

 [image: cover.eps]

 [image: Title page image]

 TensorFlow® For Dummies®

 Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

 Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

 Published simultaneously in Canada

 No part of this publication may be reproduced, stored in a retrieval system or transmitted
 in any form or by any means, electronic, mechanical, photocopying, recording, scanning
 or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
 Copyright Act, without the prior written permission of the Publisher. Requests to
 the Publisher for permission should be addressed to the Permissions Department, John
 Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
 748-6008, or online at http://www.wiley.com/go/permissions.

 Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier,
 and related trade dress are trademarks or registered trademarks of John Wiley & Sons,
 Inc. and may not be used without written permission. TensorFlow is a registered trademark
 of Google, LLC. All other trademarks are the property of their respective owners.
 John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in
 this book.

 LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
 OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
 WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
 OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
 OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE
 FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
 NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
 ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
 SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM.
 THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION
 AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
 THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
 RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES
 LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN
 AND WHEN IT IS READ.

 For general information on our other products and services, please contact our Customer
 Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993,
 or fax 317-572-4002. For technical support, please visit https://hub.wiley.com/community/support/dummies.

 Wiley publishes in a variety of print and electronic formats and by print-on-demand.
 Some material included with standard print versions of this book may not be included
 in e-books or in print-on-demand. If this book refers to media such as a CD or DVD
 that is not included in the version you purchased, you may download this material
 at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

 Library of Congress Control Number: 2018933981

 ISBN 978-1-119-46621-5 (pbk); ISBN 978-1-119-46619-2 (ePub); 978-1-119-46620-8 (ePDF)

 TensorFlow® For Dummies®

 To view this book's Cheat Sheet, simply go to www.dummies.com and search for “TensorFlow For Dummies Cheat Sheet” in the Search box.

 Table of Contents

 	Cover

 	Introduction

 	About This Book

 	Foolish Assumptions

 	Icons Used in this Book

 	Beyond the Book

 	Where to Go from Here

 	Part 1: Getting to Know TensorFlow

 	Chapter 1: Introducing Machine Learning with TensorFlow

 	Understanding Machine Learning

 	The Development of Machine Learning

 	Machine Learning Frameworks

 	Chapter 2: Getting Your Feet Wet

 	Installing TensorFlow

 	Exploring the TensorFlow Installation

 	Running Your First Application

 	Setting the Style

 	Chapter 3: Creating Tensors and Operations

 	Creating Tensors

 	Creating Tensors with Known Values

 	Creating Tensors with Random Values

 	Transforming Tensors

 	Creating Operations

 	Putting Theory into Practice

 	Chapter 4: Executing Graphs in Sessions

 	Forming Graphs

 	Creating and Running Sessions

 	Writing Messages to the Log

 	Visualizing Data with TensorBoard

 	Putting Theory into Practice

 	Chapter 5: Training

 	Training in TensorFlow

 	Formulating the Model

 	Looking at Variables

 	Determining Loss

 	Minimizing Loss with Optimization

 	Feeding Data into a Session

 	Monitoring Steps, Global Steps, and Epochs

 	Saving and Restoring Variables

 	Working with SavedModels

 	Putting Theory into Practice

 	Visualizing the Training Process

 	Session Hooks

 	Part 2: Implementing Machine Learning

 	Chapter 6: Analyzing Data with Statistical Regression

 	Analyzing Systems Using Regression

 	Linear Regression: Fitting Lines to Data

 	Polynomial Regression: Fitting Polynomials to Data

 	Binary Logistic Regression: Classifying Data into Two Categories

 	Multinomial Logistic Regression: Classifying Data into Multiple Categories

 	Chapter 7: Introducing Neural Networks and Deep Learning

 	From Neurons to Perceptrons

 	Improving the Model

 	Layers and Deep Learning

 	Training with Backpropagation

 	Implementing Deep Learning

 	Tuning the Neural Network

 	Managing Variables with Scope

 	Improving the Deep Learning Process

 	Chapter 8: Classifying Images with Convolutional Neural Networks (CNNs)

 	Filtering Images

 	Convolutional Neural Networks (CNNs)

 	Putting Theory into Practice

 	Performing Image Operations

 	Putting Theory into Practice

 	Chapter 9: Analyzing Sequential Data with Recurrent Neural Networks (RNNs)

 	Recurrent Neural Networks (RNNs)

 	Creating RNN Cells

 	Long Short-Term Memory (LSTM) Cells

 	Gated Recurrent Units (GRUs)

 	Part 3: Simplifying and Accelerating TensorFlow

 	Chapter 10: Accessing Data with Datasets and Iterators

 	Datasets

 	Iterators

 	Putting Theory into Practice

 	Bizarro Datasets

 	Chapter 11: Using Threads, Devices, and Clusters

 	Executing with Multiple Threads

 	Configuring Devices

 	Executing TensorFlow in a Cluster

 	Chapter 12: Developing Applications with Estimators

 	Introducing Estimators

 	Training an Estimator

 	Testing an Estimator

 	Running an Estimator

 	Creating Input Functions

 	Using Feature Columns

 	Creating and Using Estimators

 	Running Estimators in a Cluster

 	Accessing Experiments

 	Chapter 13: Running Applications on the Google Cloud Platform (GCP)

 	Overview

 	Working with GCP Projects

 	The Cloud Software Development Kit (SDK)

 	The gcloud Utility

 	Google Cloud Storage

 	Preparing for Deployment

 	Executing Applications with the Cloud SDK

 	Configuring a Cluster in the Cloud

 	Part 4: The Part of Tens

 	Chapter 14: The Ten Most Important Classes

 	Tensor

 	Operation

 	Graph

 	Session

 	Variable

 	Optimizer

 	Estimator

 	Dataset

 	Iterator

 	Saver

 	Chapter 15: Ten Recommendations for Training Neural Networks

 	Select a Representative Dataset

 	Standardize Your Data

 	Use Proper Weight Initialization

 	Start with a Small Number of Layers

 	Add Dropout Layers

 	Train with Small, Random Batches

 	Normalize Batch Data

 	Try Different Optimization Algorithms

 	Set the Right Learning Rate

 	Check Weights and Gradients

 	About the Author

 	Advertisement Page

 	Connect with Dummies

 	Index

 	End User License Agreement

 Guide

 	Cover

 	Table of Contents

 	Begin Reading

 Pages

 	i

 	ii

 	1

 	2

 	3

 	4

 	5

 	6

 	7

 	8

 	9

 	10

 	11

 	12

 	13

 	14

 	15

 	17

 	18

 	19

 	20

 	21

 	22

 	23

 	24

 	25

 	27

 	28

 	29

 	30

 	31

 	32

 	33

 	34

 	35

 	36

 	37

 	38

 	39

 	40

 	41

 	42

 	43

 	45

 	46

 	47

 	48

 	49

 	50

 	51

 	52

 	53

 	54

 	55

 	56

 	57

 	58

 	59

 	60

 	61

 	62

 	63

 	64

 	65

 	66

 	67

 	68

 	69

 	70

 	71

 	72

 	73

 	74

 	75

 	76

 	77

 	78

 	79

 	80

 	81

 	82

 	83

 	84

 	85

 	86

 	87

 	88

 	89

 	90

 	91

 	92

 	93

 	94

 	95

 	96

 	97

 	98

 	99

 	100

 	101

 	102

 	103

 	104

 	105

 	106

 	107

 	108

 	109

 	110

 	111

 	112

 	113

 	114

 	115

 	116

 	117

 	118

 	119

 	120

 	121

 	122

 	123

 	124

 	125

 	126

 	127

 	128

 	129

 	130

 	131

 	132

 	133

 	134

 	135

 	136

 	137

 	138

 	139

 	140

 	141

 	142

 	143

 	144

 	145

 	146

 	147

 	149

 	150

 	151

 	152

 	153

 	154

 	155

 	156

 	157

 	158

 	159

 	160

 	161

 	162

 	163

 	164

 	165

 	166

 	167

 	168

 	169

 	170

 	171

 	172

 	173

 	174

 	175

 	176

 	177

 	178

 	179

 	180

 	181

 	182

 	183

 	184

 	185

 	186

 	187

 	188

 	189

 	190

 	191

 	192

 	193

 	194

 	195

 	196

 	197

 	198

 	199

 	200

 	201

 	202

 	203

 	204

 	205

 	206

 	207

 	208

 	209

 	210

 	211

 	212

 	213

 	214

 	215

 	216

 	217

 	218

 	219

 	220

 	221

 	222

 	223

 	224

 	225

 	226

 	227

 	228

 	229

 	230

 	231

 	232

 	233

 	234

 	235

 	236

 	237

 	238

 	239

 	240

 	241

 	242

 	243

 	244

 	245

 	246

 	247

 	248

 	249

 	250

 	251

 	252

 	253

 	254

 	255

 	256

 	257

 	258

 	259

 	260

 	261

 	262

 	263

 	264

 	265

 	266

 	267

 	268

 	269

 	270

 	271

 	272

 	273

 	274

 	275

 	277

 	278

 	279

 	280

 	281

 	282

 	283

 	284

 	285

 	286

 	287

 	288

 	289

 	290

 	291

 	292

 	293

 	294

 	295

 	296

 	297

 	298

 	299

 	300

 	301

 	302

 	303

 	304

 	305

 	307

 	308

 	309

 	310

 	311

 	312

 	313

 	315

 	316

 	317

 	318

 	319

 	320

 	321

 	322

 	323

 	324

 	325

 	326

 	327

 	328

 	329

 	330

 	331

 	332

 	333

 	334

 	335

 	336

 	341

 	342

 	344

 	345

 	346

 	347

 	348

 Introduction

 Machine learning is one of the most fascinating and most important fields in modern
 technology. As I write this book, NASA has discovered faraway planets by using machine
 learning to analyze telescope images. After only three days of training, Google’s
 AlphaGo program learned the complex game of Go and defeated the world’s foremost master.

 Despite the power of machine learning, few programmers know how to take advantage
 of it. Part of the problem is that writing machine learning applications requires
 a different mindset than regular programming. The goal isn’t to solve a specific problem,
 but to write a general application capable of solving many unknown problems.

 Machine learning draws from many different branches of mathematics, including statistics,
 calculus, linear algebra, and optimization theory. Unfortunately, the real world doesn’t
 feel any obligation to behave mathematically. Even if you use the best mathematical
 models, you can still end up with lousy results. I’ve encountered this frustration
 on many occasions, and I’ve referred to neural networks more than once as “high-tech
 snake oil.”

 TensorFlow won’t give you the ideal model for analyzing a system, but it will reduce
 the time and frustration involved in machine learning development. Instead of coding
 activation functions and normalization routines from scratch, you can access the many
 built-in features of the framework. TensorFlow For Dummies explains how to access these features and put them to use.

 About This Book

 TensorFlow is a difficult subject to write about. Not only does the toolset contain
 thousands of classes, but many of them perform similar roles. Furthermore, some classes
 are deprecated, while others are simply “not recommended for use.”

 Despite the vast number of classes, there are three classes that every TensorFlow
 developer should be familiar with: Tensor, Graph, and Session. The chapters in the first part of this book discuss these classes in detail and
 present many examples of their usage.

 The chapters in Part 2 explain how you can use TensorFlow in practical machine learning tasks. I start with
 statistical methods, including linear regression, polynomial regression, and logistic
 regression. Then I delve into the fascinating topic of neural networks. I explore
 the operation of basic neural networks, and then I present convolutional neural networks
 (CNNs) and recurrent neural networks (RNNs).

 The chapters in Part 3 present high-level TensorFlow classes that you can use to simplify and accelerate
 your applications. Of the many topics discussed, the most important is the Estimator
 API, which allows you to implement powerful machine learning algorithms with minimal
 code. I explain how to code estimators and execute them at high speed using the Google
 Cloud Platform (GCP).

 Foolish Assumptions

 In essence, this book covers two topics: the theory of machine learning and the implementation
 of the theory using TensorFlow. With regard to theory, I make few assumptions. I expect
 you to know the basics of linear algebra, but I don't expect you to know anything
 about machine learning. I also don’t expect you to know about statistical regression
 or neural networks, so I provide a thorough introduction to these and other concepts.

 With regard to TensorFlow development, I made assumptions related to your programming
 background. TensorFlow supports a handful of programming languages, but the central
 language is Python. For this reason, this book is Python-centric, and I provide all
 of the example code in Python modules. I explain how to install TensorFlow and access
 its modules and classes, but I don’t explain what modules and classes are.

 Icons Used in this Book

 To help you navigate through the text, I inserted icons in the book’s margin. Here’s
 what they mean:

 [image: tip] This icon indicates that the text contains suggestions for developing machine learning
 applications.

 [image: technicalstuff] This icon precedes content that delves into the technical theory of machine learning.
 Many readers may find this theory helpful, but you don’t need to know all the gritty
 details.

 [image: remember] As much as I love TensorFlow, I admit that it isn’t simple to use or understand.
 There are many critical points to be familiar with, and in many cases, I use this
 icon to emphasize concepts that are particularly important.

 Beyond the Book

 This book covers a great deal of the TensorFlow API, but there’s still a lot more
 to learn. The first place to look is the official documentation, which you can find
 at www.tensorflow.org. If you’re interested in TensorFlow’s functions and data structures, the best place
 to look is www.tensorflow.org/api_docs.

 If you have a problem that you can’t solve using this book or the official documentation,
 a great resource is StackOverflow. This site enables programmers to present questions
 and receive answers, and in my career, I’ve provided plenty of both. For TensorFlow-specific
 questions, I recommend visiting www.stackoverflow.com/questions/tagged/tensorflow.

 In addition to what you’re reading right now, this product also comes with a free
 access-anywhere Cheat Sheet that gives you some pointers on using TensorFlow. To get
 this Cheat Sheet, simply go to www.dummies.com and search for “TensorFlow For Dummies Cheat Sheet” in the Search box.

 I also provide a great deal of example code that demonstrates how to put the theory
 into practice. Here’s how to download the tfbook.zip file for this book.

 	On www.dummies.com, search for TensorFlow For Dummies or the book's ISBN.

 	

 When the book comes up, click on the More about this book link.

 You are taken to the book’s product page, and the code should be on the Downloads
 tab.

 After decompressing the archive, you’ll find a series of folders named after chapters
 of this book. The example code for Chapter 3 is in the ch3 folder, the code for Chapter 6 is in ch6, and so on.

 Where to Go from Here

 The material in this book proceeds from the simple to the complex and from the general
 to the recondite. If you’re already a TensorFlow expert, feel free to skip any chapters
 you’re already familiar with. But if you’re new to the toolset, I strongly recommend
 starting with Chapter 1 and proceeding linearly through Chapters 2, 3, 4, and so on.

 I’ve certainly enjoyed writing this book, and I hope you enjoy the journey of discovery.
 Bon voyage!

 Part 1

 Getting to Know TensorFlow

 IN THIS PART …

 Explore the fascinating field of machine learning and discover why TensorFlow is so
 vital to machine learning development.

 Download the TensorFlow package to your computer and install the complete toolkit.

 Discover the fundamental data types of TensorFlow and the many operations that you
 can perform on tensors.

 Understand how tensors and operations are stored in graphs and how graphs can be executed
 in sessions.

 Investigate the process of TensorFlow training, which minimizes the disparity between
 a mathematical model and a real-world system.

 Chapter 1

 Introducing Machine Learning with TensorFlow

 IN THIS CHAPTER

 [image: check] Looking at machine learning over time

 [image: check] Exploring machine learning frameworks

 TensorFlow is Google’s powerful framework for developing applications that perform
 machine learning. Much of this book delves into the gritty details of coding TensorFlow
 modules, but this chapter provides a gentle introduction. I provide an overview of
 the subject and then discuss the developments that led to the creation of TensorFlow
 and similar machine learning frameworks.

 Understanding Machine Learning

 Like most normal, well-adjusted people, I consider The Terminator to be one of the finest films ever made. I first saw it at a birthday party when
 I was 13, and though most of the story went over my head, one scene affected me deeply:
 The heroine calls her mother and thinks she’s having a warm conversation, but she’s
 really talking to an evil robot from the future!

 The robot wasn’t programmed in advance with the mother’s voice or the right sequence
 of phrases. It had to figure these things out on its own. That is, it had to analyze
 the voice of the real mother, examine the rules of English grammar, and generate acceptable
 sentences for the conversation. When a computer obtains information from data without
 receiving precise instructions, it’s performing machine learning.

 The Terminator served as my first exposure to machine learning, but it wouldn’t be my last. As I
 write this book, machine learning is everywhere. My email provider knows that messages
 involving an “online pharmacy” are spam, but messages about “cheap mescaline” are
 important. Google Maps always provides the best route to my local Elvis cult, and
 Amazon.com always knows when I need a new horse head mask. Is it magic? No, it’s machine
 learning!

 Machine learning applications achieve this power by discovering patterns in vast amounts
 of data. Unlike regular programs, machine learning applications deal with uncertainties
 and probabilities. It should come as no surprise that the process of coding a machine
 learning application is completely different than that of coding a regular application.
 Developers need to be familiar with an entirely new set of concepts and data structures.

 Thankfully, many frameworks have been developed to simplify development. At the time
 of this writing, the most popular is TensorFlow, an open-source toolset released by
 Google. In writing this book, my goal is to show you how to harness TensorFlow to
 develop your own machine learning applications.

 Although this book doesn’t cover the topic of ethics, I feel compelled to remind readers
 that programming evil robots is wrong. Yes, you’ll impress your professor, and it
 will look great on a resume. But society frowns on such behavior, and your friends
 will shun you. Still, if you absolutely have to program an evil robot, TensorFlow
 is the framework to use.

 The Development of Machine Learning

 In my opinion, machine learning is the most exciting topic in modern software development,
 and TensorFlow is the best framework to use. To convince you of TensorFlow’s greatness,
 I’d like to present some of the developments that led to its creation. Figure 1-1 presents an abbreviated timeline of machine learning and related software development.

 [image: image]

 FIGURE 1-1: Developments in machine learning extend from academia to corporations.

 Once you understand why researchers and corporations have spent so much time developing
 the technology, you’ll better appreciate why studying TensorFlow is worth your own
 time.

 Statistical regression

 Just as petroleum companies drill into the ground to obtain oil, machine learning
 applications analyze data to obtain information and insight. The formal term for this
 process is statistical inference, and its first historical record comes from ancient Greece. But for this purpose,
 the story begins with a nineteenth-century scientist named Francis Galton. Though
 his primary interest was anthropology, he devised many of the concepts and tools used
 by modern statisticians and machine learning applications.

 Galton was obsessed with inherited traits, and while studying dogs, he noticed that
 the offspring of exceptional dogs tend to acquire average characteristics over time.
 He referred to this as the regression to mediocrity. Galton observed this phenomenon in humans and sweet peas, and while analyzing his
 data, he employed modern statistical concepts like the normal curve, correlation,
 variance, and standard deviation.

 To illustrate the relationship between a child’s height and the average height of
 the parents, Galton developed a method for determining which line best fits a series
 of data points. Figure 1-2 shows what this looks like. (Galton’s data is provided by the University of Alabama.)

 [image: image]

 FIGURE 1-2: Linear regression identifies a clear trend amidst unclear data points.

 Galton’s technique for fitting lines to data became known as linear regression, and the term regression has come to be used for a variety of statistical methods. Regression plays a critical
 role in machine learning, and Chapter 6 discusses the topic in detail.

 Reverse engineering the brain

 In 1905, Ramón y Cajal examined tissue from a chicken’s brain and studied the interconnections
 between the cells, later called neurons. Cajal’s findings fascinated scientists throughout the world, and in 1943, Warren
 McCulloch and Walter Pitts devised a mathematical model for the neuron. They demonstrated
 that their artificial neurons could implement the common Boolean AND and OR operations.

 While researching statistics, a psychologist named Frank Rosenblatt developed another
 model for a neuron that expanded on the work of McCulloch and Pitts. He called his
 model the perceptron, and by connecting perceptrons into layers, he created a circuit capable of recognizing
 images. These interconnections of perceptrons became known as neural networks.

 Rosenblatt followed his demonstrations with grand predictions about the future of
 perceptron computing. His predictions deeply influenced the Office of Naval Research,
 which funded the development of a custom computer based on perceptrons. This computer
 was called the Mark 1 Perceptron, and Figure 1-3 shows what it looks like.

 [image: image]

 Credit: Cornell Aeronautical Laboratory.

 FIGURE 1-3: The Mark 1 Perceptron was the first computer created for machine learning.

 The future of perceptron-based computing seemed bright, but in 1969, calamity struck.
 Marvin Minsky and Seymour Papert presented a deeply critical view of Rosenblatt’s
 technology in their book, Perceptrons (MIT Press). They mathematically proved many limitations of two-layer feed-forward
 neural networks, such as the inability to learn nonlinear functions or implement the
 Boolean Exclusive OR (XOR) operation.

 Neural networks have progressed dramatically since the 1960s, and in hindsight, modern
 readers can see how narrow-minded Minsky and Papert were in their research. But at
 the time, their findings caused many, including the Navy and other large organizations,
 to lose interest in neural networks.

 Steady progress

 Despite the loss of popular acclaim, researchers and academics continued to investigate
 machine learning. Their work led to many crucial developments, including the following:

 	In 1965, Ivakhnenko and Lapa demonstrated multilayer perceptrons with nonlinear activation
 functions.

 	In 1974, Paul Werbos used backpropagation to train a neural network.

 	In 1980, Kunihiko Fukushima proposed the neocognitron, a multilayer neural network
 for image recognition.

 	In 1982, John Hopfield developed a type of recurrent neural network known as the Hopfield
 network.

 	In 1986, Sejnowski and Rosenberg developed NETtalk, a neural network that learned
 how to pronounce words.

 These developments expanded the breadth and capabilities of machine learning, but
 none of them excited the world’s imagination. The problem was that computers lacked
 the speed and memory needed to perform real-world machine learning in a reasonable
 amount of time. That was about to change.

 The computing revolution

 As the 1980s progressed into the 1990s, improved semiconductor designs led to dramatic
 leaps in computing power. Researchers harnessed this new power to execute machine
 learning routines. Finally, machine learning could tackle real-world problems instead
 of simple proofs of concept.

 As the Cold War intensified, military experts grew interested in recognizing targets
 automatically. Inspired by Fukushima’s neocognitron, researchers focused on neural
 networks specially designed for image recognition, called convolutional neural networks (CNNs). One major step forward took place in 1994, when Yann LeCunn successfully
 demonstrated handwriting recognition with his CNN-based LeNet5 architecture.

 But there was a problem. Researchers used similar theories in their applications,
 but they wrote all their code from scratch. This meant researchers couldn’t reproduce
 the results of their peers, and they couldn’t re-use one another’s code. If a researcher’s
 funding ran out, it was likely that the entire codebase would vanish.

 In the late 1990s, my job involved programming convolutional neural networks to recognize
 faces. I loved the theory behind neural networks, but I found them deeply frustrating
 in practice. Machine learning applications require careful tuning and tweaking to
 get acceptable results. But each change to the code required a new training run, and
 training a CNN could take days. Even then, I still didn’t have enough training data to ensure accurate recognition.

 One problem facing me and other researchers was that, while machine learning theory
 was mature, the process of software development was still in its infancy. Programmers
 needed frameworks and standard libraries so that they weren’t coding everything by
 themselves. Also, despite Intel’s best efforts, practical machine learning still required
 faster processors that could access larger amounts of data.

 The rise of big data and deep learning

 As the 21st century dawned, the Internet’s popularity skyrocketed, and the price of
 data storage plummeted. Large corporations could now access terabytes of data about potential consumers. These corporations developed improved tools for analyzing
 their data, and this revolution in data storage and analysis has become known as the
 big data revolution.

 Now CEOs were faced with a difficult question: How could they use their wealth of
 data to create wealth for their corporations? One major priority was advertising —
 companies make more money if they know which advertisements to show to their customers.
 But there were no clear rules for associating customers with products.

 Many corporations launched in-house research initiatives to determine how best to
 analyze their data. But in 2006, Netflix tried something different. They released
 a large part of their database online and offered one million dollars to whoever developed
 the best recommendation engine. The winner, BellKor’s Pragmatic Chaos, combined a
 number of machine learning algorithms to improve Netflix’s algorithm by 10 percent.

 Netflix wasn’t the only high-profile corporation using machine learning. Google’s
 AdSense used machine learning to determine which advertisements to display on its
 search engine. Google and Tesla demonstrated self-driving cars that used machine learning
 to follow roads and join traffic.

 Across the world, large organizations sat up and paid notice. Machine learning had
 left the realm of wooly-headed science fiction and had become a practical business
 tool. Entrepreneurs continue to wonder what other benefits can be gained by applying
 machine learning to big data.

 Researchers paid notice as well. A major priority involved distinguishing modern machine
 learning, with its high complexity and vast data processing, from earlier machine
 learning, which was simple and rarely effective. They agreed on the term deep learning for this new machine learning paradigm. Chapter 7 goes into greater detail regarding the technical meaning of deep learning.

 Machine Learning Frameworks

 One of the most important advances in practical machine learning involved the creation
 of frameworks. Frameworks automate many aspects of developing machine learning applications, and they allow
 developers to re-use code and take advantage of best practices. This discussion introduces
 five of the most popular frameworks: Torch, Theano, Caffe, Keras, and TensorFlow.

 Torch

 Torch is the first machine learning framework to attract a significant following.
 Originally released in 2002 by Ronan Collobert, it began as a toolset for numeric
 computing. Torch’s computations involve multidimensional arrays called tensors, which can be processed with regular vector/matrix operations. Over time, Torch acquired
 routines for building, training, and evaluating neural networks.

 Torch garnered a great deal of interest from academics and corporations like IBM and
 Facebook. But its adoption has been limited by its reliance on Lua as its interface
 language. The other frameworks in this discussion —Theano, Caffe, Keras, and TensorFlow
 — can be interfaced through Python, which has emerged as the language of choice in
 the machine learning domain.

 Theano

 In 2010, a machine learning group at the University of Montreal released Theano, a
 library for numeric computation. Like NumPy, Theano provides a wide range of Python
 routines for operating on multidimensional arrays. Unlike NumPy, Theano stores operations
 in a data structure called a graph, which it compiles into high-performance code. Theano also supports symbolic differentiation, which makes it possible to find derivatives of functions automatically.

 Because of its high performance and symbolic differentiation, many machine learning
 developers have adopted Theano as their numeric computation toolset of choice. Developers
 particularly appreciate Theano’s ability to execute graphs on graphics processing
 units (GPUs) as well as central processing units (CPUs).

 Caffe

 As part of his PhD dissertation at UC Berkeley, Yangqing Jia created Caffe, a framework
 for developing image recognition applications. As others joined in the development,
 Caffe expanded to support other machine learning algorithms and many different types
 of neural networks.

 Caffe is written in C++, and like Theano, it supports GPU acceleration. This emphasis
 on performance has endeared Caffe to many academic and corporate developers. Facebook
 has become particularly interested in Caffe, and in 2007 it released a reworked version
 called Caffe2. This version improves Caffe’s performance and makes executing applications
 on smartphones possible.

 Keras

 While other offerings focus on performance and breadth of capabilities, Keras is concerned
 with modularity and simplicity of development. François Chollet created Keras as an
 interface to other machine learning frameworks, and many developers access Theano
 through Keras to combine Keras’s simplicity with Theano’s performance.

 Keras’s simplicity stems from its small API and intuitive set of functions. These
 functions focus on accomplishing standard tasks in machine learning, which makes Keras
 ideal for newcomers to the field but of limited value for those who want to customize
 their operations.

 François Chollet released Keras under the MIT License, and Google has incorporated
 his interface into TensorFlow. For this reason, many TensorFlow developers prefer
 to code their neural networks using Keras.

 TensorFlow

 As the title implies, this book centers on TensorFlow, Google’s gift to the world
 of machine learning. The Google Brain team released TensorFlow 1.0 in 2015, and as
 of the time of this writing, the current version is 1.4. It’s provided under the Apache
 2.0 open source license, which means you’re free to use it, modify it, and distribute
 your modifications.

 TensorFlow’s primary interface is Python, but like Caffe, its core functionality is
 written in C++ for improved performance. Like Theano, TensorFlow stores operations
 in a graph that can be deployed to a GPU, a remote system, or a network of remote
 systems. In addition, TensorFlow provides a utility called TensorBoard, which makes
 visualizing graphs and their operations possible.

 Like other frameworks, TensorFlow supports execution on CPUs and GPUs. In addition,
 TensorFlow applications can be executed on the Google Cloud Platform (GCP). The GCP
 provides world-class processing power at relatively low cost, and in my opinion, GCP
 processing is TensorFlow’s most important advantage. Chapter 13 discusses this important topic in detail.

 Chapter 2

 Getting Your Feet Wet

 IN THIS CHAPTER

 [image: check] Obtaining and installing TensorFlow

 [image: check] Exploring the TensorFlow package

 [image: check] Running a simple application

 [image: check] Understanding style conventions

 Many chapters of this book present complex technical subjects and lengthy mathematical
 formulas. But not this one. This chapter is dead simple, and its goal is to walk you
 through the process of installing TensorFlow and running your first TensorFlow application.

 A complete TensorFlow installation contains a vast number of files and directories.
 This chapter explores the installation and explains what the many files and folders
 are intended to accomplish. The discussion touches on many of TensorFlow’s packages
 and the modules they contribute.

 Once you’ve installed the TensorFlow toolset, it’s easy to start coding and running
 applications. The end of the chapter presents a basic application that provides a
 cheery welcome to TensorFlow development.

 Installing TensorFlow

 Google provides two methods for installing TensorFlow, and the simpler option involves
 installing precompiled packages. This discussion presents a three-step process for
 installing these packages:

 	Install Python on your development system.

 	Install the pip package manager.

 	Use pip to install TensorFlow.

 The second installation method involves compiling TensorFlow from its source code.
 This option takes time and effort, but you can obtain better performance because your
 TensorFlow package will take the fullest advantage of your processor’s capabilities.
 Chapter 12 explains how to obtain and compile TensorFlow’s source code.

 Python and pip/pip3

 TensorFlow supports development with Java and C++, but this book focuses on Python.
 I use Python 3 in the example code, but you’re welcome to use Python 2. As I explain
 in the upcoming section “Setting the Style,” TensorFlow applications should be accessible to both versions.

 Python’s official package manager is pip, which is a recursive acronym that stands for “pip installs Python.” To install packages
 like TensorFlow, you can use pip on Python 2 systems or pip3 on Python 3 systems.
 Package management commands have the following format:

 pip <command-name> <command-options>

 pip and pip3 accept similar commands and perform similar operations. For example,
 executing pip list or pip3 list prints all the Python packages installed on your system. Table 2-1 lists this and five other commands.

 TABLE 2-1 Package Management Commands

 	

 Command Name

 	

 Description

 	

 install

 	

 Installs a specified package

 	

 uninstall

 	

 Uninstalls a specified package

 	

 download

 	

 Downloads a package, but doesn't install it

 	

 list

 	

 Lists installed packages

 	

 show

 	

 Prints information about a specified package

 	

 search

 	

 Searches for a package whose name or summary contains the given text

 For this discussion, the most important command to know is pip install and pip3 install. But keep in mind that pip/pip3 can perform many other operations.

 [image: tip] If you execute a TensorFlow application using a precompiled package, you may receive
 messages like “The TensorFlow library wasn't compiled to use XYZ instructions, but these are available on your machine and could speed up CPU computations.”
 To turn off these messages, create an environment variable named TF_CPP_MIN_LOG_LEVEL and set its value to 3.

 Installing on Mac OS

 Many versions of Mac OS have Python already installed, but I recommend obtaining and
 installing a new Python package. If you visit www.python.org/downloads, you see one button for Python 2 and another for Python 3. If you click one of these
 buttons, your browser downloads a PKG file that serves as the Python installer.

 When you launch the installer, the Python installation dialog box appears. To install
 the package, follow these five steps:

 	In the Introduction page, click the button labeled Continue.

 	In the Read Me page, click the button labeled Continue.

 	In the License page, click the button labeled Continue and then click Agree to accept
 the software license agreement.

 	In the Installation Type page, click Install to begin the installation process, entering
 your password, if necessary.

 	When the installation is complete, click Close to close the dialog box.

 If the installation completes successfully, you can run pip or pip3 on a command line. You can install TensorFlow with the following command:

 pip install tensorflow

 This command tells the package manager to download TensorFlow, TensorBoard, and a
 series of dependencies. One dependency is six, which supports compatibility between Python 2 and 3. If the installation fails due
 to a preinstalled six package, you can fix the issue by executing the following command:

 pip install --ignore-installed six

 This command tells pip to install six on top of the existing installation. After this installation completes, you should
 be able to run pip install tensorflow without error. On my system, the installer stores the TensorFlow files in the /Library/Frameworks/Python.framework/Versions/<ver>/lib/python<ver>/site-packages/tensorflow directory.

 Installing on Linux

 Many popular distributions of Linux are based on Debian, including Ubuntu and Linux
 Mint. These distributions rely on the Advanced Package Tool (APT) to manage packages,
 which you can access on the command line by entering apt-get. This discussion explains how to install TensorFlow on these and similar operating
 systems.

 Most Linux distributions already have Python installed, but it's a good idea to install
 the full development version and pip/pip3. The following command installs both for
 Python 2:

 sudo apt-get install python-pip python-dev

 Alternatively, the following command performs the installation for Python 3:

 sudo apt-get install python3-pip python3-dev

 After installation completes, you should be able to execute pip or pip3 on the command line. The following command installs the TensorFlow package and its
 dependencies (use pip3 for Python 3):

 sudo pip install tensorflow

 This command installs TensorFlow, TensorBoard, and their dependencies. On my Ubuntu
 system, the installer stores the files in the /usr/local/lib/python<ver>/dist-packages/tensorflow directory.

 Installing on Windows

 For Windows users, TensorFlow's documentation specifically recommends installing a
 64-bit version of Python 3.5. To download the installer, visit www.python.org/downloads/windows, find a version of Python 3, and click the link entitled Windows x86-64 executable
 installer. This downloads an *.exe file that serves as the installer.

 When you launch the installer, the Python setup dialog box appears. The following
 steps install Python on your system:

 	Check the checkbox for adding the Python installation directory to the PATH variable.

 	Click the link labeled Install Now.

 	When installation finishes, click the Close button to close the installer.

 After you install Python, you should be able to run pip3 on a command line. You can install TensorFlow with the following command:

 pip3 install tensorflow

 The package manager downloads TensorFlow, TensorBoard, and the packages' dependencies.
 On my Windows system, the installer stores the files to the C:\Users\<name>\AppData\Local\Programs\Python\Python<ver>\Lib\site-packages\tensorflow directory.

 Exploring the TensorFlow Installation

 Once you install TensorFlow, you have a directory named tensorflow that contains a wide variety of files and folders. Two top-level folders are particularly
 important. The core directory contains the TensorFlow's primary packages and modules. The contrib directory contains secondary packages that may later be merged into core TensorFlow.

 When you write a TensorFlow application, it’s important to be familiar with the different
 packages and the modules they provide. Table 2-2 lists the all-important tensorflow package and nine other packages.

 TABLE 2-2 Important TensorFlow Packages

 	

 Package

 	

 Content

 	

 tensorflow

 	

 Central package of the TensorFlow framework, commonly accessed as tf

 	

 tf.train

 	

 Optimizers and other classes related to training

 	

 tf.nn

 	

 Neural network classes and related math operations

 	

 tf.layers

 	

 Functions related to multilayer neural networks

 	

 tf.contrib

 	

 Volatile or experimental code

 	

 tf.image

 	

 Image-processing functions

 	

 tf.estimator

 	

 High-level tools for training and evaluation

 	

 tf.logging

 	

 Functions that write data to a log

 	

 tf.summary

 	

 Classes needed to generate summary data

 	

 tf.metrics

 	

 Functions for measuring the outcome of machine learning

 The first package, tensorflow, is TensorFlow's central package. Most applications import this package as tf, so when you see tf in code or an example, remember that it refers to the tensorflow package.

 As I explain in Chapter 5, training is a crucial operation in machine learning applications. The tf.train package provides many of the modules and classes needed for TensorFlow training.
 In particular, it provides the optimizer classes that determine which algorithm should
 be used for training.

 The tf.nn and tf.layers packages provide functions that create and configure neural networks. The two packages
 overlap in many respects, but the functions in tf.layers focus on multilayer networks, while the functions in tf.nn are suited toward general purpose machine learning.

 Many of the packages in tf.contrib contain variants of core capabilities. For example, tf.contrib.nn contains variants of the features in tf.nn and tf.contrib.layers contains variants of the features in tf.layers. tf.contrib also provides a wealth of interesting and experimental packages, including the following:

 	tf.contrib.keras: Makes it possible to interface TensorFlow using the Keras interface

 	tf.contrib.ffmpeg: Enables audio processing through the open-source FFMPEG toolset

 	tf.contrib.bayesflow: Contains modules related to Bayesian learning

 	tf.contrib.integrate: Provides the odeint function, which integrates ordinary differential equations

 The last three packages in Table 2-2 enable developers to analyze their applications and produce output. The functions
 in tf.logging enable logging and can be used to write messages to the log. The classes and functions
 in tf.summary generate data that can be read by TensorBoard, a utility for visualizing machine
 learning applications. The functions in tf.metrics analyze the accuracy of machine learning operations.

 Running Your First Application

 After you install TensorFlow, you're ready to start creating and executing applications.
 This section walks through the process of running an application that prints a simple
 message.

 Exploring the example code

 You can download this book’s example code from www.dummies.com by searching for TensorFlow For Dummies and going to the Downloads tab. The archive’s name is tf_dummies.zip, and if you decompress it, you see that it contains folders named after chapters
 (ch2, ch3, and so on).

 Each chapter folder contains one or more Python files (*.py). In each case, you can execute the module by changing to the directory and running
 python or python3 followed by the filename.

 For example, if you have Python 2 installed, you can execute the code in simple_math.py by changing to the ch3 directory and entering the following command:

 python simple_math.py

 The code for Chapter 13 is special because it's intended to be executed on the Google Cloud Platform, but
 that topic is far too exciting to be discussed here.

 I haven’t provided any official license for this book’s example code, so you’re free
 to use it in professional products, academic work, and morally questionable experiments.
 But if you use any of this code to program evil robots, I will know, and I’ll be disappointed.

 Launching Hello TensorFlow!

 Programming books have a long tradition of introducing their topic with a simple example
 that prints a welcoming message. This book is no exception. If you open the ch2 directory in this book’s example code, you find a module named hello_tensorflow.py. Listing 2-1 presents the code.

 LISTING 2-1 Hello TensorFlow!

 """A simple TensorFlow application"""

 from __future__ import absolute_import

 from __future__ import division

 from __future__ import print_function

 import tensorflow as tf

 # Create tensor

 msg = tf.string_join(["Hello ", "TensorFlow!"])

 # Launch session

 with tf.Session() as sess:

 print(sess.run(msg))

 This code performs three important tasks:

 	Creates a Tensor named msg that contains two string elements.

 	Creates a Session named sess and makes it the default session.

 	Launches the new Session and prints its result.

 Running the code is simple. Open a command line and change to the ch2 directory in this book's example code. Then, if you’re using Python 2, you can execute
 the following command:

 python hello_tensorflow.py

 If you’re using Python 3, you can run the module with the following command:

 python3 hello_tensorflow.py

 As the Python interpreter does its magic, you should see the following message:

 b'Hello TensorFlow!'

 The welcome message is straightforward, but the application’s code probably isn’t
 as clear. A Tensor instance is an n-dimensional array that contains numeric or string data. Tensors
 play a central role in TensorFlow development, and Chapter 3 discusses them in detail.

 A Session serves as the environment in which TensorFlow operations can be executed. All TensorFlow
 operations, from addition to optimization, must be executed through a session. Chapter 4 explains how you can create, configure, and execute sessions.

 Setting the Style

 Google provides the TensorFlow Style Guide at www.tensorflow.org/community/style_guide. Four of its guidelines are as follows:

 	Code in TensorFlow applications should be compatible with both Python 2 and Python
 3.

 	In keeping with the first guideline, every module should have import statements for absolute_import, division, and print_function.

 	Indenting should use two spaces instead of four.

 	TensorFlow modules should rely on the guidelines in the PEP (Python Enhancement Proposal)
 8 Style Guide except where they conflict with the TensorFlow Style Guide.

 You can find the PEP8 guide at www.python.org/dev/peps/pep-0008. Its many recommendations include the use of docstrings, uppercase for class names,
 and lowercase for functions and modules. You can check Python code against the PEP8
 by installing the pylint package and running pylint filename.py.

 The example code in this book follows all of Google's recommendations except two.
 First, I use four spaces because that’s the Python way. Second, I prefer to name constants
 with simple lowercase names, such as the msg constant in Listing 2-1, earlier in this chapter.

 I don’t blame you if you find my rebellion inexcusable. But if you send the Python
 police after me, they’ll never take me alive.

 Chapter 3

 Creating Tensors and Operations

 IN THIS CHAPTER

 [image: check] Creating tensors with known and random values

 [image: check] Calling functions that transform tensors

 [image: check] Processing tensors with operations

 In grad school, I took a course on tensor mathematics that covered the usage of tensors
 in electromagnetism. The professor assured us that the theory was “beautiful” and
 “elegant,” but we beleaguered students described the relativistic mathematics as “indecipherable”
 and “terrifying.”

 TensorFlow’s central data type is the tensor, and happily, it has nothing to do with
 electromagnetism or relativity. In this book, a tensor is just a regular array. If
 you’re familiar with Torch’s Tensors or NumPy's ndarrays, you’ll be glad to know that TensorFlow’s tensors are similar in many respects.

 Unfortunately, you can’t access these tensors with regular Python routines. For this
 reason, the TensorFlow API provides a vast assortment of functions for creating, transforming,
 and operating on tensors. This chapter presents many of these functions and demonstrates
 how you can use them.

 Creating Tensors

 Just as most programs start by declaring variables, most TensorFlow applications start
 by creating tensors. A tensor is an array with zero or more dimensions. A zero-dimensional
 tensor is called a scalar, a one-dimensional tensor is called a vector, and a two-dimensional tensor is called a matrix. Keep in mind these three points about tensors:

 	Every tensor is an instance of the Tensor class.

 	A tensor may contain numbers, strings, or Boolean values. Every element of a tensor
 must have the same type.

 	Tensors can be created, transformed, and operated upon using functions of the tf package.

 This discussion explains how to create tensors with known values and random values.
 Then I also present functions that transform a tensor's content. Once you understand
 these topics, you’ll have no trouble coding simple routines for tensor processing.

 Creating Tensors with Known Values

 The tf package provides seven functions that form tensors with known values. Table 3-1 lists them and provides a description of each.

 TABLE 3-1 Creating Tensors with Known Values

 	

 Function

 	

 Description

 	

 constant(value, dtype=None, shape = None, name = 'Const', verify_shape=False)

 	

 Returns a tensor containing the given value

 	

 zeros(shape, dtype=tf.float32, name = None)

 	

 Returns a tensor filled with zeros

 	

 ones(shape, dtype=tf.float32, name=None)

 	

 Returns a tensor filled with ones

 	

 fill(dims, value, name=None)

 	

 Returns a tensor filled with the given value

 	

 linspace(start, stop, num, name=None)

 	

 Returns a tensor containing a linear range of values

 	

 range(start, limit, delta=1, dtype=None, name='range')

 	

 Returns a tensor containing a range of values

 	

 range(limit, delta=1, dtype=None, name='range')

 	

 Returns a tensor containing a range of values

 A tensor may have multiple dimensions, and the number of dimensions in a tensor is
 its rank. The lengths of a tensor’s dimensions form an array called the tensor’s shape. Many of the functions in Table 3-1 accept a shape parameter that identifies the desired shape of the new tensor. The following examples
 demonstrate how you can set this parameter:

 	[] — The tensor contains a single value.

 	[3] — The tensor is a one-dimensional array containing three values.

 	[3, 4] — The tensor is a 3-x-4 matrix.

 	[3, 4, 5] — The tensor is a multidimensional array whose dimensions equal 3, 4, and 5.

 Most of the functions in Table 3-1 have a dtype argument that identifies the data type of the tensor's elements. The default value
 of dtype is float32, which indicates that, by default, tensors contain single-precision floating-point
 values. Table 3-2 lists float32 and other possible data types.

 TABLE 3-2 Tensor Data Types

 	

 Data Type

 	

 Description

 	

 bool

 	

 Boolean values

 	

 uint8/uint16

 	

 Unsigned integers

 	

 quint8/quint16

 	

 Quantized unsigned integers

 	

 int8/int16/int32/int64

 	

 Signed integers

 	

 qint8/qint32

 	

 Quantized signed integers

 	

 float16/float32/float64

 	

 Floating-point values

 	

 complex64/complex128

 	

 Complex floating-point values

 	

 string

 	

 Strings

 Each function in Table 3-1 accepts an optional name argument that serves as an identifier for the tensor. Applications can access a tensor
 by name through the tensor's graph. Chapter 4 discusses the topic of graphs in detail.

 The constant function

 The most popular function in Table 3-1 is constant. Its only required argument is the first, which defines the value or values to be
 stored in the tensor. You can provide these values in a list, and the following code
 creates a one-dimensional tensor containing three floating-point values:

 t1 = tf.constant([1.5, 2.5, 3.5])

 Multidimensional arrays use similar notation. The following code creates a 2-x-2 matrix
 and sets each of its elements to the letter b:

 t2 = tf.constant([['b', 'b'], ['b', 'b']])

 By default, TensorFlow won’t raise an error if the function’s first argument doesn’t
 have the shape given by the shape argument. But if you set the last argument, verify_shape, to True, TensorFlow will verify that the two shapes are equal. The following code provides
 an example of mismatched shapes:

 t3 = tf.constant([4, 2], tf.int16, [3], 'Const', True)

 In this case, the given shape, [3], doesn't match the shape of the first argument, which is [2]. As a result, TensorFlow displays the following error:

 TypeError: Expected Tensor's shape: (3,), got (2,).

 zeros, ones, and fill

 The functions zeros, ones, and fill create tensors whose elements all have the same value. For zeros and ones, the only required argument is shape, which identifies the shape of the desired tensor. As an example, the following code
 creates a simple 1-x-3 vector whose elements equal 0.0:

 zero_tensor = tf.zeros([3])

 Similarly, the following function call creates a 4-x-4 matrix whose elements equal
 1.0:

 one_tensor = tf.ones([4, 4])

 The fill function requires a value parameter, which sets the value of the tensor's elements. The following code creates
 a three-dimensional tensor whose values are set to 81.0:

 fill_tensor = tf.fill([1, 2, 3], 81.0)

 Unlike zeros and ones, fill doesn't have a dtype argument. It can only create tensors containing 32-bit floating point values.

 Creating sequences

 The linspace and range functions create tensors whose elements change regularly between a start and end
 value. The difference between them is that linspace creates a tensor with a specific number of values. For example, the following code
 creates a 1-x-5 tensor whose elements range from 5.0 to 9.0:

 lin_tensor = tf.linspace(5., 9., 5)

 # Result: [5. 6. 7. 8. 9.]

 Unlike linspace, range doesn't accept the number of elements in the tensor. Instead, it computes successive
 elements by adding a value called a delta. In the following code, delta is set to 0.5:

 range_tensor = tf.range(3., 7., delta=0.5)

 # Result: [3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5]

 Like Python's range function, TensorFlow’s range function can be called without the start parameter. In this case, the starting value is assumed to be 0.0. The following code
 demonstrates this:

 range_tensor = tf.range(1.5, delta=0.3)

 # Result: [0.0 0.3 0.6 0.9 1.2]

 If the delta parameter is positive, the starting value must be less than the ending value. If
 delta is negative, the starting value must be greater than the ending value.

 Creating Tensors with Random Values

 Many TensorFlow applications require tensors that contain random values instead of
 predetermined values. The tf package provides many functions for creating random-valued tensors and Table 3-3 lists five of them.

 TABLE 3-3 Creating Tensors with Random Values

 	

 Function

 	

 Description

 	

 random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

 	

 Creates a tensor with normally distributed values

 	

 truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

 	

 Creates a tensor with normally distributed values excluding those lying outside two
 standard deviations

 	

 random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None)

 	

 Creates a tensor with uniformly distributed values between the minimum and maximum
 values

 	

 random_shuffle(tensor, seed=None, name=None)

 	

 Shuffles a tensor along its first dimension

 	

 set_random_seed(seed)

 	

 Set the seed value for all random number generation in the graph

 The random_normal and truncated_normal functions create tensors containing normally distributed values. Their arguments
 determine the characterristics of the distribution. Figure 3-1 shows what a normal distribution looks like with a mean of 0.0 and a standard deviation
 (σ) of 1.0.

 [image: image]

 FIGURE 3-1: Values beyond three standard deviations from the mean are highly unlikely.

 Standard deviation tells you how much a normally distributed variable is expected
 to vary from the mean. Approximately 68.2 percent of the time, a variable lies within
 one standard deviation from the mean, while 95.4 percent of the time, the variable
 lies within two standard deviations.

 In the random_normal and truncated_normal functions, the default mean is 0.0, and the default standard deviation is 1.0. random_normal generates random values throughout the distribution, so very large and very small
 values are unlikely but possible. The following code calls random_normal to generate 20 random values:

 rnd_ints = tf.random_normal([10], dtype=tf.float64)

 In contrast, truncated_normal guarantees that the generated values lie within two standard deviations from the
 mean. Any value outside this range will be discarded and reselected. In this manner,
 truncated_normal ensures that the tensor won't contain any improbably large or small values.

 random_uniform creates a tensor containing uniformly distributed values that lie between a minimum
 and maximum. Because the distribution is uniform, every value is equally likely.

 random_shuffle doesn't create a new tensor, but randomly shuffles the values in an existing tensor.
 This shuffling is limited to the tensor’s first dimension.

 Each function in Table 3-3 accepts a seed parameter that initializes the random number generator. Setting a random seed is
 important to ensure that sequences aren’t repeated.

 You can obtain and set a seed value by calling set_random_seed, which accepts a floating-point value and makes the argument the seed for every operation
 in the current graph. Chapter 4 discusses the topic of graphs in detail.

 Transforming Tensors

 An application must specify the shape of each tensor to be created. The tf package provides functions that update tensors and their shapes after creation. Table 3-4 lists these transformation functions and provides a description of each.

 TABLE 3-4 Functions for Transforming Tensors

 	

 Function

 	

 Description

 	

 cast(tensor, dtype, name=None)

 	

 Changes the tensor's data type to the given type

 	

 reshape(tensor, shape, name=None)

 	

 Returns a tensor with the same elements as the given tensor with the given shape

 	

 squeeze(tensor, axis=None, name=None, squeeze_dims=None)

 	

 Removes dimensions of size 1

 	

 reverse(tensor, axis, name=None)

 	

 Reverses given dimensions of the tensor

 	

 slice(tensor, begin, size, name=None)

 	

 Extracts a portion of a tensor

 	

 stack(tensors, axis=0, name='stack')

 	

 Combines a list of tensors into a tensor of greater rank

 	

 unstack(tensor, num=None, axis=0, name='unstack')

 	

 Splits a tensor into a list of tensors of lesser rank

 Despite its name, reshape doesn't modify an existing tensor. Instead, the function returns a tensor with the
 same elements as the given tensor and the specified shape. For example, the following
 code uses reshape to convert a four-element vector into a 2-x-2 matrix:

 vec = tf.constant([1., 2., 3., 4.])

 mat = tf.reshape(vec, [2, 2])

 # Result: [[1. 2.], [3. 4.]]

 If any dimension of a tensor has a size of 1, calling squeeze will remove it from the tensor, thereby reducing the tensor's rank. If the function’s
 axis parameter identifies one or more dimensions, only those dimensions will be affected
 by squeeze.

 In the reverse function, the axis parameter identifies one or more dimensions to be reversed. The following code demonstrates
 how reverse works:

 mat = tf.constant([[1., 2., 3.], [4., 5., 6.]])

 rev_mat = tf.reverse(end, [0])

 # Result: [[4. 5. 6.], [1. 2. 3.]]

 rev_mat = tf.reverse(end, [1])

 # Result: [[3. 2. 1.], [6. 5. 4.]]

 rev_mat = tf.reverse(end, [0, 1])

 # Result: [[6. 5. 4.], [3. 2. 1.]]

 The slice function extracts subtensors from a tensor. The begin parameter identifies the index of the first element to be extracted, and size identifies the shape of the tensor to be extracted, starting from the begin location.

 For example, suppose that you want to extract the lower-right 2-x-2 matrix from a
 3-x-3 matrix. The index of the first extracted element is [1, 1] and the size of the
 desired tensor is [2, 2]. The following code uses slice to perform this extraction:

 mat =

 tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])

 slice_mat = tf.slice(mat, [1, 1], [2, 2])

 # Result: [[5. 6.] [7. 8.]]

 stack accepts a list of tensors of rank N and returns a single tensor of rank N+1. In addition
 to having the same rank, the input tensors must have the same shape. The following code demonstrates how stack can be used. The function combines three one-dimensional tensors into a two-dimensional
 tensor:

 t1 = tf.constant([1., 2.])

 t2 = tf.constant([3., 4.])

 t3 = tf.constant([5., 6.])

 t4 = tf.stack([t1, t2, t3])

 When these operations execute, t4 will equal [[1. 2.] [3. 4.] [5. 6.]]. If the axis parameter is set to 1, stacking will be performed along the second dimension, so
 t4 will set to [[1. 3. 5.] [2. 4. 6.]].

 unstack performs the inverse operation of stack. That is, unstack accepts a tensor of rank N and returns a list of tensors of rank N-1. The num parameter determines how many tensors should be unpacked, and if this isn't set,
 unstack infers the number from the tensor’s shape.

 Creating Operations

 Machine learning applications are fundamentally mathematical, and TensorFlow provides
 a wealth of routines for performing mathematical operations on tensors. Each routine
 is represented by a function of the tf package, and each function returns a tensor. This section presents a large portion
 of the operations available, but the tensorflow package provides many more functions than those discussed here.

 To describe these functions, I use statements like “function X performs operation
 Y.” But these statements aren't completely accurate. These functions, like the transformation
 functions discussed in the preceding section, don’t actually perform their corresponding
 operations — at least, not directly.

 For example, tf.multiply doesn’t immediately multiply its arguments and return a product. Instead, it adds
 a multiplication operation to the current graph, and when a session executes the graph,
 the multiplication will be performed along with the rest of the graph’s operations.
 This process may seem confusing, but don’t be concerned. Chapter 4 looks at graphs and sessions in detail.

 Basic math operations

 When it comes to TensorFlow operations, its best to start simple. Table 3-5 lists 12 functions that perform basic math operations.

 TABLE 3-5 Basic Math Operations

 	

 Function

 	

 Description

 	

 add(x, y, name=None)

 	

 Adds two tensors

 	

 subtract(x, y, name=None)

 	

 Subtracts two tensors

 	

 multiply(x, y, name=None)

 	

 Multiplies two tensors

 	

 divide(x, y, name=None)

 	

 Divides the elements of two tensors

 	

 div(x, y, name=None)

 	

 Divides the elements of two tensors

 	

 add_n(inputs, name=None)

 	

 Adds multiple tensors

 	

 scalar_mul(scalar, x)

 	

 Scales a tensor by a scalar value

 	

 mod(x, y, name=None)

 	

 Performs the modulo operation

 	

 abs(x, name=None)

 	

 Computes the absolute value

 	

 negative(x, name=None)

 	

 Negates the tensor's elements

 	

 sign(x, name=None)

 	

 Extracts the signs of the tensor’s element

 	

 reciprocal(x, name=None)

 	

 Computes the reciprocals

 The first four functions perform element-wise arithmetic. The following code demonstrates
 how they work:

 a = tf.constant([3., 3., 3.])

 b = tf.constant([2., 2., 2.])

 sum = tf.add(a, b) # [5. 5. 5.]

 diff = tf.subtract(a, b) # [1. 1. 1.]

 prod = tf.multiply(a, b) # [6. 6. 6.]

 quot = tf.divide(a, b) # [1.5 1.5 1.5]

 Applications can perform identical operations by using regular Python operators, such
 as +, -, *, /, and //. For example, the following two lines of code create the same tensor:

 total = tf.add(a, b) # [5. 5. 5.]

 total2 = a + b # [5. 5. 5.]

 When operating on floating-point values, div and divide produce the same result. But for integer division, divide returns a floating-point result, and div returns an integer result. The following code demonstrates the difference between
 them:

 a = tf.constant([3, 3, 3])

 b = tf.constant([2, 2, 2])

 div1 = tf.divide(a, b) # [1.5 1.5 1.5]

 div2 = a / b # [1.5 1.5 1.5]

 div3 = tf.div(a, b) # [1 1 1]

 div4 = a // b # [1 1 1]

 The div function and the / operator both perform element-wise division. In contrast, the divide function performs Python-style division.

 Rounding and comparison

 Most of the mathematical routines in this book accept floating-point values as input
 and return floating-point values as output. But many applications need to convert
 floating-point values into integer values. For this reason, TensorFlow provides the
 rounding operations listed in Table 3-6.

 TABLE 3-6 Rounding and Comparison Operations

 	

 Function

 	

 Description

 	

 round(x, name=None)

 	

 Rounds to the nearest integer, rounding up if there are two nearest integers

 	

 rint(x, name=None)

 	

 Rounds to the nearest integer, rounding to the nearest even integer if there are two
 nearest integers

 	

 ceil(x, name=None)

 	

 Returns the smallest integer greater than the value

 	

 floor(x, name=None)

 	

 Returns the greatest integer less than the value

 	

 maximum(x, y, name=None)

 	

 Returns a tensor containing the larger element of each input tensor

 	

 minimum(x, y, name=None)

 	

 Returns a tensor containing the smaller element of each input tensor

 	

 argmax(x, axis=None, name=None, dimension=None)

 	

 Returns the index of the greatest element in the tensor

 	

 argmin(x, axis=None, name=None, dimension=None)

 	

 Returns the index of the smallest element in the tensor

 Table 3-6 also lists functions that perform comparisons. These functions return maximum and
 minimum values, both within a tensor and across two tensors.

 The round function examines each element of a tensor and returns the closest integer. If two
 closest integers are equally close, it returns the one further from zero. rint is similar, but rounds to the nearest even value. The following code demonstrates
 how you can use round, rint, ceil, and floor:

 t = tf.constant([-6.5, -3.5, 3.5, 6.5])

 r1 = tf.round(t) # [-6. -4. 4. 6.]

 r2 = tf.rint(t) # [-6. -4. 4. 6.]

 r3 = tf.ceil(t) # [-6. -3. 4. 7.]

 r4 = tf.floor(t) # [-7. -4. 3. 6.]

 The next two functions in the table, maximum and minimum, are easy to understand. maximum returns a tensor containing the larger element of each input tensor, and minimum returns a tensor containing the smaller element of each input tensor.

 argmax and argmin return the index values of the largest and smallest elements of a tensor. The following
 code shows how you can use these functions:

 t1 = tf.constant([0, -2, 4, 6])

 t2 = tf.constant([[1, 3], [7, 2]])

 r1 = tf.argmin(t1) # 1

 r2 = tf.argmax(t2) # [1 0]

 If a tensor has multiple maximum/minimum values, argmax and argmin will return the index values of the first occurring element.

 Exponents and logarithms

 Machine learning applications frequently need exponents and logarithms to compute
 errors and probability. To meet this need, TensorFlow provides many of the same functions
 available in NumPy. Table 3-7 lists 11 of them and provides a description of each.

 TABLE 3-7 Exponential and Logarithmic Operations

 	

 Function

 	

 Description

 	

 square(x, name=None)

 	

 Returns the square of the argument

 	

 squared_difference(x, y, name=None)

 	

 Subtracts the first argument from the second and returns the square

 	

 sqrt(x, name=None)

 	

 Returns the square root of the argument

 	

 rsqrt(x, name=None)

 	

 Returns the reciprocal of the square root

 	

 pow(x, y, name=None)

 	

 Returns elements of the first tensor raised to the power of the elements of the second
 vector

 	

 exp(x, name=None)

 	

 Returns the exponential function of the argument

 	

 expm1(x, name=None)

 	

 Returns the exponential function of the argument minus one, exp(x) - 1

 	

 log(x, name=None)

 	

 Returns the natural logarithm of the argument

 	

 log1p(x, name=None)

 	

 Returns the natural logarithm of the argument plus 1, log(x + 1)

 	

 erf(x, name=None)

 	

 Returns the error function of the argument

 	

 erfc(x, name=None)

 	

 Returns the complementary error function of the argument

 These functions are straightforward to use and understand. Each executes in an element-wise
 manner, and the following code demonstrates how you can call square, sqrt, and rsqrt:

 t = tf.constant([4.])

 t1 = tf.square(t) # 16

 t2 = tf.sqrt(t) # 2

 t3 = tf.rsqrt(t) # 0.5

 The exp function computes the exponential functions of a tensor's elements, and expm1 subtracts 1 from each exponential. If x is a value in the input tensor, the result of expm1 equals exp(x) – 1.

 Similarly, the log function computes the natural logarithm of a tensor's elements. logp1 adds 1 to the value before the logarithm is computed, so if x is a value in the input tensor, the result of logp1 equals log(x + 1).

 Vector and matrix operations

 Machine learning applications store a great deal of data in vectors (one-dimensional
 tensors) and matrices (two-dimensional tensors). To process this data, TensorFlow
 provides many functions that operate on vectors and matrices. Table 3-8 lists these functions and provides a description of each.

 TABLE 3-8 Vector and Matrix Operations

 	

 Function

 	

 Description

 	

 tensordot(a, b, axes, name=None)

 	

 Returns the sum of products for the elements in the given axes

 	

 cross(a, b, name=None)

 	

 Returns the element-wise cross product

 	

 diag(diagonal, name=None)

 	

 Returns a matrix with the given diagonal values, other values set to zero

 	

 trace(x, name=None)

 	

 Returns the sum of the diagonal elements

 	

 transpose(x, perm=None,

 name='transpose')

 	

 Switches rows and columns

 	

 eye(num_rows, num_columns=None,

 batch_shape=None,

 dtype=tf.float32,

 name=None)

 	

 Creates an identity matrix with the given shape and data type

 	

 matmul(a, b,

 transpose_a=False,

 transpose_b=False,

 adjoint_a=False,

 adjoint_b=False,

 a_is_sparse=False,

 b_is_sparse=False,

 name=None)

 	

 Returns the product of the two input matrices

 	

 norm(tensor,

 ord='euclidean',

 axis=None,

 keep_dims=False,

 name=None)

 	

 Returns the norm of the given axis of the input tensor with the specified order

 	

 matrix_solve(A, b,

 adjoint=None,

 name=None)

 	

 Returns the tensor x, such that Ax = b, where A is a matrix, and b is a vector

 	

 qr(input, full_matrices=None,

 name=None)

 	

 Returns the eigenvectors and eigenvalues of the given matrix or matrices

 	

 svd(tensor,

 full_matrices=False,

 compute_uv=True,

 name=None)

 	

 Factors the matrix into a unitary matrix, a diagonal matrix, and the conjugate transpose
 of the unitary matrix

 	

 einsum(equation, *inputs)

 	

 Executes a custom mathematical operation

 Of these functions, the two most common are tensordot and matmul. tensordot returns the dot product of one or more axes of two input tensors. That is, tensordot multiplies the corresponding elements of both tensors' dimensions and returns the
 sum of the products.

 The axes parameter tells tensordot which dimensions to process. If you set this parameter to a scalar, N, the function will access the last N axes of the first tensor and the first N axes of the second tensor. If you set axes equal to a list or tensor, the first row identifies axes of the first tensor, and
 the second row identifies axes of the second tensor.

 I frequently call tensordot to compute the dot product of two one-dimensional tensors. The following code shows
 what this looks like:

 t1 = tf.constant([4., 3., 2.])

 t2 = tf.constant([3., 2., 1.])

 dot = tf.tensordot(t1, t2, 1)

 # 4*3 + 3*2 + 2*1 = 20

 matmul performs traditional matrix multiplication. That is, it multiplies rows of the first
 tensor by columns of the second tensor and returns a matrix containing the sums. The
 following code shows how this can be used:

 t1 = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

 t2 = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

 dot = tf.matmul(t1, t2)

 # [[22. 28.], [49. 64.]]

 My favorite function in Table 3-8 is einsum, which makes it possible to create and execute custom mathematical operations. The
 first parameter is a string that identifies the operation using a special format called
 the Einstein summation convention. This convention has a number of characteristics, including the following:

 	The operation is assumed to have one or two inputs. If you provide two inputs, you
 must separate them with a comma.

 	Dimensions of input and output matrices are represented by subscripts (usually i, j, and k). Input subscripts must be separated from output subscripts with the -> symbol.

 	If an input's subscript is repeated and no output subscripts are given, the operation
 performs addition. Therefore, einsum('i,i', t1, t2) computes the dot product of tensors t1 and t2.

 	If an input's subscript is repeated and output subscripts are given, the operation
 performs multiplication. Therefore, einsum('i,i->i', t1, t2) computes the element-wise product of tensors t1 and t2.

 The following code calls einsum to transpose a matrix and multiply two matrices together:

 m1 = tf.constant([[1, 2], [3, 4]])

 m2 = tf.constant([[5, 6], [7, 8]])

 e1 = tf.einsum('ij->ji', m1) # [[1, 3], [2, 4]]

 e2 = tf.einsum('ij,jk->ik', m1, m2) # [[19, 22], [43, 50]]

 For a more complete discussion of the Einstein summation convention, I recommend Samuel
 Prime's presentation at https://samuelprime.wordpress.com/2015/03/25/einstein-summation-convention.

