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         Introduction

         
         Machine learning is one of the most fascinating and most important fields in modern
            technology. As I write this book, NASA has discovered faraway planets by using machine
            learning to analyze telescope images. After only three days of training, Google’s
            AlphaGo program learned the complex game of Go and defeated the world’s foremost master.
         

         
         Despite the power of machine learning, few programmers know how to take advantage
            of it. Part of the problem is that writing machine learning applications requires
            a different mindset than regular programming. The goal isn’t to solve a specific problem,
            but to write a general application capable of solving many unknown problems.
         

         
         Machine learning draws from many different branches of mathematics, including statistics,
            calculus, linear algebra, and optimization theory. Unfortunately, the real world doesn’t
            feel any obligation to behave mathematically. Even if you use the best mathematical
            models, you can still end up with lousy results. I’ve encountered this frustration
            on many occasions, and I’ve referred to neural networks more than once as “high-tech
            snake oil.”
         

         
         TensorFlow won’t give you the ideal model for analyzing a system, but it will reduce
            the time and frustration involved in machine learning development. Instead of coding
            activation functions and normalization routines from scratch, you can access the many
            built-in features of the framework. TensorFlow For Dummies explains how to access these features and put them to use.
         

         
      
      
      
         
         About This Book

         
         TensorFlow is a difficult subject to write about. Not only does the toolset contain
            thousands of classes, but many of them perform similar roles. Furthermore, some classes
            are deprecated, while others are simply “not recommended for use.”
         

         
         Despite the vast number of classes, there are three classes that every TensorFlow
            developer should be familiar with: Tensor, Graph, and Session. The chapters in the first part of this book discuss these classes in detail and
            present many examples of their usage.
         

         
         The chapters in Part 2 explain how you can use TensorFlow in practical machine learning tasks. I start with
            statistical methods, including linear regression, polynomial regression, and logistic
            regression. Then I delve into the fascinating topic of neural networks. I explore
            the operation of basic neural networks, and then I present convolutional neural networks
            (CNNs) and recurrent neural networks (RNNs).
         

         
         The chapters in Part 3 present high-level TensorFlow classes that you can use to simplify and accelerate
            your applications. Of the many topics discussed, the most important is the Estimator
            API, which allows you to implement powerful machine learning algorithms with minimal
            code. I explain how to code estimators and execute them at high speed using the Google
            Cloud Platform (GCP).
         

         
      
      
      
         
         Foolish Assumptions

         
         In essence, this book covers two topics: the theory of machine learning and the implementation
            of the theory using TensorFlow. With regard to theory, I make few assumptions. I expect
            you to know the basics of linear algebra, but I don't expect you to know anything
            about machine learning. I also don’t expect you to know about statistical regression
            or neural networks, so I provide a thorough introduction to these and other concepts.
         

         
         With regard to TensorFlow development, I made assumptions related to your programming
            background. TensorFlow supports a handful of programming languages, but the central
            language is Python. For this reason, this book is Python-centric, and I provide all
            of the example code in Python modules. I explain how to install TensorFlow and access
            its modules and classes, but I don’t explain what modules and classes are.
         

         
      
      
      
         
         Icons Used in this Book

         
         To help you navigate through the text, I inserted icons in the book’s margin. Here’s
            what they mean:
         

         
         [image: tip] This icon indicates that the text contains suggestions for developing machine learning
            applications.
         

         
         [image: technicalstuff] This icon precedes content that delves into the technical theory of machine learning.
            Many readers may find this theory helpful, but you don’t need to know all the gritty
            details.
         

         
         [image: remember] As much as I love TensorFlow, I admit that it isn’t simple to use or understand.
            There are many critical points to be familiar with, and in many cases, I use this
            icon to emphasize concepts that are particularly important.
         

         
      
      
      
         
         Beyond the Book

         
         This book covers a great deal of the TensorFlow API, but there’s still a lot more
            to learn. The first place to look is the official documentation, which you can find
            at www.tensorflow.org. If you’re interested in TensorFlow’s functions and data structures, the best place
            to look is www.tensorflow.org/api_docs.
         

         
         If you have a problem that you can’t solve using this book or the official documentation,
            a great resource is StackOverflow. This site enables programmers to present questions
            and receive answers, and in my career, I’ve provided plenty of both. For TensorFlow-specific
            questions, I recommend visiting www.stackoverflow.com/questions/tagged/tensorflow.
         

         
         In addition to what you’re reading right now, this product also comes with a free
            access-anywhere Cheat Sheet that gives you some pointers on using TensorFlow. To get
            this Cheat Sheet, simply go to www.dummies.com and search for “TensorFlow For Dummies Cheat Sheet” in the Search box.
         

         
         I also provide a great deal of example code that demonstrates how to put the theory
            into practice. Here’s how to download the tfbook.zip file for this book. 
         

         
         
            
            	On www.dummies.com, search for TensorFlow For Dummies or the book's ISBN.
            

            
            	
               
               When the book comes up, click on the More about this book link.

               
               You are taken to the book’s product page, and the code should be on the Downloads
                  tab.
               

            

            
         

         
         After decompressing the archive, you’ll find a series of folders named after chapters
            of this book. The example code for Chapter 3 is in the ch3 folder, the code for Chapter 6 is in ch6, and so on.
         

         
      
      
      
         
         Where to Go from Here

         
         The material in this book proceeds from the simple to the complex and from the general
            to the recondite. If you’re already a TensorFlow expert, feel free to skip any chapters
            you’re already familiar with. But if you’re new to the toolset, I strongly recommend
            starting with Chapter 1 and proceeding linearly through Chapters 2, 3, 4, and so on.
         

         
         I’ve certainly enjoyed writing this book, and I hope you enjoy the journey of discovery.
            Bon voyage!

         
      
      
   
      
      
         
         Part 1
         

         
         Getting to Know TensorFlow

         
         IN THIS PART …

         
         Explore the fascinating field of machine learning and discover why TensorFlow is so
            vital to machine learning development.
         

         
         Download the TensorFlow package to your computer and install the complete toolkit.

         
         Discover the fundamental data types of TensorFlow and the many operations that you
            can perform on tensors.
         

         
         Understand how tensors and operations are stored in graphs and how graphs can be executed
            in sessions.
         

         
         Investigate the process of TensorFlow training, which minimizes the disparity between
            a mathematical model and a real-world system.
         

         
      
      
   
      
      Chapter 1

      
      Introducing Machine Learning with TensorFlow

      
      
         
         IN THIS CHAPTER

         
         [image: check] Looking at machine learning over time

         
         [image: check] Exploring machine learning frameworks

         
         

         
         TensorFlow is Google’s powerful framework for developing applications that perform
            machine learning. Much of this book delves into the gritty details of coding TensorFlow
            modules, but this chapter provides a gentle introduction. I provide an overview of
            the subject and then discuss the developments that led to the creation of TensorFlow
            and similar machine learning frameworks.
         

         
      
      
      
         
         Understanding Machine Learning

         
         Like most normal, well-adjusted people, I consider The Terminator to be one of the finest films ever made. I first saw it at a birthday party when
            I was 13, and though most of the story went over my head, one scene affected me deeply:
            The heroine calls her mother and thinks she’s having a warm conversation, but she’s
            really talking to an evil robot from the future!
         

         
         The robot wasn’t programmed in advance with the mother’s voice or the right sequence
            of phrases. It had to figure these things out on its own. That is, it had to analyze
            the voice of the real mother, examine the rules of English grammar, and generate acceptable
            sentences for the conversation. When a computer obtains information from data without
            receiving precise instructions, it’s performing machine learning.
         

         
         The Terminator served as my first exposure to machine learning, but it wouldn’t be my last. As I
            write this book, machine learning is everywhere. My email provider knows that messages
            involving an “online pharmacy” are spam, but messages about “cheap mescaline” are
            important. Google Maps always provides the best route to my local Elvis cult, and
            Amazon.com always knows when I need a new horse head mask. Is it magic? No, it’s machine
            learning!
         

         
         Machine learning applications achieve this power by discovering patterns in vast amounts
            of data. Unlike regular programs, machine learning applications deal with uncertainties
            and probabilities. It should come as no surprise that the process of coding a machine
            learning application is completely different than that of coding a regular application.
            Developers need to be familiar with an entirely new set of concepts and data structures.
         

         
         Thankfully, many frameworks have been developed to simplify development. At the time
            of this writing, the most popular is TensorFlow, an open-source toolset released by
            Google. In writing this book, my goal is to show you how to harness TensorFlow to
            develop your own machine learning applications.
         

         
         Although this book doesn’t cover the topic of ethics, I feel compelled to remind readers
            that programming evil robots is wrong. Yes, you’ll impress your professor, and it
            will look great on a resume. But society frowns on such behavior, and your friends
            will shun you. Still, if you absolutely have to program an evil robot, TensorFlow
            is the framework to use.
         

         
      
      
      
         
         The Development of Machine Learning

         
         In my opinion, machine learning is the most exciting topic in modern software development,
            and TensorFlow is the best framework to use. To convince you of TensorFlow’s greatness,
            I’d like to present some of the developments that led to its creation. Figure 1-1 presents an abbreviated timeline of machine learning and related software development.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 1-1: Developments in machine learning extend from academia to corporations.
                  

                  
               
               
            
            
         

         
         Once you understand why researchers and corporations have spent so much time developing
            the technology, you’ll better appreciate why studying TensorFlow is worth your own
            time.
         

         
         
            
            Statistical regression

            
            Just as petroleum companies drill into the ground to obtain oil, machine learning
               applications analyze data to obtain information and insight. The formal term for this
               process is statistical inference, and its first historical record comes from ancient Greece. But for this purpose,
               the story begins with a nineteenth-century scientist named Francis Galton. Though
               his primary interest was anthropology, he devised many of the concepts and tools used
               by modern statisticians and machine learning applications.
            

            
            Galton was obsessed with inherited traits, and while studying dogs, he noticed that
               the offspring of exceptional dogs tend to acquire average characteristics over time.
               He referred to this as the regression to mediocrity. Galton observed this phenomenon in humans and sweet peas, and while analyzing his
               data, he employed modern statistical concepts like the normal curve, correlation,
               variance, and standard deviation.
            

            
            To illustrate the relationship between a child’s height and the average height of
               the parents, Galton developed a method for determining which line best fits a series
               of data points. Figure 1-2 shows what this looks like. (Galton’s data is provided by the University of Alabama.)
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 1-2: Linear regression identifies a clear trend amidst unclear data points.
                     

                     
                  
                  
               
               
            

            
            Galton’s technique for fitting lines to data became known as linear regression, and the term regression has come to be used for a variety of statistical methods. Regression plays a critical
               role in machine learning, and Chapter 6 discusses the topic in detail.
            

            
         
         
         
            
            Reverse engineering the brain

            
            In 1905, Ramón y Cajal examined tissue from a chicken’s brain and studied the interconnections
               between the cells, later called neurons. Cajal’s findings fascinated scientists throughout the world, and in 1943, Warren
               McCulloch and Walter Pitts devised a mathematical model for the neuron. They demonstrated
               that their artificial neurons could implement the common Boolean AND and OR operations.
            

            
            While researching statistics, a psychologist named Frank Rosenblatt developed another
               model for a neuron that expanded on the work of McCulloch and Pitts. He called his
               model the perceptron, and by connecting perceptrons into layers, he created a circuit capable of recognizing
               images. These interconnections of perceptrons became known as neural networks.

            
            Rosenblatt followed his demonstrations with grand predictions about the future of
               perceptron computing. His predictions deeply influenced the Office of Naval Research,
               which funded the development of a custom computer based on perceptrons. This computer
               was called the Mark 1 Perceptron, and Figure 1-3 shows what it looks like.
            

            
            
               
               [image: image] 
                  
                     
                     Credit: Cornell Aeronautical Laboratory.

                     
                     FIGURE 1-3: The Mark 1 Perceptron was the first computer created for machine learning. 
                     

                     
                  
                  
               
               
            

            
            The future of perceptron-based computing seemed bright, but in 1969, calamity struck.
               Marvin Minsky and Seymour Papert presented a deeply critical view of Rosenblatt’s
               technology in their book, Perceptrons (MIT Press). They mathematically proved many limitations of two-layer feed-forward
               neural networks, such as the inability to learn nonlinear functions or implement the
               Boolean Exclusive OR (XOR) operation.
            

            
            Neural networks have progressed dramatically since the 1960s, and in hindsight, modern
               readers can see how narrow-minded Minsky and Papert were in their research. But at
               the time, their findings caused many, including the Navy and other large organizations,
               to lose interest in neural networks.
            

            
         
         
         
            
            Steady progress

            
            Despite the loss of popular acclaim, researchers and academics continued to investigate
               machine learning. Their work led to many crucial developments, including the following:
               
            

            
            
               
               	In 1965, Ivakhnenko and Lapa demonstrated multilayer perceptrons with nonlinear activation
                  functions.
               

               
               	In 1974, Paul Werbos used backpropagation to train a neural network.

               
               	In 1980, Kunihiko Fukushima proposed the neocognitron, a multilayer neural network
                  for image recognition.
               

               
               	In 1982, John Hopfield developed a type of recurrent neural network known as the Hopfield
                  network.
               

               
               	In 1986, Sejnowski and Rosenberg developed NETtalk, a neural network that learned
                  how to pronounce words.
               

               
            

            
            These developments expanded the breadth and capabilities of machine learning, but
               none of them excited the world’s imagination. The problem was that computers lacked
               the speed and memory needed to perform real-world machine learning in a reasonable
               amount of time. That was about to change.
            

            
         
         
         
            
            The computing revolution

            
            As the 1980s progressed into the 1990s, improved semiconductor designs led to dramatic
               leaps in computing power. Researchers harnessed this new power to execute machine
               learning routines. Finally, machine learning could tackle real-world problems instead
               of simple proofs of concept.
            

            
            As the Cold War intensified, military experts grew interested in recognizing targets
               automatically. Inspired by Fukushima’s neocognitron, researchers focused on neural
               networks specially designed for image recognition, called convolutional neural networks (CNNs). One major step forward took place in 1994, when Yann LeCunn successfully
               demonstrated handwriting recognition with his CNN-based LeNet5 architecture.
            

            
            But there was a problem. Researchers used similar theories in their applications,
               but they wrote all their code from scratch. This meant researchers couldn’t reproduce
               the results of their peers, and they couldn’t re-use one another’s code. If a researcher’s
               funding ran out, it was likely that the entire codebase would vanish.
            

            
            In the late 1990s, my job involved programming convolutional neural networks to recognize
               faces. I loved the theory behind neural networks, but I found them deeply frustrating
               in practice. Machine learning applications require careful tuning and tweaking to
               get acceptable results. But each change to the code required a new training run, and
               training a CNN could take days. Even then, I still didn’t have enough training data to ensure accurate recognition.
            

            
            One problem facing me and other researchers was that, while machine learning theory
               was mature, the process of software development was still in its infancy. Programmers
               needed frameworks and standard libraries so that they weren’t coding everything by
               themselves. Also, despite Intel’s best efforts, practical machine learning still required
               faster processors that could access larger amounts of data.
            

            
         
         
         
            
            The rise of big data and deep learning

            
            As the 21st century dawned, the Internet’s popularity skyrocketed, and the price of
               data storage plummeted. Large corporations could now access terabytes of data about potential consumers. These corporations developed improved tools for analyzing
               their data, and this revolution in data storage and analysis has become known as the
               big data revolution.
            

            
            Now CEOs were faced with a difficult question: How could they use their wealth of
               data to create wealth for their corporations? One major priority was advertising —
               companies make more money if they know which advertisements to show to their customers.
               But there were no clear rules for associating customers with products.
            

            
            Many corporations launched in-house research initiatives to determine how best to
               analyze their data. But in 2006, Netflix tried something different. They released
               a large part of their database online and offered one million dollars to whoever developed
               the best recommendation engine. The winner, BellKor’s Pragmatic Chaos, combined a
               number of machine learning algorithms to improve Netflix’s algorithm by 10 percent.
            

            
            Netflix wasn’t the only high-profile corporation using machine learning. Google’s
               AdSense used machine learning to determine which advertisements to display on its
               search engine. Google and Tesla demonstrated self-driving cars that used machine learning
               to follow roads and join traffic.
            

            
            Across the world, large organizations sat up and paid notice. Machine learning had
               left the realm of wooly-headed science fiction and had become a practical business
               tool. Entrepreneurs continue to wonder what other benefits can be gained by applying
               machine learning to big data.
            

            
            Researchers paid notice as well. A major priority involved distinguishing modern machine
               learning, with its high complexity and vast data processing, from earlier machine
               learning, which was simple and rarely effective. They agreed on the term deep learning for this new machine learning paradigm. Chapter 7 goes into greater detail regarding the technical meaning of deep learning.
            

            
         
      
      
      
         
         Machine Learning Frameworks

         
         One of the most important advances in practical machine learning involved the creation
            of frameworks. Frameworks automate many aspects of developing machine learning applications, and they allow
            developers to re-use code and take advantage of best practices. This discussion introduces
            five of the most popular frameworks: Torch, Theano, Caffe, Keras, and TensorFlow.
         

         
         
            
            Torch

            
            Torch is the first machine learning framework to attract a significant following.
               Originally released in 2002 by Ronan Collobert, it began as a toolset for numeric
               computing. Torch’s computations involve multidimensional arrays called tensors, which can be processed with regular vector/matrix operations. Over time, Torch acquired
               routines for building, training, and evaluating neural networks.
            

            
            Torch garnered a great deal of interest from academics and corporations like IBM and
               Facebook. But its adoption has been limited by its reliance on Lua as its interface
               language. The other frameworks in this discussion —Theano, Caffe, Keras, and TensorFlow
               — can be interfaced through Python, which has emerged as the language of choice in
               the machine learning domain.
            

            
         
         
         
            
            Theano

            
            In 2010, a machine learning group at the University of Montreal released Theano, a
               library for numeric computation. Like NumPy, Theano provides a wide range of Python
               routines for operating on multidimensional arrays. Unlike NumPy, Theano stores operations
               in a data structure called a graph, which it compiles into high-performance code. Theano also supports symbolic differentiation, which makes it possible to find derivatives of functions automatically.
            

            
            Because of its high performance and symbolic differentiation, many machine learning
               developers have adopted Theano as their numeric computation toolset of choice. Developers
               particularly appreciate Theano’s ability to execute graphs on graphics processing
               units (GPUs) as well as central processing units (CPUs).
            

            
         
         
         
            
            Caffe

            
            As part of his PhD dissertation at UC Berkeley, Yangqing Jia created Caffe, a framework
               for developing image recognition applications. As others joined in the development,
               Caffe expanded to support other machine learning algorithms and many different types
               of neural networks.
            

            
            Caffe is written in C++, and like Theano, it supports GPU acceleration. This emphasis
               on performance has endeared Caffe to many academic and corporate developers. Facebook
               has become particularly interested in Caffe, and in 2007 it released a reworked version
               called Caffe2. This version improves Caffe’s performance and makes executing applications
               on smartphones possible.
            

            
         
         
         
            
            Keras

            
            While other offerings focus on performance and breadth of capabilities, Keras is concerned
               with modularity and simplicity of development. François Chollet created Keras as an
               interface to other machine learning frameworks, and many developers access Theano
               through Keras to combine Keras’s simplicity with Theano’s performance.
            

            
            Keras’s simplicity stems from its small API and intuitive set of functions. These
               functions focus on accomplishing standard tasks in machine learning, which makes Keras
               ideal for newcomers to the field but of limited value for those who want to customize
               their operations.
            

            
            François Chollet released Keras under the MIT License, and Google has incorporated
               his interface into TensorFlow. For this reason, many TensorFlow developers prefer
               to code their neural networks using Keras.
            

            
         
         
         
            
            TensorFlow

            
            As the title implies, this book centers on TensorFlow, Google’s gift to the world
               of machine learning. The Google Brain team released TensorFlow 1.0 in 2015, and as
               of the time of this writing, the current version is 1.4. It’s provided under the Apache
               2.0 open source license, which means you’re free to use it, modify it, and distribute
               your modifications.
            

            
            TensorFlow’s primary interface is Python, but like Caffe, its core functionality is
               written in C++ for improved performance. Like Theano, TensorFlow stores operations
               in a graph that can be deployed to a GPU, a remote system, or a network of remote
               systems. In addition, TensorFlow provides a utility called TensorBoard, which makes
               visualizing graphs and their operations possible.
            

            
            Like other frameworks, TensorFlow supports execution on CPUs and GPUs. In addition,
               TensorFlow applications can be executed on the Google Cloud Platform (GCP). The GCP
               provides world-class processing power at relatively low cost, and in my opinion, GCP
               processing is TensorFlow’s most important advantage. Chapter 13 discusses this important topic in detail.
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         Many chapters of this book present complex technical subjects and lengthy mathematical
            formulas. But not this one. This chapter is dead simple, and its goal is to walk you
            through the process of installing TensorFlow and running your first TensorFlow application.
         

         
         A complete TensorFlow installation contains a vast number of files and directories.
            This chapter explores the installation and explains what the many files and folders
            are intended to accomplish. The discussion touches on many of TensorFlow’s packages
            and the modules they contribute.
         

         
         Once you’ve installed the TensorFlow toolset, it’s easy to start coding and running
            applications. The end of the chapter presents a basic application that provides a
            cheery welcome to TensorFlow development.
         

         
      
      
      
         
         Installing TensorFlow

         
         Google provides two methods for installing TensorFlow, and the simpler option involves
            installing precompiled packages. This discussion presents a three-step process for
            installing these packages: 
         

         
         
            
            	Install Python on your development system.

            
            	Install the pip package manager.

            
            	Use pip to install TensorFlow.

            
         

         
         The second installation method involves compiling TensorFlow from its source code.
            This option takes time and effort, but you can obtain better performance because your
            TensorFlow package will take the fullest advantage of your processor’s capabilities.
            Chapter 12 explains how to obtain and compile TensorFlow’s source code.
         

         
         
            
            Python and pip/pip3

            
            TensorFlow supports development with Java and C++, but this book focuses on Python.
               I use Python 3 in the example code, but you’re welcome to use Python 2. As I explain
               in the upcoming section “Setting the Style,” TensorFlow applications should be accessible to both versions.
            

            
            Python’s official package manager is pip, which is a recursive acronym that stands for “pip installs Python.” To install packages
               like TensorFlow, you can use pip on Python 2 systems or pip3 on Python 3 systems.
               Package management commands have the following format: 
            

            
            pip <command-name> <command-options>

            
            pip and pip3 accept similar commands and perform similar operations. For example,
               executing pip list or pip3 list prints all the Python packages installed on your system. Table 2-1 lists this and five other commands.
            

            
            
               
                  
                  TABLE 2-1 Package Management Commands
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Command Name

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           install

                        
                        
                        	
                           
                           Installs a specified package

                        
                        
                     

                     
                     
                        
                        	
                           
                           uninstall

                        
                        
                        	
                           
                           Uninstalls a specified package

                        
                        
                     

                     
                     
                        
                        	
                           
                           download

                        
                        
                        	
                           
                           Downloads a package, but doesn't install it

                        
                        
                     

                     
                     
                        
                        	
                           
                           list

                        
                        
                        	
                           
                           Lists installed packages

                        
                        
                     

                     
                     
                        
                        	
                           
                           show

                        
                        
                        	
                           
                           Prints information about a specified package

                        
                        
                     

                     
                     
                        
                        	
                           
                           search

                        
                        
                        	
                           
                           Searches for a package whose name or summary contains the given text

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            For this discussion, the most important command to know is pip install and pip3 install. But keep in mind that pip/pip3 can perform many other operations.
            

            
            [image: tip] If you execute a TensorFlow application using a precompiled package, you may receive
               messages like “The TensorFlow library wasn't compiled to use XYZ instructions, but these are available on your machine and could speed up CPU computations.”
               To turn off these messages, create an environment variable named TF_CPP_MIN_LOG_LEVEL and set its value to 3.
            

            
         
         
         
            
            Installing on Mac OS

            
            Many versions of Mac OS have Python already installed, but I recommend obtaining and
               installing a new Python package. If you visit www.python.org/downloads, you see one button for Python 2 and another for Python 3. If you click one of these
               buttons, your browser downloads a PKG file that serves as the Python installer.
            

            
            When you launch the installer, the Python installation dialog box appears. To install
               the package, follow these five steps: 
            

            
            
               
               	In the Introduction page, click the button labeled Continue.

               
               	In the Read Me page, click the button labeled Continue.

               
               	In the License page, click the button labeled Continue and then click Agree to accept
                     the software license agreement.

               
               	In the Installation Type page, click Install to begin the installation process, entering
                     your password, if necessary.

               
               	When the installation is complete, click Close to close the dialog box.

               
            

            
            If the installation completes successfully, you can run pip or pip3 on a command line. You can install TensorFlow with the following command: 
            

            
            pip install tensorflow

            
            This command tells the package manager to download TensorFlow, TensorBoard, and a
               series of dependencies. One dependency is six, which supports compatibility between Python 2 and 3. If the installation fails due
               to a preinstalled six package, you can fix the issue by executing the following command: 
            

            
            pip install --ignore-installed six

            
            This command tells pip to install six on top of the existing installation. After this installation completes, you should
               be able to run pip install tensorflow without error. On my system, the installer stores the TensorFlow files in the /Library/Frameworks/Python.framework/Versions/<ver>/lib/python<ver>/site-packages/tensorflow directory.
            

            
         
         
         
            
            Installing on Linux

            
            Many popular distributions of Linux are based on Debian, including Ubuntu and Linux
               Mint. These distributions rely on the Advanced Package Tool (APT) to manage packages,
               which you can access on the command line by entering apt-get. This discussion explains how to install TensorFlow on these and similar operating
               systems.
            

            
            Most Linux distributions already have Python installed, but it's a good idea to install
               the full development version and pip/pip3. The following command installs both for
               Python 2: 
            

            
            sudo apt-get install python-pip python-dev

            
            Alternatively, the following command performs the installation for Python 3: 

            
            sudo apt-get install python3-pip python3-dev

            
            After installation completes, you should be able to execute pip or pip3 on the command line. The following command installs the TensorFlow package and its
               dependencies (use pip3 for Python 3): 
            

            
            sudo pip install tensorflow

            
            This command installs TensorFlow, TensorBoard, and their dependencies. On my Ubuntu
               system, the installer stores the files in the /usr/local/lib/python<ver>/dist-packages/tensorflow directory.
            

            
         
         
         
            
            Installing on Windows

            
            For Windows users, TensorFlow's documentation specifically recommends installing a
               64-bit version of Python 3.5. To download the installer, visit www.python.org/downloads/windows, find a version of Python 3, and click the link entitled Windows x86-64 executable
               installer. This downloads an *.exe file that serves as the installer.
            

            
            When you launch the installer, the Python setup dialog box appears. The following
               steps install Python on your system: 
            

            
            
               
               	Check the checkbox for adding the Python installation directory to the PATH variable.

               
               	Click the link labeled Install Now.

               
               	When installation finishes, click the Close button to close the installer.

               
            

            
            After you install Python, you should be able to run pip3 on a command line. You can install TensorFlow with the following command: 
            

            
            pip3 install tensorflow

            
            The package manager downloads TensorFlow, TensorBoard, and the packages' dependencies.
               On my Windows system, the installer stores the files to the C:\Users\<name>\AppData\Local\Programs\Python\Python<ver>\Lib\site-packages\tensorflow directory.
            

            
         
      
      
      
         
         Exploring the TensorFlow Installation

         
         Once you install TensorFlow, you have a directory named tensorflow that contains a wide variety of files and folders. Two top-level folders are particularly
            important. The core directory contains the TensorFlow's primary packages and modules. The contrib directory contains secondary packages that may later be merged into core TensorFlow.
         

         
         When you write a TensorFlow application, it’s important to be familiar with the different
            packages and the modules they provide. Table 2-2 lists the all-important tensorflow package and nine other packages.
         

         
         
            
               
               TABLE 2-2 Important TensorFlow Packages
               

            
            
            
               
               
                  
                  
                     
                     	
                        
                        Package

                     
                     
                     	
                        
                        Content

                     
                     
                  

                  
               
               
               
                  
                  
                     
                     	
                        
                        tensorflow

                     
                     
                     	
                        
                        Central package of the TensorFlow framework, commonly accessed as tf

                     
                     
                  

                  
                  
                     
                     	
                        
                        tf.train

                     
                     
                     	
                        
                        Optimizers and other classes related to training

                     
                     
                  

                  
                  
                     
                     	
                        
                        tf.nn

                     
                     
                     	
                        
                        Neural network classes and related math operations

                     
                     
                  

                  
                  
                     
                     	
                        
                        tf.layers

                     
                     
                     	
                        
                        Functions related to multilayer neural networks

                     
                     
                  

                  
                  
                     
                     	
                        
                        tf.contrib

                     
                     
                     	
                        
                        Volatile or experimental code

                     
                     
                  

                  
                  
                     
                     	
                        
                        tf.image

                     
                     
                     	
                        
                        Image-processing functions

                     
                     
                  

                  
                  
                     
                     	
                        
                        tf.estimator

                     
                     
                     	
                        
                        High-level tools for training and evaluation

                     
                     
                  

                  
                  
                     
                     	
                        
                        tf.logging

                     
                     
                     	
                        
                        Functions that write data to a log

                     
                     
                  

                  
                  
                     
                     	
                        
                        tf.summary

                     
                     
                     	
                        
                        Classes needed to generate summary data

                     
                     
                  

                  
                  
                     
                     	
                        
                        tf.metrics

                     
                     
                     	
                        
                        Functions for measuring the outcome of machine learning

                        
                     
                     
                  

                  
               
               
            

            
         
         
         The first package, tensorflow, is TensorFlow's central package. Most applications import this package as tf, so when you see tf in code or an example, remember that it refers to the tensorflow package.
         

         
         As I explain in Chapter 5, training is a crucial operation in machine learning applications. The tf.train package provides many of the modules and classes needed for TensorFlow training.
            In particular, it provides the optimizer classes that determine which algorithm should
            be used for training.
         

         
         The tf.nn and tf.layers packages provide functions that create and configure neural networks. The two packages
            overlap in many respects, but the functions in tf.layers focus on multilayer networks, while the functions in tf.nn are suited toward general purpose machine learning.
         

         
         Many of the packages in tf.contrib contain variants of core capabilities. For example, tf.contrib.nn contains variants of the features in tf.nn and tf.contrib.layers contains variants of the features in tf.layers. tf.contrib also provides a wealth of interesting and experimental packages, including the following:
            
         

         
         
            
            	tf.contrib.keras: Makes it possible to interface TensorFlow using the Keras interface
            

            
            	tf.contrib.ffmpeg: Enables audio processing through the open-source FFMPEG toolset
            

            
            	tf.contrib.bayesflow: Contains modules related to Bayesian learning
            

            
            	tf.contrib.integrate: Provides the odeint function, which integrates ordinary differential equations
            

            
         

         
         The last three packages in Table 2-2 enable developers to analyze their applications and produce output. The functions
            in tf.logging enable logging and can be used to write messages to the log. The classes and functions
            in tf.summary generate data that can be read by TensorBoard, a utility for visualizing machine
            learning applications. The functions in tf.metrics analyze the accuracy of machine learning operations.
         

         
      
      
      
         
         Running Your First Application

         
         After you install TensorFlow, you're ready to start creating and executing applications.
            This section walks through the process of running an application that prints a simple
            message.
         

         
         
            
            Exploring the example code

            
            You can download this book’s example code from www.dummies.com by searching for TensorFlow For Dummies and going to the Downloads tab. The archive’s name is tf_dummies.zip, and if you decompress it, you see that it contains folders named after chapters
               (ch2, ch3, and so on).
            

            
            Each chapter folder contains one or more Python files (*.py). In each case, you can execute the module by changing to the directory and running
               python or python3 followed by the filename.
            

            
            For example, if you have Python 2 installed, you can execute the code in simple_math.py by changing to the ch3 directory and entering the following command: 
            

            
            python simple_math.py

            
            The code for Chapter 13 is special because it's intended to be executed on the Google Cloud Platform, but
               that topic is far too exciting to be discussed here.
            

            
            I haven’t provided any official license for this book’s example code, so you’re free
               to use it in professional products, academic work, and morally questionable experiments.
               But if you use any of this code to program evil robots, I will know, and I’ll be disappointed.
            

            
         
         
         
            
            Launching Hello TensorFlow!

            
            Programming books have a long tradition of introducing their topic with a simple example
               that prints a welcoming message. This book is no exception. If you open the ch2 directory in this book’s example code, you find a module named hello_tensorflow.py. Listing 2-1 presents the code.
            
 
            
            LISTING 2-1 Hello TensorFlow!
            
 
            
            """A simple TensorFlow application"""

            
            from __future__ import absolute_import

            
            from __future__ import division

            
            from __future__ import print_function

            
            import tensorflow as tf

            
             

            
            # Create tensor

            
            msg = tf.string_join(["Hello ", "TensorFlow!"])

            
             

            
            # Launch session

            
            with tf.Session() as sess:

            
                print(sess.run(msg))

            
            This code performs three important tasks: 
            

            
            
               
               	Creates a Tensor named msg that contains two string elements.

               
               	Creates a Session named sess and makes it the default session.

               
               	Launches the new Session and prints its result.

               
            

            
            Running the code is simple. Open a command line and change to the ch2 directory in this book's example code. Then, if you’re using Python 2, you can execute
               the following command: 
            

            
            python hello_tensorflow.py

            
            If you’re using Python 3, you can run the module with the following command: 

            
            python3 hello_tensorflow.py

            
            As the Python interpreter does its magic, you should see the following message: 

            
            b'Hello TensorFlow!'

            
            The welcome message is straightforward, but the application’s code probably isn’t
               as clear. A Tensor instance is an n-dimensional array that contains numeric or string data. Tensors
               play a central role in TensorFlow development, and Chapter 3 discusses them in detail.
            

            
            A Session serves as the environment in which TensorFlow operations can be executed. All TensorFlow
               operations, from addition to optimization, must be executed through a session. Chapter 4 explains how you can create, configure, and execute sessions.
            

            
         
      
      
      
         
         Setting the Style

         
         Google provides the TensorFlow Style Guide at www.tensorflow.org/community/style_guide. Four of its guidelines are as follows: 
         

         
         
            
            	Code in TensorFlow applications should be compatible with both Python 2 and Python
               3.
            

            
            	In keeping with the first guideline, every module should have import statements for absolute_import, division, and print_function.
            

            
            	Indenting should use two spaces instead of four.
            

            
            	TensorFlow modules should rely on the guidelines in the PEP (Python Enhancement Proposal)
               8 Style Guide except where they conflict with the TensorFlow Style Guide.
            

            
         

         
         You can find the PEP8 guide at www.python.org/dev/peps/pep-0008. Its many recommendations include the use of docstrings, uppercase for class names,
            and lowercase for functions and modules. You can check Python code against the PEP8
            by installing the pylint package and running pylint filename.py.
         

         
         The example code in this book follows all of Google's recommendations except two.
            First, I use four spaces because that’s the Python way. Second, I prefer to name constants
            with simple lowercase names, such as the msg constant in Listing 2-1, earlier in this chapter.
         

         
         I don’t blame you if you find my rebellion inexcusable. But if you send the Python
            police after me, they’ll never take me alive.
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         In grad school, I took a course on tensor mathematics that covered the usage of tensors
            in electromagnetism. The professor assured us that the theory was “beautiful” and
            “elegant,” but we beleaguered students described the relativistic mathematics as “indecipherable”
            and “terrifying.”
         

         
         TensorFlow’s central data type is the tensor, and happily, it has nothing to do with
            electromagnetism or relativity. In this book, a tensor is just a regular array. If
            you’re familiar with Torch’s Tensors or NumPy's ndarrays, you’ll be glad to know that TensorFlow’s tensors are similar in many respects.
         

         
         Unfortunately, you can’t access these tensors with regular Python routines. For this
            reason, the TensorFlow API provides a vast assortment of functions for creating, transforming,
            and operating on tensors. This chapter presents many of these functions and demonstrates
            how you can use them.
         

         
      
      
      
         
         Creating Tensors

         
         Just as most programs start by declaring variables, most TensorFlow applications start
            by creating tensors. A tensor is an array with zero or more dimensions. A zero-dimensional
            tensor is called a scalar, a one-dimensional tensor is called a vector, and a two-dimensional tensor is called a matrix. Keep in mind these three points about tensors: 
         

         
         
            
            	Every tensor is an instance of the Tensor class.
            

            
            	A tensor may contain numbers, strings, or Boolean values. Every element of a tensor
               must have the same type.
            

            
            	Tensors can be created, transformed, and operated upon using functions of the tf package.
            

            
         

         
         This discussion explains how to create tensors with known values and random values.
            Then I also present functions that transform a tensor's content. Once you understand
            these topics, you’ll have no trouble coding simple routines for tensor processing.
         

         
      
      
      
         
         Creating Tensors with Known Values

         
         The tf package provides seven functions that form tensors with known values. Table 3-1 lists them and provides a description of each.
         

         
         
            
               
               TABLE 3-1 Creating Tensors with Known Values
               

            
            
            
               
               
                  
                  
                     
                     	
                        
                        Function

                     
                     
                     	
                        
                        Description

                     
                     
                  

                  
               
               
               
                  
                  
                     
                     	
                        
                        constant(value, dtype=None,  shape = None, name = 'Const',  verify_shape=False)

                     
                     
                     	
                        
                        Returns a tensor containing the given value

                     
                     
                  

                  
                  
                     
                     	
                        
                        zeros(shape, dtype=tf.float32,  name = None)

                     
                     
                     	
                        
                        Returns a tensor filled with zeros

                     
                     
                  

                  
                  
                     
                     	
                        
                        ones(shape, dtype=tf.float32,  name=None)

                     
                     
                     	
                        
                        Returns a tensor filled with ones

                     
                     
                  

                  
                  
                     
                     	
                        
                        fill(dims, value, name=None)

                     
                     
                     	
                        
                        Returns a tensor filled with the given value

                     
                     
                  

                  
                  
                     
                     	
                        
                        linspace(start, stop, num,  name=None)

                     
                     
                     	
                        
                        Returns a tensor containing a linear range of values

                     
                     
                  

                  
                  
                     
                     	
                        
                        range(start, limit, delta=1,  dtype=None, name='range')

                     
                     
                     	
                        
                        Returns a tensor containing a range of values

                     
                     
                  

                  
                  
                     
                     	
                        
                        range(limit, delta=1,  dtype=None, name='range')

                     
                     
                     	
                        
                        Returns a tensor containing a range of values

                        
                     
                     
                  

                  
               
               
            

            
         
         
         A tensor may have multiple dimensions, and the number of dimensions in a tensor is
            its rank. The lengths of a tensor’s dimensions form an array called the tensor’s shape. Many of the functions in Table 3-1 accept a shape parameter that identifies the desired shape of the new tensor. The following examples
            demonstrate how you can set this parameter: 
         

         
         
            
            	[] — The tensor contains a single value.
            

            
            	[3] — The tensor is a one-dimensional array containing three values.
            

            
            	[3, 4] — The tensor is a 3-x-4 matrix.
            

            
            	[3, 4, 5] — The tensor is a multidimensional array whose dimensions equal 3, 4, and 5.
            

            
         

         
         Most of the functions in Table 3-1 have a dtype argument that identifies the data type of the tensor's elements. The default value
            of dtype is float32, which indicates that, by default, tensors contain single-precision floating-point
            values. Table 3-2 lists float32 and other possible data types.
         

         
         
            
               
               TABLE 3-2 Tensor Data Types
               

            
            
            
               
               
                  
                  
                     
                     	
                        
                        Data Type

                     
                     
                     	
                        
                        Description

                     
                     
                  

                  
               
               
               
                  
                  
                     
                     	
                        
                        bool

                     
                     
                     	
                        
                        Boolean values

                     
                     
                  

                  
                  
                     
                     	
                        
                        uint8/uint16

                     
                     
                     	
                        
                        Unsigned integers

                     
                     
                  

                  
                  
                     
                     	
                        
                        quint8/quint16

                     
                     
                     	
                        
                        Quantized unsigned integers

                     
                     
                  

                  
                  
                     
                     	
                        
                        int8/int16/int32/int64

                     
                     
                     	
                        
                        Signed integers

                     
                     
                  

                  
                  
                     
                     	
                        
                        qint8/qint32

                     
                     
                     	
                        
                        Quantized signed integers

                     
                     
                  

                  
                  
                     
                     	
                        
                        float16/float32/float64

                     
                     
                     	
                        
                        Floating-point values

                     
                     
                  

                  
                  
                     
                     	
                        
                        complex64/complex128

                     
                     
                     	
                        
                        Complex floating-point values

                     
                     
                  

                  
                  
                     
                     	
                        
                        string

                     
                     
                     	
                        
                        Strings

                        
                     
                     
                  

                  
               
               
            

            
         
         
         Each function in Table 3-1 accepts an optional name argument that serves as an identifier for the tensor. Applications can access a tensor
            by name through the tensor's graph. Chapter 4 discusses the topic of graphs in detail.
         

         
         
            
            The constant function

            
            The most popular function in Table 3-1 is constant. Its only required argument is the first, which defines the value or values to be
               stored in the tensor. You can provide these values in a list, and the following code
               creates a one-dimensional tensor containing three floating-point values: 
            

            
            t1 = tf.constant([1.5, 2.5, 3.5])

            
            Multidimensional arrays use similar notation. The following code creates a 2-x-2 matrix
               and sets each of its elements to the letter b: 
            

            
            t2 = tf.constant([['b', 'b'], ['b', 'b']])

            
            By default, TensorFlow won’t raise an error if the function’s first argument doesn’t
               have the shape given by the shape argument. But if you set the last argument, verify_shape, to True, TensorFlow will verify that the two shapes are equal. The following code provides
               an example of mismatched shapes: 
            

            
            t3 = tf.constant([4, 2], tf.int16, [3], 'Const', True)

            
            In this case, the given shape, [3], doesn't match the shape of the first argument, which is [2]. As a result, TensorFlow displays the following error: 
            

            
            TypeError: Expected Tensor's shape: (3,), got (2,).

            
         
         
         
            
            zeros, ones, and fill

            
            The functions zeros, ones, and fill create tensors whose elements all have the same value. For zeros and ones, the only required argument is shape, which identifies the shape of the desired tensor. As an example, the following code
               creates a simple 1-x-3 vector whose elements equal 0.0: 
            

            
            zero_tensor = tf.zeros([3])

            
            Similarly, the following function call creates a 4-x-4 matrix whose elements equal
               1.0: 
            

            
            one_tensor = tf.ones([4, 4])

            
            The fill function requires a value parameter, which sets the value of the tensor's elements. The following code creates
               a three-dimensional tensor whose values are set to 81.0: 
            

            
            fill_tensor = tf.fill([1, 2, 3], 81.0)

            
            Unlike zeros and ones, fill doesn't have a dtype argument. It can only create tensors containing 32-bit floating point values.
            

            
         
         
         
            
            Creating sequences

            
            The linspace and range functions create tensors whose elements change regularly between a start and end
               value. The difference between them is that linspace creates a tensor with a specific number of values. For example, the following code
               creates a 1-x-5 tensor whose elements range from 5.0 to 9.0: 
            

            
            lin_tensor = tf.linspace(5., 9., 5)

            
            # Result: [5. 6. 7. 8. 9.]

            
            Unlike linspace, range doesn't accept the number of elements in the tensor. Instead, it computes successive
               elements by adding a value called a delta. In the following code, delta is set to 0.5: 
            

            
            range_tensor = tf.range(3., 7., delta=0.5)

            
            # Result: [3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5]

            
            Like Python's range function, TensorFlow’s range function can be called without the start parameter. In this case, the starting value is assumed to be 0.0. The following code
               demonstrates this: 
            

            
            range_tensor = tf.range(1.5, delta=0.3)

            
            # Result: [0.0 0.3 0.6 0.9 1.2]

            
            If the delta parameter is positive, the starting value must be less than the ending value. If
               delta is negative, the starting value must be greater than the ending value.
            

            
         
      
      
      
         
         Creating Tensors with Random Values

         
         Many TensorFlow applications require tensors that contain random values instead of
            predetermined values. The tf package provides many functions for creating random-valued tensors and Table 3-3 lists five of them.
         

         
         
            
               
               TABLE 3-3 Creating Tensors with Random Values
               

            
            
            
               
               
                  
                  
                     
                     	
                        
                        Function

                     
                     
                     	
                        
                        Description

                     
                     
                  

                  
               
               
               
                  
                  
                     
                     	
                        
                        random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

                     
                     
                     	
                        
                        Creates a tensor with normally distributed values

                     
                     
                  

                  
                  
                     
                     	
                        
                        truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

                     
                     
                     	
                        
                        Creates a tensor with normally distributed values excluding those lying outside two
                           standard deviations
                        

                     
                     
                  

                  
                  
                     
                     	
                        
                        random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None)

                     
                     
                     	
                        
                        Creates a tensor with uniformly distributed values between the minimum and maximum
                           values
                        

                     
                     
                  

                  
                  
                     
                     	
                        
                        random_shuffle(tensor, seed=None, name=None)

                     
                     
                     	
                        
                        Shuffles a tensor along its first dimension

                     
                     
                  

                  
                  
                     
                     	
                        
                        set_random_seed(seed)

                     
                     
                     	
                        
                        Set the seed value for all random number generation in the graph

                        
                     
                     
                  

                  
               
               
            

            
         
         
         The random_normal and truncated_normal functions create tensors containing normally distributed values. Their arguments
            determine the characterristics of the distribution. Figure 3-1 shows what a normal distribution looks like with a mean of 0.0 and a standard deviation
            (σ) of 1.0.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 3-1: Values beyond three standard deviations from the mean are highly unlikely.
                  

                  
               
               
            
            
         

         
         Standard deviation tells you how much a normally distributed variable is expected
            to vary from the mean. Approximately 68.2 percent of the time, a variable lies within
            one standard deviation from the mean, while 95.4 percent of the time, the variable
            lies within two standard deviations.
         

         
         In the random_normal and truncated_normal functions, the default mean is 0.0, and the default standard deviation is 1.0. random_normal generates random values throughout the distribution, so very large and very small
            values are unlikely but possible. The following code calls random_normal to generate 20 random values: 
         

         
         rnd_ints = tf.random_normal([10], dtype=tf.float64)

         
         In contrast, truncated_normal guarantees that the generated values lie within two standard deviations from the
            mean. Any value outside this range will be discarded and reselected. In this manner,
            truncated_normal ensures that the tensor won't contain any improbably large or small values.
         

         
         random_uniform creates a tensor containing uniformly distributed values that lie between a minimum
            and maximum. Because the distribution is uniform, every value is equally likely.
         

         
         random_shuffle doesn't create a new tensor, but randomly shuffles the values in an existing tensor.
            This shuffling is limited to the tensor’s first dimension.
         

         
         Each function in Table 3-3 accepts a seed parameter that initializes the random number generator. Setting a random seed is
            important to ensure that sequences aren’t repeated.
         

         
         You can obtain and set a seed value by calling set_random_seed, which accepts a floating-point value and makes the argument the seed for every operation
            in the current graph. Chapter 4 discusses the topic of graphs in detail.
         

         
      
      
      
         
         Transforming Tensors

         
         An application must specify the shape of each tensor to be created. The tf package provides functions that update tensors and their shapes after creation. Table 3-4 lists these transformation functions and provides a description of each.
         

         
         
            
               
               TABLE 3-4 Functions for Transforming Tensors
               

            
            
            
               
               
                  
                  
                     
                     	
                        
                        Function

                     
                     
                     	
                        
                        Description

                     
                     
                  

                  
               
               
               
                  
                  
                     
                     	
                        
                        cast(tensor, dtype, name=None)

                     
                     
                     	
                        
                        Changes the tensor's data type to the given type

                     
                     
                  

                  
                  
                     
                     	
                        
                        reshape(tensor, shape, name=None)

                     
                     
                     	
                        
                        Returns a tensor with the same elements as the given tensor with the given shape

                     
                     
                  

                  
                  
                     
                     	
                        
                        squeeze(tensor, axis=None, name=None, squeeze_dims=None)

                     
                     
                     	
                        
                        Removes dimensions of size 1

                     
                     
                  

                  
                  
                     
                     	
                        
                        reverse(tensor, axis, name=None)

                     
                     
                     	
                        
                        Reverses given dimensions of the tensor

                     
                     
                  

                  
                  
                     
                     	
                        
                        slice(tensor, begin, size, name=None)

                     
                     
                     	
                        
                        Extracts a portion of a tensor

                     
                     
                  

                  
                  
                     
                     	
                        
                        stack(tensors, axis=0, name='stack')

                     
                     
                     	
                        
                        Combines a list of tensors into a tensor of greater rank

                     
                     
                  

                  
                  
                     
                     	
                        
                        unstack(tensor, num=None, axis=0, name='unstack')

                     
                     
                     	
                        
                        Splits a tensor into a list of tensors of lesser rank

                        
                     
                     
                  

                  
               
               
            

            
         
         
         Despite its name, reshape doesn't modify an existing tensor. Instead, the function returns a tensor with the
            same elements as the given tensor and the specified shape. For example, the following
            code uses reshape to convert a four-element vector into a 2-x-2 matrix: 
         

         
         vec = tf.constant([1., 2., 3., 4.])

         
         mat = tf.reshape(vec, [2, 2])

         
         # Result: [[1. 2.], [3. 4.]]

         
         If any dimension of a tensor has a size of 1, calling squeeze will remove it from the tensor, thereby reducing the tensor's rank. If the function’s
            axis parameter identifies one or more dimensions, only those dimensions will be affected
            by squeeze.
         

         
         In the reverse function, the axis parameter identifies one or more dimensions to be reversed. The following code demonstrates
            how reverse works: 
         

         
         mat = tf.constant([[1., 2., 3.], [4., 5., 6.]])

         
         rev_mat = tf.reverse(end, [0])

         
         # Result: [[4. 5. 6.], [1. 2. 3.]]

         
          

         
         rev_mat = tf.reverse(end, [1])

         
         # Result: [[3. 2. 1.], [6. 5. 4.]]

         
          

         
         rev_mat = tf.reverse(end, [0, 1])

         
         # Result: [[6. 5. 4.], [3. 2. 1.]]

         
         The slice function extracts subtensors from a tensor. The begin parameter identifies the index of the first element to be extracted, and size identifies the shape of the tensor to be extracted, starting from the begin location.
         

         
         For example, suppose that you want to extract the lower-right 2-x-2 matrix from a
            3-x-3 matrix. The index of the first extracted element is [1, 1] and the size of the
            desired tensor is [2, 2]. The following code uses slice to perform this extraction: 
         

         
         mat =

         
           tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])

         
         slice_mat = tf.slice(mat, [1, 1], [2, 2])

         
         # Result: [[5. 6.] [7. 8.]]

         
         stack accepts a list of tensors of rank N and returns a single tensor of rank N+1. In addition
            to having the same rank, the input tensors must have the same shape. The following code demonstrates how stack can be used. The function combines three one-dimensional tensors into a two-dimensional
            tensor: 
         

         
         t1 = tf.constant([1., 2.])

         
         t2 = tf.constant([3., 4.])

         
         t3 = tf.constant([5., 6.])

         
         t4 = tf.stack([t1, t2, t3])

         
         When these operations execute, t4 will equal [[1. 2.] [3. 4.] [5. 6.]]. If the axis parameter is set to 1, stacking will be performed along the second dimension, so
            t4 will set to [[1. 3. 5.] [2. 4. 6.]].
         

         
         unstack performs the inverse operation of stack. That is, unstack accepts a tensor of rank N and returns a list of tensors of rank N-1. The num parameter determines how many tensors should be unpacked, and if this isn't set,
            unstack infers the number from the tensor’s shape.
         

         
      
      
      
         
         Creating Operations

         
         Machine learning applications are fundamentally mathematical, and TensorFlow provides
            a wealth of routines for performing mathematical operations on tensors. Each routine
            is represented by a function of the tf package, and each function returns a tensor. This section presents a large portion
            of the operations available, but the tensorflow package provides many more functions than those discussed here.
         

         
         To describe these functions, I use statements like “function X performs operation
            Y.” But these statements aren't completely accurate. These functions, like the transformation
            functions discussed in the preceding section, don’t actually perform their corresponding
            operations — at least, not directly.
         

         
         For example, tf.multiply doesn’t immediately multiply its arguments and return a product. Instead, it adds
            a multiplication operation to the current graph, and when a session executes the graph,
            the multiplication will be performed along with the rest of the graph’s operations.
            This process may seem confusing, but don’t be concerned. Chapter 4 looks at graphs and sessions in detail.
         

         
         
            
            Basic math operations

            
            When it comes to TensorFlow operations, its best to start simple. Table 3-5 lists 12 functions that perform basic math operations.
            

            
            
               
                  
                  TABLE 3-5 Basic Math Operations
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Function

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           add(x, y, name=None)

                        
                        
                        	
                           
                           Adds two tensors

                        
                        
                     

                     
                     
                        
                        	
                           
                           subtract(x, y, name=None)

                        
                        
                        	
                           
                           Subtracts two tensors

                        
                        
                     

                     
                     
                        
                        	
                           
                           multiply(x, y, name=None)

                        
                        
                        	
                           
                           Multiplies two tensors

                        
                        
                     

                     
                     
                        
                        	
                           
                           divide(x, y, name=None)

                        
                        
                        	
                           
                           Divides the elements of two tensors

                        
                        
                     

                     
                     
                        
                        	
                           
                           div(x, y, name=None)

                        
                        
                        	
                           
                           Divides the elements of two tensors

                        
                        
                     

                     
                     
                        
                        	
                           
                           add_n(inputs, name=None)

                        
                        
                        	
                           
                           Adds multiple tensors

                        
                        
                     

                     
                     
                        
                        	
                           
                           scalar_mul(scalar, x)

                        
                        
                        	
                           
                           Scales a tensor by a scalar value

                        
                        
                     

                     
                     
                        
                        	
                           
                           mod(x, y, name=None)

                        
                        
                        	
                           
                           Performs the modulo operation

                        
                        
                     

                     
                     
                        
                        	
                           
                           abs(x, name=None)

                        
                        
                        	
                           
                           Computes the absolute value

                        
                        
                     

                     
                     
                        
                        	
                           
                           negative(x, name=None)

                        
                        
                        	
                           
                           Negates the tensor's elements

                        
                        
                     

                     
                     
                        
                        	
                           
                           sign(x, name=None)

                        
                        
                        	
                           
                           Extracts the signs of the tensor’s element

                        
                        
                     

                     
                     
                        
                        	
                           
                           reciprocal(x, name=None)

                        
                        
                        	
                           
                           Computes the reciprocals

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            The first four functions perform element-wise arithmetic. The following code demonstrates
               how they work: 
            

            
            a = tf.constant([3., 3., 3.])

            
            b = tf.constant([2., 2., 2.])

            
            sum = tf.add(a, b)                  # [ 5. 5. 5. ]

            
            diff = tf.subtract(a, b)            # [ 1. 1. 1. ]

            
            prod = tf.multiply(a, b)            # [ 6. 6. 6. ]

            
            quot = tf.divide(a, b)              # [ 1.5 1.5 1.5 ]

            
            Applications can perform identical operations by using regular Python operators, such
               as +, -, *, /, and //. For example, the following two lines of code create the same tensor: 
            

            
            total = tf.add(a, b)                # [ 5. 5. 5. ]

            
            total2 = a + b                      # [ 5. 5. 5. ]

            
            When operating on floating-point values, div and divide produce the same result. But for integer division, divide returns a floating-point result, and div returns an integer result. The following code demonstrates the difference between
               them: 

            
            a = tf.constant([3, 3, 3])

            
            b = tf.constant([2, 2, 2])

            
            div1 = tf.divide(a, b)              # [ 1.5 1.5 1.5 ]

            
            div2 = a / b                        # [ 1.5 1.5 1.5 ]

            
            div3 = tf.div(a, b)                 # [ 1 1 1 ]

            
            div4 = a // b                       # [ 1 1 1 ]

            
            The div function and the / operator both perform element-wise division. In contrast, the divide function performs Python-style division.
            

            
         
         
         
            
            Rounding and comparison

            
            Most of the mathematical routines in this book accept floating-point values as input
               and return floating-point values as output. But many applications need to convert
               floating-point values into integer values. For this reason, TensorFlow provides the
               rounding operations listed in Table 3-6.
            

            
            
               
                  
                  TABLE 3-6 Rounding and Comparison Operations
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Function

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           round(x, name=None)

                        
                        
                        	
                           
                           Rounds to the nearest integer, rounding up if there are two nearest integers

                        
                        
                     

                     
                     
                        
                        	
                           
                           rint(x, name=None)

                        
                        
                        	
                           
                           Rounds to the nearest integer, rounding to the nearest even integer if there are two
                              nearest integers
                           

                        
                        
                     

                     
                     
                        
                        	
                           
                           ceil(x, name=None)

                        
                        
                        	
                           
                           Returns the smallest integer greater than the value

                        
                        
                     

                     
                     
                        
                        	
                           
                           floor(x, name=None)

                        
                        
                        	
                           
                           Returns the greatest integer less than the value

                        
                        
                     

                     
                     
                        
                        	
                           
                           maximum(x, y, name=None)

                        
                        
                        	
                           
                           Returns a tensor containing the larger element of each input tensor

                        
                        
                     

                     
                     
                        
                        	
                           
                           minimum(x, y, name=None)

                        
                        
                        	
                           
                           Returns a tensor containing the smaller element of each input tensor

                        
                        
                     

                     
                     
                        
                        	
                           
                           argmax(x, axis=None, name=None, dimension=None)

                        
                        
                        	
                           
                           Returns the index of the greatest element in the tensor

                        
                        
                     

                     
                     
                        
                        	
                           
                           argmin(x, axis=None, name=None, dimension=None)

                        
                        
                        	
                           
                           Returns the index of the smallest element in the tensor

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            Table 3-6 also lists functions that perform comparisons. These functions return maximum and
               minimum values, both within a tensor and across two tensors.
            

            
            The round function examines each element of a tensor and returns the closest integer. If two
               closest integers are equally close, it returns the one further from zero. rint is similar, but rounds to the nearest even value. The following code demonstrates
               how you can use round, rint, ceil, and floor: 
            

            
            t = tf.constant([-6.5, -3.5, 3.5, 6.5])

            
            r1 = tf.round(t)                 # [-6. -4.  4.  6.]

            
            r2 = tf.rint(t)                  # [-6. -4.  4.  6.]

            
            r3 = tf.ceil(t)                  # [-6. -3.  4.  7.]

            
            r4 = tf.floor(t)                 # [-7. -4.  3.  6.]

            
            The next two functions in the table, maximum and minimum, are easy to understand. maximum returns a tensor containing the larger element of each input tensor, and minimum returns a tensor containing the smaller element of each input tensor.
            

            
            argmax and argmin return the index values of the largest and smallest elements of a tensor. The following
               code shows how you can use these functions: 
            

            
            t1 = tf.constant([0, -2, 4, 6])

            
            t2 = tf.constant([[1, 3], [7, 2]])

            
            r1 = tf.argmin(t1)                       # 1

            
            r2 = tf.argmax(t2)                       # [ 1 0 ]

            
            If a tensor has multiple maximum/minimum values, argmax and argmin will return the index values of the first occurring element.
            

            
         
         
         
            
            Exponents and logarithms

            
            Machine learning applications frequently need exponents and logarithms to compute
               errors and probability. To meet this need, TensorFlow provides many of the same functions
               available in NumPy. Table 3-7 lists 11 of them and provides a description of each.
            

            
            
               
                  
                  TABLE 3-7 Exponential and Logarithmic Operations
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Function

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           square(x, name=None)

                        
                        
                        	
                           
                           Returns the square of the argument

                        
                        
                     

                     
                     
                        
                        	
                           
                           squared_difference(x, y, name=None)

                        
                        
                        	
                           
                           Subtracts the first argument from the second and returns the square

                        
                        
                     

                     
                     
                        
                        	
                           
                           sqrt(x, name=None)

                        
                        
                        	
                           
                           Returns the square root of the argument

                        
                        
                     

                     
                     
                        
                        	
                           
                           rsqrt(x, name=None)

                        
                        
                        	
                           
                           Returns the reciprocal of the square root

                        
                        
                     

                     
                     
                        
                        	
                           
                           pow(x, y, name=None)

                        
                        
                        	
                           
                           Returns elements of the first tensor raised to the power of the elements of the second
                              vector
                           

                        
                        
                     

                     
                     
                        
                        	
                           
                           exp(x, name=None)

                        
                        
                        	
                           
                           Returns the exponential function of the argument

                        
                        
                     

                     
                     
                        
                        	
                           
                           expm1(x, name=None)

                        
                        
                        	
                           
                           Returns the exponential function of the argument minus one, exp(x) - 1

                        
                        
                     

                     
                     
                        
                        	
                           
                           log(x, name=None)

                        
                        
                        	
                           
                           Returns the natural logarithm of the argument

                        
                        
                     

                     
                     
                        
                        	
                           
                           log1p(x, name=None)

                        
                        
                        	
                           
                           Returns the natural logarithm of the argument plus 1, log(x + 1)

                        
                        
                     

                     
                     
                        
                        	
                           
                           erf(x, name=None)

                        
                        
                        	
                           
                           Returns the error function of the argument

                        
                        
                     

                     
                     
                        
                        	
                           
                           erfc(x, name=None)

                        
                        
                        	
                           
                           Returns the complementary error function of the argument

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            These functions are straightforward to use and understand. Each executes in an element-wise
               manner, and the following code demonstrates how you can call square, sqrt, and rsqrt: 
            

            
            t = tf.constant([4.])

            
            t1 = tf.square(t)                # 16

            
            t2 = tf.sqrt(t)                  # 2

            
            t3 = tf.rsqrt(t)                 # 0.5

            
            The exp function computes the exponential functions of a tensor's elements, and expm1 subtracts 1 from each exponential. If x is a value in the input tensor, the result of expm1 equals exp(x) – 1.
            

            
            Similarly, the log function computes the natural logarithm of a tensor's elements. logp1 adds 1 to the value before the logarithm is computed, so if x is a value in the input tensor, the result of logp1 equals log(x + 1).
            

            
         
         
         
            
            Vector and matrix operations

            
            Machine learning applications store a great deal of data in vectors (one-dimensional
               tensors) and matrices (two-dimensional tensors). To process this data, TensorFlow
               provides many functions that operate on vectors and matrices. Table 3-8 lists these functions and provides a description of each.
            

            
            
               
                  
                  TABLE 3-8 Vector and Matrix Operations
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Function

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           tensordot(a, b, axes, name=None)

                        
                        
                        	
                           
                           Returns the sum of products for the elements in the given axes

                        
                        
                     

                     
                     
                        
                        	
                           
                           cross(a, b, name=None)

                        
                        
                        	
                           
                           Returns the element-wise cross product

                        
                        
                     

                     
                     
                        
                        	
                           
                           diag(diagonal, name=None)

                        
                        
                        	
                           
                           Returns a matrix with the given diagonal values, other values set to zero

                        
                        
                     

                     
                     
                        
                        	
                           
                           trace(x, name=None)

                        
                        
                        	
                           
                           Returns the sum of the diagonal elements

                        
                        
                     

                     
                     
                        
                        	
                           
                           transpose(x, perm=None,

                           
                            name='transpose')

                        
                        
                        	
                           
                           Switches rows and columns

                        
                        
                     

                     
                     
                        
                        	
                           
                           eye(num_rows,  num_columns=None,

                           
                            batch_shape=None,

                           
                            dtype=tf.float32,

                           
                            name=None)

                        
                        
                        	
                           
                           Creates an identity matrix with the given shape and data type

                        
                        
                     

                     
                     
                        
                        	
                           
                           matmul(a, b,

                           
                            transpose_a=False,

                           
                            transpose_b=False,

                           
                            adjoint_a=False,

                           
                            adjoint_b=False,

                           
                            a_is_sparse=False,

                           
                            b_is_sparse=False,

                           
                            name=None)

                        
                        
                        	
                           
                           Returns the product of the two input matrices

                        
                        
                     

                     
                     
                        
                        	
                           
                           norm(tensor,

                           
                            ord='euclidean',

                           
                            axis=None,

                           
                            keep_dims=False,

                           
                            name=None)

                        
                        
                        	
                           
                           Returns the norm of the given axis of the input tensor with the specified order

                        
                        
                     

                     
                     
                        
                        	
                           
                           matrix_solve(A, b,

                           
                            adjoint=None,

                           
                            name=None)

                        
                        
                        	
                           
                           Returns the tensor x, such that Ax = b, where A is a matrix, and b is a vector
                           

                        
                        
                     

                     
                     
                        
                        	
                           
                           qr(input, full_matrices=None,

                           
                            name=None)

                        
                        
                        	
                           
                           Returns the eigenvectors and eigenvalues of the given matrix or matrices

                        
                        
                     

                     
                     
                        
                        	
                           
                           svd(tensor,

                           
                            full_matrices=False,

                           
                            compute_uv=True,

                           
                            name=None)

                        
                        
                        	
                           
                           Factors the matrix into a unitary matrix, a diagonal matrix, and the conjugate transpose
                              of the unitary matrix
                           

                        
                        
                     

                     
                     
                        
                        	
                           
                           einsum(equation, *inputs)

                        
                        
                        	
                           
                           Executes a custom mathematical operation

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            Of these functions, the two most common are tensordot and matmul. tensordot returns the dot product of one or more axes of two input tensors. That is, tensordot multiplies the corresponding elements of both tensors' dimensions and returns the
               sum of the products.
            

            
            The axes parameter tells tensordot which dimensions to process. If you set this parameter to a scalar, N, the function will access the last N axes of the first tensor and the first N axes of the second tensor. If you set axes equal to a list or tensor, the first row identifies axes of the first tensor, and
               the second row identifies axes of the second tensor.
            

            
            I frequently call tensordot to compute the dot product of two one-dimensional tensors. The following code shows
               what this looks like: 
            

            
            t1 = tf.constant([4., 3., 2.])

