determinant of a tensor L is an intrinsic quantity of
L, i.e. it does not depend upon the particular form w, nor on the basis of V.
In fact, we have never introduced, so far, a basis for defining det L, hence it
cannot depend upon the choice of a basis for V, i.e. det L is tensor-invariant.

Then, if w® and w® € Q, because dim ) = 1, there exists k € R, k A~ 0,
such that

W(u,v,w) =k w(u,v,w) Yu,v,w € V =
wb(Lu, Lv, Lw) = k w*(Lu, Lv, Lw) —
W (u, v, w) =k wi(u,v,w).

Moreover, by Eq. (2.11), we get

3The proof of this statement is rather involved and outside of our scope; the interested
reader is referred to the classical textbook by Halmos on linear algebra, Section 31 (see
the bibliography). The theory of the determinants is developed in Section 53.

4More precisely, det L is the function that associates a scalar with each tensor (Halmos,
Section 53). We can, however, for the sake of practice, identify det L with the scalar
associated with L, without consequences for our purposes.
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so that
Mk w(u,v,w) = Al (u, v, w) = wh (u, v, w)
=k wi(u,v,w) =Nk w'(u,v,w) <= N\ =\,

which proves that det L does not depend upon the skew trilinear form but
only upon L.

The definition given for detL allows us to prove some important
properties. First of all,

det O = 0;
in fact, Yw € §,
det O w(u,v,w) = w(Ou, Ov,0w) = w(0,0,0) =0 Yu,v,w € V

because w operates on three identical, i.e. linearly dependent, vectors.
Moreover, if L = I, then

detT w(u,v,w) = w(Iu,Iv,Iw) = w(u, v, w)
if and only if
detT=1. (2.12)
A third property is that Va,b € V,
det(a®b) = 0. (2.13)
In fact, if L = a ® b, then
detL w(u,v,w) =w(Lu,Lv,Lw) =w((b-u)a,(b-v)a,(b-w)a) =0

because the three vectors on which w € €2 operates are linearly dependent;
with u, v, and w being arbitrary, this implies Eq. (2.13).
An important result is the following.

Theorem 7 (Theorem of Binet). VA,B € Lin(V),

det(AB) = det A det B. (2.14)

Proof. Vw € Q and Vu,v,w € V,

Apw(u,v,w) = w(ABu, ABv,ABw) = w(A(Bu),A(Bv),A(Bw)) =
Aaw(Bu, Bv,Bw) = M Apw(u,v,w) <= Aap = A\alp,

which proves the theorem. O
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A tensor L is called singular if det L = 0, otherwise it is non-singular.
Considering Eq. (2.11), with some effort but without major difficulties,
one can see that, if in a basis B of V, we have L = L;;e; ® e;, then

det L = Z €x(1),7(2),7(3) L1, w1 L2,x2) L3, (3)
TEP3

where Ps is the set of all the permutations 7 of {1,2,3} and the ¢; ; ;s are
the components of Ricci’s alternator”:

1 if {i,7,k} is an even permutation of {1,2,3},
€k = 0 if {i,j,k} is not a permutation of {1,2, 3},
—1 if {i,75,k} is an odd permutation of {1,2,3}.

The above rule for detL coincides with that for calculating the
determinant of the matrix whose entries are L;;s. This shows that, once a
basis B for V is chosen, det L coincides with the determinant of the matrix
representing it in B and, finally, that

det L = L11LoaL33 + LiaLo3Lgy + LizL3aLoy

(2.15)
— Ly1Lo3L3y — Lo Ly13L31 — LazLi2La;.

This result shows immediately that VL € Lin()), and regardless of B, we
have

det LT = det L. (2.16)
Using Eq. (2.15), it is not difficult to show that, Vo € R,
det(I+aL) =1+ aly + oI + ® I3, (2.17)

where I, I, and I3 are the three principal invariants of L:

tr?L — trL2

Il = tI‘L, IQ = B) s

I3 = det L. (2.18)

5We recall that a permutation of an ordered set of n objects is even if it can be obtained
as the product of an even number of transpositions, i.e. exchange of places, of any
couple of its elements and it is odd if the number of transpositions is odd. For the
set {1,2,3}, the even permutations are {1,2,3},{3,1,2},{2,3,1}, while the odd ones
are {2,1,3},{1,3,2},{3,2,1}; any triplet having at least a repeated number is not a
permutation.
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A tensor L € Lin(V) is said to be invertible if there is a tensor L™! €
Lin(V), called the inverse of L, such that

LL'=L'L=1 (2.19)

If L is invertible, then L' is unique. By the above definition, if L is
invertible, then

u=Lu=u=L""'u;.

Theorem 8. Any invertible tensor maps triples of linearly independent
vectors into triples of still linearly independent vectors.

Proof. Let L be an invertible tensor and u; = Lu,vy; = Lv,w; = Lw,
where u, v, and w are three linearly independent vectors. Let us suppose
that there exist h, k € R such that

u; = hvy + kwy.
Then, because L is invertible,
Lflul = Lil(hvl + le) = hLilvl + kL71W1 = hv —+ kW,

which goes against the hypothesis. Consequently, uy, v, and wy are linearly
independent. U

This result, along with the definition of a determinant, Eq. (2.11), and
Theorem 6, proves the following.

Theorem 9 (Invertibility theorem). L € Lin(V) is invertible <=
detL =0

Using the theorem of Binet, Theorem 7, along with Eqs. (2.12) and (2.19),
we get

1
detL™t = ——.
¢ det L

Equation (2.19) applied to L™!, along with the uniqueness of the inverse,
gives immediately that

L) =L,
while
B 'A"'=B'A'AB(AB) ' = (AB) !
The operations of transpose and inversion commute:
LTLN)!'=I=L"'L=1"=L"'L)" =LTLHT =
L HT =@ t:=L"T.
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2.8 Eigenvalues and eigenvectors of a tensor

If there exists a A € R and a v € V, except the null vector, such that
Lv = v, (2.20)

then A is an eigenvalue and v an eigenvector, relative to A, of L. It is
immediate to observe that, thanks to linearity, any eigenvector v of L is
determined to within a multiplier, i.e. that kv is an eigenvector of L too
Vk € R. Often, the multiplier & is fixed in such a way that |v| = 1.

To determine the eigenvalues and eigenvectors of a tensor, we rewrite
Eq. (2.20) as

(L—-XI)v =o. (2.21)
The condition for this homogeneous system having a non-null solution is
det(L — A\I) = 0;

this is the so-called characteristic or Laplace’s equation. In the case of a
second-rank tensor over V, the Laplace’s equation is an algebraic equation
of degree three with real coefficients. The roots of the Laplace’s equation
are the eigenvalues of L; because the components of L, and hence the
coefficients of the characteristic equation, are all real, then the eigenvalues
of L are all real or one real and two complex conjugate.

For any eigenvalue \;, i = 1,2,3, of L, the corresponding eigenvectors
v; can be found by solving Eq. (2.21), once we set A = ;.

The proper space of L relative to A is the subspace of Lin()) composed of
all the vectors that satisfy Eq. (2.21). The multiplicity of X is the dimension
of its proper space, while the spectrum of L is the set composed of all of its
eigenvalues, each one with its multiplicity.

LT has the same eigenvalues of L because the Laplace’s equation is the
same in both the cases:

det(LT — AI) = det(LT — MXI") = det(L — A\I)" = det(L — AI).

However, this is not the case for the eigenvectors that are generally different,
as a numerical example can show.

Developing the Laplace’s equation, it is easy to show that it can be
written as

det(L — M) = —=\3 + L\2 — A+ I3 =0,
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which is merely an application of Eq. (2.17). If we denote L? = LLL, using
Eq. (2.18), one can prove the following.

Theorem 10 (Cayley—Hamilton theorem). VL € Lin(V),
L® - LL? + LL - I31=0.
A quadratic form defined by L is any form w : V x V — R of the type
w=v-Lv;

ifw>0Vv eV, w=0 < v =o0, then w and L are said to be positive
definite. The eigenvalues of a positive definite tensor are positive. In fact,
if A is an eigenvalue of L, which is positive definite, and v its eigenvector,
then

v.Lv=v-Av=AvZ>0 < \A>0.

Let vi and va be two eigenvectors of a symmetric tensor L relative to the
eigenvalues \; and \g, respectively, with A1 # Aa. Then,

AMVvy-vo=Lvi-vo =Lvy-vi = \vy vy < v;- vy =0.

Actually, symmetric tensors have a particular importance, specified by the
following.

Theorem 11 (Spectral theorem). The eigenvectors of a symmetric
tensor form a basis of V.

This theorem® is of paramount importance in linear algebra: It proves that
the eigenvalues of a symmetric tensor L are real valued and, remembering
the definition of eigenvalues and eigenvectors, Eq. (2.20), that there exists a
basis By = {u1,uz,us} of ¥V composed of eigenvectors of L, i.e. by vectors
that are mutually orthogonal and that remain mutually orthogonal once
transformed by L. Such a basis is called the normal basis.

If \j,i =1,2,3, are the eigenvalues of L, then the components of L in
By are

Lij = u; -Luj =u; - )\jU.j = )\jéij,
so finally in By, we have

L=)\e ®e;,

6The proof of the spectral theorem is omitted here; the interested reader can find a proof
of it in the classical text by Halmos, p. 155, see the suggested texts.
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i.e. L is diagonal and is completely represented by its eigenvalues. In
addition, it is easy to check that

L =M+ X+ A3, Io =Moo+ Aadg + A3, I3 = A A2)s.

A tensor with a unique eigenvalue A of multiplicity three is said to be
spherical; in such a case, any basis of V is By and

L =)L

Eigenvalues and eigenvectors also have another important property: Let us
consider the quadratic form w := v - Lv, Vv € §, defined by a symmetric
tensor L. We look for the directions v € S, whereupon w is stationary.
Then, we have to solve the constrained problem

Vy(v-Lv)=o0, veS.
Using Lagrange’s multiplier technique, we solve the equivalent problem
V(v -Lv—Av?—1)) =0,
which restitutes the equation
Lv =)v

and the constraint |v| = 1. The above equation is exactly the one defining
the eigenvalue problem of L: The stationary values (i.e. the maximum
and minimum) of w hence correspond to two eigenvalues of L and the
directions v, whereupon the stationarity coincides with the respective
eigenvectors.

Two tensors A and B are said to be coazial if they have the same normal
basis By, i.e. if they share the same eigenvectors. Let u be an eigenvector
of A, relative to the eigenvalue A4, and of B, relative to Ag. Then,

ABu=A)gu=AgAu= XM Apu=,Bu=B)ju=BAu,

which shows, on the one hand, that Bu is also an eigenvector of A, relative
to the same eigenvalue A 4; in the same way, of course, Au is an eigenvector
of B relative to Ap. In other words, this shows that B leaves unchanged
any proper space of A and vice versa. On the other hand, we see that, at
least for what concerns the eigenvectors, two tensors commute if and only if
they are coaxial. Because any vector can be written as a linear combination
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of the vectors of By, and for the linearity of tensors, we have finally proved
the following.

Theorem 12 (Commutation theorem). Two tensors commute if and
only if they are coaxial.

2.9 Skew tensors and cross product

Because dim(V) = dim(Skw(V)) = 3, an isomorphism can be established
between V and Skw(V), i.e. between vectors and skew tensors. We establish
hence a way to associate in a unique way a vector to any skew tensor and
inversely. For this purpose, we first introduce the following.

Theorem 13. The spectrum of any tensor W € Skw(V) is {0} and the
dimension of its proper space is 1.

Proof. This theorem states that zero is the only real eigenvalue of any
skew tensor and that its multiplicity is 1. In fact, let w be an eigenvector
of W relative to the eigenvector A. Then,

Nw?l=Ww-Ww=w-W Ww=-w-WWw
=-—w-WOw) = —\w-Ww = -\w? < A =0.

Then, if W £ O, its rank is necessarily 2 because det W = 0 YW €
Skw(V); hence, the equation

Ww =o (2.22)

has oco! solutions, i.e. the multiplicity of A is 1, which proves the theorem.
O

The last equation also shows the way the isomorphism is constructed:
In fact, using Eq. (2.22), it is easy to check that if w = (a, b, ¢), then

0 —c b
w=(a,bc) <= W= |¢c 0 -—a. (2.23)
-b a O

The proper space of W is called the azis of W, and it is indicated by A(W):

A(W) :={u € V| Wu = o}.
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The consequence of what is shown above is that dim A(W) = 1. With
regard to Eq. (2.23), one can easily check that the equation

1
u-u:§W-W (2.24)

is satisfied only by w and by its opposite —w. Because both these
vectors belong to A(W), choosing one of them corresponds to choosing an
orientation for £, see the next section. We always make our choice according
to Eq. (2.23), which fixes once and for all the isomorphism between V
and Skw(V) that corresponds to any vector w with one and only one
azxial tensor W and vice versa, any skew tensor W with a unique axial
vector w.

It is worth noting that the above isomorphism between the vector spaces
V and Skw(V) implies that to any linear combination of vectors a and b
corresponds an equal linear combination of the corresponding axial tensors
W, and W, and vice versa, i.e. Va, b € R,

w=aa+ b < W =aW, + W, (2.25)

where W is the axial tensor of w. Such a property is immediately checked
using Eq. (2.23).
It is useful, for further development, to calculate the powers of W:

WZ=WW=-W'(-W')=(WW) = (WHT, (2.26)

i.e. W2 is symmetric. Moreover, if we take w € S, which is always possible
because eigenvectors are determined to within an arbitrary multiplier,

W2u=WWu=wx (Wxu)=w-uw —w-wu

= I-wowu = W=—-(I-waw), (2.27)

we remark that W?2u gives the opposite of the projection of any vector
u € V onto the direction orthogonal to w, see Exercise 2.14.
Applying recursively the previous results,

Wi=WW? = -WI-waw)=-W+ (Ww)w=-W,
W= WW'= —W?,
W’ = WW'= —-W?,

etc.

(2.28)
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An important property of any couple axial tensor W — axial vector w € § is
1 2
WW:75|W| I-wow), (2.29)

while Eq. (2.24) can be generalized to any two axial couples wi, W; and
Wo, Wg:

1
W1 - Wo = §W1 'W2.

The proof of these two last properties is rather easy and left to the reader.
We define the cross product of two vectors a and b the vector

axb=W,b,

where W, is the axial tensor of a. If a = (a1, a9,a3) and b = (by, ba, bs),
then by Eq. (2.23), we get

axb= (a2b3 — (L3b2, a3b1 — a1b3, albg — agbl).

It is immediate to check that such a result can also be obtained using Ricci’s
alternator,

axb= eijkajbkei, (2.30)
or even by computing the symbolic determinant,

€ €2 €3
axb=det a1 a> as
b1 by b3

The cross product is bilinear: Va,b,u € V, «, 8 € R,

(eca+ fb) x u=ca xu+ fb x u,
ux (ca+ fb) =auxa+ fuxb.

In fact, the first equation above is a consequence of Eq. (2.25), while the
second one is a simple application to axial tensors of the same definition of
tensor.

Three important results concerning the cross product are stated by the
following theorems.
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Theorem 14 (Condition of parallelism). Two wvectors a and b are
parallel, i.e. b=ka, k € R <—

axb=o.

Proof. This property is actually a consequence of the fact that any
eigenvalue of a tensor is determined to within a multiplier:

axb=Wb=0 < b==%ta, kR,
for Theorem 13. (]
Theorem 15 (Orthogonality property).
axb-a=axb-b=0. (2.31)
Proof.

axb-a=W,b-a=b-W/a=-b-W,a=-b-0=0,
axb-b=W,b-b=b-W]b=-b-W,b <= axb-b=0.

Theorem 16. a x b is the azial vector of the tensor (b ® a—a®b).
Proof. First of all, by Eq. (2.6), we see that
(b@a—a®b) e Skew(V).
Then,
(b®a—a®@b)(axb)=a-axbb—-b-axba=0
for Theorem 15. O

Theorem 16 allows us to show another important result about cross
product.

Theorem 17 (Antisymmetry of the cross product). The cross
product is antisymmetric:

axb=-bxaVabeV. (2.32)

Proof. Let W; = (b® a —a®b) be the axial tensor of a x b and Wy =
(—a® b+ b ® a) that of —b x a. Evidently, W; = Wy, which implies
Eq. (2.32) for the isomorphism between V and Lin(V). O
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This property and, again, Theorem 16 lets us derive the formula for the
double cross product:

ux (vxw)=—-(vxw)xu

—(Wev—v@wju=u-wv—-u-vw. (2.33)

Another interesting result concerns the mized product:
uxv-w=W,v-w=-v- W,w=-v.-uxw=wxu-v, (2.34)

and similarly,

UXV - W=VXW-U

Using this last result, we can obtain a formula for the norm of a cross
product; if a = a e, and b = b e;, with e,, e, € S, are two vectors forming
the angle 6, then

(axb)-(axb)=axb-(axb)=(axb)xa-b
=-ax(axb)-b=(-a-ba+a’b)-b=b-(a’I-a®a)b
=a’b-(I-e,®e)b=0a’’ e, - (I—e,De,)ep

= a?b?(1 — cos? ) = a®b*sin® f — |a x b| = absin.

(2.35)

So, the norm of a cross product can be interpreted, geometrically, as the
area of the parallelogram spanned by the two vectors. As a consequence,
the absolute value of the mixed product (2.34) measures the volume of the
prism delimited by three non-coplanar vectors, cf. Fig. 2.1.

Figure 2.1: Geometrical meaning of the cross and mixed products before (left) and after
(right) the application of a tensor L on the vectors u, v, w.
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Because the cross product is antisymmetric and the scalar one is
symmetric, it is easy to check that the form

Blu,v,w)=uxv-w
is a skew trilinear form. Then, by Eq. (2.11), we get
LuxLv-Lw=detLuxv-w. (2.36)

Following the interpretation given above for the absolute value of the mixed
product, we can conclude that | det L| can be interpreted as a coefficient of
volume expansion” cf. again Fig. 2.1. A geometrical interpretation can then
be given to the case of a non-invertible tensor, i.e. of det L = 0: It crushes
a prism into a flat region (the three original vectors become coplanar, i.e.
linearly dependent).

The adjugate of L is the tensor

L := (det L)L~ ".
From Eq. (2.36), we get hence
detLuxv-w=LuxLv-Lw=L"(LuxLv) -w Yw

= Lu x Lv = L*(u x v).

2.10 Orientation of a basis

It is immediate to observe that a basis B = {ej,es, €3} can be oriented in
two opposite ways®: For example, once two unit mutually orthogonal vectors
e; and ey are chosen, there are two opposite unit vectors perpendicular to
both e; and ey that can be chosen to form B.

We say that B is positively oriented or right-handed if

€] X ey ez = ].,
while B is negatively oriented or left-handed if
e} Xey-e3=—1.

Schematically, a right-handed basis is represented in Fig. 2.2, where a left-
handed basis is represented too with a dashed es.

7This result is classical and fundamental for the analysis of deformation in continuum
mechanics.
81t is evident that this is also true for one- and two-dimensional vector spaces.
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€3

Figure 2.2: Right- and left-handed bases.

With a right-handed basis, by definition, the axial tensors of the three
vectors of the basis are
W, =e3®e; —ey®es,
W, =e;®e3 —ez ey,
We, =e2®e; —e; @ es.

2.11 Rotations

In the previous chapter, we have seen that the elements of V represent
translations over £. A rotation, i.e. a rigid rotation of the space, is an
operation that transforms any two vectors u,v € V into two other vectors
1,V € V in such a way that

u=1u, v=90, u-v=u-v, (2.37)

i.e. a rotation is a transformation that preserves norms and angles. Because
a rotation is a transformation from V to V), rotations are tensors, so we can
write
v =Rwv,
with R the rotation tensor or simply rotation.
Conditions (2.37) impose some restrictions on R:

a-v=Ru-Rv=u-R'"Rv=u-v &< R'R=I=RR'.

A tensor that preserves the angles belongs to Orth(V), the subspace of
orthogonal tensors; we leave to the reader the proof that Orth(V) is actually
a subspace of Lin(V). Replacing in the above equation v with u shows



Downloaded from www.worldscientific.com

Second-Rank Tensors 37

immediately that an orthogonal tensor also preserves the norms. By the
uniqueness of the inverse, we see that

R € Orth(V) <= R '=R".

The above condition is not sufficient to characterize a rotation; in fact,
a rotation must transform a right-handed basis into another right-handed
basis, i.e. it must preserve the orientation of the space. This means that it
must be

él ><é2~é3:Re1 ><Re2~Re3:e1 X €eg -+ e3.
By Eq. (2.36), we get hence the condition?
detR(e; xey-e3) =e; Xey-e3 < detR=1.

The tensors of Orth(V) that have a determinant equal to 1 form the
subspace of proper rotations or simply rotations, indicated by Orth(V)* or
also by SO(3). Only tensors of Orth(V)" represent rigid rotations of £1°.

Theorem 18. Each tensor R € Orth(V) has the eigenvalue +1, with +1
for rotations.

Proof. Let u be an eigenvector of R € Orth(V) corresponding to the
eigenvalue . Because R preserves the norm, we have

Ru-Ru=)\u?=u?> = N =1.

We must now prove that there exists at least one real eigenvector A. To this
end, we consider the characteristic equation

FO) = X3+ kA% 4+ ko X + k3 = 0,

whose coefficients k; are real-valued because R has real-valued components.
It is immediate to recognize that

lim f(\) = +oo.

A—too

9From the condition RTR = I and through Eq. (2.16) and the theorem of Binet, we
recognize immediately that det R = £1 VR € Orth(V).

10A tensor S € Orth(V) such that det S = —1 represents a transformation that changes
the orientation of the space, like mirror symmetries do, see Section 2.12.
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So, because f(A) is a real-valued continuous function, actually a polynomial
of \, there exists at least one A\; € R such that

fq) =0.

In addition, we already know that VR € Orth(V),det R = £1 and that,
if A\;,7 =1,2,3 are the eigenvalues of R, then det R = A\ A2 \3. Hence, the
following two are the possible cases:

(i) A1 € Rand Mg, A3 € C, with A3 = Az, the complex conjugate of Ag;
(i) y eRVi=1,2,3.

Let us consider the case of R € Orth(V)", ie. a (proper) rotation —
det R = 1. Then, in the first case above,

det R = A\ doda = A [R2(\2) + 3% (\2)].
But
R2(a) + 32 (N\2) =1

because it is the square of the modulus of the complex eigenvalue Az. So,
in this case,

detR=1 <= M\ =1.

In the second case, \; € R Vi = 1,2,3, either A\;y > 0, A2, A3 < 0 or all of
them are positive. Because the modulus of each eigenvalue must be equal
to 1, either Ay =1 or \; =1 Vi =1,2,3 (in this case, R =I).

Following the same steps, one can easily show that VS € Orth(V) with
det S = —1, there exists at least one real eigenvalue Ay = —1. O

Generally, a rotation tensor rotates the basis B = {e1, ez, e3} into the
basis B = {él, ég, é3}!

Re; = éz Vi = 1,2,3 = Rij =e€; -Rej =€; éj (238)

This result actually means that the jth column of R is composed of the
components in the basis B of the vector €; of B. Because the two bases
are orthonormal, such components are the director cosines of the axes of B
with respect to B.
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Geometrically, any rotation is characterized by an azis of rotation
w, |w| = 1, and by an amplitude ¢, i.e. the angle through which the space is
rotated about w. By definition, w is the (only) vector that is left unchanged
by R, i.e.

Rw =w,

or, in other words, it is the eigenvector corresponding to the eigenvalue +1.

The question is then: How can a rotation tensor R be expressed by
means of its geometrical parameters, w and ¢? To this end, we have a
fundamental theorem.

Theorem 19 (Euler’s rotation representation theorem). VR €
Orth(V) ™,
R =1+singeW + (1 — cos p) W2, (2.39)

with ¢ the rotation’s amplitude and W the axial tensor of the rotation
aris w.

Proof. We observe preliminarily that
Rw =Iw + sin pWw + (1 — cos p) WWw = Iw = w, (2.40)

i.e. that Eq. (2.39) actually defines a transformation that leaves unchanged
the axis w, like a rotation about w must do, and that +1 is an eigenvalue
of R.

