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PREFACE

This book deals with integral transforms involving the so-called H-functions as kernels, or

H-transforms, and their applications. The H-function is de�ned by the Mellin{Barnes type

integral with the integrand containing products and quotients of the Euler gamma functions.

Such a function generalizes most of the known special functions, which means that almost all

integral transforms can be put into the form ofH-transforms. Another generalization, though

a special case of H-transforms, was proposed as the G-transform of the integral transform

with the Meijer G-function as a kernel; this generalization includes the classical Laplace and

Hankel transforms, the Riemann{Liouville fractional integral transforms, the even and odd

Hilbert transforms, the integral transforms with the Gauss hypergeometric function, and

others. However, there are transforms that cannot be reduced to a G-transform but can

be put into the form of H-transforms: the modi�ed Laplace and Hankel transforms, the

Erd�elyi{Kober type fractional integration operators, the modi�ed transforms with the Gauss

hypergeometric function as kernel, the Bessel type integral transforms, the Mittag-Le�er type

integral transforms and others.

The classical Fourier, Laplace, Mellin and Hankel transforms have been widely used in

various problems of mathematical physics and applied mathematics. Such applications in

various �elds have been covered in the books by I.N. Sneddon [1]{[5] and in his survey paper

[6]. These transforms are usually involved in solutions of boundary value problems for models

of ordinary and partial di�erential equations that characterize certain processes. There are

many other problems whose solutions cannot be represented by the above classical integral

transforms but may be characterized by integral transforms with various special functions as

kernels.

Among the integral transforms with special function kernels, the integral transforms in-

volving functions of hypergeometric and Bessel types, as well as fractional integral transforms,

have often arisen in applied problems. For example, integral transforms with Bessel type ker-

nels are important in many axially symmetric problems. When we want to get solutions that

are regular on the axis of symmetry, such a solution involves the Hankel transform with the

Bessel function of the �rst kind in the kernel (I.N. Sneddon [4]). When the solution has

a singularity near the axis of symmetry, the Struve transform and its reciprocal containing

Neumann and Struve functions are involved in this solution (P.G. Rooney [4]).

The interest in integral transforms with special function kernels is also motivated by the

desire to study the corresponding integral equations of the �rst kind and of the so-called dual

and triple equations that are also encountered in applications. The results in these �elds were

presented in a series of books including the above books by I.N. Sneddon. In particular, the

results in these �elds obtained by methods of fractional calculus were characterized in Chapter

7 of the book by S.G. Samko, A.A. Kilbas and O.I. Marichev [1]. We also note the book by

H.M. Srivastava and R.G. Buschman [4], which contains many examples of the convolution

integral equations with special function kernels.

ix
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Integral transforms with various special function kernels have been investigated by many

authors. They have basically been studied in L1 and L2-spaces or in certain spaces of tested

and generalized functions. The results in the former were presented as examples in the books

by E.C. Titchmarsh [3], I.N. Sneddon [1], and V.A. Ditkin and A.P. Prudnikov [1] together

with the theory of classical transforms. These publications involved the one-dimensional

integral transform, while the book by Yu.A. Brychkov, H.-J. Glaeske, A.P. Prudnikov and Vu

Kim Tuan [1] was devoted to the multidimensional case. The results for integral transforms

in spaces of tested and generalized functions appeared in the books by Yu.A. Brychkov and

A.P. Prudnikov [1] and R.S. Pathak [11].

It should be noted that many new results, obtained recently in the theory of integral

transforms with special function kernels and with more general H-function kernels, were not

reected in the monographs in the above literature. As for H-transforms, only some results

in the theory of these transforms in L1- and L2-spaces were presented in Chapter 3 of the

book by H.M. Srivastava, K.C. Gupta and S.P. Goyal [1].

The interest of the present authors in H-transforms was motivated by generalizations

of the integral transforms with hypergeometric and Bessel type kernels, which are involved

in solutions of integral and di�erential equations of fractional order. Investigation of more

general integral transforms with H-function kernels allows us to look more clearly at the

problems with these equations, which are basically related to the mapping properties and

asymptotic behavior of their solutions. These problems were solved by extending the range

of parameters of the H-transforms. Such a result was obtained, in turn, by the extension of

the parameters of the H-function under its asymptotic behavior near zero and in�nity.

In this book we present the results from the theory of integral transforms with H-function

kernels in weighted spaces of Lebesgue r-summable functions L�;r (for real � and 1 5 r 5 1,

see Section 3.1) on the half-axis R+ = (0;1). Properties such as the boundedness, including

the one-to-one property of the map, the representation, and the ranges of H-transforms in

L�;r-spaces are studied together with their inversion formulas. Applications are given to

integral transforms with kernels involving the Meijer G-function and special functions of the

hypergeometric and Bessel types.

Our investigations are based on the method of Mellin multipliers developed by Rooney

[2] and on the asymptotic expansions of the H-function at zero and in�nity. The latter were

previously proved by the authors by developing the approach suggested by B.L.J. Braaksma

[1]. These asymptotic estimates allow us not only to characterize the L�;r-theory of the

H-transforms and integral transforms with special functions as kernels but also to extend

and more precisely characterize the known statements in the theory of the H-function.

When � = 1=r, the spaces L�;r coincide with the spaces L
r(R+) of r-summable functions on

R+, and one may deduce the Lr-theory of the integral transformswithH- and G-functions and

special functions of hypergeometric and Bessel types as kernels from our statements proved for

the L�;r-spaces. These results generalize the known assertions on the boundedness properties

of integral transforms with special function kernels in L2- and Lr-spaces (1 < r < 1) in the

main.

The book consists of eight chapters. The results presented in the main body of the chapters

are, as a rule, given with complete proofs. Distinctive historical survey sections complete every
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chapter, and are given in Sections 1.11, 2.10, 3.7, 4.11, 5.7, 6.8, 7.12 and 8.14. These sections

provide historical comments on the content of the previous chapter and contain discussions

and formulations of the results closely related to the subject matter of the chapter but not

included in the main text.

The �rst two chapters contain various results from the theory of the H-function. Chapter

1 deals with the existence and representations of the H-function, its explicit power and power-

logarithmic expansions, and the asymptotic expansions near zero and in�nity. Chapter 2 is

devoted to other properties of the H-function such as elementary formulas, di�erentiation and

recurrence relations, expansion and multiplication formulas and the transformation formulas

of Mellin, Laplace and Hankel transforms, and fractional integro-di�erentiation. General

integral formulas involving the H-function are considered together with the special cases.

Chapters 3{5 present the L�;r-theory of integral transforms with H-function kernels. The

mapping properties such as the boundedness, the one-to-one properties of the map, and the

representation of the H-transforms in L�;2-space are proved in Chapter 3. These results are

extended to L�;r-space with arbitrary r (1 5 r 5 1) in Chapter 4, in which the rangeH(L�;r)

is also characterized and inversion relations are given. Chapter 5 deals with L�;r-theory of

the modi�ed integral transform with H-function kernels that are obtained fromH-transforms

by elementary transforms of translation, dilatation, reection, and multiplication by a power

function.

The last three chapters contain the results from the L�;r-theory of integral transforms

with special function kernels. The integral transforms with the Meijer G-function as kernel are

considered in Chapter 6 together with the modi�edG-transforms. Chapter 7 is devoted to the

hypergeometric type integral transforms such as the Laplace and Stieltjes type transforms, the

transforms that contain Whittaker and parabolic cylinder functions, hypergeometric functions

and Wright functions as kernels. Bessel type integral transforms are studied in Chapter

8, in which Hankel type transforms including the Bessel function of the �rst kind and its

generalizations in the kernels are treated, as well as cosine and sine transforms, even and odd

Hilbert transforms, and transforms with Neumann, Struve and Macdonald functions, modi�ed

Macdonald functions and Lommel{Maitland functions as kernels.

We note that the asymptotic estimates in Chapter 1 may be extended considerably be-

yond the known range of parameters for the H-function. Furthermore, the statements in

Chapter 2 clarify the known assertions, and the results from L�;r-theory of the H-transforms

in Chapters 3 and 4 allow us to generalize the known investigations for the modi�ed H- and

G-transforms in Chapters 5 and 6 as well as for the integral transforms with kernel functions

of hypergeometric and Bessel types in Chapters 7 and 8. We also note that most of the results

in Chapters 5{7 were not published previous to our articles.

This book reects the above investigationsmade by ourselves and in cooperation with other

mathematicians. More detailed information can be found in the historical survey sections.

We must note that the L�;2-theory results of the H-transforms and their inversions presented

in Chapter 3 and Sections 4.9{4.10 were obtained together with S.A. Shlapakov, most of the

results on the L�;r-theory of theH-transforms in Sections 4.1{4.8 were obtained together with

H.-J. Glaeske and S.A. Shlapakov, and some of the results in Chapter 8 were proved together

with H.-J. Glaeske, J.J. Trujillo, J. Rodriguez, M. Rivero, B. Bonilla, L. Rodriguez and
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A.N. Borovco. We also note that the boundedness, the representation, and the ranges of H-

transforms in L�;r-spaces were investigated by J.J. Betancor and C. Jerez Diaz, independently.

The bibliography consists of 578 entries, published up to 2002. We hope that we have

listed all publications concerning one-dimensional integral transformswithH-function kernels.

However, it cannot be considered a complete bibliography of the investigations in the �elds of

H-function and one-dimensional integral transforms with special function kernels. Interested

readers may �nd many additional references in the books by A.M. Mathai and R.K. Saxena

[2] and H.M. Srivastava, K.C. Gupta and S.P. Goyal [1] for the former, and in the books

by H.M. Srivastava and R.G. Buschman [4], S.G. Samko, A.A. Kilbas and O.I. Marichev [1,

Chapter 7], Yu.A. Brychkov and A.P. Prudnikov [1], R.S. Pathak [11], A.I. Zayed [1] and L.

Debnath [1] for the latter. One can also �nd references for works on multidimensional integral

transforms in the book by Yu.A. Brychkov, H.-J. Glaeske, A.P. Prudnikov and Vu Kim Tuan

[1].

We would like to express our deep gratitude to the late Professor Anatolii Platonovich

Prudnikov for his interest in our investigations and valuable discussions.

The preparation of this book was supported in part by the Belarusian Fundamental Re-

search Fund, and by the Science Research Promotion Fund from the Japan Private School

Promotion Foundation.



Chapter 1

DEFINITION, REPRESENTATIONS AND

EXPANSIONS OF THEH-FUNCTION

1.1. De�nition of the H-Function

For integersm;n; p; q such that 0 5 m 5 q; 0 5 n 5 p; for ai; bj 2 C with C ; the set of complex

numbers, and for �i; �j 2 R+ = (0;1) (i = 1; 2; � � � ; p; j = 1; 2; � � � ; q); theH-functionHm;n
p;q (z)

is de�ned via a Mellin{Barnes type integral in the form

Hm;n
p;q (z) � Hm;n

p;q

"
z

�����
(ai; �i)1;p

(bj; �j)1;q

#
� Hm;n

p;q

"
z

�����
(ap; �p)

(bq; �q)

#

� Hm;n
p;q

"
z

�����
(a1; �1); � � � ; (ap; �p)

(b1; �1); � � � ; (bq; �q)

#
=

1

2�i

Z
L

H
m;n
p;q (s)z�sds (1.1.1)

with

H
m;n
p;q (s) �Hm;n

p;q

"
(ai; �i)1;p

(bj; �j)1;q

����� s
#
� Hm;n

p;q

"
(ap; �p)

(bq; �q)

����� s
#

=

mY
j=1

�(bj + �js)
nY

i=1

�(1� ai � �is)

pY
i=n+1

�(ai + �is)
qY

j=m+1

�(1� bj � �js)

: (1.1.2)

Here

z�s = exp[�sflog jzj+ i arg zg]; z 6= 0; i =
p�1; (1.1.3)

where log jzj represents the natural logarithm of jzj and arg z is not necessarily the principal

value. An empty product in (1.1.2), if it occurs, is taken to be one, and the poles

bjl =
�bj � l

�j
(j = 1; � � � ; m; l = 0; 1; 2; � � �) (1.1.4)

of the gamma functions �(bj + �js) and the poles

aik =
1� ai + k

�i

(i = 1; � � � ; n; k = 0; 1; 2; � � �) (1.1.5)

1
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of the gamma functions �(1� ai � �is) do not coincide:

�i(bj + l) 6= �j(ai � k � 1) (i = 1; � � � ; n; j = 1; � � � ; m; k; l = 0; 1; 2; � � �): (1.1.6)

L in (1.1.1) is the in�nite contour which separates all the poles bjl in (1.1.4) to the left and

all the poles aik in (1.1.5) to the right of L; and has one of the following forms:

(i) L = L�1 is a left loop situated in a horizontal strip starting at the point �1 + i'1

and terminating at the point �1+ i'2 with �1 < '1 < '2 < +1;

(ii) L = L+1 is a right loop situated in a horizontal strip starting at the point +1+ i'1

and terminating at the point +1+ i'2 with �1 < '1 < '2 < +1:

(iii) L = Li1 is a contour starting at the point  � i1 and terminating at the point

 + i1; where  2 R= (�1;+1).

The properties of the H-function Hm;n
p;q (z) depend on the numbers a�; �; �; �; a�1 and a�2

which are expressed via m; n; p; q; ai; �i (i = 1; 2; � � � ; p) and bj ; �j (j = 1; 2; � � � ; q) by the

following relations:

a� =
nX

i=1

�i �
pX

i=n+1

�i +
mX
j=1

�j �
qX

j=m+1

�j ; (1.1.7)

� =
qX

j=1

�j �
pX

i=1

�i; (1.1.8)

� =
pY

i=1

���i
i

qY
j=1

�
�j

j ; (1.1.9)

� =
qX

j=1

bj �
pX

i=1

ai +
p� q

2
; (1.1.10)

a�1 =
mX
j=1

�j �
pX

i=n+1

�i; (1.1.11)

a�2 =
nX

i=1

�i �
qX

j=m+1

�j ; (1.1.12)

a�1 + a�2 = a�; a�1 � a�2 = �; (1.1.13)

� =
mX
j=1

bj �
qX

j=m+1

bj +
nX

i=1

ai �
pX

i=n+1

ai; (1.1.14)

c� = m+ n� p+ q

2
: (1.1.15)

An empty sum in (1.1.7), (1.1.8), (1.1.10){(1.1.12), (1.1.14) and an empty product in (1.1.9),

if they occur, are taken to be zero and one, respectively.
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1.2. Existence and Representations

The existence of the H-function Hm;n
p;q (z) may be recognized by the convergence of the integral

in (1.1.1) which depends on the asymptotic behavior of the function Hm;n
p;q (s) in (1.1.2) at

in�nity. Such an asymptotic is based on the following relations for the gamma function �(z)

of z = x+ iy (x; y 2 R):
j�(x+ iy)j �

p
2�jxjx�1=2e�x��[1�sign(x)]y=2 (jxj ! 1) (1.2.1)

and

j�(x+ iy)j �
p
2�jyjx�1=2e�x��jyj=2 (jyj ! 1); (1.2.2)

which are proved by using the Stirling relation (see Erd�elyi, Magnus, Oberhettinger and

Tricomi [1, 1.18(2)])

�(z) �
p
2�e(z�1=2) log ze�z (z !1): (1.2.3)

Remark 1.1. The relation 1.18(6) in Erd�elyi, Magnus, Oberhettinger and Tricomi [1]

needs correction with the addition of the multiplier ex in the left-hand side and must be

replaced by

lim
jyj!1

j�(x+ iy)j ex+�jyj=2jyj1=2�x =
p
2�: (1.2.4)

The following assertions follow from (1.1.2), (1.2.1) and (1.2.2).

Lemma 1.1. For t; � 2 R; there hold the estimates

���Hm;n
p;q (t+ i�)

��� � A

�
e

t

���t

�ttRe(�) (t! +1) (1.2.5)

with

A = (2�)c
�

eq�m�n

qY
j=1

h
�
Re(bj)�1=2
j e�Re(bj)

i nY
i=1

e�[��i+Im(ai)]

pY
i=1

h
�
Re(ai)�1=2
i e�Re(ai)

i qY
j=m+1

e�[��j+Im(bj)]

; (1.2.6)

and

���Hm;n
p;q (t+ i�)

��� � B

�
e

jtj
��jtj

��jtjjtjRe(�) (t!�1) (1.2.7)

with

B = (2�)c
�

eq�m�n

qY
j=1

h
�
Re(bj)�1=2
j e�Re(bj)

i pY
i=n+1

e�[��i+Im(ai)]

pY
i=1

h
�
Re(ai)�1=2
i e�Re(ai)

i mY
j=1

e�[��j+Im(bj)]

: (1.2.8)
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Lemma 1.2. For �; t 2 R; there holds the estimate

���Hm;n
p;q (� + it)

��� � Cjtj��+Re(�)e��[jtja
�+Im(�)sign(t)]=2 (jtj ! 1) (1.2.9)

uniformly in � on any bounded interval in R; where

C = (2�)c
�

e�c
�����Re(�)��

pY
i=1

�
1=2�Re(ai)
i

qY
j=1

�
Re(bj)�1=2
j (1.2.10)

and � is de�ned in (1.1.14).

Let '1; '2;  2 R and l1; l2 and l be the lines

l1 = ft + i'1 : t 2 Rg; l2 = ft+ i'2 : t 2 Rg ('1 < '2); l = f + it : t 2 Rg:

From Lemmas 1.1 and 1.2 we obtain the following asymptotic relations at in�nity for the

integrand in (1.1.1) on the lines l1; l2 and l :

���Hm;n
p;q (s)z�s

��� � Bie
'i arg z

�
e

jtj
��jtj � jzj

�

�jtj
jtjRe(�) (1.2.11)

(s = t+ i'i 2 li; i = 1; 2)

as t!�1;

���Hm;n
p;q (s)z�s

��� � Aie
'i arg z

�
e

t

���t � �

jzj
�t

tRe(�) (1.2.12)

(s = t+ i'i 2 li; i = 1; 2)

as t! +1; and

���Hm;n
p;q (s)z�s

��� � C1e
�[ log jzj+�Im(�)sign(t)=2]jtj�+Re(�)e��jtja

�=2+t arg z (1.2.13)

(s =  + it 2 l)

as jtj ! 1. Here A1 and A2; B1 and B2 are given in (1.2.6) and (1.2.8) with � being replaced

by '1 and '2; respectively, and C1 by (1.2.10) with � being replaced by .

The conditions for the existence of the H-function follow by virtue of these relations.

Theorem 1.1. Let a�;�; � and � be given in (1:1:7){(1:1:10): Then the H-function

Hm;n
p;q (z) de�ned by (1:1:1) makes sense in the following cases:

L = L�1; � > 0; z 6= 0; (1.2.14)

L = L�1; � = 0; 0 < jzj < �; (1.2.15)

L = L�1; � = 0; jzj = �; Re(�) < �1; (1.2.16)

L = L+1; � < 0; z 6= 0; (1.2.17)

L = L+1; � = 0; jzj > �; (1.2.18)
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L = L+1; � = 0; jzj = �; Re(�) < �1; (1.2.19)

L = Li1; a� > 0; jarg zj <
a��

2
; z 6= 0; (1.2.20)

L = Li1; a� = 0; � +Re(�) < �1; arg z = 0; z 6= 0: (1.2.21)

Remark 1.2. The results of Theorem 1.1 in the cases (1.2.16), (1.2.19) and (1.2.21) are

more precise than those in Prudnikov, Brychkov and Marichev [3, 8.3.1].

The estimate (1.2.11) holds for t!�1 uniformly on the set which has a positive distance

to the points bjl in (1.1.4) and which does not contain any point to the right of L�1. The

same is true for the estimate (1.2.12) being valid for t ! +1 uniformly on the set with

a positive distance to the points aik in (1.1.5) and containing no point to the left of L+1.

Therefore using Theorem 1.1 and the theory of residues, we obtain the following result:

Theorem 1.2. (i) If the conditions (1:1:6) and (1:2:14) or (1:2:15) are satis�ed; then

the H-function (1:1:1) is an analytic function of z and

Hm;n
p;q (z) =

mX
j=1

1X
l=0

Res
s=bjl

h
H

m;n
p;q (s)z�s

i
; (1.2.22)

where bjl are given in (1:1:4):

(ii) If the conditions (1:1:6) and (1:2:17) or (1:2:18) are satis�ed; then the H-function

(1:1:1) is an analytic function of z and

Hm;n
p;q (z) = �

nX
i=1

1X
k=0

Res
s=aik

h
H

m;n
p;q (s)z�s

i
; (1.2.23)

where aik are given in (1:1:5):

(iii) If the conditions in (1:1:6) and (1:2:20) are satis�ed; then the H-function (1:1:1) is

an analytic function of z in the sector j arg zj < a��=2.

1.3. Explicit Power Series Expansions

In view of the cases (i) and (ii) of Theorem 1.2 we may establish the series representations

for Hm;n
p;q (z); in the respective cases of the poles bjl in (1.1.4) of the gamma functions �(bj +

�js) (j = 1; � � � ; m) being simple:

�j(bi + k) 6= �i(bj + l) (i 6= j; i; j = 1; � � � ; m; k; l = 0; 1; 2; � � �) (1.3.1)

and the poles aik in (1.1.5) of �(1� ai + �is) (i = 1; � � � ; n) also being simple:

�j(1� ai + k) 6= �i(1� aj + l) (i 6= j; i; j = 1; � � � ; n; k; l = 0; 1; 2; � � �): (1.3.2)

First we consider the former case. To apply Theorem 1.2(i) we evaluate the residues of

H
m;n
p;q (s)z�s at the points s = bjl. For this, we use the property in Marichev [1, (3.39)], that
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is, in a neighborhood of the poles z = �k (k = 0;�1;�2; � � �) the gamma function �(z) can

be extended in powers of z + k = �:

�(z) = �(�k + �) =
(�1)k

k!�

h
1 + � (1 + k) +O

�
�2
�i

(�! 0); (1.3.3)

where

 (z) =
�0(z)

�(z)
(1.3.4)

is the psi function. Then, since the poles bjl are simple, we have

Res
s=bjl

h
H

m;n
p;q (s)z�s

i
= h�jlz

�bjl (j = 1; � � � ; m; l = 0; 1; 2; � � �); (1.3.5)

where

h�jl = lim
s!bjl

h
(s� bjl)H

m;n
p;q (s)

i

=
(�1)l

l!�j

mY
i=1
i6=j

�

 
bi � [bj + l]

�i
�j

!
nY

i=1

�

 
1� ai + [bj + l]

�i
�j

!

pY
i=n+1

�

 
ai � [bj + l]

�i
�j

! qY
i=m+1

�

 
1� bi + [bj + l]

�i
�j

! : (1.3.6)

Thus we obtain the result:

Theorem 1.3. Let the conditions in (1:1:6) and (1:3:1) be satis�ed and let either

� > 0; z 6= 0 or � = 0; 0 < jzj < �. Then the H-function (1:1:1) has the power series

expansion

Hm;n
p;q (z) =

mX
j=1

1X
l=0

h�jlz
(bj+l)=�j ; (1.3.7)

where the constants h�jl are given in (1.3.6).

Similarly we consider the case (1.3.2) and from Theorem 1.2(ii) come to the statement:

Theorem 1.4. Let the conditions in (1:1:6) and (1:3:2) be satis�ed and let either

� < 0; z 6= 0 or � = 0; jzj > �. Then the H-function (1:1:1) has the power series expansion

Hm;n
p;q (z) =

nX
i=1

1X
k=0

hikz
(ai�1�k)=�i ; (1.3.8)

where the constants hik have the forms

hik = lim
s!aik

h
�(s� aik)H

m;n
p;q (s)

i

=
(�1)k

k!�i

mY
j=1

�

�
bj + [1� ai + k]

�j
�i

� nY
j=1
j 6=i

�

�
1� aj � [1� ai + k]

�j
�i

�

pY
j=n+1

�

�
aj + [1� ai + k]

�j
�i

� qY
j=m+1

�

�
1� bj � [1� ai + k]

�j
�i

� (1.3.9)
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in view of the relation

Res
s=aik

[Hm;n
p;q (s)z�s] = hikz

�aik = hikz
(ai�1�k)=�i : (1.3.10)

1.4. Explicit Power-Logarithmic Series Expansions

When the conditions in (1.1.6) are satis�ed, but some poles bjl in (1.1.4) or aik in (1.1.5)

coincide, we can also prove series representations for Hm;n
p;q (z) by using Theorem 1.2 in cases

(i) and (ii). First we consider the case (i). Let b � bjl be one of the points (1.1.4) for

which some other poles of the gamma functions �(bj + �js) (j = 1; � � � ; m) coincide and let

N� � N�
jl be its overlapping order. This means that there exist j1; � � � ; jN� 2 f1; � � � ; mg and

lj1 ; � � � ; ljN�
2 f0; 1; 2; � � �g such that

b � bjl = �
bj1 + lj1
�j1

= � � � = �
bjN�

+ ljN�

�jN�

: (1.4.1)

Thus Hm;n
p;q (s)z�s has a pole at b of order N� and hence

Res
s=b

h
H

m;n
p;q (s)z�s

i
=

1

(N� � 1)!
lim
s!b

h
(s� b)N

�

H
m;n
p;q (s)z�s

i(N��1)
: (1.4.2)

Denoting

H
�
1(s) = (s� b)N

�

jN�Y
j=j1

�(bj + �js); H
�
2(s) =

H
m;n
p;q (s)

jN�Y
j=j1

�(bj + �js)

(1.4.3)

and using the Leibniz rule, we haveh
(s� b)N

�

H
m;n
p;q (s)z�s

i(N��1)

=
N��1X
n=0

 
N� � 1

n

!
[H�

1(s)]
(N��1�n) �

H
�
2(s)z

�s�(n)

=
N��1X
n=0

 
N� � 1

n

!
[H�

1(s)]
(N��1�n)

nX
i=0

 
n

i

!
(�1)i [H�

2(s)]
(n�i) z�s[log z]i

= z�s
N��1X
i=0

(
N��1X
n=i

(�1)i
 
N� � 1

n

! 
n

i

!
[H�

1(s)]
(N��1�n) [H�

2(s)]
(n�i)

)
[log z]i:

Substituting this into (1.4.2), we obtain

Res
s=bjl

h
H

m;n
p;q (s)z�s

i
= z(bj+l)=�j

N�

jl
�1X

i=0

H�
jli[log z]

i; (1.4.4)

where

H�
jli � H�

jli(N
�
jl; bjl)

=
1

(N�
jl � 1)!

N�

jl
�1X

n=i

(�1)i
 
N�

jl � 1

n

! 
n

i

!
[H�

1(bjl)]
(N�

jl
�1�n) [H�

2(bjl)]
(n�i) : (1.4.5)



8 Chapter 1. De�nition; Representations and Expansions of the H-function

In particular, if we pick the case l = 0 and i = N�
j0 � 1 which will be treated later (cf.

Theorem 1.12), we have from (1.3.3) and (1.4.3) by setting N�
j � N�

j0

H�
j � H�

j;0;N�

j
�1(N

�
j ; bj0) =

(�1)N
�

j�1

(N�
j � 1)!

H
�
1(bj0)H

�
2(bj0)

=
(�1)N

�

j�1

(N�
j � 1)!

8<
:

N�

jY
k=1

(�1)jk

jk!�jk

9=
;

mY
i=1

i 6=j1 ;���;jN�

j

�

 
bi � bj

�i

�j

!
nY
i=1

�

 
1� ai + bj

�i

�j

!

pY
i=n+1

�

 
ai � bj

�i

�j

!
qY

i=m+1

�

 
1� bi + bj

�i

�j

! : (1.4.6)

Thus in view of Theorem 1.2(i), we obtain:

Theorem 1.5. Let the conditions in (1:1:6) be satis�ed and let either � > 0; z 6= 0 or

� = 0; 0 < jzj < �. Then the H-function (1:1:1) has the power-logarithmic series expansion

Hm;n
p;q (z) =

X
j;l

0
h�jlz

(bj+l)=�j +
X
j;l

00
N�

jl
�1X

i=0

H�
jliz

(bj+l)=�j [log z]i: (1.4.7)

Here
P0 and

P00 are summations taken over j; l (j = 1; � � � ; m; l = 0; 1; � � �) such that the

gamma functions �(bj + �js) have simple poles and poles of order N�
jl at the points bjl;

respectively; and the constants h�jl are given in (1:3:6) while the constants H�
jli are given by

(1.4.5).

Similarly we consider the case (ii) in Theorem 1.2. Let a = aik be one of the points (1.1.5)

for which some other poles of �(1 � ai � �is) coincide and let N = Nik be its overlapping

order. This means that there exist i1; � � � ; iN 2 f1; � � � ; ng and ki1 ; � � � ; kiN 2 N0 � f0; 1; 2; � � �g

such that

a � aik =
1� ai1 + ki1

�i1

= � � �=
1� aiN + kiN

�iN

: (1.4.8)

Then the integrand Hm;n
p;q (s)z�s in (1.1.1) has a pole at a of order N . Denoting

H1(s) = (s� a)N
iNY
i=i1

�(1� ai � �is); H2(s) =
H

m;n
p;q (s)

iNY
i=i1

�(1� ai � �is)

; (1.4.9)

similarly to the previous case we obtain

Res
s=aik

h
H

m;n
p;q (s)z�s

i
= z(ai�1�k)=�i

Nik�1X
j=0

Hikj [log z]
j ; (1.4.10)

where

Hikj � Hikj(Nik; aik)

=
1

(Nik � 1)!

8<
:

Nik�1X
n=j

(�1)j
 
Nik � 1

n

! 
n

j

!
[H1(aik)]

(Nik�1�n)[H2(aik)]
(n�j)

9=
; : (1.4.11)
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For the special choice of k = 0 and j = Ni0 � 1; (1.4.9) and (1.3.3) yield, by setting

Ni � Ni0,

Hi � Hi;0;Ni�1(Ni; ai0) =
(�1)Ni�1

(Ni � 1)!
H1(ai0)H2(ai0)

=
(�1)Ni�1

(Ni � 1)!

0
@ NiY
k=1

(�1)ik�1

ik!�ik

1
A

�

mY
j=1

�

�
bj + [1� ai]

�j
�i

� nY
j=1

j 6=i1;���;iNi

�

�
1� aj � [1� ai]

�j
�i

�

pY
j=n+1

�

�
aj + [1� ai]

�j
�i

� qY
j=m+1

�

�
1� bj � [1� ai]

�j
�i

� ; (1.4.12)

which will appear in Theorem 1.8, below.

Therefore Theorem 1.2(ii) implies:

Theorem 1.6. Let the conditions in (1:1:6) be satis�ed and let either � < 0; z 6= 0 or

� = 0; jzj > �. Then the H-function (1:1:1) has the power-logarithmic series expansion

Hm;n
p;q (z) =

X
i;k

0
hikz

(ai�1�k)=�i +
X
i;k

00
Nik�1X
j=0

Hikjz
(ai�1�k)=�i [log z]j : (1.4.13)

Here
P0 and

P00 are summations taken over i; k (i = 1; � � � ; n; k = 0; 1; � � �) such that the

gamma functions �(1 � ai � �is) have simple poles and poles of order Nik at the points aik;

respectively, and the constants hik are given in (1:3:9) while the constants Hikj are given by

(1.4.11).

1.5. Algebraic Asymptotic Expansions at In�nity

When � 5 0; the results in Theorems 1.4 and 1.6 give the power and power-logarithmic

asymptotic expansions of the H-function near in�nity, namely

Hm;n
p;q (z) �

nX
i=1

1X
k=0

hikz
(ai�1�k)=�i (z !1); (1.5.1)

when the poles aik in (1.4.8) of the gamma functions �(1 � ai � �is) (1 5 i 5 n) do not

coincide, and

Hm;n
p;q (z) �

X
i;k

0
hikz

(ai�1�k)=�i +
X
i;k

00
Nik�1X
j=0

Hikjz
(ai�1�k)=�i [log z]j (z !1); (1.5.2)

when some poles aik coincide, where the summations in
P0 and

P00 are taken over i; k (i =

1; � � � ; n; k = 0; 1; 2; � � �) as in Theorem 1.6 and Nik is the orders of the poles.

If � > 0; a� > 0 and the conditions in (1.1.6) hold, then L = L�1 and the asymptotic

expansion of the H-function at in�nity has the form

Hm;n
p;q (z) �

nX
i=1

1X
k=0

Res
s=�aik

[Hm;n
p;q (�s)zs] =

nX
i=1

1X
k=0

Res
s=aik

[Hm;n
p;q (s)z�s] (1.5.3)

�
z !1; jarg zj <

a��

2

�
:
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This result was proved by Braaksma [1, (2.16)]. He considered the H-function in the form

Hm;n
p;q (z) =

1

2�i

Z
L+1

H
m;n
p;q (�s)zsds (1.5.4)

and developed the method to �nd the asymptotic expansion of this integral in the cases � > 0

and � = 0; 0 < jzj < �: This method is based on the Cauchy theorem and the residue theory,

according to which the contour L = L+1 is replaced by two other paths L1 and L2, being

contours surrounding L, and the integral (1.5.4) can be represented in the form

Hm;n
p;q (z) = Qw(z) +

1

2�i

Z
L1

H
m;n
p;q (�s)zsds�

1

2�i

Z
L2

H
m;n
p;q (�s)zsds; (1.5.5)

where Qw(z) is the sum of residues of the function Hm;n
p;q (�s)zs at some points aik given in

(1.1.5).

When a� > 0, two paths of integration in (1.5.5) may be replaced by the line parallel to

the imaginary axis:

Hm;n
p;q (z) = Qw(z) +

1

2�i

Z w�i1

w+i1
H

m;n
p;q (�s)zsds; (1.5.6)

where w is a certain real constant. It follows from here that, if � = 0, Hm;n
p;q (z) can be

analytically continued into the sector

j arg(z)j <
a��

2
; (1.5.7)

and if � > 0, the estimate

Hm;n
p;q (z) = Qw(z) +O(zw) (1.5.8)

and hence (1.5.3) holds for jzj ! 1 uniformly on every closed sector of (1.5.7).

It follows from (1.5.3) that the H-function (with � > 0; a� > 0) also has the asymp-

totic expansions (1.5.1) and (1.5.2) in the cases when the poles aik of the gamma functions

�(1� ai � �is) (1 5 i 5 n; k = 0; 1; 2; � � �) do not coincide and coincide, respectively. By the

Cauchy theorem the results above are also valid for the H-function with L = Li1 and a� > 0

in the sector jarg zj < a��=2.

Theorem 1.7. Let the conditions in (1:1:6) and (1:3:2) be satis�ed and let either � 5 0

or � > 0; a� > 0. Then the asymptotic expansion of Hm;n
p;q (z) near in�nity is given in (1:5:1)

and the principal terms of this asymptotic have the form

Hm;n
p;q (z) =

nX
i=1

h
hiz

(ai�1)=�i + o
�
z(ai�1)=�i

�i
(z !1); (1.5.9)

where jarg zj < a��=2 for � > 0; a� > 0 and

hi � hi0 =
1

�i

mY
j=1

�

�
bj � (ai � 1)

�j
�i

� nY
j=1
j 6=i

�

�
1� aj + (ai � 1)

�j
�i

�

pY
j=n+1

�

�
aj � (ai � 1)

�j
�i

� qY
j=m+1

�

�
1� bj + (ai � 1)

�j
�i

� : (1.5.10)
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Corollary 1.7.1. Let the assumptions of Theorem 1:7 be satis�ed and let i0 (1 5 i0 5 n)

be an integer such that

Re(ai0)� 1

�i0
= max

15i5n

�
Re(ai)� 1

�i

�
: (1.5.11)

Then there holds the asymptotic estimate

Hm;n
p;q (z) = hi0z

(ai0�1)=�i0 + o
�
z(ai0�1)=�i0

�
(z !1); (1.5.12)

where jarg zj < a��=2 for� > 0; a� > 0; and hi0 is given in (1:5:10)with i = i0. In particular,

Hm;n
p;q (z) = O (z�) (z !1); (1.5.13)

where � = max
15i5n

[fRe(ai)� 1g=�i] and jarg zj < a��=2 when � > 0; a� > 0.

Theorem 1.8. Let the conditions in (1:1:6) be satis�ed and let either � 5 0 or � > 0;

a� > 0. Let some poles of the gamma functions �(1 � ai � �is) (i = 1; � � � ; n) coincide and

Nik be the orders of these poles. Then the asymptotic expansion of Hm;n
p;q (z) near in�nity is

given in (1:5:2) and the principal terms of this asymptotic have the form

Hm;n
p;q (z) =

X
i

0 h
hiz

(ai�1)=�i + o
�
z(ai�1)=�i

�i

+
X
i

00 h
Hiz

(ai�1)=�i[log z]Ni�1 + o
�
z(ai�1)=�i[log z]Ni�1

�i
(z !1); (1.5.14)

where jarg zj < a��=2 for � > 0; a� > 0. Here
P0 and

P00 are summations taken over

i (i = 1; � � � ; n) such that the gamma functions �(1� ai ��is) have simple poles and poles of

order Ni � Ni0 at the points ai0; respectively; and hi are given in (1:5:10) while Hi are given

by (1.4.12).

Corollary 1.8.1. Let the assumptions of Theorem 1:8 be satis�ed and let i01 and

i02 (1 5 i01; i02 5 n) be numbers such that

�1 �
Re(ai01)� 1

�i01
= max

15i5n

�
Re(ai)� 1

�i

�
; (1.5.15)

when the poles aik (i = 1; � � � ; n; k = 0; 1; � � �) are simple; and

�2 �
Re(ai02)� 1

�i02
= max

15i5n

�
Re(ai)� 1

�i

�
; (1.5.16)

when the poles aik (i = 1; � � � ; n; k = 0; 1; � � �) coincide.

a) If �1 > �2; then the �rst term in the asymptotic expansion of the H-function has the

form

Hm;n
p;q (z) = hi01z

(ai01�1)=�i01 + o
�
z(ai01�1)=�i01

�
(z !1); (1.5.17)

where jarg zj < a��=2 for � > 0; a� > 0; and hi01 is given in (1:5:10) with i = i01. In

particular; the relation (1:5:13) holds.
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b) If �1 5 �2 and and the gamma function �(1�ai��is) has the pole ai02 of order Ni02 ;

then the principal term in the asymptotic expansion of the H-function has the form

Hm;n
p;q (z) = Hi02z

(ai02�1)=�i02 [log z]Ni02
�1 + o

�
z(ai02�1)=�i02 [log z]Ni02

�1
�

(1.5.18)

(z !1);

where jarg zj < a��=2 for � > 0; a� > 0 and Hi02 is given in (1:4:12) with i = i02. In

particular; if N is the largest order of general poles of the gamma functions �(1� ai � �is)

(i = 1; � � � ; n); then

Hm;n
p;q (z) = O

�
z�[log z]N�1

�
(z !1); (1.5.19)

where � = max
15i5n

[fRe(ai)� 1g=�i] and jarg zj < a��=2 when � > 0; a� > 0.

When � > 0 and a� 5 0; the asymptotic behavior of the H-function with L = L�1 at

in�nity is more complicated. Such asymptotic expansions have exponential form and can be

obtained from the results by Braaksma [1]. The case � > 0; a� = 0 will be considered in

the next section. It should be noted that these asymptotic expansions have di�erent forms in

sectors of changing arg z and contain the special function E(z) de�ned in (1.6.3). Asymptotics

of the same form are also obtained in the special case n = 0 presented in Section 1.7.

1.6. Exponential Asymptotic Expansions at In�nity in the Case � > 0; a� = 0

In the previous section we proved the asymptotic behavior of the H-function at in�nity when

� 5 0 or � > 0; a� > 0. Now we consider the remaining case � > 0; a� = 0. Let

c0 = (2�i)m+n�p exp

2
4
0
@ pX
i=n+1

ai �
mX
j=1

bj

1
A�i

3
5 ; (1.6.1)

d0 = (�2�i)m+n�p exp

2
4�

0
@ pX
i=n+1

ai �
mX
j=1

bj

1
A �i

3
5 ; (1.6.2)

E(z) =
1

2�i�

1X
j=0

Aj

 
��

�
z

!(��j+1=2)=�
exp

2
4 ��

�
z

!1=�35 : (1.6.3)

Here the constants Aj (j 2 N0) depending on p; q; ai; �i (i = 1; � � � ; p) and bj ; �j
(j = 1; � � � ; q) are de�ned by the relations

pY
i=1

�(1� ai � �is)

qY
j=1

�(1� bj � �js)

 
��

�

!s

=
N�1X
j=0

Aj

�(��s + j � �+ 1=2)
+

rN(s)

�(��s +N � � + 1=2)
; (1.6.4)
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where the function rN(s) is analytic in its domain of de�nition and rN(s) = O(1) as jsj ! 1

uniformly on jarg sj 5 � � �1 (0 < �1 < �). In particular,

A0 = (2�)(p�q+1)=2���
pY

i=1

�
�ai+1=2
i

qY
j=1

�
bj�1=2
j : (1.6.5)

Theorem 1.9. Let a�; �; � and � be given in (1:1:7){(1:1:10) and let the conditions in

(1:1:6) and (1:3:2) be satis�ed. Let � > 0; a� = 0 and � be a constant such that

0 < � <
�

2
min

n+15i5p;15j5m
[�i; �j]: (1.6.6)

Then there hold the following assertions.

(i) The H-function (1:1:1) has the asymptotic expansion

Hm;n
p;q (z) �

nX
i=1

1X
k=0

hikz
(ai�1�k)=�i + c0E

�
zei��=2

�
� d0E

�
ze�i��=2

�
(1.6.7)

(z !1)

uniformly on jarg zj 5 �. Here the constants hik (1 5 i 5 n; k = 0; 1; 2; � � �); c0 and d0 are

given in (1:3:9); (1:6:1) and (1:6:2) and the series E(z) has the form (1:6:3) with coe�cients

Aj being de�ned by (1:6:4):

(ii) The main terms of (1:6:8) are expressed in the form

Hm;n
p;q (z) =

nX
i=1

h
hiz

(ai�1)=�i + o
�
z(ai�1)=�i

�i

+Az(�+1=2)=�
�
c0 exp

h
(B + Cz1=�)i

i
� d0 exp

h
�(B + Cz1=�)i

i�

+O
�
z(��1=2)=�

�
(z !1; jarg zj 5 �); (1.6.8)

where hi (i = 1; � � � ; n) are given in (1:5:10) and

A =
A0

2�i�

 
��

�

!(�+1=2)=�
; B =

(2�+ 1)�

4
; C =

 
��

�

!1=�
(1.6.9)

with A0 being given in (1.6.5).

Proof. To prove (1.6.8) we apply the results by Braaksma [1]. First we note that if

a� = 0, then by (1.1.13)

a�1 = �a�2 =
�

2
: (1.6.10)

Owing to (1.1.7), (1.1.8) and (1.1.11) the formulas (1.8), (1.10) and (2.12) in Braaksma [1]

take the forms

� = � > 0; � =
1

�
; �0 = a�1�; (1.6.11)
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and hence by (1.6.10)

�0 =
��

2
: (1.6.12)

The relations (4.1), (4.2) and (4.4) in Braaksma [1] for the function h1(s) de�ned by

h1(s) = �m+n�p

pY
i=n+1

sin[�(ai � �is)]

mY
j=1

sin[�(bj � �js)]

(1.6.13)

have the forms

h1(s) = c0e
i0s

pY
j=n+1

h
1� e2�i(�js�aj)

i mY
j=1

1X
k=0

e2k�i(�js�bj) =
1X
j=0

cje
ijs (1.6.14)

and

h1(s) = d0e
�i0s

pY
j=n+1

h
1� e�2�i(�js�aj)

i mY
j=1

1X
k=0

e�2k�i(�js�bj)

=
1X
j=0

dje
�ijs; (1.6.15)

where c0 and d0 are given in (1.6.1) and (1.6.2) and

0 = �0 =
��

2
: (1.6.16)

Following De�nition I of Braaksma [1] we denote by f�mg (m = 0;�1;�2; � � �) the monotonic

sequence which arises if we write down the set of numbers i and �j (i; j = 0; 1; 2; � � �); in

(1.6.14) and (1.6.15), respectively. It follows from (1.6.14) and (1.6.15) that

��1 = ��0 = �
��

2
; (1.6.17)

�1 = �0 + 2� min
n+15i5p;15j5m

[�i; �j ]; ��2 = ��1; (1.6.18)

and thus

�0 � ��1 = �� (1.6.19)

and

�1 � �0 = ��1 � ��2 = 2� min
n+15i5p;15j5m

[�i; �j]: (1.6.20)

Following Braaksma [1, p.265], for an arbitrary integer r we distinguish three di�erent

cases for �r:

a) there exists a non-negative integer i = i0 such that �r = i0 ; while �r 6= �j for

j = 0; 1; 2; � � �;
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b) there exists a non-negative integer j = j0 such that �r = �j0 ; while �r 6= i for

i = 0; 1; 2; � � �;

c) there exist two non-negative integers i = i0 and j = j0 such that �r = i0 = �j0 .

We de�ne numbers Cr and Dr by Cr = ci0 , Dr = 0 in case a), Cr = 0, Dr = �dj0 in case

b), and Cr = ci0 , Dr = �dj0 in case c). We also de�ne the integer � by the relation

�� = �0 = ��0 (1.6.21)

and note that � = �1, � = �1 for �0 > 0, Cr = 0 if r < 0; and Dr = 0 if r > � (see Braaksma

[1, Lemma 4a]). Using these facts, the numbers Ci (i = 0; 1; 2; � � �) and Dj (j = �; �� 1; � � �)

are de�ned by

h1(s) =
1X
i=0

Cie
i�is; h1(s) = �

�X
j=�1

Dje
i�js: (1.6.22)

By Braaksma [1, Theorem 7], if the conditions in (1.1.6) and (1.3.2) are satis�ed, if � > 0

and �r � �r�1 = �� for some integer r; and if

0 < � <
1

4
min[�r�1 � �r�2; �r+1 � �r]; (1.6.23)

then

Hm;n
p;q (z) � �

nX
i=1

1X
l=0

Res
s=ail

h
H

m;n
p;q (s)z�s

i
+

�X
j=r

DjP
�
zei�j

�

�
r�1X
j=0

CjP
�
zei�j

�
+ (Cr +Dr)E

�
zei�r

�
+ (Cr�1 +Dr�1)E

�
zei�r�1

�
(1.6.24)

as jzj ! 1 uniformly on

1

2
�� � � 5 arg z + �r 5

1

2
�� + �; (1.6.25)

where an empty sum is understood to be zero. Here P (z) is de�ned via a sum of residues

P (z) =
pX

i=1

1X
k=0

Res
s=aik

[h0(s)z
�s]; h0(s) =

pY
i=1

�(1� ai � �is)

qY
j=1

�(1� bj � �js)

(1.6.26)

at points aik in (1.1.5) and E(z) is given in (1.6.3).

Now we apply Braaksma's theorem above to prove (1.6.8). If a� = 0 and � > 0, then in

accordance with (1.6.19) and (1.6.11) we can take r = 0, by (1.6.20) the condition in (1.6.23)

coincides with that in (1.6.6). Therefore the relation (1.6.24) holds for jzj ! 1 uniformly on

the domain in (1.6.25) which gives j arg zj 5 � if we take into account that

�0 =
��

2
> 0 (1.6.27)
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according to (1.6.16) and (1.6.11). The evaluation of the residues in the double sum in (1.6.24),

similarly to those in Theorem 1.4, gives the double sum in (1.6.8). By virtue of (1.6.27) (and

(1.6.21)), � = �1 and so the second and the third sums in (1.6.24) vanish. So (1.6.24) is

reduced to the form

Hm;n
p;q (z)

�
nX
i=1

1X
k=0

hikz
(ai�1�k)=�i + (C0 +D0)E

�
zei�0

�
+ (C�1 +D�1)E

�
zei��1

�
; (1.6.28)

where hik are given in (1.3.9). To evaluate C0, D0, C�1 and D�1, we note that by (1.6.16)

there exists i0 = 0 such that �0 = 0, and it follows from (1.6.14) and (1.6.15) that �0 6= �j
for j = 0; 1; 2; � � � ; if we take into account (1.6.27). So, the case a) above is realized and

C0 = Cr = ci0 = c0 while D0 = Dr = 0; where c0 is given in (1.6.1). Further, since Cr = 0

if r < 0 (for �0 > 0) C�1 = 0; and in view of (1.6.15) and the second relation in (1.6.22),

we have D�1 = �d0, where d0 is given in (1.6.2). Substituting these values of C0, D0, C�1
and D�1 into (1.6.28), we obtain (1.6.8). This completes the proof of the �rst assertion (i) of

Theorem 1.9.

The second one (ii) follows from (1.6.8), if we take into account (1.6.1){(1.6.3) and (1.6.5).

Corollary 1.9.1. Let the assumptions of Theorem 1:9 hold and i0 (1 5 i0 5 n) be such

number that (1:5:11) is satis�ed. Then the H-function (1:1:1) has the form

(i) If [Re(ai0)� 1]=�i0 > Re(�+ 1=2)=�;

Hm;n
p;q (z) = hi0z

(ai0�1)=�i0 + o
�
z(ai0�1)=�i0

�
(z !1); (1.6.29)

where hi0 is given in (1:5:10) with i = i0.

(ii) If [Re(ai0)� 1]=�i0 < Re(� + 1=2)=�;

Hm;n
p;q (z) = Az(�+1=2)=�

�
c0 exp

h
(B + Cz1=�)i

i
� d0 exp

h
�(B + Cz1=�)i

i�

+o
�
z(�+1=2)=�

�
(z !1; jarg zj 5 �); (1.6.30)

where A; B and C are given in (1:6:9):

(iii) If [Re(ai0)� 1]=�i0 = Re(�+ 1=2)=�;

Hm;n
p;q (z) = hi0z

(�+1=2)=�

+Az(�+1=2)=�
�
c0 exp

h
(B + Cz1=�)i

i
� d0 exp

h
�(B + Cz1=�)i

i�

+o
�
z(�+1=2)=�

�
(z !1; jarg zj 5 �): (1.6.31)

In particular;

Hm;n
p;q (z) = O (z�) (z !1; jarg zj 5 �); (1.6.32)

where

� = max
15j5m

�
Re(ai)� 1

�i
;
Re(�) + 1=2

�

�
: (1.6.33)
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Remark 1.3. If the poles aik in (1.1.5) of the gamma functions �(1 � ai � �is) (i =

1; � � � ; n) are not simple (i.e. the conditions in (1.3.2) are not satis�ed), then similarly to the

results in Section 1.5 it can be proved that the logarithmic multipliers of the form [log z]N�1

may be added in the asymptotic expansions (1.6.8), (1.6.8), (1.6.29){(1.6.32).

1.7. Exponential Asymptotic Expansions at In�nity in the Case n = 0

In this section we give the asymptotic behavior of the H-function in the special case n = 0

provided that � > 0; a� > 0. Let c0; d0 and A0 be given in (1.6.1){(1.6.2) and (1.6.5). We

note that, in particular, when n = 0 and q = m; c0 and d0 take the forms

c0 = (2�)q�pe���i; d0 = (2�)q�pe��i; (1.7.1)

where � is given in (1.1.10). Let

C1 =
c0A0

2�i
���1=2

 
eia

�

1
�

�

!(�+1=2)=�

; D1 = �

 
eia

�

1
�

�

!1=�

; (1.7.2)

C2 =
d0A0

2�i
���1=2

 
e�ia

�

1
�

�

!(�+1=2)=�

; D2 = �

 
e�ia

�

1
�

�

!1=�

: (1.7.3)

The following statement holds.

Theorem 1.10. Let n = 0; a�; �; �; � and a�1 be given in (1:1:7){(1:1:10) and (1:1:11)

and let the conditions in (1:1:6) and (1:3:2) be satis�ed. Let � > 0; a� = 0 and let � be a

constant such that

0 < � <
��

2
: (1.7.4)

Then there hold the following assertions.