            
            t2 = tf.constant([3., 2., 1.])

            
            dot = tf.tensordot(t1, t2, 1)

            
            # 4*3 + 3*2 + 2*1 = 20

            
            matmul performs traditional matrix multiplication. That is, it multiplies rows of the first
               tensor by columns of the second tensor and returns a matrix containing the sums. The
               following code shows how this can be used: 
            

            
            t1 = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

            
            t2 = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

            
            dot = tf.matmul(t1, t2)

            
            # [[ 22. 28.], [ 49. 64.]]

            
            My favorite function in Table 3-8 is einsum, which makes it possible to create and execute custom mathematical operations. The
               first parameter is a string that identifies the operation using a special format called
               the Einstein summation convention. This convention has a number of characteristics, including the following: 
            

            
            
               
               	The operation is assumed to have one or two inputs. If you provide two inputs, you
                  must separate them with a comma.
               

               
               	Dimensions of input and output matrices are represented by subscripts (usually i, j, and k). Input subscripts must be separated from output subscripts with the -> symbol.
               

               
               	If an input's subscript is repeated and no output subscripts are given, the operation
                  performs addition. Therefore, einsum('i,i', t1, t2) computes the dot product of tensors t1 and t2.
               

               
               	If an input's subscript is repeated and output subscripts are given, the operation
                  performs multiplication. Therefore, einsum('i,i->i', t1, t2) computes the element-wise product of tensors t1 and t2.
               

               
            

            
            The following code calls einsum to transpose a matrix and multiply two matrices together: 
            

            
            m1 = tf.constant([[1, 2], [3, 4]])

            
            m2 = tf.constant([[5, 6], [7, 8]])

            
            e1 = tf.einsum('ij->ji', m1)        # [[1, 3], [2, 4]]

            
            e2 = tf.einsum('ij,jk->ik', m1, m2) # [[19, 22], [43, 50]]

            
            For a more complete discussion of the Einstein summation convention, I recommend Samuel
               Prime's presentation at https://samuelprime.wordpress.com/2015/03/25/einstein-summation-convention.
            

            
         
      
      
      
         
         Putting Theory into Practice

         
         The code in ch3/simple_math.py demonstrates many of the functions presented in this chapter. Listing 3-1 presents the full application.
 
         
         LISTING 3-1 Simple Mathematics Operations
         
 
         
         # Math with constant tensors

         
         const_a = tf.constant(3.6)

         
         const_b = tf.constant(1.2)

         
         total = const_a + const_b

         
         quot = tf.div(const_a, const_b)

         
          

         
         # Math with random tensors

         
         rand_a = tf.random_normal([3], 2.0)

         
         rand_b = tf.random_uniform([3], 1.0, 4.0)

         
         diff = tf.subtract(rand_a, rand_b)

         
          

         
         # Vector multiplication

         
         vec_a = tf.linspace(0.0, 3.0, 4)

         
         vec_b = tf.fill([4, 1], 2.0)

         
         prod = tf.multiply(vec_a, vec_b)

         
         dot = tf.tensordot(vec_a, vec_b, 1)

         
          

         
         # Matrix multiplication

         
         mat_a = tf.constant([[2, 3], [1, 2], [4, 5]])

         
         mat_b = tf.constant([[6, 4, 1], [3, 7, 2]])

         
         mat_prod = tf.matmul(mat_a, mat_b)

         
          

         
         # Execute the operations

         
         with tf.Session() as sess:

         
             print("Sum: %f" % sess.run(total))

         
             print("Quotient: %f" % sess.run(quot))

         
             print("Difference: ", sess.run(diff))

         
             print("Element-wise product: ", sess.run(prod))

         
             print("Dot product: ", sess.run(dot))

         
             print("Matrix product: ", sess.run(mat_prod))

         
         Most of this code should look familiar. The application creates and operates on constant
            tensors, random tensors, vectors, and matrices. To process vectors, the application
            performs element-wise multiplication with tf.multiply and then computes the dot product of the two vectors with tf.tensordot.
         

         
         The last portion of code deserves explanation. The application creates a Session named sess and calls its run method once for each operation to be performed. To understand what sessions are and
            how they work, you need to be familiar with graphs. The next chapter explores the
            topics of sessions and graphs.
         

         
      
      
   
      
      Chapter 4

      
      Executing Graphs in Sessions
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         The preceding chapter introduced a plethora of functions that create, transform, and
            process tensors. Most of these functions return a tensor, and this may lead you to
            believe that the function performs its operation as soon as it’s called. This is how
            Python functions usually work, but this is not how TensorFlow functions work.
         

         
         When an application executes a TensorFlow function that creates, transforms, or processes
            a tensor, the function doesn’t execute its operation. Instead, it stores its operation
            in a data structure called a graph. A graph can hold many operations, and they're not executed until the application
            executes the graph in a session. When a session executes a graph, it performs the
            graph's operations in order.
         

         
         The benefit of storing operations in a graph is that the graph can be exported to
            a file or launched on a remote system. The drawback is that graphs tend to confuse
            newcomers to TensorFlow. In writing this chapter, my goal is to reduce this confusion
            by providing a full explanation of graphs and sessions.
         

         
      
      
      
         
         Forming Graphs

         
         If an operation returns a tensor, an operation can feed its output into another operation.
            To demonstrate this process, the following code feeds the result of an addition operation
            into a multiplication operation. 
         

         
         c = tf.add(a, b)

         
         e = tf.multiply(c, d)

         
         Figure 4-1 illustrates the relationships between these nested operations and their tensors.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 4-1: The addition operation receives the result of multiplication.
                  

                  
               
               
            
            
         

         
         In Figure 4-1, each circle identifies a tensor or operation, and each line transfers tensor data.
            Mathematicians and computer scientists refer to this structure of nodes and edges
            as a graph. The graph’s circles are called nodes, and the straight lines are called edges.
         

         
         When an application executes a function that creates a tensor or an operation, TensorFlow
            adds the data structures to a container structure called a Graph. Graphs can't be nested, and only one Graph can be active at a time. An application can access its default Graph by calling get_default_graph. The following code shows how this can be used: 
         

         
         graph = tf.get_default_graph()

         
         An application can create a new Graph by calling the constructor without arguments. Then the application can set the Graph as the default Graph by calling the Graph's as_default method. The following code demonstrates how this works: 
         

         
         newgraph = tf.Graph()

         
         with newgraph.as_default():

         
             …

         
         After as_default is called, TensorFlow will add new tensors and operations to newgraph instead of the original Graph.
         

         
         The Graph class provides many methods that access and modify the graph's contents. This discussion
            divides these methods into two categories: 
         

         
         
            
            	Accessing graph data: Reading a graph's containers and elements
            

            
            	Creating GraphDefs: Serializing a graph into a protocol buffer
            

            
         

         
         
            
            Accessing graph data

            
            A graph stores its elements in a set of named collections. Table 4-1 presents the methods of the Graph class that access and update these collections.
            

            
            
               
                  
                  TABLE 4-1 Accessing Graph Data
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Method

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           get_tensor_by_name(name)

                        
                        
                        	
                           
                           Returns the tensor with the given name

                        
                        
                     

                     
                     
                        
                        	
                           
                           get_operation_by_name(name)

                        
                        
                        	
                           
                           Returns the operation with the given name

                        
                        
                     

                     
                     
                        
                        	
                           
                           get_operations()

                        
                        
                        	
                           
                           Returns a list containing the graph's operations

                        
                        
                     

                     
                     
                        
                        	
                           
                           get_all_collection_keys()

                        
                        
                        	
                           
                           Returns a list of the graph's collections

                        
                        
                     

                     
                     
                        
                        	
                           
                           get_collection(name, scope=None)

                        
                        
                        	
                           
                           Returns a list of values in the given collection

                        
                        
                     

                     
                     
                        
                        	
                           
                           add_to_collection(name, value)

                        
                        
                        	
                           
                           Adds the value to the container, can be accessed with name

                        
                        
                     

                     
                     
                        
                        	
                           
                           add_to_collections(name, value)

                        
                        
                        	
                           
                           Adds the value to the containers, can be accessed with name

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            The first three methods make it easy to access tensors and operations in the current
               graph. Each method returns a list containing the desired elements, and the following
               code demonstrates how they can be used: 
            

            
            a = tf.constant(2.5, name='first_val')

            
            b = tf.constant(4.5, name='second_val')

            
            sum = a + b;

            
            print(tf.get_default_graph().get_operations())

            
            print(tf.get_default_graph().get_tensor_by_name('first_val:0'))

            
            The first print statement calls get_operations to obtain a list of the graph's operations. The printed result is given as follows:
               
            

            
            [<tf.Operation 'first_val' type=Const>,

            
             <tf.Operation 'second_val' type=Const>,

            
             <tf.Operation 'add' type=Add>]

            
            The second print statement accesses the first tensor using the name:index format. In this case, the tensor's name is first_val, and the index is 0. TensorFlow prints the following result: 
            

            
            ("first_val:0", shape=(), dtype=float32)

            
            A graph can hold more than just tensors and operations. This additional information
               is stored in a set of lists called the graph's collections. As with dictionaries, you can access the elements of a collection using identifiers
               called keys. Table 4-2 presents the different keys for graph collections.
            

            
            
               
                  
                  TABLE 4-2 Graph Collection Keys
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Collection Key

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           GLOBAL_VARIABLES

                        
                        
                        	
                           
                           All variables used in the application

                        
                        
                     

                     
                     
                        
                        	
                           
                           LOCAL_VARIABLES

                        
                        
                        	
                           
                           Variables local to this machine

                        
                        
                     

                     
                     
                        
                        	
                           
                           MODEL_VARIABLES

                        
                        
                        	
                           
                           Variables used in the model

                        
                        
                     

                     
                     
                        
                        	
                           
                           TRAINABLE_VARIABLES

                        
                        
                        	
                           
                           Variables capable of being trained by an optimizer

                        
                        
                     

                     
                     
                        
                        	
                           
                           MOVING_AVERAGE_VARIABLES

                        
                        
                        	
                           
                           Variables that maintain moving averages

                        
                        
                     

                     
                     
                        
                        	
                           
                           SUMMARIES

                        
                        
                        	
                           
                           Tensor summaries

                        
                        
                     

                     
                     
                        
                        	
                           
                           QUEUE_RUNNERS

                        
                        
                        	
                           
                           QueueRunners that provide input data

                        
                        
                     

                     
                     
                        
                        	
                           
                           REGULARIZATION_LOSSES

                        
                        
                        	
                           
                           Losses produced by regularization

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            Most of these collections store data related to variables, which I cover in Chapter 5. For now, it's simply important to know that graphs provide access to tensors, operators,
               and other types of data.
            

            
         
         
         
            
            Creating GraphDefs

            
            Many applications need to access graphs from other TensorFlow applications. The as_graph_def method makes this possible. This method returns a serialized form of a Graph called a GraphDef.
            

            
            A GraphDef stores a graph's data in a special format called a protocol buffer, also known as a protobuf. This may be generated in text or binary form, and in text form, it looks like the
               JavaScript Object Notation (JSON).
            

            
            In a GraphDef, every tensor and operation is represented by a node element. Each node has a name field, an op field, and one or more attr fields. The following text presents the general structure of a node element: 
            

            
            node {

            
              name: "…"

            
              op: "…"

            
              attr { … }

            
              attr { … }

            
              …

            
            }

            
            The last element in a GraphDef is a versions element. This element identifies the version of the GraphDef structure.
            

            
            The best way to understand GraphDefs is to look at an example. Suppose that an application contains the following code:
               
            

            
            a = tf.constant(2.5)

            
            b = tf.constant(4.2)

            
            sum = a + b;

            
            In text form, the content of the GraphDef is given as follows: 
            

            
            node {

            
              name: "Const"

            
              op: "Const"

            
              attr {

            
                key: "dtype"

            
                value { type: DT_FLOAT }

            
              }

            
              attr {

            
                key: "value"

            
                value {

            
                  tensor {

            
                    dtype: DT_FLOAT

            
                    tensor_shape {}

            
                    float_val: 2.5

            
                  }

            
                }

            
              }

            
            }

            
            node {

            
              name: "Const_1"

            
              op: "Const"

            
              attr {

            
                key: "dtype"

            
                value { type: DT_FLOAT }

            
              }

            
              attr {

            
                key: "value"

            
                value {

            
                  tensor {

            
                    dtype: DT_FLOAT

            
                    tensor_shape {}

            
                    float_val: 4.2

            
                  }

            
                }

            
              }

            
            }

            
            node {

            
              name: "add"

            
              op: "Add"

            
              input: "Const"

            
              input: "Const_1"

            
              attr {

            
                key: "T"

            
                value { type: DT_FLOAT }

            
              }

            
            }

            
            versions {

            
              producer: 22

            
            }

            
            This GraphDef has three nodes: two that represent tensors and one that represents the operation
               that adds the tensors. Real-world applications may have thousands of nodes. At the
               end of the list of nodes, the versions object identifies the version as 22.
            

            
            The write_graph function in tf.train makes it possible to store a GraphDef's data to a file. Its signature is given as follows: 
            

            
            write_graph(graph/graph_def, logdir, name, as_text=True)

            
            The first argument can be set to a Graph or GraphDef. The last argument identifies if the content should be written in text or binary
               form. For example, the following code stores the current graph to a text file named
               graph.dat: 
            

            
            tf.train.write_graph(tf.get_default_graph(), os.getcwd(), 'graph.dat')

            
            Similarly, an application can load a GraphDef from a file containing graph data by calling one of two routines: 
            

            
            
               
               	TextFormat.Merge(data, graphdef): Initializes a GraphDef from text elements
               

               
               	Creating GraphDefs: Converting a graph into a protocol buffer
               

               
            

            
            The TextFormat class is provided in google.protobuf. For a complete discussion of accessing protocol buffers in Python, visit https://developers.google.com/protocol-buffers/docs/pythontutorial.
            

            
         
      
      
      
         
         Creating and Running Sessions

         
         As a Python developer, you're probably accustomed to having your programs processed
            line by line. But in a TensorFlow application, operations involving tensors aren't
            executed until they’re stored in a graph and executed in a session. This section explains
            how you can code applications that create and execute sessions.
         

         
         
            
            Creating sessions

            
            As with graphs, only one session can be active at a time. But there’s an important
               difference between sessions and graphs — every session must be explicitly created.
               You can create a Session by calling tf.Session, which accepts three optional arguments: 
            

            
            
               
               	target: Name of the execution engine
               

               
               	graph: The Graph instance to be launched
               

               
               	config: A ConfigProto that configures the session's execution
               

               
            

            
            A discussion of execution engines is in Chapter 11, which introduces the target parameter. Similarly, most of the settings in a ConfigProto relate to threads and devices, so Chapter 10 discusses the config parameter.
            

            
            By default, a session accesses tensors and operations in the default graph. But if
               you set the graph parameter in tf.Session, the session will execute that graph instead.
            

            
            Applications frequently call tf.Session inside a with statement. This statement ensures that code in the with block can access the new Session. The following code shows how this works: 
            

            
            with tf.Session() as sess:

            
                …

            
            Most of the example applications presented in this book create sessions with similar
               code.
            

            
         
         
         
            
            Executing a session

            
            The most important method of the Session class is run. This method accepts four arguments, and only the first is required: 
            

            
            
               
               	fetches: Identifies one or more operations or tensors to be executed
               

               
               	feed_dict: Data to be fed into a tensor
               

               
               	options: Configuration options for the session's execution
               

               
               	run_metadata: Output data from the session
               

               
            

            
            The fetches parameter accepts a wide range of data types. Most applications set this parameter
               equal to an operation, a tensor, or the name of an operation or tensor. You can also
               assign fetches to a list of tensors, operations, or names.
            

            
            If you assign fetches to a tensor, run will return an ndarray with the same values and shape. The following code calls run with a two-element tensor: 
            

            
            tensr = tf.constant([2, 3])

            
            with tf.Session() as sess:

            
                res = sess.run(tensr)

            
                print(res)                # Prints [2, 3]

            
            If you assign fetches to an Operation, run will return an ndarray containing the values of the tensor produced by the operation. The following code
               calls run with an operation that performs addition: 
            

            
            t1 = tf.constant(7)

            
            t2 = tf.constant(2)

            
            with tf.Session() as sess:

            
                res = sess.run(t1 + t2)

            
                print(res)                # Prints 9

            
            If you assign fetches to a collection of elements, run will return a similar collection containing the processed results. The following
               code calls run with a list containing two tensors: 
            

            
            t1 = tf.constant(9)

            
            t2 = tf.constant(5)

            
            with tf.Session() as sess:

            
                res1, res2 = sess.run([t1, t2])

            
                print(res1)               # Prints 9

            
                print(res2)               # Prints 5

            
            The feed_dict parameter of run plays an important role in applications that process training data with batches.
               Chapter 5 discusses this parameter in detail.
            

            
         
         
         
            
            Interactive sessions

            
            Rather than send an entire script to an interpreter, many Python developers prefer
               to write code interactively. In this mode, the interpreter displays feedback as each
               line is processed.
            

            
            To support interactive development, TensorFlow provides the InteractiveSession class. An InteractiveSession serves the same role as a Session, but it makes itself the default session when it's constructed.
            

            
            Instead of calling sess.run, you can evaluate tensors by calling their eval method. Similarly, you can execute operations by calling the run method of the Operation class.
            

            
            An example clarifies how InteractiveSessions work. The following code is intended to be run in normal mode: 
            

            
            t1 = tf.constant(1.2)

            
            t2 = tf.constant(3.5)

            
            prod = tf.multiply(t1, t2)

            
            with tf.Session() as sess:

            
                print("Product: ", sess.run(prod))

            
            This code accomplishes the same result with an InteractiveSession: 
            

            
            t1 = tf.constant(1.2)

            
            t2 = tf.constant(3.5)

            
            prod = tf.multiply(t1, t2)

            
            sess = tf.InteractiveSession()

            
            print("Product: ", prod.eval())

            
            The InteractiveSession class constructor accepts the same arguments as that of the Session class. Similarly, its run method accepts the same arguments as the run method of the Session class.
            

            
         
      
      
      
         
         Writing Messages to the Log

         
         All of the example code in Chapters 1 through 4 has relied on print to write data to standard output. But TensorFlow provides a logging mechanism with
            many more messaging capabilities than regular print. There are five points to know about TensorFlow logging: 
         

         
         
            
            	TensorFlow enables logging through the tf.logging package.
            

            
            	TensorFlow logging is based on regular Python logging, and many tf.logging functions are identical to the methods of Python's Logger class.
            

            
            	TensorFlow supports five logging levels. In order of severity, these are DEBUG, INFO, WARN, ERROR, and FATAL.
            

            
            	To enable logging, an application needs to call tf.logging set_verbosity with the lowest level of severity that should be logged.
            

            
            	By default, TensorFlow writes log messages to standard output. At the time of this
               writing, TensorFlow logging doesn't support writing messages to a log file.
            

            
         

         
         For each logging level, tf.logging provides a similarly named function that writes a logging message at that level.
            As an example, the following code enables INFO messages (and messages of greater severity)
            and then writes an INFO message that displays the value of output: 
         

         
         tf.logging.set_verbosity(tf.logging.INFO)

         
          

         
         with tf.Session() as sess:

         
             output = sess.run(…)

         
             tf.logging.info('Output: %f', output)

         
         If output's value is 5.5, tf.logging.info will print the following message to standard output: 
         

         
         INFO:tensorflow:Output: 5.5

         
         Table 4-3 lists set_verbosity, info, and other functions provided by tf.logging.
         

         
         
            
               
               TABLE 4-3 Summary Data Functions
               

            
            
            
               
               
                  
                  
                     
                     	
                        
                        Function

                     
                     
                     	
                        
                        Description

                     
                     
                  

                  
               
               
               
                  
                  
                     
                     	
                        
                        set_verbosity(level)

                     
                     
                     	
                        
                        Enables logging for messages of the given severity level and greater severity

                     
                     
                  

                  
                  
                     
                     	
                        
                        debug(msg, *args, **kwargs)

                     
                     
                     	
                        
                        Logs a message at DEBUG severity

                     
                     
                  

                  
                  
                     
                     	
                        
                        info(msg, *args, **kwargs)

                     
                     
                     	
                        
                        Logs a message at INFO severity

                     
                     
                  

                  
                  
                     
                     	
                        
                        warn(msg, *args, **kwargs)

                     
                     
                     	
                        
                        Logs a message at WARN severity

                     
                     
                  

                  
                  
                     
                     	
                        
                        error(msg, *args, **kwargs)

                     
                     
                     	
                        
                        Logs a message at ERROR severity

                     
                     
                  

                  
                  
                     
                     	
                        
                        fatal(msg, *args, **kwargs)

                     
                     
                     	
                        
                        Logs a message at FATAL severity

                     
                     
                  

                  
                  
                     
                     	
                        
                        flush()

                     
                     
                     	
                        
                        Forces logging operations to complete

                     
                     
                  

                  
                  
                     
                     	
                        
                        log(level, msg, *args, **kwargs)

                     
                     
                     	
                        
                        Logs a message at the given severity level

                     
                     
                  

                  
                  
                     
                     	
                        
                        log_if(level, msg, condition, *args)

                     
                     
                     	
                        
                        Logs a message at the given severity level if the condition is true

                     
                     
                  

                  
                  
                     
                     	
                        
                        log_first_n(level, msg, n, *args)

                     
                     
                     	
                        
                        Logs a message at the given severity level at most n times
                        

                     
                     
                  

                  
                  
                     
                     	
                        
                        log_every_n(level, msg, n, *args)

                     
                     
                     	
                        
                        Logs a message at the given severity level once every n times
                        

                        
                     
                     
                  

                  
               
               
            

            
         
         
         The last three functions make it possible to control when messages are written to
            the log. The third parameter of log_if defines a condition that determines when the message should be logged. The following
            code logs the value of output if it's greater than 0: 
         

         
         tf.logging.log_if(tf.logging.INFO, 'Output: %f', (output > 0), output)

         
         The third argument of log_first_n and log_every_n is an integer that determines how often should be performed. In log_first_n, the value sets the maximum number of times the function should write its message
            to the log. In log_every_n, the value tells the function to log its message once every N times it's called.
         

         
      
      
      
         
         Visualizing Data with TensorBoard

         
         Logging is fine for monitoring simple data, but in many cases, developers need to
            keep track of large, complex data sets. Practical applications may launch a session
            hundreds or thousands of times, and logging isn’t sufficient to monitor how data changes
            with each execution.
         

         
         The good news is that your TensorFlow installation contains TensorBoard. This powerful
            utility reads an application’s data and displays it in a web page. Figure 4-2 gives an idea of what the TensorBoard page looks like in the Chrome browser.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 4-2: TensorFlow can display many aspects of an application, including the structure of
                     its graph.
                  

                  
               
               
            
            
         

         
         The bad news is that TensorBoard requires specially formatted data called summary data, and generating this data isn’t easy.
         

         
         
            
            Running TensorBoard

            
            When you install TensorFlow, the installer places the TensorBoard utility in the top-level
               scripts directory. If you can't execute the tensorboard command from a command line, add this directory to your system's PATH variable.
            

            
            The tensorboard command accepts a handful of flags, including the following: 
            

            
            
               
               	--logdir DIR: The directory containing the summary data
               

               
               	--host HOST: Identifies the host portion of the web page's URL
               

               
               	--port PORT: Identifies the port of the web page's URL
               

               
            

            
            By default, TensorBoard's IP address is 127.0.0.1, which can be accessed as localhost. TensorBoard's default port is 6006. Therefore, TensorBoard's default URL is http://localhost:6006.
            

            
            The --logdir flag is required, so you can't launch TensorBoard without data. You must set this
               flag to a directory that contains a special file called an event file. This file contains the summary data that TensorBoard needs to perform visualization.
               If the file is located in a directory named output, the following command tells TensorBoard
               to read the event file: 
            

            
            tensorboard --logdir=output

            
         
         
         
            
            Generating summary data

            
            At this point, you should understand how to create math operations and execute them
               in a session. This discussion introduces a new type of operation called a summary operation. This resembles other TensorFlow operations, but when a session executes a summary
               operation, the result is a protocol buffer that contains summary data. An application
               can write this buffer to a file whose content can be displayed with TensorBoard.
            

            
            TensorBoard can illustrate many different types of data, and each type corresponds
               to a function of tf.summary. Table 4-4 lists six of the available functions.
            

            
            
               
                  
                  TABLE 4-4 Summary Data Functions
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Function

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           scalar(name, tensor,  collections=None)

                        
                        
                        	
                           
                           Creates a summary operation that provides data about a scalar

                        
                        
                     

                     
                     
                        
                        	
                           
                           histogram(name, values,  collections=None)

                        
                        
                        	
                           
                           Creates a summary operation that provides histogram data

                        
                        
                     

                     
                     
                        
                        	
                           
                           audio(name, tensor,  sample_rate, max_outputs=3,  collections=None)

                        
                        
                        	
                           
                           Creates a summary operation that provides data from an audio source

                        
                        
                     

                     
                     
                        
                        	
                           
                           image(name, tensor,  max_outputs=3,  collections=None)

                        
                        
                        	
                           
                           Creates a summary operation that provides data from an image

                        
                        
                     

                     
                     
                        
                        	
                           
                           merge(inputs,  collections=None,  name=None)

                        
                        
                        	
                           
                           Merges the specified summary operations into one summary operation

                        
                        
                     

                     
                     
                        
                        	
                           
                           merge_all(key=  tf.GraphKeys.SUMMARIES)

                        
                        
                        	
                           
                           Merges summary operations into one summary operation

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            Of these functions, the two most popular are scalar and histogram. scalar generates summary data for a single value that changes over multiple session executions.
               histogram generates data for a set of values that change over session executions. The image function generates data related to images and image analysis. Chapter 8 discusses images in detail.
            

            
            In my opinion, the best way to understand summary data is to look at example code.
               The following code performs three tasks: 
            

            
            
               
               	tf.summary.scalar generates operations that provide scalar data.
               

               
               	tf.summary.merge_all combines them into one operation.
               

               
               	sess.run executes the merged summary operation.
               

               
            
 
            
            # Add two scalars

            
            a = tf.constant(2.5)

            
            b = tf.constant(4.5)

            
            total = a + b;

            
             

            
            # Create operations that generate summary data

            
            tf.summary.scalar("a", a)

            
            tf.summary.scalar("b", b)

            
            tf.summary.scalar("total", total)

            
             

            
            # Merge the operations into a single operation

            
            merged_op = tf.summary.merge_all()

            
             

            
            with tf.Session() as sess:

            
                _, summary = sess.run([sum, merged_op])

            
            As shown, each entity of interest requires a separate operation to generate summary
               data. That is, the application needs to call tf.summary.scalar three times: once for each tensor to be analyzed. But you don't need to access the
               return values of each call to tf.summary.scalar because tf.summary.merge_all combines the data generation operations into one operation.
            

            
         
         
         
            
            Creating custom summaries

            
            Instead of calling the functions in Table 4-4, you can generate custom summary data by creating Summary objects. The Summary class is a Python wrapper for a protocol buffer containing summary data.
            

            
            You can create a Summary instance by calling tf.Summary and setting its value parameter to a list of Summary.Value buffers. Each Summary.Value can have a node_name, a tag, and one of five data fields: 
            

            
            
               
               	simple_value — a 32-bit floating-point value
               

               
               	image — an Image instance containing pixel data
               

               
               	histo — a HistogramProto containing data to be displayed in a histogram
               

               
               	audio — an Audio instance containing audio data
               

               
               	tensor — a TensorProto containing data related to tensors
               

               
            

            
            The following code creates a custom summary and sets its simple_value field: 
            

            
            custom_summary = tf.Summary(value=[

            
                tf.Summary.Value(tag="num_tag", simple_value=5.0),

            
            ])

            
            This code doesn't create an operation that generates summary data — it directly generates
               the summary data. In the preceding code, TensorBoard will display the content of custom_summary as though it had been generated with tf.summary.scalar.
            

            
         
         
         
            
            Writing summary data

            
            After you've generated summary data, the next step is to create a directory and write
               the summary data to the directory’s event file. This process requires creating a FileWriter and calling its methods.
            

            
            
               
               Creating a FileWriter

               
               An application can create a FileWriter by calling its constructor: 
               

               
               tf.summary.FileWriter(logdir, graph=None, max_queue=10,

               
                 flush_secs=120, filename_suffix=None)

               
               The logdir parameter sets the name of the directory that should be created to contain the summary
                  data. If you set the graph parameter, the graph's data will be added to the event file in the given directory.
                  If you set filename_suffix, the suffix will be appended to the name of the generated event file.
               

               
               A FileWriter updates the event file asynchronously, which means multiple write operations may
                  be pending at once. The max_queue parameter identifies the maximum number of write operations that can be pending at
                  a given time. The flush_secs parameter identifies how often the FileWriter should execute pending operations.
               

               
               As an example, the following code creates a FileWriter and configures it to create a directory named log. The event file in this directory should contain summary data for the default graph.
                  
               

               
               fw = tf.summary.FileWriter("log", graph=tf.get_default_graph())

               
               If this directory already exists, the constructor may create multiple event files.
                  In many cases, it's a good idea to check if the directory exists and delete it, if
                  necessary.
               

               
            
            
            
               
               Printing data to the event file

               
               The FileWriter constructor creates a directory with an event file. The FileWriter's methods make it possible to write data to the event file. Table 4-5 lists these methods and provides a description of each.
               

               
               
                  
                     
                     TABLE 4-5 Methods of the FileWriter Class
                     

                  
                  
                  
                     
                     
                        
                        
                           
                           	
                              
                              Method

                           
                           
                           	
                              
                              Description

                           
                           
                        

                        
                     
                     
                     
                        
                        
                           
                           	
                              
                              add_summary(summary, global_step=None)

                           
                           
                           	
                              
                              Adds summary data to the event file

                           
                           
                        

                        
                        
                           
                           	
                              
                              add_event(event)

                           
                           
                           	
                              
                              Adds event data to the event file

                           
                           
                        

                        
                        
                           
                           	
                              
                              add_graph(graph, global_step=None, graph_def=None)

                           
                           
                           	
                              
                              Adds summary data for the graph to the event file

                           
                           
                        

                        
                        
                           
                           	
                              
                              add_meta_graph( meta_graph_def, global_step=None)

                           
                           
                           	
                              
                              Adds data from a MetaGraphDef to the event file
                              

                           
                           
                        

                        
                        
                           
                           	
                              
                              add_run_metadata( run_metadata, tag, global_step=None)

                           
                           
                           	
                              
                              Adds run metadata from a session to the event file

                           
                           
                        

                        
                        
                           
                           	
                              
                              add_session_log( session_log, global_step=None)

                           
                           
                           	
                              
                              Adds data from a SessionLog to the event file
                              

                           
                           
                        

                        
                        
                           
                           	
                              
                              flush()

                           
                           
                           	
                              
                              Executes pending write operations

                           
                           
                        

                        
                        
                           
                           	
                              
                              close()

                           
                           
                           	
                              
                              Flushes write operations and closes the event file

                           
                           
                        

                        
                        
                           
                           	
                              
                              reopen()

                           
                           
                           	
                              
                              Reopens the event file for writing summary data

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               add_summary prints summary data. That is, it writes summary data produced by a data generation
                  operation to the event file. The following code demonstrates how this can be called:
                  
               

               
               # Merge operations into a single operation

               
               merged_op = tf.summary.merge_all()

               
                

               
               # Create the FileWriter

               
               writer = tf.summary.FileWriter("summary")

               
                

               
               with tf.Session() as sess:

               
                   _, summary = sess.run([sum, merged_op])

               
                   writer.add_summary(summary)

               
                   writer.close()

               
               add_event writes an Event to the event file. Like a Summaryan Event is a Python wrapper for a protocol buffer. Each Event has a wall_time field that identifies the time and a step that identifies the global step. An Event's data is specified by the what field, which can be set to one of the following values: 
               

               
               
                  
                  	file_version —the version of the event file
                  

                  
                  	graph_def — content of a GraphDef buffer
                  

                  
                  	summary — an Summary containing summary data
                  

                  
                  	log_message — LogMessage containing logged messages
                  

                  
                  	session_log — SessionLog containing the session's state
                  

                  
                  	tagged_run_metadata — TaggedRunMetadata containing metadata from the session
                  

                  
                  	meta_graph_def — content of a MetaGraphDef buffer
                  

                  
               

               
               As an example, the following code creates an Event whose wall_time is set to the current time and whose what field is associated with a Summary: 
               

               
               new_summary = tf.Summary(value=[

               
                   tf.Summary.Value(tag="val", simple_value=9.0),

               
               ])

               
               event = tf.Event(wall_time=time.time(), summary=new_summary)

               
               file_writer.add_event(event)

               
               Calling add_graph accomplishes the same result as setting the graph parameter in the FileWriter's constructor. add_meta_graph prints the content of a MetaGraphDef, which I'll discuss in Chapter 5.
               

               
               The flush method forces the FileWriter to execute any pending write operations to the event file. The close method also forces the FileWriter to execute pending write operations. After the operations have completed, the method
                  closes the event file.
               

               
            
         
         
      
      
      
         
         Putting Theory into Practice

         
         The code in ch4/two_graphs.py demonstrates how an application can create multiple graphs and execute them in separate
            sessions. After executing each graph, the application calls tf.train.write_graph to write the graph's structure to a file. The application also creates a FileWriter and generates summary data that can be viewed with TensorBoard. Listing 4-1 presents the code:
         
 
         
         LISTING 4-1 Launching Multiple Graphs in Multiple Sessions
         
 
         
         # Enable logging

         
         tf.logging.set_verbosity(tf.logging.INFO)

         
          

         
         # Create tensors

         
         t1 = tf.constant([1.2, 2.3, 3.4, 4.5])

         
         t2 = tf.constant([5.6, 6.7, 7.8, 8.9])

         
         t3 = tf.concat([t1, t2], 0)

         
         t4 = tf.random_normal([8])

         
         t5 = tf.tensordot(t3, t4, 1)

         
          

         
         # Create operations to generate summary data

         
         tf.summary.scalar("t1", t1[0])

         
         tf.summary.scalar("t2", t2[0])

         
         tf.summary.scalar("t3", t3[0])

         
         tf.summary.scalar("t4", t4[0])

         
         tf.summary.scalar("t5", t5)

         
         merged_op = tf.summary.merge_all()

         
          

         
         # Create FileWriter

         
         file_writer = tf.summary.FileWriter("log", graph=tf.get_default_graph())

         
          

         
         # Execute first graph

         
         with tf.Session() as sess:

         
          

         
             # Execute the session

         
             dot_result, summary = sess.run([t5, merged_op])

         
          

         
             # Write the result to the log

         
             tf.logging.info('Result of dot product: %f', dot_result)

         
          

         
             # Print the summary data

         
             file_writer.add_summary(summary)

         
             file_writer.flush()

         
          

         
             # Obtain the GraphDef and write it to a file

         
             tf.train.write_graph(sess.graph, os.getcwd(), 'graph1.dat')

         
          

         
         # Create second graph and make it default

         
         graph = tf.Graph()

         
         with graph.as_default():

         
          

         
             # Compute the average

         
             t6 = tf.random_uniform([8], 4.0, 8.0)

         
             t7 = tf.fill([8], 6.0)

         
             t8 = tf.reduce_mean(t6 + t7)

         
          

         
             # Execute first graph

         
             with tf.Session() as sess:

         
          

         
                 # Execute the session

         
                 sess.run(t8)

         
          

         
                 # Obtain the GraphDef and write it to a file

         
                 tf.train.write_graph(sess.graph, os.getcwd(), 'graph2.dat'

         
         The first call to sess.run is particularly interesting. Its first argument is a list containing two elements.
            The first element, t5, is the result of an operation that combines t1, t2, t3, and t4. The second element, merged_op, combines five operations that generate summary data.
         

         
         sess.run returns the value of t5 and the generated summary data. When these results are available, the application
            logs the value of t5 and prints the summary data to a file by calling the add_summary method of a FileWriter.
         

         
         The first parameter in the FileWriter's constructor is log, so the FileWriter prints its data to an event file in the log directory. You can launch TensorBoard
            to visualize this data with the following command: 
         

         
         tensorboard --logdir=log

         
         To view the generated data in TensorBoard, open a browser to http://localhost:6006. If you click the HISTOGRAMS link at the top of the page, you can view tensors t1 through t4. Figure 4-3 shows what the histogram of t1 looks like.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 4-3: A TensorBoard histogram plots the elements of a tensor.
                  

                  
               
               
            
            
         

         
         Unlike t1 through t4, t5 only has one element. The application generates data for t5 by calling tf.summary.scalar, and you can view this data in TensorBoard by clicking the SCALARS link at the top
            of the page. The result isn’t particularly interesting because the application only
            executed the session once. Chapter 5 explains how to execute sessions with multiple steps and view the resulting data
            in TensorBoard.
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         [image: check] Training applications in TensorFlow
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         [image: check] Minimizing loss with optimizers
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         Before the Internet, old-timers like me entertained ourselves by actually speaking
            to one another. One rip-roaring game was 20 Questions, in which one player thinks
            of an object and the other player asks questions to determine what the object is.
            The questioner is allowed to ask at most 20 yes/no questions, and a typical game goes
            something like this: 
         

         
         
            
            	Q: Is it larger than a breadbox?

            
            	A: Yes.

            
            	Q: Can it move?

            
            	A: Yes.

            
            	Q: Is it an animal?

            
            	A: No.

            
            	Q: Does it move on wheels?

            
            	A: No.

            
            	Q: (Sigh) Is it an evil robot, Matt? Again?

            
            	A: THAT’S IT! You win!

            
         

         
         In this chapter, I explain how the game 20 Questions is similar to the training methodology
            used in supervised machine learning.
         

         
      
      
      
         
         Training in TensorFlow

         
         In the game 20 Questions, the questioner starts with a guess and refines his understanding
            with each answer. This game resembles the training methodology used in supervised
            machine learning. An application starts with a general idea, or model, of the desired
            system. The application compares its model to experimental data, determines the difference
            between them, and repeatedly refines the model to reduce the difference.
         

         
         The general training process is simple to understand, but implementing training with
            TensorFlow isn’t easy. The process involves six steps: 
         

         
         
            
            	Construct a mathematical expression for the general model.

            
            	Declare variables to be updated as training is performed.

            
            	Obtain an expression for the loss, which is the difference between the model and observation.

            
            	Create an Optimizer with the loss from Step 3 and call its minimize method.

            
            	(Optional) Configure the second argument of the session's run method to feed batches of data to the session.

            
            	Execute the session by calling the session’s run method.

            
         

         
         Judging from the questions on StackOverflow.com, many developers have difficulty grasping how these steps are performed. This chapter
            explains this training process and then presents example code that demonstrates how
            these steps can be implemented in a TensorFlow application.
         

         
      
      
      
         
         Formulating the Model

         
         Just as a game of 20 Questions starts with making a guess, machine learning starts
            with forming an initial mathematical model of the system. A number of factors determine
            the nature of this model, including the system's complexity, the structure of the
            input data, and the nature of the problem. Image data requires a different model than
            voice data. Classification problems require a different type of model than prediction
            problems.
         

         
         This book focuses on two methods of mathematical modeling. The first involves approximating
            a set of data points with a shape. For example, if a system consists of two-dimensional
            points, you can predict future points by approximating the system with a two-dimensional line. Lines are determined by the equation y = mx + b, so this
            equation serves as the general model.
         

         
         The second method involves creating artificial neural networks, or ANNs. Though inspired
            by biological phenomena, every ANN represents a mathematical relationship. Chapter 7 introduces this exciting topic and explains how you can construct ANNs in code.
         

         
         Whether you model your system with a shape or a neural network, you need to refine
            the model until it resembles the observed data as closely as possible. This refinement
            entails updating the model’s parameters, such as the m and b in [image: images]
            . In a TensorFlow application, these trainable parameters are all instances of the
            Variable class.
         

         
         [image: tip] When you’re talking to customers, try not to use the term guess, as in “Golly, all of our guesses were way off base!” The preferred term is initial estimate, as in “Initial estimates proved inaccurate, but subsequent training runs will lead
            to better results.”
         

         
      
      
      
         
         Looking at Variables

         
         At first glance, variables have a lot in common with tensors. Both store data in multidimensional
            arrays and both can be processed with TensorFlow operations.
         

         
         But while a tensor can serve many purposes, most variables have only one purpose:
            to store data to be updated during training. A variable’s value will change as training
            proceeds, and hopefully, each change will bring the model closer to the desired system.
         

         
         Variables have three other important characteristics: 

         
         
            
            	A variable maintains its value between successive executions of a session.

            
            	A variable must be specially initialized by an executing session.

            
            	A variable is an instance of the Variable class, not the Tensor class.
            

            
         

         
         The last point is important. When working with variables, you need to call a new set
            of methods and functions. The following sections explain how to create and initialize
            variables.
         

         
         
            
            Creating variables

            
            An application can create variables by calling tf.Variable, whose first parameter sets the variable's initial value. For example, the following
               code creates a variable named variableA and sets its initial value equal to a tensor named tensorA: 
            

            
            tensorA = tf.constant([1.5, 2.5, 3.5])

            
            variableA = tf.Variable(tensorA)

            
            A variable's job is to hold data to be updated during training. Instead of initializing
               variables with constant values, many applications use random values. The following
               code creates a variable named variableB and sets its initial value to a tensor of normally distributed values: 
            

            
            variableB = tf.Variable(tf.random_normal([3]))

            
            tf.Variable accepts a Boolean parameter called trainable. If you set this parameter to True, the variable can be updated by training. If you set it to False, the variable can't be updated by training.
            

            
         
         
         
            
            Initializing variables

            
            One important difference between variables and tensors is that you need to execute
               special operations to initialize variables. That is, before you can train a variable,
               you need to create an initialization operation and execute it in a session. If an
               application attempts to use an uninitialized variable, TensorFlow raises an error:
               Attempting to use uninitialized value….
            

            
            TensorFlow provides three functions that create operations that initialize variables.
               Table 5-1 lists them and provides a description of each.
            

            
            
               
                  
                  TABLE 5-1 Variable Initialization Functions
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Function

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           variable_initializer(var_list, name=‘init’)

                        
                        
                        	
                           
                           Returns an operation that initializes the variables in the given list

                        
                        
                     

                     
                     
                        
                        	
                           
                           local_variables_initializer()

                        
                        
                        	
                           
                           Returns an operation that initializes all local variables

                        
                        
                     

                     
                     
                        
                        	
                           
                           global_variables_initializer()

                        
                        
                        	
                           
                           Returns an operation that initializes all global variables

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            Applications commonly call global_variables_initializer because it creates an operation that initializes every global variable in the session.
               The following code shows how you can call this function: 

            
            init = tf.global_variables_initializer()

            
            …

            
            with tf.Session() as sess:

            
                sess.run(init)

            
            An application can check whether a variable has been initialized by calling is_variable_initialized with the variable's name.
            

            
         
      
      
      
         
         Determining Loss

         
         Training refines a model’s variables to minimize the difference between your model
            and the observed data. Machine learning literature commonly refers to this difference
            as the cost function. TensorFlow’s documentation refers to it as loss.
         

         
         For example, if you model a set of points with a straight line, the expression for
            the model is y = mx + b. Of course, the points on the line won’t exactly match the
            observed data, yobs. If there are N points, you can represent the loss with the following expression: 
         

         
         [image: images]
            

         
         In a TensorFlow application, you can express the model and loss with the following
            code: 
         

         
         m = tf.Variable(tf.random_normal([]))

         
         b = tf.Variable(tf.random_normal([]))

         
         model = tf.add(tf.multiply(x, m), b)

         
         loss = tf.reduce_mean(tf.pow(model - y, 2))

         
         This method of computing loss is called mean squared error, and it’s one of many methods available — maximum likelihood estimation and log likelihood
            estimation are also popular. Chapter 6 discusses statistical regression and the different ways you can compute loss.
         

         
         If your model contains neural networks, you can’t compute loss with a simple equation.
            Feed-forward networks require a special algorithm like backpropagation, and recurrent
            networks rely on backpropagation through time (BPTT). I discuss neural networks and
            backpropagation in Chapter 7. I introduce BPTT in Chapter 9.
         

         
         [image: remember] There’s no right way to compute loss. The only requirement is that every decrease
            in loss must imply that the model is closer to the observed data. The process of improving
            the model by reducing loss is called optimization.
         

         
      
      
      
         
         Minimizing Loss with Optimization

         
         After you’ve formed an expression for the loss, the next step is to minimize the loss
            by updating the model’s variables. This process is called optimization, and TensorFlow supports a variety of algorithms for this purpose. Choosing the right
            algorithm is critically important when coding machine learning applications.
         

         
         Each optimization method is represented by a class in the tf.train package. Four popular optimization classes are the GradientDescentOptimizer, MomentumOptimizer, AdagradOptimizer, and AdamOptimizer classes. The following sections look at each of these classes, starting with the
            Optimizer class, which is the base class of TensorFlow's optimization classes.
         

         
         
            
            The Optimizer class

            
            You can’t directly access the Optimizer class in code; applications need to instantiate one of its subclasses instead. But
               the Optimizer class is crucial because it defines the all-important minimize method: 
            

            
            minimize(loss, global_step=None, var_list=None, gate_gradients=1, aggregation_method=None,
                  colocate_gradients_with_ops=False, name=None, grad_loss=None)

            
            The only required argument is the first, which identifies the loss. By default, minimize can access every trainable variable in the graph. An application can select specific
               variables for optimization by setting the var_list argument.
            

            
            minimize returns an operation that can be executed by a session's run method. Each execution performs two steps: 
            

            
            
               
               	Compute values that update the variables of interest.

               
               	Update the variables of interest with the values computed in Step 1.

               
            

            
            Just as you probably won’t win 20 Questions with your first question, you probably
               won’t optimize your model with a single call to minimize. Most applications perform optimization in a loop, and the following code gives an
               idea what an optimization loop looks like: 
            

            
            # Create the optimizer and obtain the operation

            
            optimizer = tf.train.GradientDescentOptimizer(learn_rate)

            
            optimizer_op = minimize(loss)

            
             

            
            # Execute the minimization operation in a session

            
            with tf.Session() as sess:

            
                for step in range(num_steps):

            
                    sess.run(optimizer_op)

            
            If the optimizer reaches a suitable minimum, it has converged to the minimum. If it fails to reach a minimum, the optimizer has diverged.
            

            
            Each call to the session's run method minimizes the loss by updating variables. An application controls how updates
               are performed by creating a subclass of Optimizer. This discussion explores four popular Optimizer subclasses: GradientDescentOptimizer, MomentumOptimizer, AdagradOptimizer, and AdamOptimizer.
            

            
            [image: technicalstuff] The following discussion gets awfully nerdy, and if you're just getting started in
               machine learning, you don’t really need to know the math. However, selecting the right
               optimizer can make a significant impact on the application’s performance. Also, if
               you’re interviewing for a lucrative TensorFlow job, you should be able to justify
               why you prefer the AdamOptimizer to the GradientDescentOptimizer.
            

            
         
         
         
            
            The GradientDescentOptimizer

            
            The GradientDescentOptimizer is the simplest and most common of the optimizers used in machine learning. If you
               look through online example code or textbooks on machine learning, you're likely to
               encounter this optimizer frequently.
            

            
            Despite its popularity, few experts recommend the GradientDescentOptimizer over the alternatives. To see why, you need to understand the algorithm it uses to
               perform optimization. In this discussion, I present the theory of gradient descent
               and then explain how you can create and use GradientDescentOptimizers in code.
            

            
            
               
               The Gradient Descent algorithm

               
               The GradientDescentOptimizer minimizes loss using the gradient descent algorithm, which relies on a crucial mathematical
                  fact: A function decreases fastest at a point in the direction determined by its negative
                  gradient at that point.
               

               
               If you've taken calculus, you know that the derivative of a function at a point equals
                  the function’s slope at that point. That is, if f(x) is differentiable, its derivative
                  with respect to x is denoted f’(x), and the slope at point a is denoted f’(a). Figure 5-1 shows what a function’s derivative looks like.
               

               
               
                  
                  [image: image] 
                     
                        
                        FIGURE 5-1: The derivative at a point equals the slope of the curve at that point.
                        

                        
                     
                     
                  
                  
               

               
               A function with multiple variables has multiple derivatives. As an example, f(x, y)
                  has a derivative with respect to x and a derivative with respect to y. These are partial derivatives, and they’re denoted with the following notation: 
               

               
               [image: images]
                  

               
               Figure 5-2 depicts the relationship [image: images]
                  . At point (1, 2), the partial derivative with respect to x is –8, and the partial derivative with respect to y is –8.
               

               
               
                  
                  [image: image] 
                     
                        
                        FIGURE 5-2: The gradient points in the direction of steepest ascent.
                        

                        
                     
                     
                  
                  
               

               
               Geometrically speaking, a vector is a quantity with a magnitude and a direction. A vector can be defined with components
                  that identify its magnitudes in orthogonal directions. You can think of a vector as
                  an arrow in space. If a vector points two units in the positive x-direction and three
                  units in the negative y-direction, it can be represented as <2, -3>.
               

               
               The gradient descent algorithm is concerned with a special type of vector called a
                  gradient. A function’s gradient is a vector whose components equal the function’s partial
                  derivatives. The gradient of f is denoted ∇f, and if the function has three variables, you can express its gradient as follows:
                  
               

               
               [image: images]
                  

               
               If the function has two variables, its gradient vector will have two components. In
                  Figure 5-2, the gradient at (1, 2) is the vector <-8, -8>. This vector is represented by the
                  black arrow extending from the point (1, 2).
               

               
               Suppose that the function in the figure represents a mountain in the Swiss Alps. If
                  you’re an Alpine climber, the gradient identifies the steepest direction of climbing.
                  This designation isn’t a coincidence. A function’s gradient always points in the direction
                  of steepest ascent. Similarly, the opposite vector identifies the steepest direction
                  for descent.
               

               
               After you understand the significance of the gradient, you’re ready to tackle the
                  gradient descent algorithm. This algorithm computes the gradient of the loss and updates
                  the model’s variables until the gradient of the loss falls to zero. To express this
                  operation mathematically, I need to introduce some notation: 
               

               
               
                  
                  	The set of trainable variables is denoted θ. The values of the variables at Step t is denoted θt.
                  

                  
                  	The loss, which is a mathematical relationship containing the model’s variables, is
                     denoted J(θ). The gradient of the loss is ∇J(θ).
                  

                  
                  	The learning rate, denoted η, is a value that affects how much θj changes from step to step.
                  

                  
               

               
               With this notation, you can express each optimization step of the GradientDescentOptimizer with the following equation: 
               

               
               [image: images]
                  

               
               This shows how the model’s variables change with each training operation. As training
                  continues, ∇J(θ) should approach zero, which means that each new set of variables should be approximately
                  equal to the previous set. At this point, optimization has completed because the optimizer
                  has converged to a minimum.
               

               
               The value of η is determined by the developer, and selecting this value is a crucial decision. If
                  η is too large, the algorithm will progress quickly, but it may step around the minimum
                  and never reach a final value.
               

               
               If η is too small, the algorithm will move more precisely, but it will take a great deal
                  of time. In addition, the optimizer may stop at a local minimum instead of a global
                  minimum.
               

               
            
            
            
               
               Creating a GradientDescentOptimizer

               
               An application can perform optimization with the gradient descent algorithm by creating
                  a GradientDescentOptimizer. The constructor is given as follows: 
               

               
               tf.train.GradientDescentOptimizer(learning_rate, use_locking=False, name='GradientDescent')

               
               The learning_rate parameter sets η, the learning rate. The following code creates an optimizer and sets its learning
                  rate to 0.1: 
               

               
               learn_rate = 0.1

               
               optimizer = tf.train.GradientDescentOptimizer(learn_rate)

               
               optimizer_op = optimizer.minimize(loss)

               
               Many developers set η using trial and error, and initial estimates frequently range between 0.1 and 0.0001.
                  A common method is to start with a large value of η and reduce the value until the optimizer converges successfully. Computer scientists
                  have devised automatic methods for selecting η, but to the best of my knowledge, no method has gained widespread acceptance.
               

               
               If you set the use_locking parameter to True, the GradientDescentOptimizer will acquire a lock that prevents other operations from modifying its variables.
                  The variables can still be read normally.
               

               
            
            
            
               
               Shortcomings

               
               The gradient descent algorithm is the oldest and simplest algorithm for minimizing
                  loss, but it has important disadvantages that every developer should be aware of.
               

               
               The first disadvantage involves the difference between a local minimum and a global
                  minimum. Optimization seeks the point of minimum loss across the entire range of the
                  function. This value is the global minimum of the loss.
               

               
               But a GradientDescentOptimizer may converge to a minimum that isn't global. This value is a local minimum, and Figure 5-3 illustrates the difference. In this figure, the function has two local minima surrounding
                  the global minimum. If the optimizer reaches either of the local minima, it will halt
                  optimization because the gradient of the loss, ∇J(θ), equals 0.
               

               
               
                  
                  [image: image] 
                     
                        
                        FIGURE 5-3: A function may have many local minima, but only one global minimum.
                        

                        
                     
                     
                  
                  
               

               
               You need to be aware of three other issues when using the gradient descent algorithm:
                  
               

               
               
                  
                  	It’s generally slow to converge to a minimum value.

                  
                  	It can only optimize differentiable functions.

                  
                  	It may oscillate between values and never reach a minimum.

                  
               

               
               This last issue deserves explanation. If the learning rate is large, the algorithm
                  may jump back and forth between a pair of points and never reach a minimum. This jumping
                  is called oscillation, and it’s a source of frequent frustration.
               

               
               You can reduce the likelihood of oscillation by reducing the learning rate. Alternatively,
                  you can create an optimizer whose learning rate changes from step to step. The following
                  sections present three such optimizers: the MomentumOptimizer, the AdagradOptimizer, and the AdamOptimizer.
               

               
            
         
         
         
            
            The MomentumOptimizer

            
            The MomentumOptimizer has a lot in common with the GradientDescentOptimizer, but it usually converges faster with a reduced likelihood of oscillation. The MomentumOptimizer minimizes loss through the momentum algorithm, which uses preceding values of the
               loss gradient to update the current set of variables.
            

            
            The momentum algorithm introduces a new quantity that TensorFlow calls the accumulation. This quantity, denoted [image: images]
               , is determined by the gradient of the current loss, the learning rate, and the preceding
               value of the accumulation: 
            

            
            [image: images]
               

            
            The preceding value of the accumulation, [image: images]
               , is scaled by α, called the momentum. α is set to a constant value between 0 and 1, and its value indicates how much the
               preceding step should influence the current step. Applications commonly set α equal to 0.9.
            

            
            After the accumulation is computed, you can update the set of variables with the following
               equation: 
            

            
            [image: images]
               

            
            It's important to understand how accumulation affects the rate of convergence. If
               the optimizer moves quickly toward a minimum, [image: images]
                will be significant, and the optimizer will approach the minimum even faster. If
               the optimizer is stuck between two values, [image: images]
                will reduce the amount by which the variables are updated.
            

            
            An application can create a MomentumOptimizer by calling its constructor: 
            

            
            MomentumOptimizer(learning_rate, momentum, use_locking=False, name='Momentum', use_nesterov=False)

            
            The use_locking parameter has the same purpose as the use_locking parameter in the GradientDescentOptimizer constructor. That is, the optimizer will lock its variables' values if use_locking is set to True.
            

            
            If use_nesterov is set to True, the optimizer adopts the Nesterov Accelerated Gradient descent algorithm, which
               is commonly shortened to NAG. The NAG algorithm modifies the momentum algorithm by
               updating variables before computing the loss. The following equations show how this algorithm works: 
            

            
            [image: images]
               

            
            [image: images]
               

            
            The NAG algorithm generally converges faster than the gradient descent algorithm.
               The paper On the Importance of Initialization and Momentum in Deep Learning by Ilya Sutskever et al discusses the algorithm's performance in detail.
            

            
         
         
         
            
            The AdagradOptimizer

            
            The gradient descent algorithm and the momentum algorithm apply the same learning
               rate to each variable being trained. But different variables may converge to their
               minima at different rates. The adaptive gradient (Adagrad) algorithm takes this into
               account.
            

            
            The Adagrad algorithm has two characteristics that have made it popular among academics
               and experts: 
            

            
            
               
               	The learning rate changes from variable to variable and from step to step. The learning
                  rate at the tth step for the ith variable is denoted [image: images]
                  .
               

               
               	Adagrad methods compute subgradients instead of gradients. A subgradient is a generalization of a gradient that applies
                  to nondifferentiable functions. This means AdaGrad methods can optimize both differentiable
                  and nondifferentiable functions.
               

               
            

            
            In 2011, John Duchi, Elad Hazan, and Yoram Singer described the first Adagrad algorithm
               in their paper Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. The math is so ugly that I won’t attempt to explain it. In case you’re curious,
               here’s the equation for the per-variable learning rate: 
            

            
            [image: images]
               

            
            In this equation, Gt, ii is the ith element of the diagonal of the matrix formed by taking the outer product of the
               subgradient of the loss with itself. After computing the learning rates, the optimizer
               updates the variables: 
            

            
            [image: images]
               

            
            Thankfully, TensorFlow developers don’t have to worry about subgradients or outer
               products. This is because the TensorFlow API provides the AdagradOptimizer class, whose constructor is given as follows. 
            

            
            AdagradOptimizer(learning_rate, initial_accumulator_value=0.1, use_locking=False,
                  name='Adagrad')

            
            One shortcoming of the Adagrad algorithm is that the learning rates always decrease
               in magnitude. As training continues, their values will eventually reach zero, bringing
               training to a halt.
            

            
         
         
         
            
            The AdamOptimizer

            
            The Adam (Adaptive Moment Estimation) algorithm closely resembles the Adagrad algorithm
               in many respects. It also resembles the Momentum algorithm because it takes two factors
               into account: 
            

            
            
               
               	The first moment vector: Scales the gradient by [image: images]
                  

               
               	The second moment vector: Scales the square of the gradient by [image: images]
                  

               
            

            
            These moment vectors are denoted mt and vt, respectively. The following equations show how their values change from step to
               step: 
            

            
            [image: images]
               

            
            [image: images]
               

            
            After computing these vectors, the optimizer updates the model’s variables with the
               following equations: 
            

            
            [image: images]
               

            
            [image: images]
               

            
            In the second equation, the purpose of ε is to prevent the denominator from reaching zero. For this reason, ε is usually set to a small value.
            

            
            To employ the Adam algorithm, you need to create an instance of AdamOptimizer. The constructor is given as follows: 
            

            
            AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False,
                  name='Adam')

            
            [image: tip] When deciding on an optimizer, I always start with the AdamOptimizer, especially when working with images. The only exception is when I'm providing code
               to newcomers. In this case, I create a GradientDescentOptimizer, which doesn’t scare anyone.
            

            
         
      
      
      
         
         Feeding Data into a Session

         
         Instead of processing all the test data with one call to a session’s run method, applications frequently split the data into portions and call run once for each portion. There are at least three reasons to do so: 
         

         
         
            
            	If the data is stored in a file or on a remote server, it may be more efficient to
               process one portion of data while another is loaded from the source.
            

            
            	Shuffling the portions of data increases the data's stochasticity. This process can improve convergence to a global minimum instead of a local minimum.
               I explain the rationale for data shuffling in the upcoming “Stochasticity” section.
            

            
            	Time constraints make it impractical to process all the data at once.

            
         

         
         A portion of data processed in one session execution is called a batch. The process of transferring batches to a session is called feeding data to the session. To configure this in code, an application needs to perform three steps: 
         

         
         
            
            	Define placeholders to contain the data to be fed into the session.

            
            	Use the placeholders in the expressions for model and loss.

            
            	Set the second parameter of the session’s run method to a dictionary that associates each placeholder with a source of data.

            
         

         
         Step 2 is trivial because you can process placeholders in the same way that you can
            process tensors. This discussion focuses on Steps 1 and 3. Later chapters present
            code that demonstrates how data can be fed into a session.
         

         
         
            
            Creating placeholders

            
            A placeholder is a constant Tensor that holds a batch of data to be fed into a session. You can create placeholders
               by calling the tf.placeholder function: 
            

            
            tf.placeholder(dtype, shape=None, name=None)

            
            The first two arguments specify the type of the placeholder's elements and its size.
               The actual content of a placeholder is set by the running session, so there’s no way
               to initialize a placeholder.
            

            
            For example, the following code creates a placeholder that contains 32-bit floating-point
               values: 
            

            
            ph = tf.placeholder(tf.float32)

            
            If a placeholder’s shape isn’t given, it can be set to a tensor of any shape. If the
               shape is given, assigning a tensor of a different shape will cause an error.
            

            
         
         
         
            
            Defining the feed dictionary

            
            Chapter 3 introduces the Session class and explains how you can execute a session by calling its run method. But the discussion doesn't mention run’s second argument, feed_dict, which makes it possible to feed data into the session. To feed data to a session,
               you need to assign feed_dict to a dictionary whose keys identify tensors in the session. Most applications set
               these keys to placeholders. Each value in feed_dict identifies a source of data to be passed to the tensor (usually a placeholder) identified
               by the key.
            

            
            To demonstrate data feeding, the following code creates a placeholder, uses it in
               a model operation, and then feeds it into the session through the feed_dict parameter of the run method. 
            

            
            ph = tf.placeholder(tf.float32)

            
            …

            
            with tf.Session() as sess:

            
              sess.run(optimizer, feed_dict={ph: data_src})

            
            When associating data with a placeholder, there's a catch: The data source can be
               a list of constants or a NumPy ndarray, but it can’t be a tensor. The following code associates a placeholder with an ndarray: 
            

            
            ph = tf.placeholder(tf.float32)

            
            vals = np.array([9., 8., 7.])

            
            incr = tf.add(ph, 1.)

            
            with tf.Session() as sess:

            
              res = sess.run(incr, feed_dict={ph: vals})

            
              print(res)

            
            In this case, the printed result is [10. 9. 8.] because feed_dict passes the vals array to the session through the ph placeholder. If an application assigns vals to a tensor, TensorFlow will raise the following error: The value of a feed cannot be a tf.Tensor object.

            
         
         
         
            
            Stochasticity

            
            To keep optimizers from converging to a local minimum instead of a global minimum,
               many applications split their training data into small batches and feed them randomly
               to the session. This randomness, also called stochasticity, forces the optimizer to take larger jumps at first and smaller jumps as training
               progresses. This jumping increases the likelihood that the optimizer will find a global
               minimum.
            

            
            If the gradient descent algorithm is employed to process stochastic data, it's referred
               to as the stochastic gradient descent algorithm. If you encounter the term SGD in machine learning literature, this algorithm
               is what it’s referring to.
            

            
         
      
      
      
         
         Monitoring Steps, Global Steps, and Epochs

         
         In TensorFlow, each session execution that processes a single batch of data is called
            a step. Many TensorFlow functions and methods accept a parameter called global_step, which can be used to monitor the total number of steps executed by a session. In
            practice, global_step serves as the index of the batch being processed. You can access this index in code
            by calling tf.train.global_step.
         

         
         You can also store the global step in a regular variable. This storage requires two
            operations: 
         

         
         
            
            	Define a variable with an initial value of 0 and its trainable argument set to False.

            
            	Set the variable equal to the global_step parameter of the optimizer's minimize method.

            
         

         
         If its global_step parameter is set to a variable, minimize will increment the variable each time a session processes a batch of data. The following
            code creates a variable named gstep and configures it to store the application's global step: 
         

         
         # Define the variable to hold the global step

         
         gstep = tf.Variable(0, trainable=False)

         
          

         
         # Configure the optimizer

         
         learn_rate = 0.1

         
         batch_size = 40

         
         optimizer = tf.train.GradientDescentOptimizer(learn_rate).

         
                     minimize(loss, global_step=gstep)

         
          

         
         # Initialize variables

         
         init = tf.global_variables_initializer()

         
          

         
         # Launch session

         
         with tf.Session() as sess:

         
             sess.run(init)

         
          

         
             for batch in range(batch_size):

         
                 _, step, result = sess.run([optimizer, gstep, x_min])

         
                 print("Step %d: Computed result = %f" % (step, result))

         
         As you look at this code, a question may occur to you: Why keep track of the global
            step when you can access the loop index? To answer this question, suppose that you
            execute ten training batches and then restart your application. The loop variable
            will revert back to 0, but if you’d saved the global step to a file, you can restore
            it and use it as the current global step. I explain how to save variables to a file
            in the section “Saving variables,” later in this chapter.
         

         
         In the preceding example, the test executes each batch only once. In a real-world
            application, all the batches will be processed multiple times. A pass through every
            batch of a dataset is referred to as an epoch. For example, if a dataset is split into 50 batches, an epoch consists of 50 steps.
         

         
         Many applications execute sessions in two loops: The outer loop iterates once for
            each epoch, and the inner loop executes once for each batch. The following code creates
            the two loops and calls sess.run with each iteration: 
         

         
         for epoch in range(num_epochs):

         
             for batch in range(num_batches):

         
                 sess.run(…)

         
         It's important to understand the difference between epochs and batches. Similar training
            loops are performed throughout this book’s example code and examples on the Internet.
         

         
      
      
      
         
         Saving and Restoring Variables

         
         The Saver class makes it straightforward to load and store variables. By default, a Saver can access every variable in the session. But the first argument of the constructor
            can identify specific variables to be accessed. For example, the following code creates
            a Saver that can save/restore only two variables: firstVar and secondVar: 
         

         
         saver = tf.train.Saver([firstVar, secondVar])

         
         After you create a Saver, you can store variables to a file by calling its save method. Then you can restore variables from a file by calling restore.
         

         
         
            
            Saving variables

            
            The save method stores variables and data related to the variables. By default, the method
               creates at least three binary files, each with the same name but a different suffix:
               
            

            
            
               
               	filename.data-X-of-Y: Stores variable values
               

               
               	filename.index: Holds the offset of each variable in the data file(s)
               

               
               	filename.meta: MetaGraphDef containing the structure of the graph that contains the variables
               

               
            

            
            The data files contain variable values, and if the application has many variables,
               save will create multiple data files. If there's only one file, its name will be filename.data-00000-of-00001.
            