We need now to prove that Eq. (2.39) actually represents a rotation
tensor, i.e. we must prove that

RR' =1 detR=1.
Through Eq. (2.28), we get
RR' = (I+5sin oW + (1 — cos o) W2)(I + sin oW + (1 — cos o) W?)T
= (T4 sin W + (1 — cos @) W?)(I — sin oW + (1 — cos o) W?)
=T+ 2(1—cos)W? —sin? oW?2 + (1 — cos p)?W*
=T+2(1 — cosp)W? —sin? oW? — (1 — cos p)*W?= 1.
Then, through Eq. (2.27), we obtain
R =1+ sinpW + (1 — cos p)W?
=I+sinpW — (1 —cosp)(I—wew) (2.41)
= cospl 4+ sin W + (1 — cosp)w @ w.
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To go on, we need to express W and w @ w; if w = (wy, w2, ws), then by
Eq. (2.23), we have

0 —WwWs3 w9
W == ws O —wy |,
— W2 w1 0
and by Eq. (2.2),
w% wiw wWiws
WXEW = |wiwsy w% waws | ,

wW1Ws WaWs3 w3

which on injecting into Eq. (2.41) gives

cos ¢ + (1 7cos<p)w% —wg sinp + wiwa (1l —cosy)  wasing + wiws(l — cos )
R = wssing + wjws (1l — cos ¢) Cos<p+(lfcos¢)w§ —w1 sin ¢ + wawz (1 — cos ) -
—wg sing + wiws(l —cosp)  wj siny + wawsz (1l — cos @) cosga«%(lfcosgp)w% J
(2.42)

This formula gives R as a function exclusively of w and ¢, the geometrical
elements of the rotation. Then,

det R = (w? + (1 — w?) cos ¢)(cos® ¢ 4+ w? sin? ),

and because w = 1,detR =1, which proves that Eq. (2.39) actually
represents a rotation.

We eventually need to prove that Eq. (2.39) represents the rotation
about w of amplitude . To this end, we choose an orthonormal basis
B = {e1,e3,e3} of V such that w = e3, i.e. we analyze the particular case
of a rotation of amplitude ¢ about es. This is always possible thanks to the
arbitrariness of the basis of V. In such a case, Eq. (2.38) gives

cose —sing 0
R=|sing cosp Of. (2.43)
0 0 1
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Moreover,
0 -1 0 0 00
W=|1 0 0|, wow= |0 0 0],
0 0 0 0 0 1
-1 0 0
W= -(I-waw)=|0 -1 0f.
0O 0 0
Hence,
1 0 0 [0 -1 0
I+sineW + (1 —cosp)W? =10 1 0| +sinp|{l 0 0
0 0 1 0 0 0
: ; (2.44)
-1 0 0 cosp —sinp 0
+(l—cosp) | 0O =1 0| =|sinp cosp 0|=R.
0o 0 0 0 0 1]
O

Equation (2.39) gives another result: To obtain the inverse of R, it is
sufficient to change the sign of . In fact, because W € Skw(}) and through
Eq. (2.26),

R '=R" = (I+singW + (1 —cos)W?) "
=T+sinpW' + (1 —cosp)(W?)T
=1 —sineW + (1 — cos p)W?
=T +sin(—p)W + (1 — cos(—p))W?=.

The knowledge of the inverse of a rotation also allows us to perform
the operation of change of basz':s, i.e. to determine the components of a
vector or of a tensor in a basis B = {€1, &2, €3} rotated with respect to an
original basis B = {e1, e2,e3} by a rotation R (in the folloxiving equations,
the symbol ~ indicates a quantity specified in the basis 55). Considering
that

—14 T4 T (4 A V4 T 5 .4
e,=R ¢, =R ¢ =R, (é,®é)é; = Rj,.0ki€n,
we get, for a vector u,

T A
u = u;e; = Rkiuiek,
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i.e.
iy = Rj;u; — a=R"u.

We remark that, because RT = R™!, the operation of change of basis is

just the opposite of the rotation of the space (and actually, we have seen

that it is sufficient to take the opposite of ¢ in Eq. (2.39) to get R™1).
For a second-rank tensor L, we get

L=Lje;®ej = LR, @R, &, =R} ,R Lijén ® &,
ie.
Lyn=R);R)Lij =R},LijR;, - L=RTLR.

We remark something that is typical of tensors: The components of
a r-rank tensor in a rotated basis B depend upon the rth powers of the
director cosines of the axes of l%', i.e. on the rth powers of the components
Rij of R.

If a rotation tensor is known through its Cartesian components in a
given basis B, it is easy to calculate its geometrical elements: The rotation
axis w is the eigenvector of R corresponding to the eigenvalue 1, so it is
found by solving the equation

Rw=w

and then normalizing it, while the rotation amplitude ¢ can be found using
(2.39) along with (2.27): Because the trace of a tensor is invariant, we get

trR —1
trR=3+(1—cosp)tr(—-I+w®@w) =1+2cosp — @= ATCCOoS |

It is interesting to consider the geometrical meaning of Eq. (2.39). For this
purpose, we apply Eq. (2.39) to a vector u, see Fig. 2.3:

Ru = (I + sineW + (1 — cos p))W?)u
=u+sinew x u+ (1 —cosp)w X (W x u).
The rotated vector Ru is the sum of three vectors; in particular,
sin Wu is always orthogonal to u, w, and (1 — cos p)W2u. If u-w = 0,

then (1 — cosp)W?2u is also parallel to u, see the sketch on the right in
Fig. 2.3.
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W1 (l-cosp) Whu (1-cosp) Wu

+ |sing Wu

rotation axis

Figure 2.3: Rotation of a vector.

Let us consider now a composition of rotations. In particular, let us
imagine that a vector u is rotated first by Ry around w; through ¢4, then
by Ry around wy through ¢o. So, first, the vector u becomes the vector

u; = Rlu.
Then, the vector u; is rotated about wsy through ¢s to become
U2 = R2u1 = R2R1U..

Let us now suppose that we change the order of the rotations: Ry first and
then R4. The final result will be the vector

U1 = Rleu. (245)

Because the tensor product is not symmetric (i.e. it does not have the
commutativity property), generally,'!

upz # Ug;.

In other words, the order of the rotations matters: Changing the order of the
rotations leads to a different final result. An example is shown in Fig. 2.4.

1We have seen, in Theorem 12, that two tensors commute <=> they are coaxial, i.e. if
they have the same eigenvectors. Because the rotation axis is always a real eigenvector
of a rotation tensor, if two tensors operate a rotation about different axes, they are not
coaxial. Hence, the rotation tensors about different axes never commute.
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rotation of 90°
about axis y

=>

X
X
rotation of 90° :> @ y

about axis y rotation of 90°
about axis z

rotation of 90°
about axis z

Figure 2.4: Non-commutativity of the rotations.

This is a fundamental difference between rotations and displacements
that commute, see Fig. 1.2, because the composition of displacements is
ruled by the sum of vectors:

w=u+t+v=v-+u (2.46)

This difference, which is a major point in physics, comes from the difference
in the operators: vectors for the displacements and tensors for the rotations.

Any rotation can be specified by the knowledge of three parameters.
This can be easily seen from Eq. (2.39): The parameters are the three
components of w that are not independent because

w=|w|=/w+wl+wi=1

and by the amplitude angle ¢. The choice of the parameters by which
to express a rotation is not unique. Besides the use of the Cartesian
components of w and ¢, cf. Eq. (2.42), other choices are possible, let us see
three of them:

(i) Physical angles: The rotation axis w is given through its spherical
coordinates ¢, the longitude, 0 < 1 < 27, and 0, the colatitude, 0 <
0 < m, see Fig. 2.5, the third parameter being the rotation amplitude .
Then,

. . . w
= (sind cos v, sinfsin), cosf) — 0 = arccosws, 1 = arctan —2,
w1
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AZ

Figure 2.5: Physical angles.

and, Eq. (2.42),

c?50% 4 co(ch? + sp?s0%)  shehsf?(1 — cp) — chsp  cpshcl(1 — cp) + shshse

R =) spcps0?(1 —cp) 4+ clsp  s9%50% + cp(ch? + cp?s0?)  spsOch(1 — cp) — cvshse |,

[ chs0ch(1 — cp) — spslsp  spsOch(1 — cp) + cbsbsp  ch? + co(cp®s02 + 51/)2302)J

where ¢y = cos, st = sin,cld = cosf, s = sinf,cp = cosyp, and
s¢ = singp. We remark that all the components of R so expressed
depend upon the first powers of the circular functions of . Hence,
for what is said above, with this representation of the rotations, the
components of a rotated r-rank tensor depend upon the rth power of
the circular functions of ¢, i.e. of the physical rotation, but not of 1
nor of 6.

Euler’s angles: In this case, the three parameters are the amplitude of
three particular rotations into which the rotation is decomposed. Such
parameters are the angles v, the precession, 6, the nutation, and ¢,
the proper rotation, see Fig. 2.6. These three rotations are represented
in Fig. 2.7. The first one, of amplitude v, is made about z to carry the
axis x onto the knots line x, the line perpendicular to both the axes
z and 2, and y onto J; by Eq. (2.38), in the frame {z,y, 2z}, it is

cosY —siny 0
Ry = [siny cosyp 0
0 0 1
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Ny

<)

=)

Figure 2.6: Euler’s angles.

Figure 2.7: Euler’s rotations, as seen from the respective axes of rotation.

The second one, of amplitude 6, is made about z to carry z onto 2;
in the frame {xn,7, 2}, it is

1 0 0
Ro= [0 cosf —sinf
0 sinf cosf

while in the frame {z,y, z},

R; = (R;")"RyR;' = RyRoR.
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The last rotation, of amplitude ¢, is made about Z to carry xy onto
% and g onto ¢; in the frame {zy,7, 2}, it is

cosp —sinp 0

R, = [sing cose O0f,
0 0 1

while in {z,y, 2},
RS = (R;)T(R; ) R,R; 'R} = RyRoR,R) R
Any vector u is transformed, by the global rotation, into the vector
= Ru.

But we can also write

R

o>
I

O:
et

where T is the vector transformed by the rotation R,

=l
I
&z

o0,
and W is the vector transformed by the rotation R:
u=Ryu.
Finally,
u=Ru=RIRjRyu - R=RIRGRy,

i.e. the global rotation tensor is obtained by composing, in the opposite
order of execution of the rotations, the three tensors all expressed in
the original basis. However,

R =R.RJRy; = RyRyR,R) R ,RyRsR Ry = RyRoR,,

i.e. the global rotation tensor is also equal to the composition of the
three rotations, in the order of execution, if the three rotations are
expressed in their own particular bases. This result is general and not
bounded to the Euler’s rotations nor to three rotations.
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Performing the tensor multiplications, we get

coscosp —sinysinpcosf —cosysing —sinycospcosh  sinsin @

R = [sinycosy + cosipsinpcos —sinysing + cospcospcost —cospsind|.

(iii)

sin @ sin 0 cos psin 6 cos
The components of a vector u in the basis B are then given by
t=R'u=R RjRju
and those of a second-rank tensor by
L=R'LR=R/R/R,LR,R¢R,.

Coordinate angles: In this case, the rotation R is decomposed into
three successive rotations «, 3, and -, respectively, about the axes =z,
y, and z of each rotation, i.e.

R = R.RsR,
with
1 0 0 cosB 0 —sinf
Ro= |0 cosaa —sina|, Rg= 0 1 0 ,
10 sina  cosa sinf 0 cosfs
[cosy —siny 0
R, = |siny cosy 0},
0 0 1
so finally,
cos 3 cosy — cos Bsiny —sinfg
R = [cosasiny —sinasinfBcosy cosacosy+sinasinfsiny —sinacosf|.

sinasiny + cosasinfcosy sinacosy —cosasinBsiny  cosacos 3
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Let us now consider the case of small rotations, i.e. || — 0. In such a case,
sinp ~ @, 1—-cosp~0,
and
R~I+ oW,
i.e. in the small rotations approximation, any vector u is transformed into
Ru~ (I+¢oW)u=u+¢pw x u, (2.47)

i.e. by a skew tensor and not by a rotation tensor. The term (1 —cos ¢)W?2u
has disappeared, as it is a higher-order infinitesimal quantity, and the term
W x u is orthogonal to u. Because ¢ — 0, the arc is approximated by
its tangent, the vector pw x u, see Fig. 2.8. Applying to Eq. (2.47) the
procedure already seen for the composition of finite amplitude rotations,
we get

w =Riu=I+p;Wi)u=u+ p1w; X u,
ug; = Roug = (T+ w2 Wo)up = ug + paws X ug
=Uu+ PE1W1 X U+ paWay X U
+ P1p2Wa X (W1 X u).

If the order of the rotations is changed, the last term becomes p1pawq X
(w2 x u), which is, in general, different from ;pawa X (w1 x u): To be

rotation axis

Figure 2.8: Small rotations.



Downloaded from www.worldscientific.com

50 Tensor Algebra and Analysis for Engineers

precise, small rotations also do not commute.!? However, for small rota-
tions, @19 is negligible with respect to ¢ and ¢s: In this approximation,
small rotations commute. We remark that approximation (2.47) gives, for
the displacements, a law that is quite similar to that of the velocities of the
points of a rigid body:
v=vy+wx(p—o).
This is quite natural because
_de

W=
i.e. a small amplitude rotation can be seen as a rotation made with finite
angular velocity w in a small time interval dt.

2.12 Reflexions

Let us consider now tensors S € Orth()) that are not rotations, i.e. such
that det S = —1. Let us call S an improper rotation. A particular improper
rotation whose all eigenvalues are equal to —1 is the inversion or reflexion
tensor:

Sr=-L

The effect of Sy is to transform any basis B into the basis —B, i.e. with all the
basis vectors changed in orientation (or, equivalently, to change the sign of
all the components of a vector). In other words, S; changes the orientation
of the space. This is also the effect of any other improper rotation S that
can be decomposed into a proper rotation R followed by the reflexion S;'3:

S =S;R. (2.48)
Let n € S, then
Sk=I-2n®n (2.49)

is the tensor that operates the transformation of symmetry with respect to
a plane orthogonal to n. In fact,

Spgn=-n, Spm=m Yme V| m-n=0.

12This can happen for some vectors all the times when w1 - u = wo - u, like for the case
of a vector u orthogonal to both w; and wa; however, this is no more than a curiosity,
it has no importance in practice.

13The application of Binet’s theorem shows immediately that detS = —1, while
S/R(S/R)T = S;RRTS] = —I(-I)T = I: The decomposition in Eq. (2.48) actually
gives an improper rotation.



Downloaded from www.worldscientific.com

Second-Rank Tensors 51

Sr is an improper rotation; in fact, by Eq. (2.4),

I-2n®n)(I-2n®n)" =I-2n®n)(I-2n®n)
=I-2n@n-2n®n+4(nen)(n®n) =1,

while by the same definition of trace and through Eqgs. (2.13) and (2.17),

’(n®n) —tr(n ®n)(n ®@n)
2

t
det(I—2n®@n)=1-2tr(n®mn) +4
—8det(n®n) = —1.

Let S = S;R be an improper rotation, then

(Su) x (Sv) = (S;Ru) x (S;Rv) = det(S/R) [(S;R) '] (ux v)
=detS;det R(R7'S;H) T (u x v)
= (-R')T(uxv)=R(uxv).

The transformation by S of any vector u gives
Su=S;Ru=—Ru,

i.e. it changes the orientation of the rotated vector; this is not the case
when the same improper rotation transforms the vectors of a cross product:
The rotated vector result of the cross product does not cause a change in
orientation, i.e. the cross product is insensitive to a reflexion. That is why, to
be precise, the result of a cross product is not a vector but a pseudo-vector:
It behaves like a vector apart from the reflexions. For the same reason, a
scalar result of a mixed product (scalar plus cross product of three vectors)
is called a pseudo-scalar because in this case, the scalar result of the mixed
product causes a change in sign under a reflexion, which can be checked
easily.

2.13 Polar decomposition

Theorem 20 (Square root theorem). Consider L € Sym(V) and
positive definite, then there exists a unique tensor U € Sym(V) and positive
definite such that

L=U2



Downloaded from www.worldscientific.com

52 Tensor Algebra and Analysis for Engineers

Proof. Existence: Consider L, U,V € Sym(V) and positive definite and
L=we ®e;
a spectral decomposition of L, w; > 0 Vi. Define U as
U = /wie; ® e;;

then, by Eq. (2.4)1, we get

U? =L.
Uniqueness: Suppose also that

V2 =1,

and let e be an eigenvector of L corresponding to the (positive) eigenvalue
w. Then, if A = /w,

0 = (U? — A\l)e = (U — A\I)(U — M)e,
and once we set
v = (U - Al)e,
we get
Uv=-)v = v=0 = Ue=)e

because U is positive definite and —A cannot be an eigenvalue of U because
A > 0. In a similar way,

Ve =)e = Ue= Ve

for every eigenvector e of L. Because, based on spectral theorem, there
exists a basis of eigenvectors of L, U = V. (|

We symbolically write that
U= VL.

For any F € Lin(V), both FFT and F'F clearly € Sym(V). If in
addition det F > 0, then

u-F Fu= (Fu) - (Fu) >0,
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with the zero value obtained <= Fu = o and, because detF > 0 = F
is invertible, <= u = 0. As a consequence, FF is positive definite. In a
similar way, it can be proved that FF T is also positive definite.

A particular tensor decomposition'# is given by the following.

Theorem 21 (Polar decomposition theorem). VF € Lin(V)|detF >
0 exist and are uniquely determined by two positive definite tensors U,V €
Sym(V) and a rotation R such that

F=RU = VR.

Proof. Uniqueness: Let F = RU be a right polar decomposition of F;
because R € Orth(V)" and U € Sym(V),

F'F=UR'RU=U?=U=VF'F.
By the square-root theorem, tensor U is unique, and because
R=FU !,

R is unique too.
Now, let F = VR be a left polar decomposition of F; by the same
procedure, we get

FF =V? 5V =VFFT,
so V is unique, and also,
R=V'F.
Existence: Let
U=VF'F,
so U € Sym(V) and it is positive definite, and let
R=FU .

To prove that F = RU is a right polar decomposition, we just have to
show that R € Orth(V)". Since det F > 0,det U > 0 (the latter because

14This decomposition is fundamental to the theory of deformation of continuum bodies.



Downloaded from www.worldscientific.com

54 Tensor Algebra and Analysis for Engineers

all the eigenvalues of U are strictly positive), by the theorem of Binet, also
det R > 0. Then,

R'R=(FU H(FU)=U'F'FU ! =UU?U!
=I1=ReOrth(V)".
Now, let
V =RUR',
then V € Sym(V) and is positive definite, see Exercise 2.14, and
VR=RUR'R=RU=F,

which completes the proof. (]

2.14 Exercises

1. Prove that
Lo =0 VL € Lin(V).

2. Prove that, if a straight line r has the direction of u € S, then the tensor
giving the projection of a vector v € V on r is u ® u (the orthogonal
projector), while the one giving the projection on a direction orthogonal
toris I —u®u (the complementary projector), see Fig. 2.9.

3. For any « € R;a,b € V and A,B € Lin(V), prove that

(eA)T =aA”, (A+B)" =AT+B", (a®b)A=a®(A"b).

4. Prove that

L+0=L VL€ Lin(V).

Figure 2.9: Projected vectors.
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. Prove that

trI =3, trO = 0.

. Prove that, VA, B € Lin(V),

tr(AB) = tr(BA).
Prove that, VL, M, N € Lin(V),
L' M"=L-M, LM-N=L-NM'=M-L"N.

Prove the assertions in Eq. (2.4).

. Prove that any form defined by a tensor L can be written as a scalar

product of tensors:
v-Lw=L-vew Vv,we V,L € Lin(V).
Prove that Sym(V) and Skw(V) are orthogonal, i.e. prove that
A-B=0 VYA e Sym(V), B € Skw(V).

For any L € Lin(V), prove that, if A € Sym(V), then
A-L=A-L°

while if B € Skw(V), then
B-L=B-L"

Let A,B,C,D € Lin(V); prove that

A - (BCD)=(B'TA) (CD)=(AD") . (BC).

Prove that L - W =0 VYW € Skw(V) < L € Sym(V).
Express by components the second principal invariant I> of a tensor L.
Prove that if a = (a1, as2,a3), b = (b1, b2,b3),c = (c1, o, c3), then

a1 az as
axb-c=det bl b2 b3
C1 C2 C3

Prove the uniqueness of the inverse tensor.
Show, using the Cartesian components, that all the dyads are singular.
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20.

21.
22.

23.

24.
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Prove that if L is invertible and o € R — {0}, then
(oL)™ ' =a 'L7h
Prove that if W is the axial tensor of w, then
WW = —%|W|2(I —wRw).
Prove that for any two axial couples w1, W1 and ws, W, we have
W1 - Wo = %Wl - Wo.

Prove that Vu,v € V, ux v=0 <= u®v € Sym(V).
Let L € Sym(V) and positive definite and R € Orth(V)", then prove
that RLR' € Sym(V) and that it is positive definite.
Prove that the spectrum of L*P" is composed of only

sph __ 1

AP = gtrL

and that any u € S is an eigenvector.
Prove that the eigenvalues A%V of L4 are given by

/\dev —\— /\sph7

where ) is an eigenvalue of L.
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Chapter 3

Fourth-Rank Tensors

3.1 Fourth-rank tensors

A fourth-rank tensor L is any linear application from Lin(V) to Lin(V):
L: Lin(V) — Lin(V) | L(c;A;) = oyLA; Vo, € R, A; € Lin(V),
1=1,...,n.
Defining the sum of two fourth-rank tensors as
(L +Lo)A =LA+ LyA VA € Lin(V),
the product of a scalar by a fourth-rank tensor as
(aL)A = a(LA) Va e R, A € Lin(V),
and the null fourth-rank tensor O as the unique tensor such that

OA = O VA € Lin(V),

then the set of all the tensors L that operate on Lin(V) forms a vector
space, denoted by Lin()). We define the fourth-rank identity tensor I as a

unique tensor such that

IA = A VA € Lin(V).

It is apparent that the algebra of fourth-rank tensors is similar to that of
second-rank tensors, and in fact, several operations with fourth-rank tensors
can be introduced in almost the same way, in some sense the operations
shifting from V to Lin()). However, the algebra of fourth-rank tensors is

richer than that of the second-rank ones, and some care must be taken.

In the following sections, we consider some of the operations that can

be done with fourth-rank tensors.

57
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3.2 Dyads, tensor components

For any couple of tensors A and B € Lin(V), the (tensor) dyad A ® B is
the fourth-rank tensor defined by

(A@B)L:=B-L A VL€ Lin(V).

The application defined above is actually a fourth-rank tensor because of
the bilinearity of the scalar product of second-rank tensors. Applying this
rule to the nine dyads of the basis B? = {e; ® e;, i,j = 1,2,3} of Lin(V)
leads to the introduction of 81 fourth-rank tensors,

e, Re;Re,Re = (e;Re;) (e X e),

that form a basis B* = {e; ® e; ® e, ® e, i,j = 1,2,3} for Lin(V). We
remark hence that dim(Lin())) = 81. A useful result is that

(e;®ej ®er®er)(e, ®eg)
= (exr ®e)) - (ep ®eg)(e; ®ej) = drpdigle; @ e;). (3.1)

Any fourth-rank tensor can be expressed as a linear combination (the
canonical decomposition):

]L:Lijkl ei®ej Qe ey, Zv.]: 172737

where L;jis are the 81 Cartesian components of IL with respect to B4 Lijris
are defined by the operation

(ei @ej) - Lier @ er) = (€i-€)) (Lpgrs€p ® €q @ € ® €)(ex @ e;)
= (e; ®e€;) - (Lpgrsdrrdsiep © €q)
= LpgrsOrk0si0ip0jq = Lijki-
The components of a tensor dyad can be computed without any difficulty:
A®B = (4;je;®e;) ® (ByerRe) = A;jjBre; ®ej Qe Qe
= (A ®B)iju = AijBu
so that, in particular,
(a®@b)® (c®d))ijr = abjcrd;.
Concerning the identity of Lin(V),
Lijw = (e;®e) Iler@e) =(e;Rej) (e Qe) =e;-eyej-e

= 5ik5jl =1= 5ik5jl (ei Re Rer® el).
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The components of A € Lin(V), resulting from the application of L €
Lin(V) on B € Lin(V), can now be easily calculated:

A=LB=L;jrle;0e; ®e;®e)(Bpgep ® e€q)
= Lijlepq(;kp(Slq(ei X ej) (32)
= L;juiBri(e; ®ej) = Aij = LijriBu.