 Putting Theory into Practice

 The code in ch3/simple_math.py demonstrates many of the functions presented in this chapter. Listing 3-1 presents the full application.

 LISTING 3-1 Simple Mathematics Operations

 # Math with constant tensors

 const_a = tf.constant(3.6)

 const_b = tf.constant(1.2)

 total = const_a + const_b

 quot = tf.div(const_a, const_b)

 # Math with random tensors

 rand_a = tf.random_normal([3], 2.0)

 rand_b = tf.random_uniform([3], 1.0, 4.0)

 diff = tf.subtract(rand_a, rand_b)

 # Vector multiplication

 vec_a = tf.linspace(0.0, 3.0, 4)

 vec_b = tf.fill([4, 1], 2.0)

 prod = tf.multiply(vec_a, vec_b)

 dot = tf.tensordot(vec_a, vec_b, 1)

 # Matrix multiplication

 mat_a = tf.constant([[2, 3], [1, 2], [4, 5]])

 mat_b = tf.constant([[6, 4, 1], [3, 7, 2]])

 mat_prod = tf.matmul(mat_a, mat_b)

 # Execute the operations

 with tf.Session() as sess:

 print("Sum: %f" % sess.run(total))

 print("Quotient: %f" % sess.run(quot))

 print("Difference: ", sess.run(diff))

 print("Element-wise product: ", sess.run(prod))

 print("Dot product: ", sess.run(dot))

 print("Matrix product: ", sess.run(mat_prod))

 Most of this code should look familiar. The application creates and operates on constant
 tensors, random tensors, vectors, and matrices. To process vectors, the application
 performs element-wise multiplication with tf.multiply and then computes the dot product of the two vectors with tf.tensordot.

 The last portion of code deserves explanation. The application creates a Session named sess and calls its run method once for each operation to be performed. To understand what sessions are and
 how they work, you need to be familiar with graphs. The next chapter explores the
 topics of sessions and graphs.

 Chapter 4

 Executing Graphs in Sessions

 IN THIS CHAPTER

 [image: check] Creating graphs and accessing their data

 [image: check] Serializing data from a graph into a GraphDef

 [image: check] Creating and launching sessions

 [image: check] Printing messages to the log

 [image: check] Visualizing summary data with TensorBoard

 The preceding chapter introduced a plethora of functions that create, transform, and
 process tensors. Most of these functions return a tensor, and this may lead you to
 believe that the function performs its operation as soon as it’s called. This is how
 Python functions usually work, but this is not how TensorFlow functions work.

 When an application executes a TensorFlow function that creates, transforms, or processes
 a tensor, the function doesn’t execute its operation. Instead, it stores its operation
 in a data structure called a graph. A graph can hold many operations, and they're not executed until the application
 executes the graph in a session. When a session executes a graph, it performs the
 graph's operations in order.

 The benefit of storing operations in a graph is that the graph can be exported to
 a file or launched on a remote system. The drawback is that graphs tend to confuse
 newcomers to TensorFlow. In writing this chapter, my goal is to reduce this confusion
 by providing a full explanation of graphs and sessions.

 Forming Graphs

 If an operation returns a tensor, an operation can feed its output into another operation.
 To demonstrate this process, the following code feeds the result of an addition operation
 into a multiplication operation.

 c = tf.add(a, b)

 e = tf.multiply(c, d)

 Figure 4-1 illustrates the relationships between these nested operations and their tensors.

 [image: image]

 FIGURE 4-1: The addition operation receives the result of multiplication.

 In Figure 4-1, each circle identifies a tensor or operation, and each line transfers tensor data.
 Mathematicians and computer scientists refer to this structure of nodes and edges
 as a graph. The graph’s circles are called nodes, and the straight lines are called edges.

 When an application executes a function that creates a tensor or an operation, TensorFlow
 adds the data structures to a container structure called a Graph. Graphs can't be nested, and only one Graph can be active at a time. An application can access its default Graph by calling get_default_graph. The following code shows how this can be used:

 graph = tf.get_default_graph()

 An application can create a new Graph by calling the constructor without arguments. Then the application can set the Graph as the default Graph by calling the Graph's as_default method. The following code demonstrates how this works:

 newgraph = tf.Graph()

 with newgraph.as_default():

 …

 After as_default is called, TensorFlow will add new tensors and operations to newgraph instead of the original Graph.

 The Graph class provides many methods that access and modify the graph's contents. This discussion
 divides these methods into two categories:

 	Accessing graph data: Reading a graph's containers and elements

 	Creating GraphDefs: Serializing a graph into a protocol buffer

 Accessing graph data

 A graph stores its elements in a set of named collections. Table 4-1 presents the methods of the Graph class that access and update these collections.

 TABLE 4-1 Accessing Graph Data

 	

 Method

 	

 Description

 	

 get_tensor_by_name(name)

 	

 Returns the tensor with the given name

 	

 get_operation_by_name(name)

 	

 Returns the operation with the given name

 	

 get_operations()

 	

 Returns a list containing the graph's operations

 	

 get_all_collection_keys()

 	

 Returns a list of the graph's collections

 	

 get_collection(name, scope=None)

 	

 Returns a list of values in the given collection

 	

 add_to_collection(name, value)

 	

 Adds the value to the container, can be accessed with name

 	

 add_to_collections(name, value)

 	

 Adds the value to the containers, can be accessed with name

 The first three methods make it easy to access tensors and operations in the current
 graph. Each method returns a list containing the desired elements, and the following
 code demonstrates how they can be used:

 a = tf.constant(2.5, name='first_val')

 b = tf.constant(4.5, name='second_val')

 sum = a + b;

 print(tf.get_default_graph().get_operations())

 print(tf.get_default_graph().get_tensor_by_name('first_val:0'))

 The first print statement calls get_operations to obtain a list of the graph's operations. The printed result is given as follows:

 [<tf.Operation 'first_val' type=Const>,

 <tf.Operation 'second_val' type=Const>,

 <tf.Operation 'add' type=Add>]

 The second print statement accesses the first tensor using the name:index format. In this case, the tensor's name is first_val, and the index is 0. TensorFlow prints the following result:

 ("first_val:0", shape=(), dtype=float32)

 A graph can hold more than just tensors and operations. This additional information
 is stored in a set of lists called the graph's collections. As with dictionaries, you can access the elements of a collection using identifiers
 called keys. Table 4-2 presents the different keys for graph collections.

 TABLE 4-2 Graph Collection Keys

 	

 Collection Key

 	

 Description

 	

 GLOBAL_VARIABLES

 	

 All variables used in the application

 	

 LOCAL_VARIABLES

 	

 Variables local to this machine

 	

 MODEL_VARIABLES

 	

 Variables used in the model

 	

 TRAINABLE_VARIABLES

 	

 Variables capable of being trained by an optimizer

 	

 MOVING_AVERAGE_VARIABLES

 	

 Variables that maintain moving averages

 	

 SUMMARIES

 	

 Tensor summaries

 	

 QUEUE_RUNNERS

 	

 QueueRunners that provide input data

 	

 REGULARIZATION_LOSSES

 	

 Losses produced by regularization

 Most of these collections store data related to variables, which I cover in Chapter 5. For now, it's simply important to know that graphs provide access to tensors, operators,
 and other types of data.

 Creating GraphDefs

 Many applications need to access graphs from other TensorFlow applications. The as_graph_def method makes this possible. This method returns a serialized form of a Graph called a GraphDef.

 A GraphDef stores a graph's data in a special format called a protocol buffer, also known as a protobuf. This may be generated in text or binary form, and in text form, it looks like the
 JavaScript Object Notation (JSON).

 In a GraphDef, every tensor and operation is represented by a node element. Each node has a name field, an op field, and one or more attr fields. The following text presents the general structure of a node element:

 node {

 name: "…"

 op: "…"

 attr { … }

 attr { … }

 …

 }

 The last element in a GraphDef is a versions element. This element identifies the version of the GraphDef structure.

 The best way to understand GraphDefs is to look at an example. Suppose that an application contains the following code:

 a = tf.constant(2.5)

 b = tf.constant(4.2)

 sum = a + b;

 In text form, the content of the GraphDef is given as follows:

 node {

 name: "Const"

 op: "Const"

 attr {

 key: "dtype"

 value { type: DT_FLOAT }

 }

 attr {

 key: "value"

 value {

 tensor {

 dtype: DT_FLOAT

 tensor_shape {}

 float_val: 2.5

 }

 }

 }

 }

 node {

 name: "Const_1"

 op: "Const"

 attr {

 key: "dtype"

 value { type: DT_FLOAT }

 }

 attr {

 key: "value"

 value {

 tensor {

 dtype: DT_FLOAT

 tensor_shape {}

 float_val: 4.2

 }

 }

 }

 }

 node {

 name: "add"

 op: "Add"

 input: "Const"

 input: "Const_1"

 attr {

 key: "T"

 value { type: DT_FLOAT }

 }

 }

 versions {

 producer: 22

 }

 This GraphDef has three nodes: two that represent tensors and one that represents the operation
 that adds the tensors. Real-world applications may have thousands of nodes. At the
 end of the list of nodes, the versions object identifies the version as 22.

 The write_graph function in tf.train makes it possible to store a GraphDef's data to a file. Its signature is given as follows:

 write_graph(graph/graph_def, logdir, name, as_text=True)

 The first argument can be set to a Graph or GraphDef. The last argument identifies if the content should be written in text or binary
 form. For example, the following code stores the current graph to a text file named
 graph.dat:

 tf.train.write_graph(tf.get_default_graph(), os.getcwd(), 'graph.dat')

 Similarly, an application can load a GraphDef from a file containing graph data by calling one of two routines:

 	TextFormat.Merge(data, graphdef): Initializes a GraphDef from text elements

 	Creating GraphDefs: Converting a graph into a protocol buffer

 The TextFormat class is provided in google.protobuf. For a complete discussion of accessing protocol buffers in Python, visit https://developers.google.com/protocol-buffers/docs/pythontutorial.

 Creating and Running Sessions

 As a Python developer, you're probably accustomed to having your programs processed
 line by line. But in a TensorFlow application, operations involving tensors aren't
 executed until they’re stored in a graph and executed in a session. This section explains
 how you can code applications that create and execute sessions.

 Creating sessions

 As with graphs, only one session can be active at a time. But there’s an important
 difference between sessions and graphs — every session must be explicitly created.
 You can create a Session by calling tf.Session, which accepts three optional arguments:

 	target: Name of the execution engine

 	graph: The Graph instance to be launched

 	config: A ConfigProto that configures the session's execution

 A discussion of execution engines is in Chapter 11, which introduces the target parameter. Similarly, most of the settings in a ConfigProto relate to threads and devices, so Chapter 10 discusses the config parameter.

 By default, a session accesses tensors and operations in the default graph. But if
 you set the graph parameter in tf.Session, the session will execute that graph instead.

 Applications frequently call tf.Session inside a with statement. This statement ensures that code in the with block can access the new Session. The following code shows how this works:

 with tf.Session() as sess:

 …

 Most of the example applications presented in this book create sessions with similar
 code.

 Executing a session

 The most important method of the Session class is run. This method accepts four arguments, and only the first is required:

 	fetches: Identifies one or more operations or tensors to be executed

 	feed_dict: Data to be fed into a tensor

 	options: Configuration options for the session's execution

 	run_metadata: Output data from the session

 The fetches parameter accepts a wide range of data types. Most applications set this parameter
 equal to an operation, a tensor, or the name of an operation or tensor. You can also
 assign fetches to a list of tensors, operations, or names.

 If you assign fetches to a tensor, run will return an ndarray with the same values and shape. The following code calls run with a two-element tensor:

 tensr = tf.constant([2, 3])

 with tf.Session() as sess:

 res = sess.run(tensr)

 print(res) # Prints [2, 3]

 If you assign fetches to an Operation, run will return an ndarray containing the values of the tensor produced by the operation. The following code
 calls run with an operation that performs addition:

 t1 = tf.constant(7)

 t2 = tf.constant(2)

 with tf.Session() as sess:

 res = sess.run(t1 + t2)

 print(res) # Prints 9

 If you assign fetches to a collection of elements, run will return a similar collection containing the processed results. The following
 code calls run with a list containing two tensors:

 t1 = tf.constant(9)

 t2 = tf.constant(5)

 with tf.Session() as sess:

 res1, res2 = sess.run([t1, t2])

 print(res1) # Prints 9

 print(res2) # Prints 5

 The feed_dict parameter of run plays an important role in applications that process training data with batches.
 Chapter 5 discusses this parameter in detail.

 Interactive sessions

 Rather than send an entire script to an interpreter, many Python developers prefer
 to write code interactively. In this mode, the interpreter displays feedback as each
 line is processed.

 To support interactive development, TensorFlow provides the InteractiveSession class. An InteractiveSession serves the same role as a Session, but it makes itself the default session when it's constructed.

 Instead of calling sess.run, you can evaluate tensors by calling their eval method. Similarly, you can execute operations by calling the run method of the Operation class.

 An example clarifies how InteractiveSessions work. The following code is intended to be run in normal mode:

 t1 = tf.constant(1.2)

 t2 = tf.constant(3.5)

 prod = tf.multiply(t1, t2)

 with tf.Session() as sess:

 print("Product: ", sess.run(prod))

 This code accomplishes the same result with an InteractiveSession:

 t1 = tf.constant(1.2)

 t2 = tf.constant(3.5)

 prod = tf.multiply(t1, t2)

 sess = tf.InteractiveSession()

 print("Product: ", prod.eval())

 The InteractiveSession class constructor accepts the same arguments as that of the Session class. Similarly, its run method accepts the same arguments as the run method of the Session class.

 Writing Messages to the Log

 All of the example code in Chapters 1 through 4 has relied on print to write data to standard output. But TensorFlow provides a logging mechanism with
 many more messaging capabilities than regular print. There are five points to know about TensorFlow logging:

 	TensorFlow enables logging through the tf.logging package.

 	TensorFlow logging is based on regular Python logging, and many tf.logging functions are identical to the methods of Python's Logger class.

 	TensorFlow supports five logging levels. In order of severity, these are DEBUG, INFO, WARN, ERROR, and FATAL.

 	To enable logging, an application needs to call tf.logging set_verbosity with the lowest level of severity that should be logged.

 	By default, TensorFlow writes log messages to standard output. At the time of this
 writing, TensorFlow logging doesn't support writing messages to a log file.

 For each logging level, tf.logging provides a similarly named function that writes a logging message at that level.
 As an example, the following code enables INFO messages (and messages of greater severity)
 and then writes an INFO message that displays the value of output:

 tf.logging.set_verbosity(tf.logging.INFO)

 with tf.Session() as sess:

 output = sess.run(…)

 tf.logging.info('Output: %f', output)

 If output's value is 5.5, tf.logging.info will print the following message to standard output:

 INFO:tensorflow:Output: 5.5

 Table 4-3 lists set_verbosity, info, and other functions provided by tf.logging.

 TABLE 4-3 Summary Data Functions

 	

 Function

 	

 Description

 	

 set_verbosity(level)

 	

 Enables logging for messages of the given severity level and greater severity

 	

 debug(msg, *args, **kwargs)

 	

 Logs a message at DEBUG severity

 	

 info(msg, *args, **kwargs)

 	

 Logs a message at INFO severity

 	

 warn(msg, *args, **kwargs)

 	

 Logs a message at WARN severity

 	

 error(msg, *args, **kwargs)

 	

 Logs a message at ERROR severity

 	

 fatal(msg, *args, **kwargs)

 	

 Logs a message at FATAL severity

 	

 flush()

 	

 Forces logging operations to complete

 	

 log(level, msg, *args, **kwargs)

 	

 Logs a message at the given severity level

 	

 log_if(level, msg, condition, *args)

 	

 Logs a message at the given severity level if the condition is true

 	

 log_first_n(level, msg, n, *args)

 	

 Logs a message at the given severity level at most n times

 	

 log_every_n(level, msg, n, *args)

 	

 Logs a message at the given severity level once every n times

 The last three functions make it possible to control when messages are written to
 the log. The third parameter of log_if defines a condition that determines when the message should be logged. The following
 code logs the value of output if it's greater than 0:

 tf.logging.log_if(tf.logging.INFO, 'Output: %f', (output > 0), output)

 The third argument of log_first_n and log_every_n is an integer that determines how often should be performed. In log_first_n, the value sets the maximum number of times the function should write its message
 to the log. In log_every_n, the value tells the function to log its message once every N times it's called.

 Visualizing Data with TensorBoard

 Logging is fine for monitoring simple data, but in many cases, developers need to
 keep track of large, complex data sets. Practical applications may launch a session
 hundreds or thousands of times, and logging isn’t sufficient to monitor how data changes
 with each execution.

 The good news is that your TensorFlow installation contains TensorBoard. This powerful
 utility reads an application’s data and displays it in a web page. Figure 4-2 gives an idea of what the TensorBoard page looks like in the Chrome browser.

 [image: image]

 FIGURE 4-2: TensorFlow can display many aspects of an application, including the structure of
 its graph.

 The bad news is that TensorBoard requires specially formatted data called summary data, and generating this data isn’t easy.

 Running TensorBoard

 When you install TensorFlow, the installer places the TensorBoard utility in the top-level
 scripts directory. If you can't execute the tensorboard command from a command line, add this directory to your system's PATH variable.

 The tensorboard command accepts a handful of flags, including the following:

 	--logdir DIR: The directory containing the summary data

 	--host HOST: Identifies the host portion of the web page's URL

 	--port PORT: Identifies the port of the web page's URL

 By default, TensorBoard's IP address is 127.0.0.1, which can be accessed as localhost. TensorBoard's default port is 6006. Therefore, TensorBoard's default URL is http://localhost:6006.

 The --logdir flag is required, so you can't launch TensorBoard without data. You must set this
 flag to a directory that contains a special file called an event file. This file contains the summary data that TensorBoard needs to perform visualization.
 If the file is located in a directory named output, the following command tells TensorBoard
 to read the event file:

 tensorboard --logdir=output

 Generating summary data

 At this point, you should understand how to create math operations and execute them
 in a session. This discussion introduces a new type of operation called a summary operation. This resembles other TensorFlow operations, but when a session executes a summary
 operation, the result is a protocol buffer that contains summary data. An application
 can write this buffer to a file whose content can be displayed with TensorBoard.

 TensorBoard can illustrate many different types of data, and each type corresponds
 to a function of tf.summary. Table 4-4 lists six of the available functions.

 TABLE 4-4 Summary Data Functions

 	

 Function

 	

 Description

 	

 scalar(name, tensor, collections=None)

 	

 Creates a summary operation that provides data about a scalar

 	

 histogram(name, values, collections=None)

 	

 Creates a summary operation that provides histogram data

 	

 audio(name, tensor, sample_rate, max_outputs=3, collections=None)

 	

 Creates a summary operation that provides data from an audio source

 	

 image(name, tensor, max_outputs=3, collections=None)

 	

 Creates a summary operation that provides data from an image

 	

 merge(inputs, collections=None, name=None)

 	

 Merges the specified summary operations into one summary operation

 	

 merge_all(key= tf.GraphKeys.SUMMARIES)

 	

 Merges summary operations into one summary operation

 Of these functions, the two most popular are scalar and histogram. scalar generates summary data for a single value that changes over multiple session executions.
 histogram generates data for a set of values that change over session executions. The image function generates data related to images and image analysis. Chapter 8 discusses images in detail.

 In my opinion, the best way to understand summary data is to look at example code.
 The following code performs three tasks:

 	tf.summary.scalar generates operations that provide scalar data.

 	tf.summary.merge_all combines them into one operation.

 	sess.run executes the merged summary operation.

 # Add two scalars

 a = tf.constant(2.5)

 b = tf.constant(4.5)

 total = a + b;

 # Create operations that generate summary data

 tf.summary.scalar("a", a)

 tf.summary.scalar("b", b)

 tf.summary.scalar("total", total)

 # Merge the operations into a single operation

 merged_op = tf.summary.merge_all()

 with tf.Session() as sess:

 _, summary = sess.run([sum, merged_op])

 As shown, each entity of interest requires a separate operation to generate summary
 data. That is, the application needs to call tf.summary.scalar three times: once for each tensor to be analyzed. But you don't need to access the
 return values of each call to tf.summary.scalar because tf.summary.merge_all combines the data generation operations into one operation.

 Creating custom summaries

 Instead of calling the functions in Table 4-4, you can generate custom summary data by creating Summary objects. The Summary class is a Python wrapper for a protocol buffer containing summary data.

 You can create a Summary instance by calling tf.Summary and setting its value parameter to a list of Summary.Value buffers. Each Summary.Value can have a node_name, a tag, and one of five data fields:

 	simple_value — a 32-bit floating-point value

 	image — an Image instance containing pixel data

 	histo — a HistogramProto containing data to be displayed in a histogram

 	audio — an Audio instance containing audio data

 	tensor — a TensorProto containing data related to tensors

 The following code creates a custom summary and sets its simple_value field:

 custom_summary = tf.Summary(value=[

 tf.Summary.Value(tag="num_tag", simple_value=5.0),

])

 This code doesn't create an operation that generates summary data — it directly generates
 the summary data. In the preceding code, TensorBoard will display the content of custom_summary as though it had been generated with tf.summary.scalar.

 Writing summary data

 After you've generated summary data, the next step is to create a directory and write
 the summary data to the directory’s event file. This process requires creating a FileWriter and calling its methods.

 Creating a FileWriter

 An application can create a FileWriter by calling its constructor:

 tf.summary.FileWriter(logdir, graph=None, max_queue=10,

 flush_secs=120, filename_suffix=None)

 The logdir parameter sets the name of the directory that should be created to contain the summary
 data. If you set the graph parameter, the graph's data will be added to the event file in the given directory.
 If you set filename_suffix, the suffix will be appended to the name of the generated event file.

 A FileWriter updates the event file asynchronously, which means multiple write operations may
 be pending at once. The max_queue parameter identifies the maximum number of write operations that can be pending at
 a given time. The flush_secs parameter identifies how often the FileWriter should execute pending operations.

 As an example, the following code creates a FileWriter and configures it to create a directory named log. The event file in this directory should contain summary data for the default graph.

 fw = tf.summary.FileWriter("log", graph=tf.get_default_graph())

 If this directory already exists, the constructor may create multiple event files.
 In many cases, it's a good idea to check if the directory exists and delete it, if
 necessary.

 Printing data to the event file

 The FileWriter constructor creates a directory with an event file. The FileWriter's methods make it possible to write data to the event file. Table 4-5 lists these methods and provides a description of each.

 TABLE 4-5 Methods of the FileWriter Class

 	

 Method

 	

 Description

 	

 add_summary(summary, global_step=None)

 	

 Adds summary data to the event file

 	

 add_event(event)

 	

 Adds event data to the event file

 	

 add_graph(graph, global_step=None, graph_def=None)

 	

 Adds summary data for the graph to the event file

 	

 add_meta_graph(meta_graph_def, global_step=None)

 	

 Adds data from a MetaGraphDef to the event file

 	

 add_run_metadata(run_metadata, tag, global_step=None)

 	

 Adds run metadata from a session to the event file

 	

 add_session_log(session_log, global_step=None)

 	

 Adds data from a SessionLog to the event file

 	

 flush()

 	

 Executes pending write operations

 	

 close()

 	

 Flushes write operations and closes the event file

 	

 reopen()

 	

 Reopens the event file for writing summary data

 add_summary prints summary data. That is, it writes summary data produced by a data generation
 operation to the event file. The following code demonstrates how this can be called:

 # Merge operations into a single operation

 merged_op = tf.summary.merge_all()

 # Create the FileWriter

 writer = tf.summary.FileWriter("summary")

 with tf.Session() as sess:

 _, summary = sess.run([sum, merged_op])

 writer.add_summary(summary)

 writer.close()

 add_event writes an Event to the event file. Like a Summaryan Event is a Python wrapper for a protocol buffer. Each Event has a wall_time field that identifies the time and a step that identifies the global step. An Event's data is specified by the what field, which can be set to one of the following values:

 	file_version —the version of the event file

 	graph_def — content of a GraphDef buffer

 	summary — an Summary containing summary data

 	log_message — LogMessage containing logged messages

 	session_log — SessionLog containing the session's state

 	tagged_run_metadata — TaggedRunMetadata containing metadata from the session

 	meta_graph_def — content of a MetaGraphDef buffer

 As an example, the following code creates an Event whose wall_time is set to the current time and whose what field is associated with a Summary:

 new_summary = tf.Summary(value=[

 tf.Summary.Value(tag="val", simple_value=9.0),

])

 event = tf.Event(wall_time=time.time(), summary=new_summary)

 file_writer.add_event(event)

 Calling add_graph accomplishes the same result as setting the graph parameter in the FileWriter's constructor. add_meta_graph prints the content of a MetaGraphDef, which I'll discuss in Chapter 5.

 The flush method forces the FileWriter to execute any pending write operations to the event file. The close method also forces the FileWriter to execute pending write operations. After the operations have completed, the method
 closes the event file.

 Putting Theory into Practice

 The code in ch4/two_graphs.py demonstrates how an application can create multiple graphs and execute them in separate
 sessions. After executing each graph, the application calls tf.train.write_graph to write the graph's structure to a file. The application also creates a FileWriter and generates summary data that can be viewed with TensorBoard. Listing 4-1 presents the code:

 LISTING 4-1 Launching Multiple Graphs in Multiple Sessions

 # Enable logging

 tf.logging.set_verbosity(tf.logging.INFO)

 # Create tensors

 t1 = tf.constant([1.2, 2.3, 3.4, 4.5])

 t2 = tf.constant([5.6, 6.7, 7.8, 8.9])

 t3 = tf.concat([t1, t2], 0)

 t4 = tf.random_normal([8])

 t5 = tf.tensordot(t3, t4, 1)

 # Create operations to generate summary data

 tf.summary.scalar("t1", t1[0])

 tf.summary.scalar("t2", t2[0])

 tf.summary.scalar("t3", t3[0])

 tf.summary.scalar("t4", t4[0])

 tf.summary.scalar("t5", t5)

 merged_op = tf.summary.merge_all()

 # Create FileWriter

 file_writer = tf.summary.FileWriter("log", graph=tf.get_default_graph())

 # Execute first graph

 with tf.Session() as sess:

 # Execute the session

 dot_result, summary = sess.run([t5, merged_op])

 # Write the result to the log

 tf.logging.info('Result of dot product: %f', dot_result)

 # Print the summary data

 file_writer.add_summary(summary)

 file_writer.flush()

 # Obtain the GraphDef and write it to a file

 tf.train.write_graph(sess.graph, os.getcwd(), 'graph1.dat')

 # Create second graph and make it default

 graph = tf.Graph()

 with graph.as_default():

 # Compute the average

 t6 = tf.random_uniform([8], 4.0, 8.0)

 t7 = tf.fill([8], 6.0)

 t8 = tf.reduce_mean(t6 + t7)

 # Execute first graph

 with tf.Session() as sess:

 # Execute the session

 sess.run(t8)

 # Obtain the GraphDef and write it to a file

 tf.train.write_graph(sess.graph, os.getcwd(), 'graph2.dat'

 The first call to sess.run is particularly interesting. Its first argument is a list containing two elements.
 The first element, t5, is the result of an operation that combines t1, t2, t3, and t4. The second element, merged_op, combines five operations that generate summary data.

 sess.run returns the value of t5 and the generated summary data. When these results are available, the application
 logs the value of t5 and prints the summary data to a file by calling the add_summary method of a FileWriter.

 The first parameter in the FileWriter's constructor is log, so the FileWriter prints its data to an event file in the log directory. You can launch TensorBoard
 to visualize this data with the following command:

 tensorboard --logdir=log

 To view the generated data in TensorBoard, open a browser to http://localhost:6006. If you click the HISTOGRAMS link at the top of the page, you can view tensors t1 through t4. Figure 4-3 shows what the histogram of t1 looks like.

 [image: image]

 FIGURE 4-3: A TensorBoard histogram plots the elements of a tensor.

 Unlike t1 through t4, t5 only has one element. The application generates data for t5 by calling tf.summary.scalar, and you can view this data in TensorBoard by clicking the SCALARS link at the top
 of the page. The result isn’t particularly interesting because the application only
 executed the session once. Chapter 5 explains how to execute sessions with multiple steps and view the resulting data
 in TensorBoard.

 Chapter 5

 Training

 IN THIS CHAPTER

 [image: check] Training applications in TensorFlow

 [image: check] Creating variables and placeholders

 [image: check] Minimizing loss with optimizers

 [image: check] Splitting datasets into batches

 Before the Internet, old-timers like me entertained ourselves by actually speaking
 to one another. One rip-roaring game was 20 Questions, in which one player thinks
 of an object and the other player asks questions to determine what the object is.
 The questioner is allowed to ask at most 20 yes/no questions, and a typical game goes
 something like this:

 	Q: Is it larger than a breadbox?

 	A: Yes.

 	Q: Can it move?

 	A: Yes.

 	Q: Is it an animal?

 	A: No.

 	Q: Does it move on wheels?

 	A: No.

 	Q: (Sigh) Is it an evil robot, Matt? Again?

 	A: THAT’S IT! You win!

 In this chapter, I explain how the game 20 Questions is similar to the training methodology
 used in supervised machine learning.

 Training in TensorFlow

 In the game 20 Questions, the questioner starts with a guess and refines his understanding
 with each answer. This game resembles the training methodology used in supervised
 machine learning. An application starts with a general idea, or model, of the desired
 system. The application compares its model to experimental data, determines the difference
 between them, and repeatedly refines the model to reduce the difference.

 The general training process is simple to understand, but implementing training with
 TensorFlow isn’t easy. The process involves six steps:

 	Construct a mathematical expression for the general model.

 	Declare variables to be updated as training is performed.

 	Obtain an expression for the loss, which is the difference between the model and observation.

 	Create an Optimizer with the loss from Step 3 and call its minimize method.

 	(Optional) Configure the second argument of the session's run method to feed batches of data to the session.

 	Execute the session by calling the session’s run method.

 Judging from the questions on StackOverflow.com, many developers have difficulty grasping how these steps are performed. This chapter
 explains this training process and then presents example code that demonstrates how
 these steps can be implemented in a TensorFlow application.

 Formulating the Model

 Just as a game of 20 Questions starts with making a guess, machine learning starts
 with forming an initial mathematical model of the system. A number of factors determine
 the nature of this model, including the system's complexity, the structure of the
 input data, and the nature of the problem. Image data requires a different model than
 voice data. Classification problems require a different type of model than prediction
 problems.

 This book focuses on two methods of mathematical modeling. The first involves approximating
 a set of data points with a shape. For example, if a system consists of two-dimensional
 points, you can predict future points by approximating the system with a two-dimensional line. Lines are determined by the equation y = mx + b, so this
 equation serves as the general model.

 The second method involves creating artificial neural networks, or ANNs. Though inspired
 by biological phenomena, every ANN represents a mathematical relationship. Chapter 7 introduces this exciting topic and explains how you can construct ANNs in code.

 Whether you model your system with a shape or a neural network, you need to refine
 the model until it resembles the observed data as closely as possible. This refinement
 entails updating the model’s parameters, such as the m and b in [image: images]
 . In a TensorFlow application, these trainable parameters are all instances of the
 Variable class.

 [image: tip] When you’re talking to customers, try not to use the term guess, as in “Golly, all of our guesses were way off base!” The preferred term is initial estimate, as in “Initial estimates proved inaccurate, but subsequent training runs will lead
 to better results.”

 Looking at Variables

 At first glance, variables have a lot in common with tensors. Both store data in multidimensional
 arrays and both can be processed with TensorFlow operations.

 But while a tensor can serve many purposes, most variables have only one purpose:
 to store data to be updated during training. A variable’s value will change as training
 proceeds, and hopefully, each change will bring the model closer to the desired system.

 Variables have three other important characteristics:

 	A variable maintains its value between successive executions of a session.

 	A variable must be specially initialized by an executing session.

 	A variable is an instance of the Variable class, not the Tensor class.

 The last point is important. When working with variables, you need to call a new set
 of methods and functions. The following sections explain how to create and initialize
 variables.

 Creating variables

 An application can create variables by calling tf.Variable, whose first parameter sets the variable's initial value. For example, the following
 code creates a variable named variableA and sets its initial value equal to a tensor named tensorA:

 tensorA = tf.constant([1.5, 2.5, 3.5])

 variableA = tf.Variable(tensorA)

 A variable's job is to hold data to be updated during training. Instead of initializing
 variables with constant values, many applications use random values. The following
 code creates a variable named variableB and sets its initial value to a tensor of normally distributed values:

 variableB = tf.Variable(tf.random_normal([3]))

 tf.Variable accepts a Boolean parameter called trainable. If you set this parameter to True, the variable can be updated by training. If you set it to False, the variable can't be updated by training.

 Initializing variables

 One important difference between variables and tensors is that you need to execute
 special operations to initialize variables. That is, before you can train a variable,
 you need to create an initialization operation and execute it in a session. If an
 application attempts to use an uninitialized variable, TensorFlow raises an error:
 Attempting to use uninitialized value….

 TensorFlow provides three functions that create operations that initialize variables.
 Table 5-1 lists them and provides a description of each.

 TABLE 5-1 Variable Initialization Functions

 	

 Function

 	

 Description

 	

 variable_initializer(var_list, name=‘init’)

 	

 Returns an operation that initializes the variables in the given list

 	

 local_variables_initializer()

 	

 Returns an operation that initializes all local variables

 	

 global_variables_initializer()

 	

 Returns an operation that initializes all global variables

 Applications commonly call global_variables_initializer because it creates an operation that initializes every global variable in the session.
 The following code shows how you can call this function:

 init = tf.global_variables_initializer()

 …

 with tf.Session() as sess:

 sess.run(init)

 An application can check whether a variable has been initialized by calling is_variable_initialized with the variable's name.

 Determining Loss

 Training refines a model’s variables to minimize the difference between your model
 and the observed data. Machine learning literature commonly refers to this difference
 as the cost function. TensorFlow’s documentation refers to it as loss.

 For example, if you model a set of points with a straight line, the expression for
 the model is y = mx + b. Of course, the points on the line won’t exactly match the
 observed data, yobs. If there are N points, you can represent the loss with the following expression:

 [image: images]

 In a TensorFlow application, you can express the model and loss with the following
 code:

 m = tf.Variable(tf.random_normal([]))

 b = tf.Variable(tf.random_normal([]))

 model = tf.add(tf.multiply(x, m), b)

 loss = tf.reduce_mean(tf.pow(model - y, 2))

 This method of computing loss is called mean squared error, and it’s one of many methods available — maximum likelihood estimation and log likelihood
 estimation are also popular. Chapter 6 discusses statistical regression and the different ways you can compute loss.

 If your model contains neural networks, you can’t compute loss with a simple equation.
 Feed-forward networks require a special algorithm like backpropagation, and recurrent
 networks rely on backpropagation through time (BPTT). I discuss neural networks and
 backpropagation in Chapter 7. I introduce BPTT in Chapter 9.

 [image: remember] There’s no right way to compute loss. The only requirement is that every decrease
 in loss must imply that the model is closer to the observed data. The process of improving
 the model by reducing loss is called optimization.

 Minimizing Loss with Optimization

 After you’ve formed an expression for the loss, the next step is to minimize the loss
 by updating the model’s variables. This process is called optimization, and TensorFlow supports a variety of algorithms for this purpose. Choosing the right
 algorithm is critically important when coding machine learning applications.

 Each optimization method is represented by a class in the tf.train package. Four popular optimization classes are the GradientDescentOptimizer, MomentumOptimizer, AdagradOptimizer, and AdamOptimizer classes. The following sections look at each of these classes, starting with the
 Optimizer class, which is the base class of TensorFlow's optimization classes.

 The Optimizer class

 You can’t directly access the Optimizer class in code; applications need to instantiate one of its subclasses instead. But
 the Optimizer class is crucial because it defines the all-important minimize method:

 minimize(loss, global_step=None, var_list=None, gate_gradients=1, aggregation_method=None,
 colocate_gradients_with_ops=False, name=None, grad_loss=None)

 The only required argument is the first, which identifies the loss. By default, minimize can access every trainable variable in the graph. An application can select specific
 variables for optimization by setting the var_list argument.

 minimize returns an operation that can be executed by a session's run method. Each execution performs two steps:

 	Compute values that update the variables of interest.

 	Update the variables of interest with the values computed in Step 1.

 Just as you probably won’t win 20 Questions with your first question, you probably
 won’t optimize your model with a single call to minimize. Most applications perform optimization in a loop, and the following code gives an
 idea what an optimization loop looks like:

 # Create the optimizer and obtain the operation

 optimizer = tf.train.GradientDescentOptimizer(learn_rate)

 optimizer_op = minimize(loss)

 # Execute the minimization operation in a session

 with tf.Session() as sess:

 for step in range(num_steps):

 sess.run(optimizer_op)

 If the optimizer reaches a suitable minimum, it has converged to the minimum. If it fails to reach a minimum, the optimizer has diverged.

 Each call to the session's run method minimizes the loss by updating variables. An application controls how updates
 are performed by creating a subclass of Optimizer. This discussion explores four popular Optimizer subclasses: GradientDescentOptimizer, MomentumOptimizer, AdagradOptimizer, and AdamOptimizer.

 [image: technicalstuff] The following discussion gets awfully nerdy, and if you're just getting started in
 machine learning, you don’t really need to know the math. However, selecting the right
 optimizer can make a significant impact on the application’s performance. Also, if
 you’re interviewing for a lucrative TensorFlow job, you should be able to justify
 why you prefer the AdamOptimizer to the GradientDescentOptimizer.

 The GradientDescentOptimizer

 The GradientDescentOptimizer is the simplest and most common of the optimizers used in machine learning. If you
 look through online example code or textbooks on machine learning, you're likely to
 encounter this optimizer frequently.

 Despite its popularity, few experts recommend the GradientDescentOptimizer over the alternatives. To see why, you need to understand the algorithm it uses to
 perform optimization. In this discussion, I present the theory of gradient descent
 and then explain how you can create and use GradientDescentOptimizers in code.

 The Gradient Descent algorithm

 The GradientDescentOptimizer minimizes loss using the gradient descent algorithm, which relies on a crucial mathematical
 fact: A function decreases fastest at a point in the direction determined by its negative
 gradient at that point.

 If you've taken calculus, you know that the derivative of a function at a point equals
 the function’s slope at that point. That is, if f(x) is differentiable, its derivative
 with respect to x is denoted f’(x), and the slope at point a is denoted f’(a). Figure 5-1 shows what a function’s derivative looks like.

 [image: image]

 FIGURE 5-1: The derivative at a point equals the slope of the curve at that point.

 A function with multiple variables has multiple derivatives. As an example, f(x, y)
 has a derivative with respect to x and a derivative with respect to y. These are partial derivatives, and they’re denoted with the following notation:

 [image: images]

 Figure 5-2 depicts the relationship [image: images]
 . At point (1, 2), the partial derivative with respect to x is –8, and the partial derivative with respect to y is –8.

 [image: image]

 FIGURE 5-2: The gradient points in the direction of steepest ascent.

 Geometrically speaking, a vector is a quantity with a magnitude and a direction. A vector can be defined with components
 that identify its magnitudes in orthogonal directions. You can think of a vector as
 an arrow in space. If a vector points two units in the positive x-direction and three
 units in the negative y-direction, it can be represented as <2, -3>.

 The gradient descent algorithm is concerned with a special type of vector called a
 gradient. A function’s gradient is a vector whose components equal the function’s partial
 derivatives. The gradient of f is denoted ∇f, and if the function has three variables, you can express its gradient as follows:

 [image: images]

 If the function has two variables, its gradient vector will have two components. In
 Figure 5-2, the gradient at (1, 2) is the vector <-8, -8>. This vector is represented by the
 black arrow extending from the point (1, 2).

 Suppose that the function in the figure represents a mountain in the Swiss Alps. If
 you’re an Alpine climber, the gradient identifies the steepest direction of climbing.
 This designation isn’t a coincidence. A function’s gradient always points in the direction
 of steepest ascent. Similarly, the opposite vector identifies the steepest direction
 for descent.

 After you understand the significance of the gradient, you’re ready to tackle the
 gradient descent algorithm. This algorithm computes the gradient of the loss and updates
 the model’s variables until the gradient of the loss falls to zero. To express this
 operation mathematically, I need to introduce some notation:

 	The set of trainable variables is denoted θ. The values of the variables at Step t is denoted θt.

 	The loss, which is a mathematical relationship containing the model’s variables, is
 denoted J(θ). The gradient of the loss is ∇J(θ).

 	The learning rate, denoted η, is a value that affects how much θj changes from step to step.

 With this notation, you can express each optimization step of the GradientDescentOptimizer with the following equation:

 [image: images]

 This shows how the model’s variables change with each training operation. As training
 continues, ∇J(θ) should approach zero, which means that each new set of variables should be approximately
 equal to the previous set. At this point, optimization has completed because the optimizer
 has converged to a minimum.

 The value of η is determined by the developer, and selecting this value is a crucial decision. If
 η is too large, the algorithm will progress quickly, but it may step around the minimum
 and never reach a final value.

 If η is too small, the algorithm will move more precisely, but it will take a great deal
 of time. In addition, the optimizer may stop at a local minimum instead of a global
 minimum.

 Creating a GradientDescentOptimizer

 An application can perform optimization with the gradient descent algorithm by creating
 a GradientDescentOptimizer. The constructor is given as follows:

 tf.train.GradientDescentOptimizer(learning_rate, use_locking=False, name='GradientDescent')

 The learning_rate parameter sets η, the learning rate. The following code creates an optimizer and sets its learning
 rate to 0.1:

 learn_rate = 0.1

 optimizer = tf.train.GradientDescentOptimizer(learn_rate)

 optimizer_op = optimizer.minimize(loss)

 Many developers set η using trial and error, and initial estimates frequently range between 0.1 and 0.0001.
 A common method is to start with a large value of η and reduce the value until the optimizer converges successfully. Computer scientists
 have devised automatic methods for selecting η, but to the best of my knowledge, no method has gained widespread acceptance.

 If you set the use_locking parameter to True, the GradientDescentOptimizer will acquire a lock that prevents other operations from modifying its variables.
 The variables can still be read normally.

 Shortcomings

 The gradient descent algorithm is the oldest and simplest algorithm for minimizing
 loss, but it has important disadvantages that every developer should be aware of.

 The first disadvantage involves the difference between a local minimum and a global
 minimum. Optimization seeks the point of minimum loss across the entire range of the
 function. This value is the global minimum of the loss.

 But a GradientDescentOptimizer may converge to a minimum that isn't global. This value is a local minimum, and Figure 5-3 illustrates the difference. In this figure, the function has two local minima surrounding
 the global minimum. If the optimizer reaches either of the local minima, it will halt
 optimization because the gradient of the loss, ∇J(θ), equals 0.

 [image: image]

 FIGURE 5-3: A function may have many local minima, but only one global minimum.

 You need to be aware of three other issues when using the gradient descent algorithm:

 	It’s generally slow to converge to a minimum value.

 	It can only optimize differentiable functions.

 	It may oscillate between values and never reach a minimum.

 This last issue deserves explanation. If the learning rate is large, the algorithm
 may jump back and forth between a pair of points and never reach a minimum. This jumping
 is called oscillation, and it’s a source of frequent frustration.

 You can reduce the likelihood of oscillation by reducing the learning rate. Alternatively,
 you can create an optimizer whose learning rate changes from step to step. The following
 sections present three such optimizers: the MomentumOptimizer, the AdagradOptimizer, and the AdamOptimizer.

 The MomentumOptimizer

 The MomentumOptimizer has a lot in common with the GradientDescentOptimizer, but it usually converges faster with a reduced likelihood of oscillation. The MomentumOptimizer minimizes loss through the momentum algorithm, which uses preceding values of the
 loss gradient to update the current set of variables.

 The momentum algorithm introduces a new quantity that TensorFlow calls the accumulation. This quantity, denoted [image: images]
 , is determined by the gradient of the current loss, the learning rate, and the preceding
 value of the accumulation:

 [image: images]

 The preceding value of the accumulation, [image: images]
 , is scaled by α, called the momentum. α is set to a constant value between 0 and 1, and its value indicates how much the
 preceding step should influence the current step. Applications commonly set α equal to 0.9.

 After the accumulation is computed, you can update the set of variables with the following
 equation:

 [image: images]

 It's important to understand how accumulation affects the rate of convergence. If
 the optimizer moves quickly toward a minimum, [image: images]
 will be significant, and the optimizer will approach the minimum even faster. If
 the optimizer is stuck between two values, [image: images]
 will reduce the amount by which the variables are updated.

 An application can create a MomentumOptimizer by calling its constructor:

 MomentumOptimizer(learning_rate, momentum, use_locking=False, name='Momentum', use_nesterov=False)

 The use_locking parameter has the same purpose as the use_locking parameter in the GradientDescentOptimizer constructor. That is, the optimizer will lock its variables' values if use_locking is set to True.

 If use_nesterov is set to True, the optimizer adopts the Nesterov Accelerated Gradient descent algorithm, which
 is commonly shortened to NAG. The NAG algorithm modifies the momentum algorithm by
 updating variables before computing the loss. The following equations show how this algorithm works:

 [image: images]

 [image: images]

 The NAG algorithm generally converges faster than the gradient descent algorithm.
 The paper On the Importance of Initialization and Momentum in Deep Learning by Ilya Sutskever et al discusses the algorithm's performance in detail.

 The AdagradOptimizer

 The gradient descent algorithm and the momentum algorithm apply the same learning
 rate to each variable being trained. But different variables may converge to their
 minima at different rates. The adaptive gradient (Adagrad) algorithm takes this into
 account.

 The Adagrad algorithm has two characteristics that have made it popular among academics
 and experts:

 	The learning rate changes from variable to variable and from step to step. The learning
 rate at the tth step for the ith variable is denoted [image: images]
 .

 	Adagrad methods compute subgradients instead of gradients. A subgradient is a generalization of a gradient that applies
 to nondifferentiable functions. This means AdaGrad methods can optimize both differentiable
 and nondifferentiable functions.

 In 2011, John Duchi, Elad Hazan, and Yoram Singer described the first Adagrad algorithm
 in their paper Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. The math is so ugly that I won’t attempt to explain it. In case you’re curious,
 here’s the equation for the per-variable learning rate:

 [image: images]

 In this equation, Gt, ii is the ith element of the diagonal of the matrix formed by taking the outer product of the
 subgradient of the loss with itself. After computing the learning rates, the optimizer
 updates the variables:

 [image: images]

 Thankfully, TensorFlow developers don’t have to worry about subgradients or outer
 products. This is because the TensorFlow API provides the AdagradOptimizer class, whose constructor is given as follows.

 AdagradOptimizer(learning_rate, initial_accumulator_value=0.1, use_locking=False,
 name='Adagrad')

 One shortcoming of the Adagrad algorithm is that the learning rates always decrease
 in magnitude. As training continues, their values will eventually reach zero, bringing
 training to a halt.

 The AdamOptimizer

 The Adam (Adaptive Moment Estimation) algorithm closely resembles the Adagrad algorithm
 in many respects. It also resembles the Momentum algorithm because it takes two factors
 into account:

 	The first moment vector: Scales the gradient by [image: images]

 	The second moment vector: Scales the square of the gradient by [image: images]

 These moment vectors are denoted mt and vt, respectively. The following equations show how their values change from step to
 step:

 [image: images]

 [image: images]

 After computing these vectors, the optimizer updates the model’s variables with the
 following equations:

 [image: images]

 [image: images]

 In the second equation, the purpose of ε is to prevent the denominator from reaching zero. For this reason, ε is usually set to a small value.

 To employ the Adam algorithm, you need to create an instance of AdamOptimizer. The constructor is given as follows:

 AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False,
 name='Adam')

 [image: tip] When deciding on an optimizer, I always start with the AdamOptimizer, especially when working with images. The only exception is when I'm providing code
 to newcomers. In this case, I create a GradientDescentOptimizer, which doesn’t scare anyone.

 Feeding Data into a Session

 Instead of processing all the test data with one call to a session’s run method, applications frequently split the data into portions and call run once for each portion. There are at least three reasons to do so:

 	If the data is stored in a file or on a remote server, it may be more efficient to
 process one portion of data while another is loaded from the source.

 	Shuffling the portions of data increases the data's stochasticity. This process can improve convergence to a global minimum instead of a local minimum.
 I explain the rationale for data shuffling in the upcoming “Stochasticity” section.

 	Time constraints make it impractical to process all the data at once.

 A portion of data processed in one session execution is called a batch. The process of transferring batches to a session is called feeding data to the session. To configure this in code, an application needs to perform three steps:

 	Define placeholders to contain the data to be fed into the session.

 	Use the placeholders in the expressions for model and loss.

 	Set the second parameter of the session’s run method to a dictionary that associates each placeholder with a source of data.

 Step 2 is trivial because you can process placeholders in the same way that you can
 process tensors. This discussion focuses on Steps 1 and 3. Later chapters present
 code that demonstrates how data can be fed into a session.

 Creating placeholders

 A placeholder is a constant Tensor that holds a batch of data to be fed into a session. You can create placeholders
 by calling the tf.placeholder function:

 tf.placeholder(dtype, shape=None, name=None)

 The first two arguments specify the type of the placeholder's elements and its size.
 The actual content of a placeholder is set by the running session, so there’s no way
 to initialize a placeholder.

 For example, the following code creates a placeholder that contains 32-bit floating-point
 values:

 ph = tf.placeholder(tf.float32)

 If a placeholder’s shape isn’t given, it can be set to a tensor of any shape. If the
 shape is given, assigning a tensor of a different shape will cause an error.

 Defining the feed dictionary

 Chapter 3 introduces the Session class and explains how you can execute a session by calling its run method. But the discussion doesn't mention run’s second argument, feed_dict, which makes it possible to feed data into the session. To feed data to a session,
 you need to assign feed_dict to a dictionary whose keys identify tensors in the session. Most applications set
 these keys to placeholders. Each value in feed_dict identifies a source of data to be passed to the tensor (usually a placeholder) identified
 by the key.

 To demonstrate data feeding, the following code creates a placeholder, uses it in
 a model operation, and then feeds it into the session through the feed_dict parameter of the run method.

 ph = tf.placeholder(tf.float32)

 …

 with tf.Session() as sess:

 sess.run(optimizer, feed_dict={ph: data_src})

 When associating data with a placeholder, there's a catch: The data source can be
 a list of constants or a NumPy ndarray, but it can’t be a tensor. The following code associates a placeholder with an ndarray:

 ph = tf.placeholder(tf.float32)

 vals = np.array([9., 8., 7.])

 incr = tf.add(ph, 1.)

 with tf.Session() as sess:

 res = sess.run(incr, feed_dict={ph: vals})

 print(res)

 In this case, the printed result is [10. 9. 8.] because feed_dict passes the vals array to the session through the ph placeholder. If an application assigns vals to a tensor, TensorFlow will raise the following error: The value of a feed cannot be a tf.Tensor object.

 Stochasticity

 To keep optimizers from converging to a local minimum instead of a global minimum,
 many applications split their training data into small batches and feed them randomly
 to the session. This randomness, also called stochasticity, forces the optimizer to take larger jumps at first and smaller jumps as training
 progresses. This jumping increases the likelihood that the optimizer will find a global
 minimum.

 If the gradient descent algorithm is employed to process stochastic data, it's referred
 to as the stochastic gradient descent algorithm. If you encounter the term SGD in machine learning literature, this algorithm
 is what it’s referring to.

 Monitoring Steps, Global Steps, and Epochs

 In TensorFlow, each session execution that processes a single batch of data is called
 a step. Many TensorFlow functions and methods accept a parameter called global_step, which can be used to monitor the total number of steps executed by a session. In
 practice, global_step serves as the index of the batch being processed. You can access this index in code
 by calling tf.train.global_step.

 You can also store the global step in a regular variable. This storage requires two
 operations:

 	Define a variable with an initial value of 0 and its trainable argument set to False.

 	Set the variable equal to the global_step parameter of the optimizer's minimize method.

 If its global_step parameter is set to a variable, minimize will increment the variable each time a session processes a batch of data. The following
 code creates a variable named gstep and configures it to store the application's global step:

 # Define the variable to hold the global step

 gstep = tf.Variable(0, trainable=False)

 # Configure the optimizer

 learn_rate = 0.1

 batch_size = 40

 optimizer = tf.train.GradientDescentOptimizer(learn_rate).

 minimize(loss, global_step=gstep)

 # Initialize variables

 init = tf.global_variables_initializer()

 # Launch session

 with tf.Session() as sess:

 sess.run(init)

 for batch in range(batch_size):

 _, step, result = sess.run([optimizer, gstep, x_min])

 print("Step %d: Computed result = %f" % (step, result))

 As you look at this code, a question may occur to you: Why keep track of the global
 step when you can access the loop index? To answer this question, suppose that you
 execute ten training batches and then restart your application. The loop variable
 will revert back to 0, but if you’d saved the global step to a file, you can restore
 it and use it as the current global step. I explain how to save variables to a file
 in the section “Saving variables,” later in this chapter.

 In the preceding example, the test executes each batch only once. In a real-world
 application, all the batches will be processed multiple times. A pass through every
 batch of a dataset is referred to as an epoch. For example, if a dataset is split into 50 batches, an epoch consists of 50 steps.

 Many applications execute sessions in two loops: The outer loop iterates once for
 each epoch, and the inner loop executes once for each batch. The following code creates
 the two loops and calls sess.run with each iteration:

 for epoch in range(num_epochs):

 for batch in range(num_batches):

 sess.run(…)

 It's important to understand the difference between epochs and batches. Similar training
 loops are performed throughout this book’s example code and examples on the Internet.

 Saving and Restoring Variables

 The Saver class makes it straightforward to load and store variables. By default, a Saver can access every variable in the session. But the first argument of the constructor
 can identify specific variables to be accessed. For example, the following code creates
 a Saver that can save/restore only two variables: firstVar and secondVar:

 saver = tf.train.Saver([firstVar, secondVar])

 After you create a Saver, you can store variables to a file by calling its save method. Then you can restore variables from a file by calling restore.

 Saving variables

 The save method stores variables and data related to the variables. By default, the method
 creates at least three binary files, each with the same name but a different suffix:

 	filename.data-X-of-Y: Stores variable values

 	filename.index: Holds the offset of each variable in the data file(s)

 	filename.meta: MetaGraphDef containing the structure of the graph that contains the variables

 The data files contain variable values, and if the application has many variables,
 save will create multiple data files. If there's only one file, its name will be filename.data-00000-of-00001.

 The index file contains a table that matches variable names to offsets in the index
 file. You can retrieve variables using the restore method, which I explain in the next section.

 You can create these files by creating a Saver and calling its save method:

 save(sess, save_path, global_step=None, latest_filename=None, meta_graph_suffix='meta',
 write_meta_graph=True, write_state=True)

 These parameters are straightforward to understand. sess is the session containing the variables of interest and save_path identifies the path of the file to contain the saved data. The last element of save_path specifies the name of the files to be generated.

 If latest_filename is set, save will create a text file that lists the paths of files involved in the save operation.
 If global_step is set, the value will be appended to each of the generated files.

 For example, the following code creates a Saver and calls save to create the generated files (output.*) in the current directory:

 saver = tf.train.Saver()

 saver.save(sess, os.getcwd() + "/output")

 If there aren't many variables to store, save will generate only three files: output.data-00000-of-00001, output.index, and output.meta.

 Restoring variables

 The restore method loads variables that have been stored previously. The process of restoring
 variables consists of two steps:

 	Call import_meta_graph to add the variables' nodes to the current graph.

 	Call restore to access the variable data.

 The first step is simple. tf.train.import_meta_graph accepts the path of a *.meta file, reads graph data from the file, and adds the graph's nodes to the current graph.
 The function returns a Saver that lets you restore variables from the loaded graph.

 For example, the following code imports graph data from output.meta and obtains a Saver that can be used to load variables:

 saver = tf.train.import_meta_graph("output.meta")

 After obtaining the Saver, an application can load variables by calling its restore method, whose signature is given as follows:

 restore(sess, save_path)

 As in the save method, sess identifies the session containing the variables, and save_path is the path to the file containing the variable data. This path must include the
 name of the three files without the suffix. As an example, the following code uses
 saver to load variables from output into the current graph:

 saver.restore(sess, os.getcwd() + "/output")

 Working with SavedModels

 In addition to storing variables with a Saver, you can store your application's entire model by creating a SavedModel. As stated in the documentation, SavedModels are “the universal serialization format for TensorFlow models” and serve as “the
 canonical way to export TensorFlow graphs.”

 To be precise, a SavedModel is a directory that contains a *.pb or *.pbtxt file. This file contains the application's model and stores graph definitions in
 MetaGraphDef protocol buffers. In addition to this file, a SavedModel may contain one or more of the following subdirectories:

 	variables: A directory containing the application's variables (files are similar to those produced
 by the Saver’s save method, excluding the *.meta file)

 	assets: Auxiliary files that need to be loaded into the graph

 	assets.extra: User-provided files that don't need to be loaded into the graph

 Saving and restoring a SavedModel isn’t conceptually difficult, but the code gets a little complicated.

 Saving a SavedModel

 The process of saving an application’s model to a SavedModel is similar to the process of storing variables. But instead of creating a Saver, you need to create a tf.saved_model.builder.SavedModelBuilder. The constructor accepts a single argument that identifies the top-level directory:

 builder = tf.saved_model.builder.SavedModelBuilder("out")

 After creating a SavedModelBuilder, you can add data to the model and save the model to the given directory. To add
 data to the model, you need to call one of two functions: add_meta_graph or add_meta_graph_and_variables. The signature of add_meta_graph is given as

 add_meta_graph(tags, signature_def_map=None, assets_collection=None, legacy_init_op=None,
 clear_devices=False, main_op=None)

 Metagraphs identify their capabilities and purposes with strings called tags. You can assign a metagraph's tags by setting the tags parameter. The tf.saved_model.tag_constants provides three common tags: GPU, SERVING, and TRAINING.

 A graph's inputs and outputs form its signature. In code, a graph’s signature is represented by a SignatureDef, and you can create this by calling the build_signature_def function of the tf.saved_model.signature_def_utils package:

 build_signature_def(inputs=None, outputs=None, method_name=None)

 To create the signature, you need to set inputs and outputs to dictionaries that associates names with TensorInfo protocol buffers. For the names, many applications use constants from tf.saved_model.signature_constants, which include CLASSIFY_INPUTS, CLASSIFY_OUTPUT_CLASSES, PREDICT_INPUTS, and PREDICT_OUTPUTS.

 You can obtain a TensorInfo for a tensor by calling tf.saved_model.utils.build_tensor_info with the tensor. The following code returns a TensorInfo for a tensor named input_vec:

 info = tf.saved_model.utils.build_tensor_info(input_vec)

 The method_name parameter of build_signature_def is a string that serves as the signature's method name. You can set this to one of
 the strings in the tf.saved_model.signature_constants module, such as CLASSIFY_METHOD_NAME, PREDICT_METHOD_NAME, or REGRESS_METHOD_NAME.

 The add_meta_graph_and_variables method is similar to add_meta_graph, but it has an extra parameter. The first parameter of add_meta_graph_and_variables is sess, which identifies the session that should provide the metagraph's variables.

 After you’ve added metagraphs to a SavedModel, you can store the SavedModel by calling the save method. This accepts an as_text parameter that identifies whether the protocol buffer should be saved as a text file
 (*.pbtxt) or a binary file (*.pb). By default, save stores metagraph data in a binary file.

 Loading a SavedModel

 While it's complex to save metagraphs to a SavedModel, it’s easy to load them. You need to know only one function:

 tf.saved_model.loader.load(sess, tags, export_dir, **saver_kwargs)

 This loads the MetaGraphDef protocol buffer from the directory given by export_dir with the tags given by tags. The sess parameter identifies the session that should contain the metagraph's variables, assets,
 and signatures.

 Putting Theory into Practice

 When I started learning TensorFlow, I found training difficult to understand. In addition
 to the theory, there are many new concepts to deal with, such as variables, optimizers,
 and placeholders.

 To clarify how training works, I provide ch5/simple_train.py in the example code. The application is so simple that it doesn’t even bother to
 formulate a model. Instead, it computes the loss with a simple quadratic equation:
 [image: images]
 . Figure 5-4 shows what this looks like.

 [image: image]

 FIGURE 5-4: The loss reaches a minimum when x equals 2.

 As shown in Figure 5-4, the loss reaches a global minimum when x_var equals 2. Therefore, the optimizer's goal is to update x_var until it equals 2. The code in Listing 5-1 shows how you can accomplish this goal in TensorFlow.

 LISTING 5-1 Training in TensorFlow

 # Define a trainable variable

 x_var = tf.Variable(0., name='x_result')

 # Define an untrainable variable to hold the global step

 step_var = tf.Variable(0, trainable=False)

 # Express loss in terms of the variable

 loss = x_var * x_var - 4.0 * x_var + 5.0

 # Find variable value that minimizes loss

 learn_rate = 0.1

 num_epochs = 40

 optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss, global_step=step_var)

 # Initialize variables

 init = tf.global_variables_initializer()

 # Create the saver

 saver = tf.train.Saver()

 # Create summary data and FileWriter

 summary_op = tf.summary.scalar('x', x_var)

 file_writer = tf.summary.FileWriter('log', graph=tf.get_default_graph())

 # Launch session

 with tf.Session() as sess:

 sess.run(init)

 for epoch in range(num_epochs):

 _, step, result, summary = sess.run([optimizer, step_var, x_var, summary_op])

 print('Step %d: Computed result = %f' % (step, result))

 # Print summary data

 file_writer.add_summary(summary, global_step=step)

 file_writer.flush()

 # Store variable data

 saver.save(sess, os.getcwd() + '/output')

 print('Final x_var: %f' % sess.run(x_var))

 This code creates two variables: a trainable variable named x_var and an untrainable variable named step_var. loss is set to a quadratic equation whose independent variable is x_var.

 The application calls tf.global_variables_initializer to obtain an operation for initializing its variables. The session must execute this
 operation before it can train the variables in the optimization process.

 After creating the variables, the application creates a GradientDescentOptimizer and calls its minimize method to reduce the loss to a minimum. Then it assigns the global_step parameter of minimize to step_var. This assignment tells the session to increment step_var each time it performs a training operation.

 After each training operation, print displays the global step and the current value of x_var. As training continues, x_var approaches 2, the point of minimum loss. Similarly, step_var approaches 40 because the training loop performs 40 iterations.

 When optimization is complete, the application stores its variables to a file. The
 save method of the Saver instance stores variable data to three files in the current directory: output.data-00000-of-00001, output.index, and output.meta.

 The code in ch5/restore_vars.py loads the value of x_var from the new data files. Listing 5-2 presents the code.

 LISTING 5-2 Loading Variables from a File

 # Create session

 with tf.Session() as sess:

 # Load stored graph into current graph

 saver = tf.train.import_meta_graph('output.meta')

 # Restore variables into graph

 saver.restore(sess, os.getcwd() + '/output')

 # Display value of variable

 print('Variable value: ', sess.run('x_result:0'))

 It's important to see that this code doesn’t create a Saver by calling the class’s constructor. Instead, it obtains a Saver by calling import_meta_graph with the name of the file containing graph data.

 After obtaining the Saver, the application obtains the variable's value by calling the Saver’s restore method and the session's run method. Even though the variable’s name was x_var, the application calls run with x_output:0 because the variable's name parameter was set to x_output.

 Visualizing the Training Process

 The ch5/simple_train.py application prints the loss at each step using the following code:

 print("Step %d: Computed result = %f" % (step, result))

 TensorFlow provides a better way to monitor training. Chapter 4 covers the TensorBoard utility, which reads summary data generated by an application.
 The code in ch5/simple_train.py generates summary data for training by performing four steps:

 	Call tf.summary.scalar to create an operation that writes x_var to summary data.

 	Call tf.summary.FileWriter to create a FileWriter.

 	Execute the session with the operation from Step 1.

 	With each session execution, print the summary data by calling the FileWriter's add_summary method.

 For the last step, the following code prints the summary data:

 file_writer.add_summary(summary, global_step=step)

 The global_step parameter is important to understand. This parameter changes from step to step, and
 it tells TensorBoard to display a different value at each step. Figure 5-5 presents TensorBoard's output for the variable as training proceeds.

 [image: image]

 FIGURE 5-5: TensorBoard illustrates training by displaying variable values at each step.

 In this example, the loss is so simple that the optimizer converges gently to the
 minimum when x equals 2. In real-world applications, the optimization process is never
 as smooth. Thankfully, TensorBoard can illustrate what’s happening in the training
 process.

 Session Hooks

 After you understand how to save variables and generate summary data, you’re ready
 to learn how to automate these operations with session hooks. Session hooks make it
 possible to monitor a session’s state, access a session’s data, and execute code at
 different points in the session’s execution. To use session hooks, you need to perform
 two steps:

 	Create one or more SessionRunHook instances.

 	Create a MonitoredSession and configure it with the session hooks.

 This discussion presents both steps. I also present code that demonstrates how these
 steps can be performed in practice.

 Creating a session hook

 To monitor a session's operation, you need to create a custom subclass of SessionRunHook or instantiate an existing subclass provided in the tf.train package. I refer to an instance of SessionRunHook or one of its subclasses as a session hook. To explain this topic, I present the methods of the SessionRunHook class and then introduce the subclasses provided by TensorFlow.