            
            The index file contains a table that matches variable names to offsets in the index
               file. You can retrieve variables using the restore method, which I explain in the next section.
            

            
            You can create these files by creating a Saver and calling its save method: 
            

            
            save(sess, save_path, global_step=None, latest_filename=None, meta_graph_suffix='meta',
                  write_meta_graph=True, write_state=True)

            
            These parameters are straightforward to understand. sess is the session containing the variables of interest and save_path identifies the path of the file to contain the saved data. The last element of save_path specifies the name of the files to be generated.
            

            
            If latest_filename is set, save will create a text file that lists the paths of files involved in the save operation.
               If global_step is set, the value will be appended to each of the generated files.
            

            
            For example, the following code creates a Saver and calls save to create the generated files (output.*) in the current directory: 
            

            
            saver = tf.train.Saver()

            
            saver.save(sess, os.getcwd() + "/output")

            
            If there aren't many variables to store, save will generate only three files: output.data-00000-of-00001, output.index, and output.meta.
            

            
         
         
         
            
            Restoring variables

            
            The restore method loads variables that have been stored previously. The process of restoring
               variables consists of two steps: 
            

            
            
               
               	Call import_meta_graph to add the variables' nodes to the current graph.

               
               	Call restore to access the variable data.

               
            

            
            The first step is simple. tf.train.import_meta_graph accepts the path of a *.meta file, reads graph data from the file, and adds the graph's nodes to the current graph.
               The function returns a Saver that lets you restore variables from the loaded graph.
            

            
            For example, the following code imports graph data from output.meta and obtains a Saver that can be used to load variables: 
            

            
            saver = tf.train.import_meta_graph("output.meta")

            
            After obtaining the Saver, an application can load variables by calling its restore method, whose signature is given as follows: 
            

            
            restore(sess, save_path)

            
            As in the save method, sess identifies the session containing the variables, and save_path is the path to the file containing the variable data. This path must include the
               name of the three files without the suffix. As an example, the following code uses
               saver to load variables from output into the current graph: 
            

            
            saver.restore(sess, os.getcwd() + "/output")

            
         
      
      
      
         
         Working with SavedModels

         
         In addition to storing variables with a Saver, you can store your application's entire model by creating a SavedModel. As stated in the documentation, SavedModels are “the universal serialization format for TensorFlow models” and serve as “the
            canonical way to export TensorFlow graphs.”
         

         
         To be precise, a SavedModel is a directory that contains a *.pb or *.pbtxt file. This file contains the application's model and stores graph definitions in
            MetaGraphDef protocol buffers. In addition to this file, a SavedModel may contain one or more of the following subdirectories: 
         

         
         
            
            	variables: A directory containing the application's variables (files are similar to those produced
               by the Saver’s save method, excluding the *.meta file)
            

            
            	assets: Auxiliary files that need to be loaded into the graph
            

            
            	assets.extra: User-provided files that don't need to be loaded into the graph
            

            
         

         
         Saving and restoring a SavedModel isn’t conceptually difficult, but the code gets a little complicated.
         

         
         
            
            Saving a SavedModel

            
            The process of saving an application’s model to a SavedModel is similar to the process of storing variables. But instead of creating a Saver, you need to create a tf.saved_model.builder.SavedModelBuilder. The constructor accepts a single argument that identifies the top-level directory:
               
            

            
            builder = tf.saved_model.builder.SavedModelBuilder("out")

            
            After creating a SavedModelBuilder, you can add data to the model and save the model to the given directory. To add
               data to the model, you need to call one of two functions: add_meta_graph or add_meta_graph_and_variables. The signature of add_meta_graph is given as 
            

            
            add_meta_graph(tags, signature_def_map=None, assets_collection=None, legacy_init_op=None,
                  clear_devices=False, main_op=None)

            
            Metagraphs identify their capabilities and purposes with strings called tags. You can assign a metagraph's tags by setting the tags parameter. The tf.saved_model.tag_constants provides three common tags: GPU, SERVING, and TRAINING.
            

            
            A graph's inputs and outputs form its signature. In code, a graph’s signature is represented by a SignatureDef, and you can create this by calling the build_signature_def function of the tf.saved_model.signature_def_utils package: 
            

            
            build_signature_def(inputs=None, outputs=None,  method_name=None)

            
            To create the signature, you need to set inputs and outputs to dictionaries that associates names with TensorInfo protocol buffers. For the names, many applications use constants from tf.saved_model.signature_constants, which include CLASSIFY_INPUTS, CLASSIFY_OUTPUT_CLASSES, PREDICT_INPUTS, and PREDICT_OUTPUTS.
            

            
            You can obtain a TensorInfo for a tensor by calling tf.saved_model.utils.build_tensor_info with the tensor. The following code returns a TensorInfo for a tensor named input_vec: 
            

            
            info = tf.saved_model.utils.build_tensor_info(input_vec)

            
            The method_name parameter of build_signature_def is a string that serves as the signature's method name. You can set this to one of
               the strings in the tf.saved_model.signature_constants module, such as CLASSIFY_METHOD_NAME, PREDICT_METHOD_NAME, or REGRESS_METHOD_NAME.
            

            
            The add_meta_graph_and_variables method is similar to add_meta_graph, but it has an extra parameter. The first parameter of add_meta_graph_and_variables is sess, which identifies the session that should provide the metagraph's variables.
            

            
            After you’ve added metagraphs to a SavedModel, you can store the SavedModel by calling the save method. This accepts an as_text parameter that identifies whether the protocol buffer should be saved as a text file
               (*.pbtxt) or a binary file (*.pb). By default, save stores metagraph data in a binary file.
            

            
         
         
         
            
            Loading a SavedModel

            
            While it's complex to save metagraphs to a SavedModel, it’s easy to load them. You need to know only one function: 
            

            
            tf.saved_model.loader.load(sess, tags, export_dir, **saver_kwargs)

            
            This loads the MetaGraphDef protocol buffer from the directory given by export_dir with the tags given by tags. The sess parameter identifies the session that should contain the metagraph's variables, assets,
               and signatures.
            

            
         
      
      
      
         
         Putting Theory into Practice

         
         When I started learning TensorFlow, I found training difficult to understand. In addition
            to the theory, there are many new concepts to deal with, such as variables, optimizers,
            and placeholders.
         

         
         To clarify how training works, I provide ch5/simple_train.py in the example code. The application is so simple that it doesn’t even bother to
            formulate a model. Instead, it computes the loss with a simple quadratic equation:
            [image: images]
            . Figure 5-4 shows what this looks like.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 5-4: The loss reaches a minimum when x equals 2.
                  

                  
               
               
            
            
         

         
         As shown in Figure 5-4, the loss reaches a global minimum when x_var equals 2. Therefore, the optimizer's goal is to update x_var until it equals 2. The code in Listing 5-1 shows how you can accomplish this goal in TensorFlow.
         
 
         
         LISTING 5-1 Training in TensorFlow
         
 
         
         # Define a trainable variable

         
         x_var = tf.Variable(0., name='x_result')

         
          

         
         # Define an untrainable variable to hold the global step

         
         step_var = tf.Variable(0, trainable=False)

         
          

         
         # Express loss in terms of the variable

         
         loss = x_var * x_var - 4.0 * x_var + 5.0

         
          

         
         # Find variable value that minimizes loss

         
         learn_rate = 0.1

         
         num_epochs = 40

         
         optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss, global_step=step_var)

         
          

         
         # Initialize variables

         
         init = tf.global_variables_initializer()

         
          

         
         # Create the saver

         
         saver = tf.train.Saver()

         
          

         
         # Create summary data and FileWriter

         
         summary_op = tf.summary.scalar('x', x_var)

         
         file_writer = tf.summary.FileWriter('log', graph=tf.get_default_graph())

         
          

         
         # Launch session

         
         with tf.Session() as sess:

         
             sess.run(init)

         
          

         
             for epoch in range(num_epochs):

         
                 _, step, result, summary = sess.run([optimizer, step_var, x_var, summary_op])

         
                 print('Step %d: Computed result = %f' % (step, result))

         
          

         
                 # Print summary data

         
                 file_writer.add_summary(summary, global_step=step)

         
                 file_writer.flush()

         
          

         
             # Store variable data

         
             saver.save(sess, os.getcwd() + '/output')

         
             print('Final x_var: %f' % sess.run(x_var))

         
         This code creates two variables: a trainable variable named x_var and an untrainable variable named step_var. loss is set to a quadratic equation whose independent variable is x_var.
         

         
         The application calls tf.global_variables_initializer to obtain an operation for initializing its variables. The session must execute this
            operation before it can train the variables in the optimization process.
         

         
         After creating the variables, the application creates a GradientDescentOptimizer and calls its minimize method to reduce the loss to a minimum. Then it assigns the global_step parameter of minimize to step_var. This assignment tells the session to increment step_var each time it performs a training operation.
         

         
         After each training operation, print displays the global step and the current value of x_var. As training continues, x_var approaches 2, the point of minimum loss. Similarly, step_var approaches 40 because the training loop performs 40 iterations.
         

         
         When optimization is complete, the application stores its variables to a file. The
            save method of the Saver instance stores variable data to three files in the current directory: output.data-00000-of-00001, output.index, and output.meta.
         

         
         The code in ch5/restore_vars.py loads the value of x_var from the new data files. Listing 5-2 presents the code.
 
         
         LISTING 5-2 Loading Variables from a File
         
 
         
         # Create session

         
         with tf.Session() as sess:

         
          

         
             # Load stored graph into current graph

         
             saver = tf.train.import_meta_graph('output.meta')

         
          

         
             # Restore variables into graph

         
             saver.restore(sess, os.getcwd() + '/output')

         
          

         
             # Display value of variable

         
             print('Variable value: ', sess.run('x_result:0'))

         
         It's important to see that this code doesn’t create a Saver by calling the class’s constructor. Instead, it obtains a Saver by calling import_meta_graph with the name of the file containing graph data.
         

         
         After obtaining the Saver, the application obtains the variable's value by calling the Saver’s restore method and the session's run method. Even though the variable’s name was x_var, the application calls run with x_output:0 because the variable's name parameter was set to x_output.
         

         
      
      
      
         
         Visualizing the Training Process

         
         The ch5/simple_train.py application prints the loss at each step using the following code: 
         

         
         print("Step %d: Computed result = %f" % (step, result))

         
         TensorFlow provides a better way to monitor training. Chapter 4 covers the TensorBoard utility, which reads summary data generated by an application.
            The code in ch5/simple_train.py generates summary data for training by performing four steps: 
         

         
         
            
            	Call tf.summary.scalar to create an operation that writes x_var to summary data.

            
            	Call tf.summary.FileWriter to create a FileWriter.

            
            	Execute the session with the operation from Step 1.

            
            	With each session execution, print the summary data by calling the FileWriter's add_summary method.

            
         

         
         For the last step, the following code prints the summary data: 
         

         
         file_writer.add_summary(summary, global_step=step)

         
         The global_step parameter is important to understand. This parameter changes from step to step, and
            it tells TensorBoard to display a different value at each step. Figure 5-5 presents TensorBoard's output for the variable as training proceeds.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 5-5: TensorBoard illustrates training by displaying variable values at each step.
                  

                  
               
               
            
            
         

         
         In this example, the loss is so simple that the optimizer converges gently to the
            minimum when x equals 2. In real-world applications, the optimization process is never
            as smooth. Thankfully, TensorBoard can illustrate what’s happening in the training
            process.
         

         
      
      
      
         
         Session Hooks

         
         After you understand how to save variables and generate summary data, you’re ready
            to learn how to automate these operations with session hooks. Session hooks make it
            possible to monitor a session’s state, access a session’s data, and execute code at
            different points in the session’s execution. To use session hooks, you need to perform
            two steps: 
         

         
         
            
            	Create one or more SessionRunHook instances.

            
            	Create a MonitoredSession and configure it with the session hooks.

            
         

         
         This discussion presents both steps. I also present code that demonstrates how these
            steps can be performed in practice.
         

         
         
            
            Creating a session hook

            
            To monitor a session's operation, you need to create a custom subclass of SessionRunHook or instantiate an existing subclass provided in the tf.train package. I refer to an instance of SessionRunHook or one of its subclasses as a session hook. To explain this topic, I present the methods of the SessionRunHook class and then introduce the subclasses provided by TensorFlow.
            

            
            
               
               Life-cycle methods of SessionRunHook

               
               When you associate a session hook with a session, the application calls the hook's
                  methods at different stages in the session’s life-cycle. To be specific, the application
                  calls five methods of the SessionRunHook class: 
               

               
               
                  
                  	begin(): Called when the session is created
                  

                  
                  	after_create_session(session, coord): Called when the session's graph is finalized
                  

                  
                  	before_run(run_context): Called before the associated session starts executing
                  

                  
                  	after_run(run_context, run_values): Called after the associated session starts executing
                  

                  
                  	end(session): Called at the end of the session
                  

                  
               

               
               It's important to see the difference between begin and after_create_session. An application calls begin immediately after the session has been created. At this point, you can access and
                  modify the session's graph. But when the application calls after_create_session, the graph’s structure is finalized and can’t be changed.
               

               
               The before_run and after_run methods both provide a run_context parameter. This is an instance of SessionRunContext, and it provides four members: 
               

               
               
                  
                  	session: The associated session
                  

                  
                  	original_args: A SessionRunArgs that contains the arguments of the session's run method
                  

                  
                  	stop_requested: A bool that identifies whether a stop is requested
                  

                  
                  	request_stop(): Tells the session to stop
                  

                  
               

               
               If you want a session hook to read a value from the session's graph, you can code
                  before_run to return a SessionRunArgs instance. You need to set the first argument of the SessionRunArgs constructor to the name of the variable or tensor to access.
               

               
               If you added a return value to before_run, you can obtain the desired variable(s) or tensor(s) through the run_values argument of the after_run method. This SessionRunValues object has three fields: 
               

               
               
                  
                  	results: The value(s) accessed by the return value of before_run

                  
                  	options: The RunOptions object used to configure the session's execution
                  

                  
                  	run_metadata: The RunMetadata object containing information about the session's execution
                  

                  
               

               
               This relationship between before_run and after_run can be confusing. To clarify how the two methods work together, the following code
                  creates a subclass of SessionRunHook that prints information before and after the session runs. 
               

               
               class CustomHook(tf.train.SessionRunHook):

               
                   def before_run(self, run_context):

               
                       print("First argument: ", run_context.original_args.fetches);

               
                       return tf.train.SessionRunArgs(loss)

               
                

               
                

               
                   def after_run(self, run_context, run_values):

               
                       print("Loss: ", run_values.results);

               
               In this code, before_run returns a SessionRunArgs that identifies the name of the loss variable. When after_run is called, the results field of the run_values argument contains the current value of loss.
               

               
            
            
            
               
               Subclasses of SessionRunHook

               
               You can create your own subclasses of SessionRunHook and add code for different life-cycle methods. But in most cases, it's easier to
                  instantiate an existing subclass. Table 5-2 presents the constructors of each session hook class in the tf.train package.
               

               
               
                  
                     
                     TABLE 5-2 Session Hook Classes
                     

                  
                  
                  
                     
                     
                        
                        
                           
                           	
                              
                              Class

                           
                           
                           	
                              
                              Description

                           
                           
                        

                        
                     
                     
                     
                        
                        
                           
                           	
                              
                              LoggingTensorHook(tensors, every_n_iter=None, every_n_secs=None, at_end=False, formatter=False)

                           
                           
                           	
                              
                              Logs values of a tensor after a given number of steps or after a given time

                           
                           
                        

                        
                        
                           
                           	
                              
                              CheckpointSaverHook(checkpoint_dir, save_secs=None, save_steps=None, saver=None, checkpoint_baseline='model.ckpt’,
                                       scaffold=None, listeners=None)

                           
                           
                           	
                              
                              Saves data to a checkpoint after a given number of steps or after a given time

                           
                           
                        

                        
                        
                           
                           	
                              
                              SummarySaverHook(save_steps=None, save_secs=None, output_dir=None, summary_writer=None,
                                       scaffold=None, summary_op=None)

                           
                           
                           	
                              
                              Generates summary data after a given number of steps or after a given time

                           
                           
                        

                        
                        
                           
                           	
                              
                              StepCounterHook(every_n_steps=100, every_n_secs=None, output_dir=None, summary_writer=None)

                           
                           
                           	
                              
                              Counts the number of steps per second

                           
                           
                        

                        
                        
                           
                           	
                              
                              StopAtStepHook(num_steps=None, last_step=None)

                           
                           
                           	
                              
                              Tells the session to stop after a number of steps have executed or a specific step
                                 has been reached
                              

                           
                           
                        

                        
                        
                           
                           	
                              
                              NanTensorHook(loss_tensor, fail_on_nan_loss)

                           
                           
                           	
                              
                              Stops training if loss equals NaN

                           
                           
                        

                        
                        
                           
                           	
                              
                              GlobalStepWaiterHook(wait_until_step)

                           
                           
                           	
                              
                              Delays execution until the global step reaches a given value

                           
                           
                        

                        
                        
                           
                           	
                              
                              FinalOpsHook(final_ops, final_ops_feed_dict=None)

                           
                           
                           	
                              
                              Evaluates tensors at the end of a session

                           
                           
                        

                        
                        
                           
                           	
                              
                              FeedFnHook(feed_fn)

                           
                           
                           	
                              
                              Runs the given function and sets the session's feed dict

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               The first three session hook classes automate the processes of logging messages, saving
                  variables, and generating summary data. You can specify how often the operation should
                  be performed by setting a training step interval (every_n_iter or n_steps) or the time interval (every_n_secs or n_secs). Naturally, you can't set both types of intervals in the same method.
               

               
               A StepCounterHook tells you about the session’s performance by showing how many training steps are
                  performed in the given time interval. To provide output, it generates summary data
                  using a summary writer. In contrast, a StopAtStepHook tells the session to stop at a given global step value or after a specified number
                  of training steps.
               

               
            
         
         
         
            
            Creating a MonitoredSession

            
            A MonitoredSession isn't a Session, but it contains a Session instance and provides methods for interacting with the session. For example, you
               can launch a MonitoredSession's session by calling run and close the session by calling close.
            

            
            To create a MonitoredSession, you need to call its constructor: 
            

            
            MonitoredSession(session_creator=None, hooks=None, stop_grace_period_secs=120)

            
            The first parameter is a SessionCreator instance, which configures the underlying session. TensorFlow provides two subclasses
               of SessionCreator: ChiefSessionCreator and WorkerSessionCreator. The terms chief and worker refer to different types of processes in distributed applications.
            

            
            You can associate session hooks with a MonitoredSession by setting the hooks parameter to a list of session hooks. The last parameter, stop_grace_period_secs, sets the number of seconds that a session thread can continue executing after an
               application calls close.
            

            
            The MonitoredSession class also provides a method called should_stop. Applications frequently employ this method to determine whether the session should
               continue running. A session hook can stop a session through its request_stop method, which calls the monitored session's should_stop method. The following code demonstrates how should_stop can be used: 
            

            
            with tf.train.MonitoredSession(hooks=[custom_hook]) as sess:

            
                while not sess.should_stop():

            
                    sess.run(…)

            
            This should_stop method becomes particularly important for distributed TensorFlow applications. I
               discuss distributed applications and their sessions in Chapter 13.
            

            
         
         
         
            
            Putting theory into practice

            
            The code in the ch5/monitor_train.py module performs the same training operation as in the ch5/simple_train.py module. The difference is that monitor_train.py uses session hooks to save variables
               and generate summary data. Listing 5-3 presents the code.
            
 
            
            LISTING 5-3 Monitoring a Session with Session Hooks
            
 
            
            # Custom session hook

            
            class CustomHook(tf.train.SessionRunHook):

            
             

            
                def begin(self):

            
                    print('Beginning the session!')

            
             

            
                def before_run(self, run_context):

            
                    return tf.train.SessionRunArgs(loss)

            
             

            
                def after_run(self, run_context, run_values):

            
                    if run_context.original_args != 'init':

            
                        print('Loss: ', run_values.results)

            
             

            
                def end(self, session):

            
                    print('The session is about to end!')

            
             

            
            # Define a trainable variable

            
            x_var = tf.Variable(0., name='x_result')

            
             

            
            # Define an untrainable variable to hold the global step

            
            step_var = tf.train.create_global_step()

            
             

            
            # Express loss in terms of the variable

            
            loss = x_var * x_var - 4.0 * x_var + 5.0

            
             

            
            # Find variable value that minimizes loss

            
            learn_rate = 0.1

            
            num_epochs = 40

            
            optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss, global_step=step_var)

            
             

            
            # Initialize variables

            
            init = tf.global_variables_initializer()

            
             

            
            # Create summary operation

            
            summary_op = tf.summary.scalar('x', x_var)

            
             

            
            # Create hooks

            
            custom_hook = CustomHook()

            
            checkpoint_hook = tf.train.CheckpointSaverHook(checkpoint_dir='ckpt_dir',

            
                checkpoint_basename='output', save_steps=10)

            
            summary_hook = tf.train.SummarySaverHook(save_steps=10, output_dir='log', summary_op=summary_op)

            
            hooks = [custom_hook, checkpoint_hook, summary_hook]

            
             

            
            # Launch session

            
            with tf.train.MonitoredSession(hooks=hooks) as sess:

            
                sess.run(init)

            
             

            
                for epoch in range(num_epochs):

            
                    sess.run(optimizer)

            
            This module creates three session hook instances: 
            

            
            
               
               	CustomHook: Prints messages at different points in the session's execution
               

               
               	CheckpointSaverHook: Saves checkpoint data to a directory named ckpt_dir

               
               	SummarySaverHook: Saves summary data to a directory named log
               

               
            

            
            After creating the session hooks, the module creates a MonitoredSession and configures it with the three hook instances. Then it initializes the session’s
               variables and optimizes the model.
            

            
         
         
      
      
   
      
      
         
         Part 2
         

         
         Implementing Machine Learning

         
         IN THIS PART …

         
         Explore different types of statistical regression, including linear regression, polynomial
            regression, and logistic regression.
         

         
         Learn about perceptrons and neural networks, which consist of interconnected nodes.

         
         Understand the theory of image processing and convolutional neural networks (CNNs),
            which make it possible to recognize images.
         

         
         Explore the theory of recurrent neural networks (RNNs) and use them to analyze sequential
            data.
         

         
      
      
   
      
      Chapter 6

      
      Analyzing Data with Statistical Regression

      
      
         
         IN THIS CHAPTER

         
         [image: check] Identifying trends with linear and polynomial regression analysis

         
         [image: check] Classifying points with logistic regression analysis

         
         [image: check] Modeling systems with the logistic and softmax functions

         
         [image: check] Computing loss with log likelihood and cross entropy

         
         

         
         Everybody knows that machine learning is a fast-paced, exciting field for clever,
            future-minded people, and everybody knows that statistics is a boring, stodgy field
            for people who enjoy Muzak. So newcomers may find it odd to see a chapter on statistical
            analysis in a book on machine learning.
         

         
         But machine learning and statistics have a lot in common. In fact, they have the same
            ultimate goal: to model real-world systems with mathematical relationships. Machine
            learning relies extensively on statistical methods, and this chapter presents three
            methods that play critical roles in TensorFlow development: linear regression, polynomial
            regression, and logistic regression. In addition, the example code in this chapter
            solidifies the manner in which TensorFlow applications perform training.
         

         
      
      
      
         
         Analyzing Systems Using Regression

         
         One of the most effective tools used by statisticians is regression. Regression analyzes a system by measuring the relationships between its variables. TensorFlow
            provides many capabilities for this analysis, and this chapter focuses on four types
            of regression: 
         

         
         
            
            	Linear regression: Fitting a straight line to points in a dataset
            

            
            	Polynomial regression: Fitting a polynomial to points in a dataset
            

            
            	Binary logistic regression: Classifying points into one of two categories
            

            
            	Multinomial logistic regression: Classifying points into one of multiple categories
            

            
         

         
         The following sections explore these simple operations.

         
      
      
      
         
         Linear Regression: Fitting Lines to Data

         
         Searching through your grandfather’s attic, you find a mint condition first issue
            of Commander Warpspeed's Journey into Space! This rare comic book may be worth many thousands of dollars, so you decide to sell
            it. But how much should you ask for it?
         

         
         An online search provides 40 selling prices that range from less than $5,000 to more
            than $10,000. Figure 6-1 illustrates these prices on a chart.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 6-1: The comic book’s value increases over time.
                  

                  
               
               
            
            
         

         
         Computing the average selling price would be easy, but you want to know whether the
            price is rising or falling and by how much the price is rising or falling. To find
            a good selling price, you decide to approximate your data with a line that indicates
            the change in the book’s price over time. This process is called linear regression, and the dashed gray line in Figure 6-1 identifies the general trend of the comic book’s price.
         

         
         The first step in TensorFlow training involves choosing an initial expression for
            the model (see Chapter 5). For linear regression, this decision is easy. The model is a line whose equation
            is [image: images]
            , where m is the line’s slope, and b is the y-intercept (the y-value when x equals 0). The goal of linear regression is to determine m and b so that the resulting line best approximates (or fits) the set of points.
         

         
         The loss is also simple to compute. If the graph contains the point (x, y), the difference between the system and the model is [image: images]
            .

         
         In machine learning applications, values of the loss should always have the same sign.
            You can make sure all the loss values are positive by computing the square of the
            error at each point and take the average of the error values. If there are N points, you can compute the loss with the following equation: 
         

         
         [image: images]
            

         
         This method of computing loss is called the mean-squared error, or MSE. In TensorFlow, you can compute it by calling the reduce_mean function. The following code shows how this function is used: 
         

         
         model = tf.add(tf.multiply(m, x), b)

         
         loss = tf.reduce_mean(tf.pow(model - y, 2))

         
         Having obtained an expression for the loss, the next step is to create an optimizer
            to minimize the loss. As the optimizer does its work, it will update the variables
            m and b, thereby obtaining a line that best approximates the change in the comic book's price
            over time.
         

         
         To demonstrate this, the following code creates an optimizer, sets its learning rate
            to 0.1, and calls its minimize method: 
         

         
         optimizer = tf.train.GradientDescentOptimizer(0.1)

         
         opt_op = optimizer.minimize(loss)

         
         minimize returns an operation that you can use as the first argument of the session's run method (see Chapter 5). Note that you must call run repeatedly to ensure that the training converges to suitable values for m and b.

         
         In the ch6 folder, lin_regression.py contains code that demonstrates how you can perform linear regression in TensorFlow.
            Listing 6-1 presents the code.
         
 
         
         LISTING 6-1 Linear Regression
         
 
         
         # Random input values

         
         N = 40

         
         x = tf.random_normal([N])

         
         m_real = tf.truncated_normal([N], mean=2.0)

         
         b_real = tf.truncated_normal([N], mean=3.0)

         
         y = m_real * x + b_real

         
          

         
         # Variables

         
         m = tf.Variable(tf.random_normal([]))

         
         b = tf.Variable(tf.random_normal([]))

         
          

         
         # Compute model and loss

         
         model = tf.add(tf.multiply(x, m), b)

         
         loss = tf.reduce_mean(tf.pow(model - y, 2))

         
          

         
         # Create optimizer

         
         learn_rate = 0.1

         
         num_epochs = 200

         
         num_batches = N

         
         optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss)

         
          

         
         # Initialize variables

         
         init = tf.global_variables_initializer()

         
          

         
         # Launch session

         
         with tf.Session() as sess:

         
             sess.run(init)

         
          

         
             # Perform training

         
             for epoch in range(num_epochs):

         
                 for batch in range(num_batches):

         
                     sess.run(optimizer)

         
          

         
             # Display results

         
             print('m = ', sess.run(m))

         
             print('b = ', sess.run(b))

         
         This module sets the number of batches equal to the number of input points. The training
            process executes 200 epochs, and each epoch performs 40 training steps.
         

         
      
      
      
         
         Polynomial Regression: Fitting Polynomials to Data

         
         You can easily extend the method of linear regression to polynomials. That is, the
            process of fitting a polynomial to a set of points uses essentially the same process
            as that used to fit a line.
         

         
         To demonstrate, I explain how you can approximate data with a cubic polynomial. You
            can express every cubic polynomial with the following equation: 
         

         
         [image: images]
            

         
         Figure 6-2 illustrates how you can fit a cubic polynomial to a set of random points.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 6-2: Statistical regression makes it possible to approximate data with a polynomial.
                  

                  
               
               
            
            
         

         
         The code in ch6/poly_regression.py uses TensorFlow to fit a cubic polynomial to a set of random points. If you compare
            this code to the code in ch6/lin_regression.py, you'll see that the two modules closely resemble one another. The most important
            difference involves the expression for the model, which is computed as follows: 
         

         
         model = a * tf.pow(x, 3) + b * tf.pow(x, 2) + c * x + d

         
         To obtain an expression for the loss, the module uses the same mean-squared error
            process that was used for linear regression. (See the section “Linear Regression: Fitting Lines to Data.”) To minimize the loss, the module creates the same type of optimizer (GradientDescentOptimizer) used for linear regression. The code in Listing 6-2 shows how to do so.
 
         
         LISTING 6-2 Polynomial Regression
         
 
         
         # Random input values

         
         N = 40

         
         x = tf.random_normal([N])

         
         a_real = tf.truncated_normal([N], mean=3.)

         
         b_real = tf.truncated_normal([N], mean=-2.)

         
         c_real = tf.truncated_normal([N], mean=-1.)

         
         d_real = tf.truncated_normal([N], mean=1.)

         
         y = a_real * tf.pow(x, 3) + b_real * tf.pow(x, 2) + c_real * x + d_real

         
          

         
         # Variables

         
         a = tf.Variable(tf.random_normal([]))

         
         b = tf.Variable(tf.random_normal([]))

         
         c = tf.Variable(tf.random_normal([]))

         
         d = tf.Variable(tf.random_normal([]))

         
          

         
         # Compute model and loss

         
         model = a * tf.pow(x, 3) + b * tf.pow(x, 2) + c * x + d

         
         loss = tf.reduce_mean(tf.pow(model - y, 2))

         
          

         
         # Create optimizer

         
         learn_rate = 0.01

         
         num_epochs = 400

         
         num_batches = N

         
         optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss)

         
          

         
         # Initialize variables

         
         init = tf.global_variables_initializer()

         
          

         
         # Launch session

         
         with tf.Session() as sess:

         
             sess.run(init)

         
          

         
             # Perform training

         
             for epoch in range(num_epochs):

         
                 for batch in range(num_batches):

         
                     sess.run(optimizer)

         
          

         
             # Display results

         
             print('a = ', sess.run(a))

         
             print('b = ', sess.run(b))

         
             print('c = ', sess.run(c))

         
             print('d = ', sess.run(d))

         
         You can apply the methodology used in poly_regression.py to polynomials of any degree. All you need to do is set the model to the general
            polynomial and create a variable for each of the polynomial's coefficients.
         

         
      
      
      
         
         Binary Logistic Regression: Classifying Data into Two Categories

         
         While linear and polynomial regression are concerned with identifying trends, logistic
            regression is concerned with placing data points into categories. If Points A and
            B belong to Category X and Points P and Q belong to Category Y, what category will
            Point J belong to?
         

         
         The following sections look at systems with only two categories. Is the patient healthy
            or sick? Will the operation succeed or fail? This process of modeling systems with
            two categories is called binary logistic regression.
         

         
         
            
            Setting up the problem

            
            Binary logistic regression is concerned with testing the effect of one or more variables
               on a binary outcome. If patients take a new medication, will their symptoms disappear?
               If a candidate wears a red tie and blue pants on election day, will the public vote
               for that person?
            

            
            To demonstrate the process of binary logistic regression, this discussion focuses
               on a question of obvious importance: How does the volume of my alarm clock affect
               my getting out of bed in the morning? I'm such a heavy sleeper that if the alarm doesn't
               sound, I’ll lie in bed forever. But as the volume increases, the probability of me
               getting out of bed increases.
            

            
            To examine the relationship between the alarm volume and my getting out of bed, I
               set my alarm to ring a different volume every morning for 40 days. Figure 6-3 illustrates the relationship between the alarm volume and my getting out of bed.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 6-3: As the volume increases, the chances of my waking up increase.
                     

                     
                  
                  
               
               
            

            
            To model this mathematically, statisticians represent each category with a number.
               In this example, I associate Category 1 (Get Out of Bed) with 1 and Category 0 (Stay
               Asleep) with 0.
            

            
            But I don't want the output to be limited to 0 and 1. I want a value between 0 and
               1 that identifies the probability of me getting out of bed. This concept is important
               to understand: When you code applications that perform classification, the theory
               of probability takes center stage. This discussion doesn’t provide a complete discussion
               of the subject, but I'll explain the math as it becomes necessary.
            

            
            It should be clear that linear and polynomial regression won’t help with this problem
               because their models produce values beyond 0 and 1. Also, straight lines and polynomials
               are too simplistic for practical classification.
            

            
            To classify data points, statisticians employ a different type of regression called
               logistic regression. Just as linear regression models systems with a line and polynomial regression uses
               a polynomial, logistic regression employs a type of curve called the logistic function.
            

            
         
         
         
            
            Defining models with the logistic function

            
            The logistic function plays a central role in applications that classify data points.
               Mathematicians express the logistic function with the following equation: 
            

            
            [image: images]
               

            
            Figure 6-4 shows what the logistic function looks like for values of x between 8 and -8:
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 6-4: The result of the logistic function always lies between 0 and 1.
                     

                     
                  
                  
               
               
            

            
            This function is shaped like an S, and because sigma ([image: images]
               ) is the Greek letter for S, this function is commonly referred to as the sigmoid function, or [image: images]
               (x). This function has three properties that make it suitable for classifying points
               into one of two categories: 
            

            
            
               
               	Its maximum value is 1, and the minimum value is 0.

               
               	[image: images]
                  = 0.5, which implies that a data point in the center is equally likely to belong to
                  both categories.
               

               
               	The function is symmetric around the y-axis — that is, [image: images]
                  (-x) = 1 - [image: images]
                  (x).
               

               
            

            
            Having selected the logistic function, you can approximate the system with the model
               function [image: images]
               . As with linear regression, the goal is to find values for m and b that bring the model as closely in line with real-world observation as possible.
            

            
            The next step is to find an expression for the loss. One possible method is to use
               the mean-squared error (see the earlier sections on linear and polynomial regression).
               But there's a problem. The slope of the sigmoid function is nearly 0 at its extremes,
               which means gradient descent method will take a great deal of time to minimize the
               loss.
            

            
            For this reason, applications that classify data points put aside mean-squared error
               and compute loss using a different method called maximum likelihood estimation.
            

            
         
         
         
            
            Computing loss with maximum likelihood estimation

            
            The goal of binary logistic regression is to obtain the sigmoid function that best
               approximates the available data. This function identifies the approximate probability
               of a point being classified in Category 1.
            

            
            But what about the probability of a point being classified in Category 0? There are
               only two categories, so if we denote the probability of Category 1 as [image: images]
               , the probability of Category 0 is 1 - [image: images]
               . For the sake of simplicity, I'll refer to the model function, [image: images]
               , as h(x).
            

            
            Here’s a strange but important question: If I know in advance whether I'm going to
               wake up or not, what is the probability that my alarm has rung at a specific volume?
               Denoting my sleeping/waking state as yi (y0 = 0, y1 = 1) and the alarm volume as x, you can express the relationship as follows: 
            

            
            [image: images]
               

            
            This equation expresses the likelihood of yi, and given its significance in classification, you’ll want to be comfortable with
               it. Consider these two extreme cases: 
            

            
            
               
               	If h(x) represents the system perfectly, h(x) will equal 1 when yi equals 1 and h(x) will equal 0 when yi equals 0. This means L(yi) will always equal 1.
               

               
               	If h(x) is always wrong, h(x) will always equal 0 when yi equals 1 and h(x) will always equal 1 when yi equals 0. This means L(yi) will always equal 0.
               

               
            

            
            In general, a likelihood function will produce a value somewhere between 0 and 1.
               The greater the likelihood, the more closely the model, h(x), resembles the system.
               The process of maximizing the likelihood is called maximum likelihood estimation. It should be clear that maximizing the likelihood minimizes the loss.
            

            
            To simplify computation, statisticians take the logarithm of the likelihood. After
               this step, the maximum likelihood estimation method is referred to as the log likelihood method.

            
            TensorFlow's optimizers work by minimizing loss. But when dealing with likelihood,
               the goal is to obtain greater values, not smaller values. To fix this issue, statisticians
               negate the expression for log likelihood. The resulting expression for the loss is
               given as follows: 
            

            
            [image: images]
               

            
            This and similar expressions are commonly used in binary logistic regression. The
               following section demonstrates how the logistic function and log likelihood can be
               used in practical code.
            

            
         
         
         
            
            Putting theory into practice

            
            The code in ch6/binary_logistic.py uses TensorFlow to perform binary logistic regression. Listing 6-3 presents the code.
 
            
            LISTING 6-3 Binary Logistic Regression
            
 
            
            # Input values

            
            N = 40

            
            x = tf.lin_space(0., 5., N)

            
            y = tf.constant([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

            
                             1., 0., 0., 1., 0., 0., 0., 1., 0., 0.,

            
                             1., 0., 1., 1., 1., 1., 1., 1., 1., 1.,

            
                             1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

            
             

            
            # Variables

            
            m = tf.Variable(0.)

            
            b = tf.Variable(0.)

            
             

            
            # Compute model and loss

            
            model = tf.nn.sigmoid(tf.add(tf.multiply(x, m), b))

            
            loss = -1. * tf.reduce_sum(y * tf.log(model) + (1. - y) * (1. - tf.log(model)))

            
             

            
            # Create optimizer

            
            learn_rate = 0.005

            
            num_epochs = 350

            
            optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss)

            
             

            
            # Initialize variables

            
            init = tf.global_variables_initializer()

            
             

            
            # Launch session

            
            with tf.Session() as sess:

            
                sess.run(init)

            
             

            
                # Run optimizer

            
                for epoch in range(num_epochs):

            
                    sess.run(optimizer)

            
             

            
                # Display results

            
                print('m =', sess.run(m))

            
                print('b =', sess.run(b))

            
            This module accepts the data points in Figure 6-3 as input and computes values of m and b that best fit the data to the model function [image: images]
               . Figure 6-5 depicts the computed model function superimposed over the training data.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 6-5: After training, the sigmoid function approximates the experimental data.
                     

                     
                  
                  
               
               
            

            
            On my system, the computed values are m = 4 and b = -13.5. mx + b equals 0 when x
               = 3.375, so the center of the sigmoid function is reached when the volume is set to
               3.375.
            

            
         
      
      
      
         
         Multinomial Logistic Regression: Classifying Data into Multiple Categories

         
         Many machine learning applications need to classify points into more than two categories.
            This process is called multinomial logistic regression, and it resembles binary logistic
            regression in many respects. The primary difference is that it uses different functions
            to represent the model and loss.
         

         
         To present this topic, I explain how you can use TensorFlow to recognize handwriting
            samples from the Modified National Institute of Science and Technology (MNIST) dataset.
            Each image contains a handwritten digit that belongs to one of ten categories.
         

         
         
            
            The Modified National Institute of Science and Technology (MNIST) Dataset

            
            To test machine learning applications, the National Institute of Standards and Technology
               (NIST) compiled a set of handwriting samples of numbers between 0 and 9. Yann LeCun
               created a subset of NIST’s images called the Modified NIST (MNIST) database.
            

            
            Unlike NIST’s samples, MNIST’s samples all have the same size and are all centered
               into 28-x-28 images. Each pixel is given as an unsigned byte between 0 (white) and
               255 (black). Each image has a corresponding label that identifies the handwritten
               digit (0 through 9).
            

            
            To run the multinomial logistic regression example, you need to download the MNIST
               dataset from http://yann.lecun.com/exdb/mnist. Four files are available: 
            

            
            
               
               	train-images-idx1-ubyte.gz — Training images
               

               
               	train-images-idx3-ubyte.gz — Training labels
               

               
               	t10k-labels-idx1-ubyte.gz — Test images
               

               
               	t10k-images-idx3-ubyte.gz — Test labels
               

               
            

            
            The training labels and test labels identify the digits written in the corresponding
               images. For example, the sixth label in the training dataset is 8. Figure 6-6 shows what the sixth image in the training dataset looks like.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 6-6: Each MNIST image contains a handwritten digit in a 28-x-28 pixel array.
                     

                     
                  
                  
               
               
            

            
            If you decompress an MNIST file, you'll see that each file stores its data in a single
               data structure. Thankfully, you don’t need to know anything about these structures
               because TensorFlow makes accessing MNIST data easy. The function to know is read_data_sets, which is provided by the tensorflow.contrib.learn.datasets.mnist package: 
            

            
            read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=dtypes.float32, reshape=True,
                  validation_size=5000, seed=None)

            
            When this function executes, it searches for the four MNIST archives in the directory
               identified by the train_dir parameter. If any of the files can't be found, read_data_sets will download them, decompress them, and store them in the specified folder.
            

            
            To understand the other arguments of read_data_sets, it's important to be familiar with the function’s return value, which is an instance
               of the Datasets class. Each Datasets instance has three fields: 
            

            
            
               
               	train — a Dataset containing the MNIST training data
               

               
               	validation — a Dataset containing validation data
               

               
               	test — a Dataset containing data to be used for testing
               

               
            

            
            Appropriately enough, each field of a Datasets instance is an instance of the Dataset class. Table 6-1 lists four members of this class and provides a description of each.
            

            
            
               
                  
                  TABLE 6-1 Members of the Dataset Class
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Function

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           images

                        
                        
                        	
                           
                           ndarray of images given as numpy arrays
                           

                        
                        
                     

                     
                     
                        
                        	
                           
                           labels

                        
                        
                        	
                           
                           ndarray of category names for the images
                           

                        
                        
                     

                     
                     
                        
                        	
                           
                           num_examples

                        
                        
                        	
                           
                           The number of examples in the dataset

                        
                        
                     

                     
                     
                        
                        	
                           
                           next_batch(batch_size, fake_data=False, shuffle=True)

                        
                        
                        	
                           
                           Returns the next batch of images

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            The first three fields are straightforward. The following code calls read_data_sets, and for each field, it prints the shape of the corresponding image array: 
            

            
            import tensorflow.contrib.learn as learn

            
             

            
            dset = learn.datasets.mnist.read_data_sets('MNIST-data')

            
            print("Training images: ", dset.train.images.shape)

            
            print("Validation images: ", dset.validation.images.shape)

            
            print("Test images: ", dset.test.images.shape)

            
            On my system, the printed results are given as follows: 

            
            Training images:                            (55000, 784)

            
            Validation images:                          (5000, 784)

            
            Test images:                                (10000, 784)

            
            If you set one_hot to True in read_data_sets, the labels field of the resulting Dataset will contain one-hot vectors. A one-hot vector is a one-dimensional array in which one element's value is high, and the rest are
               low. By default, the high value is 1, and the low value is 0. If the one_hot parameter is set to True, each label will be provided as a one-hot vector with ten elements: a 1 in the position
               that identifies the digit and a 0 in every other position.
            

            
            The next_batch method of the Dataset class provides MNIST data in batches. The first argument sets the size of each batch,
               the second argument identifies whether fake data should be generated, and the last
               argument indicates whether the MNIST data should be shuffled.
            

            
         
         
         
            
            Defining the model with the softmax function

            
            You can use the sigmoid function to classify points into two categories. (See the
               section “Defining models with the logistic function” for more information.) If a system (such as MNIST classification) has more than
               two categories, the sigmoid function won't be sufficient.
            

            
            Instead, statisticians use an operation that can accept an array of values and return
               an array of values. This is the softmax function, which extends the sigmoid function to multiple variables. The jth term of the softmax function is denoted by [image: images]
               , and if the input array contains N terms, you can compute the softmax function of
               xj with the following equation: 
            

            
            [image: images]
               

            
            When using this function, you need to be aware of two points: 

            
            
               
               	Each value in the output array lies between 0 and 1.

               
               	The sum of the values in the output array will always equal 1.

               
            

            
            In TensorFlow, you can perform the softmax operation by calling the softmax function in the tf.nn package: 
            

            
            softmax(input, dim=-1, name=None)

            
            By default, every element of the input tensor is added together in the denominator
               of the softmax function. But if you set the dim parameter, only the values in the specified dimension will be included in the sum.
            

            
            An example will clarify how this function works. If the input tensor is [3.2, -2.6,
               1.7, 0.0, 4.9], calling softmax will return a 5-element tensor equal to [0.14835, 0.00045, 0.03310, 0.00605, 0.81205].
               You can compute the first softmax value in the following way: 
            

            
            [image: images]
               

            
            Each of the N values identifies the probability of the data point belonging to the
               corresponding category. The probability of the point belonging to Category 0 is 0.14835.
            

            
         
         
         
            
            Computing loss with cross entropy

            
            If h(x) is a model and yi identifies a category, you can compute the likelihood of yi for a given value of x in the following way: 
            

            
            [image: images]
               

            
            The concept of likelihood can be extended to systems with more than two outcomes.
               If a classifier has to choose between N categories, yi can take any value between 0 and N-1. If the model is given as h(x), you can express
               the likelihood with the following equation: 
            

            
            [image: images]
               

            
            Again, the likelihood will equal 1 if h(x) is always right, and it will equal 0 if
               h(x) is always wrong. To convert the likelihood into a suitable loss function, statisticians
               take the negative logarithm and arrive at the following expression: 
            

            
            [image: images]
               

            
            In machine learning literature, this result is referred to as cross entropy. This term comes from information theory, and it refers to the usage of logarithms
               to determine how many bits should be used to represent messages. The following code
               defines a model by calling tf.nn.softmax and then computes the loss using cross entropy. 
            

            
            model = tf.nn.softmax(tf.matmul(x, m) + b)

            
            loss = tf.reduce_mean(-tf.reduce_sum(y * tf.log(model))

            
            For improved performance, TensorFlow provides a function that combines the softmax
               function and cross entropy. This function is tf.nn.softmax_cross_entropy_with_logits and its signature is given as follows: 
            

            
            softmax_cross_entropy_with_logits(labels=None, logits=None, dim=-1, name=None)

            
            You must identify each argument passed to this function by name. logits is set to the tensor that would be passed to softmax, and labels is set to a tensor containing the associated labels. logits and labels must have the same size.
            

            
            TensorFlow also provides a function that combines the sigmoid function and cross entropy:
               sigmoid_cross_entropy_with_logits. Its signature is given as follows: 
            

            
            sigmoid_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, name=None)

            
            labels and logits accept the same values as the corresponding arguments of softmax_cross_entropy_with_logits.
            

            
         
         
         
            
            Putting theory into practice

            
            The code in ch6/multi_regression.py demonstrates how you can use multinomial regression to load and classify images from
               the MNIST dataset. Listing 6-4 presents the code.
            
 
            
            LISTING 6-4 Multinomial Logistic Regression
            
 
            
            # Read MNIST data

            
            dataset = learn.datasets.mnist.read_data_sets('MNIST-data', one_hot=True)

            
             

            
            # Placeholders for MNIST images

            
            image_holder = tf.placeholder(tf.float32, [None, 784])

            
            label_holder = tf.placeholder(tf.float32, [None, 10])

            
             

            
            # Variables

            
            m = tf.Variable(tf.zeros([784, 10]))

            
            b = tf.Variable(tf.zeros([10]))

            
             

            
            # Compute loss

            
            loss = tf.reduce_mean(

            
                tf.nn.softmax_cross_entropy_with_logits(

            
                    logits=tf.matmul(image_holder, m) + b, labels=label_holder))

            
             

            
            # Create optimizer

            
            learning_rate = 0.01

            
            num_epochs = 25

            
            batch_size = 100

            
            num_batches = int(dataset.train.num_examples/batch_size)

            
            optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

            
             

            
            # Initialize variables

            
            init = tf.global_variables_initializer()

            
             

            
            # Launch session

            
            with tf.Session() as sess:

            
                sess.run(init)

            
             

            
                # Loop over epochs

            
                for epoch in range(num_epochs):

            
             

            
                    # Loop over batches

            
                    for batch in range(num_batches):

            
                        image_batch, label_batch = dataset.train.next_batch(batch_size)

            
                        _, lossVal = sess.run([optimizer, loss],

            
                            feed_dict={image_holder: image_batch, label_holder: label_batch})

            
             

            
                # Display the final loss

            
                print('Final loss: ', lossVal)

            
            Instead of computing the model, this code computes the loss directly by calling softmax_cross_entropy_with_logits. The last line of the code prints the final value for the loss.
            

            
         
         
      
      
   
      
      Chapter 7

      
      Introducing Neural Networks and Deep Learning

      
      
         
         IN THIS CHAPTER

         
         [image: check] Exploring the development of neural networks

         
         [image: check] Looking at perceptrons, multilayer perceptrons (MLPs), and deep learning

         
         [image: check] Managing variables with scope

         
         [image: check] Demonstrating deep learning in a TensorFlow application

         
         

         
         This chapter explains how neural networks operate and how to use them to analyze data
            in TensorFlow applications.
         

         
      
      
      
         
         From Neurons to Perceptrons

         
         For many, the topic of neural networks conjures visions of artificial brains, omniscient
            computers that predict the future, and other fixtures of science fiction. But practitioners
            of machine learning take a more down-to-earth view: Neural networks are useful computational
            tools, but they’re not ideal for every application, and they’re never completely reliable.
         

         
         Biology inspired the development of neural networks, but their essential operation
            is statistical in nature. Neural networks analyze data to discover mathematical relationships between inputs and outputs. They
            should only be used as a last resort — if you already have clear rules that relate
            outputs to input data, you should use your rules instead.
         

         
         It’s important to see the difference between the operation of a neural network and
            statistical regression. When you use regression, you choose the precise shape of the
            model. But when you analyze data with a neural network, you choose a general shape
            for the model, and the network determines the details.
         

         
         In my opinion, the best way to approach the topic of artificial neural networks is
            to see how they relate to biological neurons. This section explores the basic structure
            of neurons and then proceeds to perceptrons, which serve as mathematical abstractions
            of neurons.
         

         
         
            
            Neurons

            
            In the early 19th century, Santiago Ramón y Cajal took a close look at the cells that
               make up nerve tissue. Scientists refer to these nerve cells as neurons, and Figure 7-1 illustrates their basic structure.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 7-1: A nerve cell receives incoming signals through its dendrites and generates an outgoing
                        signal that travels through the axon.
                     

                     
                  
                  
               
               
            

            
            A neuron receives electrical stimulation through its dendrites and their branches. The chemicals in the cell body store electricity, and as incoming
               signals grow in strength, the neuron’s voltage increases.
            

            
            When the voltage in a neuron exceeds a certain value, called the threshold, the neuron transmits (or fires) an electrical signal. This signal travels through the axon and stimulates further
               neurons, as shown in Figure 7-1. In this manner, one neuron’s firing may cause a series of other neurons to fire.
            

            
            The study of neurons has progressed dramatically since the 19th century, and neurologists know that neurons do far more than just pass electricity
               from one cell to another. But for this chapter, you need to be familiar with only
               three points: 
            

            
            
               
               	A neuron receives one or more incoming signals and produces one outgoing signal.

               
               	A neuron’s output can serve as the input of another neuron.

               
               	Every neuron has a threshold, and the neuron won’t produce output until its electricity
                  exceeds the threshold.
               

               
            

            
            If you understand these three points, you’ll have no trouble grasping the abstract
               models of neurons.
            

            
         
         
         
            
            Perceptrons

            
            In 1962, Frank Rosenblatt devised a model for the neuron called the perceptron. Figure 7-2 shows how a perceptron can be represented graphically.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 7-2: Perceptrons resemble neurons in many respects.
                     

                     
                  
                  
               
               
            

            
            Like a neuron, a perceptron receives multiple inputs and produces one output. But
               a perceptron’s inputs are provided as numeric values instead of electrical pulses.
               In Figure 7-2, these values are denoted x0 through x3.
            

            
            Similarly, the perceptron’s threshold value is represented by a number. If the sum
               of the inputs exceeds the threshold, the perceptron’s output will be 1. If the sum
               of the signals falls below the threshold, the output will be 0.
            

            
            For example, suppose that x0 is set to 0.5, x1 is set to 1.5, x2 is set to 2.5, and x3 is set to -1.0. The sum of the signals is 3.5. If the perceptron’s threshold value
               is 3.0, the perceptron will produce an output of 1. If the threshold value is 4.0,
               the perceptron will produce an output of 0.
            

            
            Denoting the inputs as xi and the output as y, a perceptron’s output can be determined by the following relationship:
               
            

            
            [image: images]
               

            
            Like biological neurons, perceptrons can be connected together so that the output
               of one perceptron serves as the input of another. Figure 7-3 shows what this looks like. As shown, different perceptrons can have different numbers
               of inputs, but each always produces one output.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 7-3: Perceptrons can be combined together in a tree-like structure.
                     

                     
                  
                  
               
               
            

            
            Historians and academics may find these simple perceptrons interesting, but in this
               primitive form, they can’t be used for practical machine learning. This is because
               the perceptron’s operation is static — its behavior can’t be improved through training.
            

            
         
      
      
      
         
         Improving the Model

         
         After Rosenblatt published his initial vision of the perceptron, computer scientists
            updated his model in many ways. Three important changes are as follows: 
         

         
         
            
            	Each incoming signal is assigned a weight that indicates its influence.

            
            	Instead of a threshold value, a constant called a bias is added to the incoming signals.

            
            	The sum of weighted inputs is passed to an activation function that determines the
               output.
            

            
         

         
         These changes make neural networks suitable for machine learning. Modern developers
            refer to the elements of these networks as nodes instead of perceptrons.
         

         
         
            
            Weights

            
            In Figures 7-2 and 7-3, every input has equal influence in determining the output. But in a practical system,
               some inputs will have more influence than others on the decision-making process. In
               addition, some signals may have a negative influence on the outcome.
            

            
            To reflect this unequal influence, computer scientists multiply each input by a value
               called a weight. Graphically, weights are represented by numbers associated with incoming connections.
               Figure 7-4 shows what a node looks like with weighted inputs.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 7-4: Each input entering a node has an associated weight.
                     

                     
                  
                  
               
               
            

            
            To determine the total effect of the inputs, a node multiplies each input by its weight
               and adds the products together. Then it compares the sum to its threshold. If the
               sum is greater than the threshold, the node produces an output value equal to 1. If
               not, the output value is 0.
            

            
            Mathematically, weights are denoted as wi, where i represents the weight of the ith input. Therefore, a node’s operation can be expressed in the following relationship:
               
            

            
            [image: images]
               

            
            For example, suppose that xi = {3.5, -1.0, 2.5, -0.5} and wi = {0.6, 1.2, 0.9, -0.2}. The sum of the weighted inputs can be computed as follows:
               
            

            
            [image: images]
               

            
            If the perceptron’s threshold value is 4.0, the node will produce an output of 0 instead
               of 1.
            

            
            Weights play a vital role in machine learning because they enable an application to
               update the neural network’s behavior. As an application performs training, it updates
               the weights to improve the model.
            

            
         
         
         
            
            Bias

            
            A node fires when the weighted sum of its inputs exceeds a given threshold. Put another
               way, it produces positive output when the difference of the weighted sum and the threshold
               is greater than zero.
            

            
            Rather than deal with the threshold, developers frequently replace it with a constant
               input called a bias. Figure 7-5 shows what a simple neural network looks like with an added bias.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 7-5: This node has a constant input called the bias.
                     

                     
                  
                  
               
               
            

            
            The bias receives a weight just like every other input. For this reason, it makes
               sense to set the bias’s value to 1, which is why the lowest node on the left is given
               as +1.
            

            
            This book assumes that every perceptron has a bias, which is the same as saying that
               the threshold value equals zero. When I use terms like inputs or input data, you should assume that a bias value is included. Therefore, a perceptron produces
               a positive output when the weighted sum of its inputs is greater than zero.
            

            
         
         
         
            
            Activation functions

            
            You can compute a node’s output with the following relationship: 

            
            [image: images]
               

            
            The following equation expresses the same relationship using a more compact notation:
               
            

            
            [image: images]
               

            
            Here, u(x) is called the unit step function. It returns 1 if its input is greater than 0 and returns 0 otherwise.
            

            
            The unit step function is simple to understand, but it’s not practical for machine
               learning. Computer scientists have devised many more suitable functions for producing
               a perceptron’s output, and they’re called activation functions.
            

            
            A node’s activation function accepts the weighted sum of the node’s inputs and produces
               a single output value. In TensorFlow, an activation function accepts a tensor of values
               and returns a tensor containing output values. Table 7-1 lists seven of the activation functions supported by TensorFlow.
            

            
            
               
                  
                  TABLE 7-1 Activation Functions
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Activation Function

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           tf.nn.relu(input, name=None)

                        
                        
                        	
                           
                           Returns the input value if positive, returns 0 otherwise

                        
                        
                     

                     
                     
                        
                        	
                           
                           tf.nn.relu6(input, name=None)

                        
                        
                        	
                           
                           Returns the input value if positive, up to a maximum of 6. Returns 0 otherwise

                        
                        
                     

                     
                     
                        
                        	
                           
                           tf.nn.crelu(input, name=None)

                        
                        
                        	
                           
                           Returns a concatenated tensor that separates the positive and negative portions of
                              the input
                           

                        
                        
                     

                     
                     
                        
                        	
                           
                           tf.nn.elu(input, name=None)

                        
                        
                        	
                           
                           Returns the input value if positive, returns the exponential of the input otherwise

                        
                        
                     

                     
                     
                        
                        	
                           
                           tf.nn.sigmoid(input, name=None)

                        
                        
                        	
                           
                           Returns 1/(1 + exp(-x))

                        
                        
                     

                     
                     
                        
                        	
                           
                           tf.nn.tanh(input, name=None)

                        
                        
                        	
                           
                           Returns tanh(x)

                        
                        
                     

                     
                     
                        
                        	
                           
                           tf.nn.softsign(input, name=None)

                        
                        
                        	
                           
                           Returns x/(abs(x) + 1)

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            I like to divide these functions into two categories: rectifiers and classifiers.
               The distinction is simple: If a node's output identifies a category, set its activation
               function to a classifier. Otherwise, set the node’s activation function to a rectifier.
            

            
            
               
               Rectifier functions

               
               In an electrical circuit, a rectifier accepts an input signal and transmits an equal
                  output signal if the input is positive. If the input signal is negative, the rectifier
                  transmits an output of zero.
               

               
               The rectified linear unit function, or ReLU, performs a similar operation. It returns
                  the input if it’s positive and returns 0 otherwise. Put another way, the ReLU function
                  returns the maximum of the input and 0.
               

               
               In TensorFlow, applications can perform ReLU operations by calling tf.nn.relu. Figure 7-6 illustrates the function’s output over a range of input values.
               

               
               
                  
                  [image: image] 
                     
                        
                        FIGURE 7-6: The rectified linear unit function (ReLU) only passes positive values.
                        

                        
                     
                     
                  
                  
               

               
               tf.nn.relu6 is similar to tf.nn.relu, but limits the maximum output to 6. This limitation reduces the likelihood of a
                  node overreacting to large inputs. Figure 7-7 illustrates the behavior of tf.nn.relu6.
               

               
               
                  
                  [image: image] 
                     
                        
                        FIGURE 7-7: The tf.nn.relu6 function clamps the node's maximum output to 6.
                        

                        
                     
                     
                  
                  
               

               
               tf.nn.crelu (Concatenated ReLU) produces an output tensor that is twice the size of the input
                  tensor. The first half of the output contains a regular ReLU result (zero or positive
                  input). The second half focuses on the negative part of the input (negative input
                  or zero).
               

               
               The ELU in tf.nn.elu stands for Exponential Linear Unit. This activation function returns the input value if it's greater than zero. If the
                  input is zero or less, tf.nn.elu returns the exponential of the input minus one. Figure 7-8 shows what this looks like:
               

               
               
                  
                  [image: image] 
                     
                        
                        FIGURE 7-8: The Exponential Linear Unit (ELU) function proceeds continuously from positive to
                           negative values.
                        

                        
                     
                     
                  
                  
               

               
               Unlike other rectifier functions, ELU is continuous at x = 0. According to Djork-Arné
                  Clevert, Thomas Unterthiner, and Sepp Hochreiter at Johannes Kepler University, ELU
                  provides faster learning than the regular ReLU function and better generalization.
               

               
            
            
            
               
               Classifier functions

               
               Chapter 6 discusses the topic of logistic regression and introduces the logistic function,
                  better known as the sigmoid function. This function, which computes 1/(1 + exp(-x)),
                  has a number of helpful properties that make it suitable for classifying points into
                  categories. Figure 7-9 shows what tf.nn.sigmoid looks like.
               

               
               
                  
                  [image: image] 
                     
                        
                        FIGURE 7-9: The sigmoid function is frequently employed to represent classification probability.
                        

                        
                     
                     
                  
                  
               

               
               Though popular, the sigmoid function has one significant shortcoming: Its output ranges
                  from 0 to 1. Because of this limited range, small changes in the input produce small
                  changes in the output. In many cases, the differences in output may be too small for
                  digital computers to recognize.
               

               
               To make up for this shortcoming, many developers prefer the tf.nn.tanh activation function, which computes the hyperbolic tangent (tanh). This function
                  has a similar shape to the sigmoid function, but ranges from -1 to 1. This means that
                  computers will be better able to recognize differences in output. Figure 7-10 shows what the tf.nn.tanh activation function looks like.
               

               
               
                  
                  [image: image] 
                     
                        
                        FIGURE 7-10: The tanh function resembles the sigmoid function, but produces output between -1
                           and 1.
                        

                        
                     
                     
                  
                  
               

               
               In 2009, James Bergstra, Guillaume Desjardins, Pascal Lamblin, and Yoshua Bengio introduced
                  the softsign function, which outperformed tanh in most of their tests. They defined the softsign function
                  in the following way: 
               

               
               [image: images]
                  

               
               Figure 7-11 shows the softsign function for values of x between -8 and 8.
               

               
               
                  
                  [image: image] 
                     
                        
                        FIGURE 7-11: The softsign function resembles tanh, but has a larger gradient throughout most of
                           its domain.
                        

                        
                     
                     
                  
                  
               

               
               The gradient of the softsign function exceeds that of tanh throughout most of its
                  domain. The larger gradient makes minor changes to the input easier to recognize.
               

               
            
         
         
      
      
      
         
         Layers and Deep Learning

         
         Individual nodes are too primitive to serve a useful purpose, but when you combine
            them into networks, you can create sophisticated tools for machine learning. This
            section explains how you can connect these nodes and explores the properties of the
            resulting neural networks.
         

         
         
            
            Layers

            
            The columns of a neural network are referred to as layers, and for this reason, neural networks are frequently called multilayer perceptrons
               (MLPs). Every neural net has at least two layers, and Figure 7-12 depicts an MLP with four.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 7-12: The neural network has four layers, and each layer has three nodes.
                     

                     
                  
                  
               
               
            

            
            The layers of a neural network have specific names. The first layer, which provides
               input values, is called the input layer. The last layer, which provides output values, is called the output layer. The layers between the input layer and output layer are called hidden layers. Layers are numbered from left to right, starting with 0.
            

            
            A layer is considered dense or fully connected if each of its nodes is connected to each node in the next layer. Every layer in
               Figure 7-12 is dense.
            

            
            Each node in a hidden layer is denoted [image: images]
               , where x identifies the number of the layer and y identifies the index of the node in the layer. For example, [image: images]
                identifies the second node in the third layer.
            

            
            You can determine the output of each hidden node using the same methods discussed
               in the “Improving the Model” section. For example, if func is the activation function, the following equations compute the output of node [image: images]
                and [image: images]
               : 
            

            
            [image: images]
               

            
            Each weight in the network requires three values to uniquely identify it. Denoting
               a weight as [image: images]
               , you can determine its position in the network as follows: 

            
            
               
               	x identifies the layer containing the node producing the weighted signal.
               

               
               	y identifies the index of the node producing the signal to be weighted.
               

               
               	z identifies the index of the node receiving the signal.
               

               
            

            
            For example, [image: images]
                identifies a weight in the third layer (2). The weight applies to the signal leaving
               the first node (0) and entering the second node (1).
            

            
         
         
         
            
            Deep learning

            
            As you add more hidden layers to a network, it becomes capable of more sophisticated
               detection and classification. When an application uses a network with multiple hidden
               layers, it's making use of deep learning.
            

            
            Deep learning has proven effective in many applications. Two famous examples include
               Google’s AlphaGo program, which uses deep learning to beat professional Go players,
               and Google’s 2012 demonstration of an application that recognized cat videos on YouTube.
            

            
            Adding hidden layers to a network has two drawbacks. First, each hidden layer increases
               the amount of time needed to train the network. Second, each new hidden layer increases
               the chances of overfitting, which I discuss in the “Tuning the Neural Network” section.
            

            
         
      
      
      
         
         Training with Backpropagation

         
         As I discuss in Chapter 5, training updates your model so that it resembles the experimental data. The mathematical
            model represented by a neural network depends on the arrangement of the networks’
            nodes and their activation functions. To better understand this concept, consider
            the network in Figure 7-13.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 7-13: Every neural network represents a mathematical relationship.
                  

                  
               
               
            
            
         

         
         Denoting the activation functions as f0, f1, and f2, the neural network in Figure 7-13 represents the following mathematical relationship: 
         

         
         [image: images]
            

         
         The goal of training is to find the weights that bring y(xi) as close as possible to the observed data. Put another way, the goal is to minimize
            the difference between y(xi) and the observed data. As discussed in Chapters 5 and 6, this difference is called the loss, and one popular method of computing the loss
            is called the mean squared error (MSE).
         

         
         If you set y(xi) equal to a simple line or polynomial, you can easily compute the loss and pass its
            operation to an optimizer, such as the GradientDescentOptimizer. Chapter 5 covers the different optimization algorithms and their corresponding TensorFlow classes.
         