Moreover,
LA®B)C=L(A®B)C)=L(B-CA)=B-CLA
= ((LA)®B)C = L(A®B) = (LA)®B.

Using this result and Eq. (3.1), we can determine the components of a
product of fourth-rank tensors:

AB = Ajjni(e; ® ej ® e, @ €1)Bpgrs
= AijuiBpgrs(ei @ €j @ e @ €;)
= AijiBpgrs|(e; @ ej @ e, R e)(e, ®ey)| @ (e @ ey) (3.3)
= Aijii Bpgrs[0kpdig(ei ® €)] @ (e, @ e,)
= AijkiBrirs(ei @ e; @ e, ®es) = (AB)ijrs = Aijki Brirs-

e, e, Qe Qe;)
e, ®eg) ® (e ®ey)

—~ =~

Depending upon four indices, a fourth-rank tensor L cannot be represented
by a matrix; however, we will see in Section 3.8 that a matrix representation
of a fourth-rank tensor is still possible and that it is currently used in some
cases, e.g. in elasticity.

3.3 Conjugation product, transpose, symmetries

For any two tensors A,B € Lin(V), we call the conjugation product the
tensor A X B € Lin(V) defined by the operation

(AXRB)L:= ALB' VL € Lin(V).
As a consequence, for the dyadic tensors of 32,
(eive;))N(erRe) =€, Re,Re; Qe (3.4)
so that

(A X B)ijkl = Aikle-
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Moreover, by the uniqueness of the identity I, VA € Lin(V),
IXDHA=IAT' =A = [=IXL

The transpose of a fourth-rank tensor L is the unique tensor LT, such that

A-(LB)=B-(L"TA)VA,B < Lin(V).
By this definition, setting A = e; ® e;, B = e}, ® ; gives

(L")ijm = Liai-
A consequence is that
A-(LB)=B-(LTA)=A-(L")'B = (L") =L

Moreover,

M-(A®B)'L=L-(A®B)M
=L-AM-B=M:(BA L)
=M - B®A)L = (A®B)' =B®A,

while, cf. Exercise 7, Chapter 2,

M- (AXB)'L=L.(AXBM

=L-AMB' =A'L-MB' =M'A'L-B'
=M'A'L)" - B")"=L"AM-B=AM LB
—M-ATLB=M - (ATXB')L = (AXB)"
=A"XB".

The property

(AB)T =BTAT
can be proved in the same manner as the analogous property of the second-

rank tensors.
A tensor L € Lin(V) is symmetric <= L =L". It is then evident that

L=L"= Ly = Luij,
which are relations called major symmetries. These symmetries number 36

on the whole so that a symmetric fourth-rank tensor has 45 independent
components. Moreover,

AXB=(AXB)' =ATRB' <— A=A" B=B",
AB=(A®B)' =B®A < B=)A, AcR.
Let us now consider the case of a I € Lin(V), such that

LA = (LA)" VA € Lin(V).
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Then, by Eq. (3.2),
Lijr = Ljin,

which are relations called left minor symmetries: A tensor I having the
left minor symmetries has values in Sym(V). On the whole, the left minor
symmetries number 27. Finally, consider the case of a L € Lin(V), such
that

LA =L(AT) VA e Lin(V);
then, again by Eq. (3.2), we get
Lijr = Liji,

which are relations called minor right symmetries, whose total number
is also 27. It is immediate to recognize that if I has the minor right
symmetries, then

LW =0 VYW € Skw(V).

We say that a tensor has minor symmetries if it has both the right and left
minor symmetries; the total number of minor symmetries is 45 because, as
can be easily checked, some of the left and right minor symmetries are the
same, so finally a tensor with the minor symmetries has 36 independent
components.

If L € Lin(V) has major and minor symmetries, then the number of
independent symmetry relations is actually 60 (some minor and major
symmetries coincide), so in such a case, . depends upon 21 independent
components only. This is the case of the elasticity tensor.

Finally, the six Cauchy-Poisson symmetries' are those of the type

Lijri = Ligji-

A tensor having major, minor, and Cauchy—Poisson symmetries is com-
pletely symmetric, i.e. swapping any couple of indices gives an identical
component. In that case, the number of independent components is only 15.

I The Cauchy—Poisson symmetries have played an important role in a celebrated diatribe
of the 19th century in elasticity, that between the so-called rari- and multi-constant
theories.
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3.4 Trace and scalar product of fourth-rank tensors

We can introduce the scalar product between fourth-rank tensors in the
same way we did for second-rank tensors. We first introduce the concept
of trace for fourth-rank tensors once again using the dyad (here, the tensor
dyad):

tryA @ B:= A - B.

The easy proof that try : Lin(V) — R is a linear form is based upon the
properties of scalar product of second-rank tensors, and it is left to the
reader. An immediate result is that

traA @ B = A;;B;;.
Then, using the canonical decomposition, we have that
trall = tra(Lijri(e; @ ej) @ (er, ® €1)) = Lijri(e; @ €j) - (er @ ;)
= Lijri6irdj1 = Lijij
and that
tralT = try(Lyij(e; @ e;) ® (ex ® €))) = Liij(e; @e;) - (e, @ e))
= Lp1ij0i05 = Liji; = trall.
Then, we define the scalar product of fourth-rank tensors as
A-B:=try(ATB).

By the properties of try, the scalar product is a positive definite symmetric
bilinear form:

aA - BB = try(aAT BB) = aftry(ATB) = afA - B,

A-B=try(A"B) =try(A"B) =try(BTA)=B-A,

A-A=trg(ATA) = (ATA)jij = Agij Ari; > 0 YA € Lin(V),
A-A=0 << A=0.

By components,

A-B= tr4((Aklijei & €, Ker® el)(qu’I‘Sep ® €y ®e,® es))
= tra(Akiij BpgrsOrplig(€i ® €5) ® (e, ® e;))
= Akliijqrs(;kp(;lq (ei & e_j) : (er & es)

= Akliijqrs(Skp(slq(sir(sjs = AklijBklij-
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The rule for computing the scalar product is hence always the same as was
already seen for vectors and second-rank tensors: All the indexes are to be
saturated.

In complete analogy with vectors and second-rank tensors, we say that
A is orthogonal to B <—

A-B=0,
and we define the norm of L as

3.5 Projectors and identities
For the spherical part of any A € Sym(V), we can write

1 1 1
APh = _trAT=-TI-AI=-(I®I)A = S*PhA,
3 3 3
where

1
SPh = _I®I
Jlo

is the spherical projector, i.e. the fourth-rank tensor that extracts from any
A € Lin(V) its spherical part. Moreover,

AV = A — APh —TA — S"A = D™VA,
where
]D)dev == Ssph

is the deviatoric projector, i.e. the fourth-rank tensor that extracts from
any A € Lin(V) its deviatoric part. It is worth noting that

I= Ssph + ]D)dev.
Moreover, about the components of S*P*|
s 1 1
Sifk’; =(e;®ey)- §(I @I)(er @ e) = §I (ei®ej) I (ep®e)
1 1
= gtr(ei ®ej)tr(er ®e) = §5ij5kl — §*Ph

1
= §5ij5kl(ei Re;@ep®e).
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We remark that
Ssph _ (SSph)T.

We introduce now the tensor I*, restriction of I to A € Sym(V). It can be
introduced as follows: VA € Sym(V),

A= %(A +AT)
and
A—IA = %(HA FIAT) = %(IijklAkl b I An) (e ® e; ® e ® e);
because A = AT, there is insensitivity to the swap of indexes k and [, so

1
A= §(IijklAkl + LjAi)(e; ®ej @e, @e;)

1
= 5(51'1@53‘1 +0udin)Ari(e; ® e; R e, @ ep).

Then, if we admit the interchangeability of indexes k& and [, i.e. if we
postulate the existence of the minor right symmetries for I, then I = I¥,
with

1
I° = 5(5zk5gl —+ 5i16jk)(ei [ €; R er® el).
It is apparent that
Iisjkl = Ilglij’
i.e. I* = (I*) T but also that
S 1 S
L = 5(51'15;% +6ikdjt) = L

i.e. I* has also the minor left symmetries; in other words, I has the major
and minor symmetries, like an elasticity tensor, while this is not the case
for I. In fact,

Lijii = Lk = 0051 # 00 = Ljsi = Lijik.

Because S and DV operate on Sym(V), it is immediate to recognize
that it is also

Dde’u I — Ssph = I = Ssph =+ Dde’u.
It is worth noting that
(Ddev)T _ (Hs o SSph)T _ (I[S)T o (SSph)T —1° — Ssph _ Ddev.
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We can now determine the components of D9?:

. 1 1
don = I — S, = 5 Oikdj + 0adje) — 50i0u —

1 1
e = 5(5ik§jl +6udjK) — §5ij5k1 (e, ®e; ®ep@e).

We remark that the result (2.9) implies that S*#* and D are orthogonal
projectors, i.e. they project the same A € Sym(V) into two orthogonal
subspaces of V, Sph(V) and Dev(V).

The tensor T? € Lin(V) defined by the operation

TI'"?A = AT VA € Lin(V)
is the transposition projector whose components are
T/ = (ei®e;) - TP (ex @ e)) = (e; @ €;) - (€1 @ ex) = 6iudji.
The following operation defines the symmetry projector S*¥™ € Lin(V):
1
SHmA = 5(A +AT) VA € Lin(V),

while the antisymmetry projector WK% € Lin(V) is defined by

Wk A = %(A —AT) VA € Lin(V).

Also, S*¥™ and W*** are orthogonal projectors because they project the
same A € Lin(V) into two orthogonal subspaces of Lin(V): Sym(V) and
Skw(V), see Exercise 10, Chapter 2.

We prove now two properties of the projectors: YA € Lin(V),

1
(Ssym+wskw)A: §(A+AT)+%(A—AT):A
=TA = S L Wekv = (3.5)

Then,

(S5 — Wokw)A = %(A +AT) - %(A ~AT)=AT
=T"PA = S¥™ — W = T"P, (3.6)
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3.6 Orthogonal conjugator

For any U € Orth(V), we define its orthogonal conjugator U € Lin(V) as
U:=UXU.

Theorem 22 (Orthogonality of U). The orthogonal conjugator is an
orthogonal tensor of Lin(V), i.e. it preserves the scalar product between
tensors:

UA-UB=A-B VA B¢ Lin(V).

Proof. By the assertion in Exercise 12 of Chapter 2 and because U €
Orth(V), we have

UA-UB=(UKU)A-(UKU)B=UAU' - UBU'
=U'UAU'-BU' =AU' -BU' =AU'U-B=A"B.

Just as for tensors of Orth(V), we also have
VU =U"U=L
In fact, see the assertion in Exercise 4:
U0 = (URU)(U'RU")=UU'®RUU" =IKRI=1 (3.7)

The orthogonal conjugators also have some properties in relation with
projectors.

Theorem 23. S*" is unaffected by any orthogonal conjugator, while DY
commutes with any orthogonal conjugator.

Proof. For any L € Sym(V) and U € Orth(V),
1 1 1
US*"L = (UK U) (§I ® I) L= g(trL)(U XU = g(trL)UIUT

1 1 1
= — = —1 - = — = Sph
gL =T LI=;(IoDL=5""L.

Moreover,
1 1
S*PhUL = <§I ® I) (URU)L = §(I @I)(ULU") = %(I -ULU NI

1 - 1, 1 1

= ~tr(ULU NI = ~tr(UTUL)I = = (trL)I = =I- LI
3 3 3 3
1

=;IeDL = S*PhL,
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Thus, we have proved that
Ssph'U _ USSph _ Ssph7

i.e. that the spherical projector S*#* is unaffected by any orthogonal
conjugator. Furthermore,

DYUL = (I¥ — S**")UL = I*°UL — S**"UL = UL — S**"L = (U — S**")LL
and

UD*L = U(I° — S*”")L = UI’L — US*”"L = UL — S*”"L = (U — S**")LL
so that

Dde’uU _ UDdev.

3.7 Rotations and symmetries

We ponder now how to rotate a fourth-rank tensor, i.e. what are the
components of

L=Ljne®e; @e,®@e

in a basis B’ = {e], e}, e5} obtained by rotating the basis B = {e1, ez, e}
by the rotation R = R;;e; ® e;,R € Orth(V)". The procedure is exactly
the same as already seen for vectors and second-rank tensors:

® R} ® Rje,

sl

. . . . T4/ T/
L= L”klel Ke;j e e = L”klRpiep X queq

TpT pT pT / / , ,
=R, R;;R,.RgLijrie), ® e, Q e, e,
ie.

Ligrs = RyiRy; R R Lijha-

pgrs

We see clearly that the components of I in the basis B’ are a linear
combination of those in B, the coefficients of the linear combination
being fourth powers of the director cosines, R;;s. The introduction of the
orthogonal conjugator? of the rotation R,

R =RKXR,

2Here, the symbol R indicates the orthogonal conjugator of R and not the set of real
numbers.
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allows us to give a compact expression for the rotation of second- and
fourth-rank tensors (for completeness, we also recall that of a vector w):
w =RTw,

L'=R'LR=R'XR"L=R'L,
L'=R"XRTLRXR)=RTLR.

Checking the above relations with the orthogonal conjugator R is left to

the reader. It is worth noting that, actually, these transformations are valid

not only for R € Orth(V)™ but more generally for any U € Orth(V), i.e.

also for symmetries.

If by U, we denote the tensor of the change of basis under any orthogonal

transformation, i.e. if we put U = RT for the rotations, then the above
relations become

w’ = Uw,
L'=ULU'" = (UK U)L = UL, (3.8)
L'=(UXRULUKXU)" =ULU".
Finally, we say that L € Lin(V) or L € Lin(V) is invariant under an
orthogonal transformation U if
ULU' =L, ULU' =L;
right multiplying both terms by U or by U and through Eq. (3.7), we get
that L or L are invariant under U <=
UL =LU, UL=LU,

i.e. <= L and U or L and U commute. This relation allows, for example,
the analysis of material symmetries in anisotropic elasticity.

If a tensor is invariant under any orthogonal transformation, i.e. if the
previous equations hold true YU € Orth(V), then the tensor is said to be
isotropic. A general result? is that a fourth-rank tensor L is isotropic +—=
there exist two scalar functions A, u such that

LA =2uA + XrA T VA € Sym(V).

The reader is referred to the book by Gurtin (see references) for the proof
of this result and for a deeper insight into isotropic functions.

3 Actually, this is quite a famous result in classical elasticity, the Lamé’s equation, defining
an isotropic elastic material.
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3.8 The Kelvin formalism

As already mentioned, though fourth-rank tensors cannot be organized in
and represented by a matrix, nevertheless a matrix formalism for these
operators exists. Such a formalism is due to Kelvin*, and it is strictly related
to the theory of elasticity, i.e. it concerns Cauchy’s stress tensor o, the strain
tensor e, and the elasticity tensor E. The relation between o and € is given
by the celebrated (generalized) Hooke’s law:

o = [Ee.

Both o,e € Sym(V) while E=ET, and it also has the minor symmetries,
so E has only 21 independent components.® In the Kelvin formalism, the
six independent components of o and e are organized into column vectors
and renumbered as follows:

f 01 =011 ] r €1 = €11 ]

02 = 022 1 €2 = €822

o 03 = 033 o €3 = €33
{U}_{M:ﬁ@s}’ {E}_1€4:\/§€23}-
.05:\/5031, .552\/5831|
[062\/5012) (862\/5812}

The elasticity tensor E is reduced to a 6 x 6 matrix [E] as a consequence
of the minor symmetries induced by the symmetry of o and e; this matrix
is symmetric because E =ET:

[ E11 = Ej111 Ei2 = E1122 E13 = E1133 E14 = V2E1123 E15 = V2E1131 E16 = \/§E1112]
: E1p = Ej122  Eap = Eggzz  Eaz = E2233 Fag = V2E2023 Has = V2E2231 Fag = \/§E2212:
(5] = : Ei3 = E1133  Ea3 = E2233  E3z = E3333 FEsza = V2E3323 E35 = V2E3331 E36 = V2E3312 :
:E14 = V2Ej123 Egyq = V2Eg223 B34 = V2E3323 Eaq4 = 2E2323 Eys = 2E2331  E46 = 2E2312 :
'E15 = V2E1131 E25 = V2E2231 B35 = V2E3331 Eygs5 = 2E2331 Ess = 2E3131  Ese = 2E3112 !

E16 = V2E1112 E26 = V2E2212 E36 = V2E3312 E46 = 2E2312 Es6 = 2E3112  Feés = 2E1212

In this way, the matrix product

{o} = [El{e} (3.9)

4W. Thomson (Lord Kelvin): Elements of a Mathematical Theory of Elasticity. Philos.
Trans. R. Soc., 146, 481498, 1856. Later, Voigt (W. Voigt: Lehrbuch der Kristallphysik.
B. G. Taubner, Leipzig, 1910) gave another, similar matrix formalism for tensors, more
widely known than the Kelvin one but less effective.

5 Actually, the Kelvin formalism can also be extended without major difficulties to tensors
that do not possess all the symmetries.
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is equivalent to the tensor form of the Hooke’s law, and all the operations
can be done by the aid of classical matrix algebra,® e.g. the computation
of the inverse of E, the compliance tensor.

An important operation is the expression of tensor U in Eq. (3.8) in
the Kelvin formalism; some tedious but straightforward operations give the

result:
{ Ut Uy Uy V2U12U13 V2U13U11 V2U11U12 -I
U5 U3y U3s V2U32Uz3 V2U23Uz1 V2U21Uzz 1
I 1
0] USRS U3, U3y V2U32Us3 V2U33Us1 V2U31Usz 1
= -
I

1V2U21Us1 V2U22U3s V2U23Usz Uz3Usa + UaaUss UszUsay + Uz1Uag UsiUsza + Usa Uz
I I
| V2U31U11 V2U32U12 V2Us33U1s UsaUis + UszUia Us1Uis + UsgUrr Us1Uia + Usa Uty |

LﬁUll U1 V2U12Uz2 V2U13Us3 U12Usz3 + U1gUse Ui1Uss + UizUszi U11Uas + U12U21J

With some work, it can be checked that
Ulu)" =[] = 1],

i.e. that [U] is an orthogonal matrix in RS. Of course,

is the matrix that in the Kelvin formalism represents the tensor R = UT.
The change of basis for o and € are hence done through the relations

{o'} =[UHo}, {e'} =[UNHe},
which when applied to Eq. (3.9) give
{0} =[El{e} = [W]"{o'} = [E)U)T{'} — {o'}=[U][EI[U]"{¢'},
i.e. in the basis B,
{o'} = [E"{e'},

where

is the matrix representing E in B’ in the Kelvin formalism. Though it is
possible to give the expression of the components of [E’], they are so long
that they are omitted here.

6Mehrabadi and Cowin have shown that the Kelvin formalism transforms second- and
fourth-rank tensors on R? into vectors and second-rank tensors on R6 (M. M. Mehrabadi
and S. C. Cowin: Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl.
Math., 43, 15-41, 1990).
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3.9 The polar formalism for plane tensors

The Cartesian representation of tensors makes use of quantities that are
basis-dependent, and the change of basis implies algebraic transformations
rather complicate. The question of representing tensors using other quan-
tities than Cartesian components is hence of importance. In particular, it
should be interesting to represent a tensor making use of only invariants
of the tensor itself and of angles, which is the simplest geometrical way to
determine a direction.

In the case of plane tensors, this has been done by Verchery” who
introduced the so-called polar formalism. This is basically a mathematical
technique to find the invariants of a tensor of any rank. Here, we give just a
short insight into the polar formalism of fourth-rank tensors, omitting the
proof of the results.®

The Cartesian components of a plane fourth-rank tensor T in a frame
rotated through an angle € can be expressed as

Th111 = To + 2T + Ro cos4(Py — ) + 4Ry cos 2(P1 — 0),
Ti112 = Rosin4(Pg — 0) + 2R, sin2(P; — ),

Ti122 = —Tp + 211 — Ro cos4(Py — 0),

Ty212 = Ty — Ry cos4(Py — 0),

Tia20 = —Rosin4(Pg — 0) + 2Ry sin 2(P; — 0),

Too22 = Ty + 271 + Ry cos4(Py — ) — 4Ry cos 2(Py — 0).

In the above equations, Ty, T1, Rgp, and R; are tensor invariants, with
all of them nonnegative, while &y and &; are angles whose difference,
dy — P, is also a tensor invariant, so fixing one of the two polar angles
corresponds to fixing a frame. In particular, the tensor invariants have a
direct physical meaning (e.g. for the elasticity tensor, they are linked to
material symmetries and strain energy decomposition). We remark also
that the change of frame is extremely simple in the polar formalism: It is
sufficient to subtract the angle 6 formed by the new frame from the two
polar angles.

7G. Verchery: Les invariants des tenseurs d’ordre 4 du type de I’élasticité, Proc. Colloque
EUROMECH 115, 1979.

8A detailed presentation of the method can be found in the work by Vannucci:
Anisotropic Elasticity, Springer, 2018.
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The Cartesian expression of the polar invariants can be found by
inverting the previous expressions:

1
To = g(Tllll — 21199 + 4711219 + T2222)7

1
T, = g(Tuu + 21190 + T2222)7

1
Ry = g\/(Tun — 2T1120 — 4Th212 + T2222)% + 16(T1112 — Th222)2,

1
Ry = §\/(T1111 = T5222)* + 4(Th112 + Ti222),

4(T1112 — Th222)
Tii11 — 2T 1122 — 4Th212 + To222”
2(Th112 + Tha22)
T — Toooa

tan 4@0 =

tan 2¢; =

3.10 Exercises

1. Prove Eq. (3.4).
2. Prove that

(AB)" =BTA".
3. Prove that
A®BL=A®L'B.
4. Prove that
(AXB)(CXD)=ACKXBD.

5. Prove Eq. (3.3) using the result of the previous exercise.
6. Prove that

(A®B)(CKD)=A® ((C'"XD")B).
7. Prove that
(AXKB)(C®D)=((AXKB)C)®D.
8. Let p € S and P = p ® p, then prove that
PXP=P®P.
9. Prove that, VA € Lin(V),
IA = Al = A.
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13.

14.
15.

16.

17.
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Show that
(A®B)-(C®D)=A-CB-D.
Show that
| I
S = il ® ik
Show that
dim(Sph(V)) =1, dim(Dev(V)) =5.
Show the following properties of S°** and D?v:

Sspthph — Ssph7
Ddedeev — Ddev
Ssph]D)dev — ]D)devgsph =0.

Prove the results in Egs. (3.5) and (3.6) using the components.
Show that

Ssph . Ssph — 1,
Ddev . ]D)dev — 5’
Ssph .Ddev = 0.

Make explicit the orthogonal conjugator Si of the tensor Si in Eq.
(2.49).

Using the polar formalism, it can be proved that the material symmetry
conditions in plane elasticity are all condensed into the equation

R()Rl sin 4(41)0 — @1) = O,

determine the different types of possible elastic symmetries.
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Chapter 4

Tensor Analysis: Curves

4.1 Curves of points, vectors and tensors

The scalar products in V, Lin(V), and Lin()) allow us to define a norm,
the FEuclidean norm, so they automatically endow these spaces with a
metric, i.e. we are able to measure and calculate a distance between two
elements of such a space and in £. This allows us to generalize the concepts
of continuity and differentiability already known in R, whose definition
intrinsically makes use of a distance between real quantities.

Let 7, = {pn € £,n € N} be a sequence of points in £. We say that m,
converges top € & if

lim d(p, —p) =0.

n—oo

A similar definition can be given for sequences of vectors or tensors of any
rank. Through this definition of convergence, we can now make the concepts
of continuity and curve precise.

Let [a,b] be an interval of R; the function

p=p(t):la,b =&

is continuous at t € [a,b] if for each sequence {t, € [a,b],n € N}
that converges to t, the sequence m, defined by p, = p(t,) Vn € N
converges to p(t) € £. The function p = p(¢) is a curve in £ < it is
continuous V¢ € [a, b]. In the same way, we can define a curve of vectors and

75
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tensors:
v =v(t): [a,b] =V,
L =L(t) : [a,b] — Lin(V),
L =1L(¢) : [a,b] — Lin(V).

Mathematically, a curve is a function that lets correspond to a real value ¢
(the parameter) in a given interval, an element of a space: £,V, Lin(V),
or L(V).