 Life-cycle methods of SessionRunHook

 When you associate a session hook with a session, the application calls the hook's
 methods at different stages in the session’s life-cycle. To be specific, the application
 calls five methods of the SessionRunHook class:

 	begin(): Called when the session is created

 	after_create_session(session, coord): Called when the session's graph is finalized

 	before_run(run_context): Called before the associated session starts executing

 	after_run(run_context, run_values): Called after the associated session starts executing

 	end(session): Called at the end of the session

 It's important to see the difference between begin and after_create_session. An application calls begin immediately after the session has been created. At this point, you can access and
 modify the session's graph. But when the application calls after_create_session, the graph’s structure is finalized and can’t be changed.

 The before_run and after_run methods both provide a run_context parameter. This is an instance of SessionRunContext, and it provides four members:

 	session: The associated session

 	original_args: A SessionRunArgs that contains the arguments of the session's run method

 	stop_requested: A bool that identifies whether a stop is requested

 	request_stop(): Tells the session to stop

 If you want a session hook to read a value from the session's graph, you can code
 before_run to return a SessionRunArgs instance. You need to set the first argument of the SessionRunArgs constructor to the name of the variable or tensor to access.

 If you added a return value to before_run, you can obtain the desired variable(s) or tensor(s) through the run_values argument of the after_run method. This SessionRunValues object has three fields:

 	results: The value(s) accessed by the return value of before_run

 	options: The RunOptions object used to configure the session's execution

 	run_metadata: The RunMetadata object containing information about the session's execution

 This relationship between before_run and after_run can be confusing. To clarify how the two methods work together, the following code
 creates a subclass of SessionRunHook that prints information before and after the session runs.

 class CustomHook(tf.train.SessionRunHook):

 def before_run(self, run_context):

 print("First argument: ", run_context.original_args.fetches);

 return tf.train.SessionRunArgs(loss)

 def after_run(self, run_context, run_values):

 print("Loss: ", run_values.results);

 In this code, before_run returns a SessionRunArgs that identifies the name of the loss variable. When after_run is called, the results field of the run_values argument contains the current value of loss.

 Subclasses of SessionRunHook

 You can create your own subclasses of SessionRunHook and add code for different life-cycle methods. But in most cases, it's easier to
 instantiate an existing subclass. Table 5-2 presents the constructors of each session hook class in the tf.train package.

 TABLE 5-2 Session Hook Classes

 	

 Class

 	

 Description

 	

 LoggingTensorHook(tensors, every_n_iter=None, every_n_secs=None, at_end=False, formatter=False)

 	

 Logs values of a tensor after a given number of steps or after a given time

 	

 CheckpointSaverHook(checkpoint_dir, save_secs=None, save_steps=None, saver=None, checkpoint_baseline='model.ckpt’,
 scaffold=None, listeners=None)

 	

 Saves data to a checkpoint after a given number of steps or after a given time

 	

 SummarySaverHook(save_steps=None, save_secs=None, output_dir=None, summary_writer=None,
 scaffold=None, summary_op=None)

 	

 Generates summary data after a given number of steps or after a given time

 	

 StepCounterHook(every_n_steps=100, every_n_secs=None, output_dir=None, summary_writer=None)

 	

 Counts the number of steps per second

 	

 StopAtStepHook(num_steps=None, last_step=None)

 	

 Tells the session to stop after a number of steps have executed or a specific step
 has been reached

 	

 NanTensorHook(loss_tensor, fail_on_nan_loss)

 	

 Stops training if loss equals NaN

 	

 GlobalStepWaiterHook(wait_until_step)

 	

 Delays execution until the global step reaches a given value

 	

 FinalOpsHook(final_ops, final_ops_feed_dict=None)

 	

 Evaluates tensors at the end of a session

 	

 FeedFnHook(feed_fn)

 	

 Runs the given function and sets the session's feed dict

 The first three session hook classes automate the processes of logging messages, saving
 variables, and generating summary data. You can specify how often the operation should
 be performed by setting a training step interval (every_n_iter or n_steps) or the time interval (every_n_secs or n_secs). Naturally, you can't set both types of intervals in the same method.

 A StepCounterHook tells you about the session’s performance by showing how many training steps are
 performed in the given time interval. To provide output, it generates summary data
 using a summary writer. In contrast, a StopAtStepHook tells the session to stop at a given global step value or after a specified number
 of training steps.

 Creating a MonitoredSession

 A MonitoredSession isn't a Session, but it contains a Session instance and provides methods for interacting with the session. For example, you
 can launch a MonitoredSession's session by calling run and close the session by calling close.

 To create a MonitoredSession, you need to call its constructor:

 MonitoredSession(session_creator=None, hooks=None, stop_grace_period_secs=120)

 The first parameter is a SessionCreator instance, which configures the underlying session. TensorFlow provides two subclasses
 of SessionCreator: ChiefSessionCreator and WorkerSessionCreator. The terms chief and worker refer to different types of processes in distributed applications.

 You can associate session hooks with a MonitoredSession by setting the hooks parameter to a list of session hooks. The last parameter, stop_grace_period_secs, sets the number of seconds that a session thread can continue executing after an
 application calls close.

 The MonitoredSession class also provides a method called should_stop. Applications frequently employ this method to determine whether the session should
 continue running. A session hook can stop a session through its request_stop method, which calls the monitored session's should_stop method. The following code demonstrates how should_stop can be used:

 with tf.train.MonitoredSession(hooks=[custom_hook]) as sess:

 while not sess.should_stop():

 sess.run(…)

 This should_stop method becomes particularly important for distributed TensorFlow applications. I
 discuss distributed applications and their sessions in Chapter 13.

 Putting theory into practice

 The code in the ch5/monitor_train.py module performs the same training operation as in the ch5/simple_train.py module. The difference is that monitor_train.py uses session hooks to save variables
 and generate summary data. Listing 5-3 presents the code.

 LISTING 5-3 Monitoring a Session with Session Hooks

 # Custom session hook

 class CustomHook(tf.train.SessionRunHook):

 def begin(self):

 print('Beginning the session!')

 def before_run(self, run_context):

 return tf.train.SessionRunArgs(loss)

 def after_run(self, run_context, run_values):

 if run_context.original_args != 'init':

 print('Loss: ', run_values.results)

 def end(self, session):

 print('The session is about to end!')

 # Define a trainable variable

 x_var = tf.Variable(0., name='x_result')

 # Define an untrainable variable to hold the global step

 step_var = tf.train.create_global_step()

 # Express loss in terms of the variable

 loss = x_var * x_var - 4.0 * x_var + 5.0

 # Find variable value that minimizes loss

 learn_rate = 0.1

 num_epochs = 40

 optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss, global_step=step_var)

 # Initialize variables

 init = tf.global_variables_initializer()

 # Create summary operation

 summary_op = tf.summary.scalar('x', x_var)

 # Create hooks

 custom_hook = CustomHook()

 checkpoint_hook = tf.train.CheckpointSaverHook(checkpoint_dir='ckpt_dir',

 checkpoint_basename='output', save_steps=10)

 summary_hook = tf.train.SummarySaverHook(save_steps=10, output_dir='log', summary_op=summary_op)

 hooks = [custom_hook, checkpoint_hook, summary_hook]

 # Launch session

 with tf.train.MonitoredSession(hooks=hooks) as sess:

 sess.run(init)

 for epoch in range(num_epochs):

 sess.run(optimizer)

 This module creates three session hook instances:

 	CustomHook: Prints messages at different points in the session's execution

 	CheckpointSaverHook: Saves checkpoint data to a directory named ckpt_dir

 	SummarySaverHook: Saves summary data to a directory named log

 After creating the session hooks, the module creates a MonitoredSession and configures it with the three hook instances. Then it initializes the session’s
 variables and optimizes the model.

 Part 2

 Implementing Machine Learning

 IN THIS PART …

 Explore different types of statistical regression, including linear regression, polynomial
 regression, and logistic regression.

 Learn about perceptrons and neural networks, which consist of interconnected nodes.

 Understand the theory of image processing and convolutional neural networks (CNNs),
 which make it possible to recognize images.

 Explore the theory of recurrent neural networks (RNNs) and use them to analyze sequential
 data.

 Chapter 6

 Analyzing Data with Statistical Regression

 IN THIS CHAPTER

 [image: check] Identifying trends with linear and polynomial regression analysis

 [image: check] Classifying points with logistic regression analysis

 [image: check] Modeling systems with the logistic and softmax functions

 [image: check] Computing loss with log likelihood and cross entropy

 Everybody knows that machine learning is a fast-paced, exciting field for clever,
 future-minded people, and everybody knows that statistics is a boring, stodgy field
 for people who enjoy Muzak. So newcomers may find it odd to see a chapter on statistical
 analysis in a book on machine learning.

 But machine learning and statistics have a lot in common. In fact, they have the same
 ultimate goal: to model real-world systems with mathematical relationships. Machine
 learning relies extensively on statistical methods, and this chapter presents three
 methods that play critical roles in TensorFlow development: linear regression, polynomial
 regression, and logistic regression. In addition, the example code in this chapter
 solidifies the manner in which TensorFlow applications perform training.

 Analyzing Systems Using Regression

 One of the most effective tools used by statisticians is regression. Regression analyzes a system by measuring the relationships between its variables. TensorFlow
 provides many capabilities for this analysis, and this chapter focuses on four types
 of regression:

 	Linear regression: Fitting a straight line to points in a dataset

 	Polynomial regression: Fitting a polynomial to points in a dataset

 	Binary logistic regression: Classifying points into one of two categories

 	Multinomial logistic regression: Classifying points into one of multiple categories

 The following sections explore these simple operations.

 Linear Regression: Fitting Lines to Data

 Searching through your grandfather’s attic, you find a mint condition first issue
 of Commander Warpspeed's Journey into Space! This rare comic book may be worth many thousands of dollars, so you decide to sell
 it. But how much should you ask for it?

 An online search provides 40 selling prices that range from less than $5,000 to more
 than $10,000. Figure 6-1 illustrates these prices on a chart.

 [image: image]

 FIGURE 6-1: The comic book’s value increases over time.

 Computing the average selling price would be easy, but you want to know whether the
 price is rising or falling and by how much the price is rising or falling. To find
 a good selling price, you decide to approximate your data with a line that indicates
 the change in the book’s price over time. This process is called linear regression, and the dashed gray line in Figure 6-1 identifies the general trend of the comic book’s price.

 The first step in TensorFlow training involves choosing an initial expression for
 the model (see Chapter 5). For linear regression, this decision is easy. The model is a line whose equation
 is [image: images]
 , where m is the line’s slope, and b is the y-intercept (the y-value when x equals 0). The goal of linear regression is to determine m and b so that the resulting line best approximates (or fits) the set of points.

 The loss is also simple to compute. If the graph contains the point (x, y), the difference between the system and the model is [image: images]
 .

 In machine learning applications, values of the loss should always have the same sign.
 You can make sure all the loss values are positive by computing the square of the
 error at each point and take the average of the error values. If there are N points, you can compute the loss with the following equation:

 [image: images]

 This method of computing loss is called the mean-squared error, or MSE. In TensorFlow, you can compute it by calling the reduce_mean function. The following code shows how this function is used:

 model = tf.add(tf.multiply(m, x), b)

 loss = tf.reduce_mean(tf.pow(model - y, 2))

 Having obtained an expression for the loss, the next step is to create an optimizer
 to minimize the loss. As the optimizer does its work, it will update the variables
 m and b, thereby obtaining a line that best approximates the change in the comic book's price
 over time.

 To demonstrate this, the following code creates an optimizer, sets its learning rate
 to 0.1, and calls its minimize method:

 optimizer = tf.train.GradientDescentOptimizer(0.1)

 opt_op = optimizer.minimize(loss)

 minimize returns an operation that you can use as the first argument of the session's run method (see Chapter 5). Note that you must call run repeatedly to ensure that the training converges to suitable values for m and b.

 In the ch6 folder, lin_regression.py contains code that demonstrates how you can perform linear regression in TensorFlow.
 Listing 6-1 presents the code.

 LISTING 6-1 Linear Regression

 # Random input values

 N = 40

 x = tf.random_normal([N])

 m_real = tf.truncated_normal([N], mean=2.0)

 b_real = tf.truncated_normal([N], mean=3.0)

 y = m_real * x + b_real

 # Variables

 m = tf.Variable(tf.random_normal([]))

 b = tf.Variable(tf.random_normal([]))

 # Compute model and loss

 model = tf.add(tf.multiply(x, m), b)

 loss = tf.reduce_mean(tf.pow(model - y, 2))

 # Create optimizer

 learn_rate = 0.1

 num_epochs = 200

 num_batches = N

 optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss)

 # Initialize variables

 init = tf.global_variables_initializer()

 # Launch session

 with tf.Session() as sess:

 sess.run(init)

 # Perform training

 for epoch in range(num_epochs):

 for batch in range(num_batches):

 sess.run(optimizer)

 # Display results

 print('m = ', sess.run(m))

 print('b = ', sess.run(b))

 This module sets the number of batches equal to the number of input points. The training
 process executes 200 epochs, and each epoch performs 40 training steps.

 Polynomial Regression: Fitting Polynomials to Data

 You can easily extend the method of linear regression to polynomials. That is, the
 process of fitting a polynomial to a set of points uses essentially the same process
 as that used to fit a line.

 To demonstrate, I explain how you can approximate data with a cubic polynomial. You
 can express every cubic polynomial with the following equation:

 [image: images]

 Figure 6-2 illustrates how you can fit a cubic polynomial to a set of random points.

 [image: image]

 FIGURE 6-2: Statistical regression makes it possible to approximate data with a polynomial.

 The code in ch6/poly_regression.py uses TensorFlow to fit a cubic polynomial to a set of random points. If you compare
 this code to the code in ch6/lin_regression.py, you'll see that the two modules closely resemble one another. The most important
 difference involves the expression for the model, which is computed as follows:

 model = a * tf.pow(x, 3) + b * tf.pow(x, 2) + c * x + d

 To obtain an expression for the loss, the module uses the same mean-squared error
 process that was used for linear regression. (See the section “Linear Regression: Fitting Lines to Data.”) To minimize the loss, the module creates the same type of optimizer (GradientDescentOptimizer) used for linear regression. The code in Listing 6-2 shows how to do so.

 LISTING 6-2 Polynomial Regression

 # Random input values

 N = 40

 x = tf.random_normal([N])

 a_real = tf.truncated_normal([N], mean=3.)

 b_real = tf.truncated_normal([N], mean=-2.)

 c_real = tf.truncated_normal([N], mean=-1.)

 d_real = tf.truncated_normal([N], mean=1.)

 y = a_real * tf.pow(x, 3) + b_real * tf.pow(x, 2) + c_real * x + d_real

 # Variables

 a = tf.Variable(tf.random_normal([]))

 b = tf.Variable(tf.random_normal([]))

 c = tf.Variable(tf.random_normal([]))

 d = tf.Variable(tf.random_normal([]))

 # Compute model and loss

 model = a * tf.pow(x, 3) + b * tf.pow(x, 2) + c * x + d

 loss = tf.reduce_mean(tf.pow(model - y, 2))

 # Create optimizer

 learn_rate = 0.01

 num_epochs = 400

 num_batches = N

 optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss)

 # Initialize variables

 init = tf.global_variables_initializer()

 # Launch session

 with tf.Session() as sess:

 sess.run(init)

 # Perform training

 for epoch in range(num_epochs):

 for batch in range(num_batches):

 sess.run(optimizer)

 # Display results

 print('a = ', sess.run(a))

 print('b = ', sess.run(b))

 print('c = ', sess.run(c))

 print('d = ', sess.run(d))

 You can apply the methodology used in poly_regression.py to polynomials of any degree. All you need to do is set the model to the general
 polynomial and create a variable for each of the polynomial's coefficients.

 Binary Logistic Regression: Classifying Data into Two Categories

 While linear and polynomial regression are concerned with identifying trends, logistic
 regression is concerned with placing data points into categories. If Points A and
 B belong to Category X and Points P and Q belong to Category Y, what category will
 Point J belong to?

 The following sections look at systems with only two categories. Is the patient healthy
 or sick? Will the operation succeed or fail? This process of modeling systems with
 two categories is called binary logistic regression.

 Setting up the problem

 Binary logistic regression is concerned with testing the effect of one or more variables
 on a binary outcome. If patients take a new medication, will their symptoms disappear?
 If a candidate wears a red tie and blue pants on election day, will the public vote
 for that person?

 To demonstrate the process of binary logistic regression, this discussion focuses
 on a question of obvious importance: How does the volume of my alarm clock affect
 my getting out of bed in the morning? I'm such a heavy sleeper that if the alarm doesn't
 sound, I’ll lie in bed forever. But as the volume increases, the probability of me
 getting out of bed increases.

 To examine the relationship between the alarm volume and my getting out of bed, I
 set my alarm to ring a different volume every morning for 40 days. Figure 6-3 illustrates the relationship between the alarm volume and my getting out of bed.

 [image: image]

 FIGURE 6-3: As the volume increases, the chances of my waking up increase.

 To model this mathematically, statisticians represent each category with a number.
 In this example, I associate Category 1 (Get Out of Bed) with 1 and Category 0 (Stay
 Asleep) with 0.

 But I don't want the output to be limited to 0 and 1. I want a value between 0 and
 1 that identifies the probability of me getting out of bed. This concept is important
 to understand: When you code applications that perform classification, the theory
 of probability takes center stage. This discussion doesn’t provide a complete discussion
 of the subject, but I'll explain the math as it becomes necessary.

 It should be clear that linear and polynomial regression won’t help with this problem
 because their models produce values beyond 0 and 1. Also, straight lines and polynomials
 are too simplistic for practical classification.

 To classify data points, statisticians employ a different type of regression called
 logistic regression. Just as linear regression models systems with a line and polynomial regression uses
 a polynomial, logistic regression employs a type of curve called the logistic function.

 Defining models with the logistic function

 The logistic function plays a central role in applications that classify data points.
 Mathematicians express the logistic function with the following equation:

 [image: images]

 Figure 6-4 shows what the logistic function looks like for values of x between 8 and -8:

 [image: image]

 FIGURE 6-4: The result of the logistic function always lies between 0 and 1.

 This function is shaped like an S, and because sigma ([image: images]
) is the Greek letter for S, this function is commonly referred to as the sigmoid function, or [image: images]
 (x). This function has three properties that make it suitable for classifying points
 into one of two categories:

 	Its maximum value is 1, and the minimum value is 0.

 	[image: images]
 = 0.5, which implies that a data point in the center is equally likely to belong to
 both categories.

 	The function is symmetric around the y-axis — that is, [image: images]
 (-x) = 1 - [image: images]
 (x).

 Having selected the logistic function, you can approximate the system with the model
 function [image: images]
 . As with linear regression, the goal is to find values for m and b that bring the model as closely in line with real-world observation as possible.

 The next step is to find an expression for the loss. One possible method is to use
 the mean-squared error (see the earlier sections on linear and polynomial regression).
 But there's a problem. The slope of the sigmoid function is nearly 0 at its extremes,
 which means gradient descent method will take a great deal of time to minimize the
 loss.

 For this reason, applications that classify data points put aside mean-squared error
 and compute loss using a different method called maximum likelihood estimation.

 Computing loss with maximum likelihood estimation

 The goal of binary logistic regression is to obtain the sigmoid function that best
 approximates the available data. This function identifies the approximate probability
 of a point being classified in Category 1.

 But what about the probability of a point being classified in Category 0? There are
 only two categories, so if we denote the probability of Category 1 as [image: images]
 , the probability of Category 0 is 1 - [image: images]
 . For the sake of simplicity, I'll refer to the model function, [image: images]
 , as h(x).

 Here’s a strange but important question: If I know in advance whether I'm going to
 wake up or not, what is the probability that my alarm has rung at a specific volume?
 Denoting my sleeping/waking state as yi (y0 = 0, y1 = 1) and the alarm volume as x, you can express the relationship as follows:

 [image: images]

 This equation expresses the likelihood of yi, and given its significance in classification, you’ll want to be comfortable with
 it. Consider these two extreme cases:

 	If h(x) represents the system perfectly, h(x) will equal 1 when yi equals 1 and h(x) will equal 0 when yi equals 0. This means L(yi) will always equal 1.

 	If h(x) is always wrong, h(x) will always equal 0 when yi equals 1 and h(x) will always equal 1 when yi equals 0. This means L(yi) will always equal 0.

 In general, a likelihood function will produce a value somewhere between 0 and 1.
 The greater the likelihood, the more closely the model, h(x), resembles the system.
 The process of maximizing the likelihood is called maximum likelihood estimation. It should be clear that maximizing the likelihood minimizes the loss.

 To simplify computation, statisticians take the logarithm of the likelihood. After
 this step, the maximum likelihood estimation method is referred to as the log likelihood method.

 TensorFlow's optimizers work by minimizing loss. But when dealing with likelihood,
 the goal is to obtain greater values, not smaller values. To fix this issue, statisticians
 negate the expression for log likelihood. The resulting expression for the loss is
 given as follows:

 [image: images]

 This and similar expressions are commonly used in binary logistic regression. The
 following section demonstrates how the logistic function and log likelihood can be
 used in practical code.

 Putting theory into practice

 The code in ch6/binary_logistic.py uses TensorFlow to perform binary logistic regression. Listing 6-3 presents the code.

 LISTING 6-3 Binary Logistic Regression

 # Input values

 N = 40

 x = tf.lin_space(0., 5., N)

 y = tf.constant([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

 1., 0., 0., 1., 0., 0., 0., 1., 0., 0.,

 1., 0., 1., 1., 1., 1., 1., 1., 1., 1.,

 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

 # Variables

 m = tf.Variable(0.)

 b = tf.Variable(0.)

 # Compute model and loss

 model = tf.nn.sigmoid(tf.add(tf.multiply(x, m), b))

 loss = -1. * tf.reduce_sum(y * tf.log(model) + (1. - y) * (1. - tf.log(model)))

 # Create optimizer

 learn_rate = 0.005

 num_epochs = 350

 optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss)

 # Initialize variables

 init = tf.global_variables_initializer()

 # Launch session

 with tf.Session() as sess:

 sess.run(init)

 # Run optimizer

 for epoch in range(num_epochs):

 sess.run(optimizer)

 # Display results

 print('m =', sess.run(m))

 print('b =', sess.run(b))

 This module accepts the data points in Figure 6-3 as input and computes values of m and b that best fit the data to the model function [image: images]
 . Figure 6-5 depicts the computed model function superimposed over the training data.

 [image: image]

 FIGURE 6-5: After training, the sigmoid function approximates the experimental data.

 On my system, the computed values are m = 4 and b = -13.5. mx + b equals 0 when x
 = 3.375, so the center of the sigmoid function is reached when the volume is set to
 3.375.

 Multinomial Logistic Regression: Classifying Data into Multiple Categories

 Many machine learning applications need to classify points into more than two categories.
 This process is called multinomial logistic regression, and it resembles binary logistic
 regression in many respects. The primary difference is that it uses different functions
 to represent the model and loss.

 To present this topic, I explain how you can use TensorFlow to recognize handwriting
 samples from the Modified National Institute of Science and Technology (MNIST) dataset.
 Each image contains a handwritten digit that belongs to one of ten categories.

 The Modified National Institute of Science and Technology (MNIST) Dataset

 To test machine learning applications, the National Institute of Standards and Technology
 (NIST) compiled a set of handwriting samples of numbers between 0 and 9. Yann LeCun
 created a subset of NIST’s images called the Modified NIST (MNIST) database.

 Unlike NIST’s samples, MNIST’s samples all have the same size and are all centered
 into 28-x-28 images. Each pixel is given as an unsigned byte between 0 (white) and
 255 (black). Each image has a corresponding label that identifies the handwritten
 digit (0 through 9).

 To run the multinomial logistic regression example, you need to download the MNIST
 dataset from http://yann.lecun.com/exdb/mnist. Four files are available:

 	train-images-idx1-ubyte.gz — Training images

 	train-images-idx3-ubyte.gz — Training labels

 	t10k-labels-idx1-ubyte.gz — Test images

 	t10k-images-idx3-ubyte.gz — Test labels

 The training labels and test labels identify the digits written in the corresponding
 images. For example, the sixth label in the training dataset is 8. Figure 6-6 shows what the sixth image in the training dataset looks like.

 [image: image]

 FIGURE 6-6: Each MNIST image contains a handwritten digit in a 28-x-28 pixel array.

 If you decompress an MNIST file, you'll see that each file stores its data in a single
 data structure. Thankfully, you don’t need to know anything about these structures
 because TensorFlow makes accessing MNIST data easy. The function to know is read_data_sets, which is provided by the tensorflow.contrib.learn.datasets.mnist package:

 read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=dtypes.float32, reshape=True,
 validation_size=5000, seed=None)

 When this function executes, it searches for the four MNIST archives in the directory
 identified by the train_dir parameter. If any of the files can't be found, read_data_sets will download them, decompress them, and store them in the specified folder.

 To understand the other arguments of read_data_sets, it's important to be familiar with the function’s return value, which is an instance
 of the Datasets class. Each Datasets instance has three fields:

 	train — a Dataset containing the MNIST training data

 	validation — a Dataset containing validation data

 	test — a Dataset containing data to be used for testing

 Appropriately enough, each field of a Datasets instance is an instance of the Dataset class. Table 6-1 lists four members of this class and provides a description of each.

 TABLE 6-1 Members of the Dataset Class

 	

 Function

 	

 Description

 	

 images

 	

 ndarray of images given as numpy arrays

 	

 labels

 	

 ndarray of category names for the images

 	

 num_examples

 	

 The number of examples in the dataset

 	

 next_batch(batch_size, fake_data=False, shuffle=True)

 	

 Returns the next batch of images

 The first three fields are straightforward. The following code calls read_data_sets, and for each field, it prints the shape of the corresponding image array:

 import tensorflow.contrib.learn as learn

 dset = learn.datasets.mnist.read_data_sets('MNIST-data')

 print("Training images: ", dset.train.images.shape)

 print("Validation images: ", dset.validation.images.shape)

 print("Test images: ", dset.test.images.shape)

 On my system, the printed results are given as follows:

 Training images: (55000, 784)

 Validation images: (5000, 784)

 Test images: (10000, 784)

 If you set one_hot to True in read_data_sets, the labels field of the resulting Dataset will contain one-hot vectors. A one-hot vector is a one-dimensional array in which one element's value is high, and the rest are
 low. By default, the high value is 1, and the low value is 0. If the one_hot parameter is set to True, each label will be provided as a one-hot vector with ten elements: a 1 in the position
 that identifies the digit and a 0 in every other position.

 The next_batch method of the Dataset class provides MNIST data in batches. The first argument sets the size of each batch,
 the second argument identifies whether fake data should be generated, and the last
 argument indicates whether the MNIST data should be shuffled.

 Defining the model with the softmax function

 You can use the sigmoid function to classify points into two categories. (See the
 section “Defining models with the logistic function” for more information.) If a system (such as MNIST classification) has more than
 two categories, the sigmoid function won't be sufficient.

 Instead, statisticians use an operation that can accept an array of values and return
 an array of values. This is the softmax function, which extends the sigmoid function to multiple variables. The jth term of the softmax function is denoted by [image: images]
 , and if the input array contains N terms, you can compute the softmax function of
 xj with the following equation:

 [image: images]

 When using this function, you need to be aware of two points:

 	Each value in the output array lies between 0 and 1.

 	The sum of the values in the output array will always equal 1.

 In TensorFlow, you can perform the softmax operation by calling the softmax function in the tf.nn package:

 softmax(input, dim=-1, name=None)

 By default, every element of the input tensor is added together in the denominator
 of the softmax function. But if you set the dim parameter, only the values in the specified dimension will be included in the sum.

 An example will clarify how this function works. If the input tensor is [3.2, -2.6,
 1.7, 0.0, 4.9], calling softmax will return a 5-element tensor equal to [0.14835, 0.00045, 0.03310, 0.00605, 0.81205].
 You can compute the first softmax value in the following way:

 [image: images]

 Each of the N values identifies the probability of the data point belonging to the
 corresponding category. The probability of the point belonging to Category 0 is 0.14835.

 Computing loss with cross entropy

 If h(x) is a model and yi identifies a category, you can compute the likelihood of yi for a given value of x in the following way:

 [image: images]

 The concept of likelihood can be extended to systems with more than two outcomes.
 If a classifier has to choose between N categories, yi can take any value between 0 and N-1. If the model is given as h(x), you can express
 the likelihood with the following equation:

 [image: images]

 Again, the likelihood will equal 1 if h(x) is always right, and it will equal 0 if
 h(x) is always wrong. To convert the likelihood into a suitable loss function, statisticians
 take the negative logarithm and arrive at the following expression:

 [image: images]

 In machine learning literature, this result is referred to as cross entropy. This term comes from information theory, and it refers to the usage of logarithms
 to determine how many bits should be used to represent messages. The following code
 defines a model by calling tf.nn.softmax and then computes the loss using cross entropy.

 model = tf.nn.softmax(tf.matmul(x, m) + b)

 loss = tf.reduce_mean(-tf.reduce_sum(y * tf.log(model))

 For improved performance, TensorFlow provides a function that combines the softmax
 function and cross entropy. This function is tf.nn.softmax_cross_entropy_with_logits and its signature is given as follows:

 softmax_cross_entropy_with_logits(labels=None, logits=None, dim=-1, name=None)

 You must identify each argument passed to this function by name. logits is set to the tensor that would be passed to softmax, and labels is set to a tensor containing the associated labels. logits and labels must have the same size.

 TensorFlow also provides a function that combines the sigmoid function and cross entropy:
 sigmoid_cross_entropy_with_logits. Its signature is given as follows:

 sigmoid_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, name=None)

 labels and logits accept the same values as the corresponding arguments of softmax_cross_entropy_with_logits.

 Putting theory into practice

 The code in ch6/multi_regression.py demonstrates how you can use multinomial regression to load and classify images from
 the MNIST dataset. Listing 6-4 presents the code.

 LISTING 6-4 Multinomial Logistic Regression

 # Read MNIST data

 dataset = learn.datasets.mnist.read_data_sets('MNIST-data', one_hot=True)

 # Placeholders for MNIST images

 image_holder = tf.placeholder(tf.float32, [None, 784])

 label_holder = tf.placeholder(tf.float32, [None, 10])

 # Variables

 m = tf.Variable(tf.zeros([784, 10]))

 b = tf.Variable(tf.zeros([10]))

 # Compute loss

 loss = tf.reduce_mean(

 tf.nn.softmax_cross_entropy_with_logits(

 logits=tf.matmul(image_holder, m) + b, labels=label_holder))

 # Create optimizer

 learning_rate = 0.01

 num_epochs = 25

 batch_size = 100

 num_batches = int(dataset.train.num_examples/batch_size)

 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

 # Initialize variables

 init = tf.global_variables_initializer()

 # Launch session

 with tf.Session() as sess:

 sess.run(init)

 # Loop over epochs

 for epoch in range(num_epochs):

 # Loop over batches

 for batch in range(num_batches):

 image_batch, label_batch = dataset.train.next_batch(batch_size)

 _, lossVal = sess.run([optimizer, loss],

 feed_dict={image_holder: image_batch, label_holder: label_batch})

 # Display the final loss

 print('Final loss: ', lossVal)

 Instead of computing the model, this code computes the loss directly by calling softmax_cross_entropy_with_logits. The last line of the code prints the final value for the loss.

 Chapter 7

 Introducing Neural Networks and Deep Learning

 IN THIS CHAPTER

 [image: check] Exploring the development of neural networks

 [image: check] Looking at perceptrons, multilayer perceptrons (MLPs), and deep learning

 [image: check] Managing variables with scope

 [image: check] Demonstrating deep learning in a TensorFlow application

 This chapter explains how neural networks operate and how to use them to analyze data
 in TensorFlow applications.

 From Neurons to Perceptrons

 For many, the topic of neural networks conjures visions of artificial brains, omniscient
 computers that predict the future, and other fixtures of science fiction. But practitioners
 of machine learning take a more down-to-earth view: Neural networks are useful computational
 tools, but they’re not ideal for every application, and they’re never completely reliable.

 Biology inspired the development of neural networks, but their essential operation
 is statistical in nature. Neural networks analyze data to discover mathematical relationships between inputs and outputs. They
 should only be used as a last resort — if you already have clear rules that relate
 outputs to input data, you should use your rules instead.

 It’s important to see the difference between the operation of a neural network and
 statistical regression. When you use regression, you choose the precise shape of the
 model. But when you analyze data with a neural network, you choose a general shape
 for the model, and the network determines the details.

 In my opinion, the best way to approach the topic of artificial neural networks is
 to see how they relate to biological neurons. This section explores the basic structure
 of neurons and then proceeds to perceptrons, which serve as mathematical abstractions
 of neurons.

 Neurons

 In the early 19th century, Santiago Ramón y Cajal took a close look at the cells that
 make up nerve tissue. Scientists refer to these nerve cells as neurons, and Figure 7-1 illustrates their basic structure.

 [image: image]

 FIGURE 7-1: A nerve cell receives incoming signals through its dendrites and generates an outgoing
 signal that travels through the axon.

 A neuron receives electrical stimulation through its dendrites and their branches. The chemicals in the cell body store electricity, and as incoming
 signals grow in strength, the neuron’s voltage increases.

 When the voltage in a neuron exceeds a certain value, called the threshold, the neuron transmits (or fires) an electrical signal. This signal travels through the axon and stimulates further
 neurons, as shown in Figure 7-1. In this manner, one neuron’s firing may cause a series of other neurons to fire.

 The study of neurons has progressed dramatically since the 19th century, and neurologists know that neurons do far more than just pass electricity
 from one cell to another. But for this chapter, you need to be familiar with only
 three points:

 	A neuron receives one or more incoming signals and produces one outgoing signal.

 	A neuron’s output can serve as the input of another neuron.

 	Every neuron has a threshold, and the neuron won’t produce output until its electricity
 exceeds the threshold.

 If you understand these three points, you’ll have no trouble grasping the abstract
 models of neurons.

 Perceptrons

 In 1962, Frank Rosenblatt devised a model for the neuron called the perceptron. Figure 7-2 shows how a perceptron can be represented graphically.

 [image: image]

 FIGURE 7-2: Perceptrons resemble neurons in many respects.

 Like a neuron, a perceptron receives multiple inputs and produces one output. But
 a perceptron’s inputs are provided as numeric values instead of electrical pulses.
 In Figure 7-2, these values are denoted x0 through x3.

 Similarly, the perceptron’s threshold value is represented by a number. If the sum
 of the inputs exceeds the threshold, the perceptron’s output will be 1. If the sum
 of the signals falls below the threshold, the output will be 0.

 For example, suppose that x0 is set to 0.5, x1 is set to 1.5, x2 is set to 2.5, and x3 is set to -1.0. The sum of the signals is 3.5. If the perceptron’s threshold value
 is 3.0, the perceptron will produce an output of 1. If the threshold value is 4.0,
 the perceptron will produce an output of 0.

 Denoting the inputs as xi and the output as y, a perceptron’s output can be determined by the following relationship:

 [image: images]

 Like biological neurons, perceptrons can be connected together so that the output
 of one perceptron serves as the input of another. Figure 7-3 shows what this looks like. As shown, different perceptrons can have different numbers
 of inputs, but each always produces one output.

 [image: image]

 FIGURE 7-3: Perceptrons can be combined together in a tree-like structure.

 Historians and academics may find these simple perceptrons interesting, but in this
 primitive form, they can’t be used for practical machine learning. This is because
 the perceptron’s operation is static — its behavior can’t be improved through training.

 Improving the Model

 After Rosenblatt published his initial vision of the perceptron, computer scientists
 updated his model in many ways. Three important changes are as follows:

 	Each incoming signal is assigned a weight that indicates its influence.

 	Instead of a threshold value, a constant called a bias is added to the incoming signals.

 	The sum of weighted inputs is passed to an activation function that determines the
 output.

 These changes make neural networks suitable for machine learning. Modern developers
 refer to the elements of these networks as nodes instead of perceptrons.

 Weights

 In Figures 7-2 and 7-3, every input has equal influence in determining the output. But in a practical system,
 some inputs will have more influence than others on the decision-making process. In
 addition, some signals may have a negative influence on the outcome.

 To reflect this unequal influence, computer scientists multiply each input by a value
 called a weight. Graphically, weights are represented by numbers associated with incoming connections.
 Figure 7-4 shows what a node looks like with weighted inputs.

 [image: image]

 FIGURE 7-4: Each input entering a node has an associated weight.

 To determine the total effect of the inputs, a node multiplies each input by its weight
 and adds the products together. Then it compares the sum to its threshold. If the
 sum is greater than the threshold, the node produces an output value equal to 1. If
 not, the output value is 0.

 Mathematically, weights are denoted as wi, where i represents the weight of the ith input. Therefore, a node’s operation can be expressed in the following relationship:

 [image: images]

 For example, suppose that xi = {3.5, -1.0, 2.5, -0.5} and wi = {0.6, 1.2, 0.9, -0.2}. The sum of the weighted inputs can be computed as follows:

 [image: images]

 If the perceptron’s threshold value is 4.0, the node will produce an output of 0 instead
 of 1.

 Weights play a vital role in machine learning because they enable an application to
 update the neural network’s behavior. As an application performs training, it updates
 the weights to improve the model.

 Bias

 A node fires when the weighted sum of its inputs exceeds a given threshold. Put another
 way, it produces positive output when the difference of the weighted sum and the threshold
 is greater than zero.

 Rather than deal with the threshold, developers frequently replace it with a constant
 input called a bias. Figure 7-5 shows what a simple neural network looks like with an added bias.

 [image: image]

 FIGURE 7-5: This node has a constant input called the bias.

 The bias receives a weight just like every other input. For this reason, it makes
 sense to set the bias’s value to 1, which is why the lowest node on the left is given
 as +1.

 This book assumes that every perceptron has a bias, which is the same as saying that
 the threshold value equals zero. When I use terms like inputs or input data, you should assume that a bias value is included. Therefore, a perceptron produces
 a positive output when the weighted sum of its inputs is greater than zero.

 Activation functions

 You can compute a node’s output with the following relationship:

 [image: images]

 The following equation expresses the same relationship using a more compact notation:

 [image: images]

 Here, u(x) is called the unit step function. It returns 1 if its input is greater than 0 and returns 0 otherwise.

 The unit step function is simple to understand, but it’s not practical for machine
 learning. Computer scientists have devised many more suitable functions for producing
 a perceptron’s output, and they’re called activation functions.

 A node’s activation function accepts the weighted sum of the node’s inputs and produces
 a single output value. In TensorFlow, an activation function accepts a tensor of values
 and returns a tensor containing output values. Table 7-1 lists seven of the activation functions supported by TensorFlow.

 TABLE 7-1 Activation Functions

 	

 Activation Function

 	

 Description

 	

 tf.nn.relu(input, name=None)

 	

 Returns the input value if positive, returns 0 otherwise

 	

 tf.nn.relu6(input, name=None)

 	

 Returns the input value if positive, up to a maximum of 6. Returns 0 otherwise

 	

 tf.nn.crelu(input, name=None)

 	

 Returns a concatenated tensor that separates the positive and negative portions of
 the input

 	

 tf.nn.elu(input, name=None)

 	

 Returns the input value if positive, returns the exponential of the input otherwise

 	

 tf.nn.sigmoid(input, name=None)

 	

 Returns 1/(1 + exp(-x))

 	

 tf.nn.tanh(input, name=None)

 	

 Returns tanh(x)

 	

 tf.nn.softsign(input, name=None)

 	

 Returns x/(abs(x) + 1)

 I like to divide these functions into two categories: rectifiers and classifiers.
 The distinction is simple: If a node's output identifies a category, set its activation
 function to a classifier. Otherwise, set the node’s activation function to a rectifier.

 Rectifier functions

 In an electrical circuit, a rectifier accepts an input signal and transmits an equal
 output signal if the input is positive. If the input signal is negative, the rectifier
 transmits an output of zero.

 The rectified linear unit function, or ReLU, performs a similar operation. It returns
 the input if it’s positive and returns 0 otherwise. Put another way, the ReLU function
 returns the maximum of the input and 0.

 In TensorFlow, applications can perform ReLU operations by calling tf.nn.relu. Figure 7-6 illustrates the function’s output over a range of input values.

 [image: image]

 FIGURE 7-6: The rectified linear unit function (ReLU) only passes positive values.

 tf.nn.relu6 is similar to tf.nn.relu, but limits the maximum output to 6. This limitation reduces the likelihood of a
 node overreacting to large inputs. Figure 7-7 illustrates the behavior of tf.nn.relu6.

 [image: image]

 FIGURE 7-7: The tf.nn.relu6 function clamps the node's maximum output to 6.

 tf.nn.crelu (Concatenated ReLU) produces an output tensor that is twice the size of the input
 tensor. The first half of the output contains a regular ReLU result (zero or positive
 input). The second half focuses on the negative part of the input (negative input
 or zero).

 The ELU in tf.nn.elu stands for Exponential Linear Unit. This activation function returns the input value if it's greater than zero. If the
 input is zero or less, tf.nn.elu returns the exponential of the input minus one. Figure 7-8 shows what this looks like:

 [image: image]

 FIGURE 7-8: The Exponential Linear Unit (ELU) function proceeds continuously from positive to
 negative values.

 Unlike other rectifier functions, ELU is continuous at x = 0. According to Djork-Arné
 Clevert, Thomas Unterthiner, and Sepp Hochreiter at Johannes Kepler University, ELU
 provides faster learning than the regular ReLU function and better generalization.

 Classifier functions

 Chapter 6 discusses the topic of logistic regression and introduces the logistic function,
 better known as the sigmoid function. This function, which computes 1/(1 + exp(-x)),
 has a number of helpful properties that make it suitable for classifying points into
 categories. Figure 7-9 shows what tf.nn.sigmoid looks like.

 [image: image]

 FIGURE 7-9: The sigmoid function is frequently employed to represent classification probability.

 Though popular, the sigmoid function has one significant shortcoming: Its output ranges
 from 0 to 1. Because of this limited range, small changes in the input produce small
 changes in the output. In many cases, the differences in output may be too small for
 digital computers to recognize.

 To make up for this shortcoming, many developers prefer the tf.nn.tanh activation function, which computes the hyperbolic tangent (tanh). This function
 has a similar shape to the sigmoid function, but ranges from -1 to 1. This means that
 computers will be better able to recognize differences in output. Figure 7-10 shows what the tf.nn.tanh activation function looks like.

 [image: image]

 FIGURE 7-10: The tanh function resembles the sigmoid function, but produces output between -1
 and 1.

 In 2009, James Bergstra, Guillaume Desjardins, Pascal Lamblin, and Yoshua Bengio introduced
 the softsign function, which outperformed tanh in most of their tests. They defined the softsign function
 in the following way:

 [image: images]

 Figure 7-11 shows the softsign function for values of x between -8 and 8.

 [image: image]

 FIGURE 7-11: The softsign function resembles tanh, but has a larger gradient throughout most of
 its domain.

 The gradient of the softsign function exceeds that of tanh throughout most of its
 domain. The larger gradient makes minor changes to the input easier to recognize.

 Layers and Deep Learning

 Individual nodes are too primitive to serve a useful purpose, but when you combine
 them into networks, you can create sophisticated tools for machine learning. This
 section explains how you can connect these nodes and explores the properties of the
 resulting neural networks.

 Layers

 The columns of a neural network are referred to as layers, and for this reason, neural networks are frequently called multilayer perceptrons
 (MLPs). Every neural net has at least two layers, and Figure 7-12 depicts an MLP with four.

 [image: image]

 FIGURE 7-12: The neural network has four layers, and each layer has three nodes.

 The layers of a neural network have specific names. The first layer, which provides
 input values, is called the input layer. The last layer, which provides output values, is called the output layer. The layers between the input layer and output layer are called hidden layers. Layers are numbered from left to right, starting with 0.

 A layer is considered dense or fully connected if each of its nodes is connected to each node in the next layer. Every layer in
 Figure 7-12 is dense.

 Each node in a hidden layer is denoted [image: images]
 , where x identifies the number of the layer and y identifies the index of the node in the layer. For example, [image: images]
 identifies the second node in the third layer.

 You can determine the output of each hidden node using the same methods discussed
 in the “Improving the Model” section. For example, if func is the activation function, the following equations compute the output of node [image: images]
 and [image: images]
 :

 [image: images]

 Each weight in the network requires three values to uniquely identify it. Denoting
 a weight as [image: images]
 , you can determine its position in the network as follows:

 	x identifies the layer containing the node producing the weighted signal.

 	y identifies the index of the node producing the signal to be weighted.

 	z identifies the index of the node receiving the signal.

 For example, [image: images]
 identifies a weight in the third layer (2). The weight applies to the signal leaving
 the first node (0) and entering the second node (1).

 Deep learning

 As you add more hidden layers to a network, it becomes capable of more sophisticated
 detection and classification. When an application uses a network with multiple hidden
 layers, it's making use of deep learning.

 Deep learning has proven effective in many applications. Two famous examples include
 Google’s AlphaGo program, which uses deep learning to beat professional Go players,
 and Google’s 2012 demonstration of an application that recognized cat videos on YouTube.

 Adding hidden layers to a network has two drawbacks. First, each hidden layer increases
 the amount of time needed to train the network. Second, each new hidden layer increases
 the chances of overfitting, which I discuss in the “Tuning the Neural Network” section.

 Training with Backpropagation

 As I discuss in Chapter 5, training updates your model so that it resembles the experimental data. The mathematical
 model represented by a neural network depends on the arrangement of the networks’
 nodes and their activation functions. To better understand this concept, consider
 the network in Figure 7-13.

 [image: image]

 FIGURE 7-13: Every neural network represents a mathematical relationship.

 Denoting the activation functions as f0, f1, and f2, the neural network in Figure 7-13 represents the following mathematical relationship:

 [image: images]

 The goal of training is to find the weights that bring y(xi) as close as possible to the observed data. Put another way, the goal is to minimize
 the difference between y(xi) and the observed data. As discussed in Chapters 5 and 6, this difference is called the loss, and one popular method of computing the loss
 is called the mean squared error (MSE).

 If you set y(xi) equal to a simple line or polynomial, you can easily compute the loss and pass its
 operation to an optimizer, such as the GradientDescentOptimizer. Chapter 5 covers the different optimization algorithms and their corresponding TensorFlow classes.

 A neural network’s model is more complicated, so the loss isn’t as easy to compute.
 But in 1974, Paul Werbos was the first person to optimize the weights of a neural
 network using a method called backpropagation. Researchers have devised other algorithms for training neural networks since then,
 but because of its simplicity and speed, backpropagation remains the most popular
 method.

 In essence, backpropagation extends the optimization algorithms from Chapter 5 to apply to neural networks. The general process involves six steps:

 	Initialize the network’s weights.

 	

 For the set of inputs xi, compute y(xi).

 This computation is called forward propagation.

 	For the set of inputs xi, determine the loss.

 	For each weight, compute the partial derivative of the loss with respect to the weight.

 	Using the partial derivatives computed in Step 4, update each weight in the network.

 	Return to Step 2 and continue until the partial derivatives of the loss approach zero.

 To see how backpropagation computes partial derivatives, it helps to understand the
 chain rule of calculus. If p(x) = f(g(x)), you can express the derivative of p(x)
 in the following way:

 [image: images]

 Backpropagation extends the chain rule to partial derivatives and derivatives involving
 sums of functions. In this manner, the algorithm determines the partial derivative
 of the loss with respect to each weight in the network.

 Thankfully, you don’t need to worry about partial derivatives or the chain rule because
 TensorFlow performs backpropagation automatically. But you do need to create the optimizer
 that backpropagation will employ to update the network’s weights.

 Implementing Deep Learning

 After you have a solid grasp of nodes, weights, and the general structure of neural
 networks, you’re ready to see how a practical application combines these elements
 in code. The ch7/deep_learning.py module demonstrates how you can use TensorFlow to implement deep learning.

 Like the ch6/multi_regression.py module, ch7/deep_learning.py loads and classifies images from the MNIST dataset. But instead of using logistic
 regression, the module creates a neural network made up of fully connected layers.
 Listing 7-1 presents the code.

 LISTING 7-1 Classifying Images with Deep Learning

 # Read MNIST data

 dataset = learn.datasets.mnist.read_data_sets('MNIST-data', one_hot=True)

 # Placeholders for MNIST images

 img_holder = tf.placeholder(tf.float32, [None, 784])

 lbl_holder = tf.placeholder(tf.float32, [None, 10])

 # Layer settings

 hid_nodes = 200

 out_nodes = 10

 # Define weights

 w0 = tf.Variable(tf.random_normal([784, hid_nodes]))

 w1 = tf.Variable(tf.random_normal([hid_nodes, hid_nodes]))

 w2 = tf.Variable(tf.random_normal([hid_nodes, hid_nodes]))

 w3 = tf.Variable(tf.random_normal([hid_nodes, out_nodes]))

 # Define biases

 b0 = tf.Variable(tf.random_normal([hid_nodes]))

 b1 = tf.Variable(tf.random_normal([hid_nodes]))

 b2 = tf.Variable(tf.random_normal([hid_nodes]))

 b3 = tf.Variable(tf.random_normal([out_nodes]))

 # Create layers

 layer_1 = tf.add(tf.matmul(img_holder, w0), b0)

 layer_1 = tf.nn.relu(layer_1)

 layer_2 = tf.add(tf.matmul(layer_1, w1), b1)

 layer_2 = tf.nn.relu(layer_2)

 layer_3 = tf.add(tf.matmul(layer_2, w2), b2)

 layer_3 = tf.nn.relu(layer_3)

 out_layer = tf.matmul(layer_3, w3) + b3

 # Compute loss

 loss = tf.reduce_mean(

 tf.nn.softmax_cross_entropy_with_logits(

 logits=out_layer, labels=lbl_holder))

 # Create optimizer

 learning_rate = 0.01

 num_epochs = 15

 batch_size = 100

 num_batches = int(dataset.train.num_examples/batch_size)

 optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

 # Initialize variables

 init = tf.global_variables_initializer()

 # Launch session

 with tf.Session() as sess:

 sess.run(init)

 # Loop over epochs

 for epoch in range(num_epochs):

 # Loop over batches

 for batch in range(num_batches):

 img_batch, lbl_batch = dataset.train.next_batch(batch_size)

 sess.run(optimizer, feed_dict={img_holder: img_batch,

 lbl_holder: lbl_batch})

 # Determine success rate

 prediction = tf.equal(tf.argmax(out_layer, 1), tf.argmax(lbl_holder, 1))

 success = tf.reduce_mean(tf.cast(prediction, tf.float32))

 print('Success rate: ', sess.run(success,

 feed_dict={img_holder: dataset.test.images,

 lbl_holder: dataset.test.labels}))

 This application creates weights (wi) and biases (bi) by calling tf.Variable. Then it multiplies the input values by the weights and adds the biases. Each of
 the three hidden layers rectifies its output by calling tf.nn.relu.

 The final layer (out_layer) performs similar multiplication and addition, but instead of calling tf.nn.relu, it passes its output to tf.nn.softmax_cross_entropy_with_logits. The module uses this output to select one of the ten output categories for MNIST
 images.

 Tuning the Neural Network

 The neural network in the preceding section is fine for demonstration, but it's not
 suitable for professional applications. To improve the accuracy and processing speed of their applications, professional developers use special routines that are
 collectively referred to as tuning. I like to call them the four “zations”:

 	Input standardization: Preprocesses input data to statistically resemble training data

 	Weight initialization: Obtains suitable values for initial weights

 	Batch normalization: Processes data before the activation function to reduce the likelihood of saturation

 	Regularization: Reduces the likelihood of overfitting

 Most developers agree that neural networks require some measure of tuning, but few
 agree on the best procedure. Rather than take sides, I focus on explaining how you
 can perform operations in TensorFlow applications.

 Input standardization

 A machine learning application should be able to analyze data it has never seen. But
 even if incoming data is completely new, it should have the same mean and standard
 deviation as the application’s training data. This consistency ensures that the application
 won’t be confused from one data set to the next.

 For this reason, developers frequently transform input data to set the mean equal
 to 0 and the standard deviation equal to 1. This operation is called standardization, and TensorFlow’s tf.nn package provides two functions that assist with standardization: moments and batch_normalization.

 moments returns a tuple containing the mean and variance of the elements in a tensor's axis.
 Its signature is given as follows:

 moments(x, axes, shift=None, name=None, keep_dims=False)

 To set the mean and variance, assign x to the tensor to be analyzed and axes to an array of integers that identify the tensor's axes. If you set keep_dims to True, the returned mean and variance will have the same dimensionality as the input tensor.

 batch_normalization accepts a tensor's mean and variance and standardizes the tensor’s elements. Its
 signature is given as follows:

 batch_normalization(x, mean, variance, offset, scale, variance_epsilon, name=None)

 The offset parameter adds a constant to each value in the tensor, and scale multiplies each value by a constant. variance_epsilon identifies a value to be added to the denominator to ensure that TensorFlow doesn't
 divide by zero. Applications frequently set offset to 0.0, scale to 1.0, and variance_epsilon to 0.0001.

 For example, the following code calls moments to obtain the mean and variance of a tensor. Then it calls batch_normalization to obtain a new tensor with standardized data:

 input_data = tf.constant([1., 3., 5., 7., 9.])

 stat_mean, stat_var = tf.nn.moments(input_data, 0)

 standard_data = tf.nn.batch_normalization(input_data, stat_mean, stat_var, 0., 1.,
 0.0001, name=None)

 This sets standard_data to [-1.4142, -0.7071, 0.0, 0.7071, 1.4142]. This tensor has a mean of 0 and a standard
 deviation of 1.

 Weight initialization

 When I started coding neural networks, I didn't give any thought to initializing weights
 — I just set them equal to small, random values. Researchers have analyzed this topic
 in detail and the following research papers present their results:

 	1998: “Efficient BackProp” by Yann Lecunn, Leon Bottou, Genevieve Orr, and Klaus-Robert
 Muller

 	2010: “Understanding the Difficulty of Training Deep Feedforward Neural Networks”
 by Xavier Glorot and Yoshua Bengio

 	2015: “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
 Classification” by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun

 Each of these papers presents a different methodology for initializing the weights
 of a neural network. TensorFlow supports these methodologies by providing functions
 of the tf.contrib.keras.initializers package. Each function is named after the chief researcher of the corresponding method,
 and Table 7-2 lists five of the available functions.

 TABLE 7-2 Weight Initialization Functions

 	

 Function

 	

 Description

 	

 lecun_uniform(seed=None)

 	

 Returns uniformly distributed values between -sqrt(3/insize) and sqrt(3/insize)

 	

 glorot_uniform(seed=None)

 	

 Returns uniformly distributed values between -sqrt(6/(insize+outsize)) and sqrt(6/(insize+outsize))

 	

 glorot_normal(seed=None)

 	

 Returns normally distributed values with a standard deviation of sqrt(2/(insize+outsize))

 	

 he_uniform(seed=None)

 	

 Returns uniformly distributed values between -sqrt(6/insize) and sqrt(6/insize)

 	

 he_normal(seed=None)

 	

 Returns normally distributed values with a standard deviation of sqrt(2/insize)

 In Table 7-2's descriptions, insize and outsize refer to the sizes of the neural network's layers. That is, insize is the number of nodes in the layer providing the weights, and outsize is the number of nodes in the layer receiving the weights.

 Each of these functions accepts a seed that initializes the random number generator. Each function returns an Initializer whose __call__ method accepts the shape of the random weights and returns the weights in an ndarray.

 For example, the following code initializes an array of four normally distributed
 weights using lecun_uniform:

 import time

 init = tf.contrib.keras.initializers.lecun_uniform(time.time())

 weights = init([4])

 with tf.Session() as sess:

 result = sess.run(weights)

 print(result) # Prints the ndarray containing weight values

 In addition to the functions listed in Table 7-2, TensorFlow provides the xavier_initializer function in the tf.contrib.layers package:

 xavier_initializer(uniform=True, seed=None, dtype=tf.float32)

 When uniform is set to True, this function generates weights using the same method as the glorot_uniform function. When uniform is set to False, it generates weights using the same method as glorot_normal.

 Batch normalization

 In 2015, Sergey Ioffe and Christian Szegedy wrote an influential research paper that
 addresses the problem of saturation, which occurs when a node's activation function reaches an extreme value. Saturation is a major issue for functions like
 the sigmoid and tanh, whose slopes approach zero at their extremes. If the node’s
 optimizer uses some form of gradient descent, the small slope will lead to slow training.

 Another problem is that a small change to a saturated node’s input will produce a
 small change to the output. The output change may be so small that the application
 can’t perceive it.

 To reduce the likelihood of saturation, Ioffe and Szegedy recommend fixing the mean
 and variance of each layer’s input. This process is similar to the input standardization
 process, but it affects every layer of the network, not just the first.

 Unfortunately, normalizing a layer’s input limits the layer’s flexibility. To remedy
 this issue, Ioffe and Szegedy recommend computing the mean and variance of each batch
 and normalizing the values of each batch independently. This process is called batch normalization (BN).

 Batch normalization behaves differently depending on whether it’s used during training
 or testing. During training, BN computes the mean and variance for each batch and
 uses the results to compute a scaling factor (gamma) and a shifting factor (beta).
 The following equations illustrate how BN computes and uses these values:

 [image: images]

 BN uses the mean and variance of individual batches to estimate the mean and variance
 of the entire population. TensorFlow computes the population’s mean using a moving
 average and computes the population’s variance using a moving variance. During testing,
 BN scales and shifts input values using the population mean and variance instead of
 the batch mean and variance.

 To implement batch normalization in code, TensorFlow provides tf.contrib.layers.batch_norm. Table 7-3 lists its parameters and presents a description of each.

 TABLE 7-3 Parameters of tf.contrib.layers.batch_norm

 	

 Parameter

 	

 Default

 	

 Description

 	

 inputs

 	

 --

 	

 Tensor of input values to be normalized

 	

 decay

 	

 0.999

 	

 Multiplication constant used to compute the moving mean and variance

 	

 center

 	

 True

 	

 Whether beta should be added to the normalized tensor

 	

 scale

 	

 False

 	

 Whether the normalized tensor should be scaled by gamma

 	

 epsilon

 	

 0.001

 	

 Factor to prevent division by zero

 	

 activation_fn

 	

 None

 	

 Activation function

 	

 param_initializers

 	

 None

 	

 Initializers for beta, gamma, the moving mean, and the moving variance

 	

 param_regularizers

 	

 None

 	

 Regularizers for beta and gamma

 	

 updates_collections

 	

 tf.GraphKeys. UPDATE_OPS

 	

 One or more collections to hold the normalization operations

 	

 is_training

 	

 True

 	

 Whether the normalization should update the moving mean and moving variance

 	

 reuse

 	

 None

 	

 Whether variables can be reused

 	

 variables_collections

 	

 None

 	

 Collections to store the normalization variables

 	

 outputs_collections

 	

 None

 	

 Collections to store the normalization outputs

 	

 trainable

 	

 True

 	

 Whether to add normalization variables to the graph's trainable collection

 	

 batch_weights

 	

 None

 	

 Weights to scale the batch mean and variance

 	

 fused

 	

 False

 	

 Whether to use fused normalization (faster)

 	

 data_format

 	

 DATA_FORMAT_NHWC

 	

 Format of the input data

 	

 zero_debias_moving_mean

 	

 False

 	

 Factor for updating the moving mean

 	

 scope

 	

 None

 	

 Scope to contain normalized variables

 	

 renorm

 	

 False

 	

 Whether to use extra variables during normalization

 	

 renorm_clipping

 	

 None

 	

 Dictionary that provides values for renormalization

 	

 renorm_decay

 	

 0.99

 	

 Factor to update moving mean/variance during renormalization

 TensorFlow uses the decay parameter to compute the population's mean and variance. The following equations
 show how the computation is performed:

 [image: images]

 The center and scale parameters determine whether the values of the inputs parameter should be shifted
 and scaled. The function will shift the input values if center is True and will scale the input values if scale is True.

 It's important to see the difference between is_training and trainable. Setting is_training to True tells the function that the normalization is being performed during a training run,
 which means it should update the population's mean and variance. Setting trainable to True tells the function to store its normalization variables in the graph collection represented
 by the TRAINABLE_VARIABLES key.

 The last three parameters of batch_norm relate to renormalization. This process improves normalization when an application's batches are small or dependent
 on one another.

 Regularization

 One of the most difficult tasks in machine learning involves finding the right structure
 for a neural network. If you add too few nodes, your network will be too simple to
 classify data accurately. This is called underfitting.

 If you add too many nodes, your network will tailor itself specifically for your training
 set and will be unsuitable for analyzing general data. This problem is called overfitting, and it’s a serious issue in machine learning.

 The process of updating a neural network (or other machine learning algorithm) to
 analyze general data is called regularization. Researchers have devised many methods for regularizing networks, and this section
 focuses on two:

 	Dropout: Randomly removes nodes from the network

 	L1/L2 regularization: Reduces weights by increasing the loss

 For both methods, I explain how the regularization works and how you can perform it
 using TensorFlow.

 Dropout

 The dropout process randomly removes one or more nodes from a network. For each node
 removed, dropout removes the node’s incoming and outgoing connections and their weights.

 In TensorFlow, you can configure dropout for a neural network by adding a dropout
 layer. Adding this layer involves calling the tf.nn.dropout function:

 dropout(x, keep_prob, noise_shape=None, seed=None, name=None)

 In this function, x is the tensor containing values from the preceding layer, and keep_prob is a scalar with the same type as x. The function returns a tensor with the same size as x.

 dropout sets each of its output values to 0 or 1/keep_prob times the corresponding input value. More precisely, dropout sets an output value to 0 with a probability of 1-keep_prob and sets the output value to 1/keep_prob times the input value with a probability of keep_prob.

 L1/L2 regularization

 L1 and L2 regularization prevent overfitting by reducing the network's weights. Both
 methods increase the loss by a value that depends on two factors: the network’s weights
 and a constant denoted λ.

 L1 regularization increases the loss by λ multiplied by the absolute value of the
 weight to be updated. Therefore, when the algorithm updates the weight w0 through backpropagation, it adds a value to the loss equal to λ|w0|.

 L2 regularization increases the loss by λ/2 multiplied by the square of the weight
 to be updated. Therefore, when the algorithm updates w0, it adds λ|w0|2/2 to the loss.

 In both cases, the loss increases when the weights increase and decreases when the
 weights decrease. Therefore, the regularization process tends to reduce non-essential
 weights to zero, thereby simplifying the model and (hopefully) avoiding overfitting.

 To perform L1/L2 regularization in TensorFlow, you can call tf.contrib.layers.l1_regularizer or tf.contrib.layers.l2_regularizer:

 	l1_regularizer(lambda, scope=None): Returns a function that performs L1 regularization

 	l2_regularizer(lambda, scope=None): Returns a function that performs L2 regularization

 These functions return special functions called regularizers. After you've obtained a regularizer, you can regularize a set of weights by calling
 tf.contrib.layers.apply_regularization:

 apply_regularization(regularizer, weights_list=None)

 Many TensorFlow functions accept regularizers as arguments. One important function
 is tf.contrib.layers.fully_connected, which I discuss in the “Improving the Deep Learning Process” section.

 Managing Variables with Scope

 When building applications with neural networks, keeping track of weights is a major
 priority. Hidden layers accept weighted inputs and produce weighted outputs. Without
 proper management, it's easy for the names of one layer’s weights to clash with the
 names of another layer’s weights.

 Variable scope

 In deep learning applications, layers frequently assign the same names to their weights.
 To keep the variables separate, TensorFlow makes it possible to define a variable’s
 scope. An application can define a scope by calling tf.variable_scope:

 tf.variable_scope(name_or_scope, default_name=None, values=None, initializer=None,
 regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None,
 dtype=None, use_resource=None)

 Applications commonly call this function as part of a with statement, as in the following code:

 with tf.variable_scope("MyScope")

 …

 If an application creates variables using tf.get_variable inside a with block, TensorFlow will prepend the scope's name to the variable’s name. That is,
 if the application creates a new variable named MyVar, the variable’s full name will be MyScope/MyVar.

 Chapter 5 explains how to create variables with tf.Variable, but if an application wants to create a variable inside a scope, the function to
 call is tf.get_variable:

 get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True,
 collections=None, caching_device=None, partitioner=None, validate_shape=True, use_resource=None,
 custom_getter=None)

 If the name parameter identifies a variable in the current scope and the scope's reuse parameter is set to True, get_variable will return the existing variable. The following code shows how tf.get_variable can be used:

 with tf.variable_scope("MyScope"):

 var = tf.get_variable("var", [1])

 with tf.variable_scope("MyScope", reuse=True):

 same = tf.get_variable("var") # Same as var

 If the name parameter of variable_scope doesn't correspond to an existing variable in the scope, the function will create
 a new variable. The initializer parameter determines the variable’s initial value. If this parameter isn’t set, the
 initial value is determined by the initializer parameter of the surrounding scope. If the initializer parameter of the surrounding scope isn't set, TensorFlow will initialize the variable
 using Glorot initialization.

 Retrieving variables from collections

 As discussed in Chapter 4, a graph stores operations and tensors in a set of collections. An application can
 retrieve variables from a collection by calling tf.get_collection:

 tf.get_collection(key, scope=None)

 The key parameter identifies one of the graph's collections. One important key is tf.GraphKeys.TRAINABLE_VARIABLES, which identifies the collection containing the graph’s trainable variables.