         
         A neural network’s model is more complicated, so the loss isn’t as easy to compute.
            But in 1974, Paul Werbos was the first person to optimize the weights of a neural
            network using a method called backpropagation. Researchers have devised other algorithms for training neural networks since then,
            but because of its simplicity and speed, backpropagation remains the most popular
            method.
         

         
         In essence, backpropagation extends the optimization algorithms from Chapter 5 to apply to neural networks. The general process involves six steps: 
         

         
         
            
            	Initialize the network’s weights.

            
            	
               
               For the set of inputs xi, compute y(xi).

               
               This computation is called forward propagation.
               

            

            
            	For the set of inputs xi, determine the loss.

            
            	For each weight, compute the partial derivative of the loss with respect to the weight.

            
            	Using the partial derivatives computed in Step 4, update each weight in the network.

            
            	Return to Step 2 and continue until the partial derivatives of the loss approach zero.

            
         

         
         To see how backpropagation computes partial derivatives, it helps to understand the
            chain rule of calculus. If p(x) = f(g(x)), you can express the derivative of p(x)
            in the following way: 
         

         
         [image: images]
            

         
         Backpropagation extends the chain rule to partial derivatives and derivatives involving
            sums of functions. In this manner, the algorithm determines the partial derivative
            of the loss with respect to each weight in the network.
         

         
         Thankfully, you don’t need to worry about partial derivatives or the chain rule because
            TensorFlow performs backpropagation automatically. But you do need to create the optimizer
            that backpropagation will employ to update the network’s weights.
         

         
      
      
      
         
         Implementing Deep Learning

         
         After you have a solid grasp of nodes, weights, and the general structure of neural
            networks, you’re ready to see how a practical application combines these elements
            in code. The ch7/deep_learning.py module demonstrates how you can use TensorFlow to implement deep learning.
         

         
         Like the ch6/multi_regression.py module, ch7/deep_learning.py loads and classifies images from the MNIST dataset. But instead of using logistic
            regression, the module creates a neural network made up of fully connected layers.
            Listing 7-1 presents the code.
 
         
         LISTING 7-1 Classifying Images with Deep Learning
         
 
         
         # Read MNIST data

         
         dataset = learn.datasets.mnist.read_data_sets('MNIST-data', one_hot=True)

         
          

         
         # Placeholders for MNIST images

         
         img_holder = tf.placeholder(tf.float32, [None, 784])

         
         lbl_holder = tf.placeholder(tf.float32, [None, 10])

         
          

         
         # Layer settings

         
         hid_nodes = 200

         
         out_nodes = 10

         
          

         
         # Define weights

         
         w0 = tf.Variable(tf.random_normal([784, hid_nodes]))

         
         w1 = tf.Variable(tf.random_normal([hid_nodes, hid_nodes]))

         
         w2 = tf.Variable(tf.random_normal([hid_nodes, hid_nodes]))

         
         w3 = tf.Variable(tf.random_normal([hid_nodes, out_nodes]))

         
          

         
         # Define biases

         
         b0 = tf.Variable(tf.random_normal([hid_nodes]))

         
         b1 = tf.Variable(tf.random_normal([hid_nodes]))

         
         b2 = tf.Variable(tf.random_normal([hid_nodes]))

         
         b3 = tf.Variable(tf.random_normal([out_nodes]))

         
          

         
         # Create layers

         
         layer_1 = tf.add(tf.matmul(img_holder, w0), b0)

         
         layer_1 = tf.nn.relu(layer_1)

         
         layer_2 = tf.add(tf.matmul(layer_1, w1), b1)

         
         layer_2 = tf.nn.relu(layer_2)

         
         layer_3 = tf.add(tf.matmul(layer_2, w2), b2)

         
         layer_3 = tf.nn.relu(layer_3)

         
         out_layer = tf.matmul(layer_3, w3) + b3

         
          

         
         # Compute loss

         
         loss = tf.reduce_mean(

         
             tf.nn.softmax_cross_entropy_with_logits(

         
                 logits=out_layer, labels=lbl_holder))

         
          

         
         # Create optimizer

         
         learning_rate = 0.01

         
         num_epochs = 15

         
         batch_size = 100

         
         num_batches = int(dataset.train.num_examples/batch_size)

         
         optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

         
          

         
         # Initialize variables

         
         init = tf.global_variables_initializer()

         
          

         
         # Launch session

         
         with tf.Session() as sess:

         
             sess.run(init)

         
          

         
             # Loop over epochs

         
             for epoch in range(num_epochs):

         
          

         
                 # Loop over batches

         
                 for batch in range(num_batches):

         
                     img_batch, lbl_batch = dataset.train.next_batch(batch_size)

         
                     sess.run(optimizer, feed_dict={img_holder: img_batch,

         
                         lbl_holder: lbl_batch})

         
          

         
             # Determine success rate

         
             prediction = tf.equal(tf.argmax(out_layer, 1), tf.argmax(lbl_holder, 1))

         
             success = tf.reduce_mean(tf.cast(prediction, tf.float32))

         
             print('Success rate: ', sess.run(success,

         
                 feed_dict={img_holder: dataset.test.images,

         
                     lbl_holder: dataset.test.labels}))

         
         This application creates weights (wi) and biases (bi) by calling tf.Variable. Then it multiplies the input values by the weights and adds the biases. Each of
            the three hidden layers rectifies its output by calling tf.nn.relu.
         

         
         The final layer (out_layer) performs similar multiplication and addition, but instead of calling tf.nn.relu, it passes its output to tf.nn.softmax_cross_entropy_with_logits. The module uses this output to select one of the ten output categories for MNIST
            images.
         

         
      
      
      
         
         Tuning the Neural Network

         
         The neural network in the preceding section is fine for demonstration, but it's not
            suitable for professional applications. To improve the accuracy and processing speed of their applications, professional developers use special routines that are
            collectively referred to as tuning. I like to call them the four “zations”: 
         

         
         
            
            	Input standardization: Preprocesses input data to statistically resemble training data
            

            
            	Weight initialization: Obtains suitable values for initial weights
            

            
            	Batch normalization: Processes data before the activation function to reduce the likelihood of saturation
            

            
            	Regularization: Reduces the likelihood of overfitting
            

            
         

         
         Most developers agree that neural networks require some measure of tuning, but few
            agree on the best procedure. Rather than take sides, I focus on explaining how you
            can perform operations in TensorFlow applications.
         

         
         
            
            Input standardization

            
            A machine learning application should be able to analyze data it has never seen. But
               even if incoming data is completely new, it should have the same mean and standard
               deviation as the application’s training data. This consistency ensures that the application
               won’t be confused from one data set to the next.
            

            
            For this reason, developers frequently transform input data to set the mean equal
               to 0 and the standard deviation equal to 1. This operation is called standardization, and TensorFlow’s tf.nn package provides two functions that assist with standardization: moments and batch_normalization.
            

            
            moments returns a tuple containing the mean and variance of the elements in a tensor's axis.
               Its signature is given as follows: 
            

            
            moments(x, axes, shift=None, name=None, keep_dims=False)

            
            To set the mean and variance, assign x to the tensor to be analyzed and axes to an array of integers that identify the tensor's axes. If you set keep_dims to True, the returned mean and variance will have the same dimensionality as the input tensor.
            

            
            batch_normalization accepts a tensor's mean and variance and standardizes the tensor’s elements. Its
               signature is given as follows: 
            

            
            batch_normalization(x, mean, variance, offset, scale, variance_epsilon, name=None)

            
            The offset parameter adds a constant to each value in the tensor, and scale multiplies each value by a constant. variance_epsilon identifies a value to be added to the denominator to ensure that TensorFlow doesn't
               divide by zero. Applications frequently set offset to 0.0, scale to 1.0, and variance_epsilon to 0.0001.
            

            
            For example, the following code calls moments to obtain the mean and variance of a tensor. Then it calls batch_normalization to obtain a new tensor with standardized data: 
            

            
            input_data = tf.constant([1., 3., 5., 7., 9.])

            
            stat_mean, stat_var = tf.nn.moments(input_data, 0)

            
            standard_data = tf.nn.batch_normalization(input_data, stat_mean, stat_var, 0., 1.,
                  0.0001, name=None)

            
            This sets standard_data to [-1.4142, -0.7071, 0.0, 0.7071, 1.4142]. This tensor has a mean of 0 and a standard
               deviation of 1.
            

            
         
         
         
            
            Weight initialization

            
            When I started coding neural networks, I didn't give any thought to initializing weights
               — I just set them equal to small, random values. Researchers have analyzed this topic
               in detail and the following research papers present their results: 
            

            
            
               
               	1998: “Efficient BackProp” by Yann Lecunn, Leon Bottou, Genevieve Orr, and Klaus-Robert
                  Muller
               

               
               	2010: “Understanding the Difficulty of Training Deep Feedforward Neural Networks”
                  by Xavier Glorot and Yoshua Bengio
               

               
               	2015: “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
                  Classification” by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun
               

               
            

            
            Each of these papers presents a different methodology for initializing the weights
               of a neural network. TensorFlow supports these methodologies by providing functions
               of the tf.contrib.keras.initializers package. Each function is named after the chief researcher of the corresponding method,
               and Table 7-2 lists five of the available functions.
            

            
            
               
                  
                  TABLE 7-2 Weight Initialization Functions
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Function

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           lecun_uniform(seed=None)

                        
                        
                        	
                           
                           Returns uniformly distributed values between -sqrt(3/insize) and sqrt(3/insize)

                        
                        
                     

                     
                     
                        
                        	
                           
                           glorot_uniform(seed=None)

                        
                        
                        	
                           
                           Returns uniformly distributed values between -sqrt(6/(insize+outsize)) and sqrt(6/(insize+outsize))

                        
                        
                     

                     
                     
                        
                        	
                           
                           glorot_normal(seed=None)

                        
                        
                        	
                           
                           Returns normally distributed values with a standard deviation of sqrt(2/(insize+outsize))

                        
                        
                     

                     
                     
                        
                        	
                           
                           he_uniform(seed=None)

                        
                        
                        	
                           
                           Returns uniformly distributed values between -sqrt(6/insize) and sqrt(6/insize)

                        
                        
                     

                     
                     
                        
                        	
                           
                           he_normal(seed=None)

                        
                        
                        	
                           
                           Returns normally distributed values with a standard deviation of sqrt(2/insize)

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            In Table 7-2's descriptions, insize and outsize refer to the sizes of the neural network's layers. That is, insize is the number of nodes in the layer providing the weights, and outsize is the number of nodes in the layer receiving the weights.
            

            
            Each of these functions accepts a seed that initializes the random number generator. Each function returns an Initializer whose __call__ method accepts the shape of the random weights and returns the weights in an ndarray.
            

            
            For example, the following code initializes an array of four normally distributed
               weights using lecun_uniform: 
            

            
            import time

            
            init = tf.contrib.keras.initializers.lecun_uniform(time.time())

            
            weights = init([4])

            
            with tf.Session() as sess:

            
                result = sess.run(weights)

            
                print(result)               # Prints the ndarray containing weight values

            
            In addition to the functions listed in Table 7-2, TensorFlow provides the xavier_initializer function in the tf.contrib.layers package: 
            

            
            xavier_initializer(uniform=True, seed=None, dtype=tf.float32)

            
            When uniform is set to True, this function generates weights using the same method as the glorot_uniform function. When uniform is set to False, it generates weights using the same method as glorot_normal.
            

            
         
         
         
            
            Batch normalization

            
            In 2015, Sergey Ioffe and Christian Szegedy wrote an influential research paper that
               addresses the problem of saturation, which occurs when a node's activation function reaches an extreme value. Saturation is a major issue for functions like
               the sigmoid and tanh, whose slopes approach zero at their extremes. If the node’s
               optimizer uses some form of gradient descent, the small slope will lead to slow training.
            

            
            Another problem is that a small change to a saturated node’s input will produce a
               small change to the output. The output change may be so small that the application
               can’t perceive it.
            

            
            To reduce the likelihood of saturation, Ioffe and Szegedy recommend fixing the mean
               and variance of each layer’s input. This process is similar to the input standardization
               process, but it affects every layer of the network, not just the first.
            

            
            Unfortunately, normalizing a layer’s input limits the layer’s flexibility. To remedy
               this issue, Ioffe and Szegedy recommend computing the mean and variance of each batch
               and normalizing the values of each batch independently. This process is called batch normalization (BN).
            

            
            Batch normalization behaves differently depending on whether it’s used during training
               or testing. During training, BN computes the mean and variance for each batch and
               uses the results to compute a scaling factor (gamma) and a shifting factor (beta).
               The following equations illustrate how BN computes and uses these values: 
            

            
            [image: images]
               

            
            BN uses the mean and variance of individual batches to estimate the mean and variance
               of the entire population. TensorFlow computes the population’s mean using a moving
               average and computes the population’s variance using a moving variance. During testing,
               BN scales and shifts input values using the population mean and variance instead of
               the batch mean and variance.
            

            
            To implement batch normalization in code, TensorFlow provides tf.contrib.layers.batch_norm. Table 7-3 lists its parameters and presents a description of each.

            
            
               
                  
                  TABLE 7-3 Parameters of tf.contrib.layers.batch_norm
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Parameter

                        
                        
                        	
                           
                           Default

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           inputs

                        
                        
                        	
                           
                           --

                        
                        
                        	
                           
                           Tensor of input values to be normalized

                        
                        
                     

                     
                     
                        
                        	
                           
                           decay

                        
                        
                        	
                           
                           0.999

                        
                        
                        	
                           
                           Multiplication constant used to compute the moving mean and variance

                        
                        
                     

                     
                     
                        
                        	
                           
                           center

                        
                        
                        	
                           
                           True

                        
                        
                        	
                           
                           Whether beta should be added to the normalized tensor

                        
                        
                     

                     
                     
                        
                        	
                           
                           scale

                        
                        
                        	
                           
                           False

                        
                        
                        	
                           
                           Whether the normalized tensor should be scaled by gamma

                        
                        
                     

                     
                     
                        
                        	
                           
                           epsilon

                        
                        
                        	
                           
                           0.001

                        
                        
                        	
                           
                           Factor to prevent division by zero

                        
                        
                     

                     
                     
                        
                        	
                           
                           activation_fn

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Activation function

                        
                        
                     

                     
                     
                        
                        	
                           
                           param_initializers

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Initializers for beta, gamma, the moving mean, and the moving variance

                        
                        
                     

                     
                     
                        
                        	
                           
                           param_regularizers

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Regularizers for beta and gamma

                        
                        
                     

                     
                     
                        
                        	
                           
                           updates_collections

                        
                        
                        	
                           
                           tf.GraphKeys. UPDATE_OPS

                        
                        
                        	
                           
                           One or more collections to hold the normalization operations

                        
                        
                     

                     
                     
                        
                        	
                           
                           is_training

                        
                        
                        	
                           
                           True

                        
                        
                        	
                           
                           Whether the normalization should update the moving mean and moving variance

                        
                        
                     

                     
                     
                        
                        	
                           
                           reuse

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Whether variables can be reused

                        
                        
                     

                     
                     
                        
                        	
                           
                           variables_collections

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Collections to store the normalization variables

                        
                        
                     

                     
                     
                        
                        	
                           
                           outputs_collections

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Collections to store the normalization outputs

                        
                        
                     

                     
                     
                        
                        	
                           
                           trainable

                        
                        
                        	
                           
                           True

                        
                        
                        	
                           
                           Whether to add normalization variables to the graph's trainable collection

                        
                        
                     

                     
                     
                        
                        	
                           
                           batch_weights

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Weights to scale the batch mean and variance

                        
                        
                     

                     
                     
                        
                        	
                           
                           fused

                        
                        
                        	
                           
                           False

                        
                        
                        	
                           
                           Whether to use fused normalization (faster)

                        
                        
                     

                     
                     
                        
                        	
                           
                           data_format

                        
                        
                        	
                           
                           DATA_FORMAT_NHWC

                        
                        
                        	
                           
                           Format of the input data

                        
                        
                     

                     
                     
                        
                        	
                           
                           zero_debias_moving_mean

                        
                        
                        	
                           
                           False

                        
                        
                        	
                           
                           Factor for updating the moving mean

                        
                        
                     

                     
                     
                        
                        	
                           
                           scope

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Scope to contain normalized variables

                        
                        
                     

                     
                     
                        
                        	
                           
                           renorm

                        
                        
                        	
                           
                           False

                        
                        
                        	
                           
                           Whether to use extra variables during normalization

                        
                        
                     

                     
                     
                        
                        	
                           
                           renorm_clipping

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Dictionary that provides values for renormalization

                        
                        
                     

                     
                     
                        
                        	
                           
                           renorm_decay

                        
                        
                        	
                           
                           0.99

                        
                        
                        	
                           
                           Factor to update moving mean/variance during renormalization

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            TensorFlow uses the decay parameter to compute the population's mean and variance. The following equations
               show how the computation is performed: 
            

            
            [image: images]
               

            
            The center and scale parameters determine whether the values of the inputs parameter should be shifted
               and scaled. The function will shift the input values if center is True and will scale the input values if scale is True.
            

            
            It's important to see the difference between is_training and trainable. Setting is_training to True tells the function that the normalization is being performed during a training run,
               which means it should update the population's mean and variance. Setting trainable to True tells the function to store its normalization variables in the graph collection represented
               by the TRAINABLE_VARIABLES key.
            

            
            The last three parameters of batch_norm relate to renormalization. This process improves normalization when an application's batches are small or dependent
               on one another.
            

            
         
         
         
            
            Regularization

            
            One of the most difficult tasks in machine learning involves finding the right structure
               for a neural network. If you add too few nodes, your network will be too simple to
               classify data accurately. This is called underfitting.
            

            
            If you add too many nodes, your network will tailor itself specifically for your training
               set and will be unsuitable for analyzing general data. This problem is called overfitting, and it’s a serious issue in machine learning.
            

            
            The process of updating a neural network (or other machine learning algorithm) to
               analyze general data is called regularization. Researchers have devised many methods for regularizing networks, and this section
               focuses on two: 
            

            
            
               
               	Dropout: Randomly removes nodes from the network
               

               
               	L1/L2 regularization: Reduces weights by increasing the loss
               

               
            

            
            For both methods, I explain how the regularization works and how you can perform it
               using TensorFlow.
            

            
            
               
               Dropout

               
               The dropout process randomly removes one or more nodes from a network. For each node
                  removed, dropout removes the node’s incoming and outgoing connections and their weights.
               

               
               In TensorFlow, you can configure dropout for a neural network by adding a dropout
                  layer. Adding this layer involves calling the tf.nn.dropout function: 
               

               
               dropout(x, keep_prob, noise_shape=None, seed=None, name=None)

               
               In this function, x is the tensor containing values from the preceding layer, and keep_prob is a scalar with the same type as x. The function returns a tensor with the same size as x.
               

               
               dropout sets each of its output values to 0 or 1/keep_prob times the corresponding input value. More precisely, dropout sets an output value to 0 with a probability of 1-keep_prob and sets the output value to 1/keep_prob times the input value with a probability of keep_prob.
               

               
            
            
            
               
               L1/L2 regularization

               
               L1 and L2 regularization prevent overfitting by reducing the network's weights. Both
                  methods increase the loss by a value that depends on two factors: the network’s weights
                  and a constant denoted λ.
               

               
               L1 regularization increases the loss by λ multiplied by the absolute value of the
                  weight to be updated. Therefore, when the algorithm updates the weight w0 through backpropagation, it adds a value to the loss equal to λ|w0|.
               

               
               L2 regularization increases the loss by λ/2 multiplied by the square of the weight
                  to be updated. Therefore, when the algorithm updates w0, it adds λ|w0|2/2 to the loss.
               

               
               In both cases, the loss increases when the weights increase and decreases when the
                  weights decrease. Therefore, the regularization process tends to reduce non-essential
                  weights to zero, thereby simplifying the model and (hopefully) avoiding overfitting.
               

               
               To perform L1/L2 regularization in TensorFlow, you can call tf.contrib.layers.l1_regularizer or tf.contrib.layers.l2_regularizer: 
               

               
               
                  
                  	l1_regularizer(lambda, scope=None): Returns a function that performs L1 regularization
                  

                  
                  	l2_regularizer(lambda, scope=None): Returns a function that performs L2 regularization
                  

                  
               

               
               These functions return special functions called regularizers. After you've obtained a regularizer, you can regularize a set of weights by calling
                  tf.contrib.layers.apply_regularization: 
               

               
               apply_regularization(regularizer, weights_list=None)

               
               Many TensorFlow functions accept regularizers as arguments. One important function
                  is tf.contrib.layers.fully_connected, which I discuss in the “Improving the Deep Learning Process” section.
               

               
            
         
         
      
      
      
         
         Managing Variables with Scope

         
         When building applications with neural networks, keeping track of weights is a major
            priority. Hidden layers accept weighted inputs and produce weighted outputs. Without
            proper management, it's easy for the names of one layer’s weights to clash with the
            names of another layer’s weights.
         

         
         
            
            Variable scope

            
            In deep learning applications, layers frequently assign the same names to their weights.
               To keep the variables separate, TensorFlow makes it possible to define a variable’s
               scope. An application can define a scope by calling tf.variable_scope: 
            

            
            tf.variable_scope(name_or_scope, default_name=None, values=None, initializer=None,
                  regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None,
                  dtype=None, use_resource=None)

            
            Applications commonly call this function as part of a with statement, as in the following code: 
            

            
            with tf.variable_scope("MyScope")

            
               …

            
            If an application creates variables using tf.get_variable inside a with block, TensorFlow will prepend the scope's name to the variable’s name. That is,
               if the application creates a new variable named MyVar, the variable’s full name will be MyScope/MyVar.
            

            
            Chapter 5 explains how to create variables with tf.Variable, but if an application wants to create a variable inside a scope, the function to
               call is tf.get_variable: 
            

            
            get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True,
                  collections=None, caching_device=None, partitioner=None, validate_shape=True, use_resource=None,
                  custom_getter=None)

            
            If the name parameter identifies a variable in the current scope and the scope's reuse parameter is set to True, get_variable will return the existing variable. The following code shows how tf.get_variable can be used: 
            

            
            with tf.variable_scope("MyScope"):

            
                var = tf.get_variable("var", [1])

            
             

            
            with tf.variable_scope("MyScope", reuse=True):

            
                same = tf.get_variable("var")  # Same as var

            
            If the name parameter of variable_scope doesn't correspond to an existing variable in the scope, the function will create
               a new variable. The initializer parameter determines the variable’s initial value. If this parameter isn’t set, the
               initial value is determined by the initializer parameter of the surrounding scope. If the initializer parameter of the surrounding scope isn't set, TensorFlow will initialize the variable
               using Glorot initialization.
            

            
         
         
         
            
            Retrieving variables from collections

            
            As discussed in Chapter 4, a graph stores operations and tensors in a set of collections. An application can
               retrieve variables from a collection by calling tf.get_collection: 
            

            
            tf.get_collection(key, scope=None)

            
            The key parameter identifies one of the graph's collections. One important key is tf.GraphKeys.TRAINABLE_VARIABLES, which identifies the collection containing the graph’s trainable variables.
            

            
            The scope parameter identifies the scope from which the variables should be retrieved. For
               example, the following code accesses a list containing all the trainable variables
               in the hidden_layer_1 scope: 
            

            
            tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'hidden_layer_1')

            
         
         
         
            
            Scopes for names and arguments

            
            Just as tf.variable_scope creates a scope for variables, tf.name_scope creates a scope for tensors and operations. This function is simple to use, and the
               following code shows how it works: 
            

            
            with tf.name_scope('block1'):

            
                t = tf.constant([1., 2.], name='tens')

            
            This example creates the tensor t inside a name scope whose identifier is block1. As a result, TensorFlow sets t's full identifier to block1/tens.
            

            
            The tf.contrib.framework package provides a useful function called arg_scope: 
            

            
            arg_scope(list_ops_or_scope, **kwargs)

            
            This function creates a scope that inserts arguments into the scope's listed operations.
               That is, for each operation identified in the first argument, arg_scope inserts the arguments provided in the second argument.
            

            
            An example clarifies how argument scoping works. As a result of the following code,
               every call to foo inside the scope will have var set to 39: 
            

            
            from tensorflow.contrib.framework import arg_scope

            
            with arg_scope([foo], var=39):

            
                …

            
            To make an operation accessible in an argument scope, you must decorate the operation's
               definition with @add_arg_scope. If a function requires many parameters and must be called multiple times, you can
               significantly reduce the amount of required code by setting arguments in an argument
               scope.
            

            
         
      
      
      
         
         Improving the Deep Learning Process

         
         In the “Implementing Deep Learning” section, I present an application that classifies MNIST images using an untuned
            neural network. This section presents an application that performs the same operation,
            but uses tuning mechanisms (normalization and regularization) to improve the network’s
            accuracy and performance. But before I discuss the code, I’d like to introduce an
            improved method of creating fully connected layers.
         

         
         
            
            Creating tuned layers

            
            In Listing 7-1, earlier in this chapter, the application creates fully connected layers with low-level
               arithmetic operations, such as tf.add and tf.matmul. But TensorFlow provides a more sophisticated way to create fully connected layers
               through the tf.contrib.layers.fully_connected function.
            

            
            This function accepts many parameters that tune the layer's behavior, such as weight
               initialization, normalization, and regularization. Table 7-4 lists the function’s parameters and provides a description of each.
            

            
            
               
                  
                  TABLE 7-4 Parameters of tf.contrib.layers.fully_connected
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Parameter

                        
                        
                        	
                           
                           Default

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           inputs

                        
                        
                        	
                           
                           --

                        
                        
                        	
                           
                           Tensor of input values

                        
                        
                     

                     
                     
                        
                        	
                           
                           num_outputs

                        
                        
                        	
                           
                           --

                        
                        
                        	
                           
                           Number of output values produced by the layer

                        
                        
                     

                     
                     
                        
                        	
                           
                           activation_fn

                        
                        
                        	
                           
                           tf.nn.relu

                        
                        
                        	
                           
                           Function that produces the layer's output values

                        
                        
                     

                     
                     
                        
                        	
                           
                           normalizer_fn

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Function to process output values

                        
                        
                     

                     
                     
                        
                        	
                           
                           normalizer_params

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Parameters to be passed to the normalization function

                        
                        
                     

                     
                     
                        
                        	
                           
                           weights_initializer

                        
                        
                        	
                           
                           initializers. xavier_initializer()

                        
                        
                        	
                           
                           Function that initializes the layer's weights

                        
                        
                     

                     
                     
                        
                        	
                           
                           weights_regularizer

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Function that regularizes the weights

                        
                        
                     

                     
                     
                        
                        	
                           
                           biases_initializer

                        
                        
                        	
                           
                           tf.zeros_initializer

                        
                        
                        	
                           
                           Function that initializes the layer's biases

                        
                        
                     

                     
                     
                        
                        	
                           
                           biases_regularizer

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Function that regularizes the biases

                        
                        
                     

                     
                     
                        
                        	
                           
                           reuse

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Bool that specifies whether the layer and its weights should be reused

                        
                        
                     

                     
                     
                        
                        	
                           
                           variables_collections

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           List of variable collections or dictionary containing a list of collections for each
                              variable
                           

                        
                        
                     

                     
                     
                        
                        	
                           
                           outputs_collections

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Collection to contain the outputs

                        
                        
                     

                     
                     
                        
                        	
                           
                           trainable

                        
                        
                        	
                           
                           True

                        
                        
                        	
                           
                           Bool that specifies whether the layer's variables should be added to the graph’s trainable
                              variables
                           

                        
                        
                     

                     
                     
                        
                        	
                           
                           scope

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Scope of the layer's variables

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            Applications need to set inputs to a tensor with at least two dimensions. If fully_connected is adding an input layer, applications should set inputs to a placeholder that provides the session with data. For successive layers, applications
               should set inputs to the return value of the function that created the preceding layer.
            

            
            fully_connected returns a tensor containing the layer's output values. num_outputs parameter determines the size of this output tensor. It’s important to see that num_outputs controls the number of nodes in the fully connected layer.
            

            
            The activation_fn parameter specifies the activation function that will compute the outputs of the
               layer's nodes. By default, fully_connected sets this parameter to the tf.nn.relu rectification function, which is suitable for hidden layers. If a layer is intended
               to provide output, you'll probably need to associate a different function with activation_fn.
            

            
            The normalizer_fn, normalizer_params, biases_initializer, and biases_regularizer parameters determine the tuning process used for the layer. normalizer_fn specifies a function to normalize the layer's values. This function will receive
               any arguments provided in the normalizer_params parameter.
            

            
            If normalizer_fn is set, fully_connected ignores biases_initializer and biases_regularizer. Otherwise, the function calls biases_initializer to set the layer's bias values and regularizes the biases with the biases_regularizer function.
            

            
            By default, the fully connected layer initializes its weights using the Glorot method.
               You can customize how weights are initialized by assigning weights_initializer to a function that returns an Initializer, such as lecun_uniform. You can also specify a function to regularize the layer's weights by setting weights_regularizer.
            

            
            The scope parameter defines a variable scope for the fully connected layer. Weights and biases
               created by the layer will be stored within this scope. The reuse parameter identifies whether the layer and its variables can be reused.
            

            
         
         
         
            
            Putting theory into practice

            
            The code in the ch7/tuned_learning.py module performs the same MNIST classification as the ch7/deep_learning.py module presented earlier in this chapter. The difference is that it tunes the neural
               network to improve accuracy and performance. It also creates fully connected layers
               by calling tf.contrib.layers.fully_connected instead of tf.add and tf.matmul. Listing 7-2 presents the code.
 
            
            LISTING 7-2 Deep Learning with Tuning
            
 
            
            # Read MNIST data

            
            dataset = learn.datasets.mnist.read_data_sets('MNIST-data', one_hot=True)

            
             

            
            # Placeholders for MNIST images

            
            img_holder = tf.placeholder(tf.float32, [None, 784])

            
            lbl_holder = tf.placeholder(tf.float32, [None, 10])

            
            train = tf.placeholder(tf.bool)

            
             

            
            # Layer settings

            
            hid_nodes = 200

            
            out_nodes = 10

            
            keep_prob = 0.5

            
             

            
            # Create layers

            
            with tf.contrib.framework.arg_scope(

            
                [fully_connected],

            
                normalizer_fn=tf.contrib.layers.batch_norm,

            
                normalizer_params={'is_training': train}):

            
                    layer1 = fully_connected(img_holder, hid_nodes, scope='layer1')

            
                    layer1_drop = tf.layers.dropout(layer1, keep_prob, training=train)

            
                    layer2 = fully_connected(layer1_drop, hid_nodes, scope='layer2')

            
                    layer2_drop = tf.layers.dropout(layer2, keep_prob, training=train)

            
                    layer3 = fully_connected(layer2_drop, hid_nodes, scope='layer3')

            
                    layer3_drop = tf.layers.dropout(layer3, keep_prob, training=train)

            
                    out_layer = fully_connected(layer3_drop, out_nodes,

            
                        activation_fn=None, scope='layer4')

            
             

            
            # Compute loss

            
            loss = tf.reduce_mean(

            
                tf.nn.softmax_cross_entropy_with_logits(

            
                    logits=out_layer, labels=lbl_holder))

            
             

            
            # Create optimizer

            
            learning_rate = 0.01

            
            num_epochs = 15

            
            batch_size = 100

            
            num_batches = int(dataset.train.num_examples/batch_size)

            
            optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

            
             

            
            # Initialize variables

            
            init = tf.global_variables_initializer()

            
             

            
            # Launch session

            
            with tf.Session() as sess:

            
                sess.run(init)

            
             

            
                # Loop over epochs

            
                for epoch in range(num_epochs):

            
             

            
                    # Loop over batches

            
                    for batch in range(num_batches):

            
                        img_batch, lbl_batch = dataset.train.next_batch(batch_size)

            
                        sess.run(optimizer, feed_dict={img_holder: img_batch,

            
                            lbl_holder: lbl_batch, train: True})

            
             

            
                # Determine success rate

            
                prediction = tf.equal(tf.argmax(out_layer, 1), tf.argmax(lbl_holder, 1))

            
                success = tf.reduce_mean(tf.cast(prediction, tf.float32))

            
                print('Success rate: ', sess.run(success,

            
                    feed_dict={img_holder: dataset.test.images,

            
                        lbl_holder: dataset.test.labels, train: False}))

            
            This module employs three methods to tune its multi-layer neural network: 

            
            
               
               	It sends the output of each fully-connected layer to a dropout layer. The module sets
                  keep_prob to 0.5, so the dropout layer sets half of its inputs to 0.
               

               
               	The module calls tf.contrib.layers.batch_norm to perform batch normalization on the hidden layers.
               

               
               	By default, tf.contrib.layers.fully_connected initializes the network's weights using the Glorot method.
               

               
            

            
            Each hidden layer has 200 nodes, and the output layer has 10 nodes. Before creating
               the layers, the module defines an argument scope by calling tf.contrib.framework.arg_scope. arg_scope accepts a list containing a function (fully_connected) and the arguments to insert inside the function.
            

            
            Each call to fully_connected sets the scope argument to a different value. Creating this scope changes the names of the layer's
               variables. An application can retrieve these variables by calling tf.get_collection.
            

            
            The first three fully_connected calls don't set activation_fn, so the layers’ nodes compute their output using the default ReLU activation function.
               The last fully_connected call sets activation_fn to None, so each node of the output layer returns the weighted sum of its inputs. The tf.nn.softmax_cross_entropy_with_logits function accepts these weighted sums and selects one of the ten categories.
            

            
         
         
      
      
   
      
      Chapter 8

      
      Classifying Images with Convolutional Neural Networks (CNNs)
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         This chapter explains how you can code image recognition applications using TensorFlow
            and convolutional neural networks (CNNs). These applications are similar to the vanilla
            neural networks from Chapter 7, but they include layers specifically intended for image classification.
         

         
      
      
      
         
         Filtering Images

         
         If you’ve used image editing applications like Adobe Photoshop, you’re probably familiar
            with filtering tools, which add effects, such as blurring, sharpening, or embossing,
            to images. Mathematically, these tools perform their operations using a process called
            convolution. This process plays a critical role in image recognition, and while it’s not important
            to grasp all the gory details, it’s good to understand the general process.
         

         
         
            
            Convolution

            
            Image convolution replaces each pixel of an image with the result of a two-dimensional
               dot product. This dot product accepts two matrices and returns the sum of the products
               of their corresponding elements.
            

            
            For example, suppose that A and B are two 3-x-3 matrices whose elements are given
               as follows: 
            

            
            [image: images]
               

            
            You can compute the two-dimensional dot product of A and B by multiplying corresponding
               pairs of values and adding the results together: 
            

            
            [image: images]
               

            
            The first matrix involved in image convolution is the MxN rectangle surrounding one
               of the image’s pixels. The second MxN matrix involved in the dot product is commonly
               called a kernel, but TensorFlow refers to it as a filter. The filter’s elements determine what effect the filter will have on the image.
            

            
            For example, if you denote an image as a matrix M, the pixel in the ith row and jth
               column is mi,j. If you denote the filter as a matrix K, the element in the ith row and jth column
               is ki,j. With this notation, the convolution process obtains the new value of mi,j with the following dot product: 
            

            
            [image: images]
               

            
            When filtering an image, this dot product must be computed for each pixel in the original
               image. This operation presents an important concern: How do you find the pixels surrounding
               mi,j if the pixel lies on the image’s border?
            

            
            [image: technicalstuff] Instead of computing a dot product for each pixel, many engineers perform convolution
               by converting the image and filter to the frequency domain. This process, called fast convolution, involves computing the Fast Fourier Transform (FFT) for each row and column of the
               image and filter.
            

            
            This book, like other fine works of machine learning literature, employs the term
               convolution to refer to the process of computing a matrix of 2-D dot products. But
               the technical term for this is cross-correlation. Convolution reverses one of the operands before computing the dot products and the
               algorithm presented here doesn’t reverse either operand.
            

            
         
         
         
            
            Averaging Filter

            
            A good way to understand image filtering is to walk through an example. This section
               focuses on the grainy image depicted in Figure 8-1.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 8-1: The image’s mottled appearance is the result of noise.
                     

                     
                  
                  
               
               
            

            
            Mathematically, an image’s noise can be thought of as unwanted variation between adjacent
               pixels. You can reduce this variation by replacing each pixel with the average of
               itself and the pixels immediately surrounding it. You can accomplish this by convolving
               the image with a filter like the following: 
            

            
            [image: images]
               

            
            Denoting the pixel in the ith row and jth column as mij, you can compute the filtered value of mij in the following way: 
            

            
            [image: images]
               

            
            This type of filter is called a box filter or an averaging filter. After convolution, the filtered pixels form the image illustrated in Figure 8-2:
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 8-2: Convolution with the box filter reduces the amount of noise in the image.
                     

                     
                  
                  
               
               
            

            
            The box filter removed a lot of the image’s noise, but it also removed detail that
               isn’t noise. To improve on the box filter, engineers have devised a more effective
               noise-reduction filter called the Gaussian filter. The filter’s elements are determined by values of the Gaussian curve.
            

            
         
         
         
            
            Filters and features

            
            Image filtering can do more than just add effects. One critical application involves
               finding an image inside a larger image. Consider the 7-x-7 filter presented in Figure 8-3.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 8-3: The filter’s elements correspond to the pixels of the smiley face.
                     

                     
                  
                  
               
               
            

            
            If you look closely at the filter matrix, you’ll see that its elements identify the
               pixel values of the grayscale image on the right. In other words, the filter defines
               its own small image — a smiley face. The dot product of an image with itself produces
               a large value, so if an image contains a 7-x-7 smiley face, the convolution of the image with this filter will produce a large value at the point
               where the smiley face is located.
            

            
            This property of convolution makes it possible to locate images inside a larger image.
               For example, an image of an airplane should have a cockpit, two wings, and a fuselage.
               If you use one filter for the cockpit, one for the wings, and one for the fuselage,
               a high convolution value for each filter indicates the presence of an aircraft.
            

            
            These subimages of interest are called features, and an application can check whether a feature is present in an image by convolving
               the image with an appropriate filter. A high convolution result indicates that the
               feature is present in the image.
            

            
         
         
         
            
            Feature detection analogy

            
            When it comes to image filtering, you can easily get wrapped up in the math and forget
               what’s going on. So here’s a strange analogy: Imagine that you have a magnifying glass
               and a high resolution image of a large crowd of people. As you move the glass over
               the image, you get a better look at each person in the crowd.
            

            
            Suppose that you engrave your face on the glass. Afterward, you magically enchant
               the glass to display a number that identifies how closely the engraving matches the
               image underneath the glass. The largest number will appear when the glass is directly
               over your face.
            

            
            Now suppose that you have other magnifying glasses, each with an engraved image of
               a member of your family. If you examine the numbers displayed by the different magnifying
               glasses, you’ll be able to locate each of your family members and thereby locate your
               family in the crowd.
            

            
            In this analogy, each magnifying glass is a filter, and each engraved image is a feature.
               The process of moving the glass over the image and reading the number corresponds
               to convolution.
            

            
         
         
         
            
            Setting convolution parameters

            
            When you categorize images using convolution, you don’t set the filters’ elements
               directly. Instead, you provide input images and their corresponding categories. The
               application’s job is to determine which filters best support correct categorization.
               In this manner, filters resemble the weights of the neural networks discussed in Chapter 7.
            

            
            Even though you can’t set the filters’ elements, you can set many of the filters’
               properties, such as their number and size. You can also configure three other aspects
               of convolution: 
            

            
            
               
               	stride: Shifting the filter from one 2-D dot product to the next
               

               
               	dilation: Expanding the filter's size by inserting zero-valued elements
               

               
               	padding: Accounting for pixels near the edge of the image
               

               
            

            
            These parameters play an important role in determining how an application performs
               convolution. The following sections explore each of them in detail.
            

            
            
               
               Stride

               
               After each two-dimensional dot product, the convolution process moves the filter one
                  pixel to the right. When all the dot products have been computed for a row of pixels,
                  convolution moves the filter one pixel down and continues computing two-dimensional
                  dot products.
               

               
               This behavior is the default, but developers can customize how the convolution is
                  performed by setting the stride. Stride determines how much the filter shifts after each dot product. To set the
                  stride, you need to provide two values: the horizontal pixel shift and the vertical
                  pixel shift. The default stride is always (1, 1).
               

               
               For example, if you set the stride to (2, 3), the filter will shift two pixels to
                  the right after each dot product. After completing all the dot products for one row,
                  the filter will shift three pixels down and start computing further dot products.
                  This increased stride reduces the amount of computation needed for the convolution,
                  but also reduces the amount of detail. In this book, stride will always be set to
                  (1, 1).
               

               
            
            
            
               
               Dilation

               
               The term dilation usually refers to stretching or expanding part of the body, such as the pupil of
                  the eye. In image processing, dilation refers to stretching the elements of a filter.
                  As with stride, you can specify dilation by providing two values: one that sets horizontal
                  stretching and one that sets vertical stretching. The default value is (1, 1), which
                  indicates that no stretching should be performed.
               

               
               As dilation increases, the effective size of the filter increases but the number of
                  nonzero elements doesn’t change. Instead, dilation inserts zeros between the filter’s
                  elements.
               

               
               For example, if you set the dilation to (2, 1), the convolution will insert a zero
                  between each horizontal pair of elements in the filter. These zero elements won’t
                  contribute any values to the two-dimensional dot products.
               

               
               By changing the dilation, applications can efficiently detect features of varying
                  sizes. For a thorough discussion of the topic, I recommend the 2015 paper Multi-Scale Context Aggregation by Dilated Convolutions by Fisher Yu and Vladlen Koltun (ICLR 2016).
               

               
            
            
            
               
               Padding

               
               If a filter’s size is NxN, convolution computes an NxN two-dimensional dot product
                  for each pixel in the input image. If a pixel lies on the edge of the image or near
                  the edge, it isn’t clear how the NxN dot product should be computed.
               

               
               In TensorFlow, developers can configure the processing of border pixels in one of
                  two ways. The first method involves ignoring pixels that lie on or near the image’s
                  edge. The advantage of ignoring these pixels is that every pixel in the resulting
                  image will be accurate. The disadvantage is that the output image will be smaller
                  than the input image.
               

               
               The second method involves expanding the image and inserting zeros beyond its original
                  borders. If a pixel lies on the edge of the image, the dot product will take these
                  zeros into account. As a result, the output image will be the same size as the input
                  image, but the output pixels on/near the edges won’t be completely accurate because
                  they were computed with zeros.
               

               
            
         
         
      
      
      
         
         Convolutional Neural Networks (CNNs)

         
         A traditional neural network receives a series of input values, multiplies each input
            value by a weight, and passes the processed data through a series of layers. This
            approach is fine for general-purpose data analysis, but it’s not sufficient for processing
            images and similar 2-D/3-D data. Image classification requires convolution, and for
            this reason, neural networks intended for image classification are called convolutional
            neural networks, or CNNs.
         

         
         CNNs resemble regular neural networks in a number of ways, but they have two distinguishing
            characteristics: 
         

         
         
            
            	A CNN contains convolution layers that use rectangular filters to perform convolution.

            
            	A CNN uses pooling layers to reduce the dimensionality of output images.

            
         

         
         After the convolution layers and pooling layers have done their jobs, CNNs use fully
            connected layers to provide output. Figure 8-4 illustrates the structure of a minimal CNN:
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 8-4: Convolutional neural networks contain convolution layers, pooling layers, and at
                     least one fully connected layer.
                  

                  
               
               
            
            
         

         
         This network has two convolution layers that produce one output image for each filter.
            The pooling layers reduce the size of the images produced by convolution. This section
            explains what these layers accomplish and how they work together.
         

         
         
            
            Creating convolution layers

            
            In a TensorFlow application, an image is a tensor that contains a matrix for each
               of an image’s channels. By channels, I mean the components that make up the image’s
               pixels. For example, a grayscale image has one channel, so its tensor consists of
               one matrix. An RGB image has three channels, so its tensor will have three channels.
            

            
            A convolution layer accepts a batch of images, performs convolution with a set of
               filters, and returns an output tensor containing the convolution results. The size
               of each output image depends on the size of the input images and the use of padding
               in the convolution.
            

            
            You can create a convolution layer by calling tf.layers.conv2d. Table 8-1 lists the parameters of this function and presents the default value of each.
            

            
            
               
                  
                  TABLE 8-1 Arguments of tf.layers.conv2d
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Argument

                        
                        
                        	
                           
                           Default

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           inputs

                        
                        
                        	
                           
                           --

                        
                        
                        	
                           
                           Tensor containing input image

                        
                        
                     

                     
                     
                        
                        	
                           
                           filters

                        
                        
                        	
                           
                           --

                        
                        
                        	
                           
                           Number of filters to be used

                        
                        
                     

                     
                     
                        
                        	
                           
                           kernel_size

                        
                        
                        	
                           
                           --

                        
                        
                        	
                           
                           Size of the kernel (one value for an NxN square, two values for an MxN rectangle)

                        
                        
                     

                     
                     
                        
                        	
                           
                           strides

                        
                        
                        	
                           
                           (1, 1)

                        
                        
                        	
                           
                           Amount the filter should shift between 2-D dot products

                        
                        
                     

                     
                     
                        
                        	
                           
                           padding

                        
                        
                        	
                           
                           'valid'

                        
                        
                        	
                           
                           Method of processing pixels near the image's edge

                        
                        
                     

                     
                     
                        
                        	
                           
                           data_format

                        
                        
                        	
                           
                           'channels_last'

                        
                        
                        	
                           
                           Order of the elements in the input tensor

                        
                        
                     

                     
                     
                        
                        	
                           
                           dilation_rate

                        
                        
                        	
                           
                           (1, 1)

                        
                        
                        	
                           
                           Extent by which the filter should be horizontally/vertically stretched

                        
                        
                     

                     
                     
                        
                        	
                           
                           activation

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Activation function

                        
                        
                     

                     
                     
                        
                        	
                           
                           use_bias

                        
                        
                        	
                           
                           True

                        
                        
                        	
                           
                           Bool that identifies whether the layer uses a bias

                        
                        
                     

                     
                     
                        
                        	
                           
                           kernel_ initializer

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Initializer for the filter's values (weights)

                        
                        
                     

                     
                     
                        
                        	
                           
                           bias_ initializer

                        
                        
                        	
                           
                           tf.zeros.initializer()

                        
                        
                        	
                           
                           Initializer for the layer's biases

                        
                        
                     

                     
                     
                        
                        	
                           
                           kernel_ regularizer

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Regularizer for the filter's values (weights)

                        
                        
                     

                     
                     
                        
                        	
                           
                           bias_ regularizer

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Regularizer for the layer's biases

                        
                        
                     

                     
                     
                        
                        	
                           
                           activity_ regularizer

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Regularizer for the layer's output

                        
                        
                     

                     
                     
                        
                        	
                           
                           trainable

                        
                        
                        	
                           
                           True

                        
                        
                        	
                           
                           Bool that identifies whether to add the filter's elements to the graph’s trainable
                              variables
                           

                        
                        
                     

                     
                     
                        
                        	
                           
                           name

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Name of the layer

                        
                        
                     

                     
                     
                        
                        	
                           
                           reuse

                        
                        
                        	
                           
                           False

                        
                        
                        	
                           
                           Bool that identifies whether to reuse the weights of a similarly-named scope

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            An application must set inputs to a tensor whose shape depends on the data_format parameter. If you set data_format to channels_last (the default value), the inputs tensor should have a shape equal to [batch_size, height, width, channels]. If you
               set data_format to channels_first, the inputs tensor should have a shape equal to [batch_size, channels, height, width].
            

            
            The filters parameter identifies the number of filters used by the convolution layer. The kernel_size parameter identifies the size of each filter. If you set this parameter to a single
               value, N, the size of each filter will be NxN. If you set it to two values, such as
               [M, N], the size of each filter will be MxN.
            

            
            The earlier “Setting convolution parameters” section talks about the stride and dilation characteristics of image filters. In
               tf.layers.conv2d, you can set these properties with the strides and dilation_rate parameters.
            

            
            The padding parameter tells the layer how to process the image's boundary pixels. If you set
               padding to valid, the layer will ignore boundary pixels and return an output image smaller than the
               input image. If you set padding to same, the layer will pad the input image with zeros and produce an output image with the
               same size as the input image.
            

            
            tf.layers.conv2d returns a tensor whose shape depends on the shape of the input image, the number
               of filters, and the padding parameter. For example, if the input's shape is [N, height, width, num_channels]
               and the padding is set to same, the output's shape will be [N, height, width, num_filters].
            

            
            The number of channels does not affect the shape of the output. While performing convolution,
               tf.layers.conv2d combines the channels together, so a grayscale input image and an RGB input image
               will produce output images of the same size. If you’d like to perform channel-specific
               filtering, the function to use is tf.nn.depthwise_conv2d.
            

            
            If an application sets padding to valid, each output image will be smaller than the input image. The reduction in size depends
               on the dimensions of the convolution filters. For example, if padding is valid, the filter size equals [X, Y], and the input's shape is [N, height, width, num_channels],
               the shape of each output image will be [N, height – (Y – 1), width – (X – 1), num_filters].
            

            
         
         
         
            
            Creating pooling layers

            
            A convolution layer produces an output image for each filter, so a CNN with many filters
               will produce many images. These images require a great deal of memory, so developers
               reduce the size of the images by following convolution layers with pooling layers.
            

            
            A pooling layer subdivides an image’s pixels into rectangular blocks and replaces
               each block with a single pixel. Figure 8-5 shows how this process works. The pooling operation divides a 9-x-8 matrix into 3-x-2
               blocks and replaces each block with a single value.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 8-5: A pooling layer accepts an input image, splits it into blocks, operates on each block,
                        and returns a condensed image.
                     

                     
                  
                  
               
               
            

            
            Figure 8-5 depicts two methods of pooling. The first finds the largest value in the input block
               and stores that value in the output image. You can create a pooling layer that performs
               this operation by calling tf.layers.max_pooling2d.
            

            
            The second pooling method computes the average value of the pixels in the input block
               and stores that value in the output image. You can create a pooling layer that uses
               this method by calling tf.layers.avg_pooling2d.
            

            
            Of the pooling functions provided by the tf.layers package, max_pooling2d is the most popular. This popularity makes sense because a high maximum value clearly
               indicates the presence of a filter's feature in the image. Table 8-2 lists the parameters of tf.layers.max_pooling2d and provides a description of each.
            

            
            
               
                  
                  TABLE 8-2 Parameters of tf.layers.max_pooling2d
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Parameter

                        
                        
                        	
                           
                           Default

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           inputs

                        
                        
                        	
                           
                           --

                        
                        
                        	
                           
                           Input 4-D tensor

                        
                        
                     

                     
                     
                        
                        	
                           
                           pool_size

                        
                        
                        	
                           
                           --

                        
                        
                        	
                           
                           The size of the block used for pooling

                        
                        
                     

                     
                     
                        
                        	
                           
                           strides

                        
                        
                        	
                           
                           --

                        
                        
                        	
                           
                           The shift from one pooling operation to the next

                        
                        
                     

                     
                     
                        
                        	
                           
                           padding

                        
                        
                        	
                           
                           'valid'

                        
                        
                        	
                           
                           The padding algorithm: valid or same

                        
                        
                     

                     
                     
                        
                        	
                           
                           data_format

                        
                        
                        	
                           
                           'channels_last'

                        
                        
                        	
                           
                           Specifies the shape of the input image

                        
                        
                     

                     
                     
                        
                        	
                           
                           name

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Provides a name for the layer

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            As with tf.layers.conv2d, the shape of the input tensor depends on data_format. If data_format is channels_last, the input tensor's shape should be [batch_size, height, width, channels]. If data_format is channels_first, the input tensor's shape should be [batch_size, channels, height, width]. Regardless
               of data_format, each element in the input tensor must be a tf.float32.
            

            
            To set the height and width of the block used for pooling, you need to assign pool_size to a list or tuple of two integers. For the pooling illustrated in Figure 8-5, the application set pool_size to [2, 2].
            

            
            strides identifies how much the block shifts (in pixels) from one pooling operation to the
               next. If the horizontal shift equals the vertical shift, you can set strides to one integer. If not, you can set strides to a tuple or list of two integers, where the first sets the vertical shift and the
               second sets the horizontal shift. For the pooling illustrated in Figure 8-5, the application set strides to 2.
            

            
            If a pooling operation involves a point near the image's border, the computation will
               depend on the padding parameter. If you set padding to valid, the pooling won't take border pixels into account. If you set padding to same, the function will pad the image with zeros before pooling its values.
            

            
         
      
      
      
         
         Putting Theory into Practice

         
         Once you understand convolution, convolution layers, and pooling layers, you're ready
            to examine some code. This section presents an application that classifies images.
            But instead of classifying images of the MNIST dataset, this application classifies
            images from a dataset called CIFAR-10.
         

         
         
            
            Processing CIFAR images

            
            To test practical image recognition applications, the Canadian Institute for Advanced
               Research (CIFAR) provides the CIFAR-10 and CIFAR-100 datasets. Like the MNIST dataset,
               these datasets contain images and their classification labels. Unlike the MNIST images,
               the CIFAR images are in color and have a size equal to 32-x-32 pixels. This discussion
               explains how to obtain the CIFAR-10 dataset and access its content in a TensorFlow
               application.
            

            
            
               
               The CIFAR-10 dataset

               
               The main site for the CIFAR-10 and CIFAR-100 datasets is www.cs.toronto.edu/~kriz/cifar.html. The site provides three links for downloading the CIFAR-10 dataset: one for the Python version, one for the Matlab version, and a binary
                  version. This section focuses on the Python version, and I recommend that you download
                  it to your development system.
               

               
               Before proceeding, I recommend that you download and decompress the archive to the
                  ch8 directory. Inside the decompressed directory, you'll find a folder named cifar-10-batches-py. This folder contains five files containing training images (data_batch_1 through data_batch_5) and a file containing test images (test_batch).
               

               
            
            
            
               
               Accessing CIFAR-10 images and labels

               
               CIFAR serializes the data in the CIFAR-10 files using a process called pickling. To read the data in Python, an application needs to import pickle and invoke its load method with the CIFAR file. As an example, the following code accesses the data in
                  data_batch_2: 
               

               
               import pickle

               
               with open('cifar-10-batches-py/data_batch_2', 'rb') as imgfile:

               
                   dict = pickle.load(imgfile)

               
                   imgfile.close()

               
               The result is a dictionary with four keys: 

               
               
                  
                  	b'batch_label': Description of the batch (b' training batch 2 of 5')
                  

                  
                  	b'labels': A list of the 10,000 labels of the batch’s images
                  

                  
                  	b'data': An ndarray containing the batch’s image data
                  

                  
                  	b'filenames': A list of the 10,000 PNGs that contain image data (b'stealth_fighter_s_001650.png')
                  

                  
               

               
               Each image label is provided as an integer between 0 and 9. These values correspond
                  to the ten categories that identify the content of the corresponding image. These
                  categories are airplane (0), automobile (1), bird (2), cat (3), deer (4), dog (5),
                  frog (6), horse (7), ship (8), and truck (9). As an example, Figure 8-6 shows what a Category 7 image looks like.
               

               
               
                  
                  [image: image] 
                     
                        
                        FIGURE 8-6: Each CIFAR-10 image contains 1,024 pixels (32 x 32). Each pixel stores red, green,
                           and blue components as 8-bit unsigned integers.
                        

                        
                     
                     
                  
                  
               

               
               The ndarray provided by the data key contains 8-bit unsigned integers in a 10,000-x-3,072 element matrix. This matrix
                  contains 10,000 rows, and each row contains a 32-by-32 image with red, green, and
                  blue components (32 x 32 x 3 = 3,072).
               

               
            
         
         
         
            
            Classifying CIFAR images in code

            
            The code in ch8/cifar_cnn.py demonstrates how you can use TensorFlow to load CIFAR-10 images and classify them
               with a convolutional neural network. Listing 8-1 presents the module's code.
            
 
            
            LISTING 8-1 Classifying CIFAR-10 Images
            
 
            
            # Set parameters

            
            image_size = 32

            
            num_channels = 3

            
            num_categories = 10

            
            num_filters = 32

            
            filter_size = 5

            
            num_epochs = 200

            
            batch_size = 10

            
            num_batches = int(50000/batch_size)

            
            keep_prob = 0.6

            
             

            
            # Read CIFAR training data

            
            train_data = None

            
            train_labels = None

            
            for file_index in range(5):

            
                train_file = open('cifar-10-batches-py/data_batch_' + str(file_index+1), 'rb')

            
                train_dict = pickle.load(train_file, encoding='latin1')

            
                train_file.close()

            
             

            
                if train_data is None:

            
                    train_data = np.array(train_dict['data'], float)/255.0

            
                    train_labels = train_dict['labels']

            
                else:

            
                    train_data = np.concatenate((train_data, train_dict['data']), 0)

            
                    train_labels = np.concatenate((train_labels, train_dict['labels']), 0)

            
             

            
            # Preprocess training data and labels

            
            train_data = train_data.reshape([-1, num_channels, image_size, image_size])

            
            train_data = train_data.transpose([0, 2, 3, 1])

            
            train_labels = np.eye(num_categories)[train_labels]

            
             

            
            # Read CIFAR test data

            
            test_file = open('cifar-10-batches-py/test_batch', 'rb')

            
            test_dict = pickle.load(test_file, encoding='latin1')

            
            test_file.close()

            
            test_data = test_dict['data']

            
            test_labels = test_dict['labels']

            
             

            
            # Preprocess test data and labels

            
            test_data = test_data.reshape([-1, num_channels, image_size, image_size])

            
            test_data = test_data.transpose([0, 2, 3, 1])

            
            test_labels = np.eye(num_categories)[test_labels]

            
             

            
            # Placeholders for CIFAR images

            
            img_holder = tf.placeholder(tf.float32, [None, image_size, image_size, num_channels])

            
            lbl_holder = tf.placeholder(tf.float32, [None, num_categories])

            
            train = tf.placeholder(tf.bool)

            
             

            
            # Create convolution/pooling layers

            
            conv1 = tf.layers.conv2d(img_holder, num_filters, filter_size, padding='same', activation=tf.nn.relu)

            
            drop1 = tf.layers.dropout(conv1, keep_prob, training=train)

            
            pool1 = tf.layers.max_pooling2d(drop1, 2, 2)

            
            conv2 = tf.layers.conv2d(pool1, num_filters, filter_size, padding='same', activation=tf.nn.relu)

            
            drop2 = tf.layers.dropout(conv2, keep_prob, training=train)

            
            pool2 = tf.layers.max_pooling2d(drop2, 2, 2)

            
            conv3 = tf.layers.conv2d(pool2, num_filters, filter_size, padding='same', activation=tf.nn.relu)

            
            pool3 = tf.layers.max_pooling2d(conv3, 2, 2)

            
            conv4 = tf.layers.conv2d(pool3, num_filters, filter_size, padding='same', activation=tf.nn.relu)

            
            drop3 = tf.layers.dropout(conv4, keep_prob, training=train)

            
             

            
            # Flatten input data

            
            flatten = tf.reshape(drop3, [-1, 512])

            
             

            
            # Create connected layers

            
            with tf.contrib.framework.arg_scope(

            
                [tf.contrib.layers.fully_connected],

            
                normalizer_fn=tf.contrib.layers.batch_norm,

            
                normalizer_params={'is_training': train}):

            
                    fc1 = tf.contrib.layers.fully_connected(flatten, 512)

            
                    fc2 = tf.contrib.layers.fully_connected(fc1, num_categories, activation_fn=None)

            
             

            
            # Compute loss

            
            loss = tf.reduce_mean(

            
                tf.nn.softmax_cross_entropy_with_logits(

            
                    logits=fc2, labels=lbl_holder))

            
             

            
            # Create optimizer

            
            learning_rate = 0.0005

            
            optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)

            
            # Initialize variables

            
            init = tf.global_variables_initializer()

            
             

            
            # Launch session

            
            with tf.Session() as sess:

            
                sess.run(init)

            
             

            
                # Loop over epochs

            
                for epoch in range(num_epochs):

            
             

            
                    # Loop over batches

            
                    for batch in range(num_batches):

            
                        batch_start = random.randint(0, batch_size*(num_batches-1)-1)

            
                        batch_end = batch_start + batch_size

            
                        img_batch = train_data[batch_start:batch_end, :]

            
                        lbl_batch = train_labels[batch_start:batch_end, :]

            
                        sess.run(optimizer, feed_dict={img_holder: img_batch,

            
                            lbl_holder: lbl_batch, train: True})

            
             

            
                        # Determine success rate

            
                prediction = tf.equal(tf.argmax(fc2, 1), tf.argmax(lbl_holder, 1))

            
                accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32))

            
                print('Accuracy: ', sess.run(accuracy, feed_dict={img_holder: test_data,

            
                    lbl_holder: test_labels, train: False}))

            
            The application assumes that the user has downloaded the CIFAR-10 dataset for Python.
               It also assumes that the user has decompressed the archive into a directory named
               cifar-10-batches-py in the ch8 folder.
            

            
            The module starts by loading the CIFAR-10 training images and labels. Then it performs
               four operations: 
            

            
            
               
               	Concatenates the training images into one (50,000 x 3,072) ndarray. Concatenates the
                  training labels into one (50,000 x 1) ndarray.
               

               
               	Converts the elements of the image ndarray to floating-point values.

               
               	Reshapes the image ndarray to [50,000, 32, 32, 3]. The last element identifies the
                  number of channels per pixel (R, G, and B).
               

               
               	Converts the label ndarray to a one-shot ndarray (50,000 x 10).

               
            

            
            This is a book on TensorFlow, so it may seem odd that the application preprocesses
               data using NumPy instead of TensorFlow. But there's an important reason: Sessions
               can’t feed tensors into placeholders during training. Another reason is that TensorFlow
               stores tensor operations in the graph but does not store NumPy operations.
            

            
            To process the image data, the application creates four convolution layers and three
               pooling layers. Each convolution layer uses 32 filters of size 5 x 5, and each uses
               a ReLU to serve as its activation function. The pooling layers set their block sizes
               to 2 x 2 and their strides to 2.
            

            
            To understand the code, it’s crucial to understand how the input tensor’s size changes
               from layer to layer. Each batch contains ten images, so the initial size of each input
               tensor is [10, 32, 32, 3]. 
            

            
            
               
               	The first convolution layer has 32 filters, so the shape of the output tensor is [10,
                  32, 32, 32].
               

               
               	The first pooling layer shrinks each image dimension by one-half, so the output tensor’s
                  shape is [10, 16, 16, 32].
               

               
               	The second convolution layer has 32 filters, so the shape of the output tensor is
                  [10, 16, 16, 32].
               

               
               	The second pooling layer shrinks each image dimension by one-half, so the output tensor’s
                  shape is [10, 8, 8, 32].
               

               
               	The third convolution layer has 32 filters, so the shape of the output tensor is [10,
                  8, 8, 32].
               

               
               	The third pooling layer shrinks each image dimension by one-half, so the output tensor’s
                  shape is [10, 4, 4, 32].
               

               
               	The fourth convolution layer has 32 filters, so the shape of the output tensor is
                  [10, 4, 4, 32].
               

               
            

            
            When the convolution is finished, the module flattens the image data and passes it
               to two fully connected layers. The first fully connected layer has 512 nodes and uses
               a ReLU to serve as its activation function. The second fully connected layer has ten
               nodes.
            

            
         
      
      
      
         
         Performing Image Operations

         
         TensorFlow provides many functions that perform general-purpose image processing.
            To present these functions, I divide them into five categories: 
         

         
         
            
            	Image conversion

            
            	Color processing

            
            	Rotating and mirroring

            
            	Resizing and cropping

            
            	Convolution

            
         

         
         The following sections introduce these functions and demonstrate their usage. The
            example application shows how to generate summary data for an image and visualize
            it with TensorBoard.
         

         
         
            
            Converting images

            
            The tf.image package provides functions that convert images between different file formats, color
               profiles, and data types. Table 8-3 lists these functions and provides a description of each.

            
            
               
                  
                  TABLE 8-3 Image Conversion Functions
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Function

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           decode_bmp(contents,

                           
                           . channels=None, name=None)

                        
                        
                        	
                           
                           Convert BMP-formatted image data into a tensor

                        
                        
                     

                     
                     
                        
                        	
                           
                           decode_gif(contents,

                           
                           . name=None)

                        
                        
                        	
                           
                           Convert GIF-formatted image data into a tensor

                        
                        
                     

                     
                     
                        
                        	
                           
                           decode_png(contents,

                           
                           . channels=None, dtype=None,

                           
                           . name=None)

                        
                        
                        	
                           
                           Convert PNG-formatted image data into a tensor

                        
                        
                     

                     
                     
                        
                        	
                           
                           decode_jpeg(contents,

                           
                           . channels=None, ratio=None,

                           
                           . fancy_upscaling=None,

                           
                           . try_recover_truncated=None,

                           
                           . acceptable_fraction=None,

                           
                           . dct_method=None,

                           
                           . name=None)

                        
                        
                        	
                           
                           Convert JPEG-formatted image data to a tensor

                        
                        
                     

                     
                     
                        
                        	
                           
                           decode_image(contents,

                           
                           . channels=None, name=None)

                        
                        
                        	
                           
                           Detects format of image data and converts data to a tensor

                        
                        
                     

                     
                     
                        
                        	
                           
                           encode_png(image,

                           
                           . compression=None,

                           
                           . name=None)

                        
                        
                        	
                           
                           Converts a tensor containing image data to PNG encoding

                        
                        
                     

                     
                     
                        
                        	
                           
                           encode_jpeg(image,

                           
                           . format=None,

                           
                           . quality=None,

                           
                           . progressive=None,

                           
                           . optimize_size=None,

                           
                           . chroma_downsampling=None,

                           
                            density_unit=None,

                           
                           . x_density=None,

                           
                           . y_density=None,

                           
                           . xmp_metadata=None,

                           
                           . name=None)

                        
                        
                        	
                           
                           Converts a tensor containing image data to PNG encoding

                        
                        
                     

                     
                     
                        
                        	
                           
                           rgb_to_grayscale(images,

                           
                             name=None)

                        
                        
                        	
                           
                           Convert one or more images from RGB to grayscale

                        
                        
                     

                     
                     
                        
                        	
                           
                           rgb_to_hsv(images,

                           
                             name=None)

                        
                        
                        	
                           
                           Convert one or more images from RGB to HSV

                        
                        
                     

                     
                     
                        
                        	
                           
                           grayscale_to_rgb(images,

                           
                             name=None)

                        
                        
                        	
                           
                           Convert one or more images from grayscale to RGB

                        
                        
                     

                     
                     
                        
                        	
                           
                           hsv_to_rgb(images,

                           
                             name=None)

                        
                        
                        	
                           
                           Convert one or more images from HSV to RGB

                        
                        
                     

                     
                     
                        
                        	
                           
                           convert_image_dtype(image,

                           
                             dtype, saturate=False,

                           
                             name=None)

                        
                        
                        	
                           
                           Change the data type of the image tensor's elements

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            The shape of an image’s tensor depends on the nature of the image. For simple 2-D
               images, such as in a JPEG, the tensor’s shape is [height, width, num_channels]. For
               a sequence of frames, such as the images in a GIF animation, the shape is [num_frames,
               height, width, num_channels].
            