(i) If m = q and a� > 0; then the H-function Hq;0
p;q (z) has the asymptotic expansions at

in�nity

Hq;0
p;q (z) � c0E

�
zeia

�

1
�
�

(z !1) (1.7.5)

and

Hq;0
p;q (z) � �d0E

�
z�ia

�

1
�
�

(z !1) (1.7.6)

uniformly on jarg zj 5 ��=2 � �; where c0 and d0 are given in (1:7:1) and E(z) in (1:6:3):

The principal terms in these asymptotics have the forms

Hq;0
p;q(z) = C1e

D1z
1=�

z(�+1=2)=�
"
1 + O

�
1

z

�1=�#
(z !1) (1.7.7)

and

Hq;0
p;q(z) = �C2e

D2z
1=�

z(�+1=2)=�
"
1 + O

�
1

z

�1=�
#

(z !1); (1.7.8)
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respectively.

(ii) If m < q and a� = 0; then the H-function Hm;0
p;q (z) has the asymptotic expansion

Hm;0
p;q (z) � c0E

�
zeia

�

1
�
�
� d0E

�
ze�ia

�

1
�
�

(z !1) (1.7.9)

uniformly on jarg zj 5 � with 0 < � < �a�=4 for a� > 0 and

0 < � <
�

2
min

15i5p;15j5m
[�i; �j]

for a� = 0; where c0 and d0 are given in (1:6:1) and (1:6:2) with n = 0. The main term in this

representation has the form

Hm;0
p;q (z) =

h
C1e

D1z
1=�

� C2e
D2z

1=�
i
z(�+1=2)=�

"
1 +O

�
1

z

�1=�
#

(z !1): (1.7.10)

Proof. When m = q; a� > 0 and m < q; a� > 0, the results in (1.7.5), (1.7.6) and (1.7.9)

follow from those proved by Braaksma [1; Theorem 4, the relations (7.11), (7.12) and (7.15)]

(see Section 1.11), if we take into account the formulas in (1.6.11) and the equality

�0 �
1

2
�� =

1

2
a��; (1.7.11)

which is valid due to (1.6.11) and (1.1.13). When m < q and a� = 0, by (1.6.10) the asymptoic

estimate (1.7.9) follows from the relation (1.6.8) in Theorem 1.9 in the case n = 0. According

to (1.7.1){(1.7.3) the relations (1.7.7) and (1.7.8) are deduced from (1.7.5) and (1.7.6) while

(1.7.10) is obtained from (1.7.9).

Corollary 1.10.1. If the assumptions of Theorem 1:10 are satis�ed; then for the

H-function Hm;0
p;q (z); the following asymptotic estimate holds at in�nity:

Hm;0
p;q (z) = O

 
jzj[Re(�)+1=2]=�

� exp

(
�

�
jzj

�

�1=�

max

�
cos

(a�1� + arg z)

�
; cos

(a�1� � arg z)

�

�)!
(z !1)(1.7.12)

uniformly on jarg zj 5 (��=2)� � and on jarg zj 5 � when m = q and m < q; respectively.

Corollary 1.10.2. If the assumptions of Theorem 1:10 are satis�ed, then for the

H-function Hm;0
p;q (x) with real x the following asymptotic estimates hold at in�nity:

Hm;0
p;q (x) = O

�
x[Re(�)+1=2]=� exp

�
cos

�
a�1�

�

�
���1=�x1=�

��
(x! +1): (1.7.13)

In particular,

Hq;0
p;q (x) = O

�
x[Re(�)+1=2]=� exp

h
����1=�x1=�

i�
(x! +1): (1.7.14)
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Remark 1.4. The asymptotic estimate (1.7.13) for the H-function Hm;0
p;q (z) is more

precise than those given by Mathai and R.K. Saxena [2, (1.6.3)] and Srivastava, Gupta and

Goyal [1, (2.2.14)].

1.8. Algebraic Asymptotic Expansions at Zero

When � = 0 the results in Theorems 1.3 and 1.5 lead us to the power and power-logarithmic

asymptotic expansions of the H-function near zero, namely,

Hm;n
p;q (z) �

mX
j=1

1X
l=0

h�jlz
(bj+l)=�j (z ! 0); (1.8.1)

when any pole bjl of the gamma functions �(bj + �js) (1 5 j 5 m) do not coincide, and

Hm;n
p;q (z) �

X
j;l

0
h�jlz

(bj+l)=�j +
X
j;l

00
N�

jl
�1X

i=0

H�
jliz

(bj+l)=�j [logz]i (z ! 0); (1.8.2)

when some of the poles bjl of the gamma functions �(bj + �js) (1 5 j 5 m) coincide. Here

the summation signs
P0 and

P00 are taken as in Theorem 1.5.

On the other hand if � < 0; a� > 0 and the conditions in (1.1.6) hold, then for L = L+1

similar arguments to those in Section 1.5 lead us to the following asymptotic expansion of the

H-function at zero:

Hm;n
p;q (z) � �

mX
j=1

1X
l=0

Res
s=�bjl

[Hm;n
p;q (�s)zs]

�
z ! 0; j arg zj <

a��

2

�
(1.8.3)

with a� being de�ned in (1.1.7). It follows from here that the H-function (1.1.1) also has

the asymptotic expansions (1.8.1) and (1.8.2) in the respective cases when the poles bjl of the

gamma functions �(bj+�js) (1 5 j 5 m) do not coincide and coincide. By Cauchy's theorem

the results above are also valid for the H-function (1.1.1) with L = Li1 and a� > 0. Thus

we have:

Theorem 1.11. Let the conditions in (1:1:6) and (1:3:1) be satis�ed and let either � = 0

or � < 0; a� > 0. Then the asymptotic expansion of Hm;n
p;q (z) near zero is given in (1:8:1)

with the additional condition j argzj < a��=2 when � < 0; a� > 0. The principal terms of

this asymptotic have the form

Hm;n
p;q (z) =

mX
j=1

h
h�jz

bj=�j + o
�
zbj=�j

�i
(z ! 0); (1.8.4)

where

h�j � h�j0 =
1

�j

mY
i=1
i6=j

�

 
bi � bj

�i
�j

!
nY

i=1

�

 
1� ai + bj

�i

�j

!

pY
i=n+1

�

 
ai � bj

�i

�j

! qY
i=m+1

�

 
1� bi + bj

�i
�j

! (j = 1; � � � ; m): (1.8.5)
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Corollary 1.11.1. Let the assumptions of Theorem 1:11 be satis�ed and let j0 (1 5 j0 5 m)

be an integer such that

Re(bj0)

�j0
= min

15j5m

"
Re(bj)

�j

#
: (1.8.6)

Then there holds the asymptotic estimate

Hm;n
p;q (z) = h�j0z

bj0=�j0 + o
�
zbj0=�j0

�
(z ! 0); (1.8.7)

where j arg zj < a��=2 when � < 0; a� > 0; and h�j0 is given in (1:8:5) with j = j0. In

particular;

Hm;n
p;q (z) = O

�
z�

�

�
(z ! 0); (1.8.8)

where �� = min
15j5m

[Re(bj)=�j ] and j arg zj < a��=2 when � < 0; a� > 0.

Theorem 1.12. Let the conditions in (1:1:6) be satis�ed and let either � = 0 or

� < 0; a� > 0. Let some poles of the gamma functions �(bj + �js) (j = 1; � � � ; m) coincide

and let N�
jl be the orders of these poles. Then the asymptotic expansion of Hm;n

p;q (z) near zero

is given in (1:8:2) with the additional condition j argzj < a��=2 when � < 0; a� > 0. The

principal terms of these asymptotics have the form

Hm;n
p;q (z) =

X
j

0 h
h�jz

bj=�j + o
�
zbj=�j

�i

+
X
j

00
h
H�

j z
bj=�j [log z]N

�

j
�1 + o

�
zbj=�j [log z]N

�

j
�1
�i

(z ! 0); (1.8.9)

where j argzj < a��=2 when � < 0; a� > 0. Here
P0 and

P00 are summations taken over

j (j = 1; � � � ; m) such that the gamma functions �(bj + �js) have simple poles and poles of

order N�
j � N�

j0 at the points bj0; respectively, and h�j are given in (1:8:5) while H�
j are given

by (1.4.6).

Corollary 1.12.1. Let the assumptions of Theorem 1:12 be satis�ed and let j01 and j02
(1 5 j01; j02 5 m) be numbers such that

��1 �
Re(bj01)

�j01
= min

15j5m

"
Re(bj)

�j

#
; (1.8.10)

when the poles bjl (j = 1; � � � ; m; l = 0; 1; � � �) are simple; and

��2 �
Re(bj02)

�j02
= min

15j5m

"
Re(bj)

�j

#
; (1.8.11)

when the poles bjl (j = 1; � � � ; m; l = 0; 1; � � �) coincide.

a) If ��1 < ��2; then the principal term in the asymptotic expansion of the H-function has

the form

Hm;n
p;q (z) = h�j01z

bj01=�j01 + o
�
zbj01=�j01

�
(z ! 0); (1.8.12)
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where j arg zj < a��=2 for � < 0; a� > 0 and h�j01 is given in (1:8:5) with j = j01. In

particular; the relation (1:8:8) holds with ��1 instead of �� there.

b) If ��1 = ��2 and the gamma function �(bj + �js) has the pole bj02 of order N�
j02
; then

the principal term in the asymptotic expansion of the H-function has the form

Hm;n
p;q (z) = H�

j02z
bj02=�j02 [log z]

N�
j02

�1
+ o

�
zbj02=�j02 [log z]

N�
j02

�1
�

(z ! 0); (1.8.13)

where j argzj < a��=2 for � < 0; a� > 0; and H�
j02

is given in (1:4:6) with j = j02.

In particular; if N� is the largest order of general poles of gamma functions �(bj + �js)

(j = 1; � � � ; m); then

Hm;n
p;q (z) = O

�
z�

�
[log z]N

��1
�

(z ! 0); (1.8.14)

where �� = min
15j5m

[Re(bj)=�j ] and j arg zj < a��=2 when � < 0; a� > 0.

When � < 0 and a� 5 0; the asymptotic behavior of the H-function (1.1.1) near zero is

more complicated. For L = L+1 such asymptotic estimates have exponential forms and can

be found by the method similar to �nding asymptotics of the H-function with L = L�1 for

� > 0 at in�nity which was suggested by Braaksma in [1]. The former asymptotic expansions

can also be deduced from the latter ones on the basis of the translation formula

Hm;n
p;q

"
z

�����
(ai; �i)1;p

(bj ; �j)1;q

#
= Hn;m

q;p

"
1

z

�����
(1� bj ; �j)1;q

(1� ai; �i)1;p

#
; (1.8.15)

if we take into account the relations

a�0 = �a�; �0 = ��; �0 =
1

�
; �0 = �; a�10 = a�2; a

�
20 = a�1: (1.8.16)

Here we use a�0; �0; �0; �0; a
�
10 and a�20 for H

n;m
q;p

�
1

z

�
instead of a�; �; �; �; a�1 and a�2 for

Hm;n
p;q [z] de�ned by (1.1.7){(1.1.12).

The case � < 0; a� = 0 will be considered in the next section. It should be noted that the

asymptotic expansions for the H-function (1.1.1) have di�erent forms in sectors of changing

arg z and contain the special function E�(z) de�ned in (1.9.3) below. Asymptotics of the same

form are also found in the special case m = 0 presented in Section 1.10.

1.9. Exponential Asymptotic Expansions at Zero in the Case � < 0; a� = 0

In the previous section we proved the asymptotic behavior of the H-function (1.1.1) when

� = 0 or � < 0; a� > 0. Now we consider the remaining case � < 0; a� = 0. Let

c�0 = (�2�i)n+m�q exp

2
4�

0
@ qX
j=m+1

bj �
nX
i=1

ai

1
A �i

3
5 ; (1.9.1)

d�0 = (2�i)n+m�q exp

2
4
0
@ qX
j=m+1

bj �
nX
i=1

ai

1
A�i

3
5 ; (1.9.2)

E�(z) =
1

2�i j�j

1X
j=0

A�j

 
j�jj�j �

z

!(��j+1=2)=j�j
exp

2
4 j�jj�j �

z

!1=j�j35 : (1.9.3)
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Here the constants A�j ; depending on p; q; ai; �i; bj and �j (i = 1; � � � ; p; j = 1; � � � ; q); are

de�ned by the relations

qY
j=1

�(bj + �js)

pY
i=1

�(ai + �is)

�
j�jj�j �

��s

=
N�1X
j=0

A�j
�(�s + j � �+ 1=2)

+
r�N(s)

�(�s +N � � + 1=2)
; (1.9.4)

where the function r�N (s) is analytic in its domain and r�N(s) = O(1) as jsj ! 1 uniformly

on jarg sj 5 � � ��1 (0 < ��1 < �). In particular,

A�0 = (2�)(q�p+1)=2 j�j��
pY

i=1

�
ai�1=2
i

qY
j=1

�
�bj+1=2
j : (1.9.5)

Theorem 1.13. Let a�; �; � and � be given in (1:1:7){(1:1:10) and let the conditions

in (1:1:6) and (1:3:1) be satis�ed. Let � < 0; a� = 0 and �� be a constant such as

0 < �� <
�

2
min

15i5n;m+15j5q
[�i; �j]: (1.9.6)

Then there hold the following assertions:

(i) The H-function (1:1:1) has the asymptotic expansion

Hm;n
p;q (z) �

mX
j=1

1X
l=0

h�jlz
(bj+l)=�j + c�0E

�
�
ze�i��=2

�
� d�0E

�
�
zei��=2

�
(1.9.7)

(z ! 0)

uniformly on jarg zj 5 ��. Here the constants h�jl (1 5 j 5 m; l = 0; 1; 2; � � �); c�0 and d�0 are

given in (1:3:6); (1:9:1) and (1:9:2); and the series E�(z) has the form (1:9:3) with coe�cients

A�j being de�ned by (1:9:4):

(ii) The main part of (1:9:8) is expressed in the form

Hm;n
p;q (z) =

mX
j=1

h
h�jz

bj=�j + o
�
zbj=�j

�i

+A�z�(�+1=2)=j�j
�
c�0 exp

h
�(B� + C�z�1=j�j)i

i
� d�0 exp

h
(B� + C�z�1=j�j)i

i�

+O
�
z(��+1=2)=j�j

�
(z ! 0; jarg zj 5 ��); (1.9.8)

where h�j (j = 1; � � � ; m) are given in (1:8:5) and

A� =
A�0

2�i j�j

�
j�jj�j �

�(�+1=2)=j�j
; B� =

(2�+ 1)�

4
; C� =

�
j�jj�j �

�1=j�j
(1.9.9)

with A�0 being given in (1.9.5).
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Proof. The assertion (i) is deduced from Theorem 1.9(i) if we apply the translation for-

mula (1.8.15) and the relations in (1.8.16). According to the latter, the conditions of Theorem

1.13 coincide with those in Theorem 1.9 with rearrangement of m and n and p and q; and

with replacement of a�, � and � by �a�, �� and 1=�. The assertion (ii) follows from (i)

according to (1.9.1){(1.9.3) and (1.9.5).

Corollary 1.13.1. Let the assumptions of Theorem 1:13 hold and let j0 (1 5 j0 5 m)

be a number such that (1:8:6) is satis�ed. Then the H-function has the form

(i) If Re(bj0)=�j0 +Re(�+ 1=2)= j�j < 0;

Hm;n
p;q (z) = h�j0z

bj0=�j0 + o
�
zbj0=�j0

�
(z ! 0); (1.9.10)

where h�j0 is given in (1:8:5) with j = j0.

(ii) If Re(bj0)=�j0 + Re(� + 1=2)= j�j > 0;

Hm;n
p;q (z) = A�z�(�+1=2)=j�j

�
c�0 exp

h
�(B� + C�z�1=j�j)i

i

�d�0 exp
h
(B� + C�z�1=j�j)i

i�

+o
�
z�(�+1=2)=j�j

�
(z ! 0; jarg zj 5 ��); (1.9.11)

where A�; B� and C� are given in (1:9:9):

(iii) If Re(bj0)=�j0 +Re(�+ 1=2)= j�j = 0;

Hm;n
p;q (z) = h�j0z

�(�+1=2)=j�j

+A�z�(�+1=2)=j�j
�
c�0 exp

h
�(B� + C�z�1=j�j)i

i

�d�0 exp
h
(B� + C�z�1=j�j)i

i�

+o
�
z�(�+1=2)=j�j

�
(z ! 0; jarg zj 5 ��): (1.9.12)

In particular;

Hm;n
p;q (z) = O

�
z�

�
�

(z ! 0; jarg zj 5 ��); (1.9.13)

where

�� = min
15j5m

"
Re(bj)

�j
;�

Re(�) + 1=2

j�j

#
: (1.9.14)

Remark 1.5. If the poles bjl in (1.1.4) of the gamma functions �(bj+�js) (j = 1; � � � ; m)

are not simple (i.e. the conditions in (1.3.1) are not satis�ed), then similarly to the results in

Section 1.8 it can be proved that the logarithmic multipliers of the form [log z]N
��1 may be

added in the asymptotic expansions (1.9.7), (1.9.8), (1.9.10){(1.9.13).
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1.10. Exponential Asymptotic Expansions at Zero in the Case m = 0

In this section we give the asymptotic behavior of the H-function in the special case m = 0

provided that � < 0; a� > 0. Let c�0; d
�
0 and A�0 be given in (1.9.1), (1.9.2) and (1.9.5). We

note that, in particular, when m = 0 and p = n; c�0 and d�0 take the forms

c�0 = (2�)p�qe���i; d�0 = (2�)p�qe��i; (1.10.1)

where � is given in (1.1.10). Let

C�
1 =

c�0A
�
0

2�i
j�j��1=2

�
�e�ia

�
2
�
�(�+1=2)=j�j

; D�
1 = j�j

�
�e�ia

�
2
�
�1=j�j

; (1.10.2)

C�
2 =

d�0A
�
0

2�i
j�j��1=2

�
�eia

�
2
�
�(�+1=2)=j�j

; D�
2 = j�j

�
�eia

�
2
�
�1=j�j

: (1.10.3)

The following statement holds.

Theorem 1.14. Let m = 0; and let a�; �; �; � and a�2 be given in (1:1:7){(1:1:10) and

(1:1:12). Let us assume the conditions in (1:1:6) and (1:3:1). If � < 0; a� = 0 and �� is a

constant such that

0 < �� <
j�j�

2
; (1.10.4)

then there hold the following assertions:

(i) If n = p and a� > 0; then the H-function H0;p
p;q (z) has the asymptotic expansions at

zero

H0;p
p;q (z) � c�0E

�
�
zeia

�
2
�
�

(jzj ! 0) (1.10.5)

and

H0;p
p;q (z) � �d�0E

�
�
ze�ia

�
2
�
�

(z ! 0) (1.10.6)

uniformly on jarg zj 5 j�j�=2���; where c�0 and d�0 are given in (1:10:1) and E�(z) in (1:9:3).

The principal terms in these asymptotics have the forms

H0;p
p;q (z) = C�

1e
D�
1
z�1=j�j

z�(�+1=2)=j�j
h
1 + O

�
z1=j�j

�i
(z ! 0) (1.10.7)

and

H0;p
p;q (z) = �C�

2e
D�
2
z�1=j�j

z�(�+1=2)=j�j
h
1 +O

�
z1=j�j

�i
(z ! 0); (1.10.8)

respectively.

(ii) If n < p and a� = 0; then the H-function H0;n
p;q (z) has the asymptotic expansion

H0;n
p;q (z) � c�0E

�
�
zeia

�
2
�
�
� d�0E

�
�
ze�ia

�
2
�
�

(z ! 0) (1.10.9)

uniformly on jarg zj 5 �� with 0 < � < �a�=4 for a� > 0 and

0 < � <
�

2
min

15i5n;15j5q
[�i; �j]
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for a� = 0; where c�0 and d�0 are given in (1:9:1) and (1:9:2) with m = 0. The main term in

this representation has the form

H0;n
p;q (z) =

h
C�
1e

D�
1
z�1=j�j � C�

2e
D�
2
z�1=j�j

i
z�(�+1=2)=j�j

h
1 + O

�
z1=j�j

�i
(1.10.10)

(z ! 0):

Proof. The assertions (i) and (ii) are deduced from Theorem 1.10 on the basis of the

translation formula (1.8.15) and of the relations in (1.8.16).

Corollary 1.14.1. If the assumptions of Theorem 1:14 are satis�ed; then the H-function

H0;n
p;q (z) has the following asymptotic estimate at zero:

H0;n
p;q (z) = O

 
jzj�[Re(�)+1=2]=j�j

� exp

(
j�j

�
�

jzj

�1=j�j

max

�
cos

(a�2� + arg z)

j�j
; cos

(a�2� � arg z)

j�j

�)!
(1.10.11)

(z ! 0)

uniformly on jarg zj 5 j�j�=2� �� and on jarg zj 5 �� when n = p and n < p; respectively.

Corollary 1.14.2. If the assumptions of Theorem 1:14 are satis�ed; then the H-function

H0;n
p;q (x) for real x has the following asymptotic estimates at zero:

H0;n
p;q (x) = O

�
x�[Re(�)+1=2]=j�j exp

�
cos

�
a�2�

j�j

�
j�j �1=j�jx�1=j�j

��
(1.10.12)

(x! +0):

In particular;

H0;p
p;q (x) = O

�
x�[Re(�)+1=2]=j�j exp

h
� j�j �1=j�jx�1=j�j

i�
(x! +0): (1.10.13)

1.11. Bibliographical Remarks and Additional Information on Chapter 1

For Sections 1.1 and 1.2. The so-called Mellin{Barnes integral of the gamma functions were �rst
introduced by S. Pincherle [1] (1888), and the theory has been developed by Mellin [1] (1910), where
references to earlier works were indicated in the book by Erd�elyi, Magnus, Oberhettinger and Tricomi
[1, Section 1.19]. Dixon and Ferrar [1] (1936) �rst investigated the H-function represented by the
Mellin{Barnes integral (1.1.1) with L = Li1. In the case m = n = 1 and p = q = 2 they proved the
statements of Theorem 1.1 for L = Li1 and of Theorem 1.2(iii), as well as the absolute convergence
of the integral in (1.1.1) for any real z = x > 0 in the case a� = � = 0 and Re(�) < �1; and of the
convergence of H1;1

2;2(z) for z = x > 0 (x 6= �) in the case a� = � = 0 and �1 5 Re(�) < 0. They

also studied analytic continuation of H1;1
2;2(z) and indicated that these results can be extended to the

general integrals Hm;n
p;q (z) of the form (1.1.1). One may refer these results to Section 1.19 of the book

by Erd�elyi, Magnus, Oberhettinger and Tricomi [1].
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Interest in the H-function (1.1.1) returned in 1961 when Fox [2] investigated a particular case of
such a function with L = Li1 in the form

Hq;p
2p;2q(x) � Hq;p

2p;2q

"
x

�����
(1� ai; �i)1;p; (ai � �i; �i)1;p

(bj; �j)1;q; (1� bj � �j ; �j)1;q

#
(x > 0) (1.11.1)

as a symmetrical Fourier kernel in L2(R+), which means that for

H1(x) =

Z x

0

Hq;p
2p;2q(t)dt (1.11.2)

the transforms

g(x) =
d

dx

Z
1

0

H1(xt)f(t)
dt

t
; f(x) =

d

dx

Z
1

0

H1(xt)g(t)
dt

t

hold for f; g 2 L2(R+) provided that

� = 2

qX
j=1

�j � 2

pX
i=1

�i > 0;

Re(ai) >
�i
2
; Re(bj) > �

�j
2

(1 5 i 5 p; 1 5 j 5 q):

(1.11.3)

We also note that for such a function the constants in (1.1.7) and (1.1.9) take the forms

a� = 0; � =

qY
j=1

�
2�j
j

pY
i=1

��2�i

i : (1.11.4)

Therefore Hm;n
p;q (z) in (1.1.1) is sometimes called Fox's H-function.

Braaksma [1, Theorem 1] (1964) proved the existence of the H-function (1.1.1) with L = L�1,
its analyticity and representation (1.2.22), for the cases (1.2.14) and (1.2.15) (see also the books by
Mathai and R.K. Saxena [2, Section 1.1] and Srivastava, Gupta and Goyal [1, Section 2.2]). We
note that Braaksma probably �rst considered Hm;n

p;q (z) as an analytic function that is multiple-valued
in general, but one-valued on the Riemann surface of log(z). He suggested some extensions of the
de�nition of the H-function by its analytic continuation and such extensions were also discussed by
Skibinski [1] (1970).

The proofs of Theorems 1.1 and 1.2, which were based on Lemmas 1.1 and 1.2 presenting di�erent
behaviors (1.2.11) and (1.2.12) of the integrand (1.1.2) at in�nity, were given by the authors, see Kilbas
and Saigo [6, Theorems 1 and 2]. We indicate that the representation (1.2.23) can also be deduced
from (1.2.22) by using the translation formula (1.8.15), which was probably �rst found by K.C. Gupta
and U.C. Jain [1] (1966).

It should be noted that the H-function makes sense under di�erent conditions when either L =
Li1, L = L�1 or L = L+1, as shown in Theorem 1.1. This fact was �rst noted by Prudnikov,
Brychkov and Marichev [3, 8.3.1] (Russian edition in 1985). In this connection we notice that the
remark in Mathai and R.K. Saxena [2, Section 1.1] is not correct, where it is mentioned that the
existence of the H-function does not depend on the contour L. Prudnikov, Brychkov and Marichev
[3, 8.3.1] also indicated that the parameter � in the cases (1.2.16) and (1.2.19) of Theorem 1.1 can be
extended from Re(�) < 0 to Re(�) < �1.

We also note that the notation for the H-function given in (1.1.1) was suggested by Gupta [2]
(1965), while the notation of numbers in (1.1.7){(1.1.10) and (1.1.15) is by Prudnikov, Brychkov and
Marichev [3, 8.3.1].

For Sections 1.3 and 1.4. The power series representation (1.3.7) was �rst given by Braaksma
[1, (6.5)]. The representations (1.3.7) as well as (1.3.8) were presented in the books by Mathai and
R.K. Saxena [2, (3.7.1) and (3.7.2)], Srivastava, Gupta and Goyal [1, (2.2.4) and (2.2.7)] and Prud-
nikov, Brychkov and Marichev [3, 8.3.2(3) and 8.3.2(4)]. Their proofs were also given by the authors
in Kilbas and Saigo [7, Theorems 3 and 4].
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The power-logarithmic series representations (1.4.7) and (1.4.13) were obtained by the authors in
the above paper [6, Theorems 5 and 6]. We also note that, in particular cases of the H-function of the
forms Hp;0

0;p(z) and Hp;0
p;p(z), the power-logarithmic series representations, which are more complicated

than in (1.4.7), were given by Mathai and R.K. Saxena [2, Section 3.7] (see also Mathai and R.K.
Saxena [1, Section 5.8] and Mathai [1]).

For Sections 1.5{1.7. Bochner [1, p.351] (1951) probably �rst obtained the asymptotic estimate
at a large positive z of the H-function with L = L�1 in the case p = 0 and m = q. Braaksma [1]
developed the method to �nd the asymptotic expansion of the general H-function with L = L�1.

Fox [2] investigated the asymptotic behavior at in�nity of the H-function Hq;p
2p;2q(x) in (1.11.2)

with L = Li1 (0 <  < 1=2), provided that � > 0; q > p and ai (1 5 i 5 p) satisfy the conditions in
(1.11.3) while Re(bj) > 0 (1 5 j 5 q): His method was based on the representation of (1.11.1):

Hq;p
2p;2q(x) =

1

2�i

Z
Li1

H
q;p
2p;2q(s)x

�sds =
1

2�i

Z
Li1

Q(s)

�
x

�

�
�s

ds (1.11.5)

for � = ���� and the function Hq;p
2p;2q(s) being given in (1.1.2) and on the asymptotic estimate of

Q(s) for large s, s =  + it with �xed  by employing residue theory. He proved [2, Theorem 9] the
following asymptotic estimates for a large positive x:

Hq;p
2p;2q(x) =

�
x

�

�(1��)=2� rX
n=0

cn

�
x

�

�
�n=�

sin

"
�

2

�
K � n+

1��

2

�
+

�
x

�

�1=�#

+

pX
i=1

uiX
j=0

Aijx
�(ai+j)=�i +O

�
x�0

�
(x! +1); (1.11.6)

when q � p is an odd positive integer, and

Hq;p
2p;2q(x) =

�
x

�

�(1��)=2� rX
n=0

cn

�
x

�

�
�n=�

cos

"
�

2

�
K � n+

1��

2

�
+

�
x

�

�1=�#

+

pX
i=1

uiX
j=0

Cijx
�(ai+j)=�i + O

�
x�0

�
(x! +1); (1.11.7)

when q � p is an even positive integer. Here

K = 2

2
4 qX
j=1

(bj + �j)�

pX
i=1

ai

3
5 ; (1.11.8)

�, � and � are given in (1.11.3), (1.11.4) and (1.11.5), 0 > 1=2 is a given constant, r denotes the
greatest integer of [�(20 � 1) + 3]=2 and ui denotes the greatest positive integer of �i0 � Re(ai)
(1 5 i 5 p), while cn (0 5 n 5 r) and Cij (1 5 i 5 p; 0 5 j 5 ui) are constants which depend on ai,
�i (1 5 i 5 p) and bj, �j (1 5 j 5 q) but are independent of x. The constants c0; c1; � � � ; cr are de�ned
for large t, s =  + it with �xed , by

Q(s) �
rX

n=0

cn�

�
�s� n +

1��

2

�
sin

�
(K ��s)�

2

�

= O
�
jsj(�2r�1+2���)=r

�
; (1.11.9)

when q � p is odd, and

Q(s)�
rX

n=0

cn�

�
�s � n+

1��

2

�
cos

�
(K ��s)�

2

�

= O
�
jsj(�2r�1+2���)=r

�
; (1.11.10)
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when q� p is even. The constants Cij (1 5 i 5 p; 0 5 j 5 ui) are obtained by using residue theory to
compute the integrals of the form (1.11.5) in which Q(s) is replaced by the left-hand side of (1.11.9)
and (1.11.10) for an odd and even q � p, respectively.

As was indicated in Section 1.5, Braaksma [1] (1964) developed the method, based on the Cauchy
theorem and residue theory, to rewrite (1.5.4) in the form (1.5.5) and to �nd the asymptotic expansion
of the general H-function Hm;n

p;q (z) with L = L+1 in the cases � > 0 and � = 0; 0 < jzj < �: When
� > 0 and a� > 0, he proved the asymptotic expansion (1.5.3) (see [1, (2.16)]), which is called an
algebraic asymptotic expansion.

In the general case, when � > 0 but a� is not necessary positive, Braaksma [1, Theorem 3] obtained
the algebraic asymptotic expansion for Hm;n

p;q (z) in the form

Hm;n
p;q (z) �

nX
i=1

1X
k=0

Res
s=aik

[Hm;n
p;q (s)z�s] +

�X
j=r

DjP
�
zei�j

�
�

r�1X
j=0

CjP
�
zei�j

�
; (1.11.11)

which holds for jzj ! 1 uniformly on

��

2
� �r + � 5 arg(z) 5 �

��

2
� �r�1 � � (1.11.12)

�
0 < � <

1

2
(�r � �r�1 ���)

�
;

in particular, when r = 0; on

j arg(z)j 5
1

2
a�� � �

�
0 < � <

1

2
a��

�
: (1.11.13)

Here the constants �; �j (j = 0; � � � ; �), r, Dj and Cj are chosen as in the proof of Theorem 1.9. The
proof of (1.11.11){(1.11.13) was based on the representation of (1.5.5) in the form

Hm;n
p;q (z) = Qw(z) +

�X
j=r

DjPw
�
zei�j

�
�

r�1X
j=0

CjPw
�
zei�j

�

+
1

2�i

�Z
L

�

Z
L1

�
h0(�s)

2
4h1(�s) + �X

j=r

Dje
�i�js �

r�1X
j=0

Cje
�i�js

3
5 z�sds; (1.11.14)

where h1(s) and h0(s) are given in (1.6.13) and (1.6.26), Pw(z) is the sum of the residues of the function
h0(�s)z

s at the points aik (i = 1; � � � ; n; k = 0; 1; 2; � � �) given in (1.1.5), the constants �j , r, k, Cj and
Dj are indicated in the proof of Theorem 1.9. Applying some preliminary lemmas, characterizing the
terms in (1.11.14), Braaksma deduced the asymptotic expansion (1.11.11) from (1.11.14).

Braaksma noted, however, that in some cases, all coe�cients of the above algebraic asymptot-
ic expansion can be taken to be equal to zero, and showed that in these cases Hm;n

p;q (z) may have
exponential asymptotic expansions. When n = 0, Braaksma [1, Theorem 4] proved such asymptot-
ic expansions (called exponentially small expansions) presented in (1.7.5), (1.7.6) for Hq;0

p;q (z) and in
(1.7.9) for Hm;0

p;q (z) in Theorem 1.10. He also showed that these asymptotic expansions hold uniform-
ly on the sectors in Theorem 1.10 and some other regions for arg(z). His proof was based on the
representation of Hm;0

p;q (z) in the form (1.5.6):

Hm;0
p;q (z) =

1

2�i

Z w+i1

w�i1

H
m;0
p;q (�s)z

sds; (1.11.15)

which in the case m = q is reduced to the integral

H0(z) =
1

2�i

Z w+i1

w�i1

h2(s)z
sds; h2(s) =

qY
j=1

�(bj � �js)

pY
i=1

�(ai � �is)

(1.11.16)
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(closely connected with E(z) in (1.6.3)), and in the case 0 < m < q is expressed in terms of H0(z) by

Hm;0
p;q (z) =

MX
k=0

dkH0 (ze
!k) : (1.11.17)

Here the positive integer M , real !k and complex dk are de�ned by the relations:

H
m;0
p;q (s)

h2(s)
= �m�q

qY
j=m+1

sin[(bj � �js)�] =
MX
k=0

dke
i!ks: (1.11.18)

In the general case of the H-functionHm;n
p;q (z) with � > 0, Braaksma proved that (1.5.5) is reduced

to the relation (see [1, (2.50)])

Hm;n
p;q (z) = Qw(z) +

�X
j=�

DjPw
�
zei�j

�
+

�X
j=�

(Cj +Dj)F
�
zei�j

�
+O (z!) ; (1.11.19)

with F (z) = �Pw(z) +
1

2�i

Z
L1

h0(�s)z
sds; (1.11.20)

which holds for jzj ! 1 uniformly on

�0 �
1

2
(�r + �r+1) 5 arg(z) 5 �0 �

1

2
(�r�1 + �r) : (1.11.21)

Here �, r, �j , Cj and Dj are as in the proof of Theorem 1.9, �0 is a positive number independent of z
and the integers �; � are de�ned by

���1 5
1

2
(�r + �r�1 ���)� 2�0;

1

2
(�r + �r+1 +��) 5 ��+1;

� 5 0 5 �; � 5 � 5 �; � < r 5 �:

(1.11.22)

Using estimates for some auxiliary functions, Braaksma [1, Theorem 7] obtained the asymptotic ex-
pansion (1.6.24) which holds uniformly on (1.6.25) and the following asymptotic estimates for the
H-function are valid:

Hm;n
p;q (z) � (Cr +Dr)E

�
zei�r

�
(1.11.23)

for jzj ! 1 uniformly on

��
1

2
min[��; �r+1 � �r ] 5 arg(z) + �r 5

1

2
min[��; �r � �r�1]� � (1.11.24)

�
0 < � <

1

4
min[��; �r � �r�1; �r � �r�1]

�

(see Braaksma [1, Theorem 5]),

Hm;n
p;q (z) � (Cr +Dr)E

�
zei�r

�
+ (Cr�1 +Dr�1)E

�
zei�r�1

�
(1.11.25)

for jzj ! 1 uniformly on

1

2
(�r � �r�1)� � 5 arg(z) + �r 5

1

2
(�r � �r�1) + � (1.11.26)

�
0 < � <

1

4
min[�r�1 � �r�2; �r � �r�1; �r+1 � �r ;��� �r + �r�1]

�
;
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provided that �r � �r�1 < �� (see Braaksma [1, Theorem 6]),

Hm;n
p;q (z) �

nX
i=1

1X
k=0

Res
s=aik

�
H
m;n
p;q (s)z�s

�

+
�X

j=r

DjP
�
zei�j

�
�

r�1X
j=0

CjP
�
zei�j

�
+ (Cr +Dr)E

�
zei�r

�
(1.11.27)

for jzj ! 1 uniformly on (1.6.25) with

1

2
�� � � 5 arg(z) + �r 5

1

2
�� + � (1.11.28)

�
0 < � <

1

4
min[�r+1 � �r ; �r � �r�1 ���]

�
;

provided that �r � �r�1 > �� (see Braaksma [1, Theorem 8]), and

Hm;n
p;q (z) �

nX
i=1

1X
k=0

Res
s=aik

�
H
m;n
p;q (s)z�s

�

+
�X

j=r

DjP
�
zei�j

�
�

r�1X
j=0

CjP
�
zei�j

�
+ (Cr�1 +Dr�1)E

�
zei�r�1

�
(1.11.29)

for jzj ! 1 uniformly on

�
1

2
�� � � 5 arg(z) + �r�1 5 �

1

2
�� + � (1.11.30)

�
0 < � <

1

4
min[�r�1 � �r�2; �r � �r�1 ���]

�
;

provided that �r � �r�1 > �� (see Braaksma [1, Theorem 9]).
The results in Sections 1.5 and 1.6 were presented by the authors in Kilbas and Saigo [1]. The

results in Sections 1.7 have not been published before. We also note that the asymptotic estimate
(1.5.13) was earlier indicated in books by Mathai and R.K. Saxena [2, (1.6.2)] and by Srivastava,
Gupta and Goyal [1, (2.2.12)].

In conclusion we indicate that Theorems 1.7 and 1.8 show the explicit power asymptotic expansion
(1.5.9) and the power-logarithmic one (1.5.14) of the H-function Hm;n

p;q (z) at in�nity in the cases either
� 5 0 or � > 0; a� > 0, Theorem 1.9 gives the explicit asymptotic behavior of Hm;n

p;q (z) in the excep-
tional case � > 0 and a� = 0, and Theorem 1.10 contains the explicit asymptotic estimate of Hm;0

p;q (z)
for � > 0, and either a� = 0 with m < q or a� > 0 with m = q. The problem of �nding an explicit
asymptotic expansion of Hm;n

p;q (z) in the case � > 0 and a� < 0 is open, as well as that for Hm;0
p;q (z) in

the case � > 0, when either a� < 0 with m < q or a� 5 0 with m = q. We hope these problems can
be solved by using the estimates (1.11.23){(1.11.26) which were established in Theorems 5, 6, 8 and
9 of Braaksma [1], in the same way as Theorem 1.9 was proved on the basis of Braaksma [1, Theorem 7].

For Sections 1.8{1.10. The power and power-logarithmic asymptotic expansions of the H-function
at zero in the cases � 5 0 and � < 0; a� > 0 in Sections 1.8 and 1.9 were given by the authors in
Kilbas and Saigo [1]. The asymptotic estimate (1.8.8) was earlier shown by Mathai and R.K. Saxena
[2, (1.6.1)] and by Srivastava, Gupta and Goyal [1, (2.2.9)].

We note that, in the paper [1] of the authors, the asymptotic estimate (1.6.8) was proved by using
the modi�cation of the method suggested by Braaksma in [1] for the investigation of the asymptotic
behavior of the H-function at in�nity, but the formulas (1.6.8) and (1.6.8) in [1] should be corrected
in accordance with Section 1.9.

We also note that the asymptotic estimates for the H-function at zero presented in Sections 1.8
and 1.9 can be deduced from the corresponding estimates at in�nity given in Sections 1.5 and 1.6 by
using the translation formula (1.8.15) and the relations (1.8.16).

The results in Section 1.10 have not been published before.



Chapter 2

PROPERTIES OF THE H-FUNCTION

2.1. Elementary Properties

In Sections 2.1{2.4 we suppose that theH-functions considered make sense in accordance with

Theorem 1.1. The results in this section follow directly from the de�nition of the H-function

in Section 1.1. First we give the simplest formulas.

Property 2.1. The H-function (1.1.1) is symmetric in the set of pairs (a1; �1); � � � ;

(an; �n); in (an+1; �n+1); � � � ; (ap; �p); in (b1; �1); � � � ; (bm; �m) and in (bm+1; �m+1); � � � ;

(bq; �q).

Property 2.2. If one of (ai; �i) (i = 1; � � � ; n) is equal to one of (bj; �j) (j = m+1; � � � ; q)

(or one of (ai; �i) (i = n + 1; � � � ; p) is equal to one of (bj; �j) (j = 1; � � � ; m)), then the

H-function reduces to a lower order one, that is, p; q and n (or m) decrease by unity. We

give two examples of such reduction formulas:

Hm;n
p;q

"
z

�����
(ai; �i)1;p

(bj ; �j)1;q�1; (a1; �1)

#
= H

m;n�1
p�1;q�1

"
z

�����
(ai; �i)2;p

(bj ; �j)1;q�1

#
; (2.1.1)

provided n = 1 and q > m; and

Hm;n
p;q

"
z

�����
(ai; �i)1;p�1; (b1; �1)

(bj; �j)1;q

#
= H

m�1;n
p�1;q�1

"
z

�����
(ai; �i)1;p�1

(bj; �j)2;q

#
; (2.1.2)

provided m = 1 and p > n.

Property 2.3. There holds the relation

Hm;n
p;q

"
1

z

�����
(ai; �i)1;p

(bj ; �j)1;q

#
= Hn;m

q;p

"
z

�����
(1� bj ; �j)1;q

(1� ai; �i)1;p

#
: (2.1.3)

Property 2.4. For k > 0; there holds the relation

Hm;n
p;q

"
z

�����
(ai; �i)1;p

(bj; �j)1;q

#
= kHm;n

p;q

"
zk

�����
(ai; k�i)1;p

(bj; k�j)1;q

#
: (2.1.4)
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Property 2.5. For � 2 C ; there holds the relation

z�Hm;n
p;q

"
z

�����
(ai; �i)1;p

(bj ; �j)1;q

#
= Hm;n

p;q

"
z

�����
(ai + ��i; �i)1;p

(bj + ��j; �j)1;q

#
: (2.1.5)

The next six formulas follow from the de�nition of the H-function in (1.1.1) and the

reection formula for the gamma function (see Erd�elyi, Magnus, Oberhettinger and Tricomi

[1, 1.2(6)])

�(z)�(1� z) =
�

sin(z�)
: (2.1.6)

Property 2.6. For c 2 C ; � > 0 and k = 0;�1;�2; � � � ; there hold the relations

H
m;n+1
p+1;q+1

"
z

�����
(c; �); (ai; �i)1;p

(bj ; �j)1;q; (c+ k; �)

#
= (�1)kHm+1;n

p+1;q+1

"
z

�����
(ai; �i)1;p; (c; �)

(c+ k; �); (bj; �j)1;q

#
; (2.1.7)

H
m+1;n
p+1;q+1

"
z

�����
(ai; �i)1;p; (c; �)

(c+ k; �); (bj; �j)1;q

#
= (�1)kHm;n+1

p+1;q+1

"
z

�����
(c; �); (ai; �i)1;p

(bj; �j)1;q; (c+ k; �)

#
: (2.1.8)

Property 2.7. For a; b 2 C ; there hold the relations

Hm;n
p;q

"
z

�����
(a; 0); (ai; �i)2;p

(bj ; �j)1;q

#
= �(1� a)Hm;n�1

p�1;q

"
z

�����
(ai; �i)2;p

(bj; �j)1;q

#
; (2.1.9)

when Re(1� a) > 0 and n = 1;

Hm;n
p;q

"
z

�����
(ai; �i)1;p

(b; 0); (bj; �j)2;q

#
= �(b)Hm�1;n

p;q�1

"
z

�����
(ai; �i)1;p

(bj; �j)2;q

#
; (2.1.10)

when Re(b) > 0 and m = 1;

Hm;n
p;q

"
z

�����
(ai; �i)1;p�1; (a; 0)

(bj ; �j)1;q

#
=

1

�(a)
H

m;n
p�1;q

"
z

�����
(ai; �i)1;p�1

(bj; �j)1;q

#
; (2.1.11)

when Re(a) > 0 and p > n; and

Hm;n
p;q

"
z

�����
(ai; �i)1;p

(bj ; �j)1;q�1; (b; 0)

#
=

1

�(1� b)
H

m;n
p;q�1

"
z

�����
(ai; �i)1;p

(bj; �j)1;q�1

#
; (2.1.12)

when Re(1� b) > 0 and q > m.
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2.2. Di�erentiation Formulas

It is proved here that di�erentiation of the H-function also gives the same function of greater

order. From the de�nition of the H-function we easily obtain the following relations:

Property 2.8.

�
d

dz

�k (
z!Hm;n

p;q

"
cz�

�����
(ai; �i)1;p

(bj ; �j)1;q

#)

= z!�kH
m;n+1
p+1;q+1

"
cz�

�����
(�!; �); (ai; �i)1;p

(bj ; �j)1;q; (k� !; �)

#
(2.2.1)

= (�1)kz!�kHm+1;n
p+1;q+1

"
cz�

�����
(ai; �i)1;p; (�!; �)

(k � !; �); (bj; �j)1;q

#
(2.2.2)

for !; c 2 C ; � > 0;

kY
j=1

�
z
d

dz
� cj

�(
z!Hm;n

p;q

"
az�

�����
(ai; �i)1;p

(bj ; �j)1;q

#)

= z!H
m;n+k
p+k;q+k

"
az�

�����
(cj � !; �)1;k; (ai; �i)1;p

(bj; �j)1;q; (cj + 1� !; �)1;k

#
(2.2.3)

= (�1)kz!Hm+k;n
p+k;q+k

"
az�

�����
(ai; �i)1;p; (cj � !; �)1;k

(cj + 1� !; �)1;k; (bj; �j)1;q

#
(2.2.4)

for !; a; cj 2 C (j = 1; � � � ; k); � > 0; and

�
d

dz

�k
Hm;n

p;q

"
(cz + d)�

�����
(ai; �i)1;p

(bj; �j)1;q

#

=
ck

(cz + d)k
H

m;n+1
p+1;q+1

"
(cz + d)�

�����
(0; �); (ai; �i)1;p

(bj ; �j)1;q; (k; �)

#
; (2.2.5)

�
d

dz

�k
Hm;n

p;q

"
1

(cz + d)�

�����
(ai; �i)1;p

(bj; �j)1;q

#

=
ck

(cz + d)k
H

m+1;n
p+1;q+1

"
1

(cz + d)�

�����
(ai; �i)1;p; (1� k; �)

(1; �); (bj; �j)1;q

#
(2.2.6)

for c; d 2 C ; � > 0.

Further di�erentiation formulas connect H-functions the same orders, but of di�erent pa-

rameters:
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Property 2.9.

�
d

dz

�k  
z��b1=�1Hm;n

p;q

"
z�

�����
(ai; �i)1;p

(bj; �j)1;q

#!

=

�
�

�

�1

�k
z�k��b1=�1Hm;n

p;q

"
z�

�����
(ai; �i)1;p

(b1 + k; �1); (bj; �j)2;q

#
(2.2.7)

with m = 1; while � = �1 for k > 1;

�
d

dz

�k  
z��bq=�qHm;n

p;q

"
z�

�����
(ai; �i)1;p

(bj; �j)1;q

#!

=

 
�

�q

!k

z�k��bq=�qHm;n
p;q

"
z�

�����
(ai; �i)1;p

(bj ; �j)1;q�1; (bq + k; �q)

#
(2.2.8)

with m < q; while � = �q for k > 1;

�
d

dz

�k  
z��(1�a1)=�1Hm;n

p;q

"
z��

�����
(ai; �i)1;p

(bj ; �j)1;q

#!

=

�
�

�

�1

�k
z�k��(1�a1)=�1Hm;n

p;q

"
z��

�����
(a1 � k; �1); (ai; �i)2;p

(bj; �j)1;q

#
(2.2.9)

with n = 1; while � = �1 for k > 1;

�
d

dz

�k  
z��(1�ap)=�pHm;n

p;q

"
z��

�����
(ai; �i)1;p

(bj; �j)1;q

#!

=

 
�

�p

!k

z�k��(1�ap)=�pHm;n
p;q

"
z��

�����
(ai; �i)1;p�1; (ap � k; �p)

(bj; �j)1;q

#
(2.2.10)

with p > n; while � = �p for k > 1.

The relations (2.2.7){(2.2.10) follow from (2.2.1) and (2.2.2), if we take Property 2.2 into

account.

Property 2.10.

z
d

dz

(
Hm;n

p;q

"
z�

�����
(ai; �i)1;p

(bj ; �j)1;q

#)

=
�(a1 � 1)

�1
Hm;n

p;q

"
z�

�����
(ai; �i)1;p

(bj; �j)1;q

#

+
�

�1
Hm;n

p;q

"
z�

�����
(a1 � 1; �1); (ai; �i)2;p

(bj; �j)1;q

#
(2.2.11)
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for n = 1;

z
d

dz

(
Hm;n

p;q

"
z�

�����
(ai; �i)1;p

(bj; �j)1;q

#)

=
�(ap � 1)

�p
Hm;n

p;q

"
z�

�����
(ai; �i)1;p

(bj; �j)1;q

#

�
�

�p
Hm;n

p;q

"
z�

�����
(ai; �i)1;p�1; (ap � 1; �p)

(bj ; �j)1;q

#
(2.2.12)

for n 5 p� 1;

z
d

dz

(
Hm;n

p;q

"
z�

�����
(ai; �i)1;p

(bj ; �j)1;q

#)

=
�b1

�1
Hm;n

p;q

"
z�

�����
(ai; �i)1;p

(bj ; �j)1;q

#

�
�

�1
Hm;n

p;q

"
z�

�����
(ai; �i)1;p

(b1 + 1; �1); (bj; �j)2;q

#
(2.2.13)

for m = 1;

z
d

dz

(
Hm;n

p;q

"
z�

�����
(ai; �i)1;p

(bj; �j)1;q

#)

=
�bq

�q
Hm;n

p;q

"
z�

�����
(ai; �i)1;p

(bj; �j)1;q

#

+
�

�q
Hm;n

p;q

"
z�

�����
(ai; �i)1;p

(bj; �j)1;q�1; (bq + 1; �q)

#
(2.2.14)

for m 5 q � 1:

The formulas (2.2.11){(2.2.14) are established by virtue of the following relations:

��1s�(1 � a1 � �1s) = (a1 � 1)�(1� a1 � �1s) + �(2� a1 � �1s);

�
�ps

�(ap + �ps)
=

ap � 1

�(ap + �ps)
�

1

�(ap � 1 + �ps)
;

��1s�(b1 + �1s) = b1�(b1 + �1s)� �(b1 + 1 + �1s);

�
�qs

�(1� bq � �qs)
=

bq

�(1� bq � �qs)
+

1

�(�bq � �qs)
;

respectively, which follow from the relation (see Erd�elyi, Magnus, Oberhettinger and Tricomi

[1, 1.2(1)])

z�(z) = �(z + 1): (2.2.15)
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2.3. Recurrence Relations and Expansion Formulas

We give two three-term recurrence formulas which present linear combinations of the

H-function with the same m;n; p and q; in which some ai and bj are replaced by ai � 1

and bj � 1 (i = 1; � � � ; p; j = 1; � � � ; q). Such relations are called contiguous relations by

Srivastava, Gupta and Goyal [1, Section 2.9]. These relations can be deduced directly by us-

ing the de�nition of theH-function given in (1.1.1) and (1.1.2), if we take (2.2.15) into account.

Property 2.11.