4.2 Differentiation of curves

Let v = v(t) : [a,b] = V be a curve of vectors and g = g(t) : [a,b] - R a
scalar function. We say that v is of the order o with respect to g inty <=
t

v

t=to |g(t)]

=0,

and we write
v(t) = o(g(t)) for t — to.

A similar definition can be given for a curve of tensors of any rank. We then
say that the curve v is differentiable in ty €]a,b] <= 3Iv' € V such that

v(t) = v(to) = (t —to)V'(to) + o(t — to).

We call v/(to) the derivative! of v at to. Applying the definition of
derivative to v/, we define the second derivative v'' of v and recursively
all the derivatives of higher orders. We say that v is of class C™ if it is
continuous with its derivatives up to the order n; if n > 1, v is said to be
smooth. A curve v(t) of class C™ is said to be regular if v/ # o Vt. Similar
definitions can be given for curves in &, Lin()), and Lin(V), thus defining
derivatives of points and tensors. We remark that the derivative of a curve
in &, defined as a difference of points, is a curve in V (we say, in short,
that the derivative of a point is a vector). For what concerns tensors, the
derivative of a tensor of rank r is a tensor of the same rank.

Let u,v be curves in V, L, M curves in Lin(V), L,M curves in Lin()),
and « a scalar function, with all of them defined and at least of class C!

dv
IThe derivative is also written as —, v or also as v, with the last symbol being

usually reserved, in physics, to the case where ¢ is time. For the sake of brevity, we omit
to indicate the derivative of v at to as v’/ (to), writing simply v’.
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on [a, b]. The same definition of the derivative of a curve gives the following
results, whose proof is left to the reader:

(V) =+,
(av) = o'V +av,
(u-v)=u-v+u-v,
(uxv) =uxv+uxv,
(uev)=udev+ua v,
(L+M) =L +M,
(aL) = o'L + al/,
(Lv) =L'v+Lv/,

(LM)' = L'M + LM/,

(L M) =L M +L-M,
(LeM) =L'@M+L®M,
(LEM) = L' KM + LXK M,

(L+M) =L+ M,
(o) = 'L 4 ol/,
(LL) = L'L + LL,
(LMY = L'M + LM,
(L-M)Y =L'-M+L-M.

We remark that the derivative of any kind of product is made according to
the usual rule of the derivative of a product of functions.

Let R = {o; B} be a reference frame of the euclidean space £, composed
of an origin o and a basis B = {e1, ez2,e3} of V,e;-e; = §;; Vi,j = 1,2,3, and
let us consider a point p(t) = (p1(t), p2(t), p3(t)). If the three coordinates
p;(t) are three continuous functions over the interval [¢1, 3] € R, then, by
the definition given above, the mapping p(¢) : [t1,t2] — & is a curve in €
and the equation

p(t) = (p1(t),p2(t), p3(t)) — < p2 = pa(t)



Downloaded from www.worldscientific.com

78 Tensor Algebra and Analysis for Engineers

PO=:1(®), p2(), p3(0))

t t 5 R

Figure 4.1: Mapping of a curve of points.

is the parametric point equation of the curve: To each value of t € [ty, 2],
it corresponds to a point of the curve in &£, see Fig. 4.1.

The vector function r(t) = p(t) — o is the position vector of point p in
R; the equation

r =T (t)
r(t) =ri(t)e; = ri(t)er +ra(t)es +r3(t)es —  ro = ra(t)
3

r3(t)

is the parametric vector equation of the curve: To each value of t € [ty, 2],
there corresponds a vector of V that determines a point of the curve in £
through the operation p(t) = o+ r(t).

Similarly, if the components L;;(t) are continuous functions of a
parameter ¢, the mapping L(t) : [t1, t2] — Lin()) defined by

r3 =

L(t) = Lij(t)ei ® ey, i, =1,2,3,

is a curve of tensors. In a similar way, we can give a curve of fourth-rank
tensors L(¢) : [t1, t2] — Lin(V) by

L(t) = Lij(t)e; ® e; @ ey, @ e, 1,5,k 1 =1,2,3.

It is noted that the choice of the parameter is not unique: The equation
p = p[7(t)] still represents the same curve p = p(t) through the change of
parameter T = 7(t).

The definition given above for the derivative of a curve of points p = p(t)
in t = tg is equivalent to the following one? (probably more familiar to the

2This is also true for the derivatives of vector or tensor curves.
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e, A
PN (1)
P(toTe)
r(%,)
r(t,+&)
] >
€ -

€

Figure 4.2: Derivative of a curve.

reader):
dp(t t —p(t
p(t) _ hmp( o+e)—p( 0),
dt e—0 €
- . s dp(t)
represented in Fig. 4.2, where it is apparent that r/(t) = 7 5@ vector.

An important case is that of a vector v(¢) whose norm wv(t) is constant
Vt:

() =(v-v)=v -v+v-vV=2v.v=0. (4.1)

The derivative of such a vector is orthogonal to it Vt. The contrary is also
true, as is immediately apparent.

Finally, using the above rules and assuming that the reference frame R
is independent of ¢, we get easily that

L'(t) = L;(t) e; @ ey, (4.2)
)

)
L/(t = L;]kl(t) e; ® ej ® er ® e,
i.e. the derivative of a curve of points, vectors, or tensors is simply calculated

by differentiating the coordinates of the components. Using this result, it
is immediate to prove that

(LT)/ — L/T,
(LT)/ — L/T,
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while for any invertible tensor L, we have (we state the following results
without proof?)

(Lfl)/ — 7L71L/L717
(detL) =detL tr(L'L~!) =detL LT -L~! =detL L’ - L.

Let Q(t) : R — Orth(V) be a differentiable function. We call spin tensor
the tensor S(¢) defined as

S(1) == Q'(HQ" (¢).
Then, we have the following.*

Theorem 24 (Characterization of the spin tensor). S(t) €
Skw(V) Vt € R.

Proof. As Q(t) € OrthY Vt, then
QQ'=1=(QQ")=QQ"+QQ"' =T=0=QQ" = -QQ",
SO

sT=@Q")" =QQ"" =-QQ" =-s.

4.3 Integral of a curve of vectors and length of a curve

We define the integral of a curve of vectors r(t) between a and b € [tq, to]
the curve that is obtained by integrating each component of the curve:

/abr(t) dt = /abri(t) dt e;.

If the curve is regular, we can generalize the second fundamental theorem
of the integral calculus:

Because

3The interested reader can find these proofs in the text by Gurtin, see the suggested
texts.

4The spin tensor and the following result are of importance in kinematics: If ¢ is time
and Q(t) € OrthV*, then the axial vector of S(t) is w(t), the angular velocity.
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t * *
e 4 j r'(¢")dt
a

pla
p@)

r(a)
r()

€

€

Figure 4.3: Integral of a vector curve.

we also get

The integral of a vector function is the generalization of the vector sum,
see Fig. 4.3.

Let r(t) : [a,b] = & be a regular curve, o a partition of [a, b] of the type
a=ty<t;<---<t, =0, and

Omazxr — i HllaXn|ti — ti,1|.

.....

The length ¢, of the polygonal line whose vertices are the points r(t;) is
hence

0, = Z e(t;) — r(ti_1)|.

We define the length of the curve r(t) the (positive) number

{:=supl,.

Theorem 25. Let r(t) : [a,b] = & be a regular curve, then

b
0= / I’ (1) |dt.
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Proof. By the fundamental theorem of calculus,

I'(ti) —I‘(ti_l) = / i I‘/(t)dt

ti—1
so that, using Minkowski’s inequality,

|t I ti
[v(t;) —r(ti—1)| = |/t‘ ' (t)dt| g/t. v/ (¢)|dt,

whence

(< /b v ()| dt. (4.3)

Because r/(t) is continuous on [a,b], Ve > 0 3§ > 0 such that [t — | < § =
[t/ (t) —x'(¥)| < e. Let t € [t;—1,t;] and opax < 8§, which is always possible
by the choice of the partition o; again by Minkowski’s inequality,

(0] < [2(8) = v/ (8)] + X (8)] < & + 28],

whence
| |

t; ts ti
/ |I‘/(f)|dt < / |I‘/(fi)|dt + E(ti — ti—l) - |/ I‘/(ti)dtl + E(ti — ti—l)
ti—1

ti—1 ti—1 | |
Ity [ I
< |/ ' (t)dtl + |/ (v'(t;) — ' (t))dtl +e(t; — ti—1)
|t |t \
S |I‘(t1) — r(ti,1)| + 2€(t1 — tifl).

Summing up over all the intervals [t;_1,;], we get

b
/ I (O)|dt < €y + 26(b— a) < £+ 26(b — a),

and because ¢ is arbitrary,

b
/ I’ ()]t < ¢,
which by Eq. (4.3) implies the thesis. O

Let t = f(7) : [¢,d] — [a,b] be a bijective function that operates the change
of parameter from ¢ to 7. If r¢(¢) : [a,b] — V is a parametric equation of
a curve and r, : [¢,d] — V is a re-parameterization of the same curve, we
then have the following.
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Theorem 26. The length of a curve does mnot depend wupon its
parameterization.

Proof. Let ry(t) : [a,b] — & be a regular curve and t = f(7) : [¢,d] — [a, b]
be a change of parameter, then dt = f/(7)dr and

z_/ e (1)t = /|rt |dT—/ e’ ()| dr.

A simple way to determine a point p(¢) on a curve is to fix a point pg

on the curve and to measure the length s(¢) of the arc of curve between

po = p(t = 0) and p(t). This length s(¢) is called curvilinear abscissa®:

/|r )|dt* —/| ) — o)'|dt*. (4.4)

From Eq. (4.4), we get
ds
dt

so that s(t) is an increasing function of ¢, and the length of an infinitesimal

ds = \/dr? +dr3 +dr3.

For a plane curve y = f(x), we can always put ¢ = x, which gives the
parametric equation

= (1)) > 0

arc is

p(t) = (t, f(1)),
or in vector form,
r(t) =te + f(t) ea,

from which we obtain

=Wl = W) = VT 770, (45)

which gives the length of a plane curve between ¢t = xy and t = x as a
function of the abscissa x:

_ / NiES IO

5The curvilinear abscissa is also called arc length or natural parameter.
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4.4 The Frenet—Serret basis

We define the tangent vector T(t) to a regular curve p = p(t) as the vector
/
t
T(t) :== p/( )
P (8)]
By the definition of the derivative, this unit vector is always oriented as

the increasing values of ¢; hence, the straight line tangent to the curve in
po = p(to) has the equation

q(t) = p(to) +t (to)-

If the curvilinear abscissa s is chosen as a parameter for the curve through
the change of parameter s = s(t), we get

sy = X0 _ PO 1 dp(s) ds(t) _ dp(s)
'@ @) s) ds o dt ds

—7(s) =p/(s).
(4.6)

So, if the parameter of the curve is s, the derivative of the curve is 7, i.e.
it is automatically a unit vector. The above equation, in addition, shows
that the change of parameter does not change the direction of the tangent
because it is only a scalar, the derivative of the parameter’s change, that
multiplies the vector. Nevertheless, in general, a change of parameter can
change the orientation of the curve.

Because the norm of 7 is constant, its derivative is a vector orthogonal
to T, see Eq. (4.1). That is why we call principal normal vector to a curve
the unit vector

_ T

v(t): Bl (4.7)
v is defined only on the points of the curve where 7/ # o, which implies
that v is not defined on the points of a straight line. This simply means
that there is not, among the infinite unit normal vectors to a straight line,

a normal with special properties, a principal one, uniquely linked to 7.
Unlike 7, whose orientation changes with the choice of the parameter, v
is an intrinsic local characteristic of the curve: It is not affected by the choice
of the parameter. In fact, by the same definition, v does not depend upon
the reference frame; then, because the direction of 7 is also independent of
the parameter’s choice, the only factor that could affect v is the orientation
of the curve, which depends upon the parameter. But a change in the
orientation affects, in (4.7), both 7 and the sign of the increment dt so
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that 7/(t) = dr/dt does not change, nor does v, which is hence an intrinsic
property of the curve.
The vector

B(t) = 7(t) x v(t)

is called the binormal vector; by construction, it is orthogonal to 7 and v,
and it is a unit vector. In addition, it is evident that

TXVv-B=1,

so the set {7, v, 3} forms a positively oriented orthonormal basis that can
be defined at any regular point of a curve with 7/ # o. Such a basis is
called the Frenet—Serret local basis, local in the sense that it changes with
the position along the curve. The plane (7,v) is the osculating plane, the
plane (v, 3) the normal plane, and the plane (3, 7T) the rectifying plane,
see Fig. 4.4. The osculating plane is particularly important: If we consider
a plane passing through three nonaligned points of the curve, when these
points become closer and closer, still remaining on the curve, the plane
tends to the osculating plane. The osculating plane at a point of a curve is
the plane that better approaches the curve near the point. A plane curve
is entirely contained in the osculating plane, which is fixed.

The principal normal v is always oriented toward the part of the space
with respect to the rectifying plane where the curve is; in particular, for
a plane curve, v is always directed toward the concavity of the curve. To
show that, it is sufficient to prove that the vector p(t +¢) — p(t) forms with

Figure 4.4: The Frenet—Serret basis.
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v an angle ¢ < /2, i.e. that (p(t +¢) —p(t)) - v > 0. In fact,

plt+2) = plt) = < /(1) + 52" (1) + 0(e?)

= (Bl +2) (D) - = 5 (0) v+ 0fe?),

but
pIt) v =W+ 7)) v = (P + 7)) v =Y
so that, to within infinitesimal quantities of order o(g?), we obtain

(plt +2) ~p(t)) - = 52 ] 2 0.

4.5 Curvature of a curve

It is important, in several situations, to evaluate how much a curve moves
away from a straight line in the neighborhood of a point. To do that, we
calculate the angle formed by the tangents at two close points, determined
by the curvilinear abscissa s and s + ¢, and we measure the angle x(s,¢)
that they form, see Fig. 4.5.

We then define the curvature of the curve in p = p(s) as the limit

Ix(s,¢) : .

o) =ty 245

The curvature is hence a nonnegative scalar that measures the rapidity of
variation in the direction of the curve per unit length of the curve (that
is why ¢(s) is defined as a function of the curvilinear abscissa); by the
same definition, the curvature is an intrinsic property of the curve, i.e.

2(5+8)  1(s+e)

7(s) V(ste)

Figure 4.5: Curvature of a curve.



Downloaded from www.worldscientific.com

Tensor Analysis: Curves 87

independent of the parameter’s choice. For a straight line, the curvature is
identically null everywhere.

The curvature is linked to the second derivative of the curve; referring
to Fig. 4.5, it is

c(s) = lim IX(S,E)I — lim lwl — lim |~ sin X(S,E)I
e—0 g e—0 e e=0le 2
. Iv(s,e)l (st e) —7(s)] ) ,
= lim = = lim ) ——————— = [T () = [P"(5)].

Another formula for the calculation of ¢(s) can be obtained if we consider
that
dr[s(t)] drds dr, , dr 1 dr
== = ) —

i sa PO ST o

so that

I T Bt
= TN e = r s

A better formula can be obtained using the complementary projector onto
T, i.e. the tensor I — 7 ® 7, introduced in Exercise 2, Chapter 2:

/! /

|~ p Pt
dr 1 dr 1 dp(t) 1 |p']
s [p@)ldt [p@)ldtlp@ || p'[?
p—Tp T P
=—=IT-71™T®71 .
FIE P
Consequently,
ldr(s)! 1
c(s) = " s 1= |p/|2|<I_T®T)pH|'

Now, we use Eq. (2.29) with w = 7; denoting by W the axial tensor of T,
then

1
W. W, = —§|WT|2(I —-TRT),

whence

W, W,
I-71 RT = —27|WT|2 = _WTWT7
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because if T = (11, 72, 73), then

O —T3 T2 O —T73 T2
W P=W, W,.=| 7 0 -7|-|7m 0 -7
—To T1 0 —To T1 0

=2t +ri+T13) =2
So, because W, € Skw(V),
W,.,u=7xu Vue).

Finally, using Eq. (2.33), the orthogonality property of cross product, Eq.
(2.31), and Eq. (2.35), we get

(T—r@7)p"| == W-Wop'| == Wr(r xp")| = [ -7 x (7 xp)]
/>< /!
o x (1 x| = | x| = X
']
so that, finally,
/>< /1
o= X7 (4.9)
/|

Applying this last formula to a plane curve p(t) = (x(t),y(t)), we get
_ |x/y// _ x//y/|
(22 + y’Q)% ’
and if the curve is given in the form y = y(z) so that the parameter ¢t = z,
then we obtain
_ W
(1+y2)3
This last formula shows that if |y/| < 1, then

e [y"].

This result is fundamental to the linearized (infinitesimal) theory of beams,
plates, and shells.

4.6 The Frenet—Serret formula
From Eq. (4.7) for t = s and Eq. (4.8), we get

dr

— =cv, 4.10
T (4.10)
which is the first Frenet-Serret formula, giving the variation in 7 per unit
length of the curve. Such a variation is a vector whose norm is the curvature
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and that has as direction that of v. We remark that, because t = s, by
Eq. (4.6), it is also that

P (s) = c(s)v(s). (4.11)
Let us now consider the variation in 3 per unit length of the curve; because
3 is a unit vector, we have

ag

Z.8=0
ds P
and
B dB-T) dp dr
Through Eq. (4.10) and because 3 -v = 0, we get
d
—ﬁ-T:—cﬁ-l/Zo
ds

d
so that d_ﬁ is necessarily parallel to v. We then set
s

g
i Jv,
which is the second Frenet-Serret formula. The scalar 9(s) is called the
torsion of the curve in p = p(s). So, we see that the variation in 3 per unit
length is a vector parallel to v and proportional to the torsion of the curve.
We can now find the variation in v per unit length of the curve:

d d d d
d—Z:%:d—fxrqtﬁxd—::ﬂuerrcﬁxu,

so finally

z—z =—cT—-90,
which is the third Frenet-Serret formula: the variation in v per unit length
of the curve is a vector of the rectifying plane.
The three formulae of Frenet—Serret (discovered independently by
J. F. Frenet in 1847 and by J. A. Serret in 1851) can be condensed into the

symbolic matrix product

T 0cO T
vV y=|—-c0-9 v
Ic4 09 0 J¢;

The matrix in the equation above is called the matriz of Cartan, and it is
skew.
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4.7 The torsion of a curve

We have introduced the torsion of a curve in the previous section, with the
second formula of Frenet—Serret. The torsion measures the deviation of a
curve from flatness: If a curve is planar, it belongs to the osculating plane,
and B3, which is perpendicular to the osculating pane, is hence a constant
vector. So, its derivative is null, and by the second Frenet—Serret formula,
9 = 0.

Conversely, if ¥ = 0 everywhere, 3 is a constant vector, and hence, the
osculating plane does not change and the curve is planar. So, we have that
a curve is planar if and only if the torsion is null Vp(s).

Using the Frenet—Serret formulae in the expression of p”’(s), we get a
formula for the torsion:

dp ds
"B == 222 — g = |p] =5 —
PO =lplr=—r— =T = =5

dr
p'(t)=s"T+s7 =5"1+ s’2d— =s"r+c¢s%v —
S

p///(t) _ S///T+S//T/+ (C 8/2)/11—1-6 8/21/

dr dv
_ 3///T+$//31_ 4 (e 512 /VJrC 8/3_
ds ( ) ds
=s"1+5"s'cv+ (c s*)v—c s (cr +9B)

_ (S/// _ C2S/S)T + (S”S/C—l— 0/8/2 + 2¢ S/SH)I/ —c 5’3195,
whence, through Eq. (4.9),

p/ X p// .p/// —¢rx (S//T+C 3/21/) . [(S/// _ 623/3)7‘
+(s"s'c+ s 4+ 2¢ '8\ — ¢ 9]
! 2
— —028/619 — —C2|p/|619 — _|p | /|]Z | |p/|619
p

so that, finally,

g 7p/ x p - p"
v

We remark that while the curvature is linked to the second derivative of
the curve, the torsion is also a function of the third derivative.
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cos a>0:

Figure 4.6: Torsion of a curve.

Unlike curvature, which is intrinsically positive, the torsion can be
negative. In fact, again using the Frenet—Serret formulae,

1 1
p(s+e)—p(s) =ep + 5"+ gssp’” + o(e?)

1 1
eT + 55201/ + 653(01/)' + o(e®)

1 1
=eT + 56201/ + 653(0'1/ — 1 —c9B) +o(c?)

= (p(s+2) = pls)) - B = —g=c 0+ 0le?),

The above dot product determines if the point p(s + ¢) is located, with
respect to the osculating plane, on the side of 8 or on the opposite one, see
Fig. 4.6: If following the curve for increasing values of s, € > 0, the point
passes into the semi-space of 3 from the opposite one, because 1/6 ¢ % > 0,
it will be ¥ < 0, while in the opposite case, it will be ¥ > 0.

This result is intrinsic, i.e. it does not depend upon the choice of the
parameter, hence of the positive orientation of the curve; in fact, v is
intrinsic, but changing the orientation of the curve, 7, and hence 3, change
in orientation.

4.8 Osculating sphere and circle

The osculating sphere® to a curve at a point p is a sphere to which the
curve tends to adhere to the neighborhood of p. Mathematically, if ¢, is the

6The word osculating comes from the latin word osculo, which means to kiss; an
osculating sphere or circle or plane is a geometric object that is very close to the curve,
as close as two lovers are in a kiss.
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center of the sphere relative to the point p(s), then
|p(8 + 5) - QS|2 = |p($) - QS|2 + 0(53)'

Using this definition, discarding the terms of order o(e®) and using the
Frenet—Serret formulae, we get

1 1
p(5+€) = 452 = Ip(s) — a5 + €0’ + 5% + %" + 0fe?)

1 1
= |p(s) —qs + T + 5520 v+ 853(01/)’ +o(e)|?
= [p(s) = as|* +2e(p(s) — 45) - T + € + e%c(p(s) —qs) v

+330(s) — 05) - (v — ¢Pr — ¢ 9B) + 0f<),

which gives

1
(p(s) —qs) - v=—==—p,
B C/ B p/
(p(s) - QS) ‘B 29 0
and finally,
p/
4 =p+pv—"75P, (4.12)

so the center of the sphere belongs to the normal plane; the sphere is not
defined for a plane curve. The quantity p is the radius of curvature of the
curve, which is defined as
1
p=—
¢

The radius of the osculating sphere is

2
o'
— — frd 2 p— .
ps = Ip — qs| p+(19)

The intersection between the osculating sphere and the osculating plane at
the same point p is the osculating circle. This circle has the property of
sharing the same tangent in p with the curve, and its radius is the radius of
curvature, p. From Eq. (4.12), we get the position of the osculating circle
center g:

g=p+pv. (4.13)

An example can be seen in Fig. 4.7, where the osculating plane, circle, and
sphere are shown for a point p of a conical helix.
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osculating shpere

Figure 4.7: Osculating plane, circle, and sphere for a point p of a conical helix.

The osculating circle is a diametral circle of the osculating sphere only
when g = ¢s, so if and only if

/ /

P c

g @Y

i.e. when the curvature is constant.

4.9 Evolute, involute and envelopes of plane curves

For any plane curve «(s), the center of the osculating circle ¢ describes
a curve 0(c) that is called the evolute of v(s) (s and o are curvilinear
abscissa). A point ¢ of the evolute is then given by Eq. (4.13). We call
involute of a curve y(s) a curve p(o) whose evolute is v(s). We call the
envelope of a family of plane curves ¢(s, ),k € R being a parameter, a
curve that is tangent in each of its points to the curve of (s, k) passing
through that point.

Let us consider the evolute d(o) of a curve «(s); the tangent to d(o) is
the vector, cf. Eq. (4.13),

_dq dqds

= do  dsdo’

But, cf. again Eq. (4.13) and the Frenet—Serret formulae,

dg dp  dp dv dp _dp
ds ds+dsy+pds _T+d5V peT= dsy’
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SO
1 _dpds
0 do ds do
Because
ldg !
g5 = lv| =1,
then
dods _ | _ dp _do
dsdo ds — ds
and

TS = V.

The evolute, §(c), of «(s) is hence the envelope of its principal normals
v(s).