            
            In Table 8-3, the decode_* functions convert a zero-dimensional string tensor into a suitable image tensor.
               For example, if an application loads data from smiley.jpg into a tensor named smiley_tensor, decode_jpeg will return a decompressed tensor whose shape is [height, width, num_channels].
            

            
            A TensorFlow application can read BMP, GIF, PNG, and JPEG images, but it can only
               write data to PNGs and JPEGs. These write operations are made possible by encode_png and encode_jpeg.
            

            
            Keep in mind that TensorFlow's decode/encode functions don’t accept files, but instead
               read and write zero-dimensional string tensors. TensorFlow provides a number of method
               to create string tensors from files, and one method involves three steps: 
            

            
            
               
               	Call tf.string_input_producer with an array of file names.

               
               	Create a WholeFileReader by calling tf.WholeFileReader.

               
               	Call the reader's read method with the queue from Step 1.

               
            

            
            To demonstrate how this process works, the following code reads data from smiley.png and writes it to smiley.jpg: 
            

            
            queue = tf.train.string_input_producer(['smiley.png'])

            
            reader = tf.WholeFileReader()

            
            _, png_data = reader.read(queue)

            
            img_tensor = tf.image.decode_png(png_data)

            
            jpeg_data = tf.image.encode_jpeg(img_tensor)

            
            with tf.Session() as sess:

            
                tf.train.start_queue_runners()

            
                jpeg_file = open('smiley.jpeg', 'wb+')

            
                jpeg_file.write(jpeg_data.eval())

            
                jpeg_file.close()

            
            The last function in Table 8-3, convert_image_dtype, converts the pixels of an image from one data type to another. This is particularly
               important because different image-processing operations require different data types.
               For example, convolution requires tensors containing floating-point elements while
               PNG encoding requires unsigned integers. The following code converts the elements of img to single-precision floating-point values: 
            

            
            img = tf.image.convert_image_dtype(img, tf.float32)

            
            convert_image_dtype assumes that all integer values are non-negative and that all floating-point values
               lie between 0.0 and 1.0. The function performs scaling in addition to conversion,
               so it multiplies tf.float32 values by 256 when converting to tf.uint8 and it divides tf.uint8 values by 256 when converting to tf.float32.
            

            
         
         
         
            
            Color processing

            
            The second category of functions in tf.image change the color content of an image. Table 8-4 lists nine of these functions.
            

            
            
               
                  
                  TABLE 8-4 Color-Processing Functions
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Function

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           adjust_brightness(image, delta)

                        
                        
                        	
                           
                           Adds the given delta to the image's pixel values

                        
                        
                     

                     
                     
                        
                        	
                           
                           adjust_contrast(images,

                           
                             contrast_factor)

                        
                        
                        	
                           
                           Adjust contrast by the given factor

                        
                        
                     

                     
                     
                        
                        	
                           
                           adjust_gamma(image,

                           
                             gamma=1, gain=1)

                        
                        
                        	
                           
                           Perform gamma correction

                        
                        
                     

                     
                     
                        
                        	
                           
                           adjust_hue(image, delta,

                           
                             name=None)

                        
                        
                        	
                           
                           Change the image's hue content by the given delta

                        
                        
                     

                     
                     
                        
                        	
                           
                           adjust_saturation(image,

                           
                             saturation_factor, name=None)

                        
                        
                        	
                           
                           Update the image's saturation by a given value

                        
                        
                     

                     
                     
                        
                        	
                           
                           random_brightness(image,

                           
                             max_delta, seed=None)

                        
                        
                        	
                           
                           Adds a random value to the image's pixel values

                        
                        
                     

                     
                     
                        
                        	
                           
                           random_contrast(image,

                           
                             lower, upper, seed=None)

                        
                        
                        	
                           
                           Adjust contrast by a random value

                        
                        
                     

                     
                     
                        
                        	
                           
                           random_hue(image, max_delta,

                           
                             seed=None)

                        
                        
                        	
                           
                           Change the image's hue content by a random amount

                        
                        
                     

                     
                     
                        
                        	
                           
                           random_saturation(image,

                           
                             lower, upper, seed=None)

                        
                        
                        	
                           
                           Update the image's saturation by a random value

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            These functions are easy to understand. The adjust_xyz functions update an image's property by a specific amount. The random_xyz functions update an image's property by a random amount.
            

            
            adjust_contrast and random_contrast change the deviation of the image's pixels from the mean. To be specific, if a pixel’s
               component equals x and the average value is xavg, calling adjust_contrast with a factor of k updates x in the following way: 
            

            
            [image: images]
               

            
            The random_xyz functions accept one or two bounds for the random value. For example, the following
               code changes the contrast of img by a random factor that lies between 0.1 and 0.2: 
            

            
            tf.image.random_contrast(img, 0.1, 0.2)

            
            adjust_hue and random_hue operate on RGB images. Both functions convert the image's pixels to floating-point
               values and then convert the image to HSV. Then they add an offset to the hue channel
               and convert the image back to RGB and the pixels’ original data type.
            

            
         
         
         
            
            Rotating and mirroring

            
            The tf.image package also provides functions that rotate and mirror (flip) the pixels of an image.
               Table 8-5 lists six of these functions and provides a description of each.
            

            
            
               
                  
                  TABLE 8-5 Rotation and Mirroring Functions
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Function

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           rot90(image, k=1, name=None)

                        
                        
                        	
                           
                           Rotates an image counterclockwise by a multiple of 90 degrees

                        
                        
                     

                     
                     
                        
                        	
                           
                           flip_left_right(image)

                        
                        
                        	
                           
                           Mirrors an image horizontally

                        
                        
                     

                     
                     
                        
                        	
                           
                           random_flip_left_right(image,

                           
                             seed=None)

                        
                        
                        	
                           
                           Mirrors an image horizontally half the time

                        
                        
                     

                     
                     
                        
                        	
                           
                           flip_up_down(image)

                        
                        
                        	
                           
                           Mirrors an image vertically

                        
                        
                     

                     
                     
                        
                        	
                           
                           random_flip_up_down(image,

                           
                             seed=None)

                        
                        
                        	
                           
                           Mirrors an image vertically half the time

                        
                        
                     

                     
                     
                        
                        	
                           
                           transpose_image(image)

                        
                        
                        	
                           
                           Mirrors an image along its main diagonal

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            rot90 rotates an image in a counterclockwise orientation by a multiple of 90 degrees. The
               precise angle of rotation equals 90(k mod 4), where k is the second argument of rot90.
            

            
            It's important to see the difference between transpose_image and the functions that flip the image vertically and horizontally. transpose_image flips an image along the diagonal running from the upper-left to the lower-right.
            

            
            The following code shows how an application can decode PNG data and then rotate, flip,
               and transpose the image. 
            

            
            img_tensor = tf.image.decode_png(smiley)

            
             

            
            # Rotate CCW by 270 degrees

            
            rot_tensor = tf.image.rot90(img_tensor, 3)

            
            rot_png = tf.image.encode_png(rot_tensor)

            
             

            
            # Flip horizontal

            
            flip_tensor = tf.image.flip_left_right(img_tensor)

            
            flip_png = tf.image.encode_png(flip_tensor)

            
             

            
            # Transpose

            
            transpose_tensor = tf.image.transpose_image(img_tensor)

            
            transpose_png = tf.image.encode_png(transpose_tensor)

            
            Figure 8-7 illustrates the results of the operations performed in the example code.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 8-7: TensorFlow's functions make it possible to rotate, flip, and transpose images.
                     

                     
                  
                  
               
               
            

            
            The random_flip_left_right and random_flip_up_down functions are helpful when you want to train an application to recognize images that
               may have been flipped. These functions flip their images half the time and leave their
               images unchanged half the time.
            

            
         
         
         
            
            Resizing and cropping

            
            Applications frequently need to enlarge, shrink, or crop the content of an image.
               Table 8-6 lists the functions of tf.image that perform these operations.
            

            
            
               
                  
                  TABLE 8-6 Resizing and Cropping Functions
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Function

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           resize_nearest_neighbor(images,

                           
                             size, align_corners=False,

                           
                             name=None)

                        
                        
                        	
                           
                           Resize using nearest-neighbor interpolation

                        
                        
                     

                     
                     
                        
                        	
                           
                           resize_bilinear(images, size

                           
                             align_corners=False, name=None)

                        
                        
                        	
                           
                           Resize using bilinear interpolation

                        
                        
                     

                     
                     
                        
                        	
                           
                           resize_bicubic(images, size

                           
                             align_corners=None, name=None)

                        
                        
                        	
                           
                           Resize using bicubic interpolation

                        
                        
                     

                     
                     
                        
                        	
                           
                           resize_area(images, size,

                           
                             align_corners=False, name=None)

                        
                        
                        	
                           
                           Resize using area interpolation

                        
                        
                     

                     
                     
                        
                        	
                           
                           resize_images(images, size,

                           
                             method=ResizeMethod.BILINEAR,

                           
                             align_corners=False)

                        
                        
                        	
                           
                           Resize using the specified interpolation method

                        
                        
                     

                     
                     
                        
                        	
                           
                           central_crop(image, fraction)

                        
                        
                        	
                           
                           Crop a central portion of the input image

                        
                        
                     

                     
                     
                        
                        	
                           
                           resize_image_with_crop_or_pad(

                           
                             image, target_height, target_width)

                        
                        
                        	
                           
                           Crop or pad the image until its size equals the given width and height

                        
                        
                     

                     
                     
                        
                        	
                           
                           crop_and_resize(image, boxes,

                           
                             box_ind, crop_size,

                           
                             method=None,

                           
                             extrapolation_value=None,

                           
                             name=None)

                        
                        
                        	
                           
                           Crop a portion of the image and resize the image to the given dimensions

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            The term interpolation refers to the process of inserting new data points within a range of known data points.
               The first four functions in Table 8-6 use interpolation to resize their input image or images. Each of them resizes its
               image(s) using a different interpolation method.
            

            
            The resize_nearest_neighbor function resizes its images using nearest-neighbor interpolation. This function computes the color of an internal point by determining which pixel
               is closest to it and assigning the pixel's color. If you call this function to enlarge
               an image, the result will contain only the colors in the original. If you enlarge
               an image n-fold, its colors will be repeated n times.
            

            
            The resize_bilinear function resizes images using bilinear interpolation. This determines the color of an internal point by finding the linear combination
               of the pixels surrounding it. This provides excellent results without significant
               processing, and for this reason, it’s the default interpolation method employed by
               TensorFlow and many graphics cards.
            

            
            To understand bilinear interpolation, it helps to look at one-dimensional interpolation,
               or linear interpolation. Suppose that P is a point on a line between Pixels A and
               B. The distance from P to the center of A is denoted t, and the distance from P to
               the center of B is given by 1 - t. Linear interpolation sets the color of P with the
               following equation: 
            

            
            [image: images]
               

            
            When t equals 1, the color at P equals the color at A. When t equals 0, the color
               at P equals the color at B. If t = 0.5, the resulting color will equal the average
               of the colors of A and B. Interpolated values form straight lines, and Figure 8-8 depicts the lines used to interpolate between four points.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 8-8: Linear interpolation finds internal points by computing the linear combination of
                        existing points.
                     

                     
                  
                  
               
               
            

            
            Bilinear interpolation is similar to linear interpolation, but computes the value
               of two-dimensional points located between four pixels. For example, suppose that P
               is surrounded by four pixels: A, B, C, and D. Locating P requires two interpolation
               parameters, t1 and t2. Figure 8-9 depicts a point P, its four surrounding pixels, and the two interpolation parameters.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 8-9: Bilinear interpolation uses two interpolation parameters to locate a point relative
                        to its four surrounding points.
                     

                     
                  
                  
               
               
            

            
            Bilinear interpolation determines the color of an internal point by scaling the colors
               of surrounding pixels by the interpolation parameters. The following equation shows
               how bilinear interpolation computes the color at point P, which is surrounded by A,
               B, C, and D: 
            

            
            [image: images]
               

            
            resize_bicubic resizes images using bicubic interpolation. Bicubic interpolation is similar to bilinear
               interpolation, but instead of finding the linear combination of four surrounding pixels,
               it determines the color of an internal point by evaluating a cubic polynomial involving
               16 surrounding points. Bicubic interpolation produces smoother images than bilinear
               interpolation, but requires significantly more processing.
            

            
            central_crop determines the dimensions of the cropped image by scaling the dimensions of the original
               image. For example, if you set the fraction parameter to 0.25, the cropped width will equal one-quarter of the original width,
               and the cropped height will equal one-quarter of the original height.
            

            
            resize_image_with_crop_or_pad resizes its image without using interpolation. If the specified dimensions are smaller
               than the image, the function will crop the image from its center so that the final
               image has the specified dimensions. If the specified dimensions are larger than the
               image, the function will pad the image with zeros.
            

            
            crop_and_resize can perform multiple crop operations. Each row of boxes identifies a portion of the image to be cropped, and each element of box_ind sets the index of the cropped image in the output. The function uses bilinear interpolation
               to resize each cropped image to crop_size.
            

            
         
         
         
            
            Convolution

            
            In addition to creating convolution layers, TensorFlow applications can perform simple
               convolution by calling tf.nn.conv2d: 
            

            
            tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format='NHWC',
                  name=None)

            
            The format of input depends on the data_format parameter. That is, if an application sets data_format to NHWC, the shape of the input tensor should be [batch, height, width, channels]. If data_format is set to NCHW, the tensor's shape should be [batch, channels, height, width].
            

            
            To perform convolution, you should assign filter to a tensor with the same shape as input. As it performs 2-D dot products, the function shifts the filter by intervals given
               in the strides tensor. You must set strides equal to a 1-D tensor with four elements. To shift the dot products by 1 in each
               direction, set strides to [1, 1, 1, 1].
            

            
            If a 2-D dot product involves a pixel on or near the image's border, the computation
               will depend on the padding parameter. If you set padding to VALID, the convolution won't compute dot products involving border pixels. If you set padding to SAME, the function will pad the image with zeros before performing convolution.
            

            
            [image: tip] The functions tf.layers.conv2d and tf.nn.conv2d have similar names but serve markedly different purposes. tf.layers.conv2d creates a convolution layer in a CNN, while tf.nn.conv2d performs a single convolution operation. Be sure not to confuse the two.
            

            
            [image: technicalstuff] In addition to conv2d, the tf.nn package provides a function called conv2d_transpose. This function performs regular convolution, but returns the transpose of the resulting
               image.
            

            
         
      
      
      
         
         Putting Theory into Practice

         
         The code in the ch8/img_proc.py module demonstrates how an application can remove noise from an image by performing
            convolution with a 3-x-3 filter whose elements equal 1/9. In addition to convolution,
            this module performs four operations: 
         

         
         
            
            	Changes the image's contrast by calling tf.image.adjust_contrast

            
            	Mirrors the image horizontally by calling tf.image.flip_left_right

            
            	Converts the data to PNG format and writes the data to a PNG file

            
            	Generates summary data for viewing the image in TensorBoard

            
         

         
         The ch8/img_proc.py module reads data from input_aircraft.png and writes its result to output_aircraft.png. Figure 8-10 depicts the input image and the output image.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 8-10: TensorFlow's image processing routines make it straightforward to modify an image’s
                     format, orientation, and color content.
                  

                  
               
               
            
            
         

         
         Listing 8-2 presents the code that implements the module’s operations using TensorFlow.
         
 
         
         LISTING 8-2 General-Purpose Image Processing
         
 
         
         # Load and pre-process PNG data

         
         queue = tf.train.string_input_producer(['input_aircraft.png'])

         
         reader = tf.WholeFileReader()

         
         _, png_data = reader.read(queue)

         
         orig_tensor = tf.image.decode_png(png_data)

         
         img_tensor = tf.reshape(orig_tensor, [-1, 1, 232, 706])

         
         img_tensor = tf.transpose(img_tensor, [0, 2, 3, 1])

         
         img_tensor = tf.image.convert_image_dtype(img_tensor, tf.float32)

         
          

         
         # Remove noise using a box filter

         
         conv_filter = np.zeros([3, 3, 1, 1])

         
         conv_filter[0, 0, :, :] = 0.1111

         
         conv_filter[0, 1, :, :] = 0.1111

         
         conv_filter[0, 2, :, :] = 0.1111

         
         conv_filter[1, 0, :, :] = 0.1111

         
         conv_filter[1, 1, :, :] = 0.1111

         
         conv_filter[1, 2, :, :] = 0.1111

         
         conv_filter[2, 0, :, :] = 0.1111

         
         conv_filter[2, 1, :, :] = 0.1111

         
         conv_filter[2, 2, :, :] = 0.1111

         
         img_tensor = tf.nn.conv2d(img_tensor, conv_filter, [1, 1, 1, 1], 'SAME')

         
          

         
         # Increase contrast

         
         img_tensor = tf.reshape(img_tensor, [232, 706, 1])

         
         img_tensor = tf.image.adjust_contrast(img_tensor, 0.8)

         
          

         
         # Flip horizontal

         
         img_tensor = tf.image.flip_left_right(img_tensor)

         
          

         
         # Create summary data and FileWriter

         
         img_tensor = tf.reshape(img_tensor, [1, 232, 706, 1])

         
         img_tensor = tf.image.convert_image_dtype(img_tensor, tf.uint8)

         
         summary_op = tf.summary.image('Output', img_tensor)

         
         file_writer = tf.summary.FileWriter('log')

         
          

         
         # Store result to PNG

         
         img_tensor = tf.reshape(img_tensor, [232, 706, 1])

         
         img_tensor = tf.image.encode_png(img_tensor)

         
         with tf.Session() as sess:

         
             coord = tf.train.Coordinator()

         
             threads = tf.train.start_queue_runners(coord=coord)

         
          

         
             # Execute session

         
             output_data, summary = sess.run([img_tensor, summary_op])

         
          

         
             # Write output PNG data to file

         
             output_file = open('output_aircraft.png', 'wb+')

         
             output_file.write(output_data)

         
             output_file.close()

         
          

         
             # Print summary data

         
             file_writer.add_summary(summary)

         
             file_writer.flush()

         
          

         
             # Wait for threads to terminate

         
             coord.request_stop()

         
             coord.join(threads)

         
         As you look at this code, it’s important to keep track of the image’s shape and data
            type. After the application decodes the input image, the tensor’s shape is [232, 706,
            1], and its elements are 8-bit unsigned integers. But before the convolution can be
            performed, the application converts the tensor’s shape to [1, 232, 706, 1] and its
            elements to 32-bit floating-point values.
         

         
         Before it can update the image’s contrast, the application converts the image tensor’s
            shape back to [232, 706, 1]. Later on, the module converts the image’s shape to [1,
            232, 706, 1] and its type to tf.uint8 so that the module can generate summary data. Lastly, the application converts the
            tensor’s shape to [232, 706, 1] so that it can encode the data to PNG format.
         

         
         The process of generating summary data for an image is similar to that of generating
            data for a tensor. The only difference is that the application needs to call tf.summary.image instead of tf.summary.scalar or tf.summary.histogram. The function's signature is given as follows: 
         

         
         tf.summary.image(name, tensor, max_outputs=3, collections=None, family=None)

         
         The name parameter provides the label that TensorFlow will associate with the image. The function
            accepts the image data through the tensor parameter, and the tensor's shape must be [batch_size, height, width, num_channels].
         

         
         As an example, the ch8/img_proc.py module creates an operation that generates summary data for img_tensor with the following code:
         
 
         
         summary_op = tf.summary.image('Output', img_tensor)

         
         After creating this operation, the application executes it in a session and uses a
            FileWriter to print the protocol buffer to an event file. When launched, TensorBoard will read
            this event file and display the graphical content of img_tensor.
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         Suppose that you want a neural network to predict the next word in the phrase “My
            hovercraft is full of….” As any Monty Python fan (or a casual web search) will tell
            you, the obvious answer is “eels.” But how can you train a neural network to arrive
            at the answer?
         

         
         You can feed the network every sentence ever written on the Internet, but there’s
            still a problem. To make the prediction, the neural network needs to recognize that
            the words form an ordered sequence. That is, the network needs to understand that the phrase “My hovercraft is full
            of” is a different phrase than “full is My of hovercraft.”
         

         
         None of the neural networks discussed in Chapters 1 through 8 of this book are capable of recognizing sequences. As a consequence, they can't use
            past analysis to solve future problems. For example, a CNN can classify an image,
            but it can't classify later images based on previous classifications. To make up for
            these shortcomings, machine learning researchers invented recurrent neural networks,
            or RNNs.
         

         
      
      
      
         
         Recurrent Neural Networks (RNNs)

         
         Most neural networks, such as convolutional neural networks, transfer data in one
            direction: from the input layer to the output layer. For this reason, they’re called
            feed-forward networks. In contrast with feed-forward networks, recurrent neutral networks, or
            RNNs, make use of feedback. That is, they send data from a later node to an earlier node in the network.
         

         
         Figure 9-1 depicts a simple RNN. The overall structure resembles that of a regular network,
            but the result of the output node is delayed and fed back into the output node. This
            feedback is the primary characteristic that distinguishes RNNs from other neural networks.
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                  FIGURE 9-1: A recursive neural network feeds past data back into one or more nodes.
                  

                  
               
               
            
            
         

         
         Another important characteristic of RNNs is that they execute in stages. For example, if an RNN needs to parse words in audio or text, it will execute one
            stage for each word. With each stage, the RNN receives new data to process. It’s important
            to see the difference between training steps and stages: One training step may require
            multiple processing stages.
         

         
         In Figure 9-1, the network’s stage is identified by t. This doesn’t measure clock time, as in 1.37
            seconds, but measures discrete time, which starts at 0 and increments by 1 with each
            new stage. Therefore, the initial input values are denoted xi(0), the next set of inputs are denoted xi(1), and so on.
         

         
         An RNN makes use of previous processing stages by accessing delayed values. In Figure 9-1, delayed values are provided by the Delay element. If the current stage is 4, the
            value leaving the Delay element will be y(3). If the current stage is 5, the value
            leaving the element will be y(4).
         

         
         Just as the network’s values change from stage to stage, their associated weights
            also change. For example, if the RNN in Figure 9-1 has N stages, the application needs to compute a different set of weights for y(0)
            through y(N-1). If an RNN has many delayed values, computing the weight of each value
            can dramatically increase the time needed for training.
         

         
         
            
            RNNs and recursive functions

            
            To better understand how RNNs work, it helps to see how they relate to recursive functions.
               For example, the following function computes the factorial of N using recursion: 
            

            
            def factorial(N):

            
                if n == 1:

            
                    return 1

            
                else:

            
                    return N * factorial(N-1)

            
            This function calls itself repeatedly and provides a new input value with each call.
               Recursive functions can be rewritten using loops, as demonstrated in the following
               function: 
            

            
            def factorial(N):

            
                x = 1

            
                for i in range(2, N+1):

            
                    x *= i

            
                return x

            
            A lengthy recursive function requires a significant amount of memory because of all
               the data that needs to be pushed onto the stack. To prevent overflow, Python sets
               the default maximum recursion limit to 1000.
            

            
            Similarly, the processing requirements for an RNN increase with each new stage. Just
               as Python sets a maximum recursion limit, every RNN has a fixed number of stages it
               can process.
            

            
            The process of converting a recursive function to a loop-based function is called
               unrolling. To better visualize an RNN, you can unroll it by inserting nodes for each stage
               to be processed. For example, suppose that the RNN in Figure 9-1 has three stages. Figure 9-2 shows what the RNN looks like after unrolling (weights removed for clarity).
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                     FIGURE 9-2: Unrolling an RNN makes it easy to visualize its operation.
                     

                     
                  
                  
               
               
            

            
            As shown in Figure 9-2, y(2) depends on current inputs (the weighted sums of xi(2)) and the outputs of preceding stages. Developers refer to the combined results
               of past stages as the node’s state.
            

            
            Put simply, the difference between an RNN and a regular neural network is that one
               or more nodes of an RNN have state. If a node has state, it can apply the results
               of preceding stages to the current stage. This ability to use past results explains
               why RNNs are so popular when it comes to processing language and other sequential
               data.
            

            
         
         
         
            
            Training RNNs

            
            As illustrated in Figure 9-2, earlier in this chapter, unrolling an RNN results in a feed-forward network that
               receives its inputs at different stages (xi(0), xi(1), and so on). This behavior implies that RNNs can be trained like regular feed-forward
               networks. A popular training method is called backpropagation through time (BPTT),
               which applies the method of backpropagation to RNNs. Chapter 7 discusses the basic theory of backpropagation.
            

            
            As you design RNNs with more processing stages, the number of nodes grows dramatically.
               As a result, RNNs suffer from two issues that plague all complex neural networks: vanishing gradients and exploding gradients. Chapter 7 explains these issues and the way they degrade the performance of neural networks.
            

            
            To make up for the shortcomings of BPTT, researchers have devised alternative training
               methods. Truncated backpropagation through time (TBPTT) uses a limited number of stages
               for training. Real-time recurrent learning (RTRL) doesn’t unroll RNNs, but trains
               with the partial derivatives of the network’s outputs and states with respect to its
               weights.
            

            
            Instead of focusing on new training methods, some researchers have invented entirely
               new variants of RNNs. These variants provide all the benefits of RNNs, but aren’t
               as susceptible to vanishing gradients and exploding gradients. The most popular variants
               are long short-term memory (LSTM) cells and gated recurrent units (GRUs). This chapter
               discusses both of these variants and demonstrates how they can be used.
            

            
         
      
      
      
         
         Creating RNN Cells

         
         Just as vanilla neural networks are made up of nodes, RNNs are made up of cells. In most RNN literature, a cell is a part of an RNN that receives input and produces
            a single output value.
         

         
         The cells of a TensorFlow RNN aren’t quite as straightforward. According to the documentation,
            the cell of a TensorFlow RNN “is anything that has a state and performs some operation
            that takes a matrix of inputs. This operation results in an output matrix….” In other
            words, an RNN cell has a state, operates on an input matrix, and produces an output
            matrix.
         

         
         In a TensorFlow application, the process of building an RNN starts with creating a
            cell. To be specific, the process consists of three steps: 
         

         
         
            
            	
               
               Create an instance of an RNN cell class with the number of units per cell.

               
               Each cell class is a subclass of tf.nn.rnn_cell.RNNCell.
               

            

            
            	
               
               Call a function, such as tf.nn.static_rnn, that creates an RNN based on the cell.

               
               This function accepts a list of input tensors and returns the RNN's output and state.

            

            
            	
               
               Use the output from Step 2 to compute the loss.

               
               Minimize the loss by launching an optimizer in a session.

            

            
         

         
         The RNNCell class plays a central role in this discussion. It can’t be instantiated in code,
            but it’s important because it serves as the base class of TensorFlow’s RNN cell classes,
            which include BasicRNNCell, BasicLSTMCell, LSTMCell, and GRUCell. Figure 9-3 presents seven TensorFlow classes that inherit from RNNCell.
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                  FIGURE 9-3: Each subclass of RNNCell represents a different kind of RNN cell.
                  

                  
               
               
            
            
         

         
         The RNNCell class defines properties and methods that can be accessed through its instances.
            Table 9-1 lists seven properties of an RNNCell.
         

         
         
            
               
               TABLE 9-1 Properties of the RNNCell Class
               

            
            
            
               
               
                  
                  
                     
                     	
                        
                        Property

                     
                     
                     	
                        
                        Description

                     
                     
                  

                  
               
               
               
                  
                  
                     
                     	
                        
                        state_size

                     
                     
                     	
                        
                        The shape(s) of the cell's state(s)

                     
                     
                  

                  
                  
                     
                     	
                        
                        output_size

                     
                     
                     	
                        
                        The shape of the cell’s output

                     
                     
                  

                  
                  
                     
                     	
                        
                        graph

                     
                     
                     	
                        
                        Graph of operations contained in the cell

                     
                     
                  

                  
                  
                     
                     	
                        
                        losses

                     
                     
                     	
                        
                        Losses to be applied to the cell's processing

                     
                     
                  

                  
                  
                     
                     	
                        
                        update

                     
                     
                     	
                        
                        Tensors used to update the cell’s weights

                     
                     
                  

                  
                  
                     
                     	
                        
                        variables

                     
                     
                     	
                        
                        List of the cell's variables

                     
                     
                  

                  
                  
                     
                     	
                        
                        weights

                     
                     
                     	
                        
                        List of the cell’s weights

                     
                     
                  

                  
                  
                     
                     	
                        
                        scope_name

                     
                     
                     	
                        
                        Name of the scope containing the variables

                        
                     
                     
                  

                  
               
               
            

            
         
         
         The state of an RNNCell can be represented by one or more tensors. Therefore, an application can assign state_size to an integer, a TensorShape, a tuple of integers, or a tuple of TensorShapes. Applications must assign output_size to an integer or a TensorShape.
         

         
         The rest of the properties in Table 9-1 are straightforward. The losses property identifies a tensor or list/tuple of tensors that identify losses that the
            cell should apply during its processing. The last three properties in the table provide
            access to the cell's variables and variable scope.
         

         
         In addition to properties, the RNNCell class defines a set of methods, and most of them customize the cell’s behavior. Table 9-2 lists four particularly helpful methods and provides a description of each.
         

         
         
            
               
               TABLE 9-2 Methods of the RNNCell Class
               

            
            
            
               
               
                  
                  
                     
                     	
                        
                        Method

                     
                     
                     	
                        
                        Description

                     
                     
                  

                  
               
               
               
                  
                  
                     
                     	
                        
                        add_loss(losses, inputs=None)

                     
                     
                     	
                        
                        Add loss tensors

                     
                     
                  

                  
                  
                     
                     	
                        
                        add_update(updates, inputs=None)

                     
                     
                     	
                        
                        Add updates to the cell's weights

                     
                     
                  

                  
                  
                     
                     	
                        
                        add_variable(name, shape, dtype=None,

                        
                          initializer=None, regularizer=None,

                        
                          trainable=true)

                     
                     
                     	
                        
                        Adds a new variable to the layer

                     
                     
                  

                  
                  
                     
                     	
                        
                        zero_state(batch_size, dtype)

                     
                     
                     	
                        
                        Returns a zero-filled tensor for initializing the cell's state

                        
                     
                     
                  

                  
               
               
            

            
         
         
         Of the listed methods, zero_state is particularly popular. It creates a zero-filled tensor or list of zero-filled tensors
            suitable for initializing an RNN’s state. The shape of the return value depends on
            the method’s batch_size parameter and the cell's state_size property.
         

         
         
            
            Creating a basic RNN

            
            The simplest subclass of RNNCell is BasicRNNCell. Its constructor is given as follows: 
            

            
            BasicRNNCell(num_units, activation=tf.nn.tanh, reuse=None)

            
            The num_units parameter sets the number of hidden units in the cell. This parameter determines
               the RNN's learning capacity. That is, as the number of units increases, the size of
               the cell’s state memory increases. Unfortunately, so does the training time. Also,
               if you set num_units too high, you run the risk of overfitting.
            

            
            The second parameter of the constructor sets the cell’s activation function. By default,
               RNN cells rely on the inverse tangent (tanh) to produce their output.
            

            
            The last parameter, reuse, specifies whether applications can access identically named variables created by
               the cell.
            

            
            After creating an instance of the cell, an application can construct an RNN by calling
               one of a handful of functions in the tf.nn package. The simplest of these functions is static_rnn: 
            

            
            static_rnn(cell, inputs, initial_state=None, dtype=None, sequence_length=None, scope=None)

            
            Applications must assign inputs to a list of input matrices. For each input matrix in the list, the function creates
               a cell to receive and process the matrix. The number of rows in the input matrix equals
               the application's batch size. In this discussion, I refer to this number as batch_size.
            

            
            By default, static_rnn assumes that the RNN's sequence length equals the number of columns in the input
               matrix. An application can customize this length by setting sequence_length to a one-dimensional tensor of batch_size values. Each value of sequence_length sets the length of the sequence for the corresponding row of the input matrix.
            

            
            As its name implies, the initial_state parameter initializes the RNN's state. Applications must provide a state value for
               each row of the input matrix, so if the cell’s state_size is an integer, an application must set initial_state to a matrix of shape [batch_size, state_size]. If state_size is a tuple, an application must set initial_state to a tuple of tensors of shapes [batch_size, element_size], where element_size is size of the corresponding element in state_size.
            

            
            If an application sets the initial_state parameter, static_rnn will use the state's elements to determine the data type of the RNN’s elements. If
               an application doesn’t set initial_state, it must specify the data type with the dtype parameter. TensorFlow doesn't set a default data type for an RNN’s content.
            

            
            static_rnn returns a tuple containing two elements: the RNN’s output and final state. The output
               contains batch_size elements, and the shape of the final state is determined by the cell's state_size.
            

            
            The relationship between the number of units, state, inputs, and outputs can be confusing,
               so it helps to look at a basic example. The following code creates a BasicRNNCell with five units: 
            

            
            new_cell = tf.nn.rnn_cell.BasicRNNCell(5)

            
            Because the RNN cell has five units, each row in the cell's output matrix will have
               a length of five.
            

            
            For this example, each input matrix has two rows, and each row has four elements.
               If the application needs to provide three input matrices, it can set the RNN’s input
               with this code: 
            

            
             inputs = [tf.constant([[1.,2.,3.,4.], [1.,2.,3.,4.]]), tf.constant([[1.,2.,3.,4.],
                  [1.,2.,3.,4.]]), tf.constant([[1.,2.,3.,4.], [1.,2.,3.,4.]])]

            
            After creating new_cell, an application can create a new RNN and pass it the list of input matrices with
               the following code. The dtype parameter specifies that the RNN's state and output should be composed of floating-point
               values: 
            

            
            output, state = tf.nn.static_rnn(new_cell, inputs, dtype=tf.float32)

            
            Because inputs contains three input matrices, the structure of the new RNN contains three cells.
               Each cell produces an output matrix with the same number of rows as the input matrix.
               Figure 9-4 gives an idea of what a simple RNN looks like.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 9-4: TensorFlow creates one RNN cell for each input matrix. Each cell produces one output
                        matrix.
                     

                     
                  
                  
               
               
            

            
            In Figure 9-4, xi(t) identifies the input matrices provided in the inputs parameter, and yi(t) identifies the output matrices returned by static_rnn. The initial state enters the first cell, which passes its state to the second cell,
               which passes its state to the third cell, which returns its state in static_rnn.
            

            
            The precise values of output and state aren't important, but it’s helpful to look at their shapes. Every RNN produces a
               list of output matrices, and the size of the list is determined by the size of the
               list of input matrices. Therefore, output is a list of three matrices. Because each input batch contained two rows, each output
               matrix has two rows. Each row has five values because the cell has five units.
            

            
            The shape of the cell’s state is determined by the batch size and the number of units
               in the cell. In this example cell, the state’s shape is [2, 5] because the batch size
               is two and the cell contains five units.
            

            
         
         
         
            
            Predicting text with RNNs

            
            Because I’m a living national treasure, I extracted a portion of H.P. Lovecraft’s
               short story Herbert West–Reanimator into the ch9/lovecraft.txt file. The ch9/rnn_lovecraft.py module reads this text and uses an RNN to predict how H.P. Lovecraft would add words
               to phrases. I'm sure we can all agree that this application is vitally important to
               humanity’s cultural development, and Listing 9-1 presents the code.
            
 
            
            LISTING 9-1 Predicting Text with an RNN
            
 
            
            # Split text into words

            
            python3 = sys.version_info[0] == 3

            
            with open('lovecraft.txt', 'r') as f:

            
                input_str = f.read().lower()

            
                if python3:

            
                    trans = input_str.maketrans('', '', string.punctuation)

            
                    input_str = input_str.translate(trans)

            
                else:

            
                    input_str = input_str.decode('utf-8').translate(None, string.punctuation)

            
                words = input_str.split()

            
                num_words = len(words)

            
             

            
            # Convert words to values

            
            word_freq = collections.Counter(words).most_common()

            
            vocab_size = len(word_freq)

            
            lookup = dict()

            
            for word, _ in word_freq:

            
                lookup[word] = len(lookup)

            
            input_vals = np.asarray([[lookup[str(word)]] for word in words])

            
            input_vals = input_vals.reshape(-1,)

            
             

            
            # Set values

            
            input_size = 6

            
            batch_size = 10

            
            num_hidden = 600

            
             

            
            # Placeholders

            
            input_holder = tf.placeholder(tf.float32, [batch_size, input_size])

            
            label_holder = tf.placeholder(tf.float32, [batch_size, vocab_size])

            
             

            
            # Reshape input and feed to RNN

            
            cell = tf.nn.rnn_cell.BasicRNNCell(num_hidden)

            
            outputs, _ = tf.nn.static_rnn(cell, [input_holder], dtype=tf.float32)

            
             

            
            # Compute loss

            
            weights = tf.Variable(tf.random_normal([num_hidden, vocab_size]))

            
            biases = tf.Variable(tf.random_normal([vocab_size]))

            
            model = tf.matmul(outputs[-1], weights) + biases

            
            loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=label_holder))

            
             

            
            # Create optimizer and check result

            
            optimizer = tf.train.AdagradOptimizer(0.1).minimize(loss)

            
            check = tf.equal(tf.argmax(model, 1), tf.argmax(label_holder, 1))

            
            correct = tf.reduce_sum(tf.cast(check, tf.float32))

            
             

            
            # Execute the graph

            
            start_time = time.time()

            
            with tf.Session() as sess:

            
                sess.run(tf.global_variables_initializer())

            
                input_block = np.empty([batch_size, input_size])

            
                label_block = np.empty([batch_size, vocab_size])

            
             

            
                step = 0

            
                num_correct = 0.

            
                accuracy = 0.

            
                while accuracy < 95.:

            
                    for i in range(batch_size):

            
                        offset = np.random.randint(num_words-(input_size+1))

            
                        input_block[i, :] = input_vals[offset:offset+input_size]

            
                        label_block[i, :] = np.eye(vocab_size)[input_vals[offset+input_size]]

            
                    _, corr = sess.run([optimizer, correct],

            
                        feed_dict={input_holder: input_block, label_holder: label_block})

            
                    num_correct += corr

            
                    accuracy = 100*num_correct/(1000*batch_size)

            
                    if step % 1000 == 0:

            
                        print('Step', step, '- Accuracy =', accuracy)

            
                        num_correct = 0

            
                    step += 1

            
             

            
            # Display timing result

            
            duration = time.time() - start_time

            
            print('Time to reach 95% accuracy: {:.2f} seconds'.format(duration))

            
            To start, the module reads the content of lovecraft.txt into a string, splits the string into words, and associates each word with a number.
               A word’s number is determined by its frequency. That is, the module associates the
               most common word with 0, the second most common word with 1, and so on.
            

            
            After obtaining the array of numbers corresponding to the words, the module creates
               an RNN cell with 600 hidden layers. It uses the RNN cell to call tf.nn.static_rnn, which provides the RNN's output values. To determine loss, the module multiplies
               the RNN’s outputs by a matrix of weights and adds biases to the products. Then it
               creates an AdagradOptimizer to minimize the loss.
            

            
            For each training run, the application constructs a batch containing ten (batch_size) sequences of six (input_size) values each. As a result, the RNN can only recognize dependencies between at most
               six consecutive words. For each six-value sequence, the desired label is the seventh
               value, which represents the desired word to be predicted.
            

            
            The application doesn't perform a fixed number of training runs. Instead, it continues
               training until the prediction accuracy exceeds 95 percent. For every thousand training
               runs, the application prints the prediction accuracy.
            

            
         
         
         
            
            Creating multilayered cells

            
            An application can improve an RNN’s analyzing power by stacking cells together in
               sequence. This stacking process connects the output of one cell to the input of another.
               A TensorFlow application can stack RNN cells by creating an instance of the tf.contrib.rnn.MultiRNNCell class, whose constructor is given as follows: 
            

            
            MultiRNNCell(cells, state_is_tuple=True)

            
            To create an MultiRNNCell, an application needs to set the first parameter to a list of RNNCell instances. The returned cell will contain the listed instances in sequence.
            

            
            The second parameter sets the form of the cell's state. If you set state_is_tuple to True, the cell will provide its state as a tuple that contains an element for each of
               the combined cells. If you set this parameter to False, the cell concatenates the states of the individual cells.
            

            
            As an example, the following code creates two BasicRNNCells and then creates a MultiRNNCell that stacks the cells together: 
            

            
            brc1 = tf.nn.rnn_cell.BasicRNNCell(3)

            
            brc2 = tf.nn.rnn_cell.BasicRNNCell(3)

            
            multi_cell = tf.nn.rnn_cell.MultiRNNCell([brc1, brc2])

            
            As a result of this code, multi_cell stacks brc1 and brc2 together, connecting the output of brc1 to the input of brc2.
            

            
         
         
         
            
            Creating dynamic RNNs

            
            The static_rnn function assumes that you know the length of your input data in advance. It requires
               that the input data be provided in a list of matrices, where each matrix has size
               [batch_size, input_size]. When an application calls static_rnn, TensorFlow creates the entire RNN structure in the current graph.
            

            
            The dynamic_rnn function gives you more flexibility when providing input data. It tells TensorFlow
               to form the graph structure dynamically instead of building it in advance. The signature
               of dynamic_rnn is given as follows: 
            

            
            dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None,
                  swap_memory=False, time_major=False, scope=None)

            
            Most of these parameters are identical to those of static_rnn. The primary difference is that applications can set inputs to a different shape. This shape depends on batch size, the maximum sequence length,
               and the function's time_major parameter. The default value of time_major is False, which means applications must assign inputs to a tensor of size [batch_size, max_sequence, …] or a nested tuple. If an application sets time_major to True, it must assign inputs to a tensor of size [max_sequence, batch_size, …] or a nested tuple.
            

            
            TensorFlow can execute operations without temporal dependency in parallel. The parallel_iterations parameter controls how many such operations should be executed at once, and the default
               value is 32.
            

            
            If an application sets swap_memory to True, TensorFlow will swap tensors between the GPU and CPU during the training process,
               incurring a small performance penalty. Chapter 11 explains how to execute TensorFlow operations on a GPU.
            

            
            Like static_rnn, dynamic_rnn returns the output and state of the constructed RNN. The following code demonstrates
               how dynamic_rnn can be used: 
            

            
            example_cell = tf.nn.rnn_cell.BasicRNNCell(4)

            
            output, state = tf.nn.dynamic_rnn(example_cell,

            
            example_input, dtype=tf.float32)

            
            In my experiments, dynamic_rnn provides slightly better performance than static_rnn.
            

            
         
      
      
      
         
         Long Short-Term Memory (LSTM) Cells

         
         As RNNs process more stages, their unrolled networks get larger, and they become more
            susceptible to vanishing gradients. Because RNNs have a fixed number of stages, they
            can't analyze sequences with long-term dependencies. That is, if an RNN can process
            a maximum of N stages, it won’t recognize any dependency between Element 0 and Element
            N+1.
         

         
         To make up for these shortcomings, Sepp Hochreiter and Jürgen Schmidhuber proposed
            a modification to the RNN’s structure in their 1997 paper Long Short-Term Memory. In essence, they proposed to reduce the size of an RNN’s state by restricting when
            the RNN accepts data. To be specific, an LSTM uses three types of restrictions: 
         

         
         
            
            	Restrict when the RNN accepts input data

            
            	Restrict the elements stored in the RNN’s state

            
            	Restrict when the RNN produces output data

            
         

         
         Hochreiter and Schmidhuber called their new type of cell a long short-term memory (LSTM) cell, often shortened to LSTM. Because of its restrictions, an LSTM processes and stores only the data it needs
            to make predictions.
         

         
         One major advantage of LSTMs is size. To process a sequence of data, an LSTM requires
            fewer nodes than a comparable RNN. Also, because an LSTM can block the storage of
            irrelevant data, its state can examine sequences with long-term dependencies.
         

         
         To implement these restrictions, Hochreiter and Schmidhuber added three gates to the
            RNN cell structure: the input gate, forget gate, and the output gate. Figure 9-5 gives an idea of how these gates control the connectivity of an LSTM cell.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 9-5: An LSTM reduces the size of an RNN by preventing unnecessary data from cluttering
                     the RNN’s state.
                  

                  
               
               
            
            
         

         
         Each gate maintains its own weights and biases to determine when it should open and
            close. To be precise, the three gates operate by multiplying signals by the result
            of a sigmoid function ([image: images]
            ). For the input and output gates, the function determines how much of the signal
            should be allowed to pass. For the forget gate, the function determines whether the
            data should be stored in the cell’s state (1) or discarded (0).
         

         
         Denoting the state of the input gate as it, the state of the forget gate as ft, and the state of the output gate as ot, the following equations show how these gates work: 
         

         
         [image: images]
            

         
         Keep in mind that, inside of the gates, the underlying cell behaves like an RNN cell.
            That is, it relies on the tanh function (by default) to serve as its activation function.
         
 
         
            
            
               
               A BRIEF LITERARY DIGRESSION
 
               
               In the 1887 novel, A Study in Scarlet, Dr. John Watson meets Sherlock Holmes for the first time. Despite Holmes’s deductive
                  capabilities, Watson is stunned to learn that the detective knows nothing about philosophy,
                  literature, or astronomy. Holmes responds in the following way: 
               

               
               
                  
                  	“I consider that a man’s brain originally is like a little empty attic, and you have
                     to stock it with such furniture as you choose. A fool takes in all the lumber of every
                     sort that he comes across, so that the knowledge which might be useful to him gets
                     crowded out, or at best is jumbled up with a lot of other things so that he has a
                     difficulty in laying his hands upon it. Now the skillful workman is very careful indeed
                     as to what he takes into his brain-attic. He will have nothing but the tools which
                     may help him in doing his work….
                  

                  
               

            

         
         
         Holmes’ viewpoint closely resembles that of the inventors of the LSTM. While a regular
            RNN stores all the data it receives, an LSTM stores only the data it needs and discards
            everything else. This improved efficiency explains why applications based on LSTMs
            have better performance and flexibility than applications based on RNNs.
         

         
         
            
            Creating LSTMs in code

            
            In TensorFlow, the process of creating an LSTM is similar to that of creating a regular
               RNN: Create an instance of a cell class and form an RNN based on the cell. The second
               step requires the same static_rnn and dynamic_rnn functions discussed in the earlier section “Creating RNN cells.”
            

            
            The tf.nn.rnn_cell package provides a handful of classes that represent LSTM cells, and the fundamental
               classes are BasicLSTMCell, and LSTMCell. The first is simpler to use, but the second provides more customization options.
            

            
            
               
               Setting the State

               
               In a regular RNN, you can set the initial state with a matrix of size [batch_size, state_size]. But to initialize the state of an LSTM network, you need to provide a tuple containing
                  two state matrices: one that identifies the cell state and one that identifies the
                  hidden state.
               

               
               To simplify initialization, the tf.nn.rnn_cell module provides a class named LSTMStateTuple, and its constructor accepts the two state matrices. Denoting the batch size as batch_sz and the state size as state_sz, the following code creates an LSTMStateTuple suitable for initializing the state of an LSTM network: 
               

               
               cstate = tf.placeholder(tf.float32, [batch_sz, state_sz])

               
               hstate = tf.placeholder(tf.float32, [batch_sz, state_sz])

               
               init = tf.nn.rnn_cell.LSTMStateTuple(cstate, hstate)

               
               After creating the LSTMStateTuple, the application can assign it to the initial_state parameter in functions like static_rnn and dynamic_rnn.
               

               
            
            
            
               
               The BasicLSTMCell class

               
               From a developer's perspective, the BasicLSTMCell class is nearly identical to BasicRNNCell. Like the BasicRNNCell constructor, the BasicLSTMCell constructor accepts the number of units that should be generated per cell. The full
                  constructor is given as follows: 
               

               
               BasicLSTMCell(num_units, forget_bias=1.0, state_is_tuple=True, activation=tf.nn.tanh,
                     reuse=None)

               
               The forget_bias parameter adds an initial bias to the input of the forget gate. This added bias prevents
                  the cell from forgetting information at the start of training.
               

               
               After you create a BasicLSTMCell, you can create an RNN based on LSTM cells by calling static_rnn or dynamic_rnn. As an example, the following code creates an LSTM network from a cell with seven
                  units: 
               

               
               lstm_cell = BasicLSTMCell(7)

               
               output, state = tf.nn.dynamic_rnn(lstm_cell,

               
               lstm_input, dtype=tf.float32)

               
               By default, the LSTM's state contains two matrices in a tuple. Therefore, the state
                  returned by static_rnn and dynamic_rnn is a tuple containing two matrices.
               

               
            
            
            
               
               The LSTMCell class

               
               LSTMs discard irrelevant data, so they have no way of measuring the time interval
                  between input events. To add this capability, Felix Gers and Jürgen Schmidhuber proposed
                  an improvement to the LSTM's structure in their 2000 paper, Recurrent Nets that Time and Count.
               

               
               This modification involves adding special peephole connections between the cell’s state and its gates. These connections enable the gates to take
                  state data into account when controlling the flow of information.
               

               
               You can enable peephole connections by creating LSTMCells instead of BasicLSTMCells. The LSTMCell constructor is given as 
               

               
               LSTMCell(num_units, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None,
                     proj_clip=None, num_unit_shards=None, num_proj_shards=None, forget_bias=1.0, state_is_tuple=True,
                     activation=None, reuse=None)

               
               The cell_clip parameter makes it possible to prevent exploding gradients from occurring. If you
                  assign this parameter to a floating-point value, the function will limit the output
                  of the cell's activation function to that value.
               

               
               To reduce the dimensionality of input data, you can multiply input tensors by a matrix
                  called the projection matrix. The num_proj parameter identifies the desired dimensionality of the projection’s output. If you
                  set num_proj to a value greater than 0, you can set proj_clip to a floating-point value that limits the projection's result to the range [–proj_clip, proj_clip].
               

               
            
         
         
         
            
            Predicting text with LSTMs

            
            The code in the ch9/lstm_lovecraft.py module performs the same text prediction as the code in the ch9/rnn_lovecraft.py module. The only difference is that it creates an RNN based on a BasicLSTMCell instead of a BasicRNNCell. It creates the RNN with the following code: 
            

            
            cell = tf.nn.rnn_cell.BasicLSTMCell(num_hidden)

            
            outputs, _ = tf.nn.static_rnn(cell, [input_holder], dtype=tf.float32)

            
            The rest of the code in ch9/lstm_lovecraft.py is identical to that in ch9/rnn_lovecraft.py. The application reads text from lovecraft.txt and feeds batches of six-element sequences into the RNN. It multiplies the RNN's
               outputs by a matrix of weights, adds biases to the products, and minimizes the loss
               with an AdagradOptimizer.
            

            
            As expected, my experiments support the conclusion that LSTMs process sequences more
               efficiently than vanilla RNNs. On my system, RNNs require an average of 35.54 seconds
               to reach 95 percent accuracy and LSTMs require an average of 33.48 seconds.
            

            
         
      
      
      
         
         Gated Recurrent Units (GRUs)

         
         In 2014, Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio
            wrote a paper entitled On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. In this paper, they proposed a new variant of RNN for examining variable-length
            sequences called a Gated Recursive Convolutional Network. Today, developers refer
            to their network structure as a Gated Recurrent Unit, or GRU.
         

         
         Like LSTMs, GRUs use gates to control the flow of data to and from a cell. But the
            two cells have three important differences: 
         

         
         
            
            	GRU cells have hidden state (ht), but no cell state (Ct).
            

            
            	GRU cells have a reset gate instead of the input gate and an update gate instead of
               the forget gate.
            

            
            	GRU cells don’t have any output gate mechanism.

            
         

         
         The primary difference is that GRUs have two gates, called the reset gate and update
            gate, while LSTMs have three gates. The GRU’s reset gate corresponds to the LSTM’s
            input gate, and the GRU’s update gate corresponds to the LSTM’s forget gate. GRUs
            don’t use a gate to restrict the cell’s output. Figure 9-6 depicts a GRU cell and its gates.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 9-6: GRUs are similar to LSTMs, but they have two gates instead of three.
                  

                  
               
               
            
            
         

         
         The GRU’s lack of an output gate may seem like a superficial difference, but the simpler
            structure means that applications can train GRUs significantly faster than LSTMs.
         

         
         
            
            Creating GRUs in code

            
            The process of creating RNNs based on GRU cells is very similar to that of creating
               regular RNNs. The difference is that applications need to set the RNN’s cell to an
               instance of the tf.nn.rnn_cell.GRUCell class. The class's constructor is given as follows: 
            

            
            GRUCell(num_units, activation=None, reuse=None, kernel_initializer=None, bias_initializer=None)

            
            The third parameter is named kernel_initializer; it has no relationship with the image-filtering kernels discussed in Chapter 8. The kernel_initializer sets the cell's initial weights and bias_initializer sets its biases.
            

            
         
         
         
            
            Predicting text with GRUs

            
            The code in ch9/gru_lovecraft.py performs the same text prediction as the code in ch9/rnn_lovecraft.py and ch9/lstm_lovecraft.py. The only difference is that it creates an RNN using a GRUCell, as shown in the following code:
            
 
            
            cell = tf.nn.rnn_cell.GRUCell(num_hidden)

            
            outputs, _ = tf.nn.static_rnn(cell, [input_holder], dtype=tf.float32)

            
            My experiments indicate that GRUs are significantly more efficient for training than
               LSTMs and vanilla RNNs. On my system, GRUs require an average of 29.17 seconds to
               reach 95 percent accuracy, while LSTMs require an average of 33.48 seconds and RNNs
               require an average of 35.54 seconds to reach 95 percent accuracy.
            

            
         
         
      
      
   
      
      
         
         Part 3
         

         
         Simplifying and Accelerating TensorFlow

         
         IN THIS PART …

         
         Simplify your applications by loading data into datasets and extracting data with
            iterators.
         

         
         Explore TensorFlow’s high-level Estimator API and the prebuilt estimators available
            for machine learning.
         

         
         Accelerate your machine learning by deploying execution across multiple threads and
            devices.
         

         
         Take advantage of the extraordinary power of Google’s Machine Learning Engine for
            high-performance TensorFlow execution.
         

         
      
      
   
      
      Chapter 10

      
      Accessing Data with Datasets and Iterators

      
      
         
         IN THIS CHAPTER

         
         [image: check] Creating and manipulating datasets

         
         [image: check] Loading and storing TFRecord data

         
         [image: check] Exploring four types of iterators

         
         

         
         When you start out in machine learning, your fondest wish is to have your application
            converge to a solution. But as you progress in the field, you become more and more
            concerned with performance. Performance is especially important when your training
            data occupies gigabytes or terabytes of memory.
         

         
         This chapter and the following two chapters focus on ways to improve TensorFlow’s
            performance — no more lengthy equations or geometric diagrams. Instead, I focus on
            capabilities that you can use to accelerate your applications. Two important capabilities
            are datasets and iterators, which make it easier to load and process input data.
         

         
      
      
      
         
         Datasets

         
         One effective method of improving an application’s performance involves creating threads.
            Modern processors have multiple cores, and developers can take advantage of them by
            splitting an application’s workload into threads. This multithreading becomes particularly
            helpful when an application needs to load a great deal of data.
         

         
         In the past, TensorFlow developers created threads by constructing instances of the
            QueueRunner class. But as of version 1.4, TensorFlow recommends using Datasets instead of QueueRunners. A Dataset is more than just a large chunk of data — it provides a high-performance pipeline
            for loading and processing data.
         

         
         In general TensorFlow applications, the process of working with datasets consists
            of three steps: 
         

         
         
            
            	Create the dataset from data or a file.

            
            	Split the dataset into batches and preprocess the batches as needed.

            
            	Process the dataset's batches in a session.

            
         

         
         You can perform the first two steps by calling methods of the Dataset class. The following discussion explores these methods and shows how they can be
            used.
         

         
         
            
            Creating datasets

            
            In practice, a dataset is a container of training/testing data and its elements are
               the batches that an application uses to feed data to a session. Chapter 5 explains the topic of batching in detail.
            

            
            You can create datasets from data, text files, or binary files. The following sections
               present these methods and explain how they can be performed in code.
            

            
            
               
               Creating a dataset from data

               
               You can create a dataset from data by calling one of the five Dataset methods listed in Table 10-1. All of these methods are static, so you'll need to call them through the tf.data.Dataset class.
               

               
               
                  
                     
                     TABLE 10-1 Functions That Create Datasets
                     

                  
                  
                  
                     
                     
                        
                        
                           
                           	
                              
                              Member

                           
                           
                           	
                              
                              Description

                           
                           
                        

                        
                     
                     
                     
                        
                        
                           
                           	
                              
                              range(*args)

                           
                           
                           	
                              
                              Creates a dataset containing a range of values

                           
                           
                        

                        
                        
                           
                           	
                              
                              from_tensors(tensors)

                           
                           
                           	
                              
                              Creates a dataset that combines the input tensors into one element

                           
                           
                        

                        
                        
                           
                           	
                              
                              from_tensor_slices(tensors)

                           
                           
                           	
                              
                              Creates a dataset containing one element for each row of the input tensors

                           
                           
                        

                        
                        
                           
                           	
                              
                              from_sparse_tensor_slices(

                              
                              sparse_tensor)

                           
                           
                           	
                              
                              Creates a dataset containing one element for each row of the sparse tensor

                           
                           
                        

                        
                        
                           
                           	
                              
                              from_generator(generator,

                              
                              output_types,

                              
                              output_shapes=None)

                           
                           
                           	
                              
                              Creates a dataset from the given generator

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               The simplest of these methods is range, which returns a dataset containing values that make up a step-separated range of
                  values. You can call this method with one, two, or three arguments: 
               

               
               
                  
                  	range(a): Produces a range from 0 to a, not including a

                  
                  	range(a, b): Produces a range from a to b, not including b

                  
                  	range(a, b, c): Produces a range from a to b, not including b, in steps of c

                  
               

               
               The following code demonstrates how you can use range in code: 
               

               
               ds1 = tf.data.Dataset.range(5)         # [1, 2, 3, 4]

               
               ds2 = tf.data.Dataset.range(10, 13)    # [10, 11, 12]

               
               ds3 = tf.data.Dataset.range(2, 8, 2)   # [2, 4, 6]

               
               The from_tensors and from_tensor_slices are particularly useful, so it's important not to get them confused. from_tensors combines input tensors together and returns a dataset with one element. The following
                  code demonstrates how from_tensors can be used: 
               

               
               t = tf.constant([[1, 2], [3, 4]])

               
               ds = tf.data.Dataset.from_tensors(t)   # [[1, 2], [3, 4]]

               
               In constrast, from_tensor_slices creates a separate element for each row of the argument. The following code demonstrates
                  how from_tensor_slices can be used: 
               

               
               t = tf.constant([[1, 2], [3, 4]])

               
               ds = tf.data.Dataset.from_tensor_slices(t)

               
               # [1, 2], [3, 4]

               
               This code creates an element from each row of the input tensor. Therefore, ds contains two elements that each contain two values. from_sparse_tensor_slices is similar to from_tensor_slices, but it returns a dataset containing one element for each row of a sparse tensor.
               

               
               The from_generator method lets you create a dataset from values produced by a generator function. In
                  Python, a generator function is a function that produces (or yields) a series of values. The process of using a generator consists of the following steps:
                  
               

               
               
                  
                  	In the generator function, use a yield statement to provide a value.

                  
                  	
                     
                     Obtain a generator object by invoking the function.

                     
                     Proceed to either Step 3 or Step 4 depending on your version of Python.

                  

                  
                  	In Python 2.x, call the object's next method to invoke the generator function.

                  
                  	In Python 3.x, call the built-in next function with the generator object.

                  
               

               
               For example, the following generator returns provides up to four integers: 

               
               def simple_gen():

               
                   i = 0

               
                   while i < 4:

               
                       yield(i)

               
                       i += 1

               
               The following code obtains a generator object and calls next to access the generator's first three values: 
               

               
               simple_iter = simple_gen()

               
               next(simple_iter)

               
               next(simple_iter)

               
               next(simple_iter)

               
               The from_generator method creates a dataset containing an element for each value produced by a generator.
                  An application must set the method’s generator parameter to a generator function and the output_types parameter to a structure that identifies the type(s) of the generator's values.
               

               
               For example, the following code creates a dataset from the simple_gen generator: 
               

               
               dset = tf.data.Dataset.from_generator(simple_gen, output_types=tf.int32)

               
               The generator object returned by simple_gen produces four values. Therefore, from_generator returns a dataset containing four elements: one for each generated integer.
               

               
            
            
            
               
               Creating a dataset from text

               
               You can create a dataset containing the lines of text files by creating an instance
                  of TextLineDataset, which is a subclass of Dataset. The class constructor is given as 
               

               
               TextLineDataset(filenames, compression_type=None, buffer_size=None)

               
               To call this constructor, you need to assign filenames to a tensor containing one or more filenames. By default, the constructor assumes
                  that the files contain uncompressed text. But if you set compression_type to ZLIB or GZIP, the constructor will decompress the archive before accessing its data.
               

               
               The TextLineDataset will contain one string element for each line of the input files. For example, if
                  test1.txt has three lines and test2.txt has four lines, the following code creates a dataset that contains seven strings:
                  
               

               
               ds = TextLineDataset(['test1.txt', 'test2.txt'])

               
               After you read the strings into the dataset, you can loop through them using an Iterator. I explain what Iterators are in the section “Iterators,” later in the chapter.
               

               
            
            
            
               
               Creating a dataset from binary files

               
               In addition to text files, TensorFlow supports creating datasets from binary files
                  if the files contain TFRecords. TFRecords are very useful when you need to access
                  large amounts of data, but they're confusing and poorly documented. The overall process
                  of storing TFRecord data to a file consists of three steps: 
               

               
               
                  
                  	Create a tf.train.Example that holds the data you want to store.

                  
                  	Store the tf.train.Example as a protocol buffer by calling its SerializeToString method.

                  
                  	Create a tf.python_io.TFRecordWriter and use it to write the protocol buffer to a TFRecord file.

                  
               

               
               Like datasets, Examples store training and test data. Unlike datasets, they store their data in key-value
                  pairs called features. Each feature is represented by a tf.train.Feature, and you can create an Example by calling its constructor with a tf.train.Features object that contains one or more Features. Working with these classes can be confusing, so I do my best to clarify: 
               

               
               
                  
                  	In the tf.train.Example constructor, the features argument accepts a tf.train.Features instance.
                  

                  
                  	In the tf.train.Features constructor, the feature argument accepts a dict that associates names with tf.train.Feature instances.
                  

                  
                  	In the tf.train.Feature constructor, the bytes_list argument accepts a tf.train.BytesList, the float_list argument accepts a tf.train.FloatList, and the int64_list argument accepts a tf.train.Int64List.
                  

                  
               

               
               The following code creates an Example made up of three features: 
               

               
               feat_a = tf.train.Feature(bytes_list = tf.train.BytesList(value=[ b'123' ]));

               
               feat_b = tf.train.Feature(float_list = tf.train.FloatList(value=[ 1.0, 2.0, 3.0 ]));

               
               feat_c = tf.train.Feature(int64_list = tf.train.Int64List(value=[ 2, 3, 4 ]));

               
               container = tf.train.Features(feature={'a' : feat_a, 'b' : feat_b, 'c' : feat_c})

               
               example = tf.train.Example(features=container)

               
               The constructors of the BytesList, FloatList, and Int64List classes all have a parameter named value. You can set a feature's data by assigning value to an array of the appropriate data type.
               

               
               After you created an Example, you can call its SerializeToString method to store its data to a protocol buffer. Then you can write the buffer to a
                  TFRecord file by accessing a TFRecordWriter. There are three points to know about this class: 
               

               
               
                  
                  	Its constructor accepts the name of the file to hold the TFRecord-formatted data and
                     an optional compression method.
                  

                  
                  	Its write method accepts a protocol buffer and writes its data to the file given in the constructor.
                  

                  
                  	When you no longer need the writer, you can call its close method to close the file.
                  

                  
               

               
               For example, if the name of your Example is example, the following code writes its data to the example.tfrecord file: 
               

               
               writer = tf.python_io.TFRecordWriter('example.tfrecord')

               
               writer.write(example.SerializeToString())

               
               writer.close()

               
               After you've written one or more TFRecord files, you can load their data into a dataset
                  by performing three operations: 
               

               
               
                  
                  	Create a TFRecordDataset containing the protocol buffers in the TFRecord files.

                  
                  	For each record, parse its features into a dict that associates feature names to tensors.

                  
                  	Assemble the tensors into a dataset.

                  
               

               
               The TFRecordDataset constructor creates a dataset from one or more TFRecord files. The arguments for
                  this constructor are the same as those for the TextLineDataset: 
               

               
               TFRecordDataset(filenames, compression_type=None, buffer_size=None)

               
               After you call the constructor, the dataset will hold each protocol buffer as an element.
                  Before you can access this data, you need to convert each of these elements into tensors.
                  TensorFlow makes this possible by providing two functions: 
               

               
               
                  
                  	parseSingleExample(serialized, features, name=None, example_names=None): Converts an Example to a dict that matches feature keys to tensors
                  

                  
                  	parseExample(serialized, features, name=None, example_names=None): Converts one or more Examples to a dict that matches feature keys to tensors
                  

                  
               

               
               For both functions, the serialized parameter accepts the protocol buffer or buffers containing Example data. The features parameter accepts a dict that matches a feature name to an instance of FixedLenFeature or VarLenFeature. The class to instantiate depends on the desired output tensor.
               