 The scope parameter identifies the scope from which the variables should be retrieved. For
 example, the following code accesses a list containing all the trainable variables
 in the hidden_layer_1 scope:

 tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'hidden_layer_1')

 Scopes for names and arguments

 Just as tf.variable_scope creates a scope for variables, tf.name_scope creates a scope for tensors and operations. This function is simple to use, and the
 following code shows how it works:

 with tf.name_scope('block1'):

 t = tf.constant([1., 2.], name='tens')

 This example creates the tensor t inside a name scope whose identifier is block1. As a result, TensorFlow sets t's full identifier to block1/tens.

 The tf.contrib.framework package provides a useful function called arg_scope:

 arg_scope(list_ops_or_scope, **kwargs)

 This function creates a scope that inserts arguments into the scope's listed operations.
 That is, for each operation identified in the first argument, arg_scope inserts the arguments provided in the second argument.

 An example clarifies how argument scoping works. As a result of the following code,
 every call to foo inside the scope will have var set to 39:

 from tensorflow.contrib.framework import arg_scope

 with arg_scope([foo], var=39):

 …

 To make an operation accessible in an argument scope, you must decorate the operation's
 definition with @add_arg_scope. If a function requires many parameters and must be called multiple times, you can
 significantly reduce the amount of required code by setting arguments in an argument
 scope.

 Improving the Deep Learning Process

 In the “Implementing Deep Learning” section, I present an application that classifies MNIST images using an untuned
 neural network. This section presents an application that performs the same operation,
 but uses tuning mechanisms (normalization and regularization) to improve the network’s
 accuracy and performance. But before I discuss the code, I’d like to introduce an
 improved method of creating fully connected layers.

 Creating tuned layers

 In Listing 7-1, earlier in this chapter, the application creates fully connected layers with low-level
 arithmetic operations, such as tf.add and tf.matmul. But TensorFlow provides a more sophisticated way to create fully connected layers
 through the tf.contrib.layers.fully_connected function.

 This function accepts many parameters that tune the layer's behavior, such as weight
 initialization, normalization, and regularization. Table 7-4 lists the function’s parameters and provides a description of each.

 TABLE 7-4 Parameters of tf.contrib.layers.fully_connected

 	

 Parameter

 	

 Default

 	

 Description

 	

 inputs

 	

 --

 	

 Tensor of input values

 	

 num_outputs

 	

 --

 	

 Number of output values produced by the layer

 	

 activation_fn

 	

 tf.nn.relu

 	

 Function that produces the layer's output values

 	

 normalizer_fn

 	

 None

 	

 Function to process output values

 	

 normalizer_params

 	

 None

 	

 Parameters to be passed to the normalization function

 	

 weights_initializer

 	

 initializers. xavier_initializer()

 	

 Function that initializes the layer's weights

 	

 weights_regularizer

 	

 None

 	

 Function that regularizes the weights

 	

 biases_initializer

 	

 tf.zeros_initializer

 	

 Function that initializes the layer's biases

 	

 biases_regularizer

 	

 None

 	

 Function that regularizes the biases

 	

 reuse

 	

 None

 	

 Bool that specifies whether the layer and its weights should be reused

 	

 variables_collections

 	

 None

 	

 List of variable collections or dictionary containing a list of collections for each
 variable

 	

 outputs_collections

 	

 None

 	

 Collection to contain the outputs

 	

 trainable

 	

 True

 	

 Bool that specifies whether the layer's variables should be added to the graph’s trainable
 variables

 	

 scope

 	

 None

 	

 Scope of the layer's variables

 Applications need to set inputs to a tensor with at least two dimensions. If fully_connected is adding an input layer, applications should set inputs to a placeholder that provides the session with data. For successive layers, applications
 should set inputs to the return value of the function that created the preceding layer.

 fully_connected returns a tensor containing the layer's output values. num_outputs parameter determines the size of this output tensor. It’s important to see that num_outputs controls the number of nodes in the fully connected layer.

 The activation_fn parameter specifies the activation function that will compute the outputs of the
 layer's nodes. By default, fully_connected sets this parameter to the tf.nn.relu rectification function, which is suitable for hidden layers. If a layer is intended
 to provide output, you'll probably need to associate a different function with activation_fn.

 The normalizer_fn, normalizer_params, biases_initializer, and biases_regularizer parameters determine the tuning process used for the layer. normalizer_fn specifies a function to normalize the layer's values. This function will receive
 any arguments provided in the normalizer_params parameter.

 If normalizer_fn is set, fully_connected ignores biases_initializer and biases_regularizer. Otherwise, the function calls biases_initializer to set the layer's bias values and regularizes the biases with the biases_regularizer function.

 By default, the fully connected layer initializes its weights using the Glorot method.
 You can customize how weights are initialized by assigning weights_initializer to a function that returns an Initializer, such as lecun_uniform. You can also specify a function to regularize the layer's weights by setting weights_regularizer.

 The scope parameter defines a variable scope for the fully connected layer. Weights and biases
 created by the layer will be stored within this scope. The reuse parameter identifies whether the layer and its variables can be reused.

 Putting theory into practice

 The code in the ch7/tuned_learning.py module performs the same MNIST classification as the ch7/deep_learning.py module presented earlier in this chapter. The difference is that it tunes the neural
 network to improve accuracy and performance. It also creates fully connected layers
 by calling tf.contrib.layers.fully_connected instead of tf.add and tf.matmul. Listing 7-2 presents the code.

 LISTING 7-2 Deep Learning with Tuning

 # Read MNIST data

 dataset = learn.datasets.mnist.read_data_sets('MNIST-data', one_hot=True)

 # Placeholders for MNIST images

 img_holder = tf.placeholder(tf.float32, [None, 784])

 lbl_holder = tf.placeholder(tf.float32, [None, 10])

 train = tf.placeholder(tf.bool)

 # Layer settings

 hid_nodes = 200

 out_nodes = 10

 keep_prob = 0.5

 # Create layers

 with tf.contrib.framework.arg_scope(

 [fully_connected],

 normalizer_fn=tf.contrib.layers.batch_norm,

 normalizer_params={'is_training': train}):

 layer1 = fully_connected(img_holder, hid_nodes, scope='layer1')

 layer1_drop = tf.layers.dropout(layer1, keep_prob, training=train)

 layer2 = fully_connected(layer1_drop, hid_nodes, scope='layer2')

 layer2_drop = tf.layers.dropout(layer2, keep_prob, training=train)

 layer3 = fully_connected(layer2_drop, hid_nodes, scope='layer3')

 layer3_drop = tf.layers.dropout(layer3, keep_prob, training=train)

 out_layer = fully_connected(layer3_drop, out_nodes,

 activation_fn=None, scope='layer4')

 # Compute loss

 loss = tf.reduce_mean(

 tf.nn.softmax_cross_entropy_with_logits(

 logits=out_layer, labels=lbl_holder))

 # Create optimizer

 learning_rate = 0.01

 num_epochs = 15

 batch_size = 100

 num_batches = int(dataset.train.num_examples/batch_size)

 optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

 # Initialize variables

 init = tf.global_variables_initializer()

 # Launch session

 with tf.Session() as sess:

 sess.run(init)

 # Loop over epochs

 for epoch in range(num_epochs):

 # Loop over batches

 for batch in range(num_batches):

 img_batch, lbl_batch = dataset.train.next_batch(batch_size)

 sess.run(optimizer, feed_dict={img_holder: img_batch,

 lbl_holder: lbl_batch, train: True})

 # Determine success rate

 prediction = tf.equal(tf.argmax(out_layer, 1), tf.argmax(lbl_holder, 1))

 success = tf.reduce_mean(tf.cast(prediction, tf.float32))

 print('Success rate: ', sess.run(success,

 feed_dict={img_holder: dataset.test.images,

 lbl_holder: dataset.test.labels, train: False}))

 This module employs three methods to tune its multi-layer neural network:

 	It sends the output of each fully-connected layer to a dropout layer. The module sets
 keep_prob to 0.5, so the dropout layer sets half of its inputs to 0.

 	The module calls tf.contrib.layers.batch_norm to perform batch normalization on the hidden layers.

 	By default, tf.contrib.layers.fully_connected initializes the network's weights using the Glorot method.

 Each hidden layer has 200 nodes, and the output layer has 10 nodes. Before creating
 the layers, the module defines an argument scope by calling tf.contrib.framework.arg_scope. arg_scope accepts a list containing a function (fully_connected) and the arguments to insert inside the function.

 Each call to fully_connected sets the scope argument to a different value. Creating this scope changes the names of the layer's
 variables. An application can retrieve these variables by calling tf.get_collection.

 The first three fully_connected calls don't set activation_fn, so the layers’ nodes compute their output using the default ReLU activation function.
 The last fully_connected call sets activation_fn to None, so each node of the output layer returns the weighted sum of its inputs. The tf.nn.softmax_cross_entropy_with_logits function accepts these weighted sums and selects one of the ten categories.

 Chapter 8

 Classifying Images with Convolutional Neural Networks (CNNs)

 IN THIS CHAPTER

 [image: check] Exploring image filtering and convolution

 [image: check] Looking at convolutional neural networks (CNNs)

 [image: check] Introducing the CIFAR-10 dataset

 [image: check] Presenting TensorFlow’s image operations

 This chapter explains how you can code image recognition applications using TensorFlow
 and convolutional neural networks (CNNs). These applications are similar to the vanilla
 neural networks from Chapter 7, but they include layers specifically intended for image classification.

 Filtering Images

 If you’ve used image editing applications like Adobe Photoshop, you’re probably familiar
 with filtering tools, which add effects, such as blurring, sharpening, or embossing,
 to images. Mathematically, these tools perform their operations using a process called
 convolution. This process plays a critical role in image recognition, and while it’s not important
 to grasp all the gory details, it’s good to understand the general process.

 Convolution

 Image convolution replaces each pixel of an image with the result of a two-dimensional
 dot product. This dot product accepts two matrices and returns the sum of the products
 of their corresponding elements.

 For example, suppose that A and B are two 3-x-3 matrices whose elements are given
 as follows:

 [image: images]

 You can compute the two-dimensional dot product of A and B by multiplying corresponding
 pairs of values and adding the results together:

 [image: images]

 The first matrix involved in image convolution is the MxN rectangle surrounding one
 of the image’s pixels. The second MxN matrix involved in the dot product is commonly
 called a kernel, but TensorFlow refers to it as a filter. The filter’s elements determine what effect the filter will have on the image.

 For example, if you denote an image as a matrix M, the pixel in the ith row and jth
 column is mi,j. If you denote the filter as a matrix K, the element in the ith row and jth column
 is ki,j. With this notation, the convolution process obtains the new value of mi,j with the following dot product:

 [image: images]

 When filtering an image, this dot product must be computed for each pixel in the original
 image. This operation presents an important concern: How do you find the pixels surrounding
 mi,j if the pixel lies on the image’s border?

 [image: technicalstuff] Instead of computing a dot product for each pixel, many engineers perform convolution
 by converting the image and filter to the frequency domain. This process, called fast convolution, involves computing the Fast Fourier Transform (FFT) for each row and column of the
 image and filter.

 This book, like other fine works of machine learning literature, employs the term
 convolution to refer to the process of computing a matrix of 2-D dot products. But
 the technical term for this is cross-correlation. Convolution reverses one of the operands before computing the dot products and the
 algorithm presented here doesn’t reverse either operand.

 Averaging Filter

 A good way to understand image filtering is to walk through an example. This section
 focuses on the grainy image depicted in Figure 8-1.

 [image: image]

 FIGURE 8-1: The image’s mottled appearance is the result of noise.

 Mathematically, an image’s noise can be thought of as unwanted variation between adjacent
 pixels. You can reduce this variation by replacing each pixel with the average of
 itself and the pixels immediately surrounding it. You can accomplish this by convolving
 the image with a filter like the following:

 [image: images]

 Denoting the pixel in the ith row and jth column as mij, you can compute the filtered value of mij in the following way:

 [image: images]

 This type of filter is called a box filter or an averaging filter. After convolution, the filtered pixels form the image illustrated in Figure 8-2:

 [image: image]

 FIGURE 8-2: Convolution with the box filter reduces the amount of noise in the image.

 The box filter removed a lot of the image’s noise, but it also removed detail that
 isn’t noise. To improve on the box filter, engineers have devised a more effective
 noise-reduction filter called the Gaussian filter. The filter’s elements are determined by values of the Gaussian curve.

 Filters and features

 Image filtering can do more than just add effects. One critical application involves
 finding an image inside a larger image. Consider the 7-x-7 filter presented in Figure 8-3.

 [image: image]

 FIGURE 8-3: The filter’s elements correspond to the pixels of the smiley face.

 If you look closely at the filter matrix, you’ll see that its elements identify the
 pixel values of the grayscale image on the right. In other words, the filter defines
 its own small image — a smiley face. The dot product of an image with itself produces
 a large value, so if an image contains a 7-x-7 smiley face, the convolution of the image with this filter will produce a large value at the point
 where the smiley face is located.

 This property of convolution makes it possible to locate images inside a larger image.
 For example, an image of an airplane should have a cockpit, two wings, and a fuselage.
 If you use one filter for the cockpit, one for the wings, and one for the fuselage,
 a high convolution value for each filter indicates the presence of an aircraft.

 These subimages of interest are called features, and an application can check whether a feature is present in an image by convolving
 the image with an appropriate filter. A high convolution result indicates that the
 feature is present in the image.

 Feature detection analogy

 When it comes to image filtering, you can easily get wrapped up in the math and forget
 what’s going on. So here’s a strange analogy: Imagine that you have a magnifying glass
 and a high resolution image of a large crowd of people. As you move the glass over
 the image, you get a better look at each person in the crowd.

 Suppose that you engrave your face on the glass. Afterward, you magically enchant
 the glass to display a number that identifies how closely the engraving matches the
 image underneath the glass. The largest number will appear when the glass is directly
 over your face.

 Now suppose that you have other magnifying glasses, each with an engraved image of
 a member of your family. If you examine the numbers displayed by the different magnifying
 glasses, you’ll be able to locate each of your family members and thereby locate your
 family in the crowd.

 In this analogy, each magnifying glass is a filter, and each engraved image is a feature.
 The process of moving the glass over the image and reading the number corresponds
 to convolution.

 Setting convolution parameters

 When you categorize images using convolution, you don’t set the filters’ elements
 directly. Instead, you provide input images and their corresponding categories. The
 application’s job is to determine which filters best support correct categorization.
 In this manner, filters resemble the weights of the neural networks discussed in Chapter 7.

 Even though you can’t set the filters’ elements, you can set many of the filters’
 properties, such as their number and size. You can also configure three other aspects
 of convolution:

 	stride: Shifting the filter from one 2-D dot product to the next

 	dilation: Expanding the filter's size by inserting zero-valued elements

 	padding: Accounting for pixels near the edge of the image

 These parameters play an important role in determining how an application performs
 convolution. The following sections explore each of them in detail.

 Stride

 After each two-dimensional dot product, the convolution process moves the filter one
 pixel to the right. When all the dot products have been computed for a row of pixels,
 convolution moves the filter one pixel down and continues computing two-dimensional
 dot products.

 This behavior is the default, but developers can customize how the convolution is
 performed by setting the stride. Stride determines how much the filter shifts after each dot product. To set the
 stride, you need to provide two values: the horizontal pixel shift and the vertical
 pixel shift. The default stride is always (1, 1).

 For example, if you set the stride to (2, 3), the filter will shift two pixels to
 the right after each dot product. After completing all the dot products for one row,
 the filter will shift three pixels down and start computing further dot products.
 This increased stride reduces the amount of computation needed for the convolution,
 but also reduces the amount of detail. In this book, stride will always be set to
 (1, 1).

 Dilation

 The term dilation usually refers to stretching or expanding part of the body, such as the pupil of
 the eye. In image processing, dilation refers to stretching the elements of a filter.
 As with stride, you can specify dilation by providing two values: one that sets horizontal
 stretching and one that sets vertical stretching. The default value is (1, 1), which
 indicates that no stretching should be performed.

 As dilation increases, the effective size of the filter increases but the number of
 nonzero elements doesn’t change. Instead, dilation inserts zeros between the filter’s
 elements.

 For example, if you set the dilation to (2, 1), the convolution will insert a zero
 between each horizontal pair of elements in the filter. These zero elements won’t
 contribute any values to the two-dimensional dot products.

 By changing the dilation, applications can efficiently detect features of varying
 sizes. For a thorough discussion of the topic, I recommend the 2015 paper Multi-Scale Context Aggregation by Dilated Convolutions by Fisher Yu and Vladlen Koltun (ICLR 2016).

 Padding

 If a filter’s size is NxN, convolution computes an NxN two-dimensional dot product
 for each pixel in the input image. If a pixel lies on the edge of the image or near
 the edge, it isn’t clear how the NxN dot product should be computed.

 In TensorFlow, developers can configure the processing of border pixels in one of
 two ways. The first method involves ignoring pixels that lie on or near the image’s
 edge. The advantage of ignoring these pixels is that every pixel in the resulting
 image will be accurate. The disadvantage is that the output image will be smaller
 than the input image.

 The second method involves expanding the image and inserting zeros beyond its original
 borders. If a pixel lies on the edge of the image, the dot product will take these
 zeros into account. As a result, the output image will be the same size as the input
 image, but the output pixels on/near the edges won’t be completely accurate because
 they were computed with zeros.

 Convolutional Neural Networks (CNNs)

 A traditional neural network receives a series of input values, multiplies each input
 value by a weight, and passes the processed data through a series of layers. This
 approach is fine for general-purpose data analysis, but it’s not sufficient for processing
 images and similar 2-D/3-D data. Image classification requires convolution, and for
 this reason, neural networks intended for image classification are called convolutional
 neural networks, or CNNs.

 CNNs resemble regular neural networks in a number of ways, but they have two distinguishing
 characteristics:

 	A CNN contains convolution layers that use rectangular filters to perform convolution.

 	A CNN uses pooling layers to reduce the dimensionality of output images.

 After the convolution layers and pooling layers have done their jobs, CNNs use fully
 connected layers to provide output. Figure 8-4 illustrates the structure of a minimal CNN:

 [image: image]

 FIGURE 8-4: Convolutional neural networks contain convolution layers, pooling layers, and at
 least one fully connected layer.

 This network has two convolution layers that produce one output image for each filter.
 The pooling layers reduce the size of the images produced by convolution. This section
 explains what these layers accomplish and how they work together.

 Creating convolution layers

 In a TensorFlow application, an image is a tensor that contains a matrix for each
 of an image’s channels. By channels, I mean the components that make up the image’s
 pixels. For example, a grayscale image has one channel, so its tensor consists of
 one matrix. An RGB image has three channels, so its tensor will have three channels.

 A convolution layer accepts a batch of images, performs convolution with a set of
 filters, and returns an output tensor containing the convolution results. The size
 of each output image depends on the size of the input images and the use of padding
 in the convolution.

 You can create a convolution layer by calling tf.layers.conv2d. Table 8-1 lists the parameters of this function and presents the default value of each.

 TABLE 8-1 Arguments of tf.layers.conv2d

 	

 Argument

 	

 Default

 	

 Description

 	

 inputs

 	

 --

 	

 Tensor containing input image

 	

 filters

 	

 --

 	

 Number of filters to be used

 	

 kernel_size

 	

 --

 	

 Size of the kernel (one value for an NxN square, two values for an MxN rectangle)

 	

 strides

 	

 (1, 1)

 	

 Amount the filter should shift between 2-D dot products

 	

 padding

 	

 'valid'

 	

 Method of processing pixels near the image's edge

 	

 data_format

 	

 'channels_last'

 	

 Order of the elements in the input tensor

 	

 dilation_rate

 	

 (1, 1)

 	

 Extent by which the filter should be horizontally/vertically stretched

 	

 activation

 	

 None

 	

 Activation function

 	

 use_bias

 	

 True

 	

 Bool that identifies whether the layer uses a bias

 	

 kernel_ initializer

 	

 None

 	

 Initializer for the filter's values (weights)

 	

 bias_ initializer

 	

 tf.zeros.initializer()

 	

 Initializer for the layer's biases

 	

 kernel_ regularizer

 	

 None

 	

 Regularizer for the filter's values (weights)

 	

 bias_ regularizer

 	

 None

 	

 Regularizer for the layer's biases

 	

 activity_ regularizer

 	

 None

 	

 Regularizer for the layer's output

 	

 trainable

 	

 True

 	

 Bool that identifies whether to add the filter's elements to the graph’s trainable
 variables

 	

 name

 	

 None

 	

 Name of the layer

 	

 reuse

 	

 False

 	

 Bool that identifies whether to reuse the weights of a similarly-named scope

 An application must set inputs to a tensor whose shape depends on the data_format parameter. If you set data_format to channels_last (the default value), the inputs tensor should have a shape equal to [batch_size, height, width, channels]. If you
 set data_format to channels_first, the inputs tensor should have a shape equal to [batch_size, channels, height, width].

 The filters parameter identifies the number of filters used by the convolution layer. The kernel_size parameter identifies the size of each filter. If you set this parameter to a single
 value, N, the size of each filter will be NxN. If you set it to two values, such as
 [M, N], the size of each filter will be MxN.

 The earlier “Setting convolution parameters” section talks about the stride and dilation characteristics of image filters. In
 tf.layers.conv2d, you can set these properties with the strides and dilation_rate parameters.

 The padding parameter tells the layer how to process the image's boundary pixels. If you set
 padding to valid, the layer will ignore boundary pixels and return an output image smaller than the
 input image. If you set padding to same, the layer will pad the input image with zeros and produce an output image with the
 same size as the input image.

 tf.layers.conv2d returns a tensor whose shape depends on the shape of the input image, the number
 of filters, and the padding parameter. For example, if the input's shape is [N, height, width, num_channels]
 and the padding is set to same, the output's shape will be [N, height, width, num_filters].

 The number of channels does not affect the shape of the output. While performing convolution,
 tf.layers.conv2d combines the channels together, so a grayscale input image and an RGB input image
 will produce output images of the same size. If you’d like to perform channel-specific
 filtering, the function to use is tf.nn.depthwise_conv2d.

 If an application sets padding to valid, each output image will be smaller than the input image. The reduction in size depends
 on the dimensions of the convolution filters. For example, if padding is valid, the filter size equals [X, Y], and the input's shape is [N, height, width, num_channels],
 the shape of each output image will be [N, height – (Y – 1), width – (X – 1), num_filters].

 Creating pooling layers

 A convolution layer produces an output image for each filter, so a CNN with many filters
 will produce many images. These images require a great deal of memory, so developers
 reduce the size of the images by following convolution layers with pooling layers.

 A pooling layer subdivides an image’s pixels into rectangular blocks and replaces
 each block with a single pixel. Figure 8-5 shows how this process works. The pooling operation divides a 9-x-8 matrix into 3-x-2
 blocks and replaces each block with a single value.

 [image: image]

 FIGURE 8-5: A pooling layer accepts an input image, splits it into blocks, operates on each block,
 and returns a condensed image.

 Figure 8-5 depicts two methods of pooling. The first finds the largest value in the input block
 and stores that value in the output image. You can create a pooling layer that performs
 this operation by calling tf.layers.max_pooling2d.

 The second pooling method computes the average value of the pixels in the input block
 and stores that value in the output image. You can create a pooling layer that uses
 this method by calling tf.layers.avg_pooling2d.

 Of the pooling functions provided by the tf.layers package, max_pooling2d is the most popular. This popularity makes sense because a high maximum value clearly
 indicates the presence of a filter's feature in the image. Table 8-2 lists the parameters of tf.layers.max_pooling2d and provides a description of each.

 TABLE 8-2 Parameters of tf.layers.max_pooling2d

 	

 Parameter

 	

 Default

 	

 Description

 	

 inputs

 	

 --

 	

 Input 4-D tensor

 	

 pool_size

 	

 --

 	

 The size of the block used for pooling

 	

 strides

 	

 --

 	

 The shift from one pooling operation to the next

 	

 padding

 	

 'valid'

 	

 The padding algorithm: valid or same

 	

 data_format

 	

 'channels_last'

 	

 Specifies the shape of the input image

 	

 name

 	

 None

 	

 Provides a name for the layer

 As with tf.layers.conv2d, the shape of the input tensor depends on data_format. If data_format is channels_last, the input tensor's shape should be [batch_size, height, width, channels]. If data_format is channels_first, the input tensor's shape should be [batch_size, channels, height, width]. Regardless
 of data_format, each element in the input tensor must be a tf.float32.

 To set the height and width of the block used for pooling, you need to assign pool_size to a list or tuple of two integers. For the pooling illustrated in Figure 8-5, the application set pool_size to [2, 2].

 strides identifies how much the block shifts (in pixels) from one pooling operation to the
 next. If the horizontal shift equals the vertical shift, you can set strides to one integer. If not, you can set strides to a tuple or list of two integers, where the first sets the vertical shift and the
 second sets the horizontal shift. For the pooling illustrated in Figure 8-5, the application set strides to 2.

 If a pooling operation involves a point near the image's border, the computation will
 depend on the padding parameter. If you set padding to valid, the pooling won't take border pixels into account. If you set padding to same, the function will pad the image with zeros before pooling its values.

 Putting Theory into Practice

 Once you understand convolution, convolution layers, and pooling layers, you're ready
 to examine some code. This section presents an application that classifies images.
 But instead of classifying images of the MNIST dataset, this application classifies
 images from a dataset called CIFAR-10.

 Processing CIFAR images

 To test practical image recognition applications, the Canadian Institute for Advanced
 Research (CIFAR) provides the CIFAR-10 and CIFAR-100 datasets. Like the MNIST dataset,
 these datasets contain images and their classification labels. Unlike the MNIST images,
 the CIFAR images are in color and have a size equal to 32-x-32 pixels. This discussion
 explains how to obtain the CIFAR-10 dataset and access its content in a TensorFlow
 application.

 The CIFAR-10 dataset

 The main site for the CIFAR-10 and CIFAR-100 datasets is www.cs.toronto.edu/~kriz/cifar.html. The site provides three links for downloading the CIFAR-10 dataset: one for the Python version, one for the Matlab version, and a binary
 version. This section focuses on the Python version, and I recommend that you download
 it to your development system.

 Before proceeding, I recommend that you download and decompress the archive to the
 ch8 directory. Inside the decompressed directory, you'll find a folder named cifar-10-batches-py. This folder contains five files containing training images (data_batch_1 through data_batch_5) and a file containing test images (test_batch).

 Accessing CIFAR-10 images and labels

 CIFAR serializes the data in the CIFAR-10 files using a process called pickling. To read the data in Python, an application needs to import pickle and invoke its load method with the CIFAR file. As an example, the following code accesses the data in
 data_batch_2:

 import pickle

 with open('cifar-10-batches-py/data_batch_2', 'rb') as imgfile:

 dict = pickle.load(imgfile)

 imgfile.close()

 The result is a dictionary with four keys:

 	b'batch_label': Description of the batch (b' training batch 2 of 5')

 	b'labels': A list of the 10,000 labels of the batch’s images

 	b'data': An ndarray containing the batch’s image data

 	b'filenames': A list of the 10,000 PNGs that contain image data (b'stealth_fighter_s_001650.png')

 Each image label is provided as an integer between 0 and 9. These values correspond
 to the ten categories that identify the content of the corresponding image. These
 categories are airplane (0), automobile (1), bird (2), cat (3), deer (4), dog (5),
 frog (6), horse (7), ship (8), and truck (9). As an example, Figure 8-6 shows what a Category 7 image looks like.

 [image: image]

 FIGURE 8-6: Each CIFAR-10 image contains 1,024 pixels (32 x 32). Each pixel stores red, green,
 and blue components as 8-bit unsigned integers.

 The ndarray provided by the data key contains 8-bit unsigned integers in a 10,000-x-3,072 element matrix. This matrix
 contains 10,000 rows, and each row contains a 32-by-32 image with red, green, and
 blue components (32 x 32 x 3 = 3,072).

 Classifying CIFAR images in code

 The code in ch8/cifar_cnn.py demonstrates how you can use TensorFlow to load CIFAR-10 images and classify them
 with a convolutional neural network. Listing 8-1 presents the module's code.

 LISTING 8-1 Classifying CIFAR-10 Images

 # Set parameters

 image_size = 32

 num_channels = 3

 num_categories = 10

 num_filters = 32

 filter_size = 5

 num_epochs = 200

 batch_size = 10

 num_batches = int(50000/batch_size)

 keep_prob = 0.6

 # Read CIFAR training data

 train_data = None

 train_labels = None

 for file_index in range(5):

 train_file = open('cifar-10-batches-py/data_batch_' + str(file_index+1), 'rb')

 train_dict = pickle.load(train_file, encoding='latin1')

 train_file.close()

 if train_data is None:

 train_data = np.array(train_dict['data'], float)/255.0

 train_labels = train_dict['labels']

 else:

 train_data = np.concatenate((train_data, train_dict['data']), 0)

 train_labels = np.concatenate((train_labels, train_dict['labels']), 0)

 # Preprocess training data and labels

 train_data = train_data.reshape([-1, num_channels, image_size, image_size])

 train_data = train_data.transpose([0, 2, 3, 1])

 train_labels = np.eye(num_categories)[train_labels]

 # Read CIFAR test data

 test_file = open('cifar-10-batches-py/test_batch', 'rb')

 test_dict = pickle.load(test_file, encoding='latin1')

 test_file.close()

 test_data = test_dict['data']

 test_labels = test_dict['labels']

 # Preprocess test data and labels

 test_data = test_data.reshape([-1, num_channels, image_size, image_size])

 test_data = test_data.transpose([0, 2, 3, 1])

 test_labels = np.eye(num_categories)[test_labels]

 # Placeholders for CIFAR images

 img_holder = tf.placeholder(tf.float32, [None, image_size, image_size, num_channels])

 lbl_holder = tf.placeholder(tf.float32, [None, num_categories])

 train = tf.placeholder(tf.bool)

 # Create convolution/pooling layers

 conv1 = tf.layers.conv2d(img_holder, num_filters, filter_size, padding='same', activation=tf.nn.relu)

 drop1 = tf.layers.dropout(conv1, keep_prob, training=train)

 pool1 = tf.layers.max_pooling2d(drop1, 2, 2)

 conv2 = tf.layers.conv2d(pool1, num_filters, filter_size, padding='same', activation=tf.nn.relu)

 drop2 = tf.layers.dropout(conv2, keep_prob, training=train)

 pool2 = tf.layers.max_pooling2d(drop2, 2, 2)

 conv3 = tf.layers.conv2d(pool2, num_filters, filter_size, padding='same', activation=tf.nn.relu)

 pool3 = tf.layers.max_pooling2d(conv3, 2, 2)

 conv4 = tf.layers.conv2d(pool3, num_filters, filter_size, padding='same', activation=tf.nn.relu)

 drop3 = tf.layers.dropout(conv4, keep_prob, training=train)

 # Flatten input data

 flatten = tf.reshape(drop3, [-1, 512])

 # Create connected layers

 with tf.contrib.framework.arg_scope(

 [tf.contrib.layers.fully_connected],

 normalizer_fn=tf.contrib.layers.batch_norm,

 normalizer_params={'is_training': train}):

 fc1 = tf.contrib.layers.fully_connected(flatten, 512)

 fc2 = tf.contrib.layers.fully_connected(fc1, num_categories, activation_fn=None)

 # Compute loss

 loss = tf.reduce_mean(

 tf.nn.softmax_cross_entropy_with_logits(

 logits=fc2, labels=lbl_holder))

 # Create optimizer

 learning_rate = 0.0005

 optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

 # Initialize variables

 init = tf.global_variables_initializer()

 # Launch session

 with tf.Session() as sess:

 sess.run(init)

 # Loop over epochs

 for epoch in range(num_epochs):

 # Loop over batches

 for batch in range(num_batches):

 batch_start = random.randint(0, batch_size*(num_batches-1)-1)

 batch_end = batch_start + batch_size

 img_batch = train_data[batch_start:batch_end, :]

 lbl_batch = train_labels[batch_start:batch_end, :]

 sess.run(optimizer, feed_dict={img_holder: img_batch,

 lbl_holder: lbl_batch, train: True})

 # Determine success rate

 prediction = tf.equal(tf.argmax(fc2, 1), tf.argmax(lbl_holder, 1))

 accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32))

 print('Accuracy: ', sess.run(accuracy, feed_dict={img_holder: test_data,

 lbl_holder: test_labels, train: False}))

 The application assumes that the user has downloaded the CIFAR-10 dataset for Python.
 It also assumes that the user has decompressed the archive into a directory named
 cifar-10-batches-py in the ch8 folder.

 The module starts by loading the CIFAR-10 training images and labels. Then it performs
 four operations:

 	Concatenates the training images into one (50,000 x 3,072) ndarray. Concatenates the
 training labels into one (50,000 x 1) ndarray.

 	Converts the elements of the image ndarray to floating-point values.

 	Reshapes the image ndarray to [50,000, 32, 32, 3]. The last element identifies the
 number of channels per pixel (R, G, and B).

 	Converts the label ndarray to a one-shot ndarray (50,000 x 10).

 This is a book on TensorFlow, so it may seem odd that the application preprocesses
 data using NumPy instead of TensorFlow. But there's an important reason: Sessions
 can’t feed tensors into placeholders during training. Another reason is that TensorFlow
 stores tensor operations in the graph but does not store NumPy operations.

 To process the image data, the application creates four convolution layers and three
 pooling layers. Each convolution layer uses 32 filters of size 5 x 5, and each uses
 a ReLU to serve as its activation function. The pooling layers set their block sizes
 to 2 x 2 and their strides to 2.

 To understand the code, it’s crucial to understand how the input tensor’s size changes
 from layer to layer. Each batch contains ten images, so the initial size of each input
 tensor is [10, 32, 32, 3].

 	The first convolution layer has 32 filters, so the shape of the output tensor is [10,
 32, 32, 32].

 	The first pooling layer shrinks each image dimension by one-half, so the output tensor’s
 shape is [10, 16, 16, 32].

 	The second convolution layer has 32 filters, so the shape of the output tensor is
 [10, 16, 16, 32].

 	The second pooling layer shrinks each image dimension by one-half, so the output tensor’s
 shape is [10, 8, 8, 32].

 	The third convolution layer has 32 filters, so the shape of the output tensor is [10,
 8, 8, 32].

 	The third pooling layer shrinks each image dimension by one-half, so the output tensor’s
 shape is [10, 4, 4, 32].

 	The fourth convolution layer has 32 filters, so the shape of the output tensor is
 [10, 4, 4, 32].

 When the convolution is finished, the module flattens the image data and passes it
 to two fully connected layers. The first fully connected layer has 512 nodes and uses
 a ReLU to serve as its activation function. The second fully connected layer has ten
 nodes.

 Performing Image Operations

 TensorFlow provides many functions that perform general-purpose image processing.
 To present these functions, I divide them into five categories:

 	Image conversion

 	Color processing

 	Rotating and mirroring

 	Resizing and cropping

 	Convolution

 The following sections introduce these functions and demonstrate their usage. The
 example application shows how to generate summary data for an image and visualize
 it with TensorBoard.

 Converting images

 The tf.image package provides functions that convert images between different file formats, color
 profiles, and data types. Table 8-3 lists these functions and provides a description of each.

 TABLE 8-3 Image Conversion Functions

 	

 Function

 	

 Description

 	

 decode_bmp(contents,

 . channels=None, name=None)

 	

 Convert BMP-formatted image data into a tensor

 	

 decode_gif(contents,

 . name=None)

 	

 Convert GIF-formatted image data into a tensor

 	

 decode_png(contents,

 . channels=None, dtype=None,

 . name=None)

 	

 Convert PNG-formatted image data into a tensor

 	

 decode_jpeg(contents,

 . channels=None, ratio=None,

 . fancy_upscaling=None,

 . try_recover_truncated=None,

 . acceptable_fraction=None,

 . dct_method=None,

 . name=None)

 	

 Convert JPEG-formatted image data to a tensor

 	

 decode_image(contents,

 . channels=None, name=None)

 	

 Detects format of image data and converts data to a tensor

 	

 encode_png(image,

 . compression=None,

 . name=None)

 	

 Converts a tensor containing image data to PNG encoding

 	

 encode_jpeg(image,

 . format=None,

 . quality=None,

 . progressive=None,

 . optimize_size=None,

 . chroma_downsampling=None,

 density_unit=None,

 . x_density=None,

 . y_density=None,

 . xmp_metadata=None,

 . name=None)

 	

 Converts a tensor containing image data to PNG encoding

 	

 rgb_to_grayscale(images,

 name=None)

 	

 Convert one or more images from RGB to grayscale

 	

 rgb_to_hsv(images,

 name=None)

 	

 Convert one or more images from RGB to HSV

 	

 grayscale_to_rgb(images,

 name=None)

 	

 Convert one or more images from grayscale to RGB

 	

 hsv_to_rgb(images,

 name=None)

 	

 Convert one or more images from HSV to RGB

 	

 convert_image_dtype(image,

 dtype, saturate=False,

 name=None)

 	

 Change the data type of the image tensor's elements

 The shape of an image’s tensor depends on the nature of the image. For simple 2-D
 images, such as in a JPEG, the tensor’s shape is [height, width, num_channels]. For
 a sequence of frames, such as the images in a GIF animation, the shape is [num_frames,
 height, width, num_channels].

 In Table 8-3, the decode_* functions convert a zero-dimensional string tensor into a suitable image tensor.
 For example, if an application loads data from smiley.jpg into a tensor named smiley_tensor, decode_jpeg will return a decompressed tensor whose shape is [height, width, num_channels].

 A TensorFlow application can read BMP, GIF, PNG, and JPEG images, but it can only
 write data to PNGs and JPEGs. These write operations are made possible by encode_png and encode_jpeg.

 Keep in mind that TensorFlow's decode/encode functions don’t accept files, but instead
 read and write zero-dimensional string tensors. TensorFlow provides a number of method
 to create string tensors from files, and one method involves three steps:

 	Call tf.string_input_producer with an array of file names.

 	Create a WholeFileReader by calling tf.WholeFileReader.

 	Call the reader's read method with the queue from Step 1.

 To demonstrate how this process works, the following code reads data from smiley.png and writes it to smiley.jpg:

 queue = tf.train.string_input_producer(['smiley.png'])

 reader = tf.WholeFileReader()

 _, png_data = reader.read(queue)

 img_tensor = tf.image.decode_png(png_data)

 jpeg_data = tf.image.encode_jpeg(img_tensor)

 with tf.Session() as sess:

 tf.train.start_queue_runners()

 jpeg_file = open('smiley.jpeg', 'wb+')

 jpeg_file.write(jpeg_data.eval())

 jpeg_file.close()

 The last function in Table 8-3, convert_image_dtype, converts the pixels of an image from one data type to another. This is particularly
 important because different image-processing operations require different data types.
 For example, convolution requires tensors containing floating-point elements while
 PNG encoding requires unsigned integers. The following code converts the elements of img to single-precision floating-point values:

 img = tf.image.convert_image_dtype(img, tf.float32)

 convert_image_dtype assumes that all integer values are non-negative and that all floating-point values
 lie between 0.0 and 1.0. The function performs scaling in addition to conversion,
 so it multiplies tf.float32 values by 256 when converting to tf.uint8 and it divides tf.uint8 values by 256 when converting to tf.float32.

 Color processing

 The second category of functions in tf.image change the color content of an image. Table 8-4 lists nine of these functions.

 TABLE 8-4 Color-Processing Functions

 	

 Function

 	

 Description

 	

 adjust_brightness(image, delta)

 	

 Adds the given delta to the image's pixel values

 	

 adjust_contrast(images,

 contrast_factor)

 	

 Adjust contrast by the given factor

 	

 adjust_gamma(image,

 gamma=1, gain=1)

 	

 Perform gamma correction

 	

 adjust_hue(image, delta,

 name=None)

 	

 Change the image's hue content by the given delta

 	

 adjust_saturation(image,

 saturation_factor, name=None)

 	

 Update the image's saturation by a given value

 	

 random_brightness(image,

 max_delta, seed=None)

 	

 Adds a random value to the image's pixel values

 	

 random_contrast(image,

 lower, upper, seed=None)

 	

 Adjust contrast by a random value

 	

 random_hue(image, max_delta,

 seed=None)

 	

 Change the image's hue content by a random amount

 	

 random_saturation(image,

 lower, upper, seed=None)

 	

 Update the image's saturation by a random value

 These functions are easy to understand. The adjust_xyz functions update an image's property by a specific amount. The random_xyz functions update an image's property by a random amount.

 adjust_contrast and random_contrast change the deviation of the image's pixels from the mean. To be specific, if a pixel’s
 component equals x and the average value is xavg, calling adjust_contrast with a factor of k updates x in the following way:

 [image: images]

 The random_xyz functions accept one or two bounds for the random value. For example, the following
 code changes the contrast of img by a random factor that lies between 0.1 and 0.2:

 tf.image.random_contrast(img, 0.1, 0.2)

 adjust_hue and random_hue operate on RGB images. Both functions convert the image's pixels to floating-point
 values and then convert the image to HSV. Then they add an offset to the hue channel
 and convert the image back to RGB and the pixels’ original data type.

 Rotating and mirroring

 The tf.image package also provides functions that rotate and mirror (flip) the pixels of an image.
 Table 8-5 lists six of these functions and provides a description of each.

 TABLE 8-5 Rotation and Mirroring Functions

 	

 Function

 	

 Description

 	

 rot90(image, k=1, name=None)

 	

 Rotates an image counterclockwise by a multiple of 90 degrees

 	

 flip_left_right(image)

 	

 Mirrors an image horizontally

 	

 random_flip_left_right(image,

 seed=None)

 	

 Mirrors an image horizontally half the time

 	

 flip_up_down(image)

 	

 Mirrors an image vertically

 	

 random_flip_up_down(image,

 seed=None)

 	

 Mirrors an image vertically half the time

 	

 transpose_image(image)

 	

 Mirrors an image along its main diagonal

 rot90 rotates an image in a counterclockwise orientation by a multiple of 90 degrees. The
 precise angle of rotation equals 90(k mod 4), where k is the second argument of rot90.

 It's important to see the difference between transpose_image and the functions that flip the image vertically and horizontally. transpose_image flips an image along the diagonal running from the upper-left to the lower-right.

 The following code shows how an application can decode PNG data and then rotate, flip,
 and transpose the image.

 img_tensor = tf.image.decode_png(smiley)

 # Rotate CCW by 270 degrees

 rot_tensor = tf.image.rot90(img_tensor, 3)

 rot_png = tf.image.encode_png(rot_tensor)

 # Flip horizontal

 flip_tensor = tf.image.flip_left_right(img_tensor)

 flip_png = tf.image.encode_png(flip_tensor)

 # Transpose

 transpose_tensor = tf.image.transpose_image(img_tensor)

 transpose_png = tf.image.encode_png(transpose_tensor)

 Figure 8-7 illustrates the results of the operations performed in the example code.

 [image: image]

 FIGURE 8-7: TensorFlow's functions make it possible to rotate, flip, and transpose images.

 The random_flip_left_right and random_flip_up_down functions are helpful when you want to train an application to recognize images that
 may have been flipped. These functions flip their images half the time and leave their
 images unchanged half the time.

 Resizing and cropping

 Applications frequently need to enlarge, shrink, or crop the content of an image.
 Table 8-6 lists the functions of tf.image that perform these operations.

 TABLE 8-6 Resizing and Cropping Functions

 	

 Function

 	

 Description

 	

 resize_nearest_neighbor(images,

 size, align_corners=False,

 name=None)

 	

 Resize using nearest-neighbor interpolation

 	

 resize_bilinear(images, size

 align_corners=False, name=None)

 	

 Resize using bilinear interpolation

 	

 resize_bicubic(images, size

 align_corners=None, name=None)

 	

 Resize using bicubic interpolation

 	

 resize_area(images, size,

 align_corners=False, name=None)

 	

 Resize using area interpolation

 	

 resize_images(images, size,

 method=ResizeMethod.BILINEAR,

 align_corners=False)

 	

 Resize using the specified interpolation method

 	

 central_crop(image, fraction)

 	

 Crop a central portion of the input image

 	

 resize_image_with_crop_or_pad(

 image, target_height, target_width)

 	

 Crop or pad the image until its size equals the given width and height

 	

 crop_and_resize(image, boxes,

 box_ind, crop_size,

 method=None,

 extrapolation_value=None,

 name=None)

 	

 Crop a portion of the image and resize the image to the given dimensions

 The term interpolation refers to the process of inserting new data points within a range of known data points.
 The first four functions in Table 8-6 use interpolation to resize their input image or images. Each of them resizes its
 image(s) using a different interpolation method.

 The resize_nearest_neighbor function resizes its images using nearest-neighbor interpolation. This function computes the color of an internal point by determining which pixel
 is closest to it and assigning the pixel's color. If you call this function to enlarge
 an image, the result will contain only the colors in the original. If you enlarge
 an image n-fold, its colors will be repeated n times.

 The resize_bilinear function resizes images using bilinear interpolation. This determines the color of an internal point by finding the linear combination
 of the pixels surrounding it. This provides excellent results without significant
 processing, and for this reason, it’s the default interpolation method employed by
 TensorFlow and many graphics cards.

 To understand bilinear interpolation, it helps to look at one-dimensional interpolation,
 or linear interpolation. Suppose that P is a point on a line between Pixels A and
 B. The distance from P to the center of A is denoted t, and the distance from P to
 the center of B is given by 1 - t. Linear interpolation sets the color of P with the
 following equation:

 [image: images]

 When t equals 1, the color at P equals the color at A. When t equals 0, the color
 at P equals the color at B. If t = 0.5, the resulting color will equal the average
 of the colors of A and B. Interpolated values form straight lines, and Figure 8-8 depicts the lines used to interpolate between four points.

 [image: image]

 FIGURE 8-8: Linear interpolation finds internal points by computing the linear combination of
 existing points.

 Bilinear interpolation is similar to linear interpolation, but computes the value
 of two-dimensional points located between four pixels. For example, suppose that P
 is surrounded by four pixels: A, B, C, and D. Locating P requires two interpolation
 parameters, t1 and t2. Figure 8-9 depicts a point P, its four surrounding pixels, and the two interpolation parameters.

 [image: image]

 FIGURE 8-9: Bilinear interpolation uses two interpolation parameters to locate a point relative
 to its four surrounding points.

 Bilinear interpolation determines the color of an internal point by scaling the colors
 of surrounding pixels by the interpolation parameters. The following equation shows
 how bilinear interpolation computes the color at point P, which is surrounded by A,
 B, C, and D:

 [image: images]

 resize_bicubic resizes images using bicubic interpolation. Bicubic interpolation is similar to bilinear
 interpolation, but instead of finding the linear combination of four surrounding pixels,
 it determines the color of an internal point by evaluating a cubic polynomial involving
 16 surrounding points. Bicubic interpolation produces smoother images than bilinear
 interpolation, but requires significantly more processing.

 central_crop determines the dimensions of the cropped image by scaling the dimensions of the original
 image. For example, if you set the fraction parameter to 0.25, the cropped width will equal one-quarter of the original width,
 and the cropped height will equal one-quarter of the original height.

 resize_image_with_crop_or_pad resizes its image without using interpolation. If the specified dimensions are smaller
 than the image, the function will crop the image from its center so that the final
 image has the specified dimensions. If the specified dimensions are larger than the
 image, the function will pad the image with zeros.

 crop_and_resize can perform multiple crop operations. Each row of boxes identifies a portion of the image to be cropped, and each element of box_ind sets the index of the cropped image in the output. The function uses bilinear interpolation
 to resize each cropped image to crop_size.

 Convolution

 In addition to creating convolution layers, TensorFlow applications can perform simple
 convolution by calling tf.nn.conv2d:

 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format='NHWC',
 name=None)

 The format of input depends on the data_format parameter. That is, if an application sets data_format to NHWC, the shape of the input tensor should be [batch, height, width, channels]. If data_format is set to NCHW, the tensor's shape should be [batch, channels, height, width].

 To perform convolution, you should assign filter to a tensor with the same shape as input. As it performs 2-D dot products, the function shifts the filter by intervals given
 in the strides tensor. You must set strides equal to a 1-D tensor with four elements. To shift the dot products by 1 in each
 direction, set strides to [1, 1, 1, 1].

 If a 2-D dot product involves a pixel on or near the image's border, the computation
 will depend on the padding parameter. If you set padding to VALID, the convolution won't compute dot products involving border pixels. If you set padding to SAME, the function will pad the image with zeros before performing convolution.

 [image: tip] The functions tf.layers.conv2d and tf.nn.conv2d have similar names but serve markedly different purposes. tf.layers.conv2d creates a convolution layer in a CNN, while tf.nn.conv2d performs a single convolution operation. Be sure not to confuse the two.

 [image: technicalstuff] In addition to conv2d, the tf.nn package provides a function called conv2d_transpose. This function performs regular convolution, but returns the transpose of the resulting
 image.

 Putting Theory into Practice

 The code in the ch8/img_proc.py module demonstrates how an application can remove noise from an image by performing
 convolution with a 3-x-3 filter whose elements equal 1/9. In addition to convolution,
 this module performs four operations:

 	Changes the image's contrast by calling tf.image.adjust_contrast

 	Mirrors the image horizontally by calling tf.image.flip_left_right

 	Converts the data to PNG format and writes the data to a PNG file

 	Generates summary data for viewing the image in TensorBoard

 The ch8/img_proc.py module reads data from input_aircraft.png and writes its result to output_aircraft.png. Figure 8-10 depicts the input image and the output image.

 [image: image]

 FIGURE 8-10: TensorFlow's image processing routines make it straightforward to modify an image’s
 format, orientation, and color content.

 Listing 8-2 presents the code that implements the module’s operations using TensorFlow.

 LISTING 8-2 General-Purpose Image Processing

 # Load and pre-process PNG data

 queue = tf.train.string_input_producer(['input_aircraft.png'])

 reader = tf.WholeFileReader()

 _, png_data = reader.read(queue)

 orig_tensor = tf.image.decode_png(png_data)

 img_tensor = tf.reshape(orig_tensor, [-1, 1, 232, 706])

 img_tensor = tf.transpose(img_tensor, [0, 2, 3, 1])

 img_tensor = tf.image.convert_image_dtype(img_tensor, tf.float32)

 # Remove noise using a box filter

 conv_filter = np.zeros([3, 3, 1, 1])

 conv_filter[0, 0, :, :] = 0.1111

 conv_filter[0, 1, :, :] = 0.1111

 conv_filter[0, 2, :, :] = 0.1111

 conv_filter[1, 0, :, :] = 0.1111

 conv_filter[1, 1, :, :] = 0.1111

 conv_filter[1, 2, :, :] = 0.1111

 conv_filter[2, 0, :, :] = 0.1111

 conv_filter[2, 1, :, :] = 0.1111

 conv_filter[2, 2, :, :] = 0.1111

 img_tensor = tf.nn.conv2d(img_tensor, conv_filter, [1, 1, 1, 1], 'SAME')

 # Increase contrast

 img_tensor = tf.reshape(img_tensor, [232, 706, 1])

 img_tensor = tf.image.adjust_contrast(img_tensor, 0.8)

 # Flip horizontal

 img_tensor = tf.image.flip_left_right(img_tensor)

 # Create summary data and FileWriter

 img_tensor = tf.reshape(img_tensor, [1, 232, 706, 1])

 img_tensor = tf.image.convert_image_dtype(img_tensor, tf.uint8)

 summary_op = tf.summary.image('Output', img_tensor)

 file_writer = tf.summary.FileWriter('log')

 # Store result to PNG

 img_tensor = tf.reshape(img_tensor, [232, 706, 1])

 img_tensor = tf.image.encode_png(img_tensor)

 with tf.Session() as sess:

 coord = tf.train.Coordinator()

 threads = tf.train.start_queue_runners(coord=coord)

 # Execute session

 output_data, summary = sess.run([img_tensor, summary_op])

 # Write output PNG data to file

 output_file = open('output_aircraft.png', 'wb+')

 output_file.write(output_data)

 output_file.close()

 # Print summary data

 file_writer.add_summary(summary)

 file_writer.flush()

 # Wait for threads to terminate

 coord.request_stop()

 coord.join(threads)

 As you look at this code, it’s important to keep track of the image’s shape and data
 type. After the application decodes the input image, the tensor’s shape is [232, 706,
 1], and its elements are 8-bit unsigned integers. But before the convolution can be
 performed, the application converts the tensor’s shape to [1, 232, 706, 1] and its
 elements to 32-bit floating-point values.

 Before it can update the image’s contrast, the application converts the image tensor’s
 shape back to [232, 706, 1]. Later on, the module converts the image’s shape to [1,
 232, 706, 1] and its type to tf.uint8 so that the module can generate summary data. Lastly, the application converts the
 tensor’s shape to [232, 706, 1] so that it can encode the data to PNG format.

 The process of generating summary data for an image is similar to that of generating
 data for a tensor. The only difference is that the application needs to call tf.summary.image instead of tf.summary.scalar or tf.summary.histogram. The function's signature is given as follows:

 tf.summary.image(name, tensor, max_outputs=3, collections=None, family=None)

 The name parameter provides the label that TensorFlow will associate with the image. The function
 accepts the image data through the tensor parameter, and the tensor's shape must be [batch_size, height, width, num_channels].

 As an example, the ch8/img_proc.py module creates an operation that generates summary data for img_tensor with the following code:

 summary_op = tf.summary.image('Output', img_tensor)

 After creating this operation, the application executes it in a session and uses a
 FileWriter to print the protocol buffer to an event file. When launched, TensorBoard will read
 this event file and display the graphical content of img_tensor.

 Chapter 9

 Analyzing Sequential Data with Recurrent Neural Networks (RNNs)

 IN THIS CHAPTER

 [image: check] Analyzing sequential data with Recurrent Neural Networks (RNNs)

 [image: check] Improving performance with Long Short-Term Memory (LSTM)

 [image: check] Improving performance further with Gated Recurrent Units (GRUs)

 Suppose that you want a neural network to predict the next word in the phrase “My
 hovercraft is full of….” As any Monty Python fan (or a casual web search) will tell
 you, the obvious answer is “eels.” But how can you train a neural network to arrive
 at the answer?

 You can feed the network every sentence ever written on the Internet, but there’s
 still a problem. To make the prediction, the neural network needs to recognize that
 the words form an ordered sequence. That is, the network needs to understand that the phrase “My hovercraft is full
 of” is a different phrase than “full is My of hovercraft.”

 None of the neural networks discussed in Chapters 1 through 8 of this book are capable of recognizing sequences. As a consequence, they can't use
 past analysis to solve future problems. For example, a CNN can classify an image,
 but it can't classify later images based on previous classifications. To make up for
 these shortcomings, machine learning researchers invented recurrent neural networks,
 or RNNs.

 Recurrent Neural Networks (RNNs)

 Most neural networks, such as convolutional neural networks, transfer data in one
 direction: from the input layer to the output layer. For this reason, they’re called
 feed-forward networks. In contrast with feed-forward networks, recurrent neutral networks, or
 RNNs, make use of feedback. That is, they send data from a later node to an earlier node in the network.

 Figure 9-1 depicts a simple RNN. The overall structure resembles that of a regular network,
 but the result of the output node is delayed and fed back into the output node. This
 feedback is the primary characteristic that distinguishes RNNs from other neural networks.

 [image: image]

 FIGURE 9-1: A recursive neural network feeds past data back into one or more nodes.

 Another important characteristic of RNNs is that they execute in stages. For example, if an RNN needs to parse words in audio or text, it will execute one
 stage for each word. With each stage, the RNN receives new data to process. It’s important
 to see the difference between training steps and stages: One training step may require
 multiple processing stages.

 In Figure 9-1, the network’s stage is identified by t. This doesn’t measure clock time, as in 1.37
 seconds, but measures discrete time, which starts at 0 and increments by 1 with each
 new stage. Therefore, the initial input values are denoted xi(0), the next set of inputs are denoted xi(1), and so on.

 An RNN makes use of previous processing stages by accessing delayed values. In Figure 9-1, delayed values are provided by the Delay element. If the current stage is 4, the
 value leaving the Delay element will be y(3). If the current stage is 5, the value
 leaving the element will be y(4).

 Just as the network’s values change from stage to stage, their associated weights
 also change. For example, if the RNN in Figure 9-1 has N stages, the application needs to compute a different set of weights for y(0)
 through y(N-1). If an RNN has many delayed values, computing the weight of each value
 can dramatically increase the time needed for training.

 RNNs and recursive functions

 To better understand how RNNs work, it helps to see how they relate to recursive functions.
 For example, the following function computes the factorial of N using recursion:

 def factorial(N):

 if n == 1:

 return 1

 else:

 return N * factorial(N-1)

 This function calls itself repeatedly and provides a new input value with each call.
 Recursive functions can be rewritten using loops, as demonstrated in the following
 function:

 def factorial(N):

 x = 1

 for i in range(2, N+1):

 x *= i

 return x

 A lengthy recursive function requires a significant amount of memory because of all
 the data that needs to be pushed onto the stack. To prevent overflow, Python sets
 the default maximum recursion limit to 1000.

 Similarly, the processing requirements for an RNN increase with each new stage. Just
 as Python sets a maximum recursion limit, every RNN has a fixed number of stages it
 can process.

 The process of converting a recursive function to a loop-based function is called
 unrolling. To better visualize an RNN, you can unroll it by inserting nodes for each stage
 to be processed. For example, suppose that the RNN in Figure 9-1 has three stages. Figure 9-2 shows what the RNN looks like after unrolling (weights removed for clarity).

 [image: image]

 FIGURE 9-2: Unrolling an RNN makes it easy to visualize its operation.

 As shown in Figure 9-2, y(2) depends on current inputs (the weighted sums of xi(2)) and the outputs of preceding stages. Developers refer to the combined results
 of past stages as the node’s state.

 Put simply, the difference between an RNN and a regular neural network is that one
 or more nodes of an RNN have state. If a node has state, it can apply the results
 of preceding stages to the current stage. This ability to use past results explains
 why RNNs are so popular when it comes to processing language and other sequential
 data.

 Training RNNs

 As illustrated in Figure 9-2, earlier in this chapter, unrolling an RNN results in a feed-forward network that
 receives its inputs at different stages (xi(0), xi(1), and so on). This behavior implies that RNNs can be trained like regular feed-forward
 networks. A popular training method is called backpropagation through time (BPTT),
 which applies the method of backpropagation to RNNs. Chapter 7 discusses the basic theory of backpropagation.

 As you design RNNs with more processing stages, the number of nodes grows dramatically.
 As a result, RNNs suffer from two issues that plague all complex neural networks: vanishing gradients and exploding gradients. Chapter 7 explains these issues and the way they degrade the performance of neural networks.

 To make up for the shortcomings of BPTT, researchers have devised alternative training
 methods. Truncated backpropagation through time (TBPTT) uses a limited number of stages
 for training. Real-time recurrent learning (RTRL) doesn’t unroll RNNs, but trains
 with the partial derivatives of the network’s outputs and states with respect to its
 weights.

 Instead of focusing on new training methods, some researchers have invented entirely
 new variants of RNNs. These variants provide all the benefits of RNNs, but aren’t
 as susceptible to vanishing gradients and exploding gradients. The most popular variants
 are long short-term memory (LSTM) cells and gated recurrent units (GRUs). This chapter
 discusses both of these variants and demonstrates how they can be used.

 Creating RNN Cells

 Just as vanilla neural networks are made up of nodes, RNNs are made up of cells. In most RNN literature, a cell is a part of an RNN that receives input and produces
 a single output value.

 The cells of a TensorFlow RNN aren’t quite as straightforward. According to the documentation,
 the cell of a TensorFlow RNN “is anything that has a state and performs some operation
 that takes a matrix of inputs. This operation results in an output matrix….” In other
 words, an RNN cell has a state, operates on an input matrix, and produces an output
 matrix.

 In a TensorFlow application, the process of building an RNN starts with creating a
 cell. To be specific, the process consists of three steps:

 	

 Create an instance of an RNN cell class with the number of units per cell.

 Each cell class is a subclass of tf.nn.rnn_cell.RNNCell.

 	

 Call a function, such as tf.nn.static_rnn, that creates an RNN based on the cell.

 This function accepts a list of input tensors and returns the RNN's output and state.

 	

 Use the output from Step 2 to compute the loss.

 Minimize the loss by launching an optimizer in a session.

 The RNNCell class plays a central role in this discussion. It can’t be instantiated in code,
 but it’s important because it serves as the base class of TensorFlow’s RNN cell classes,
 which include BasicRNNCell, BasicLSTMCell, LSTMCell, and GRUCell. Figure 9-3 presents seven TensorFlow classes that inherit from RNNCell.

 [image: image]

 FIGURE 9-3: Each subclass of RNNCell represents a different kind of RNN cell.

 The RNNCell class defines properties and methods that can be accessed through its instances.
 Table 9-1 lists seven properties of an RNNCell.

 TABLE 9-1 Properties of the RNNCell Class

 	

 Property

 	

 Description

 	

 state_size

 	

 The shape(s) of the cell's state(s)

 	

 output_size

 	

 The shape of the cell’s output

 	

 graph

 	

 Graph of operations contained in the cell

 	

 losses

 	

 Losses to be applied to the cell's processing

 	

 update

 	

 Tensors used to update the cell’s weights

 	

 variables

 	

 List of the cell's variables

 	

 weights

 	

 List of the cell’s weights

 	

 scope_name

 	

 Name of the scope containing the variables

 The state of an RNNCell can be represented by one or more tensors. Therefore, an application can assign state_size to an integer, a TensorShape, a tuple of integers, or a tuple of TensorShapes. Applications must assign output_size to an integer or a TensorShape.

 The rest of the properties in Table 9-1 are straightforward. The losses property identifies a tensor or list/tuple of tensors that identify losses that the
 cell should apply during its processing. The last three properties in the table provide
 access to the cell's variables and variable scope.

 In addition to properties, the RNNCell class defines a set of methods, and most of them customize the cell’s behavior. Table 9-2 lists four particularly helpful methods and provides a description of each.

 TABLE 9-2 Methods of the RNNCell Class

 	

 Method

 	

 Description

 	

 add_loss(losses, inputs=None)

 	

 Add loss tensors

 	

 add_update(updates, inputs=None)

 	

 Add updates to the cell's weights

 	

 add_variable(name, shape, dtype=None,

 initializer=None, regularizer=None,

 trainable=true)

 	

 Adds a new variable to the layer

 	

 zero_state(batch_size, dtype)

 	

 Returns a zero-filled tensor for initializing the cell's state

 Of the listed methods, zero_state is particularly popular. It creates a zero-filled tensor or list of zero-filled tensors
 suitable for initializing an RNN’s state. The shape of the return value depends on
 the method’s batch_size parameter and the cell's state_size property.

 Creating a basic RNN

 The simplest subclass of RNNCell is BasicRNNCell. Its constructor is given as follows:

 BasicRNNCell(num_units, activation=tf.nn.tanh, reuse=None)

 The num_units parameter sets the number of hidden units in the cell. This parameter determines
 the RNN's learning capacity. That is, as the number of units increases, the size of
 the cell’s state memory increases. Unfortunately, so does the training time. Also,
 if you set num_units too high, you run the risk of overfitting.

 The second parameter of the constructor sets the cell’s activation function. By default,
 RNN cells rely on the inverse tangent (tanh) to produce their output.

 The last parameter, reuse, specifies whether applications can access identically named variables created by
 the cell.

 After creating an instance of the cell, an application can construct an RNN by calling
 one of a handful of functions in the tf.nn package. The simplest of these functions is static_rnn:

 static_rnn(cell, inputs, initial_state=None, dtype=None, sequence_length=None, scope=None)

 Applications must assign inputs to a list of input matrices. For each input matrix in the list, the function creates
 a cell to receive and process the matrix. The number of rows in the input matrix equals
 the application's batch size. In this discussion, I refer to this number as batch_size.

 By default, static_rnn assumes that the RNN's sequence length equals the number of columns in the input
 matrix. An application can customize this length by setting sequence_length to a one-dimensional tensor of batch_size values. Each value of sequence_length sets the length of the sequence for the corresponding row of the input matrix.

 As its name implies, the initial_state parameter initializes the RNN's state. Applications must provide a state value for
 each row of the input matrix, so if the cell’s state_size is an integer, an application must set initial_state to a matrix of shape [batch_size, state_size]. If state_size is a tuple, an application must set initial_state to a tuple of tensors of shapes [batch_size, element_size], where element_size is size of the corresponding element in state_size.

 If an application sets the initial_state parameter, static_rnn will use the state's elements to determine the data type of the RNN’s elements. If
 an application doesn’t set initial_state, it must specify the data type with the dtype parameter. TensorFlow doesn't set a default data type for an RNN’s content.

 static_rnn returns a tuple containing two elements: the RNN’s output and final state. The output
 contains batch_size elements, and the shape of the final state is determined by the cell's state_size.

 The relationship between the number of units, state, inputs, and outputs can be confusing,
 so it helps to look at a basic example. The following code creates a BasicRNNCell with five units:

 new_cell = tf.nn.rnn_cell.BasicRNNCell(5)

 Because the RNN cell has five units, each row in the cell's output matrix will have
 a length of five.