This result helps us in finding the equation of the involute p(o) of a
curve (s); let p = p(s) be a point of y(s); then, if b € pu(o), it must be
that

(b—p)-v=0,

where v is the principal normal to «(s) in p because v(s) is the evolute of

p(o), which implies, for the last result, that 7 = v,,, with 7 the tangent to

~(s) in p and v, the principal normal to p(o) in b, see Fig. 4.8.
Therefore,

b(s) = p(s) = f(s)T(s) — b(s) =p(s) + f(s)7(s),

with f = f(s) a scalar function of s; we remark that b = b(s), i.e. the arc
length s of «(s) is the parameter also for p(s), but in general, o ~s. Upon
differentiation, we get

b'(s) = (1+ f'(s))7(s) + f(s)cs)v(s).

Then, because b'(s) = |b/(s)|7,, is orthogonal to v, = T, it is parallel to v,
so it must be that

1+ f(s)=0 = f(s)=a—s, a€R
Finally, the equation of the involute p(s) to vy(s) is
b(s) = p(s) + (a — s)7(s),

and we remark that the involute is not unique.
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Figure 4.8: Evolute, §, and involutes for a = 0, denoted by p, and a = 1, dashed, of a
catenary -y.

4.10 The theorem of Bonnet

The curvature, ¢(s), and the torsion, ¥(s), are the only differential param-
eters that completely describe a curve. In other words, given two functions
c(s) and Y(s), then a curve exists with such a curvature and torsion (we
remark that there are no conditions bounding these parameters). This is
proved in the following.

Theorem 27 (Bonnet’s theorem). Given two scalar functions c(s) € Ct
and 9(s) €C®, there always erists a unique curve v € C® whose curvilinear
abscissa is s, curvature c(s), and torsion 9(s).

Proof. Let

be the column vector whose elements are the vectors of the Frenet—Serret
basis. Then,

= C(s)e(s), (4.14)
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with
0 ¢(s) O
C(s)=|—c(s) 0 —=9(s)
0 ¥(s) O

we have a Cauchy problem for the basis e€(0). As known, such a problem
admits a unique solution, i.e. we can associate to ¢(s) and ¥(s) a family of
bases e(s) (that are orthonormal because if one of them were not so, the
Cartan’s matrix should not be skew). Call 7(s) the first vector of the basis
e(s) and define the function

p(s) = po + /OS T(S*)ds*;

p(s) is the curve we are looking for (it depends upon an arbitrary point
Po, i.e. upon an inessential rigid displacement). In fact, because |7| = 1, s
is the curvilinear abscissa of the curve. Then, it is sufficient to write the
Frenet—Serret equations identifying them with system (4.14). O

4.11 Canonic equations of a curve

We call the canonic equations of a curve at a point pg the equations of the
curve referred to the Frenet—Serret basis in pg. For this purpose, we expand
the curve in a Taylor series of initial point pg:

1 1
p(s) =po+sp(0)+ §s2p”(0) + 653}9”’(0) + o(s).

In the Frenet—Serret basis,

~ dev

P (0) =7(0), p"(0) = e(0)r(0), p"(0)= —=

= (0)v(0) = ¢*(0)7(0) — ¢(0)1(0)B3(0),

SO
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The coordinates of a point p(s) close to py in the basis (7(0),(0),3(0))
are hence

pi(s) =s— %02(0)53 +o(s%),
pa(s) = %C(O)s2 + %C’(O)SS + o(s%),

p3(s) = —%0(0)19(0)83 +o(s%).

The projections of the curve onto the planes of the Frenet—Serret basis hence
have, close to pg (i.e. retaining the first non-null term in the expressions
above), the following equations:

e On the osculating plane,

or, eliminating s,
1
b2 = §C(O)p%7
which is the equation of a parabola.

e On the rectifying plane,

or, eliminating s,

1

which is the equation of a cubic parabola.
e On the normal plane,

1
pa(s) = 50(0)52,
1
p3(s) = —80(0)19(0)53,
or, eliminating s,
2 192(0)
2__ 2 3
p3 - 9 C(O) p27

which is the equation of a semicubic parabola, with a cusp at the origin,
hence a singular point, though the curve p(s) is regular.
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4.12 Exercises

. Using the same definition of the derivative of a curve, prove the relations

in Section (4.2).
Prove the relations in Eq. (4.2).

. The curve whose polar equation is

r=af, acR,

is an Archimedes’ spiral, Fig. 4.9(a). Find its curvature ¢(f) and its
length ¢(0), and prove that any straight line passing through the origin
is divided by the spiral in segments of constant length 27 a (that is
why the Archimedes’ spiral is used to record disks).

. The curve whose polar equation is

r=ae", a,beR,

is the logarithmic spiral. Prove that the origin is an asymptotic point
of the curve, find its curvature ¢(d) and its length (), and show
that the length of the segments in which a straight line by the origin
is divided by two consecutive intersections with the spiral varies as
a geometrical progression. Then, prove its equiangular property: The
angle o between p(0) — o and 7(6) is constant. Finally, show that the
evolute of the logarithmic spiral is a logarithmic spiral itself (and hence
that its involute is still a logarithmic spiral, that’s why Jc. Bernoulli
coined for this curve the Latin sentence eadem mutata resurgo.)

N7

Figure 4.9: The (a) Archimedes’ and (b) logarithmic spirals.
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5. The curve whose parametric equation is

p(0) = a(cosb + Osinf)e; + a(sinh — 6 cosh)e,,

with 6 the angle formed by p(0) — o and with the axis x1, is the involute
of the circle, see Fig. 4.10. Find its curvature ¢() and its length ¢(0),
and prove that its evolute is exactly the circle of center o and radius a
(that is why the involute of the circle is used to profile gears).

. The curve whose parametric equation is

p(f) = acoswhe; + asinwles + bwhes

is a circular heliz, i.e. a heliz that winds on a circular cylinder of radius
a, see Fig. 4.11. Show that the angle ¢ formed by the helix and any
generatrix of the cylinder is constant (a property that defines a helix in
the general case). Then, find its length £(0), its curvature ¢(@), torsion
9(0), and the pitch d, i.e. the distance, on a same generatrix, between
two successive intersections with the helix. Prove then the Bertrand’s
theorem: A curve is a cylindrical helix if and only if the ratio ¢/9 =
const. Finally, prove that for the above circular helix, there are two
constants A and B such that

p' xp" = Au(f) + Bes,
with
u = sinwfe; — coswbes;

then, find A and B.

Figure 4.10: The involute of the circle and its evolute, the circle.
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X

Figure 4.11: The circular helix.

Figure 4.12: The cycloid and its evolute.

Find the equation of the cycloid, i.e. of the curve that is the trace of
a point of a circle of radius r rolling without slipping on a horizontal
axis, see Fig. 4.12. Calculate the length of the cycloid for a complete
round of the circle, determine its curvature, and show that the evolute
of the cycloid is the cycloid itself (Huygens, 1659).

. The planar curve whose parametric equation is

p(t) = te; + coshtey

is the catenary (Je. Bernoulli, 1690; Jn. Bernoulli, Leibniz, and
Huygens, 1691). It is the equilibrium curve of a heavy, perfectly flexible,
and inextensible cable. Calculate the curvature of the catenary and the
equation of its evolute and of its involutes (see Fig. 4.8).
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Figure 4.13: The tractrix and its evolute.
The planar curve whose parametric equation is
t .
p(t) = [ cost + Intan 3)e + sintey

is the tractriz (Perrault, 1670; Newton, 1676; Huygens, 1693). This is
the curve along which an object moves, under the influence of friction,
when pulled on a horizontal plane by a line segment attached to a
tractor that moves at a right angle to the initial line between the object
and the puller at an infinitesimal speed, see Fig. 4.13. Show that the
length of the tangent to the tractrix between the points on the tractrix
itself and the axis = is constant V¢, calculate the length of the curve
between ¢; and to, calculate the curvature of the tractrix, and finally
show that its evolute is the catenary.

For the curve whose cylindrical equation is

r=1,
z =sinb,

find the highest curvature and determine whether or not it is planar.
Let p = p(t) be the path of a moving particle of mass m, with ¢ being the
time. Define the velocity and the acceleration of p as, respectively, the
first and second derivative of p with respect to t. Decompose these two
vectors in the Frenet—Serret basis and interpret physically the result.
Recalling the second Newton’s principle of mechanics, what about the
forces on p?
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Chapter 5

Tensor Analysis: Fields

5.1 Scalar, vector and tensor fields

Let Q C £ and f : Q — V. We say that f is continuous at p € Q) <— V
sequence T, = {p, € Q,n € N} that converges to p € &, the sequence
{vn = f(pn),n € N} converges to f(p) in V. The function f(p) : Q@ — Vis a
vector field on §2 if it is continuous at each p € €. In the same way, we can
define a scalar field p(p) : @ — R and a tensor field L(p) : Q — Lin(V).

A deformation is any continuous and bijective function f(p) : 2 — &, i.e.
any transformation of a region 2 C & into another region of &; bijectivity
imposes that to any point p € € corresponds one and only point in the
transformed region, and vice versa, which is the mathematical condition
expressing the physical constraint of mass conservation.

Finally, the basic difference between fields/deformations and curves is
that a field or a deformation is defined over a subset of £, not of R. In
practice, this implies that the components of the field/deformation are
functions of three variables, the coordinates x; of a point p € 2.

5.2 Differentiation of fields, differential operators

Let ¥(p) be a scalar, vector, or tensor field or also a deformation; we define
the directional derivative of ¢ (p) in the direction of e € S the limit

dp) _ o v toe)—vp) o
de =~ a0 « ’ ’

The directional derivative measures the rate of variation of t(p) in the
direction of e. In the particular case of e = e;, ¢ = 1,2,3, i.e. of the

103
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directions of the basis {ej, ez, e3} of V, then

M — lim Y(p + ae;) —U(p)

dei a—0 (%

is the partial derivative of 1 with respect to x;, for example, if i = 1, then

dip(p) _ 1 V(21 + o, 2, v3) — P(21, T2, 73)
d61 a—0 o ’
The partial derivative with respect to x; is usually indicated as or also
T

as Y.
Let v(p) : Q — V; we say that v is differentiable in py € Q <=
3 gradv € Lin(V) such that

v(po +u) = v(p) + gradv(p) u+ o(u)

when u — o. If v is differentiable Vp € Q, gradv defines a tensor field on €2
called the gradient of v. It is also possible to define higher order differential
operators using higher order tensors, but this will not be done here. If v is
continuous with gradv Vp € Q, then v is of class C! (smooth).

Let v be a vector field of class C* on Q. Then, the divergence of v is the
scalar field defined by

divv := tr(gradv),
while curlv is the unique vector field that satisfies the relation
(gradv — gradv ' )u = (curlv) x u Yu € V.

The divergence of a tensor field L is the unique vector field divL that
satisfies

(divL) - u = div(L'u) Yu = const. € V.
Let o(p) : © — R be a scalar field over €. Similar to the case of vector
fields, we say that ¢ is differentiable at po € } <= 3 grady € V such that
¢(p+u) = ¢(p) + grade(p) - u+ o(u)

when u — o. If ¢ is differentiable Vp € Q, grady defines a vector field on
called the gradient of p. If gradyp is differentiable, its gradient is the tensor
gradI ! o called the second gradient or Hessian. It is immediate to show that
under the continuity assumption,

grad’l o = (grad ) 7.
A level set of a scalar field ¢(p) is the set Sz such that

©(p) = const. Vp e Sy.
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Considering hence two points p and p + u of the same Sy, then by the
definition of differentiability of ¢(p) itself, we see that gradyp is a vector that
is orthogonal to Sy, at p. The curves of £ that are tangent to grady Vp € Q
are the streamlines of ; they have the property to be orthogonal to any
Sp, of p Vp e Q.
grady allows us to calculate the directional derivative of ¢ along any
direction n € § as
d_gp = grady - n.
dn
The highest variation of ¢ is hence in the direction of grady, and |gradyp| is
the value of this variation; we also remark that grady is a vector directed
along the increasing values of ¢.
Similarly, for a vector field v, the directional derivative along any
direction n € S can be computed as
d_:l = gradv n.
Let 1) be a scalar of vector field of class C? at least. Then, the laplacian
A of ¢ is defined by

Ay = div(grady).

By the linearity of the trace, and hence of the divergence, we see easily that
the laplacian of a vector field is the vector field whose components are the
laplacian of each corresponding component of the field. A field is said to be
harmonic on ) if its laplacian is null Vp € Q.

The definitions given above for the differentiable field, gradient, and
class C! can be repeated verbatim for a deformation f(p): Q — &.

5.3 Properties of the differential operators

The differential operators, gradient, divergence, curl, and laplacian, have
some interesting properties that are useful for calculations; they are
introduced in this section.

Theorem 28 (Gradient of products). Let v, be scalar and u, v, w be
vector fields, with all of them differentiable. Then:

(i) grad(pv) = ¢ grady + ¢ grade,
(ii) grad(¢v) = ¢ gradv + v ® grade, (5.1)

(iii) grad(v-w) = (gradw) v + (gradv) "w.
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Proof. The proof is based upon the definition of gradient itself:
(i) (p1)(p + 1) = p1p + grad(py) - u + o(u),

but also,
(e¥)(p+u) = p(p+w)(p+u) = (¢ + grade - u+ o(u))
x (¢ + gradi - u + o(u))
= @b + ¢ grady - u + 1) grady - u + o(u)

= @ + (¢ grady) + 1 grady) - u + o(u),
so by comparison

grad(py) = pgrady + ¢grade.

(ii) In the same way,

(¢v)(p + 1) = v + grad(pv)u + o(u) = v + grad(pv)u + o(u),

but also,
(ev)(p +u) = ¢(p+w)v(p +u) = (¢ + grade - u+ o(u))
X (v + gradv u + o(u))
= ¢v + pgradv u + grady - u v + o(u)
= v + (¢ gradv + v ® gradv)u + o(u),
so comparing the two results, we get
grad(pv) = ¢ gradv + v ® gradv.
(iii) In the same way,
(v-w)(p+u)=v-w+grad(v-w)u -+ o(u),
but also,
(v-w)(p+u)=v(p+u) wp+u)=(v+gradv u+o(u))
- (w + gradw u + o(u))
=v-w+ v (gradw u) + (gradv u) - w + o(u)
=v-w+ ((gradw) ' v + (gradv) "w) - u + o(u),
whence, by comparison of the two results,

grad(v - w) = (gradw) " v + (gradv) " w.

O

LFor the sake of brevity, we omit to indicate the point p, e.g. we simply write ¢ for ¢(p)

and gradyp for gradp(p).
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Another important result? relating the gradient and the curl of a vector
field is as follows.

Theorem 29. If v is a differentiable vector field, then
(gradv)v = (curlv) x v + %grava.
Proof.
(curlv) x v = (gradv — (gradv ' ))v = (gradv)v — (gradv) v
= (gradv)v — é((gradv)Tv + (gradv) " v),
and by property (iii) of the previous theorem,
(gradv) v + (gradv) v = grad(v - v) = gradv?
so that
(curlv) x v = (gradv)v — %gradv2,
whence we obtain the thesis. 0

The proof of the following properties of the gradient are left to the reader
as an exercise:

grad(v - w) = (gradw)v + (gradv)w + v x curlw + w x curlv,
grad(u-v w) = (u- v)gradw + (w ® u)gradv + (w ® v)gradu, (5.2)
gradv - gradv ' = div((gradv)v — (divv)v) + (divv)2.

Theorem 30 (Divergence of products). Let ¢,u,v,w,L be differen-
tiable scalar, vector, or tensor fields. Then:

(i) div(pv) = @divv + v - grade,
(ii) div(v @ w) = vdivw + (gradv)w

(¥
(
(iii) div(pL) = divL 4+ Lgradey,
(iv) div(LTv) = L - gradv + v - divL,
(

(v) div(v x w) = w - curlv — v - curlw.

2This result is fundamental to fluid mechanics, as it allows us to get an interesting form
of the Navier—Stokes equations.
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Proof. (i) Using the definition of divergence and property (i) of
Theorem 28, we get

div(ev) = tr(grad(pv)) = tr(¢ gradv + v ® grady)
= p tr(gradv) + tr(v ® grady) = ¢ divv 4+ v - grade.

(ii) By the definition of divergence of a tensor, Va = const. € V, and using
the previous property along with property (iii) of Theorem 28:
(div(v @ w) -a=div(veow) a)=div(w®va)=dv(v-aw)
=v-adivw + w - grad(a - v)
=divw v-a+w- (gradv) ' a+w - (grada) v
= (vdivw + gradv w) - a.

(iii) By the definition of divergence of a tensor, Va = const. € V, and using
property (i), along with property (iii) of Theorem 28:

div(¢L) - a = div((¢L) "a) = div(¢L"a) = ¢div(L"a) + L™ a - grady
= @divL - a + a - Lgrady = (¢divL + Lgrady) - a.
(iv) By the definition of divergence of a tensor and using the previous
property:
div(LTv) = div(Lv;e;) = div((v;L")e;) = div(y;LT) " - e;
= div(v;L) - €; = v;divL - ¢; + L gradv; - e,
=v-divL + (Lyqep @ eq(gradv;)men) - €;
= v - divL + Lpqvj mdgmdjp = v - divL + L - gradv.

(v) This property can be proved making use of the expression of the cross
product with the Ricci’s alternator, given in Eq. (2.30):

curlv = €ijkVk,j€4
and
V X W = €,V W€,
whence
diV(V X W) = diV(Eijk’ijkei) = eijk(vjwk)’i = €jkV; Wk + €ijkWk,iV;j-
Moreover,
W - curlv = W€, * €pgrUr.q€p = €pgrUr,qWmpm = €pgrUr,qWp = €qrpUr.qWp
and

V- CUIlW = U €4, - €pgrWr €p = €pgrWr,qUmOpm = EpgrWr,qUp = —E€qprWr qUp,
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so finally, comparing the last three results (all the subscripts are dummy
indexes, so their denomination is inessential),

div(v x w) = w - curlv — v - curlw. 0

The divergence has also the following properties:
div(gradv ") = grad(divv),
div((gradv)v) = gradv - gradv " + v - grad(divv), (5.3)
div(¢pLv) = oL - gradv + ¢v - divL" + Lv - grade,

whose proofs can be a good exercise for the reader.
The relations of the gradient and divergence with the curl are given by
the following.

Theorem 31. Let ¢ and v be the scalar and vector fields of class C°.
Then:

(i) div(curlv) = 0,

(ii) curl(grady) = o.
Proof. (i) Using again the Ricci’s alternator to represent the cross product,

div(curlv) = div(e;jk vk, j€i) = €ijkvk,jdive; + €;jkVk ji = €ijkUk,ji
= 03,21 + V1,32 + V2,13 — V2,31 — U312 — V1,23 = 0.
(ii) In a similar manner,
curl(grady) = €;jrp kj€i = Y32 + @13 + P21 — P23 — P31 — P12 = 0. 0

The following theorem gives an interesting relation between the curl of a

vector and the divergence of its axial tensor.

Theorem 32 (Curl of an axial vector). Let w be a differentiable vector
field and W its axial tensor field. Then,

curlw = —divW.
Proof. Using properties (iv) and (v) of Theorem 30 and because W =
—~W 7' Va=const. € V, we get
div(w x a) = a - curlw — w - curla = a - curlw,
div(Wa) = div(-WTa) = ~W - grada — a - divW = —a - divW.

Now, because Va,w x a = Wa = div(w x a) = div(Wa), we get the
thesis. g
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The way the curl of a curl® is computed is given by the following theorem.

Theorem 33 (Curl of a curl). Let v be a vector field of class >C?.
Then,

curl(curlv) = grad(divv) — Av.

Proof. Using properties (iv) and (v) of Theorem 30, along with the first
of Eq. (5.3), Va = const. € V, we get

div((curlv) x a) = a - curl(curlv) — curlv - curla = a - curl(curlv),
and by the definition of curl and laplacian,
div((curlv) x a) = div((gradv — (gradv) " )a) = div(gradv a)
— div((gradv) Ta)
= (gradv)' - grada + a - div(gradv) ' — gradv - grada
—a-div(gradv)
= a - (div(gradv) " — div(gradv)) = a - (grad(divv) — Av),
whence, by comparison,

curl(curlv) = grad(divv) — Av.
]

The proof of the following properties of the curl can be obtained using the
above results, and it is a good exercise:

curl(pv) = gcurlv + grady X v, (5.4)
curl(v x w) = (gradv)w — (gradw)v + vdivw — wdivv. .

Finally, we have a theorem also for the laplacian of a product.

Theorem 34 (Laplacian of products). Let p,v,u,v be the scalar and
vector fields of class >C?. Then:

(i) Apy) = 2grade - grady) + @A + A,
(ii) A(v - w) = 2gradv - gradw + v - Aw + w - Av.

3This relation is useful in fluid mechanics for writing the vorticity equation.
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Proof. (i) Using property (i) of Theorems 28 and 30, we get
A(py) = div(grad(py)) = div(p grady + ¢ gradyp) = div(e gradi))
+ div(y) grady)
= ¢ div(grady) + grady - grady + ¢ div(grade) + grade - grady
= 2grady - grady + ¢ Ay + 19 Agp.
(ii) Using properties (iii) of Theorem 28 and (iv) of Theorem 30, we obtain
A(v - w) = div(grad(v - w)) = div((gradw) " v + (gradv) ' w)
= div((gradw) " v) + div((gradv) " w)
= gradw - gradv + v - div(gradw) + gradv - gradw
+ w - div(gradv)
= 2gradv - gradw + v - Aw + w - Av. O

5.4 Theorems on fields

We recall here some classical theorems on fields and operators.
Theorem 35 (Harmonic fields). If v(p) is a vector field of class > C?
such that
divv =0, curlv =o,

then v is harmonic: Av = o.
Proof. By the definition of curl,

curlv = 0 = gradv — (gradv)' = o = div(gradv — (gradv)') = o,
and through Eq. (5.3);, the definition of laplacian, and because by
hypothesis divv = 0, we have

div(gradv — (gradv) ") = Av — grad(divv) = Av. O

We state now without proof a lemma? that, basically, allows us to transform
a volume integral on a domain ) to a surface integral on the boundary
surface 0€).

Theorem 36 (Divergence lemma). Let v(p) be a vector field of class
> C! on a reqular region Q C €. Then,

/ v®ndA:/gradvdV.
o0 Q

4In the following, 99 indicates the boundary of .
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This lemma is fundamental for proving the three forms of the Gauss
theorem, which is of paramount importance in many fields of mathematical
physics.

Theorem 37 (Divergence or Gauss theorem). Let ¢, v, L be, respec-
tively, a scalar, vector, and tensor field of class > C' on a regular region
Q C&. Then:

(1) / pn dA:/gradgo av,
l9) Q

(i) / v-ndA= / divv dV,
o0 Q

(iii) / Ln dA = [ divL dV.
a0 Q

Proof. (i) Va = const. € V, by the lemma of divergence,

/ grad(pa)dV = / pa®@ndA=a ®/ en dA,
Q 0 a0
but also, by (ii) of Theorem 28,
/ grad(pa)dV = / (p grada + a ® gradp)dV = a ®/ grady dV,
Q Q

Q

whence, by comparison,

/ en dA = / grady dV.
a0 Q

(ii) Still, by the divergence lemma,

tr/gradvdV:tr/ vendA= tr(v@n)dA = v-n dA,
Q o9 a9 o9

but also,

tr/ gradv dV = / tr(gradv)dV :/divv dv,
Q Q Q

/ v-ndA:/divvdV.
o0 Q

so by comparison,
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(iii) Va = const. € V, by the lemma of divergence, (iv) of Theorem 30 and
(ii) just proved,

/ div(LTa)dV = / (LTa)-ndA= | a-LndA=a- / Ln dA,
Q o0 o o
but also,
/ div(LTa)dV = / (divL) -a+L-grada dV = a - / divL dV,
Q Q Q

so once again by comparison,

/ Ln dA = / divL dV.
a0 Q

O
The following identities follow directly from the Gauss theorem:
/ v-Ln dA = / (v-divL 4+ L - gradv)dV,
o9 Q
/ (Ln) ® v dA = / ((divL) ® v + L(gradv "))dV, (5.5)
aQ Q

/ (w-n)v dA = / (vdivw + (gradv)w)dV.
19) Q

A direct consequence of the Gauss theorem is the following theorem.

Theorem 38 (Flux theorem). Let v(p) be a vector field of class > C!
on an open subset R of €. Then,

divv =0 <— v-ndA=0 VQCR.
o0

Proof. It immediately follows from (ii) of the Gauss theorem. O
Another consequence of the Gauss theorem is the next theorem.