               
               If you want to load a feature's data into a dense tensor, you should associate the
                  feature’s name with a FixedLenFeature. You can create a new FixedLenFeature by calling tf.FixedLenFeature: 
               

               
               tf.FixedLenFeature(shape, dtype, default_value=None)

               
               The shape parameter sets the shape of the output tensor, and dtype sets the tensor's data type. To demonstrate how these parameters are used, the following
                  code creates a TFRecordDataset from example.tfrecord. Then the dataset's map method calls a function that receives each element of the dataset. This function
                  calls parseSingleExample to create a tensor with five elements from the feature named feat: 
               

               
               def parse_func(buff):

               
                   features = {'feat': tf.FixedLenFeature(shape=[5], dtype=tf.float32)}

               
                   tensor_dict = tf.parse_single_example(buff, features)

               
                   return tensor_dict['feat']

               
                

               
               dataset = tf.data.TFRecordDataset('example.tfrecord')

               
               dataset = dataset.map(parse_func)

               
               I discuss the map method later in the “Transforming Datasets” section. For now, it's important to know that map replaces dataset with a new Dataset that contains the return value of parse_func. In this code, parse_func returns a tensor containing the values of the feature named feat.
               

               
               If a feature contains a significant number of zeros, you can load it into a sparse
                  vector by associating the feature's name with a VarLenFeature. You can create a new VarLenFeature by calling tf.VarLenFeature: 
               

               
                tf.VarLenFeature(dtype)

               
               I hope it's clear that the TFRecords API is unnecessarily complicated. I sincerely
                  hope that a future version of TensorFlow will address this issue and simplify the
                  usage of TFRecords.
               

               
            
         
         
         
            
            Processing datasets

            
            After you create a dataset, you can manipulate its elements by calling one of the
               many methods of the Dataset class. To present these methods, I split them into four categories: 
            

            
            
               
               	Working with batches

               
               	Simple operations

               
               	Transformations

               
               	Creating Iterators
               

               
            

            
            The following sections present the methods in the first three categories. I explore
               the topic of Iterators in the “Iterators” section, later in the chapter.
            

            
            
               
               Working with batches

               
               As discussed in Chapter 5, applications frequently divide datasets into batches. The Dataset class makes it easy to work with batches, and Table 10-2 lists two methods that perform batch-related operations.
               

               
               
                  
                     
                     TABLE 10-2 Batch Operations
                     

                  
                  
                  
                     
                     
                        
                        
                           
                           	
                              
                              Member

                           
                           
                           	
                              
                              Description

                           
                           
                        

                        
                     
                     
                     
                        
                        
                           
                           	
                              
                              batch(batch_size)

                           
                           
                           	
                              
                              Split the dataset's content into batches

                           
                           
                        

                        
                        
                           
                           	
                              
                              padded_batch(batch_size, padded_shapes, padding_values=None)

                           
                           
                           	
                              
                              Split the dataset’s content into batches and use padding to ensure that each batch
                                 has the desired shape
                              

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               batch divides a dataset's values into batches of size batch_size. The following code divides the dataset into two batches of three elements each.
                  
               

               
               vals = tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.int64)

               
               ds1 = tf.data.Dataset.from_tensor_slices(vals)

               
               ds2 = ds1.batch(3)   # contains [1, 2, 3], [4, 5, 6]

               
               The padded_batch method pads each element (batch) of the dataset to the shape given by the padded_shapes parameter. Then the method combines the elements into one large element. 
               

               
               vals = tf.constant([[1., 2.], [3., 4.]])

               
               ds1 = tf.data.Dataset.from_tensor_slices(vals)

               
               ds2 = ds1.padded_batch(2, padded_shapes=[3] padding_values=1.)

               
               # ds2 contains [[1., 2., 1.], [3., 4., 1.]]

               
               This code creates batches of two elements each and pads each batch to a size of three.
                  padded_batch sets the inserted values to 1.0 because of the method's padding_values parameter.
               

               
            
            
            
               
               Simple operations

               
               After dividing a dataset into batches, you can manipulate the batches by calling methods
                  of the Dataset class. Table 10-3 lists nine methods that perform simple operations.
               

               
               
                  
                     
                     TABLE 10-3 Simple Dataset Operations
                     

                  
                  
                  
                     
                     
                        
                        
                           
                           	
                              
                              Member

                           
                           
                           	
                              
                              Description

                           
                           
                        

                        
                     
                     
                     
                        
                        
                           
                           	
                              
                              take(count)

                           
                           
                           	
                              
                              Returns a dataset containing the first count elements

                           
                           
                        

                        
                        
                           
                           	
                              
                              skip(count)

                           
                           
                           	
                              
                              Returns a dataset that skips the first count elements

                           
                           
                        

                        
                        
                           
                           	
                              
                              concatenate(dataset)

                           
                           
                           	
                              
                              Appends the given dataset to the dataset

                           
                           
                        

                        
                        
                           
                           	
                              
                              repeat(count=None)

                           
                           
                           	
                              
                              Repeats the dataset count times

                           
                           
                        

                        
                        
                           
                           	
                              
                              shuffle(buffer_size, seed=None)

                           
                           
                           	
                              
                              Randomizes the order of a subset of the dataset's elements

                           
                           
                        

                        
                        
                           
                           	
                              
                              shard(num_shards, index)

                           
                           
                           	
                              
                              Returns a dataset with a subset of the dataset’s elements

                           
                           
                        

                        
                        
                           
                           	
                              
                              list_files(file_pattern)

                           
                           
                           	
                              
                              Returns a dataset containing the names of the files that match the specified pattern

                           
                           
                        

                        
                        
                           
                           	
                              
                              cache(filename='')

                           
                           
                           	
                              
                              Caches elements of the dataset

                           
                           
                        

                        
                        
                           
                           	
                              
                              prefetch(buffer_size)

                           
                           
                           	
                              
                              Prefetches the given number of elements from the dataset

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               The first two methods, take and skip, are the simplest. They return datasets containing portions of other datasets. 
               

               
               ds1 = tf.data.Dataset.range(1, 8)   # [1 2 3 4 5 6 7]

               
               ds2 = ds1.take(3)                   # [1 2 3]

               
               ds3 = ds1.skip(3)                   # [4 5 6 7]

               
               The concatenate method appends one dataset to another. repeat appends a dataset to itself. 
               

               
               ds1 = tf.data.Dataset.range(1, 3)   # [1 2]

               
               ds2 = tf.data.Dataset.range(7, 10)  # [7 8 9]

               
               ds3 = ds1.concatenate(ds2)          # [1 2 7 8 9]

               
               ds4 = ds1.repeat(2)                 # [1 2 1 2]

               
               shuffle creates a dataset by extracting and reordering elements of an existing dataset. The
                  batch_size parameter identifies how many elements should be extracted. 
               

               
               ds1 = tf.data.Dataset.range(1, 8)   # [1 2 3 4 5 6 7]

               
               ds2 = ds1.shuffle(4)                # [2 3 6 4]

               
               shard returns a dataset containing 1/num_shards of the elements in the original dataset. The index argument specifies the index of the subdataset to return. To demonstrate this, the following code creates a dataset with eight elements (0…7)
                  and calls shard to return a dataset that's one-fourth of the size. 
               

               
               dset = tf.data.Dataset.range(8)

               
               dset_shard = dset.shard(4, 2)

               
               As a result of this code, dset_shard will contain two elements instead of eight. The elements are [2, 6] because the subdataset
                  contains the third value (index = 2) of every four values in the original.The list_files method creates a dataset from the names of the files on the developer's system. For
                  example, if the working directory contains a.png and b.png, the following code creates a dataset containing only their names: 
               

               
               ds1 = tf.data.Dataset.list_files('./*.png')
            # ['a.png', 'b.png']

               
               The cache method caches the dataset's elements so that you can retrieve them quickly. After
                  you cache a dataset, you can launch an operation to retrieve its elements by calling
                  prefetch. This method accepts a parameter that identifies the maximum number of elements to
                  recover.
               

               
            
            
            
               
               Transforming datasets

               
               Table 10-4 lists four advanced routines for operating on datasets. These methods make it possible
                  to perform sophisticated transformations of a dataset’s elements.
               

               
               
                  
                     
                     TABLE 10-4 Dataset Transformations
                     

                  
                  
                  
                     
                     
                        
                        
                           
                           	
                              
                              Member

                           
                           
                           	
                              
                              Description

                           
                           
                        

                        
                     
                     
                     
                        
                        
                           
                           	
                              
                              filter(predicate)

                           
                           
                           	
                              
                              Filters the dataset based on the predicate

                           
                           
                        

                        
                        
                           
                           	
                              
                              map(map_func, num_threads=None, output_buffer_size=None)

                           
                           
                           	
                              
                              Applies the function to the dataset's elements and provides a new element for each

                           
                           
                        

                        
                        
                           
                           	
                              
                              flat_map(map_func)

                           
                           
                           	
                              
                              Applies the function to the dataset’s elements, produces a dataset for each, and concatenates
                                 the results
                              

                           
                           
                        

                        
                        
                           
                           	
                              
                              interleave(map_func,

                              
                              cycle_length, lock_length=1)

                           
                           
                           	
                              
                              Applies the function to the dataset's elements, produces a dataset for each, and interleaves
                                 the results
                              

                           
                           
                        

                        
                        
                           
                           	
                              
                              zip(datasets)

                           
                           
                           	
                              
                              Interleaves the datasets element-by-element

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               The first argument of filter, flat_map, and map is a function that receives each element of the dataset. If you can define your function
                  in one line of code, you can set this argument to a lambda. A lambda definition consists of the lambda keyword, one or more arguments, a colon, and the return value. For example, the following
                  lambda accepts two values and returns their sum: 
               

               
               lambda x, y: x + y

               
               In the filter method, the function returns a Boolean that determines which elements should be kept
                  in the dataset. In the following code, the dataset keeps only the elements whose sum
                  exceeds 10.0: 
               

               
               vals = tf.constant([[2., 3.], [4., 5.], [6., 7.]])

               
               ds1 = tf.data.Dataset.from_tensor_slices(vals)

               
               ds1 = ds1.filter(lambda x: tf.reduce_sum(x) > 10.0)

               
               # ds1 contains [6.0, 7.0]

               
               In the map method, the function receives each element of the input dataset and produces an element
                  to be inserted in the output dataset. In the following code, the lambda multiplies
                  each element of the input dataset by 2 and inserts the resulting element into the
                  output dataset. 
               

               
               vals = tf.constant([[2., 3.], [4., 5.], [6., 7.]])

               
               ds1 = tf.data.Dataset.from_tensor_slices(vals)

               
               ds2 = ds1.map(lambda x: x*2)

               
               # ds2 contains [[4., 6.], [8., 10.], [12., 14.]]

               
               flat_map is like map, but instead of returning an element of the output dataset, the function returns
                  an entire dataset. flat_map concatenates the output datasets together and returns the flattened result. 
               

               
               vals = tf.constant([2, 3], dtype=tf.int64)

               
               ds1 = tf.data.Dataset.from_tensor_slices(vals)

               
               ds2 = ds1.flat_map(lambda x: tf.data.Dataset.range(x))

               
               # ds2 contains [0, 1, 0, 1, 2]

               
               As with flat_map, the function in interleave returns a dataset for each element of the input dataset. Unlike flat_map, it doesn't necessarily concatenate the resulting datasets. The cycle_length parameter identifies how many elements should be interleaved.
               

               
               For example, if you set cycle_length to 2, the output dataset will contain the first elements of the first two datasets,
                  then the next two elements of the first two datasets, and so on. The following code
                  shows how interleave works. 
               

               
               vals = tf.constant([2, 3, 4], dtype=tf.int64)

               
               ds1 = tf.data.Dataset.from_tensor_slices(vals)

               
               ds2 = ds1.interleave(lambda x: tf.data.Dataset.range(x), cycle_length=3)

               
               # ds2 contains [0, 0, 0, 1, 1, 1, 2, 2, 3]

               
               This code provides three elements to the lambda and sets the cycle_length to 3. As a result, the output dataset contains the first three elements of the three
                  datasets, then the next three elements of the three datasets, and so on.
               

               
               The zip method also interleaves multiple datasets, but it doesn't accept a function or cycle_length parameter. This method always takes the first value from the first element, then
                  the first value from the second element, and proceeds onward. The following code demonstrates
                  how zip can be used. 
               

               
               ds1 = tf.data.Dataset.range(0, 3)

               
               ds2 = tf.data.Dataset.range(10, 13)

               
               ds3 = tf.data.Dataset.range(20, 23)

               
               ds4 = tf.data.Dataset.zip((ds1, ds2, ds3))

               
               # ds4 contains (0, 10, 20), (1, 11, 21), (2, 12, 22)

               
               The datasets parameter of zip accepts the input datasets in a nested structure. An application can set this equal
                  to a tuple, but not a list.
               

               
            
         
         
      
      
      
         
         Iterators

         
         An Iterator lets you iterate through the elements of one or more Datasets. TensorFlow provides four types of iterators: 
         

         
         
            
            	One-shot: Iterates once through the dataset, can't be parameterized
            

            
            	Initializable: Requires special initialization, can be parameterized
            

            
            	Reinitializable: Can be associated with multiple datasets, must be initialized before each iteration
            

            
            	Feedable: Can be associated with multiple datasets, doesn’t need to be initialized before each
               iteration
            

            
         

         
         
            
            One-shot iterators

            
            One-shot iterators are the simplest of the four, but they can iterate only once through
               a dataset’s elements. An application can create a one-shot iterator for a dataset
               by calling a dataset’s make_one_shot_iterator method.
            

            
            After you create an iterator, you can access the next available element by calling
               get_next. This method resembles the next method of a regular Python iterator. To demonstrate how get_next is used, the following code creates a dataset with one element and calls get_next to print the element's value: 
            

            
            # Create the dataset and iterator

            
            tensor = tf.constant([1, 2, 3])

            
            dset = tf.data.Dataset.from_tensors(tensor)

            
            iterator = dset.make_one_shot_iterator()

            
             

            
            # Access the next element

            
            next_elem = iterator.get_next()

            
             

            
            # Print the element's value

            
            with tf.Session() as sess:

            
                print('Element: ', sess.run(next_elem))

            
             

            
            # Output: 'Element: [1 2 3]'

            
            When a session evaluates a tensor returned by get_next, the tensor takes the value of the dataset’s next element. To demonstrate, the following
               code creates a dataset with five elements and repeatedly evaluates the tensor returned
               by get_next: 
            

            
            # Create the dataset and iterator

            
            dset = tf.data.Dataset.range(5)

            
            iterator = dset.make_one_shot_iterator()

            
             

            
            # Access the next element

            
            next_elem = iterator.get_next()

            
             

            
            # Print the values of the elements

            
            with tf.Session() as sess:

            
                for i in range(5):

            
                   print('Element: ', sess.run(next_elem))

            
            In this code, Dataset.range creates a dataset with five elements. The iterator loops through the dataset, and
               the session prints the value of each. The resulting output is as follows: 
            

            
            Element: 0

            
            Element: 1

            
            Element: 2

            
            Element: 3

            
            Element: 4

            
            A one-shot iterator can iterate through a dataset only once. If an application attempts
               to execute a second loop through the dataset, TensorFlow will raise an OutOfRangeError: End of sequence.
            

            
         
         
         
            
            Initializable iterators

            
            In addition to creating datasets from constant tensors, you can create datasets from
               placeholders. These kind of datasets are called parameterized datasets, and they receive their content when the application executes a session that feeds
               data to the placeholder.
            

            
            One-shot iterators can't iterate through parameterized datasets, but initializable
               iterators can. To create an initializable iterator and iterate through a parameterized
               dataset, you need to perform six steps: 
            

            
            
               
               	Create a dataset from a placeholder by calling from_tensors or from_tensor_slices.

               
               	Create an iterator for the dataset by calling the dataset's make_initializable_iterator method.

               
               	Obtain the next element by calling the iterator’s get_next method.

               
               	Initialize the iterator by running its initializer property in a session.

               
               	Associate the iterator's placeholder with data by setting the feed_dict parameter in the session’s run method.

               
               	Access the iterators elements in a session by evaluating the result of the get_next method.

               
            

            
            This process may seem complicated, but parameterized datasets can be very helpful.
               To demonstrate how these datasets can be used, the following code creates a dataset
               from a placeholder that holds four floating-point values. Then it accesses the dataset
               using an initializable iterator: 
            

            
            # Create a placeholder and parameterized dataset

            
            holder = tf.placeholder(tf.float32, shape=[4])

            
            dset = tf.data.Dataset.from_tensor_slices(holder)

            
             

            
            # Create the iterator and access its first element

            
            iter = dset.make_initializable_iterator()

            
            next_elem = iter.get_next()

            
             

            
            with tf.Session() as sess:

            
             

            
                # Initialize the iterator

            
                sess.run(iter.initializer,

            
                        feed_dict={holder: [0., 1., 2., 3.]})

            
                for _ in range(4):

            
                    print('Element: ', sess.run(next_elem))

            
            Looking at this code, it's important to see that the first call to sess.run initializes the iterator and feeds values to the parameterized dataset through the
               placeholder. After this initialization, the application can access the iterator’s
               values through the value returned by get_next.
            

            
         
         
         
            
            Reinitializable iterators

            
            If you need to associate an iterator with multiple datasets, one-shot iterators and
               initializable iterators won't be sufficient. Instead, the application can create a
               reinitializable iterator by calling Iterator.from_structure: 
            

            
            Iterator.from_structure(output_types, output_shapes=None, shared_name=None)

            
            A reinitializable iterator doesn’t need to know about specific datasets in advance,
               but it needs to know about the types and shapes of their elements. An application
               can set output_types and output_shapes by accessing the identically named properties of a Dataset instance.
            

            
            After creating the reinitializable iterator, you can associate it with multiple different
               datasets by creating a separate initializer for each dataset. The following code creates
               one iterator with two initializers. Then it uses the iterator to loop through two
               datasets: 
            

            
            # Create datasets with similar shapes

            
            ds1 = tf.data.Dataset.range(8)

            
            ds2 = tf.data.Dataset.range(3)

            
             

            
            # Create iterator and get first element

            
            iterator = tf.data.Iterator.from_structure(

            
                ds1.output_types, ds1.output_shapes)

            
            next_elem = iterator.get_next()

            
             

            
            # Create an initializer for each dataset

            
            ds1_init = iterator.make_initializer(ds1)

            
            ds2_init = iterator.make_initializer(ds2)

            
             

            
            # Run both initializers in a session

            
            with tf.Session() as sess:

            
             

            
                # Associate the iterator with the first dataset

            
                sess.run(ds1_init)

            
                for _ in range(8):

            
                    print('Element from ds1: ', sess.run(next_elem))

            
             

            
                # Associate the iterator with the second dataset

            
                sess.run(ds2_init)

            
                for _ in range(3):

            
                    print('Element from ds2: ', sess.run(next_elem))

            
            This code calls from_structure with ds1's shape and type. Then it associates the iterator with ds1 and ds2. ds1 and ds2 don't have the same shape, but they’re compatible because their shapes are similar.
            

            
         
         
         
            
            Feedable iterators

            
            If you’d like to switch between iterators without initializing from the start of the
               dataset, you can create a feedable iterator. The process of using a feedable iterator
               consists of six steps: 
            

            
            
               
               	Create a placeholder to contain a string.

               
               	Call Iterator.from_string_handle with the placeholder.

               
               	Create multiple iterators to iterate through datasets.

               
               	For each iterator, obtain a unique string tensor by calling string_handle.

               
               	Evaluate each unique string tensor in a session to obtain unique strings for the iterators.

               
               	To switch to a specific iterator, evaluate the result of get_next in a session and provide the iterator's string using the feed_dict parameter of sess.run.

               
            

            
            The following code demonstrates this process. It creates two datasets, a one-shot
               iterator for each dataset, and a feedable iterator that makes it possible to switch
               between the iterators. 
            

            
            # Create datasets

            
            ds1 = tf.data.Dataset.range(8)

            
            ds2 = tf.data.Dataset.range(10, 13)

            
             

            
            # Create an iterator for each dataset

            
            ds1_iterator = ds1.make_one_shot_iterator()

            
            ds2_iterator = ds2.make_one_shot_iterator()

            
             

            
            # Create a string placeholder and a feedable iterator

            
            holder = tf.placeholder(tf.string, shape=[])

            
            iterator = tf.data.Iterator.from_string_handle(

            
                holder, ds1.output_types, ds1.output_shapes)

            
            next_element = iterator.get_next()

            
             

            
            # Obtain a string tensor for each iterator

            
            ds1_handle = ds1_iterator.string_handle()

            
            ds2_handle = ds2_iterator.string_handle()

            
             

            
            # Create the session

            
            with tf.Session() as sess:

            
             

            
                # Obtain a string from each iterator

            
                ds1_string = sess.run(ds1_handle)

            
                ds2_string = sess.run(ds2_handle)

            
             

            
                # Iterate through the first four elements of ds1

            
                for _ in range(4):

            
                    print('Element from ds1: ', sess.run(next_element, feed_dict={holder: ds1_string}))

            
             

            
                # Iterate through ds2

            
                for _ in range(3):

            
                    print('Element from ds2: ', sess.run(next_element, feed_dict={holder: ds2_string}))

            
             

            
                # Iterate through the last four elements of ds1

            
                for _ in range(4):

            
                    print('Element from ds1: ', sess.run(next_element, feed_dict={holder: ds1_string}))

            
            This code prints the first four elements of ds1, the elements of ds2, and the last four elements of ds1. Because the iterator is feedable, the application doesn't need to reinitialize the
               ds1 iterator before the second iteration.
            

            
         
      
      
      
         
         Putting Theory into Practice

         
         The code in ch10/dataset.py demonstrates how you can create and process datasets. The module starts by creating
            an Example, writing the Example's data to a TFRecord file, and loading the file’s data into a TFRecordDataset. Then it creates two more datasets, processes them using Dataset methods, and iterates through their elements. Listing 10-1 presents the code.
         
 
         
         LISTING 10-1 Creating and Processing Datasets
         
 
         
         # Generator function

         
         def generator():

         
             x = 20

         
             while x < 28:

         
                 yield x

         
                 x += 1

         
          

         
         # Create an example containing floats

         
         int_list = tf.train.Int64List(value=[0, 1, 2, 3])

         
         feat = tf.train.Feature(int64_list=int_list)

         
         container = tf.train.Features(feature={'feat' : feat})

         
         example = tf.train.Example(features=container)

         
          

         
         # Write the example to a GZIP file

         
         opts = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)

         
         writer = tf.python_io.TFRecordWriter('ex.tfrecord', opts)

         
         writer.write(example.SerializeToString())

         
         writer.close()

         
          

         
         # Function to parse TFRecords

         
         def parse_func(buff):

         
             features = {'feat': tf.FixedLenFeature(shape=[4], dtype=tf.int64)}

         
             tensor_dict = tf.parse_single_example(buff, features)

         
             return tensor_dict['feat']

         
          

         
         # Create a dataset from TFRecords

         
         dset1 = tf.data.TFRecordDataset('ex.tfrecord', 'GZIP')

         
         dset1 = dset1.map(parse_func)

         
         iter1 = dset1.make_one_shot_iterator()

         
         next1 = iter1.get_next()

         
          

         
         # Create a parameterized dataset and reinitializable iterator

         
         holder = tf.placeholder(tf.int64, shape=[2])

         
         dset2 = tf.data.Dataset.from_tensor_slices(holder)

         
         dset2 = dset2.concatenate(tf.data.Dataset.range(12, 14))

         
          

         
         # Create the third dataset

         
         dset3 = tf.data.Dataset.from_generator(generator, output_types=tf.int64)

         
         dset3 = dset3.filter(lambda x: x < 24)

         
          

         
         # Create a reinitializable iterator for the 2nd, 3rd datasets

         
         iter2 = tf.data.Iterator.from_structure(

         
             dset2.output_types, dset2.output_shapes)

         
         next2 = iter2.get_next()

         
          

         
         # Create initializers for the 2nd, 3rd datasets

         
         dset2_init = iter2.make_initializer(dset2)

         
         dset3_init = iter2.make_initializer(dset3)

         
         

         
         # Print the content of each dataset

         
         with tf.Session() as sess:

         
          

         
             # Print the content of the first dataset

         
             print('Element from dset1: ', sess.run(next1))

         
          

         
             # Print the content of the second dataset

         
             sess.run(dset2_init, feed_dict={holder: [10, 11]})

         
             for _ in range(4):

         
                 print('Element from dset2: ', sess.run(next2))

         
          

         
             # Print the content of the third dataset

         
             sess.run(dset3_init)

         
             for _ in range(4):

         
                 print('Element from dset3: ', sess.run(next2))

         
         This module creates, manipulates, and iterates through three datasets: 

         
         
            
            	The first dataset, dset1, receives values stored in a TFRecord file. It has a single element with four values:
               0, 1, 2, 3.
            

            
            	The second dataset, dset2, is parametric and receives values through a placeholder when the session executes.
               It has four elements with one value each: 10, 11, 12, 13.
            

            
            	The third dataset, dset3, receives eight values (20 through 27) from a generator function. The filter method removes every element with a value greater than 24, leaving it with four single-valued
               elements: 20, 21, 22, 23.
            

            
         

         
         For the first dataset, the module writes a serialized Example to a file named ex.tfrecord. The module compresses the file's content using the gzip algorithm, and the following code shows how to configure the use of GZIP compression:
            
         

         
         opts = tf.python_io.TFRecordOptions (tf.python_io.TFRecordCompressionType.GZIP)

         
         writer = tf.python_io.TFRecordWriter('ex.tfrecord', opts)

         
         After assembling the three datasets, the module creates two iterators. The first iterator
            is a one-shot iterator that displays the values of dset1 as the session runs.
         

         
         The second iterator is a reinitializable iterator that displays the values in dset2 and dset3. The module creates two initializers for the reinitializable iterator. Within the
            session, the module runs both initializers and uses them to iterate through the values
            in dset2 and dset3.
         

         
      
      
      
         
         Bizarro Datasets

         
         In Chapter 6, I explain how to create a Dataset containing MNIST's handwriting samples by calling the read_data_sets method of the tf.contrib.learn.python.learn.datasets.mnist package. As strange as it may seem, that Dataset has nothing to do with the Dataset class discussed in this chapter. The tf.contrib.learn.python.learn.datasets package defines its own Dataset structure with the following code: 
         

         
         Dataset = collections.namedtuple('Dataset', ['data', 'target'])

         
         I call this Dataset the bizarro dataset because it reminds me of Bizarro, Superman's ugly, less intelligent mirror-image.
            This Dataset doesn’t have subclasses or interesting processing methods. It’s just a named tuple
            with two elements: data contains data points, and target contains labels for the data points. For example, if an estimator's job is to classify
            points in space into categories, the Dataset will store the points’ coordinates in its data element and the category IDs in its target element.
         

         
         It irks me that TensorFlow provides two Dataset structures, but I have to admit that the functions of the tf.contrib.learn.python.learn.datasets package make it easy to load and access data. This simplicity explains why so many
            of TensorFlow's example applications rely on these functions. Table 10-5 lists five functions that create bizarro datasets and provides a description of each.
         

         
         
            
               
               TABLE 10-5 Creating Bizarro Datasets
               

            
            
            
               
               
                  
                  
                     
                     	
                        
                        Member

                     
                     
                     	
                        
                        Description

                     
                     
                  

                  
               
               
               
                  
                  
                     
                     	
                        
                        load_csv_with_header(filename, target_dtype, features_dtype, target_column=-1)

                     
                     
                     	
                        
                        Loads a dataset from a CSV file with a header row

                     
                     
                  

                  
                  
                     
                     	
                        
                        load_csv_without_header(filename, target_dtype, features_dtype, target_column=-1)

                     
                     
                     	
                        
                        Loads a dataset from a CSV file without a header row

                     
                     
                  

                  
                  
                     
                     	
                        
                        shrink_csv(filename, ratio)

                     
                     
                     	
                        
                        Loads a minified dataset from the CSV file

                     
                     
                  

                  
                  
                     
                     	
                        
                        load_iris(data_path=None)

                     
                     
                     	
                        
                        Loads the Iris flower dataset from the training/test CSV files

                     
                     
                  

                  
                  
                     
                     	
                        
                        load_boston(data_path=None)

                     
                     
                     	
                        
                        Loads a dataset of Boston housing prices from the training/test CSV files

                        
                     
                     
                  

                  
               
               
            

            
         
         
         To explain these methods, I split them into two categories. Functions in the first
            category load data from comma-separated value (CSV) files. Functions in the second
            category load data from pre-existing machine learning datasets: the Iris dataset and
            the Boston dataset.
         

         
         
            
            Loading data from CSV files

            
            Many applications import and export data using comma-separated value (CSV) files.
               In a CSV file, each line provides a single record composed of values separated by
               commas. This format isn't particularly efficient, but humans and computers can read
               CSV files without difficulty.
            

            
            The first three functions in the table load datasets from CSV files. load_csv_with_header loads a dataset from a CSV file containing a header, and load_csv_without_header loads a dataset from a CSV file without a header.
            

            
            The ratio parameter of shrink_csv determines which lines of the CSV file should be stored in the dataset. If an application
               sets ratio to N, shrink_csv will store every Nth line to the dataset. By changing ratio, an application can select different assortments of CSV records for the dataset.
            

            
            These functions will not create datasets from general CSV files. They expect CSV files
               to be formatted in a specific way: 
            

            
            
               
               	If present, the file's header should start with the number of samples (the number
                  of lines containing records) and the number of features (the number of fields per
                  line).
               

               
               	Each data line should end with the desired category of the corresponding data point.

               
            

            
            For example, the following text presents the first five lines of the CSV file containing
               training data for the Iris dataset: 
            

            
            30,4,setosa,versicolor,virginica

            
            5.9,3.0,4.2,1.5,1

            
            6.9,3.1,5.4,2.1,2

            
            5.1,3.3,1.7,0.5,0

            
            6.0,3.4,4.5,1.6,1

            
            According to the header, this file provides 30 records, and each record has four fields.
               The last value in each line identifies the category, so the first data point belongs
               to Category 1.
            

            
            In a regular CSV file, the header provides a name for each field in a record. But
               in this example, the header has three names, and each record has four fields preceding
               the category. As it turns out, the header names identify category names: setosa identifies Category 0, versicolor identifies Category 1, and virginica identifies Category 2.
            

            
         
         
         
            
            Loading the Iris and Boston datasets

            
            The TensorFlow website provides two popular datasets that make it easy to train and
               test machine learning applications. The first dataset, called the Iris dataset, associates
               physical traits of a flower with one of three types of irises. The second dataset,
               called the Boston dataset, associates characteristics of Boston properties with house
               prices.
            

            
            For each dataset, TensorFlow provides two CSV files: one containing training data
               and one containing test data. For the Iris dataset, you can download the file containing
               training data from http://download.tensorflow.org/data/iris_training.csv and the test data from http://download.tensorflow.org/data/iris_test.csv.
            

            
            After you download the files to your system, you can create a dataset by calling load_iris with the path of one of the Iris files. This function returns a Dataset whose data collection contains floating-point values (flower traits) and whose target collection contains integers (iris categories).
            

            
            The Boston dataset identifies a number of statistics (from 1978) related to houses
               in the Boston area, including the per capita crime rate, the pupil-teacher ratio,
               and the average number of rooms in each house. You can download the Boston training
               data from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/input_fn/boston_train.csv and the test data from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/input_fn/boston_test.csv.
            

            
            Like the MNIST dataset, the Iris and Boston datasets make it straightforward to test
               new machine learning algorithms. The next chapter explains how to test estimators
               using the Iris and Boston datasets.
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         I feel the need … the need for speed! If you’ve ever said this about machine learning, then this chapter is for you. In
            my experience, you can accelerate a TensorFlow application using four methods: 
         

         
         
            
            	Generate multiple threads of execution

            
            	Access high-performance devices like graphics processor units (GPUs)

            
            	Execute an application on a cluster of networked devices

            
            	Deploy an application to the cloud

            
         

         
         This chapter discusses the first three options and then demonstrates how to execute
            a TensorFlow application in a cluster. Chapter 13 explains how to run TensorFlow in the cloud.
         

         
      
      
      
         
         Executing with Multiple Threads

         
         A thread is a sequence of operations capable of executing independently from other threads.
            In a TensorFlow application, you can take advantage of threads in two main ways: 
         

         
         
            
            	Perform time-consuming operations, such as the loading and storing of data, in separate
                  threads. This approach lets your processing thread continue its work without interruption.
            

            
            	Run a session with multiple threads. In theory, this method will reduce the amount of time needed to process the session’s
               operations.
            

            
         

         
         For the first point, developers used to create QueueRunners, which store operations to be executed in separate threads. But as of version 1.4,
            TensorFlow's documentation recommends using datasets instead, which is why Chapter 10 discusses datasets and iterators instead of threads, queue runners, and coordinators.
         

         
         To process a dataset in a multithreaded manner, you can set the num_parallel_calls argument of the Dataset's map method. For example, if you set this argument to 4, TensorFlow will perform the map operation with four threads. Chapter 10 discusses the Dataset class and its map method in glorious detail.
         

         
         For the second point, you can execute a session with multiple threads by setting the
            right configuration parameters. You can set these parameters when you create a session
            or when you run the session.
         

         
         
            
            Configuring a new session

            
            All of the example code in Chapters 1 through 10 has called tf.Session without any arguments. But you can configure a session by setting the config parameter of tf.Session to a ConfigProto protocol buffer. The fields of this buffer determine the session's behavior, and
               Table 11-1 lists each of them.
            

            
            
               
                  
                  TABLE 11-1 ConfigProto Fields
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Field

                        
                        
                        	
                           
                           Type

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           device_count

                        
                        
                        	
                           
                           map<string, int32>

                        
                        
                        	
                           
                           Identifies the number of devices of each type that can be accessed by the session

                        
                        
                     

                     
                     
                        
                        	
                           
                           intra_op_parallelism_threads

                        
                        
                        	
                           
                           int32

                        
                        
                        	
                           
                           Uses multiple threads to perform a single operation

                        
                        
                     

                     
                     
                        
                        	
                           
                           inter_op_parallelism_threads

                        
                        
                        	
                           
                           int32

                        
                        
                        	
                           
                           Uses multiple threads to perform separate operations

                        
                        
                     

                     
                     
                        
                        	
                           
                           session_inter_op_thread_pool

                        
                        
                        	
                           
                           ThreadPoolOptionProto

                        
                        
                        	
                           
                           Configures session thread pools

                        
                        
                     

                     
                     
                        
                        	
                           
                           placement_period

                        
                        
                        	
                           
                           int32

                        
                        
                        	
                           
                           Determines how often to assign nodes to devices

                        
                        
                     

                     
                     
                        
                        	
                           
                           device_filters

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Prevents named devices from being accessed by a session

                        
                        
                     

                     
                     
                        
                        	
                           
                           gpu_options

                        
                        
                        	
                           
                           GPUOptions

                        
                        
                        	
                           
                           Configures any GPUs accessed by the session

                        
                        
                     

                     
                     
                        
                        	
                           
                           allow_soft_placement

                        
                        
                        	
                           
                           bool

                        
                        
                        	
                           
                           Determines how operations are assigned to CPUs and GPUs

                        
                        
                     

                     
                     
                        
                        	
                           
                           graph_options

                        
                        
                        	
                           
                           GraphOptions

                        
                        
                        	
                           
                           Configures options for the session's graph(s)

                        
                        
                     

                     
                     
                        
                        	
                           
                           operation_timeout_in_ms

                        
                        
                        	
                           
                           int64

                        
                        
                        	
                           
                           Configures global timeout for the session's blocking operations

                        
                        
                     

                     
                     
                        
                        	
                           
                           rpc_options

                        
                        
                        	
                           
                           RPCOptions

                        
                        
                        	
                           
                           Configures for the session’s distributed runtime

                        
                        
                     

                     
                     
                        
                        	
                           
                           cluster_def

                        
                        
                        	
                           
                           ClusterDef

                        
                        
                        	
                           
                           Lists workers to use in this session

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            This section focuses on the options that configure a session's threads. By default,
               a session executes one thread for each core on the target processor. If you run TensorFlow
               on an Intel Core i5 CPU, your session will execute with a maximum of four threads
               because the CPU has four cores.
            

            
            It’s important to see the difference between the intra_op_parallelism_threads and inter_op_parallelism_threads options. Many TensorFlow operations, such as matrix multiplication, can be accelerated
               using multiple threads. The intra_op_parallelism_threads option determines how many threads should be generated to execute a single operation. In contrast, if a graph has operations that can run in parallel, the inter_op_parallelism_threads option determines how many threads can be generated to execute them.
            

            
            To demonstrate how threads can be configured, the following code creates a ConfigProto that uses a maximum of six threads for single operations and a maximum of eight threads
               for parallel operations. Then it uses the ConfigProto to create a session: 
            

            
            conf = tf.ConfigProto(intra_op_parallelism_threads=6, inter_op_parallelism_threads=8)

            
            with tf.Session(config=conf) as sess:

            
                …

            
            By default, a session will access threads from a global thread pool instead of creating
               threads of its own. You can change this behavior with the use_per_session_threads option. If you set this option to True, the session will create its own threads.
            

            
            If you'd like a session to execute background tasks in addition to the main computation,
               you can configure it by setting session_inter_op_thread_pool to one or more ThreadPoolOptionProto buffers. Each ThreadPoolOptionProto identifies a separate pool of threads. This protocol buffer has two fields: 
            

            
            
               
               	num_threads: The number of threads in the thread pool
               

               
               	global_name: A string identifier for the thread pool
               

               
            

            
            When you want a session to execute with threads from a specific pool, you can identify
               the thread pool in the RunOptions accepted by the run method. The next section discusses the RunOptions buffer in full.
            

            
         
         
         
            
            Configuring a running session

            
            Just as you can set the config parameter of tf.Session to a ConfigProto, you can set the options parameter of a session's run method to a RunOptions. The fields of a RunOptions determine how the session will execute, and Table 11-2 lists these fields.
            

            
            
               
                  
                  TABLE 11-2 RunOptions Fields
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Field

                        
                        
                        	
                           
                           Type

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           trace_level

                        
                        
                        	
                           
                           TraceLevel

                        
                        
                        	
                           
                           Determines the type of tracing to be performed

                        
                        
                     

                     
                     
                        
                        	
                           
                           timeout_in_ms

                        
                        
                        	
                           
                           int64

                        
                        
                        	
                           
                           Time to wait for the session operation to complete

                        
                        
                     

                     
                     
                        
                        	
                           
                           inter_op_thread_pool

                        
                        
                        	
                           
                           int32

                        
                        
                        	
                           
                           Identifies the pool of threads to use for the operation

                        
                        
                     

                     
                     
                        
                        	
                           
                           output_partition_graphs

                        
                        
                        	
                           
                           bool

                        
                        
                        	
                           
                           Identifies whether the session's partition graph(s) should be provided in the metadata

                        
                        
                     

                     
                     
                        
                        	
                           
                           debug_options

                        
                        
                        	
                           
                           DebugOptions

                        
                        
                        	
                           
                           Sets configuration options for debugging the session operation

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            If you configure a Session to use multiple thread pools, you can tell the session to execute threads from a
               particular pool by setting the inter_op_thread_pool option in RunOptions. For example, if you set this option to 1, the session will execute threads in the
               second thread pool.
            

            
         
      
      
      
         
         Configuring Devices

         
         Modern processors can execute special instructions that perform math operations at
            high speed. For example, a special multiply instruction can multiply four pairs of
            values in the same time that a regular instruction can multiply a single pair of values.
            These special instructions operate on multiple values at once, and for this reason,
            they're called SIMD (single-instruction, multiple-data) instructions.
         

         
         Unfortunately, when you install TensorFlow with a utility like pip, you get the basic,
            boring installation. This installation runs on new and old computers, but it won’t
            take advantage of SIMD instructions, and it won’t execute operations on a graphics
            processor unit (GPU), even if you’ve installed a compliant graphics card.
         

         
         If you want TensorFlow to make the best use of your system’s capabilities, you need
            to build TensorFlow specifically for your system.
         

         
         
            
            Building TensorFlow from source

            
            It takes time and effort to build TensorFlow from its source code, but if you execute
               a lot of machine learning applications, you’ll save time in the long run. This section
               explains how to build TensorFlow for Windows, macOS, and Linux systems. But it’s important
               to understand three topics: obtaining the TensorFlow source code, the Bazel build
               system, and GPU acceleration.
            

            
            
               
               Downloading the TensorFlow source code

               
               TensorFlow is an open-source project, and you can access the source code at https://github.com/tensorflow/tensorflow. If you know how to use git, you can clone the repository with the following command:
                  
               

               
               git clone https://github.com/tensorflow/tensorflow.git

               
               If you don’t know how to use git, click the green button entitled Clone or download.
                  Then select the Download ZIP option to download a zip file containing the TensorFlow
                  source code. Decompress the zip file when the download is complete.
               

               
            
            
            
               
               Bazel and Java

               
               Bazel is a Google tool that automates the process of building software. It operates
                  by executing operations defined in a file named BUILD. The instructions in this file, called rules, are written in Skylark, a subset of Python.
               

               
               If you look through the TensorFlow file hierarchy, you'll see a number of BUILD files and *.BUILD files. If you open the BUILD file in the tensorflow directory, you'll find a number of configuration settings, such as the following:
                  
               

               
               config_setting(

               
                   name = "linux_x86_64",

               
                   values = {"cpu": "k8"},

               
                   visibility = ["//visibility:public"],

               
               )

               
               Each config_setting block identifies a supported platform for building TensorFlow.
               

               
               Before you can install Bazel, you need to install Java on your system. Specifically,
                  you need to install version 8.x of the Java Development Kit (JDK). If you don’t have this version, you can download
                  the installer for Windows and macOS at www.oracle.com/technetwork/java/javase/downloads/index.html.
               

               
               If you’re running a Debian-based system like Ubuntu, you can install the OpenJDK 8.x with the following command: 
               

               
               sudo apt-get install openjdk-8-jdk

               
               After you install JDK 8.x, you’re ready to install Bazel. The instructions for installing Bazel depend on your
                  operating system.
               

               
            
            
            
               
               Graphics Processor Unit (GPU) acceleration

               
               While CPUs are designed for secure, general-purpose computing, GPUs are designed for
                  high-speed graphical rendering, which involves a lot of math. For many machine learning
                  applications, you can dramatically improve performance by running operations on a
                  GPU instead of a CPU.
               

               
               The two main languages for general-purpose GPU (GPGPU) development are OpenCL and
                  CUDA. OpenCL is supported by multiple vendors and can run on many different types
                  of devices, including CPUs, GPUs, and FPGAs. But TensorFlow supports OpenCL only on
                  systems that have ComputeCpp installed. You can download ComputeCpp from www.codeplay.com/products/computesuite/computecpp.
               

               
               The second GPGPU language, CUDA, runs only on Nvidia’s GPUs. To install CUDA, visit
                  https://developer.nvidia.com/cuda-downloads and click the buttons that identify your operating system, architecture, and OS version.
                  Then download and launch the installer, which will walk you through the installation
                  process.
               

               
            
            
            
               
               Preparing the TensorFlow build on Windows

               
               Building TensorFlow on Windows is hard because you need to set up a UNIX-like environment
                  that supports Bash scripting, Python, and the GNU build tools, such as gcc and g++.
                  To create this environment, most developers use Cygwin or MSYS2 (Minimal System 2).
                  In this section, I explain how to build TensorFlow on Windows using MSYS2.
               

               
               To install MSYS2, visit www.msys2.org and select the 32-bit (i686) or 64-bit (x86_64) executable. When the download is
                  complete, launch the executable and proceed through the installation instructions.
               

               
               Assuming that you chose the default options for 64-bit Windows, MSYS2 will place all
                  of its files in a new directory named C:\msys64. Two folders are particularly important: 
               

               
               
                  
                  	C:\msys64\mingw64\bin contains the utilities provided by MinGW (Minimalist GNU for Windows). When you install
                     MSYS2, this folder will be empty.
                  

                  
                  	C:\msys64\home\<name> is your home directory. When you launch MSYS2, it will be your initial directory.
                  

                  
               

               
               To install TensorFlow, you need to be able to access build tools, such as gcc, g++,
                  and ld, in the GNU toolchain. You can obtain these tools by downloading MinGW packages
                  into the MSYS2 environment. The MSYS2 installer is called pacman, and you can install the necessary MinGW packages by launching MSYS2 and entering
                  the following command: 
               

               
               pacman -S --needed mingw-w64-x86_64-python3-pip base-devel mingw-w64-x86_64-toolchain

               
               This command adds a number of files and executables to the C:\msys64\mingw64\bin directory. To tell MSYS2 how to find these executables, you need to add this directory to your
                  system's PATH variable.
               

               
               If you run python --version on the MSYS2 command line, it may tell you that you're using Python 2.x. This version is a problem because TensorFlow on Windows requires Python 3.5. To fix
                  this issue, I recommend four steps: 
               

               
               
                  
                  	Open the C:\msys64\mingw64\bin directory and rename python.exe to old_python.exe.

                  
                  	In the same directory, copy python3.5.exe and rename the copy python.exe.

                  
                  	In the same directory, copy pip3.exe and rename the copy pip.exe.

                  
                  	In the same directory, copy pip3-script.py and rename the copy pip-script.py.

                  
               

               
               To verify that everything's working, run python --version in MSYS2 and make sure that the default Python version is 3.x. Then install TensorFlow’s Python dependencies with the following command: 
               

               
               pip install six numpy wheel

               
               Next, you need to install the Bazel tool. This process also requires four steps: 

               
               
                  
                  	
                     
                     If you’ve haven’t done so already, install Java Development Kit (JDK) 8 for your system.

                     
                     You can download the installer from www.oracle.com/technetwork/java/javase/downloads/index.html.
                     

                  

                  
                  	Visit http://github.com/bazelbuild/bazel/releases and click the number of the latest release.

                  
                  	Scroll to the bottom of the page and find the Windows executable suitable for your
                        system.

                  
                  	Download the executable, rename it to bazel.exe, and place it in the C:\msys64\mingw64\bin directory.

                  
               

               
               After you install Bazel, copy the TensorFlow source code directory to the MSYS2 home
                  directory (C:\msys64\home\Part). Then, inside the MSYS2 environment, change to the tensorflow directory. Now you're ready to build!
               

               
            
            
            
               
               Preparing the TensorFlow build on macOS

               
               Before you can build TensorFlow on a macOS system, you need to install Bazel and TensorFlow’s
                  dependencies. If you’ve already installed the Java JDK 8.x, then you can install Bazel using Homebrew.
               

               
               You probably already have Homebrew installed on your system, but if you don’t, you
                  can install it with the following command: 
               

               
               /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

               
               With Homebrew installed, you can install Bazel with the following command: 

               
               brew install bazel

               
               Before you can install TensorFlow, you need to install three of its dependencies:
                  NumPy, six, and wheel. The following command installs all three: 
               

               
               sudo pip install six numpy wheel

               
               If you’d like TensorFlow to access your system’s GPU, you’ll need to install GNU’s
                  core utilities. You can install them using Homebrew: 
               

               
               brew install coreutils

               
               When you’re done, you’ll be all set to start configuring and building TensorFlow.

               
            
            
            
               
               Preparing the TensorFlow build on Linux (Ubuntu)

               
               Of the many Linux distributions available, TensorFlow supports only Ubuntu, specifically
                  versions 14.04 and higher. If you’ve installed Python and Java JDK 8.x, installing TensorFlow on Ubuntu is easy.
               

               
               The first step is to install the Bazel build tool, and you can add Bazel’s distribution
                  URI as a package source with the following commands: 
               

               
               echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo
                     tee /etc/apt/sources.list.d/bazel.list

               
                

               
               curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -

               
               Afterward, you can install Bazel with the following command: 

               
               sudo apt-get update && sudo apt-get install bazel

               
               Before you build TensorFlow, you need to install four dependency packages: NumPy,
                  Python-Dev, pip, and wheel. If you’re using Python 2.x, you can install these dependencies with the following command: 
               

               
               sudo apt-get install python-numpy python-dev python-pip python-wheel

               
               If you’re using Python 3.x, you can install TensorFlow’s dependencies with the following command: 
               

               
               sudo apt-get install python3-numpy python3-dev python3-pip python3-wheel

               
               If this installation completes successfully, you’re ready to start building TensorFlow.

               
            
            
            
               
               Building TensorFlow

               
               After you have the TensorFlow source code downloaded to your system and have installed
                  Bazel and TensorFlow’s dependencies, you’re ready to start building TensorFlow. To
                  get started, change to the directory containing the source code and enter the following
                  command: 
               

               
               ./configure

               
               This command executes the configure script, which asks a series of questions that configure the features of the TensorFlow
                  package. In the following list, I cover the questions that I've encountered when installing
                  on Linux. Each question ends with a default response in square brackets. You can select
                  the default response by pressing Enter. 
               

               
               
                  
                  	Python location: The directory containing the Python interpreter
                  

                  
                  	Python library path: The directory containing Python libraries
                  

                  
                  	jemalloc support: Whether TensorFlow should allocate memory with the improved jemalloc function instead of malloc. I recommend choosing Yes (Y).
                  

                  
                  	Google Cloud Platform support: Whether TensorFlow should provide support for Google's cloud computingoffering, the
                     Google Cloud Platform (GCP). Chapter 14 explains how to run TensorFlow on the GCP.
                  

                  
                  	Hadoop File System support: Whether TensorFlow should support the Hadoop File System
                  

                  
                  	Amazon S3 File System support: Whether TensorFlow should provide support for Amazon’s distributed S3 file system
                  

                  
                  	XLA JIT support: Whether TensorFlow should use the experimental XLA (Accelerated Linear Algebra) compiler
                     to accelerate math operations
                  

                  
                  	GDR support: Whether TensorFlow should enable CUDA’s high-speed memory access, GPUDirect RDMA
                  

                  
                  	VERBS support: Whether TensorFlow should enable remote direct memory access (RDMA) through the VERBS
                     package
                  

                  
                  	OpenCL support: Whether TensorFlow should enable GPU computing with OpenCL
                  

                  
                  	CUDA support: Whether TensorFlow should enable GPU computing with CUDA
                  

                  
                  	MPI support: Whether TensorFlow should enable cluster computing with the Message Passing Interface
                     (MPI)
                  

                  
                  	Optimization flags: The optimization flags to use when building TensorFlow
                  

                  
               

               
               The last option is particularly important. By default, the build process will include
                  the flag –march=native. This flag tells the compiler to examine the target CPU and make sure that TensorFlow
                  will use the most advanced capabilities supported by the processor. In general, I
                  recommend staying with the default optimization option.
               

               
               After you complete the questionnaire, the script stores your configuration choices
                  in a file named .tf_configure.bazelrc. To continue the build, enter the following command: 
               

               
               bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package

               
               This command creates a script called build_pip_package in the bazel-bin/tensorflow/tools/pip_package directory. To build an installation package for TensorFlow, enter the following command:
                  
               

               
               bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

               
               This command creates a wheel file (*.whl) in your /tmp/tensorflow_pkg directory. You can install the new TensorFlow package by calling pip install with this wheel file. On my system, the wheel file is tensorflow-1.4.0rc1-cp27mu-linux_x86_64.whl. Therefore, I can install TensorFlow with the following command: 
               

               
               sudo pip install /tmp/tensorflow_pkg/tensorflow-1.4.0rc1-cp27mu-linux_x86_64.whl

               
               When pip install finishes, the TensorFlow installation is complete. You can access the tensorflow package and its modules as if you'd installed the default TensorFlow installation.
               

               
            
         
         
         
            
            Assigning operations to devices

            
            If you’ve configured TensorFlow to execute on GPUs and you’ve installed the appropriate
               SDK, TensorFlow automatically assigns processing operations to the GPU.
            

            
            For example, TensorFlow contains two versions of matmul: one that executes on CPUs and one that executes on GPUs. When an application executes
               matmul, TensorFlow executes the matrix multiplication on the GPU if it's available.
            

            
            TensorFlow lets you assigns operations to devices manually, but first, it helps to
               know which devices are present.TensorFlow provides this information through an undocumented
               function named list_local_devices in the tensorflow.python.client package. This function returns a list of DeviceAttribute protocol buffers, and the following code calls list_local_devices to print a list of available devices: 
            

            
            from tensorflow.python.client import device_lib

            
            devices = device_lib.list_local_devices()

            
            for device in devices:

            
                print(device)

            
            On my bargain-basement laptop, this code prints the following result: 

            
            name: "/device:CPU:0"

            
            device_type: "CPU"

            
            memory_limit: 268435456

            
            locality {}

            
            incarnation: 2086003163627480003

            
            TensorFlow recognizes two types of devices: CPUs and GPUs. TensorFlow assigns a name
               to each device, and this name always has the same format: 
            

            
            /job:Part/replica:<replica>/task:<task>/device:<type>:<device_num>

            
            Unless you're developing distributed applications, you can leave off the job, replica, and task fields and simply use /device:<type>:<device_num>. Here, <type> can be CPU or GPU, and <device_num> identifies the index of the device among the recognized devices of the given type.
               Therefore, the first CPU is /device:CPU:0 and the second GPU is /device:GPU:1.
            

            
            If you have multiple devices of a given type, you can configure a session to limit
               the number of devices it can access. The device_count parameter in the ConfigProto buffer makes it possible. As an example, the following code configures the session
               to use a maximum of two GPUs: 
            

            
            conf = tf.ConfigProto(device_count={'GPU': 2})

            
            with tf.Session(config=conf) as sess:

            
                …

            
            If you'd like to execute operations on a specific device, you can call tf.device with the device’s name. This function returns a context manager that assigns all
               operations in the context to the given device. For example, the following code specifies
               that subsequent operations should be assigned to the second GPU: 
            

            
            with tf.device('/device:GPU:1'):

            
                …

            
            Suppose that your application is executing a session and you’d like to know which
               device(s) the session is using. In this case, you can set the log_device_placement option to True in the session's constructor. 
            

            
            a = tf.constant(1.2, name='a_var')

            
            b = tf.constant(3.4, name='b_var')

            
            sum = a + b;

            
            conf = tf.ConfigProto(log_device_placement=True)

            
            with tf.Session(config=conf) as sess:

            
                print(sess.run(sum))

            
            If a system has a single CPU, the printed output will look like the following: 

            
            4.6

            
            Device mapping: no known devices.

            
            add: (Add): /job:localhost/replica:0/task:0/device:CPU:0

            
            b_var: (Const): /job:localhost/replica:0/task:0/device:CPU:0

            
            a_var: (Const): /job:localhost/replica:0/task:0/device:CPU:0

            
         
         
         
            
            Configuring GPU usage

            
            If your TensorFlow installation can access GPUs and TensorFlow recognizes a compliant
               GPU, your sessions will assign math operations to the GPU by default. You can configure
               how the CPU interacts with the GPU by setting the gpu_options field in a session’s ConfigProto. You must assign gpu_options to a GPUOptions buffer, and Table 11-3 lists its fields.
            

            
            
               
                  
                  TABLE 11-3 GPUOptions Fields
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Field

                        
                        
                        	
                           
                           Type

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           per_process_gpu_memory_fraction

                        
                        
                        	
                           
                           double

                        
                        
                        	
                           
                           Configures the fraction of the GPU memory to allocate

                        
                        
                     

                     
                     
                        
                        	
                           
                           allocator_type

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Sets the GPU allocation strategy

                        
                        
                     

                     
                     
                        
                        	
                           
                           deferred_deletion_bytes

                        
                        
                        	
                           
                           int64

                        
                        
                        	
                           
                           Delays deletion to reduce driver processing

                        
                        
                     

                     
                     
                        
                        	
                           
                           allow_growth

                        
                        
                        	
                           
                           bool

                        
                        
                        	
                           
                           Enables/disables pre-allocation of GPU memory

                        
                        
                     

                     
                     
                        
                        	
                           
                           visible_device_list

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Determines how GPU devices are mapped

                        
                        
                     

                     
                     
                        
                        	
                           
                           polling_active_delay_usecs

                        
                        
                        	
                           
                           int32

                        
                        
                        	
                           
                           Configures the number of milliseconds that should elapse between polling when active

                        
                        
                     

                     
                     
                        
                        	
                           
                           polling_inactive_delay_msecs

                        
                        
                        	
                           
                           int32

                        
                        
                        	
                           
                           Sets the number of milliseconds between polling when inactive

                        
                        
                     

                     
                     
                        
                        	
                           
                           force_gpu_compatible

                        
                        
                        	
                           
                           bool

                        
                        
                        	
                           
                           Forces tensors to be allocated in GPU's pinned memory

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            By default, TensorFlow pre-allocates all of a GPU’s memory for its operations. But
               if you set allow_growth to True, TensorFlow won't allocate any memory in advance. Instead, it will allocate memory
               only as it becomes necessary.
            

            
            If you set per_process_gpu_memory_fraction to a value less than 1, TensorFlow will pre-allocate that fraction of the GPU’s visible
               memory. For example, the following code configures a session to pre-allocate 80 percent
               of the GPU’s memory for its operations: 
            

            
            gpu_opts = tf.GPUOptions( per_process_gpu_memory_fraction=0.8)

            
            conf = tf.ConfigProto(gpu_options=gpu_opts)

            
            with tf.Session(config=conf) as sess:

            
                …

            
            You can improve performance by reducing the number of commands that the CPU sends
               to the GPU. One frequent command involves deleting objects in GPU memory. By default,
               the CPU will tell the GPU to delete objects when they occupy more than several megabytes
               of storage. You can customize this behavior by setting the deferred_deletion_bytes field of a GPUOptions to a desired memory size.
            

            
         
      
      
      
         
         Executing TensorFlow in a Cluster

         
         In addition to running operations on GPUs, you can code distributed applications that
            execute on multiple computers. I found this topic very difficult to understand when
            I first encountered it, so I start by comparing it to a more familiar subject: web
            browsing.
         

         
         When you browse the web, your browser (the client) sends a request to a remote machine
            called the server. To be precise, the server is a process on the remote machine (the server's host)
            that listens for requests on a specific port. When you send your request to a web
            server’s host and port, the server sends a response containing a web page. A host
            can execute multiple servers, but each server always listens for messages from a specific
            port.
         

         
         In a distributed TensorFlow application, a client accesses multiple servers, which
            may run on separate systems or the same system. Like a web server, each TensorFlow
            server listens for messages directed to a specific host and port.
         

         
         Each server executes a single unit of work called a task. A group of related tasks form a job. The collection of servers associated with an application is called a cluster.
         

         
         If you’re comfortable with these terms (server, task, job, cluster), you’ll have no
            trouble coding distributed TensorFlow applications. In general, the development process
            requires three steps: 
         

         
         
            
            	Define the application’s jobs, tasks, and server hosts/ports in a ClusterSpec.

            
            	Create a tf.train.Server for each server in the cluster.

            
            	Define operations for each task.

            
         

         
         If your cluster executes on multiple computers, you don't have to rewrite the application
            for each computer. Just code the application once and pass different command-line
            arguments to each system. Alternatively, you can use a cluster manager like Kubernetes
            to manage the cluster and automatically define servers and tasks.
         

         
         
            
            Creating a ClusterSpec

            
            A cluster specification defines the application’s jobs and tasks and associates each
               task with the network address of a server. Cluster specifications are represented
               by instances of tf.train.ClusterSpec. The class constructor accepts one argument that can take one of three forms: 
            

            
            
               
               	A dict that associates job names with a list of network addresses

               
               	A dict that associates job names with dicts that associate task numbers with network
                  addresses
               

               
               	An existing ClusterDef protocol buffer
               

               
            

            
            This discussion focuses on the first two forms. For example, suppose that you want
               your cluster to execute tasks in two jobs. The first job, j1, has one task, and the second job, j2, has two tasks. You could define your cluster with the following ClusterSpec: 
            

            
            spec = tf.train.ClusterSpec({

            
                     'j1': ['sys1.ex.com:121'],

            
                     'j2': ['sys2.ex.com:122', 'sys3.ex.com:123']})

            
            For each network address, you need to provide a host name, such as sys1.ex.com, and a port, such as 123. TensorFlow creates one task for each network address in the ClusterSpec and assigns each task a number corresponding to its order in the job's list. In the
               preceding example, TensorFlow assigns Task 0 to sys1.ex.com, Task 0 to sys2.ex.com, and Task 1 to sys3.ex.com.
            

            
            You can assign your own task numbers by associating each job name with a dict that
               associates integers with addresses: 
            

            
            spec = tf.train.ClusterSpec({

            
                         'j1': {3: 'sys1.ex.com:121'},

            
                         'j2': {2: 'sys2.ex.com:122',

            
                                1: 'sys3.ex.com:123'}})

            
            For the sake of simplicity, the ClusterSpecs in this book allow TensorFlow to set task indices automatically.
            

            
         
         
         
            
            Creating a server

            
            After you split your application's computation into tasks, you need to create servers
               to perform the tasks. You can create a server by calling the tf.train.Server constructor: 
            

            
            tf.train.Server(server_or_cluster_def, job_name=None, task_index=None, protocol=None,
                  config=None, start=True)

            
            You can set the first parameter to a ServerDef, which is a protocol buffer that defines a server's operating environment. But most
               applications assign the first parameter to a ClusterSpec. To tell the server which task it’s intended to perform, you need to set the job_name and task_index parameters. As an example, the following code creates a server to perform Task 1
               of the job named j2: 
            

            
            server = tf.train.Server(spec, job_name='j2', task_index=1)

            
            The constructor's protocol parameter identifies the communication mechanism that the Server will use to receive tasks. At the time of this writing, the only accepted protocol
               is grpc, which identifies the gRPC protocol. This is Google's free implementation of remote
               procedure calls (RPC), and you can find out more about gRPC by visiting http://grpc.io.
            

            
            The config parameter accepts a ConfigProto that configures all the sessions that run on the server. I present the ConfigProto and its many fields at the start of the chapter in the “Configuring a new session” section.
            

            
            The start parameter identifies whether the server should start immediately after it's created.
               If you set this parameter to True, the server will start processing tasks after it’s created. If you set it to False, you can start the server later by calling its start method.
            

            
         
         
         
            
            Specifying jobs and tasks

            
            After you define your cluster and create your servers, you need to provide code for
               the cluster's tasks. You don’t need to write a separate program for each task. Instead,
               most developers write one program and partition its code so that different portions
               are executed by different tasks.
            

            
            You can associate code with a specific task by calling the tf.device function discussed earlier in the “Assigning operations to devices” section. For example, the following code executes only on Task 0 of Job j1: 
            

            
            with tf.device('/job:j1/task:0'):

            
                const_a = tf.constant(3.6)

            
                const_b = tf.constant(1.2)

            
                total = const_a + const_b

            
            You can also partition your code using if statements: 
            

            
            if job_name == 'j1' and task_num == 0:

            
                …

            
            elif job_name == 'j1' and task_num == 1:

            
                …

            
            When you define a cluster, you can create as many jobs and tasks as you like. But
               many distributed TensorFlow applications have only two jobs: 
            

            
            
               
               	Parameter server (ps): Stores the application's variables
               

               
               	Worker replica (worker): Performs the application’s computation, including the processing that updates the
                  variables
               

               
            

            
            You can define these jobs in a cluster specification with code like the following:
               
            

            
            spec = tf.train.ClusterSpec({'ps': [..], 'worker': [..]})

            
            This section introduces parameter servers and workers and shows you how to create
               them in code.
            

            
            
               
               Parameter servers

               
               In a distributed application, TensorFlow recognizes that variables with the same name
                  on the same device represent the same data. That is, if Tasks X and Y both operate
                  on a variable named weight_var, TensorFlow understands that they should access the same weight_var variable. These tasks run in different processes, so TensorFlow replicates the variables
                  between the processes.
               

               
               A parameter server (PS) serves as a central location for storing, saving, and retrieving variables.
                  In many applications, a PS task will simply declare variables and then block until
                  the application is complete. To demonstrate this, the following code defines a parameter
                  server that declares two variables, weights and biases, and then blocks until the application is complete. 
               

               
               server = tf.train.Server(cluster, job_name='ps', task_index=0)

               
               if job_name == 'ps':

               
                   weights = tf.Variable(…)

               
                   biases = tf.Variable(…)

               
                   server.join()

               
               After the parameter server declares the weights and biases, other tasks can access these variables and update them as needed. The join method tells the server to block indefinitely.
               

               
            
            
            
               
               Workers

               
               Generally speaking, any job that performs computation is considered a worker job. Each task in a worker job is called a worker replica or just a worker. To perform its computation, each worker needs to create and launch a session.
               

               
               This requirement presents a problem: You can't create regular sessions in a distributed
                  application. You need to run each session in the appropriate server process. To understand
                  how to run a session in a server, you need to be familiar with server targets.
               

               
               Just as web servers communicate using HTTP, TensorFlow servers communicate using gRPC.
                  Each server has a gRPC address determined by its host and port. For example, if you
                  configure a server to execute a task whose address is localhost:123, the server’s
                  gRPC address will be given as follows: 
               

               
               grpc://localhost:123

               
               This gRPC address is called the server’s target. You can access this target through the target property of the Server instance.
               

               
               To create a session to run inside a server, you need to set the first parameter of
                  tf.Session to the server's target. The following code creates a Server and then creates a session that connects to it: 
               

               
               server = tf.train.Server(spec, job_name='worker', task_index=1)

               
               with tf.Session(server.target) as sess:

               
                   …

               
               Here’s a question: If workers in a distributed application need to access the same
                  variable data, how can the variables be initialized? The parameter server can’t initialize
                  its variables because it doesn’t run a session. But if every worker initializes the
                  variables separately, TensorFlow won’t be able to replicate the data between processes.
               