(b1�p � ap�1 + �1)H
m;n
p;q

"
z�

�����
(ai; �i)1;p

(bj; �j)1;q

#

= �pH
m;n
p;q

"
z�

�����
(ai; �i)1;p

(b1 + 1; �1); (bj; �j)2;q

#

��1H
m;n
p;q

"
z�

�����
(ai; �i)1;p�1; (ap � 1; �p)

(bj ; �j)1;q

#
(2.3.1)

for m = 1 and 1 5 n 5 p� 1;

(bq�1 � a1�q + �q)H
m;n
p;q

"
z�

�����
(ai; �i)1;p

(bj; �j)1;q

#

= �qH
m;n
p;q

"
z�

�����
(a1 � 1; �1); (ai; �i)2;p

(bj; �j)1;q

#

��1H
m;n
p;q

"
z�

�����
(ai; �i)1;p

(bj ; �j)1;q�1; (bq + 1; �q)

#
(2.3.2)

for n = 1 and 1 5 m 5 q � 1;

Remark 2.1. A complete list of contiguous relations of the H-function may be found in

Buschman [2].

From (2.3.1) we come to the following �nite series relations:

Property 2.12. For any r 2 N; m = 1 and 1 5 n 5 p� 1;

�1

�p

rX
k=1

1

�

 
b1 + k �

(ap � 1)�1
�p

!Hm;n
p;q

"
z

�����
(ai; �i)1;p�1; (ap � 1; �p)

(b1 + k � 1; �1); (bj; �j)2;q

#

=
1

�

 
b1 + r �

(ap � 1)�1
�p

!Hm;n
p;q

"
z

�����
(ai; �i)1;p

(b1 + r; �1); (bj; �j)2;q

#
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�
1

�

 
b1 �

(ap � 1)�1
�p

!Hm;n
p;q

"
z

�����
(ai; �i)1;p

(bj ; �j)1;q

#
; (2.3.3)

�p

�1

rX
k=1

(�1)k

�

�
k � [ap � 1] +

b1�p

�1

�Hm;n
p;q

"
z

�����
(ai; �i)1;p�1; (ap � k + 1; �p)

(b1 + 1; �1); (bj; �j)2;q

#

=
(�1)r

�

�
r � [ap � 1] +

b1�p

�1

�Hm;n
p;q

"
z

�����
(ai; �i)1;p�1; (ap � r; �p)

(bj; �j)1;q

#

�
1

�

�
�[ap � 1] +

b1�p

�1

�Hm;n
p;q

"
z

�����
(ai; �i)1;p

(bj ; �j)1;q

#
; (2.3.4)

rX
k=1

�k�1
p �r�k1 [(b1+ k)�p � (ap + k � 1)�1]H

m;n
p;q

"
z

�����
(ai; �i)1;p�1; (ap + k; �p)

(b1 + k; �1); (bj; �j)2;q

#

= �r
pH

m;n
p;q

"
z

�����
(ai; �i)1;p�1; (ap+ r; �p)

(b1 + r + 1; �1); (bj; �j)2;q

#

��r1H
m;n
p;q

"
z

�����
(ai; �i)1;p

(b1 + 1; �1); (bj; �j)2;q

#
: (2.3.5)

Proof. The formula (2.3.3) is proved on the basis of (2.3.1). For simplicity let us denote

the determinant

d(b1; ap � 1) =

����� b1 ap � 1

�1 �p

����� = b1�p � (ap � 1)�1: (2.3.6)

We write the H-function as H and use the notation H [b1+ 1] and H [ap� 1] replacing b1 and

ap by b1 + 1 and ap � 1; respectively, without any change of all other parameters. Then the

relations (2.3.1) and (2.3.3) are simpli�ed as

d(b1; ap � 1)H = �pH [b1+ 1]� �1H [ap � 1] (2.3.7)

and

�1
�p

rX
k=1

H [b1+ k � 1; ap � 1]

�

 
b1 + k � [ap � 1]

�1
�p

!

=
H [b1+ r; ap]

�

 
b1 + r � [ap � 1]

�1
�p

! �
H

�

 
b1 � [ap � 1]

�1
�p

! : (2.3.8)

Now applying (2.3.7) with b1 being replaced by b1 + k� 1 and using the relation (2.2.15), we
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have

�1
�p

rX
k=1

H [b1+ k � 1; ap � 1]

�

 
b1 + k � [ap � 1]

�1
�p

!

=
1

�p

rX
k=1

�pH [b1+ k]� d(b1 + k � 1; ap � 1)H [b1+ k � 1]

�

 
b1 + k � [ap � 1]

�1
�p

!

=
rX

k=1

H [b1+ k]

�

 
b1 + k � [ap � 1]

�1
�p

! �
r�1X
k=0

H [b1+ k]

�

 
b1 + k � [ap � 1]

�1
�p

! ;

which implies (2.3.8) and hence (2.3.3).

The relation (2.3.4) is similarly proved by another use of (2.3.7).

As for (2.3.5), according to the notation (2.3.6) the left-hand side takes the form

rX
k=1

�k�1
p �r�k1 d(b1+ k; ap + k � 1)H [b1+ k; ap + k]:

Applying (2.3.7) and again replacing the order of summation, we �nd

rX
k=1

�k�1
p �r�k1 d(b1 + k; ap + k � 1)H [b1+ k; ap + k]

=
rX

k=1

�k�1
p �r�k1 ([�pH [b1 + k + 1; ap + k]� �1H [b1+ k; ap + k � 1])

=
rX

k=1

�k
p�

r�k
1 H [b1 + k + 1; ap + k]�

r�1X
k=0

�k
p�

r�k
1 H [b1+ k + 1; ap + k]

= �r
pH [b1+ r + 1; ap + r]� �r1H [b1+ 1; ap];

and hence (2.3.5) is proved.

Further, from (2.3.2) we similarly obtain the following formulas:

Property 2.13. For any r 2 N; n = 1 and 1 5 m 5 q � 1;

�1
�q

rX
k=1

1

�

 
1 + k � a1 + bq

�1
�q

!Hm;n
p;q

"
z

�����
(a1 � k + 1; �1); (ai; �i)2;p

(bj; �j)1;q�1; (bq + 1; �q)

#

=
1

�

 
1 + r � a1 + bq

�1
�q

!Hm;n
p;q

"
z

�����
(a1 � r; �1); (ai; �i)2;p

(bj ; �j)1;q

#
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�
1

�

 
1� a1 + bq

�1
�q

!Hm;n
p;q

"
z

�����
(ai; �i)1;p

(bj ; �j)1;q

#
; (2.3.9)

�q
�1

rX
k=1

(�1)k

�

�
bq + k � [a1 � 1]

�q
�1

�Hm;n
p;q

"
z

�����
(a1 � 1; �1); (ai; �i)2;p

(bj ; �j)1;q�1; (bq + k � 1; �q)

#

=
(�1)r

�

�
bq + r � [a1 � 1]

�q
�1

�Hm;n
p;q

"
z

�����
(ai; �i)1;p

(bj; �j)1;q�1; (bq + r; �q)

#

�
1

�

�
bq � [a1 � 1]

�q
�1

�Hm;n
p;q

"
z

�����
(ai; �i)1;p

(bj; �j)1;q

#
; (2.3.10)

rX
k=1

�k�1
1 �r�kq [(bq + k � 1)�1 � (a1 + k � 2)�q]H

m;n
p;q

"
z

�����
(a1 + k � 1; �1); (ai; �i)2;p

(bj; �j)1;q�1; (bq + k � 1; �q)

#

= �rq Hm;n
p;q

"
z

�����
(a1 � 1; �1); (ai; �i)2;p

(bj; �j)1;q

#

��r
1 H

m;n
p;q

"
z

�����
(a1 + r � 1; �1); (ai; �i)2;p

(bj; �j)1;q�1; (bq + r; �q)

#
: (2.3.11)

We also give the expansions known as multiplication theorems for the H-function (see

Srivastava, Gupta and Goyal [1, 2.9.]).

Theorem 2.1. Let � 2 C and let the conditions in (1:1:6) be satis�ed. Then the following

relations hold:

Hm;n
p;q

"
�z

�����
(ai; �i)1;p

(bj; �j)1;q

#

= �b1=�1
1X
k=0

�
1� �1=�1

�k
k!

Hm;n
p;q

"
z

�����
(ai; �i)1;p

(b1 + k; �1); (bj; �j)2;q

#
; (2.3.12)

where m > 0; while
����1=�1 � 1

��� < 1 for m > 1;

Hm;n
p;q

"
�z

�����
(ai; �i)1;p

(bj; �j)1;q

#

= �bq=�q
1X
k=0

�
�1=�q � 1

�k
k!

Hm;n
p;q

"
z

�����
(ai; �i)1;p

(bj ; �j)1;q�1; (bq + k; �q)

#
; (2.3.13)
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where q > m and
����1=�q � 1

��� < 1;

Hm;n
p;q

"
�z

�����
(ai; �i)1;p

(bj; �j)1;q

#

= �(a1�1)=�1
1X
k=0

�
1� ��1=�1

�k
k!

Hm;n
p;q

"
z

�����
(a1 � k; �1); (ai; �i)2;p

(bj; �j)1;q

#
; (2.3.14)

where n > 0 and Re
�
�1=�1

�
> 1=2;

Hm;n
p;q

"
�z

�����
(ai; �i)1;p

(bj; �j)1;q

#

= �(ap�1)=�p
1X
k=0

�
��1=�p � 1

�k
k!

Hm;n
p;q

"
z

�����
(ai; �i)1;p�1; (ap � k; �p)

(bj; �j)1;q

#
; (2.3.15)

where p > n and Re
�
�1=�p

�
> 1=2:

Proof. By Theorem 2.2 the function z�b1Hm;n
p;q

"
z�1

����� (ai; �i)1;p
(bj; �j)1;q

#
is analytic for z 2 C

(z 6= 0). Therefore for j�j < jzj there holds the Taylor formula

(z + �)�b1Hm;n
p;q

"
(z + �)�1

�����
(ai; �i)1;p

(bj; �j)1;q

#

=
1X
k=0

�k

k!

�
d

dz

�k
(
(z + �)�b1Hm;n

p;q

"
(z + �)�1

�����
(ai; �i)1;p

(bj; �j)1;q

#)�����
�=0

:

Applying (2.2.7) with � = �1, we have

(z + �)�b1Hm;n
p;q

"
(z + �)�1

�����
(ai; �i)1;p

(bj ; �j)1;q

#

=
1X
k=0

(��)k

k!

(
z�b1�kHm;n

p;q

"
z�1

�����
(ai; �i)1;p

(b1 + k; �1); (bj; �j)2;q

#)
:

Setting � = z
�
1� �1=�1

�
for j1� �1=�1j < 1, we obtain

Hm;n
p;q

"
�z�1

�����
(ai; �i)1;p

(bj; �j)1;q

#
= �b1=�1

1X
k=0

(1� �1=�1)k

k!
Hm;n

p;q

"
z�1

�����
(ai; �i)1;p

(b1 + k; �1); (bj; �j)2;q

#
:

By replacing z�1 by z we arrive at (2.3.12).

The relations (2.3.13){(2.3.15) are proved similarly.
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2.4. Multiplication and Transformation Formulas

In this section we present the multiplication formulas for the H-function. The �rst relation is

an analog of the general Gauss{Legendre multiplication formula for the gamma function (see

Erd�elyi, Magnus, Oberhettinger and Tricomi [1, (1.2.11)])

m�1Y
k=0

�

�
z +

k

m

�
= (2�)(m�1)=2m1=2�mz�(mz) (m = 2; 3; 4; � � �): (2.4.1)

Let

c� = m+ n�
p+ q

2
: (2.4.2)

For ai; bj 2 C and �i; �j > 0 (i = 1; � � � ; p; j = 1; � � � ; q) we shall use the symbols
�
�(k; ai); �i

�
1;p

and
�
�(k; bj); �j

�
1;q

to abbreviate the parameter sequences

�
ai
k
; �i

�
1;p

;

�
ai + 1

k
; �i

�
1;p

; � � � ;

�
ai + k � 1

k
; �i

�
1;p

(2.4.3)

and �
bj
k
; �j

�
1;q

;

�
bj + 1

k
; �j

�
1;q

; � � � ;

�
bj + k � 1

k
; �j

�
1;q

; (2.4.4)

respectively. The following multiplication relation for the H-function follows directly from

the de�nition (1.1.1){(1.1.2):

Property 2.14.

Hm;n
p;q

"
z

�����
(ai; �i)1;p

(bj ; �j)1;q

#
= (2�)(1�k)c

�

k�+1Hkm;kn
kp;kq

2
64�zk���k

�������
�
�(k; ai); �i

�
1;p�

�(k; bj); �j
�
1;q

3
75 ; (2.4.5)

where k 2 N; and �, c� and � are given in (1.1.15), (1.1.8) and (1.1.10).

To give another multiplication formula we introduce some notation. Let n;m; r; s 2 N;

ai; bj; ck; dl 2 C and �i; �j ; k; �l 2 R+ and Ni;Mj ; Rk; Sl 2 N (i = 1; � � � ; n; j = 1; � � � ; m;

k = 1; � � � ; r; l = 1; � � � ; s). Let

N =
nX
i=1

Ni; M =
mX
j=1

Mj ; R =
rX

k=1

Rk; S =
sX

l=1

Sl; (2.4.6)

� =
nY
i=1

(Ni)
�i; � =

mY
j=1

(Mj)
�j ;  =

rY
k=1

(Rk)
k ; � =

sY
l=1

(Sl)
�l: (2.4.7)

The symbols (�(Ni; ai); �i=Ni)1;n and (�(Mj ; bj); �j=Mj)1;m abbreviate the parameter se-

quences �
ai
Ni

;
�i
Ni

�
1;n

;

�
ai + 1

Ni
;
�i
Ni

�
1;n

; � � � ;

�
ai +Ni � 1

Ni
;
�i
Ni

�
1;n

(2.4.8)
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and  
bj
Mj

;
�j
Mj

!
1;m

;

 
bj + 1

Mj
;
�j
Mj

!
1;m

; � � � ;

 
bj +Mj � 1

Mj
;
�j
Mj

!
1;m

; (2.4.9)

respectively, and similarly for (�(Rk; ck); k=Rk)1;r and (�(Sl; dl); �l=Sl)1;s. Then there holds

another multiplication relation:

Property 2.15.

Hm;n
n+r;m+s

"
z

�����
(ai; �i)1;n; (ck; k)1;r

(bj; �j)1;m; (dl; �l)1;s

#

= (2�)(m+n�r�s�M�N+R+S)=2
nY
i=1

(Ni)
�ai+1=2

mY
j=1

(Mj)
bj�1=2

�
rY

k=1

(Rk)
�ck+1=2

sY
l=1

(Sl)
dl�1=2

� HM;N
N+R;M+S

2
6664��� z

���������

�
�(Ni; ai);

�i
Ni

�
1;n

;

�
�(Rk; ck);

k
Rk

�
1;r 

�(Mj ; bj);
�j
Mj

!
1;m

;

�
�(Sl; dl);

�l
Sl

�
1;s

3
7775 : (2.4.10)

The next relation is a certain transformation of in�nite series involving the H-function.

Property 2.16.

1X
k=0

(a)k
k!

xkH
m+1;n
p+1;q+1

"
z

�����
(ai; �i)1;p; (c+ k; )

(b+ k; ); (bj; �j)1;q

#

=
�(c� a� b)

�(c� b)

1X
k=0

(a)k
(a+ b� c+ 1)kk!

(1� x)k

� Hm+1;n
p+1;q+1

"
z

�����
(ai; �i)1;p; (c� a; )

(b+ k; ); (bj; �j)1;q

#

+
�(a+ b� c)

�(a)

1X
k=0

(c� b)k
(c� a � b+ 1)kk!

(1� x)c�a�b+k

� Hm+1;n
p+1;q+1

"
z

�����
(ai; �i)1;p; (c� a; )

(c� a+ k; ); (bj; �j)1;q

#
; (2.4.11)

where a; b; c 2 C ;  > 0; j arg(1�x)j < �; and Re(c�a�b) > 0 if x = 1: Here (a)k (a 2 C ; k =

0; 1; 2; � � �) is the Pochhammer symbol (see Erd�elyi, Magnus, Oberhettinger and Tricomi [1,

Section 2.1.1]) de�ned by

(a)0 = 1; (a)k = a(a+ 1) � � �(a+ k � 1) =
�(a+ k)

�(a)
(k = 1; 2; � � �): (2.4.12)



2.5. Mellin and Laplace Transforms of the H-Function 43

The formula (2.4.11) may be derived by using the transformation formula:

2F1(a; b; c; x) =
�(c)�(c� a� b)

�(c� a)�(c� b)
2F1(a; b; a+ b� c+ 1; 1� x)

+
�(c)�(a+ b� c)

�(a)�(b)
(1� x)c�a�b 2F1(c� a; c� b; c� a� b+ 1; 1� x) (2.4.13)

(j arg(1� x)j < �)

for the Gauss hypergeometric function (2.9.2).

2.5. Mellin and Laplace Transforms of the H-Function

The Mellin and Laplace transforms of a function f(x) (x > 0) are de�ned by

�
Mf

�
(s) =

Z 1

0
f(x)xs�1dx (s 2 C ) (2.5.1)

and �
Lf
�
(t) =

Z 1

0
f(x)e�txdx (t 2 C ); (2.5.2)

respectively. The theory of these transforms may be found in the books by Doetsch [1], [2],

Ditkin and Prudnikov [1], Sneddon [1], Titchmarsh [3] and Widder [1]. In particular, the

Mellin inversion formula is given by

f(x) =
1

2�i

Z +i1

�i1

�
Mf

�
(s)x�sds �

�
M

�1f
�
(x); (2.5.3)

while the Laplace inversion has the form

f(x) =
1

2�i

Z +i1

�i1

�
Lf
�
(t)extdt �

�
L
�1f

�
(x); (2.5.4)

where  2 R is specially chosen. We shall consider the H-function provided that the condi-

tions in (1.1.6) are satis�ed. The �rst result for the Mellin transform follows from Theorem

1.1 and the Mellin inversion theorem (see, for example, Titchmarsh [3, Section 1.5]).

Theorem 2.2. Let a� = 0 and s 2 C be such that

� min
15j5m

"
Re(bj)

�j

#
< Re(s) < min

15i5n

�
1� Re(ai)

�i

�
; (2.5.5)

when a� > 0; and; additionally;

�Re(s) + Re(�) < �1; (2.5.6)

when a� = 0. Then the Mellin transform of the H-function exists and the relation 
MHm;n

p;q

"
x

�����
(ai; �i)1;p

(bj ; �j)1;q

#!
(s) = Hm;n

p;q

"
(ai; �i)1;p

(bj ; �j)1;q

����� s
#

(2.5.7)



44 Chapter 2. Properties of the H-Function

holds; where Hm;n
p;q (s) is given in (1.1.2).

Proof. By (1.1.4) and (1.1.5) for the poles bjl (1 5 j 5 m; l = 0; 1; 2; � � �) and aik
(1 5 i 5 n; k = 0; 1; 2; � � �) of the gamma functions �(bj+�js) (1 5 j 5 m) and �(1�ai��is)

(1 5 i 5 n); there hold the following estimates:

Re(bjl) 5 Re(bj0) 5 � min
15j5m

"
Re(bj)

�j

#
(1 5 j 5 m; l = 0; 1; 2; � � �) (2.5.8)

and

Re(aik) = Re(ai0) = min
15i5n

�
1� Re(ai)

�i

�
(1 5 i 5 n; k = 0; 1; 2; � � �): (2.5.9)

In view of Section 1.1 we can choose the contour L = Li1 with  = Re(s) for the

H-function in the left side of (2.5.7), because it follows from (2.5.8) and (2.5.9) that all

poles bjl (1 5 j 5 m; l = 0; 1; 2; � � �) lie in the left of the contour Li1 while all poles aik
(1 5 i 5 n; k = 0; 1; 2; � � �) lie in the right of Li1. By Theorem 1.1 such an H-function

exists. Hence (1.1.1) and (1.1.2) give the result in (2.5.7) according to the Mellin inversion

theorem.

Corollary 2.2.1. Let a� = 0; a 2 C and � 2 R (� 6= 0). Let us assume that s; w 2 C

satisfy

�� min
15j5m

"
Re(bj)

�j

#
< Re(s+ w) < � min

15i5n

�
1� Re(ai)

�i

�
; (2.5.10)

when a� > 0; j argzj < a��=2; z 6= 0; and additionally;

�

�
Re(s+ w) + Re(�) < �1; (2.5.11)

when a� = 0; arg z = 0 and z 6= 0. Then the following relations hold: 
MxwHm;n

p;q

"
ax�

�����
(ai; �i)1;p

(bj ; �j)1;q

#!
(s)

=
a�(s+w)=�

�
H

m;n
p;q

"
(ai; �i)1;p

(bj ; �j)1;q

����� s+ w

�

#
(� > 0); (2.5.12)

 
MxwHm;n

p;q

"
ax�

�����
(ai; �i)1;p

(bj ; �j)1;q

#!
(s)

=
a�(s+w)=j�j

j�j
H

n;m
q;p

"
(1� bj ; �j)1;q

(1� ai; �i)1;p

����� s+ w

j�j

#
(� < 0): (2.5.13)

Proof. When � > 0, the relation (2.5.12) follows from (2.5.7). For � < 0, (2.5.13) is de-

duced by using (1.8.15) and (2.5.12). The general case a 2 C follows by analytic continuation

by virtue of Theorem 1.1.

The next statement presents the Laplace transform of the H-function.
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Theorem 2.3. Let either a� > 0 or a� = 0; Re(�) < �1; and assume

min
15j5m

"
Re(bj)

�j

#
> �1; (2.5.14)

when a� > 0; or a� = 0; � = 0; and

min
15j5m

"
Re(bj)

�j
;
Re(�) + 1=2

�

#
> �1; (2.5.15)

when a� = 0; � < 0. Then; the Laplace transform of the H-function exists and the relation 
LHm;n

p;q

"
x

�����
(ai; �i)1;p

(bj ; �j)1;q

#!
(t) =

1

t
Hm;n+1

p+1;q

"
1

t

�����
(0; 1); (ai; �i)1;p

(bj ; �j)1;q

#
(2.5.16)

holds for t 2 C (Re(t) > 0).

Proof. First we indicate that, if we denote by a�0 the constant (1.1.7) for the H-function

in the right side of (2.5.16), then a�0 = a� + 1 = 1 if a� = 0. By (1.1.1) and (1.1.2) for the

H-functions in the left and right sides of (2.5.16) we take the contour L = Li1; where the

choice of  will depend on the relations between the constant A; B and M de�ned by

A = min
15i5n

�
1� Re(ai)

�i

�
; B = � min

15j5m

"
Re(bj)

�j

#
; M = �

Re(�) + 1

�
; (2.5.17)

for which in accordance with (1.1.1), (1.1.2), (2.5.8), (2.5.9) and (2.5.15) there hold the rela-

tions

Re(bjl) 5 B < 1; Re(aik) = A; ch = 1 (2.5.18)

for the poles bjl (1 5 j 5 m; l = 0; 1; 2; � � �) of the gamma functions �(bj +�js) (1 5 j 5 m);

for the poles aik (1 5 i 5 n; k = 0; 1; 2; � � �) of �(1 � ai � �is) (1 5 i 5 n) and for the poles

ch = h+ 1 (h = 0; 1; 2; � � �) of �(1� s).

If a� > 0; we choose  by the relations

B <  < min[A; 1] (B < A);

B <  < 1 (B = A);

A <  < B (B > A):

(2.5.19)

When B < A; then (2.5.18) implies all poles bjl (1 5 j 5 m; l = 0; 1; 2; � � �) lie in the left of the

contour Li1; while all poles aik (1 5 i 5 n; k = 0; 1; 2; � � �) and all poles ch (h = 0; 1; 2; � � �)

lie in the right of Li1. When B = A; only a �nite number of points s = aik may lie in the

strip B = A < Re(s) < 1 and therefore we can choose Li1 with B <  < 1 such that all bjl
lie in the left of Li1; while all aik and ch lie in the right of Li1. For example, if the points

aik (1 5 i 5 n; 0 5 k 5 Ni) lie in the strip B = A < Re(s) < 1; putting

c = min
15i5n;05k5Ni

[Im(aik)]; d = max
15i5n;05k5Ni

[Im(aik)];

we consider the rectangle

� = f(x; y) : B < x < 1; c� 1 < y < d+ 1g
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and, then, we may choose Li1 as a sum of the half-lines L1 = f + it; �1 < t 5 cg and

L2 = f + it; d 5 t < +1g and the curve L3; lying in �; with the beginning at  + ic and

the end at  + id such that all points aik (1 5 i 5 n; 0 5 k 5 Ni) lie in the right of L3. In

the case B > A we can similarly choose Li1 with A <  < B because only a �nite number

of points s = bjl and s = aik may lie in the strip A < Re(s) < B. Then by Theorem 1.1 the

H-functions in the left and the right sides of (2.5.16) exist.

We treat the case a� = 0. When � = 0,  can be chosen as above in (2.5.19). We note

that since Re(�) < �1, M > 0 when � > 0; and M < 0 when � < 0. Then if a� = 0 and

� > 0; we choose  by

 < M (M 5 B; M 5 A);

A <  < M (M 5 B; M > A);

B <  < min[M; 1] (M > B; M 5 A);

B <  < min[A; 1] (M > B; M > A; B < A);

B <  < min[M; 1] (M > B; M > A; B = A);

A <  < B (M > B; M > A; B > A):

(2.5.20)

If a� = 0 and � < 0;  is chosen as

M <  (M = B; M = A);

M <  < min[A; 1] (M = B; M < A);

M <  < B (M < B; M = A)

(2.5.21)

and as in (2.5.19) for M < B; M < A. Similar arguments yield that, for the case a� = 0, only

a �nite number of points s = bjl and s = aik may lie in the corresponding strips and we can

choose Li1 with  in these strips. According to (2.5.18), (2.5.20), (2.5.21) we have

 < M (� > 0);  > M (� < 0); (2.5.22)

which is equivalent to � + Re(�) < �1. So in all cases above a� = 0 and � +Re(�) < �1

(with di�erent  in the strips) and hence by Theorem 1.1 the H-functions in the left and the

right sides of (2.5.16) exist.

Due to Corollaries 1.11.1, 1.12.1 and 1.13.1 and Remark 1.5, the H-function Hm;n
p;q (x) has

the asymptotic behavior near zero of the form (1.8.8), (1.8.14) or (1.9.14), where

�� = min
15j5m

"
Re

 
bj
�j

!#

in the cases � = 0 or � < 0; a� > 0; and �� is given by (1.9.14) for � < 0; a� = 0. Therefore

the integral in the left side of (2.5.16) exists.

Now the relation (2.5.16) is proved directly by using (2.5.2), (1.1.1), (1.1.2) and changing

the order of integration:

 
LHm;n

p;q

"
x

�����
(ai; �i)1;p

(bj ; �j)1;q

#!
(t)
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=
1

2�i

Z
Li1

H
m;n
p;q

"
(ai; �i)1;p

(bj; �j)1;q

����� s
#
ds

Z 1

0
x�se�txdx

=
1

t

1

2�i

Z
Li1

H
m;n
p;q

"
(ai; �i)1;p

(bj; �j)1;q

����� s
#
�(1� s)

�
1

t

��s
ds;

which gives (2.5.16). This completes the proof of Theorem 2.3.

Corollary 2.3.1. Let either a� > 0 or a� = 0; and Re(�) < �1: Let us assume ! 2 C ;

a > 0 and � > 0 are such that

� min
15j5m

"
Re(bj)

�j

#
+Re(!) > �1; (2.5.23)

when a� > 0; or a� = 0; � = 0; and

� min
15j5m

"
Re(bj)

�j
;
Re(�) + 1=2

�

#
+Re(!) > �1; (2.5.24)

when a� = 0; � < 0. Then the relation 
Lx!Hm;n

p;q

"
ax�

�����
(ai; �i)1;p

(bj ; �j)1;q

#!
(t) =

1

t!+1
H

m;n+1
p+1;q

"
a

t�

�����
(�!; �); (ai; �i)1;p

(bj; �j)1;q

#
(2.5.25)

holds for t 2 C (Re(t) > 0).

Remark 2.2. The relations (2.5.7) and (2.5.16) were indicated by Srivastava, Gupta

and Goyal [1, (2.4.1) and (2.4.2)] provided that � > 0; a� > 0; and the formulas of the

form (2.5.12) and (2.5.25) were listed in Prudnikov, Brychkov and Marichev [3, (2.25.2.1) and

(2.25.2.3)] provided a� > 0. The asymptotic estimates of Hm;n
p;q (z) at zero in Sections 1.5 and

1.6 allow us to extend (in Theorems 2.2 and 2.3) these formulas to the case a� = 0.

In what follows the so-called generalized Laplace transformwill be treated, which is de�ned

by �
Lk;�f

�
(t) =

Z 1

0
(xt)��e�jkj(xt)

1=k
f(x)dx (t > 0) (2.5.26)

for a function f(x) (x > 0) and for k; � 2 R (k 6= 0). For such a transform a similar result to

Theorem 2.3 may be derived.

Theorem 2.4. Let either a� > 0 or a� = 0; and Re(�) < �1: Let k; � 2 R (k 6= 0) be

such that

k min
15j5m

"
Re(bj)

�j

#
> k(� � 1); (2.5.27)

when a� > 0 or a� = 0; � = 0; while

k min
15j5m

"
Re(bj)

�j
;�

Re(�) + 1=2

�

#
> k(�� 1); (2.5.28)
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when a� = 0; � < 0. Then the generalized Laplace transform of the H-function exists and

the following relations hold for t > 0: 
Lk;�H

m;n
p;q

"
x

�����
(ai; �i)1;p

(bj ; �j)1;q

#!
(t)

=
kk(��1)+1

t
Hm;n+1

p+1;q

"
k�k

t

�����
(k(�� 1) + 1; k); (ai; �i)1;p

(bj; �j)1;q

#
; (2.5.29)

if k > 0 and  
Lk;�H

m;n
p;q

"
x

�����
(ai; �i)1;p

(bj; �j)1;q

#!
(t)

=
jkjk(��1)+1

t
Hm+1;n

p;q+1

"
jkj�k

t

�����
(ai; �i)1;p

(jkj(�� 1); jkj); (bj; �j)1;q

#
; (2.5.30)

if k < 0:

Proof. Theorem 2.4 is proved similarly to Theorem 2.3 by using (1.1.1){(1.1.2), Theorem

1.1 and the asymptotic estimates near zero given in Sections 1.8 and 1.9.

2.6. Hankel Transforms of the H-Function

The Hankel transform of a function f(x) (x > 0) is de�ned by�
H �f

�
(x) =

Z 1

0
(xt)1=2J�(xt)f(t)dt; (2.6.1)

where J�(z) is the Bessel function of the �rst kind of order � 2 C (Re(�) > �1) (see Erd�elyi,

Magnus, Oberhettinger and Tricomi [2, 7.2(2)]) de�ned by

J�(z) =
1X
k=0

(�1)k

�(� + k + 1)k!

�
z

2

�2k+�
: (2.6.2)

One may �nd the theory of this transform in the books by Ditkin and Prudnikov [1] and

Sneddon [1]. In this section we shall consider the H-function, provided that the conditions in

(1.1.6) are ful�lled.

Using the asymptotic estimates of the H-function at zero and in�nity given in Theorems

1.12 and 1.7 as well as the asymptotic estimates of J�(z) (see Erd�elyi, Magnus, Oberhettinger

and Tricomi [2, 7.13(3)])

J�(z) = O(z�) (jzj ! 0); J�(z) = O
�
z�1=2

�
(jzj ! 1; j arg(z)j < �); (2.6.3)

and the known formula in Prudnikov, Brychkov and Marichev [2, 2.12.2.2]

Z 1

0
x�J�(ax)dx = 2�a���1

�

�
�+ 1 + �

2

�

�

�
1 +

� � �� 1

2

� (2.6.4)

(a > 0; �Re(�)� 1 < Re(�) < 1=2);
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we obtain the following result:

Theorem 2.5. Let us assume either a� > 0 or a� = � = 0; and Re(�) < �1. Let � 2 C

be such that

Re(�) > �1

2
; Re(�) + min

15j5m

"
Re(bj)

�j

#
> �3

2
; min

15i5n

�
1� Re(ai)

�i

�
> 1: (2.6.5)

Then the Hankel transform of the H-function exists and the relation 
H �H

m;n
p;q

"
t

�����
(ai; �i)1;p

(bj; �j)1;q

#!
(x)

=

p
2

x
Hm;n+1

p+2;q

2
4 2
x

������
�
1

4
� �

2
;
1

2

�
; (ai; �i)1;p;

�
1

4
+

�

2
;
1

2

�
(bj ; �j)1;q

3
5 (2.6.6)

holds for x > 0.

Proof. By (2.6.3), (1.8.8) and (1.5.13) there hold the following asymptotic estimates

near zero and in�nity:

(xt)1=2J�(xt)H
m;n
p;q (xt) = O

�
t�
�+�+1=2

�
(t! +0); �� = min

15j5m

"
Re(bj)

�j

#

and

(xt)1=2J�(xt)H
m;n
p;q (xt) = O (t�) (t! +1); � = � min

15i5n

�
1� Re(ai)

�i

�

with addition of the multipliers [log(x)]N
�

and [log(x)]N ; respectively, in the cases when the

conditions in (1.3.1) and (1.3.2) are not valid, on which one may consult Theorems 1.8 and

1.12. Therefore in accordance with (2.6.5) the integral in the left side of (2.6.6) is convergent.

For bjl in (1.1.4) and aik in (1.1.5), the assumption (2.6.5) implies

Re(bjl) 5 � min
15j5m

"
Re(bj)

�j

#
< Re(�) +

3

2
(1 5 j 5 m; l = 0; 1; 2; � � �)

and

Re(aik) = min
15i5n

�
1�Re(ai)

�i

�
> 1 (1 5 i 5 n; k = 0; 1; 2; � � �):

Since only a �nite number of points bjl and aik can lie in the strip 1 < Re(s) < Re(�) + 3=2;

we can choose the contour Li1 with

1 <  < Re(�) +
3

2
(2.6.7)

such that all poles bjl of the gamma functions �(bj + �js) (1 5 j 5 m) lie in the left of the

contour Li1 while all poles aik of �(1� ai � �is) (1 5 i 5 n) lie in the right of Li1. Since

Re(�) + 3=2 > 0; all poles ch = �+ 2h+ 3=2 (h = 0; 1; 2; � � �) of �(3=4+ �=2� s=2) also lie in

the right of Li1. Hence for the H-functions in the left and right sides of (2.6.6) the contour
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L = Li1 of the integral (1.1.1) can be choosen as 0 < Re(s) < Re(�) + 3=2. Further, if we

denote by a�0; �0 and �0 the constants (1.1.7), (1.1.8) and (1.1.10) for the H-function in the

right side of (2.6.6), then it is directly veri�ed that a�0 = a�; �0 = � � 1 and �0 = � + 1=2.

Then in accordance with (1.2.20) and (1.2.21) the H-functions in the left and right side of

(2.6.6) exist provided that a� > 0; or a� = � = 0 and Re(�) < �1.
Now the relation (2.6.6) is proved directly by using (2.6.1) and (1.1.1){(1.1.2), and by

applying the relation (2.6.4), which holds for Re(s) =  under (2.6.7), such that 
H �H

m;n
p;q

"
t

�����
(ai; �i)1;p

(bj ; �j)1;q

#!
(x)

=
1

2�i

Z
Li1

H
m;n
p;q

"
(ai; �i)1;p

(bj ; �j)1;q

����� s
#
ds

Z
1

0
(xt)1=2J�(xt)t

�sdt

=
1

2�i

Z
Li1

H
m;n
p;q

"
(ai; �i)1;p

(bj ; �j)1;q

����� s
#
xs�12�s+1=2

�

�
3

4
+

�

2
� s

2

�

�

�
1

4
+

�

2
+

s

2

�ds;

which gives (2.6.6).

Corollary 2.5.1. Let a� > 0 or a� = � = 0 and Re(�) < �1. Let �; ! 2 C ; � > 0 and

� > 0 be such that

�Re(�) + Re(!) + � min
15j5m

"
Re(bj)

�j

#
> �1; (2.6.8)

� min
15i5n

�
1�Re(ai)

�i

�
> Re(!)� �

2
+ 1 (2.6.9)

and

Re(�) > �1

2
: (2.6.10)

Then for a > 0; b > 0

Z
1

0
(xt)!J� [a(xt)

�]Hm;n
p;q

"
bt�
�����
(ai; �i)1;p

(bj; �j)1;q

#
dt

=
1

2�x

�
2

a

�(!+1)=�

Hm;n+1
p+2;q

2
4b�2

a

��=� 1

x�

������
�
1� ! + 1

2�
� �

2
;
�

2�

�
; (ai; �i)1;p;

(bj ; �j)1;q�
1� ! + 1

2�
+

�

2
;
�

2�

� 3
5 (x > 0): (2.6.11)

Proof. Corollary 2.5.1 may be established similarly to Theorem 2.5 if we use the asymp-

totic estimates (1.8.8), (1.5.13) and (2.6.3) and the relations

Re(bjl) 5 � min
15j5m

"
Re(bj)

�j

#
<

�Re(�) + Re(!) + 1

�
(1 5 j 5 m; l = 0; 1; 2; � � �);
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Re(aik) = min
15i5n

�
1�Re(ai)

�i

�
>

Re(!)� �=2 + 1

�
(1 5 i 5 n; k = 0; 1; 2; � � �);

following from (1.1.4), (1.1.5), (2.6.8) and (2.6.9), and choose  by

Re(!)� �=2 + 1

�
<  <

�Re(�) + Re(!) + 1

�

in view of (2.6.10). Note that, for the H-function in the right side of (2.6.11), a�0 = a�; �0 =

�� �=� and �0 = � + (! + 1)=� � 1.

In what follows, the so-called generalized Hankel transform will be used which is de�ned,

for k 2 R (k 6= 0) and � 2 C (Re(�) > �3=2); by�
H k;�f

�
(x) =

Z 1

0
(xt)1=k�1=2J�(jkj (xt)

1=k)f(t)dt: (2.6.12)

For such a transform a similar result to Theorem 2.5 holds.

Theorem 2.6. Let a� > 0 or a� = � = 0 and Re(�) < �1. Let � 2 C ; k 2 R (k 6= 0) be

such that

Re(�)

k
+ min

15j5m

"
Re(bj)

�j

#
> �

1

k
�
1

2
; min

15i5n

�
1�Re(ai)

�i

�
>

1

2k
+
1

2
; (2.6.13)

Re(�) > �
1

2
: (2.6.14)

Then the generalized Hankel transform of the H-function exists and the following relation

holds 
H k;�H

m;n
p;q

"
t

�����
(ai; �i)1;p

(bj; �j)1;q

#!
(x)

=

�
2

jkj

�k=2 1
x
Hm;n+1
p+2;q

2
4� 2

jkj

�k 1
x

������
�
1

2
�
k

4
�
�

2
;
k

2

�
; (ai; �i)1;p;

�
1

2
�
k

4
+
�

2
;
k

2

�
(bj ; �j)1;q

3
5(2.6.15)

for x > 0.

Proof. When k > 0, Theorem 2.6 follows from Corollary 2.5.1 when ! = 1=k � 1=2;

a = k; � = 1=k and b = � = 1. If k < 0; the result is obtained similarly to the proof of

Theorem 2.5.

2.7. Fractional Integration and Di�erentiation of the H-Function

For � 2 C (Re(�) > 0); the Riemann{Liouville fractional integrals and derivatives are de�ned

as follows (see Samko, Kilbas and Marichev [1, Sections 2.3, 2.4 and 5.1]):

�
I�0+f

�
(x) =

1

�(�)

Z x

0

f(t)

(x� t)1��
dt (x > 0); (2.7.1)

�
I��f

�
(x) =

1

�(�)

Z 1

x

f(t)

(t� x)1��
dt (x > 0); (2.7.2)
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and

�
D�

0+f
�
(x) =

�
d

dx

�[Re(�)]+1 1

�(1� � + [Re(�)])

Z x

0

f(t)

(x� t)��[Re(�)]
dt

=

�
d

dx

�[Re(�)]+1 �
I
1��+[Re(�)]
0+ f

�
(x) (x > 0); (2.7.3)

�
D�
�f
�
(x) =

�
�

d

dx

�[Re(�)]+1 1

�(1� �+ [Re(�)])

Z 1

x

f(t)

(t� x)��[Re(�)]
dt

=

�
�

d

dx

�[Re(�)]+1 �
I
1��+[Re(�)]
� f

�
(x) (x > 0); (2.7.4)

respectively, where [Re(�)] is the integral part of Re(�). In particular, for real � > 0; (2.7.3)

and (2.7.4) take the simpler forms

�
D�

0+f
�
(x) =

�
d

dx

�[�]+1 1

�(1� f�g)

Z x

0

f(t)

(x� t)f�g
dt (x > 0); (2.7.5)

�
D�
�f
�
(x) =

�
�

d

dx

�[�]+1 1

�(1� f�g)

Z 1

x

f(t)

(t � x)f�g
dt (x > 0); (2.7.6)

where [�] and f�g are the integral and fractional parts of �; respectively.

As in Sections 2.5 and 2.6 we consider the H-function under the conditions in (1.1.6). Us-

ing (1.1.1), (1.1.2), Theorem 1.1 and the asymptotic estimates for the H-function at in�nity

and zero given in Sections 1.5, 1.6 and 1.8, 1.9, we obtain the result for fractional integration.

Theorem 2.7. Let � 2 C (Re(�) > 0); ! 2 C and � > 0. Let us assume either a� > 0

or a� = 0; Re(�) < �1. Then the following statements are valid:

(i) If

� min
15j5m

"
Re(bj)

�j

#
+ Re(!) > �1 (2.7.7)

for a� > 0 or a� = 0; � = 0; while

� min
15j5m

"
Re(bj)

�j
;
Re(�) + 1=2

�

#
+ Re(!) > �1 (2.7.8)

for a� = 0 and � < 0; then the fractional integration transform I�0+ of the H-function exists

and there holds the relation

 
I�0+t

!Hm;n
p;q

"
t�
�����
(ai; �i)1;p

(bj; �j)1;q

#!
(x)

= x!+�Hm;n+1
p+1;q+1

"
x�
�����
(�!; �); (ai; �i)1;p

(bj; �j)1;q; (�! � �; �)

#
: (2.7.9)
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(ii) If

� max
15i5n

�
Re(ai)� 1

�i

�
+Re(!) + Re(�) < 0 (2.7.10)

for a� > 0 or a� = 0; � 5 0; while

� max
15i5n

�
Re(ai)� 1

�i
;
Re(�) + 1=2

�

�
+ Re(!) + Re(�) < 0 (2.7.11)

for a� = 0 and � > 0; then the fractional integration transform I�� of the H-function exists

and there holds the relation 
I��t

!Hm;n
p;q

"
t�
�����
(ai; �i)1;p

(bj ; �j)1;q

#!
(x)

= x!+�Hm+1;n
p+1;q+1

"
x�
�����
(ai; �i)1;p; (�!; �)

(�! � �; �); (bj; �j)1;q

#
: (2.7.12)

Proof. First we note that if we denote by a�1; �1; �1 and by a�2; �2; �2 the constants

(1.1.7), (1.1.8) and (1.1.10) for the H-functions in the right sides of (2.7.9) and (2.7.12), then

it is directly veri�ed that

a�1 = a�2 = a�; �1 = �2 = �; �1 = �2 = � � �: (2.7.13)

First we prove (i). For the H-functions in both sides of (2.7.9) we take the contour

L = Li1; where the choice of  will depend on the relations between the constant A; B; M

given in (2.5.14) and the constant C de�ned by

C =
Re(!) + 1

�
; (2.7.14)

for which by (1.1.1), (1.1.2), (2.5.6), (2.5.7) and (2.7.7), (2.7.8) there hold the relations

Re(bjl) 5 B < C; Re(aik) = A; Re(ch) = C (2.7.15)

for the poles bjl (1 5 j 5 m; l = 0; 1; 2; � � �) of the gamma functions �(bj +�js) (1 5 j 5 m);

for the poles aik (1 5 i 5 n; k = 0; 1; 2; � � �) of �(1 � ai � �is) (1 5 i 5 n) and for the poles

ch = (! + 1 + h)=� (h = 0; 1; 2; � � �) of �(1 + ! � �s).

Now we can choose the contour Li1 if we put  similarly as in the proof of Theorem 2.3:

if a� > 0

B <  < min[A;C] (B < A);

B <  < C (B = A);

A <  < B (B > A);

(2.7.16)

if a� = 0 and � > 0

 < M (M 5 B; M 5 A);

A <  < M (M 5 B; M > A);

B <  < min[M;C] (M > B; M 5 A);

B <  < min[A;C] (M > B; M > A);

(2.7.17)
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if a� = 0 and � < 0;

M <  (M = B; M = A);

M <  < min[A;C] (M = B; M < A);

M <  < B (M < B; M = A);

(2.7.18)

and as in (2.7.16) for M < B; M < A.

So by Theorem 1.1 in all cases above the H-function in the left side of (2.7.9) exists. The

right side also exists, because in view of (2.7.13) a�0 = a� > 0 and the condition a� = 0;

� +Re(�) < �1 means a�0 = 0; � +Re(�� �) < �1.

Due to Corollaries 1.11.1, 1.12.1 and 1.13.1 and Remark 1.5, Hm;n
p;q (x) has asymptotic

behavior near zero of the form (1.8.8), (1.8.14) or (1.9.13), where

�� = min
15j5m

"
Re(bj)

�j

#

in the cases � = 0 or � < 0; a� > 0; and �� is given by (1.9.14) for � < 0; a� = 0. Therefore

the integral in the left side of (2.7.9) exists and this relation is proved directly by using (2.7.1)

and (1.1.1), (1.1.2), by changing the order of integration and by applying the formula (Samko,

Kilbas and Marichev [1, (2.44)]):

�
I�0+t

��1
�
(x) =

�(�)

�(�+ �)
x�+��1 (Re(�) > 0): (2.7.19)

Namely, we have

 
I�0+t

!Hm;n
p;q

"
t�
�����
(ai; �i)1;p

(bj; �j)1;q

#!
(x)

=
1

2�i

Z
Li1

H
m;n
p;q

"
(ai; �i)1;p

(bj ; �j)1;q

����� s
# �

I�0+t
!��s� (x)ds

= x�+!
1

2�i

Z
Li1

H
m;n
p;q

"
(ai; �i)1;p

(bj ; �j)1;q

����� s
#

�(! + 1� �s)

�(�+ ! + 1� �s)
x��sds; (2.7.20)

which gives (2.7.9).

The assertion (ii) is proved similarly. In fact, the existence of the H-functions in the left

and right sides of (2.7.12) is proved by choosing L = Li1 with  in certain intervals and

by using Theorem 1.1. For the left side integral of (2.7.12), the existence can be proved on

the basis of the asymptotic behavior near in�nity of the form (1.5.13), (1.5.19) or (1.6.33).

The relation (2.7.12) is shown directly as (2.7.20) by using the relation (Samko, Kilbas and

Marichev [1, Table 9.3(1)]):

�
I��t

��1
�
(x) =

�(1� � � �)

�(1� �)
x�+��1 (Re(�) > 0; Re(�+ �) < 1): (2.7.21)
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A similar statement for fractional di�erentiation follows from Theorem 2.7 by using the re-

lations (2.7.3), (2.7.4), if we take the formulas (2.2.1), (2.2.2), (2.1.1) and (2.1.2) into account.

Theorem 2.8. Let � 2 C (Re(�) > 0); ! 2 C and � > 0. Let us assume either a� > 0

or a� = 0; Re(�) < �1. Then the following statements are valid:

(i) If the condition in (2:7:7) is satis�ed for a� > 0 and a� = 0; � = 0 and the condition

in (2:7:8) holds for a� = 0 and � < 0; then the fractional di�erentiation transformD�
0+ of the

H-function exists and there holds the relation 
D�

0+t
!Hm;n

p;q

"
t�
�����
(ai; �i)1;p

(bj ; �j)1;q

#!
(x)

= x!��Hm;n+1
p+1;q+1

"
x�
�����
(�!; �); (ai; �i)1;p

(bj; �j)1;q; (�! + �; �)

#
: (2.7.22)

(ii) If

� max
15i5n

�
Re(ai)� 1

�i

�
+ Re(!) + 1� fRe(�)g < 0 (2.7.23)

for a� > 0 and a� = 0; � 5 0; while

� max
15i5n

�
Re(ai)� 1

�i
;
Re(�) + 1=2

�

�
+ Re(!) + 1� fRe(�)g < 0 (2.7.24)

for a� = 0 and � > 0; where fRe(�)g stands for the fractional part of Re(�); then the

fractional di�erentiation transform D�
� of the H-function exists and there holds the relation 

D�
�t

!Hm;n
p;q

"
t�
�����
(ai; �i)1;p

(bj; �j)1;q

#!
(x)

= x!��Hm+1;n
p+1;q+1

"
x�
�����
(ai; �i)1;p; (�!; �)

(�! + �; �); (bj; �j)1;q

#
: (2.7.25)

Proof. We �rst prove (2.7.25). Using (2.7.4), (2.7.12) with � being replaced by � =

1� � + [Re(�)]; (2.2.2) and (2.1.2) we have 
D�
�t

!Hm;n
p;q

"
t�
�����
(ai; �i)1;p

(bj ; �j)1;q

#!
(x)

=

�
�

d

dx

�[Re(�)]+1
 
I��t

!Hm;n
p;q

"
t�
�����
(ai; �i)1;p

(bj; �j)1;q

#!
(x)

=

�
�

d

dx

�[Re(�)]+1
(
x!+�Hm+1;n

p+1;q+1

"
x�
�����
(ai; �i)1;p; (�!; �)

(�! � �; �); (bj; �j)1;q

#)

= x!+��[Re(�)]�1Hm+2;n
p+2;q+2

"
x�
�����
(ai; �i)1;p; (�!; �); (�!� �; �)

([Re(�)] + 1� ! � �; �); (�!� �; �); (bj; �j)1;q

#

= x!��Hm+1;n
p+1;q+1

"
x�
�����
(ai; �i)1;p; (�!; �)

(�! + �; �); (bj; �j)1;q

#
;
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which is (2.7.25).

The relation (2.7.22) is proved similarly by using (2.7.3), (2.7.9), (2.2.1) and (2.1.1). This

completes the proof of the theorem.

Remark 2.3. When � = k = 1; 2; � � � ; the relations (2.7.22) and (2.7.25) coincide with

(2.2.1) and (2.2.2).

Remark 2.4. In the case a� > 0 a relation more general than (2.7.9) was indicated by

Prudnikov, Brychkov and Marichev [3, (2.25.2.2)]. The formula (2.7.12) with real � > 0 was

given by Raina and Koul [3, (2.5)], but the conditions for its validity have to be corrected in

accordance with (2.7.10) which for real � takes the form

� max
15i5n

�
Re(ai)� 1

�i

�
+ Re(!) + � < 0: (2.7.26)

The result in (2.7.22) for a� > 0 was obtained by Srivastava, Gupta and Goyal [1, (2.7.13)],

but the conditions should be corrected as (2.7.7), too. The relation of the form (2.7.25)

being proved for a� > 0 by Raina and Koul [2, (14a)] (see also Raina and Koul [3, (2.2)]

and Srivastava, Gupta and Goyal [1, (2.7.9)]) contains mistakes, and it should be replaced by

(2.7.25) under the condition

� max
15i5n

�
Re(ai)� 1

�i

�
+ Re(!) + 1� f�g < 0: (2.7.27)

2.8. Integral Formulas Involving the H-Function

In Sections 2.5{2.7 we have proved various formulas which present the integrals of the

H-function. Here we give two further integrals which generalize these relations. First we

consider the integral involving the product of two H-functions. Let HM;N
P;Q

"
z

����� (ci; i)1;P(dj ; �j)1;Q

#

be the second H-function de�ned by (1.1.1), which also satis�es the conditions of the form

(1.1.6). Let a�0 be the constant a
� in (1.1.7) for the second H-function.