Theorem 39 (Curl theorem). Let v(p) be a vector field of class > C!
on a reqular region Q@ C £. Then,

/ nxvdA=/curlvdV.
o0 Q
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Figure 5.1: Scheme for the Stokes theorem.

Proof. If V is the axial tensor of v, by Theorem 32 and (iii) of the Gauss
theorem,

/nXVdA:—/ vxndA=— Vn dA
e} o0 e}

= —/ divV dV = / curlv dV.
Q Q O

The following classical theorems on fields are recalled here without proof.

Theorem 40 (Potential theorem). Let v(p) be a vector field of class
> C! on a simply connected region Q C €. Then,

curlv =0 <= v = grady,
with p(p) a scalar field of class > C2, the potential.

Theorem 41 (Stokes theorem). Let v(p) be a vector field of class > C!
on a regular region Q C £, X an open surface whose support is the closed
line v and n € § the normal to X, see Fig. 5.1. Then,

%v'dK:/curlv'ndA.
¥ b))

The parametric equation of v must be chosen in such a way that
Pl(t) xpl(t2) n>0 Vi >t

Theorem 42 (Green’s formula). Let ©(p),(p) be two scalar fields of
class > C? on a reqular region Q C €, with n € S the normal to 9. Then,

de Y\,
[ (w5 o) aa= [ @ ae—p svpav.
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5.5 Differential operators in Cartesian coordinates

The Cartesian expression of the differential operators can be found without
difficulty by applying the properties of such operators shown previously and
considering that the vectors on the Cartesian basis are fixed. Then,’

gradf = f; e,

gradv = v; je; ® e;,

divv = Viis
divL = Lij,jei, (56)
Af = [,

Av = Aviei = vi,jjei,

curlv = (v3 2 —v23)er + (v1,3 —v31)e2 + (Va1 — v12)e€3.

The so-called operator nabla V:,

0- 0- 0-
V= € = 5 e + —eo +

0-
8171 (9:172 ——e€s3, (57)

8173

is often used to indicate the differential operators:

gradf = Vf,
divwe =V - v,
curlv =V X v,

Af = V2f.

5.6 Differential operators in cylindrical coordinates

The cylindrical coordinates p, 0, z of a point p whose Cartesian coordinates
in the (fixed) frame {o; ey, es, €3} are p = (21,22, x3) are shown in Fig. 5.2.

5In what follows, and also in the following sections, f,v, L are, respectively, scalar, vector,
and tensor fields.
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A e3

€1

Figure 5.2: Cylindrical coordinates.

They are related together by

p=n/at+a3,

0 = arctan x_g’ (5.8)
T

z = x3,

or conversely,
x1 = pcosd,
x9 = psind, (5.9)
T3 = 2.

We note that p > 0 and that the anomaly 6 is bounded by 0 < 6 < 27.

A vector p — 0 = x;e; in the cylindrical basis is expressed as
p—0=pe,+ ze,,

and the rotation tensor transforming the Cartesian basis, {e1, e2, es}, into

the cylindrical one, {e,,eg, €.}, is

cosf) —sinf 0
Q= |sinf cosf® O0Of,
0 0 1
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so the relations between the vectors of the Cartesian and the cylindrical

basis are

e, = cosfle; + sin fey,
ey = —sinfe; + cosfbes,

e, = e3,
and vice versa:

e, = cosfle, — sinfeg,
ey = sinfle, + cos feg,

€3 = €,.

(5.10)

The question is: How can we express the differential operators in the
(moving) frame {p; e,, ey, e, }? To this end, we can proceed as follows: From

Eq. (5.8),

T €To
(fi=Fp— fos,
"p p?

o ap 00 0z Lo T
fa= f’pﬁ_xi +f’98:z:1- +f7za_;pl- - { f2= f,p? +f,0p—2,

lf,3:f,z-

So, by Egs. (5.6); and (5.10),

gradf = fie; = (fmﬂ — f,ex—z)(cos fe, — sinfey)
P P

x x
+ (fmf + f,gp—;)(sinéiep + cosfeg) + f .e,.

(5.11)

Finally, by Eq. (5.9) and through some standard operations, we obtain

1
gradf = f e, + ;fﬂ e+ [.e..

The gradient of a vector field v can be obtained in a similar way: If

we denote by vcart the vector v expressed by its Cartesian components
(v1,v2,v3) and by vy the same vector expressed through the cylindrical
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ones, {v,,vg, v, }, then, cf. Section 2.11,
f v1 = v, cosf — vgsinb,
Veart = QVeyl — { Vg = v, sinf + vg cos 0, (5.12)
v3 =0,.

Applying Eq. (5.11) to these components, we get
S 1 T
i,1 = Ui,p? —Vi,6 5>
Vi2 = vi,p% + ’Ui,a%, (5.13)
Vi3 = Viz-

Injecting these expressions into Eq. (5.6)2 for v; js and (5.10) for e;s gives
finally®

1
gradv = v, (e, ® e,) + ;('Upﬁ —vp)(e, @eg) +v,.(e,@e,)

—_

+vg,p(€0 ®€p) + —(vo,0 +vp) (€0 ® €9) + vo,2(€9 ® €)

—_

+ vz,p(ez ® ep) + ;vz,ﬂ (ez ® eﬁ) + vz,z(ez X ez)7

IV/UPvP

gradv = lvg,, (vo,0 +vp) Vp,1.

1
\‘Uz,p —Uz,0 Vz,z
P

By the definition of divergence, we get immediately

or, in matrix form,

(Upﬁ — vp) Up,z—l

DI

1
divv = v, , + ;(Uaﬂ +v,) + 0.z (5.14)

Now, from Eq. (5.6), we see that divL is the vector whose components are
the divergence of the rows of the matrix representing L. So, we need first

6Though straightforward, the details of the calculations for this formula, as for the
following ones, are particularly long and tedious, which is why they are omitted here;
however, they are a good exercise for the reader.
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to calculate the Cartesian components of L as functions of the cylindrical
ones, cf. Section 2.11:

(L11 = —sin6(L,g cosd — Lgg sin) + cos O(Lpp cos O — Ly, sin6),

L]

v L12 = cosO(L,g cos @ — Lgg sin ) 4 sin (L, cos§ — Ly, sinf),

L]

v L1z = Lpyzcos0 — Ly, sin#,

1

1 L21 = —sin6(Lgg cos 0 + L,gsin@) + cos 0(Lg, cos § + Lypsin ),
Leart = QLCleT — { Loo = cos(Lgg cos + L,p sin6) +sin(Lg, cos 6 + Ly, sind),

v Loz = Ly, cosO + Ly sin0,

L]

vL31 =L.,cos0 — L,psiné,

1

v L3s = L_gcosf + L.psiné,

L]

lLSS = Lzz,

then, applying Eqgs. (5.10) and (5.14) in Eq. (5.6)3 for the vectors v; =
(Li1, Lia, Liz), @ = 1,2,3, we get, through long but standard operations
and after putting # = 0 to obtain the components of divL in the basis

{epvegveZ}v

. 1
divL = (;((pLPP)»P + Lyg,0 — Loo) + Lpz7z) €p
1
<L0p pt+ = (Laa 0+ Ly9+ Lop) + Lo z)

1
+ (;((Psz),p + Lzﬁ,ﬁ) + Lzz,z) e,.

To obtain Af = f,;;, we need to apply twice Eq. (5.11), which gives

x x T —x T 2x
fr=(£02 =10 2) = fa D £ I Ty g, B0
P P/ 1 P P P
2 2
T —x 2:c:c
<fpp — [0 s >p1+f,p—p e 1—<f,p9— foo— ) +fo =

sin 6 cos 6 sin sin 6 sin 6 cos 6
:f,ppCOS29*2f,pG + fo + floo—5— +2f0 > )
P P P P
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T2 T — T2p2 2x1pp,2
f,22:<f,p—+f,e—2> —fp2—+fp P, +fz—ff =P
p P*) 4 p? pt

2171172

2 2
(fpp +fp€xl>:%2+f,pp 3502 +<f/)97+f(99:c_1) _*fG

. sin @ cos 6 cos? 0 cos? 0 sin @ cos 6
=fopsin® 0+ 2f po + fo + fl00 —2f0 ;
P P p? p?
f,33 = f,zz-

So, adding these terms together, we finally have
1 1
Af = ;(pf,p),p + ﬁfﬁ(i + f,zz~

The laplacian Av of a vector field v, Eq. (5.6)s, can be obtained by following
the same steps for each one of the components in Eq. (5.12), which gives

1 1
Av = ( (PVp.p) + 200 + Vo = p—Q(Up + 2“9,0)) e
1 1
+ (Pve,p) + p—2ve,99 + V9,22 — p—Q(Ue —20,9) ) €s

1 1
+ ;(pvz,p),p + p_gvz,(f@ + Vz,2z | €z

Finally, injecting Egs. (5.10), (5.12), and (5.13) into Eq. (5.6)7 gives

1 1
curlv = (;’l}z,g — ’l}g,z) e, + (vpz—v.p)e0 + (;((pvg)m — Up79)> e,.
(5.15)

5.7 Differential operators in spherical coordinates

The spherical coordinates r, ¢, 8 of a point p, whose Cartesian coordinates
in the (fixed) frame {o; e, es,e3} are p = (x1, x2, x3), are shown in Fig. 5.3.
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Figure 5.3: Spherical coordinates.

They are related together by

r= x% + x% + 3,
x%+x%
p = arctan ———=,
T3

T2
0 = arctan —,
Ty

or conversely,

x1 = rcosfsinp,
To = rsinfsin p,

T3 = T COS ®.

We note that » > 0 and that the anomaly 6 is bounded by 0 < 6 < 27
while the colatitude ¢ by 0 < ¢ < .

The procedure to determine the expression of the differential operators
in spherical coordinates, i.e. in the (moving) frame {p;e,, ey, €9}, is
identical to that used for the cylindrical coordinates, but the analytical
developments are even more complicated and long, so they are omitted
here and only the final formulae are given as follows:

1
rsin g

1
gradf = f,rer + ;.f.,apego + f,HeGa
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1

1 1
gradv = v, ,e, @ e, + —(Urp, — Vgp)e, ® e, + — <
r r

——Urg — Ue) e Xeg
sin

1
+ Vp,r€p € + ;(U%w +vr)e, ® e,

1 1
+ - (,—v%g — vg cot <p> e, ®ey
r \ sing

1
+vorep Qe + —vg €9 K €,
r

1 1
+—< - vg,g—i—vr—l—vwcot(p)e@@eg,
r \ sing

or in matrix form,

1 1
U r ;(UT e Uga) ; bln(p Ur,0 — Vg
dv =1 1( + L L t '
radv = ' v, —(v (Y — v Vg CO )
g | pr \Venp r r bln o p,0 — Vo ¥ |
1

[Uﬁ,r —Ue o = < vg,9 + Uy + v, COt gp) J

r \ sinp

: 1 .
divv = T—2(7’2vr),r + ((vg sing) , + vo,9),

rsin g

Lo —

1 1 L L t
divL = <—2<7'2er)7r + _Lrga#; + e + oo + o SOLTLP> e,
r r r

rsin g

1, 1 1 1
+ (r—g(?” Lor)r + Lepe t mew + oL

cot,
+ T(p(va - LG@)) €,

1, 1

5 L r),r —-L . L
+ <r2 (r"Lor).r + r9ee + rsin 06,6
cot
+ - LrG + 1

(Lgo + thp)) ey,

Af=%<r2f,r>,r+#.(f | (f,sing) )

r2sinp \ singp
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20, + Urpp = 200, | Urp — 20y

Av = <vmr +

r2 r2 tan

1 2
+5= (v.r’% - 21;9,9) - 13) ey
resim e \ sin e r

2vy,r

Vop,pp2Ur | Vip o=V, COL @
2

+ (UQD,TTJ’_ +

r 72 tan
1 Vo

+——5— (Vp,09—2v99COS)—— | €
TQ sm2 © ¥ ,,,2 ®

2v v 2v 1
%(vam4 or &§¢I<v¢¢+ .%9) -
r T siny /) r<tane

1 v )
+ 2 o ( .0’00 +2vr,9> by .62 ) €y,
r°8m @ S @ r<sIm” @

5.8 Exercises

Prove the relations of Eq. (5.2).

Prove the properties of the divergence in Eq. (5.3).
Prove the properties of the curl in Eq. (5.4).

Prove the identities in Eq. (5.5).

Prove that

A

d d
—wzgradgwn, —V:gradvn VnesS.
dn dn

Prove the results of Eq. (5.6).

&

123

7. Consider a rigid body B and a point py € B. From the kinematics of
rigid bodies, we know that the velocity of another point p € B is given

by
v(p) = v(po) +w x (p — po),

with w the angular velocity. Prove that

1
w = §curlv, divv = 0.
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8.

10.

Tensor Algebra and Analysis for Engineers

In the infinitesimal theory of strain, a deformation is isochoric when
divu = 0, u being the corresponding displacement vector. Determine
which, among the following ones, are locally or globally isochoric
deformations:

i u=alr),z,23), a€R, |a <1;

il. u=B(xs +x3,21 + 23,71 +22), BER, |3 < 1;
iil. u="v(r122, 2273, 7371), YER, || K 1;

iv. u=4(sinzy, —cosxa,sinxs), J €R, |§| < 1.

. In fluid mechanics, the condition divv = 0, with v being the velocity

field, characterizes incompressible flows. Verify that the following veloc-
ity fields, given in cylindrical coordinates, correspond to incompressible
flows (o € R):

«@
i. source or sink: v = —e,;
p

. (&4
1. vortex: v = —ey;

@
iii. doublet: v = —(cosfle, + siney).

p
A flow with curlv = o is said to be irrotational; check that the flows in
the previous exercise are irrotational.
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Chapter 6

Curvilinear Coordinates

6.1 Introduction

All the developments in the previous chapters are intended for the case
where algebraic and differential operators are expressed in a Cartesian
frame, i.e. with rectangular coordinates. The points of £ are thus referred
to a system of coordinates taken along straight lines that are mutually
orthogonal and with the same unit along each one of the directions of the
frame. Though this is a very important and common case, it is not the only
possibility, and in many cases, non-rectangular coordinate frames are used
or arise in the mathematical developments (a typical example is that of the
geometry of surfaces, see Chapter 7). A non-rectangular coordinate frame
is a frame where coordinates can be taken along non-orthogonal directions
or along some lines that intersect at right angles but that are not straight
lines, or even when both of these cases occur. This situation is often denoted
in the literature as that of curvilinear coordinates; the transformations to
be done to algebraic and differential operators in the case of curvilinear
coordinates is the topic of this chapter.

6.2 Curvilinear coordinates, metric tensor

Let us consider an arbitrary origin o of £ and an orthonormal basis e =
{e1,e2,e3} of V; we indicate the coordinates of a point p € £ with respect
to the frame R = {o;ej,es,e3} by xr : p = (21, 292,23). Then, we also
consider another set of coordinate lines for £, where the position of a point
p € £ with respect to the same arbitrary origin o of £ is now determined by

125
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Figure 6.1: Cartesian and curvilinear coordinates.

a set of three numbers 27 : p = {2, 22, 23}. Nothing is a priori required of
coordinates z7, namely they do not need to be a set of Cartesian coordinates,
i.e. referring to an orthonormal basis of V. In principle, the coordinates 2/
can be taken along non-straight lines that do not need to be mutually
orthogonal at o and also with different units along each line. That is why
we call z7s curvilinear coordinates, see Fig. 6.1. Any point p € £ can be
identified by either set of coordinates; mathematically, this means that there
must be an isomorphism between xs and z7s, i.e. invertible relations of the
kind

2= 2wy, 0, w3) = 22 (xp), wp = ap(2, 22, 2%) = 2p(29) Vi k=1,2,3,
(6.1)

exist between the two sets of coordinates. The distance between two points
p,q € & ist

s=V—a) - = /(e —al)(a} - ),

but this is no longer true for curvilinear coordinates:

s o) (27 — 201)(297 — 29,

However, if p — ¢, we can define

dxy = LUZ;Z - w(l]gv de = ij - quv
so using Eq. (6.1)a,

L PV
dxy, = 527 dz’. (6.2)

I The distance between two points p and ¢ is still defined as the Euclidean norm of (p—gq),
i.e. it is independent of the set of coordinates.



Downloaded from www.worldscientific.com

Curvilinear Coordinates 127

The (infinitesimal) distance between p and ¢ will then be

ds = v/dxdx, = %%dzjdzl =1\/gdzidzt,

where

Oz, O,

91 =95 = G0 (63)

are the covariant® components of the metric tensor® g € Sym(V). We note
that, as g defines a positive quadratic form (the length of a vector), it is a
positive definite symmetric tensor, so

detg > 0. (6.4)

Coming back to the vector notation, from Eq. (6.2), we get*

dr = dxiei = axl dzkei'

0zk '
introducing the vector g,
ox;
gL = 6—211(31-, (6.5)
we can write
de = dz*gy,.

We see hence that a vector dx can be expressed as a linear combination of
the vectors gy; these form therefore a basis, called the local basis. Generally,
gr ¢ S, and it is clearly tangent to the lines z/ = const. This can be seen
in Fig. 6.2 for a two-dimensional case:

Ii('zl?zQ + AZ2723) B :171-(21,22,23)

dr = lim Ax = lim Az%e;
Ax—0 Ax—0 Az?
= g:; eidz2 = g2d22.
Then,
81:1- 8$j 8.’51 3xj
8k 81 = @ei : Wej = 9k 9l = 9kl (6.6)

2The notion of co- and contravariant components is detailed in the next section.

3 As usually done in the literature, we indicate the metric tensor by g, i.e. a lowercase
letter, though it is a second-rank tensor, not a vector.

4The differential dz is a vector because it is the difference of two infinitely close points;
that is why it is not necessary to denote it in bold letters.



Downloaded from www.worldscientific.com

128 Tensor Algebra and Analysis for Engineers

Figure 6.2: Tangent vectors to the curvilinear coordinates lines.

i.e. the components of the metric tensor g are the scalar products of the
tangent vectors ggs. If the curvilinear coordinates are orthogonal, i.e. if
gn-gr = 0Vh, k=1,2,3,h £k, then g is diagonal. If, in addition, g €
S Vk = 1,2,3, then g = I: It is the case of Cartesian coordinates. As an
example, let us consider the case of polar coordinates:

1_ .. 213
{xl =r cosd, =T 1+ @3,

. €2
o =7 sinb, 22 = @ = arctan ==.
1

Hence, from Fig. 6.3,

8901 + (91'2 9 + . 0
= ——e — €3 = cosve sinveg = e
BL= 5% T 51 ! E "
8901 (91'2

go = Wel + Weg —rsinfeq + rcos ey = rey.
z z

We remark that |gi| = 1 but |ga| ~ 1, and it is variable with the position.

6.3 Co- and contravariant components

A geometrical way to introduce the concept of covariant and contravariant
components is to consider how to represent a vector v in the z—system.
There are basically two ways, cf. Fig. 6.4, referred, for the sake of simplicity,
to a planar case:

(i) Contravariant components: v is projected parallel to z! and 22; they
are indicated by superscripts: v = (vt v?,v3).
(i) Cowariant components: v is projected perpendicularly to z! and 22

they are indicated by subscripts: v = (v1, va, v3).
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rep=g>

Figure 6.3: Tangent vectors to the polar coordinates lines.

129

Figure 6.4: Contravariant (left) and covariant (right) components of a vector in a plane.

Still referring to the planar case in Fig. 6.4, if the Cartesian components®

of v are v = (v, v3), we get

vt = h(vf sinag — v8 cos an), vy = vf cosag + v3 sinay,
v? = h(—v¥sinag + v§ cosay), vy = vf cos g + V3 sin g,

and conversely,

v® = vl cosaq + v2 cos ao, v{ = h(vy sinag — vg sin ag
1 2 1 )
2 = vlsinag + v2sina v5 = h(—v1 cosas + vy cosay ),
2 2, 2 ’
1

h= ———.
sin(ag — )

(6.7)

(6.8)

5In the following, we use the superscript z to indicate a Cartesian component: vy is the
ith Cartesian component of v € V and L, the ijth Cartesian component of L € Lin(V).
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X2,

ol P

X1 X

Figure 6.5: Relation between Cartesian and contravariant components.

It is apparent that the Cartesian coordinates are at the same time co-
and contravariant. Still, on a planar scheme, we can see how to pass from
a system of coordinates to another one, cf. Fig. 6.5. For a point p, the
Cartesian coordinates (z1,x2) are related to the contravariant ones by

xr1 = 21 cos o1 + 22 cos a9,
Ty = 2! sin o + 22 sin s,
and conversely,
z' = h(z sinag — 22 cos ag),

2% = h(—x1sina; + x5 cosay).

So, differentiating, we get

8501 o 8:51 -
ﬁ—COSO{l, @—COSO{Q,
8$2 o 6‘1:2 .
ﬁ—blnal, @—SIHQQ
and
2! 2!
A — h i sy A _h )
P sin ag D2g COS (g
022 022
— = —hsi —— = hcosa.
(9,’E1 SIRANO %N 61'2 a7
Injecting these expressions into Egs. (6.7) and (6.8) gives
oz 8171 x (9:172
BTG TR _ Ok,
v = —Uf (6.9)
= 0x1 = 0xo 0zt

“ e T2
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and
vl = UI8—21 + UI8—21 ;
"oy * Oy’ vl = %vw (6.10)
v2:vma—z2+vwa_z2 Oy '
L 8$1 2 3:52 ’

Now, if we calculate

- 07"
2t = . vE

Gdhi Ghi (9{Ek k

from Eq. (6.3) and by the chain rule,® we get

;
gt = Oxj Oxj Oz o
==L
9zh 8zt dxy, F
_ Ox; Ox;j . (?:Ej(s‘ . ('“)95;%z .
9zh Oz T Ozt Thk T gh R h

i.e. we obtain the rule of lowering of the indices for passing from contravari-
ant to covariant components:

Vp = Ghi¥".
Introducing the inverse’ to gn; as

w02 0z

= — 6.11
(917k 8:5;67 ( )
we get, again using the chain rule,
- Oy, 0z 92 Oz,
hi, _ - hi x __ 2~ T T
I i Ox; Ox; 07 Uk
B 0z" Oy, v oz v oz v h

= — =0 :—(5‘;61) = — VU, =0
8:1:j 8:1:j k 8:1:j Ik 3xk k ’

which is the rule of raising of the indices for passing from covariant to
contravariant components:

o = g}”vi.

6The reader can easily see that, in practice, the chain rule allows us to handle the
derivatives as fractions.
"To prove that the contravariant components gP¢ are the inverse of the covariant ones,
Jpq, is direct:

0zP 029 Ox; Ox;

Pq _GEOF I 9T 55— 1.
9 9rq Oz Oxy 0zP 0z JkCik
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Again applying the chain rule, by Eq. (6.9), we get

—lvi = _l ]:5 = —l'Uk 5kl’l}]§,
ox ozl 0z Ox

ie.

0z

vE = S (6.12)

which is the converse of Eq. (6.9). In a similar way, we get the converse of
Eq. (6.10):

VE — 8:% l
ko 5‘21

(6.13)

Let us now calculate the norm v of a vector v; starting from the Cartesian
components and using the last two results,

0zt 027 0zt 0zJ —
V=1V V =/ vivf = \/W”WW = \/Wwvivj =1/g9Yv;v;,

or also,
6Ik &ck . \/&ck 6Ik . .
V=1/V-V =/ 0PV} = v = - ~V') = i U7
Bk = \/azz 929 92t 921 V Jis
and even,

v = vvm\/az &Ekﬂ'\/gz %viw
T Oz
= 1/51']-'01-1)3' = /0.

Through Eq. (6.13) and by the definition of the tangent vectors to the lines
of curvilinear coordinates, in Eq. (6.5), for a vector v, we get

Ozk "

xT
vV =u;e; =

We see hence that the contravariant components are actually the com-
ponents of v in the basis composed of ggs, the tangents to the lines of
curvilinear coordinates. In a similar manner, if we introduce the dual basis
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whose vectors g are defined as

0z
k
= —e¢, 6.14
g Oz, ( )
and proceeding in the same way, we obtain that
0z &
vV =vje; = vy oz, e = U8,

i.e. the covariant components are actually the components of v in the dual
basis. Finally, for a vector, we have, alternatively,

v=ue; = vPg = vpgh. (6.15)

Just as for gys, we have

ol gk — (Bzh ) . ((’“)z’C ) s 82’“6 0202 _ gk,

€ — €| = +—70ij = — =
8$i ! 8$j J 8171 3xj Y 8171 3.’51 ’

moreover,
dom () (Lte) = ey, - 2205 2y,
0x; 0zk Ox; Oz Ox; 0zF  0zk
and by the symmetry of the scalar product,
5F =gn-g" =g" gn=0".
The last equations define the orthogonality conditions for the g vectors.