               
               The answer is that one of the workers needs to handle initialization, and the other
                  workers need to wait until the initialization is complete. The worker that handles
                  initialization is called the chief. You can assign the chief’s operations in a session by calling tf.train.MonitoredTrainingSession.
               

               
            
            
            
               
               Workers and monitored sessions

               
               Chapter 5 presents the fascinating topic of session hooks and explains how to associate hooks
                  with a MonitoredSession. You can configure MonitoredSessions for distributed applications by calling a function called tf.train.MonitoredTrainingSession: 
               

               
               MonitoredTrainingSession(master='', is_chief=True, checkpoint_dir=None, scaffold=None,
                     hooks=None, chief_only_hooks=None, save_checkpoint_secs=600, save_summaries_steps=USE_DEFAULT,
                     save_summaries_secs=USE_DEFAULT, config=None, stop_grace_period_secs=120, log_step_count_steps=100)

               
               This function looks like a class constructor, but it returns a MonitoredSession, not a MonitoredTrainingSession. If a worker invokes this function with is_chief set to True, the MonitoredSession will perform the session's initialization when it’s launched. Therefore, only one
                  worker (the chief) should call this function with is_chief set to True. When other workers call this function, the returned MonitoredSession will wait until the chief's session has performed initialization.
               

               
               The first argument, master, serves the same purpose as the target argument in the Session constructor. That is, it identifies the gRPC location of the worker intended to run
                  the session, such as grpc://localhost:123.
               

               
               The MonitoredTrainingSession function accepts general session hooks (hooks) and session hooks intended for the chief's session (chief_only_hooks). In addition, the function accepts parameters for setting checkpoints and generating
                  summary data. By setting these parameters, you don’t need to create CheckpointSaverHooks or SummarySaverHooks.
               

               
            
         
         
         
            
            Running a simple cluster

            
            The code in the ch11/cluster.py module provides a simple example of a distributed TensorFlow application. The module
               doesn't perform any machine learning, but demonstrates how a set of worker tasks can
               combine their efforts to update a variable.
            

            
            To be specific, the application creates four workers and uses them to approximate
               π. This approximation involves summing together the areas of the rectangles under the
               function y = (1 + x2)-1 as x runs from 0 to 1 and multiplying the sum by 4. In Figure 11-1, the graph divides the area under the function into 30 regions.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 11-1: An application can approximate π by splitting the area under the function into rectangles and adding the areas together.
                     

                     
                  
                  
               
               
            

            
            The ch11/cluster.py module generates four workers to perform the approximation. Listing 11-1 presents the code.
            
 
            
            LISTING 11-1 Approximating Pi in a Distributed Application
            
 
            
            # Session hook to print output

            
            class OutputHook(tf.train.SessionRunHook):

            
             

            
                def before_run(self, run_context):

            
                    return tf.train.SessionRunArgs(pi_var)

            
             

            
                def after_run(self, run_context, run_values):

            
                    print('Pi approximation:', run_values.results)

            
             

            
            # Define a cluster with two jobs and five tasks

            
            spec = tf.train.ClusterSpec({'worker':

            
                ['localhost:31415', 'localhost:31416', 'localhost:31417', 'localhost:31418']})

            
             

            
            # Perform task-dependent operations

            
            flags = tf.flags

            
            flags.DEFINE_string('task', '', '')

            
            if not flags.FLAGS.task:

            
             

            
                # Launch the worker processes

            
                subprocess.Popen('python cluster.py --task=0', stderr=subprocess.STDOUT)

            
                subprocess.Popen('python cluster.py --task=1', stderr=subprocess.STDOUT)

            
                subprocess.Popen('python cluster.py --task=2', stderr=subprocess.STDOUT)

            
                subprocess.Popen('python cluster.py --task=3', stderr=subprocess.STDOUT)

            
             

            
            else:

            
                N = 10

            
                num_workers = float(spec.num_tasks('worker') - 1)

            
                delta_x = float(1)/float(N * num_workers)

            
                task_index = int(flags.FLAGS.task)

            
             

            
                # Create server

            
                server = tf.train.Server(spec, job_name='worker', task_index=task_index)

            
             

            
                with tf.device('/job:worker/task:0'):

            
                    pi_var = tf.Variable(0., dtype=tf.float32)

            
             

            
                with tf.device('/job:worker/task:1'):

            
                    for i in range(N):

            
                        x_i = delta_x * (i * num_workers + 0.5)

            
                        pi_var += 4 * delta_x/(1 + x_i * x_i)

            
             

            
                with tf.device('/job:worker/task:2'):

            
                    for i in range(N):

            
                        x_i = delta_x * (i * num_workers + 1.5)

            
                        pi_var += 4 * delta_x/(1 + x_i * x_i)

            
             

            
                with tf.device('/job:worker/task:3'):

            
                    for i in range(N):

            
                        x_i = delta_x * (i * num_workers + 2.5)

            
                        pi_var += 4 * delta_x/(1 + x_i * x_i)

            
             

            
                # Launch session

            
                output_hook = OutputHook()

            
                with tf.train.MonitoredTrainingSession(master='grpc://localhost:31415',

            
                        is_chief=(task_index == 0), chief_only_hooks=[output_hook]) as sess:

            
                    sess.run(pi_var)

            
            The module defines a ClusterSpec and launches four processes — one for each worker. Each worker process receives a
               different argument that identifies its task number. The workers use this task number
               to create and launch a server whose network address is determined by the ClusterSpec.
            

            
            The module calls tf.device to assign code to the four workers. The first worker declares and initializes the
               pi_var variable. The rest of the workers update the value of pi_var by adding together the areas of ten of the rectangular regions underneath the function
               y = (1 + x2)-1.
            

            
            Each worker calls tf.train.MonitoredTrainingSession and sets its target to the address of the first worker. The chief worker is the worker
               whose task index is 0, and this worker's session executes first and initializes the
               application’s variables. After the initialization is complete, the other workers execute
               the session and update pi_var.
            

            
            To display the output, the module associates the session with an OutputHook. This session hook prints the value of pi_var after the session completes its execution. The module associates the session hook
               with the function's chief_only_hooks parameter, so the hook applies only to the chief worker’s session.
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         At a fundamental level, the process of using statistical regression for machine learning
            is a lot like the process of using neural networks (see Chapter 7): Load your data, train your model, and test the result. Unfortunately, the code
            needed to perform statistical regression in TensorFlow is quite different than the
            code needed to create neural networks.
         

         
         To simplify development and testing, TensorFlow provides the Estimator framework.
            The tf.estimator package contains modules that analyze data through a common set of methods. For example,
            the estimator class that performs linear regression (LinearRegressor) has the same methods as the class that performs regression with deep neural networks
            (DNNRegressor).
         

         
         You can take advantage of this commonality by coding your own estimators. That is,
            if you package your custom machine learning algorithm as an estimator, other developers
            will have no trouble training and testing your application.
         

         
      
      
      
         
         Introducing Estimators

         
         The tf.estimator package provides an assortment of classes that analyze data, including LinearClassifier and DNNClassifier. These classes all extend the Estimator class, whose methods make it possible to perform machine learning in an algorithm-agnostic
            manner.
         

         
         Throughout this book, I use the term estimator to refer to instances of the Estimator class and its subclasses. In general, the process of working with estimators consists
            of six steps: 
         

         
         
            
            	Load data into a dataset.

            
            	Create feature columns that associate the dataset's fields with names and data types.

            
            	Create an instance of the estimator’s class with the feature columns.

            
            	Train the estimator with training data.

            
            	Evaluate the estimator’s performance with test data and examine the results.

            
            	Use the estimator for real-world prediction or classification.

            
         

         
         Step 3 depends on the type of estimator you’re interested in. You can perform Steps
            4, 5, and 6 by calling the three fundamental methods of the Estimator class: train, evaluate, and predict. Once you understand these methods, you'll have a solid grasp of what estimators
            are all about.
         

         
      
      
      
         
         Training an Estimator

         
         After you load data into a dataset and create an estimator, the next step is to start
            training. Every estimator supports the train method: 
         

         
         train(input_fn, hooks=None, steps=None, max_steps=None)

         
         The input_fn parameter identifies a function that provides training data as a tuple. This tuple
            contains two data elements: features and labels. A feature identifies a single, complete
            observation, such as the N coordinates of a point in N-dimensional space. A label
            identifies the category of the corresponding feature, such as a 1 if the point represents
            success or a 0 if the point represents failure.
         

         
         To identify features, input_fn provides a dictionary that associates strings with tensors. Each string identifies
            the data in the tensor. To demonstrate how you can set input_fn, the following function provides three features — one for each point dimension. 
         

         
         def train_func():

         
             features = {

         
                 'x-coords': tf.constant([[0.1], [0.2]]),

         
                 'y-coords': tf.constant([[0.5], [0.6]]),

         
                 'z-coords': tf.constant([[1.0], [1.1]])

         
             }

         
             labels = tf.constant([[0], [1]])

         
             return features, labels

         
         This set of features consists of two points: (0.1, 0.5, 1.0) and (0.2, 0.6, 1.1).
            But the code may seem confusing because of how the data is structured. Instead of
            returning one point at a time, the function provides all the x-coordinates in the
            first feature, all the y-coordinates in the second feature, and all the z-coordinates
            in the third feature.
         

         
         The second part of the tuple returned by input_fn is a tensor containing labels. If the estimator's purpose is to classify, the labels
            represent categories. In the preceding example code, the first point has a label of
            0, and the second point has a label of 1.
         

         
         Looking at this code, you may wonder where the names x-coords, y-coords, and z-coords came from. When you call an estimator's constructor, you need to provide a feature column for each feature. A feature column associates a name, such as x-coords, with the type of data provided in the feature. I discuss the fascinating topic of
            feature columns in the upcoming section “Using Feature Columns.”
         

         
         By default, estimators continue training until the loss approaches zero. But you can
            control the number of training steps by setting the steps parameter or the max_steps parameter. The difference is that the steps parameter is incremental, so if you want to perform 30 training steps now and 20
            training steps later, you can start by calling train with steps equal to 30. Later on, you can call train with steps equal to 20.
         

         
         You can monitor the training process by setting the hooks parameter to a list of session hooks. Chapter 5 explains how session hooks make it possible to monitor a session's execution.
         

         
      
      
      
         
         Testing an Estimator

         
         After you create and train your estimator, you should make sure that it works properly.
            Testing your estimator is the purpose of the evaluate method: 
         

         
         evaluate(input_fn, steps=None, hooks=None, checkpoint_path=None, name=None)

         
         The parameters of evaluate are similar to those of train. As with train, the input_fn function provides a tuple containing features and labels. The only difference is
            that these features and labels represent test data instead of training data.
         

         
         The checkpoint_path parameter identifies the directory where the method should store its outputs. If
            you set this parameter to None, the method will use the model_dir parameter of the estimator's constructor. If you don’t set this parameter, the method
            will store its outputs in a temporary directory.
         

         
         evaluate returns the test results in a dict whose content depends on the estimator’s model.
            TensorFlow’s documentation doesn’t list any required keys for this dict, but every
            estimator I’ve used has provided the following: 
         

         
         
            
            	accuracy: The percentage of correct predictions
            

            
            	loss: Difference between the model's prediction and actual result
            

            
            	average_loss: Average of the loss
            

            
         

         
         In addition to these metrics, the dict returned by evaluate also contains the value of the global step. An application can access this value
            through the global_step key.
         

         
      
      
      
         
         Running an Estimator

         
         After you train and test your estimator and you're happy with the test results, it’s
            showtime! You can execute your estimator with real-world data points by calling predict: 
         

         
         predict(input_fn, predict_keys=None, hooks=None, checkpoint_path=None)

         
         Like train and evaluate, predict accepts a function as its first parameter. But instead of providing a tuple containing
            features and labels, this function only returns features. That is, input_fn returns a dictionary that matches strings (names of feature columns) to tensors.
            These tensors contain the data points for your real-world application.
         

         
         predict returns the estimator's prediction in a dict that matches names to values. If checkpoint_path is set, the method will store its output files in the given directory.
         

         
      
      
      
         
         Creating Input Functions

         
         The train, evaluate, and predict methods require an input function as their first parameter. Two functions in tf.estimator.inputs simplify the process of coding this input function: 
         

         
         
            
            	numpy_input_fn: Accepts NumPy arrays and returns a function that provides a features/target tuple
            

            
            	pandas_input_fn: Accepts a pandas DataFrame and returns a function that provides a features/target tuple
            

            
         

         
         The signature of numpy_input_fn is given as follows: 
         

         
         numpy_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=None, queue_capacity=1000,
               num_threads=1)

         
         The x parameter identifies features and the y parameter provides a label for each feature. The shuffle parameter identifies whether the features and labels should be shuffled. When calling
            this function, you must set shuffle to True or False.
         

         
         You must set the x and y parameters to NumPy arrays, and you can load these arrays from a CSV file by calling
            the load_csv_with_header or load_csv_without_header functions discussed in Chapter 10. The following code passes feature data from load_csv_with_header to numpy_input_fn: 
         

         
         dataset = tf.contrib.learn.datasets.base.

         
         load_csv_with_header(filename='example.csv', target_dtype=np.int32, features_dtype=np.float32)

         
         …

         
         input_fn = tf.estimator.inputs.numpy_input_fn( x={'column': np.array(dataset.data)},
               y=np.array(dataset.target), shuffle=True, num_epochs=1000)

         
         The num_epochs parameter is particularly important for training because it defines how many epochs
            the session will execute. For evaluation and prediction, you should set num_epochs to 1.
         

         
         The pandas toolset stores data in DataFrames. You can create an input function from a DataFrame by calling pandas_input_fn: 
         

         
         pandas_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=None, queue_capacity=1000,
               num_threads=1, target_column='target')

         
         The arguments of this function are nearly identical to those of numpy_input_fn. The only difference is the target_column argument, which identifies the column containing target (label) data.
         

         
         
            
            Configuring an Estimator

            
            The constructor of every estimator class accepts an argument named config. By setting this to a tf.contrib.learn.RunConfig, you can configure many aspects of the estimator's operation, such as when it saves
               variables and generates summary data.
            

            
            You can create a RunConfig by calling its constructor. Table 12-1 lists the constructor’s parameters.
            

            
            
               
                  
                  TABLE 12-1 Parameters of the RunConfig Constructor
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Parameter

                        
                        
                        	
                           
                           Default

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           master

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Target for running the estimator

                        
                        
                     

                     
                     
                        
                        	
                           
                           num_cores

                        
                        
                        	
                           
                           0

                        
                        
                        	
                           
                           Number of cores to use

                        
                        
                     

                     
                     
                        
                        	
                           
                           log_device_placement

                        
                        
                        	
                           
                           False

                        
                        
                        	
                           
                           Bool that identifiers whether the estimator should print which device(s) it runs on

                        
                        
                     

                     
                     
                        
                        	
                           
                           gpu_memory_fraction

                        
                        
                        	
                           
                           1

                        
                        
                        	
                           
                           Fraction of GPU memory to be used by the estimator

                        
                        
                     

                     
                     
                        
                        	
                           
                           tf_random_seed

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Random seed for initializers

                        
                        
                     

                     
                     
                        
                        	
                           
                           save_summary_steps

                        
                        
                        	
                           
                           100

                        
                        
                        	
                           
                           Number of steps to wait before saving summaries

                        
                        
                     

                     
                     
                        
                        	
                           
                           save_checkpoints_secs

                        
                        
                        	
                           
                           600

                        
                        
                        	
                           
                           Number of seconds to wait before saving checkpoints

                        
                        
                     

                     
                     
                        
                        	
                           
                           save_checkpoints_steps

                        
                        
                        	
                           
                           --

                        
                        
                        	
                           
                           Number of steps to wait before saving checkpoints

                        
                        
                     

                     
                     
                        
                        	
                           
                           keep_checkpoint_max

                        
                        
                        	
                           
                           5

                        
                        
                        	
                           
                           Maximum number of checkpoint files to store

                        
                        
                     

                     
                     
                        
                        	
                           
                           keep_checkpoint_every_n_hours

                        
                        
                        	
                           
                           10000

                        
                        
                        	
                           
                           Number of hours between each checkpoint to be saved

                        
                        
                     

                     
                     
                        
                        	
                           
                           log_step_count_steps

                        
                        
                        	
                           
                           100

                        
                        
                        	
                           
                           Number of steps between logging of the global step per second

                        
                        
                     

                     
                     
                        
                        	
                           
                           evaluation_master

                        
                        
                        	
                           
                           ''

                        
                        
                        	
                           
                           The gRPC target for evaluating the estimator

                        
                        
                     

                     
                     
                        
                        	
                           
                           model_dir

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Directory to save graph and model parameters

                        
                        
                     

                     
                     
                        
                        	
                           
                           session_config

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           The ConfigProto used to configure the estimator's session

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            As discussed in Chapter 11, distributed applications rely on gRPC to execute sessions on remote servers. The
               master parameter identifies the estimator’s gRPC target and the evaluation_master parameter identifies the evaluation target. If you don't set these parameters, the
               estimator will run locally. If you leave num_cores at 0, the system will use every core on the target processor.
            

            
            model_dir identifies the location where the estimator should save its data. Most of the other
               fields specify how often the data should be saved. To specify when checkpoint data
               should be saved, you can set save_checkpoint_steps or save_checkpoint_secs, but not both.
            

            
            The session_config parameter defines properties of the estimator's underlying session. To configure
               the session, you need to assign this parameter to a ConfigProto buffer, and Chapter 11 presents its fields.
            

            
         
      
      
      
         
         Using Feature Columns

         
         Applications provide features to estimators using structures that resemble database
            tables. In a database table, each column identifies a specific field (First name, Age, and so on) and each value in a column has the same data type. Each row contains
            all the information for a single record.
         

         
         In a TensorFlow application, a feature column serves the same role as a column header
            in a database table. That is, it provides a name for the column's data and indicates
            the data type of the column’s values. Feature columns play an important role in this
            discussion because the constructor of every estimator class requires one or more feature
            columns.
         

         
         The tf.feature_column package provides an assortment of classes that represent feature columns. Each of
            them extends the _FeatureColumn class, and Figure 12-1 illustrates the class hierarchy.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 12-1: TensorFlow's feature column classes determine the data type of the values in the
                     column.
                  

                  
               
               
            
            
         

         
         A _DenseColumn identifies data from a dense tensor, and a _CategoricalColumn identifies data that can be expressed categorically. That is, if a column needs to
            store values that can be expressed as an enumerated type, such as a direction (NORTH, SOUTH, EAST, WEST), you should create a subclass of _CategoricalColumn. For all other types of data, you should create a subclass of _DenseColumn.
         

         
         The tf.estimator package contains the classes in Figure 12-1, but the functions needed to create instances are in the tf.feature_column package. Table 12-2 lists eight of these functions and describes the content of the feature column created
            by the function.
         

         
         
            
               
               TABLE 12-2 Functions that Create Feature Columns
               

            
            
            
               
               
                  
                  
                     
                     	
                        
                        Function

                     
                     
                     	
                        
                        Column Content

                     
                     
                  

                  
               
               
               
                  
                  
                     
                     	
                        
                        numeric_column(key, shape=(1,), default_value=None, dtype=tf.float32, normalizer_fn=None)

                     
                     
                     	
                        
                        Real values and other numbers

                     
                     
                  

                  
                  
                     
                     	
                        
                        categorical_column_with_identity(key, num_buckets, default_value=None)

                     
                     
                     	
                        
                        Categories represented by unique integers

                     
                     
                  

                  
                  
                     
                     	
                        
                        categorical_column_with_hash_bucket(key, hash_bucket_size, dtype=tf.string)

                     
                     
                     	
                        
                        Categories represented by hashed integers or strings

                     
                     
                  

                  
                  
                     
                     	
                        
                        categorical_column_with_vocabulary_list(key, vocabulary_list, dtype=None, default_value=-1,
                                 num_oov_buckets=0)

                     
                     
                     	
                        
                        Categories accessed through a list of integer IDs associated with strings or integers

                     
                     
                  

                  
                  
                     
                     	
                        
                        categorical_column_with_vocabulary_file(key, vocabulary_file, vocabulary_size, num_oov_buckets=0,
                                 default_value=None, dtype=tf.string)

                     
                     
                     	
                        
                        Categories accessed through a file that associates integer IDs with strings or integers

                     
                     
                  

                  
                  
                     
                     	
                        
                        bucketized_column(source_column, boundaries)

                     
                     
                     	
                        
                        Values from a numeric column discretized according to different ranges

                     
                     
                  

                  
                  
                     
                     	
                        
                        indicator_column(categorical_column)

                     
                     
                     	
                        
                        Convert a categorical column to a dense column

                     
                     
                  

                  
                  
                     
                     	
                        
                        embedding_column( categorical_column, dimension, combiner='mean', initializer=None,
                                 ckpt_to_load_from=None, tensor_name_in_ckpt=None, max_norm=None, trainable=True)

                     
                     
                     	
                        
                        Convert a sparse categorical column to a dense column

                        
                     
                     
                  

                  
               
               
            

            
         
         
         Each of these functions accepts a key that identifies the column's data. You can think of this key as the name of the column
            in a database table. An estimator receives the column’s data through the input function
            of train, evaluate, and predict. As discussed in the “Introducing Estimators” section, the first part of the function's tensor is a dict that associates the names
            of feature columns with tensors.
         

         
         Numeric columns are almost trivially easy to work with. The default data type is tf.float32, and the default shape is (1). Therefore, the following code returns a _NumericColumn that contains single floating-point values: 
         

         
         temp = numeric_column('temp')

         
         Of the categorical columns, the simplest is the _IdentityCategoricalColumn, which can be created by calling categorical_column_with_identity. This column contains integers that represent categories. The num_buckets parameter determines the number of categories, so the following code creates an _IdentityCategoricalColumn whose elements can take any value between 0 and 11: 
         

         
         month = categorical_column_with_identity('month', num_buckets=12)

         
         If your application identifies categories with strings, you may find it inconvenient
            to provide a unique integer for every category. In this case, you can call categorical_column_with_hash_bucket, which uses a hash function to generate ID values for string or integer data. The
            following code creates a _HashedCategoricalColumn with 195 categories: 
         

         
         nation = categorical_column_with_hash_bucket('nation', num_buckets=195)

         
         Rather than use a hash function, you may find it simpler to list the different values
            of the categories. Then the feature column will determine its own IDs for the categories.
            You can do this by calling categorical_column_with_vocabulary_list. For example, the following code creates a _VocabularyListCategoricalColumn that creates a category for each of the seven strings in the vocabulary_list parameter: 
         

         
         day_of_the_week = categorical_column_with_vocabulary_list (key='day', vocabulary_list=('Monday',
               'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'))

         
         The categorical_column_with_vocabulary_file function is like categorical_column_with_vocabulary_list, but you provide the elements of the vocabulary in a file. If you assign a field
            to an undefined value, the function will assign the field to the default_value if the parameter is defined. If default_value isn't defined and the application assigns a value to num_oov_buckets, the function will create additional categories as needed.
         

         
         If you need to place numbers into categories according to their range, you can call
            bucketized_column. This function accepts a _NumericColumn and a list/tuple of ranges. As an example, the following code categorizes values
            of temp_column according to a list of temperature ranges: 
         

         
         boundaries = [-273.15, 0., 100.]

         
         temp_state = bucketized_column(temp_column, boundaries)

         
         If the boundaries parameter contains N values, bucketized_column will create N+1 value ranges. In the example, the first range runs from negative
            infinity to -273.15, the second range runs from -273.15 to 0.0, the third range runs
            from 0.0 to 100.0, and the fourth range runs from 100.0 to infinity.
         

         
         Many operations, like DNN analysis, can be performed only on data in dense columns.
            For this reason, TensorFlow provides indicator_column and embedding_column, which convert categorical columns to dense columns. indicator_column is simpler and converts category values to multihot values. For example, if a column's
            category values run from 0 to 3 and a feature has a value of 2, indicator_column will convert this value to [0, 0, 1, 0].
         

         
         embedding_column gives you more flexibility in creating dense columns. If your category IDs contain
            multiple values, the combiner parameter of embedding_column determines how the values should be combined. Currently, you can set this to mean, sqrtn, and sum. The default combiner is mean, which indicates that the function computes dense values by finding the average of
            the categorical values.
         

         
      
      
      
         
         Creating and Using Estimators

         
         The tf.estimator package provides six concrete estimator classes that you can instantiate in your
            applications: 
         

         
         
            
            	LinearClassifier: Classifies data points using a linear model
            

            
            	LinearRegressor: Makes predictions using a linear model
            

            
            	DNNClassifier: Classifies data points using a deep neural network
            

            
            	DNNRegressor: Makes predictions using a deep neural network
            

            
            	DNNLinearCombinedClassifier: Classifies data points using a linear model and a deep neural network
            

            
            	DNNLinearCombinedRegressor: Makes predictions using a linear model and a deep neural network
            

            
         

         
         Each estimator performs a specific type of task using a specific methodology. Regressors
            make predictions, and classifiers place data points into categories. Some estimators
            use linear modeling, some use deep neural networks, and the last two estimators use
            both.
         

         
         If you're unclear about the difference between regressors and classifiers, remember
            the Iris and Boston datasets from Chapter 10. The Iris dataset associates physical traits with a type of iris, so a problem involving
            this dataset requires a classifier. The Boston dataset associates location characteristics
            with housing prices, so a problem involving this dataset requires a regressor.
         

         
         I don’t explore all six of these classes in detail. Instead, I focus on three: the
            LinearRegressor, DNNClassifier, and DNNLinearCombinedClassifier. In each case, I explain how to create and train the estimator and then use it to
            make a prediction.
         

         
         [image: technicalstuff] TensorFlow provides more estimator classes than just the six I list. The tf.contrib.learn package provides a handful of estimator classes, including DynamicRnnEstimator, LogisticRegressor, and SVM.
         

         
         The Estimator API makes it straightforward to code your own estimators. In addition
            to implementing the train, evaluate, and predict methods, you'll need to set the estimator’s model and the method it uses to compute
            loss.
         

         
         
            
            Linear regressors

            
            Chapter 6 explains how statisticians use linear regression to analyze data trends by fitting
               a line to a group of data points. Mathematically, linear regression sets mx + b as
               its model and computes loss using mean-squared error. The goal of training is to determine
               which values of m and b minimize the distance between the line and the observed data.
            

            
            The simplest of TensorFlow’s estimator classes, LinearRegressor, performs the same operation. Its constructor is given as follows: 
            

            
            LinearRegressor(feature_columns, model_dir=None, label_dimension=1, weight_column=None,
                  optimizer='Ftrl', config=None, partitioner=None)

            
            The only required parameter is feature_columns, which accepts a list of _FeatureColumns that identify the estimator's data. The model_dir parameter tells the estimator where it should store its outputs, such as event files
               and checkpoints. If you don’t set model_dir, the estimator will use a temporary directory instead.
            

            
            An estimator's train function expects a function that returns a tuple of features and labels. In most
               applications, a label consists of a single value, such as a category number. But if
               your estimator needs multivalued targets, you can configure this by setting the label_dimension parameter.
            

            
            If you set the weight_column parameter, the estimator creates an additional column that assigns a weight to each
               feature. The input functions of train and evaluate must provide values for this column. The estimator multiplies the feature's loss
               by this weight, so a high weight means a high loss, which means the estimator will
               take larger steps during the optimization process.
            

            
            If you look in the ch12 folder in this book’s example code, you’ll see that it contains two files named lin_reg.csv and lin_reg.py. The first file defines a series of two-dimensional points. Its first five lines
               are given as follows: 
            

            
            20,1

            
            0.5,0.25

            
            1.0,0.2

            
            1.4,0.25

            
            0.75,0.5

            
            This header states that the file contains 20 features and that each feature consists
               of a single value. Each feature value identifies a point's x-coordinate, and the target
               identifies the point’s y-coordinate. Figure 12-2 illustrates these points graphically. The dashed line is the line that best fits
               the data, and its equation is y = 0.76x – 0.22.
            

            
            
               
               [image: image] 
                  
                     
                     FIGURE 12-2: A LinearRegressor finds the slope and y-intercept of the line that best fits a set of points.
                     

                     
                  
                  
               
               
            

            
            To analyze the points in ch12/lin_reg.csv, the ch12/lin_reg.py code creates a dataset and a feeds its data to a LinearRegressor. Listing 12-1 presents the code.
 
            
            LISTING 12-1 Using an Estimator for Linear Regression
            
 
            
            # Read dataset from CSV file

            
            dataset = tf.contrib.learn.datasets.base.load_csv_with_header(

            
                filename='lin_reg.csv', target_dtype=np.float32,

            
                features_dtype=np.float32, target_column=1)

            
             

            
            # Create feature column containing x-coordinates

            
            column = tf.feature_column.numeric_column('x', shape=[1])

            
             

            
            # Create the LinearRegressor

            
            lin_reg = tf.estimator.LinearRegressor([column])

            
             

            
            # Train the estimator

            
            train_input = tf.estimator.inputs.numpy_input_fn(

            
                x={'x': np.array(dataset.data)},

            
                y=np.array(dataset.target), shuffle=True, num_epochs=50000)

            
            lin_reg.train(train_input)

            
             

            
            # Make two predictions

            
            predict_input = tf.estimator.inputs.numpy_input_fn(

            
                x={'x': np.array([1.9, 1.4], dtype=np.float32)},

            
                num_epochs=1, shuffle=False)

            
            results = lin_reg.predict(predict_input)

            
             

            
            # Display the results

            
            for value in results:

            
                print(value['predictions'])

            
            Given how simple the problem is, I decided not to evaluate the estimator. Instead,
               the module proceeds directly from train to predict. The predict method provides its results in a generator that produces dicts. This code iterates
               through the dicts and prints the value associated with the predictions key.
            

            
            The results of the LinearRegressor come close to the expected results. At x = 1.9, the correct value of y is 1.22, and
               the estimator produced a result of 1.20. At x = 1.4, the correct value of y is 0.84,
               and the estimator produced a result of 0.86.
            

            
         
         
         
            
            DNN classifiers

            
            A DNNClassifier uses a deep neural network to assign data points to categories. Its constructor is
               a lot like that of the LinearRegressor, but includes parameters that define the neural network's structure: 
            

            
            DNNClassifier(hidden_units, feature_columns, model_dir=None, n_classes=2, weight_column=None,
                  label_vocabulary=None, optimizer='Adagrad', activation_fn=tf.nn.relu, dropout=None,
                  input_layer_partitioner=None, config=None)

            
            The hidden_units parameter sets the size and shape of the neural network. For each element of the
               tensor, the constructor creates a hidden layer for the network. The value of each
               element in the tensor sets the number of nodes in the corresponding hidden layer.
            

            
            For example, if you set hidden_units to [16, 32], the network will contain two hidden layers. The first layer will contain
               16 nodes, and the second layer will contain 32 nodes. These nodes are fully connected,
               so the network connects the output of each node to each node of the next layer.
            

            
            The n_classes and label_vocabulary parameters tell the classifier about the application's categories, and you’ll find
               these parameters in all classifiers. n_classes sets the number of categories, and label_vocabulary provides a set of names for the categories. If you set label_vocabulary, be sure to use the category names in the input functions of train and evaluate.
            

            
            The ch12/dnn_class.py module demonstrates how to create a DNNClassifier and use it to classify data points. It loads MNIST training data from mnist_train.tfrecords and loads test data from mnist_test.tfrecords. Listing 12-2 presents the code.
 
            
            LISTING 12-2 Classifying MNIST Images with a DNN Classifier
            
 
            
            # Constants

            
            image_dim = 28

            
            num_labels = 10

            
            batch_size = 80

            
            num_steps = 8000

            
            hidden_layers = [128, 32]

            
             

            
            # Function to parse MNIST TFRecords

            
            def parser(record):

            
                features = tf.parse_single_example(record,

            
                    features={

            
                      'images': tf.FixedLenFeature([], tf.string),

            
                      'labels': tf.FixedLenFeature([], tf.int64),

            
                    })

            
                image = tf.decode_raw(features['images'], tf.uint8)

            
                image.set_shape([image_dim * image_dim])

            
                image = tf.cast(image, tf.float32) * (1. / 255) - 0.5

            
                label = features['labels']

            
                return image, label

            
             

            
            # Create the DNNClassifier

            
            column = tf.feature_column.numeric_column('pixels',

            
                shape=[image_dim * image_dim])

            
            dnn_class = tf.estimator.DNNClassifier(hidden_layers, [column],

            
                model_dir='dnn_output', n_classes=num_labels)

            
             

            
            # Train the estimator

            
            def train_func():

            
                dataset = tf.data.TFRecordDataset('mnist_train.tfrecords')

            
                dataset = dataset.map(parser).repeat().batch(batch_size)

            
                image, label = dataset.make_one_shot_iterator().get_next()

            
                return {'pixels': image}, label

            
            dnn_class.train(train_func, steps=num_steps)

            
             

            
            # Test the estimator

            
            def test_func():

            
                dataset = tf.data.TFRecordDataset('mnist_test.tfrecords')

            
                dataset = dataset.map(parser).batch(batch_size)

            
                image, label = dataset.make_one_shot_iterator().get_next()

            
                return {'pixels': image}, label

            
            metrics = dnn_class.evaluate(test_func)

            
             

            
            # Display metrics

            
            print('\nEvaluation metrics:')

            
            for key, value in metrics.items():

            
                print(key, ': ', value)

            
            This module creates a feature column and uses it to construct a DNNClassifier. It sets the estimator's hidden_units parameter to [128, 32], which means the classifier has two hidden layers with 128,
               and 32 hidden units, respectively. It sets the n_classes parameter to 10 because each MNIST image can fall into one of ten categories. The
               label_vocabulary parameter isn't set, so the classifier assumes that the labels will be provided as
               integers from 0 to 9.
            

            
            After training and evaluation, the module prints the keys and values of dict returned
               by evaluate. On my system, these results are given as follows: 
            

            
            Evaluation metrics:

            
            accuracy     :  0.9595

            
            average_loss :  0.129958

            
            loss         :  10.3966

            
            global_step  :  8000

            
         
         
         
            
            Combined linear-DNN classifiers

            
            If the linear estimators and DNN estimators don’t meet your requirements, you can
               create an estimator that uses both learning methods. TensorFlow provides two such
               estimators: the DNNLinearCombinedRegressor and the DNNLinearCombinedClassifier. This discussion focuses on the DNNLinearCombinedClassifier.
            

            
            Before proceeding, I'd like to clarify some terminology. This estimator’s name includes
               “Linear,” but it doesn’t perform line fitting. Despite its name, a linear classifier
               relies on logistic regression, not linear regression, to do its job. Chapter 6 fearlessly explores the topics of linear and logistic regression.
            

            
            To determine which category a point belongs to, a TensorFlow linear classifier relies
               on the softmax function. If j is one of N categories, this function is given as follows:
               
            

            
            [image: images]
               

            
            A classifier is linear if f(x) is a linear combination of x, as in mx + b. To determine
               loss, a linear classifier computes cross entropy.
            

            
            A DNNLinearCombinedClassifier combines a linear classifier and a DNN classifier. You can create an instance of
               this classifier by calling its constructor: 

            
            DNNLinearCombinedClassifier(model_dir=None, linear_feature_columns=None, linear_optimizer='Ftrl',
                  dnn_feature_columns=None, dnn_optimizer='Adagrad', dnn_hidden_units=None, dnn_activation_fn=tf.nn.relu,
                  dnn_dropout=None, n_classes=2, weight_column=None, label_vocabulary=None, input_layer_partitioner=None,
                  config=None)

            
            It’s important to see that the constructor accepts separate feature columns for linear
               classification (linear_feature_columns) and DNN classification (dnn_feature_columns). This separation indicates that the linear classifier and DNN classifier process
               different features.
            

            
            Google Research has given a special name to the process of combining linear classification
               and DNN classification: wide and deep learning.
            

            
         
         
         
            
            Wide and deep learning

            
            The ultimate goal of deep learning is to derive general principles from a body of
               data. I want my stock-picking application to derive general principles that will pick
               tomorrow's stocks based on yesterday’s results. I want my medical application to derive
               general principles that will accurately classify health conditions in new patients
               based on records of existing patients.
            

            
            But there’s a problem. In many cases, the desire for generality and accuracy conflict.
               Consider the following generalization: 
            

            
            
               
               	Statement 1: Vampires have sharp teeth and usually hunt in the evening.

               
               	Statement 2: Werewolves have sharp teeth and usually hunt in the evening.

               
               	Generalization: All vampires are werewolves.

               
            

            
            Humans can look at these statements and immediately spot the problem with this reasoning.
               But deep neural networks can’t. A DNN may base its generalizations on trivial features
               (sharp teeth) instead of important features (lycanthropy, aversion to sunlight, and
               thirst for blood).
            

            
            To improve on deep learning, Google updated their Google Play recommendation system
               to augment DNN classification with linear classification. To train the linear classifier,
               Google provides input features and cross products of input features. A cross product determines how features interact by multiplying
               the features together: 
            

            
            [image: images]
               

            
            In a TensorFlow application, you can combine features into a cross product by calling
               tf.feature.crossed_column. In essence, this combines multiple categorical columns into a single hashed categorical
               column. Its signature is given as follows:
            

            
            crossed_column(keys, hash_bucket_size, hash_key=None)

            
            The first parameter, keys, accepts one or more categorical columns to be examined together. hash_bucket_size sets the maximum number of unique values in the new categorical column.
            

            
            Cross products may not seem exciting, but linear classifiers can use them to arrive
               at conclusions that DNN classifiers would find difficult to obtain. Linear classifiers
               are particularly effective when problems have many categorical features that may or
               may not interact on one another. For this reason, Google Research refers to the use
               of linear classifiers as wide learning. According to Heng-Tze Cheng and other Google researchers, “Online experiment results
               show that Wide & Deep significantly increased app acquisitions compared with wide-only
               and deep-only models.”
            

            
         
         
         
            
            Analyzing census data

            
            Wide learning is helpful for problems with many categorical features. This requirement
               makes the usual datasets — MNIST, CIFAR, Iris, and Boston — unsuitable for demonstration.
               For this reason, the ch12/combined.py module analyzes census data. To be precise, the module creates a DNNLinearCombinedClassifier that examines data from the 1994 Census to determine whether a person will make more
               or less than $50,000 per year.
            

            
            I provide the census data in two CSV files: ch12/adult.data contains training data and ch12/adult.test contains test data. The University of California, Irvine (UCI) provides these files
               for free at their site https://archive.ics.uci.edu/ml/machine-learning-databases/adult.
            

            
            Each record of census data provides 14 statistics about a person: 

            
            
               
               	age: The person's age in years
               

               
               	workclass: Work status (Private, Self-emp-not-inc, self-emp-inc, Federal-gov, Local-gov, State-gov,
                  Without-pay, Never-worked)
               

               
               	fnlwgt: A weighting value (final weight) computed by the Census Bureau
               

               
               	education: Highest level of education (Preschool, 1st-4th, 5th-6th, 7th-8th, 9th, 10th, 11th, 12th, HS-grad, Some-college, Prof-school, Assoc-acdm, Assoc-voc, Bachelors, Masters, Doctorate)
               

               
               	education-num: Number of years in education
               

               
               	marital-status: Marital status (Never-married, Divorced, Separated, Widowed, Married-civ-spouse,
                  Married-AF-spouse, Married-spouse-absent)
               

               
               	occupation: Place of work (Tech-support, Craft-repair, Other-service, Sales, Exec-managerial,
                  Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing,
                  Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces)
               

               
               	relationship: Marital status (Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried)
               

               
               	race: Self-identified race (White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black)
               

               
               	sex: Gender (Female, Male)
               

               
               	capital-gain: Profit from buying/selling capital assets
               

               
               	capital-loss: Loss from buying/selling capital assets
               

               
               	hours-per-week: Number of hours worked per week
               

               
               	native-country: Country of origin (United-States, Cambodia, England, Puerto-Rico, Canada, Germany,
                  Outlying-US(Guam-USVI-etc), India, Japan, Greece, South Korea, China, Cuba, Iran,
                  Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland,
                  France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala,
                  Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong
                  Kong, Holand-Netherlands)
               

               
            

            
            As an example, the adult.test file contains the following record: 
            

            
            36, Local-gov, 403681, Bachelors, 13, Married-civ-spouse, Prof-specialty, Husband,
                  White, Male, 0, 0, 40, United-States, >50K

            
            The last column provides the classification label as a string. The label >50K indicates that the person makes more than $50,000 per year, and <=50K indicates that the person makes less than or equal to $50,000 per year.
            

            
            Unfortunately, you can't load this census data with load_csv_with_header or load_csv_without_header. Instead, I recommend using the pandas data analysis library. If you have pip available,
               you can install pandas with the following command: 
            

            
            pip install pandas

            
            After you install the toolset, you can read CSV data by calling read_csv. This function accepts quite a few parameters, and seven of them are particularly
               important: 
            

            
            
               
               	filepath_or_buffer: Handle of the file containing CSV data
               

               
               	header: Row number(s) containing column names
               

               
               	names: Names of the CSV fields
               

               
               	dtype: Data type or list of data types for columns
               

               
               	engine: Parser engine
               

               
               	skipinitialspace: Boolean that specifies whether to ignore spaces after the delimiter (default: False)
               

               
               	skiprows: Number of rows to skip after the start of the file
               

               
            

            
            read_csv returns a DataFrame that holds data from the CSV file. For example, the following code obtains a handle
               to adult.data and calls read_csv to read its data into a DataFrame: 
            

            
            columns = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status',
                  'occupation', 'relationship', 'race', 'gender', 'capital_gain', 'capital_loss', 'hours_per_week',
                  'native_country', 'income_bracket']

            
            train_file = open('adult.data', 'r')

            
            train_frame = pd.read_csv(train_file, names=columns, engine='python', skipinitialspace=True,
                  skiprows=1)

            
            After you create a DataFrame, you can call pandas_input_fn to convert the DataFrame into a function that can be passed to an estimator's train or evaluate method. The ch12/combined.py module demonstrates how an application can read data from a CSV file with pandas,
               and Listing 12-3 presents the code.
            
 
            
            LISTING 12-3 Analyzing Census Data with Wide and Deep Learning
            
 
            
            # Define column headings

            
            columns = ['age', 'workclass', 'fnlwgt', 'education', 'education_num',

            
                'marital_status', 'occupation', 'relationship', 'race', 'gender',

            
                'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',

            
                'income_bracket']

            
             

            
            # Create feature columns

            
            age = tf.feature_column.numeric_column('age')

            
            workclass = tf.feature_column.categorical_column_with_vocabulary_list(

            
                'workclass', ['Private', 'Self-emp-not-inc', 'self-emp-inc', 'Federal-gov',

            
                    'Local-gov', 'State-gov', 'Without-pay', 'Never-worked'])

            
            fnlwgt = tf.feature_column.numeric_column('fnlwgt')

            
            education = tf.feature_column.categorical_column_with_vocabulary_list(

            
                'education', […])

            
            education_num = tf.feature_column.numeric_column('education_num')

            
            marital_status = tf.feature_column.categorical_column_with_vocabulary_list(

            
                'marital_status', ['Never-married', 'Divorced', 'Separated', 'Widowed',

            
                    'Married-civ-spouse', 'Married-AF-spouse', 'Married-spouse-absent'])

            
            occupation = tf.feature_column.categorical_column_with_vocabulary_list(

            
                'occupation', […])

            
            relationship = tf.feature_column.categorical_column_with_vocabulary_list(

            
                'relationship', ['Wife', 'Own-child', 'Husband', 'Not-in-family',

            
                    'Other-relative', 'Unmarried'])

            
            race = tf.feature_column.categorical_column_with_vocabulary_list(

            
                'race', ['White', 'Asian-Pac-Islander', 'Amer-Indian-Eskimo', 'Other', 'Black'])

            
            gender = tf.feature_column.categorical_column_with_vocabulary_list(

            
                'gender', ['Female', 'Male'])

            
            capital_gain = tf.feature_column.numeric_column('capital_gain')

            
            capital_loss = tf.feature_column.numeric_column('capital_loss')

            
            hours_per_week = tf.feature_column.numeric_column('hours_per_week')

            
            native_country = tf.feature_column.categorical_column_with_vocabulary_list(

            
                'native_country', […])

            
             

            
            # Create groups of columns

            
            linear_columns = [

            
                tf.feature_column.crossed_column(

            
                    ['education', 'occupation'], hash_bucket_size=1000),

            
                tf.feature_column.crossed_column(

            
                    ['native_country', 'occupation'], hash_bucket_size=1000),

            
                tf.feature_column.crossed_column(

            
                    ['workclass', 'occupation'], hash_bucket_size=1000)]

            
             

            
            dnn_columns = [

            
                tf.feature_column.indicator_column(workclass),

            
                tf.feature_column.indicator_column(education),

            
                tf.feature_column.indicator_column(gender),

            
                tf.feature_column.indicator_column(relationship),

            
                tf.feature_column.indicator_column(native_country),

            
                tf.feature_column.indicator_column(occupation),

            
                age, education_num, capital_gain, capital_loss,

            
                hours_per_week, fnlwgt]

            
             

            
            # Create classifier

            
            classifier =

            
            tf.estimator.DNNLinearCombinedClassifier(linear_feature_columns=linear_columns,

            
                dnn_feature_columns=dnn_columns, dnn_hidden_units=[120, 60])

            
             

            
            # Train the classifier

            
            train_file = open('adult.data', 'r')

            
            train_frame = pd.read_csv(train_file,

            
                 names=columns, engine='python',

            
                 skipinitialspace=True, skiprows=1)

            
            train_labels = train_frame['income_bracket'].apply(lambda x: '>50K' in x)

            
            train_fn = tf.estimator.inputs.pandas_input_fn(

            
                  x=train_frame, y=train_labels,

            
                  batch_size=100, num_epochs=600,

            
                  shuffle=True)

            
            classifier.train(train_fn)

            
             

            
            # Test the estimator

            
            test_file = open('adult.test', 'r')

            
            test_frame = pd.read_csv(test_file,

            
                 names=columns, engine='python',

            
                 skipinitialspace=True, skiprows=1)

            
            test_labels = test_frame['income_bracket'].apply(lambda x: '>50K' in x)

            
            test_fn = tf.estimator.inputs.pandas_input_fn(

            
                  x=test_frame, y=test_labels,

            
                  num_epochs=1, shuffle=False)

            
            metrics = classifier.evaluate(test_fn)

            
             

            
            # Display metrics

            
            print('\nEvaluation metrics:')

            
            for key, value in metrics.items():

            
                print(key, ': ', value)

            
            Before you can execute this module, you need to place the adult.data and adult.test files in the current directory. You also need to install the pandas data analysis
               package.
            

            
            The module starts by creating a feature column for each field in the census data.
               Then it creates three crossed columns: one that combines the education and occupation columns, one that combines the native_country and occupation columns, and one that combines the workclass and occupation columns.
            

            
            After creating the crossed columns, the module creates a set of feature columns intended
               for the DNN classifier. You can't feed categorical columns to a neural network, so
               the module converts categorical columns into dense columns by calling tf.feature_column.indicator_column.
            

            
            Next, the module creates a DNNCombinedLinearClassifier and provides it with the two sets of feature columns. That is, it directs the crossed
               columns to the linear classifier and the dense columns to the DNN. The dnn_hidden_units parameter configures the neural network to have two hidden layers: one with 120 nodes
               and one with 60 nodes.
            

            
            After creating the classifier, the module calls its train and evaluate methods. To train the classifier, the module reads the fields from adult.data and converts the DataFrame to a dataset. The training process consists of 500 epochs, with each training step
               operating on shuffled batches containing 100 data points each.
            

            
            To test the classifier, the module reads the fields from adult.test into a DataFrame and converts the DataFrame to a dataset. Then it prints each metric contained in the dict returned by evaluate. On my system, the module displays the following results: 
            

            
            accuracy             :  0.802285

            
            accuracy_baseline    :  0.763774

            
            auc                  :  0.87448

            
            auc_precision_recall :  0.710498

            
            average_loss         :  0.511923

            
            label/mean           :  0.236226

            
            loss                 :  65.1142

            
            prediction/mean      :  0.336511

            
            global_step          :  195360

            
            In this list, auc stands for “area under the curve.” This metric is common for classifiers, as it measures
               the likelihood of a classifier making successful predictions compared to unsuccessful
               predictions.
            

            
         
      
      
      
         
         Running Estimators in a Cluster

         
         Chapter 11 introduces distributed TensorFlow applications, which involve jobs, tasks, and servers.
            You can run estimators in distributed applications, but you need to tell TensorFlow
            about the cluster and the task assigned to the server running the estimator.
         

         
         You can provide this information by setting a TF_CONFIG variable that describes the cluster and the server's task. To be specific, you need
            to set TF_CONFIG to a JSON (JavaScript Object Notation) object that contains three fields: 
         

         
         
            
            	cluster: A description of the cluster
            

            
            	task: The node's task
            

            
            	job: Parameters of the job
            

            
         

         
         You can set the first field by providing the argument of the ClusterSpec instance. If you have an existing ClusterSpec, you can obtain a suitable description by calling its as_cluster_def method.
         

         
         The task field identifies the task assigned to the node on which TF_CONFIG is set. This field has three fields of its own: 
         

         
         
            
            	type: the type of task (worker, master, or ps)
            

            
            	index: the index of the task within the job
            

            
            	trial: string identifier of the trial to be run, starts with '1'

            
         

         
         The job field of TF_CONFIG describes the node's job. A distributed application usually receives this information
            through command-line arguments, so you can ignore this field. The following code gives
            you an idea how you can set this variable: 
         

         
         TF_CONFIG = {

         
             'cluster': {'ps': ['host1:123'],

         
                         'worker': ['host2:456']},

         
             'task': {

         
                 'type': 'worker',

         
                 'index': 0,

         
                 'trial': '1'

         
             }

         
         }

         
         In this case, the cluster has two jobs and two tasks. The task assigned to the node
            with this TF_CONFIG variable has an index of 0 and a type of worker. In this case, the cluster has a job with the task's type, but this isn’t always
            the case. You can assign any name to a job, but a task’s type must be worker, master, or ps.
         

         
      
      
      
         
         Accessing Experiments

         
         To simplify the process of executing estimators in a distributed environment, TensorFlow
            provides the Experiment class. To use an Experiment in code, you need to perform three steps: 
         

         
         
            
            	Create an estimator.

            
            	Construct an instance of tf.contrib.learn.Experiment with the estimator created in Step 1.

            
            	Launch the experiment by calling tf.contrib.learn.learn_runner.run.

            
         

         
         This discussion presents these steps and demonstrates how an experiment can be used
            to classify MNIST images. Chapter 13 presents an application that launches an experiment in the cloud.
         

         
         
            
            Creating an experiment

            
            Every experiment requires an estimator and functions for training and evaluation.
               You can create a tf.contrib.learn.Experiment by calling its constructor, whose arguments are listed in Table 12-3.
            

            
            
               
                  
                  TABLE 12-3 Parameters of the Experiment Constructor
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Parameter

                        
                        
                        	
                           
                           Default

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           estimator

                        
                        
                        	
                           
                           --

                        
                        
                        	
                           
                           Estimator to be launched by the experiment

                        
                        
                     

                     
                     
                        
                        	
                           
                           train_input_fn

                        
                        
                        	
                           
                           --

                        
                        
                        	
                           
                           Function that returns training features and labels

                        
                        
                     

                     
                     
                        
                        	
                           
                           eval_input_fn

                        
                        
                        	
                           
                           --

                        
                        
                        	
                           
                           Function that returns evaluation features and labels

                        
                        
                     

                     
                     
                        
                        	
                           
                           eval_metrics

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Evaluation metrics to monitor

                        
                        
                     

                     
                     
                        
                        	
                           
                           train_steps

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Number of training steps

                        
                        
                     

                     
                     
                        
                        	
                           
                           eval_steps

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Number of evaluation steps

                        
                        
                     

                     
                     
                        
                        	
                           
                           eval_hooks

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Session hooks to pass to the estimator

                        
                        
                     

                     
                     
                        
                        	
                           
                           eval_delay_secs

                        
                        
                        	
                           
                           120

                        
                        
                        	
                           
                           Number of seconds to wait before evaluating

                        
                        
                     

                     
                     
                        
                        	
                           
                           continuous_eval_throttle_secs

                        
                        
                        	
                           
                           60

                        
                        
                        	
                           
                           Number of seconds to wait after the start of evaluation before re-evaluating

                        
                        
                     

                     
                     
                        
                        	
                           
                           min_eval_frequency

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Minimum number of steps between evaluations

                        
                        
                     

                     
                     
                        
                        	
                           
                           delay_workers_by_global_step

                        
                        
                        	
                           
                           False

                        
                        
                        	
                           
                           Bool that specifies whether to delay training workers by global step instead of time

                        
                        
                     

                     
                     
                        
                        	
                           
                           export_strategies

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Export strategies

                        
                        
                     

                     
                     
                        
                        	
                           
                           train_steps_per_iteration

                        
                        
                        	
                           
                           None

                        
                        
                        	
                           
                           Number of training steps in each training-evaluation iteration

                        
                        
                     

                     
                     
                        
                        	
                           
                           checkpoint_and_export

                        
                        
                        	
                           
                           False

                        
                        
                        	
                           
                           Bool that specifies whether to save checkpoints and exports during training

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            The most important parameter of the constructor is the first, which identifies the
               estimator to be executed by the experiment. The second and third parameters identify
               the functions that the experiment should use to train and evaluate the estimator.
            

            
            The train_steps parameter identifies the number of steps to be performed during the training process.
               If you don't set this parameter, the estimator’s training will continue indefinitely.
               The eval_steps parameter specifies how many steps should be performed during testing. If you don’t
               set this parameter, the test will continue as long as input data is available.
            

            
         
         
         
            
            Methods of the experiment class

            
            After you create an Experiment, you can access its methods. Table 12-4 lists these methods and provides a description of each.
            

            
            
               
                  
                  TABLE 12-4 Methods of the Experiment Class
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Method

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           train(delay_secs=None)

                        
                        
                        	
                           
                           Train the estimator with training data

                        
                        
                     

                     
                     
                        
                        	
                           
                           evaluate(delay_secs=None, name=None)

                        
                        
                        	
                           
                           Evaluate the estimator with test data

                        
                        
                     

                     
                     
                        
                        	
                           
                           train_and_evaluate()

                        
                        
                        	
                           
                           Train and evaluate the estimator

                        
                        
                     

                     
                     
                        
                        	
                           
                           test()

                        
                        
                        	
                           
                           Train, evaluate, and export for one step

                        
                        
                     

                     
                     
                        
                        	
                           
                           continuous_eval(delay_secs=None, throttle_delay_secs=None, evaluate_checkpoint_only_once=True,
                                    continuous_eval_predicate_fn=None, name='continuous')

                        
                        
                        	
                           
                           Evaluate estimator continuously

                        
                        
                     

                     
                     
                        
                        	
                           
                           continuous_eval_on_train_data( delay_secs=None, throttle_delay_secs=None, continuous_eval_predicate_fn=None,
                                    name='continuous_on_train_data')

                        
                        
                        	
                           
                           Evaluate estimator continuously with training data

                        
                        
                     

                     
                     
                        
                        	
                           
                           continuous_train_and_eval(*args, **kwargs)

                        
                        
                        	
                           
                           Interleave training and evaluation

                        
                        
                     

                     
                     
                        
                        	
                           
                           extend_train_hooks(additional_hooks)

                        
                        
                        	
                           
                           Associate additional session hooks for training

                        
                        
                     

                     
                     
                        
                        	
                           
                           reset_export_strategies(new_export_strategies=None)

                        
                        
                        	
                           
                           Associate new export strategies

                        
                        
                     

                     
                     
                        
                        	
                           
                           run_std_server()

                        
                        
                        	
                           
                           Start a TensorFlow server and joins the serving thread

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            The first four methods are straightforward to use and understand. The train method will continue forever unless you've set the train_steps parameter in the constructor. evaluate will continue testing until its input is exhausted or until it reaches the eval_steps parameter. In both methods, you can specify how long the experiment should wait by
               setting the delay_secs parameter.
            

            
            The continuous_eval and continuous_eval_on_train_data methods both perform repeated evaluation. You can control whether the evaluation
               continues by assigning the continuous_eval_predicate_fn to a suitable function. This function receives the results of the preceding evaluation
               and determines whether evaluation should continue.
            

            
            The continuous_train_and_eval method is experimental and may change at any time. This iterates through training
               and evaluation, and you can set the number of training steps with the constructor's
               train_steps_per_iteration parameter.
            

            
         
         
         
            
            Running an experiment

            
            You can train and/or evaluate experiments by calling tf.contrib.learn.learn_runner.run. This function accepts four arguments: 
            

            
            
               
               	experiment_fn: Function that returns an experiment
               

               
               	schedule: The method of the experiment to invoke
               

               
               	run_config: A RunConfig that provides configuration settings
               

               
               	hparams: An HParams that provides additional data for the experiment
               

               
            

            
            To call this function, you need to assign the first parameter to a function that receives
               two arguments: a RunConfig and an HParams. The function must return an Experiment.
            

            
            Every estimator constructor has a config parameter that accepts a tf.contrib.learn.RunConfig instance. The run_config parameter of the run method accepts the same type of RunConfig. Remember that the model_dir field tells the experiment where to store its outputs.
            

            
            You can pass data to the experiment_fn function using an instance of tf.contrib.training.HParams. The constructor accepts one or more key-value pairs separated by commas. The following
               code shows how you can create an HParams instance: 
            

            
            hparams = tf.contrib.training.HParams(learning_rate=0.01, hidden_units=[10, 20])

            
            The schedule parameter identifies which experiment method should be invoked. You can control where
               the method's return value should be stored by setting the model_dir field of the RunConfig.
            

            
         
         
         
            
            Putting theory into practice

            
            The code in the ch12/experiment.py module demonstrates how experiments can be created and launched. The experiment analyzes
               MNIST data using a DNNClassifier similar to the estimator from ch12/dnn_class.py. Listing 12-4 presents the code.
            
 
            
            LISTING 12-4 Classifying MNIST Images with an Experiment
            
 
            
            # Set parameters

            
            batch_size = 80

            
            image_dim = 28

            
            hparams = tf.contrib.training.HParams(

            
                num_labels=10,

            
                batch_size=80,

            
                num_steps=8000,

            
                hidden_layers=[128, 32])

            
             

            
            # Function to parse MNIST TFRecords

            
            def parser(record):

            
                features = tf.parse_single_example(record,

            
                    features={

            
                      'images': tf.FixedLenFeature([], tf.string),

            
                      'labels': tf.FixedLenFeature([], tf.int64),

            
                    })

            
                image = tf.decode_raw(features['images'], tf.uint8)

            
                image.set_shape([image_dim * image_dim])

            
                image = tf.cast(image, tf.float32) * (1. / 255) - 0.5

            
                label = features['labels']

            
                return image, label

            
             

            
            # Create the DNNClassifier

            
            def create_estimator(hidden_layers, num_labels, conf):

            
                column = tf.feature_column.numeric_column('pixels',

            
                    shape=[image_dim * image_dim])

            
                return tf.estimator.DNNClassifier(hidden_layers, [column],

            
                    n_classes=num_labels, config=conf)

            
             

            
            # Train the estimator

            
            def train_func():

            
                dataset = tf.data.TFRecordDataset('mnist_train.tfrecords')

            
                dataset = dataset.map(parser).repeat().batch(batch_size)

            
                image, label = dataset.make_one_shot_iterator().get_next()

            
                return {'pixels': image}, label

            
             

            
            # Test the estimator

            
            def test_func():

            
                dataset = tf.data.TFRecordDataset('mnist_test.tfrecords')

            
                dataset = dataset.map(parser).batch(batch_size)

            
                image, label = dataset.make_one_shot_iterator().get_next()

            
                return {'pixels': image}, label

            
             

            
            # Create experiment

            
            def create_experiment(conf, params):

            
                return tf.contrib.learn.Experiment(

            
                    estimator=create_estimator(params.hidden_layers,

            
                        params.num_labels, conf),

            
                    train_input_fn=train_func,

            
                    eval_input_fn=test_func,

            
                    train_steps=params.num_steps)

            
             

            
            # Run experiment

            
            run_config = tf.contrib.learn.RunConfig(model_dir='experiment_output')

            
            tf.contrib.learn.learn_runner.run(

            
                experiment_fn=create_experiment,

            
                run_config=run_config,

            
                schedule='train_and_evaluate',

            
                hparams=hparams

            
            )

            
            This module starts by creating an HParams that contains the batch size, number of labels, number of training steps, and the
               number of hidden layers. The module also creates a RunConfig that identfies the directory where the experiment's output should be stored.
            

            
            When the module calls tf.contrib.learn.learn_runner.run, it provides the HParams instance, the RunConfig instance, and a function that returns an Experiment. This function calls the Experiment constructor with three functions:
            
 
            
               
               	create_estimator: Creates a DNNClassifier with the experiment's configuration settings
               

               
               	train_func: Provides training data and labels for the DNNClassifier

               
               	test_func: Provides test data and labels for the DNNClassifier

               
            

            
            The module sets the schedule parameter of tf.contrib.learn.learn_runner.run to train_and_evaluate. This calls the experiment's train_and_evaluate function, which trains and tests the experiment’s estimator.
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      Running Applications on the Google Cloud Platform (GCP)
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         Of all the success stories in the world of technology, none are more spectacular than
            the rise of Google. Since its initial public offering in 2004, Google has constructed
            a vast computational architecture that spans the globe. Everyone with an Internet
            connection knows how to search for information on google.com and view media on youtube.com. Google’s technology has become so popular that the verb google has entered the Merrian-Webster
            Dictionary.
         

         
         While Google’s technology is famous across the world, the Google Compute Platform
            (GCP) isn’t as well-known. This is a shame, because the GCP lets developers like you
            and me take advantage of Google’s vast resources, which include terabytes of distributed
            storage and clusters of high-speed processors.
         

         
         I love using the GCP because my applications can access Google’s technologies, which
            include Google Maps, Gmail, YouTube, and AdSense. This chapter focuses on Google’s
            Machine Learning (ML) Engine, which lets you execute TensorFlow applications in the
            Google Cloud Platform.
         

         
      
      
      
         
         Overview

         
         The good news is that you can dramatically reduce the time required for machine learning
            by deploying applications to Google’s Machine Learning (ML) Engine. The bad news is
            that the process of configuring and deploying applications isn’t easy. Five steps
            are involved: 
         

         
         
            
            	Create a project for the Google Cloud Platform (GCP) and configure it to use the Cloud
                  Machine Learning API.

            
            	Install the Cloud Software Development Kit (SDK).

            
            	Structure your TensorFlow application as a package.

            
            	Upload your package and processing data to Google Cloud Storage.

            
            	Use the Cloud SDK to execute a training or prediction job.

            
         

         
         In writing this chapter, I assume that you’ve never heard of the GCP. Therefore, before
            I explain how to deploy applications, I introduce the Cloud Software Development Kit
            (SDK) and Cloud Storage and explain how to create a GCP project.
         

         
      
      
      
         
         Working with GCP Projects

         
         If you want to take advantage of the GCP’s features, the first step is to create a
            project. This project serves as the central container of your development effort and
            includes all your metadata and configuration files. Before you can execute code or
            launch a web application, you need to upload the files to your project. Similarly,
            if you’d like access to special features, you need to make requests through the project.
         

         
         To build a GCP project that can access the ML Engine, you need to perform three steps:
            
         

         
         
            
            	Create a project in the Google Developer Console.

            
            	Enable billing for the project.

            
            	Enable the project to access the Machine Learning Engine.

            
         

         
         [image: tip] The ch13 directory in this book's example code contains two folders: cloud_mnist and cluster_mnist. These folders contain packages that can be deployed to the ML Engine, but they are
            not GCP projects. A GCP project resides in the cloud, so if you want to follow the
            development in this chapter, you need to create and configure a GCP project on your
            own.
         

         
         
            
            Creating a new project

            
            Anyone with a valid email address can create a GCP project without any fees or obligations.
               The process involves five steps: 
            

            
            
               
               	Visit the Cloud Console at https://console.cloud.google.com.

               
               	If this is your first time visiting the console, provide a contact email address and
                     a password.

               
               	In the upper horizontal bar, click Select a Project.

               
               	In the Select dialog box, click the plus button on the right.

               
               	In the New Project page, enter a project name and click the Create button.

               
            

            
            When working with the GCP, you need to understand the difference between a project's
               name and ID. A project’s name is chosen by the developer, and the console uses it
               to display the current project.
            

            
            In contrast, a project’s ID is chosen by the GCP based on the project’s name, and
               it uniquely identifies the project across all projects in the GCP. If you want to
               upload code or change a project's configuration, you’ll need to access your project
               by its ID. Therefore, it’s a good idea to know the IDs of your projects.
            

            
         
         
         
            
            Billing

            
            Machine learning is a powerful capability, but unlike TensorFlow, it’s not free. Google’s
               fees for machine learning depend on three factors: the type of operation (training
               or prediction), the length of time, and your location: 
            

            
            
               
               	Training: $0.49 per hour per training unit in the U.S., $0.54 in Europe and Asia

               
               	Prediction: $0.10 per thousand predictions plus $0.40 per hour in the U.S., $0.11
                  per thousand predictions plus $0.44 per hour in Europe and Asia
               

               
            

            
            Google charges money after you use the ML Engine, not in advance. But you need to
               identify a means of payment before you use the engine, and you can configure this
               by associating your project with a billing account: 
            

            
            
               
               	Visit your project page in the Cloud Console.

               
               	Open the menu (three horizontal bars) in the upper-left and select the Billing option.

               
               	Click the button entitled Add billing account.

               
               	Enter your contact information and billing information.

               
            

            
            At the bottom of the page, a button lets you set up automatic payment, which authorizes
               Google to withdraw funds from the account as resources are used.
            

            
         
         
         
            
            Accessing the machine learning engine

            
            After you set up a billing account for your project, you can access paid features
               like the ML Engine. To enable this feature, open the menu in the upper-left of the
               project page and select APIs & Services. This opens the APIs & Services page, which
               identifies the features that the project can access.
            