 For this example, each input matrix has two rows, and each row has four elements.
 If the application needs to provide three input matrices, it can set the RNN’s input
 with this code:

 inputs = [tf.constant([[1.,2.,3.,4.], [1.,2.,3.,4.]]), tf.constant([[1.,2.,3.,4.],
 [1.,2.,3.,4.]]), tf.constant([[1.,2.,3.,4.], [1.,2.,3.,4.]])]

 After creating new_cell, an application can create a new RNN and pass it the list of input matrices with
 the following code. The dtype parameter specifies that the RNN's state and output should be composed of floating-point
 values:

 output, state = tf.nn.static_rnn(new_cell, inputs, dtype=tf.float32)

 Because inputs contains three input matrices, the structure of the new RNN contains three cells.
 Each cell produces an output matrix with the same number of rows as the input matrix.
 Figure 9-4 gives an idea of what a simple RNN looks like.

 [image: image]

 FIGURE 9-4: TensorFlow creates one RNN cell for each input matrix. Each cell produces one output
 matrix.

 In Figure 9-4, xi(t) identifies the input matrices provided in the inputs parameter, and yi(t) identifies the output matrices returned by static_rnn. The initial state enters the first cell, which passes its state to the second cell,
 which passes its state to the third cell, which returns its state in static_rnn.

 The precise values of output and state aren't important, but it’s helpful to look at their shapes. Every RNN produces a
 list of output matrices, and the size of the list is determined by the size of the
 list of input matrices. Therefore, output is a list of three matrices. Because each input batch contained two rows, each output
 matrix has two rows. Each row has five values because the cell has five units.

 The shape of the cell’s state is determined by the batch size and the number of units
 in the cell. In this example cell, the state’s shape is [2, 5] because the batch size
 is two and the cell contains five units.

 Predicting text with RNNs

 Because I’m a living national treasure, I extracted a portion of H.P. Lovecraft’s
 short story Herbert West–Reanimator into the ch9/lovecraft.txt file. The ch9/rnn_lovecraft.py module reads this text and uses an RNN to predict how H.P. Lovecraft would add words
 to phrases. I'm sure we can all agree that this application is vitally important to
 humanity’s cultural development, and Listing 9-1 presents the code.

 LISTING 9-1 Predicting Text with an RNN

 # Split text into words

 python3 = sys.version_info[0] == 3

 with open('lovecraft.txt', 'r') as f:

 input_str = f.read().lower()

 if python3:

 trans = input_str.maketrans('', '', string.punctuation)

 input_str = input_str.translate(trans)

 else:

 input_str = input_str.decode('utf-8').translate(None, string.punctuation)

 words = input_str.split()

 num_words = len(words)

 # Convert words to values

 word_freq = collections.Counter(words).most_common()

 vocab_size = len(word_freq)

 lookup = dict()

 for word, _ in word_freq:

 lookup[word] = len(lookup)

 input_vals = np.asarray([[lookup[str(word)]] for word in words])

 input_vals = input_vals.reshape(-1,)

 # Set values

 input_size = 6

 batch_size = 10

 num_hidden = 600

 # Placeholders

 input_holder = tf.placeholder(tf.float32, [batch_size, input_size])

 label_holder = tf.placeholder(tf.float32, [batch_size, vocab_size])

 # Reshape input and feed to RNN

 cell = tf.nn.rnn_cell.BasicRNNCell(num_hidden)

 outputs, _ = tf.nn.static_rnn(cell, [input_holder], dtype=tf.float32)

 # Compute loss

 weights = tf.Variable(tf.random_normal([num_hidden, vocab_size]))

 biases = tf.Variable(tf.random_normal([vocab_size]))

 model = tf.matmul(outputs[-1], weights) + biases

 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=label_holder))

 # Create optimizer and check result

 optimizer = tf.train.AdagradOptimizer(0.1).minimize(loss)

 check = tf.equal(tf.argmax(model, 1), tf.argmax(label_holder, 1))

 correct = tf.reduce_sum(tf.cast(check, tf.float32))

 # Execute the graph

 start_time = time.time()

 with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 input_block = np.empty([batch_size, input_size])

 label_block = np.empty([batch_size, vocab_size])

 step = 0

 num_correct = 0.

 accuracy = 0.

 while accuracy < 95.:

 for i in range(batch_size):

 offset = np.random.randint(num_words-(input_size+1))

 input_block[i, :] = input_vals[offset:offset+input_size]

 label_block[i, :] = np.eye(vocab_size)[input_vals[offset+input_size]]

 _, corr = sess.run([optimizer, correct],

 feed_dict={input_holder: input_block, label_holder: label_block})

 num_correct += corr

 accuracy = 100*num_correct/(1000*batch_size)

 if step % 1000 == 0:

 print('Step', step, '- Accuracy =', accuracy)

 num_correct = 0

 step += 1

 # Display timing result

 duration = time.time() - start_time

 print('Time to reach 95% accuracy: {:.2f} seconds'.format(duration))

 To start, the module reads the content of lovecraft.txt into a string, splits the string into words, and associates each word with a number.
 A word’s number is determined by its frequency. That is, the module associates the
 most common word with 0, the second most common word with 1, and so on.

 After obtaining the array of numbers corresponding to the words, the module creates
 an RNN cell with 600 hidden layers. It uses the RNN cell to call tf.nn.static_rnn, which provides the RNN's output values. To determine loss, the module multiplies
 the RNN’s outputs by a matrix of weights and adds biases to the products. Then it
 creates an AdagradOptimizer to minimize the loss.

 For each training run, the application constructs a batch containing ten (batch_size) sequences of six (input_size) values each. As a result, the RNN can only recognize dependencies between at most
 six consecutive words. For each six-value sequence, the desired label is the seventh
 value, which represents the desired word to be predicted.

 The application doesn't perform a fixed number of training runs. Instead, it continues
 training until the prediction accuracy exceeds 95 percent. For every thousand training
 runs, the application prints the prediction accuracy.

 Creating multilayered cells

 An application can improve an RNN’s analyzing power by stacking cells together in
 sequence. This stacking process connects the output of one cell to the input of another.
 A TensorFlow application can stack RNN cells by creating an instance of the tf.contrib.rnn.MultiRNNCell class, whose constructor is given as follows:

 MultiRNNCell(cells, state_is_tuple=True)

 To create an MultiRNNCell, an application needs to set the first parameter to a list of RNNCell instances. The returned cell will contain the listed instances in sequence.

 The second parameter sets the form of the cell's state. If you set state_is_tuple to True, the cell will provide its state as a tuple that contains an element for each of
 the combined cells. If you set this parameter to False, the cell concatenates the states of the individual cells.

 As an example, the following code creates two BasicRNNCells and then creates a MultiRNNCell that stacks the cells together:

 brc1 = tf.nn.rnn_cell.BasicRNNCell(3)

 brc2 = tf.nn.rnn_cell.BasicRNNCell(3)

 multi_cell = tf.nn.rnn_cell.MultiRNNCell([brc1, brc2])

 As a result of this code, multi_cell stacks brc1 and brc2 together, connecting the output of brc1 to the input of brc2.

 Creating dynamic RNNs

 The static_rnn function assumes that you know the length of your input data in advance. It requires
 that the input data be provided in a list of matrices, where each matrix has size
 [batch_size, input_size]. When an application calls static_rnn, TensorFlow creates the entire RNN structure in the current graph.

 The dynamic_rnn function gives you more flexibility when providing input data. It tells TensorFlow
 to form the graph structure dynamically instead of building it in advance. The signature
 of dynamic_rnn is given as follows:

 dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None,
 swap_memory=False, time_major=False, scope=None)

 Most of these parameters are identical to those of static_rnn. The primary difference is that applications can set inputs to a different shape. This shape depends on batch size, the maximum sequence length,
 and the function's time_major parameter. The default value of time_major is False, which means applications must assign inputs to a tensor of size [batch_size, max_sequence, …] or a nested tuple. If an application sets time_major to True, it must assign inputs to a tensor of size [max_sequence, batch_size, …] or a nested tuple.

 TensorFlow can execute operations without temporal dependency in parallel. The parallel_iterations parameter controls how many such operations should be executed at once, and the default
 value is 32.

 If an application sets swap_memory to True, TensorFlow will swap tensors between the GPU and CPU during the training process,
 incurring a small performance penalty. Chapter 11 explains how to execute TensorFlow operations on a GPU.

 Like static_rnn, dynamic_rnn returns the output and state of the constructed RNN. The following code demonstrates
 how dynamic_rnn can be used:

 example_cell = tf.nn.rnn_cell.BasicRNNCell(4)

 output, state = tf.nn.dynamic_rnn(example_cell,

 example_input, dtype=tf.float32)

 In my experiments, dynamic_rnn provides slightly better performance than static_rnn.

 Long Short-Term Memory (LSTM) Cells

 As RNNs process more stages, their unrolled networks get larger, and they become more
 susceptible to vanishing gradients. Because RNNs have a fixed number of stages, they
 can't analyze sequences with long-term dependencies. That is, if an RNN can process
 a maximum of N stages, it won’t recognize any dependency between Element 0 and Element
 N+1.

 To make up for these shortcomings, Sepp Hochreiter and Jürgen Schmidhuber proposed
 a modification to the RNN’s structure in their 1997 paper Long Short-Term Memory. In essence, they proposed to reduce the size of an RNN’s state by restricting when
 the RNN accepts data. To be specific, an LSTM uses three types of restrictions:

 	Restrict when the RNN accepts input data

 	Restrict the elements stored in the RNN’s state

 	Restrict when the RNN produces output data

 Hochreiter and Schmidhuber called their new type of cell a long short-term memory (LSTM) cell, often shortened to LSTM. Because of its restrictions, an LSTM processes and stores only the data it needs
 to make predictions.

 One major advantage of LSTMs is size. To process a sequence of data, an LSTM requires
 fewer nodes than a comparable RNN. Also, because an LSTM can block the storage of
 irrelevant data, its state can examine sequences with long-term dependencies.

 To implement these restrictions, Hochreiter and Schmidhuber added three gates to the
 RNN cell structure: the input gate, forget gate, and the output gate. Figure 9-5 gives an idea of how these gates control the connectivity of an LSTM cell.

 [image: image]

 FIGURE 9-5: An LSTM reduces the size of an RNN by preventing unnecessary data from cluttering
 the RNN’s state.

 Each gate maintains its own weights and biases to determine when it should open and
 close. To be precise, the three gates operate by multiplying signals by the result
 of a sigmoid function ([image: images]
). For the input and output gates, the function determines how much of the signal
 should be allowed to pass. For the forget gate, the function determines whether the
 data should be stored in the cell’s state (1) or discarded (0).

 Denoting the state of the input gate as it, the state of the forget gate as ft, and the state of the output gate as ot, the following equations show how these gates work:

 [image: images]

 Keep in mind that, inside of the gates, the underlying cell behaves like an RNN cell.
 That is, it relies on the tanh function (by default) to serve as its activation function.

 A BRIEF LITERARY DIGRESSION

 In the 1887 novel, A Study in Scarlet, Dr. John Watson meets Sherlock Holmes for the first time. Despite Holmes’s deductive
 capabilities, Watson is stunned to learn that the detective knows nothing about philosophy,
 literature, or astronomy. Holmes responds in the following way:

 	“I consider that a man’s brain originally is like a little empty attic, and you have
 to stock it with such furniture as you choose. A fool takes in all the lumber of every
 sort that he comes across, so that the knowledge which might be useful to him gets
 crowded out, or at best is jumbled up with a lot of other things so that he has a
 difficulty in laying his hands upon it. Now the skillful workman is very careful indeed
 as to what he takes into his brain-attic. He will have nothing but the tools which
 may help him in doing his work….

 Holmes’ viewpoint closely resembles that of the inventors of the LSTM. While a regular
 RNN stores all the data it receives, an LSTM stores only the data it needs and discards
 everything else. This improved efficiency explains why applications based on LSTMs
 have better performance and flexibility than applications based on RNNs.

 Creating LSTMs in code

 In TensorFlow, the process of creating an LSTM is similar to that of creating a regular
 RNN: Create an instance of a cell class and form an RNN based on the cell. The second
 step requires the same static_rnn and dynamic_rnn functions discussed in the earlier section “Creating RNN cells.”

 The tf.nn.rnn_cell package provides a handful of classes that represent LSTM cells, and the fundamental
 classes are BasicLSTMCell, and LSTMCell. The first is simpler to use, but the second provides more customization options.

 Setting the State

 In a regular RNN, you can set the initial state with a matrix of size [batch_size, state_size]. But to initialize the state of an LSTM network, you need to provide a tuple containing
 two state matrices: one that identifies the cell state and one that identifies the
 hidden state.

 To simplify initialization, the tf.nn.rnn_cell module provides a class named LSTMStateTuple, and its constructor accepts the two state matrices. Denoting the batch size as batch_sz and the state size as state_sz, the following code creates an LSTMStateTuple suitable for initializing the state of an LSTM network:

 cstate = tf.placeholder(tf.float32, [batch_sz, state_sz])

 hstate = tf.placeholder(tf.float32, [batch_sz, state_sz])

 init = tf.nn.rnn_cell.LSTMStateTuple(cstate, hstate)

 After creating the LSTMStateTuple, the application can assign it to the initial_state parameter in functions like static_rnn and dynamic_rnn.

 The BasicLSTMCell class

 From a developer's perspective, the BasicLSTMCell class is nearly identical to BasicRNNCell. Like the BasicRNNCell constructor, the BasicLSTMCell constructor accepts the number of units that should be generated per cell. The full
 constructor is given as follows:

 BasicLSTMCell(num_units, forget_bias=1.0, state_is_tuple=True, activation=tf.nn.tanh,
 reuse=None)

 The forget_bias parameter adds an initial bias to the input of the forget gate. This added bias prevents
 the cell from forgetting information at the start of training.

 After you create a BasicLSTMCell, you can create an RNN based on LSTM cells by calling static_rnn or dynamic_rnn. As an example, the following code creates an LSTM network from a cell with seven
 units:

 lstm_cell = BasicLSTMCell(7)

 output, state = tf.nn.dynamic_rnn(lstm_cell,

 lstm_input, dtype=tf.float32)

 By default, the LSTM's state contains two matrices in a tuple. Therefore, the state
 returned by static_rnn and dynamic_rnn is a tuple containing two matrices.

 The LSTMCell class

 LSTMs discard irrelevant data, so they have no way of measuring the time interval
 between input events. To add this capability, Felix Gers and Jürgen Schmidhuber proposed
 an improvement to the LSTM's structure in their 2000 paper, Recurrent Nets that Time and Count.

 This modification involves adding special peephole connections between the cell’s state and its gates. These connections enable the gates to take
 state data into account when controlling the flow of information.

 You can enable peephole connections by creating LSTMCells instead of BasicLSTMCells. The LSTMCell constructor is given as

 LSTMCell(num_units, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None,
 proj_clip=None, num_unit_shards=None, num_proj_shards=None, forget_bias=1.0, state_is_tuple=True,
 activation=None, reuse=None)

 The cell_clip parameter makes it possible to prevent exploding gradients from occurring. If you
 assign this parameter to a floating-point value, the function will limit the output
 of the cell's activation function to that value.

 To reduce the dimensionality of input data, you can multiply input tensors by a matrix
 called the projection matrix. The num_proj parameter identifies the desired dimensionality of the projection’s output. If you
 set num_proj to a value greater than 0, you can set proj_clip to a floating-point value that limits the projection's result to the range [–proj_clip, proj_clip].

 Predicting text with LSTMs

 The code in the ch9/lstm_lovecraft.py module performs the same text prediction as the code in the ch9/rnn_lovecraft.py module. The only difference is that it creates an RNN based on a BasicLSTMCell instead of a BasicRNNCell. It creates the RNN with the following code:

 cell = tf.nn.rnn_cell.BasicLSTMCell(num_hidden)

 outputs, _ = tf.nn.static_rnn(cell, [input_holder], dtype=tf.float32)

 The rest of the code in ch9/lstm_lovecraft.py is identical to that in ch9/rnn_lovecraft.py. The application reads text from lovecraft.txt and feeds batches of six-element sequences into the RNN. It multiplies the RNN's
 outputs by a matrix of weights, adds biases to the products, and minimizes the loss
 with an AdagradOptimizer.

 As expected, my experiments support the conclusion that LSTMs process sequences more
 efficiently than vanilla RNNs. On my system, RNNs require an average of 35.54 seconds
 to reach 95 percent accuracy and LSTMs require an average of 33.48 seconds.

 Gated Recurrent Units (GRUs)

 In 2014, Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio
 wrote a paper entitled On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. In this paper, they proposed a new variant of RNN for examining variable-length
 sequences called a Gated Recursive Convolutional Network. Today, developers refer
 to their network structure as a Gated Recurrent Unit, or GRU.

 Like LSTMs, GRUs use gates to control the flow of data to and from a cell. But the
 two cells have three important differences:

 	GRU cells have hidden state (ht), but no cell state (Ct).

 	GRU cells have a reset gate instead of the input gate and an update gate instead of
 the forget gate.

 	GRU cells don’t have any output gate mechanism.

 The primary difference is that GRUs have two gates, called the reset gate and update
 gate, while LSTMs have three gates. The GRU’s reset gate corresponds to the LSTM’s
 input gate, and the GRU’s update gate corresponds to the LSTM’s forget gate. GRUs
 don’t use a gate to restrict the cell’s output. Figure 9-6 depicts a GRU cell and its gates.

 [image: image]

 FIGURE 9-6: GRUs are similar to LSTMs, but they have two gates instead of three.

 The GRU’s lack of an output gate may seem like a superficial difference, but the simpler
 structure means that applications can train GRUs significantly faster than LSTMs.

 Creating GRUs in code

 The process of creating RNNs based on GRU cells is very similar to that of creating
 regular RNNs. The difference is that applications need to set the RNN’s cell to an
 instance of the tf.nn.rnn_cell.GRUCell class. The class's constructor is given as follows:

 GRUCell(num_units, activation=None, reuse=None, kernel_initializer=None, bias_initializer=None)

 The third parameter is named kernel_initializer; it has no relationship with the image-filtering kernels discussed in Chapter 8. The kernel_initializer sets the cell's initial weights and bias_initializer sets its biases.

 Predicting text with GRUs

 The code in ch9/gru_lovecraft.py performs the same text prediction as the code in ch9/rnn_lovecraft.py and ch9/lstm_lovecraft.py. The only difference is that it creates an RNN using a GRUCell, as shown in the following code:

 cell = tf.nn.rnn_cell.GRUCell(num_hidden)

 outputs, _ = tf.nn.static_rnn(cell, [input_holder], dtype=tf.float32)

 My experiments indicate that GRUs are significantly more efficient for training than
 LSTMs and vanilla RNNs. On my system, GRUs require an average of 29.17 seconds to
 reach 95 percent accuracy, while LSTMs require an average of 33.48 seconds and RNNs
 require an average of 35.54 seconds to reach 95 percent accuracy.

 Part 3

 Simplifying and Accelerating TensorFlow

 IN THIS PART …

 Simplify your applications by loading data into datasets and extracting data with
 iterators.

 Explore TensorFlow’s high-level Estimator API and the prebuilt estimators available
 for machine learning.

 Accelerate your machine learning by deploying execution across multiple threads and
 devices.

 Take advantage of the extraordinary power of Google’s Machine Learning Engine for
 high-performance TensorFlow execution.

 Chapter 10

 Accessing Data with Datasets and Iterators

 IN THIS CHAPTER

 [image: check] Creating and manipulating datasets

 [image: check] Loading and storing TFRecord data

 [image: check] Exploring four types of iterators

 When you start out in machine learning, your fondest wish is to have your application
 converge to a solution. But as you progress in the field, you become more and more
 concerned with performance. Performance is especially important when your training
 data occupies gigabytes or terabytes of memory.

 This chapter and the following two chapters focus on ways to improve TensorFlow’s
 performance — no more lengthy equations or geometric diagrams. Instead, I focus on
 capabilities that you can use to accelerate your applications. Two important capabilities
 are datasets and iterators, which make it easier to load and process input data.

 Datasets

 One effective method of improving an application’s performance involves creating threads.
 Modern processors have multiple cores, and developers can take advantage of them by
 splitting an application’s workload into threads. This multithreading becomes particularly
 helpful when an application needs to load a great deal of data.

 In the past, TensorFlow developers created threads by constructing instances of the
 QueueRunner class. But as of version 1.4, TensorFlow recommends using Datasets instead of QueueRunners. A Dataset is more than just a large chunk of data — it provides a high-performance pipeline
 for loading and processing data.

 In general TensorFlow applications, the process of working with datasets consists
 of three steps:

 	Create the dataset from data or a file.

 	Split the dataset into batches and preprocess the batches as needed.

 	Process the dataset's batches in a session.

 You can perform the first two steps by calling methods of the Dataset class. The following discussion explores these methods and shows how they can be
 used.

 Creating datasets

 In practice, a dataset is a container of training/testing data and its elements are
 the batches that an application uses to feed data to a session. Chapter 5 explains the topic of batching in detail.

 You can create datasets from data, text files, or binary files. The following sections
 present these methods and explain how they can be performed in code.

 Creating a dataset from data

 You can create a dataset from data by calling one of the five Dataset methods listed in Table 10-1. All of these methods are static, so you'll need to call them through the tf.data.Dataset class.

 TABLE 10-1 Functions That Create Datasets

 	

 Member

 	

 Description

 	

 range(*args)

 	

 Creates a dataset containing a range of values

 	

 from_tensors(tensors)

 	

 Creates a dataset that combines the input tensors into one element

 	

 from_tensor_slices(tensors)

 	

 Creates a dataset containing one element for each row of the input tensors

 	

 from_sparse_tensor_slices(

 sparse_tensor)

 	

 Creates a dataset containing one element for each row of the sparse tensor

 	

 from_generator(generator,

 output_types,

 output_shapes=None)

 	

 Creates a dataset from the given generator

 The simplest of these methods is range, which returns a dataset containing values that make up a step-separated range of
 values. You can call this method with one, two, or three arguments:

 	range(a): Produces a range from 0 to a, not including a

 	range(a, b): Produces a range from a to b, not including b

 	range(a, b, c): Produces a range from a to b, not including b, in steps of c

 The following code demonstrates how you can use range in code:

 ds1 = tf.data.Dataset.range(5) # [1, 2, 3, 4]

 ds2 = tf.data.Dataset.range(10, 13) # [10, 11, 12]

 ds3 = tf.data.Dataset.range(2, 8, 2) # [2, 4, 6]

 The from_tensors and from_tensor_slices are particularly useful, so it's important not to get them confused. from_tensors combines input tensors together and returns a dataset with one element. The following
 code demonstrates how from_tensors can be used:

 t = tf.constant([[1, 2], [3, 4]])

 ds = tf.data.Dataset.from_tensors(t) # [[1, 2], [3, 4]]

 In constrast, from_tensor_slices creates a separate element for each row of the argument. The following code demonstrates
 how from_tensor_slices can be used:

 t = tf.constant([[1, 2], [3, 4]])

 ds = tf.data.Dataset.from_tensor_slices(t)

 # [1, 2], [3, 4]

 This code creates an element from each row of the input tensor. Therefore, ds contains two elements that each contain two values. from_sparse_tensor_slices is similar to from_tensor_slices, but it returns a dataset containing one element for each row of a sparse tensor.

 The from_generator method lets you create a dataset from values produced by a generator function. In
 Python, a generator function is a function that produces (or yields) a series of values. The process of using a generator consists of the following steps:

 	In the generator function, use a yield statement to provide a value.

 	

 Obtain a generator object by invoking the function.

 Proceed to either Step 3 or Step 4 depending on your version of Python.

 	In Python 2.x, call the object's next method to invoke the generator function.

 	In Python 3.x, call the built-in next function with the generator object.

 For example, the following generator returns provides up to four integers:

 def simple_gen():

 i = 0

 while i < 4:

 yield(i)

 i += 1

 The following code obtains a generator object and calls next to access the generator's first three values:

 simple_iter = simple_gen()

 next(simple_iter)

 next(simple_iter)

 next(simple_iter)

 The from_generator method creates a dataset containing an element for each value produced by a generator.
 An application must set the method’s generator parameter to a generator function and the output_types parameter to a structure that identifies the type(s) of the generator's values.

 For example, the following code creates a dataset from the simple_gen generator:

 dset = tf.data.Dataset.from_generator(simple_gen, output_types=tf.int32)

 The generator object returned by simple_gen produces four values. Therefore, from_generator returns a dataset containing four elements: one for each generated integer.

 Creating a dataset from text

 You can create a dataset containing the lines of text files by creating an instance
 of TextLineDataset, which is a subclass of Dataset. The class constructor is given as

 TextLineDataset(filenames, compression_type=None, buffer_size=None)

 To call this constructor, you need to assign filenames to a tensor containing one or more filenames. By default, the constructor assumes
 that the files contain uncompressed text. But if you set compression_type to ZLIB or GZIP, the constructor will decompress the archive before accessing its data.

 The TextLineDataset will contain one string element for each line of the input files. For example, if
 test1.txt has three lines and test2.txt has four lines, the following code creates a dataset that contains seven strings:

 ds = TextLineDataset(['test1.txt', 'test2.txt'])

 After you read the strings into the dataset, you can loop through them using an Iterator. I explain what Iterators are in the section “Iterators,” later in the chapter.

 Creating a dataset from binary files

 In addition to text files, TensorFlow supports creating datasets from binary files
 if the files contain TFRecords. TFRecords are very useful when you need to access
 large amounts of data, but they're confusing and poorly documented. The overall process
 of storing TFRecord data to a file consists of three steps:

 	Create a tf.train.Example that holds the data you want to store.

 	Store the tf.train.Example as a protocol buffer by calling its SerializeToString method.

 	Create a tf.python_io.TFRecordWriter and use it to write the protocol buffer to a TFRecord file.

 Like datasets, Examples store training and test data. Unlike datasets, they store their data in key-value
 pairs called features. Each feature is represented by a tf.train.Feature, and you can create an Example by calling its constructor with a tf.train.Features object that contains one or more Features. Working with these classes can be confusing, so I do my best to clarify:

 	In the tf.train.Example constructor, the features argument accepts a tf.train.Features instance.

 	In the tf.train.Features constructor, the feature argument accepts a dict that associates names with tf.train.Feature instances.

 	In the tf.train.Feature constructor, the bytes_list argument accepts a tf.train.BytesList, the float_list argument accepts a tf.train.FloatList, and the int64_list argument accepts a tf.train.Int64List.

 The following code creates an Example made up of three features:

 feat_a = tf.train.Feature(bytes_list = tf.train.BytesList(value=[b'123']));

 feat_b = tf.train.Feature(float_list = tf.train.FloatList(value=[1.0, 2.0, 3.0]));

 feat_c = tf.train.Feature(int64_list = tf.train.Int64List(value=[2, 3, 4]));

 container = tf.train.Features(feature={'a' : feat_a, 'b' : feat_b, 'c' : feat_c})

 example = tf.train.Example(features=container)

 The constructors of the BytesList, FloatList, and Int64List classes all have a parameter named value. You can set a feature's data by assigning value to an array of the appropriate data type.

 After you created an Example, you can call its SerializeToString method to store its data to a protocol buffer. Then you can write the buffer to a
 TFRecord file by accessing a TFRecordWriter. There are three points to know about this class:

 	Its constructor accepts the name of the file to hold the TFRecord-formatted data and
 an optional compression method.

 	Its write method accepts a protocol buffer and writes its data to the file given in the constructor.

 	When you no longer need the writer, you can call its close method to close the file.

 For example, if the name of your Example is example, the following code writes its data to the example.tfrecord file:

 writer = tf.python_io.TFRecordWriter('example.tfrecord')

 writer.write(example.SerializeToString())

 writer.close()

 After you've written one or more TFRecord files, you can load their data into a dataset
 by performing three operations:

 	Create a TFRecordDataset containing the protocol buffers in the TFRecord files.

 	For each record, parse its features into a dict that associates feature names to tensors.

 	Assemble the tensors into a dataset.

 The TFRecordDataset constructor creates a dataset from one or more TFRecord files. The arguments for
 this constructor are the same as those for the TextLineDataset:

 TFRecordDataset(filenames, compression_type=None, buffer_size=None)

 After you call the constructor, the dataset will hold each protocol buffer as an element.
 Before you can access this data, you need to convert each of these elements into tensors.
 TensorFlow makes this possible by providing two functions:

 	parseSingleExample(serialized, features, name=None, example_names=None): Converts an Example to a dict that matches feature keys to tensors

 	parseExample(serialized, features, name=None, example_names=None): Converts one or more Examples to a dict that matches feature keys to tensors

 For both functions, the serialized parameter accepts the protocol buffer or buffers containing Example data. The features parameter accepts a dict that matches a feature name to an instance of FixedLenFeature or VarLenFeature. The class to instantiate depends on the desired output tensor.

 If you want to load a feature's data into a dense tensor, you should associate the
 feature’s name with a FixedLenFeature. You can create a new FixedLenFeature by calling tf.FixedLenFeature:

 tf.FixedLenFeature(shape, dtype, default_value=None)

 The shape parameter sets the shape of the output tensor, and dtype sets the tensor's data type. To demonstrate how these parameters are used, the following
 code creates a TFRecordDataset from example.tfrecord. Then the dataset's map method calls a function that receives each element of the dataset. This function
 calls parseSingleExample to create a tensor with five elements from the feature named feat:

 def parse_func(buff):

 features = {'feat': tf.FixedLenFeature(shape=[5], dtype=tf.float32)}

 tensor_dict = tf.parse_single_example(buff, features)

 return tensor_dict['feat']

 dataset = tf.data.TFRecordDataset('example.tfrecord')

 dataset = dataset.map(parse_func)

 I discuss the map method later in the “Transforming Datasets” section. For now, it's important to know that map replaces dataset with a new Dataset that contains the return value of parse_func. In this code, parse_func returns a tensor containing the values of the feature named feat.

 If a feature contains a significant number of zeros, you can load it into a sparse
 vector by associating the feature's name with a VarLenFeature. You can create a new VarLenFeature by calling tf.VarLenFeature:

 tf.VarLenFeature(dtype)

 I hope it's clear that the TFRecords API is unnecessarily complicated. I sincerely
 hope that a future version of TensorFlow will address this issue and simplify the
 usage of TFRecords.

 Processing datasets

 After you create a dataset, you can manipulate its elements by calling one of the
 many methods of the Dataset class. To present these methods, I split them into four categories:

 	Working with batches

 	Simple operations

 	Transformations

 	Creating Iterators

 The following sections present the methods in the first three categories. I explore
 the topic of Iterators in the “Iterators” section, later in the chapter.

 Working with batches

 As discussed in Chapter 5, applications frequently divide datasets into batches. The Dataset class makes it easy to work with batches, and Table 10-2 lists two methods that perform batch-related operations.

 TABLE 10-2 Batch Operations

 	

 Member

 	

 Description

 	

 batch(batch_size)

 	

 Split the dataset's content into batches

 	

 padded_batch(batch_size, padded_shapes, padding_values=None)

 	

 Split the dataset’s content into batches and use padding to ensure that each batch
 has the desired shape

 batch divides a dataset's values into batches of size batch_size. The following code divides the dataset into two batches of three elements each.

 vals = tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.int64)

 ds1 = tf.data.Dataset.from_tensor_slices(vals)

 ds2 = ds1.batch(3) # contains [1, 2, 3], [4, 5, 6]

 The padded_batch method pads each element (batch) of the dataset to the shape given by the padded_shapes parameter. Then the method combines the elements into one large element.

 vals = tf.constant([[1., 2.], [3., 4.]])

 ds1 = tf.data.Dataset.from_tensor_slices(vals)

 ds2 = ds1.padded_batch(2, padded_shapes=[3] padding_values=1.)

 # ds2 contains [[1., 2., 1.], [3., 4., 1.]]

 This code creates batches of two elements each and pads each batch to a size of three.
 padded_batch sets the inserted values to 1.0 because of the method's padding_values parameter.

 Simple operations

 After dividing a dataset into batches, you can manipulate the batches by calling methods
 of the Dataset class. Table 10-3 lists nine methods that perform simple operations.

 TABLE 10-3 Simple Dataset Operations

 	

 Member

 	

 Description

 	

 take(count)

 	

 Returns a dataset containing the first count elements

 	

 skip(count)

 	

 Returns a dataset that skips the first count elements

 	

 concatenate(dataset)

 	

 Appends the given dataset to the dataset

 	

 repeat(count=None)

 	

 Repeats the dataset count times

 	

 shuffle(buffer_size, seed=None)

 	

 Randomizes the order of a subset of the dataset's elements

 	

 shard(num_shards, index)

 	

 Returns a dataset with a subset of the dataset’s elements

 	

 list_files(file_pattern)

 	

 Returns a dataset containing the names of the files that match the specified pattern

 	

 cache(filename='')

 	

 Caches elements of the dataset

 	

 prefetch(buffer_size)

 	

 Prefetches the given number of elements from the dataset

 The first two methods, take and skip, are the simplest. They return datasets containing portions of other datasets.

 ds1 = tf.data.Dataset.range(1, 8) # [1 2 3 4 5 6 7]

 ds2 = ds1.take(3) # [1 2 3]

 ds3 = ds1.skip(3) # [4 5 6 7]

 The concatenate method appends one dataset to another. repeat appends a dataset to itself.

 ds1 = tf.data.Dataset.range(1, 3) # [1 2]

 ds2 = tf.data.Dataset.range(7, 10) # [7 8 9]

 ds3 = ds1.concatenate(ds2) # [1 2 7 8 9]

 ds4 = ds1.repeat(2) # [1 2 1 2]

 shuffle creates a dataset by extracting and reordering elements of an existing dataset. The
 batch_size parameter identifies how many elements should be extracted.

 ds1 = tf.data.Dataset.range(1, 8) # [1 2 3 4 5 6 7]

 ds2 = ds1.shuffle(4) # [2 3 6 4]

 shard returns a dataset containing 1/num_shards of the elements in the original dataset. The index argument specifies the index of the subdataset to return. To demonstrate this, the following code creates a dataset with eight elements (0…7)
 and calls shard to return a dataset that's one-fourth of the size.

 dset = tf.data.Dataset.range(8)

 dset_shard = dset.shard(4, 2)

 As a result of this code, dset_shard will contain two elements instead of eight. The elements are [2, 6] because the subdataset
 contains the third value (index = 2) of every four values in the original.The list_files method creates a dataset from the names of the files on the developer's system. For
 example, if the working directory contains a.png and b.png, the following code creates a dataset containing only their names:

 ds1 = tf.data.Dataset.list_files('./*.png')
 # ['a.png', 'b.png']

 The cache method caches the dataset's elements so that you can retrieve them quickly. After
 you cache a dataset, you can launch an operation to retrieve its elements by calling
 prefetch. This method accepts a parameter that identifies the maximum number of elements to
 recover.

 Transforming datasets

 Table 10-4 lists four advanced routines for operating on datasets. These methods make it possible
 to perform sophisticated transformations of a dataset’s elements.

 TABLE 10-4 Dataset Transformations

 	

 Member

 	

 Description

 	

 filter(predicate)

 	

 Filters the dataset based on the predicate

 	

 map(map_func, num_threads=None, output_buffer_size=None)

 	

 Applies the function to the dataset's elements and provides a new element for each

 	

 flat_map(map_func)

 	

 Applies the function to the dataset’s elements, produces a dataset for each, and concatenates
 the results

 	

 interleave(map_func,

 cycle_length, lock_length=1)

 	

 Applies the function to the dataset's elements, produces a dataset for each, and interleaves
 the results

 	

 zip(datasets)

 	

 Interleaves the datasets element-by-element

 The first argument of filter, flat_map, and map is a function that receives each element of the dataset. If you can define your function
 in one line of code, you can set this argument to a lambda. A lambda definition consists of the lambda keyword, one or more arguments, a colon, and the return value. For example, the following
 lambda accepts two values and returns their sum:

 lambda x, y: x + y

 In the filter method, the function returns a Boolean that determines which elements should be kept
 in the dataset. In the following code, the dataset keeps only the elements whose sum
 exceeds 10.0:

 vals = tf.constant([[2., 3.], [4., 5.], [6., 7.]])

 ds1 = tf.data.Dataset.from_tensor_slices(vals)

 ds1 = ds1.filter(lambda x: tf.reduce_sum(x) > 10.0)

 # ds1 contains [6.0, 7.0]

 In the map method, the function receives each element of the input dataset and produces an element
 to be inserted in the output dataset. In the following code, the lambda multiplies
 each element of the input dataset by 2 and inserts the resulting element into the
 output dataset.

 vals = tf.constant([[2., 3.], [4., 5.], [6., 7.]])

 ds1 = tf.data.Dataset.from_tensor_slices(vals)

 ds2 = ds1.map(lambda x: x*2)

 # ds2 contains [[4., 6.], [8., 10.], [12., 14.]]

 flat_map is like map, but instead of returning an element of the output dataset, the function returns
 an entire dataset. flat_map concatenates the output datasets together and returns the flattened result.

 vals = tf.constant([2, 3], dtype=tf.int64)

 ds1 = tf.data.Dataset.from_tensor_slices(vals)

 ds2 = ds1.flat_map(lambda x: tf.data.Dataset.range(x))

 # ds2 contains [0, 1, 0, 1, 2]

 As with flat_map, the function in interleave returns a dataset for each element of the input dataset. Unlike flat_map, it doesn't necessarily concatenate the resulting datasets. The cycle_length parameter identifies how many elements should be interleaved.

 For example, if you set cycle_length to 2, the output dataset will contain the first elements of the first two datasets,
 then the next two elements of the first two datasets, and so on. The following code
 shows how interleave works.

 vals = tf.constant([2, 3, 4], dtype=tf.int64)

 ds1 = tf.data.Dataset.from_tensor_slices(vals)

 ds2 = ds1.interleave(lambda x: tf.data.Dataset.range(x), cycle_length=3)

 # ds2 contains [0, 0, 0, 1, 1, 1, 2, 2, 3]

 This code provides three elements to the lambda and sets the cycle_length to 3. As a result, the output dataset contains the first three elements of the three
 datasets, then the next three elements of the three datasets, and so on.

 The zip method also interleaves multiple datasets, but it doesn't accept a function or cycle_length parameter. This method always takes the first value from the first element, then
 the first value from the second element, and proceeds onward. The following code demonstrates
 how zip can be used.

 ds1 = tf.data.Dataset.range(0, 3)

 ds2 = tf.data.Dataset.range(10, 13)

 ds3 = tf.data.Dataset.range(20, 23)

 ds4 = tf.data.Dataset.zip((ds1, ds2, ds3))

 # ds4 contains (0, 10, 20), (1, 11, 21), (2, 12, 22)

 The datasets parameter of zip accepts the input datasets in a nested structure. An application can set this equal
 to a tuple, but not a list.

 Iterators

 An Iterator lets you iterate through the elements of one or more Datasets. TensorFlow provides four types of iterators:

 	One-shot: Iterates once through the dataset, can't be parameterized

 	Initializable: Requires special initialization, can be parameterized

 	Reinitializable: Can be associated with multiple datasets, must be initialized before each iteration

 	Feedable: Can be associated with multiple datasets, doesn’t need to be initialized before each
 iteration

 One-shot iterators

 One-shot iterators are the simplest of the four, but they can iterate only once through
 a dataset’s elements. An application can create a one-shot iterator for a dataset
 by calling a dataset’s make_one_shot_iterator method.

 After you create an iterator, you can access the next available element by calling
 get_next. This method resembles the next method of a regular Python iterator. To demonstrate how get_next is used, the following code creates a dataset with one element and calls get_next to print the element's value:

 # Create the dataset and iterator

 tensor = tf.constant([1, 2, 3])

 dset = tf.data.Dataset.from_tensors(tensor)

 iterator = dset.make_one_shot_iterator()

 # Access the next element

 next_elem = iterator.get_next()

 # Print the element's value

 with tf.Session() as sess:

 print('Element: ', sess.run(next_elem))

 # Output: 'Element: [1 2 3]'

 When a session evaluates a tensor returned by get_next, the tensor takes the value of the dataset’s next element. To demonstrate, the following
 code creates a dataset with five elements and repeatedly evaluates the tensor returned
 by get_next:

 # Create the dataset and iterator

 dset = tf.data.Dataset.range(5)

 iterator = dset.make_one_shot_iterator()

 # Access the next element

 next_elem = iterator.get_next()

 # Print the values of the elements

 with tf.Session() as sess:

 for i in range(5):

 print('Element: ', sess.run(next_elem))

 In this code, Dataset.range creates a dataset with five elements. The iterator loops through the dataset, and
 the session prints the value of each. The resulting output is as follows:

 Element: 0

 Element: 1

 Element: 2

 Element: 3

 Element: 4

 A one-shot iterator can iterate through a dataset only once. If an application attempts
 to execute a second loop through the dataset, TensorFlow will raise an OutOfRangeError: End of sequence.

 Initializable iterators

 In addition to creating datasets from constant tensors, you can create datasets from
 placeholders. These kind of datasets are called parameterized datasets, and they receive their content when the application executes a session that feeds
 data to the placeholder.

 One-shot iterators can't iterate through parameterized datasets, but initializable
 iterators can. To create an initializable iterator and iterate through a parameterized
 dataset, you need to perform six steps:

 	Create a dataset from a placeholder by calling from_tensors or from_tensor_slices.

 	Create an iterator for the dataset by calling the dataset's make_initializable_iterator method.

 	Obtain the next element by calling the iterator’s get_next method.

 	Initialize the iterator by running its initializer property in a session.

 	Associate the iterator's placeholder with data by setting the feed_dict parameter in the session’s run method.

 	Access the iterators elements in a session by evaluating the result of the get_next method.

 This process may seem complicated, but parameterized datasets can be very helpful.
 To demonstrate how these datasets can be used, the following code creates a dataset
 from a placeholder that holds four floating-point values. Then it accesses the dataset
 using an initializable iterator:

 # Create a placeholder and parameterized dataset

 holder = tf.placeholder(tf.float32, shape=[4])

 dset = tf.data.Dataset.from_tensor_slices(holder)

 # Create the iterator and access its first element

 iter = dset.make_initializable_iterator()

 next_elem = iter.get_next()

 with tf.Session() as sess:

 # Initialize the iterator

 sess.run(iter.initializer,

 feed_dict={holder: [0., 1., 2., 3.]})

 for _ in range(4):

 print('Element: ', sess.run(next_elem))

 Looking at this code, it's important to see that the first call to sess.run initializes the iterator and feeds values to the parameterized dataset through the
 placeholder. After this initialization, the application can access the iterator’s
 values through the value returned by get_next.

 Reinitializable iterators

 If you need to associate an iterator with multiple datasets, one-shot iterators and
 initializable iterators won't be sufficient. Instead, the application can create a
 reinitializable iterator by calling Iterator.from_structure:

 Iterator.from_structure(output_types, output_shapes=None, shared_name=None)

 A reinitializable iterator doesn’t need to know about specific datasets in advance,
 but it needs to know about the types and shapes of their elements. An application
 can set output_types and output_shapes by accessing the identically named properties of a Dataset instance.

 After creating the reinitializable iterator, you can associate it with multiple different
 datasets by creating a separate initializer for each dataset. The following code creates
 one iterator with two initializers. Then it uses the iterator to loop through two
 datasets:

 # Create datasets with similar shapes

 ds1 = tf.data.Dataset.range(8)

 ds2 = tf.data.Dataset.range(3)

 # Create iterator and get first element

 iterator = tf.data.Iterator.from_structure(

 ds1.output_types, ds1.output_shapes)

 next_elem = iterator.get_next()

 # Create an initializer for each dataset

 ds1_init = iterator.make_initializer(ds1)

 ds2_init = iterator.make_initializer(ds2)

 # Run both initializers in a session

 with tf.Session() as sess:

 # Associate the iterator with the first dataset

 sess.run(ds1_init)

 for _ in range(8):

 print('Element from ds1: ', sess.run(next_elem))

 # Associate the iterator with the second dataset

 sess.run(ds2_init)

 for _ in range(3):

 print('Element from ds2: ', sess.run(next_elem))

 This code calls from_structure with ds1's shape and type. Then it associates the iterator with ds1 and ds2. ds1 and ds2 don't have the same shape, but they’re compatible because their shapes are similar.

 Feedable iterators

 If you’d like to switch between iterators without initializing from the start of the
 dataset, you can create a feedable iterator. The process of using a feedable iterator
 consists of six steps:

 	Create a placeholder to contain a string.

 	Call Iterator.from_string_handle with the placeholder.

 	Create multiple iterators to iterate through datasets.

 	For each iterator, obtain a unique string tensor by calling string_handle.

 	Evaluate each unique string tensor in a session to obtain unique strings for the iterators.

 	To switch to a specific iterator, evaluate the result of get_next in a session and provide the iterator's string using the feed_dict parameter of sess.run.

 The following code demonstrates this process. It creates two datasets, a one-shot
 iterator for each dataset, and a feedable iterator that makes it possible to switch
 between the iterators.

 # Create datasets

 ds1 = tf.data.Dataset.range(8)

 ds2 = tf.data.Dataset.range(10, 13)

 # Create an iterator for each dataset

 ds1_iterator = ds1.make_one_shot_iterator()

 ds2_iterator = ds2.make_one_shot_iterator()

 # Create a string placeholder and a feedable iterator

 holder = tf.placeholder(tf.string, shape=[])

 iterator = tf.data.Iterator.from_string_handle(

 holder, ds1.output_types, ds1.output_shapes)

 next_element = iterator.get_next()

 # Obtain a string tensor for each iterator

 ds1_handle = ds1_iterator.string_handle()

 ds2_handle = ds2_iterator.string_handle()

 # Create the session

 with tf.Session() as sess:

 # Obtain a string from each iterator

 ds1_string = sess.run(ds1_handle)

 ds2_string = sess.run(ds2_handle)

 # Iterate through the first four elements of ds1

 for _ in range(4):

 print('Element from ds1: ', sess.run(next_element, feed_dict={holder: ds1_string}))

 # Iterate through ds2

 for _ in range(3):

 print('Element from ds2: ', sess.run(next_element, feed_dict={holder: ds2_string}))

 # Iterate through the last four elements of ds1

 for _ in range(4):

 print('Element from ds1: ', sess.run(next_element, feed_dict={holder: ds1_string}))

 This code prints the first four elements of ds1, the elements of ds2, and the last four elements of ds1. Because the iterator is feedable, the application doesn't need to reinitialize the
 ds1 iterator before the second iteration.

 Putting Theory into Practice

 The code in ch10/dataset.py demonstrates how you can create and process datasets. The module starts by creating
 an Example, writing the Example's data to a TFRecord file, and loading the file’s data into a TFRecordDataset. Then it creates two more datasets, processes them using Dataset methods, and iterates through their elements. Listing 10-1 presents the code.

 LISTING 10-1 Creating and Processing Datasets

 # Generator function

 def generator():

 x = 20

 while x < 28:

 yield x

 x += 1

 # Create an example containing floats

 int_list = tf.train.Int64List(value=[0, 1, 2, 3])

 feat = tf.train.Feature(int64_list=int_list)

 container = tf.train.Features(feature={'feat' : feat})

 example = tf.train.Example(features=container)

 # Write the example to a GZIP file

 opts = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)

 writer = tf.python_io.TFRecordWriter('ex.tfrecord', opts)

 writer.write(example.SerializeToString())

 writer.close()

 # Function to parse TFRecords

 def parse_func(buff):

 features = {'feat': tf.FixedLenFeature(shape=[4], dtype=tf.int64)}

 tensor_dict = tf.parse_single_example(buff, features)

 return tensor_dict['feat']

 # Create a dataset from TFRecords

 dset1 = tf.data.TFRecordDataset('ex.tfrecord', 'GZIP')

 dset1 = dset1.map(parse_func)

 iter1 = dset1.make_one_shot_iterator()

 next1 = iter1.get_next()

 # Create a parameterized dataset and reinitializable iterator

 holder = tf.placeholder(tf.int64, shape=[2])

 dset2 = tf.data.Dataset.from_tensor_slices(holder)

 dset2 = dset2.concatenate(tf.data.Dataset.range(12, 14))

 # Create the third dataset

 dset3 = tf.data.Dataset.from_generator(generator, output_types=tf.int64)

 dset3 = dset3.filter(lambda x: x < 24)

 # Create a reinitializable iterator for the 2nd, 3rd datasets

 iter2 = tf.data.Iterator.from_structure(

 dset2.output_types, dset2.output_shapes)

 next2 = iter2.get_next()

 # Create initializers for the 2nd, 3rd datasets

 dset2_init = iter2.make_initializer(dset2)

 dset3_init = iter2.make_initializer(dset3)

 # Print the content of each dataset

 with tf.Session() as sess:

 # Print the content of the first dataset

 print('Element from dset1: ', sess.run(next1))

 # Print the content of the second dataset

 sess.run(dset2_init, feed_dict={holder: [10, 11]})

 for _ in range(4):

 print('Element from dset2: ', sess.run(next2))

 # Print the content of the third dataset

 sess.run(dset3_init)

 for _ in range(4):

 print('Element from dset3: ', sess.run(next2))

 This module creates, manipulates, and iterates through three datasets:

 	The first dataset, dset1, receives values stored in a TFRecord file. It has a single element with four values:
 0, 1, 2, 3.

 	The second dataset, dset2, is parametric and receives values through a placeholder when the session executes.
 It has four elements with one value each: 10, 11, 12, 13.

 	The third dataset, dset3, receives eight values (20 through 27) from a generator function. The filter method removes every element with a value greater than 24, leaving it with four single-valued
 elements: 20, 21, 22, 23.

 For the first dataset, the module writes a serialized Example to a file named ex.tfrecord. The module compresses the file's content using the gzip algorithm, and the following code shows how to configure the use of GZIP compression:

 opts = tf.python_io.TFRecordOptions (tf.python_io.TFRecordCompressionType.GZIP)

 writer = tf.python_io.TFRecordWriter('ex.tfrecord', opts)

 After assembling the three datasets, the module creates two iterators. The first iterator
 is a one-shot iterator that displays the values of dset1 as the session runs.

 The second iterator is a reinitializable iterator that displays the values in dset2 and dset3. The module creates two initializers for the reinitializable iterator. Within the
 session, the module runs both initializers and uses them to iterate through the values
 in dset2 and dset3.

 Bizarro Datasets

 In Chapter 6, I explain how to create a Dataset containing MNIST's handwriting samples by calling the read_data_sets method of the tf.contrib.learn.python.learn.datasets.mnist package. As strange as it may seem, that Dataset has nothing to do with the Dataset class discussed in this chapter. The tf.contrib.learn.python.learn.datasets package defines its own Dataset structure with the following code:

 Dataset = collections.namedtuple('Dataset', ['data', 'target'])

 I call this Dataset the bizarro dataset because it reminds me of Bizarro, Superman's ugly, less intelligent mirror-image.
 This Dataset doesn’t have subclasses or interesting processing methods. It’s just a named tuple
 with two elements: data contains data points, and target contains labels for the data points. For example, if an estimator's job is to classify
 points in space into categories, the Dataset will store the points’ coordinates in its data element and the category IDs in its target element.

 It irks me that TensorFlow provides two Dataset structures, but I have to admit that the functions of the tf.contrib.learn.python.learn.datasets package make it easy to load and access data. This simplicity explains why so many
 of TensorFlow's example applications rely on these functions. Table 10-5 lists five functions that create bizarro datasets and provides a description of each.

 TABLE 10-5 Creating Bizarro Datasets

 	

 Member

 	

 Description

 	

 load_csv_with_header(filename, target_dtype, features_dtype, target_column=-1)

 	

 Loads a dataset from a CSV file with a header row

 	

 load_csv_without_header(filename, target_dtype, features_dtype, target_column=-1)

 	

 Loads a dataset from a CSV file without a header row

 	

 shrink_csv(filename, ratio)

 	

 Loads a minified dataset from the CSV file

 	

 load_iris(data_path=None)

 	

 Loads the Iris flower dataset from the training/test CSV files

 	

 load_boston(data_path=None)

 	

 Loads a dataset of Boston housing prices from the training/test CSV files

 To explain these methods, I split them into two categories. Functions in the first
 category load data from comma-separated value (CSV) files. Functions in the second
 category load data from pre-existing machine learning datasets: the Iris dataset and
 the Boston dataset.

 Loading data from CSV files

 Many applications import and export data using comma-separated value (CSV) files.
 In a CSV file, each line provides a single record composed of values separated by
 commas. This format isn't particularly efficient, but humans and computers can read
 CSV files without difficulty.

 The first three functions in the table load datasets from CSV files. load_csv_with_header loads a dataset from a CSV file containing a header, and load_csv_without_header loads a dataset from a CSV file without a header.

 The ratio parameter of shrink_csv determines which lines of the CSV file should be stored in the dataset. If an application
 sets ratio to N, shrink_csv will store every Nth line to the dataset. By changing ratio, an application can select different assortments of CSV records for the dataset.

 These functions will not create datasets from general CSV files. They expect CSV files
 to be formatted in a specific way:

 	If present, the file's header should start with the number of samples (the number
 of lines containing records) and the number of features (the number of fields per
 line).

 	Each data line should end with the desired category of the corresponding data point.

 For example, the following text presents the first five lines of the CSV file containing
 training data for the Iris dataset:

 30,4,setosa,versicolor,virginica

 5.9,3.0,4.2,1.5,1

 6.9,3.1,5.4,2.1,2

 5.1,3.3,1.7,0.5,0

 6.0,3.4,4.5,1.6,1

 According to the header, this file provides 30 records, and each record has four fields.
 The last value in each line identifies the category, so the first data point belongs
 to Category 1.

 In a regular CSV file, the header provides a name for each field in a record. But
 in this example, the header has three names, and each record has four fields preceding
 the category. As it turns out, the header names identify category names: setosa identifies Category 0, versicolor identifies Category 1, and virginica identifies Category 2.

 Loading the Iris and Boston datasets

 The TensorFlow website provides two popular datasets that make it easy to train and
 test machine learning applications. The first dataset, called the Iris dataset, associates
 physical traits of a flower with one of three types of irises. The second dataset,
 called the Boston dataset, associates characteristics of Boston properties with house
 prices.

 For each dataset, TensorFlow provides two CSV files: one containing training data
 and one containing test data. For the Iris dataset, you can download the file containing
 training data from http://download.tensorflow.org/data/iris_training.csv and the test data from http://download.tensorflow.org/data/iris_test.csv.

 After you download the files to your system, you can create a dataset by calling load_iris with the path of one of the Iris files. This function returns a Dataset whose data collection contains floating-point values (flower traits) and whose target collection contains integers (iris categories).

 The Boston dataset identifies a number of statistics (from 1978) related to houses
 in the Boston area, including the per capita crime rate, the pupil-teacher ratio,
 and the average number of rooms in each house. You can download the Boston training
 data from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/input_fn/boston_train.csv and the test data from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/input_fn/boston_test.csv.

 Like the MNIST dataset, the Iris and Boston datasets make it straightforward to test
 new machine learning algorithms. The next chapter explains how to test estimators
 using the Iris and Boston datasets.

 Chapter 11

 Using Threads, Devices, and Clusters

 IN THIS CHAPTER

 [image: check] Configuring threads in applications

 [image: check] Assigning operations to devices

 [image: check] Creating distributed applications with clusters

 I feel the need … the need for speed! If you’ve ever said this about machine learning, then this chapter is for you. In
 my experience, you can accelerate a TensorFlow application using four methods:

 	Generate multiple threads of execution

 	Access high-performance devices like graphics processor units (GPUs)

 	Execute an application on a cluster of networked devices

 	Deploy an application to the cloud

 This chapter discusses the first three options and then demonstrates how to execute
 a TensorFlow application in a cluster. Chapter 13 explains how to run TensorFlow in the cloud.

 Executing with Multiple Threads

 A thread is a sequence of operations capable of executing independently from other threads.
 In a TensorFlow application, you can take advantage of threads in two main ways:

 	Perform time-consuming operations, such as the loading and storing of data, in separate
 threads. This approach lets your processing thread continue its work without interruption.

 	Run a session with multiple threads. In theory, this method will reduce the amount of time needed to process the session’s
 operations.

 For the first point, developers used to create QueueRunners, which store operations to be executed in separate threads. But as of version 1.4,
 TensorFlow's documentation recommends using datasets instead, which is why Chapter 10 discusses datasets and iterators instead of threads, queue runners, and coordinators.

 To process a dataset in a multithreaded manner, you can set the num_parallel_calls argument of the Dataset's map method. For example, if you set this argument to 4, TensorFlow will perform the map operation with four threads. Chapter 10 discusses the Dataset class and its map method in glorious detail.

 For the second point, you can execute a session with multiple threads by setting the
 right configuration parameters. You can set these parameters when you create a session
 or when you run the session.

 Configuring a new session

 All of the example code in Chapters 1 through 10 has called tf.Session without any arguments. But you can configure a session by setting the config parameter of tf.Session to a ConfigProto protocol buffer. The fields of this buffer determine the session's behavior, and
 Table 11-1 lists each of them.

 TABLE 11-1 ConfigProto Fields

 	

 Field

 	

 Type

 	

 Description

 	

 device_count

 	

 map<string, int32>

 	

 Identifies the number of devices of each type that can be accessed by the session

 	

 intra_op_parallelism_threads

 	

 int32

 	

 Uses multiple threads to perform a single operation

 	

 inter_op_parallelism_threads

 	

 int32

 	

 Uses multiple threads to perform separate operations

 	

 session_inter_op_thread_pool

 	

 ThreadPoolOptionProto

 	

 Configures session thread pools

 	

 placement_period

 	

 int32

 	

 Determines how often to assign nodes to devices

 	

 device_filters

 	

 string

 	

 Prevents named devices from being accessed by a session

 	

 gpu_options

 	

 GPUOptions

 	

 Configures any GPUs accessed by the session

 	

 allow_soft_placement

 	

 bool

 	

 Determines how operations are assigned to CPUs and GPUs

 	

 graph_options

 	

 GraphOptions

 	

 Configures options for the session's graph(s)

 	

 operation_timeout_in_ms

 	

 int64

 	

 Configures global timeout for the session's blocking operations

 	

 rpc_options

 	

 RPCOptions

 	

 Configures for the session’s distributed runtime

 	

 cluster_def

 	

 ClusterDef

 	

 Lists workers to use in this session

 This section focuses on the options that configure a session's threads. By default,
 a session executes one thread for each core on the target processor. If you run TensorFlow
 on an Intel Core i5 CPU, your session will execute with a maximum of four threads
 because the CPU has four cores.

 It’s important to see the difference between the intra_op_parallelism_threads and inter_op_parallelism_threads options. Many TensorFlow operations, such as matrix multiplication, can be accelerated
 using multiple threads. The intra_op_parallelism_threads option determines how many threads should be generated to execute a single operation. In contrast, if a graph has operations that can run in parallel, the inter_op_parallelism_threads option determines how many threads can be generated to execute them.

 To demonstrate how threads can be configured, the following code creates a ConfigProto that uses a maximum of six threads for single operations and a maximum of eight threads
 for parallel operations. Then it uses the ConfigProto to create a session:

 conf = tf.ConfigProto(intra_op_parallelism_threads=6, inter_op_parallelism_threads=8)

 with tf.Session(config=conf) as sess:

 …

 By default, a session will access threads from a global thread pool instead of creating
 threads of its own. You can change this behavior with the use_per_session_threads option. If you set this option to True, the session will create its own threads.

 If you'd like a session to execute background tasks in addition to the main computation,
 you can configure it by setting session_inter_op_thread_pool to one or more ThreadPoolOptionProto buffers. Each ThreadPoolOptionProto identifies a separate pool of threads. This protocol buffer has two fields:

 	num_threads: The number of threads in the thread pool

 	global_name: A string identifier for the thread pool

 When you want a session to execute with threads from a specific pool, you can identify
 the thread pool in the RunOptions accepted by the run method. The next section discusses the RunOptions buffer in full.

 Configuring a running session

 Just as you can set the config parameter of tf.Session to a ConfigProto, you can set the options parameter of a session's run method to a RunOptions. The fields of a RunOptions determine how the session will execute, and Table 11-2 lists these fields.

 TABLE 11-2 RunOptions Fields

 	

 Field

 	

 Type

 	

 Description

 	

 trace_level

 	

 TraceLevel

 	

 Determines the type of tracing to be performed

 	

 timeout_in_ms

 	

 int64

 	

 Time to wait for the session operation to complete

 	

 inter_op_thread_pool

 	

 int32

 	

 Identifies the pool of threads to use for the operation

 	

 output_partition_graphs

 	

 bool

 	

 Identifies whether the session's partition graph(s) should be provided in the metadata

 	

 debug_options

 	

 DebugOptions

 	

 Sets configuration options for debugging the session operation

 If you configure a Session to use multiple thread pools, you can tell the session to execute threads from a
 particular pool by setting the inter_op_thread_pool option in RunOptions. For example, if you set this option to 1, the session will execute threads in the
 second thread pool.

 Configuring Devices

 Modern processors can execute special instructions that perform math operations at
 high speed. For example, a special multiply instruction can multiply four pairs of
 values in the same time that a regular instruction can multiply a single pair of values.
 These special instructions operate on multiple values at once, and for this reason,
 they're called SIMD (single-instruction, multiple-data) instructions.

 Unfortunately, when you install TensorFlow with a utility like pip, you get the basic,
 boring installation. This installation runs on new and old computers, but it won’t
 take advantage of SIMD instructions, and it won’t execute operations on a graphics
 processor unit (GPU), even if you’ve installed a compliant graphics card.

 If you want TensorFlow to make the best use of your system’s capabilities, you need
 to build TensorFlow specifically for your system.

 Building TensorFlow from source

 It takes time and effort to build TensorFlow from its source code, but if you execute
 a lot of machine learning applications, you’ll save time in the long run. This section
 explains how to build TensorFlow for Windows, macOS, and Linux systems. But it’s important
 to understand three topics: obtaining the TensorFlow source code, the Bazel build
 system, and GPU acceleration.

 Downloading the TensorFlow source code

 TensorFlow is an open-source project, and you can access the source code at https://github.com/tensorflow/tensorflow. If you know how to use git, you can clone the repository with the following command:

 git clone https://github.com/tensorflow/tensorflow.git

 If you don’t know how to use git, click the green button entitled Clone or download.
 Then select the Download ZIP option to download a zip file containing the TensorFlow
 source code. Decompress the zip file when the download is complete.

 Bazel and Java

 Bazel is a Google tool that automates the process of building software. It operates
 by executing operations defined in a file named BUILD. The instructions in this file, called rules, are written in Skylark, a subset of Python.

 If you look through the TensorFlow file hierarchy, you'll see a number of BUILD files and *.BUILD files. If you open the BUILD file in the tensorflow directory, you'll find a number of configuration settings, such as the following:

 config_setting(

 name = "linux_x86_64",

 values = {"cpu": "k8"},

 visibility = ["//visibility:public"],

)

 Each config_setting block identifies a supported platform for building TensorFlow.

 Before you can install Bazel, you need to install Java on your system. Specifically,
 you need to install version 8.x of the Java Development Kit (JDK). If you don’t have this version, you can download
 the installer for Windows and macOS at www.oracle.com/technetwork/java/javase/downloads/index.html.

 If you’re running a Debian-based system like Ubuntu, you can install the OpenJDK 8.x with the following command:

 sudo apt-get install openjdk-8-jdk

 After you install JDK 8.x, you’re ready to install Bazel. The instructions for installing Bazel depend on your
 operating system.

 Graphics Processor Unit (GPU) acceleration

 While CPUs are designed for secure, general-purpose computing, GPUs are designed for
 high-speed graphical rendering, which involves a lot of math. For many machine learning
 applications, you can dramatically improve performance by running operations on a
 GPU instead of a CPU.

 The two main languages for general-purpose GPU (GPGPU) development are OpenCL and
 CUDA. OpenCL is supported by multiple vendors and can run on many different types
 of devices, including CPUs, GPUs, and FPGAs. But TensorFlow supports OpenCL only on
 systems that have ComputeCpp installed. You can download ComputeCpp from www.codeplay.com/products/computesuite/computecpp.

 The second GPGPU language, CUDA, runs only on Nvidia’s GPUs. To install CUDA, visit
 https://developer.nvidia.com/cuda-downloads and click the buttons that identify your operating system, architecture, and OS version.
 Then download and launch the installer, which will walk you through the installation
 process.

 Preparing the TensorFlow build on Windows

 Building TensorFlow on Windows is hard because you need to set up a UNIX-like environment
 that supports Bash scripting, Python, and the GNU build tools, such as gcc and g++.
 To create this environment, most developers use Cygwin or MSYS2 (Minimal System 2).
 In this section, I explain how to build TensorFlow on Windows using MSYS2.

 To install MSYS2, visit www.msys2.org and select the 32-bit (i686) or 64-bit (x86_64) executable. When the download is
 complete, launch the executable and proceed through the installation instructions.

 Assuming that you chose the default options for 64-bit Windows, MSYS2 will place all
 of its files in a new directory named C:\msys64. Two folders are particularly important:

 	C:\msys64\mingw64\bin contains the utilities provided by MinGW (Minimalist GNU for Windows). When you install
 MSYS2, this folder will be empty.

 	C:\msys64\home\<name> is your home directory. When you launch MSYS2, it will be your initial directory.