Theorem 2.9. Let a� > 0, a�0 > 0 and let � 2 C , � > 0, z; w 2 C be such that

j arg(z)j < a��=2;

� min
15j5m

"
Re(bj)

�j

#
< min

15i5n

�
1� Re(ai)

�i

�
; (2.8.1)

� min
15i5N

�
1�Re(ci)

i

�
< min

15j5M

"
Re(dj)

�j

#
(2.8.2)

and

�� min
15j5m

"
Re(bj)

�j

#
� min

15j5M

"
Re(dj)

�j

#

< Re(�) < � min
15i5n

�
1�Re(ai)

�i

�
+ min

15i5N

�
1�Re(ci)

i

�
: (2.8.3)
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Then there holds the relationZ
1

0

t��1Hm;n
p;q

"
zt�

�����
(ai; �i)1;p

(bj; �j)1;q

#
HM;N
P;Q

"
wt

�����
(ci; i)1;P

(dj; �j)1;Q

#
dt

= w��Hm+N;n+M
p+Q;q+P

"
zw��

�����
(ai; �i)1;n; (1� dj � ��j ; ��j)1;Q; (ai; �i)n+1;p

(bj ; �j)1;m; (1� ci � �i; �i)1;P ; (bj; �j)m+1;q

#
: (2.8.4)

Proof. First we note that, according to Corollaries 1.11.1, 1.12.1, 1.7.1 and 1.8.1, two

H-functions Hm;n
p;q (z) and HM;N

P;Q (z) have the asymptotic estimates at zero of the form (1.8.8)

or (1.8.14) with

%� = min
15j5m

"
Re(bj)

�j

#
and %� = min

15j5M

"
Re(dj)

�j

#
;

respectively, and asymptotics at in�nity of the form (1.5.13) or (1.5.19) with

% = � min
15i5n

�
1� Re(ai)

�i

�
and % = � min

15i5N

�
1�Re(ci)

i

�
;

respectively. Then the integral in the left side of (2.8.4) exists provided that the condition

(2.8.3) is satis�ed.

The proof of the formula (2.8.4) is based on Theorem 2.2 and Corollary 2.2.1 and on the

Mellin convolution relation (Titchmarsh [3, Theorem 44])

�
Mfk � fg

�
(s) =

�
Mk

�
(s)
�
Mf

�
(s) for (k � f)(x) =

Z
1

0

k

�
x

t

�
f(t)

dt

t
: (2.8.5)

Applying the translation formula (1.8.15) to HM;N
P;Q

"
wt

����� (ci; i)1;P(dj; �j)1;Q

#
and making the change

of variable t = ��1=� ; we rewrite the left side of (2.8.4) in the form (2.8.5):

Z
1

0

t��1Hm;n
p;q

"
zt�

�����
(ai; �i)1;p

(bj ; �j)1;q

#
HM;N
P;Q

"
wt

�����
(ci; i)1;P

(dj ; �j)1;Q

#
dt

=

Z
1

0

t��1Hm;n
p;q

"
zt�

�����
(ai; �i)1;p

(bj ; �j)1;q

#
H

N;M
Q;P

"
1

wt

�����
(1� dj ; �j)1;Q

(1� ci; i)1;P

#
dt

=
1

�

Z
1

0

Hm;n
p;q

"
z

�

�����
(ai; �i)1;p

(bj; �j)1;q

#
���=�HN;M

Q;P

"
�1=�

w

�����
(1� dj ; �j)1;Q

(1� ci; i)1;P

#
d�

�
:

Then the Mellin transform of the left side of (2.8.4) leads to 
M

Z
1

0

t��1Hm;n
p;q

"
zt�

�����
(ai; �i)1;p

(bj; �j)1;q

#
HM;N
P;Q

"
wt

�����
(ci; i)1;P

(dj ; �j)1;Q

#
dt

!
(s)

=
1

�

 
MHm;n

p;q

"
z

�����
(ai; �i)1;p

(bj; �j)1;q

#!
(s)

�

 
M���=�HN;M

Q;P

"
�1=�

w

�����
(1� dj ; �j)1;Q

(1� ci; i)1;P

#!
(s): (2.8.6)



58 Chapter 2. Properties of the H-Function

According to (2.8.1) and (2.8.2) we can choose s 2 C such that

� min
15j5m

"
Re(bj)

�j

#
< Re(s) < min

15i5n

�
1�Re(ai)

�i

�
(2.8.7)

and

� min
15i5N

�
1� Re(ci)

i

�
< �Re(s)�Re(�) < min

15j5M

"
Re(dj)

�j

#
: (2.8.8)

Now we can use Theorem 2.2 for the �rst term and Corollary 2.2.1 for the second, where

the conditions (2.5.5) and (2.5.10) are certi�ed by (2.8.7) and (2.8.8). Applying the relations

(2.5.7) and (2.5.12), we obtain

 
M

Z
1

0

t��1Hm;n
p;q

"
zt�

�����
(ai; �i)1;p

(bj; �j)1;q

#
HM;N
P;Q

"
wt

�����
(ci; i)1;P

(dj; �j)1;Q

#
dt

!
(s)

= w�s��
H

m;n
p;q

"
(ai; �i)1;p

(bj; �j)1;q

����� s
#
H

N;M
Q;P

"
(1� dj ; �j)1;Q

(1� ci; i)1;P

����� �s� �

#

= w�s��
H

m+N;n+M
p+Q;q+P

"
(ai; �i)1;n; (1� dj � ��j ; ��j)1;Q; (ai; �i)n+1;p

(bj; �j)1;m(1� ci � �i; �i)1;P ; (bj; �j)m+1;q

����� s
#
: (2.8.9)

If we denote by a�r the constant a
� in (1.1.7) for the H-function in the right side of (2.8.4),

then it is directly veri�ed that

a�r = a� + �a�0 (2.8.10)

and hence a�r > 0. By the conditions (2.8.1) and (2.8.2) we can choose s 2 C such that

�� min
15j5m

"
Re(bj)

�j

#
� min

15i5N

�
1�Re(ci)

i

�

< Re(s) < � min
15i5n

�
1�Re(ai)

�i

�
+ min

15j5M

"
Re(dj)

�j

#

and we can apply Corollary 2.2.1 to the right side of (2.8.4) and a direct calculation, similar

to the above by using (2.5.13), shows that the Mellin transform of the right side of (2.8.4)

coincides with the right side of (2.8.9). Hence by the Mellin inversion theorem, we arrive at

the relation (2.8.4), which completes the proof of the theorem.

Corollary 2.9.1. If the conditions of Theorem 2:9 are satis�ed; then there holds the

relation

Z
1

0

t��1Hm;n
p;q

"
zt��

�����
(ai; �i)1;p

(bj; �j)1;q

#
HM;N
P;Q

"
wt

�����
(ci; i)1;P

(dj ; �j)1;Q

#
dt

= w�Hm+M;n+N
p+P;q+Q

"
zw�

�����
(ai; �i)1;n; (ci + �i; �i)1;P ; (ai; �i)n+1;p

(bj; �j)1;m; (dj + ��j ; ��j)1;Q; (bj; �j)m+1;q

#
: (2.8.11)
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Proof. By virtue of the translation formula (1.8.15) we have

I =

Z
1

0

t��1Hm;n
p;q

"
zt��

�����
(ai; �i)1;p

(bj; �j)1;q

#
HM;N
P;Q

"
wt

�����
(ci; i)1;P

(dj; �j)1;Q

#
dt

=

Z
1

0

t��1Hn;m
q;p

"
z�1t�

�����
(1� bj ; �j)1;q

(1� ai; �i)1;p

#
H

M;N
P;Q

"
wt

�����
(ci; i)1;P

(dj; �j)1;Q

#
dt:

It is easy to see that the conditions of the form (2.8.1) and (2.8.2) for the functionHn;m
q;p (z�1t�)

coincide with (2.8.1) and (2.8.2). Therefore applying Theorem 2.9 and using (2.8.4), we have

I = w�Hn+N;m+M
p+P;q+Q

"
z�1w��

�����
(1� bj ; �j)1;m; (1� dj � ��j ; ��j)1;Q; (1� bj ; �j)m+1;q

(1� ai; �i)1;n; (1� ci � �i; �i)1;P ; (1� ai; �i)n+1;p

#

and, then, again by the translation formula (1.8.15), the relation (2.8.11) is obtained.

For z = x 2 R and w = y 2 R; Theorem 2.9 remains true in the case when a� = 0 or

a�0 = 0. We note that, if a� = 0; from Sections 1.9 and 1.6 the asymptotic estimates of the

H-functionHm;n
p;q (z) at zero and in�nity are known when � > 0 and � < 0; respectively. Since

for the convergence of the integral in the left side of (2.8.4) we have to take into account the

asymptotic estimates both at zero and in�nity, only the case � = 0 is excepted. In this way

we obtain the following result, where �0 and �0 denote the constants in (1.1.8) and (1.1.10)

for the H-function HM;N
P;Q (z).

Theorem 2.10. Let either

(a) a� = � = 0; Re(�) < �1 and a�0 > 0;

(b) a� > 0 and a�0 = �0 = 0; Re(�0) < �1; or

(c) a� = � = 0; Re(�) < �1 and a�0 = �0 = 0; Re(�0) < �1.

Let � 2 C ; � > 0 and x 2 R be such that the conditions in (2:8:1){(2:8:3) are satis�ed. Then

there holds the relation (2:8:4) for real x and y:

Z
1

0

t��1Hm;n
p;q

"
xt�

�����
(ai; �i)1;p

(bj ; �j)1;q

#
HM;N
P;Q

"
yt

�����
(ci; i)1;P

(dj; �j)1;Q

#
dt

= y��H
m+N;n+M
p+Q;q+P

"
xy��

�����
(ai; �i)1;n; (1� dj � ��j ; ��j)1;Q; (ai; �i)n+1;p

(bj; �j)1;m; (1� ci � �i; �i)1;P ; (bj; �j)m+1;q

#
: (2.8.12)

Proof. When a� = � = 0 or a�0 = �0 = 0; then by Corollaries 1.11.1, 1.12.1, 1.7.1

and 1.8.1 we have asymptotic estimates for the H-funtions Hm;n
p;q (z) and HM;N

P;Q (z) at zero and

in�nity, as indicated in the proof of Theorem 2.9 and hence the integral in the left side of

(2.8.12) converges. The next part of the proof is similar to that in Theorem 2.9, if we take

into account the relations

�r = �� ��0; �r = � + �0 + ��0; (2.8.13)
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where �r and �r denote the constants in (1.1.8) and (1.1.10) for the H-function in the right

side of (2.8.12). Applying the Mellin convolution theorem (2.8.5), Theorem 2.2 and Corollary

2.2.1 for the functions in the left side of (2.8.12) in the cases a� = 0 and a�0 = 0; respectively,

we come to the relation (2.8.9) with w = y. The Mellin transform of the H-function in the

right side of (2.8.12) gives the same result by using Corollary 2.2.1 if we take into account

(2.8.10) and (2.8.13), a�r > 0 in the cases (a) and (b), while in the case (c) a�r = �r = 0 and

Re(�r) = Re(�+ �0) < �2.

Corollary 2.10.1. If the conditions of Theorem 2:10 are satis�ed; then there holds the

relation for real x and y:

Z
1

0

t��1Hm;n
p;q

"
xt��

�����
(ai; �i)1;p

(bj; �j)1;q

#
H

M;N
P;Q

"
yt

�����
(ci; i)1;P

(dj ; �j)1;Q

#
dt

= y�Hm+M;n+N
p+P;q+Q

"
xy�

�����
(ai; �i)1;n; (ci + �i; �i)1;P ; (ai; �i)n+1;p

(bj; �j)1;m; (dj + ��j ; ��j)1;Q; (bj; �j)m+1;q

#
: (2.8.14)

Proof. The proof is the same as in Corollary 2.9.1 by using (1.8.15) and Theorem 2.10.

The results in Theorems 2.9 and 2.10 generalize those in Sections 2.5 and 2.6 (see Remark

2.5 below). Now we present a generalization of the result in Section 2.7.

Theorem 2.11. Let either a� > 0 or a� = 0; Re(�) < �1: Let �;w; a 2 C ; � > 0 and

 > 0 be such that

� min
15j5m

"
Re(bj)

�j

#
+Re(w) > �1;  min

15j5m

"
Re(bj)

�j

#
+Re(�) > 0 (2.8.15)

for a� > 0 and a� = 0; � = 0; while

� min
15j5m

"
Re(bj)

�j
;
Re(�) + 1=2

�

#
+ Re(w) > �1;

 min
15j5m

"
Re(bj)

�j
;
Re(�) + 1=2

�

#
+Re(�) > 0

(2.8.16)

for a� = 0 and � < 0. Then the relation

Z x

0

tw(x� t)��1Hm;n
p;q

"
at�(x� t)

�����
(ai; �i)1;p

(bj; �j)1;q

#
dt

= xw+�Hm;n+2
p+2;q+1

"
ax�+

�����
(�w; �); (1� �; ); (ai; �i)1;p

(bj; �j)1;q; (�w� �; � + )

#
(2.8.17)

holds for x > 0.

Proof. First we note that if we denote by a�0; �0; �0 the constants (1.1.7), (1.1.8) and

(1.1.10) for the H-function in the right side of (2.8.17), then

a�0 = a�; �0 = �; �0 = � �
1

2
: (2.8.18)
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By (1.1.1) and (1.1.2) for the H-functions in the left and right sides of (2.8.17) we take the

contour L = Li1; where the choice of  will depend on the relations between the constants

A; B and M given in (2.5.17), C in (2.7.14) and D by

D =
Re(�)


; (2.8.19)

for which (2.7.15) and (2.8.15) imply the relations

Re(bjl) 5 B < C; Re(aik) = A; Re(cm) = C; Re(dn) = D > B (2.8.20)

for the poles bjl (1 5 j 5 m; l = 0; 1; 2; � � �) of the gamma functions �(bj +�js) (1 5 j 5 m);

for aik (1 5 i 5 n; k = 0; 1; 2; � � �) of �(1 � ai � �is) (1 5 i 5 n); for cm = (w + 1 + m)=�

(m = 0; 1; 2; � � �) of �(1+w� �s) and for dn = (�+ n)= (n = 0; 1; 2; � � �) of �(�� s). Since

B < min[C;D]; we can choose L = Li1 in the same way as was done in the proof of Theorem

2.7(i), In fact,

B <  < min[A;C;D] (B < A);

B <  < min[C;D] (B = A);

A <  < B (B > A):

(2.8.21)

FromCorollaries 1.11.1 and 1.12.1 and Remark 1.5 theH-functionHm;n
p;q (x) has the asymptotic

behavior at zero of the form (1.8.8) or (1.8.14), where %� = min15j5m[Re(bj=�j ] in the cases

� = 0 or � > 0; a� = 0; and %� is given by (1.9.14) for � < 0 and a� = 0. Therefore the

integral in the left side of (2.8.17) exists and this relation is proved directly by using (1.1.1),

(1.1.2), changing the order of integration and applying (2.7.19):

Z x

0

tw(x� t)��1Hm;n
p;q

"
at�(x� t)

�����
(ai; �i)1;p

(bj ; �j)1;q

#
dt

=
1

2�i

Z
Li1

H
m;n
p;q

"
(ai; �i)1;p

(bj; �j)1;q

����� s
#
�(� � s)

�
I��s0+ tw��s

�
(x)a�sds

= x�+w
1

2�i

Z
Li1

H
m;n
p;q

"
(ai; �i)1;p

(bj ; �j)1;q

����� s
#
�(� � s)�(w+ 1� �s)

�(� + w + 1� �s� s)

�
ax�+

�
�s

ds:

Remark 2.5. The relations (2.5.7), (2.5.12), (2.5.16), (2.5.25), (2.5.29), (2.5.30), (2.6.6),

(2.6.11) and (2.6.15) can be obtained from (2.8.4) if we take the function HM;N
P;Q [wt] with

special parameters to coincide with one of the functions xw+s�1; xwe�px and xwJ�(x) (see the

relations (2.9.4), (2.9.6) and (2.9.18) below). It should also be noted that many known inte-

grals presented in the books by Prudnikov, Brychkov and Marichev [1]{[3], can be obtained

from (2.8.4) by taking H-functions as certain elementary or special functions.

Remark 2.6. The relation (2.8.4) was proved by K.C. Gupta and U.C. Jain [1] provided

that a� > 0; a�0 > 0; � > 0 and �0 > 0; while the formula (2.8.17) was obtained by G.K.

Goyal [1] for a� > 0;� > 0 (see also Srivastava, Gupta and Goyal [1, (5.1.1) and (5.2.3)]). The
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relations (2.8.4) and (2.8.17) were indicated in Prudnikov, Brychkov and Marichev [3, 2.25.1.1

and 2.25.2.2] provided that a� > 0; a�0 > 0 and a� > 0; respectively. But the conditions in the

above papers and books have to be corrected in accordance with the conditions of Theorems

2.9 and 2.11.

2.9. Special Cases of the H-Function

The H-function, being in generalized form, contains a vast number of special functions as its

particular cases. First of all, when �i = �j = 1 (i = 1; � � � ; p; j = 1; � � � ; q); it reduces to the

Meijer G-function. Namely,

Hm;n
p;q

"
z

�����
(ai; 1)1;p

(bj ; 1)1;q

#
= Gm;n

p;q

"
z

�����
(ai)1;p

(bj)1;q

#
= Gm;n

p;q

"
z

�����
a1; � � � ; ap

b1; � � � ; bq

#

�
1

2�i

Z
L

mY
j=1

�(bj + s)
nY
i=1

�(1� ai � s)

pY
i=n+1

�(ai + s)
qY

j=m+1

�(1� bj � s)

z�sds; (2.9.1)

where L is the same contour taken for the H-function in Section 1.2.

The theory of the G-function (see Erd�elyi, Magnus, Oberhettinger and Tricomi [1, Sections

5.3{5.6]) can be found in Luke [1, Chapter V], Mathai and R.K. Saxena [2], Prudnikov,

Brychkov and Marichev [3, Sections 8.2 and 8.4]. We only note that some properties of

such a function can be deduced from the corresponding properties of the H-function given

in Sections 1.2{1.8 and in 2.1{2.8. The G-function is a generalization of a number of known

special functions, in particular of the Gauss hypergeometric function 2F1(a; b; c; z) or the more

general hypergeometric function pFq(a1; � � � ; ap; b1; � � � ; bq; z) de�ned by the series of z

2F1(a; b; c; z) =
1X
k=0

(a)k(b)k
(c)k

zk

k!
(a; b; c 2 C ; c 6= 0;�1;�2; � � �); (2.9.2)

pFq(a1; � � � ; ap; b1; � � � ; bq; z) =
1X
k=0

(a1)k � � �(ap)k
(b1)k � � � (bq)k

zk

k!
(2.9.3)

(ai; bj 2 C ; ai; bj 6= 0;�1;�2; � � � (i = 1; � � � ; p; j = 1; � � � ; q));

where the Pochhammer symbol (a)k (k 2 N0) is given in (2.4.12). The theory of these

functions is given in Erd�elyi, Magnus, Oberhettinger and Tricomi [1, Chapters II and IV]. In

particular, the series (2.9.2) converges for jzj < 1 and for jzj = 1; Re(c� a � b) > 0 and the

series (2.9.3) converges for all �nite z if p 5 q and for jzj < 1 if p = q + 1.

A detailed account of the special cases of the G-function is available in Erd�elyi, Magnus,

Oberhettinger and Tricomi [1, Section 5.6], Luke [1, Section 6.4] and Mathai and R.K. Saxena

[2, Chapter II]. Since all elementary and special functions as special cases of the G-function

are also considered as special cases of the H-function due to the relation (2.9.1), we can write

all special functions in terms of the H-function. We list here a few interesting cases of the
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H-function which may be useful for the workers on integral transforms and special functions.

First we begin with the elementary functions:

H
1;0
0;1

"
z

����� (b; �)
#
=

1

�
zb=� exp(�z1=�); (2.9.4)

H
1;1
1;1

"
z

�����
(1� a; 1)

(0; 1)

#
= �(a)(1 + z)�a = �(a) 1F0(a;�z); (2.9.5)

H
1;0
1;1

"
z

�����
(�+ � + 1; 1)

(�; 1)

#
= z�(1� z)� ; (2.9.6)

H
1;0
0;2

2
64z2
4

�������
�
1

2
; 1

�
; (0; 1)

3
75 =

1p
�
sin z; (2.9.7)

H
1;0
0;2

2
64z2
4

������� (0; 1);
�
1

2
; 1

�
3
75 =

1p
�
cos z; (2.9.8)

H
1;0
0;2

2
64�z2

4

�������
�
1

2
; 1

�
; (0; 1)

3
75 =

ip
�
sinh z; (2.9.9)

H
1;0
0;2

2
64�z2

4

������� (0; 1);
�
1

2
; 1

�
3
75 =

1p
�
cosh z; (2.9.10)

�H1;0
2;2

"
z

�����
(1; 1); (1; 1)

(1; 1); (0; 1)

#
= log(1� z); (2.9.11)

H
1;2
2;2

2
664�z2

��������

�
1

2
; 1

�
;

�
1

2
; 1

�

(0; 1);

�
�1

2
; 1

�
3
775 = 2 arcsin z; (2.9.12)

H
1;2
2;2

2
664z2

��������

�
1

2
; 1

�
; (1; 1)�

1

2
; 1

�
; (0; 1)

3
775 = 2 arctanz: (2.9.13)

Next we present the H-functions reducible to the hypergeometric functions (2.9.2) and

(2.9.3):

H
1;1
1;2

"
z

�����
(1� a; 1)

(0; 1); (1� c; 1)

#
=

�(a)

�(c)
1F1(a; c;�z); (2.9.14)

which is the so-called conuent hypergeometric function of Kummer (see Erd�elyi, Magnus,

Oberhettinger and Tricomi [1, 6.1]),

H
1;2
2;2

"
z

�����
(1� a; 1); (1� b; 1)

(0; 1); (1� c; 1)

#
=

�(a)�(b)

�(c)
2F1(a; b; c;�z); (2.9.15)
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H
1;p
p;q+1

"
z

�����
(1� ai; 1)1;p

(0; 1); (1� bj ; 1)1;q

#
=

pY
i=1

�(ai)

qY
j=1

�(bj)

pFq(a1; � � � ; ap; b1; � � � ; bq;�z): (2.9.16)

The following H-function is also reduced to a function of generalized hypergeometric type:

H
p;1
q+1;p

"
z

�����
(1; 1); (bj; 1)1;q

(ai; 1)1;p

#
= E(a1; � � � ; ap : b1; � � � ; bq : z); (2.9.17)

where E(a1; � � � ; ap : b1; � � � ; bq : z) is the MacRobert E-function (see Erd�elyi, Magnus, Ober-

hettinger and Tricomi [1, Section 5.2]).

Now we give the H-functions which are reduced to Bessel type functions:

H
1;0
0;2

2
64z2
4

�������
�
a+ �

2
; 1

�
;

�
a� �

2
; 1

�
3
75 =

�
z

2

�a
J�(z); (2.9.18)

where J�(z) is the Bessel function of the �rst kind (2.6.2);

H
2;0
0;2

2
64z2
4

�������
�
a� �

2
; 1

�
;

�
a+ �

2
; 1

�
3
75 = 2

�
z

2

�a

K�(z); (2.9.19)

where K�(z) is the modi�ed Bessel function of the third kind or Macdonald function (see

Erd�elyi, Magnus, Oberhettinger and Tricomi [2, Section 7.2.2] and (8.9.2));

H
2;0
1;3

2
664z24

��������

�
a� � � 1

2
; 1

�
�
a� �

2
; 1

�
;

�
a+ �

2
; 1

�
;

�
a� � � 1

2
; 1

�
3
775 =

�
z

2

�a
Y�(z); (2.9.20)

where Y�(z) is the Bessel function of the second kind or the Neumann function (see Erd�elyi,

Magnus, Oberhettinger and Tricomi [2, Section 7.2.1] and (8.7.2));

H
2;0
1;2

2
64z
�������
(a� �+ 1; 1)�
a+ �+

1

2
; 1

�
;

�
a� �+

1

2
; 1

�
3
75 = zae�z=2W�;�(z); (2.9.21)

where W�;�(z) is the Whittaker function (see Erd�elyi, Magnus, Oberhettinger and Tricomi [1,

Section 6.9] and (7.2.2));

H
3;1
1;3

2
664z

2

4

��������

�
1 + �

2
; 1

�
�
1 + �

2
; 1

�
;

�
�

2
; 1

�
;

�
��

2
; 1

�
3
775

= 21���

�
1

2
� �

2
� �

2

�
�

�
1

2
� �

2
+
�

2

�
s�;�(z); (2.9.22)

where s�;�(z) is the Lommel function (see Erd�elyi, Magnus, Oberhettinger and Tricomi [2,

Section 7.5.5]).
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Finally we present the special cases of the H-function which cannot be obtained from the

G-function:

H
1;0
0;2

"
z

����� (0; 1); (��; �)
#
= J�;� (z); (2.9.23)

where

J�;�(z) =
1X
k=0

(�z)k
�(k� + � + 1) k!

(2.9.24)

is the Bessel{Maitland function (see Marichev [1, (11.63)]);

H
1;1
1;3

2
664z24

��������

�
�+

�

2
; 1

�
�
�+

�

2
; 1

�
;

�
�

2
; 1

�
;

�
�

�
�+

�

2

�
� �� �; �

�
3
775 = J

�
�;�(z); (2.9.25)

where

J
�
�;�(z) =

1X
k=0

(�1)k
�(k� + � + �+ 1)�(k + �+ 1)

�
z

2

��+2�+2k

(2.9.26)

is the generalized Bessel{Maitland function (see Marichev [1, (8.2)]);

H
1;1
1;2

"
�z

�����
(0; 1)

(0; 1); (1� �; �)

#
= E�;�(z); (2.9.27)

where

E�;�(z) =
1X
k=0

zk

�(�k + �)
(2.9.28)

is the Mittag{Le�er function (see Erd�elyi, Magnus, Oberhettinger and Tricomi [3, Section

18.2]);

H
1;p
p;q+1

"
z

�����
(1� ai; �i)1;p

(0; 1); (1� bj ; �j)1;q

#
= p	q

"
(ai; �i)1;p;

(bj ; �j)1;q;
z

#
; (2.9.29)

where

p	q

"
(ai; �i)1;p;

(bj; �j)1;q;
z

#
=

1X
k=0

pY
i=1

�(ai + k�i)

qY
j=1

�(bj + k�j)

zk

k!
(2.9.30)

is Wright's generalized hypergeometric function (see Erd�elyi, Magnus, Oberhettinger and

Tricomi [1, Section 4.1]);

H
2;0
0;2

2
64z
������� (0; 1);

�


�
;
1

�

�
3
75 = �Z


� (z) (2.9.31)
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with

Z

�(z) =

Z
1

0
t�1 exp

�
�t� � z

t

�
dt ( 2 C ; � > 0); (2.9.32)

H
2;0
1;2

2
664z
��������

�
 + 1� 1

n
;
1

n

�

(n; 1);

�
0;

1

n

�
3
775 = (2�)(1�n)=2nn+1=2�(n) (z) (2.9.33)

with

�(n) (z) =
(2�)(n�1)=2

p
n

�

�
 + 1� 1

n

� � z
n

�n Z 1
1

(tn � 1)�1=ne�ztdt (2.9.34)

�
n 2 N; Re() > 1

n
� 1; Re(z) > 0

�
;

H
2;0
1;2

2
664z
��������

�
1� � + 1

�
;
1

�

�

(0; 1);

�
� � �

�
;
1

�

�
3
775 = �(�);�(z) (2.9.35)

with

�(�);�(z) =
�

�

�
 + 1� 1

�

� Z 1
1

(t� � 1)�1=�t�e�ztdt (2.9.36)

�
� > 0; Re() >

1

�
� 1; � 2 C ; Re(z) > 0

�
:

According to the following integral representations in Erd�elyi, Magnus, Oberhettinger and

Tricomi [2, 7.12(23) and 7.12(19)] for the modi�ed Bessel function of the third kind or the

Macdonald function K�(z):

K�(z) =
1

2

Z
1

0
e�z(t+1=t)=2t���1dt (2.9.37)

=

p
�

�

�
1

2
� �

� �2
z

�� Z 1
1

e�zt(t2 � 1)���1=2dt (Re(z) > 0); (2.9.38)

the functions (2.9.34), (2.9.32) and (2.9.36) are connected with the function K�(z) by the

relations

Z

1

 
z2

4

!
= 2

�
z

2

�
K�(z); (2.9.39)

�(2) (z) = 2

�
z

2

�

K�(z); (2.9.40)

�
(2)
;0(z) =

2p
�

�
2

z

�

K
�(z): (2.9.41)
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We also note that the function �
(n)
 (z) in (2.9.34) is expressed via �

(�)
;�(z) in (2.9.36) when

� = 0 and � = n 2 N :

�(n) (z) = (2�)(n�1)=2n�(n+1=2)zn�
(n)
;0(z): (2.9.42)

2.10. Bibliographical Remarks and Additional Information on Chapter 2

For Section 2.1. The elememtry properties of the H-function given in Section 2.1 were shown by
many authors (see the books by Mathai and R.K. Saxena [2, Section 1.2] and Srivastava, Gupta and
Goyal [1, Section 2.3]). Other various elementary properties of the H-function were given by Braaks-
ma [1], Gupta [2], K.C. Gupta and U.C. Jain [1], [3],  Lawrynowicz [1], Anandani [2], [3], Bajpai [1],
Skibinski [1] and Chaurasia [1].

For Section 2.2. The di�erentiation formulas (2.2.1){(2.2.5) were proved by K.C. Gupta and U.C.
Jain [2], Nair [1], [2] and Oliver and Kalla [1], respectively. The relations (2.2.4), (2.2.5) and (2.2.6)
were given in the book by Prudnikov, Brychkov and Marichev [3, (8.3.2.20), (8.3.2.18) and (8.3.2.19)].
The formulas (2.2.7){(2.2.10) were obtained by  Lawrynowicz [1] (see also (2.2.7) and (2.2.9) in Prud-
nikov, Brychkov and Marichev [3, (8.3.2.17) and (8.3.2.16)]). Other di�erentiation relations were also
presented in the papers above and in the papers by A.N. Goyal and G.K. Goyal [1], Anandani [6]
(see Mathai and R.K. Saxena [2, Section 1.3] and Srivastava, Gupta and Goyal [1, Section 2.7]). We
also note that partial derivatives of the H-function with respect to parameters were investigated by
Buschman [3], while Pathak [4] established the di�erential equations for the H-function (1.1) with
positive rational �i and �j .

For Section 2.3. A number of recurrence relations for the H-function were obtained by Gupta
[2], U.C. Jain [1], Agrawal [1], Anandani [2], [3], Mathur [1], Bora and Kalla [1], A. Srivastava and
Gupta [1], Raina [1] and other authors (see the bibliography in the books of Mathai and R.K. Saxena
[2] and of Srivastava, Gupta and Goyal [1]). They used methods based on the evaluation of an integral
of a product of the H-function and some other special functions and have applied the known identities
for the latter. Buschman [2] has used another simpler method, obtained 30 so-called contiguous rela-
tions and gave applications to �nd �nite series expansions. We present two such formulas in (2.3.1) and
(2.3.2) and six �nite series expansions (2.3.3){(2.3.5) and (2.3.9){(2.3.11), which hold for any r 2 N.
We also indicate that the particular case r = n of the relations (2.3.3){(2.3.5) was given by Srivastava,
Gupta and Goyal [1, (2.9.6){(2.9.8)].

In the proof of Theorem 2.1 we follow the method analogous to that adopted by Meijer [5] for the
G-function (2.9.1). The relations (2.3.12){(2.3.15) were �rst proved by  Lawrynowicz [1] under some
additional conditions to those given in Theorem 2.1. Shah [1]{[3] and A. Srivastava and Gupta [1]
have obtained some other elementary expansion formulas (see Mathai and R.K. Saxena [2, Section 1.5]
and Srivastava, Gupta and Goyal [1, Section 2.9]).

Many authors have investigated the expansions of the H-functions in series of orthogonal functions
such as Fourier series, Fourier{Bessel series, Fourier{Jacobi series, Neumann series, etc. Bajpai [1]{[3]
has obtained expansions of the H-functions in terms of Jacobi polynomials, sine- and cosine-functions
and Bessel functions. Shah [1] and Anandani [8] have proved the expansions of the H-functions in
terms of the associated Legendre functions, while S.L. Soni [1] and Shah [2] derived such results in
terms of Gegenbauer polynomials (see, for the formulas, other results and bibliography, Mathai and
R.K. Saxena [2, Chapter 3] and Srivastava, Gupta and Goyal [1, Chapter 5]). We only note that Shah
[4] considered some extensions of Theorem 2.1 and Anandani [1] has established the general formulas
which give the expansion of the H-function in series of products of the generalized hypergeometric
function pFq(a1; � � � ; ap; b1; � � � ; bq; z) and the H-functions of lower order (see Srivastava, Gupta and
Goyal [1, (5.6.2){(5.6.3)]).
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For Section 2.4. The multiplication formulas (2.4.5) and (2.4.10) were proved by K.C. Gupta
and U.C. Jain [1], [3]. In [3] from (2.4.10) they deduced a relation between the H-function and the
Meijer G-function (see Srivastava, Gupta and Goyal [1, (2.5.4)]). Such a result for rational �i �j
(i = 1; � � � ; p; j = 1; � � � ; q) was proved earlier by Boersma [1], and on the basis of this result Pathak
[4] established the di�erential equation for the H-function when �i and �j (i = 1; � � � ; p; j = 1; � � � ; q)
are positive rational numbers.

Bajpai [4] and S.P. Goyal [1] have proved certain transformations of in�nite series involving the
H-function. In (2.4.11) we present one such result. Various �nite and in�nite series for the H-functions
were given by R.N. Jain [1], M.M. Srivastava [1], Anandani [3]{[5], [7], Olkha [1], S.P. Goyal [1], R.K.
Saxena and Mathur [1], Skibinski [1], Gupta and A. Srivastava [1], Taxak [1], and others (see Srivastava,
Gupta and Goyal [1, Section 2.11] in this connection).

It should be noted that many authors have investigated �nite and in�nite series for the H-function
(see the results and bibliography in the books by Mathai and R.K. Saxena [2, Chapter 3] and Srivas-
tava, Gupta and Goyal [1, Chapter 5]).

For Section 2.5. The relation (2.5.7) for the Mellin transform is well known and can be formally
deduced from the Mellin inversion theorem (see, for example, the books by Titchmarsh [3], Sneddon [1],
Ditkin and Prudnikov [1]). The formulas (2.5.12) and (2.5.25) for the Mellin and Laplace transforms
of the H-function were presented in the book by Srivastava, Gupta and Goyal [1, (2.4.1) and (2.4.2)]
under the conditions (2.5.10) and (2.5.23), respectively in the case when a� > 0 and � > 0. For a� > 0
the relation (2.5.12) with w = 0; � = 1 and (2.5.25) were also given by Prudnikov, Brychkov and
Marichev [3, (2.25.2.1) and (2.25.2.3)].

The asymptotic results for the H-function at in�nity and zero, given in Sections 1.5, 1.6 and 1.8,
1.9, allow us to extend (2.5.7), (2.5.12), (2.5.16) as well as (2.5.25) to the case when a� = 0.

For Section 2.6. The formula of the form (2.6.11) with a = � = 1 was given in Prudnikov,
Brychkov and Marichev [3, (2.25.3.2)] without any condition of the form (2.6.10).

The asymptotic estimates for the H-function at zero and in�nity given in Sections 1.5 and 1.8
allow us to extend (2.6.11) as well as (2.6.6) to the case when a� = � = 0.

We also indicate that O.P. Sharma [1] obtained the Hankel transform of the H-function (4.11.4)
considered by Fox [2], and showed that the function

f(x) = x1=2���2�Hn+1;n
p;p+1

"
x2

2

�����
(ai; �i)1;p�1; (ap; �1)

(� + �; 1); (bj; �j)1;p�1; (bp; �1)

#
(2.10.1)

is a self-reciprocal function (see (8.14.30)) with respect to the Hankel transform:�
H �f

�
(x) = f(x) (x > 0); (2.10.2)

where bj = 1 � aj + (2� + � � 1)�j (1 5 j 5 n � 1); bp = 1 � ap + (2� + � � 1)�1; provided that
p > n = 0; � 2 C (Re(�) > �1); � 2 C and

2

 
nX
i=2

�i �

p�1X
i=n+1

�i

!
> �1; Ref2� ap + (2� + � � 1)�1g > 0;

Re

�
� + � +

1 � ai

�i

�
> 0 (i = 1; 2; � � �; n):

(2.10.3)

For Section 2.7. In the case a� > 0, fractional integration and di�erentiation of the H-function
were considered by Raina and Koul [1]{[3], Srivastava, Gupta and Goyal [1] and Prudnikov, Brychkov
and Marichev [3]. Raina and Koul [2] probably �rst considered fractional di�erentiation D�

�
in (2.7.6)

with real � > 0 of the H-function. However their result in [2, (14a)] (presented also in Raina and
Koul [3, (2.2)] and Srivastava, Gupta and Goyal [1, (2.7.9)]) contains a mistake and should be replaced
by (2.7.25) with the conditions in (2.7.23). For real � > 0 the formula (2.7.12) was given by Raina
and Koul [3, (2.5)], but the conditions for its validity should be corrected in line with (2.7.26). The
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relation (2.7.22) was obtained by Srivastava, Gupta and Goyal [1, (2.7.13)], but the conditions should
also be corrected in accordance with (2.7.7). A formula more general than (2.7.9) was indicated by
Prudnikov, Brychkov and Marichev [3, (2.25.2.2)].

Due to the asymptotic behavior of the H-function at in�nity and zero given in Sections 1.5, 1.6
and 1.8, 1.9, the formulas (2.7.9), (2.7.11), (2.7.22) and (2.7.25) can be extended to the case when
a� = 0. The results of this section are based on those obtained in our papers Kilbas and Saigo [4],
[5], where, in the case a� = 0, instead of the condition Re(�) < �1 we have used the condition
� + Re(�) < �1 while considering the H-function (1.1.1) with L = Li1. In our paper Saigo and
Kilbas [4], these results were extended to generalized fractional integrals and derivatives with the
Gauss hypergeometric function (2.9.2) in the kernel, introduced by Saigo [1] (see (7.12.45), (7.12.46)
and Samko, Kilbas and Marichev [1, Section 23.2, note 18.6]). Such a generalized fractional integration
and di�erentiation of the H-function H

q;p
2p;2q(x) given by (1.11.1) was considered by Saigo, R.K. Saxena

and Ram [1]. R.K. Saxena and Saigo [2] extended the results in Saigo and Kilbas [4] to generalized
fractional integration and di�erentiation operators with the Appell function F3(a; a0; b; b0; c;x; y) in the
kernel (see Erd�elyi, Magnus, Oberhettinger and Tricomi [1, 5.7.1(8)]):

F3(a; a
0; b; b0; c;x; y) =

1X
k;l=0

(a)k(a0)l(b)k(b0)l
(c)k+l k! l!

xkyl (0 < x; y < 1); (2.10.4)

where (a)k is the Pochhammer symbol (2.4.12).

For Section 2.8. The integral formula (2.8.4) was proved by K.C. Gupta and U.C. Jain [1] provided
that a� > 0, a�0 > 0, � > 0 and �0 > 0, and the relation (2.8.17) was obtained by G.K. Goyal [1] for
a� > 0 and � > 0 (see also Srivastava, Gupta and Goyal [1, (5.2.1) and (5.2.3)]). Prudnikov, Brychkov
and Marichev [3, (2.25.1.1) and (2.25.2.2)] indicated that the formulas (2.8.4) and (2.8.17) hold for
a� > 0, a�0 > 0 and a� > 0, respectively.

By the asymptotic estimates of the H-function at in�nity and zero given in Sections 1.5, 1.6 and
1.8, 1.9, the relations (2.8.4) and (2.8.17) are extended to the case a� = 0, though the former is given
in Theorem 2.10 only for positive z = x > 0.

Many known integrals presented in the three-volume work by Prudnikov, Brychkov and Marichev
[1]{[3] can be obtained from the integrals in (2.8.4) and (2.8.17) by taking the H-function as certain
elementary or special function. It should be noted that there is a wide list of papers devoted to various
integral formulas (�nite and in�nite) involving the H-function. See the books by Mathai and R.K.
Saxena [2, Chapter 2], Srivastava, Gupta and Goyal [1, Chapter 5] and Prudnikov, Brychkov and
Marichev [3].

We also note that R.K. Saxena and Saigo [1] evaluated the integral of the form

Z x

a

(t � a)!(x� t)��1(ct + d)Hm;n
p;q

"
a(t� a)�(x� t)(ct + d)��

�����
(ai; �i)1;p

(bj; �j)1;q

#
(2.10.5)

more general than that in (2.8.17). Laddha [1] also calculated the Erd�elyi{Kober type integrals gen-
eralizing the operators in (3.3.1) and (3.3.2) and involving the generalized polynomial sets of the
H-function.

For Section 2.9. The particular cases of the H-function as the Meijer G-function were �rst given
by Erd�elyi, Magnus, Oberhettinger and Tricomi [1, Section 5.6] and then presented in the books by
Mathai and R.K. Saxena [1, Chapter II], Mathai and R.K. Saxena [2, Section 1.7], Srivastava, Gup-
ta and Goyal [1, Section 2.6] and Prudnikov, Brychkov and Marichev [3, Section 8.4.52]. Some of
these cases were presented in the formulas (2.9.4){(2.9.22). The relations (2.9.23) and (2.9.29), when
the H-function is not reduced to the G-function, were also considered in Mathai and R.K. Saxena
[2, (1.7.8){(1.7.9)], Srivastava, Gupta and Goyal [1, (2.6.10){(2.6.11)] and Prudnikov, Brychkov and
Marichev [3, (8.4.51.4)], while the relations (2.9.25) and (2.9.27) are found in Prudnikov, Brychkov
and Marichev [3, (8.4.51.7) and (8.4.51.6)].

The formulas (2.9.31), (2.9.33) and (2.9.35) are never mentioned in the monograph literature.
The modi�ed Bessel type functions (2.9.32) and (2.9.34) were introduced by Kr�atzel in [5] and [1],
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respectively, who also investigated the properties of the former function in [5] and of the latter in
[1]{[4]. The function in (2.9.36) was introduced by the authors and Glaeske in Kilbas, Saigo and
Glaeske [1] and Glaeske, Kilbas and Saigo [1], where the relations (2.9.40){(2.9.42) were proved. Such
a function was used by Bonilla, Kilbas, Rivero, Rodriguez and Trujillo [2] to solve some homogeneous
di�erential equations of fractional order and Volterra integral equations.



Chapter 3

H-TRANSFORM ON THE SPACE L�;2

3.1. The H-Transform and the Space L�;r

This and the next chapters deal with the integral transform of the form

�
Hf

�
(x) =

Z
1

0
Hm;n

p;q

"
xt

�����
(ai; �i)1;p

(bj; �j)1;q

#
f(t)dt; (3.1.1)

where Hm;n
p;q

"
z

����� (ap; �p)
(bq; �q)

#
is the H-function de�ned in (1.1.1). Such a transform is called an

H-transform.

Most of the known integral transforms can be put into the form (3.1.1). In fact, for

�i = �j = 1 (1 5 i 5 p; 1 5 j 5 q) the function Hm;n
p;q

"
z

����� (ai; �i)1;p
(bj ; �j)1;q

#
is interpreted as the

Meijer G-function Gm;n
p;q

"
z

����� (ai)1;p(bj)1;q

#
given in (2.9.1). Then (3.1.1) is reduced to the so-called

integral transform with G-function kernel or G-transform

�
Gf

�
(x) =

Z
1

0
Gm;n

p;q

"
xt

�����
(ai)1;p

(bj)1;q

#
f(t)dt: (3.1.2)

Such a transform includes the classical Laplace and Hankel transforms given in (2.5.2) and

(2.6.1). The Riemann{Liouville fractional integrals (2.7.1) and (2.7.2) and other integral

transforms can be reduced to this G-transform. For the theory and historical notes the

reader is referred to Samko, Kilbas and Marichev [1, xx36, 39]. There are other transforms

which cannot be reduced to G-transforms but can be put into the H-transforms given in

(3.1.1). They are the generalized Laplace and Hankel transforms, the Erd�elyi{Kober type

fractional integration operators, the transforms with the Gauss hypergeometric function as

kernel, the Bessel-type integral transforms, etc. (see Sections 3.3, 3.7 and Chapters 7 and 8

below). In Chapter 5 we consider such former and latter particular cases of the H-transform

(3.1.1) more precisely.

In the present chapter, we study theH-transform (3.1.1) on the summable space L�;2 (� 2

R), while the next chapter is devoted to that on L�;r (� 2 R; 1 5 r < 1). Here, the space

L�;r consist of those Lebesgue measurable complex valued functions f for which

kfk�;r =

�Z
1

0
jt�f(t)jr

dt

t

�1=r

< 1 (1 5 r < 1; � 2 R): (3.1.3)

71
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In particular, when � = 1=r the space L1=r;r coincides with the space Lr(R+) of r-summable

functions on R+ with the norm

kfkr =

�Z
1

0
jf(t)jr dt

�1=r

< 1 (1 5 r < 1): (3.1.4)

Further we shall investigate the particular aspects of the H-transforms (3.1.1) on L�;r
together with the main problems such as the existence, boundedness, representation, range

and invertibility.

We have said that the transformH under discussion is \formally" de�ned by (3.1.1), and

we must make this more precise. If we formally take the Mellin transformM of (3.1.1), we

obtain

�
MHf

�
(s) = Hm;n

p;q

"
(ai; �i)1;p

(bj ; �j)1;q

����� s
# �
Mf

�
(1� s); (3.1.5)

where Hm;n
p;q

"
(ai; �i)1;p
(bj; �j)1;q

����� s
#
is given in (1.1.2). When there is no confusion, we denote such

a function simply by H(s). It transpires that, for certain ranges of the parameters in H(s),

(3.1.5) can be used to de�ne the transform H on L�;r. Namely, for certain h 2 Rn f0g and

� 2 C , we have

�
Hf

�
(x)

= hx1�(�+1)=h
d

dx
x(�+1)=h

Z
1

0
Hm;n+1

p+1;q+1

"
xt

�����
(��; h); (ai; �i)1;p

(bj; �j)1;q; (��� 1; h)

#
f(t)dt (3.1.6)

or

�
Hf

�
(x)

= �hx1�(�+1)=h
d

dx
x(�+1)=h

Z
1

0
Hm+1;n

p+1;q+1

"
xt

�����
(ai; �i)1;p; (��; h)

(��� 1; h); (bj; �j)1;q

#
f(t)dt: (3.1.7)

Due to (2.2.1), (2.2.2), (2.1.1) and (2.1.2), formal di�erentiation with respect to x under the

integral sign in (3.1.6) and (3.1.7) yields (3.1.1). Later we give conditions for the representabil-

ity of (3.1.6), (3.1.7) as well as (3.1.1) being valid.

Our main tool for studying the H-transform on L�;r-space is based on the Mellin trans-

form to which more precise investigation should be made for such spaces.

3.2. The Mellin Transform on L�;r

The Mellin transformM is usually de�ned by (2.5.1), namely

�
Mf

�
(s) =

Z
1

0
f(x)xs�1dx (3.2.1)
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for complex s = � + it (�; t 2 R). However, unless f 2 L�;1, the integral in (3.2.1) does not

exist. But if we denote by F the Fourier transform of a function F on R de�ned by

�
FF

�
(x) =

Z +1

�1
F (t)eitxdt (3.2.2)

and take f 2 L�;1, then by an elementary change of variable we obtain
�
Mf

�
(� + it) =

�
FC�f

�
(t); (3.2.3)

where
�
C�f

�
(x) = e�xf(ex): (3.2.4)

It is shown in Rooney [2, Lemma 2.1] that C� is an isometric isomorphism of L�;r onto Lr(R).

Since the Fourier transform is de�ned on Lr(R) for 1 5 r 5 2, the right-hand side of (3.2.3)

makes sense for f 2 L�;r (� 2 R; 1 5 r 5 2). From here we come to the following de�nition.

De�nition 3.1. For f 2 L�;r (� 2 R; 1 5 r 5 2), we de�ne the Mellin transformM of f

by the relation

�
Mf

�
(� + it) =

Z 1

�1
e(�+it)�f(e� )d�: (3.2.5)

The relation (3.2.5) is also written as
�
Mf

�
(s) with Re(s) = �. In particular, if f 2

L�;2\L�;1, the Mellin transform
�
Mf

�
(s) is given by the usual expression (2.5.1) for Re(s) = �:

Property 3.1. The Mellin transform (3.2.5) has the properties

(a) M is a unitary mapping of L�;2 onto L2(R):

(b) For f 2 L�;2, there holds

f(x) =
1

2�i
lim
R!1

Z �+iR

��iR

�
Mf

�
(s)x�sds; (3.2.6)

where the limit is taken in the topology of L�;2 and where, if F (� + it) 2 L1(�R;R),

Z �+iR

��iR
F (s)ds = i

Z R

�R
F (� + it)dt: (3.2.7)

(c) For f 2 L�;2 and g 2 L1��;2; there holds

Z 1

0
f(x)g(x)dx =

1

2�i

Z �+i1

��i1

�
Mf

�
(s)

�
Mg

�
(1� s)ds: (3.2.8)

In the theory ofH-transforms on L�;r-spaces we require a multiplier theorem for the Mellin

transform. First we give a de�nition.

De�nition 3.2. We say that a function m belongs to the class A; if there are extended

real number �(m) and �(m) with �(m) < �(m) such that
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(a) m(s) is analytic in the strip �(m) < Re(s) < �(m).

(b) m(s) is bounded in every closed substrip �1 5 Re(s) 5 �2, where �(m) 5 �1 5 �2
5 �(m).

(c) jm0(� + it)j = O(jtj�1) as jtj ! 1 for �(m) < � < �(m).

For two Banach spaces X and Y we use the notation [X; Y ] to denote the collection of

bounded linear operators from X to Y , and [X;X ] is abbreviated to [X ]. There holds the

following multiplier theorem in Rooney [2, Theorem 1].

Theorem 3.1. Suppose m 2 A. Then there is a transform Tm 2 [L�;r] with �(m) < � <

�(m) and 1 < r < 1 so that; if f 2 L�;r with �(m) < � < �(m) and 1 < r 5 2; there holds

the relation

�
MTmf

�
(s) = m(s)

�
Mf

�
(s) (Re(s) = �): (3.2.9)

For �(m) < � < �(m) and 1 < r 5 2; the transform Tm is one-to-one on L�;r ; except

when m = 0. If 1=m 2 A, then for max[�(m); �(1=m)] < � < min[�(m); �(1=m)] and for

1 < r <1; Tm maps L�;r one-to-one onto itself; and for the inverse operator T�1m there holds

the formula

T�1m = T1=m: (3.2.10)

3.3. Some Auxiliary Operators

In the discussions of the next chapter we shall use special integral operators. The �rst of them

are the Erd�elyi{Kober type fractional integrals (see Samko, Kilbas and Marichev [1, x18.1])

de�ned by

�
I�0+;�;�f

�
(x) =

�x��(�+�)

�(�)

Z x

0
(x� � t�)��1t��+��1f(t)dt; (3.3.1)

�
I��;�;�f

�
(x) =

�x��

�(�)

Z 1

x
(t� � x�)��1t�(1����)�1f(t)dt (3.3.2)

for Re(�) > 0; � > 0; � 2 C and x 2 R+. We shall also work with the generalized Laplace

transform de�ned in (2.5.23), that is

�
Lk;�f

�
(x) =

Z 1

0
(xt)��e�jkj(xt)

1=k
f(t)dt (3.3.3)

for k 2 Rnf0g; � 2 C ; x 2 R+, and with the generalized Hankel transform de�ned in (2.6.11)

�
H k;�f

�
(x) =

Z 1

0
(xt)1=k�1=2J�

�
jkj(xt)1=k

�
f(t)dt (3.3.4)
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for k 2 R n f0g; Re(�) > �3=2; x 2 R+. The transforms (3.3.1){(3.3.4) are de�ned for

continuous functions f with compact support on R+ under the parameters indicated.