Using these results and Eq. (6.15), we also have

k k _h k h k k h kh
vt =000" =gt g =g - v=g" - ung" =g " o,

vk = 0 vn = g - vng" = gk - v =gk - v''gn = grnv”,
thus finding again the rules of raising and lowering of the indices.

What was done for vectors can be transposed, using a similar approach,
to tensors. In particular, for a second-rank tensor L, we get

. i J
pig _ 92 04 z
Oxp Oy (6.16)
L. — 8:% 8:% -
0T 9t 9y TR

for the contravariant and covariant components, respectively, while we can
also introduce the mized components:

i = 3 7 Yk
Op 027 (6.17)
i al'h 823 z

LT 92t Oy, MR



Downloaded from www.worldscientific.com

134 Tensor Algebra and Analysis for Engineers

Conversely,
v = 000 0Tk o
he ™= 9z 9207 7
e 0z" 027
hk = o
8xh 8:1:k
s Omp 027 (6.18)
hk = 82’1 8:1:k
82 8:1:k
y = L.
hk = 8wh 0z "
Also, for L, the rule of lowering or raising the indices is valid:
LY = g"g* Lk, Lij = gingin L. (6.19)

From Eq. (6.18) and by the same definitions of g;;, Eq. (6.3), and g%, Eq.
(6.11), we get

Ox; Oz
L:Lixjei@)ej:a Ok z®e]_L gh®gk
and
9zl 9zF
L:Lg’:jeiééej—a oz, Lhkez®eg—Lhkg ®gh.

In a similar manner, the tensor mixed components are also found:

v Ox; 0"
L:Lijei®ej—8haJLkeZ®eJ—Lkgh®g
and
v 0zF Ox;
L:Lijei®ej—a 8thez®e]_th X Bk-

We see hence that a second-rank tensor can be given with four different
combinations of coordinates; even more complex is the case of higher-order
tensors, which will not be treated here.



Downloaded from www.worldscientific.com

Curvilinear Coordinates 135

Still, by Egs. (6.3) and (6.11) and applying the chain rule to 5;» = %,
we get
o 6:%%_ awh%
Y9 = 5,0 920 T Bzt i R
ij 0z 927 0z 027
g = _— = -~ Ohk,
Oxy, Oxy, Oxy, Oxy, 6.20
J 8xh 6‘zﬂ' ks
; 8Ih 6‘zj
6.7 = == "G
v 0z* Oxy, ik

So, applying Eq. (6.18) to the identity tensor, we get
Oz %Ihk
Oz 92k
but by Egs. (6.16) and (6.20),
Thk — 8_2}18_216 = ghk
afL'i B:Uj " ’

I=fei®e; = ei®ej:1hkgh X 8k,

so finally,
I=g"gn @ g
Proceeding in a similar manner, we can also get
I=gug"©g"=drgr0g" =0g"® g
We see hence that gpis represent I in covariant coordinates, g"*s in the

contravariant ones, and 5}’fs and 51};8 in mixed coordinates.

6.4 Spatial derivatives of fields in curvilinear coordinates
Let ¢ be a spatial® scalar field, ¢ : £ — R. Generally,

Y= Sp(zj (xi))’

or also,

v = p(;(<4)),

8The term spatial here refers to differentiation with respect to spatial coordinates, which
can be Cartesian or curvilinear.
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where x;s, z¥s are, respectively, Cartesian and curvilinear coordinates
related as in Eq. (6.1). By the chain rule,

dp Do 0zF

B2, = 5% o’ (6.21)
and inversely,

Op  0p Ox;

9zF  Qxj 02k

We remark that the last quantity transforms like the components of a
covariant vector, cf. Eq.(6.9).

The gradient of ¢ is the vector that in the Cartesian basis, cf. Eq. (5.6)1,
is given by

dyp
VQO = 87]-(3]’

so by Egs. (6.14) and (6.21), we get that in the dual basis,
dp 028 dp 4

= — —e; =

02k 0x; 7 92k &
We see hence that in curvilinear coordinates, the nabla operator, Eq. (5.7),
is defined by

Vo

J— 8 )
T 92k
The contravariant components of the gradient can be obtained by the
covariant ones upon multiplication by the components of the inverse

V() g*. (6.22)

(contravariant) metric tensor, Eq. (6.11):
o _0h0H 0p 0y o Dp 00 Dp 0 o Op 02t
9zF  dx; Ox; Jdx; 0zF o Ox; 0z, n Oz Ox; VY= Ox; Ox;j Eh-
Let us now consider a vector field v : £ — V; we want to calculate the spatial
derivative of its Cartesian components. By the chain rule and Eq. (6.13),
we get
owr  uroF  9zF 0 (0w )\ 02F [(Ox; 00" OPx; |
dr;  0zFdx;  Ox; 0zF <Bzhv ) T oz (ath azkazl”>
B 02k 0z (O 9 O%xy,
" Oz, 02" <@ O 02RO )’

whence

Bzh%avf ol 9 02x,,

Ox; 0zF Oxj D2k + OTm 92k0"

(6.23)
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Comparing this result with Eq. (6.17);, we see that the first member
actually corresponds to the components of a mixed tensor field, which is
the gradient of the vector field v, that we write as

a h
oy = % . (6.24)
where the functions
oz 9%z
| 6.25
ke Dy 02507 ( )

are the Christoffel symbols. We immediately see that T}, = T'}:. The
quantity vh;k is the covariant derivative of the contravariant components
v". The proof that the Christoffel symbols can also be written as

1 m 'm
le:_ghm <ag k+ag lagkl) (626)

2 0z dzk  9zm
is left to the reader as an exercise.
Proceeding in a similar way for the covariant components of v but now
using Egs. (6.12) and (6.17)1, we get

8vh

_ l
Unsk = 9.k Trpu,

which is the covariant derivative of the covariant components vy,.
Using Egs. (6.23) and (6.24), we conclude that, cf. Eq. (5.6)3,

ovy h

8$i - ih:

Then, applying the operator divergence so defined to the gradient of the

divv =

scalar field ¢, we obtain, in arbitrary coordinates z, the Laplacian Ay as

dp 0 dy o 0p
_ [ nk 9P _ 9 [ 9P rh gk 9% _
Ay (g 8zk);h 9zh (g 82’“) g9 0zk (6:27)

Using the definition of the nabla operator in curvilinear coordinates,
Eq. (6.22), jointly to the fact that, cf. Section 5.5,

Af :=divVe =V -V,

we get the following representation of the Laplace operator in curvilinear

coordinates:
_ _ J () n ko 32(') ho ok ogh a() 4
Al =V V“(@(@g)) & = 0.8 8 T g 8
32(') hk 3gh ka()
= or0nd T B g
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Let us now calculate the spatial derivatives of the components of a second-
rank tensor L: By Eqgs. (6.18); and (6.25), we get

OLY; — ('“)_zhi O %an
Oxy, Oz, Oz \ Ozm Ozp

02" Ow; Ox; (OL™
- = e Fn Lrp FP Lnr
Oz, 02" 0zP ( zh b7 L )’
which implies that
oL Ozy 02" 2P OLE,
Iy L™+ 17 L' = — el 6.28
P i 027 O, O, Dy (6:28)
So, using Eq. (6.16), we can conclude that the expression
n oL"r
L Zzh - W + FZTLTP + FZTLTW (629)

represents the covariant derivative of the contravariant components of the
second-rank tensor L. In a similar manner, this time by Eq. (6.18)2, we
obtain the covariant derivatives of the covariant components of L:

0Ly Oxy, Ox; Ox; OLY;
P T Ly — D7 Ly = —o 2 22 Y
ozh nh=re ph Ozl 0z OzP Oxy,’
ie.
OLyyp
an h — a h Fthn’l" - F:LthT' (630)

The same procedure with Eqs. (6.18)3 4 gives the covariant derivatives of
the mixed components® of L:
n

)
Ly = 50+ Th L7, — T LY,

oL (6.31)
Ly, = 5 h —Ip Ly + 1, Ly
If in Eqgs. (6.28) and (6.29) we set p = h, we get
oL Oxy, 02" 0z OLY,
L.nh — 1—\ LTh Fh Lnr _ TR Zm 7 J
= o T T 027 O, Oz, O

ki Ox; Ory,  Ox; Ox;’

which are the components of the contravariant vector field divL.

9Equations (6.29)—(6.31) represent the different forms of the components of an operator
depending upon three indices, i.e. of a third-rank tensor: VL, the gradient of L.
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6.5 Exercises

. Write g and ds for cylindrical coordinates.
2. Write g and ds for spherical coordinates.
. Find the length of a helix traced on a circular cylinder of radius R

between the angles 6 and 6 + 2.

. A curve is traced as a quarter circle of radius R, see Fig. 6.6, with p

proportional to #. When the quarter circle is rolled into a cone, the
curve appears as indicated in the figure. Determine the length ¢ of the
curve, first using the polar coordinates in the plane of the quarter circle,
then the cylindrical ones for the case of the curve on the cone (exercise
given in the book by Miiller, see the suggested texts).

1
and 22 inclined, respectively, at a1 and as on the axis x;. Then, find
the vectors g and gF, k = 1,2, check the orthogonality conditions
gh gn= (5,};, determine the norm of these vectors, and design them.

. Calculate g;s for a system of spherical coordinates.
. In the plane, elliptical coordinates are defined by the relations

2

x1 = c coshz'cosz?, zy =c sinhz'sinz?, 2' € (0,00), 2% € [0,27);

I = const. and 22 = const. are confocal ellipses and

show that the lines z
hyperbole, determine the axes of the ellipses in terms of the parameter
¢, discuss the limit case of ellipses that degenerate into a crack, and

determine its length. Finally, find g, g1, and gs.

. Determine the co- and contravariant components of a tensor L in

cylindrical coordinates.

S’

X2,

\ 4
~

X
! X2

X1

Figure 6.6: Curve in a plane and on a cone.
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10.

11.
12.

13.

14.

15.
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. Determine the co- and contravariant components of a tensor L in

spherical coordinates.
Show that

trL = L}, = ;LY = gLy = L', = L.
Prove Eq. (6.26).
Prove the lemma of Ricci:

gk i i
5;h = 1% 9ik + Uingii-

Using Eq. (6.26), find the Christoffel symbols for the cylindrical,
spherical, and elliptical (in the plane) coordinates.

Write the Laplacian Af of a spatial scalar field f in cylindrical and
spherical coordinates.

Prove that

g’ﬂz;?h = Gnp;h = 0.
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Chapter 7

Surfaces in €

7.1 Surfaces in &€, coordinate lines and tangent planes

A function f(u,v) : Q C R? — £ of class >C! and such that its Jacobian

df1 0f1
5 o |
g 10f2 9f2
| Ju Ov |
dfs Ofs
5w o]
has maximum rank (rank[J] = 2) defines a surface in &, see Fig. 7.1. We
say also that f is an immersion of € into £ and that the subset ¥ C &
image of f is the support or trace of the surface f.
As usual, we indicate the derivatives with respect to the variables u

and v by, for example, = f,, etc. The condition on the rank of J is

du

equivalent to impose that
fo(u,v) xf,(u,v) ~o Y(u,v) € Q. (7.1)

This allows us to introduce the normal to the surface f is the vector N € §
defined as

f,xft,
Ni=—_r—"
£, x £,

A regular point of ¥ is a point where N is defined; if N is defined Vp € %,
then the surface is said to be regular.

(7.2)

141
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f(u,v)
%
Vo[ 7 )y
0 ” X1

Figure 7.1: General scheme of a surface and of the tangent space at a point p.

A function 4(t) : G C R — Q whose parametric equation is ~y(t) =
(u(t),v(t)) describes a curve in €2 whose image, through f, is the curve, see
Fig. 7.1,

F(t) = f(u(t),v(t)) :GCR =X C&.

As a special case of curve in €, let us consider the curves of the type v = vy
or u = ug, with ug, v9 being some constants. Then, their image through f are
two curves f(u,vg), f(ug,v) on X called coordinate lines, see again Fig. 7.1.
The tangent wvectors to the coordinate lines are, respectively, the vectors
f . (u,v0) and £, (ug, v), while the tangent to a curve J(t) = f(u(t),v(t)) is
the vector

(1) = fu e £, % (7.3)
i.e. the tangent vector to any curve on X is a linear combination of the
tangent vectors to the coordinate lines. We remark that the tangent vectors
f . (u,v0) and £, (ug, v) are necessarily non-null and linearly independent as
a consequence of the assumption on the rank of J and hence of the existence
of N, i.e. of the regularity of 3. They determine a plane that contains the
tangents to all the curves on ¥ passing by p = f(ug, v9) and form a basis
on this plane, called the natural basis. Such a plane is the tangent plane to
> in p and is indicated by 7},%; this plane is actually the space spanned by
f . (u,v0) and £, (up, v) and is also called the tangent vector space.
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Let us consider two open subsets Q1,Qs C R?; a diffeomorphism!' of
class CF between Oy and €, is a bijective map ¥ : Q1 — Qo of class Ck
with also its inverse of class C*; the diffeomorphism is smooth if k = oo.

Let Q1,95 be two open subsets of R?, f : Qy — & a surface, and ¥ :
Q1 — Qo a smooth diffeomorphism. Then, the surface F =fod:Q; — &
is a change in parameterization for f. In practice, the function defining the
surface changes, but not 3, its trace in €. Let (U, V') be the coordinates in
Q7 and (u,v) in Q3. Then, by the chain rule,

ou ov

F :fu_ fv_a
U=tugg thean
ou ov

F = Lu3ay; fv_a
v =Ly Hiegy

or denoting by Jy the Jacobian of ¥,

F U T fu
’ — J )
te =i
whence, making the cross product, one gets immediately
F,U X F,V = det[Jﬂ] f,u X f,v.

This result shows that the regularity of the surface, condition (7.1), the
tangent plane, and the tangent space vector do not depend upon the
parameterization of ¥. From the last equation, we also get

N(U,V) = sgn(det[Jy]) N(u,v);

we say that the change in parameterization preserves the orientation if
det[Jy] > 0 and that it inverses the parameterization in the opposite case.

7.2 Surfaces of revolution

A surface of revolution is a surface whose trace is obtained by letting a
plane curve, say =, rotate around an axis, say x3. To be more specific and
without loss of generality, let v : G C R — R? be a regular curve of the

1The definition of diffeomorphism, of course, can be given for subsets of R™,n > 1; here,
we bound the definition to the case of interest.
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plane xo = 0, whose parametric equation is

2 =(u),
y(u) : {:173 — b(u), o(u) >0 Yu € G. (7.4)

Then, the subset >, C &€ defined by
2y = { (21, 02, 23) € Elat + a3 = 0*(u), 25 = Y (u),u € G}

is the trace of a surface of revolution of the curve v(u) around the axis x3.
A general parameterization of such a surface is

x1 = p(u) cosv,
f(u,v): G x (—m, 7] = &| x2 = @(u) sinv, (7.5)
x3 = ¥(u).

It is readily checked that this parameterization actually defines a regular
surface:

¢ (u) cosv —p(u)sinv
fo=1<¢ ¢ (wsinv p, £, =< ¢(u)cosv — £, xf,
' (u) 0
() () cos v
= —eWy(u)sinv
p(u)p’(u)

so that
£ % £u] = 0 (u) (0 (u) + ¢ (u) ~O0Vued

for being v(u) a regular curve, i.e. with v'(u) Ao Vu € G. A meridian is
a curve in & intersection of the trace of f, X, with a plane containing the
axis x3; the equation of a meridian is obtained fixing the value of v, say
vV = g:

x1 = ¢(u) cos vy,
22 = @(u) sinvg,

w3 = 1p(u).

A parallel is a curve in £ intersection of ¥, with a plane orthogonal to x3;
the equation of a parallel, which is a circle with center on the axis x3, is
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VB LT

Figure 7.2: Surfaces of revolution: (from left) sphere, catenoid, pseudo-sphere, and
hyperbolic hyperboloid.

obtained by fixing the value of u, say u = ug:

21 = p(up) cosv,

29 = p(up) sin v,

Tr3 = (Uo)
or also,

{ of + 23 = p(uo)?,

z3 = (uo);
the radius of the circle is ¢(ug). A lozodrome or rhumb line is a curve on X,
crossing all the meridians at the same angle.? Some important examples of
surfaces of revolution are:

e the sphere:
21 = COSUCOSV,
f(u,v): [,Z f} x (—m, 7] = €] x9 = cosusinv,
2 T3 = sinw;
e the catenoid:
x1 = coshu cosv,
f(u,v): [—a,a] x (=7, 7] = &| x9 = coshusinv,
T3 = u;
e the pseudo-sphere:
r1 = sinwu cosw,
f(u,v): [0,a] x (—m,7] = &| { T2 =sinusinv, . (7.6)
r3 = cosu + In (tan 5) ;
e the hyperbolic hyperboloid:
r1 = cosu — vsinu,
fu,v): [—a,a] x (=7, 7] = &| xo = sinu + v cosu,
Ir3 = 0.

2This concept is important for marine and aerial navigation.
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7.3 Ruled surfaces

A ruled surface (also named a scroll) is a surface with the property that
through every one of its points, there is a straight line that lies on the
surface. A ruled surface can be seen as the set of points swept by a moving
straight line. We say that a surface is doubly ruled if through every one of
its points, there are two distinct straight lines that lie on the surface.

Any ruled surface can be represented by a parameterization of the form

f(u,v) =~(u) + vA(u), (7.7)

where vy(u) is a regular smooth curve, the directriz, and A(u) is a smooth
curve. Fixing u = ug gives a generator line f(ug,v) of the surface; the
vectors A(u) £o describe the directions of the generators. Some important
examples of ruled surfaces are:

e (ones: For these surfaces, all the straight lines pass through a point,
the apex of the cone, choosing the apex as the origin, then it must be
Au) =kvy(u), keR —

fu,v) = vy(u);

o Cylinders: A ruled surface is a cylinder <= A(u) = const. In this case,
it is always possible to choose A(u) € S and «(u) a planar curve lying
in a plane orthogonal to A(u); in fact, it is sufficient to choose the curve

77 () = (T = Alu) @ Aw))y(u);

e Helicoids: A surface generated by rotating and simultaneously displacing
a curve, the profile curve, along an axis is a helicoid. Any point of the
profile curve is the starting point of a circular helix. Generally, we get a
helicoid if

v(u) =(0,0,¢(u), Au) = (cosu,sinu,0), @(u):R—R;
o Mobius strip: 1t is a ruled surface with

~(u) = (cos2u, sin2u,0), A(u) = (cosu cos2u, cos u sin 2u, sin u).

7.4 First fundamental form of a surface

Let us consider two vectors of T),3, say w1, wo; we want to calculate their
scalar product in terms of their components in the natural basis {f,,f,}
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I

Figure 7.3: Ruled surfaces: (from left) elliptical cone, elliptical cylinder, helicoid, and
Mobius strip.

of T,X. If wi = a1f,, + b0:f, and wo = aof,, + bof ,,, then
w1 - Wo = ayaxf’ + (a1by + aghi)fy - £, + bibof?,
which can be rewritten in the form
I(wi,w2) = w1 - gwa,

where?

_ f,u . f,u f,u : f,v
8 |, £, f, £,

) )

is precisely the metric tensor g of X, cf. Eq. (6.6). In fact, f,, and f, are
the tangent vectors to the coordinate lines on ¥, i.e. they coincide with the
vectors ggs.

I(wi,ws) is the first fundamental form (or simply the first form) of
f(u,v). If wy = wy =w = af,, + bf,, then

I(w) = w” = a*f2 + 2abf,, - £, + b2

By the same definition of scalar product, I(wy,ws) is a positive definite,
bilinear, symmetric form Vw € T, %.

Through I(-,-), we can calculate some important quantities regarding
the geometry of X:

e Metric on X: Vds € 3,
ds* = ds - ds = I(ds),

30ften, in texts on differential geometry, tensor g is indicated as
_|EF
g - F G I

where B :=1f, - fu,F :=f, - f,,G:=f, -f,.
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so if
ds = f.,du + f ,dv,
then
ds® = £2,du® + 2f,, - £ ,du dv + £2,dv>. (7.8)

Length ¢ of a curve v : [t1,t2] C R — 3: We know, from Eq. (4.4), that
the length of a curve is the integral of the tangent vector:

(= / ()t = / INCIOREAOL

and hence, see Eq. (7.3), if we call w = (u/,v") the tangent vector to -,
expressed by its components in the natural basis,

to
0= / \/u/2f3 + 20, - £, + 02F2 dt

: \/(u’,v’) g (W, v)dt

i (7.9)

Angle 0 formed by two vectors wi, wa € T),3:

Wi Wy I(wyi,w2)
willwa| — /T(w1)\/T(wa)

Area of a small surface on X: Let f,du and f,dv be two small vectors
on ¥, forming together the angle 6 that are the transformed through®
f:Q — X of two small orthogonal vectors du, dv € €; then, the area d.A
of the parallelogram determined by them is

A= |f ydu x f ,dv| = |f, x f,|du dv = 1/f2uf21, sin? Odu dv
= /22 (1 — cos? 0)du dv = \/f2 £2 — 2 £2 cos? Odu dv
= \/f?ufg (£ - £0)2du dv = \/det gdu dv.

cosf =

4For the sake of conciseness, from now on, we indicate a surface as the function f : Q — 3,
with f = f(u,v), (u,v) € Q CR? and X C £.
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The term /detg is hence the dilatation factor of the areas; recalling
Eq. (6.4), we see that the previous expression has a sense Vf(u,v), i.e.
for any parameterization of the surface.

7.5 Second fundamental form of a surface

Let f : Q — X be a regular surface, {f,,f,} the natural basis for 7,3, and
N € S the normal to ¥ defined as in (7.2). We call the map of Gauss of &
the map ¢y : ¥ — S that associates to each p € ¥ its N : ¢x(p) = N(p).
To each subset o C 3, the map of Gauss associates hence a subset s C S,
Fig. 7.4 (e.g. the Gauss map of a plane is just a point on S).

We want to study how N(p) varies at the varying of p on 3. The idea
is that the change of N(p) on ¥ is related to the curvature of the surface.’
For this purpose, we calculate the change in N per unit length of a curve
~(s) € X, i.e. we study how N varies along any curve of ¥ per unit of length
of the curve itself; that is why we parameterize the curve with its arc length
5.5 Let N = N;(u,v)e;; then, if 7 € S is the tangent to the curve,

AN _ dNi(uls).0(s)) | _ (ONidu | ONydv
ds ds T\ Ou ds v ds) "

dN
T

X3 X3

@x(p)

_ o

X2 s @ x2

®)

X1 X1

Figure 7.4: The map of Gauss.

5For curves, the curvature is linked to the change in 7, but for surfaces this should not
be meaningful, as 7 is not unique Vp € ¥ while N is.

6 Actually, it is also possible to introduce the following concepts more generally for
any parameterization of the curve; anyway, for the sake of simplicity, we just use the
parameter s in the following.
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The change in N is hence related to the directional derivative of N along
the tangent 7 to ~(s), which is a linear operator on 7,%. Moreover, as
N € S, then, cf. Eq. (4.1),

N-N,=N-N,=0= N, N,eT,X.

We then call the Weingarten operator Ly : T, — T3 the opposite of the
directional derivative of IN:

dN
Hence,
Lw(f,)=-N,, Lw(f,) =-N,. (7.10)

Because Ly is linear, then there exists a tensor X on 7,3 such that
Lw(v)=Xv VveT,X. (7.11)

For any two vectors wi, wy € T,%, we define the second fundamental form
of a surface, denoted by IT(wi,ws), the bilinear form

II(Wl, W2) = I(EW (Wl), Wg).
Theorem 43 (Symmetry of the second fundamental form).
VWl,WQ GTPE, II(Wl,WQ):II(WQ,Wl).