 To install TensorFlow, you need to be able to access build tools, such as gcc, g++,
 and ld, in the GNU toolchain. You can obtain these tools by downloading MinGW packages
 into the MSYS2 environment. The MSYS2 installer is called pacman, and you can install the necessary MinGW packages by launching MSYS2 and entering
 the following command:

 pacman -S --needed mingw-w64-x86_64-python3-pip base-devel mingw-w64-x86_64-toolchain

 This command adds a number of files and executables to the C:\msys64\mingw64\bin directory. To tell MSYS2 how to find these executables, you need to add this directory to your
 system's PATH variable.

 If you run python --version on the MSYS2 command line, it may tell you that you're using Python 2.x. This version is a problem because TensorFlow on Windows requires Python 3.5. To fix
 this issue, I recommend four steps:

 	Open the C:\msys64\mingw64\bin directory and rename python.exe to old_python.exe.

 	In the same directory, copy python3.5.exe and rename the copy python.exe.

 	In the same directory, copy pip3.exe and rename the copy pip.exe.

 	In the same directory, copy pip3-script.py and rename the copy pip-script.py.

 To verify that everything's working, run python --version in MSYS2 and make sure that the default Python version is 3.x. Then install TensorFlow’s Python dependencies with the following command:

 pip install six numpy wheel

 Next, you need to install the Bazel tool. This process also requires four steps:

 	

 If you’ve haven’t done so already, install Java Development Kit (JDK) 8 for your system.

 You can download the installer from www.oracle.com/technetwork/java/javase/downloads/index.html.

 	Visit http://github.com/bazelbuild/bazel/releases and click the number of the latest release.

 	Scroll to the bottom of the page and find the Windows executable suitable for your
 system.

 	Download the executable, rename it to bazel.exe, and place it in the C:\msys64\mingw64\bin directory.

 After you install Bazel, copy the TensorFlow source code directory to the MSYS2 home
 directory (C:\msys64\home\Part). Then, inside the MSYS2 environment, change to the tensorflow directory. Now you're ready to build!

 Preparing the TensorFlow build on macOS

 Before you can build TensorFlow on a macOS system, you need to install Bazel and TensorFlow’s
 dependencies. If you’ve already installed the Java JDK 8.x, then you can install Bazel using Homebrew.

 You probably already have Homebrew installed on your system, but if you don’t, you
 can install it with the following command:

 /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

 With Homebrew installed, you can install Bazel with the following command:

 brew install bazel

 Before you can install TensorFlow, you need to install three of its dependencies:
 NumPy, six, and wheel. The following command installs all three:

 sudo pip install six numpy wheel

 If you’d like TensorFlow to access your system’s GPU, you’ll need to install GNU’s
 core utilities. You can install them using Homebrew:

 brew install coreutils

 When you’re done, you’ll be all set to start configuring and building TensorFlow.

 Preparing the TensorFlow build on Linux (Ubuntu)

 Of the many Linux distributions available, TensorFlow supports only Ubuntu, specifically
 versions 14.04 and higher. If you’ve installed Python and Java JDK 8.x, installing TensorFlow on Ubuntu is easy.

 The first step is to install the Bazel build tool, and you can add Bazel’s distribution
 URI as a package source with the following commands:

 echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo
 tee /etc/apt/sources.list.d/bazel.list

 curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -

 Afterward, you can install Bazel with the following command:

 sudo apt-get update && sudo apt-get install bazel

 Before you build TensorFlow, you need to install four dependency packages: NumPy,
 Python-Dev, pip, and wheel. If you’re using Python 2.x, you can install these dependencies with the following command:

 sudo apt-get install python-numpy python-dev python-pip python-wheel

 If you’re using Python 3.x, you can install TensorFlow’s dependencies with the following command:

 sudo apt-get install python3-numpy python3-dev python3-pip python3-wheel

 If this installation completes successfully, you’re ready to start building TensorFlow.

 Building TensorFlow

 After you have the TensorFlow source code downloaded to your system and have installed
 Bazel and TensorFlow’s dependencies, you’re ready to start building TensorFlow. To
 get started, change to the directory containing the source code and enter the following
 command:

 ./configure

 This command executes the configure script, which asks a series of questions that configure the features of the TensorFlow
 package. In the following list, I cover the questions that I've encountered when installing
 on Linux. Each question ends with a default response in square brackets. You can select
 the default response by pressing Enter.

 	Python location: The directory containing the Python interpreter

 	Python library path: The directory containing Python libraries

 	jemalloc support: Whether TensorFlow should allocate memory with the improved jemalloc function instead of malloc. I recommend choosing Yes (Y).

 	Google Cloud Platform support: Whether TensorFlow should provide support for Google's cloud computingoffering, the
 Google Cloud Platform (GCP). Chapter 14 explains how to run TensorFlow on the GCP.

 	Hadoop File System support: Whether TensorFlow should support the Hadoop File System

 	Amazon S3 File System support: Whether TensorFlow should provide support for Amazon’s distributed S3 file system

 	XLA JIT support: Whether TensorFlow should use the experimental XLA (Accelerated Linear Algebra) compiler
 to accelerate math operations

 	GDR support: Whether TensorFlow should enable CUDA’s high-speed memory access, GPUDirect RDMA

 	VERBS support: Whether TensorFlow should enable remote direct memory access (RDMA) through the VERBS
 package

 	OpenCL support: Whether TensorFlow should enable GPU computing with OpenCL

 	CUDA support: Whether TensorFlow should enable GPU computing with CUDA

 	MPI support: Whether TensorFlow should enable cluster computing with the Message Passing Interface
 (MPI)

 	Optimization flags: The optimization flags to use when building TensorFlow

 The last option is particularly important. By default, the build process will include
 the flag –march=native. This flag tells the compiler to examine the target CPU and make sure that TensorFlow
 will use the most advanced capabilities supported by the processor. In general, I
 recommend staying with the default optimization option.

 After you complete the questionnaire, the script stores your configuration choices
 in a file named .tf_configure.bazelrc. To continue the build, enter the following command:

 bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package

 This command creates a script called build_pip_package in the bazel-bin/tensorflow/tools/pip_package directory. To build an installation package for TensorFlow, enter the following command:

 bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

 This command creates a wheel file (*.whl) in your /tmp/tensorflow_pkg directory. You can install the new TensorFlow package by calling pip install with this wheel file. On my system, the wheel file is tensorflow-1.4.0rc1-cp27mu-linux_x86_64.whl. Therefore, I can install TensorFlow with the following command:

 sudo pip install /tmp/tensorflow_pkg/tensorflow-1.4.0rc1-cp27mu-linux_x86_64.whl

 When pip install finishes, the TensorFlow installation is complete. You can access the tensorflow package and its modules as if you'd installed the default TensorFlow installation.

 Assigning operations to devices

 If you’ve configured TensorFlow to execute on GPUs and you’ve installed the appropriate
 SDK, TensorFlow automatically assigns processing operations to the GPU.

 For example, TensorFlow contains two versions of matmul: one that executes on CPUs and one that executes on GPUs. When an application executes
 matmul, TensorFlow executes the matrix multiplication on the GPU if it's available.

 TensorFlow lets you assigns operations to devices manually, but first, it helps to
 know which devices are present.TensorFlow provides this information through an undocumented
 function named list_local_devices in the tensorflow.python.client package. This function returns a list of DeviceAttribute protocol buffers, and the following code calls list_local_devices to print a list of available devices:

 from tensorflow.python.client import device_lib

 devices = device_lib.list_local_devices()

 for device in devices:

 print(device)

 On my bargain-basement laptop, this code prints the following result:

 name: "/device:CPU:0"

 device_type: "CPU"

 memory_limit: 268435456

 locality {}

 incarnation: 2086003163627480003

 TensorFlow recognizes two types of devices: CPUs and GPUs. TensorFlow assigns a name
 to each device, and this name always has the same format:

 /job:Part/replica:<replica>/task:<task>/device:<type>:<device_num>

 Unless you're developing distributed applications, you can leave off the job, replica, and task fields and simply use /device:<type>:<device_num>. Here, <type> can be CPU or GPU, and <device_num> identifies the index of the device among the recognized devices of the given type.
 Therefore, the first CPU is /device:CPU:0 and the second GPU is /device:GPU:1.

 If you have multiple devices of a given type, you can configure a session to limit
 the number of devices it can access. The device_count parameter in the ConfigProto buffer makes it possible. As an example, the following code configures the session
 to use a maximum of two GPUs:

 conf = tf.ConfigProto(device_count={'GPU': 2})

 with tf.Session(config=conf) as sess:

 …

 If you'd like to execute operations on a specific device, you can call tf.device with the device’s name. This function returns a context manager that assigns all
 operations in the context to the given device. For example, the following code specifies
 that subsequent operations should be assigned to the second GPU:

 with tf.device('/device:GPU:1'):

 …

 Suppose that your application is executing a session and you’d like to know which
 device(s) the session is using. In this case, you can set the log_device_placement option to True in the session's constructor.

 a = tf.constant(1.2, name='a_var')

 b = tf.constant(3.4, name='b_var')

 sum = a + b;

 conf = tf.ConfigProto(log_device_placement=True)

 with tf.Session(config=conf) as sess:

 print(sess.run(sum))

 If a system has a single CPU, the printed output will look like the following:

 4.6

 Device mapping: no known devices.

 add: (Add): /job:localhost/replica:0/task:0/device:CPU:0

 b_var: (Const): /job:localhost/replica:0/task:0/device:CPU:0

 a_var: (Const): /job:localhost/replica:0/task:0/device:CPU:0

 Configuring GPU usage

 If your TensorFlow installation can access GPUs and TensorFlow recognizes a compliant
 GPU, your sessions will assign math operations to the GPU by default. You can configure
 how the CPU interacts with the GPU by setting the gpu_options field in a session’s ConfigProto. You must assign gpu_options to a GPUOptions buffer, and Table 11-3 lists its fields.

 TABLE 11-3 GPUOptions Fields

 	

 Field

 	

 Type

 	

 Description

 	

 per_process_gpu_memory_fraction

 	

 double

 	

 Configures the fraction of the GPU memory to allocate

 	

 allocator_type

 	

 string

 	

 Sets the GPU allocation strategy

 	

 deferred_deletion_bytes

 	

 int64

 	

 Delays deletion to reduce driver processing

 	

 allow_growth

 	

 bool

 	

 Enables/disables pre-allocation of GPU memory

 	

 visible_device_list

 	

 string

 	

 Determines how GPU devices are mapped

 	

 polling_active_delay_usecs

 	

 int32

 	

 Configures the number of milliseconds that should elapse between polling when active

 	

 polling_inactive_delay_msecs

 	

 int32

 	

 Sets the number of milliseconds between polling when inactive

 	

 force_gpu_compatible

 	

 bool

 	

 Forces tensors to be allocated in GPU's pinned memory

 By default, TensorFlow pre-allocates all of a GPU’s memory for its operations. But
 if you set allow_growth to True, TensorFlow won't allocate any memory in advance. Instead, it will allocate memory
 only as it becomes necessary.

 If you set per_process_gpu_memory_fraction to a value less than 1, TensorFlow will pre-allocate that fraction of the GPU’s visible
 memory. For example, the following code configures a session to pre-allocate 80 percent
 of the GPU’s memory for its operations:

 gpu_opts = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)

 conf = tf.ConfigProto(gpu_options=gpu_opts)

 with tf.Session(config=conf) as sess:

 …

 You can improve performance by reducing the number of commands that the CPU sends
 to the GPU. One frequent command involves deleting objects in GPU memory. By default,
 the CPU will tell the GPU to delete objects when they occupy more than several megabytes
 of storage. You can customize this behavior by setting the deferred_deletion_bytes field of a GPUOptions to a desired memory size.

 Executing TensorFlow in a Cluster

 In addition to running operations on GPUs, you can code distributed applications that
 execute on multiple computers. I found this topic very difficult to understand when
 I first encountered it, so I start by comparing it to a more familiar subject: web
 browsing.

 When you browse the web, your browser (the client) sends a request to a remote machine
 called the server. To be precise, the server is a process on the remote machine (the server's host)
 that listens for requests on a specific port. When you send your request to a web
 server’s host and port, the server sends a response containing a web page. A host
 can execute multiple servers, but each server always listens for messages from a specific
 port.

 In a distributed TensorFlow application, a client accesses multiple servers, which
 may run on separate systems or the same system. Like a web server, each TensorFlow
 server listens for messages directed to a specific host and port.

 Each server executes a single unit of work called a task. A group of related tasks form a job. The collection of servers associated with an application is called a cluster.

 If you’re comfortable with these terms (server, task, job, cluster), you’ll have no
 trouble coding distributed TensorFlow applications. In general, the development process
 requires three steps:

 	Define the application’s jobs, tasks, and server hosts/ports in a ClusterSpec.

 	Create a tf.train.Server for each server in the cluster.

 	Define operations for each task.

 If your cluster executes on multiple computers, you don't have to rewrite the application
 for each computer. Just code the application once and pass different command-line
 arguments to each system. Alternatively, you can use a cluster manager like Kubernetes
 to manage the cluster and automatically define servers and tasks.

 Creating a ClusterSpec

 A cluster specification defines the application’s jobs and tasks and associates each
 task with the network address of a server. Cluster specifications are represented
 by instances of tf.train.ClusterSpec. The class constructor accepts one argument that can take one of three forms:

 	A dict that associates job names with a list of network addresses

 	A dict that associates job names with dicts that associate task numbers with network
 addresses

 	An existing ClusterDef protocol buffer

 This discussion focuses on the first two forms. For example, suppose that you want
 your cluster to execute tasks in two jobs. The first job, j1, has one task, and the second job, j2, has two tasks. You could define your cluster with the following ClusterSpec:

 spec = tf.train.ClusterSpec({

 'j1': ['sys1.ex.com:121'],

 'j2': ['sys2.ex.com:122', 'sys3.ex.com:123']})

 For each network address, you need to provide a host name, such as sys1.ex.com, and a port, such as 123. TensorFlow creates one task for each network address in the ClusterSpec and assigns each task a number corresponding to its order in the job's list. In the
 preceding example, TensorFlow assigns Task 0 to sys1.ex.com, Task 0 to sys2.ex.com, and Task 1 to sys3.ex.com.

 You can assign your own task numbers by associating each job name with a dict that
 associates integers with addresses:

 spec = tf.train.ClusterSpec({

 'j1': {3: 'sys1.ex.com:121'},

 'j2': {2: 'sys2.ex.com:122',

 1: 'sys3.ex.com:123'}})

 For the sake of simplicity, the ClusterSpecs in this book allow TensorFlow to set task indices automatically.

 Creating a server

 After you split your application's computation into tasks, you need to create servers
 to perform the tasks. You can create a server by calling the tf.train.Server constructor:

 tf.train.Server(server_or_cluster_def, job_name=None, task_index=None, protocol=None,
 config=None, start=True)

 You can set the first parameter to a ServerDef, which is a protocol buffer that defines a server's operating environment. But most
 applications assign the first parameter to a ClusterSpec. To tell the server which task it’s intended to perform, you need to set the job_name and task_index parameters. As an example, the following code creates a server to perform Task 1
 of the job named j2:

 server = tf.train.Server(spec, job_name='j2', task_index=1)

 The constructor's protocol parameter identifies the communication mechanism that the Server will use to receive tasks. At the time of this writing, the only accepted protocol
 is grpc, which identifies the gRPC protocol. This is Google's free implementation of remote
 procedure calls (RPC), and you can find out more about gRPC by visiting http://grpc.io.

 The config parameter accepts a ConfigProto that configures all the sessions that run on the server. I present the ConfigProto and its many fields at the start of the chapter in the “Configuring a new session” section.

 The start parameter identifies whether the server should start immediately after it's created.
 If you set this parameter to True, the server will start processing tasks after it’s created. If you set it to False, you can start the server later by calling its start method.

 Specifying jobs and tasks

 After you define your cluster and create your servers, you need to provide code for
 the cluster's tasks. You don’t need to write a separate program for each task. Instead,
 most developers write one program and partition its code so that different portions
 are executed by different tasks.

 You can associate code with a specific task by calling the tf.device function discussed earlier in the “Assigning operations to devices” section. For example, the following code executes only on Task 0 of Job j1:

 with tf.device('/job:j1/task:0'):

 const_a = tf.constant(3.6)

 const_b = tf.constant(1.2)

 total = const_a + const_b

 You can also partition your code using if statements:

 if job_name == 'j1' and task_num == 0:

 …

 elif job_name == 'j1' and task_num == 1:

 …

 When you define a cluster, you can create as many jobs and tasks as you like. But
 many distributed TensorFlow applications have only two jobs:

 	Parameter server (ps): Stores the application's variables

 	Worker replica (worker): Performs the application’s computation, including the processing that updates the
 variables

 You can define these jobs in a cluster specification with code like the following:

 spec = tf.train.ClusterSpec({'ps': [..], 'worker': [..]})

 This section introduces parameter servers and workers and shows you how to create
 them in code.

 Parameter servers

 In a distributed application, TensorFlow recognizes that variables with the same name
 on the same device represent the same data. That is, if Tasks X and Y both operate
 on a variable named weight_var, TensorFlow understands that they should access the same weight_var variable. These tasks run in different processes, so TensorFlow replicates the variables
 between the processes.

 A parameter server (PS) serves as a central location for storing, saving, and retrieving variables.
 In many applications, a PS task will simply declare variables and then block until
 the application is complete. To demonstrate this, the following code defines a parameter
 server that declares two variables, weights and biases, and then blocks until the application is complete.

 server = tf.train.Server(cluster, job_name='ps', task_index=0)

 if job_name == 'ps':

 weights = tf.Variable(…)

 biases = tf.Variable(…)

 server.join()

 After the parameter server declares the weights and biases, other tasks can access these variables and update them as needed. The join method tells the server to block indefinitely.

 Workers

 Generally speaking, any job that performs computation is considered a worker job. Each task in a worker job is called a worker replica or just a worker. To perform its computation, each worker needs to create and launch a session.

 This requirement presents a problem: You can't create regular sessions in a distributed
 application. You need to run each session in the appropriate server process. To understand
 how to run a session in a server, you need to be familiar with server targets.

 Just as web servers communicate using HTTP, TensorFlow servers communicate using gRPC.
 Each server has a gRPC address determined by its host and port. For example, if you
 configure a server to execute a task whose address is localhost:123, the server’s
 gRPC address will be given as follows:

 grpc://localhost:123

 This gRPC address is called the server’s target. You can access this target through the target property of the Server instance.

 To create a session to run inside a server, you need to set the first parameter of
 tf.Session to the server's target. The following code creates a Server and then creates a session that connects to it:

 server = tf.train.Server(spec, job_name='worker', task_index=1)

 with tf.Session(server.target) as sess:

 …

 Here’s a question: If workers in a distributed application need to access the same
 variable data, how can the variables be initialized? The parameter server can’t initialize
 its variables because it doesn’t run a session. But if every worker initializes the
 variables separately, TensorFlow won’t be able to replicate the data between processes.

 The answer is that one of the workers needs to handle initialization, and the other
 workers need to wait until the initialization is complete. The worker that handles
 initialization is called the chief. You can assign the chief’s operations in a session by calling tf.train.MonitoredTrainingSession.

 Workers and monitored sessions

 Chapter 5 presents the fascinating topic of session hooks and explains how to associate hooks
 with a MonitoredSession. You can configure MonitoredSessions for distributed applications by calling a function called tf.train.MonitoredTrainingSession:

 MonitoredTrainingSession(master='', is_chief=True, checkpoint_dir=None, scaffold=None,
 hooks=None, chief_only_hooks=None, save_checkpoint_secs=600, save_summaries_steps=USE_DEFAULT,
 save_summaries_secs=USE_DEFAULT, config=None, stop_grace_period_secs=120, log_step_count_steps=100)

 This function looks like a class constructor, but it returns a MonitoredSession, not a MonitoredTrainingSession. If a worker invokes this function with is_chief set to True, the MonitoredSession will perform the session's initialization when it’s launched. Therefore, only one
 worker (the chief) should call this function with is_chief set to True. When other workers call this function, the returned MonitoredSession will wait until the chief's session has performed initialization.

 The first argument, master, serves the same purpose as the target argument in the Session constructor. That is, it identifies the gRPC location of the worker intended to run
 the session, such as grpc://localhost:123.

 The MonitoredTrainingSession function accepts general session hooks (hooks) and session hooks intended for the chief's session (chief_only_hooks). In addition, the function accepts parameters for setting checkpoints and generating
 summary data. By setting these parameters, you don’t need to create CheckpointSaverHooks or SummarySaverHooks.

 Running a simple cluster

 The code in the ch11/cluster.py module provides a simple example of a distributed TensorFlow application. The module
 doesn't perform any machine learning, but demonstrates how a set of worker tasks can
 combine their efforts to update a variable.

 To be specific, the application creates four workers and uses them to approximate
 π. This approximation involves summing together the areas of the rectangles under the
 function y = (1 + x2)-1 as x runs from 0 to 1 and multiplying the sum by 4. In Figure 11-1, the graph divides the area under the function into 30 regions.

 [image: image]

 FIGURE 11-1: An application can approximate π by splitting the area under the function into rectangles and adding the areas together.

 The ch11/cluster.py module generates four workers to perform the approximation. Listing 11-1 presents the code.

 LISTING 11-1 Approximating Pi in a Distributed Application

 # Session hook to print output

 class OutputHook(tf.train.SessionRunHook):

 def before_run(self, run_context):

 return tf.train.SessionRunArgs(pi_var)

 def after_run(self, run_context, run_values):

 print('Pi approximation:', run_values.results)

 # Define a cluster with two jobs and five tasks

 spec = tf.train.ClusterSpec({'worker':

 ['localhost:31415', 'localhost:31416', 'localhost:31417', 'localhost:31418']})

 # Perform task-dependent operations

 flags = tf.flags

 flags.DEFINE_string('task', '', '')

 if not flags.FLAGS.task:

 # Launch the worker processes

 subprocess.Popen('python cluster.py --task=0', stderr=subprocess.STDOUT)

 subprocess.Popen('python cluster.py --task=1', stderr=subprocess.STDOUT)

 subprocess.Popen('python cluster.py --task=2', stderr=subprocess.STDOUT)

 subprocess.Popen('python cluster.py --task=3', stderr=subprocess.STDOUT)

 else:

 N = 10

 num_workers = float(spec.num_tasks('worker') - 1)

 delta_x = float(1)/float(N * num_workers)

 task_index = int(flags.FLAGS.task)

 # Create server

 server = tf.train.Server(spec, job_name='worker', task_index=task_index)

 with tf.device('/job:worker/task:0'):

 pi_var = tf.Variable(0., dtype=tf.float32)

 with tf.device('/job:worker/task:1'):

 for i in range(N):

 x_i = delta_x * (i * num_workers + 0.5)

 pi_var += 4 * delta_x/(1 + x_i * x_i)

 with tf.device('/job:worker/task:2'):

 for i in range(N):

 x_i = delta_x * (i * num_workers + 1.5)

 pi_var += 4 * delta_x/(1 + x_i * x_i)

 with tf.device('/job:worker/task:3'):

 for i in range(N):

 x_i = delta_x * (i * num_workers + 2.5)

 pi_var += 4 * delta_x/(1 + x_i * x_i)

 # Launch session

 output_hook = OutputHook()

 with tf.train.MonitoredTrainingSession(master='grpc://localhost:31415',

 is_chief=(task_index == 0), chief_only_hooks=[output_hook]) as sess:

 sess.run(pi_var)

 The module defines a ClusterSpec and launches four processes — one for each worker. Each worker process receives a
 different argument that identifies its task number. The workers use this task number
 to create and launch a server whose network address is determined by the ClusterSpec.

 The module calls tf.device to assign code to the four workers. The first worker declares and initializes the
 pi_var variable. The rest of the workers update the value of pi_var by adding together the areas of ten of the rectangular regions underneath the function
 y = (1 + x2)-1.

 Each worker calls tf.train.MonitoredTrainingSession and sets its target to the address of the first worker. The chief worker is the worker
 whose task index is 0, and this worker's session executes first and initializes the
 application’s variables. After the initialization is complete, the other workers execute
 the session and update pi_var.

 To display the output, the module associates the session with an OutputHook. This session hook prints the value of pi_var after the session completes its execution. The module associates the session hook
 with the function's chief_only_hooks parameter, so the hook applies only to the chief worker’s session.

 Chapter 12

 Developing Applications with Estimators

 IN THIS CHAPTER

 [image: check] Executing machine learning algorithms with estimators

 [image: check] Defining features and feature columns

 [image: check] Using pre-built estimators in practice

 [image: check] Analyzing complex datasets with wide and deep learning

 At a fundamental level, the process of using statistical regression for machine learning
 is a lot like the process of using neural networks (see Chapter 7): Load your data, train your model, and test the result. Unfortunately, the code
 needed to perform statistical regression in TensorFlow is quite different than the
 code needed to create neural networks.

 To simplify development and testing, TensorFlow provides the Estimator framework.
 The tf.estimator package contains modules that analyze data through a common set of methods. For example,
 the estimator class that performs linear regression (LinearRegressor) has the same methods as the class that performs regression with deep neural networks
 (DNNRegressor).

 You can take advantage of this commonality by coding your own estimators. That is,
 if you package your custom machine learning algorithm as an estimator, other developers
 will have no trouble training and testing your application.

 Introducing Estimators

 The tf.estimator package provides an assortment of classes that analyze data, including LinearClassifier and DNNClassifier. These classes all extend the Estimator class, whose methods make it possible to perform machine learning in an algorithm-agnostic
 manner.

 Throughout this book, I use the term estimator to refer to instances of the Estimator class and its subclasses. In general, the process of working with estimators consists
 of six steps:

 	Load data into a dataset.

 	Create feature columns that associate the dataset's fields with names and data types.

 	Create an instance of the estimator’s class with the feature columns.

 	Train the estimator with training data.

 	Evaluate the estimator’s performance with test data and examine the results.

 	Use the estimator for real-world prediction or classification.

 Step 3 depends on the type of estimator you’re interested in. You can perform Steps
 4, 5, and 6 by calling the three fundamental methods of the Estimator class: train, evaluate, and predict. Once you understand these methods, you'll have a solid grasp of what estimators
 are all about.

 Training an Estimator

 After you load data into a dataset and create an estimator, the next step is to start
 training. Every estimator supports the train method:

 train(input_fn, hooks=None, steps=None, max_steps=None)

 The input_fn parameter identifies a function that provides training data as a tuple. This tuple
 contains two data elements: features and labels. A feature identifies a single, complete
 observation, such as the N coordinates of a point in N-dimensional space. A label
 identifies the category of the corresponding feature, such as a 1 if the point represents
 success or a 0 if the point represents failure.

 To identify features, input_fn provides a dictionary that associates strings with tensors. Each string identifies
 the data in the tensor. To demonstrate how you can set input_fn, the following function provides three features — one for each point dimension.

 def train_func():

 features = {

 'x-coords': tf.constant([[0.1], [0.2]]),

 'y-coords': tf.constant([[0.5], [0.6]]),

 'z-coords': tf.constant([[1.0], [1.1]])

 }

 labels = tf.constant([[0], [1]])

 return features, labels

 This set of features consists of two points: (0.1, 0.5, 1.0) and (0.2, 0.6, 1.1).
 But the code may seem confusing because of how the data is structured. Instead of
 returning one point at a time, the function provides all the x-coordinates in the
 first feature, all the y-coordinates in the second feature, and all the z-coordinates
 in the third feature.

 The second part of the tuple returned by input_fn is a tensor containing labels. If the estimator's purpose is to classify, the labels
 represent categories. In the preceding example code, the first point has a label of
 0, and the second point has a label of 1.

 Looking at this code, you may wonder where the names x-coords, y-coords, and z-coords came from. When you call an estimator's constructor, you need to provide a feature column for each feature. A feature column associates a name, such as x-coords, with the type of data provided in the feature. I discuss the fascinating topic of
 feature columns in the upcoming section “Using Feature Columns.”

 By default, estimators continue training until the loss approaches zero. But you can
 control the number of training steps by setting the steps parameter or the max_steps parameter. The difference is that the steps parameter is incremental, so if you want to perform 30 training steps now and 20
 training steps later, you can start by calling train with steps equal to 30. Later on, you can call train with steps equal to 20.

 You can monitor the training process by setting the hooks parameter to a list of session hooks. Chapter 5 explains how session hooks make it possible to monitor a session's execution.

 Testing an Estimator

 After you create and train your estimator, you should make sure that it works properly.
 Testing your estimator is the purpose of the evaluate method:

 evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)

 The parameters of evaluate are similar to those of train. As with train, the input_fn function provides a tuple containing features and labels. The only difference is
 that these features and labels represent test data instead of training data.

 The checkpoint_path parameter identifies the directory where the method should store its outputs. If
 you set this parameter to None, the method will use the model_dir parameter of the estimator's constructor. If you don’t set this parameter, the method
 will store its outputs in a temporary directory.

 evaluate returns the test results in a dict whose content depends on the estimator’s model.
 TensorFlow’s documentation doesn’t list any required keys for this dict, but every
 estimator I’ve used has provided the following:

 	accuracy: The percentage of correct predictions

 	loss: Difference between the model's prediction and actual result

 	average_loss: Average of the loss

 In addition to these metrics, the dict returned by evaluate also contains the value of the global step. An application can access this value
 through the global_step key.

 Running an Estimator

 After you train and test your estimator and you're happy with the test results, it’s
 showtime! You can execute your estimator with real-world data points by calling predict:

 predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None)

 Like train and evaluate, predict accepts a function as its first parameter. But instead of providing a tuple containing
 features and labels, this function only returns features. That is, input_fn returns a dictionary that matches strings (names of feature columns) to tensors.
 These tensors contain the data points for your real-world application.

 predict returns the estimator's prediction in a dict that matches names to values. If checkpoint_path is set, the method will store its output files in the given directory.

 Creating Input Functions

 The train, evaluate, and predict methods require an input function as their first parameter. Two functions in tf.estimator.inputs simplify the process of coding this input function:

 	numpy_input_fn: Accepts NumPy arrays and returns a function that provides a features/target tuple

 	pandas_input_fn: Accepts a pandas DataFrame and returns a function that provides a features/target tuple

 The signature of numpy_input_fn is given as follows:

 numpy_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=None, queue_capacity=1000,
 num_threads=1)

 The x parameter identifies features and the y parameter provides a label for each feature. The shuffle parameter identifies whether the features and labels should be shuffled. When calling
 this function, you must set shuffle to True or False.

 You must set the x and y parameters to NumPy arrays, and you can load these arrays from a CSV file by calling
 the load_csv_with_header or load_csv_without_header functions discussed in Chapter 10. The following code passes feature data from load_csv_with_header to numpy_input_fn:

 dataset = tf.contrib.learn.datasets.base.

 load_csv_with_header(filename='example.csv', target_dtype=np.int32, features_dtype=np.float32)

 …

 input_fn = tf.estimator.inputs.numpy_input_fn(x={'column': np.array(dataset.data)},
 y=np.array(dataset.target), shuffle=True, num_epochs=1000)

 The num_epochs parameter is particularly important for training because it defines how many epochs
 the session will execute. For evaluation and prediction, you should set num_epochs to 1.

 The pandas toolset stores data in DataFrames. You can create an input function from a DataFrame by calling pandas_input_fn:

 pandas_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=None, queue_capacity=1000,
 num_threads=1, target_column='target')

 The arguments of this function are nearly identical to those of numpy_input_fn. The only difference is the target_column argument, which identifies the column containing target (label) data.

 Configuring an Estimator

 The constructor of every estimator class accepts an argument named config. By setting this to a tf.contrib.learn.RunConfig, you can configure many aspects of the estimator's operation, such as when it saves
 variables and generates summary data.

 You can create a RunConfig by calling its constructor. Table 12-1 lists the constructor’s parameters.

 TABLE 12-1 Parameters of the RunConfig Constructor

 	

 Parameter

 	

 Default

 	

 Description

 	

 master

 	

 None

 	

 Target for running the estimator

 	

 num_cores

 	

 0

 	

 Number of cores to use

 	

 log_device_placement

 	

 False

 	

 Bool that identifiers whether the estimator should print which device(s) it runs on

 	

 gpu_memory_fraction

 	

 1

 	

 Fraction of GPU memory to be used by the estimator

 	

 tf_random_seed

 	

 None

 	

 Random seed for initializers

 	

 save_summary_steps

 	

 100

 	

 Number of steps to wait before saving summaries

 	

 save_checkpoints_secs

 	

 600

 	

 Number of seconds to wait before saving checkpoints

 	

 save_checkpoints_steps

 	

 --

 	

 Number of steps to wait before saving checkpoints

 	

 keep_checkpoint_max

 	

 5

 	

 Maximum number of checkpoint files to store

 	

 keep_checkpoint_every_n_hours

 	

 10000

 	

 Number of hours between each checkpoint to be saved

 	

 log_step_count_steps

 	

 100

 	

 Number of steps between logging of the global step per second

 	

 evaluation_master

 	

 ''

 	

 The gRPC target for evaluating the estimator

 	

 model_dir

 	

 None

 	

 Directory to save graph and model parameters

 	

 session_config

 	

 None

 	

 The ConfigProto used to configure the estimator's session

 As discussed in Chapter 11, distributed applications rely on gRPC to execute sessions on remote servers. The
 master parameter identifies the estimator’s gRPC target and the evaluation_master parameter identifies the evaluation target. If you don't set these parameters, the
 estimator will run locally. If you leave num_cores at 0, the system will use every core on the target processor.

 model_dir identifies the location where the estimator should save its data. Most of the other
 fields specify how often the data should be saved. To specify when checkpoint data
 should be saved, you can set save_checkpoint_steps or save_checkpoint_secs, but not both.

 The session_config parameter defines properties of the estimator's underlying session. To configure
 the session, you need to assign this parameter to a ConfigProto buffer, and Chapter 11 presents its fields.

 Using Feature Columns

 Applications provide features to estimators using structures that resemble database
 tables. In a database table, each column identifies a specific field (First name, Age, and so on) and each value in a column has the same data type. Each row contains
 all the information for a single record.

 In a TensorFlow application, a feature column serves the same role as a column header
 in a database table. That is, it provides a name for the column's data and indicates
 the data type of the column’s values. Feature columns play an important role in this
 discussion because the constructor of every estimator class requires one or more feature
 columns.

 The tf.feature_column package provides an assortment of classes that represent feature columns. Each of
 them extends the _FeatureColumn class, and Figure 12-1 illustrates the class hierarchy.

 [image: image]

 FIGURE 12-1: TensorFlow's feature column classes determine the data type of the values in the
 column.

 A _DenseColumn identifies data from a dense tensor, and a _CategoricalColumn identifies data that can be expressed categorically. That is, if a column needs to
 store values that can be expressed as an enumerated type, such as a direction (NORTH, SOUTH, EAST, WEST), you should create a subclass of _CategoricalColumn. For all other types of data, you should create a subclass of _DenseColumn.

 The tf.estimator package contains the classes in Figure 12-1, but the functions needed to create instances are in the tf.feature_column package. Table 12-2 lists eight of these functions and describes the content of the feature column created
 by the function.

 TABLE 12-2 Functions that Create Feature Columns

 	

 Function

 	

 Column Content

 	

 numeric_column(key, shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None)

 	

 Real values and other numbers

 	

 categorical_column_with_identity(key, num_buckets, default_value=None)

 	

 Categories represented by unique integers

 	

 categorical_column_with_hash_bucket(key, hash_bucket_size, dtype=tf.string)

 	

 Categories represented by hashed integers or strings

 	

 categorical_column_with_vocabulary_list(key, vocabulary_list, dtype=None, default_value=-1,
 num_oov_buckets=0)

 	

 Categories accessed through a list of integer IDs associated with strings or integers

 	

 categorical_column_with_vocabulary_file(key, vocabulary_file, vocabulary_size, num_oov_buckets=0,
 default_value=None, dtype=tf.string)

 	

 Categories accessed through a file that associates integer IDs with strings or integers

 	

 bucketized_column(source_column, boundaries)

 	

 Values from a numeric column discretized according to different ranges

 	

 indicator_column(categorical_column)

 	

 Convert a categorical column to a dense column

 	

 embedding_column(categorical_column, dimension, combiner='mean', initializer=None,
 ckpt_to_load_from=None, tensor_name_in_ckpt=None, max_norm=None, trainable=True)

 	

 Convert a sparse categorical column to a dense column

 Each of these functions accepts a key that identifies the column's data. You can think of this key as the name of the column
 in a database table. An estimator receives the column’s data through the input function
 of train, evaluate, and predict. As discussed in the “Introducing Estimators” section, the first part of the function's tensor is a dict that associates the names
 of feature columns with tensors.

 Numeric columns are almost trivially easy to work with. The default data type is tf.float32, and the default shape is (1). Therefore, the following code returns a _NumericColumn that contains single floating-point values:

 temp = numeric_column('temp')

 Of the categorical columns, the simplest is the _IdentityCategoricalColumn, which can be created by calling categorical_column_with_identity. This column contains integers that represent categories. The num_buckets parameter determines the number of categories, so the following code creates an _IdentityCategoricalColumn whose elements can take any value between 0 and 11:

 month = categorical_column_with_identity('month', num_buckets=12)

 If your application identifies categories with strings, you may find it inconvenient
 to provide a unique integer for every category. In this case, you can call categorical_column_with_hash_bucket, which uses a hash function to generate ID values for string or integer data. The
 following code creates a _HashedCategoricalColumn with 195 categories:

 nation = categorical_column_with_hash_bucket('nation', num_buckets=195)

 Rather than use a hash function, you may find it simpler to list the different values
 of the categories. Then the feature column will determine its own IDs for the categories.
 You can do this by calling categorical_column_with_vocabulary_list. For example, the following code creates a _VocabularyListCategoricalColumn that creates a category for each of the seven strings in the vocabulary_list parameter:

 day_of_the_week = categorical_column_with_vocabulary_list (key='day', vocabulary_list=('Monday',
 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'))

 The categorical_column_with_vocabulary_file function is like categorical_column_with_vocabulary_list, but you provide the elements of the vocabulary in a file. If you assign a field
 to an undefined value, the function will assign the field to the default_value if the parameter is defined. If default_value isn't defined and the application assigns a value to num_oov_buckets, the function will create additional categories as needed.

 If you need to place numbers into categories according to their range, you can call
 bucketized_column. This function accepts a _NumericColumn and a list/tuple of ranges. As an example, the following code categorizes values
 of temp_column according to a list of temperature ranges:

 boundaries = [-273.15, 0., 100.]

 temp_state = bucketized_column(temp_column, boundaries)

 If the boundaries parameter contains N values, bucketized_column will create N+1 value ranges. In the example, the first range runs from negative
 infinity to -273.15, the second range runs from -273.15 to 0.0, the third range runs
 from 0.0 to 100.0, and the fourth range runs from 100.0 to infinity.

 Many operations, like DNN analysis, can be performed only on data in dense columns.
 For this reason, TensorFlow provides indicator_column and embedding_column, which convert categorical columns to dense columns. indicator_column is simpler and converts category values to multihot values. For example, if a column's
 category values run from 0 to 3 and a feature has a value of 2, indicator_column will convert this value to [0, 0, 1, 0].

 embedding_column gives you more flexibility in creating dense columns. If your category IDs contain
 multiple values, the combiner parameter of embedding_column determines how the values should be combined. Currently, you can set this to mean, sqrtn, and sum. The default combiner is mean, which indicates that the function computes dense values by finding the average of
 the categorical values.

 Creating and Using Estimators

 The tf.estimator package provides six concrete estimator classes that you can instantiate in your
 applications:

 	LinearClassifier: Classifies data points using a linear model

 	LinearRegressor: Makes predictions using a linear model

 	DNNClassifier: Classifies data points using a deep neural network

 	DNNRegressor: Makes predictions using a deep neural network

 	DNNLinearCombinedClassifier: Classifies data points using a linear model and a deep neural network

 	DNNLinearCombinedRegressor: Makes predictions using a linear model and a deep neural network

 Each estimator performs a specific type of task using a specific methodology. Regressors
 make predictions, and classifiers place data points into categories. Some estimators
 use linear modeling, some use deep neural networks, and the last two estimators use
 both.

 If you're unclear about the difference between regressors and classifiers, remember
 the Iris and Boston datasets from Chapter 10. The Iris dataset associates physical traits with a type of iris, so a problem involving
 this dataset requires a classifier. The Boston dataset associates location characteristics
 with housing prices, so a problem involving this dataset requires a regressor.

 I don’t explore all six of these classes in detail. Instead, I focus on three: the
 LinearRegressor, DNNClassifier, and DNNLinearCombinedClassifier. In each case, I explain how to create and train the estimator and then use it to
 make a prediction.

 [image: technicalstuff] TensorFlow provides more estimator classes than just the six I list. The tf.contrib.learn package provides a handful of estimator classes, including DynamicRnnEstimator, LogisticRegressor, and SVM.

 The Estimator API makes it straightforward to code your own estimators. In addition
 to implementing the train, evaluate, and predict methods, you'll need to set the estimator’s model and the method it uses to compute
 loss.

 Linear regressors

 Chapter 6 explains how statisticians use linear regression to analyze data trends by fitting
 a line to a group of data points. Mathematically, linear regression sets mx + b as
 its model and computes loss using mean-squared error. The goal of training is to determine
 which values of m and b minimize the distance between the line and the observed data.

 The simplest of TensorFlow’s estimator classes, LinearRegressor, performs the same operation. Its constructor is given as follows:

 LinearRegressor(feature_columns, model_dir=None, label_dimension=1, weight_column=None,
 optimizer='Ftrl', config=None, partitioner=None)

 The only required parameter is feature_columns, which accepts a list of _FeatureColumns that identify the estimator's data. The model_dir parameter tells the estimator where it should store its outputs, such as event files
 and checkpoints. If you don’t set model_dir, the estimator will use a temporary directory instead.

 An estimator's train function expects a function that returns a tuple of features and labels. In most
 applications, a label consists of a single value, such as a category number. But if
 your estimator needs multivalued targets, you can configure this by setting the label_dimension parameter.

 If you set the weight_column parameter, the estimator creates an additional column that assigns a weight to each
 feature. The input functions of train and evaluate must provide values for this column. The estimator multiplies the feature's loss
 by this weight, so a high weight means a high loss, which means the estimator will
 take larger steps during the optimization process.

 If you look in the ch12 folder in this book’s example code, you’ll see that it contains two files named lin_reg.csv and lin_reg.py. The first file defines a series of two-dimensional points. Its first five lines
 are given as follows:

 20,1

 0.5,0.25

 1.0,0.2

 1.4,0.25

 0.75,0.5

 This header states that the file contains 20 features and that each feature consists
 of a single value. Each feature value identifies a point's x-coordinate, and the target
 identifies the point’s y-coordinate. Figure 12-2 illustrates these points graphically. The dashed line is the line that best fits
 the data, and its equation is y = 0.76x – 0.22.

 [image: image]

 FIGURE 12-2: A LinearRegressor finds the slope and y-intercept of the line that best fits a set of points.

 To analyze the points in ch12/lin_reg.csv, the ch12/lin_reg.py code creates a dataset and a feeds its data to a LinearRegressor. Listing 12-1 presents the code.

 LISTING 12-1 Using an Estimator for Linear Regression

 # Read dataset from CSV file

 dataset = tf.contrib.learn.datasets.base.load_csv_with_header(

 filename='lin_reg.csv', target_dtype=np.float32,

 features_dtype=np.float32, target_column=1)

 # Create feature column containing x-coordinates

 column = tf.feature_column.numeric_column('x', shape=[1])

 # Create the LinearRegressor

 lin_reg = tf.estimator.LinearRegressor([column])

 # Train the estimator

 train_input = tf.estimator.inputs.numpy_input_fn(

 x={'x': np.array(dataset.data)},

 y=np.array(dataset.target), shuffle=True, num_epochs=50000)

 lin_reg.train(train_input)

 # Make two predictions

 predict_input = tf.estimator.inputs.numpy_input_fn(

 x={'x': np.array([1.9, 1.4], dtype=np.float32)},

 num_epochs=1, shuffle=False)

 results = lin_reg.predict(predict_input)

 # Display the results

 for value in results:

 print(value['predictions'])

 Given how simple the problem is, I decided not to evaluate the estimator. Instead,
 the module proceeds directly from train to predict. The predict method provides its results in a generator that produces dicts. This code iterates
 through the dicts and prints the value associated with the predictions key.

 The results of the LinearRegressor come close to the expected results. At x = 1.9, the correct value of y is 1.22, and
 the estimator produced a result of 1.20. At x = 1.4, the correct value of y is 0.84,
 and the estimator produced a result of 0.86.

 DNN classifiers

 A DNNClassifier uses a deep neural network to assign data points to categories. Its constructor is
 a lot like that of the LinearRegressor, but includes parameters that define the neural network's structure:

 DNNClassifier(hidden_units, feature_columns, model_dir=None, n_classes=2, weight_column=None,
 label_vocabulary=None, optimizer='Adagrad', activation_fn=tf.nn.relu, dropout=None,
 input_layer_partitioner=None, config=None)

 The hidden_units parameter sets the size and shape of the neural network. For each element of the
 tensor, the constructor creates a hidden layer for the network. The value of each
 element in the tensor sets the number of nodes in the corresponding hidden layer.

 For example, if you set hidden_units to [16, 32], the network will contain two hidden layers. The first layer will contain
 16 nodes, and the second layer will contain 32 nodes. These nodes are fully connected,
 so the network connects the output of each node to each node of the next layer.

 The n_classes and label_vocabulary parameters tell the classifier about the application's categories, and you’ll find
 these parameters in all classifiers. n_classes sets the number of categories, and label_vocabulary provides a set of names for the categories. If you set label_vocabulary, be sure to use the category names in the input functions of train and evaluate.

 The ch12/dnn_class.py module demonstrates how to create a DNNClassifier and use it to classify data points. It loads MNIST training data from mnist_train.tfrecords and loads test data from mnist_test.tfrecords. Listing 12-2 presents the code.

 LISTING 12-2 Classifying MNIST Images with a DNN Classifier

 # Constants

 image_dim = 28

 num_labels = 10

 batch_size = 80

 num_steps = 8000

 hidden_layers = [128, 32]

 # Function to parse MNIST TFRecords

 def parser(record):

 features = tf.parse_single_example(record,

 features={

 'images': tf.FixedLenFeature([], tf.string),

 'labels': tf.FixedLenFeature([], tf.int64),

 })

 image = tf.decode_raw(features['images'], tf.uint8)

 image.set_shape([image_dim * image_dim])

 image = tf.cast(image, tf.float32) * (1. / 255) - 0.5

 label = features['labels']

 return image, label

 # Create the DNNClassifier

 column = tf.feature_column.numeric_column('pixels',

 shape=[image_dim * image_dim])

 dnn_class = tf.estimator.DNNClassifier(hidden_layers, [column],

 model_dir='dnn_output', n_classes=num_labels)

 # Train the estimator

 def train_func():

 dataset = tf.data.TFRecordDataset('mnist_train.tfrecords')

 dataset = dataset.map(parser).repeat().batch(batch_size)

 image, label = dataset.make_one_shot_iterator().get_next()

 return {'pixels': image}, label

 dnn_class.train(train_func, steps=num_steps)

 # Test the estimator

 def test_func():

 dataset = tf.data.TFRecordDataset('mnist_test.tfrecords')

 dataset = dataset.map(parser).batch(batch_size)

 image, label = dataset.make_one_shot_iterator().get_next()

 return {'pixels': image}, label

 metrics = dnn_class.evaluate(test_func)

 # Display metrics

 print('\nEvaluation metrics:')

 for key, value in metrics.items():

 print(key, ': ', value)

 This module creates a feature column and uses it to construct a DNNClassifier. It sets the estimator's hidden_units parameter to [128, 32], which means the classifier has two hidden layers with 128,
 and 32 hidden units, respectively. It sets the n_classes parameter to 10 because each MNIST image can fall into one of ten categories. The
 label_vocabulary parameter isn't set, so the classifier assumes that the labels will be provided as
 integers from 0 to 9.

 After training and evaluation, the module prints the keys and values of dict returned
 by evaluate. On my system, these results are given as follows:

 Evaluation metrics:

 accuracy : 0.9595

 average_loss : 0.129958

 loss : 10.3966

 global_step : 8000

 Combined linear-DNN classifiers

 If the linear estimators and DNN estimators don’t meet your requirements, you can
 create an estimator that uses both learning methods. TensorFlow provides two such
 estimators: the DNNLinearCombinedRegressor and the DNNLinearCombinedClassifier. This discussion focuses on the DNNLinearCombinedClassifier.

 Before proceeding, I'd like to clarify some terminology. This estimator’s name includes
 “Linear,” but it doesn’t perform line fitting. Despite its name, a linear classifier
 relies on logistic regression, not linear regression, to do its job. Chapter 6 fearlessly explores the topics of linear and logistic regression.

 To determine which category a point belongs to, a TensorFlow linear classifier relies
 on the softmax function. If j is one of N categories, this function is given as follows:

 [image: images]

 A classifier is linear if f(x) is a linear combination of x, as in mx + b. To determine
 loss, a linear classifier computes cross entropy.

 A DNNLinearCombinedClassifier combines a linear classifier and a DNN classifier. You can create an instance of
 this classifier by calling its constructor:

 DNNLinearCombinedClassifier(model_dir=None, linear_feature_columns=None, linear_optimizer='Ftrl',
 dnn_feature_columns=None, dnn_optimizer='Adagrad', dnn_hidden_units=None, dnn_activation_fn=tf.nn.relu,
 dnn_dropout=None, n_classes=2, weight_column=None, label_vocabulary=None, input_layer_partitioner=None,
 config=None)

 It’s important to see that the constructor accepts separate feature columns for linear
 classification (linear_feature_columns) and DNN classification (dnn_feature_columns). This separation indicates that the linear classifier and DNN classifier process
 different features.

 Google Research has given a special name to the process of combining linear classification
 and DNN classification: wide and deep learning.

 Wide and deep learning

 The ultimate goal of deep learning is to derive general principles from a body of
 data. I want my stock-picking application to derive general principles that will pick
 tomorrow's stocks based on yesterday’s results. I want my medical application to derive
 general principles that will accurately classify health conditions in new patients
 based on records of existing patients.

 But there’s a problem. In many cases, the desire for generality and accuracy conflict.
 Consider the following generalization:

 	Statement 1: Vampires have sharp teeth and usually hunt in the evening.

 	Statement 2: Werewolves have sharp teeth and usually hunt in the evening.

 	Generalization: All vampires are werewolves.

 Humans can look at these statements and immediately spot the problem with this reasoning.
 But deep neural networks can’t. A DNN may base its generalizations on trivial features
 (sharp teeth) instead of important features (lycanthropy, aversion to sunlight, and
 thirst for blood).

 To improve on deep learning, Google updated their Google Play recommendation system
 to augment DNN classification with linear classification. To train the linear classifier,
 Google provides input features and cross products of input features. A cross product determines how features interact by multiplying
 the features together:

 [image: images]

 In a TensorFlow application, you can combine features into a cross product by calling
 tf.feature.crossed_column. In essence, this combines multiple categorical columns into a single hashed categorical
 column. Its signature is given as follows:

 crossed_column(keys, hash_bucket_size, hash_key=None)

 The first parameter, keys, accepts one or more categorical columns to be examined together. hash_bucket_size sets the maximum number of unique values in the new categorical column.

 Cross products may not seem exciting, but linear classifiers can use them to arrive
 at conclusions that DNN classifiers would find difficult to obtain. Linear classifiers
 are particularly effective when problems have many categorical features that may or
 may not interact on one another. For this reason, Google Research refers to the use
 of linear classifiers as wide learning. According to Heng-Tze Cheng and other Google researchers, “Online experiment results
 show that Wide & Deep significantly increased app acquisitions compared with wide-only
 and deep-only models.”

 Analyzing census data

 Wide learning is helpful for problems with many categorical features. This requirement
 makes the usual datasets — MNIST, CIFAR, Iris, and Boston — unsuitable for demonstration.
 For this reason, the ch12/combined.py module analyzes census data. To be precise, the module creates a DNNLinearCombinedClassifier that examines data from the 1994 Census to determine whether a person will make more
 or less than $50,000 per year.

 I provide the census data in two CSV files: ch12/adult.data contains training data and ch12/adult.test contains test data. The University of California, Irvine (UCI) provides these files
 for free at their site https://archive.ics.uci.edu/ml/machine-learning-databases/adult.

 Each record of census data provides 14 statistics about a person:

 	age: The person's age in years

 	workclass: Work status (Private, Self-emp-not-inc, self-emp-inc, Federal-gov, Local-gov, State-gov,
 Without-pay, Never-worked)

 	fnlwgt: A weighting value (final weight) computed by the Census Bureau

 	education: Highest level of education (Preschool, 1st-4th, 5th-6th, 7th-8th, 9th, 10th, 11th, 12th, HS-grad, Some-college, Prof-school, Assoc-acdm, Assoc-voc, Bachelors, Masters, Doctorate)

 	education-num: Number of years in education

 	marital-status: Marital status (Never-married, Divorced, Separated, Widowed, Married-civ-spouse,
 Married-AF-spouse, Married-spouse-absent)

 	occupation: Place of work (Tech-support, Craft-repair, Other-service, Sales, Exec-managerial,
 Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing,
 Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces)

 	relationship: Marital status (Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried)

 	race: Self-identified race (White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black)

 	sex: Gender (Female, Male)

 	capital-gain: Profit from buying/selling capital assets

 	capital-loss: Loss from buying/selling capital assets

 	hours-per-week: Number of hours worked per week

 	native-country: Country of origin (United-States, Cambodia, England, Puerto-Rico, Canada, Germany,
 Outlying-US(Guam-USVI-etc), India, Japan, Greece, South Korea, China, Cuba, Iran,
 Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland,
 France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala,
 Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong
 Kong, Holand-Netherlands)

 As an example, the adult.test file contains the following record:

 36, Local-gov, 403681, Bachelors, 13, Married-civ-spouse, Prof-specialty, Husband,
 White, Male, 0, 0, 40, United-States, >50K

 The last column provides the classification label as a string. The label >50K indicates that the person makes more than $50,000 per year, and <=50K indicates that the person makes less than or equal to $50,000 per year.

 Unfortunately, you can't load this census data with load_csv_with_header or load_csv_without_header. Instead, I recommend using the pandas data analysis library. If you have pip available,
 you can install pandas with the following command:

 pip install pandas

 After you install the toolset, you can read CSV data by calling read_csv. This function accepts quite a few parameters, and seven of them are particularly
 important:

 	filepath_or_buffer: Handle of the file containing CSV data

 	header: Row number(s) containing column names

 	names: Names of the CSV fields

 	dtype: Data type or list of data types for columns

 	engine: Parser engine

 	skipinitialspace: Boolean that specifies whether to ignore spaces after the delimiter (default: False)

 	skiprows: Number of rows to skip after the start of the file

 read_csv returns a DataFrame that holds data from the CSV file. For example, the following code obtains a handle
 to adult.data and calls read_csv to read its data into a DataFrame:

 columns = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status',
 'occupation', 'relationship', 'race', 'gender', 'capital_gain', 'capital_loss', 'hours_per_week',
 'native_country', 'income_bracket']

 train_file = open('adult.data', 'r')

 train_frame = pd.read_csv(train_file, names=columns, engine='python', skipinitialspace=True,
 skiprows=1)

 After you create a DataFrame, you can call pandas_input_fn to convert the DataFrame into a function that can be passed to an estimator's train or evaluate method. The ch12/combined.py module demonstrates how an application can read data from a CSV file with pandas,
 and Listing 12-3 presents the code.

 LISTING 12-3 Analyzing Census Data with Wide and Deep Learning

 # Define column headings

 columns = ['age', 'workclass', 'fnlwgt', 'education', 'education_num',

 'marital_status', 'occupation', 'relationship', 'race', 'gender',

 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',

 'income_bracket']

 # Create feature columns

 age = tf.feature_column.numeric_column('age')

 workclass = tf.feature_column.categorical_column_with_vocabulary_list(

 'workclass', ['Private', 'Self-emp-not-inc', 'self-emp-inc', 'Federal-gov',

 'Local-gov', 'State-gov', 'Without-pay', 'Never-worked'])

 fnlwgt = tf.feature_column.numeric_column('fnlwgt')

 education = tf.feature_column.categorical_column_with_vocabulary_list(

 'education', […])

 education_num = tf.feature_column.numeric_column('education_num')

 marital_status = tf.feature_column.categorical_column_with_vocabulary_list(

 'marital_status', ['Never-married', 'Divorced', 'Separated', 'Widowed',

 'Married-civ-spouse', 'Married-AF-spouse', 'Married-spouse-absent'])

 occupation = tf.feature_column.categorical_column_with_vocabulary_list(

 'occupation', […])

 relationship = tf.feature_column.categorical_column_with_vocabulary_list(

 'relationship', ['Wife', 'Own-child', 'Husband', 'Not-in-family',

 'Other-relative', 'Unmarried'])

 race = tf.feature_column.categorical_column_with_vocabulary_list(

 'race', ['White', 'Asian-Pac-Islander', 'Amer-Indian-Eskimo', 'Other', 'Black'])

 gender = tf.feature_column.categorical_column_with_vocabulary_list(

 'gender', ['Female', 'Male'])

 capital_gain = tf.feature_column.numeric_column('capital_gain')

 capital_loss = tf.feature_column.numeric_column('capital_loss')

 hours_per_week = tf.feature_column.numeric_column('hours_per_week')

 native_country = tf.feature_column.categorical_column_with_vocabulary_list(

 'native_country', […])

 # Create groups of columns

 linear_columns = [

 tf.feature_column.crossed_column(

 ['education', 'occupation'], hash_bucket_size=1000),

 tf.feature_column.crossed_column(

 ['native_country', 'occupation'], hash_bucket_size=1000),

 tf.feature_column.crossed_column(

 ['workclass', 'occupation'], hash_bucket_size=1000)]

 dnn_columns = [

 tf.feature_column.indicator_column(workclass),

 tf.feature_column.indicator_column(education),

 tf.feature_column.indicator_column(gender),

 tf.feature_column.indicator_column(relationship),

 tf.feature_column.indicator_column(native_country),

 tf.feature_column.indicator_column(occupation),

 age, education_num, capital_gain, capital_loss,

 hours_per_week, fnlwgt]

 # Create classifier

 classifier =

 tf.estimator.DNNLinearCombinedClassifier(linear_feature_columns=linear_columns,

 dnn_feature_columns=dnn_columns, dnn_hidden_units=[120, 60])

 # Train the classifier

 train_file = open('adult.data', 'r')

 train_frame = pd.read_csv(train_file,

 names=columns, engine='python',

 skipinitialspace=True, skiprows=1)

 train_labels = train_frame['income_bracket'].apply(lambda x: '>50K' in x)

 train_fn = tf.estimator.inputs.pandas_input_fn(

 x=train_frame, y=train_labels,

 batch_size=100, num_epochs=600,

 shuffle=True)

 classifier.train(train_fn)

 # Test the estimator

 test_file = open('adult.test', 'r')

 test_frame = pd.read_csv(test_file,

 names=columns, engine='python',

 skipinitialspace=True, skiprows=1)

 test_labels = test_frame['income_bracket'].apply(lambda x: '>50K' in x)

 test_fn = tf.estimator.inputs.pandas_input_fn(

 x=test_frame, y=test_labels,

 num_epochs=1, shuffle=False)

 metrics = classifier.evaluate(test_fn)

 # Display metrics

 print('\nEvaluation metrics:')

 for key, value in metrics.items():

 print(key, ': ', value)

 Before you can execute this module, you need to place the adult.data and adult.test files in the current directory. You also need to install the pandas data analysis
 package.

 The module starts by creating a feature column for each field in the census data.
 Then it creates three crossed columns: one that combines the education and occupation columns, one that combines the native_country and occupation columns, and one that combines the workclass and occupation columns.

 After creating the crossed columns, the module creates a set of feature columns intended
 for the DNN classifier. You can't feed categorical columns to a neural network, so
 the module converts categorical columns into dense columns by calling tf.feature_column.indicator_column.

 Next, the module creates a DNNCombinedLinearClassifier and provides it with the two sets of feature columns. That is, it directs the crossed
 columns to the linear classifier and the dense columns to the DNN. The dnn_hidden_units parameter configures the neural network to have two hidden layers: one with 120 nodes
 and one with 60 nodes.

 After creating the classifier, the module calls its train and evaluate methods. To train the classifier, the module reads the fields from adult.data and converts the DataFrame to a dataset. The training process consists of 500 epochs, with each training step
 operating on shuffled batches containing 100 data points each.

 To test the classifier, the module reads the fields from adult.test into a DataFrame and converts the DataFrame to a dataset. Then it prints each metric contained in the dict returned by evaluate. On my system, the module displays the following results:

 accuracy : 0.802285

 accuracy_baseline : 0.763774

 auc : 0.87448

 auc_precision_recall : 0.710498

 average_loss : 0.511923

 label/mean : 0.236226

 loss : 65.1142

 prediction/mean : 0.336511

 global_step : 195360

 In this list, auc stands for “area under the curve.” This metric is common for classifiers, as it measures
 the likelihood of a classifier making successful predictions compared to unsuccessful
 predictions.

 Running Estimators in a Cluster

 Chapter 11 introduces distributed TensorFlow applications, which involve jobs, tasks, and servers.
 You can run estimators in distributed applications, but you need to tell TensorFlow
 about the cluster and the task assigned to the server running the estimator.

 You can provide this information by setting a TF_CONFIG variable that describes the cluster and the server's task. To be specific, you need
 to set TF_CONFIG to a JSON (JavaScript Object Notation) object that contains three fields:

 	cluster: A description of the cluster

 	task: The node's task

 	job: Parameters of the job

 You can set the first field by providing the argument of the ClusterSpec instance. If you have an existing ClusterSpec, you can obtain a suitable description by calling its as_cluster_def method.

 The task field identifies the task assigned to the node on which TF_CONFIG is set. This field has three fields of its own:

 	type: the type of task (worker, master, or ps)

 	index: the index of the task within the job

 	trial: string identifier of the trial to be run, starts with '1'

 The job field of TF_CONFIG describes the node's job. A distributed application usually receives this information
 through command-line arguments, so you can ignore this field. The following code gives
 you an idea how you can set this variable:

 TF_CONFIG = {

 'cluster': {'ps': ['host1:123'],

 'worker': ['host2:456']},

 'task': {

 'type': 'worker',

 'index': 0,

 'trial': '1'

 }

 }

 In this case, the cluster has two jobs and two tasks. The task assigned to the node
 with this TF_CONFIG variable has an index of 0 and a type of worker. In this case, the cluster has a job with the task's type, but this isn’t always
 the case. You can assign any name to a job, but a task’s type must be worker, master, or ps.

 Accessing Experiments

 To simplify the process of executing estimators in a distributed environment, TensorFlow
 provides the Experiment class. To use an Experiment in code, you need to perform three steps:

 	Create an estimator.

 	Construct an instance of tf.contrib.learn.Experiment with the estimator created in Step 1.

 	Launch the experiment by calling tf.contrib.learn.learn_runner.run.

 This discussion presents these steps and demonstrates how an experiment can be used
 to classify MNIST images. Chapter 13 presents an application that launches an experiment in the cloud.

 Creating an experiment

 Every experiment requires an estimator and functions for training and evaluation.
 You can create a tf.contrib.learn.Experiment by calling its constructor, whose arguments are listed in Table 12-3.

 TABLE 12-3 Parameters of the Experiment Constructor

 	

 Parameter

 	

 Default

 	

 Description

 	

 estimator

 	

 --

 	

 Estimator to be launched by the experiment

 	

 train_input_fn

 	

 --

 	

 Function that returns training features and labels

 	

 eval_input_fn

 	

 --

 	

 Function that returns evaluation features and labels

 	

 eval_metrics

 	

 None

 	

 Evaluation metrics to monitor

 	

 train_steps

 	

 None

 	

 Number of training steps

 	

 eval_steps

 	

 None

 	

 Number of evaluation steps

 	

 eval_hooks

 	

 None

 	

 Session hooks to pass to the estimator

 	

 eval_delay_secs

 	

 120

 	

 Number of seconds to wait before evaluating

 	

 continuous_eval_throttle_secs

 	

 60

 	

 Number of seconds to wait after the start of evaluation before re-evaluating

 	

 min_eval_frequency

 	

 None

 	

 Minimum number of steps between evaluations

 	

 delay_workers_by_global_step

 	

 False

 	

 Bool that specifies whether to delay training workers by global step instead of time

 	

 export_strategies

 	

 None

 	

 Export strategies

 	

 train_steps_per_iteration

 	

 None

 	

 Number of training steps in each training-evaluation iteration

 	

 checkpoint_and_export

 	

 False

 	

 Bool that specifies whether to save checkpoints and exports during training

 The most important parameter of the constructor is the first, which identifies the
 estimator to be executed by the experiment. The second and third parameters identify
 the functions that the experiment should use to train and evaluate the estimator.

 The train_steps parameter identifies the number of steps to be performed during the training process.
 If you don't set this parameter, the estimator’s training will continue indefinitely.
 The eval_steps parameter specifies how many steps should be performed during testing. If you don’t
 set this parameter, the test will continue as long as input data is available.

 Methods of the experiment class

 After you create an Experiment, you can access its methods. Table 12-4 lists these methods and provides a description of each.