De�nition 3.3. For � 2 R+ we denote by L�;1 the collection of functions f , measurable

on R+, such that

kfk�;1 = ess sup
x2R

jx�f(x)j <1: (3.3.5)

The boundedness properties of the transforms (3.3.1){(3.3.4) and their Mellin transforms

are given by the following results in Rooney [6, Theorem 5.1].

Theorem 3.2. The following statements are valid:

(a) If 1 5 r 5 1; Re(�) > 0 and � < �(1 + Re(�)); then for all s = r such that 1=s >

1=r� Re(�); the operator I�0+;�;� belongs to [L�;r;L�;s] and is one-to-one. For 1 5 r 5 2 and

f 2 L�;r; there holds the relation

�
MI�0+;�;�f

�
(s) =

�

�
1 + � �

s

�

�

�

�
1 + � + � �

s

�

��Mf
�
(s) (Re(s) = �): (3.3.6)

(b) If 1 5 r 5 1; Re(�) > 0 and � > ��Re(�); then for all s = r such that 1=s >

1=r � Re(�); the operator I��;�;� belongs to [L�;r;L�;s] and is one-to-one. For 1 5 r 5 2 and

f 2 L�;r; there holds the relation

�
MI��;�;�f

�
(s) =

�

�
� +

s

�

�

�

�
� + � +

s

�

��Mf
�
(s) (Re(s) = �): (3.3.7)

(c) If 1 5 r 5 s 5 1; and if � < 1� Re(�) for k > 0 and � > 1�Re(�) for k < 0; then

the operator Lk;� belongs to [L�;r ;L1��;s] and is one-to-one. If 1 5 r 5 2 and f 2 L�;r; then

there holds the relation�
MLk;�f

�
(s) = �[k(s� �)]jkj1�k(s��)

�
Mf

�
(1� s) (Re(s) = 1� �): (3.3.8)

(d) If 1 < r <1 and (r) 5 k(� � 1=2) + 1=2 < Re(�) + 3=2; where

(r) = max

�
1

r
;
1

r0

�
;

1

r
+

1

r0
= 1; (3.3.9)

then for all s = r such that s0 = (k(� � 1=2) + 1=2)�1 and 1=s+ 1=s0 = 1; the operator H k;�

belongs to [L�;r ;L1��;s] and is one-to-one. If 1 < r 5 2 and f 2 L�;r ; then there holds the

relation

�
MH k;�f

�
(s) =

�
2

jkj

�k(s�1=2) �

�
1

2

�
� + k

�
s�

1

2

�
+ 1

��

�

�
1

2

�
� � k

�
s�

1

2

�
+ 1

���Mf
�
(1� s) (3.3.10)

(Re(s) = 1� �):
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For further investigation we also need certain elementary operators. For a function f being

de�ned almost everywhere on R+ we denote the operators M� , W� and R as follows:

�
M�f

�
(x) = x�f(x) (� 2 C ); (3.3.11)

�
W�f

�
(x) = f

�
x

�

�
(� 2 R+); (3.3.12)

�
Rf

�
(x) =

1

x
f

�
1

x

�
: (3.3.13)

It is easy to check that these operators have the following properties:

Lemma 3.1. Let � 2 R and 1 5 r <1. Then we have the following statements:

(i) M� is an isometric isomorphism of L�;r onto L��Re(�);r; and if f 2 L�;r (1 5 r 5 2);

then

�
MM�f

�
(s) =

�
Mf

�
(s+ �) (Re(s) = � � Re(�)): (3.3.14)

(ii) W� is a bounded isomorphism of L�;r onto itself; and if f 2 L�;r (1 5 r 5 2); then

�
MW�f

�
(s) = �s

�
Mf

�
(s) (Re(s) = �): (3.3.15)

(iii) R is an isometric isomorphism of L�;r onto L1��;r ; and if f 2 L�;r (1 5 r 5 2); then

�
MRf

�
(s) =

�
Mf

�
(1� s) (Re(s) = 1� �): (3.3.16)

The compositions between the operators R;W�;M�; I
�
0+;�;�, I

�
�;�;�, Lk;� and H k;� will be

employed in the next chapters. Note that the operator H k;� cannot be commutated with M� :

Lemma 3.2. Under the existence conditions of the operators I�0+;�;� , I
�
�;�;� , Lk;� and

H k;�; there hold the following formulas:

RI�0+;�;� = I�
�;�;�+1�1=�R; RI��;�;� = I�0+;�;��1+1=�R; (3.3.17)

RLk;� = L�k;1��R; RH k;� = H�k;�R; (3.3.18)

W�I
�
0+;�;� = I�0+;�;�W�; W�I

�
�;�;� = I�

�;�;�W�; (3.3.19)

W�Lk;� = �Lk;�W1=�; W�H k;� = �H k;�W1=�; (3.3.20)

RW� = �W1=�R; RM� = M��R; (3.3.21)

W�M� = ���M�W�; M�Lk;� = Lk;���M�� ; (3.3.22)

M�I
�
0+;�;� = I�0+;�;���=�M� ; M�I

�
�;�;� = I�

�;�;�+�=�M� : (3.3.23)
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Since I�0+ = M�I�0+;1;0, I
�
� = I��;1;0M

� and L = L1;0, then from Theorem 3.2(a),(b) and

Lemma 3.1(c) we have:

Corollary 3.2.1. The following statements are valid:

(a) If 1 5 r 5 1; Re(�) > 0 and � < 1; then for all s = r such that 1=s > 1=r�Re(�);

the operator I�0+ belongs to [L�;r;L��Re(�);s] and is one-to-one. For 1 5 r 5 2 and f 2 L�;r;
there holds the relation

�
MI�0+f

�
(s) =

� (1� �� s)

� (1� s)

�
Mf

�
(s + �) (Re(s+ �) = �): (3.3.24)

(b) If 1 5 r 5 1; Re(�) > 0 and � > Re(�); then for all s = r such that 1=s >

1=r � Re(�); the operator I�� belongs to [L�;r ;L��Re(�);s] and is one-to-one. For 1 5 r 5 2

and f 2 L�;r ; there holds the relation
�
MI��f

�
(s) =

� (s)

� (�+ s)

�
Mf

�
(s+ �) (Re(s+ �) = �): (3.3.25)

(c) If 1 5 r 5 s 5 1; and if � < 1; then the operator L belongs to [L�;r ;L1��;s] and is

one-to-one. If 1 5 r 5 2 and f 2 L�;r ; then there holds the relation�
MLf

�
(s) = �(s)

�
Mf

�
(1� s) (Re(s) = 1� �): (3.3.26)

3.4. Integral Representations for the H-Function

In this section we give the integral representation for the H-function. When there is no

confusion, we denote (1.1.1) and (1.1.2) simply by Hm;n
p;q (x); Hm;n

p;q (s) or H(x); H(s). Let

a�; �; �; � be given in (1.1.7){(1.1.10) and let � and � be de�ned by

� =

8>>><
>>>:
� min

15i5m

�
Re(bi)

�i

�
if m > 0;

�1 if m = 0;

(3.4.1)

and

� =

8>>><
>>>:

min
15j5n

"
1�Re(aj)

�j

#
if n > 0;

1 if n = 0:

(3.4.2)

Theorem 3.3. Let � <  < �. If any of the following conditions holds:

(i) a� > 0;

(ii) a� = 0;� 6= 0 and Re(�) + � 5 0;
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(iii) a� = 0;� = 0 and Re(�) < 0;

then for all x > 0 there holds the relation

Hm;n
p;q

"
x

�����
(ai; �i)1;p

(bj; �j)1;q

#
=

1

2�i
lim
R!1

Z +iR

�iR
H

m;n
p;q

"
(ai; �i)1;p

(bj; �j)1;q

����� s
#
x�sds; (3.4.3)

except for x = � in the case (iii) (when H(x) is not de�ned).

Proof. When a� > 0, then (3.4.3) follows from the de�nition of the H-function (1.1.1)

with (1.1.2) and (1.2.20). We prove (3.4.3) for a� = 0 and either � < 0, or � = 0 and x > �.

The proof for a� = 0 and either � > 0, or � = 0 and 0 < x < � is exactly similar. In the case

under consideration, it follows from (1.1.1){(1.1.2) that

H(x) =
1

2�i

Z
L

x�sH(s)ds;

where L is a loop starting and ending at1 and encircling all of the poles of �(1�ai��is) (i =
1; 2; � � � ; n) once in the negative direction, but encircling none of the poles of �(bj + �js) (j =

1; 2; � � � ; m).

Let

� > max

�����Im
�
a1
�1

����� ; � � � ;
����Im

�
an
�n

�����
�

and choose k;  < k < �. We choose L to be the loop consisting of the half-line Im(s) = ��
from1� i� to k� i� , the segment Re(s) = k from k� i� to k+ i� and the half-line Im(s) = �

from k + i� to 1+ i� . For R > k � , let LR denote the portion of L on which js� j 5 R.

It is clear that

H(x) =
1

2�i
lim
R!1

Z
LR

x�sH(s)ds: (3.4.4)

For such an R we denote by � the closed curve composed of the segment from � iR to + iR

on the line Re(s) = , the portion �1 of the circle js � j = R clockwise from  + iR to the

intersecting point with LR, and the portion �2 of the circle js � j = R clockwise from the

intersecting point with LR to  � iR. Since � <  < �, Cauchy's theorem implies that

0 =
Z
�
x�sH(s)ds

=
Z +iR

�iR
x�sH(s)ds�

Z
LR

x�sH(s)ds+
Z
�1

x�sH(s)ds+
Z
�2

x�sH(s)ds

for x > 0. In view of (3.4.4) it is su�cient to show that

lim
R!1

Z
�i

x�sH(s)ds = 0 (i = 1; 2): (3.4.5)

Applying the relation (2.1.6), we represent H(s) as

H(s) =H1(s)H2(s); (3.4.6)
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where

H1(s) =

qY
j=1

�(bj + �js)

pY
i=1

�(ai + �is)

; H2(s) = �n+m�q

qY
j=m+1

sin[(bj + �js)�]

nY
i=1

sin[(ai + �is)�]

: (3.4.7)

Now let us prove (3.4.5) for i = 1. We �rst estimateH1(s). From Stirling's formula (1.2.3)

we have that, if � = Rei� (��=2 5 � 5 �=2) and c 2 C , then uniformly in �, as R!1,

�(c+ �) �
p
2�e��Im(c)RR cos �+Re(c)�1=2e�R[cos �+� sin �]�Re(c):

Hence, on �1, putting s =  + �; � = Rei� , we have uniformly in �, as R!1,

H1(s) = H1( + �) � (2�)(q�p)=2�

qY
j=1

�
Re(bj)�1=2
j

pY
i=1

�
Re(ai)�1=2
i

� exp
8<
:�� Im

0
@ qX
j=1

bj �
pX

i=1

ai

1
A
9=
; RRe(�)+(+R cos �)�

� �R cos � exp

8<
:�R�(cos � + � sin �)� Re

0
@ qX
j=1

bj �
pX

i=1

ai

1
A� �

9=
; ;

where �;� and � are given in (1.1.9), (1.1.8) and (1.1.10). Since j�j 5 �=2 on �1, then

exp

8<
:�� Im

0
@ qX
j=1

bj �
pX

i=1

ai

1
A
9=
; 5 exp

8<
:�2

������Im
0
@ qX
j=1

bj �
pX

i=1

ai

1
A
������
9=
; :

Hence there is a constant A1 such that

jH1(s)j 5 A1R
Re(�)+(+R cos �)� �R cos � e�R�(cos �+� sin �); (3.4.8)

if s 2 �1 and R is su�ciently large.

Now we estimateH2(s). If s 2 �1, s = +Rei� = +�+i�, then by invoking the estimate

sinh y 5 j sin(x+ iy)j 5 cosh y (3.4.9)

we have

j sin[(bj + �js)�]j 5 cosh[(Im(bj) + �j�)�] 5 Bje
��jR sin �

with Bj = e�jIm(bj)j (j = m+ 1; � � � ; q):

By virtue of the left inequality of (3.4.9) and � = � , we have

j sin[(ai + �is)�]j = sinh[(Im(ai) + �i�)�]> 0 (i = 1; 2; � � � ; n):
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Since

d

d�
e���i� sinh[(Im(ai) + �i�)�] = ��ie

��(2�i�+Im(ai)) > 0;

then for � = � we have

e���i� sinh[(Im(ai) + �i�)�] = Ci

with

Ci = e����i sinh[(Im(ai) + �i�)�] (i = 1; 2; � � � ; n);

and therefore

j sin[(ai + �is)�]j = Cie
��iR sin � (i = 1; 2; � � � ; n):

Substituting these estimates into H2(s) and taking into account the relations

a� = 0;
qX

j=m+1

�j �
nX
i=1

�i =
mX
j=1

�j �
pX

i=n+1

�i =
�

2
;

we obtain

jH2(s)j 5 A2e
�R�sin �=2; A2 = �m+n�q

qY
j=m+1

Bj

nY
i=1

Ci

: (3.4.10)

Since � 5 0 and 0 < � 5 �=2, then R�(���=2) sin � = 0. Therefore from (3.4.6), (3.4.8)

and (3.4.10) we have

jH(s)j 5 ARRe(�)+(+R cos �)� �R cos � e�R�[cos �+(���=2) sin �]

5 ARRe(�)+(+R cos �)� �R cos � e�R�cos � (3.4.11)

for s 2 �1 and for su�ciently large R, say R > R0, with A = A1A2.

Let us consider the case � < 0. Remembering that Re(�) + � 5 0 in the hypothesis (ii)

of the theorem, if x > 0 and R > max[R0; K] with K = e(x=�)1=�, we have

����
Z
�1

x�sH(s)ds

���� 5 Ax� RRe(�)+�+1
Z �=2

0
RR�cos � e�R� cos �

�
x

�

��R cos �

d�

= Ax� RRe(�)+�+1
Z �=2

0
eR�(logR�logK) cos �d�

= Ax� RRe(�)+�+1
Z �=2

0
eR�(logR�logK) sin �d�

5 Ax� RRe(�)+�+1
Z �=2

0
e2R�(logR�logK)�=�d�

=
A�

2�(logR� logK)
x� RRe(�)+�(eR�(logR�logK) � 1) ! 0
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as R!1, and thus (3.4.5) for i = 1 is proved when � < 0.

When � = 0 and x > �, we assumed Re(�) < 0 in the hypothesis (iii) of the theorem.

Therefore if R > R0, then we have from (3.4.11) that����
Z
�1

x�sH(s)ds

���� 5 Ax�RRe(�)+1
Z �=2

0

�
x

�

��R cos �

d�

= Ax�RRe(�)+1
Z �=2

0
e�R cos � log(x=�)d�

= Ax�RRe(�)+1
Z �=2

0
e�R sin � log(x=�)d�

5 Ax�RRe(�)+1
Z �=2

0
e�2R� log(x=�)=�d�

=
�A

2 log

�
x

�

� x�RRe(�)
�
1� e�R log(x=�)

�
! 0

as R!1. The proof of (3.4.5) for i = 1 is completed. The proof for the case i = 2 is similar.

Thus the theorem is proved.

Theorem 3.4. Suppose that � <  < � and that either of the conditions a� > 0 or

a� = 0 and � + Re(�) < �1 holds. Then for x > 0, except for x = � when a� = 0 and

� = 0, the relation

Hm;n
p;q

"
x

�����
(ap; �p)

(bq; �q)

#
=

1

2�i

Z +i1

�i1
H

m;n
p;q

"
(ap; �p)

(bq; �q)

����� t
#
x�tdt (3.4.12)

holds and the estimate �����Hm;n
p;q

"
x

�����
(ap; �p)

(bq; �q)

#����� 5 A x
� (3.4.13)

is valid, where A is a positive constant depending only on .

Proof. By virtue of the assumptions, we �nd that the relation (1.2.9) impliesH(+ it) 2
L1(�1;1). So (3.4.12) follows from (3.4.3). The estimate (3.4.13) can be seen from the

proof of Theorem 3.3.

To conclude this section, we give the asymptotic estimate at in�nity for the derivative of

the function H(s) de�ned in (1.1.2) which we need in the next chapter.

Lemma 3.3. There holds the estimate as jtj ! 1;

H
0(� + it) = H(� + it)

�
log � + a�1 log(it)� a�2 log(�it) +

�+ ��

it
+ O

�
1

t2

��
: (3.4.14)

Proof. It follows from (1.1.2) that for s = � + it

H
0(s) = H(s)

2
4 mX
j=1

�j (bj + �js)�
nX
i=1

�i (1� ai � �is)
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+
qX

j=m+1

�j (1� bj � �js)�
pX

i=n+1

�i (ai + �is)

3
5 ; (3.4.15)

where  (z) = �0(z)=�(z) is the psi function de�ned in (1.3.4). There exists the following

asymptotic expansion of  (z) at in�nity (see Erd�elyi, Magnus, Oberhettinger and Tricomi [1,

1.18(7)])

 (z) = log z � 1

2z
+ O

�
1

z2

�
(jzj ! 1): (3.4.16)

In accordance with (3.4.16) and (3.4.18) for c 2 C ; we have as jtj ! 1,

 (c+ � � it) = log(�it)� c+ � � 1=2

it
+ O

�
1

t2

�
: (3.4.17)

Substituting this into (3.4.15), we arrive at (3.4.14) and the lemma is proved.

3.5. L�;2-Theory of the General Integral Transform

In this section we consider the general integral transformK of the form

�
Kf

�
(x) = hx1�(�+1)=h d

dx
x(�+1)=h

Z 1

0
k(xt)f(t)dt; (3.5.1)

where the kernel k 2 L1��;2, � 2 C and h 2 Rn f0g.

Theorem 3.5. (a) Let the transform K of the form (3:5:1) be in [L�;2;L1��;2]; then

k 2 L1��;2. If we set for � 6= 1� (Re(�) + 1)=h

�
Mk

�
(1� � + it) =

!(t)

�+ 1� (1� � + it)h
a.e. (3.5.2)

then ! 2 L1(R); and for f 2 L�;2 there holds the formula�
MKf

�
(1� � + it) = !(t)

�
Mf

�
(� � it) a.e. (3.5.3)

(b) Conversely; for given ! 2 L1(R); � 2 R and h 2 R+; there is a transform K2
[L�;2;L1��;2] so that (3:5:3) holds for f 2 L�;2. Moreover; if � 6= 1� (Re(�) + 1)=h; then Kf

is representable in the form (3:5:1) with the kernel k given in (3:5:2):

(c) Under the hypotheses of (a) or (b) with ! 6= 0 a.e.;K is a one-to-one transform from

L�;2 into L1��;2; and if in addition 1=! 2 L1(R); then K maps L�;2 onto L1��;2. Further; for

f; g 2 L�;2; the relationZ 1

0
f(x)

�
Kg

�
(x)dx =

Z 1

0

�
Kf

�
(x)g(x)dx (3.5.4)

is valid.

Proof. First we treat (a). We suppose thatK, given in (3.5.1), is in [L�;2;L1��;2], where

� 6= 1� (Re(�) + 1)=h. We consider the case � > 1� (Re(�) + 1)=h. For a > 0, let

ga(t) =

8<
:
t(�+1)=h�1 if 0 < t < a;

0 if t > a:
(3.5.5)
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Then

kgak�;2 =

�Z a

0
t2f[(Re)(�)+1]=h+��1g�1dt

�1=2

<1;

which means ga 2 L�;2. Hence

�
Kg1

�
(x) = hx1�(�+1)=h d

dx
x(�+1)=h

Z 1

0
k(xt)t(�+1)=h�1dt

= hx1�(�+1)=h d

dx

Z x

0
� (�+1)=h�1k(�)d� = hk(x)

almost everywhere, so that Kg1 = hk. Therefore since K 2 [L�;2;L1��;2], we have that

k 2 L1��;2.

Since f 2 L�;2 and k 2 L1��;2, by using the Schwartz inequality

�����
Z b

a
f(x)g(x)dx

����� 5
 Z b

a
jf(x)j2dx

!1=2 Z b

a
jg(x)j2dx

!1=2

(3.5.6)

(�1 5 a < b 5 1);

we have����x(�+1)=h
Z 1

0
k(xt)f(t)dt

���� =
����x(�+1)=h

Z 1

0

n
t1=2��k(xt)

on
t�1=2+�f(t)

o
dt

����
5 x[Re(�)+1]=h

�Z 1

0

���t1��k(xt)���2 dt
t

�1=2

kfk�;2

= x��1+[Re(�)+1]=hkkk1��;2kfk�;2 = o(1)

as x! +0. Hence after integrating both sides of (3.5.1), we obtain for x > 0Z x

0
t(�+1)=h�1

�
Kf

�
(t)dt = hx(�+1)=h

Z 1

0
k(xt)f(t)dt: (3.5.7)

Now for x > 0 and Re(s) + [Re(�) + 1]=h > 1, we have

�
Mgx

�
(s) =

hx(�+1)=h+s�1

�+ 1� h(1� s)
: (3.5.8)

Since f 2 L�;2 and gx 2 L�;2, from (3.2.8), we obtainZ x

0
t(�+1)=h�1

�
Kf

�
(t)dt =

Z 1

0
gx(t)

�
Kf

�
(t)dt

=
1

2�i

Z �+i1

��i1

�
Mgx

�
(s)
�
MKf

�
(1� s)ds

=
hx(�+1)=h

2�i

Z 1��+i1

1���i1
x�s

�
MKf

�
(s)

ds

�+ 1� hs

=
hx��1+(�+1)=h

2�

Z 1

�1
x�it

�
MKf

�
(1� � + it)

�+ 1� (1� � + it)h
dt: (3.5.9)
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Similarly, from (3.2.8) and (3.3.15) we �nd

hx(�+1)=h
Z 1

0
k(xt)f(t)dt = hx(�+1)=h

Z 1

0

�
W1=xk

�
(t)f(t)dt

=
hx(�+1)=h

2�i

Z 1��+i1

1���i1
x�s

�
Mk

�
(s)
�
Mf

�
(1� s)ds

=
hx��1+(�+1)=h

2�

Z 1

�1
x�it

�
Mk

�
(1� � + it)

�
Mf

�
(� � it)dt: (3.5.10)

Substituting (3.5.9) and (3.5.10) into (3.5.7), denoting

F (t) =

�
MKf

�
(1� � + it)

�+ 1� (1� � + it)h
�
�
Mk

�
(1� � + it)

�
Mf

�
(� � it) (3.5.11)

and writing x = e�y , we obtain for all y 2 R thatZ +1

�1
eiytF (t)dt = 0: (3.5.12)

According to property (a) of the Mellin transform in Section 3.2, M 2 [L�;2; L2(R)] for any

� 2 R. Therefore�
MKf

�
(1� � + it);

�
Mg1

�
(� � it) =

h

�+ 1� (1� � + it)h
;

�
Mk

�
(1� � + it);

�
Mf

�
(� � it)

belong to L2(R); and F (t) in (3.5.11) is also in L2(R). Hence (3.5.12) means that F (t) = 0

a.e. De�ning ! by (3.5.2), we obtain (3.5.3) in view of (3.5.11).

It remains to show that ! 2 L1(R). It follows from (3.5.3) that, if f 2 L�;2, then

!(t)
�
Mf

�
(� � it) 2 L2(R): Due to the property (a) in Section 3.2,M maps L�;2 onto L2(R)

and thus !(t)�(t) 2 L2(R) for any � 2 L2(R). Therefore from Halmos [1, Problem 51]

! 2 L1(R). This completes the proof of (a) for � > 1� (Re(�) + 1)=h.

If � < 1� (Re(�) + 1)=h, the proof is similar if we replace ga(t) in (3.5.5) by the function

ha(t) de�ned for a > 0 by

ha(t) =

8<
:

0 if 0 < t < a;

t(�+1)=h�1 if t > a:
(3.5.13)

Now we prove (b). We suppose that ! 2 L1(R) and f 2 L�;2. By the fact in Section 3.2

thatM is a unitary mapping of L1��;2 onto L2(R), there is a unique function g 2 L1��;2 such

that
�
Mg

�
(1� � + it) = !(t)

�
Mf

�
(� � it). We de�ne K by Kf = g: Then (3.5.3) holds. K

is also a linear operator, namely, if fi 2 L�;2 and ci 2 R (i = 1; 2), then�
MK[c1f1 + c2f2]

�
(1� � + it) = !(t)

�
M[c1f1 + c2f2]

�
(� � it)

= c1!(t)
�
Mf1

�
(� � it) + c2!(t)

�
Mf2

�
(� � it)

= c1
�
Mf1

�
(1� � + it) + c2

�
Mf2

�
(1� � + it)

=
�
M[c1Kf1 + c2Kf2]

�
(1� � + it);
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which implies that K(c1f1 + c2f2) = c1Kf1 + c2Kf2.

Further, it follows from the same property in Section 3.2 that, taking !�(t) = !(�t), we

have

kKfk1��;2 = kMKfk2 = k!�Mfk2 5 k!�k1 kMfk2 = k!k1 kfk�;2 ;

where k!k1 is the L1(R)-norm of !. This means that K2 [L�;2;L1��;2].

We suppose that � 6= 1 � (Re(�) + 1)=h and let the function k(t) be de�ned by (3.5.2).

Then k 2 L1��;2 by Property 3.1(c), because of 1=(p+ it) 2 L2(R) for a constant p 6= 0. If

� < 1� (Re(�) + 1)=h and ha(t) is given in (3.5.13), then

�
Mhx

�
(s) =

�hx(�+1)=h+s�1

�+ 1� h(1� s)
: (3.5.14)

From (3.5.13), (3.2.8), (3.5.14), (3.5.3), (3.5.2) and (3.3.15), if x > 0 then similarly to (3.5.9)

we haveZ 1

x
t(�+1)=h�1

�
Kf

�
(t)dt

=
Z 1

0
hx(t)

�
Kf

�
(t)dt

=
1

2�i

Z �+i1

��i1

�
Mhx

�
(s)
�
MKf

�
(1� s)ds

=
1

2�

Z 1

�1

�hx(�+1)=h+�+it�1

�+ 1� h(1� � � it)

�
MKf

�
(1� � � it)dt

=
�h

2�
x(�+1)=h+��1

Z 1

�1

xit

�+ 1� h(1� � � it)
!�(t)

�
Mf

�
(� + it)dt

=
�h

2�
x(�+1)=h+��1

Z 1

�1
xit
�
Mk

�
(1� � � it)

�
Mf

�
(� + it)dt

=
�h

2�i
x(�+1)=h+��1

Z 1��+i1

1���i1
x1���s

�
Mk

�
(s)
�
Mf

�
(1� s)ds

=
�h

2�i
x(�+1)=h

Z 1��+i1

1���i1

�
MW1=xk

�
(s)
�
Mf

�
(1� s)ds

= �
h

2�i
x(�+1)=h

Z 1��+i1

1���i1

�
Mk(xt)

�
(s)
�
Mf

�
(1� s)ds

= �hx(�+1)=h
Z 1

0
k(xt)f(t)dt:

Di�erentiating this relation, we arrive at (3.5.1). Similarly for the case � > 1� (Re(�)+1)=h,

the formula (3.5.8) for the function ga(t) in (3.5.5) is used, and the precise calculations are

omitted.

Finally we prove (c). We suppose that ! 6= 0 a.e. Then if f 2 L�;2 and Kf = 0, it

follows from (3.5.3) that !(t)
�
Mf

�
(� � it) = 0 a.e., and hence

�
Mf

�
(� � it) = 0 a.e. This

implies that f = 0 a.e. which means that K is one-to-one. We suppose that 1=! 2 L1(R).
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In accordance with (b), there is a transform T 2 [L1��;2;L�;2] such that if g 2 L1��;2, then

�
MTg

�
(� + it) =

1

!(�t)

�
Mg

�
(1� � � it) a.e.

Thus by (3.5.3), we have�
MKTg

�
(1� � + it) = !(t)

�
MTg

�
(� � it) =

�
Mg

�
(1� � + it):

So for all g 2 L1��;2; we have the identity KTg = g which means that K maps L�;2 onto

L1��;2.

Finally, if f; g 2 L�;2, from (3.2.8) and (3.5.3) we obtain

Z 1

0
f(x)

�
Kg

�
(x)dx =

1

2�i

Z �+i1

��i1

�
Mf

�
(s)
�
MKg

�
(1� s)ds

=
1

2�

Z +1

�1

�
Mf

�
(� + it)

�
MKg

�
(1� � � it)dt

=
1

2�

Z +1

�1

�
Mf

�
(� + it)!(�t)

�
Mg

�
(� + it)dt

=
1

2�

Z +1

�1
!(t)

�
Mf

�
(� � it)

�
Mg

�
(� � it)dt

=
1

2�

Z +1

�1

�
MKf

�
(1� � + it)

�
Mg

�
(1� [1� � + it])dt

=
1

2�i

Z 1��+i1

1���i1

�
MKf

�
(s)
�
Mg

�
(1� s)ds

=

Z 1

0

�
Kf

�
(x)g(x)dx:

This completes the proof of Theorem 3.5.

3.6. L�;2-Theory of the H-Transform

The results of Theorem 3.5 may be applied to obtain the L�;2-theory of the H-transform

(3.1.1). For this we need a de�nition.

De�nition 3.4. Let the function H(s) = Hm;n
p;q (s) be given in (1.1.2) and let the real

numbers � and � be de�ned by (3.4.1) and (3.4.2), respectively. We call the exceptional set

EH of H the set of real numbers � such that � < 1 � � < � and H(s) has a zero on the line

Re(s) = 1� �.

Theorem 3.6. We suppose that

(a) � < 1� � < �;

and that either of the conditions
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(b) a� > 0; or

(c) a� = 0; �(1� �) + Re(�) 5 0

holds. Then we have the following results:

(i) There is a one-to-one transformH2 [L�;2; L1��;2] so that (3:1:5) holds forRe(s) = 1��

and f 2 L�;2. If a� = 0; �(1� �) + Re(�) = 0 and � =2 EH ; then the operator H maps L�;2

onto L1��;2.

(ii) If f; g 2 L�;2; then the relation (3:5:4) holds for H :Z
1

0
f(x)

�
Hg

�
(x)dx =

Z
1

0

�
Hf

�
(x)g(x)dx: (3.6.1)

(iii) Let f 2 L�;2, � 2 C and h > 0: If Re(�) > (1� �)h� 1; then Hf is given in (3:1:6);

namely;�
Hf

�
(x)

= hx1�(�+1)=h
d

dx
x(�+1)=h

Z
1

0
Hm;n+1

p+1;q+1

"
xt

����� (��; h); (ai; �i)1;p(bj; �j)1;q; (��� 1; h)

#
f(t)dt: (3.6.2)

When Re(�) < (1� �)h� 1; Hf is given in (3:1:7) :�
Hf

�
(x)

= �hx1�(�+1)=h
d

dx
x(�+1)=h

Z
1

0
Hm+1;n

p+1;q+1

"
xt

����� (ai; �i)1;p; (��; h)(��� 1; h); (bj; �j)1;q

#
f(t)dt: (3.6.3)

(iv) The transform H is independent of � in the sense that, for � and e� satisfying the

assumptions (a), and either (b) or (c), and for the respective transforms H on L�;2 and fH
on Le�;2 given in (3:1:5); then Hf = fHf for f 2 L�;2 \ Le�;2.

Proof. Let !(t) = H(1� � + it). By virtue of (1.1.2), (3.4.1), (3.4.2) and the condition

(a) the function H(s) is analytic in the strip � < Re(s) < �. In accordance with (1.2.9) and

the condition (b) or (c), !(t) = O(1) as jtj ! 1. Therefore ! 2 L1(R), and hence we obtain

from Theorem 3.5(b) that there exists a transformH 2 [L�;2; L1��;2] such that�
MHf

�
(1� � + it) = H(1� � + it)

�
Mf

�
(� � it)

for f 2 L�;2. This means that the equality (3.1.5) holds for Re(s) = 1 � �. Since H(s) is

analytic in the strip � < Re(s) < � and has isolated zeros, then !(t) 6= 0 almost everywhere.

Thus we obtain from Theorem 3.5(c) that H 2 [L�;2; L1��;2] is a one-to-one transform. If

a� = 0, �(1��)+Re(�) = 0 and � is not in the exceptional set of H, then 1=! 2 L1(R), and

again from Theorem 3.5(c) we obtain that H transforms L�;2 onto L1��;2. This completes

the proof of the �rst assertion (i) of the theorem.

Further, if f 2 L�;2 and g 2 L�;2, then the relation (3.6.1) is valid according to Theorem

3.5(c), which is the assertion (ii).

Let us prove (3.6.2). Let f 2 L�;2 and Re(�) > (1� �)h� 1. To show the relation (3.6.2),

it is su�cient to calculate the kernel k in the transform (3.5.1) for such �. From (3.5.2) we

have the equality�
Mk

�
(1� � + it) = H(1� � + it)

1

�+ 1� (1� � + it)h
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or, for Re(s) = 1� � �
Mk

�
(s) = H(s)

1

�+ 1� hs
:

Then from (3.2.6) we obtain the expression for the kernel k, namely

k(x) =
1

2�i
lim
R!1

Z 1��+iR

1���iR
x�sH(s)

1

�+ 1� hs
ds; (3.6.4)

where the limit is taken in the topology of L�;2.

According to (1.1.2) we have

H(s)
1

�+ 1� hs
= H(s)

�(1� (��)� hs)

�(1� (��� 1)� hs)

= Hm;n+1
p+1;q+1

"
(��; h); (ai; �i)1;p

(bj ; �j)1;q; (��� 1; h)

����� s
#
: (3.6.5)

We denote by �1; �1; a�1; �1; �1 the constants in (3.4.1), (3.4.2), (1.1.7), (1.1.8), (1.1.10)

for this Hm;n+1
p+1;q+1. Then �1 = �; �1 = min[�; (1 + Re(�))=h]; a�1 = a�; �1 = �; �1 = �� 1.

Thus, it follows that

(a)0 �1 < 1� � < �1;

from Re(�) > (1� �)h� 1, and either of the conditions:

(b)0 a�1 > 0; or

(c)0 a�1 = 0; �1(1� �) + Re(�1) = �(1� �) + Re(�)� 1 5 � 1

holds. Applying Theorem 3.4 for x > 0, except possibly for x = �, we obtain that the equality

Hm;n+1
p+1;q+1

"
x

����� (��; h); (ai; �i)1;p)(bj; �j)1;q; (��� 1; h)

#

=
1

2�i
lim
R!1

Z 1��+iR

1���iR
x�s(Hf)(s)

1

�+ 1� hs
ds (3.6.6)

holds almost everywhere. Then, (3.6.4) and (3.6.6) yield that the kernel k is given by

k(x) = H
m;n+1
p+1;q+1

"
x

����� (��; h); (ai; �i)1;p(bj; �j)1;q; (��� 1; h)

#
;

and (3.6.2) is proved.

The relation (3.6.3) is proved similarly to (3.6.2), if we use the equality

H(s)

�+ 1� hs
= �H(s)

�(hs� �� 1)

�(hs� �)

= �Hm+1;n
p+1;q+1

"
(ai; �i)1;p; (��; h)

(��� 1; h); (bj; �j)1;q

����� s
#

(3.6.7)
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instead of (3.6.5), and hence (iii) is proved.

Lastly, let us prove (iv). If f 2 L�;2 \ Le�;2 and Re(�) > max[(1� �)h � 1; (1� e�)h � 1]

or Re(�) < min[(1� �)h � 1; (1� e�)h � 1], then both transforms Hf and fHf are given in

(3.6.2) or (3.6.3), respectively, which shows that they are independent of �.

Corollary 3.6.1. Let � < � and let one of the following conditions hold:

(b) a� > 0;

(e) a� = 0; � > 0 and � < �
Re(�)

�
;

(f) a� = 0; � < 0 and � > �
Re(�)

�
;

(g) a� = 0; � = 0 and Re(�) 5 0:

Then the H-transform can be de�ned on L�;2 with � < � < �.

Proof. When 1� � < � < 1� �, by Theorem 3.6, if either a� > 0 or a� = 0; �(1� �) +

Re(�) 5 0 is satis�ed, then the H-transform can be de�ned on L�;2, which is also valid when

� < � < �. Hence the corollary is clear in cases (b) and (g). When � > 0 and � < �Re(�)=�,

the assumption � < � yields that there exists a number � such that � < 1� � 5 �Re(�)=�

and 1 � � < �, which are required. For the case (f) the situation is similar, that is, there

exists � of the forms � > 1� � = � Re(�)=� and � < 1� �. Thus the proof is completed.

Theorem 3.7. Let � < 1 � � < � and suppose either of the the following conditions

holds:

(b) a� > 0;

(d) a� = 0; �(1� �) + Re(�) < 0:

Then for x > 0;
�
Hf

�
(x) is given in (3:1:1) for f 2 L�;2; namely,

�
Hf

�
(x) =

Z
1

0
Hm;n

p;q

"
xt

����� (ai; �i)1;p(bj; �j)1;q

#
f(t)dt: (3.6.8)

Proof. We denote by e� the function Hm;n+1
p+1;q+1 in (3.6.2) instead of � for the H-function

(1.1.1). By (1.1.10) e� = �� 1 and since �(1� �) + Re(�) < 0, then �(1� �) + Re(e�) < �1.

It follows from Theorem 1.2 in Section 1.2 that if Re(�) > (1 � �)h � 1, then Hm;n+1
p+1;q+1 in

(3.6.2) is continuously di�erentiable on R+. Therefore we can di�erentiate under the integral

sign in (3.6.2). Applying the relations (2.2.7) and (2.1.1), we arrive at (3.6.8) provided that

the integral in (3.6.8) exists.

The existence of this integral is proved on the basis of (3.4.13). Indeed, we choose 1 and

2 so that � < 1 < 1 � � < 2 < �. According to (3.4.13) there are constants A1 and A2

such that for almost all t > 0, the inequalities

jHm;n
p;q (t)j 5 Ait

�i (i = 1; 2)
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hold. Therefore, using the Schwartz inequality (3.5.6), we haveZ
1

0

���Hm;n
p;q (xt)f(t)

���dt 5 �Z
1

0

���H(xt)t1=2��
���2 dt�1=2

kfk�;2

5

24A1x
�1

 Z 1=x

0
t2(1���1)�1dt

!1=2

+A2x
�2

 Z
1

1=x
t2(1���2)�1dt

!1=2
35 kfk�;2

= Cx��1 <1;

where

C =
n
A1[2(1� � � 1)]

�1=2 + A2[2(2+ � � 1)]�1=2
o
kfk�;2;

and the theorem is proved.

In conclusion of this section we indicate the conditions for the H-transform (3.6.8) to be

de�ned on some L�;2-space.

Corollary 3.7.1. Let � < � and let one of the following conditions hold:

(b) a� > 0;

(h) a� = 0; � > 0 and � < �
Re(�) + 1

�
;

(i) a� = 0; � < 0 and � > �
Re(�) + 1

�
;

(j) a� = 0; � = 0 and Re(�) < 0:

Then the H-transform can be de�ned (3:6:8) on L�;2 with � < � < �.

Proof. The proof of this statement is similar to those of Corollary 3.6.1.

3.7. Bibliographical Remarks and Additional Information on Chapter 3

For Section 3.1. The general integral transforms with the H-functions as kernels were introduced
by Gupta and P.K. Mittal [1] and R. Singh [1] in 1970 in the forms�

Hf
�
(x) = x

Z
1

0

Hm;n
p;q

"
xt

����� (ai; �i)1:p

(bj; �j)1;q

#
f(t)dt (x > 0) (3.7.1)

and �
Hf

�
(x) = �x

Z
1

0

Hm;n
p;q

"
cxt

����� (ai; �i)1:p

(bj; �j)1;q

#
f(t)dt (x > 0); (3.7.2)

respectively. It should be noted that the form (3.1.1) for the H-transform was �rst suggested by
C.B.L. Verma [1] (1966), and that some H-transforms were implicitly studied by Fox [2] (1961) and
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Kesarwani [11] (1965) while investigating the H-functions as symmetrical and unsymmetrical Fourier
kernels, respectively, and by R.K. Saxena [8] while considering the inversion of the Mellin{Barnes
integrals of the form (1.1.2).

As indicated in Section 3.1, most of the known integral transforms can be put into the form
(3.1.1). These are the G-transform (3.1.2) and its particular cases such as the classical Laplace and
Hankel transforms (2.5.2) and (2.6.1), the Riemann{Liouville fractional integrals (2.7.1) and (2.7.2),
the even and odd Hilbert transforms (8.3.10) and (8.3.11), the Varma-type integral transforms (7.2.1),
(7.2.15), (7.3.1) and (7.3.13) with the Whittaker functions as kernels, the integral transform (7.4.1) with
parabolic cylinder function in the kernel, the integral transforms (7.5.1), (7.5.13), (7.6.1) and (7.6.12)
with hypergeometric functions 1F1 and 1F2 in the kernels, the integral transforms (7.7.1), (7.7.2),
(7.7.21), (7.7.22), (7.8.1), (7.8.2), (7.8.23) and (7.8.24) with the Gauss hypergeometric function in the
kernels, the generalized Stieltjes transform (7.9.1) and the pFq-transforms (7.10.1).

There also exist transforms which cannot be reduced to G-transforms but can put into the
H-transforms given in (3.1.1). Such examples are the cosine- and sine-transforms (8.1.2) and (8.1.3),
the Erd�elyi{Kober type fractional integration operators (3.3.1) and (3.3.2), the transforms with the
Gauss hypergeometric function as kernel proved by R.K. Saxena [9], R.K. Saxena and Kumbhat [1],
[3], McBride [1], Kumbhat [1] (see (7.12.37), (7.12.38), (7.12.43) and (4.11.25), (4.11.26)), the Wright
transform p	q in (7.11.1), the Laplace type transformL

�

;k in (7.1.1), the generalized Laplace and Han-
kel transforms Lk;�;Hk;� in (3.3.3) and (3.3.4), the extended Hankel transform H�;l in (8.4.1), Hankel
type transforms H �;�;$;k;�;h�;1;h�;2;b�;1;b�;2 in (8.5.1) and (8.6.1){(8.6.4), Y�- and H�-transforms

in (8.7.1) and (8.8.1), the Meijer transform K� in (8.9.1), the Bessel type transforms K�
�;L

(m)
� ;L(�)

�;� in
(8.10.1), (8.10.2) and (8.11.1), the modi�ed Hardy{ and Hardy{Titchmarsh transforms J�;� ;Ja;b;c;!
in (8.12.6) and (8.12.1) and the Lommel{Maitland transform J


�;� in (8.13.1).

It should be noted that, though many authors studied H-transforms of the forms (3.1.1), (3.7.1),
(3.7.2) and modi�ed H-transforms, most of the investigations were devoted to studying the inversion
of H-transforms in spaces Lr(R+) (1 5 r <1), their Mellin transform and the relation of fractional
integration by parts of the form (3.6.1). The boundedness of such H-transforms in the space Lr(R+)
were studied in several papers (see Sections 4.11 and 5.7 in this connection).

The mapping properties such as the boundedness and the respresentation of the H-transform
(3.1.1) in the space L�;2 were presented in Section 3.6. Such properties together with the range and
invertibilty of such an H-transform in the spaces L�;r (1 5 r 5 1) will be given in Chapter 4 by
extending results in this chapter. As for further results we indicate that Vu Kim Tuan [1] studied the
factorization properties of the H-transform (3.1.1) in the special functional space L�

2 , and Nguyen
Thanh Hai and Yakubovich [1] investigated general integral convolution for these integral transforms.

A series of papers was devoted to studying integral transforms with H-function kernels in spaces of
generalized functions and Abelian theorems for them. Classical Abelian theorems give the asymptotic
behavior of the integral transform (Hf)(x) near zero or in�nity on the basis of the known asymptotic
behavior of f(t) as t!1 or t! 0, respectively. R.K. Saxena [10] obtained classical Abelian theorems
for more general integral transforms than (3.1.1) with H-function kernel of the form

�
H!f

�
(x) =

Z
1

0

e�!xtHm;n
p;q

"
xt

�����
(ai; �i)1:p

(bj; �j)1;q

#
f(t)dt (x > 0) (3.7.3)

with positive ! > 0 and extended the results to generalized functions. R.K. Saxena [10] proved that if
� (� > �1) and � are given real numbers such that t��f(t) is absolutely continuous on [0;1) and

lim
t!+1

f(t) = 0; lim
t!+0

t��f(t) = �; (3.7.4)

then

lim
x!+1

(!x)�+1

H(1=!)

�
H!f

�
(x) = �; (3.7.5)

where the function in the denominator is

H(z) = Hm;n+1
p+1;q

"
z

�����
(��; 1); (ai; �i)1:p

(bj ; �j)1;q

#
: (3.7.6)
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He also extended this result to generalized functions and gave other su�cient conditions for (3.7.5)
to be valid. Joshi and Raj.K. Saxena [1]{[3] investigated the H-transform of the form (3.7.3), where
the variable xt of the H-function in the integrand is replaced by �(xt)� with � > 0 and � > 0. They
obtained in [1] the same assertions as those given above by R.K. Saxena [10]. They further proved in [2]
two structure theorems for the generalized functions (represented by such generalized H-transforms)
in terms of di�erential operators acting on functions or on measures, and used such structures in [3] to
establish the complex inversion formula for this generalizedH-transform and to discuss its uniqueness.
See also Brychkov and Prudnikov [1, Section 8.2] in this connection.

Carmichael and Pathak [2] extended the above results of R.K. Saxena [10] to complex x by proving
Abelian theorems in a wedge domain in the right half-plane, de�ned quasi-asymptotic behavior of
such H-transformable generalized functions, proved a structure theorem for generalized functions
having such quasi-asymptotic behavior and gave applications to obtain the asymptotic behavior of the
H-transform of these generalized functions. Similar results for the H-transform (3.1.1) were obtained
by Carmichael and Pathak [1].

Malgonde and Raj.K. Saxena extended the H-transform of the form

�
Hf

�
(x) =

Z
1

0

Hm+1;0
m;m+1

"
xt

�����
(ai + bi; �i)1:m

(bj ; �j)1;m; (�; �m+1)

#
f(t)dt (x > 0) (3.7.7)

to generalized functions and proved the representation for such a transform in [1], [3] and an inversion
and a uniqueness theorem in [2], [5]. They established some Abelian theorems for such a distribu-
tional transform and for more general distributional transforms with the kernel Hm;0

p;q in [6] and [4],
respectively. See also Raj.K. Saxena, Koranne and Malgonde [1] in this connection.

We also indicate that, though applications of the H-function (1.1.1) in statistics and other disci-
plines are well known (see Mathai and R.K. Saxena [2]), only one paper by Raina [2] was devoted to
application of the H-transform concerning the problem of absolute moments of arbitrary order of a
probability distribution function.

For Sections 3.2 and 3.3. The results presented in these sections belong to Rooney [6, Sections 2
and 5].

We only note that the Erd�elyi{Kober type fractional integrals (3.3.1) and (3.3.2) were introduced
by Kober [2] for � = 1 and by Erd�elyi [3] in the general case, and they gave the conditions for the
boundedness of these operators in the space L1=r;r = Lr(R+) for 1 < r < 1. When � = 2, the
operators (3.3.1) and (3.3.2) are known as Erd�elyi{Kober operators, and Sneddon [2] was the �rst to
name them in this way.

For Sections 3.4{3.6. The results of these sections were proved by the authors together with
Shlapakov in Kilbas, Saigo and Shlapakov [1], and some of these assertions were indicated in Kilbas
and Shlapakov [2] (see also the papers of Shlapakov [1] and Kilbas, Saigo and Shlapakov [2], [3]).
Theorems 3.3 and 3.4 in Section 3.4 establish the integral representations (3.4.3) and (3.4.12) for the
H-function Hm;n

p;q in (1.1.1) on the spaces L�;2. They, together with Theorem 3.5 in Section 3.5, play
the main role in constructing L�;2-theory for the H-transforms in Theorems 3.6 and 3.7 in Section 3.6.
The obtained results generalize the corresponding results by Rooney [6, Lemmas 3.2, 3.3 and 4.1 and
Theorem 4.1], being proved for the G-transform (3.1.2) (see also Section 5.1 in this connection).

We also note that the statements presented in Sections 3.4{3.6 were independently obtained by
Betancor and Jerez Diaz [1].



Chapter 4

H-TRANSFORM ON THE SPACE L�;r

In Chapter 3 we constructed so-called L�;2-theory of the H-transform (3.1.1), where we char-

acterize the existence, the boundedness and representation properties of the transformsH on

the space L�;2 given in (3.1.3). The present chapter is devoted to extending the above results

from r = 2 to any r = 1: Moreover, we shall deal with the study of properties such as the

range and the invertibility of the H-transform on the space L�;r with any 1 5 r < 1. The

results will be di�erent in nine cases:

1) a� = � = Re(�) = 0; 2) a� = � = 0; Re(�) < 0; 3) a� = 0; � > 0;

4) a� = 0; � < 0; 5) a�1 > 0; a�2 > 0; 6) a�1 > 0; a�2 = 0;

7) a�1 = 0; a�2 > 0; 8) a� > 0; a�1 > 0; a�2 < 0; 9) a� > 0; a�1 < 0; a�2 > 0:

Here a�, �, �, a�1 and a�2 are given in (1.1.7), (1.1.8), (1.1.10), (1.1.11) and (1.1.12), respec-

tively. We shall also use the constants � and � de�ned by (3.4.1) and (3.4.2), respectively.

4.1. L�;r-Theory of the H-Transform When a� = � = 0 and Re(�) = 0

In this and the next sections, based on the existence of the transform H on the space L�;2
which is guaranteed in Theorem 3.6 for some � 2 R and a� = � = 0; Re(�) 5 0, we prove

that such a transform can be extended to L�;r for 1 < r < 1 such that H2 [L�;r ;L1��;s] for

a certain range of the value s. We also characterize the range of H on L�;r in terms of the

Erd�elyi{Kober type fractional integral operators I�0+;�;� and I�
�;�;� given in (3.3.1) and (3.3.2)

except for its isolated values � 2 EH . The results will be di�erent in the cases Re(�) = 0 and

Re(�) 6= 0. In this section we consider the former case.

Theorem 4.1. Let a� = � = 0;Re(�) = 0 and � < 1� � < �: Let 1 < r <1.

(a) The transformH de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L1��;r].

(b) If 1 < r 5 2; the transform H is one-to-one on L�;r and there holds the equality

(3:1:5); namely; �
MHf

�
(s) = H(s)

�
Mf

�
(1� s) (Re(s) = 1� �): (4.1.1)

(c) If � =2 EH ; then H is a one-to-one transform on L�;r onto L1��;r ; i.e.

H(L�;r) = L1��;r : (4.1.2)

(d) If f 2 L�;r and g 2 L�;r0 and r0 = r=(r� 1); then the relation (3:6:1) holds:Z
1

0
f(x)

�
Hg

�
(x)dx =

Z
1

0

�
Hf

�
(x)g(x)dx: (4.1.3)
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(e) If f 2 L�;r; � 2 C and h > 0; then Hf is given by

�
Hf

�
(x)

= hx1�(�+1)=h
d

dx
x(�+1)=h

Z
1

0
Hm;n+1

p+1;q+1

"
xt

�����
(��; h); (ai; �i)1;p

(bj; �j)1;q; (��� 1; h)

#
f(t)dt (4.1.4)

for Re(�) > (1� �)h� 1; while

�
Hf

�
(x)

= �hx1�(�+1)=h
d

dx
x(�+1)=h

Z
1

0
Hm+1;n

p+1;q+1

"
xt

�����
(ai; �i)1;p; (��; h)

(��� 1; h); (bj; �j)1;q

#
f(t)dt (4.1.5)

for Re(�) < (1� �)h� 1.