            
            The left side of the page displays three links: Dashboard, Library, and Credentials.
               The Library link opens a page that lists the APIs available for your project. To enable
               access to the ML Engine, you need to perform five steps: 
            

            
            
               
               	From the APIs & Services page, click the Library link to the left.

               
               	Find the Machine Learning group and click the View All link to the right.

               
               	Click the link entitled Google Cloud Machine Learning Engine.

               
               	Click the Enable link at the top of the page.

               
               	Wait until the GCP grants access to the new capability.

               
            

            
            After performing these steps, you can verify that your project can access the ML Engine
               by visiting the APIs & Services dashboard. The lower part of the page lists the different
               APIs your project can access, and this should include Google Cloud Storage and the
               Google Cloud Machine Learning Engine.
            

            
         
      
      
      
         
         The Cloud Software Development Kit (SDK)

         
         After you understand how to create a GCP project and configure it to access the ML
            Engine, you’re ready to interact with your project. Google makes this possible through
            the Google SDK.
         

         
         You can download the SDK from http://cloud.google.com/sdk. Clicking the Install button opens a page that provides instructions for downloading
            the SDK installer on your development system. I recommend installing all of the available
            components.
         

         
         When you launch the installer, it asks you to log in to your account and grant privileges
            so that the SDK can access your GCP account. It also asks you to choose a cloud project
            to serve as the SDK’s default project. After you select this, all further SDK commands
            affect the default project.
         

         
         After you install the SDK, you’re able to access two command-line utilities: 
         

         
         
            
            	gcloud: Provides general project interaction and accesses Google’s App Engine, Datastore,
               DNS, and ML Engine
            

            
            	gsutil: Accesses Google Cloud Storage
            

            
         

         
         If you’re running Windows, you can access these utilities through gcloud.cmd and gsutil.cmd. If you're running Linux or Mac OS, you can access them through the gcloud and gsutil executables.
         

         
         Before you start using the SDK, you should make sure that you can access gcloud and gsutil from a command prompt. If you enter gcloud version and you don't see any version information, add the google-cloud-sdk/bin folder to your PATH environment variable.
         

         
      
      
      
         
         The gcloud Utility

         
         After you install the SDK, you can execute gcloud commands on a command line. All gcloud commands have the same format: 
         

         
         gcloud [optional flags] <group | command>

         
         For example, you can check the version of gcloud by entering the following: 
         

         
         gcloud version

         
         This command identifies the SDK's version and the versions of its components. You
            can install the latest components by entering the following command: 
         

         
         gcloud components update

         
         In this example, components is a group name because it requires additional commands, such as update. You can think of a group like a submenu in a graphical user interface. In contrast,
            version is a command name because it doesn't accept further commands.
         

         
         If you enter gcloud help, you see a long list of gcloud's groups and commands. gcloud’s groups make it possible to manage web applications, access databases, and configure
            DNS settings. Table 13-1 lists ten of these groups.
         

         
         
            
               
               TABLE 13-1 gcloud Groups
               

            
            
            
               
               
                  
                  
                     
                     	
                        
                        Group

                     
                     
                     	
                        
                        Operation

                     
                     
                  

                  
               
               
               
                  
                  
                     
                     	
                        
                        app

                     
                     
                     	
                        
                        Manage App Engine deployments

                     
                     
                  

                  
                  
                     
                     	
                        
                        auth

                     
                     
                     	
                        
                        Manage oauth2 credentials

                     
                     
                  

                  
                  
                     
                     	
                        
                        components

                     
                     
                     	
                        
                        Install, update, and remove SDK components

                     
                     
                  

                  
                  
                     
                     	
                        
                        compute

                     
                     
                     	
                        
                        Access resources related to the Compute Engine

                     
                     
                  

                  
                  
                     
                     	
                        
                        config

                     
                     
                     	
                        
                        View and edit SDK configuration

                     
                     
                  

                  
                  
                     
                     	
                        
                        domains

                     
                     
                     	
                        
                        Manage domains associated with the project

                     
                     
                  

                  
                  
                     
                     	
                        
                        ml

                     
                     
                     	
                        
                        Access machine learning capabilities

                     
                     
                  

                  
                  
                     
                     	
                        
                        ml-engine

                     
                     
                     	
                        
                        Manage machine learning jobs and models

                     
                     
                  

                  
                  
                     
                     	
                        
                        projects

                     
                     
                     	
                        
                        Create and manage project access

                     
                     
                  

                  
                  
                     
                     	
                        
                        services

                     
                     
                     	
                        
                        List, enable, and disable APIs and services

                        
                     
                     
                  

                  
               
               
            

            
         
         
         The ml-engine group plays a central role in this chapter because it lets you upload and execute
            TensorFlow applications in the cloud. Figure 13-1 displays many, but not all, of the groups and commands associated with ml-engine.
         

         
         
            
            [image: image] 
               
                  
                  FIGURE 13-1: Commands in the Cloud SDK have many levels and options.
                  

                  
               
               
            
            
         

         
         To deploy and run an application in the cloud, you need to be familiar with the commands
            in the jobs subgroup of gcloud ml-engine. To the ML Engine, a job refers to a processing task, which could be training or
            prediction. For example, the following command tells the engine that you want it to
            launch a training job: 
         

         
         gcloud ml-engine jobs submit training

         
         To tell the GCP where to find your code, you need to follow the command with configuration
            flags. Three flags are particularly important: 
         

         
         
            
            	--package-path: The local directory containing the training source code
            

            
            	--module-name: The name of the package's main module
            

            
            	--staging-bucket: The Cloud Storage bucket where the package and its dependencies should be stored
            

            
         

         
         Before I explain how to submit jobs to the cloud, I explain in the next section how
            Cloud Storage works so that you can set the --staging-bucket flag. Then I explain how to prepare an application so that you can set the --package-path flag.
         

         
      
      
      
         
         Google Cloud Storage

         
         The GCP provides many options for storing data in the cloud, including the Datastore,
            BigTable, and Spanner. But if you want to store and access data for machine learning,
            you have to use Google Cloud Storage. That is, the ML Engine requires that you upload
            all your source files, dependencies, and data to Cloud Storage.
         

         
         Thankfully, Cloud Storage is easy to work with. It stores data in containers called
            buckets, and you can think of a bucket as a directory in the cloud. Each data item in a bucket
            is called an object.
         

         
         
            
            Buckets

            
            The filesystem on your computer stores data in files and organizes files using directories.
               Cloud Storage stores data in objects and collects objects inside buckets. Buckets
               have a lot in common with directories, but there's one major difference: Buckets can’t
               be nested. That is, you can’t organize buckets into a hierarchy in the way that you
               can organize directories.
            

            
            When working with buckets, you should be familiar with three points: 
            

            
            
               
               	All load/store/delete operations involving Cloud Storage must identify at least one
                  target bucket.
               

               
               	Every bucket has a globally unique name, a storage class, and a geographic location.

               
               	A project can create/delete buckets at most once every two seconds.

               
            

            
            This last point is important. Creating and deleting buckets takes a significant amount
               of time, so Google recommends creating a small number of persistent buckets and reusing
               them as needed.
            

            
            
               
               Bucket names

               
               When you access a bucket, you need to identify it through its Uniform Resource Identifier
                  (URI), which starts with gs://. A bucket’s name must be unique across all GCP projects, not just your own projects.
                  Therefore, it’s a good idea to prepend your project ID to your bucket name, as in
                  gs://myproject3712_tfbook.
               

               
               The GCP sets the following criteria for bucket names: 

               
               
                  
                  	A bucket's name must have more than two characters and fewer than 64.

                  
                  	The characters in a bucket’s name are limited to letters, numbers, dashes, underscores,
                     and dots.
                  

                  
                  	A bucket’s name can’t start with “goog”, and it can’t contain “google” or misspellings
                     of “google.”
                  

                  
               

               
               If you create a bucket whose name contains dots, Cloud Storage assumes that you’ve
                  named your bucket after a domain, as in www.evilrobot.com. The good news is that Cloud Storage extends the maximum name length of domain-named
                  buckets to 222 characters. The bad news is that you need to convince Google that you
                  own the domain.
               

               
            
            
            
               
               Storage classes and locations

               
               Every bucket has a storage class that determines its availability, pricing, and storage
                  characteristics. Table 13-2 lists the four different storage classes and their characteristics.
               

               
               
                  
                     
                     TABLE 13-2 Storage Classes of Cloud Storage Buckets
                     

                  
                  
                  
                     
                     
                        
                        
                           
                           	
                              
                              Storage Class

                           
                           
                           	
                              
                              ID

                           
                           
                           	
                              
                              Description

                           
                           
                        

                        
                     
                     
                     
                        
                        
                           
                           	
                              
                              Multi-Regional

                           
                           
                           	
                              
                              multi_regional

                           
                           
                           	
                              
                              Data frequently accessed across a wide area (Price: $0.026 per GB per month)

                           
                           
                        

                        
                        
                           
                           	
                              
                              Regional

                           
                           
                           	
                              
                              regional

                           
                           
                           	
                              
                              Data frequently accessed in a limited region (Price: $0.02 per GB per month)

                           
                           
                        

                        
                        
                           
                           	
                              
                              Nearline

                           
                           
                           	
                              
                              nearline

                           
                           
                           	
                              
                              Data accessed no more than once per month (Price: $0.01 per GB per month)

                           
                           
                        

                        
                        
                           
                           	
                              
                              Coldline

                           
                           
                           	
                              
                              coldline

                           
                           
                           	
                              
                              Data accessed no more than once per year (Price: $0.007 per GB per month)

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               For example, suppose that you want a bucket to contain video that will be displayed
                  across the world. In this case, you'd create a bucket and set its storage class to
                  multi_regional. You can set a multi-regional bucket’s location to one of three values: eu, us, and asia.
               

               
               If your data needs to be accessed only in a specific region, you should set the bucket's
                  storage class to Regional. You can associate a Regional bucket with one of 13 different
                  locations, and Table 13-3 lists them all.
               

               
               
                  
                     
                     TABLE 13-3 Location Codes of Regional Buckets
                     

                  
                  
                  
                     
                        
                           	
                              
                              us-east1

                           
                           
                           	
                              
                              us-east4

                           
                           
                           	
                              
                              us-central1

                           
                           
                           	
                              
                              us-west1

                           
                           
                        

                        
                        
                           
                           	
                              
                              asia-east1

                           
                           
                           	
                              
                              asia-northeast1

                           
                           
                           	
                              
                              asia-southeast1

                           
                           
                           	
                              
                              asia-south

                           
                           
                        

                        
                        
                           
                           	
                              
                              australia-southeast1

                           
                           
                           	
                              
                              europe-west1

                           
                           
                           	
                              
                              europe-west2

                           
                           
                           	
                              
                              europe-west3

                           
                           
                        

                        
                        
                           
                           	
                              
                              southamerica-east1

                           
                           
                           	
                              
                              

                           
                           
                           	
                              
                              

                           
                           
                           	
                              
                              

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               Google's list of supported regions increases regularly. For up-to-date information
                  on storage classes, visit the GCP documentation at http://cloud.google.com/storage/docs/storage-classes. For up-to-date information on bucket locations, visit http://cloud.google.com/storage/docs/bucket-locations.
               

               
            
         
         
         
            
            Objects and virtual hierarchy

            
            Each piece of data in a Cloud Storage bucket is an object. A bucket may contain an
               unlimited number of objects, but each object must be 5 TB in size or less.
            

            
            Every object has data and metadata. When you upload a file to a bucket, the file’s
               content becomes the object’s data. An object’s metadata holds name-value pairs that
               describe the object.
            

            
            The criteria for object names is much less restrictive than the criteria for bucket
               names: 
            

            
            
               
               	An object’s name can contain any sequence of valid Unicode characters.

               
               	An object’s name can’t contain any Carriage Return or Line Feed characters.

               
               	Google recommends against using #, [, ], *, or ? in object names, as gsutil interprets these characters as wildcards.
               

               
            

            
            A bucket's name must start and end with a letter, but an object’s name can start and
               end with a slash (/). Therefore, you can construct a virtual hierarchy of objects
               by starting an object’s name with a slash.
            

            
            For example, suppose that you create a bucket named gs://dummies-tfbook. You can create an object in the bucket named gs://dummies-tfbook/data and another object named gs://dummies-tfbook/data/images. Cloud Storage won't recognize any relationship between these objects, but humans
               will understand that the objects form a virtual hierarchy.
            

            
         
         
         
            
            The gsutil utility

            
            The gsutil utility lets you create, access, and modify buckets and objects. For the most part,
               gsutil commands have the same names and purposes as common *nix commands.
            

            
            Table 13-4 lists 13 of gsutil's commands. For a more thorough discussion, visit Google's documentation at https://cloud.google.com/storage/docs/gsutil.
            

            
            
               
                  
                  TABLE 13-4 gsutil Commands
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Command

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           mb [-c class] [-l location]

                           
                           . [-p proj_id] url…

                        
                        
                        	
                           
                           Make a new bucket

                        
                        
                     

                     
                     
                        
                        	
                           
                           rb [-f] url…

                        
                        
                        	
                           
                           Remove buckets

                        
                        
                     

                     
                     
                        
                        	
                           
                           cp [OPTION]… src_url dst_url

                           
                           cp [OPTION]… src_url… dst_url

                           
                           cp [OPTION]… -I dst_url

                        
                        
                        	
                           
                           Copy files and objects

                        
                        
                     

                     
                     
                        
                        	
                           
                           mv [-p] src_url dst_url

                           
                           mv [-p] src_url… dst_url

                           
                           mv [-p] -I dst_url

                        
                        
                        	
                           
                           Move objects and/or subdirectories

                        
                        
                     

                     
                     
                        
                        	
                           
                           rm [-f] [-r] url…

                           
                           rm [-f] [-r] –I

                        
                        
                        	
                           
                           Remove objects

                        
                        
                     

                     
                     
                        
                        	
                           
                           ls [-a] [-b] [-d] [-l] [-L] [-r] [-p proj_id] url…

                        
                        
                        	
                           
                           List buckets and objects

                        
                        
                     

                     
                     
                        
                        	
                           
                           stat url…

                        
                        
                        	
                           
                           Display object status

                        
                        
                     

                     
                     
                        
                        	
                           
                           rewrite -k [-f] [-r] url…

                           
                           rewrite -k [-f] [-r] –I

                        
                        
                        	
                           
                           Rewrite objects

                        
                        
                     

                     
                     
                        
                        	
                           
                           du url…

                        
                        
                        	
                           
                           Display object size usage

                        
                        
                     

                     
                     
                        
                        	
                           
                           cat [-h] url…

                        
                        
                        	
                           
                           Concatenate object to standard output

                        
                        
                     

                     
                     
                        
                        	
                           
                           compose gs://bucket/obj1

                           
                           [gs://bucket/obj2 …]

                           
                           . gs://bucket/composite

                        
                        
                        	
                           
                           Concatenate multiple objects into one

                        
                        
                     

                     
                     
                        
                        	
                           
                           [-D] config [-a] [-b] [-e] [-f] [-n]

                           
                           . [-o <file>] [-r] [-s <scope] [-w]

                        
                        
                        	
                           
                           Obtain credentials and create a configuration file

                        
                        
                     

                     
                     
                        
                        	
                           
                           web set [-m main_page_suffix]

                           
                           . [-e error_page] bucket_url…

                           
                           . web get bucket_url

                        
                        
                        	
                           
                           Associate one or more buckets with a web page

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            Many of these commands are straightforward, but a few of them deserve explanation.
               This discussion explores the mb, cp/mv, ls/stat, and cat/compose commands.
            

            
            
               
               Creating buckets (mb)

               
               Before you upload data to Cloud Storage, you need to create one or more buckets. The
                  command to know is mb: 
               

               
               gsutil mb [-c class] [-l location] [-p project_id] url…

               
               The –c, –l, and –p flags are particularly important: 
               

               
               
                  
                  	-c: The bucket's storage class: multi_regional, regional, nearline, and coldline. (Default: multi_regional or regional).
                  

                  
                  	-l: The bucket's multi-regional location or regional location. (Default: us).
                  

                  
                  	-p: The project's ID. (Default: the ID in the gsutil configuration file).
                  

                  
               

               
               For example, the following command creates a regional bucket named gs://dummies123-tfbook/example and associates it with the us-central1 region. 
               

               
               gsutil mb -c regional -l us-central1 gs://dummies123-tfbook/example

               
            
            
            
               
               Copying (cp) and moving (mv)

               
               After you create a bucket, you can upload files to it, thereby adding objects to the
                  bucket. Similarly, you can download an object to your system as a file. Google makes
                  these operations possible through the cp (copy) and mv (move) commands. Both commands transfer a source entity to a destination, but cp leaves the source entity in place while mv removes the source entity.
               

               
               The best way to understand these commands is to look at some examples. The following
                  command uploads a local file, hello.txt, to a bucket in Cloud Storage named gs://newbucket: 
               

               
               gsutil cp hello.txt gs://newbucket

               
               Similarly, the following command moves hello.txt from gs://newbucket to the current directory on your development system. Note that mv removes hello.txt from the bucket: 
               

               
               gs mv gs://newbucket/hello.txt .

               
               cp and mv accept many of the same flags as their counterparts in Linux and Unix. These flags
                  include the following: 
               

               
               
                  
                  	-r: Copy/move a directory and its contents
                  

                  
                  	-L: Outputs a log file for each source entity of the copy/move
                  

                  
                  	-e: Excludes symbolic links from the copy/move
                  

                  
               

               
               For example, the following command moves the local mydir directory and its contents to firstbucket. 
               

               
               gsutil mv -r mydir gs://firstbucket

               
               This command copies mydir and its contents from firstbucket to secondbucket: 
               

               
               gsutil cp -re gs://firstbucket/mydir gs://secondbucket

               
               Because of the –e flag, gsutil won't copy any symbolic links from mydir to secondbucket.
               

               
            
            
            
               
               Reading information (ls and stat)

               
               The ls and stat commands provide information about buckets and objects in Cloud Storage. The simplest
                  usage of ls is gsutil ls, which lists all of the buckets associated with the current GCP project.
               

               
               One interesting feature of ls is that it recognizes the virtual hierarchy of objects. For example, suppose that
                  gs://mybucket contains /mydir/a.txt, /mydir/b.txt, and /newdir/c.txt. The command gsutil ls gs://mybucket prints /mydir and /newdir, but none of the underlying objects. But if you set the -r flag, the entire contents of a bucket will be displayed. The following command demonstrates
                  this: 
               

               
               gsutil ls -r gs://mybucket

               
               Another useful flag is -l, which tells ls to print detailed output for each object of interest. These details include object
                  sizes, creation sizes, and ownership. The -L flag prints even more information, including the content type, storage class, and
                  update time of each object of interest.
               

               
               If you want detailed information about one object, stat is more efficient than ls -L. As an example, the following command prints detailed information about the training.dat object in mybucket/mydir: 
               

               
               gsutil stat gs://mybucket/mydir/training.dat

               
               The exit code of this command will equal 1 if the object exists and 0 if it doesn't.
                  One important difference between stat and ls is that stat only provides information about objects.
               

               
               Concatenation (cat and compose)

               
               cat directs an object's text to standard output. For example, the following command prints
                  the text contained in gs://mybucket/a.txt: 
               

               
               gsutil cat gs://mybucket/a.txt

               
               Despite its name, you can’t concatenate objects with cat, but you can concatenate objects with compose. That is, the following command concatenates the content of a.txt and b.txt in gs://mybucket and stores the combined result to c.txt: 
               

               
               gsutil compose gs://mybucket/a.txt gs://mybucket/b.txt gs://mybucket/c.txt

               
               When you use compose, keep three points in mind: 
               

               
               
                  
                  	A project can perform at most 200 compose operations per second.
                  

                  
                  	A compose operation can combine a maximum of 32 entities.
                  

                  
                  	A given object can be appended to at most 1,023 times.

                  
               

               
               [image: tip] compose is particularly helpful if you have to upload very large files to Cloud Storage.
                  Rather than upload an entire file from one computer, you can upload portions of the
                  file from separate computers and use compose to combine the portions.
               

               
            
         
         
      
      
      
         
         Preparing for Deployment

         
         Before you submit an application for training or prediction, you should prepare it
            in two ways: 
         

         
         
            
            	Configure the application to receive command-line arguments from the ML Engine

            
            	Structure the application's files in a package

            
         

         
         
            
            Receiving arguments

            
            When the ML Engine executes your application, it passes arguments that provide information
               about the operating environment. Table 13-5 lists the possible arguments.
            

            
            
               
                  
                  TABLE 13-5 Machine Learning Arguments
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Argument

                        
                        
                        	
                           
                           Operation

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           --job-dir

                        
                        
                        	
                           
                           Location of the application’s data

                        
                        
                     

                     
                     
                        
                        	
                           
                           --train_batch_size

                        
                        
                        	
                           
                           Batch size for training

                        
                        
                     

                     
                     
                        
                        	
                           
                           --train_steps

                        
                        
                        	
                           
                           Number of steps for each training epoch

                        
                        
                     

                     
                     
                        
                        	
                           
                           --eval_batch_size

                        
                        
                        	
                           
                           Batch size for evaluation

                        
                        
                     

                     
                     
                        
                        	
                           
                           --eval_steps

                        
                        
                        	
                           
                           Number of steps to run evaluation at each checkpoint

                        
                        
                     

                     
                     
                        
                        	
                           
                           --eval_delay_secs

                        
                        
                        	
                           
                           Time to wait before first evaluation

                        
                        
                     

                     
                     
                        
                        	
                           
                           --min_eval_frequency

                        
                        
                        	
                           
                           Minimum number of training steps between evaluations

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            --job-dir is particularly important because it tells the application where it should store
               its output files. The following code demonstrates how you can access this using an
               ArgumentParser: 
            

            
            if __name__ == '__main__':

            
                parser = argparse.ArgumentParser()

            
                parser.add_argument(

            
                    '--job-dir',

            
                    help='Checkpoint/output location',

            
                    required=True

            
                )

            
                args = parser.parse_args()

            
            In addition to the built-in arguments, you can provide arguments of your own. When
               you submit a job, the ML Engine will pass your arguments to the application. But keep
               two points in mind: 
            

            
            
               
               	User-defined flags must follow all of the built-in flags.

               
               	Two dashes (--) must separate the built-in flags from the user-defined flags.
               

               
            

            
            For example, suppose that you want to pass two arguments to your application named
               data_dir and num_epochs. When you execute a command, you need to set the --data_dir and --num_epochs flags at the end of the command and separate them from the command's normal flags
               with --.
            

            
         
         
         
            
            Packaging TensorFlow code

            
            You can launch a training operation with the command gcloud ml-engine jobs submit training. When you execute this, you can identify your source code with the --package-path and --module-name flags. The --package-path flag identifies the directory that contains your code, and this directory must meet
               the following requirements: 
            

            
            
               
               	The directory must contain the module identified by --module-name.
               

               
               	The parent directory must have a file named setup.py.
               

               
               	Every directory under the parent directory must have a file named __init__.py. This file is usually empty.
               

               
               	The development system must have setuptools installed.
               

               
            

            
            This last point is important. Before uploading a package, the ML Engine uses setuptools to zip the parent directory into a *.tar.gz file. If you've installed pip, you can install setuptools with pip install setuptools.
            

            
            
               
               setup.py

               
               In a Python package, setup.py contains instructions for building and installing the package. If you want the ML
                  Engine to install your package, setup.py must perform two operations: 
               

               
               
                  
                  	Import setuptools.setup.
                  

                  
                  	Call the setup function of the setuptools module.
                  

                  
               

               
               The setup function accepts a great deal of information about the package, including its name,
                  version, and dependencies. Table 13-6 lists nine of the parameters that you can set.
               

               
               
                  
                     
                     TABLE 13-6 Parameters of the setup Function
                     

                  
                  
                  
                     
                     
                        
                        
                           
                           	
                              
                              Parameter

                           
                           
                           	
                              
                              Description

                           
                           
                        

                        
                     
                     
                     
                        
                        
                           
                           	
                              
                              name

                           
                           
                           	
                              
                              Package name

                           
                           
                        

                        
                        
                           
                           	
                              
                              version

                           
                           
                           	
                              
                              Release version

                           
                           
                        

                        
                        
                           
                           	
                              
                              packages

                           
                           
                           	
                              
                              Dependency packages

                           
                           
                        

                        
                        
                           
                           	
                              
                              install_requires

                           
                           
                           	
                              
                              Packages that need to be installed when the package is installed

                           
                           
                        

                        
                        
                           
                           	
                              
                              author

                           
                           
                           	
                              
                              Name of the package's author

                           
                           
                        

                        
                        
                           
                           	
                              
                              author_email

                           
                           
                           	
                              
                              Author’s email address

                           
                           
                        

                        
                        
                           
                           	
                              
                              url

                           
                           
                           	
                              
                              Package's home page

                           
                           
                        

                        
                        
                           
                           	
                              
                              description

                           
                           
                           	
                              
                              Short description of the package

                           
                           
                        

                        
                        
                           
                           	
                              
                              license

                           
                           
                           	
                              
                              The package's license

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               Rather than list your package’s dependencies, you can call the find_packages provided by setuptools. Listing 13-1 presents the content of the setup.py file in the ch13/cloud_mnist folder:
 
               
               LISTING 13-1 Setup Script for a Machine Learning Package
               
 
               
               from setuptools import find_packages

               
               from setuptools import setup

               
                

               
               REQUIRED_PACKAGES = ['tensorflow>=1.3']

               
                

               
               setup(

               
                   name='trainer',

               
                   version='0.1',

               
                   install_requires=REQUIRED_PACKAGES,

               
                   packages=find_packages(),

               
                   include_package_data=True,

               
                   author='Matthew Scarpino'

               
                   description='Running MNIST classification in the cloud'

               
               )

               
               Sadly, the ML Engine doesn't always have the latest versions of the packages installed.
                  At the time of this writing, the current TensorFlow version is 1.4, but the default
                  version supported by the ML Engine is 1.2.
               

               
               You can request a specific version of a package by setting the install_requires field. In Listing 13-1, this field requests a version of TensorFlow greater than or equal to 1.3. For more
                  information on supported versions, visit the site http://cloud.google.com/ml-engine/docs/runtime-version-list.
               

               
            
         
         
      
      
      
         
         Executing Applications with the Cloud SDK

         
         If you understand how to use the Cloud SDK, transfer data to Cloud Storage, and structure
            your application in a package, you’re ready to start launching jobs with the Cloud
            SDK.
         

         
         The ML Engine supports two types of jobs: training and prediction. Despite the names,
            training jobs don’t necessarily train and prediction jobs don’t necessarily predict.
            The difference between them involves the nature of the input. A training job expects
            a Python package as input and a prediction job expects a machine learning model stored
            as a SavedModel. Chapter 5 introduces SavedModels and the methods available for accessing them.
         

         
         
            
            Local execution

            
            This chapter focuses on cloud computing, so it may seem strange to use the Cloud SDK
               to launch jobs locally. But the ML Engine is neither simple nor free, so I recommend
               that you test your applications locally before deploying them to the cloud. Another
               reason to execute your code locally is that you can view printed text on the command
               line instead of having to download and read logs.
            

            
            You can launch a job on your development system by entering one of the following commands:
               
            

            
            
               
               	gcloud ml-engine local train: run a training job locally
               

               
               	gcloud ml-engine local predict: run a prediction job locally
               

               
            

            
            These commands accomplish different results and accept different configuration flags.

            
            
               
               Running a local training job

               
               A GCP training job executes a Python package and produces output in the directory
                  specified by the --job-dir flag. Table 13-7 lists --job-dir and other flags you can set for local training jobs.
               

               
               
                  
                     
                     TABLE 13-7 Flags for Local Training
                     

                  
                  
                  
                     
                     
                        
                        
                           
                           	
                              
                              Flag

                           
                           
                           	
                              
                              Description

                           
                           
                        

                        
                     
                     
                     
                        
                        
                           
                           	
                              
                              --module-name=MODULE_NAME

                           
                           
                           	
                              
                              Identifies the module to execute

                           
                           
                        

                        
                        
                           
                           	
                              
                              --package-path=PACKAGE_PATH

                           
                           
                           	
                              
                              Path to the Python package containing the module to execute

                           
                           
                        

                        
                        
                           
                           	
                              
                              --job-dir=JOB_DIR

                           
                           
                           	
                              
                              Path to store training outputs

                           
                           
                        

                        
                        
                           
                           	
                              
                              --distributed

                           
                           
                           	
                              
                              Runs code in distributed mode

                           
                           
                        

                        
                        
                           
                           	
                              
                              --parameter-server-count=

                              
                              PARAMETER_SERVER_COUNT

                           
                           
                           	
                              
                              Number of parameter servers to run

                           
                           
                        

                        
                        
                           
                           	
                              
                              --start-port=START_PORT

                           
                           
                           	
                              
                              Start of the range of ports reserved by the local cluster

                           
                           
                        

                        
                        
                           
                           	
                              
                              --worker-count=WORKER_COUNT

                           
                           
                           	
                              
                              Number of workers to run

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               The --package-path flag identifies the top-level directory of your package. This is the directory that
                  contains your package's setup.py file. The --module-name flag identifies the module to execute inside the package.
               

               
               If you'd like to try this for yourself, copy the mnist_train.tfrecords and mnist_test.tfrecords files from the ch12 directory to the ch13 directory. Then go to the ch13/cloud_mnist directory and enter the following command: 
               

               
               gcloud ml-engine local train --module-name trainer.task--package-path trainer --job-dir
                     output ----data_dir ../images

               
               In this command, --package-path indicates that the trainer directory represents a package, and --module-name indicates that the name of the package's module is trainer.task. The --job-dir flag tells the application to store its results in a directory named output.
               

               
               Two dashes (--) separate --job-dir from --data_dir. This indicates that --data_dir and any following flags are defined by the user.
               

               
            
            
            
               
               Running a local prediction job

               
               After training is complete, you can launch a local prediction job by executing gcloud ml-engine local predict. Table 13-8 lists the different flags you can set.
               

               
               
                  
                     
                     TABLE 13-8 Flags for Local Prediction
                     

                  
                  
                  
                     
                     
                        
                        
                           
                           	
                              
                              Flag

                           
                           
                           	
                              
                              Description

                           
                           
                        

                        
                     
                     
                     
                        
                        
                           
                           	
                              
                              --model-dir=MODEL_DIR

                           
                           
                           	
                              
                              Path of the model

                           
                           
                        

                        
                        
                           
                           	
                              
                              --json-instances=JSON_INSTANCES

                           
                           
                           	
                              
                              Path to a local file containing prediction data in JSON format

                           
                           
                        

                        
                        
                           
                           	
                              
                              --text-instances=TEXT_INSTANCES

                           
                           
                           	
                              
                              Path to a local file containing prediction data in plain text

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               You should assign the --model-dir flag to the directory that contains the output of the training operation. Also, you
                  need to identify prediction parameters using the --json-instances or --text-instances flags.
               

               
            
         
         
         
            
            Deploying to the cloud

            
            If you succeeded in launching jobs locally, deploying your applications to the cloud
               shouldn't present any difficulty. But be mindful of two issues: 
            

            
            
               
               	You need to upload training/evaluation data to Cloud Storage.

               
               	The ML Engine may not support the versions of the packages you need.

               
            

            
            Before you execute either of the applications in the ch13 directory, you’ll need to upload the mnist_test.tfrecords and mnist_train.tfrecords files to a Cloud Storage bucket. For example, if your project's ID is $(PROJECT_ID), you can create a bucket named $(PROJECT_ID)_mnist in the central United States with the following command: 
            

            
            gsutil mb -c regional -l us-central1 gs://$(PROJECT_ID)_mnist

            
            After you create the bucket, you can upload the two MNIST files to the bucket with the following command: 
            

            
            gsutil cp mnist_test.tfrecords mnist_train.tfrecords gs://$(PROJECT_ID)_mnist

            
            After the command executes, it's a good idea to check that Cloud Storage created objects
               for the two files. You can verify this by running the command gsutil ls gs://$(PROJECT_ID)_mnist.
            

            
            
               
               Running a remote training job

               
               After you upload your test/evaluation data, you can launch a training job with the
                  following command: 
               

               
               gcloud ml-engine jobs submit training $(JOB_ID)

               
               $(JOB_ID) provides a unique identifier for the training job. After you launch the job, you
                  can use this ID to check on the job's status.
               

               
               In addition to identifying the job, you need to tell the ML Engine where to find your
                  package and your input data. You also need to tell the engine where it should store
                  output files. You can provide this information by following the command with flags,
                  and Table 13-9 lists each of them.
               

               
               
                  
                     
                     TABLE 13-9 Flags for Cloud Training Jobs
                     

                  
                  
                  
                     
                     
                        
                        
                           
                           	
                              
                              Flag

                           
                           
                           	
                              
                              Description

                           
                           
                        

                        
                     
                     
                     
                        
                        
                           
                           	
                              
                              --module-name=MODULE_NAME

                           
                           
                           	
                              
                              Identifies the module to execute

                           
                           
                        

                        
                        
                           
                           	
                              
                              --package-path=PACKAGE_PATH

                           
                           
                           	
                              
                              Path to the Python package containing the module to execute

                           
                           
                        

                        
                        
                           
                           	
                              
                              --job-dir=JOB_DIR

                           
                           
                           	
                              
                              Path to store output files

                           
                           
                        

                        
                        
                           
                           	
                              
                              --staging-bucket=STAGING_BUCKET

                           
                           
                           	
                              
                              Bucket to hold package during operation

                           
                           
                        

                        
                        
                           
                           	
                              
                              --region=REGION

                           
                           
                           	
                              
                              The region of the machine learning job

                           
                           
                        

                        
                        
                           
                           	
                              
                              --runtime-version=RUNTIME_VERSION

                           
                           
                           	
                              
                              The version of the ML Engine for the job

                           
                           
                        

                        
                        
                           
                           	
                              
                              --stream-logs

                           
                           
                           	
                              
                              Block until the job completes and stream the logs

                           
                           
                        

                        
                        
                           
                           	
                              
                              --scale-tier=SCALE_TIER

                           
                           
                           	
                              
                              The job's operating environment

                           
                           
                        

                        
                        
                           
                           	
                              
                              --config=CONFIG

                           
                           
                           	
                              
                              Path to a job configuration file

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               The --module-name, --package-path, and --job-dir flags serve the same purposes as the similarly named flags for local training jobs.
                  The --staging-bucket flag identifies the bucket to hold the deployed package. The --region flag accepts one of the regions listed in Table 13-3.
               

               
               By default, deployed applications run on the latest stable version of the ML Engine.
                  You can configure this by setting the --runtime-version flag. You can get the list of versions at cloud.google.com/ml-engine/docs/runtime-version-list.
               

               
               I prefer to set the --stream-logs flag because it forces the command to block until the job completes. As the job runs,
                  the console prints messages from the remote log. Aborting the command (Ctrl-C) doesn't
                  affect the remote job.
               

               
               By default, applications uploaded to the ML Engine can run only on a single CPU. You
                  can configure the execution environment by setting the --scale-tier flag to one of the values listed in Table 13-10.
               

               
               
                  
                     
                     TABLE 13-10 Scale Tier Values
                     

                  
                  
                  
                     
                     
                        
                        
                           
                           	
                              
                              Value

                           
                           
                           	
                              
                              Description

                           
                           
                        

                        
                     
                     
                     
                        
                        
                           
                           	
                              
                              basic

                           
                           
                           	
                              
                              A single worker on a CPU

                           
                           
                        

                        
                        
                           
                           	
                              
                              basic-gpu

                           
                           
                           	
                              
                              A single worker with a GPU

                           
                           
                        

                        
                        
                           
                           	
                              
                              basic-tpu

                           
                           
                           	
                              
                              A single worker instance with a Cloud TPU

                           
                           
                        

                        
                        
                           
                           	
                              
                              standard-1

                           
                           
                           	
                              
                              Many workers and a few parameter servers

                           
                           
                        

                        
                        
                           
                           	
                              
                              premium-1

                           
                           
                           	
                              
                              A large number of workers and many parameter servers

                           
                           
                        

                        
                        
                           
                           	
                              
                              custom

                           
                           
                           	
                              
                              Define a cluster

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               If you set --scale-tier to basic-gpu, you can execute your code on an Nvidia Tesla K80 GPU. This has 4,992 CUDA cores
                  and 24 GB of GDDR5 memory. If you set --scale-tier to basic-tpu, you can execute your code on one or more of Google's Tensor Processing Units (TPUs).
                  At the time of this writing, Google restricts TPU access to developers in its Cloud
                  TPU program, and you can learn more about this program at http://cloud.google.com/tpu.
               

               
               If you set --scale-tier to standard-1 or premium-1, you can run your job on a cluster of processors. If you set --scale-tier to custom, you can configure the cluster by assigning the --config flag to the name of a configuration file.
               

               
            
            
            
               
               Running a remote prediction job

               
               Chapter 5 introduces SavedModels, and if you upload a SavedModel to a Cloud Storage bucket, you can launch a prediction job with the following command:
                  
               

               
               gcloud ml-engine jobs submit prediction $(JOB_ID)

               
               This command accepts flags that specify where the prediction job should read its input
                  and write its output. Table 13-11 lists each of these flags.
               

               
               
                  
                     
                     TABLE 13-11 Flags for Cloud Prediction Jobs
                     

                  
                  
                  
                     
                     
                        
                        
                           
                           	
                              
                              Flag

                           
                           
                           	
                              
                              Description

                           
                           
                        

                        
                     
                     
                     
                        
                        
                           
                           	
                              
                              --model-dir=MODEL_DIR

                           
                           
                           	
                              
                              Path of the bucket containing the saved model

                           
                           
                        

                        
                        
                           
                           	
                              
                              --model=MODEL

                           
                           
                           	
                              
                              Name of the model to use for prediction

                           
                           
                        

                        
                        
                           
                           	
                              
                              --input-paths=INPUT_PATH, [INPUT_PATH,…]

                           
                           
                           	
                              
                              Path to the input data to use for prediction

                           
                           
                        

                        
                        
                           
                           	
                              
                              --data-format=DATA_FORMAT

                           
                           
                           	
                              
                              Format of the input data

                           
                           
                        

                        
                        
                           
                           	
                              
                              --output-path=OUTPUT_PATH

                           
                           
                           	
                              
                              Path to store the prediction results

                           
                           
                        

                        
                        
                           
                           	
                              
                              --region=REGION

                           
                           
                           	
                              
                              The region of the machine learning job

                           
                           
                        

                        
                        
                           
                           	
                              
                              --batch-size=BATCH_SIZE

                           
                           
                           	
                              
                              Number of records per batch

                           
                           
                        

                        
                        
                           
                           	
                              
                              --max-worker-count=MAX_WORKER_COUNT

                           
                           
                           	
                              
                              The maximum number of workers to employ for parallel processing

                           
                           
                        

                        
                        
                           
                           	
                              
                              --runtime-version=RUNTIME_VERSION

                           
                           
                           	
                              
                              The version of the ML Engine for the job

                           
                           
                        

                        
                        
                           
                           	
                              
                              --version=VERSION

                           
                           
                           	
                              
                              Version of the model to be used

                              
                           
                           
                        

                        
                     
                     
                  

                  
               
               
               When you launch a remote prediction job, you must identify the model's name with --model or the bucket containing the model files with --model-dir. You also need to identify the location of the input files with --input-paths.
               

               
               The ML Engine accepts prediction input data in one of three formats. You can identify
                  the format of your data by setting --data-format to one of the following values: 

               
               
                  
                  	text: Text files with one line per instance
                  

                  
                  	tf-record: TFRecord files
                  

                  
                  	tf-record-gzip: GZIP-compressed TFRecord files
                  

                  
               

               
               The last required flag is --output-path. This tells the ML Engine which Cloud Storage bucket should contain the prediction
                  results.
               

               
            
            
            
               
               Viewing a job's status

               
               After you launch a job, you can view the job’s status in two ways. First, you can
                  use gcloud commands, such as the following: 
               

               
               
                  
                  	gcloud ml-engine jobs list: List the jobs associated with the default project along with their statuses and
                     creation times
                  

                  
                  	gcloud ml-engine jobs describe $(JOB_ID) --summarize: Provide detailed information about a specific job in human-readable format
                  

                  
               

               
               When I want to check on a job, I prefer to visit the Google Cloud Console. If you
                  click the menu bars in the upper left and scroll down, you see an entry entitled ML
                  Engine. This entry leads to two options: Jobs and Models.
               

               
               If you click the ML Engine ⇒   Jobs option, the page lists all the jobs associated
                  with the project. If you click on a job name, a new page provides detailed information
                  about the job's execution, including its status and any log messages.
               

               
            
         
         
      
      
      
         
         Configuring a Cluster in the Cloud

         
         By default, GCP jobs execute on a single CPU. But if you set --scale-tier to custom, you can launch a job to execute on a cluster of processors. You can configure the
            cluster and the nature of its processing by following the --config flag with the name of a configuration file.
         

         
         You can format the configuration file using YAML (YAML Ain't Markup Language) or JSON
            (JavaScript Object Notation). If a setting in your configuration file conflicts with
            a command flag, the job uses the file's setting. Table 13-12 lists the four fields that configure training and prediction.
         

         
         
            
               
               TABLE 13-12 Training/Prediction Configuration Fields
               

            
            
            
               
               
                  
                  
                     
                     	
                        
                        Field

                     
                     
                     	
                        
                        Type

                     
                     
                     	
                        
                        Description

                     
                     
                  

                  
               
               
               
                  
                  
                     
                     	
                        
                        trainingInput

                     
                     
                     	
                        
                        TrainingInput

                     
                     
                     	
                        
                        Input parameters to create a training job

                     
                     
                  

                  
                  
                     
                     	
                        
                        trainingOutput

                     
                     
                     	
                        
                        TrainingOutput

                     
                     
                     	
                        
                        Result of the current training job

                     
                     
                  

                  
                  
                     
                     	
                        
                        predictionInput

                     
                     
                     	
                        
                        PredictionInput

                     
                     
                     	
                        
                        Input parameters to create a prediction job

                     
                     
                  

                  
                  
                     
                     	
                        
                        predictionOutput

                     
                     
                     	
                        
                        PredictionOutput

                     
                     
                     	
                        
                        Result of the current prediction job

                        
                     
                     
                  

                  
               
               
            

            
         
         
         A configuration file can provide at most one input object and at most one output object.
            If you're launching a training job, you may want to set the trainingInput field to a TrainingInput and/or the trainingOutput field to a TrainingOutput. If you're launching a prediction job, you may want to set the predictionInput field to a PredictionInput and/or the predictionOutput field to a PredictionOutput.
         

         
         
            
            Setting the training input

            
            A TrainingInput provides information about the training you want to perform and configures the cluster
               to execute the training job. Table 13-13 lists the fields that you can set.
            

            
            
               
                  
                  TABLE 13-13 TrainingInput Fields
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Field

                        
                        
                        	
                           
                           Type

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           scaleTier

                        
                        
                        	
                           
                           ScaleTier

                        
                        
                        	
                           
                           The job's execution platform

                        
                        
                     

                     
                     
                        
                        	
                           
                           masterType

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Machine type for the master

                        
                        
                     

                     
                     
                        
                        	
                           
                           workerType

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Machine type for workers

                        
                        
                     

                     
                     
                        
                        	
                           
                           parameterServerType

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Machine type for parameter servers

                        
                        
                     

                     
                     
                        
                        	
                           
                           workerCount

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Number of workers in the cluster

                        
                        
                     

                     
                     
                        
                        	
                           
                           parameterServerCount

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Number of parameter servers in the cluster

                        
                        
                     

                     
                     
                        
                        	
                           
                           packageUris

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           The locations of the application's packages and dependencies

                        
                        
                     

                     
                     
                        
                        	
                           
                           pythonModule

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           The module ro run after installing the package

                        
                        
                     

                     
                     
                        
                        	
                           
                           args

                        
                        
                        	
                           
                           [ string ]

                        
                        
                        	
                           
                           Command-line arguments to pass to the module

                        
                        
                     

                     
                     
                        
                        	
                           
                           hyperpameters

                        
                        
                        	
                           
                           HyperparameterSpec

                        
                        
                        	
                           
                           Specifies which parameters to optimize during training

                        
                        
                     

                     
                     
                        
                        	
                           
                           region

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           The target region for running the job

                        
                        
                     

                     
                     
                        
                        	
                           
                           jobDir

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Cloud storage path to contain training outputs

                        
                        
                     

                     
                     
                        
                        	
                           
                           runtimeVersion

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           The version of the Cloud ML Engine to use for training

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            The scaleTier field specifies the desired execution environment for the cluster, and it accepts
               the same values as the --scale-tier flag. The masterType, serverType, and parameterServerType fields get more specific, and identify the type of virtual machine that should be
               used to serve the given role. You can set each of these fields to one of ten strings:
               
            

            
            
               
               	standard: Basic configuration for small to moderate datasets
               

               
               	large_model: High-memory configuration for models with large datasets and many hidden layers
               

               
               	complex_model_s: Provides greater computation than standard configuration
               

               
               	complex_model_m: Twice as many cores and twice as much memory as the complex_model_s configuration
               

               
               	complex_model_l: Twice as many cores and twice as much memory as the complex_model_m configuration
               

               
               	standard_gpu: Similar to the standard configuration, but provides access to an Nvidia Tesla K80 GPU
               

               
               	complex_model_m_gpu: Similar to the standard configuration, but provides access to four Nvidia Tesla K80 GPUs
               

               
               	complex_model_l_gpu: Similar to the standard configuration, but provides access to four Nvidia Tesla K80 GPUs
               

               
               	standard_p100: Similar to the standard configuration, but provides access to an Nvidia Tesla P100 GPU
               

               
               	complex_model_m_p100: Similar to the standard configuration, but provides access to four Nvidia Tesla P100 GPUs
               

               
            

            
            You can identify specific parameters for training by setting the hyperparameters field to an array of HyperparameterSpecs. Each HyperparameterSpec has four fields: 
            

            
            
               
               	goal: Nature of the optimization (MAXIMIZE or MINIMIZE)
               

               
               	params: Array of ParameterSpecs that identify the parameters to optimize during training
               

               
               	maxParallelTrials: Maximum number of training runs to execute in parallel
               

               
               	hyperparameterMetricTag: Identifier for the optimization. TensorBoard uses this tag to label the optimization
                  process
               

               
            

            
            A HyperparameterSpec identifies one or more parameters for the training job to optimize. You can identify
               the parameters of interest by setting the params field to a list of ParameterSpecs. Each ParameterSpec has seven fields: 
            

            
            
               
               	parameterName: The parameter's name, which must be unique among all parameters in the HyperparameterSpec

               
               	type: The parameter's data type, which can be INTEGER, DOUBLE, DISCRETE, CATEGORICAL, or PARAMETER_TYPE_UNSPECIFIED

               
               	minValue: Minimum value of the parameter (required for INTEGER or DOUBLE parameters)
               

               
               	maxValue: Maximum value of the parameter (required for INTEGER or DOUBLE parameters)
               

               
               	categoricalValues: A list of strings that identify the different categories (required for CATEGORICAL parameters)
               

               
               	discreteValues: A list of numbers that identify the different discrete values of the parameter (required
                  for DISCRETE parameters)
               

               
               	scaleType: Nature of the scaling that should be applied (can be NONE, UNIT_LINEAR_SCALE, UNIT_LOG_SCALE, or UNIT_REVERSE_LOG_SCALE)
               

               
            

            
            The ch13/cluster_mnist package is similar to the ch13/cloud_mnist package. The only difference is that it uses a configuration file to define a custom
               cluster. Listing 13-2 presents the content of ch13/cluster_mnist/config.yaml.
 
            
            LISTING 13-2 Configuration File for Custom Cluster Execution
            
 
            
            trainingInput:

            
              scaleTier: CUSTOM

            
              masterType: standard

            
              workerType: standard

            
              parameterServerType: standard

            
              workerCount: 4

            
              parameterServerCount: 2

            
            This configuration file tells the ML Engine to execute the job with four workers and
               two parameter servers. It also states that the workers and parameter servers should
               be executed on standard systems.
            

            
         
         
         
            
            Obtaining the training output

            
            You can configure how a training job produces output by setting the trainingOutput field of your configuration file to a TrainingOutput. Table 13-14 lists the possible fields.
            

            
            
               
                  
                  TABLE 13-14 TrainingOutput Fields
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Field

                        
                        
                        	
                           
                           Type

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           completedTrialCount

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           The number of hyperparameter trials that completed successfully

                        
                        
                     

                     
                     
                        
                        	
                           
                           trials

                        
                        
                        	
                           
                           [ { HyperParameterOutput } ]

                        
                        
                        	
                           
                           Results of hyperparameter trials

                        
                        
                     

                     
                     
                        
                        	
                           
                           consumedMlUnits

                        
                        
                        	
                           
                           number

                        
                        
                        	
                           
                           The number of units of the Machine Learning Engine consumed during the job's execution

                        
                        
                     

                     
                     
                        
                        	
                           
                           isHyperparameterTuningJob

                        
                        
                        	
                           
                           boolean

                        
                        
                        	
                           
                           Whether the job tuned hyperparameters

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            If you set the hyperparameters field of the TrainingInput, you can access the results in the trials field of the TrainingOutput. This is a list of HyperparameterOutputs, and each HyperparameterOutput has four fields: 
            

            
            
               
               	trialId: A string that identifies the trial
               

               
               	hyperparameters: A dictionary that associates parameter names with the trained values
               

               
               	finalMetric: A HyperparameterMetric that identifies the trial's final objective metric
               

               
               	allMetrics: A list of HyperparameterMetrics that contain all recorded object metrics for the trial
               

               
            

            
            The ML engine provides training metrics as HyperparameterMetrics, and each HyperparmeterMetric has two fields: trainingStep and objectiveValue. The trainingStep field identifies the global training step, and objectiveValue identifies the objective value at the given step.
            

            
         
         
         
            
            Setting the prediction input

            
            You can configure the input to a prediction job by setting the file's predictionInput field to a PredictionInput. Table 13-15 lists the fields that you can set in a PredictionInput.
            

            
            
               
                  
                  TABLE 13-15 PredictionInput Fields
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Field

                        
                        
                        	
                           
                           Type

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           dataFormat

                        
                        
                        	
                           
                           DataFormat

                        
                        
                        	
                           
                           Format of the data files

                        
                        
                     

                     
                     
                        
                        	
                           
                           inputPaths

                        
                        
                        	
                           
                           [ string ]

                        
                        
                        	
                           
                           Cloud storage buckets containing the data files

                        
                        
                     

                     
                     
                        
                        	
                           
                           outputPath

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Cloud Storage location for storing output files

                        
                        
                     

                     
                     
                        
                        	
                           
                           maxWorkerCount

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Maximum number of workers to be used for parallel processing

                        
                        
                     

                     
                     
                        
                        	
                           
                           region

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Region in which to launch the prediction job

                        
                        
                     

                     
                     
                        
                        	
                           
                           runtimeVersion

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           The version of the Cloud ML Engine to use for training

                        
                        
                     

                     
                     
                        
                        	
                           
                           batchSize

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Number of records to process per batch

                        
                        
                     

                     
                     
                        
                        	
                           
                           modelName

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Complete name of the model

                        
                        
                     

                     
                     
                        
                        	
                           
                           versionName

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Version of the model to use for prediction

                        
                        
                     

                     
                     
                        
                        	
                           
                           uri

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           Cloud storage location for the mdoel

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            To perform a prediction job, you need to provide a SavedModel and files containing input data. You can identify the format and location of your
               input data by setting the first two fields, dataFormat and inputPaths. To specify the format of your data, you need to set dataFormat to TEXT, JSON, TF_RECORD, TF_RECORD_GZIP, or DATA_FORMAT_UNSPECIFIED.
            

            
            The last three entries form a union called model_version, so you can set only one of the three in a PredictionInput. You can identify your model by setting modelName to a string with the following format: 
            

            
            projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>

            
            If you identify your model with versionName, you need to provide a slightly-different string: 
            

            
            projects/<var>[YOUR_PROJECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>

            
            If the Cloud Storage bucket only contains one model, you can simply set the uri field to the bucket's location.
            

            
         
         
         
            
            Obtaining the prediction output

            
            You can configure the output of a prediction job by setting the file’s predictionOutput field to a PredictionOutput. Table 13-16 lists the fields you can set.
            

            
            
               
                  
                  TABLE 13-16 PredictionOutput Fields
                  

               
               
               
                  
                  
                     
                     
                        
                        	
                           
                           Field

                        
                        
                        	
                           
                           Type

                        
                        
                        	
                           
                           Description

                        
                        
                     

                     
                  
                  
                  
                     
                     
                        
                        	
                           
                           outputPath

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           The Cloud Storage location for storing the prediction output

                        
                        
                     

                     
                     
                        
                        	
                           
                           predictionCount

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           The number of generated predictions

                        
                        
                     

                     
                     
                        
                        	
                           
                           errorCount

                        
                        
                        	
                           
                           string

                        
                        
                        	
                           
                           The number of data instances that produced errors

                        
                        
                     

                     
                     
                        
                        	
                           
                           nodeHours

                        
                        
                        	
                           
                           number

                        
                        
                        	
                           
                           The number of node hours consumed by the prediction job

                           
                        
                        
                     

                     
                  
                  
               

               
            
            
            These fields are straightforward to understand and use. The nodeHours field provides the product of the number of nodes used by the job and the number
               of hours required to complete the job.
            

            
         
         
      
      
   
      
      
         
         Part 4
         

         
         The Part of Tens

         
         IN THIS PART …

         
         Explore ten of the most important Python classes provided by the TensorFlow framework.

         
         Uncover helpful guidelines to follow when training neural networks in machine learning
            applications.
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         The TensorFlow API is immense, comprising hundreds of packages and thousands of modules.
            Given its size, newcomers may find it hard to know which classes to study closely.
            To remedy this confusion, I selected TensorFlow’s ten most important classes and explain
            what the class accomplishes and why it’s so important.
         

         
      
      
      
         
         Tensor

         
         Tensors play a central role in TensorFlow development and serve as the primary objects
            for storing and manipulating data. Optimizers only accept data contained in tensors,
            and image-processing functions require images to be provided as tensors. All neural
            network layers, from dense layers to dropout layers, accept tensors as input and return
            tensors as output.
         

         
         A tensor serves as an N-dimensional array, where N can be zero or more. A tensor’s
            number of dimensions is called the tensor’s rank, and the size of each dimension is called the tensor’s shape. For example, a 3-x-5 matrix has shape [3, 5], and an RGB image whose size is 200
            x 200 would be represented by a tensor with size [200, 200, 3].
         

         
         TensorFlow provides hundreds of functions for creating, transforming, and processing
            tensors (see Chapter 3). You can create a tensor with constant values by calling tf.constant or create a tensor with random values by calling tf.random_normal or tf.random_uniform. You can reshape a tensor with tf.reshape and extract part of a tensor with tf.slice.
         

         
      
      
      
         
         Operation

         
         When the Python interpreter reaches a function that operates on tensors, it doesn't
            execute the operation immediately. Instead, it creates an instance of the Operation class that represents the operation. Every Operation has a property called inputs that contains its input tensors and a property called outputs that contains its output tensors.
         

         
         Every Operation has a property called type that is usually set to the function that created it. For example, if you call tf.add, the corresponding operation will have its type set to add.
         

         
         Other math operations include tf.divide, tf.round, and tf.sqrt. TensorFlow also supports traditional matrix operations, including tf.matmul, tf.diag, and tf.matrix_solve.
         

         
      
      
      
         
         Graph

         
         TensorFlow creates a Tensor instance for each tensor in your application and an Operation for each operation involving tensors. It stores these Tensors and Operations in a data structure called a Graph. Only one Graph can be active at a time, and you can make a new Graph active by calling as_default.
         

         
         The Graph class provides a number of methods for accessing the data contained in the graph.
            You can access a particular tensor with get_tensor_by_name or access all of the graph's operations by calling get_operations.
         

         
         Each Graph stores data in a series of containers called collections. Every collection can be accessed through a particular key, and get_all_collection_keys provides the full list of keys. For example, a graph stores its global variables
            in the collection whose key is tf.GraphKeys.GLOBAL_VARIABLES.
         

         
      
      
      
         
         Session

         
         After you add tensors and operations to a graph, you can execute the graph's operations
            by creating and running a session. You can create a session by calling tf.Session and then launch the session by calling its run method.
         

         
         The first argument of the run method tells the session what processing to perform. If this argument contains tensors,
            the session will compute the elements of each tensor and return the elements in a
            NumPy array. If this argument contains Operations, the session will perform each operation and return the appropriate result.
         

         
         If the questions on StackOverflow are any indication, run's feed_dict confuses many developers. This parameter accepts a dictionary that associates values
            with tensors (usually placeholders) in the graph. But the dictionary’s values can’t be tensors. For this reason, it’s
            generally a good idea to store and process input data using NumPy arrays before executing
            a session.
         

         
      
      
      
         
         Variable

         
         Variables resemble tensors in many respects. They store values in N-dimensional arrays
            and can be operated upon using regular TensorFlow operations. But during training
            operations, applications rely on variables to store the state of the model. For example,
            if an application consists of a neural network, the network’s weights and biases will
            be stored as variables.
         

         
         Another difference is that variables require a different set of methods than tensors.
            For example, after you create a Variable, you need to initialize its value by running a special operation in the session.
            If your application has many variables, you can obtain a combined initialization operation
            by calling tf.global_variables_initializer.
         

         
         At a low level, the goal of training is to set the application's variables to values
            that will bring the model in line with observed data. These variables are critically
            important, so it’s a good idea to store them to checkpoint files with Savers. Chapter 5 explains how to create, initialize, and save variables in a TensorFlow application.
         

         
      
      
      
         
         Optimizer

         
         The disparity between an application’s model and the observed data is called loss. A TensorFlow application reduces loss using an optimizer. In code, you can create
            an optimizer by instantiating a subclass of the Optimizer class. Every optimizer has a minimize method that returns an operation that can be executed in a session.
         

         
         TensorFlow supports a number of different optimization algorithms, and each is represented
            by a different subclass of Optimizer. As an example, the simplest optimization algorithm, the gradient descent method,
            is represented by the GradientDescentOptimizer. But the simplest algorithm is rarely the most effective, and I recommend optimizing
            your applications with the AdamOptimizer or AdagradOptimizer instead.
         

         
      
      
      
         
         Estimator

         
         As discussed in Chapter 12, estimators dramatically simplify the process of developing and deploying machine
            learning algorithms. When you use an estimator, you don't have to worry about sessions
            and graphs. You simply need to know three methods of the Estimator class: train, evaluate, and predict.
         

         
         Another advantage of using estimators is that TensorFlow provides many subclasses
            of Estimator. These canned estimators, such as LinearRegressor and DNNClassifier, make it easy to train and test machine learning. The DNNLinearCombinedClassifier is particularly helpful because it lets you take advantage of wide and deep learning.
         

         
      
      
      
         
         Dataset

         
         One of the most recent changes to the TensorFlow API is the promotion of the tf.contrib.data package to tf.data. This package provides the all-important Dataset class, which TensorFlow recommends for loading and processing data. This class provides
            many powerful methods for batching and transforming data, and in many cases, you can
            perform these operations in a multithreaded manner.
         

         
         The Dataset class is also important because it's the superclass of TextLineDataset and TFRecordDataset. These two classes make it straightforward to read data from text files and TFRecord
            files. Chapter 10 provides a lengthy discussion of these classes and their usage.
         

         
      
      
      
         
         Iterator

         
         The Dataset class provides many powerful capabilities, but it doesn't let you access its data
            directly. To extract tensors from a dataset, you need to create an instance of the
            Iterator class.
         

         
         TensorFlow provides four different ways to iterate through a dataset’s content. The
            simplest is the one-shot iterator, which can iterate through a dataset only once.
            You can reuse initializable and reinitializable iterators, but you’ll need to run
            special initialization operations first. Feedable iterators are the most complicated,
            but you can associate them with multiple datasets and you don’t need to initialize
            them before each iteration.
         

         
      
      
      
         
         Saver

         
         The goal of training is to determine which variables produce the least possible loss.
            Training can take hours or days, so it’s crucial to store the variable’s values during
            and after training. TensorFlow makes this possible by providing the Saver class.
         

         
         Using this class is easy. After you create a Saver instance, you can call save to store the model's state in numbered checkpoint files. You can load the model’s
            variables from the checkpoint files by calling the restore method.
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         In most software development efforts, an application will always do its job if you
            code it correctly. But when you work with neural networks, this isn’t the case. You
            can write flawless code and still end up with lousy results. No matter what the academics
            say, neural network development is not an exact science — there’s still a lot of art
            involved.
         

         
         In this chapter, I present ten recommendations that can help you improve the accuracy
            and performance of your neural networks. These general rules are based on my experience
            and what I’ve learned from other developers and researchers. But keep in mind that
            neural networks are never completely reliable: Even a perfectly coded neural network
            can fail from time to time.
         

         
      
      
      
         
         Select a Representative Dataset

         
         This recommendation is the simplest because it doesn’t involve any math or software
            development. When it comes to training samples, more is better, but size isn’t the only priority. You need to make sure that your training dataset resembles
            the real world. Also, if your application classifies samples into categories, you
            need to make sure that you have a large number of samples for each category.
         

         
         When it comes to image classification, you never know what bizarre features the neural
            network will focus on. For this reason, many developers add low levels of random noise
            to their input samples. This noise shouldn’t obfuscate the image, but should force
            the neural network to pay attention to relevant characteristics.
         

         
      
      
      
         
         Standardize Your Data

         
         When you test a machine learning application or use it for practical prediction, you
            should make sure that the test data statistically resembles the training data. That
            is, the test/prediction data should have the same mean and standard deviation as the
            training data.
         

         
         As discussed in Chapter 7, the process of setting the mean and standard deviation of a dataset is called standardization.
            Many applications standardize their data by setting the mean to 0 and setting the
            standard deviation to 1. In a TensorFlow application, you can accomplish this by calling
            tf.nn.moments and tf.nn.batch_normalization.
         

         
      
      
      
         
         Use Proper Weight Initialization

         
         Researchers have devised a number of mathematical procedures for initializing the
            weights of a neural network. One of the most popular methods is called the Glorot
            method or Xavier method. You can use this method in your applications by calling tf.contrib.layers.xavier_initializer.
         

         
      
      
      
         
         Start with a Small Number of Layers

         
         For complex problems, you probably won't know how many hidden layers to create. Some
            developers assume that larger is better, and construct neural networks with many (more
            than 10) hidden layers. But this increases the likelihood of overfitting, in which
            the neural network becomes focused on your specific training data and fails to analyze
            general data.
         

         
         To avoid overfitting, it’s a good idea to start small. If the accuracy is unacceptable,
            increase the network’s depth until the accuracy reaches a suitable value. In addition
            to reducing the likelihood of overfitting, the start-small method guarantees faster
            execution than the start-large method.
         

         
      
      
      
         
         Add Dropout Layers

         
         In addition to dense layers, I recommend that you add dropout layers to your neural
            networks. A dropout layer sets a percentage of its inputs to 0 before passing the
            signals as output. This reduces the likelihood of overfitting by reducing the codependency
            of the inputs entering the dropout layer.
         

         
         In TensorFlow, you can create a dropout layer by calling tf.nn.dropout. This layer accepts a tensor whose values identify the probability that the corresponding
            input should be discarded.
         

         
      
      
      
         
         Train with Small, Random Batches

         
         After you preprocess your data, initialize your weights, and determine the initial
            structure of your neural network, you’re ready to start training. Rather than train
            with the entire dataset at once, you should split your data into batches. The neural
            network will update its gradients and weights with each batch processed.
         

         
         Reducing the batch size increases the training time, but it also decreases the likelihood
            that the optimizer will settle into a local minimum instead of finding the global
            minimum. It also reduces the dependence of the analysis on the order of the samples.
            You can reduce this dependence further by shuffling batches as training proceeds.
         

         
      
      
      
         
         Normalize Batch Data

         
         Even if you standardize the samples entering your neural network, the mean and variance
            of your data will change as it moves from one hidden layer to the next. For this reason,
            developers normalize the data as it leaves each layer.
         

         
         This normalization involves setting the mean to zero and the standard deviation to
            one. But the process is slightly more complicated because you need to approximate
            the mean and variance of the entire batch. Rather than do the math yourself, I recommend
            calling tf.contrib.layers.batch_norm.
         

         
      
      
      
         
         Try Different Optimization Algorithms

         
         Your choice of optimizer will play a critical role in determining the accuracy and
            performance of your application. While writing this book, I searched many online forums
            for the answer to the question “Which optimization method is best?” But despite decades
            of analysis, researchers haven't reached a consensus.
         

         
         Personally, I like to start with the Adam and Adagrad optimizers, but if you’re not
            getting the performance and accuracy you want, it’s a good idea to try other methods.
            In a TensorFlow application, you set the optimization method by creating an instance
            of an optimizer class, such as tf.train.AdamOptimizer, calling its minimize method, and running the returned operation in a session.
         

         
      
      
      
         
         Set the Right Learning Rate

         
         An optimizer’s learning rate determines how an optimizer updates its weights with
            each training step. If you set the learning rate too high, the optimizer will make
            dramatic changes to the weights, and it may never converge to a solution. If you set
            the learning rate too low, the optimizer will proceed slowly, and it may converge
            to a local minimum instead of a global minimum.
         

         
         Typical learning rates vary from 0.0001 to 0.5, but the best learning rate varies
            from application to application. I recommend starting with a high value and repeatedly
            reducing the learning rate until you’re satisfied with the application’s accuracy
            and performance.
         

         
      
      
      
         
         Check Weights and Gradients

         
         Machine learning applications frequently fail because the weights drop to zero (the
            vanishing gradient problem) or grow very large (the exploding gradient problem). In
            both cases, you may need to adjust the number of layers in your network and/or the
            activation function of each layer.
         

         
         Thankfully, TensorFlow lets you save a layer’s weights and visualize the weights with
            TensorBoard. Chapter 4 introduces TensorBoard and explains how to generate and print summary data for visualization.
            Chapter 5 explains how to visualize training results with TensorBoard.
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