Proof. Because I and Lyy are linear, it is sufficient to prove the thesis for
the natural basis {f,,,f,} of T,,3, and by the symmetry of I, it is sufficient
to prove that

I(Lw (fu), o) = I(fu, Lw (Ey)),
i.e. that
I(=Ny,£0) = I(fu, —N,)

and in the end that

N, f,=£f, N,
For this purpose, we recall that

N-f,=0=N-f,.
So, differentiating the first equation by v and the second one by u, we get

N, f,=-N-f,,=N,-f,. (7.12)
O
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The second fundamental form defines a quadratic, bilinear symmetric form:
II(Wl, W2) = I(ﬁw (Wl), Wg) = I(Wl, EW (Wg))

= I(Wl,XWQ) = W7 - gXW2 = W7 - BWQ,

where
B :=gX. (7.13)
In the natural basis {f,,f,} of 7,3, by Eq. (7.12), it is”
B =1I(f;.f;)=I1(Lw(f;),f;) =—-N,;-£; =N-f,; (7.14)
tensor X can then be calculated by Eq. (7.13):
X =g 'B. (7.15)

By Eq. (7.14), because f;; = f j; or simply because II(-,-) is symmetric,
we get that

B=B'.

7.6 Curvatures of a surface

Let £ : Q — ¥ be aregular surface and v(s) : G C R — X be a regular curve
on X parameterized with the arc length s. We call the curvature vector of
~(s) the vector k(s), defined as

K(s) == c(s)v(s) =v"(s),
where v(s) is the principal normal to «(s). By Eq. (4.11), it is also

K(s) =" (s)-
Then, we call the normal curvature kn(s) of v(s) the projection of K(s)
onto N(s), the normal to X:

kn(8) = kK(s) - N(s) = c(s) v(s) - N(s) =~"(s) - N(s).

Theorem 44. The normal curvature kn(s) of v(s) € X depends uniquely
on T(s):

kn(s) =7(s) -Br(s) = II(7(s),T(s)). (7.16)

7In many texts on differential geometry, the following symbols are used:
L=fyu -N=—f, N_,,
M="f,, N=—f, -N_,,
N=f,, N=—f, N,.
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Proof.
7(5) = A(w($),6(5)) = T(5) = 7(5) = Eatl + £
therefore, 7 = (u/,v’) in the natural basis and
k(s) =v"(s) = £t + £,0" + £t + 2f /v’ + 072,
and finally, by Eqs. (7.2) and (7.14),
kn(s) =~"(s) - N(s) = Byiu/? + 2B1ou'v' 4 Boov'? = 7 - BT
=1I(t,T).

Now, if s = s(t) is a change in parameter for ~, then

vt =1 @),

so by the linearity of I1(-,-), we get

(' ()7 (1) = [y OPII(r(t), 7(t) = [v' () kn (1)
and finally,

0~ L0/ 0)
I(y'(t),~' (1))

To each point p € ¥, it corresponds uniquely (in the assumption of
regularity of the surface f : @ — X) to a tangent plane and a tangent
space vector T,%. In p, there are infinite tangent vectors to X, all of them
belonging to 7T},X. We can associate a curvature to each direction t € T),%,
i.e. to each tangent direction, in the following way: Let us consider the
bundle H of planes whose support is the straight line through p and parallel
to N. Then, any plane H € H is a normal plane to ¥ in p; each normal
plane is uniquely determined by a tangent direction t, and the (planar)
curve vyt = H N X is called a normal section of X. If v and N are,
respectively, the principal normal to yy¢ and the normal to ¥ in p, then

v==N

for each normal section. We have, in this way, defined a function that to
each tangent direction, t € T, associates the normal curvature xy of the
normal section yn¢:

I1(t,t)

: T,> — R t) = .
kN :SNT,Z —R| kn(t) .6

By the bilinearity of the second fundamental form, ky(t) = kn(—t).



Downloaded from www.worldscientific.com

Surfaces in € 153

A point p € X is said to be a umbilical point if kx(t) = const. Vt, it is a
planar point if ky(t) = 0 Vt. In all the other points, ky takes a minimum
and a maximum value on distinct directions t € T),%.

Because B = BT, by the spectral theorem, there exists an orthonormal
basis {uy,us} of T, such that

B = pju; ® uj,
with 8; the eigenvalues of B. In such a basis, by Eq. (7.13), we get
II(u;,v;) w;-Bu,  u;-gXu;

kN (u;) = 1=1,2.

I(u,w;)  w-gu,  wg-guy
Then, because {uy, us} is an orthonormal basis, g = I and
ﬁN(ui):ui-Xui, i:1,2,
i.e. X and B share the same eigenvectors. Moreover, cf. Section 2.8, we
know that the two directions u; and us are the directions whereupon
the quadratic form in the previous equation gets its maximum, k1, and
minimum, ko, values, and in such a basis,
X = K 0; @ U;.
We call k1 and k9 the principal curvatures of ¥ in p and uy, us the principal
directions of ¥ in p, see Fig. 7.5.
We call the Gaussian curvature K the product of the principal
curvatures:
K := k1ko = det X.
By Eq. (7.15) and the theorem of Binet, it is also
_detB
~ detg’
We define the mean curvature H of a surface® f:Q — ¥ at a point p € ¥
the mean of the principal curvatures at p:
K1+ Ko 1

= —trX.
2 2

Of course, a change in parameterization of a surface can change the

(7.17)

H .=

orientation, cf. Section 7.1, which induces a change in N into its opposite
one and, by consequence, in the sign of the second fundamental form and
hence in the normal and principal curvatures. These last are hence defined
to less the sign, and the mean curvature too, while the principal directions,
umbilicality, flatness, and Gaussian curvature are intrinsic to X, i.e. they
do not depend on its parameterization.

8The concept of mean curvature of a surface was introduced for the first time by Sophie
Germain in her celebrated work on the elasticity of plates (1815).
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X1

Figure 7.5: Principal curvatures.

7.7 The theorem of Rodrigues

The principal directions of curvature have a property that is specified by
the following.

Theorem 45 (Theorem of Rodrigues). Let f(u,v) be a surface of class
at least C* and X = (A\y, \y) € T,%, then

dN(p)
dx

= —kaA (7.18)

if and only if X is a principal direction; Ky is the principal curvature relative

to .

Proof. Let A be a principal direction of 7},%. Because N € S, then

AN
N =0; 7.19
N ; (7.19)
moreover,
N 0 0 07 (A
A =VNA= |00 04X 0 =NuA+ N (7.20)
N.N,1] L0
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Let pt = (fty, ftv) be the other principal direction of T,%, then
Ap=0 — I\ p)=IIApn)=0.

Moreover,
dN
—pu=—II(A\,pn)=0
oM (A, p) =0,
which implies, together with Eq. (7.19),
dN
— = aA. 7.21
™ O (7.21)
Therefore,
dN
S ox=—JI(\) = A=al
N A A)=aX-A=al(A)
and finally,
oo U™
oI
Contrarily, if we assume Eq. (7.21), as before, we get @« = —ky, and to end,

we just need to prove that A is a principal direction. From Egs. (7.20) and
(7.21), we get

AN+ AN, = —ma(Auf oy + Afy).
Projecting this equation onto f,, and f, gives the two equations

LA, + M), = kx(EXy + FAy),
MMy + Ny = 6x(EXy + GAy),
with the symbols E, F, G, L, M, and N defined in Notes 3 and 7 and used

here for the sake of conciseness. Let w = (w,, w,) € T,X and consider the
function

(7.22)

C(w,ky) =1I(w) — kal(w);

it is easy to check that (, aaTC and 8874 take zero value for w = X\g, with
Ao the eigenvector of the principal direction relative to k), which gives the
system of equations

[ T1(Xo) — kxI(Xo) =0,
AII(Xo) AIT(Xo)

{ Owy, M Owy, =0
OII(Ag) - OII( o)

Ow, A Ow, =0



Downloaded from www.worldscientific.com

156 Tensor Algebra and Analysis for Engineers

Developing the derivatives and making some standard operations,
Eq. (7.22) is found again, which proves that A is necessarily the principal
direction relative to k). O

This theorems hence states that the derivative of N along a given direction
is a vector parallel to such a direction only when this is a principal direction
of curvature.

7.8 Classification of the points of a surface

Let £ : Q2 — ¥ be a regular surface and p € ¥ a non-planar point. Then, we
say that

e pis an elliptic point if K(p) > 0;
e p is a hyperbolic point if K(p) < 0;
e p is a parabolic point if K(p) = 0.

We remark that, by Eq. (7.17), because detg > 0, Eq. (6.4), the value of
det B is sufficient to determine the type of a point on X.

Theorem 46. Ifp is an elliptical point of o, then there exists a neighbor-
hood U € % of p such that all the points q € U belong to the same half-space
into which £ is divided by the tangent plane T,%.

Proof. For the sake of simplicity and without loss of generality, we can
always chose a parameterization f(u, v) of the surface such that p = £(0, 0).
Expanding f(u,v) into a Taylor’s series around (0,0), we get the position
of a point ¢ = f(u,v) € ¥ in the neighborhood of p (though not indicated
for the sake of brevity, all the derivatives are intended to be calculated at

(0,0)):
1
flu,v) =f,u+f,v+ i(f’uulﬂ + 2f puv + f,m,’UQ) + o(u? 4 v?).

The distance with sign d(g) of ¢ € ¥ from the tangent plane T,X is the
projection onto N, i.e.:

1
d(q) = §(f7uuu2 + 2f ., uv + f,wvz) "N+ o(u? +v?)

1
— 5(Bllu2 + 2B12uv 4 Bogv?) 4 o(u? + v?),
or, equivalently, once we set w = uf ,, + vf ,,,

d(q) = IT(w,w) + o(u? + v?). (7.23)
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If p is an elliptic point, the principal curvatures have the same sign because
K = K1k2 > 0 = the sign of IT(w, w) does not depend upon w, i.e. upon
the tangent vector. As a consequence, the sign of d(g) does not change with
w = Vg € U, ¥ is on the same side of the tangent plane T,X. O

Theorem 47. If p is a hyperbolic point of X, then for each neighborhood
U € X of p, there are points q € U that are in half-spaces on the opposite
sides with respect to the tangent plane T,%.

Proof. The proof is identical to that of the previous theorem until Eq.
(7.23); now, if p is a hyperbolic point, the principal curvatures have opposite
signs, and by consequence d(q) changes of sign at least two times in any
neighborhood U of p =, there are points ¢ € U lying in half-spaces on the
opposite sides with respect to the tangent plane 7,%. O

In a parabolic point, there are different possibilities: X is on one side of the
space with respect to T,,%, as for the case of a cylinder, or not, like, for
example, for the points (0, v) of the surface, see Fig. 7.6,

= (u+2) cosv,
y = (u®+2)sinv,
z=—u.

This is also the case for planar points: e.g., the point (0,0,0) is a planar
point for both the surfaces

z=a*+yt, z=2%— 3wy

but in the first case, all of the surface is on one side of the tangent plane,
while it is on both sides for the second case (the so-called monkey’s saddle),
see Fig. 7.7.

\4

Figure 7.6: Elliptic (left), hyperbolic (center), and parabolic (last two on the right)
points.
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Figure 7.7: Two different planar points.
7.9 Developable surfaces

Let us now consider a ruled surface f : Q@ — 3 as in Eq. (7.7); then,
fo=9+0N, f,=X fuxf,=9"XA+0vNxA, f,=XN, f,, =o0.

Consequently, By = N -f,, =0 = detB = —B?,: The points of X are
hyperbolic or parabolic. Namely, the parabolic points are those with

f,xf
Big=N-f,, = 4220 ¢
12 ’ £ x £,

= (Y XA+AN XA XN =4"xA-XN=0.
We remark that the ruled surfaces made of parabolic points have null
Gaussian curvature everywhere: K = 0.

Let us consider ruled surfaces having only parabolic points; then, we
have the following.

Theorem 48. For a ruled surface f(u,v) = vy(u) + vA(u), the following
are equivalents:

(i) v, A, X are linearly dependent;

(i) N, =o.

Proof. Condition (ii) implies that N does not change along a straight line
lying on the ruled surface = £, X f, = v x A+ v’ x X does not depend on

v as well. This is possible <= ~/ x A and X’ x X are linearly dependent,
ie. <

(A XA XN XX =N XA A=A XA XY =N xXA-4)A=o,
i.e. when X, N, and ~/ are coplanar, which proves the thesis. 0

We say that a ruled surface is developable if one of the conditions of
Theorem 48 is satisfied. A developable surface is a surface that can be
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Figure 7.8: Ruled surface of the tangents to a cylindrical helix.

flattened without distortion onto a plane, i.e. it can be bent without
stretching or shearing or vice versa and it can be obtained by transforming
a plane. We remark that only ruled surfaces are developable (but not all
the ruled surfaces are developable).

It is immediate to check that a cylinder or a cone are developable sur-
faces, while the helicoid, hyperbolic hyperboloid, or hyperbolic paraboloid
are not. Another classical example of developable surface is the ruled surface
of the tangents to a curve: Let v(t) : G C R — & be a regular smooth curve;
then, the ruled surface of the tangents to -y is the surface f(u,v) : GXR = %
defined by

f(u,v) = y(u) + 07 (u).

Figure 7.8 shows the ruled surface of the tangents to a cylindrical helix.

7.10 Points of a surface of revolution

Let us now consider a surface of revolution f : Q — X, as in Eq. (7.5) and,
for the sake of simplicity, let u be the natural parameter of the curve in Eq.
(7.4) generating the surface. Then,

@ () + 9% (w) =1, " ()¢ (u) — ' (u)@" (u) = c(u).
We can then calculate:

e the vectors of the natural basis:

¢ (u) cosv —p(u)sinv
fo=1< ¢w)sinv p, f,=< @(u)cosv »;
' (u) 0

e the normal to the surface
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e the metric tensor (i.e. the first fundamental form):

5 [(1) 902(2'&)} ;

e the second derivatives of f:

@ (u) cosv —¢'(u) sinw
fow =12 ¢"(w)sinv p, fu =< ¢(u)cosv ,
P (u) 0
—p(u) cosv
foo =12 —p(u)sinv p;
0

e tensor B (i.e. the second fundamental form):
c(u) 0 }
B = ;
{ 0 p(u)¢'(u)
e the Gaussian curvature K:
det B c(u)y’(u)

K=detX = -
° det g o(u)

Therefore, the points of ¥, where ¢(u) and ¢’(u) have the same sign are
elliptic, but hyperbolic otherwise.? Parabolic points correspond to inflexion
points of v(u) if ¢(u) = 0 or to points with horizontal tangent to ~(u) if
P (u) = 0.

As an example, let us consider the case of the pseudo-sphere, Eq. (7.6).
Then,

p(u) =sinw, P(u) = cosu+ 1ntan%.

Some simple calculations give

| tan |

' (u) = —sinu + _1 , clu) =

sinu |cotu|’

as a consequence,

e/ (w) _(=sinu+ glo)[tanu|

K = — sinu - 1.
o(u) sin u| cot u|
Finally, K = const. = —1, which is the reason for the name of this surface.

9Recall that in a revolution surface, ¢(u) > 0 V.
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7.11 Lines of curvature, conjugated directions, asymptotic
directions

A line of curvature is a curve on a surface with the property of being
tangent, at each point, to a principal direction.

Theorem 49. The lines of curvature of a surface are the solutions to the
differential equation

Xo1u'? 4 (Xoy — X11)u/v' — X190 = 0.
Proof. A curve ¥(t): G CR — X C € is a line of curvature <=
' (t) = fu' + £,0
is an eigenvector of X(t) V¢, i.e. <= there exists a function p(t) such that
X' (t) = u(t)y'(t) V.

In the natural basis of T,,X, this condition reads as (we omit the dependence
upon t for the sake of conciseness)

X11 X12 ’U/ o Ul
X21 X22 ’Ul s 1)/ ’

which is satisfied <= the two vectors at the left- and right-hand sides are
proportional, i.e. <=

X + X0 Ul}

=0 — Xopu? 4+ (Xao — X11)u'v" — X120 = 0.
X21U/+X22U/ v 21U +( 22 11)uv 12V

det {
O

As a corollary, if X is diagonal, then the coordinate lines are, at the same
time, principal directions and lines of curvature.

Theorem 50. A curve y(u): G C R = X is a line of curvature <= the
surface

fu,v) = v(u) + vN(y(u), (7.24)
is developable.

Proof. From Theorem 48, f(u,v) is developable <= +'-N x N’ = 0.
Because 4" and N’ € T,%, which is orthogonal to IN, the surface will be
developable <= ~' x N’ = 0. Moreover, writing

’Y/ = f,uu/ + f,vvla
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it is
N' =N ' +N v =—Lw(v),

hence f(u,v) is developable <= Lw(¥') x ¥/ = o, i.e. when v/ is a
principal direction. O

The curve in Eq. (7.24) is called the ruled surface of the normals.

Let p be a non-planar point of a surface f : Q@ — ¥ and vy, ve two
vectors of T,3. We say that vi and v are conjugated if II(vy,va) = 0.
The directions corresponding to v; and vy are called conjugated directions.
Hence, the principal directions at a point p are conjugated; if p is an
umbilical point, any two orthogonal directions are conjugated.

The direction of a vector v € T,X is said to be asymptotic if it is
autoconjugated, i.e. if I1(v,v) = 0. An asymptotic direction is hence a
direction where the normal curvature is null. In a hyperbolic point, there
are two asymptotic directions; in a parabolic point only one; and in an
elliptic point, there are no asymptotic directions. An asymptotic line is
a curve on a surface with the property of being tangent at every point
to an asymptotic direction. The asymptotic lines are the solution to the
differential equation

II(’Y/,’Y/) =0 — Bllu’2 + 23121/1/ + 3221)/2 = O;

in particular, if By; = Bas = 0 and B £O, then the coordinate lines are
asymptotic lines. Asymptotic lines exist only in the regions where K < 0.

7.12 Dupin’s conical curves

The conical curves of Dupin are the real curves in 7}, whose equations are
II(v,v)=%+1, veS.

Let {uy,us} be the basis of the principal directions. Using polar coordi-
nates, we can write

v =pe,, e, =cosfu; + sinfu,.
Therefore,
II(v,v) = pQII(ep,ep) = pan(ep),
and the conicals’ equations are

p* (k1 cos? O + ko sin? §) = 1.
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il N
I

Figure 7.9: The conical curves of Dupin (from left): elliptic, hyperbolic, and parabolic
points.

With the Cartesian coordinates & = pcosf,n = psinf, we get
5162 + 112772 ==1.
The type of conical curves depend upon the kind of point on X:

e FElliptical points: The principal curvatures have the same sign — one of
the conical curves is an ellipse, the other one the null set (actually, it is
not a real curve).

e Hyperbolic points: The principal curves have opposite signs — the conical
curves are conjugated hyperbolae whose asymptotes coincide with the
asymptotic directions.

e Parabolic points: At least one of the principal curvatures is null — one
of the conical curves degenerates into couple of parallel straight lines,
corresponding to the asymptotic direction, the other one is the null set.

The three possible cases are depicted in Fig. 7.9.

7.13 The Gauss—Weingarten equations

Let f : Q — X be a surface; for any point p € X, consider the basis
{f ., £, N}, also called the Gauss’ basis. It is the equivalent of the Frenet—
Serret basis for the surfaces. We want to calculate the derivatives of the
vectors of this basis, i.e. we want to obtain, for the surfaces, something
equivalent to the Frenet—Serret equations.

Generally, N € Sand N-f,, =N-f, =0,but f,,f, ¢ Sand f,,-f, # 0.
In other words, we are dealing with a case of non-orthogonal (curvilinear)
coordinates. So, if w is the coordinate along the normal N, let us call, for



Downloaded from www.worldscientific.com

164 Tensor Algebra and Analysis for Engineers

the sake of convenience,

while, for the vectors,
f,u = f,l = 81, f,v = f,2 = 82,

with g1, g2 exactly the g vectors of the coordinate lines on X. Then,

Jgi _ 10(gi-gi) 109

920 8T 32T 9. 202 ij=1,2
agi. ._a<gi'gj)_%. 4_391'3'_159% ’ o
92 81T T gy 92 87T 9z 209207

where for the last equation, we have used the identity

3gj 0gi
o= f =f = ==
0zt 7 N, P

ij=1,2.

Using Eq. (6.26), it can be proved that it is alsol®

0g;
029

cgn =T i,j,h=12
Moreover, by Eq. (7.14),

%.N:f,“-N:BM ii=1,2
and by Egs. (7.10) and (7.11),

ON o
ﬁ'gj:*LW(gi)'gj:*Xgi'gj:*inv i,j=1,2,
while, because N € S, then from Eq. (4.1),

ON
0zt

N=0 Vi=1,2.

10The proof is rather cumbersome and it is omitted here; in many texts on differential
geometry, the Christoffel symbols are just introduced in this way, as the projection of
the derivatives of vectors g;s onto the same vectors, i.e. as the coefficients of the Gauss
equations.
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Finally, the decomposition of the derivatives of the vectors of the basis
{f.,f,, N} onto these same vectors gives the equations

ogi

agj =Ign + Bi;N,

aZN i,j=1,2; (7.25)
@ = *Xijgi»

these are the Gauss—Weingarten equations (the first one is due to Gauss
and the second to Weingarten).
Now, if we make the scalar product of the Gauss equations by g; and

g9, i.e.

0gi

h .o
8k * @ =8k (Fz]gh + Bl]N)v Za]vk = ]-a 27
we get the following three systems of equations:
10
rr%lgll + T 1921 = 5%»
7.26
r! 2 _ Ogi2 10911 (7.26)
| 12 Ting2= 021 29227
10
( Iisg11 4+ g1 = 5%»
7.27
1 2 1 9922 (20
(F12912 + 175922 = 2 921
9] 10
( L0011 + 59021 = % - 5%’
7.28
1 2 1 0ga2 ( )
L L'32912 + 155922 = 292"

The determinant of each one of these systems is simply detg ~ 0— it is
possible to express the Christoffel symbols as functions of the g;;s and of
their derivatives, i.e. as functions of the first fundamental form (the metric
tensor).

7.14 The theorema egregium

The following theorem is a fundamental result due to Gauss:

Theorem 51 (Theorema egregium). The Gaussian curvature K of a
surface f(u,v) : Q = 3 depends only upon the first fundamental form of f.
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Proof. Let us write the identity
d’g1 g1

021022 022021
using the Gauss equations (7.25);:

Iigio+ 11822+ BulNo + 1y 081 + I'7) 582 + B oN
=T1o811 + 12812+ BiaN 1 + iy 81 + 75182 + B2 N,
a()

where, for the sake of shortness, we have abridged 507 by (-),;. Then, we
z
use again Eqs. (7.25) to express g1.1,81,2,82,2, N1 and N o; after doing

that and equating to 0, the coefficient of go, we get
Bi1 X9y — B1aXoy =T, T7, + 15, + F%Lz —Tpl'Y —T3,I%, — F%z,ﬁ
by Eq. (7.13), we get that
Bi1 = g11X11 + g12X21,  Bi2 = g11X12 + g12Xo2,
which on injecting into the previous equation gives
gudetX =T1 T + THTS, + 1% 5 — Tl — Tl — T, (7.29)

Setting equal to zero the coefficient of gi, a similar expression can also be
obtained for g12. Because g is positive definite, it is not possible that g1; =
g12 = 0. So, remembering that K = det X and the result of the previous
section, we see that it is possible to express K through the coefficients of
the first fundamental form and of its derivatives. O

7.15 Minimal surfaces

A minimal surface is a surface f : @ — ¥ having the mean curvature
H = 0Vp € X. Typical minimal surfaces are the catenoid and the helicoid.!!
Other minimal surfaces are the Enneper’s surface:

( u’ 2
11U — — + uv

)

3

v 2
Tog =V — — + U0,

3
[x3:u27v2,

and the Costa’s and Schwarz’s surfaces, see Fig. 7.10.

' Minimal surfaces have some interesting applications in the mechanics of tensile
structures composed of prestressed membranes. Also, it can be shown that a soap film,
when not bounding a closed region, takes the form of a minimal surface.
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Figure 7.10: The minimal surfaces of (from left) Enneper, Costa, and Schwarz.

Theorem 52. The non-planar points of a minimal surface are hyperbolic.

Proof. This is a direct consequence of the definition of mean curvature H
and of hyperbolic points: H =0 <= K1k < 0. O

Let £: Q — ¥ 