Proof. Since � < 1� � < � and �(1� �) + Re(�) 5 0; then according to Theorem 3.6

the transformH is de�ned on L�;2. We denote by H0(s) the function

H0(s) = ��sH(s); (4.1.6)

where � is de�ned in (1.1.9). It follows from (1.2.9) that

H0(� + it) �
qY

j=1

�
Re(bj)�1=2
j

pY
i=1

�
1=2�Re(ai)
i (2�)c

�

e�c
�

e��Im(�)sign(t)=2 (4.1.7)

(jtj ! 1)

is uniformly in � in any bounded interval of R. Therefore H0(s) is analytic in the strip

� < Re(s) < �, and if � < �1 5 �2 < �, then H0(s) is bounded in the strip �1 5 Re(s) 5 �2.

Since a� = � = 0, then in accordance with (1.1.13) a�1 = �a�2 = �=2 = 0. Then from (4.1.6)

and (3.4.14) we have

H
0

0(� + it) = H0(� + it)

"
� log � +

H
0(� + it)

H(� + it)

#

= H0(� + it)

�
Im(�)

t
+O

�
1

t2

��
= O

�
1

t

�
(jtj ! 1) (4.1.8)

for � < � < �. Thus H0(s) belongs to the class A (see De�nition 3.2) with �(H0) = �

and �(H0) = �. Therefore by virtue of Theorem 3.1, there is a transform T 2 [L1��;r] for

1 < r < 1 and � < 1� � < �. When 1 < r 5 2, then T is a one-to-one transform on L1��;r
and the relation

�
MTf

�
(s) = H0(s)

�
Mf

�
(s) (Re(s) = 1� �) (4.1.9)

holds for f 2 L1��;r. Let

H0 = W�TR; (4.1.10)
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where W� and R are given in (3.3.12) and (3.3.13). According to Lemma 3.1(ii) and Lemma

3.1(iii), R 2 [L�;r ;L1��;r ], W� 2 [L1��;r ] and hence H0 2 [L�;r;L1��;r] for � < 1� � < � and

1 < r < 1, too. When � < 1 � � < �, 1 < r 5 2 and f 2 L�;r, it follows from (4.1.10),

(3.3.15), (4.1.9), (3.3.16) and (4.1.6) that

�
MH0f

�
(s) =

�
MW�TRf

�
(s) = �s

�
MTRf

�
(s)

= �sH0(s)
�
MRf

�
(s) = �sH0(s)

�
Mf

�
(1� s)

=H(s)
�
Mf

�
(1� s) (4.1.11)

for Re(s) = 1 � �. In particular, for f 2 L�;2 Theorem 3.6(i), (3.1.5) and (4.1.11) imply the

equality

�
MH0f

�
(s) =

�
MHf

�
(s) (Re(s) = 1� �): (4.1.12)

Thus H0f = Hf for f 2 L�;2 and therefore, if � < 1� � < �, H =H0 on L�;2 by Theorem

3.6(iv). Since L�;2
T
L�;r is dense in L�;r (see Rooney [2, Lemma 2.2]),H can be extended to

L�;r and, if we denote it there by H again, H 2 [L�;r;L1��;r ]. This completes the proof of

assertion (a) of the theorem.

The property (b) is clear from the fact that the operator T above and the operators W�

and R are one-to-one and (4.1.1) follows from (4.1.11).

Let us prove (c). Since R(L�;r) = L1��;r and W�(L1��;r) = L1��;r , then the onto map

property H(L�;r) = L1��;r holds if and only if T (L1��;r) = L1��;r. To prove this, it should

be noted that the abscissas of the zeros of H(s) divide the interval (�; �) into disjoint open

intervals, where and thereafter H0(s) in (4.1.6) is renamed H(s). Let (�1; �1) be one such

interval. Then the function 1=H(s) is analytic in �1 < Re(s) < �1. In view of (4.1.7) we have

1

H(� + it)
�

qY
j=1

�
1=2�Re(bj)
j

pY
i=1

�
Re(ai)�1=2
i (2�)�c

�

ec
�

e�Im(�)sign(t)=2 (jtj ! 1):

So if we take �1 < �1 5 �2 < �1, then 1=H(s) is bounded in the strip �1 5 Re(s) 5 �2. The

equality

�
1

H

�
0

(� + it) = �
H
0(� + it)

H
2(� + it)

implies by (4.1.7) and (4.1.8) that

�
1

H

�
0

(� + it) = O

�
1

t

�
(jtj ! 1)

for �1 < � < �2: Thus we have that 1=H 2 A with �(1=H) = �1 and �(1=H) = �1: Then for

�1 < � < �1 and 1 < r < 1 it follows from Theorem 3.1 that the transform T is one-to-one

on L�;r and T (L�;r) = L�;r . But if � =2 EH , then the value 1 � � does not coincide with the

abscissa of any zero of H(s), and hence 1�� lies in such (�1; �1): ThereforeH is a one-to-one

transform on L�;r and H(L�;r) = L1��;r. The assertion (c) of the theorem is thus proved.



96 Chapter 4. H-Transform on the Space L�;r

Now we prove (4.1.3). If � < 1� � < �, then by using the H�older inequality�����
Z b

a
f(x)g(x)dx

����� 5
 Z b

a
jf(x)jpdx

!1=p Z b

a
jg(x)jp

0

dx

!1=p0

(4.1.13)

�
1

p
+

1

p0
= 1; �1 5 a < b 5 1

�

we have����
Z
1

0
f(x)

�
Hg

�
(x)dx

���� =

����
Z
1

0
[x��1=rf(x)][x1=r��

�
Hg

�
(x)]dx

����
5 kfk�;r kHgk1��;r0 5 Kkfk�;rkgk�;r0

�
1

r
+

1

r0
= 1

�
;

where K is a bound for H 2 [L�;r0 ;L1��;r0 ]: Hence the left-hand side of (4.1.3) represents a

bounded bilinear functional on L�;r � L�;r0 . Similarly it is proved that the right-hand side of

(4.1.3) represents such a functional on L�;r � L�;r0 . By virtue of Theorem 3.6(ii), if f 2 L�;2
and g 2 L�;2, (3.6.1) is also true. By Rooney [2, Lemma 2.2] L�;r

T
L�;2 is dense in L�;r and

hence (3.6.1) is true for f 2 L�;r and g 2 L�;r0 with 1 < r < 1 and � < 1 � � < �. This

completes the proof of the assertion (d) of the theorem.

Finally we prove (e). If Re(�) > (1� �)h� 1, then the function

gx(t) =

8<
:

t(�+1)=h�1 if 0 < t < x;

0 if t > x
(4.1.14)

belongs to L�;s for 1 5 s <1: When s = 2, we may apply Theorem 3.6(iii) for gx 2 L�;2 and

we have�
Hgx

�
(y) = hy1�(�+1)=h

d

dy
y(�+1)=h

Z x

0
Hm;n+1

p+1;q+1

"
yt

�����
(��; h); (ai; �i)1;p

(bj; �j)1;q; (��� 1; h)

#

� t(�+1)=h�1dt

= hy1�(�+1)=h
d

dy

Z xy

0
Hm;n+1

p+1;q+1

"
t

�����
(��; h); (ai; �i)1;p

(bj ; �j)1;q; (��� 1; h)

#
t(�+1)=h�1dt

= hx(�+1)=hHm;n+1
p+1;q+1

"
xy

�����
(��; h); (ai; �i)1;p

(bj; �j)1;q; (��� 1; h)

#

almost everywhere. For f 2 L�;r with � < 1 � � < � and 1 < r < 1 and for the above

gx 2 L�;r0 , we have from the previous result (d) thatZ x

0
t(�+1)=h�1

�
Hf

�
(t)dt =

Z
1

0

�
Hf

�
(t)gx(t)dt =

Z
1

0
f(t)

�
Hgx

�
(t)dt

= hx(�+1)=h
Z
1

0
Hm;n+1

p+1;q+1

"
xt

�����
(��; h); (ai; �i)1;p

(bj; �j)1;q; (��� 1; h)

#
f(t)dt:

From here, after di�erentiation with respect to x; we arrive at (4.1.4). In the case Re(�) <

(1� �)h� 1 the relation (4.1.5) is proved similarly if we use the function

hx(t) =

8<
:

0 if 0 < t < x;

t(�+1)=h�1 if t > x
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instead of the function gx(t). Thus the theorem is proved.

4.2. L�;r-Theory of the H-Transform When a� = � = 0 and Re(�) < 0

Now we consider the H-transform in the case a� = � = 0 and Re(�) < 0.

Theorem 4.2. Let a� = � = 0;Re(�) < 0 and � < 1� � < �; and let either m > 0 or

n > 0. Let 1 < r <1.

(a) The transformH de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L1��;s]

for all s = r such that 1=s > 1=r+ Re(�).

(b) If 1 < r 5 2; then the transformH is one-to-one on L�;r and there holds the equality

(4:1:1):

(c) Let k > 0. If � =2 EH ; then the transformH is one-to-one on L�;r and there hold

H (L�;r) = I��
�;k;��=k (L1��;r) (4.2.1)

for m > 0; and

H (L�;r) = I��0+;k;�=k�1 (L1��;r) (4.2.2)

for n > 0. If � 2 EH ; H (L�;r) is a subset of the right-hand sides of (4:2:1) and (4:2:2) in the

respective cases.

(d) If f 2 L�;r and g 2 L�;s with 1 < r <1; 1 < s <1 and 1 5 1=r + 1=s < 1�Re(�);

then the relation (4:1:3) holds.

(e) If f 2 L�;r ; � 2 C and h > 0; then Hf is given in (4:1:4) for Re(�) > (1� �)h � 1;

while in (4:1:5) for Re(�) < (1� �)h � 1. FurthermoreHf is given in (3:1:1); namely,

�
Hf

�
(x) =

Z
1

0
Hm;n

p;q

"
xt

����� (ai; �i)1;p(bj; �j)1;q

#
f(t)dt: (4.2.3)

Proof. Since � < 1 � � < �, a� = 0 and �(1 � �) + Re(�) = Re(�) < 0, then from

Theorem 3.6 the transformH is de�ned on L�;2.

If m > 0 or n > 0, then � or � is �nite in view of (3.4.1) and (3.4.2). We set

H1(s) =
�

�
s� �

k
� �

�
�

�
s � �

k

� H(s) = Hm+1;n
p+1;q+1

2664 (ai; �i)1;p;

�
�
�

k
;
1

k

�
�
���

�

k
;
1

k

�
; (bj; �j)1;q

�������� s
3775 (4.2.4)

for m > 0, and

H2(s) =
�

�
� � s

k
� �

�
�

�
� � s

k

� H(s) = Hm;n+1
p+1;q+1

2664
�
1 + � �

�

k
;
1

k

�
; (ai; �i)1;p

(bj ; �j)1;q;

�
1�

�

k
;
1

k

�
�������� s
3775 (4.2.5)
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for n > 0. We denote �1; �1; ea�1; �1; �1 and �1 for H1, and �2; �2; ea�2; �2; �2 and �2 for H2

instead of that for H. Then we �nd that

�1 = max[�; �+ kRe(�)] = �; �1 = �;

ea�1 = a� = 0; �1 = � = 0; �1 = �; �1 = 0;

�2 = �; �2 = min[�; � � kRe(�)] = �;

ea�2 = a� = 0; �2 = � = 0; �2 = �; �2 = 0;

(4.2.6)

and the exceptional sets EH1
and EH2

of H1 and H2 in De�nition 3.4 coincide with EH for H.

Since �1 = �2 = 0, Theorem 4.1 guarantees the existence of two transforms fH1 and fH2 in

[L�;r;L1��;r] for m > 0 and for n > 0, respectively. Further, if f 2 L�;r with 1 < r 5 2, then

by (4.1.1) �
MfH if

�
(s) = Hi(s)

�
Mf

�
(1� s) (Re(s) = 1� �; i = 1; 2): (4.2.7)

We set

H1 = I��
�;k;��=k

fH1 (4.2.8)

for m > 0, and

H2 = I��0+;k;�=k�1
fH2 (4.2.9)

for n > 0:

Let (i) m > 0 or (ii) n > 0. For 1 5 r 5 1, s = r, 1=s > 1=r + Re(�) Theorem 3.2(b)

and Theorem 3.2(a) imply that I��
�;k;��=k 2 [L1��;r;L1��;s] for � < 1 � � and I

��
0+;k;�=k�1 2

[L1��;r;L1��;s] for � > 1 � �, respectively. Therefore, if � < 1 � � < � and 1 < r < 1; we

have fHi 2 [L�;r ;L1��;s] (i = 1; 2) for all s = r with 1=s > 1=r+ Re(�). Since from Theorem

3.2(a),(b) I��
�;k;��=k and I��0+;k;�=k�1 are one-to-one on L1��;r and then by Theorem 4.1(b),(c),

if � =2 EH ; or if 1 < r 5 2,Hi (i = 1; 2) are one-to-one on L�;r . For f 2 L�;r with � < 1�� < �

and 1 < r 5 2, (4.2.8), (3.3.7), (4.2.7), (4.2.4) and (4.2.9), (3.3.6), (4.2.7), (4.2.5) imply

�
MH1f

�
(s) =

�
MI

��
�;k;��=k

fH1f
�
(s) =

�

�
s� �

k

�
�

�
s� �

k
� �

��MfH1f
�
(s)

=
�

�
s � �

k

�
�

�
s� �

k
� �

�H1(s)
�
Mf

�
(1� s)

=H(s)
�
Mf

�
(1� s) (Re(s) = 1� �) (4.2.10)

for the case (i) and

�
MH2f

�
(s) =

�
MI��0+;k;�=k�1

fH2f
�
(s) =

�

�
� � s

k

�
�

�
� � s

k
� �

��MfH2f
�
(s)
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=
�

�
� � s

k

�
�

�
� � s

k
� �

�H2(s)
�
Mf

�
(1� s)

= H(s)
�
Mf

�
(1� s) (Re(s) = 1� �) (4.2.11)

for the case (ii). In particular, for f 2 L�;2 with � < 1� � < � there hold�
MHif

�
(s) =

�
MHf

�
(s) (Re(s) = 1� �; i = 1; 2)

for the cases (i) and (ii), respectively. Hence, H = H i on L�;2 (i = 1; 2). Thus H can be

extended to L�;r by de�ning it as H1 for (i) and by H2 for (ii), and H 2 [L�;r;L1��;s] for all

s = r such that 1=s > 1=r +Re(�). This completes the proof of (a).

The statement (b) follows from the fact that fHi (i = 1; 2) are one-to-one by Theorem

4.1(b) and that I��
�;k;��=k and I��0+;k;�=k�1 are one-to-one, too.

Now we proceed to prove (c). The one-to-one property can be obtained similar to (b).

If the conditions of our theorem hold, then due to Theorem 4.1 fH i(L�;r) � L1��;r, and if

� =2 EH , then fH i(L�;r) = L1��;r (i = 1; 2): Therefore, it follows from (4.2.6), (4.2.10) and

(4.2.9), (4.2.11) the following:

For (i), H(L�;r) � I��
�;k;��=k(L1��;r) and, if further � =2 EH , H(L�;r) = I��

�;k;��=k

(L1��;r); i.e. (4.2.1) holds.

For (ii), H(L�;r) � I��0+;k;�=k�1(L1��;r) and, if further � =2 EH , H(L�;r) = I��0+;k;�=k�1

(L1��;r); i.e. (4.2.2) holds.

These prove (c).

To establish (4.1.3) for f 2 L�;r and g 2 L�;s with 1 < r < 1; 1 < s < 1 and 1 5 1=r +

1=s < 1 � Re(�), we show as in the proof of Theorem 4.1(d) that both sides of (4.1.3) are

bounded bilinear functionals on L�;r � L�;s. From the assumption we have r0 = s (1=r +

1=r0 = 1) and 1=r0 > 1=s + Re(�), and hence H 2 [L�;s;L1��;r0 ] by assertion (a). Applying

H�older's inequality (4.1.13), we have����Z 1

0
f(x)

�
Hg

�
(x)dx

���� =

����Z 1

0
x��1=rf(x)x1=r��

�
Hg

�
(x)dx

����
5 kfk�;r kHgk1��;r0 5 Kkfk�;rkgk�;s;

where K is a bound for H 2 [L�;s;L1��;r0 ]. Hence the left-hand side of (4.1.3) represents a

bounded bilinear functional on L�;r�L�;s. Similarly it can be proved that the right-hand side

of (4.1.3) represents such a functional on L�;r � L�;s. Thus the assertion (d) is obtained.

Lastly we prove (e). Let f 2 L�;r with 1 < r < 1. Then the representations (4.1.4) and

(4.1.5), when Re(�) > (1� �)h� 1 and Re(�) < (1� �)h� 1, respectively, are deduced from

Theorem 3.6(iii) in the same way as was done in the proof of Theorem 4.1. Now denote e�
for the function Hm;n+1

p+1;q+1(t) in (4.1.4) instead of � for the H-function (1.1.1). By (1.1.10)e� = ��1, then the assumption Re(�) < 0 implies Re(e�) < �1. Since � < 1�� < �, it follows

from Theorem 1.2 that if Re(�) > (1 � �)h � 1, then Hm;n+1
p+1;q+1(t) in (4.1.4) is continuously

di�erentiable with respect to t on R+. Therefore we can di�erentiate under the integral sign

in (4.1.4). Applying the relations (2.2.7) and (2.1.1), we have�
Hf

�
(x) = hx1�(�+1)=h d

dx
x(�+1)=h

Z
1

0
Hm;n+1

p+1;q+1

"
xt

����� (��; h); (ai; �i)1;p(bj; �j)1;q; (��� 1; h)

#
f(t)dt
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= hx1�(�+1)=h
Z
1

0
t1�(�+1)=h

�
d

d(xt)

(
(xt)(�+1)=hHm;n+1

p+1;q+1

"
xt

����� (��; h); (ai; �i)1;p(bj ; �j)1;q; (��� 1; h)

#)
f(t)dt

=
Z
1

0
Hm;n+1

p+1;q+1

"
xt

����� (��� 1; h); (ai; �i)1;p

(bj ; �j)1;q; (��� 1; h)

#
f(t)dt

=

Z
1

0
Hm;n

p;q

"
xt

����� (ai; �i)1;p(bj; �j)1;q

#
f(t)dt (4.2.12)

and we obtain (4.2.3), provided that the last integral in (4.2.12) exists. The existence of this

integral is proved on the basis of (3.4.13) similarly to those in Theorem 3.7. Indeed, we choose

1 and 2 so that � < 1 < 1� � < 2 < �. According to (3.4.13) there are constants A1 and

A2 such that for almost all t > 0, the inequalities���Hm;n
p;q (t)

��� 5 Ait
�i (i = 1; 2)

hold. Therefore, using the H�older inequality (4.1.13), we haveZ
1

0

���Hm;n+1
p+1;q+1(xt)f(t)

���dt
5

�Z
1

0

���Hm;n+1
p+1;q+1(xt)t

1=r��
���r0 dt�1=r

kfk�;r

5

24A1x
�1

 Z 1=x

0
tr

0(1���1)�1dt

!1=r0

+A2x
�2

 Z
1

1=x
tr

0(1���2)�1dt

!1=r0
35 kfk�;r

5 Cx��1 <1;

where

C = (A1[r
0(1� � � 1)]

�1=r0 + A2[r
0(2 + � � 1)]�1=r0)kfk�;r:

The proof for the case Re(�) < (1� �)h� 1 is similar. Thus the theorem is proved.

4.3. L�;r-Theory of the H-Transform When a� = 0;� > 0

In this and the next sections we prove that, if a� = 0 and � 6= 0, the transformH de�ned on

L�;2 can be extended to L�;r such as H 2 [L�;r;L1��;s] for some range of values s. Then we

characterize the rangeH on L�;r except for its isolated values � 2 EH in terms of the modi�ed

Hankel transform H k;� and the elementary transformM� given in (3.3.4) and (3.3.11). The re-

sult will be di�erent in the cases � > 0 and � < 0. In this section we consider the case � > 0.

Theorem 4.3. Let a� = 0; m > 0;� > 0; � < 1 � � < �; 1 < r < 1 and �(1 � �) +

Re(�) 5 1=2� (r); where (r) is de�ned in (3:3:9):
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(a) The transformH de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L1��;s]

for all s with r 5 s <1 such that s0 = [1=2��(1� �)� Re(�)]�1 with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; then the transformH is one-to-one on L�;r and there holds the equality

(4:1:1):

(c) If � =2 EH ; then the transform H is one-to-one on L�;r . If we set � = ��� � � � 1;

then Re(�) > �1 and there holds

H(L�;r) =
�
M�=�+1=2H�;�

��
L��1=2�Re(�)=�;r

�
: (4.3.1)

When � 2 EH ; H(L�;r) is a subset of the right-hand side of (4:3:1):

(d) If f 2 L�;r and g 2 L�;s 1 < s < 1; 1=r + 1=s = 1 and �(1 � �) + Re(�) 5 1=2 �
max[(r); (s)]; then the relation (4:1:3) holds.

(e) If f 2 L�;r; � 2 C ; h > 0 and�(1��)+Re(�) 5 1=2�(r); thenHf is given in (4:1:4)

for Re(�) > (1� �)h� 1; while in (4:1:5) for Re(�) < (1� �)h� 1. If �(1� �) + Re(�) < 0;

Hf is given in (4.2.3).

Proof. Since (r) = 1=2, we have �(1� �) +Re(�) 5 0 by assumption, and hence from

Theorem 3.6 the transform H is de�ned on L�;2. The conditions � > 0, � < 1 � � and the

relation �(1� �) + Re(�) 5 0 imply � = 1 + Re(�)=� and � < �Re(�)=�.

Since a� = 0, then by (1.1.11){(1.1.13)

a�1 = �a�2 =
�

2
> 0: (4.3.2)

We denote by H3(s) the function

H3(s) = �s�1(a�1)
(1�s)�+� �[�� + a�1(s� 1� �)]

�[a�1(1� � � s)]
H(1� s): (4.3.3)

As already known, the function H(1� s) is analytic in the strip 1 � � < Re(s) < 1 � � and

the function �[�� + a�1(s� 1� �)] is analytic in the half-plane

Re(s) > �+ 1+
Re(�)

a�1
= �+ 1+

2Re(�)

�
:

Since � < �Re(�)=�, 1� � > �+ 1+ 2Re(�)=�, and, if we take

�1 = max

�
1� �; �+ 1 +

2Re(�)

�

�
; �1 = 1� �;

then �1 < �1 and H3(s) is analytic in the strip �1 < Re(s) < �1.

Setting s = � + it and a complex constant k = c+ id, in accordance with (1.2.2) we have

the asymptotic behavior

�(s + k) = �[c+ � + i(d+ t)] �
p
2� e�c�� jtjc+��1=2e��jtj=2��dsign(t)=2 (4.3.4)

(jtj ! 1):

Then by taking a� = 0, � = 2a�1 and (1.2.9) into account from (4.3.4) we have

H3(� + it) � (2�)c
�

e�c�
qY

j=1

�
Re(bj)�1=2
j

pY
i=1

�
1=2�Re(ai)
i e�[Im(�+�)]sign(t)=2

= � 6= 0 (4.3.5)
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as jtj ! 1. Therefore, for �1 < �1 5 �2 < �1, H3(s) is bounded in �1 5 Re(s) 5 �2.

If �1 < � < �1, then

H
0
3(� + it) =H3(� + it)

(
log � �� loga�1 + a�1 [a

�
1(s� � � 1)� �]

+a�1 [a
�
1(1� �� s)]� H

0(1� s)

H(1� s)

)
: (4.3.6)

Using (3.4.14) with a� = 0, (4.3.2) and (4.3.5), and applying the estimate (3.4.17) for the psi

function  (z), we have from (4.3.6), as jtj ! 1,

H
0
3(� + it)

= H3(� + it)

8>><
>>:log � � 2a�1 loga

�
1 + a�1

2
664log(ia�1t) +

a�1(� � � � 1)� �� 1

2
ia�1t

3
775

+a�1

2
664log(�ia�1t)�

a�1(1� �� �)� 1

2
ia�1t

3
775

�
�
log � + a�1 log(�it) + a�1 log(it)�

�+ �(1� �)

it

�
+O

�
1

t2

�)

= O

�
1

t2

�
: (4.3.7)

So H3 2 A with �(H3) = �1 and �(H3) = �1. Hence due to Theorem 3.1 there is a transform

T3 corresponding to H3 with 1 < r < 1 and �1 < � < �1, and if 1 < r 5 2, then T3 is

one-to-one on L�;r into itself and

(MT3f)(s) = H3(s)(Mf)(s) (Re(s) = �): (4.3.8)

In particular, if � and r satisfy the hypothesis of this theorem, it is directly veri�ed that

�1 < � < �1 and hence the relation (4.3.8) is true. Indeed, from � < �Re(�)=� we �nd

�+ 1 +
2Re(�)

�
< �Re(�)

�
+ 1 +

2Re(�)

�
5 �

by virtue of �(1 � �) + Re(�) 5 0. Together with this and � < 1 � � < �, the relation

�1 < � < �1 follows.

Let � = ���� �� 1 and let H3 be the operator

H3 = W�M�=�+1=2H�;�M�=�+1=2T3 (4.3.9)

composed by the operators W� in (3.3.12) and M� in (3.3.11), the modi�ed Hankel trans-

form (3.3.4) and the transform T3 above, where � < �Re(�)=� so that Re(�) > �1. For

1 < r < 1 and �1 < � < �1, Lemma 3.1(i) implies that M�=�+1=2T3 maps L�;r boundedly

into L��Re(�)=��1=2;r. Since � < 1� � and �(1� �) + Re(�) 5 1=2� (r), we have

(r) 5 �

�
� � Re(�)

�
� 1

�
+

1

2
< ��� �Re(�) +

1

2
= Re(�) +

3

2
:
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Hence Theorem 3.2(d), and Lemma 3.1(i),(ii) again yieldH3 2 [L�;r;L1��;s] for all s = r such

that

s0 =

�
�

�
� � Re(�)

�
� 1

�
+

1

2

��1
=

�
1

2
��(1� �)� Re(�)

��1
: (4.3.10)

In particular, H3 2 [L�;r ;L1��;r ], since r can be taken instead of s due to the fact that

(r) = 1=r0.

If f 2 L�;r with 1 < r 5 2, then applying (3.3.15), (3.3.14), (3.3.10), (3.3.14), (4.3.8) and

(4.3.3) and using the relation � = ��� � � � 1, we have for Re(s) = 1� ��
MH3f

�
(s) =

�
MW�M�=�+1=2H�;�M�=�+1=2T3f

�
(s)

= �s
�
MM�=�+1=2H�;�M�=�+1=2T3f

�
(s)

= �s
�
MH�;�M�=�+1=2T3f

��
s+

�

�
+

1

2

�

= �s
�
2

�

��s+� �

�
� +�s + � + 1

2

�

�

�
� ��s � � + 1

2

� �MM�=�+1=2T3f
��

1� s� �

�
� 1

2

�

= �s
�
2

�

��s+� �

�
�(s� �)

2

�

�

�
��� �(s+ �)

2

��MT3f� (1� s)

= �s (a�1)
����s �[a�1(s� �)]

�[�� � a�1(s+ �)]
H3(1� s)

�
Mf

�
(1� s)

=H(s)
�
Mf

�
(1� s) : (4.3.11)

In particular, if we take r = 2 and f 2 L�;2, (4.3.11) and Theorem 3.6(i) imply (MH3f) (s)

= (MHf) (s) for Re(s) = 1 � �. Therefore H3f = Hf and hence H3 = H on L�;2. Thus,

for all � and r satisfying the hypotheses of this theorem, H can be extended from L�;2 to

L�;r if we de�ne it by H3 given in (4.3.9) as an operator on [L�;r;L1��;s]. This completes the

proof of the statement (a) of the theorem.

The assertion (b) is already obtained.

Now we prove (c). By Theorem 3.2(d) and the properties (i) and (ii) in Lemma 3.1, we

�nd that H�;�, M� and W� are one-to-one in the corresponding spaces. Therefore, H3 is a

one-to-one transform if and only if T3 is one-to-one. Further, we have that

H(L�;r) �
�
W�M�=�+1=2H�;�M�=�+1=2

�
(L�;r); (4.3.12)

and that

H(L�;r) =
�
W�M�=�+1=2H�;�M�=�+1=2

�
(L�;r); (4.3.13)

if and only if T3(L�;r) = L�;r. The relation (4.3.13) can be written as

H(L�;r) =
�
M�=�+1=2H�;�

��
L��1=2�Re(�)=�;r

�
(4.3.14)
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by virtue of Theorem 3.2, Lemmas 3.1, 3.2, and the fact such a range does not depend on a

non-zero constant multiplier.

The abscissas of zero of H3 divide the interval (�1; �1) into disjoint open subintervals. If

we take (�0; �0) as such a subinterval, then 1=H3 2 A with �(1=H3) = �0; �(1=H3) = �0: For

1 < r <1 and �0 < � < �0 by Theorem 3.1 we �nd thatH3 is one-to-one transform on L�;r
and H3(L�;r) = L�;r. If r and � satisfy the hypotheses of this theorem and if � =2 EH , then
� does not coincide with any abscissa of zeros of H3(s). It follows from De�nition 3.4 that

1� � is not on the abscissa of any zero of H(s) and therefore � is not on the abscissa of any

zero of H3(1� s). We also have that � is not a zero of 1=�[a�1(1� s� �)]; because 1� � > �.

So if � =2 EH , then H3 is a one-to-one transform on L�;r, and H3(L�;r) = L�;r. Therefore the

statement (c) already follows from (4.3.12) and (4.3.13).

The proofs of assertions (d) and (e) of this theorem are carried out in the same way as

they were done in the proofs of the statements (d) and (e) in Theorem 4.2. This completes

the proof of the theorem.

4.4. L�;r-Theory of the H-Transform When a� = 0;� < 0

Now we consider the H-transform with a� = 0 and � < 0. Our arguments are based on

reducing the case above to the one investigated in Theorem 4.3 for � > 0.

Theorem 4.4. Let a� = 0;� < 0; n > 0; � < 1 � � < �; 1 < r < 1 and �(1 � �) +

Re(�) 5 1=2� (r):

(a) The transformH de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L1��;s]

for all s with r 5 s <1 such that s0 = [1=2��(1� �)� Re(�)]�1 with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; then the transformH is one-to-one on L�;r and there holds the equality

(4:1:1):

(c) If � =2 EH ; then the transform H is one-to-one on L�;r. If we set � = ��� � � � 1;

then Re(�) > �1 and the relation

H(L�;r) =
�
M�=�+1=2H�;�

��
L��1=2�Re(�)=�;r

�
(4.4.1)

holds. When � 2 EH ; H(L�;r) is a subset of the set on the right-hand side of (4:4:1):

(d) If f 2 L�;r and g 2 L�;s with 1 < s <1; 1=r+1=s = 1 and �(1��)+Re(�) 5 1=2�
max[(r); (s)]; then the relation (4:1:3) holds.

(e) If f 2 L�;r; � 2 C ; h > 0 and�(1��)+Re(�) 5 1=2�(r); thenHf is given in (4:1:4)

for Re(�) > (1� �)h� 1; while in (4:1:5) for Re(�) < (1� �)h� 1. If �(1� �) + Re(�) < 0;

then Hf is given in (4.2.3).

Proof. By similar arguments to that in the proof of Theorem 4.3 we �nd that the

transformH is de�ned on L�;2.

Let H0 = RHR, where R is given in (3.3.13). Then according to Lemma 3.1(iii), H0 2
[L1��;2;L�;2]. If f 2 L1��;2, then using (3.3.16) and (3.1.5), we have�

MH0f
�
(s) =

�
MRHRf

�
(s) =

�
MHRf

�
(1� s) = H(1� s)

�
MRf

�
(s)

= H(1� s)
�
Mf

�
(1� s) = H0(s)

�
Mf

�
(1� s) (Re(s) = �); (4.4.2)
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where

H0(s) = H(1� s) = Hn;m
q;p

"
(1� bj � �j ; �j)1;q

(1� ai � �i; �i)1;p

����� s
#
: (4.4.3)

We denote �0; �0; a�0; �0; �0 and �0 for H0 instead of that for H. Then taking (3.4.1),

(3.4.2) and (1.1.7){(1.1.10) into account, we have

�0 = 1� �; �0 = 1� �; a�0 = a� = 0; �0 = 1=�; �0 = ��; �0 = � +�: (4.4.4)

If we denote 1 � � by �0, then from (4.4.4) and the hypotheses of this theorem we have

�0 < 1� �0 < �0 and

�0(1� �0) + Re(�0) = �(1� �) + Re(�) 5
1

2
� (r):

Since a�0 = 0 and �0 > 0, we can apply Theorem 4.3(a) to obtain that H0 can be extended

from L�0 ;2 = L1��;2 to L�0;r = L1��;r as an element of [L�0;r;L1��0;s] = [L1��;r ;L�;s] for all s

with r 5 s <1 such that

s0 =

�
1

2
��0(1� �0)� Re(�0)

�
�1

=

�
1

2
��(1� �)�Re(�)

�
�1

:

Let us notice that

Hf = RH0Rf (f 2 L�;2): (4.4.5)

In accordance with Lemma 3.1(iii),

R(L�;r) = L1��;r = L�0;r: (4.4.6)

So we can extendH from L�;2 to L�;r if it is de�ned by (4.4.5), and we obtain the boundedness

of the operator H , which establishes the statement (a).

The one-to-one property for 1 < r 5 2 is already found, and the equality (4.1.1) is seen

by

�
MHf

�
(s) =

�
MRH0Rf

�
(s) =

�
MH0Rf

�
(1� s) = H0(1� s)

�
MRf

�
(s)

= H0(1� s)
�
Mf

�
(1� s) = H(s)

�
Mf

�
(1� s) (Re(s) = 1� �);

which proves (b).

That � =2 EH is equivalent to �0 =2 EH0
implies the one-to-one property by Theorem 4.3(c).

To prove (4.4.1) we note that from (4.4.5),

H(L�;r) =
�
RH0R

�
(L�;r) = L�0;s:

Then using (4.4.6) and (4.3.1) with � being replaced by �0 = � + �, � by �0 and � by

�0 = ��, while �0 = � = ��0�0 � �0 � 1 = ��� � � � 1; and applying the relations in
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(3.3.21) and (3.3.18), and again (4.4.6) we have

H(L�;r) =
�
RH0R

�
(L�;r) =

�
RH0

�
(L1��;r)

=
�
RM�0=�0+1=2H�0;�0

�
(L1=2���Re(�0)=�0;r)

=
�
RM

��=��1=2H��;�

�
(L3=2��+Re(�)=�;r)

=
�
M�=�+1=2RH��;�

�
(L3=2��+Re(�)=�;r)

=
�
M�=�+1=2H�;�R

�
(L3=2��+Re(�)=�;r)

=
�
M�=�+1=2H�;�R

�
(L��1=2�Re(�)=�;r):

Thus (4.4.1) is proved.

The assertions (d) and (e) can be established in the same way as in the statements (d)

and (e) of Theorem 4.2, which completes the proof of the theorem.

To conclude this section we give useful statements followed from Theorems 4.1{4.4.

Corollary 4.4.1. Let 1 < r <1; � < �; a� = 0 and let one of the following conditions

hold:

(a) � > 0; � <
1

�

�
1

2
�Re(�)� (r)

�
;

(b) � < 0; � >
1

�

�
1

2
�Re(�)� (r)

�
;

(c) � = 0; Re(�) 5 0;

where (r) is given in (3:3:9). Then the transformH can be de�ned on L�;r with � < 1�� < �.

Proof. Let a� = 0; � 6= 0: Then by Theorems 4.3 and 4.4 the condition

�(1� �) + Re(�) 5
1

2
� (r) (4.4.7)

must be satis�ed together with � < 1� � < � in order that the transformH can be de�ned

on L�;r . If � > 0, the assumption of (a) and � < � yield the existence of a number � such

that

� < 1� � 5
1

�

�
1

2
�Re(�)� (r)

�
; 1� � < �;

which show the requirement. Similarly, for the case (b) we can deduce the existence of � of

the form

1

�

�
1

2
�Re(�)� (r)

�
5 1� � < �; � < 1� �:

When a� = � = 0 and Re(�) 5 0, by Theorems 4.1 and 4.2 the transformH can be de�ned

on L�;r. This completes the proof.



4.5. L�;r-Theory of the H-Transform When a� > 0 107

Remark 4.1. For r = 2; (r) = 1=2 and hence the cases (e), (f) and (g) of Corollary

3.6.1 follow from Corollary 4.4.1.

4.5. L�;r-Theory of the H-Transform When a� > 0

When a� > 0 and � < 1 � � < �, Theorems 3.6 and 3.7 guarantee the existence of the

H-transform on L�;2 which is given in (3.1.1). Now let us prove that it can be extended to

L�;r for any 1 5 r 5 1. To do so we �rst state a preliminary result due to Rooney [6, Lemma

5.1].

Lemma 4.1. (a) Suppose f 2 L�;r and k 2 L�;q, where 1 5 r 5 1; 1 5 q 5 1 and

1=r+ 1=q = 1. Then the transform

�
Kf

�
(x) =

Z
1

0
k

�
x

t

�
f(t)

dt

t
(4.5.1)

exists for almost all x 2 R+ and K 2 [L�;r;L�;s]; where 1=s = 1=r + 1=q � 1. If; in addition;

r 5 2; q 5 2 and s 5 2; then the Mellin convolution relation�
MKf

�
(� + it) =

�
Mk

�
(� + it)

�
Mf

�
(� + it) (4.5.2)

holds.

(b) Suppose f 2 L�;r and k 2 L1��;q; where 1 5 r 5 1; 1 5 q 5 1 and 1=r + 1=q = 1.

Then the transform �
T f

�
(x) =

Z
1

0
k(xt)f(t)dt (4.5.3)

exists for almost all x 2 R+; and T 2 [L�;r;L1��;s]; where 1=s = 1=r+1=q�1. If, in addition,

r 5 2; q 5 2 and s 5 2; then the modi�ed Mellin convolution relation
�
MT f

�
(1� � + it) =

�
Mk

�
(1� � + it)

�
Mf

�
(� � it) (4.5.4)

holds.

The next theorem presents the L�;r-theory of the H-transform with a� > 0 in L�;r-spaces

for any � 2 C and 1 5 r 5 1:

Theorem 4.5. Let a� > 0; � < 1� � < � and 1 5 r 5 s 5 1:

(a) The transformH de�ned on L�;2 can be extended toL�;r as an element of [L�;r ;L1��;s].

When 1 5 r 5 2; H is a one-to-one transform from L�;r onto L1��;s.

(b) If f 2 L�;r and g 2 L�;s0 with 1=s+ 1=s0 = 1; then the relation (4:1:3) holds.

Proof. It follows from Theorem 3.6 that the H-transform is de�ned on L�;2, and by

Theorem 3.7 it is given in (3.1.1).

De�ne a number Q by the equality 1=Q = 1=s � 1=r + 1. Then 1 5 Q 5 1, and 1=r +

1=Q = 1: We choose 1 and 2 so that � < 1 < 1 � � < 2 < �. By the relation (3.4.13) in

Theorem 3.4 there are constants A1 and A2 such that���Hm;n
p;q (t)

��� 5 Ait
�i (i = 1; 2)



108 Chapter 4. H-Transform on the Space L�;r

hold for t 2 R+. Using this, we have

Z
1

0

���x1��Hm;n
p;q (x)

���Q dx

x
=

Z 1

0

���x1��Hm;n
p;q (x)

���Q dx

x
+

Z
1

1

���x1��Hm;n
p;q (x)

���Q dx

x

5
Z 1

0
x(1���1)Q�1dx+

Z
1

1
x(1���2)Q�1dx

=
1

(1� � � 1)Q
+

1

(2 + � � 1)Q
<1:

Therefore Hm;n
p;q 2 L1��;Q. Now we set

�
H1f

�
(x) =

Z
1

0
Hm;n

p;q (xt)f(t)dt: (4.5.5)

By Lemma 4.1(b),H1 2 [L�;r;L1��;s]. But H1 =H on L�;2. So we can extend H from L�;2
to L�;r if we de�ne it by (4.5.5), and H 2 [L�;r;L1��;s].

In particular, if s = r, H 2 [L�;r;L1��;r]. Now let 1 5 r 5 2. From (4.5.4), (3.4.12) and

Titchmarsh [3, Theorem 29], we obtain the relation for f 2 L�;r
�
MHf

�
(s) = Hm;n

p;q (s)
�
Mf

�
(1� s) (Re(s) = 1� �); (4.5.6)

where Hm;n
p;q (s) is given in (1.1.2). Since the poles of the gamma function are isolated (see

Erd�elyi, Magunus, Oberhettiger and Tricomi [1, Section 1.1]), the zeros of the function

H
m;n
p;q (s) are isolated, too. Therefore, if Hf = 0 and Im(s) = t, then (Mf)(� � it) = 0

almost everywhere. Hence for 1 5 r 5 2, H is a one-to-one transform from L�;r onto L1��;s.

The assertion (a) of the theorem is proved.

To prove (4.1.3) for f 2 L�;r and g 2 L�;s0 with 1=s + 1=s0 = 1 we show that both sides

of (4.1.3) are bounded bilinear functionals on L�;r � L�;s0 . By the assumption r 5 s we have

s0 5 r0 and H 2 [L�;s0 ;L1��;r0 ]. Applying the H�older inequality (4.1.13), we have

����
Z
1

0
f(x)

�
Hg

�
(x)dx

���� =

����
Z
1

0
x��1=rf(x)x1���1=r0

�
Hg

�
(x)dx

����
5 kfk�;r kHgk1��;r0 5 Kkfk�;rkgk�;s0;

where K is a bound for H 2 [L�;s0 ;L1��;r0 ]. Hence the left-hand side of (4.1.3) is a bounded

bilinear functional on L�;r � L�;s0 . Similarly it is proved that the right-hand side of (4.1.3) is

a bounded bilinear functional on L�;r � L�;s0 . This completes the proof of Theorem 4.5.

4.6. Boundedness and Range of the H-Transform When a�1 > 0 and a�2 > 0

In this and the next sections we consider the boundedness and range of the H-transform in

the cases when a� > 0 and a�1 = 0 or a�2 = 0. We give conditions for the transform H to be

one-to-one on L�;r and to characterize its range on L�;r except for its isolated values � 2 EH ,

in terms of the Erd�elyi{Kober type fractional integration operators I�0+;�;�, I
�
�;�;� , the mod-

i�ed Laplace transform Lk;� and the operator W� given in (3.3.1){(3.3.3) and (3.3.12). The

results will be di�erent depending on combinations of the signs of a�1 and a�2. In this section
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we consider the case when a�1 > 0 and a�2 > 0 and hence a� > 0 by (1.1.13).

Theorem 4.6. Let a�1 > 0; a�2 > 0; m > 0; n > 0; � < 1�� < � and ! = �+a�1��a
�
2�+1

and let 1 < r <1:

(a) If � =2 EH ; or if 1 5 r 5 2; then the transformH is one-to-one on L�;r .

(b) If Re(!) = 0 and � =2 EH ; then

H(L�;r) =
�
La�

1
;�La�

2
;1���!=a�

2

�
(L1��;r): (4.6.1)

When � 2 EH ; H(L�;r) is a subset of the right-hand side of (4:6:1):

(c) If Re(!) < 0 and � =2 EH ; then

H(L�;r) =
�
I�!
�;1=a�

1
;�a�

1
�La

�

1
;�La�

2
;1��

�
(L1��;r): (4.6.2)

When � 2 EH ; H(L�;r) is a subset of the right-hand side of (4.6.2).

Proof. We �rst consider the case Re(!) = 0. We de�ne H4(s) by

H4(s) =
(a�1)

a�
1
(s��)�1(a�2)

a�
2
(��s)+!�1

�[a�1(s� �)]�[a�2(� � s) + !]
��s
H(s): (4.6.3)

Since � < 1� � < �, the function H4(s) is analytic in the strip � < Re(s) < �. According to

(1.2.9) and (4.3.4) we have the estimate, as jtj ! 1,

H4(� + it) � (a�1)
a�
1
(���)�1(a�2)

a�
2
(���)+Re(!)�1 1

2�
(a�1jtj)

a�
1
(���)+1=2

� (a�2jtj)
a�
2
(���)�Re(!)+1=2e��+Re(�)+1e[a

�jtj+Im(!)sign(t)]�=2
qY

j=1

�
Re(bj)�1=2
j

�
pY

i=1

�
1=2�Re(ai)
i (2�)c

�

e����Re(�)�c� jtj��+Re(�)e��[a�jtj+Im(�)sign(t)]=2

�
qY

j=1

�
Re(bj)�1=2
j

pY
i=1

�
1=2�Re(ai)
i (2�)c

��1(a�1a
�
2)

�1=2e�c�+1e�Im(!��)sign(t)=2 (4.6.4)

uniformly in � on any bounded interval of R, where � and c� are given in (1.1.14) and (1.1.15).

Further, in accordance with (3.4.17) and (3.4.14)

H
0
4(� + it) = H4(� + it)

(
a�1 loga

�
1 � a�2 loga

�
2 � a�1 [a

�
1(� + it� �)]

+a�2 [a
�
2(� � � � it) + !]� log � +

H
0(� + it)

H(� + it)

)

= H4(� + it)

(
a�1 loga

�
1 � a�2 loga

�
2 � a�1

�
log(ia�1t) +

a�1(� � �)� 1=2

ia�1t

�

+a�2

�
log(�ia�2t)�

a�2(� � �) + ! � 1=2

ia�2t

�
� log �

+

�
log � + a�1 log(it)� a�2 log(�it) +

Re(�) + ��

it

�
+O

�
1

t2

�)
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= O

�
1

t2

�
(jtj ! 1): (4.6.5)

SoH4 2 A with �(H4) = � and �(H4) = �, and Theorem 3.1 implies that there is a transform

T4 2 [L�;r] for 1 < r <1 and � < � < � so that, if 1 < r 5 2, the relation

(MT4f)(s) = H4(s)(Mf)(s) (Re(s) = �) (4.6.6)

holds. Let

H4 = W�La�
1
;�La�

2
;1���!=a�

2

T4R; (4.6.7)

where W� and R are de�ned in (3.3.12) and (3.3.13). Then it follows from Lemma 3.1(ii),(iii)

and Theorem 3.2(c) that if 1 < r 5 s <1 and � < 1� � < �, then H4 2 [L�;r ;L1��;s].

For f 2 L�;2; applying (4.6.7), (3.3.15), (3.3.8), (4.6.6) and (3.3.16), and noting that

Re(!) > 0, we have for Re(s) = 1� �

�
MH4f

�
(s) =

�
MW�La�

1
;�La�

2
;1���!=a�

2

T4Rf
�
(s)

= �s
�[a�1(s� �)]

(a�1)
a�
1
(s��)�1

�
MLa�

2
;1���!=a�

2

T4Rf
�
(1� s)

= �s
�[a�1(s� �)]

(a�1)
a�
1
(s��)�1

�fa�2[1� s� (1� � � !=a�2)]g

(a�2)
a�
2
[1�s�(1���!=a�

2
)]�1

�
MT4Rf

�
(s)

= �s
�[a�1(s� �)]

(a�1)
a�
1
(s��)�1

�[a�2(� � s) + !]

(a�2)
a�
2
(��s)+!�1

H4(s)
�
MRf

�
(s)

=H(s)
�
Mf

�
(1� s): (4.6.8)

So we obtain that, if f 2 L�;2,
�
MH4f

�
(s) =

�
MHf

�
(s) with Re(s) = 1��. HenceH4 =H

on L�;2 and H can be extended from L�;2 to L�;r if we de�ne it by (4.6.7).

The operator R is a one-to-one transform of L�;r onto L1��;r by Lemma 3.1(iii), and La�
1
;�

and La�
2
;1���!=a�

2

are also one-to-one by Theorem 3.2(c). Therefore H4 2 [L�;r ;L1��;s] is

one-to-one if and only if T4 is one-to-one. Since T4 2 [L1��;r ], we have the imbedding

H(L�;r) �
�
W�La�

1
;�La�

2
;1���!=a�

2

�
(L1��;r) =

�
La�

1
;�La�

2
;1���!=a�

2

�
(L1��;r)

for � < 1� � < � and 1 < r < 1 (here we take into account (3.3.20) and the independence

of the range on a non-zero constant milptiplier). Moreover, the equality (4.6.1) holds if

and only if T4(L1��;r) = L1��;r. According to Theorem 3.1, T4 is one-to-one on L1��;r and

T4(L1��;r) = L1��;r if and only if 1=H4 2 A and �(1=H4) < 1 � � < �(1=H4). It is proved

similarly, as was done in the proof of Theorem 4.3 that, if � =2 EH , these conditions are

satis�ed. This completes the proof of the theorem for Re(!) = 0:

Now we assume Re(!) < 0 and denote by H5(s) the function

H5(s) =
(a�1)

a�
1
(s��)�1(a�2)

a�
2
(��s)�1�[a�1(s� �)� !]

�2[a�1(s � �)]�[a�2(� � s)]
��s
H(s); (4.6.9)
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which is analytic in the strip � < Re(s) < �. Similar arguments to (4.6.4) and (4.6.5) show

that the estimates

H5(� + it) �
qY

j=1

�
Re(bj)�1=2
j

pY
i=1

�
1=2�Re(ai)
i

� (2�)c
��1(a�1)

�Re(!)�1=2(a�2)
�1=2e1�c�e�Im(!��)sign(t)=2 (4.6.10)

and

H
0
5(� + it) =H5(� + it)

(
a�1 loga

�
1 � a�2 loga

�
2 + a�1 [a

�
1(� + it � �)� !]

�2a�1 [a
�
1(� + it� �)] + a�2 [a

�
2(� � � � it)]� log � +

H
0(� + it)

H(� + it)

)

= O

�
1

t2

�
(jtj ! 1) (4.6.11)

hold uniformly in � on any bounded interval ofR. SoH5 2 A with �(H5) = � and �(H5) = �.

By Theorem 3.1 there is a transform T5 2 [L�;r] for 1 < r < 1 and � < � < � such that, if

1 < r 5 2, �
MT5f

�
(s) = H5(s)

�
Mf

�
(s) (Re(s) = �): (4.6.12)

Let

H5 = W�I
�!
�;1=a�

1
;�a�

1
�La�

1
;�La�

2
;1��T5R: (4.6.13)

Using again Lemma 3.1(ii),(iii) and Theorem 3.2(b),(c), we have that if � < 1 � � < � and

1 < r 5 s < 1, then H5 2 [L�;r;L1��;s]. For f 2 L�;2 and Re(s) = 1� � applying (4.6.13),

(3.3.15), (3.3.7), (3.3.8), (4.6.12), (3.3.16) and (4.6.9) we obtain similarly to (4.6.8) that�
MH5f

�
(s) = �s

�
MI�!

�;1=a�
1
;�a�

1
�La

�

1
;�La�

2
;1��T5Rf

�
(s)

= �s
�[a�1(s� �)]

�[a�1(s� �)� !]

�
MLa�

1
;�La�

2
;1��T5Rf

�
(s)

= �s
�[a�1(s� �)]

�[a�1(s� �)� !]

�[a�1(s� �)]

(a�1)
a�
1
(s��)�1

�
MLa�

2
;1��T5Rf

�
(1� s)

= �s
�[a�1(s� �)]

�[a�1(s� �)� !]

�[a�1(s� �)]

(a�1)
a�
1
(s��)�1

�[a�2(1� s)� a�2(1� �)]

(a�2)
a�
2
[(1�s)�(1��)]

�
MT5Rf

�
(s)

= �s
�2[a�1(s� �)]�[a�2(� � s)]

�[a�1(s� �)� !](a�1)
a�
1
(s��)�1(a�2)

a�
2
(��s)

H5(s)
�
MRf

�
(s)

=H(s)
�
Mf

�
(1� s): (4.6.14)

Applying this equality and using similar arguments to those in the case Re(!) = 0, we com-

plete the proof for Re(!) < 0. Hence the theorem is proved.
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4.7. Boundedness and Range of the H-Transform

When a� > 0 and a�1 = 0 or a�2 = 0

In this section we consider the cases when a�1 > 0; a�2 = 0 and a�1 = 0; a�2 > 0. First we treat

the former case.