 TABLE 12-4 Methods of the Experiment Class

 	

 Method

 	

 Description

 	

 train(delay_secs=None)

 	

 Train the estimator with training data

 	

 evaluate(delay_secs=None, name=None)

 	

 Evaluate the estimator with test data

 	

 train_and_evaluate()

 	

 Train and evaluate the estimator

 	

 test()

 	

 Train, evaluate, and export for one step

 	

 continuous_eval(delay_secs=None, throttle_delay_secs=None, evaluate_checkpoint_only_once=True,
 continuous_eval_predicate_fn=None, name='continuous')

 	

 Evaluate estimator continuously

 	

 continuous_eval_on_train_data(delay_secs=None, throttle_delay_secs=None, continuous_eval_predicate_fn=None,
 name='continuous_on_train_data')

 	

 Evaluate estimator continuously with training data

 	

 continuous_train_and_eval(*args, **kwargs)

 	

 Interleave training and evaluation

 	

 extend_train_hooks(additional_hooks)

 	

 Associate additional session hooks for training

 	

 reset_export_strategies(new_export_strategies=None)

 	

 Associate new export strategies

 	

 run_std_server()

 	

 Start a TensorFlow server and joins the serving thread

 The first four methods are straightforward to use and understand. The train method will continue forever unless you've set the train_steps parameter in the constructor. evaluate will continue testing until its input is exhausted or until it reaches the eval_steps parameter. In both methods, you can specify how long the experiment should wait by
 setting the delay_secs parameter.

 The continuous_eval and continuous_eval_on_train_data methods both perform repeated evaluation. You can control whether the evaluation
 continues by assigning the continuous_eval_predicate_fn to a suitable function. This function receives the results of the preceding evaluation
 and determines whether evaluation should continue.

 The continuous_train_and_eval method is experimental and may change at any time. This iterates through training
 and evaluation, and you can set the number of training steps with the constructor's
 train_steps_per_iteration parameter.

 Running an experiment

 You can train and/or evaluate experiments by calling tf.contrib.learn.learn_runner.run. This function accepts four arguments:

 	experiment_fn: Function that returns an experiment

 	schedule: The method of the experiment to invoke

 	run_config: A RunConfig that provides configuration settings

 	hparams: An HParams that provides additional data for the experiment

 To call this function, you need to assign the first parameter to a function that receives
 two arguments: a RunConfig and an HParams. The function must return an Experiment.

 Every estimator constructor has a config parameter that accepts a tf.contrib.learn.RunConfig instance. The run_config parameter of the run method accepts the same type of RunConfig. Remember that the model_dir field tells the experiment where to store its outputs.

 You can pass data to the experiment_fn function using an instance of tf.contrib.training.HParams. The constructor accepts one or more key-value pairs separated by commas. The following
 code shows how you can create an HParams instance:

 hparams = tf.contrib.training.HParams(learning_rate=0.01, hidden_units=[10, 20])

 The schedule parameter identifies which experiment method should be invoked. You can control where
 the method's return value should be stored by setting the model_dir field of the RunConfig.

 Putting theory into practice

 The code in the ch12/experiment.py module demonstrates how experiments can be created and launched. The experiment analyzes
 MNIST data using a DNNClassifier similar to the estimator from ch12/dnn_class.py. Listing 12-4 presents the code.

 LISTING 12-4 Classifying MNIST Images with an Experiment

 # Set parameters

 batch_size = 80

 image_dim = 28

 hparams = tf.contrib.training.HParams(

 num_labels=10,

 batch_size=80,

 num_steps=8000,

 hidden_layers=[128, 32])

 # Function to parse MNIST TFRecords

 def parser(record):

 features = tf.parse_single_example(record,

 features={

 'images': tf.FixedLenFeature([], tf.string),

 'labels': tf.FixedLenFeature([], tf.int64),

 })

 image = tf.decode_raw(features['images'], tf.uint8)

 image.set_shape([image_dim * image_dim])

 image = tf.cast(image, tf.float32) * (1. / 255) - 0.5

 label = features['labels']

 return image, label

 # Create the DNNClassifier

 def create_estimator(hidden_layers, num_labels, conf):

 column = tf.feature_column.numeric_column('pixels',

 shape=[image_dim * image_dim])

 return tf.estimator.DNNClassifier(hidden_layers, [column],

 n_classes=num_labels, config=conf)

 # Train the estimator

 def train_func():

 dataset = tf.data.TFRecordDataset('mnist_train.tfrecords')

 dataset = dataset.map(parser).repeat().batch(batch_size)

 image, label = dataset.make_one_shot_iterator().get_next()

 return {'pixels': image}, label

 # Test the estimator

 def test_func():

 dataset = tf.data.TFRecordDataset('mnist_test.tfrecords')

 dataset = dataset.map(parser).batch(batch_size)

 image, label = dataset.make_one_shot_iterator().get_next()

 return {'pixels': image}, label

 # Create experiment

 def create_experiment(conf, params):

 return tf.contrib.learn.Experiment(

 estimator=create_estimator(params.hidden_layers,

 params.num_labels, conf),

 train_input_fn=train_func,

 eval_input_fn=test_func,

 train_steps=params.num_steps)

 # Run experiment

 run_config = tf.contrib.learn.RunConfig(model_dir='experiment_output')

 tf.contrib.learn.learn_runner.run(

 experiment_fn=create_experiment,

 run_config=run_config,

 schedule='train_and_evaluate',

 hparams=hparams

)

 This module starts by creating an HParams that contains the batch size, number of labels, number of training steps, and the
 number of hidden layers. The module also creates a RunConfig that identfies the directory where the experiment's output should be stored.

 When the module calls tf.contrib.learn.learn_runner.run, it provides the HParams instance, the RunConfig instance, and a function that returns an Experiment. This function calls the Experiment constructor with three functions:

 	create_estimator: Creates a DNNClassifier with the experiment's configuration settings

 	train_func: Provides training data and labels for the DNNClassifier

 	test_func: Provides test data and labels for the DNNClassifier

 The module sets the schedule parameter of tf.contrib.learn.learn_runner.run to train_and_evaluate. This calls the experiment's train_and_evaluate function, which trains and tests the experiment’s estimator.

 Chapter 13

 Running Applications on the Google Cloud Platform (GCP)

 IN THIS CHAPTER

 [image: check] Developing projects for the Google Cloud Platform (GCP)

 [image: check] Using the GCP utilities

 [image: check] Accessing Google Cloud Storage (GCS)

 [image: check] Packaging and running TensorFlow applications in the GCP

 Of all the success stories in the world of technology, none are more spectacular than
 the rise of Google. Since its initial public offering in 2004, Google has constructed
 a vast computational architecture that spans the globe. Everyone with an Internet
 connection knows how to search for information on google.com and view media on youtube.com. Google’s technology has become so popular that the verb google has entered the Merrian-Webster
 Dictionary.

 While Google’s technology is famous across the world, the Google Compute Platform
 (GCP) isn’t as well-known. This is a shame, because the GCP lets developers like you
 and me take advantage of Google’s vast resources, which include terabytes of distributed
 storage and clusters of high-speed processors.

 I love using the GCP because my applications can access Google’s technologies, which
 include Google Maps, Gmail, YouTube, and AdSense. This chapter focuses on Google’s
 Machine Learning (ML) Engine, which lets you execute TensorFlow applications in the
 Google Cloud Platform.

 Overview

 The good news is that you can dramatically reduce the time required for machine learning
 by deploying applications to Google’s Machine Learning (ML) Engine. The bad news is
 that the process of configuring and deploying applications isn’t easy. Five steps
 are involved:

 	Create a project for the Google Cloud Platform (GCP) and configure it to use the Cloud
 Machine Learning API.

 	Install the Cloud Software Development Kit (SDK).

 	Structure your TensorFlow application as a package.

 	Upload your package and processing data to Google Cloud Storage.

 	Use the Cloud SDK to execute a training or prediction job.

 In writing this chapter, I assume that you’ve never heard of the GCP. Therefore, before
 I explain how to deploy applications, I introduce the Cloud Software Development Kit
 (SDK) and Cloud Storage and explain how to create a GCP project.

 Working with GCP Projects

 If you want to take advantage of the GCP’s features, the first step is to create a
 project. This project serves as the central container of your development effort and
 includes all your metadata and configuration files. Before you can execute code or
 launch a web application, you need to upload the files to your project. Similarly,
 if you’d like access to special features, you need to make requests through the project.

 To build a GCP project that can access the ML Engine, you need to perform three steps:

 	Create a project in the Google Developer Console.

 	Enable billing for the project.

 	Enable the project to access the Machine Learning Engine.

 [image: tip] The ch13 directory in this book's example code contains two folders: cloud_mnist and cluster_mnist. These folders contain packages that can be deployed to the ML Engine, but they are
 not GCP projects. A GCP project resides in the cloud, so if you want to follow the
 development in this chapter, you need to create and configure a GCP project on your
 own.

 Creating a new project

 Anyone with a valid email address can create a GCP project without any fees or obligations.
 The process involves five steps:

 	Visit the Cloud Console at https://console.cloud.google.com.

 	If this is your first time visiting the console, provide a contact email address and
 a password.

 	In the upper horizontal bar, click Select a Project.

 	In the Select dialog box, click the plus button on the right.

 	In the New Project page, enter a project name and click the Create button.

 When working with the GCP, you need to understand the difference between a project's
 name and ID. A project’s name is chosen by the developer, and the console uses it
 to display the current project.

 In contrast, a project’s ID is chosen by the GCP based on the project’s name, and
 it uniquely identifies the project across all projects in the GCP. If you want to
 upload code or change a project's configuration, you’ll need to access your project
 by its ID. Therefore, it’s a good idea to know the IDs of your projects.

 Billing

 Machine learning is a powerful capability, but unlike TensorFlow, it’s not free. Google’s
 fees for machine learning depend on three factors: the type of operation (training
 or prediction), the length of time, and your location:

 	Training: $0.49 per hour per training unit in the U.S., $0.54 in Europe and Asia

 	Prediction: $0.10 per thousand predictions plus $0.40 per hour in the U.S., $0.11
 per thousand predictions plus $0.44 per hour in Europe and Asia

 Google charges money after you use the ML Engine, not in advance. But you need to
 identify a means of payment before you use the engine, and you can configure this
 by associating your project with a billing account:

 	Visit your project page in the Cloud Console.

 	Open the menu (three horizontal bars) in the upper-left and select the Billing option.

 	Click the button entitled Add billing account.

 	Enter your contact information and billing information.

 At the bottom of the page, a button lets you set up automatic payment, which authorizes
 Google to withdraw funds from the account as resources are used.

 Accessing the machine learning engine

 After you set up a billing account for your project, you can access paid features
 like the ML Engine. To enable this feature, open the menu in the upper-left of the
 project page and select APIs & Services. This opens the APIs & Services page, which
 identifies the features that the project can access.

 The left side of the page displays three links: Dashboard, Library, and Credentials.
 The Library link opens a page that lists the APIs available for your project. To enable
 access to the ML Engine, you need to perform five steps:

 	From the APIs & Services page, click the Library link to the left.

 	Find the Machine Learning group and click the View All link to the right.

 	Click the link entitled Google Cloud Machine Learning Engine.

 	Click the Enable link at the top of the page.

 	Wait until the GCP grants access to the new capability.

 After performing these steps, you can verify that your project can access the ML Engine
 by visiting the APIs & Services dashboard. The lower part of the page lists the different
 APIs your project can access, and this should include Google Cloud Storage and the
 Google Cloud Machine Learning Engine.

 The Cloud Software Development Kit (SDK)

 After you understand how to create a GCP project and configure it to access the ML
 Engine, you’re ready to interact with your project. Google makes this possible through
 the Google SDK.

 You can download the SDK from http://cloud.google.com/sdk. Clicking the Install button opens a page that provides instructions for downloading
 the SDK installer on your development system. I recommend installing all of the available
 components.

 When you launch the installer, it asks you to log in to your account and grant privileges
 so that the SDK can access your GCP account. It also asks you to choose a cloud project
 to serve as the SDK’s default project. After you select this, all further SDK commands
 affect the default project.

 After you install the SDK, you’re able to access two command-line utilities:

 	gcloud: Provides general project interaction and accesses Google’s App Engine, Datastore,
 DNS, and ML Engine

 	gsutil: Accesses Google Cloud Storage

 If you’re running Windows, you can access these utilities through gcloud.cmd and gsutil.cmd. If you're running Linux or Mac OS, you can access them through the gcloud and gsutil executables.

 Before you start using the SDK, you should make sure that you can access gcloud and gsutil from a command prompt. If you enter gcloud version and you don't see any version information, add the google-cloud-sdk/bin folder to your PATH environment variable.

 The gcloud Utility

 After you install the SDK, you can execute gcloud commands on a command line. All gcloud commands have the same format:

 gcloud [optional flags] <group | command>

 For example, you can check the version of gcloud by entering the following:

 gcloud version

 This command identifies the SDK's version and the versions of its components. You
 can install the latest components by entering the following command:

 gcloud components update

 In this example, components is a group name because it requires additional commands, such as update. You can think of a group like a submenu in a graphical user interface. In contrast,
 version is a command name because it doesn't accept further commands.

 If you enter gcloud help, you see a long list of gcloud's groups and commands. gcloud’s groups make it possible to manage web applications, access databases, and configure
 DNS settings. Table 13-1 lists ten of these groups.

 TABLE 13-1 gcloud Groups

 	

 Group

 	

 Operation

 	

 app

 	

 Manage App Engine deployments

 	

 auth

 	

 Manage oauth2 credentials

 	

 components

 	

 Install, update, and remove SDK components

 	

 compute

 	

 Access resources related to the Compute Engine

 	

 config

 	

 View and edit SDK configuration

 	

 domains

 	

 Manage domains associated with the project

 	

 ml

 	

 Access machine learning capabilities

 	

 ml-engine

 	

 Manage machine learning jobs and models

 	

 projects

 	

 Create and manage project access

 	

 services

 	

 List, enable, and disable APIs and services

 The ml-engine group plays a central role in this chapter because it lets you upload and execute
 TensorFlow applications in the cloud. Figure 13-1 displays many, but not all, of the groups and commands associated with ml-engine.

 [image: image]

 FIGURE 13-1: Commands in the Cloud SDK have many levels and options.

 To deploy and run an application in the cloud, you need to be familiar with the commands
 in the jobs subgroup of gcloud ml-engine. To the ML Engine, a job refers to a processing task, which could be training or
 prediction. For example, the following command tells the engine that you want it to
 launch a training job:

 gcloud ml-engine jobs submit training

 To tell the GCP where to find your code, you need to follow the command with configuration
 flags. Three flags are particularly important:

 	--package-path: The local directory containing the training source code

 	--module-name: The name of the package's main module

 	--staging-bucket: The Cloud Storage bucket where the package and its dependencies should be stored

 Before I explain how to submit jobs to the cloud, I explain in the next section how
 Cloud Storage works so that you can set the --staging-bucket flag. Then I explain how to prepare an application so that you can set the --package-path flag.

 Google Cloud Storage

 The GCP provides many options for storing data in the cloud, including the Datastore,
 BigTable, and Spanner. But if you want to store and access data for machine learning,
 you have to use Google Cloud Storage. That is, the ML Engine requires that you upload
 all your source files, dependencies, and data to Cloud Storage.

 Thankfully, Cloud Storage is easy to work with. It stores data in containers called
 buckets, and you can think of a bucket as a directory in the cloud. Each data item in a bucket
 is called an object.

 Buckets

 The filesystem on your computer stores data in files and organizes files using directories.
 Cloud Storage stores data in objects and collects objects inside buckets. Buckets
 have a lot in common with directories, but there's one major difference: Buckets can’t
 be nested. That is, you can’t organize buckets into a hierarchy in the way that you
 can organize directories.

 When working with buckets, you should be familiar with three points:

 	All load/store/delete operations involving Cloud Storage must identify at least one
 target bucket.

 	Every bucket has a globally unique name, a storage class, and a geographic location.

 	A project can create/delete buckets at most once every two seconds.

 This last point is important. Creating and deleting buckets takes a significant amount
 of time, so Google recommends creating a small number of persistent buckets and reusing
 them as needed.

 Bucket names

 When you access a bucket, you need to identify it through its Uniform Resource Identifier
 (URI), which starts with gs://. A bucket’s name must be unique across all GCP projects, not just your own projects.
 Therefore, it’s a good idea to prepend your project ID to your bucket name, as in
 gs://myproject3712_tfbook.

 The GCP sets the following criteria for bucket names:

 	A bucket's name must have more than two characters and fewer than 64.

 	The characters in a bucket’s name are limited to letters, numbers, dashes, underscores,
 and dots.

 	A bucket’s name can’t start with “goog”, and it can’t contain “google” or misspellings
 of “google.”

 If you create a bucket whose name contains dots, Cloud Storage assumes that you’ve
 named your bucket after a domain, as in www.evilrobot.com. The good news is that Cloud Storage extends the maximum name length of domain-named
 buckets to 222 characters. The bad news is that you need to convince Google that you
 own the domain.

 Storage classes and locations

 Every bucket has a storage class that determines its availability, pricing, and storage
 characteristics. Table 13-2 lists the four different storage classes and their characteristics.

 TABLE 13-2 Storage Classes of Cloud Storage Buckets

 	

 Storage Class

 	

 ID

 	

 Description

 	

 Multi-Regional

 	

 multi_regional

 	

 Data frequently accessed across a wide area (Price: $0.026 per GB per month)

 	

 Regional

 	

 regional

 	

 Data frequently accessed in a limited region (Price: $0.02 per GB per month)

 	

 Nearline

 	

 nearline

 	

 Data accessed no more than once per month (Price: $0.01 per GB per month)

 	

 Coldline

 	

 coldline

 	

 Data accessed no more than once per year (Price: $0.007 per GB per month)

 For example, suppose that you want a bucket to contain video that will be displayed
 across the world. In this case, you'd create a bucket and set its storage class to
 multi_regional. You can set a multi-regional bucket’s location to one of three values: eu, us, and asia.

 If your data needs to be accessed only in a specific region, you should set the bucket's
 storage class to Regional. You can associate a Regional bucket with one of 13 different
 locations, and Table 13-3 lists them all.

 TABLE 13-3 Location Codes of Regional Buckets

 	

 us-east1

 	

 us-east4

 	

 us-central1

 	

 us-west1

 	

 asia-east1

 	

 asia-northeast1

 	

 asia-southeast1

 	

 asia-south

 	

 australia-southeast1

 	

 europe-west1

 	

 europe-west2

 	

 europe-west3

 	

 southamerica-east1

 	

 	

 	

 Google's list of supported regions increases regularly. For up-to-date information
 on storage classes, visit the GCP documentation at http://cloud.google.com/storage/docs/storage-classes. For up-to-date information on bucket locations, visit http://cloud.google.com/storage/docs/bucket-locations.

 Objects and virtual hierarchy

 Each piece of data in a Cloud Storage bucket is an object. A bucket may contain an
 unlimited number of objects, but each object must be 5 TB in size or less.

 Every object has data and metadata. When you upload a file to a bucket, the file’s
 content becomes the object’s data. An object’s metadata holds name-value pairs that
 describe the object.

 The criteria for object names is much less restrictive than the criteria for bucket
 names:

 	An object’s name can contain any sequence of valid Unicode characters.

 	An object’s name can’t contain any Carriage Return or Line Feed characters.

 	Google recommends against using #, [,], *, or ? in object names, as gsutil interprets these characters as wildcards.

 A bucket's name must start and end with a letter, but an object’s name can start and
 end with a slash (/). Therefore, you can construct a virtual hierarchy of objects
 by starting an object’s name with a slash.

 For example, suppose that you create a bucket named gs://dummies-tfbook. You can create an object in the bucket named gs://dummies-tfbook/data and another object named gs://dummies-tfbook/data/images. Cloud Storage won't recognize any relationship between these objects, but humans
 will understand that the objects form a virtual hierarchy.

 The gsutil utility

 The gsutil utility lets you create, access, and modify buckets and objects. For the most part,
 gsutil commands have the same names and purposes as common *nix commands.

 Table 13-4 lists 13 of gsutil's commands. For a more thorough discussion, visit Google's documentation at https://cloud.google.com/storage/docs/gsutil.

 TABLE 13-4 gsutil Commands

 	

 Command

 	

 Description

 	

 mb [-c class] [-l location]

 . [-p proj_id] url…

 	

 Make a new bucket

 	

 rb [-f] url…

 	

 Remove buckets

 	

 cp [OPTION]… src_url dst_url

 cp [OPTION]… src_url… dst_url

 cp [OPTION]… -I dst_url

 	

 Copy files and objects

 	

 mv [-p] src_url dst_url

 mv [-p] src_url… dst_url

 mv [-p] -I dst_url

 	

 Move objects and/or subdirectories

 	

 rm [-f] [-r] url…

 rm [-f] [-r] –I

 	

 Remove objects

 	

 ls [-a] [-b] [-d] [-l] [-L] [-r] [-p proj_id] url…

 	

 List buckets and objects

 	

 stat url…

 	

 Display object status

 	

 rewrite -k [-f] [-r] url…

 rewrite -k [-f] [-r] –I

 	

 Rewrite objects

 	

 du url…

 	

 Display object size usage

 	

 cat [-h] url…

 	

 Concatenate object to standard output

 	

 compose gs://bucket/obj1

 [gs://bucket/obj2 …]

 . gs://bucket/composite

 	

 Concatenate multiple objects into one

 	

 [-D] config [-a] [-b] [-e] [-f] [-n]

 . [-o <file>] [-r] [-s <scope] [-w]

 	

 Obtain credentials and create a configuration file

 	

 web set [-m main_page_suffix]

 . [-e error_page] bucket_url…

 . web get bucket_url

 	

 Associate one or more buckets with a web page

 Many of these commands are straightforward, but a few of them deserve explanation.
 This discussion explores the mb, cp/mv, ls/stat, and cat/compose commands.

 Creating buckets (mb)

 Before you upload data to Cloud Storage, you need to create one or more buckets. The
 command to know is mb:

 gsutil mb [-c class] [-l location] [-p project_id] url…

 The –c, –l, and –p flags are particularly important:

 	-c: The bucket's storage class: multi_regional, regional, nearline, and coldline. (Default: multi_regional or regional).

 	-l: The bucket's multi-regional location or regional location. (Default: us).

 	-p: The project's ID. (Default: the ID in the gsutil configuration file).

 For example, the following command creates a regional bucket named gs://dummies123-tfbook/example and associates it with the us-central1 region.

 gsutil mb -c regional -l us-central1 gs://dummies123-tfbook/example

 Copying (cp) and moving (mv)

 After you create a bucket, you can upload files to it, thereby adding objects to the
 bucket. Similarly, you can download an object to your system as a file. Google makes
 these operations possible through the cp (copy) and mv (move) commands. Both commands transfer a source entity to a destination, but cp leaves the source entity in place while mv removes the source entity.

 The best way to understand these commands is to look at some examples. The following
 command uploads a local file, hello.txt, to a bucket in Cloud Storage named gs://newbucket:

 gsutil cp hello.txt gs://newbucket

 Similarly, the following command moves hello.txt from gs://newbucket to the current directory on your development system. Note that mv removes hello.txt from the bucket:

 gs mv gs://newbucket/hello.txt .

 cp and mv accept many of the same flags as their counterparts in Linux and Unix. These flags
 include the following:

 	-r: Copy/move a directory and its contents

 	-L: Outputs a log file for each source entity of the copy/move

 	-e: Excludes symbolic links from the copy/move

 For example, the following command moves the local mydir directory and its contents to firstbucket.

 gsutil mv -r mydir gs://firstbucket

 This command copies mydir and its contents from firstbucket to secondbucket:

 gsutil cp -re gs://firstbucket/mydir gs://secondbucket

 Because of the –e flag, gsutil won't copy any symbolic links from mydir to secondbucket.

 Reading information (ls and stat)

 The ls and stat commands provide information about buckets and objects in Cloud Storage. The simplest
 usage of ls is gsutil ls, which lists all of the buckets associated with the current GCP project.

 One interesting feature of ls is that it recognizes the virtual hierarchy of objects. For example, suppose that
 gs://mybucket contains /mydir/a.txt, /mydir/b.txt, and /newdir/c.txt. The command gsutil ls gs://mybucket prints /mydir and /newdir, but none of the underlying objects. But if you set the -r flag, the entire contents of a bucket will be displayed. The following command demonstrates
 this:

 gsutil ls -r gs://mybucket

 Another useful flag is -l, which tells ls to print detailed output for each object of interest. These details include object
 sizes, creation sizes, and ownership. The -L flag prints even more information, including the content type, storage class, and
 update time of each object of interest.

 If you want detailed information about one object, stat is more efficient than ls -L. As an example, the following command prints detailed information about the training.dat object in mybucket/mydir:

 gsutil stat gs://mybucket/mydir/training.dat

 The exit code of this command will equal 1 if the object exists and 0 if it doesn't.
 One important difference between stat and ls is that stat only provides information about objects.

 Concatenation (cat and compose)

 cat directs an object's text to standard output. For example, the following command prints
 the text contained in gs://mybucket/a.txt:

 gsutil cat gs://mybucket/a.txt

 Despite its name, you can’t concatenate objects with cat, but you can concatenate objects with compose. That is, the following command concatenates the content of a.txt and b.txt in gs://mybucket and stores the combined result to c.txt:

 gsutil compose gs://mybucket/a.txt gs://mybucket/b.txt gs://mybucket/c.txt

 When you use compose, keep three points in mind:

 	A project can perform at most 200 compose operations per second.

 	A compose operation can combine a maximum of 32 entities.

 	A given object can be appended to at most 1,023 times.

 [image: tip] compose is particularly helpful if you have to upload very large files to Cloud Storage.
 Rather than upload an entire file from one computer, you can upload portions of the
 file from separate computers and use compose to combine the portions.

 Preparing for Deployment

 Before you submit an application for training or prediction, you should prepare it
 in two ways:

 	Configure the application to receive command-line arguments from the ML Engine

 	Structure the application's files in a package

 Receiving arguments

 When the ML Engine executes your application, it passes arguments that provide information
 about the operating environment. Table 13-5 lists the possible arguments.

 TABLE 13-5 Machine Learning Arguments

 	

 Argument

 	

 Operation

 	

 --job-dir

 	

 Location of the application’s data

 	

 --train_batch_size

 	

 Batch size for training

 	

 --train_steps

 	

 Number of steps for each training epoch

 	

 --eval_batch_size

 	

 Batch size for evaluation

 	

 --eval_steps

 	

 Number of steps to run evaluation at each checkpoint

 	

 --eval_delay_secs

 	

 Time to wait before first evaluation

 	

 --min_eval_frequency

 	

 Minimum number of training steps between evaluations

 --job-dir is particularly important because it tells the application where it should store
 its output files. The following code demonstrates how you can access this using an
 ArgumentParser:

 if __name__ == '__main__':

 parser = argparse.ArgumentParser()

 parser.add_argument(

 '--job-dir',

 help='Checkpoint/output location',

 required=True

)

 args = parser.parse_args()

 In addition to the built-in arguments, you can provide arguments of your own. When
 you submit a job, the ML Engine will pass your arguments to the application. But keep
 two points in mind:

 	User-defined flags must follow all of the built-in flags.

 	Two dashes (--) must separate the built-in flags from the user-defined flags.

 For example, suppose that you want to pass two arguments to your application named
 data_dir and num_epochs. When you execute a command, you need to set the --data_dir and --num_epochs flags at the end of the command and separate them from the command's normal flags
 with --.

 Packaging TensorFlow code

 You can launch a training operation with the command gcloud ml-engine jobs submit training. When you execute this, you can identify your source code with the --package-path and --module-name flags. The --package-path flag identifies the directory that contains your code, and this directory must meet
 the following requirements:

 	The directory must contain the module identified by --module-name.

 	The parent directory must have a file named setup.py.

 	Every directory under the parent directory must have a file named __init__.py. This file is usually empty.

 	The development system must have setuptools installed.

 This last point is important. Before uploading a package, the ML Engine uses setuptools to zip the parent directory into a *.tar.gz file. If you've installed pip, you can install setuptools with pip install setuptools.

 setup.py

 In a Python package, setup.py contains instructions for building and installing the package. If you want the ML
 Engine to install your package, setup.py must perform two operations:

 	Import setuptools.setup.

 	Call the setup function of the setuptools module.

 The setup function accepts a great deal of information about the package, including its name,
 version, and dependencies. Table 13-6 lists nine of the parameters that you can set.

 TABLE 13-6 Parameters of the setup Function

 	

 Parameter

 	

 Description

 	

 name

 	

 Package name

 	

 version

 	

 Release version

 	

 packages

 	

 Dependency packages

 	

 install_requires

 	

 Packages that need to be installed when the package is installed

 	

 author

 	

 Name of the package's author

 	

 author_email

 	

 Author’s email address

 	

 url

 	

 Package's home page

 	

 description

 	

 Short description of the package

 	

 license

 	

 The package's license

 Rather than list your package’s dependencies, you can call the find_packages provided by setuptools. Listing 13-1 presents the content of the setup.py file in the ch13/cloud_mnist folder:

 LISTING 13-1 Setup Script for a Machine Learning Package

 from setuptools import find_packages

 from setuptools import setup

 REQUIRED_PACKAGES = ['tensorflow>=1.3']

 setup(

 name='trainer',

 version='0.1',

 install_requires=REQUIRED_PACKAGES,

 packages=find_packages(),

 include_package_data=True,

 author='Matthew Scarpino'

 description='Running MNIST classification in the cloud'

)

 Sadly, the ML Engine doesn't always have the latest versions of the packages installed.
 At the time of this writing, the current TensorFlow version is 1.4, but the default
 version supported by the ML Engine is 1.2.

 You can request a specific version of a package by setting the install_requires field. In Listing 13-1, this field requests a version of TensorFlow greater than or equal to 1.3. For more
 information on supported versions, visit the site http://cloud.google.com/ml-engine/docs/runtime-version-list.

 Executing Applications with the Cloud SDK

 If you understand how to use the Cloud SDK, transfer data to Cloud Storage, and structure
 your application in a package, you’re ready to start launching jobs with the Cloud
 SDK.

 The ML Engine supports two types of jobs: training and prediction. Despite the names,
 training jobs don’t necessarily train and prediction jobs don’t necessarily predict.
 The difference between them involves the nature of the input. A training job expects
 a Python package as input and a prediction job expects a machine learning model stored
 as a SavedModel. Chapter 5 introduces SavedModels and the methods available for accessing them.

 Local execution

 This chapter focuses on cloud computing, so it may seem strange to use the Cloud SDK
 to launch jobs locally. But the ML Engine is neither simple nor free, so I recommend
 that you test your applications locally before deploying them to the cloud. Another
 reason to execute your code locally is that you can view printed text on the command
 line instead of having to download and read logs.

 You can launch a job on your development system by entering one of the following commands:

 	gcloud ml-engine local train: run a training job locally

 	gcloud ml-engine local predict: run a prediction job locally

 These commands accomplish different results and accept different configuration flags.

 Running a local training job

 A GCP training job executes a Python package and produces output in the directory
 specified by the --job-dir flag. Table 13-7 lists --job-dir and other flags you can set for local training jobs.

 TABLE 13-7 Flags for Local Training

 	

 Flag

 	

 Description

 	

 --module-name=MODULE_NAME

 	

 Identifies the module to execute

 	

 --package-path=PACKAGE_PATH

 	

 Path to the Python package containing the module to execute

 	

 --job-dir=JOB_DIR

 	

 Path to store training outputs

 	

 --distributed

 	

 Runs code in distributed mode

 	

 --parameter-server-count=

 PARAMETER_SERVER_COUNT

 	

 Number of parameter servers to run

 	

 --start-port=START_PORT

 	

 Start of the range of ports reserved by the local cluster

 	

 --worker-count=WORKER_COUNT

 	

 Number of workers to run

 The --package-path flag identifies the top-level directory of your package. This is the directory that
 contains your package's setup.py file. The --module-name flag identifies the module to execute inside the package.

 If you'd like to try this for yourself, copy the mnist_train.tfrecords and mnist_test.tfrecords files from the ch12 directory to the ch13 directory. Then go to the ch13/cloud_mnist directory and enter the following command:

 gcloud ml-engine local train --module-name trainer.task--package-path trainer --job-dir
 output ----data_dir ../images

 In this command, --package-path indicates that the trainer directory represents a package, and --module-name indicates that the name of the package's module is trainer.task. The --job-dir flag tells the application to store its results in a directory named output.

 Two dashes (--) separate --job-dir from --data_dir. This indicates that --data_dir and any following flags are defined by the user.

 Running a local prediction job

 After training is complete, you can launch a local prediction job by executing gcloud ml-engine local predict. Table 13-8 lists the different flags you can set.

 TABLE 13-8 Flags for Local Prediction

 	

 Flag

 	

 Description

 	

 --model-dir=MODEL_DIR

 	

 Path of the model

 	

 --json-instances=JSON_INSTANCES

 	

 Path to a local file containing prediction data in JSON format

 	

 --text-instances=TEXT_INSTANCES

 	

 Path to a local file containing prediction data in plain text

 You should assign the --model-dir flag to the directory that contains the output of the training operation. Also, you
 need to identify prediction parameters using the --json-instances or --text-instances flags.

 Deploying to the cloud

 If you succeeded in launching jobs locally, deploying your applications to the cloud
 shouldn't present any difficulty. But be mindful of two issues:

 	You need to upload training/evaluation data to Cloud Storage.

 	The ML Engine may not support the versions of the packages you need.

 Before you execute either of the applications in the ch13 directory, you’ll need to upload the mnist_test.tfrecords and mnist_train.tfrecords files to a Cloud Storage bucket. For example, if your project's ID is $(PROJECT_ID), you can create a bucket named $(PROJECT_ID)_mnist in the central United States with the following command:

 gsutil mb -c regional -l us-central1 gs://$(PROJECT_ID)_mnist

 After you create the bucket, you can upload the two MNIST files to the bucket with the following command:

 gsutil cp mnist_test.tfrecords mnist_train.tfrecords gs://$(PROJECT_ID)_mnist

 After the command executes, it's a good idea to check that Cloud Storage created objects
 for the two files. You can verify this by running the command gsutil ls gs://$(PROJECT_ID)_mnist.

 Running a remote training job

 After you upload your test/evaluation data, you can launch a training job with the
 following command:

 gcloud ml-engine jobs submit training $(JOB_ID)

 $(JOB_ID) provides a unique identifier for the training job. After you launch the job, you
 can use this ID to check on the job's status.

 In addition to identifying the job, you need to tell the ML Engine where to find your
 package and your input data. You also need to tell the engine where it should store
 output files. You can provide this information by following the command with flags,
 and Table 13-9 lists each of them.

 TABLE 13-9 Flags for Cloud Training Jobs

 	

 Flag

 	

 Description

 	

 --module-name=MODULE_NAME

 	

 Identifies the module to execute

 	

 --package-path=PACKAGE_PATH

 	

 Path to the Python package containing the module to execute

 	

 --job-dir=JOB_DIR

 	

 Path to store output files

 	

 --staging-bucket=STAGING_BUCKET

 	

 Bucket to hold package during operation

 	

 --region=REGION

 	

 The region of the machine learning job

 	

 --runtime-version=RUNTIME_VERSION

 	

 The version of the ML Engine for the job

 	

 --stream-logs

 	

 Block until the job completes and stream the logs

 	

 --scale-tier=SCALE_TIER

 	

 The job's operating environment

 	

 --config=CONFIG

 	

 Path to a job configuration file

 The --module-name, --package-path, and --job-dir flags serve the same purposes as the similarly named flags for local training jobs.
 The --staging-bucket flag identifies the bucket to hold the deployed package. The --region flag accepts one of the regions listed in Table 13-3.

 By default, deployed applications run on the latest stable version of the ML Engine.
 You can configure this by setting the --runtime-version flag. You can get the list of versions at cloud.google.com/ml-engine/docs/runtime-version-list.

 I prefer to set the --stream-logs flag because it forces the command to block until the job completes. As the job runs,
 the console prints messages from the remote log. Aborting the command (Ctrl-C) doesn't
 affect the remote job.

 By default, applications uploaded to the ML Engine can run only on a single CPU. You
 can configure the execution environment by setting the --scale-tier flag to one of the values listed in Table 13-10.

 TABLE 13-10 Scale Tier Values

 	

 Value

 	

 Description

 	

 basic

 	

 A single worker on a CPU

 	

 basic-gpu

 	

 A single worker with a GPU

 	

 basic-tpu

 	

 A single worker instance with a Cloud TPU

 	

 standard-1

 	

 Many workers and a few parameter servers

 	

 premium-1

 	

 A large number of workers and many parameter servers

 	

 custom

 	

 Define a cluster

 If you set --scale-tier to basic-gpu, you can execute your code on an Nvidia Tesla K80 GPU. This has 4,992 CUDA cores
 and 24 GB of GDDR5 memory. If you set --scale-tier to basic-tpu, you can execute your code on one or more of Google's Tensor Processing Units (TPUs).
 At the time of this writing, Google restricts TPU access to developers in its Cloud
 TPU program, and you can learn more about this program at http://cloud.google.com/tpu.

 If you set --scale-tier to standard-1 or premium-1, you can run your job on a cluster of processors. If you set --scale-tier to custom, you can configure the cluster by assigning the --config flag to the name of a configuration file.

 Running a remote prediction job

 Chapter 5 introduces SavedModels, and if you upload a SavedModel to a Cloud Storage bucket, you can launch a prediction job with the following command:

 gcloud ml-engine jobs submit prediction $(JOB_ID)

 This command accepts flags that specify where the prediction job should read its input
 and write its output. Table 13-11 lists each of these flags.

 TABLE 13-11 Flags for Cloud Prediction Jobs

 	

 Flag

 	

 Description

 	

 --model-dir=MODEL_DIR

 	

 Path of the bucket containing the saved model

 	

 --model=MODEL

 	

 Name of the model to use for prediction

 	

 --input-paths=INPUT_PATH, [INPUT_PATH,…]

 	

 Path to the input data to use for prediction

 	

 --data-format=DATA_FORMAT

 	

 Format of the input data

 	

 --output-path=OUTPUT_PATH

 	

 Path to store the prediction results

 	

 --region=REGION

 	

 The region of the machine learning job

 	

 --batch-size=BATCH_SIZE

 	

 Number of records per batch

 	

 --max-worker-count=MAX_WORKER_COUNT

 	

 The maximum number of workers to employ for parallel processing

 	

 --runtime-version=RUNTIME_VERSION

 	

 The version of the ML Engine for the job

 	

 --version=VERSION

 	

 Version of the model to be used

 When you launch a remote prediction job, you must identify the model's name with --model or the bucket containing the model files with --model-dir. You also need to identify the location of the input files with --input-paths.

 The ML Engine accepts prediction input data in one of three formats. You can identify
 the format of your data by setting --data-format to one of the following values:

 	text: Text files with one line per instance

 	tf-record: TFRecord files

 	tf-record-gzip: GZIP-compressed TFRecord files

 The last required flag is --output-path. This tells the ML Engine which Cloud Storage bucket should contain the prediction
 results.

 Viewing a job's status

 After you launch a job, you can view the job’s status in two ways. First, you can
 use gcloud commands, such as the following:

 	gcloud ml-engine jobs list: List the jobs associated with the default project along with their statuses and
 creation times

 	gcloud ml-engine jobs describe $(JOB_ID) --summarize: Provide detailed information about a specific job in human-readable format

 When I want to check on a job, I prefer to visit the Google Cloud Console. If you
 click the menu bars in the upper left and scroll down, you see an entry entitled ML
 Engine. This entry leads to two options: Jobs and Models.

 If you click the ML Engine ⇒   Jobs option, the page lists all the jobs associated
 with the project. If you click on a job name, a new page provides detailed information
 about the job's execution, including its status and any log messages.

 Configuring a Cluster in the Cloud

 By default, GCP jobs execute on a single CPU. But if you set --scale-tier to custom, you can launch a job to execute on a cluster of processors. You can configure the
 cluster and the nature of its processing by following the --config flag with the name of a configuration file.

 You can format the configuration file using YAML (YAML Ain't Markup Language) or JSON
 (JavaScript Object Notation). If a setting in your configuration file conflicts with
 a command flag, the job uses the file's setting. Table 13-12 lists the four fields that configure training and prediction.

 TABLE 13-12 Training/Prediction Configuration Fields

 	

 Field

 	

 Type

 	

 Description

 	

 trainingInput

 	

 TrainingInput

 	

 Input parameters to create a training job

 	

 trainingOutput

 	

 TrainingOutput

 	

 Result of the current training job

 	

 predictionInput

 	

 PredictionInput

 	

 Input parameters to create a prediction job

 	

 predictionOutput

 	

 PredictionOutput

 	

 Result of the current prediction job

 A configuration file can provide at most one input object and at most one output object.
 If you're launching a training job, you may want to set the trainingInput field to a TrainingInput and/or the trainingOutput field to a TrainingOutput. If you're launching a prediction job, you may want to set the predictionInput field to a PredictionInput and/or the predictionOutput field to a PredictionOutput.

 Setting the training input

 A TrainingInput provides information about the training you want to perform and configures the cluster
 to execute the training job. Table 13-13 lists the fields that you can set.

 TABLE 13-13 TrainingInput Fields

 	

 Field

 	

 Type

 	

 Description

 	

 scaleTier

 	

 ScaleTier

 	

 The job's execution platform

 	

 masterType

 	

 string

 	

 Machine type for the master

 	

 workerType

 	

 string

 	

 Machine type for workers

 	

 parameterServerType

 	

 string

 	

 Machine type for parameter servers

 	

 workerCount

 	

 string

 	

 Number of workers in the cluster

 	

 parameterServerCount

 	

 string

 	

 Number of parameter servers in the cluster

 	

 packageUris

 	

 string

 	

 The locations of the application's packages and dependencies

 	

 pythonModule

 	

 string

 	

 The module ro run after installing the package

 	

 args

 	

 [string]

 	

 Command-line arguments to pass to the module

 	

 hyperpameters

 	

 HyperparameterSpec

 	

 Specifies which parameters to optimize during training

 	

 region

 	

 string

 	

 The target region for running the job

 	

 jobDir

 	

 string

 	

 Cloud storage path to contain training outputs

 	

 runtimeVersion

 	

 string

 	

 The version of the Cloud ML Engine to use for training

 The scaleTier field specifies the desired execution environment for the cluster, and it accepts
 the same values as the --scale-tier flag. The masterType, serverType, and parameterServerType fields get more specific, and identify the type of virtual machine that should be
 used to serve the given role. You can set each of these fields to one of ten strings:

 	standard: Basic configuration for small to moderate datasets

 	large_model: High-memory configuration for models with large datasets and many hidden layers

 	complex_model_s: Provides greater computation than standard configuration

 	complex_model_m: Twice as many cores and twice as much memory as the complex_model_s configuration

 	complex_model_l: Twice as many cores and twice as much memory as the complex_model_m configuration

 	standard_gpu: Similar to the standard configuration, but provides access to an Nvidia Tesla K80 GPU

 	complex_model_m_gpu: Similar to the standard configuration, but provides access to four Nvidia Tesla K80 GPUs

 	complex_model_l_gpu: Similar to the standard configuration, but provides access to four Nvidia Tesla K80 GPUs

 	standard_p100: Similar to the standard configuration, but provides access to an Nvidia Tesla P100 GPU

 	complex_model_m_p100: Similar to the standard configuration, but provides access to four Nvidia Tesla P100 GPUs

 You can identify specific parameters for training by setting the hyperparameters field to an array of HyperparameterSpecs. Each HyperparameterSpec has four fields:

 	goal: Nature of the optimization (MAXIMIZE or MINIMIZE)

 	params: Array of ParameterSpecs that identify the parameters to optimize during training

 	maxParallelTrials: Maximum number of training runs to execute in parallel

 	hyperparameterMetricTag: Identifier for the optimization. TensorBoard uses this tag to label the optimization
 process

 A HyperparameterSpec identifies one or more parameters for the training job to optimize. You can identify
 the parameters of interest by setting the params field to a list of ParameterSpecs. Each ParameterSpec has seven fields:

 	parameterName: The parameter's name, which must be unique among all parameters in the HyperparameterSpec

 	type: The parameter's data type, which can be INTEGER, DOUBLE, DISCRETE, CATEGORICAL, or PARAMETER_TYPE_UNSPECIFIED

 	minValue: Minimum value of the parameter (required for INTEGER or DOUBLE parameters)

 	maxValue: Maximum value of the parameter (required for INTEGER or DOUBLE parameters)

 	categoricalValues: A list of strings that identify the different categories (required for CATEGORICAL parameters)

 	discreteValues: A list of numbers that identify the different discrete values of the parameter (required
 for DISCRETE parameters)

 	scaleType: Nature of the scaling that should be applied (can be NONE, UNIT_LINEAR_SCALE, UNIT_LOG_SCALE, or UNIT_REVERSE_LOG_SCALE)

 The ch13/cluster_mnist package is similar to the ch13/cloud_mnist package. The only difference is that it uses a configuration file to define a custom
 cluster. Listing 13-2 presents the content of ch13/cluster_mnist/config.yaml.

 LISTING 13-2 Configuration File for Custom Cluster Execution

 trainingInput:

 scaleTier: CUSTOM

 masterType: standard

 workerType: standard

 parameterServerType: standard

 workerCount: 4

 parameterServerCount: 2

 This configuration file tells the ML Engine to execute the job with four workers and
 two parameter servers. It also states that the workers and parameter servers should
 be executed on standard systems.

 Obtaining the training output

 You can configure how a training job produces output by setting the trainingOutput field of your configuration file to a TrainingOutput. Table 13-14 lists the possible fields.

 TABLE 13-14 TrainingOutput Fields

 	

 Field

 	

 Type

 	

 Description

 	

 completedTrialCount

 	

 string

 	

 The number of hyperparameter trials that completed successfully

 	

 trials

 	

 [{ HyperParameterOutput }]

 	

 Results of hyperparameter trials

 	

 consumedMlUnits

 	

 number

 	

 The number of units of the Machine Learning Engine consumed during the job's execution

 	

 isHyperparameterTuningJob

 	

 boolean

 	

 Whether the job tuned hyperparameters

 If you set the hyperparameters field of the TrainingInput, you can access the results in the trials field of the TrainingOutput. This is a list of HyperparameterOutputs, and each HyperparameterOutput has four fields:

 	trialId: A string that identifies the trial

 	hyperparameters: A dictionary that associates parameter names with the trained values

 	finalMetric: A HyperparameterMetric that identifies the trial's final objective metric

 	allMetrics: A list of HyperparameterMetrics that contain all recorded object metrics for the trial

 The ML engine provides training metrics as HyperparameterMetrics, and each HyperparmeterMetric has two fields: trainingStep and objectiveValue. The trainingStep field identifies the global training step, and objectiveValue identifies the objective value at the given step.

 Setting the prediction input

 You can configure the input to a prediction job by setting the file's predictionInput field to a PredictionInput. Table 13-15 lists the fields that you can set in a PredictionInput.

 TABLE 13-15 PredictionInput Fields

 	

 Field

 	

 Type

 	

 Description

 	

 dataFormat

 	

 DataFormat

 	

 Format of the data files

 	

 inputPaths

 	

 [string]

 	

 Cloud storage buckets containing the data files

 	

 outputPath

 	

 string

 	

 Cloud Storage location for storing output files

 	

 maxWorkerCount

 	

 string

 	

 Maximum number of workers to be used for parallel processing

 	

 region

 	

 string

 	

 Region in which to launch the prediction job

 	

 runtimeVersion

 	

 string

 	

 The version of the Cloud ML Engine to use for training

 	

 batchSize

 	

 string

 	

 Number of records to process per batch

 	

 modelName

 	

 string

 	

 Complete name of the model

 	

 versionName

 	

 string

 	

 Version of the model to use for prediction

 	

 uri

 	

 string

 	

 Cloud storage location for the mdoel

 To perform a prediction job, you need to provide a SavedModel and files containing input data. You can identify the format and location of your
 input data by setting the first two fields, dataFormat and inputPaths. To specify the format of your data, you need to set dataFormat to TEXT, JSON, TF_RECORD, TF_RECORD_GZIP, or DATA_FORMAT_UNSPECIFIED.

 The last three entries form a union called model_version, so you can set only one of the three in a PredictionInput. You can identify your model by setting modelName to a string with the following format:

 projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>

 If you identify your model with versionName, you need to provide a slightly-different string:

 projects/<var>[YOUR_PROJECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>

 If the Cloud Storage bucket only contains one model, you can simply set the uri field to the bucket's location.

 Obtaining the prediction output

 You can configure the output of a prediction job by setting the file’s predictionOutput field to a PredictionOutput. Table 13-16 lists the fields you can set.

 TABLE 13-16 PredictionOutput Fields

 	

 Field

 	

 Type

 	

 Description

 	

 outputPath

 	

 string

 	

 The Cloud Storage location for storing the prediction output

 	

 predictionCount

 	

 string

 	

 The number of generated predictions

 	

 errorCount

 	

 string

 	

 The number of data instances that produced errors

 	

 nodeHours

 	

 number

 	

 The number of node hours consumed by the prediction job

 These fields are straightforward to understand and use. The nodeHours field provides the product of the number of nodes used by the job and the number
 of hours required to complete the job.

 Part 4

 The Part of Tens

 IN THIS PART …

 Explore ten of the most important Python classes provided by the TensorFlow framework.

 Uncover helpful guidelines to follow when training neural networks in machine learning
 applications.

 Chapter 14

 The Ten Most Important Classes

 IN THIS CHAPTER

 [image: check] Exploring fundamental classes of the TensorFlow API

 [image: check] Storing tensors and operations in graphs

 [image: check] Using estimators and iterators

 The TensorFlow API is immense, comprising hundreds of packages and thousands of modules.
 Given its size, newcomers may find it hard to know which classes to study closely.
 To remedy this confusion, I selected TensorFlow’s ten most important classes and explain
 what the class accomplishes and why it’s so important.

 Tensor

 Tensors play a central role in TensorFlow development and serve as the primary objects
 for storing and manipulating data. Optimizers only accept data contained in tensors,
 and image-processing functions require images to be provided as tensors. All neural
 network layers, from dense layers to dropout layers, accept tensors as input and return
 tensors as output.

 A tensor serves as an N-dimensional array, where N can be zero or more. A tensor’s
 number of dimensions is called the tensor’s rank, and the size of each dimension is called the tensor’s shape. For example, a 3-x-5 matrix has shape [3, 5], and an RGB image whose size is 200
 x 200 would be represented by a tensor with size [200, 200, 3].

 TensorFlow provides hundreds of functions for creating, transforming, and processing
 tensors (see Chapter 3). You can create a tensor with constant values by calling tf.constant or create a tensor with random values by calling tf.random_normal or tf.random_uniform. You can reshape a tensor with tf.reshape and extract part of a tensor with tf.slice.

 Operation

 When the Python interpreter reaches a function that operates on tensors, it doesn't
 execute the operation immediately. Instead, it creates an instance of the Operation class that represents the operation. Every Operation has a property called inputs that contains its input tensors and a property called outputs that contains its output tensors.

 Every Operation has a property called type that is usually set to the function that created it. For example, if you call tf.add, the corresponding operation will have its type set to add.

 Other math operations include tf.divide, tf.round, and tf.sqrt. TensorFlow also supports traditional matrix operations, including tf.matmul, tf.diag, and tf.matrix_solve.

 Graph

 TensorFlow creates a Tensor instance for each tensor in your application and an Operation for each operation involving tensors. It stores these Tensors and Operations in a data structure called a Graph. Only one Graph can be active at a time, and you can make a new Graph active by calling as_default.

 The Graph class provides a number of methods for accessing the data contained in the graph.
 You can access a particular tensor with get_tensor_by_name or access all of the graph's operations by calling get_operations.

 Each Graph stores data in a series of containers called collections. Every collection can be accessed through a particular key, and get_all_collection_keys provides the full list of keys. For example, a graph stores its global variables
 in the collection whose key is tf.GraphKeys.GLOBAL_VARIABLES.

 Session

 After you add tensors and operations to a graph, you can execute the graph's operations
 by creating and running a session. You can create a session by calling tf.Session and then launch the session by calling its run method.

 The first argument of the run method tells the session what processing to perform. If this argument contains tensors,
 the session will compute the elements of each tensor and return the elements in a
 NumPy array. If this argument contains Operations, the session will perform each operation and return the appropriate result.

 If the questions on StackOverflow are any indication, run's feed_dict confuses many developers. This parameter accepts a dictionary that associates values
 with tensors (usually placeholders) in the graph. But the dictionary’s values can’t be tensors. For this reason, it’s
 generally a good idea to store and process input data using NumPy arrays before executing
 a session.

 Variable

 Variables resemble tensors in many respects. They store values in N-dimensional arrays
 and can be operated upon using regular TensorFlow operations. But during training
 operations, applications rely on variables to store the state of the model. For example,
 if an application consists of a neural network, the network’s weights and biases will
 be stored as variables.

 Another difference is that variables require a different set of methods than tensors.
 For example, after you create a Variable, you need to initialize its value by running a special operation in the session.
 If your application has many variables, you can obtain a combined initialization operation
 by calling tf.global_variables_initializer.

 At a low level, the goal of training is to set the application's variables to values
 that will bring the model in line with observed data. These variables are critically
 important, so it’s a good idea to store them to checkpoint files with Savers. Chapter 5 explains how to create, initialize, and save variables in a TensorFlow application.

 Optimizer

 The disparity between an application’s model and the observed data is called loss. A TensorFlow application reduces loss using an optimizer. In code, you can create
 an optimizer by instantiating a subclass of the Optimizer class. Every optimizer has a minimize method that returns an operation that can be executed in a session.

 TensorFlow supports a number of different optimization algorithms, and each is represented
 by a different subclass of Optimizer. As an example, the simplest optimization algorithm, the gradient descent method,
 is represented by the GradientDescentOptimizer. But the simplest algorithm is rarely the most effective, and I recommend optimizing
 your applications with the AdamOptimizer or AdagradOptimizer instead.

 Estimator

 As discussed in Chapter 12, estimators dramatically simplify the process of developing and deploying machine
 learning algorithms. When you use an estimator, you don't have to worry about sessions
 and graphs. You simply need to know three methods of the Estimator class: train, evaluate, and predict.

 Another advantage of using estimators is that TensorFlow provides many subclasses
 of Estimator. These canned estimators, such as LinearRegressor and DNNClassifier, make it easy to train and test machine learning. The DNNLinearCombinedClassifier is particularly helpful because it lets you take advantage of wide and deep learning.

 Dataset

 One of the most recent changes to the TensorFlow API is the promotion of the tf.contrib.data package to tf.data. This package provides the all-important Dataset class, which TensorFlow recommends for loading and processing data. This class provides
 many powerful methods for batching and transforming data, and in many cases, you can
 perform these operations in a multithreaded manner.

 The Dataset class is also important because it's the superclass of TextLineDataset and TFRecordDataset. These two classes make it straightforward to read data from text files and TFRecord
 files. Chapter 10 provides a lengthy discussion of these classes and their usage.

 Iterator

 The Dataset class provides many powerful capabilities, but it doesn't let you access its data
 directly. To extract tensors from a dataset, you need to create an instance of the
 Iterator class.

 TensorFlow provides four different ways to iterate through a dataset’s content. The
 simplest is the one-shot iterator, which can iterate through a dataset only once.
 You can reuse initializable and reinitializable iterators, but you’ll need to run
 special initialization operations first. Feedable iterators are the most complicated,
 but you can associate them with multiple datasets and you don’t need to initialize
 them before each iteration.

 Saver

 The goal of training is to determine which variables produce the least possible loss.
 Training can take hours or days, so it’s crucial to store the variable’s values during
 and after training. TensorFlow makes this possible by providing the Saver class.

 Using this class is easy. After you create a Saver instance, you can call save to store the model's state in numbered checkpoint files. You can load the model’s
 variables from the checkpoint files by calling the restore method.

 Chapter 15

 Ten Recommendations for Training Neural Networks

 IN THIS CHAPTER

 [image: check] Preprocessing data to ensure suitable analysis

 [image: check] Selecting the weights and layers of a neural network

 [image: check] Choosing an activation function to produce acceptable output

 In most software development efforts, an application will always do its job if you
 code it correctly. But when you work with neural networks, this isn’t the case. You
 can write flawless code and still end up with lousy results. No matter what the academics
 say, neural network development is not an exact science — there’s still a lot of art
 involved.

 In this chapter, I present ten recommendations that can help you improve the accuracy
 and performance of your neural networks. These general rules are based on my experience
 and what I’ve learned from other developers and researchers. But keep in mind that
 neural networks are never completely reliable: Even a perfectly coded neural network
 can fail from time to time.

 Select a Representative Dataset

 This recommendation is the simplest because it doesn’t involve any math or software
 development. When it comes to training samples, more is better, but size isn’t the only priority. You need to make sure that your training dataset resembles
 the real world. Also, if your application classifies samples into categories, you
 need to make sure that you have a large number of samples for each category.

 When it comes to image classification, you never know what bizarre features the neural
 network will focus on. For this reason, many developers add low levels of random noise
 to their input samples. This noise shouldn’t obfuscate the image, but should force
 the neural network to pay attention to relevant characteristics.

 Standardize Your Data

 When you test a machine learning application or use it for practical prediction, you
 should make sure that the test data statistically resembles the training data. That
 is, the test/prediction data should have the same mean and standard deviation as the
 training data.

 As discussed in Chapter 7, the process of setting the mean and standard deviation of a dataset is called standardization.
 Many applications standardize their data by setting the mean to 0 and setting the
 standard deviation to 1. In a TensorFlow application, you can accomplish this by calling
 tf.nn.moments and tf.nn.batch_normalization.

 Use Proper Weight Initialization

 Researchers have devised a number of mathematical procedures for initializing the
 weights of a neural network. One of the most popular methods is called the Glorot
 method or Xavier method. You can use this method in your applications by calling tf.contrib.layers.xavier_initializer.

 Start with a Small Number of Layers

 For complex problems, you probably won't know how many hidden layers to create. Some
 developers assume that larger is better, and construct neural networks with many (more
 than 10) hidden layers. But this increases the likelihood of overfitting, in which
 the neural network becomes focused on your specific training data and fails to analyze
 general data.

 To avoid overfitting, it’s a good idea to start small. If the accuracy is unacceptable,
 increase the network’s depth until the accuracy reaches a suitable value. In addition
 to reducing the likelihood of overfitting, the start-small method guarantees faster
 execution than the start-large method.

 Add Dropout Layers

 In addition to dense layers, I recommend that you add dropout layers to your neural
 networks. A dropout layer sets a percentage of its inputs to 0 before passing the
 signals as output. This reduces the likelihood of overfitting by reducing the codependency
 of the inputs entering the dropout layer.

 In TensorFlow, you can create a dropout layer by calling tf.nn.dropout. This layer accepts a tensor whose values identify the probability that the corresponding
 input should be discarded.

 Train with Small, Random Batches

 After you preprocess your data, initialize your weights, and determine the initial
 structure of your neural network, you’re ready to start training. Rather than train
 with the entire dataset at once, you should split your data into batches. The neural
 network will update its gradients and weights with each batch processed.

 Reducing the batch size increases the training time, but it also decreases the likelihood
 that the optimizer will settle into a local minimum instead of finding the global
 minimum. It also reduces the dependence of the analysis on the order of the samples.
 You can reduce this dependence further by shuffling batches as training proceeds.

 Normalize Batch Data

 Even if you standardize the samples entering your neural network, the mean and variance
 of your data will change as it moves from one hidden layer to the next. For this reason,
 developers normalize the data as it leaves each layer.

 This normalization involves setting the mean to zero and the standard deviation to
 one. But the process is slightly more complicated because you need to approximate
 the mean and variance of the entire batch. Rather than do the math yourself, I recommend
 calling tf.contrib.layers.batch_norm.

 Try Different Optimization Algorithms

 Your choice of optimizer will play a critical role in determining the accuracy and
 performance of your application. While writing this book, I searched many online forums
 for the answer to the question “Which optimization method is best?” But despite decades
 of analysis, researchers haven't reached a consensus.

 Personally, I like to start with the Adam and Adagrad optimizers, but if you’re not
 getting the performance and accuracy you want, it’s a good idea to try other methods.
 In a TensorFlow application, you set the optimization method by creating an instance
 of an optimizer class, such as tf.train.AdamOptimizer, calling its minimize method, and running the returned operation in a session.

 Set the Right Learning Rate

 An optimizer’s learning rate determines how an optimizer updates its weights with
 each training step. If you set the learning rate too high, the optimizer will make
 dramatic changes to the weights, and it may never converge to a solution. If you set
 the learning rate too low, the optimizer will proceed slowly, and it may converge
 to a local minimum instead of a global minimum.

 Typical learning rates vary from 0.0001 to 0.5, but the best learning rate varies
 from application to application. I recommend starting with a high value and repeatedly
 reducing the learning rate until you’re satisfied with the application’s accuracy
 and performance.

 Check Weights and Gradients

 Machine learning applications frequently fail because the weights drop to zero (the
 vanishing gradient problem) or grow very large (the exploding gradient problem). In
 both cases, you may need to adjust the number of layers in your network and/or the
 activation function of each layer.

 Thankfully, TensorFlow lets you save a layer’s weights and visualize the weights with
 TensorBoard. Chapter 4 introduces TensorBoard and explains how to generate and print summary data for visualization.
 Chapter 5 explains how to visualize training results with TensorBoard.

 About the Author

 Matthew Scarpino has been a programmer and engineer for nearly 20 years. In addition
 to developing neural networks for image recognition, he’s designed circuitry to model
 human cognition for the Defense Advanced Research Projects Agency (DARPA). He’s currently
 the lead developer at plutocracy.com, which uses machine learning to analyze financial
 trends.

 Matthew became a Google Certified Data Engineer in 2018. In his spare time, he programs
 robots and writes a blog on TensorFlow, tfblog.com.

 Dedication

 This book is dedicated to the AI pioneer, Frank Rosenblatt. Though his contemporaries
 dismissed him as a starry-eyed academic, modern accomplishments have not only vindicated
 his wildest predictions but surpassed them.

 Author’s Acknowledgments

 In the late 1990s, I came across C For Dummies in a college bookstore and fell madly in love. Dan Gookin didn’t just make C programming
 approachable — he made it funny. I spent many happy hours reading his silly explanations and working through his
 whimsical programming examples.

 I’m not half the author Dan Gookin is, but I’d like to thank Executive Editor Katie
 Mohr for giving me the chance to write a For Dummies book. As a newcomer, I had millions of asinine questions, ranging from chapter structure
 to table fonts to equation formatting. Katie replied to every question, and her pleasant
 disposition never flagged for a moment.

 The book’s Project Editor, Kelly Ewing, did an excellent job. She worked tirelessly
 to improve the clarity and quality of the text, and the book benefitted greatly from
 her careful attention. Also, it took me some time to acclimate myself to the For Dummies editing criteria, and I’m deeply grateful for Kelly’s patience and assistance.

 The prolific author Guy Hart-Davis reviewed the book from a technical perspective
 and provided comments and support. Thanks to his feedback, I reworded many passages
 to better explain TensorFlow’s approach to machine learning. Also, Guy caught many
 more technical errors than I’d care to admit. Thanks, Guy!

 I’d like to extend my deep gratitude to the entire Wiley production team. In particular,
 I’d like to thank Lisa Stiers for her work in proofreading the text and Tamilmani
 Varadharaj for his work as the production editor.

 Last but not least, I’d like to thank Matt Wagner, literary agent extraordinaire.
 From my initial proposal to the published book, he has served as agent, editor, coach,
 and diplomat. Despite working on many projects at once, he always made the time to
 address my questions and concerns.

 Publisher’s Acknowledgments

 Senior Acquisitions Editor: Amy Fandrei

 Project Editor: Kelly Ewing

 Copy Editor: Kelly Ewing

 Editorial Assistant: Serena Novosel

 Sr. Editorial Assistant: Cherie Case

 Reviewer: Guy Hart-Davis

 Production Editor: Tamilmani Varadharaj

 Cover Image: © Funny Drew/Shutterstock

 [image: image]

 [image: image]

 [image: image]

 [image: image]

 Take Dummies with you everywhere you go!