Theorem 4.7. Let a�1 > 0; a�2 = 0; m > 0; � < 1� � < � and ! = � + a�1� + 1=2 and let

1 < r <1:

(a) If � =2 EH ; or if 1 < r 5 2; then the transformH is one-to-one on L�;r .

(b) If Re(!) = 0 and � =2 EH ; then

H(L�;r) = La�
1
;��!=a�

1

(L�;r): (4.7.1)

When � 2 EH ; H(L�;r) is a subset of the right-hand side of (4:7:1):

(c) If Re(!) < 0 and � =2 EH ; then

H(L�;r) =
�
I�!
�;1=a�

1
;�a�

1
�La�

1
;�

�
(L�;r): (4.7.2)

When � 2 EH ; H(L�;r) is a subset of the right-hand side of (4.7.2).

Proof. We �rst consider the case Re(!) = 0. We de�ne H6(s) by

H6(s) =
(a�1)

a�
1
(s��)+!�1

�[a�1(s� �) + !]
��s
H(s): (4.7.3)

Since Re(!) = 0, H6(s) is analytic in the strip � < Re(s) < �. Arguments similar to those in

(4.6.4) and (4.6.5) lead to the estimates

H6(� + it) �
qY

j=1

�
Re(bj)�1=2
j

pY
i=1

�
1=2�Re(ai)
i

� (2�)c
��1=2(a�1)

�1=2e�c�+1=2e�Im(!��)sign(t)=2 (4.7.4)

and

H
0
6(� + it) =H6(� + it)

(
a�1 loga

�
1 � a�1 [a

�
1(s� �) + !]� log � +

H
0(� + it)

H(� + it)

)

=H6(� + it)

8>><
>>:a

�
1 loga

�
1 � a�1

2
664log(ia�1t) +

a�1(� � �) + Re(!)�
1

2
ia�1t

3
775

� log � +

�
log � + a�1 log(it) +

Re(�) + ��

it

�
+ O

�
1

t2

��

= O

�
1

t2

�
(jtj ! 1) (4.7.5)

uniformly in � in any bounded interval of R. So H6 2 A with �(H6) = � and �(H6) = � and

Theorem 3.1 implies that there is a transform T6 2 [L�;r] for 1 < r <1 and � < � < �, and

if 1 < r 5 2, then �
MT6f

�
(s) = H6(s)

�
Mf

�
(s) (Re(s) = �): (4.7.6)
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We set

H6 = W�La�
1
;��!=a�

1

RT6R: (4.7.7)

Then it follows from Lemma 3.1(ii),(iii) and Theorem 3.2(c) that, if � < � < � and

1 < r 5 s <1, H6 2 [L�;r;L1��;s].

For f 2 L�;2 applying (4.7.7), (3.3.15), (3.3.8), (4.7.6), (3.3.16) and (4.7.3), we obtain for

Re(s) = 1� � �
MH6f

�
(s) =

�
MW�La�

1
;��!=a�

1

RT6Rf
�
(s)

= �s
�
MLa�

1
;��!=a�

1

RT6Rf
�
(s)

= �s
�[a�1(s� � + !=a�1)]

(a�1)
a�
1
(s��+!=a�

1
)�1

�
MRT6Rf

�
(1� s)

= �s
�[a�1(s� �) + !]

(a�1)
a�
1
(s��)+!�1

�
MT6Rf

�
(s)

= �s
�[a�1(s� �) + !]

(a�1)
a�
1
(s��)+!�1

H6(s)
�
MRf

�
(s)

= �s
�[a�1(s� �) + !]

(a�1)
a�
1
(s��)+!�1

H6(s)
�
Mf

�
(1� s)

= H(s)
�
Mf

�
(1� s): (4.7.8)

Applying this relation and using arguments similar to those in the case Re(!) = 0 of Theorem

4.6 we complete the proof of the theorem for Re(!) = 0.

Now we consider the case Re(!) < 0. Let us de�ne H7(s) by

H7(s) =
(a�1)

a�
1
(s��)�1�[a�1(s� �)� !]

�2[a�1(s� �)]
��s
H(s): (4.7.9)

H7(s) is analytic in the strip � < Re(s) < �, and in accordance with (1.2.9), (3.4.14), (4.3.4)

and (3.4.19), we have

H7(� + it) �
qY

j=1

�
Re(bj)�1=2
j

pY
i=1

�
1=2�Re(ai)
i (2�)c

�
�1=2e�c�+1=2

� (a�1)
�Re(�)�a�

1
��1e�Im(!��)sign(t)=2; (4.7.10)

H
0

7(� + it) =H7(� + it)

"
a�1 log a

�

1 + a�1 [a
�

1(s� �)� !]

�2a�1 [a
�

1(s� �)]� log � +
H

0(� + it)

H(� + it)

#
= O

�
1

t2

�
(4.7.11)

as jtj ! 1 uniformly in � on any bounded interval of R. So H7 2 A with �(H7) = � and

�(H7) = �. By Theorem 3.1, there is T7 2 [L�;r ] for 1 < r < 1 and � < � < �, so that, if

1 < r 5 2, �
MT7f

�
(s) = H7(s)

�
Mf

�
(s) (Re(s) = �): (4.7.12)
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Setting

H7 = W�I
�!
�;1=a�

1
;�a�

1
�La

�

1
;�RT7R; (4.7.13)

we seeH7 2 [L�;r;L1��;s], if � < 1�� < � and 1 < r 5 s <1; by virtue of Lemma 3.1(ii),(iii)

and Theorem 3.2(b),(c). For f 2 L�;2 and Re(s) = 1� �, applying (4.7.13), (3.3.15), (3.3.7),

(3.3.8), (3.3.16) and (4.7.12), we obtain similarly to (4.6.8) that�
MH7f

�
(s) =

�
MW�I

�!
�;1=a�

1
;�a�

1
�La

�

1
;�RT7Rf
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(s)

= �s
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�La

�

1
;�RT7Rf

�
(s)

= �s
�[a�1(s� �)]

�[a�1(s� �)� !]

�
MLa�

1
;�RT7Rf

�
(s)

= �s
�2[a�1(s� �)]

�[a�1(s� �)� !](a�1)
a�
1
(s��)�1

�
MRT7Rf

�
(1� s)

= �s
�2[a�1(s� �)]

�[a�1(s� �)� !](a�1)
a�
1
(s��)�1

�
MT7Rf

�
(s)

= �s
�2[a�1(s� �)]

�[a�1(s� �)� !](a�1)
a�
1
(s��)�1

H7(s)
�
MRf

�
(s)

=H(s)
�
Mf

�
(1� s): (4.7.14)

Using this relation and arguments similar to those in the case Re(!) < 0 of Theorem 4.6, we

obtain the result for Re(!) < 0.

In the case a�1 = 0 and a�2 > 0 the following statement is valid.

Theorem 4.8. Let a�1 = 0; a�2 > 0; n > 0; � < 1� � < � and ! = �� a�2� + 1=2 and let

1 < r <1:

(a) If � =2 EH ; or if 1 < r 5 2; then the transformH is one-to-one on L�;r .

(b) If Re(!) = 0 and � =2 EH ; then

H(L�;r) = L�a�
2
;�+!=a�

2

(L�;r): (4.7.15)

When � 2 EH ; H(L�;r) is a subset of the right-hand side of (4:7:15):

(c) If Re(!) < 0 and � =2 EH ; then

H(L�;r) =
�
I�!
0+;1=a�

2
;a�
2
��1L�a�

2
;�

�
(L�;r): (4.7.16)

When � 2 EH ; H(L�;r) is a subset of the right-hand side of (4.7.16).

Proof. The proof is derived fromTheorem 4.7 by examingRTR and by invoking (3.3.17),

(3.3.18) similarly to what was done in the proof of Theorem 4.4.
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4.8. Boundedness and Range of the H-Transform

When a� > 0 and a�1 < 0 or a�2 < 0

In this section we give conditions for the transform H to be one-to-one on L�;r and char-

acterize its range on L�;r except for its isolated values � 2 EH in terms of the modi�ed

Laplace transform Lk;�, modi�ed Hankel transform H k;� and elementary transformM� given

in (3.3.3), (3.3.4) and (3.3.11). The results will be di�erent in the cases a�1 > 0; a�2 < 0 and

a�1 < 0; a�2 > 0. We �rst consider the former case.

Theorem 4.9. Let a� > 0; a�1 > 0; a�2 < 0; � < 1� � < � and let 1 < r <1:

(a) If � =2 EH ; or if 1 < r 5 2; then the transformH is one-to-one on L�;r .

(b) Let !; �; � 2 C be chosen as

! = a�� � � �
1

2
; (4.8.1)

a�Re(�) = (r) + 2a�2(� � 1) + Re(�); (4.8.2)

Re(�) > � � 1; (4.8.3)

Re(�) < 1� �; (4.8.4)

where (r) is given in (3:3:9): If � =2 EH ; then

H(L�;r) =
�
M1=2+!=(2a�

2
)H�2a�

2
;2a�

2
�+!�1L�a�;1=2+��!=(2a�

2
)

� �
L3=2��+Re(!)=(2a�

2
);r

�
: (4.8.5)

When � 2 EH ; H(L�;r) is a subset of the right-hand side of (4.8.5).

Proof. We denote by H8(s) the function

H8(s) =
(a�)a

�(s+�)�1ja�2j
�2a�

2
s�!�[a�2(s+ �) + !]

�[a�(s+ �)]�[a�2(� � s)]
��s
H(s): (4.8.6)

For Re(s) = 1��, by virtue of the assumptions (4.8.1), (4.8.2), (4.8.4) and relations (r) = 1=2;

a�2 < 0, we have

Re[a�2(s+ �) + !] = a�2[1� � +Re(�)] + a�Re(�)�Re(�)�
1

2

= a�2[1� � +Re(�)] + [(r)+ 2a�2(� � 1) + Re(�)]�Re(�)�
1

2

= a�2[� � 1 + Re(�)] + (r)�
1

2
= a�2[� � 1 + Re(�)] > 0;

and hence the function H8(s) is analytic in the strip � < Re(s) < �. Applying (1.2.9),

(3.4.14), (4.3.4) and (3.4.19) we obtain the estimates

H8(� + it) �
qY

j=1

�
Re(bj)�1=2
j

pY
i=1

�
1=2�Re(bj)
i

� (2�)c
�
�1=2(a�)�1=2e�c�+1=2e��Im(!�a��+�)sign(t)=2 (4.8.7)
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and

H
0

8(� + it) =H8(� + it)

(
a� loga� � 2a�2 log ja

�

2j+ a�2 [a
�

2(s+ �) + !]

�a� [a�(s+ �)] + a�2 [a
�

2(� � s)]� log � +
H

0(� + it)

H(� + it)

)

= O

�
1

t2

�
(4.8.8)

as jtj ! 1, uniformly in � on any bounded interval of R:

So H8 2 A with �(H8) = � and �(H8) = � and by Theorem 3.1, there is a transform

T8 2 [L�;r] for 1 < r <1 and � < � < � so that, if 1 < r 5 2,�
MT8f

�
(s) = H8(s)

�
Mf

�
(s) (Re(s) = �): (4.8.9)

Let

H8 = W�M1=2+!=(2a�
2
)H�2a�

2
;2a�

2
�+!�1L�a�;1=2+��!=(2a�

2
)M�1=2�!=(2a�

2
)T8R: (4.8.10)

It is directly veri�ed that under the conditions of the theorem, Lemma 3.1 and Theorem

3.2(c),(d) yield H8 2 [L�;r;L1��;r].

If f 2 L�;2, then applying (4.8.10), (3.3.15), (3.3.14), (3.3.10), (3.3.9), (3.3.14), (4.8.9),

(3.3.16) and (4.8.6), we have for Re(s) = 1� ��
MH8f

�
(s)

=
�
MW�M1=2+!=(2a�

2
)H�2a�

2
;2a�

2
�+!�1L�a�;1=2+��!=(2a�

2
)M�1=2�!=(2a�

2
)T8Rf

�
(s)

= �s
�
MM1=2+!=(2a�

2
)H�2a�

2
;2a�

2
�+!�1L�a�;1=2+��!=(2a�

2
)M�1=2�!=(2a�

2
)T8Rf

�
(s)

= �s
�
MH�2a�

2
;2a�

2
�+!�1L�a�;1=2+��!=(2a�

2
)M�1=2�!=(2a�

2
)T8Rf

��
s+

1

2
+

!

2a�2

�

= �s ja�2j
2a�

2
s+! �[a�2(� � s)]

�[a�2(s+ �) + !]

�
�
ML

�a�;1=2+��!=(2a�
2
)M�1=2�!=(2a�

2
)T8Rf

��1
2
� s �

!

2a�2

�

= �s ja�2j
2a�

2
s+! (a�)1�a�(s+�)�[a

�

2(� � s)]�[a�(s+ �)]

�[a�2(s+ �) + !]

�
�
MM

�1=2�!=(2a�
2
)T8Rf

��1
2
+ s +

!

2a�2

�

= �s ja�2j
2a�

2
s+! (a�)1�a�(s+�)�[a

�

2(� � s)]�[a�(s+ �)]

�[a�2(s+ �) + !]

�
MT8Rf

�
(s)

= �s ja�2j
2a�

2
s+! (a�)1�a�(s+�)�[a

�

2(� � s)]�[a�(s+ �)]

�[a�2(s+ �) + !]
H8(s)

�
MRf

�
(s)

= H(s)
�
Mf

�
(1� s): (4.8.11)
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So we have that, for f 2 L�;2,
�
MH8f

�
(s) =

�
MHf

�
(s) with Re(s) = 1 � �. Thus

H8f = Hf and H8 = H on L�;2. By the fact that L�;2 \ L�;r is dense in L�;r (see Rooney

[2, Lemma 2.2]), H can be extended from L�;2 to L�;r, if we de�ne it by (4.8.10).

Moreover, (4.8.5) holds if and only if T8(L1��;r) = L1��;r. Taking arguments similar to

those in Theorem 4.7, we can show that the latter holds if � =2 EH . Further, the transforms

M
�1=2�!=(2a�

2
)T8R; L

�a�;1=2+��!=(2a�
2
); H�2a�

2
;2a�

2
�+!�1

are one-to-one as respective operators in the corresponding spaces. Then, H is one-to-one if

and only if T8 is one-to-one. This is so, if 1 < r 5 2; or if � =2 EH , which can be proved as in

Theorem 4.7. This completes the proof of the theorem.

Corollary 4.9.1. Let a� > 0; a�1 > 0; a�2 < 0; � < 1� � < � and let 1 < r <1:

(a) If � =2 EH ; or if 1 < r 5 2; then the transformH is one-to-one on L�;r .

(b) Let ! = a�� � � � 1=2 and let � and � be chosen such that either of the following

conditions holds:

(i) a�Re(�) = (r)� 2a�2� +Re(�); Re(�) = � �; Re(�) 5 �; if m > 0; n > 0;

(ii) a�Re(�) = (r)� 2a�2� +Re(�); Re(�) > � � 1; Re(�) < 1� �; if m = 0; n > 0;

(iii) a�Re(�) = (r) + 2a�2(� � 1) + Re(�); Re(�) = � �; Re(�) 5 �; if m > 0; n = 0:

Then; if � =2 EH ; H(L�;r) can be represented by the relation (4:8:5). When � 2 EH ;

H(L�;r) is a subset of the right-hand side of (4.8.5).

Proof. By assumptions � < 1� � < � and a�2 < 0, if � <1 and the relation

a�Re(�) = (r)� 2a�2� + Re(�) (4.8.12)

holds, then (4.8.2) is valid. If � > �1 and the relations

Re(�) = � �; Re(�) 5 � (4.8.13)

hold, then (4.8.3) and (4.8.4) are true. Therefore the corollary follows from Theorem 4.9.

The next assertion follows from Corollary 4.9.1(i), if we set � = ��.

Corollary 4.9.2. Let a� > 0; a�1 > 0; a�2 < 0; m > 0; n > 0; � < 1 � � < � and let

1 < r <1:

(a) If � =2 EH ; or if 1 < r 5 2; then the transformH is one-to-one on L�;r .

(b) Let a���2a�2�+Re(�)+(r) 5 0; ! = �a�����1=2 and let � be chosen such that

Re(�) 5 �. Then if � =2 EH ; H(L�;r) can be represented in the form (4:8:5). When � 2 EH ;

H(L�;r) is a subset of the right-hand side of (4.8.5).

Finally we consider the case when a� > 0; a�1 < 0 and a�2 > 0.

Theorem 4.10. Let a� > 0; a�1 < 0; a�2 > 0; � < 1� � < � and let 1 < r <1:

(a) If � =2 EH ; or if 1 < r 5 2; then the transformH is one-to-one on L�;r .
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(b) Let !; �; � 2 C be chosen as

! = a�� ��� ��
1

2
; (4.8.14)

a�Re(�) = (r)� 2a�1� + �+Re(�); (4.8.15)

Re(�) > ��; (4.8.16)

Re(�) < �: (4.8.17)

If � =2 EH ; then

H(L�;r)

=
�
M

�1=2�!=(2a�
1
)H 2a�

1
;2a�

1
�+!�1La�;1=2��+!=(2a�

1
)

� �
L1=2���Re(!)=(2a�

1
);r

�
: (4.8.18)

When � 2 EH ; H(L�;r) is a subset of the right-hand side of (4.8.18).

Proof. The proof is derived from Theorem 4.9 by examing RTR similarly to that which

was done in Theorem 4.4.

Corollary 4.10.1. Let a� > 0; a�1 < 0; a�2 > 0; � < 1� � < � and let 1 < r <1:

(a) If � =2 EH ; or if 1 < r 5 2; then the transformH is one-to-one on L�;r .

(b) Let ! = a������� 1=2 and let � and � be chosen such that either of the following

conditions holds:

(i) a�Re(�) = (r)�2a�1(1��)+�+Re(�); Re(�) = ��1; Re(�) 5 1��; if m > 0; n > 0;

(ii) a�Re(�) = (r)� 2a�1� +�+ Re(�); Re(�) = � � 1; Re(�) 5 1� �; if m = 0; n > 0;

(iii) a�Re(�) = (r)� 2a�1(1� �) + �+Re(�); Re(�) > ��; Re(�) < �; if m > 0; n = 0:

Then; if � =2 EH ; H(L�;r) can be represented by the relation (4:8:18): When � 2 EH ;

H(L�;r) is a subset of the set in the right-hand side of (4.8.18).

Corollary 4.10.2. Let a� > 0; a�1 < 0; a�2 > 0; m > 0; n > 0; � < 1 � � < � and let

1 < r <1:

(a) If � =2 EH ; or if 1 < r 5 2; then the transformH is one-to-one on L�;r .

(b) Let 2a�1��a
��+Re(�)+(r) 5 0; ! = a��� 2a�1��� 1=2 and let � be chosen such

that Re(�) 5 1 � �. Then; if � =2 EH ; H(L�;r) can be represented by the relation (4:8:18):

When � 2 EH ; H(L�;r) is a subset of the right-hand side of (4.8.18).

4.9. Inversion of the H-Transform When �= 0

In Sections 4.1{4.4 and 4.6{4.8 we have proved that for certain ranges of parameters, the

H-transform (3.1.1) has the representation (4.1.4) or (4.1.5). In this and the next sections

we show that the inversion of the H-transform has the respective forms:

f(x) = hx1�(�+1)=h
d

dx
x(�+1)=h
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�

Z
1

0
H

q�m;p�n+1
p+1;q+1

"
xt

�����
(��; h); (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m; (��� 1; h)

#

� (Hf)(t)dt (4.9.1)

or

f(x) = �hx1�(�+1)=h
d

dx
x(�+1)=h

�

Z
1

0
H

q�m+1;p�n
p+1;q+1

"
xt

�����
(1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n; (��; h)

(��� 1; h); (1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m

#

� (Hf)(t)dt; (4.9.2)

provided that a� = 0. The conditions for the validity of the relations (4.9.1) and (4.9.2) will

be di�erent in the cases � = 0 and � 6= 0. Here we consider the �rst one.

If f 2 L�;2, and H is de�ned on L�;r , then according to Theorem 4.1, the equality (4.1.1)

holds under the assumption there. This fact implies the relation

�
Mf

�
(s) =

�
MHf

�
(1� s)

H(1� s)
(4.9.3)

for Re(s) = �. By (1.1.2) we have

1

H(1� s)
= Hq�m;p�n

p;q

"
(1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j; �j)1;m

����� s
#

� H0(s); (4.9.4)

and hence (4.9.3) takes the form

(Mf)(s) = (MHf)(1� s)H0(s) (Re(s) = �): (4.9.5)

We denote �0; �0; a
�

0; a
�

01; a
�

02; �0;�0 and �0 for H0 instead of those for H. Then we �nd

�0 =

8>>><
>>>:

max

"
Re(bm+1)� 1

�m+1
+ 1; � � � ;

Re(bq)� 1

�q
+ 1

#
if q > m;

�1 if q = m;

(4.9.6)

�0 =

8>>><
>>>:

min

"
Re (an+1)

�n+1
+ 1; � � � ;

Re (ap)

�p
+ 1

#
if p > n;

1 if p = n;

(4.9.7)

a�0 = �a�; a�01 = �a�2; a�02 = �a�1; �0 = �; �0 = �; �0 = ����: (4.9.8)

We also note that if �0 < � < �0, � is not in the exceptional set of H0.

First we consider the case r = 2.
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Theorem 4.11. Let � < 1� � < �; �0 < � < �0; a
� = 0 and �(1� �) + Re(�) = 0. Let

f 2 L�;2. Then the relation (4:9:1) holds for Re(�) > �h � 1 and (4:9:2) for Re(�) < �h � 1.

Proof. We apply Theorem 3.6 with H being replaced by H0 and � by 1 � �. By the

assumption and (4.9.8) we have

a�0 = �a� = 0; (4.9.9)

�0[1� (1� �)] + Re(�0) = �� �Re(�)�� = �[�(1� �) + Re(�)] = 0 (4.9.10)

and �0 < 1 � (1 � �) < �0, and thus Theorem 3.6(i) applies. Then there is a one-to-one

transformH0 2 [L1��;2;L�;2] so that the relation

�
MH0f

�
(s) = H0(s)

�
Mf

�
(1� s) (4.9.11)

holds for f 2 L1��;2 and Re(s) = �. Further, if f 2 L�;2, Hf 2 L1��;2 and it follows from

(4.9.11), (4.1.1) and (4.9.4) that

�
MH0Hf

�
(s) = H0(s)

�
MHf

�
(1� s) = H0(s)H(1� s)

�
Mf

�
(s) =

�
Mf

�
(s);

if Re(s) = �. Hence MH0Hf =Mf and

H0Hf = f for f 2 L�;2: (4.9.12)

Applying Theorem 3.6(ii) again, we obtain for f 2 L1��;2 that

�
H0f

�
(x) = hx1�(�+1)=h

d

dx
x(�+1)=h

�

Z
1

0
H

q�m;p�n+1
p+1;q+1

"
xt

�����
(��; h); (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m; (��� 1; h)

#

� f(t)dt; (4.9.13)

if Re(�) > [1� (1� �)]h� 1 and

�
H0f

�
(x) = �hx1�(�+1)=h

d

dx
x(�+1)=h

�

Z
1

0
H

q�m+1;p�n
p+1;q+1

"
xt

�����
(1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n; (��; h)

(��� 1; h); (1� bj � �j ; �j)m+1;q; (1� bj � �j; �j)1;m

#

� f(t)dt; (4.9.14)

if Re(�) < [1 � (1 � �)]h � 1. Replacing f by Hf and using (4.9.12), we have the relations

(4.9.1) and (4.9.2) for f 2 L�;2, if Re(�) > �h � 1 and Re(�) < �h � 1, respectively, which

completes the proof of the theorem.

The next result is an extension of Theorem 4.11 to L�;r-spaces for any 1 < r < 1; pro-

vided that � = 0 and Re(�) = 0.
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Theorem 4.12. Let � < 1 � � < �; �0 < � < �0; a
� = 0;� = 0 and Re(�) = 0.

If f 2 L�;r (1 < r < 1); the relation (4:9:1) holds for Re(�) > �h � 1 and (4:9:2) for

Re(�) < �h � 1.

Proof. We apply Theorem 4.1 with H replaced by H0 in (4.9.4) and � by 1� �. From

the assumption and (4.9.8), we have a�0 = �0 = 0;Re(�0) = 0 and �0 < 1� (1� �) < �0, and

thus Theorem 4.1(i) can be applied. Due to the theorem,H0 can be extended to L1��;r as an

element of [L1��;r;L�;r]. By virtue of (4.9.12)H0H is an identical operator in L�;2. By Rooney

[2, Lemma 2.2] L�;2 is dense in L�;r and since H 2 [L�;r;L1��;r] and H0 2 [L1��;r;L�;r], the

operator H0H is identical on L�;r and hence

H0Hf = f for f 2 L�;r: (4.9.15)

Applying Theorem 4.1(e) with H being replaced by H0 and � by 1 � �, we obtain that

the relations (4.9.13) and (4.9.14) hold for f 2 L1��;r, when Re(�) > [1� (1� �)]h � 1 and

Re(�) < [1� (1� �)]h� 1, respectively. Replacing f by Hf and using (4.9.15), we arrive at

(4.9.1) and (4.9.2) for f 2 L1��;r , if Re(�) > �h � 1 and Re(�) < �h � 1, respectively, which

completes the proof of the theorem.

4.10. Inversion of the H-Transform When � 6= 0

We now investigate under what conditions the H-transform with � 6= 0 will have an inverse

of the form (4.9.1) or (4.9.2). First, we consider the case � > 0. To obtain the inversion of

the H-transform on L�;r we use the relation (4.1.3).

Theorem 4.13. Let m > 0; a� = 0;� > 0; � < 1 � � < �; �0 < � < minf�0; [Re(� +

1=2)=�]+1g;�(1��)+Re(�) 5 1=2�(r) and let 1 < r <1. If f 2 L�;r; then the relations

(4:9:1) and (4:9:2) hold for Re(�) > �h � 1 and Re(�) < �h � 1; respectively.

Proof. According to Theorem 4.3(a), the H-transform is de�ned on L�;r. First we

consider the case Re(�) > �h� 1. Let H1(t) be the function

H1(t) = Hq�m;p�n+1
p+1;q+1

"
t

����� (��; h); (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m; (��� 1; h)

#
: (4.10.1)

If we denote ea�; e�; e� and e� for H1 instead of those for H; then

ea� = �a� = 0; e� = �; e� = � > 0; e� = �� ��� 1: (4.10.2)

We prove that H1 2 L�;s for any s (1 5 s < 1). For this, we �rst apply the results in

Sections 1.5, 1.6 and 1.8, 1.9 to H1(t) to �nd its asymptotic behavior at zero and in�nity.

According to (4.9.6), (4.9.7) and the assumption, we �nd

Re(bj)� 1

�j
+ 1 5 �0 < �0 5

Re(ai)

�i
+ 1 (j = m+ 1; � � � ; q; i = n+ 1; � � � ; p);

Re(bj)� 1

�j
+ 1 5 �0 < � <

Re(�) + 1

h
(j = m+ 1; � � � ; q):
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Then it follows that the poles

aik =
ai + k

�i
+ 1 (i = n + 1; � � � ; p; k = 0; 1; 2; � � �);

�n =
�+ 1+ n

h
(n = 0; 1; 2; � � �)

of the gamma functions �(ai + �i � �is) (i = n+ 1; � � � ; p) and �(1 + �� hs), and the poles

bjl =
bj � 1� l

�j
+ 1 (j = m+ 1; � � � ; q; l = 0; 1; 2; � � �)

of the gamma functions �(1 � bj � �j + �js) (j = m + 1; � � � ; q) do not coincide. Hence by

Theorems 1.11{1.13 and Remark 1.5, we have

H1(t) = O(t��0) (t! 0) with �0 = max
m+15j5q

"
Re(bj)� 1

�j

#
+ 1; (4.10.3)

if the poles bjl (j = m+ 1; � � � ; q; l = 0; 1; 2; � � �) are all simple, or

H1(t) = O(t��0 [log t]N�1) (t! 0);

if the gamma functions �(1 � bj � �j + �js) (j = m + 1; � � � ; q) have general poles of order

N = 2 at some point.

Further by Theorems 1.7{1.9 and Remark 1.3,

H1(t) = O
�
t%1
�

(t!1) with 0 = min

2664�0; Re(�) +
1

2
�

+ 1;
Re(�) + 1

h

3775 ; (4.10.4)

if the poles aik (i = n+ 1; � � � ; p; k = 0; 1; 2; � � �) are all simple, or

H1(t) = O
�
t�0 [log(t)]M�1

�
(t!1);

if the gamma functions �(1 + �� hs);�(ai + �i � �is) (i = n + 1; � � � ; p) have general poles

of order M = 2 at some point.

Let the gamma functions �(1� bj � �+ �js) (j = m+ 1; � � � ; q) and �(1+ �� hs);�(ai+

�i��is) (i = n+1; � � � ; p) have simple poles. Then from (4.10.3) and (4.10.4) we see that, for

1 5 s <1, H1(t) 2 L�;s if and only if, for some R1 and R2; 0 < R1 < R2 <1, the integralsZ R1

0
ts(���0)�1dt;

Z
1

R2

ts(��0)�1dt (4.10.5)

are convergent. Since by the assumption � > �0, the �rst integral in (4.10.5) converges. In

view of our assumptions

� < �0; � <
Re(�) +

1

2
�

+ 1; � <
Re(�) + 1

h

we �nd � � 0 < 0 and the second integral in (4.10.5) converges, too.
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If the gamma functions �(1 � bj � �j + �js) (j = m + 1; � � � ; q) or �(1 + �� hs);�(ai +

�i � �is) (i = n + 1; � � � ; p) have general poles, then the logarithmic multipliers [log(t)]N�1

(N = 2; 3; � � �) may be added in the �rst integral in (4.10.5), but they do not inuence

its convergence. This is similar to the case when the gamma functions �(1 � � � hs) and

�(ai + �i � �is) (i = n+ 1; � � � ; p) have general poles of order M = 2. Hence, we have

H1(t) 2 L�;s (1 5 s <1): (4.10.6)

Let a be a positive number and �a denote the operator�
�af

�
(x) = f(ax) (x > 0) (4.10.7)

for a function f de�ned almost everywhere on (0;1). By (3.3.12),
�
�af

�
(x) = W1=af(x) and

hence in accordance with Lemma 3.1(ii), �a is a bounded isomorphism of L�;r onto itself, and

if f 2 L�;r (1 5 r 5 2); there holds the relation for the Mellin transformM�
M�af

�
(s) = a�s

�
Mf

�
(s) (Re(s) = �): (4.10.8)

By virtue of Theorem 4.3(d) and (4.10.6), if f 2 L�;r and H1 2 L�;r0 (and hence �xH1 2

L�;r0), thenZ
1

0
H1(xt)

�
Hf

�
(t)dt =

Z
1

0

�
�xH1

�
(t)
�
Hf

�
(t)dt =

Z
1

0

�
H�xH1

�
(t)f(t)dt: (4.10.9)

From the assumption �(1� �) +Re(�) 5 1=2� (r) 5 0, Theorem 4.3(b) and (4.10.8) imply

that �
MH�xH1

�
(s) = H(s)

�
M�xH1

�
(1� s) = x�(1�s)H(s)

�
MH1

�
(1� s) (4.10.10)

for Re(s) = 1��. Now from (4.10.6),H1(t) 2 L�;1. Then by the de�nitions of the H-function

(1.1.1) and the direct and inverse Mellin transforms (2.5.1) and (2.5.3), we have

�
MH1

�
(s) =H

q�m;p�n+1
p+1;q+1

"
(��; h); (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m; (��� 1; h)

����� s
#

=Hq�m;p�n
p;q

"
(1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m

����� s
#
�(1 + �� hs)

�(2 + �� hs)

=
H0(s)

1 + �� hs

for Re(s) = �, where H0 is given in (4.9.4). Thus for Re(s) = 1� �,

�
MH1

�
(1� s) =

H0(1� s)

1 + �� h(1� s)
=

1

H(s)[1 + �� h(1� s)]
:

Substituting this into (4.10.10) we obtain

�
MH�xH1

�
(s) =

x�(1�s)

1 + �� h(1� s)
(Re(s) = 1� �): (4.10.11)
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For x > 0 let us consider the function

gx(t) =

8>><>>:
1

h
t(�+1)=h�1 if 0 < t < x;

0 if t > x:

(4.10.12)

Then we have for Re(�) > h� hRe(s)� 1

�
Mgx

�
(s) =

xs+(�+1)=h�1

1 + �� h(1� s)
;

and (4.10.11) takes the form�
MH�xH1

�
(s) =

�
M[x�(�+1)=hgx)]

�
(s);

which implies �
H�xH1

�
(t) = x�(�+1)=hgx(t): (4.10.13)

Substituting (4.10.13) into (4.10.9), we haveZ
1

0
H1(xt)

�
Hf

�
(t)dt = x�(�+1)=h

Z
1

0
gx(t)f(t)dt

or, by virtue of (4.10.12),Z x

0
t(�+1)=h�1f(t)dt = hx(�+1)=h

Z
1

0
H1(xt)

�
Hf

�
(t)dt:

Di�erentiating this relation, we obtain

f(x) = hx1�(�+1)=h
d

dx
x(�+1)=h

Z
1

0
H1(xt)

�
Hf

�
(t)dt;

which shows (4.9.1).

When Re(�) < �h � 1, the relation (4.9.2) is proved similarly to (4.9.1), by taking the

function

H2(t) = Hq�m+1;p�n
p+1;q+1

"
t

����� (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n; (��; h)

(��� 1; h); (1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m

#
(4.10.14)

instead of the function H1(t) of (4.10.1). This completes the proof of the theorem.

In the case � < 0 the following statement gives the inversion of the H-transform on L�;r.

Theorem 4.14. Let n > 0; a� = 0;� < 0; � < 1�� < �;max[�0; fRe(�+1=2)=�g+1] <

� < �0;�(1 � �) + Re(�) 5 1=2 � (r) and let 1 < r < 1 If f 2 L�;r ; then the relations

(4:9:1) and (4:9:2) hold for Re(�) > �h � 1 and for Re(�) < �h � 1; respectively.

This theorem can be proved similarly to Theorem 4.13, if we apply Theorem 4.4 instead

of Theorem 4.3 and take into account the asymptotics of the H-function at in�nity and zero
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given in Sections 1.5, 1.6 and 1.8, 1.9.

Remark 4.2. Formal di�erentiation of the right sides of (4.9.1) and (4.9.2) under the

integral sign yields the relation

f(x) =

Z
1

0
Hq�m;p�n
p;q

"
xt

����� (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m

# �
Hf

�
(t)dt: (4.10.15)

In fact, applying (2.2.1) to (4.9.1), we obtain

f(x) = hx1�(�+1)=h
d

d(xt)
(xt)(�+1)=h

�

Z
1

0
Hq�m;p�n+1
p+1;q+1

"
xt

����� (��; h); (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m; (��� 1; h)

#

� t1�(�+1)=h
�
Hf

�
(t)dt

= h

Z
1

0
Hq�m;p�n+2
p+2;q+2

"
xt

����� (�(�+ 1)=h; 1); (��; h);

(1� bj � �j ; �j)m+1;q;

(1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)1;m; (��� 1; h); (1� (�+ 1)=h; 1)

# �
Hf

�
(t)dt: (4.10.16)

According to (1.1.1){(1.1.2) and (2.2.14) we have

hHq�m;p�n+2
p+2;q+2

24xt
������
�
�
�+ 1

h
; 1

�
; (��; h); (1� ai � �i; �i)n+1;p;

(1� bj � �j ; �i)m+1;q; (1� bj � �j ; �j)1;m;

(1� ai � �i; �i)1;n

(��� 1; h);

�
1�

�+ 1

h
; 1

�
375

=
1

2�i

Z
L

h
�

�
1 +

�+ 1

h
� s

�
�(1 + �� hs)

�(2 + �� hs)�

�
�+ 1

h
� s

�

� Hq�m;p�n
p;q

"
(1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m

����� s
#
(xt)�sds

=
1

2�i

Z
L

H
m;n
p;q

"
(1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j; �j)1;m

����� s
#
(xt)�sds

= Hq�m;p�n
p;q

"
xt

����� (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m

#
:

Substituting this relation into (4.10.16), we arrive at (4.10.15).
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Similar calculations for (4.9.2) also yields the same result (4.10.15) by virtue of (2.2.2).

4.11. Bibliographical Remarks and Additional Information on Chapter 4

For Sections 4.1{4.8. As was indicated in Section 3.7, several papers were devoted to the mapping
properties of the integral transforms (3.1.1) with H-function kernel in the space Lr(R+) (1 < r <1).
Fox [2] �rst studied such properties in the space L2(R+). He [2, Theorem 5] proved that the special
H-transform �

Hf
�
(x) =

d

dx

Z
1

0

H1(xt)f(t)
dt

t
with H1(x) =

Z x

0

H
q;p
2p;2q(t)dt; (4.11.1)

where the kernel Hq;p
2p;2q(z) is given by (1.11.1), belong to L2(R+) provided that f(x) 2 L2(R+) and

the conditions in (1.11.3) hold. Kesarwani [11] obtained such a result for two integral transforms of
the form (4.11.1)�

Hf
�
(x) =

d

dx

Z
1

0

H2(xt)f(t)
dt

t
with H2(x) =

Z x

0

H
m;p
p+q;m+n(t)dt (4.11.2)

and �
Hf

�
(x) =

d

dx

Z
1

0

H3(xt)f(t)
dt

t
with H3(z) =

Z x

0

H
n;q
q+p;n+m(t)dt; (4.11.3)

where the H-functions Hm;p
p+q;m+n(x) and H

n;q
q+p;n+m(x) are specially given by

H
m;p
p+q;m+n

2664x
��������
�
1� ai �

�i

2
; �i

�
1;p

;

�
bi �

�i

2
; �i

�
1;q�

cj �
j

2
; j

�
1;m

;

�
1� dj �

�j

2
; �j

�
1;n

3775 (x > 0) (4.11.4)

and

H
n;q
q+p;n+m

2664x
��������
�
1� bi �

�i

2
; �i

�
1;q

;
�
ai �

�i

2
; �i

�
1;p�

dj �
�j

2
; �j

�
1;n

;
�
1� cj �

j

2
; j

�
1;m

3775 (x > 0); (4.11.5)

respectively. Kesarwani [11, Theorem 1] proved that if �i > 0 (1 5 i 5 p), �i > 0 (1 5 i 5 q), j > 0
(1 5 j 5 m), �j > 0 (1 5 j 5 n) and if the following relations are satis�ed

m � q = n� p > 0; a� = 0; � > 0;

qX
i=1

bi �

pX
i=1

ai =
mX
j=1

cj �

nX
j=1

dj ;

Re(ai) > 0 (1 5 i 5 p); Re(bi) > 0 (1 5 i 5 q);

Re(cj) > 0 (1 5 j 5 m); Re(dj) > 0 (1 5 j 5 n);

(4.11.6)

then the H-transforms (4.11.2) and (4.11.3) belong to L2(R+) provided that f(x) 2 L2(R+). Formal
di�erentiation show that (4.11.1), (4.11.2) and (4.11.3) may be represented in the form (3.1.1) with
the H-functions (1.11.1), (4.11.4) and (4.11.5) as kernels.

R.K. Saxena [8, Lemma 1] showed that a particular case of the H-transform (3.1.1) in the form

�
Hf

�
(x) =

Z
1

0

H
0;p+q
p+q;q

2664xt
��������
�

ci

mi

;
1

mi

�
1;q�

aj

p
;
1

p

�
1;p

;

�
bj

mj

;
1

mj

�
1;q

3775f(t)dt (x > 0) (4.11.7)
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with p > 0; q = 0, mi > 0 (1 5 i 5 q) belongs to L2(R+) provided that f(x) 2 L2(R+), and obtained
the formula (4.1.1) of its Mellin transform. Kalla [8, Lemma 1] proved such a result for the more
general H-transform considered by R.K. Saxena [8, (32){(34)].

Bhise and Dighe [2] (see also Dighe [1]) studied in the space Lr(R+) the compositon of the Erd�elyi{

Kober operator I
a+1=2
0+;2k;� with the generalized H-transform of the form:

�
H

�
�f
�
(x) = x�+�

Z
1

0

t�Hm;n
p;q

"
c(xt)2k

�����
(ai; �i)1;p

(bj ; �j)1;q

#
f(t)dt (x > 0) (4.11.8)

with

� =
1� � � � � 2k � ka

2k
; a� > 0; � > 0;

��arg c(xt)2k�� < a��

2
;

min
15j5m

Re(bj)

�j
+

1

2k
> 0; c > 0; k > 0;

(4.11.9)

and proved that, if a > �1=2 and x�+akf(x) 2 L1(R+), the composition again becomes the
H-transform of the same form but of greater order:�

I
a+1=2
0+;2k;�t

�+ka
H

�
kf
�
(x)

= x�+�c�a=2
Z
1

0

t�Hm;n+1
p+1;q+1

2
664c(xt)2k

��������

�
1 +

a

2
�

1

2k
; 1

�
;
�
ai +

a�i
2

; �i

�
1;p�

bj +
a�j
2
; �j

�
1;q

;

�
1� a

2
�

1

2k
; 1

�
3
775 f(t)dt: (4.11.10)

Using this relation, Bhise and Dighe [2] proved that the operator in (4.11.8) can be extended as a
bounded operator from Lr(R+) into Ls(R+), provided that

r = 1; s = 1;
1

s
= 1�

1

r
� � > 0; 0 < � +

2

r
� 1 5

1

r
;

�2k min
15j5m

Re(bj)

�j
< 1 + � + ka�

1

p
< 2k

 
1� max

15i5n

�
Re(ai)

�i
;
2k � 1

2k

�!
:

(4.11.11)

The results presented in Sections 4.1{4.8 concerning the existence, boundedness and representation
properties of the H-transforms in the weighted spaces L�;r for any 1 < r < 1 were proved by the
authors together with S.A. Shlapakov and H.-J. Glaeske in the papers by Kilbas, Saigo and Shlapakov
[2]{[3] and Glaeske, Kilbas, Saigo and Shlapakov [1]{[2], and by Betancor and Jerez Diaz [1] indepen-
dently. We only indicate that Theorems 4.1{4.4 and Theorems 4.5{4.10 were �rst given by the authors
and Shlapakov in [2] and [3], respectively in the particular case when � = 1.

It should be noted that our main tool was based on a technique of Mellin transforms developed by
Rooney [2] and applied by him in [6] to construct the L�;r-theory of G-transforms (3.1.2). The latter
is a particular case of the H-transforms (3.1.1) when �1 = � � ��p = �1 = � � � = �q = 1. Therefore
the results in Sections 4.1{4.8 are generalizations of the corresponding results by Rooney [6]. Namely
Theorems 6.1{6.4 and 7.1{7.6 in [6] follow from Theorems 4.1{4.10 if we take into account the relation
� = q � p (see Section 6.1 in this connection).

We also indicate the paper by Betancor and Jerez Diaz [2] in which the conditions were given on
a set of positive Borel measure 
 on R+ and on non-negative functions v(x) on 
 which are su�cient
for the validity of the relation

�Z
1

0

����H�f
�
(x)
���s d
(x)�1=s 5 K

�Z
1

0

jv(x)f(x)jrdx

�1=r
(4.11.12)

for the H-transform (3.3.1) and a complex-valued function f(x) on R+ having a compact support,
where 1 5 r 5 1, 1 5 s 5 1 and K is a suitable positive constant. The factorization of the
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H-transform (3.1.1), its mapping properties and inversion formulas in special spaces of functions
were presented in the book by Yakubovich and Luchko [1].

For Sections 4.9 and 4.10. The results presented in these sections on the invertibility of the
H-transforms (3.1.1) in the space L�;r with any 1 < � < 1 for a� = 0 and � = 0 or � 6= 0 were
proved by the authors together with Shlapakov in Shlapakov, Saigo and Kilbas [1]. It should be noted
that the main di�culty here is caused by the investigation of the invertibility of the H-transform in
the case � 6= 0. This problem is closely connected with �nding the explicit asymptotic expansions of
the H-function near zero and in�nity in the exceptional cases when a� = 0 and � > 0 or � < 0. Such
asymptotic expansions in Sections 1.6 and 1.9 were �rst obtained by the authors in Kilbas and Saigo
[1] (see Section 1.11).

The results in Sections 4.9 and 4.10 generalize the corresponding statements by Rooney [6, Theo-
rems 8.1{8.4] which follow from Theorems 4.11{4.14 (see Chapter 6 in this connection).

We also characterize other results on the invertability of the H-transforms (3.1.1). Fox [2] �rst
obtained the inversion formula for the integral transform (4.11.1) with the function Hq;p

2p;2q (1.11.1)
as a kernel in the space L2(R+). In [2, Theorem 5] he proved that if the conditions in (1.11.3) are
satis�ed and f(x) 2 L2(R+), then the �rst relation in (1.11.2) de�nes almost everywhere a function
g(x) 2 L2(R+) and the second relation also holds almost everywhere, and the Parseval formula holds:Z

1

0

jf(x)j2dx =

Z
1

0

jg(x)j2dx: (4.11.13)

Fox also considered the case of ordinary convergence and showed [2, Theorem 7], that, for f(t)t(1��)2� 2
L1(R+) and f(t) being of bounded variation near t = x (x > 0), if

�
Hf

�
(x) =

Z
1

0
Hq;p
2p;2q(xt)f(t)dt; (4.11.14)

then

f(x + 0) + f(x � 0)

2
=

Z
1

0

Hq;p
2p;2q(xt)(Hf)(t)dt; (4.11.15)

where Hq;p
2p;2q(x) is given by (1.11.1),

� > 0; Re(ai) >
�i(1 + �)

2�
; Re(bj) >

�j(1��)

2�
(1 5 i 5 p; 1 5 j 5 q): (4.11.16)

Kesarwani [11] extended the above results of Fox [2] to the H-transform with an unsymmetrical
Fourier kernel Hm;p

p+q;m+n(x) given by (4.11.4). In [11, Theorem 1] he derived the relations of the form
(1.11.2)

g(x) =
d

dx

Z
1

0

H2(xt)f(t)
dt

t
; f(x) =

d

dx

Z
1

0

H3(xt)g(t)
dt

t
(4.11.17)

for H2(x) and H3(x) being given in (4.11.2) and (4.11.3), and for f 2 L2(R+) provided that the
conditions in (4.11.6) are satis�ed, and he showed the analog of the Parseval relation (4.11.13):Z

1

0

jf(x)j2dx =

Z
1

0

g2(x)g3(x)dx; gi(x) =
d

dx

Z
1

0

Hi(xt)f(t)dt (i = 2; 3): (4.11.18)

In [11, Theorem 2] Kesarwani established for the H-transform

�
Hf

�
(x) =

Z
1

0

Hm;p
p+q;m+n(xt)f(t)dt (4.11.19)

the inversion formula of the form (4.11.15):

f(x + 0) + f(x � 0)

2
=

Z
1

0

Hn;q
q+p;n+m(xt)

�
Hf

�
(t)dt; (4.11.20)
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where Hn;q
q+p;n+m(x) is given by (4.11.5), under the conditions in (4.11.6) and additionally the assump-

tions

Re(ai) >
�i
2�

(1 5 i 5 p); Re(bi) >
�i
2�

(1 5 i 5 q);

Re(cj) >
j
2�

(1 5 j 5 m); Re(dj) >
�j
2�

(1 5 j 5 n);

(4.11.21)

f(t)t(1��)2� 2 L1(R+) and f(t) being of bounded variation near t = x (x > 0).
We note that R.U. Verma also used the same arguments as the above to present in [4] the results

which were essentially proved by Fox [2], while in [3] R.U. Verma showed that the H-transform�
Hf

�
(x) =

Z
1

0

Hm;0
m;m(xt)f(t)dt (4.11.22)

with the symmetrical kernel

Hm;0
m;m(x) = Hm;0

m;m

2
64x
�������
�
1� ai +

�i
2
; �i

�
1;m�

aj �
�j
2
; �j

�
1;m

3
75

has an inversion of the form (4.11.1)

f(x) =
d

dx

Z
1

0

H4(xt)f(t)
dt

t
with H4(x) =

Z x

0

Hm;0
m;m(t)dt (4.11.23)

under certain conditions. We note that the transform (4.11.22) is reduced to the transform (4.11.19)
(considered by Kesarwani [11]) if we put p = n = 0, q = m, bi = 1 � ai; ci = ai i = �i (1 5 i 5 m)
in (4.11.19) and take into acount (4.11.4).

On the basis of the Mellin transform of the composition of the Erd�elyi{Kober type fractional
integral I�

�;m;�=m = R(�; �;m) with the H-transform (4.11.7) R.K. Saxena [8, Theorem 1] obtained

the inversion formula for such a transform in terms of the inverse Laplace transform L
�1:

f(x) = p�1=2(2�)(1�p)=2

� L�1

2
4 pY
i=1

R

�
ai + i� 1

p
; k � 1; p

� qY
j=1

R

�
bj � cj
mj

; cj;mj

��
Hf

��x
p

�35 ; (4.11.24)

provided that f(x) 2 L2(R+), (Hf)(x) 2 L2(R+) and some other conditions are satis�ed. R.K. Saxena
[8, Theorem 2] also indicated the inversion of a more general H-transform than (4.11.7) on the basis
of the Mellin transform of its compositions with the Erd�elyi{Kober type operators (3.3.1) and (3.3.2).
These results were also indicated by Kalla [8]. Kumbhat [1] obtained a result similar to (4.11.24) on
the basis of the Mellin transform of the generalized fractional integrals�

Rf
�
(x) =

�x���1

�(1� �)

Z x

0
2F1

�
�; � +m; ; a

�
t

x

���
t�f(t)dt; (4.11.25)

�
Sf
�
(x) =

�x�

�(1� �)

Z x

0
2F1

�
�; � +m; ; a

�
t

x

���
t���1f(t)dt (4.11.26)

with 0 < � < 1 involving the Gauss hypergeometric function (2.9.2) in the kernel (considered by Kalla
and R.K. Saxena [1], [3]) with a more general H-transform than the one considered by R.K. Saxena
[8].

R. Singh [1] and K.C. Gupta and P.K. Mittal [1] used the Mellin transform to obtain the inversion
formulas for the integral transform with H-function (1.1.2) in the kernel with L = Li1. R. Singh [1]
considered the H-transform

�
H�;cf

�
(x) = �x

Z
1

0

Hm;n
p;q

"
cxt

�����
(ai; �i)1;p

(bj; �j)1;q

#
f(t)dt (x > 0) (4.11.27)
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with constants c 6= 0 and � 6= 0, and proved the inversion formula for x > 0 in the form

f(x) =
c

�

Z
1

0

Hq�m;p�n
p;q

"
cxt

�����
(1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q ; (1� bj � �j ; �j)1;m

#

�
�
H�;cf

�
(t)

dt

t
; (4.11.28)

provided that 0 5 n 5 p, 0 5 q 5 m, a� > 0, � > 0, f(x) is continuous on R+ with

f(x) = O (xa) (x! 0; a+ %� > �1);

f(x) = O
�
xb
�

(x!1; b+ % > �1);

x�1f(x) 2 L1(R+); % + 1 <  < %� + 1

(4.11.29)

for

% � max
15i5n

�
Re(ai)� 1

�i

�
; %� � min

15j5m

�
Re(bj)

�j

�
; (4.11.30)

and the integral in (4.11.24) exists and x��1(H�;cf)(x) 2 L1(R+). We note that when c = � = 1
and (Hf)(x) is replaced by x(Hf)(x), then (4.11.28) coincides with the relation (4.10.15) obtained by
formal di�erentiation of (4.9.1) and (4.9.2) under the integral sign (see Remark 4.2 in Section 4.10).