 [image: Dummies Logo]

 Go to our Website

 [image: Facebook Logo]

 Like us on Facebook

 [image: Twitter Logo]

 Follow us on Twitter

 [image: YouTube Logo]

 Watch us on YouTube

 [image: LinkedIn Logo]

 Join us on LinkedIn

 [image: Pinterest Logo]

 Pin us on Pinterest

 [image: Google Plus Logo]

 Circle us on google+

 [image: Newsletter Envelope Icon]

 Subscribe to our newsletter

 [image: Book Cover Icon]

 Create your own Dummies book cover

 [image: Shopping Bag Icon]

 Shop Online

 [image: For Dummies, A Wiley Brand]

 Index

 A

 	abs function, 36

 	accumulation, momentum algorithm, 75–76

 	activation functions

 	classifier functions, 126–127

 	overview, 121, 123–124

 	rectifier functions, 124–126

 	saturation, 136–137

 	training with backpropagation, 129

 	activation parameter, 157, 185

 	activation_fn parameter, 138, 144, 145, 147

 	activity_regularizer parameter, 157

 	AdagradOptimizer class, 76–77

 	AdamOptimizer class, 77–78

 	adaptive gradient algorithm, 76–77

 	add function, 36

 	add_event method, 60, 61–62

 	add_graph method, 60, 62

 	add_loss method, 185

 	add_meta_graph method, 61, 62, 85

 	add_meta_graph_and_variables function, 85, 86

 	add_n function, 36

 	add_run_metadata method, 61

 	add_session_log method, 61

 	add_summary method, 60, 61, 64, 89–90

 	add_to_collection method, 47

 	add_to_collections method, 47

 	add_update method, 185

 	add_variable method, 185

 	adjust_brightness function, 169, 170

 	adjust_contrast function, 169, 170, 175

 	adjust_gamma function, 169, 170

 	adjust_hue function, 169, 170

 	adjust_saturation function, 169, 170

 	Advanced Package Tool (APT), 20

 	after_create_session method, 91

 	after_run method, 91, 92

 	allocator_type field, 238

 	allow_growth field, 237, 238

 	allow_soft_placement option, 227

 	AlphaGo program, Google, 1, 129

 	app group, gcloud, 282

 	apply_regularization function, 141

 	arg_scope function, 143, 147

 	argmax function, 37, 38

 	argmin function, 37, 38

 	args field, 301

 	argument scope, 143

 	arrays. See tensors

 	artificial neural networks (ANNs). See neural networks

 	as_cluster_def method, 270

 	as_default method, 46–47

 	as_graph_def method, 49

 	as_text parameter, 86

 	assets subdirectory, 84

 	assets.extra subdirectory, 84

 	audio data field, 59

 	audio function, 58

 	auth group, gcloud, 282

 	author parameter, 292

 	author_email parameter, 292

 	averaging filter, 151–152

 	avg_pooling2d function, 159

 	axes parameter, 41, 134

 	axis parameter, 34, 35

 	axons, 119

 B

 	backpropagation, 129–131

 	backpropagation through time (BPTT), 182–183

 	Bahdanau, Dzmitry, 196

 	basic math operations, 35–37

 	BasicLSTMCell class, 194–195, 196

 	BasicRNNCell class, 185–187

 	batch method, 209

 	batch normalization (BN), 134, 136–139, 147, 317

 	batch_norm function, 137–139, 147

 	batch_normalization function, 134–135

 	batch_weights parameter, 138

 	batches, 79–82, 209, 317

 	batchSize field, 304

 	--batch-size flag, 298

 	Bazel tool, Google, 229–230, 232, 233, 234–235

 	before_run method, 91–92

 	begin method, 91

 	begin parameter, 34

 	BellKor Pragmatic Chaos, 13

 	Bengio, Yoshua, 126, 196

 	Bergstra, James, 126

 	bias, 121, 122–123, 133, 194

 	bias_initializer parameter, 157, 197

 	bias_regularizer parameter, 157

 	biases_initializer parameter, 144, 145

 	biases_regularizer parameter, 144, 145

 	bicubic interpolation, 174

 	big data revolution, 12–13

 	bilinear interpolation, 173–174

 	billing, for GCP projects, 279

 	binary files, 205–208

 	binary logistic regression

 	defined, 100

 	example code, 108–110

 	logistic function, 106–107

 	maximum likelihood estimation, 107–108

 	overview, 105

 	setting up problem, 105–106

 	bizarro datasets, 221–224

 	BN (batch normalization), 134, 136–139, 147, 317

 	Boston dataset, 223–224, 257

 	box filter, 151–152

 	BPTT (backpropagation through time), 182–183

 	bucketized_column function, 255, 256

 	buckets, Google Cloud Storage, 283–285, 286–289

 	BUILD file, 229–230

 	build_signature_def function, 85

 	building TensorFlow. See source code, building TensorFlow from

 C

 	–c flag, 287

 	cache method, 210, 211

 	Caffe framework, 14

 	cast function, 33

 	cat command, 287, 289

 	categorical columns, 254–256, 268

 	_CategoricalColumn class, 254

 	ceil function, 37, 38

 	cell_clip parameter, 195

 	cells, RNN

 	basic RNNs, 185–187

 	creating, 183–185

 	GRU, 196–197

 	LSTM, 183, 192–196

 	multilayered, 190–191

 	cells parameter, 190

 	census data, analyzing, 264–269

 	center parameter, 138, 139

 	central_crop function, 172, 174

 	chain rule of calculus, 131

 	Cheat Sheet, explained, 3

 	checkpoint_and_export parameter, 271

 	checkpoint_path parameter, 250, 251

 	CheckpointSaverHook class, 93, 96

 	chief, in clusters, 243, 246

 	ChiefSessionCreator subclass, 94

 	Cho, Kyunghyun, 196

 	Chollet, François, 15

 	CIFAR-10 dataset, 160–166

 	classes, 1, 2, 309–313. See also specific classes

 	classifier functions, 126–127

 	classifiers (estimator classes)

 	combined linear-DNN, 262–263

 	DNNClassifier class, 260–262

 	overview, 256–257

 	classifying images. See convolutional neural networks; image classification; image filtering

 	clients, in clusters, 238

 	close method, 61, 62, 206

 	Cloud Console, Google, 279, 299

 	Cloud Storage, Google. See also Google Cloud Platform

 	buckets, 283–285

 	deploying applications to cloud, 295–299

 	gsutil utility, 286–290

 	objects and virtual hierarchy, 285–286

 	overview, 283

 	cluster field, 269, 270

 	cluster_def option, 227

 	clusters

 	ClusterSpec, creating, 239–240

 	estimators, running in, 269–270

 	example code, 244–246

 	in Google Cloud Platform, 299–305

 	jobs and tasks, specifying, 241–244

 	MonitoredSessions, 243–244

 	overview, 238–239

 	parameter servers, 241, 242

 	server, creating, 240–241

 	workers, 241, 242–244, 246

 	ClusterSpec, 239–240, 270

 	CNNs. See convolutional neural networks

 	collections, 47–48, 142, 310

 	color processing functions, 169–170

 	combiner parameter, 256

 	comma-separated value (CSV) files, 222–223, 264–269

 	comparison operations, 37–38

 	completedTrialCount field, 303

 	components group, gcloud, 282

 	compose command, 287, 289–290

 	compression_type parameter, 205

 	compute group, gcloud, 282

 	computing revolution, 12

 	concatenate method, 210

 	Concatenated ReLU (crelu) function, 124, 125

 	concatenation, with gsutil, 289–290

 	config argument, 51, 52

 	--config flag, 297, 298, 299

 	config group, gcloud, 282

 	config parameter, 226–228, 240

 	ConfigProto protocol buffer, 226–228, 236–237, 240

 	configuration flags, gcloud, 283

 	configure script, 234–235

 	constant function, 28, 30

 	consumedMlUnits field, 303

 	continuous_eval method, 272, 273

 	continuous_eval_on_train_data method, 272, 273

 	continuous_eval_throttle_secs parameter, 271

 	continuous_train_and_eval method, 272

 	contrib directory, 21

 	conv2d function, 156–158, 174–175

 	conv2d_transpose function, 175

 	convergence, optimizer, 71, 74, 76

 	convert_image_dtype function, 167, 168–169

 	converting images, 166–169

 	convolution

 	averaging filter, 151–152

 	features, 152–153

 	overview, 149–151

 	setting parameters, 153–155

 	with tf.nn.conv2d, 174–175

 	convolution layers, CNNs, 155, 156–158, 165–166

 	convolutional neural networks (CNNs)

 	classifying images, 160–166

 	convolution layers, 156–158

 	image filtering, 149–155

 	overview, 12, 149, 155–156

 	pooling layers, 158–160

 	core directory, 21

 	cost function, 69

 	cp (copy) command, 287, 288

 	create_estimator function, 275

 	crelu (Concatenated ReLU) function, 124, 125

 	crop_and_resize function, 172, 174

 	cropping functions, 172–174

 	cross entropy, 114–115

 	cross function, 40

 	cross products, 263–264

 	cross-correlation. See convolution

 	crossed_column function, 264

 	CSV (comma-separated value) files, 222–223, 264–269

 	CUDA language, 230

 	custom summaries, 59

 	CustomHook, 96

 	cycle_length parameter, 212–213

 D

 	[-D] config command, 287

 	data types, 29, 168–169, 177–178

 	data_format parameter, 138, 157, 159, 160, 175

 	dataFormat field, 304

 	--data-format flag, 298–299

 	Dataset class, 112, 221–224. See also tf.data.Dataset class

 	datasets. See also iterators

 	batches, working with, 209

 	bizarro, 221–224

 	creating, 202–208

 	example code, 218–221

 	multithreading, 201–202, 226

 	overview, 201–202

 	parameterized, 215–216

 	processing, 208–213

 	representative, selecting, 315–316

 	simple operations, 209–211

 	transforming, 211–213

 	datasets parameter, 213

 	debug function, 55

 	debug_options field, 228

 	decay parameter, 138, 139

 	decode_bmp function, 167

 	decode_gif function, 167, 168

 	decode_image function, 167, 168

 	decode_jpeg function, 167, 168

 	decode_png function, 167, 168

 	deep learning

 	example code, 145–147

 	implementing, 131–133

 	improving, 143–147

 	overview, 12–13, 129

 	tuned layers, creating, 144–147

 	wide and deep learning, 263–269

 	deferred_deletion_bytes field, 238

 	delay_workers_by_global_step parameter, 271

 	delayed values, in RNNs, 181

 	delta value, range, 31

 	dendrites, 118

 	dense columns, 268

 	dense layers. See fully connected layers

 	_DenseColumn class, 254

 	dependency packages, installing, 233

 	derivative, of function, 71–74

 	description parameter, 292

 	Desjardins, Guillaume, 126

 	device function, 236, 241

 	device_count parameter, 227, 236

 	device_filters parameter, 227

 	devices, configuring

 	assigning operations, 235–237

 	building TensorFlow from source, 229–235

 	GPU acceleration, 230

 	GPU usage, 237–238

 	overview, 229

 	diag function, 40

 	dictionary, feed, 79–80

 	dilation, in image processing, 154–155

 	dilation_rate parameter, 157, 158

 	dim parameter, 113

 	--distributed flag, 294

 	distributed TensorFlow applications. See clusters

 	div function, 36–37

 	divergence, optimizer, 71

 	divide function, 36–37

 	DNNClassifier class, 256, 260–262, 274–275

 	DNNLinearCombinedClassifier class, 257, 262–263, 264–269

 	DNNLinearCombinedRegressor class, 257, 262

 	DNNRegressor class, 257

 	domains group, gcloud, 282

 	dot products, convolution, 150–151

 	download command, 18

 	dropout, neural networks, 140, 147, 317

 	dtype parameter, 29, 186, 187, 207, 266

 	du command, 287

 	dynamic recurrent neural networks, 191

 	dynamic_rnn function, 191, 195

 E

 	–e flag, 288

 	edges, in graphs, 46

 	Einstein summation convention, 42

 	einsum function, 41, 42

 	ELU (Exponential Linear Unit) function, 124, 125–126

 	embedding_column function, 255, 256

 	encode_jpeg function, 167, 168

 	encode_png function, 167, 168

 	end method, 91

 	engine parameter, 266

 	epochs, monitoring, 82

 	epsilon parameter, 138

 	erf function, 39

 	erfc function, 39

 	error function, 55

 	errorCount field, 305

 	estimator parameter, 271

 	estimators (Estimator class)

 	census data, analyzing, 264–269

 	in clusters, running, 269–270

 	combined linear-DNN classifiers, 262–263

 	configuring, 252–253

 	DNNClassifier, 260–262

 	experiments, 270–275

 	feature columns, 253–256

 	input functions, creating, 251–253

 	linear regression, 257–260

 	overview, 2, 247–248, 312

 	regressors and classifiers, 256–257

 	running, 250–251

 	testing, 250

 	training, 248–249

 	wide and deep learning, 263–269

 	--eval_batch_size argument, 290

 	eval_delay_secs parameter, 271

 	eval_hooks parameter, 271

 	eval_input_fn parameter, 271

 	eval_metrics parameter, 271

 	--eval_steps argument, 290

 	eval_steps parameter, 271, 272

 	evaluate method, 250, 269, 272

 	evaluation_master parameter, 252, 253

 	event file, 57, 60–62

 	Examples, 205–206, 207, 218

 	exp function, 39

 	experiment_fn parameter, 273

 	experiments

 	class methods, 272–273

 	creating, 271–272

 	example code, 274–275

 	overview, 270–271

 	running, 273

 	expm1 function, 39

 	Exponential Linear Unit function (ELU or tf.nn.elu), 124, 125–126

 	exponential operations, 38–39

 	export_strategies parameter, 271

 	extend_train_hooks method, 272

 	eye function, 40

 F

 	Facebook, 14

 	fast convolution, 150

 	fatal function, 55

 	feature columns, 249, 253–256, 268

 	_FeatureColumn class, 253–254

 	features, 152–153, 205–206, 207

 	Features object, 205–206

 	feed_dict argument, 52, 53, 79–80, 311

 	feedable iterators, 213, 217–218

 	feedback, RNN use of, 180

 	FeedFnHook class, 93

 	feed-forward networks, 180

 	feeding data to session, 78–80

 	fetches argument, 52–53

 	filename_suffix parameter, 60

 	filenames parameter, 205

 	filepath_or_buffer parameter, 266

 	FileWriter class, 60–62, 64, 89–90

 	fill function, 28, 30–31

 	filter method, 211–212, 220

 	filter parameter, 175

 	filtering images. See image filtering

 	filters parameter, 157, 158

 	FinalOpsHook class, 93

 	firing, neuron, 119

 	FixedLenFeature, 207–208

 	flat_map method, 211–212

 	flip_left_right function, 170, 171, 175

 	flip_up_down function, 170, 171

 	floating-point values, 37

 	floor function, 37, 38

 	flush function, 55

 	flush method, 61, 62

 	flush_secs parameter, 60

 	force_gpu_compatible field, 238

 	forget gate, LSTM cell, 192–193

 	forget_bias parameter, 194

 	forward propagation, 130

 	fraction parameter, 174

 	frameworks, machine learning, 13–15

 	from_generator method, 203, 204

 	from_sparse_tensor_slices method, 203

 	from_tensor_slices method, 203

 	from_tensors method, 203

 	fully connected layers, 128, 144–145, 156

 	fully_connected function, 144–145, 147

 	functions, 45. See also graphs; methods; specific functions

 	fused parameter, 138

 G

 	Galton, Francis, 9–10

 	gated recurrent units (GRUs), 183, 196–198

 	Gaussian filter, 152

 	gcloud utility

 	deploying applications to cloud, 296–299

 	local execution, 294–295

 	overview, 281–283

 	generator functions, 204

 	Gers, Felix, 195

 	get_all_collection_keys method, 47

 	get_collection function, 47, 142, 147

 	get_default_graph method, 46

 	get_next method, 214

 	get_operation_by_name method, 47–48

 	get_operations method, 47–48

 	get_tensor_by_name method, 47–48

 	get_variable function, 141–142

 	global minimum of loss, 74–75, 80

 	global steps, monitoring, 80–82

 	global_name field, 228

 	global_step parameter, 80–81, 83, 88, 90

 	global_variables_initializer function, 68–69, 88

 	GlobalStepWaiterHook class, 93

 	glorot_normal function, 136

 	glorot_uniform function, 136

 	Google. See also Cloud Storage, Google; TensorFlow framework

 	AlphaGo program, 1, 129

 	Bazel tool, 229–230, 232, 233, 234–235

 	Cloud Console, 279, 299

 	deep learning applications, 129

 	machine learning, 13

 	ML Engine, 277–278, 280, 290–293

 	TPUs, 297

 	wide and deep learning, 263–264

 	Google Cloud Platform (GCP)

 	Cloud Storage, 283–290

 	clusters, configuring, 299–305

 	executing applications with SDK, 293–299

 	fees for, 279–280

 	gcloud utility, 281–283

 	ML Engine, accessing, 280

 	overview, 2, 15, 277–278

 	preparing for deployment, 290–293

 	projects, working with, 278–280

 	SDK overview, 280–281

 	support for, configuring, 234

 	gpu_memory_fraction parameter, 253

 	gpu_options field, 227, 237

 	GPUOptions buffer, 237

 	gradient, 73, 318

 	gradient descent algorithm, 71–75

 	GradientDescentOptimizer class, 71–75, 88

 	graph parameter, 51, 52, 184

 	graph_options option, 227

 	GraphDef, 47, 49–51

 	graphics processor unit (GPU), 230, 235–238

 	graphs (Graph class)

 	accessing data, 47–48

 	example code, 62–64

 	GraphDef creation, 49–51

 	overview, 1, 45–47, 310

 	signatures, 85

 	in Theano, 14

 	grayscale_to_rgb function, 167

 	groups, gcloud, 281–282

 	gRPC protocol, 240, 242

 	GRUCell class, 197–198

 	GRUs (gated recurrent units), 183, 196–198

 	gsutil utility, 281, 286–290

 	GZIP compression, 220

 H

 	_HashedCategoricalColumn class, 255

 	he_normal function, 136

 	he_uniform function, 136

 	header parameter, 266

 	hello_tensorflow.py module, 23–24

 	hidden layers, neural networks, 128, 129

 	hidden_units parameter, 260, 262

 	histo data field, 59

 	histogram function, 57, 58

 	histograms, viewing data in, 64

 	Hochreiter, Sepp, 192

 	Homebrew, 232, 233

 	hooks parameter, 94, 249

 	--host HOST flag, 57

 	hparams parameter, 273

 	hsv_to_rgb function, 167

 	hyperbolic tangent (tanh), 126, 127

 	HyperparameterMetrics, 304

 	HyperparameterOutputs, 303–304

 	hyperparameters field, 301, 302

 	HyperparameterSpecs, 302

 I

 	icons, explained, 2–3

 	_IdentityCategoricalColumn class, 254

 	if statements, 241

 	image classification. See also convolutional neural networks; image filtering

 	CIFAR-10 dataset, 160–166

 	with deep learning, 131–133

 	with DNN classifier, 260–262

 	with experiments, 274–275

 	image conversion functions, 166–169

 	image convolution. See convolution

 	image field, Summary.Value, 59

 	image filtering

 	averaging filter, 151–152

 	convolution overview, 150–151

 	convolution parameters, 153–155

 	features, 152–153

 	overview, 149

 	image function, 57, 58, 178

 	image noise, 151–152

 	image processing

 	color processing, 169–170

 	converting images, 166–169

 	convolution, 175–176

 	example code, 175–178

 	overview, 166

 	resizing and cropping, 172–174

 	rotating and mirroring, 170–171

 	image recognition. See convolutional neural networks; image filtering

 	images function, 112

 	import_meta_graph function, 83–84, 89

 	index argument, 210–211

 	indicator_column function, 255, 256, 268

 	info function, 55

 	initial estimate, 67

 	initial_state parameter, 186

 	initializable iterators, 213, 215–216

 	initialization

 	variable, 68–69

 	weight, 134, 135–136

 	initializer parameter, 142

 	input functions, for estimators, 251–253

 	input gate, LSTM cell, 192–193

 	input layer, neural networks, 128

 	input parameter, 175

 	input standardization, neural networks, 134–135

 	input_fn parameter, 248–249, 250, 251

 	inputPaths field, 304

 	--input-paths flag, 298

 	inputs parameter

 	batch_norm, 138

 	dynamic_rnn, 191

 	fully_connected, 144, 145

 	max_pooling2d, 159

 	static_rnn function, 186, 187

 	tf.layers.conv2d, 157

 	install command, 18, 19

 	install_requires parameter, 292, 293

 	installing TensorFlow, 17–21. See also source code, building TensorFlow from

 	integer values, 36–37

 	inter_op_parallelism_threads option, 226–227, 227

 	inter_op_thread_pool field, 228

 	interactive sessions, 53–54

 	InteractiveSession class, 53

 	interleave method, 211, 212–213

 	interpolation, 172–174

 	Ioffe, Sergey, 136–137

 	Iris dataset, 223–224, 257

 	is_training parameter, 138, 139

 	isHyperparameterTuningJob field, 303

 	Iterator.from_structure, 216

 	iterators (Iterator class)

 	example code, 218–221

 	feedable, 213, 217–218

 	initializable, 213, 215–216

 	one-shot, 213–215, 221

 	overview, 213, 313

 	reinitializable, 213, 216–217, 221

 J

 	Java Development Kit (JDK) 8.x, 229–230, 232

 	job_name parameter, 240

 	--job-dir argument, 290, 291, 294, 295, 296, 297

 	jobDir field, 301

 	jobs, in clusters, 239, 241–244, 269, 270

 	jobs, ML Engine/GCS

 	executing on cluster, 299–305

 	executing with Cloud SDK, 293–299

 	overview, 283

 	jobs subgroup, ml-engine, 283

 	--json-instances flag, 295

 K

 	keep_checkpoint_every_n_hours parameter, 253

 	keep_checkpoint_max parameter, 253

 	keep_dims parameter, 134

 	keep_prob parameter, 140

 	Keras framework, 15

 	kernel_initializer parameter, 157, 197

 	kernel_regularizer parameter, 157

 	kernel_size parameter, 157, 158

 	kernels. See filtering images

 	key parameter, 142

 	keys, 48, 254, 310

 L

 	–l flag, 287, 289

 	–L flag, 288, 289

 	l1_regularizer function, 140–141

 	l2_regularizer function, 140–141

 	label_dimension parameter, 258

 	label_vocabulary parameter, 260, 262

 	labels, CIFAR-10 images, 161

 	labels argument, 115

 	labels function, 112

 	lambda definition, 211–212

 	Lamblin, Pascal, 126

 	latest_filename parameter, 83

 	layers, neural network

 	batch normalization, 137

 	number of, 316–317

 	overview, 127–129

 	tuned, creating, 144–147

 	learn_runner.run function, 273, 275

 	learning rate, 73, 74, 75, 77, 318

 	lecun_uniform function, 136

 	LeCunn, Yann, 12

 	license parameter, 292

 	life-cycle methods, 91–92

 	likelihood, 107–108, 114

 	linear classifiers, 262–263, 264

 	linear interpolation, 173

 	linear regression, 10, 100–102, 257–260

 	LinearClassifier class, 256

 	LinearRegressor class, 256, 258–260

 	linspace function, 28, 31

 	Linux, TensorFlow on, 20, 233

 	list command, 18

 	list_files method, 210, 211

 	list_local_devices function, 235–236

 	load function, 86

 	load_boston function, 222

 	load_csv_with_header function, 222–223, 251

 	load_csv_without_header function, 222–223

 	load_iris function, 222, 223

 	local execution, with Cloud SDK, 294–295

 	local minimum of loss, 74–75, 80

 	local_variables_initializer function, 68

 	location codes, Cloud Storage, 284–285

 	log function, 39, 55

 	log likelihood method, 108

 	log_device_placement parameter, 237, 253

 	log_every_n function, 55, 56

 	log_first_n function, 55, 56

 	log_if function, 55, 56

 	log_step_count_steps parameter, 253

 	logarithmic operations, 38–39

 	--logdir DIR flag, 57

 	logdir parameter, 60

 	logging, 54–56

 	LoggingTensorHook class, 93

 	logistic (sigmoid) function, 106–107, 124, 126

 	logistic regression

 	binary, 100, 105–110

 	multinomial, 100, 110–116

 	overview, 106

 	logits argument, 115

 	logp1 function, 39

 	long short-term memory (LSTM) cells, 183, 192–196

 	loss

 	cross entropy, 114–115

 	defined, 312

 	determining, 69

 	example code, 86–88

 	in gradient descent algorithm, 73

 	L1/L2 regularization, 140–141

 	maximum likelihood estimation, 107–108

 	mean-squared error, 100–101, 103

 	neural networks, 129–130

 	optimization, 70–78

 	losses property, 184

 	ls command, 287, 289

 	LSTMCell class, 195

 	LSTMStateTuple class, 194

 M

 	Mac OS, TensorFlow on, 19, 232–233

 	machine learning. See also specific aspects of machine learning; training

 	big data and deep learning, 12–13

 	computing revolution, 12

 	development of, 8–13

 	frameworks, 13–15

 	neural networks, 10–11

 	overview, 1, 7–8

 	statistical regression, 9–10

 	theory of, 2

 	Machine Learning (ML) Engine, Google, 277–278, 280, 290–293. See also Google Cloud Platform

 	map method, 207–208, 211–212, 226

 	Mark 1 Perceptron computer, 10, 11

 	master parameter, 243, 252, 253

 	masterType field, 300–301

 	mathematical modeling, 66–67. See also neural networks

 	mathematical operations. See operations

 	matmul function, 40, 41, 235

 	matrices, 27–28, 39–42, 150–151

 	matrix_solve function, 40

 	max_pooling2d function, 159–160

 	max_queue parameter, 60

 	max_steps parameter, 249

 	maximum function, 37, 38

 	maximum likelihood estimation, 107–108

 	maxWorkerCount field, 304

 	--max-worker-count flag, 298

 	mb command, 286–288

 	McCulloch, Warren, 10

 	mean, 134, 137

 	mean-squared error (MSE), 69, 100–101, 103

 	merge function, 58

 	merge_all function, 58, 59

 	MetaGraphDef protocol buffer, 84, 86

 	metagraphs, 85–86

 	method_name parameter, 85

 	methods. See functions; specific methods

 	--min_eval_frequency argument, 290

 	min_eval_frequency parameter, 271

 	MinGW packages, 231

 	Minimal System 2 (MSYS2), 231–232

 	minimize method, 70, 81, 88, 101

 	minimum function, 37, 38

 	Minsky, Marvin, 10–11

 	mirroring functions, 170–171

 	ML (Machine Learning) Engine, Google, 277–278, 280, 290–293. See also Google Cloud Platform

 	ml group, gcloud, 282

 	ml-engine group, gcloud, 282, 283, 294–296, 298, 299

 	ml-engine jobs submit training command, 291

 	MLPs (multilayer perceptrons), 128. See also neural networks

 	MNIST database

 	deep learning, 131–133

 	deep learning with tuning, 145–147

 	DNN classifier, 260–262

 	experiments, 274–275

 	multinomial logistic regression, 110–113, 115–116

 	mod function, 36

 	--model flag, 298

 	model_dir parameter, 252, 253, 258

 	--model-dir flag, 295, 298

 	modelName field, 304, 305

 	Modified National Institute of Science and Technology. See MNIST database

 	--module-name flag, 283, 291, 294–295, 296, 297

 	moment vectors, Adam algorithm, 77–78

 	moments function, 134, 135

 	momentum algorithm, 75–76

 	MomentumOptimizer class, 75–76

 	MonitoredSessions, 93–94, 96, 243–244

 	MonitoredTrainingSession function, 243–244, 246

 	MSE (mean-squared error), 69, 100–101, 103

 	MSYS2 (Minimal System 2), 231–232

 	multilayer perceptrons (MLPs), 128. See also neural networks

 	multilayered cells, RNN, 190–191

 	multinomial logistic regression

 	cross entropy, 114–115

 	example code, 115–116

 	MNIST database, 110–113

 	overview, 100, 110

 	softmax function, 113–114

 	multiple graphs in multiple sessions, 62–64

 	multiply function, 35, 36

 	MultiRNNCell class, 190–191

 	multithreading, 201–202, 226–228. See also datasets

 	mv (move) command, 287, 288

 N

 	n_classes parameter, 260, 262

 	name parameter

 	for functions creating tensors, 29

 	get_variable, 142

 	image, 178

 	max_pooling2d, 159

 	setup, 292

 	tf.layers.conv2d, 157

 	variable_scope, 142

 	name_scope function, 143

 	names parameter, 266

 	NanTensorHook class, 93

 	nearest-neighbor interpolation, 172

 	negative function, 36

 	Nesterov Accelerated Gradient (NAG) descent algorithm, 76

 	Netflix, 13

 	neural networks. See also convolutional neural networks; recurrent neural networks

 	activation functions, 123–127

 	batch normalization, 136–139, 317

 	bias, 122–123

 	deep learning, implementing, 131–133

 	deep learning, improving, 143–147

 	deep learning, overview, 129

 	dropout layers, 317

 	input standardization, 134–135

 	layers, 127–129, 316–317

 	loss, determining, 69

 	mathematical modeling, 67

 	neurons, 118–119

 	optimization, 318

 	overview, 2, 10–11, 117–118

 	perceptrons, 119–120

 	regularization, 139–141

 	representative dataset for, 315–316

 	standardization, 134–135, 316

 	versus statistical regression, 118

 	training, tips for, 315–318

 	training with backpropagation, 129–131

 	tuning, 133–141

 	variable scope, 141–143

 	weight initialization, 135–136, 316

 	weights, overview of, 121–122

 	neurons, 118–119

 	next method, 204

 	next_batch method, 112, 113

 	node element, GraphDef, 49, 50

 	nodeHours field, 305

 	nodes. See also activation functions

 	graphs, 46

 	neural networks, 121–122, 123, 139–141

 	recurrent neural networks, 181–182

 	noise, image, 151–152

 	norm function, 40

 	normalization, batch, 134, 136–139, 317

 	normalizer_fn parameter, 144, 145

 	normalizer_params parameter, 144, 145

 	num parameter, 35

 	num_cores parameter, 252, 253

 	num_epochs parameter, 252

 	num_examples function, 112

 	num_outputs parameter, 144, 145

 	num_parallel_calls argument, 226

 	num_proj parameter, 195

 	num_threads field, 228

 	num_units parameter, 185

 	numeric columns, 254

 	NumPy, 165

 	numpy_input_fn function, 251–252

 O

 	objects, Google Cloud Storage, 283, 285–286

 	Office of Naval Research, 10

 	offset parameter, 135

 	one-hot vectors, 113

 	ones function, 28, 30

 	one-shot iterators, 213–215, 221

 	OpenCL, 230

 	operation_timeout_in_ms option, 227

 	operations (Operation class)

 	assigning to devices, 235–237

 	basic math, 35–37

 	exponents and logarithms, 38–39

 	fetches parameter, assigning, 53

 	graphs, 46

 	overview, 35, 310

 	putting into practice, 42–43

 	rounding and comparison, 37–38

 	scope for, 143

 	summary, 57–59

 	vector and matrix operations, 39–42

 	optimization

 	AdagradOptimizer, 76–77

 	AdamOptimizer, 77–78

 	backpropagation, 130–131

 	defined, 69

 	example code, 86–88

 	GradientDescentOptimizer, 71–75

 	learning rate, 318

 	linear regression, 101

 	MomentumOptimizer, 75–76

 	Optimizer, 70–71

 	overview, 70, 312

 	polynomial regression, 103

 	tips for, 318

 	optimization flags, 234–235

 	Optimizer class, 70–71, 312. See also optimization; specific subclasses

 	options parameter, 52, 92, 228

 	oscillation, gradient descent algorithm, 75

 	output gate, LSTM cell, 192–193

 	output layer, neural networks, 128

 	output matrices, RNNs, 187

 	output_partition_graphs field, 228

 	output_size property, 184

 	output_types parameter, 204

 	OutputHook, 246

 	outputPath field, 304, 305

 	--output-path flag, 298, 299

 	outputs_collections parameter, 138, 144

 	overfitting, neural networks, 129, 139, 140

 P

 	–p flag, 287

 	--package-path flag, 283, 291, 294–295, 296, 297

 	packages, TensorFlow, 17, 18–19, 21–22. See also specific packages

 	packages parameter, 292

 	packageUris field, 301

 	packaging TensorFlow code, 291–293

 	padded_batch method, 209

 	padding, convolution, 155

 	padding parameter, 157, 158, 159, 160, 175

 	pandas data analysis library, 265–266

 	pandas_input_fn function, 252, 266

 	Papert, Seymour, 10–11

 	parallel_iterations parameter, 191

 	param_initializers parameter, 138

 	param_regularizers parameter, 138

 	parameter servers (PSs), 241, 242

 	parameterized datasets, 215–216

 	parameterServerCount field, 301

 	--parameter-server-count flag, 294

 	parameterServerType field, 300–301

 	ParameterSpecs, 302

 	parseExample function, 207

 	parseSingleExample function, 207, 208

 	partial derivatives, 72, 131

 	peephole connections, LSTMs, 195

 	PEP (Python Enhancement Proposal) 8 Style Guide, 25

 	per_process_gpu_memory_fraction field, 237, 238

 	perceptrons, 10–11, 119–120. See also neural networks

 	pi, approximating in cluster, 244–246

 	pickling, CIFAR-10 files, 161

 	pip/pip3 package manager, 18, 19, 20, 21

 	Pitts, Walter, 10

 	placeholders, creating, 79

 	placement_period option, 227

 	polling_active_delay_usecs field, 238

 	polling_inactive_delay_msecs field, 238

 	polynomial regression, 100, 103–104

 	pool_size parameter, 159, 160

 	pooling layers, CNNs, 155, 158–160, 165–166

 	--port PORT flag, 57

 	pow function, 39

 	Pragmatic Chaos, BellKor, 13

 	predict method, 250–251, 260

 	predicting text, 188–190, 196, 198

 	prediction jobs, GCP

 	executing on cluster, 304–305

 	fees for, 279

 	local, 295

 	overview, 293

 	remote, 298–299

 	PredictionInput, GCP jobs, 300, 304–305

 	PredictionOutput, GCP jobs, 300, 305

 	prefetch method, 210, 211

 	probability, binary logistic regression, 105

 	processing images. See image processing

 	proj_clip parameter, 195

 	projection matrix, 195

 	projects, GCP, 278–280

 	projects group, gcloud, 282

 	protocol buffer (protobuf), 49, 51, 57, 59

 	protocol parameter, 240

 	PSs (parameter servers), 241, 242

 	Python

 	installing, 19–21

 	machine learning frameworks, 14

 	overview, 2

 	package manager, 18–19

 	running first application, 23–24

 	TensorFlow Style Guide, 24–25

 	version needed for Windows, 231–232

 	Python Enhancement Proposal (PEP) 8 Style Guide, 25

 	python --version, MSYS2, 231–232

 	pythonModule field, 301

 Q

 	qr function, 41

 	QueueRunner class, 202, 226

 R

 	–r flag, 288, 289

 	Ramón y Cajal, Santiago, 10

 	random seed, 33

 	random_contrast function, 169, 170

 	random_flip_left_right function, 170, 171

 	random_flip_up_down function, 170, 171

 	random_hue function, 169, 170

 	random_normal function, 31, 32

 	random_saturation function, 169, 170

 	random_shuffle function, 32, 33

 	random_uniform function, 32, 33

 	range function, tf, 28, 31

 	range method, Dataset, 202–203

 	rank, tensor, 29, 309

 	ratio parameter, 222

 	rb command, 287

 	read_csv function, 266

 	read_data_sets function, 111–113

 	real-time recurrent learning (RTRL), 183

 	reciprocal function, 36

 	rectified linear unit function (ReLU or tf.nn.relu), 124, 133

 	rectifier functions, 124–126

 	recurrent neural networks (RNNs)

 	basic, creating, 185–187

 	cells, creating, 183–185

 	dynamic, 191

 	GRUs, 196–198

 	LSTM cells, 192–196

 	multilayered cells, 190–191

 	overview, 179–181

 	predicting text with, 188–190

 	recursive functions, 181–182

 	training, 182–183

 	unrolling, 181–182

 	recursive functions, 181–182

 	reduce_mean function, 101

 	region field, 301, 304

 	--region flag, 296, 297, 298

 	regression. See statistical regression

 	regressors, 256–260

 	regularization, neural network, 134, 139–141

 	regularizers, 141

 	reinitializable iterators, 213, 216–217, 221

 	relu function, 124, 133

 	relu6 function, 124, 125

 	Remember icon, explained, 3

 	remote execution, with Cloud SDK, 296–299

 	renorm parameter, 138

 	renorm_clipping parameter, 138

 	renorm_decay parameter, 138

 	renormalization, 139

 	reopen method, 61

 	repeat method, 210

 	request_stop method, 94

 	reset gate, GRU cells, 196, 197

 	reset_export_strategies method, 272

 	reshape function, 33, 34

 	resize_area function, 172

 	resize_bicubic function, 172, 174

 	resize_bilinear function, 172, 173

 	resize_image_with_crop_or_pad function, 172, 174

 	resize_images function, 172

 	resize_nearest_neighbor function, 172

 	resizing functions, 172–174

 	restore method, 83–84, 89

 	restoring variables, 82, 83–84

 	results field, 92

 	reuse parameter

 	BasicRNNCell, 185

 	batch_norm, 138

 	fully_connected, 144, 145

 	get_variable, 142

 	tf.layers.conv2d, 157

 	reverse function, 33, 34

 	rewrite command, 287

 	rgb_to_grayscale function, 167

 	rgb_to_hsv function, 167

 	rint function, 37, 38

 	rm command, 287

 	RNNCell class, 183, 184–187

 	RNNs. See recurrent neural networks

 	Rosenblatt, Frank, 10

 	rot90 function, 170, 171

 	rotating functions, 170–171

 	round function, 37, 38

 	rounding operations, 37–38

 	rpc_options option, 227

 	rsqrt function, 38, 39

 	RTRL (real-time recurrent learning), 183

 	run method

 	configuring running session, 228

 	feeding data to session, 78, 79–80

 	InteractiveSession class, 54

 	linear regression, 101

 	loading variables from file, 89

 	optimization, 70–71

 	overview, 311

 	Session class, 52–53, 64

 	run_config parameter, 273

 	run_context parameter, 91

 	run_metadata parameter, 52, 92

 	run_std_server method, 272

 	run_values argument, 92

 	RunConfig constructor, 252–253

 	RunOptions buffer, 228

 	runtimeVersion field, 301, 304

 	--runtime-version flag, 296, 297, 298

 S

 	saturation, neural networks, 136–137

 	save method, 82–83, 86, 88

 	save_checkpoint_secs parameter, 252, 253

 	save_checkpoint_steps parameter, 252, 253

 	save_path parameter, 83, 84

 	save_summary_steps parameter, 253

 	SavedModelBuilder, 85

 	SavedModels, 84, 85–86, 298–299

 	Saver class, 82–84, 88, 89, 313

 	scalar function, 57, 58, 59, 89

 	scalar_mul function, 36

 	scalars, 27. See also tensors

 	SCALARS link, TensorBoard utility, 64

 	scale parameter, 135, 138, 139

 	scaleTier field, 300, 301

 	--scale-tier flag, 297–298, 299

 	schedule parameter, 273, 275

 	Schmidhuber, Jürgen, 192, 195

 	scope, variable, 141–143

 	scope parameter, 138, 142, 144, 145, 147

 	scope_name property, 184

 	SDK, Google. See Software Development Kit, Google

 	search command, 18

 	seed, random, 33

 	seed parameter, 136

 	sequence_length parameter, 186

 	sequences, neural networks recognizing. See recurrent neural networks

 	sequences, tensors with, 31

 	serialized graphs. See GraphDef

 	serialized parameter, 207

 	Server constructor, 240–241

 	ServerDef buffer, 240

 	servers, in clusters, 238–239, 240–241, 242–243

 	serverType field, 300–301

 	services group, gcloud, 282

 	sess parameter, 83, 84, 86

 	Session function, 51–52, 226–228, 243

 	session hooks

 	creating, 91–93

 	for distributed applications, 243–244, 246

 	example code, 94–96

 	MonitoredSession, creating, 93–94

 	overview, 90–91

 	session_config parameter, 252, 253

 	session_inter_op_thread_pool option, 227, 228

 	SessionCreator class, 94

 	SessionRunArgs class, 92

 	SessionRunContext class, 91

 	SessionRunHook class, 91–93

 	SessionRunValues object, 92

 	sessions (Session class)

 	creating, 51–52

 	in distributed applications, 242–243

 	example code, 62–64

 	executing, 52–53

 	feeding data to, 78–80

 	interactive, 53–54

 	MonitoredSession, 93–94

 	new, configuring, 226–228

 	overview, 1, 45, 51, 311

 	running, configuring, 228

 	running first application, 24

 	steps, global steps, and epochs, 80–82

 	sess.run function, 58

 	set_random_seed function, 32, 33

 	set_verbosity function, 55

 	setup function, 292

 	setup.py file, 291, 292–293

 	setuptools module, 291–292

 	SGD (stochastic gradient descent) algorithm, 80

 	shape parameter, 29, 30, 207

 	shard method, 210–211

 	should_stop method, 94

 	show command, 18

 	shrink_csv function, 222–223

 	shuffle method, 210

 	shuffle parameter, 251

 	sigmoid (logistic) function, 106–107, 124, 126

 	sigmoid_cross_entropy_with_logits function, 115

 	sign function, 36

 	signature, graph, 85

 	SIMD (single-instruction, multiple-data) instructions, 229

 	simple_value data field, 59

 	six package, 19

 	size parameter, 34

 	skip method, 210

 	skipinitialspace parameter, 266

 	skiprows parameter, 266

 	slice function, 33, 34

 	slope, linear regression, 100

 	softmax function (softmax), 113–115, 262

 	softmax_cross_entropy_with_logits function, 115, 116, 133, 147

 	softsign function, 124, 126–127

 	Software Development Kit (SDK), Google

 	executing applications with, 293–299

 	overview, 280–281

 	source code, building TensorFlow from

 	Bazel and Java, 229–230

 	build process, 234–235

 	downloading source code, 229

 	GPU acceleration, 230

 	on Linux, 233

 	on Mac OS, 232–233

 	overview, 18, 229

 	on Windows, 231–232

 	sqrt function, 38, 39

 	square function, 38, 39

 	squared_difference function, 38

 	squeeze function, 33, 34

 	stack function, 33, 34–35

 	StackOverflow site, 3

 	stages, in RNNs, 180–181

 	--staging-bucket flag, 283, 296, 297

 	standard deviation, 31–33

 	standardization, neural networks, 134–135, 316

 	start parameter, 241

 	--start-port flag, 294

 	stat command, 287, 289

 	state, 182, 187, 194

 	state_is_tuple parameter, 190

 	state_size property, 184

 	static_rnn function, 183, 186–187, 190, 191, 195

 	statistical regression. See also estimators

 	binary logistic regression, 105–110

 	linear regression, 100–102

 	multinomial logistic regression, 110–116

 	versus neural networks, 118

 	overview, 2, 9–10, 99–100

 	polynomial regression, 103–104

 	StepCounterHook class, 93

 	steps, monitoring, 80–82

 	steps parameter, 249

 	stochastic gradient descent (SGD) algorithm, 80

 	stochasticity, 78, 80

 	stop_grace_period_secs parameter, 94

 	StopAtStepHook class, 93

 	storage. See Cloud Storage, Google

 	--stream-logs flag, 296, 297

 	stride, convolution, 154

 	strides parameter, 157, 158, 159, 160, 175

 	string_input_producer function, 168

 	Style Guide, TensorFlow, 24–25

 	subgradients, 77

 	subtract function, 36

 	Summary class, 59

 	summary data

 	custom, 59

 	generating, 57–59

 	for images, 178

 	overview, 56

 	tf.logging functions, 55

 	for training, 89–90

 	writing, 59–62

 	summary operation, 57–59

 	SummarySaverHook class, 93, 96

 	svd function, 41

 	swap_memory parameter, 191

 	Szegedy, Christian, 136–137

 T

 	tags, metagraph, 85

 	take method, 210

 	tanh function, 124, 126, 127

 	target argument, 51, 52

 	target_column argument, 252

 	targets, cluster server, 242–243

 	task_index parameter, 240

 	tasks, in clusters, 239–244, 246, 269, 270

 	TBPTT (truncated backpropagation through time), 183

 	Technical Stuff icon, explained, 3

 	tensor data field, 59

 	tensor parameter, 178

 	Tensor Processing Units (TPUs), 297

 	tensorboard command, 57

 	TensorBoard utility

 	custom summaries, 59

 	example code, 64

 	overview, 56

 	running, 57

 	summary data, generating, 57–59

 	summary data, writing, 59–62

 	visualizing training process, 89–90

 	tensordot function, 40, 41

 	TensorFlow. See also specific elements of framework

 	building from source, 229–235

 	installing, 17–21

 	overview, 1–4, 7, 8, 15

 	resources related to, 3

 	running first application, 22–24

 	tensorflow (tf) package. See also specific functions

 	basic math operations, 35–37

 	content of, 21

 	example application, 42–43

 	exponents and logarithms, 38–39

 	operations, overview, 35

 	overview, 22

 	rounding and comparison, 37–38

 	tensors with known values, 28–31

 	tensors with random values, 31–33

 	transforming tensors, 33–35

 	vector and matrix operations, 39–42

 	tensorflow directory, 21

 	TensorInfo, 85

 	tensors (Tensor class). See also convolution; convolutional neural networks; operations

 	data types, 29

 	fetches parameter, assigning, 52

 	graphs, 46

 	images as, 156

 	with known values, 28–31

 	overview, 1, 27–28, 309–310

 	placeholders, 79, 80

 	with random values, 31–33

 	running first application, 24

 	scope for, 143

 	shape, 29, 33–35, 168, 177–178, 309

 	Torch, 14

 	transforming, 33–35

 	test field, 112

 	test method, 272

 	test_func function, 275

 	testing estimators, 250

 	text, creating datasets from, 205

 	text prediction, 188–190, 196, 198

 	TextFormat.Merge routine, 51

 	--text-instances flag, 295

 	TextLineDataset class, 205

 	tf package. See specific functions; tensorflow package

 	TF_CONFIG variable, 269–270

 	tf_random_seed parameter, 253

 	tf.contrib package, 21, 22. See also specific functions

 	tf.contrib.keras.initializers package, 135–136

 	tf.contrib.learn package, 257. See also experiments

 	tf.contrib.learn.python.learn.datasets package, 221–224

 	tf.data.Dataset class. See also iterators; specific methods

 	creating datasets, 202–205

 	multithreading, 226

 	overview, 312

 	processing datasets, 208–213

 	tf.estimator package, 21. See also estimators; specific methods and classes

 	tf.feature_column package, 253–256

 	tf.image package, 21. See also image processing; specific functions

 	tf.layers package, 21, 22. See also specific functions

 	tf.logging package, 21, 22, 54–55. See also specific functions

 	tf.metrics package, 21, 22

 	tf.nn package. See also specific functions

 	convolution functions, 174–175

 	cross entropy, 115

 	dropout, 140

 	input standardization, 134–135

 	overview, 21, 22

 	RNN cell classes, 183, 184–187

 	tf.nn.rnn_cell package, 194–198

 	TFRecordDataset constructor, 207

 	TFRecords, 205–208, 218–220

 	TFRecordWriter class, 205, 206

 	tf.saved_model.signature_constants module, 85

 	tf.saved_model.signature_def_utils package, 85

 	tf.summary package, 21, 22, 57–59, 89–90. See also specific functions

 	tf.train package, 21, 22. See also specific classes; specific functions; training

 	Theano framework, 14

 	ThreadPoolOptionProto buffers, 228

 	threads, 201–202, 226. See also datasets; multithreading

 	threshold, 119, 120, 122

 	time_major parameter, 191

 	timeout_in_ms field, 228

 	Tip icon, explained, 2

 	Torch framework, 14

 	TPUs (Tensor Processing Units), 297

 	trace function, 40

 	trace_level field, 228

 	train field, Datasets instances, 112

 	train method, 248–249, 269, 272

 	train_and_evaluate method, 272, 275

 	--train_batch_size argument, 290

 	train_dir parameter, 111

 	train_func function, 275

 	train_input_fn parameter, 271

 	--train_steps argument, 290

 	train_steps parameter, 271

 	train_steps_per_iteration parameter, 271, 272

 	trainable parameter, 68, 138, 139, 144, 157

 	training

 	with backpropagation, 129–131

 	batch normalization during, 137

 	estimators, 248–249

 	example code, 86–89

 	feeding data to session, 78–80

 	formulating model, 66–67

 	loss, determining, 69

 	neural networks, tips for, 315–318

 	optimization, 70–78

 	overview, 65–66

 	recurrent neural networks, 182–183

 	SavedModel, working with, 84–86

 	session hooks, 90–96

 	steps, global steps, and epochs, 80–82

 	TensorFlow, 22

 	variables, overview, 67–69

 	variables, restoring, 82, 83–84

 	variables, saving, 82–83

 	visualizing process, 89–90

 	training jobs, GCP

 	executing on cluster, 300–304

 	fees for, 279

 	local, 294–295

 	overview, 293

 	remote, 296–298

 	TrainingInput, GCP jobs, 300–303

 	TrainingOutput, GCP jobs, 300, 303–304

 	transpose function, 40

 	transpose_image function, 170, 171

 	trials field, 303–304

 	truncated backpropagation through time (TBPTT), 183

 	truncated_normal function, 31, 32–33

 	tuning neural networks

 	batch normalization, 136–139

 	deep learning, improving, 143–147

 	input standardization, 134–135

 	overview, 133–134

 	regularization, 139–141

 	weight initialization, 135–136

 U

 	Ubuntu Linux, TensorFlow build on, 233

 	underfitting, neural networks, 139

 	uniform parameter, 136

 	uninstall command, 18

 	unit step function, 123

 	unrolling RNNs, 181–182

 	unstack function, 33, 35

 	update gate, GRU cells, 196, 197

 	update property, 184

 	updates_collections parameter, 138

 	uri field, 304, 305

 	url parameter, 292

 	use_bias parameter, 157

 	use_locking parameter, 74, 76

 	use_nesterov parameter, 76

 	use_per_session_threads option, 228

 V

 	validation field, 112

 	value parameter, 30, 59

 	van Merrienboer, Bart, 196

 	var_list argument, 70

 	Variable function, 68, 133, 142

 	variable_initializer function, 68

 	variable_scope function, 141, 142

 	variables (Variable class)

 	characteristics of, 67

 	creating, 68

 	example code, 88–89

 	initializing, 68–69

 	loading from file, 89

 	optimization, 70–78

 	overview, 67, 311

 	parameter servers, 242

 	restoring, 82, 83–84

 	retrieving from collections, 142

 	saving, 82–83

 	scope, managing with, 141–143

 	storing global step in, 81

 	variables property, 184

 	variables subdirectory, 84

 	variables_collections parameter, 138, 144

 	variance, 134, 137

 	variance_epsilon parameter, 135

 	VarLenFeature function, 208

 	vectors, 27–28, 39–42, 72–73

 	verify_shape argument, 30

 	--version flag, 298

 	version parameter, 292

 	versionName field, 304, 305

 	versions element, GraphDef, 49, 50

 	visible_device_list field, 238

 	visualizing data. See TensorBoard utility

 	_VocabularyListCategoricalColumn class, 255

 W

 	warn function, 55

 	web set command, 287

 	weight, in neural networks

 	checking, 318

 	determining position in network, 128–129

 	example code, 133

 	initializing, 134, 135–136, 316

 	L1/L2 regularization, 140–141

 	overview, 121–122

 	recurrent neural networks, 181

 	training with backpropagation, 129–131

 	variable scope, 141–142

 	weight_column parameter, 258

 	weights property, 184

 	weights_initializer parameter, 144, 145

 	weights_regularizer parameter, 144, 145

 	what field, Event, 61–62

 	WholeFileReader function, 168

 	wide and deep learning, 263–269

 	Windows, TensorFlow on, 20–21, 231–232

 	workerCount field, 301

 	--worker-count flag, 294

 	workers, in clusters, 241, 242–244, 246

 	WorkerSessionCreator subclass, 94

 	write method, 206

 	write_graph function, 51

 X

 	x parameter, 134, 140, 251

 	xavier_initializer function, 136

 Y

 	y parameter, 251

 Z

 	zero_debias_moving_mean parameter, 138

 	zero_state method, 185

 	zeros function, 28, 30

 	zip method, 211, 213

 WILEY END USER LICENSE AGREEMENT

 Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

 OPS/images/eq05011.png

OPS/images/eq08004.png
—o —|o —|oy
o o —lon

kernel

OPS/images/eq05012.png

OPS/images/eq08003.png
Mgy My Mg koo koy ko

m (fltered) =| my,y my ma | e (ke
LORVRRN R R B S S
:m,,“,kw+ml,,,k“+m,,,,,,k“+m,,,,k,u+m,,k“+

my Ry Amy R Amy Ry Ay, Ry,

OPS/images/eq08002.png
1(-10)+2(-9)+3(-8)+4(-7)+5(-6)+
6(=5)+7(-4) +8(~3)+9(-2) = 210

OPS/images/eq05010.png
(, =6, +0,

OPS/images/eq08001.png
-9
-6
-3

-10

-5
2|

-7
-4

B=

9|

8

OPS/images/9781119466215-fg0401.png

OPS/images/eq05004.png
f(x, y)=16-4x"-2y*

OPS/images/9781119466215-fg0402.png
< C[@mamoninsmn «

TensorBoard o

[e Main Graph
2 omonmie
fun

Seasion

OPS/images/eq05005.png
Vi(x,y.2) = [e

OPS/images/9781119466215-fg0403.png
< > C [©wcamostsoosmistograms

TensorBoard m s wAcTIvE

Histogram moda Q-

natching 12 (altags)

Offset e s

e

OPS/images/eq05002.png
-

055 = 4 3V~ (mx +b))’

OPS/images/eq05003.png
Partial derivative of f(x, y) with respect to x: 2
ax

Partial derivative of f(x, y) with respect to y: &
oy

OPS/images/9781119466215-fg0801.png

OPS/images/eq05008.png
v, =aw, , —nVJ(0)

OPS/images/9781119466215-fg0802.png

OPS/images/eq05009.png

OPS/images/9781119466215-fg0803.png
kernel =

0.8
08
08
0.8
08

0.8
0.8
0.8
0.8
0.0
0.8

0.8

0.8
0.0
08
0.8
0.8
0.0

08

0.8

0.8

0.8

08

0.8

0.0

08

0.8
0.0
0.8
0.8
0.8
0.0
0.8

0.8
08
08
0.8
0.0
0.8

08

1.0
08
08
08
0.8
08

1.0

OPS/images/eq05006.png
0, =0, ,—nVJ(0)

OPS/images/9781119466215-fg0804.png
i | Convolution
| Pooling | “OTINCE

Lo¥er | (Four Filters) |

Convolution
Layer
| (Three Filters) |

i Pooling |
Layer

OPS/images/eq05007.png

OPS/images/9781119466215-fg0805.png
thlayers.max_pooling2d

18 | 20 | 22 | 24

a2 | a4 | a6 | a8

66 | 68 | 70 | 72

thlayers.avg_pooling2d

095 | 1.15 | 1.35 | 1.55

335 | 3.55 | 3.75 | 3.95

575 | 595 | 615 | 635

OPS/images/9781119466215-fg0806.png
i

OPS/images/9781119466215-fg0807.png
nal image Rotated Image Flipped Image Transposed Image

OPS/images/9781119466215-fg0808.png
Interpolated pixels

OPS/images/9781119466215-fg0809.png

OPS/images/dummies-logo.png

OPS/images/eq05022.png

OPS/images/9781119466215-fg1201.png
_FeatureColumn
_DenseColumn _CategoricalColumn
[][1
Numeric Embeadng | [Bucketized Grossed ~Weighted
Column Column Column Column Gategorical
Column
[T 1
- Tdery “Fashed Vocabuanie | [VocabuiamEr
et Categorcal Categorical Categorical Categorical
I Column Column Column Column

OPS/images/eq05023.png
Ty

0, =0, -

o, +&

OPS/images/9781119466215-fg1202.png
0.5

o
o O
o O, /®'O
0¥ 0o
0 o
&g o
0.5 1.0 1.5 2.0

y=0.76x-0.22

OPS/images/eq05020.png
m, = fim, ,+(1-f,)VJ(0)

OPS/images/eq05021.png
0, = By +(1-5,)[VI (0)]

OPS/images/eq05015.png
JIF

OPS/images/eq08008.png
Pooor =tit3A oy +(1-8,) t.B oy, + 1, (1=,)C o, + (1=,) (11,) D,

OPS/images/eq05016.png

OPS/images/eq08007.png
P.oor =tA o +(1-t)B,,,

OPS/images/eq05013.png
v, =aw, , -VI(0-av,)

OPS/images/eq08006.png

OPS/images/cover.jpg
TensorFlow

dimmies

'A Wiy B

Explore the underlying
machine learning concepts
Deploy TensorFlow applications
to the Google Cloud Platform
Learn TensorFlow modules
and create a neural network

Matthew Scarpino

OPS/images/eq05014.png
, =0, ,+v;

OPS/images/eq08005.png
i (itiered | = (8 5 G W o g G

9 9

Loss ke ke dm

OPS/images/eq05019.png

OPS/images/eq05017.png

OPS/images/eq05018.png

OPS/images/linkedin-logo.png

OPS/images/eq06002.png
y—(mx+b)

OPS/images/9781119466215-fg0101.png
1894

Francis Galton uses statistical regression to study inherited traits

1943 McCulloch and Pitts devise the first artificial neuron
1957 Frank Rosenblatt invents the perceptron

1963 Vapnik and Chervonenkis invent the Support Vector Machine algorithm
1974 Paul Werbos uses backpropagation to train a neural network

1982 John Hopfield demonstrates the Hopfield network

1998 Yann LeCunn trains a convolutional neural network to recognize digits
2002 Collobert, Kavukcuogly, and Farabet release the Torch framework
2006 Netflix offers $1M for assistance with movie recommendations

2014 Ian Goodfellow et al invent generative adversarial networks

2015 Francois Chollet releases Keras for developing deep neural networks
2015 The Google Brain team releases TensorFlow 1.0

OPS/images/eq06001.png

OPS/images/9781119466215-fg0102.png
o

(u1) 34BI3H pIYD.

o 2

&

&
Average Height of Parents (in)

OPS/images/9781119466215-fg0103.png
s goch e gos roin sode grde s

OPS/images/envelope-icon.png

OPS/images/9781119466215-fg0501.png
slope = f(a)|

OPS/images/9781119466215-fg0502.png
-(-8-8)

V/(12)

OPS/images/eq05024.png

OPS/images/9781119466215-fg0503.png
fx)

Local
minimum

Global
minimum

Local
minimum

OPS/images/9781119466215-fg0504.png

OPS/images/9781119466215-fg0505.png
€ C [@manoionanca: -

TensorBoard e

[uPepR— a-
[T ———

Teohp sotngmaoc: defouk age)

— 08 ™

OPS/images/9781119466215-fg0901.png

OPS/images/google-plus-logo.png
8

OPS/images/9781119466215-fg0902.png

OPS/images/9781119466215-fg0903.png
RNNCell

BasicRNNCell LSTMCell BasicLSTMCell LSTMBIockCell
MultiRNNCell GRUCell LSTMBIlockFusedCell

OPS/images/9781119466215-fg0904.png
Initial
state

Yo(t)

Xo(t)

ya(t)

Xi(t)

ya(t)

Xa(t)

Output
state

OPS/images/9781119466215-fg0905.png
xi(t) —

x(t) hia(t)

X

x(t) hia(t)

forget gate

x(t) hia(t)

/

» hi(t)

hia(t) —

input gate

cell

output gate

OPS/images/9781119466215-fg0906.png
xi(t) hia(t)

reset gate

xi(t) hia(t)

update gate

cell

OPS/images/eq09002.png
i =o|w,(x,h.)+b,]
fo =0 w, (xuhia)+b,]
o, = w,(x,h.)+b,]

OPS/images/eq06013.png
o(mx+b)

OPS/images/eq06012.png
o(mx+b)

OPS/images/9781119466215-fg1301.png
geloud /

components

config

ml-engine {

Jobs /
versions
local
operations

models «

predict

training
submit

prediction
cancel
describe
list
stream-logs

train

predict
list
describe
delete

create

OPS/images/eq06011.png
o(mx+b)

OPS/images/eq06010.png

OPS/images/eq09001.png

OPS/images/shopping-bag-icon.png

OPS/images/eq06006.png

OPS/images/eq06005.png

OPS/images/technicalstuff.png
&

OPS/images/eq06004.png
y=ax’ +bx* +cx+d

OPS/images/eq06003.png
(7 - (mx +b))
loss =

==

OPS/images/eq06009.png

OPS/images/eq06008.png
a(0)

OPS/images/eq06007.png

OPS/images/eq12002.png
()

o c,,e{(l‘l}

OPS/images/eq12001.png

OPS/images/eq06020.png
e 0.14835
v

26

(e

OPS/images/eq06023.png
joss ley,log(h(ﬂ)

OPS/images/eq06022.png
L(¥oryis-yya) =h(x)" h(x)" h(x)”

OPS/images/ad4.png
PERSONAL ENRICHMENT

PROFESSIONAL DEVELOPMENT

dummies.com dummies

OPS/images/eq06021.png
L(y.)=h(x)"[1-h(x)]""

OPS/images/ad3.png
Reach a global audience in any language by creating a solution that wil differentiate:
you from competitors, amplify your message, and encourage customers to make a
buying decision.

Apps. eBooks Audio

Books Video Webinars

~ Food _
Traceability

DUMMIES

Colonoscopy

Talent Analytics

DUNME

Leverage the strength of the world's most popular reference brand to reach new
audiences and channels of distribution.

For more information, visit dummies.com/biz

OPS/images/eq06017.png
o(mx+b)

OPS/images/ad2.png
Leverage the power

Dummies is the global leader in the reference category and one
of the most trusted and highly regarded brands in the world. No
longer just focused on books, customers now have access to the
dummies content they need in the format they want. Together
we'll raft a solution that engages your customers, stands out
from the competition, and helps you meet your goals.

Connect with an engaged audience on a powerful multimedia site,
and position your message alongside expert how-to content.
Dummies.com is a one-stop shop for free, online information

and know-how curated by a team of experts.

Targeted ads
Video
Email Marketing

Microsites
Sweepstakes
sponsorship

MILLION
20y 13
s ameis o MILLTON
UNIQUE

700,000 :iciii

300,000 UNIQUE et kA

]

OPS/images/eq06016.png
loss = -y, log(h(x))-(1-y,)log(1-h(x))

OPS/images/9781119466215-fg0601.png
12000
o o
10000 o9 o
% o %
o- %
000 o 08 o
o o
o ° o
o000 % ° o
s000
2000
o
T N
Year of Purchase.

2010

OPS/images/ad1.png
Take dummies with you
everywhere you go!

Whether you are excited about e-books, want more
from the web, must have your mobile apps, or are swept
up in social media, dummies makes everything easier.

Find us online!

V)

dummies.com dummies

OPS/images/eq06015.png
L(y.)=h(x)"[1-h(x)]""

OPS/images/9781119466215-fg0602.png
08

o

05

s

OPS/images/eq06014.png
o(mx+b)

OPS/images/9781119466215-fg0603.png
Category

Get Out of Bed (1)

Stay Asieep ()
1

© © 000000000000000000

2 3 0 s
Alarm Volume

OPS/images/9781119466215-fg0604.png
08

05

04

OPS/images/9781119466215-fg0605.png
Get Out of Bed (1) © 0 0 © 000000000000000080

Category

s

Stay Asieep (0)0000600050-
1 7 2 3 0
Alarm Volume

OPS/images/eq06019.png

OPS/images/9781119466215-fg0606.png

OPS/images/eq06018.png

OPS/images/facebook-logo.png

OPS/images/tip.png

OPS/images/eq07003.png
2 wx; =3.5(0.6)-1.0(1.2) +2.5(0.9) - 0.5(-0.2) = 3.25

OPS/images/eq07002.png
Lif Y w.x, > threshold

0 otherwise

OPS/images/eq07001.png
Lif 3 x, > threshold

0 otherwise

OPS/images/titlepg.png
TensorFlow

by Matthew Scarpino

dimmies

OPS/images/9781119466215-fg0710.png
s

(e

05

OPS/images/9781119466215-fg0711.png
s

(uBisyos

OPS/images/9781119466215-fg0712.png

OPS/images/9781119466215-fg0713.png
Activation function = f;

OPS/images/pinterest-logo.png

OPS/images/twitter-logo.png

OPS/images/eq07010.png

OPS/images/dummies-wordmark.png
DUMMIES

A Wiley Brand

OPS/images/eq07014.png
e (w? 0 0 0 L (w? 0 0
() = fo whofy (whoxo + Wi, + whox, +wihxy)+ whfi (whe, +whxs +whx))

OPS/images/eq07013.png

OPS/images/eq07012.png

OPS/images/9781119466215-fg0301.png
@ truncated_nNormal me—jp-

OPS/images/eq07011.png
hg = func (wgpxo +wiox, +wyx,

he = func(wishy +wishi +wih})

OPS/images/eq07007.png

OPS/images/eq07006.png

OPS/images/eq07005.png

OPS/images/9781119466215-fg0701.png
Axon

~

Outgoing signal

Incoming signal

A

Incoming signal /

Dendrites

OPS/images/eq07004.png
Lif Y w.x, > threshold

0 otherwise

OPS/images/9781119466215-fg0702.png

OPS/images/9781119466215-fg0703.png

OPS/images/9781119466215-fg0704.png

OPS/images/eq07009.png

OPS/images/9781119466215-fg0705.png

OPS/images/eq07008.png

OPS/images/9781119466215-fg0706.png
10
6

()mey

0

OPS/images/9781119466215-fg0707.png
0

(x)anja1

OPS/images/9781119466215-fg0708.png
(0ma

OPS/images/9781119466215-fg0709.png
(Opiowbis

08

OPS/images/youtube-logo.png
You

OPS/images/check.png

OPS/images/9781119466215-fg1101.png

OPS/images/eq05001.png
y=mx-+b

OPS/images/remember.png
uuuuuuuu

OPS/images/eq07017.png
pp = ppdecay + pug (1- decay)
2

o2 = oidecay + o2 (1- decay)

OPS/images/9781119466215-fg0810.png

OPS/images/eq07016.png
Batch mean: iy

Batch variance: o'}

o~
Normalization: x, =

Scaling and shifting

OPS/images/eq07015.png
p'(x)=F(g(x))g(x)

OPS/images/open-book-icon.png