K.C. Gupta and P.K. Mittal [1] obtained the inversion relation

1

2
[f(x + 0) + f(x � 0)]

=
1

2�i

Z
L�1

H
m;n
p;q

"
(1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q ; (1� bj � �j ; �j)1;m

����� s
#

� s�
�
MH1;1f

�
(�s)ds (4.11.31)

for the integral trasform H1;1 in (4.11.27) with c = � = 1, provided that

a� > 0; j arg(x)j <
a��

2
; (4.11.32)

the conditions in (4.11.29) are satis�ed, f(x) is of bounded variation in the neighborhood of the point
x and the H1;1-transform of jf j exists. In [2] K.C. Gupta and P.K. Mittal proved the uniqueness result
for the H-transform (3.1.1): if

Z
1

0

t�Hm;n
p;q

"
xt

�����
(ai; �i)1;p

(bj; �j)1;q

#
f(t)dt = 0 (� 2 C ); (4.11.33)

then f(x) = 0 provided that f(x) is continuous on R+,

f(x) = O (xa) (x! 0; Re(a+ �) + %� > �1);

f(x) = O
�
xbe��x

�
(x!1; Re(�) > 0));

the conditions in (4.11.32) are satis�ed and

Re

�
(ai � 1)

�i
�

aj
�j

�
< 0 (i = 1; � � � ; n; j = n+ 1; � � � ; p);

Re

�
bi
�i

+
(1� bj)

�j

�
> 0 (i = 1; � � � ;m; j = m+ 1; � � � ; q):
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Using the relation (4.1.1) V.P. Saxena [1] and Buschman and Srivastava [1] discussed the inversion

formulas for theHm;n
p;q -transform (3.1.1) on the basis of its representation as compositions of theHM;N

P;Q -
transform of lower order (M 5 m, N 5 n, P 5 p and Q 5 q) with the known integral transforms.
V.P. Saxena [1] considered such compositions with the Laplace transform (2.5.2), the Meijer transform
(8.9.1) and the modi�ed Varma transform (7.2.15), while Buschman and Srivastava [1] considered the
Ered�elyi{Kober type fractional integral operators (3.3.1) and (3.3.2). We also mention N. Joshi and
J.M.C. Joshi [1] who obtained the real inversion theorem for a certain H-transform.

R.K. Saxena and Kushwaha [1] investigated the H-transform

�
Hf

�
(x) =

Z
1

0
Hq+n;p+m
2p+m+n;2q+n+m(xt)f(t)dt (x > 0) (4.11.34)

with the H-function kernel

Hq+n;p+m
2p+m+n;2q+n+m

"
x

�����
(1� ai; �i)1;p; (1� ci; i)1;m; (ai � �i; �i)1;p; (fi; �i)1;n

(bj; �j)1;q; (gj; �j)1;n; (1� bj � �j ; �j)1;q; (1� dj; j)1;m

#
(4.11.35)

showing that the composition of several Erd�elyi{Kober type fractional integral operators (3.3.1) and
(3.3.2) with the H-transform (4.11.34) yields the H-transform (3.1.1) with the function Hq;p

2p;2q as a
kernel and applied this result to obtain the inversion formula for the transform (4.11.34).

Using the technique of the Laplace transform L and its inverse L�1 developed by Fox [4], [5], R.U.
Verma obtained in [5] and [9] the inversion formulas for the H-transforms of the forms

�
Hf

�
(x) =

Z
1

0

H0;p
2p;q

"
xt

�����
(1� ai; �i)1;p; (ai � �i; �i)1;p

(1� bj � �j ; �j)1;q

#
f(t)dt (x > 0) (4.11.36)

and

�
Hf

�
(x) =

Z
1

0
Hq;0
p;2q

"
xt

�����
(ai � c; c)1;p

(bj; c)1;q; (1� bj � c; c)1;q

#
f(t)dt (x > 0; c > 0); (4.11.37)

respectively.
Nasim [2] treated the special H-transform (3.1.1) of the form

�
Hf

�
(x) =

Z
1

0

t�Hn;0
0;2n

"
xt

����� (bj; �j)1;n; (1� cj; �j)1;n

#
f(t)dt (� 2 C ) (4.11.38)

and suggested a method for its inversion on the basis of successive application of linear di�erential
operators of in�nite order of the type �(� + �), and operators of the type 1=�(� + �), where
� = �xd=dx.

Moharir and Raj.K. Saxena [1] established the Abelian theorems for the generalized H-transform
of the form

�
Hf

�
(x) =

Z
1

0

e�xtHm;0
p;q

"
a(xt)�

�����
(ai; �i)1;p

(bj; �j)1;q

#
f(t)dt (x > 0) (4.11.39)

with real � > 0 and � > 0 provided that a� > 0.



Chapter 5

MODIFIEDH-TRANSFORMS ON THE SPACE L�;r

5.1. Modi�ed H-Transforms

The present chapter is devoted to studying the following modi�cations of the H-transform

(3.1.1):

�
H

1f
�
(x) =

Z
1

0
Hm;n

p;q

"
x

t

�����
(ai; �i)1;p

(bj; �j)1;q

#
f(t)

dt

t
; (5.1.1)

�
H

2f
�
(x) =

Z
1

0
Hm;n

p;q

"
t

x

�����
(ai; �i)1;p

(bj; �j)1;q

#
f(t)

dt

x
; (5.1.2)

�
H�;�f

�
(x) = x�

Z
1

0
Hm;n

p;q

"
xt

�����
(ai; �i)1;p

(bj; �j)1;q

#
t�f(t)dt; (5.1.3)

�
H

1
�;�f

�
(x) = x�

Z
1

0
Hm;n

p;q

"
x

t

�����
(ai; �i)1;p

(bj; �j)1;q

#
t�f(t)

dt

t
; (5.1.4)

�
H

2
�;�f

�
(x) = x�

Z
1

0
Hm;n

p;q

"
t

x

�����
(ai; �i)1;p

(bj; �j)1;q

#
t�f(t)

dt

x
; (5.1.5)

where �; � 2 C .

These transforms are connected with the H-transform (3.1.1) by the relations�
H

1f
�
(x) =

�
HRf

�
(x); (5.1.6)

�
H

2f
�
(x) =

�
RHf

�
(x); (5.1.7)

�
H�;�f

�
(x) =

�
M�HM�f

�
(x); (5.1.8)

�
H

1
�;�f

�
(x) =

�
M�HRM�f

�
(x) =

�
M�H

1M�f
�
(x); (5.1.9)

�
H

2
�;�f

�
(x) =

�
M�RHM�f

�
(x) =

�
M�H

2M�f
�
(x); (5.1.10)

where R and M� are operators given in (3.3.13) and (3.3.11). By virtue of relations (5.1.6){

(5.1.10), (4.1.1), (3.3.14) and (3.3.16), the Mellin transforms of the modi�ed H-transforms

(5.1.1){(5.1.5) for \su�ciently good" functions f are given by the relations

�
MH

1f
�
(s) = Hm;n

p;q

"
(ai; �i)1;p

(bj; �j)1;q

����� s
# �
Mf

�
(s); (5.1.11)
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�
MH

2f
�
(s) = Hm;n

p;q

"
(ai; �i)1;p

(bj; �j)1;q

����� 1� s

# �
Mf

�
(s); (5.1.12)

�
MH�;�f

�
(s) = Hm;n

p;q

"
(ai; �i)1;p

(bj; �j)1;q

����� s + �

#�
Mf

�
(1� s � � + �); (5.1.13)

�
MH

1
�;�f

�
(s) = Hm;n

p;q

"
(ai; �i)1;p

(bj; �j)1;q

����� s + �

#�
Mf

�
(s+ � + �); (5.1.14)

�
MH

2
�;�f

�
(s) = Hm;n

p;q

"
(ai; �i)1;p

(bj; �j)1;q

����� 1� s� �

# �
Mf

�
(s + � + �); (5.1.15)

where Hm;n
p;q

"
(ai; �i)1;p
(bj; �j)1;q

����� s
#
is the function de�ned in (1.1.2).

It is directly veri�ed that for the \su�ciently good" functions f and g the following

formulas hold Z
1

0
f(x)

�
H

1g
�
(x)dx =

Z
1

0

�
H

2f
�
(x)g(x)dx; (5.1.16)

Z
1

0
f(x)

�
H

2g
�
(x)dx =

Z
1

0

�
H

1f
�
(x)g(x)dx; (5.1.17)

Z
1

0
f(x)

�
H�;�g

�
(x)dx =

Z
1

0

�
H�;�f

�
(x)g(x)dx; (5.1.18)

Z
1

0
f(x)

�
H

1
�;�g

�
(x)dx =

Z
1

0

�
H

2
�;�f

�
(x)g(x)dx; (5.1.19)

Z
1

0
f(x)

�
H

2
�;�g

�
(x)dx =

Z
1

0

�
H

1
�;�f

�
(x)g(x)dx: (5.1.20)

Remark 5.1 The relations (5.1.16){(5.1.20) are the analog of the formulas of fractional

integration by parts for the fractional integration operators (2.7.1) , (2.7.2) and (3.3.1), (3.3.2)

(see (2.20) and (18.18) in the book by Samko, Kilbas and Marichev [1]).

By Lemma 3.1(i),(iii) the operators M� and R are isometric isomorphisms of L�;r onto

L��Re(�);r and L1��;r ; respectively. Then (5.1.6){(5.1.10) imply that the properties of the

transforms (5.1.1){(5.1.5) in L�;r-spaces are similar to those for the H-transforms (3.1.1) in-

vestigated in Chapters 3 and 4. We shall prove these properties in the following sections. We

begin from the transform (5.1.1).

5.2. H1-Transform on the Space L�;r

We consider the transform H1 de�ned in (5.1.1). Since the operator R is an isometric iso-

morphism of L�;r onto L1��;r : R(L�;r) = L1��;r , (5.1.6) and (5.1.11) show that we can apply

the results in Chapters 3 and 4 for the transform H to obtain the corresponding results for

the transformH1.
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We still use the notation a�; �; �; �; a�1; a
�

2; � and � in (1.1.7), (1.1.8), (1.1.9), (1.1.10),

(1.1.11), (1.1.12), (3.4.1) and (3.4.2), and let EH be the exceptional set of the functionHm;n
p;q (s)

in (1.1.2) given in De�nition 3.4. >From Theorems 3.6, 3.7 and 4.1{4.10 we obtain the L�;2-

and L�;r-theory of the modi�ed tranformH1 in (5.1.1). First we give the former.

Theorem 5.1. Suppose that (a) � < � < � and that either of conditions (b) a� > 0;

or (c) a� = 0; �� +Re(�) 5 0 holds. Then we have the following results:

(i) There is a one-to-one transformH1 2 [L�;2; L�;2] such that (5:1:11) holds forRe(s) = �

and f 2 L�;2. If a
� = 0; �� + Re(�) = 0 and 1� � =2 EH ; then the transformH1 maps L�;2

onto L�;2.

(ii) If f 2 L�;2 and g 2 L1��;2; then the relation (5:1:16) holds for H1.

(iii) Let � 2 C ; h > 0 and f 2 L�;2. When Re(�) > �h� 1; H1f is given by�
H

1f
�
(x)

= hx1�(�+1)=h
d

dx
x(�+1)h

Z
1

0
Hm;n+1

p+1;q+1

"
x

t

����� (��; h); (ai; �i)1;p(bj ; �j)1;q; (��� 1; h)

#
f(t)

t
dt: (5.2.1)

When Re(�) < �h� 1;�
H

1f
�
(x)

= �hx1�(�+1)=h
d

dx
x(�+1)=h

Z
1

0
Hm+1;n

p+1;q+1

"
x

t

����� (ai; �i)1;p; (��; h)(��� 1; h); (bj; �j)1;q

#
f(t)

t
dt: (5.2.2)

(iv) The transformH1 is independent of � in the sense that; if � and e� satisfy (a), and

either (b) or (c), and if the transforms H1 and g
H

1 are de�ned in L�;2 and Le�;2 respectively

by (5:1:11); then H1f = g
H

1f for f 2 L�;2 \ Le�;2.
(v) If a� > 0 or if a� = 0; �� +Re(�) < 0; then for f 2 L�;2; H

1f is given in (5.1.1).

Proof. Due to (5.1.6) and R(L�;2) = L1��;2, the results in (i), (iv) and (v) follow by

virtue of the corresponding statements for theH-transform (3.1.1) given in Theorems 3.6 and

3.7. For \su�ciently good" functions f and g, (5.1.16) is veri�ed directly. In fact, for f 2 L�;2
and g 2 L1��;2 it is su�cient to show that both sides of (5.1.16) represent bounded linear

functionals on L�;2 � L1��;2. From (i) and the Schwarz inequality (3.5.6) we have����Z 1

0
f(x)

�
H

1g
�
(x)dx

���� =

����Z 1

0
[x��1=2f(x)][x1=2��

�
H

1g
�
(x)]dx

����
5 kfk�;2

H1g

1��;2

5 Kkfk�;2kgk1��;2;

where K is a bound forH 2 [L�;2]: Hence, the left-hand side in (5.1.16) represents a bounded

bilinear functional on L�;2�L1��;2. It is similar for the right side of (5.1.16), which proves (ii).

The formulas (5.2.1) and (5.2.2) are proved on the basis of the corresponding representations

for the H-transform (3.1.1) given in (3.6.2) and (3.6.3). For f 2 L�;2 and Re(�) > �h� 1, in

view of R(L�;2) = L1��;2, (5.1.6) and (3.6.2) imply�
H

1f
�
(x) =

�
HRf

�
(x)
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= hx1�(�+1)=h
d

dx
x(�+1)=h

Z
1

0
H

m;n+1
p+1;q+1

"
x

����� (��; h); (ai; �i)1;p(bj ; �j)1;q; (�1� �; h)

#
1

t
f

�
1

t

�
dt;

which yields (5.2.1) after replacing t by 1=t in the integrand. (5.2.2) is proved similarly by

using (5.1.6) and (3.6.3). Thus (iii) is established, which completes the proof of the theorem.

Now on the basis of the results in Sections 4.1{4.4 and by using (5.1.6) and Lemma 3.1(iii),

we present the L�;r-theory of the transformH1 in (5.1.1) when a� = 0. From Theorems 4.1{

4.4 taking into account the isomorphic property R(L�;r) = L1��;r, we obtain the mapping

properties and the range of H1 on L�;r in three di�erent cases when either � = Re(�) = 0 or

� = 0; Re(�) < 0 or � 6= 0.

Theorem 5.2. Let a� = � = 0;Re(�) = 0; � < � < � and let 1 < r <1.

(a) The transformH1 de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L�;r].

(b) If 1 < r 5 2; then the transformH1 is one-to-one on L�;r and there holds the equality

(5:1:11) for f 2 L�;r and Re(s) = �.

(c) If f 2 L�;r and g 2 L1��;r0 with r0 = r=(r� 1); then the relation (5:1:16) holds.

(d) If 1� � =2 EH ; then the transformH1 is one-to-one on L�;r and there holds

H
1(L�;r) = L�;r: (5.2.3)

(e) If f 2 L�;r; � 2 C and h > 0; then H1f is given in (5:2:1) for Re(�) > �h � 1; while

in (5:2:2) for Re(�) < �h� 1:

Theorem 5.3. Let a� = � = 0;Re(�) < 0; � < � < �; and let either m > 0 or n > 0.

Let 1 < r <1.

(a) The transformH1 de�ned on L�;2 can be extended to L�;r as an element of [L�;r ;L�;s]

for all s = r such that 1=s > 1=r+ Re(�).

(b) If 1 < r 5 2; then the transformH1 is one-to-one on L�;r and there holds the equality

(5:1:11) for f 2 L�;r and Re(s) = �.

(c) If f 2 L�;r and g 2 L1��;s with 1 < s < 1 and 1 5 1=r+ 1=s < 1� Re(�); then the

relation (5:1:16) holds.

(d) Let k > 0. If 1� � =2 EH ; then the transformH1 is one-to-one on L�;r and there hold

H
1 (L�;r) = I��

�;k;��=k (L�;r) (5.2.4)

for m > 0; and

H
1 (L�;r) = I��0+;k;�=k�1 (L�;r) (5.2.5)

for n > 0. When 1�� 2 EH ;H
1 (L�;r) is a subset of the right-hand sides of (5:2:4) and (5:2:5)

in the respective cases.

(e) If f 2 L�;r; � 2 C and h > 0; then H1f is given in (5:2:1) for Re(�) > �h � 1; while

in (5:2:2) for Re(�) < �h� 1. Furthermore H1f is given in (5:1:1):

Theorem 5.4. Let a� = 0;� 6= 0; � < � < �; 1 < r <1 and �� + Re(�) 5 1=2� (r):

Assume that m > 0 if � > 0 and n > 0 if � < 0.
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(a) The transformH1 de�ned on L�;2 can be extended to L�;r as an element of [L�;r ;L�;s]

for all s with r 5 s <1 such that s0 = [1=2��� �Re(�)]�1 with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; then the transformH1 is one-to-one on L�;r and there holds the equality

(5:1:11) for f 2 L�;r and Re(s) = �.

(c) If f 2 L�;r and g 2 L1��;s with 1 < s < 1; 1=r+ 1=s = 1 and �� + Re(�) 5 1=2�

max[(r); (s)]; then the relation (5:1:16) holds.

(d) If 1�� =2 EH ; then the transformH1 is one-to-one on L�;r. If we set � = ������1

for � > 0 and � = ��� � � � 1 for � < 0; then Re(�) > �1 and there holds

H
1(L�;r) =

�
M�=�+1=2H�;�

��
L1=2���Re(�)=�;r

�
: (5.2.6)

When 1� � 2 EH ; H
1(L�;r) is a subset of the right-hand side of (5:2:6).

(e) If f 2 L�;r; � 2 C ; h > 0 and �� +Re(�) 5 1=2� (r); then H1f is given in (5:2:1)

for Re(�) > �h� 1; while in (5:2:2) for Re(�) < �h� 1. If furthermore �� +Re(�) < 0;H1f

is given in (5.1.1).

From Theorem 4.5 we obtain the L�;r-theory of the transform H1 in (5.1.1) with a� > 0

in L�;r-spaces for any � 2 R and 1 5 r 5 1:

Theorem 5.5. Let a� > 0; � < � < � and 1 5 r 5 s 5 1:

(a) The transformH1 de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L�;s].

If 1 5 r 5 2; then H1 is a one-to-one transform from L�;r onto L�;s.

(b) If f 2 L�;r and g 2 L1��;s0 with 1=s+ 1=s0 = 1; then the relation (5:1:16) holds.

According to Theorems 4.6{4.10 and the isomorphic property R(L�;r) = L1��;r we char-

acterize the boundedness and the range of H1 on L�;r which will be di�erent in �ve cas-

es: a�1 > 0; a�2 > 0; a�1 > 0; a�2 = 0; a�1 = 0; a�2 > 0; a� > 0; a�1 > 0; a�2 < 0; and

a� > 0; a�1 < 0; a�2 > 0:

Theorem 5.6. Let a�1 > 0; a�2 > 0; m > 0; n > 0; � < � < � and ! = �+ a�1�� a�2� + 1

and let 1 < r <1:

(a) If 1� � =2 EH ; or if 1 5 r 5 2; then the transformH1 is one-to-one on L�;r .

(b) If Re(!) = 0 and 1� � =2 EH ; then

H
1(L�;r) =

�
La�

1
;�La�

2
;1���!=a�

2

�
(L�;r): (5.2.7)

When 1� � 2 EH ; H
1(L�;r) is a subset of the right-hand side of (5:2:7):

(c) If Re(!) < 0 and 1� � =2 EH ; then

H
1(L�;r) =

�
I�!
�;1=a�

1
;�a�

1
�La�

1
;�La�

2
;1��

�
(L�;r): (5.2.8)

When 1� � 2 EH ; H
1(L�;r) is a subset of the right-hand side of (5.2.8).

Theorem 5.7. Let a�1 > 0; a�2 = 0; m > 0; � < � < � and ! = � + a�1� + 1=2 and let

1 < r <1:

(a) If 1� � =2 EH ; or if 1 < r 5 2; then the transformH1 is one-to-one on L�;r .
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(b) If Re(!) = 0 and 1� � =2 EH ; then

H
1(L�;r) = La�

1
;��!=a�

1

(L1��;r): (5.2.9)

When 1� � 2 EH ; H
1(L�;r) is a subset of the right-hand side of (5:2:9):

(c) If Re(!) < 0 and 1� � =2 EH ; then

H
1(L�;r) =

�
I�!
�;1=a�

1
;�a�

1
�La

�

1
;�

�
(L1��;r): (5.2.10)

When 1� � 2 EH ; H
1(L�;r) is a subset of the right-hand side of (5.2.10).

Theorem 5.8. Let a�1 = 0; a�2 > 0; n > 0; � < � < � and ! = � � a�2� + 1=2 and let

1 < r <1:

(a) If 1� � =2 EH ; or if 1 < r 5 2; then the transformH1 is one-to-one on L�;r .

(b) If Re(!) = 0 and 1� � =2 EH ; then

H
1(L�;r) = L�a�

2
;�+!=a�

2

(L1��;r): (5.2.11)

When 1� � 2 EH ; H
1(L�;r) is a subset of the right-hand side of (5:2:11):

(c) If Re(!) < 0 and 1� � =2 EH ; then

H
1(L�;r) =

�
I�!0+;1=a�

2
;a�
2
��1L�a

�

2
;�

�
(L1��;r): (5.2.12)

When 1� � 2 EH ; H
1(L�;r) is a subset of the right-hand side of (5.2.12).

Theorem 5.9. Let a� > 0; a�1 > 0; a�2 < 0; � < � < � and let 1 < r <1:

(a) If 1� � =2 EH ; or if 1 < r 5 2; then the transformH1 is one-to-one on L�;r .

(b) Let !; �; � 2 C be chosen as

! = a�� � � �
1

2
; (5.2.13)

a�Re(�) = (r)� 2a�2� + Re(�); (5.2.14)

Re(�) > ��; (5.2.15)

Re(�) < �: (5.2.16)

If 1� � =2 EH ; then

H
1(L�;r) =

�
M1=2+!=(2a�

2
)H�2a�

2
;2a�

2
�+!�1L�a�;1=2+��!=(2a�

2
)

��
L�+1=2+Re(!)=(2a�

2
);r

�
: (5.2.17)

When 1� � 2 EH ; H
1(L�;r) is a subset of the right-hand side of (5.2.17).

Theorem 5.10. Let a� > 0; a�1 < 0; a�2 > 0; � < � < � and let 1 < r <1:

(a) If 1� � =2 EH ; or if 1 < r 5 2; then the transformH1 is one-to-one on L�;r .

(b) Let !; �; � 2 C be chosen as

! = a�� ��� ��
1

2
; (5.2.18)

a�Re(�) = (r) + 2a�1(� � 1) + �+Re(�); (5.2.19)

Re(�) > � � 1; (5.2.20)

Re(�) < 1� �: (5.2.21)
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If 1� � =2 EH ; then

H
1(L�;r) =

�
M�1=2�!=(2a�

1
)H 2a�

1
;2a�

1
�+!�1La�;1=2��+!=(2a�

1
)

��
L��1=2�Re(!)=(2a�

1
);r

�
: (5.2.22)

When 1� � 2 EH ; H
1(L�;r) is a subset of the right-hand side of (5.2.22).

To obtain the inversion formulas for the transform H1f of (5.1.1) with f 2 L�;r ; we

note that, in view of (5.1.6) and Lemma 3.1(iii), this transform is just the transform Hg of

g = Rf 2 L�;1�r:

Hg =H1f: (5.2.23)

Therefore, if a� = 0; from (4.9.1) and (4.9.2) we come to the inversion formula for Rf of the

form �
Rf

�
(x) = hx1�(�+1)=h

d

dx
x(�+1)=h

�

Z
1

0
H

q�m;p�n+1
p+1;q+1

"
xt

����� (��; h); (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j; �j)m+1;q; (1� bj � �j ; �j)1;m; (��� 1; h)

#

�
�
H

1f
�
(t)dt (5.2.24)

or �
Rf

�
(x) = �hx1�(�+1)=h

d

dx
x(�+1)=h

�

Z
1

0
Hq�m+1;p�n

p+1;q+1

"
xt

����� (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n; (��; h)

(��� 1; h); (1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m

#

�
�
H

1f
�
(t)dt: (5.2.25)

By noting that the operator R�1; the inverse to the operator R in (3.3.13), coincides with R;

then the directly veri�ed relation for D = d=dx and for M� given in (3.3.11)

RM��DM�+1 = �M�+1DM��R (5.2.26)

implies the inversion formulas for the transformH1 in (1.5.1) in the form

f(x) = �hx(�+1)=h
d

dx
x�(�+1)=h

�
Z
1

0
Hq�m;p�n+1

p+1;q+1

"
t

x

����� (��; h); (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m; (��� 1; h)

#

�
�
H

1f
�
(t)dt (5.2.27)

or

f(x) = hx(�+1)=h
d

dx
x�(�+1)=h

�
Z
1

0
Hq�m;p�n+1

p+1;q+1

"
t

x

����� (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n; (��; h)

(��� 1; h); (1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m

#

�
�
H

1f
�
(t)dt: (5.2.28)
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The conditions for the validity of (5.2.27) and (5.2.28) follow from Theorems 4.11{4.14 by

taking the numbers �0 and �0 in (4.9.6) and (4.9.7). Thus we obtain the following inversion

theorems for the transformH1 in (5.1.1) in the cases when a� = 0 and either � = 0 or � 6= 0.

Theorem 5.11. Let a� = 0; � < � < � and �0 < 1� � < �0; and let � 2 C ; h > 0.

(a) If �� + Re(�) = 0 and f 2 L�;2; then the inversion formula (5:2:27) holds for

Re(�) > (1� �)h� 1 and (5:2:28) for Re(�) < (1� �)h � 1.

(b) If � = Re(�) = 0 and f 2 L�;r (1 < r < 1); then the inversion formula (5:2:27)

holds for Re(�) > (1� �)h� 1 and (5:2:28) for Re(�) < (1� �)h� 1.

Theorem 5.12. Let a� = 0; 1 < r < 1 and �� + Re(�) 5 1=2� (r); and let � 2 C ;

h > 0.

(a) If � > 0; m > 0; � < � < �; �0 < 1 � � < min[�0; fRe(� + 1=2)=�g + 1] and if

f 2 L�;r; then the inversion formulas (5:2:27) and (5:2:28) hold for Re(�) > (1� �)h� 1 and

for Re(�) < (1� �)h� 1; respectively.

(b) If � < 0; n > 0; � < � < �; max[�0; fRe(� + 1=2)=�g + 1] < 1 � � < �0 and if

f 2 L�;r; then the inversion formulas (5:2:27) and (5:2:28) hold for Re(�) > (1� �)h� 1 and

for Re(�) < (1� �)h� 1; respectively.

5.3. H2-Transform on the Space L�;r

We consider the transform H2 de�ned in (5.1.2). It was shown in Lemma 3.1(iii) that R in

(3.3.11) is an isometric isomorphism of L�;r onto L1��;r: R(L�;r) = L1��;r . Therefore, as in

the previous section, on the basis of (5.1.7) and (5.1.12) we can apply the results for H in

Chapters 3 and 4 to obtain the corresponding results for the transformH2. From Theorems

3.6, 3.7 and 4.1{4.10 we obtain the L�;2- and L�;r-theory of the modi�ed H-transform H2.

First we present the former.

Theorem 5.13. Suppose that (a) � < 1 � � < � and that either of conditions (b)

a� > 0; or (c) a� = 0; �(1� �) + Re(�) 5 0 holds. Then we have the following results:

(i) There is a one-to-one transformH22 [L�;2; L�;2] such that (5:1:12) holds forRe(s) = �

and f 2 L�;2. If a� = 0; �(1� �) + Re(�) = 0 and � =2 EH ; then the transformH2 maps L�;2

onto L�;2.

(ii) If f 2 L�;2 and g 2 L1��;2; then the relation (5:1:17) holds for H2.

(iii) Let � 2 C ; h > 0 and f 2 L�;2: When Re(�) > (1� �)h � 1; H2f is given by�
H

2f
�
(x)

= �hx(�+1)=h
d

dx
x�(�+1)=h

Z
1

0
H

n;m+1
q+1;p+1

"
t

x

����� (��; h); (ai; �i)1;p(bj ; �j)1;q; (��� 1; h)

#
f(t)dt: (5.3.1)

When Re(�) < (1� �)h� 1;�
H

2f
�
(x)
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= hx(�+1)=h
d

dx
x�(�+1)=h

Z
1

0
H

m+1;n
p+1;q+1

"
t

x

����� (ai; �i)1;p; (��; h)(��� 1; h); (bj; �j)1;q

#
f(t)dt: (5.3.2)

(iv) The transformH2 is independent of � in the sense that; if � and e� satisfy (a), and

either (b) or (c), and if the transforms H2 and
g
H

2 are de�ned in L�;2 and Le�;2 respectively

by (5:1:12); then H2f = g
H

2f for f 2 L�;2 \ Le�;2.
(v) If a� > 0 or if a� = 0; �(1 � �) + Re(�) < 0; then for f 2 L�;2; H

2f is given in

(5.1.2).

Proof. Statements (i), (iii), (iv) and (v) follow from Theorem 3.6 and 3.7, and we only

note that the representations (5.3.1) and (5.3.2) are proved similar to (5.2.27) and (5.2.28) on

the basis of the representations (3.6.2) and (3.6.3) by using (5.2.26). (ii) is proved similarly

to that in Theorem 5.1.

Applying the results in Sections 4.1{4.4 by using (5.1.7) and Lemma 3.1(iii) we present

the L�;r-theory of the transform H2 in (5.1.2) when a� = 0. From Theorems 4.1{4.4 we ob-

tain the mapping properties and the range of H2 on L�;r in three di�erent cases when either

� = Re(�) = 0 or � = 0; Re(�) < 0 or � 6= 0. Note that (5.3.3), (5.3.4), (5.3.5) and (5.3.6)

follow from (5.1.7) and (4.1.1), (4.2.1), (4.2.2) and (4.3.1), (4.4.1), if we take into account

the isomorphic property R(L�;r) = L1��;r and the relations (3.3.17), (3.3.21) and (3.3.18) in

Lemma 3.2.

Theorem 5.14. Let a� = � = 0;Re(�) = 0; � < 1� � < � and let 1 < r <1.

(a) The transformH2 de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L�;r].

(b) If 1 < r 5 2; then the transformH2 is one-to-one on L�;r and there holds the equality

(5:1:12) for f 2 L�;r and Re(s) = �:

(c) If f 2 L�;r and g 2 L1��;r0 with r0 = r=(r� 1); then the relation (5:1:17) holds.

(d) If � =2 EH ; then the transformH2 is one-to-one on L�;r and there holds

H
2(L�;r) = L�;r: (5.3.3)

(e) If f 2 L�;r; � 2 C and h > 0 then H2f is given in (5:3:1) for Re(�) > (1� �)h � 1;

while in (5:3:2) for Re(�) < (1� �)h � 1:

Theorem 5.15. Let a� = � = 0;Re(�) < 0 and � < 1� � < �; and let either m > 0 or

n > 0. Let 1 < r <1.

(a) The transformH2 de�ned on L�;2 can be extended to L�;r as an element of [L�;r ;L�;s]

for all s = r such that 1=s > 1=r+ Re(�).

(b) If 1 < r 5 2; then the transformH2 is one-to-one on L�;r and there holds the equality

(5:1:12) for f 2 L�;r and Re(s) = �:

(c) If f 2 L�;r and g 2 L1��;s with 1 < s < 1 and 1 5 1=r+ 1=s < 1� Re(�); then the

relation (5:1:17) holds.

(d) Let k > 0. If � =2 EH ; then the transformH2 is one-to-one on L�;r and there hold

H
2 (L�;r) = I��0+;k;(1��)=k�1 (L�;r) (5.3.4)
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for m > 0; and

H
2 (L�;r) = I��

�;k;(��1)=k (L�;r) (5.3.5)

for n > 0. When � 2 EH ; H
2 (L�;r) is a subset of the right-hand sides of (5:3:4) and (5:3:5)

in the respective cases.

(e) If f 2 L�;r ; � 2 C and h > 0; then H2f is given in (5:3:1) for Re(�) > (1� �)h� 1;

while in (5:3:2) for Re(�) < (1� �)h � 1. FurthermoreH2f is given in (5:1:2):

Theorem 5.16. Let a� = 0;� 6= 0; � < 1 � � < �; 1 < r < 1 and �(1 � �) +

Re(�) 5 1=2� (r): Assume that m > 0 if � > 0 and n > 0 if � < 0.

(a) The transformH2 de�ned on L�;2 can be extended to L�;r as an element of [L�;r ;L�;s]

for all s with r 5 s <1 such that s0 = [1=2��(1� �)� Re(�)]�1 with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; then the transformH2 is one-to-one on L�;r and there holds the equality

(5:1:12) for f 2 L�;r and Re(s) = �:

(c) If f 2 L�;r and g 2 L1��;s with 1 < s <1; 1=r+1=s = 1 and �(1��)+Re(�) 5 1=2�

max[(r); (s)]; then the relation (5:1:17) holds.

(d) If � =2 EH ; then the transformH2 is one-to-one on L�;r. If we set � = ��� � � � 1

for � > 0 and � = ��� � � � 1 for � < 0; then Re(�) > �1 and there holds

H
2(L�;r) =

�
M��=��1=2H��;�

� �
L3=2��+Re(�)=�;r

�
: (5.3.6)

When � 2 EH ; H
2(L�;r) is a subset of the right-hand side of (5:3:6):

(e) If f 2 L�;r ; � 2 C ; h > 0 and �(1 � �) + Re(�) 5 1=2 � (r); then H2f is given in

(5:3:1) for Re(�) > (1 � �)h � 1; while in (5:3:2) for Re(�) < (1 � �)h � 1. If furthermore

�(1� �) + Re(�) < 0; H2f is given in (5.1.2).

From Theorem 4.5 we obtain the L�;r-theory of the transform H2 in (5.1.2) with a� > 0

in L�;r-space for any � 2 R and 1 5 r 5 1:

Theorem 5.17. Let a� > 0; � < 1� � < � and 1 5 r 5 s 5 1:

(a) The transformH2 de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L�;s].

If 1 5 r 5 2; then H2 is a one-to-one transform from L�;r onto L�;s.

(b) If f 2 L�;r and g 2 L1��;s0 with 1=s+ 1=s0 = 1; then the relation (5:1:17) holds.

Due to Theorems 4.6{4.10, we characterize the boundedness and the range of H2 on

L�;r which are di�erent in �ve cases: a�1 > 0; a�2 > 0; a�1 > 0; a�2 = 0; a�1 = 0; a�2 > 0;

a� > 0; a�1 > 0; a�2 < 0; and a� > 0; a�1 < 0; a�2 > 0: For these �ve cases, such results on

the transform H2 can be obtained by virtue of (5.1.7) and by invoking Theorems 4.6{4.10

and Lemma 3.2. Note that (5.3.7){(5.3.8), (5.3.9){(5.3.10), (5.3.11){(5.3.12) and (5.3.17),

(5.3.22) follow from (5.1.7) and (4.6.1){(4.6.2), (4.7.1){(4.7.2), (4.7.15){(4.7.16) and (4.8.5),

(4.8.17) in accordance with the isomorphic property R(L�;r) = L1��;r and (3.3.18), (3.3.17)

and (3.3.21).

Theorem 5.18. Let a�1 > 0; a�2 > 0; m > 0; n > 0; � < 1�� < � and ! = �+a�1��a
�

2�+1

and let 1 < r <1:
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(a) If � =2 EH ; or if 1 5 r 5 2; then the transformH2 is one-to-one on L�;r.

(b) If Re(!) = 0 and � =2 EH ; then

H
2(L�;r) =

�
L�a�

1
;1��L�a�

2
;�+!=a�

2

�
(L�;r): (5.3.7)

When � 2 EH ; H
2(L�;r) is a subset of the right-hand side of (5:3:7):

(c) If Re(!) < 0 and � =2 EH ; then

H
2(L�;r) =

�
I�!0+;1=a�

1
;(1��)a�

1
�1L�a

�

1
;1��L�a�

2
;�

�
(L�;r): (5.3.8)

When � 2 EH ; H
2(L�;r) is a subset of the right-hand side of (5.3.8).

Theorem 5.19. Let a�1 > 0; a�2 = 0; m > 0; � < 1� � < � and ! = � + a�1� + 1=2 and

let 1 < r <1:

(a) If � =2 EH ; or if 1 < r 5 2; then the transformH2 is one-to-one on L�;r.

(b) If Re(!) = 0 and � =2 EH ; then

H
2(L�;r) = L�a�

1
;1��+!=a�

1

(L1��;r): (5.3.9)

When � 2 EH ; H
2(L�;r) is a subset of the right-hand side of (5:3:9):

(c) If Re(!) < 0 and � =2 EH ; then

H
2(L�;r) =

�
I�!0+;1=a�

1
;(1��)a�

1
�1L�a

�

1
;1��

�
(L1��;r): (5.3.10)

When � 2 EH ; H
2(L�;r) is a subset of the right-hand side of (5.3.10).

Theorem 5.20. Let a�1 = 0; a�2 > 0; n > 0; � < 1� � < � and ! = �� a�2� + 1=2 and let

1 < r <1:

(a) If � =2 EH ; or if 1 < r 5 2; then the transformH2 is one-to-one on L�;r.

(b) If Re(!) = 0 and � =2 EH ; then

H
2(L�;r) = La�

2
;1���!=a�

2

(L1��;r): (5.3.11)

When � 2 EH ; H
2(L�;r) is a subset of the right-hand side of (5:3:11):

(c) If Re(!) < 0 and � =2 EH ; then

H
2(L�;r) =

�
I�!
�;1=a�

2
;a�
2
(��1)La

�

2
;1��

�
(L1��;r): (5.3.12)

When � 2 EH ; H
2(L�;r) is a subset of the right-hand side of (5.3.12).

Theorem 5.21. Let a� > 0; a�1 > 0; a�2 < 0; � < 1� � < � and let 1 < r <1:

(a) If � =2 EH ; or if 1 < r 5 2; then the transformH2 is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� � � �
1

2
; (5.3.13)

a�Re(�) = (r) + 2a�2(� � 1) + Re(�); (5.3.14)

Re(�) > � � 1; (5.3.15)

Re(�) < 1� �: (5.3.16)
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If � =2 EH ; then

H
2(L�;r) =

�
M�1=2�!=(2a�

2
)H 2a�

2
;2a�

2
�+!�1La�;1=2��+!=(2a�

2
)

��
L��1=2�Re(!)=(2a�

2
);r

�
: (5.3.17)

When � 2 EH ; H
2(L�;r) is a subset of the right-hand side of (5.3.17).

Theorem 5.22. Let a� > 0; a�1 < 0; a�2 > 0; � < 1� � < � and let 1 < r <1:

(a) If � =2 EH ; or if 1 < r 5 2; then the transformH2 is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� ��� ��
1

2
; (5.3.18)

a�Re(�) = (r)� 2a�1� + �+Re(�); (5.3.19)

Re(�) > ��; (5.3.20)

Re(�) < �: (5.3.21)

If � =2 EH ; then

H
2(L�;r) =

�
M1=2+!=(2a�

1
)H�2a�

1
;2a�

1
�+!�1L�a�;1=2+��!=(2a�

1
)

��
L�+1=2+Re(!)=(2a�

1
);r

�
: (5.3.22)

When � 2 EH ; H
2(L�;r) is a subset of the right-hand side of (5.3.22).

To obtain the inversion formulas for the transformH2 when a� = 0; we note that (5.1.2)

is equivalent to

Hf = RH2f (f 2 L�;r) (5.3.23)

by virtue of the isometric property R(L�;r) = L1��;r and the fact that the inverse of the

operator R�1 of R coincides with R. Then, if a� = 0; from the results in Sections 4.9 and

4.10 we obtain the following inversion by replacing Hf by RH2f in (4.9.1) and (4.9.2), and

we have

f(x) = hx1�(�+1)=h
d

dx
x(�+1)=h

�

Z
1

0
H

q�m;p�n+1
p+1;q+1

"
x

t

����� (��; h); (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m; (��� 1; h)

#

�
1

t

�
H

2f
�
(t)dt (5.3.24)

or

f(x) = �hx1�(�+1)=h
d

dx
x(�+1)=h

�

Z
1

0
Hq�m+1;p�n

p+1;q+1

"
x

t

����� (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n; (��; h)

(��� 1; h); (1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m

#

�
1

t

�
H

2f
�
(t)dt: (5.3.25)
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The conditions for the validity of (5.5.27) and (5.5.28) follow from Theorems 4.11{4.14.

Thus we obtain the following inversion theorems for the transformH2 for a� = 0 and either

� = 0 or � 6= 0, where �0 and �0 are given in (4.9.6) and (4.9.7).

Theorem 5.23. Let a� = 0; � < 1� � < � and �0 < � < �0; and let � 2 C ; h > 0.

(a) If �(1� �) + Re(�) = 0 and f 2 L�;2; then the inversion formula (5:3:24) holds for

Re(�) > �h � 1 and (5:3:25) for Re(�) < �h � 1.

(b) If � = Re(�) = 0 and f 2 L�;r (1 < r < 1); then the inversion formula (5:3:24)

holds for Re(�) > �h� 1 and (5:3:25) for Re(�) < �h � 1.

Theorem 5.24. Let a� = 0; 1 < r < 1 and �(1 � �) + Re(�) 5 1=2 � (r); and let

� 2 C ; h > 0.

(a) If � > 0; m > 0; � < 1 � � < �; �0 < � < min[�0; fRe(� + 1=2)=�g + 1] and if

f 2 L�;r; then the inversion formulas (5:3:24) and (5:3:25) hold for Re(�) > �h � 1 and for

Re(�) < �h � 1; respectively.

(b) If � < 0; n > 0; � < 1 � � < �; max[�0; fRe(� + 1=2)=�g + 1] < � < �0 and if

f 2 L�;r; then the inversion formulas (5:3:24) and (5:3:25) hold for Re(�) > �h � 1 and for

Re(�) < �h � 1; respectively.

5.4. H�;�-Transform on the Space L�;r

We proceed to the transformH�;� de�ned in (5.1.3). Due to Lemma 3.1(i),M� is an isometric

isomorphism of L�;r onto L��Re(�);r:

M�(L�;r) = L��Re(�);r: (5.4.1)

Therefore (5.1.8) and (5.1.13) show that we can apply the results which were proved in Chap-

ters 3 and 4 for the transform H , by replacing � by � � Re(�) to obtain the corresponding

results for the transformH�;�.

From Theorems 3.6, 3.7 and 4.1 - 4.10 we obtain the L�;2- and L�;r-theory of the modi�ed

tranformH�;�. First we give the former.

Theorem 5.25. Suppose that (a) � < 1� � +Re(�) < � and that either of conditions

(b) a� > 0; or (c) a� = 0; �[1� � +Re(�)]+Re(�) 5 0 holds. Then we have the following

results:

(i) There is a one-to-one transformH�;� 2 [L�;2; L1��+Re(���);2] such that (5:1:13) holds

for Re(s) = 1 � � + Re(� � �) and f 2 L�;2. If a� = 0; �[1 � � + Re(�)] + Re(�) = 0 and

� � Re(�) =2 EH ; then the transformH�;� maps L�;2 onto L1��+Re(���);2.

(ii) If f 2 L�;2 and g 2 L�+Re(���);2; then the relation (5:1:18) holds for H�;�.

(iii) Let � 2 C ; h > 0 and f 2 L�;2: When Re(�) > [1� � + Re(�)]h� 1; H�;�f is given

by

�
H�;�f

�
(x) = hx�+1�(�+1)=h

d

dx
x(�+1)h
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�

Z
1

0
H

m;n+1
p+1;q+1

"
xt

����� (��; h); (ai; �i)1;p(bj ; �j)1;q; (��� 1; h)

#
t�f(t)dt: (5.4.2)

When Re(�) < [1� � + Re(�)]h� 1;

�
H�;�f

�
(x) = �hx�+1�(�+1)=h

d

dx
x(�+1)=h

�

Z
1

0
Hm+1;n

p+1;q+1

"
xt

����� (ai; �i)1;p; (��; h)(��� 1; h); (bj; �j)1;q

#
t�f(t)dt: (5.4.3)

(iv) The transformH�;� is independent of � in the sense that; if � and e� satisfy (a), and

(b) or (c), and if the transforms H�;� and fH�;� are de�ned in L�;2 and Le�;2 respectively by

(5:1:13); then H�;�f = fH�;�f for f 2 L�;2 \ Le�;2.
(v) If a� > 0 or if a� = 0; �[1 � � + Re(�)] + Re(�) < 0; then for f 2 L�;2; H�;�f is

given in (5.1.3).

Proof. Statements (i), (iii), (iv) and (v) follow from Theorems 3.6 and 3.7 on the basis

of the relations (5.1.8) and (5.1.13) and the isometric property (5.4.1). (ii) is proved similarly

to that in Theorem 5.1 by using the Schwartz inequality (3.5.6).

Now the results in Sections 4.1{4.4, (1.5.7) and Lemma 3.1(i) yield the L�;r-theory of the

transform H�;� in (5.1.3) when a� = 0. From Theorems 4.1{4.4, we obtain the mapping

properties and the range of H�;� on L�;r in three di�erent cases when either � = Re(�) = 0

or � = 0; Re(�) < 0 or � 6= 0.

Note that the relations (5.4.5), (5.4.6) and (5.4.7) below follow from (4.2.1), (4.2.2) and

(4.3.1), (4.4.1) taking into account (5.1.8), (5.4.1) and Lemma 3.2 for the Erd�elyi{Kober type

fractional integration operators I�0+;�;� and I�
�;�;� .

Theorem 5.26. Let a� = � = 0;Re(�) = 0; � < 1� � + Re(�) < � and let 1 < r <1.

(a) The transform H�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L1��+Re(���);r ].

(b) If 1 < r 5 2; then the transform H�;� is one-to-one on L�;r and there holds the

equality (5:1:13) for f 2 L�;r and Re(s) = 1� � +Re(�� �):

(c) If f 2 L�;r and g 2 L�+Re(���);r0 with r0 = r=(r� 1); then the relation (5:1:18) holds.

(d) If � � Re(�) =2 EH ; then the transformH�;� is one-to-one on L�;r and there holds

H�;�(L�;r) = L1��+Re(���);r : (5.4.4)

(e) If f 2 L�;r ; � 2 C and h > 0; then H�;�f is given in (5:4:2) for Re(�) > [1 � � +

Re(�)]h� 1; while in (5:4:3) for Re(�) < [1� � +Re(�)]h� 1:

Theorem 5.27. Let a� = � = 0;Re(�) < 0 and � < 1� � + Re(�) < �; and let either

m > 0 or n > 0. Let 1 < r <1.

(a) The transform H�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L1��+Re(���);s] for all s = r such that 1=s > 1=r+Re(�).

(b) If 1 < r 5 2; then the transform H�;� is one-to-one on L�;r and there holds the

equality (5:1:13) for f 2 L�;r and Re(s) = 1� � +Re(�� �):
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(c) If f 2 L�;r and g 2 L�+Re(���);s with 1 < s < 1 and 1 5 1=r + 1=s < 1 � Re(�);

then the relation (5:1:18) holds.

(d) Let k > 0. If � � Re(�) =2 EH ; then the transform H�;� is one-to-one on L�;r and

there hold

H�;� (L�;r) = I
��
�;k;(���)=k

�
L1��+Re(���);r

�
(5.4.5)

for m > 0; and

H�;� (L�;r) = I��0+;k;(���)=k�1

�
L1��+Re(���);r

�
(5.4.6)

for n > 0. When ��Re(�) 2 EH ;H�;� (L�;r) is a subset of the right-hand sides of (5:4:5) and

(5:4:6) in the respective cases.

(e) If f 2 L�;r ; � 2 C and h > 0; then H�;�f is given in (5:4:2) for Re(�) > [1 � � +

Re(�)]h� 1; while in (5:4:3) for Re(�) < [1� � +Re(�)]h� 1. FurthermoreH�;�f is given in

(5.1.3).

Theorem 5.28. Let a� = 0;� 6= 0; � < 1� � + Re(�) < �; 1 < r < 1 and �[1� � +

Re(�)] + Re(�) 5 1=2� (r): Assume that m > 0 if � > 0 and n > 0 if � < 0.

(a) The transform H�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L1��+Re(���);s] for all s with r 5 s <1 such that s0 = [1=2��f1��+Re(�)g�Re(�)]�1

with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; then the transform H�;� is one-to-one on L�;r and there holds the

equality (5:1:13) for f 2 L�;r and Re(s) = 1� � +Re(�� �):

(c) If f 2 L�;r and g 2 L�+Re(���);s with 1 < s <1; 1=r+1=s = 1 and �[1��+Re(�)]+

Re(�) 5 1=2�max[(r); (s)]; then the relation (5:1:18) holds.

(d) If � � Re(�) =2 EH ; then the transform H�;� is one-to-one on L�;r. If we set

� = ��� � � � 1 for � > 0 and � = ��� � � � 1 for � < 0; then Re(�) > �1 and there

holds

H�;�(L�;r) =
�
M�+�=�+1=2H�;�

��
L��1=2�Re(�)=��Re(�);r

�
: (5.4.7)

When � �Re(�) 2 EH ; H�;�(L�;r) is a subset of the right-hand side of (5:4:7).

(e) If f 2 L�;r; � 2 C ; h > 0 and �[1� � + Re(�)] + Re(�) 5 1=2� (r); then H�;�f is

given in (5:4:2) for Re(�) > [1��+Re(�)]h�1; while in (5:4:3) forRe(�) < [1��+Re(�)]h�1.

If �[1� � +Re(�)] + Re(�) < 0; H�;�f is given in (5.1.3).

According to (5.1.8) and (5.4.1), Theorem 4.5 deduces the L�;r-theory of the transform

H�;� in (5.1.3) with a� > 0 in L�;r-spaces for any � 2 R and 1 5 r 5 1:

Theorem 5.29. Let a� > 0; � < 1� � + Re(�) < � and 1 5 r 5 s 5 1:

(a) The transform H�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L1��+Re(���);s]. If 1 5 r 5 2; then H�;� is a one-to-one transform from L�;r onto

L1��+Re(���);s.

(b) If f 2 L�;r and g 2 L�+Re(���);s0 with 1=s+1=s0 = 1; then the relation (5:1:18) holds.



148 Chapter 5. Modi�ed H-Transforms on the Space L�;r

Due to (5.1.8) and (5.4.1), Theorems 4.6{4.10 and Lemma 3.2, we may characterize the

boundedness and the range of H�;� on L�;r which will be di�erent in various combinations of

signs of a�; a�1 and a�2:

Theorem 5.30. Let a�1 > 0; a�2 > 0; m > 0; n > 0; � < 1 � � + Re(�) < � and

! = �+ a�1� � a�2� + 1 and let 1 < r <1:

(a) If � �Re(�) =2 EH ; or if 1 5 r 5 2; then the transformH�;� is one-to-one on L�;r.

(b) If Re(!) = 0 and � � Re(�) =2 EH ; then

H�;�(L�;r) =
�
La�

1
;���La�

2
;1��+��!=a�

2

��
L1��+Re(���);r

�
: (5.4.8)

When � �Re(�) 2 EH ; H�;�(L�;r) is a subset of the right-hand side of (5:4:8):

(c) If Re(!) < 0 and � � Re(�) =2 EH ; then

H�;�(L�;r) =
�
I�!
�;1=a�

1
;a�
1
(���)La

�

1
;���La�

2
;1��+�

��
L1��+Re(���);r

�
: (5.4.9)

When � �Re(�) 2 EH ; H�;�(L�;r) is a subset of the right-hand side of (5.4.9).

Theorem 5.31. Let a�1 > 0; a�2 = 0; m > 0; � < 1��+Re(�) < � and ! = �+a�1�+1=2

and let 1 < r <1:

(a) If � �Re(�) =2 EH ; or if 1 < r 5 2; then the transformH�;� is one-to-one on L�;r.

(b) If Re(!) = 0 and � � Re(�) =2 EH ; then

H�;�(L�;r) = La�
1
;����!=a�

1

�
L��Re(���);r

�
: (5.4.10)

When � �Re(�) 2 EH ; H�;�(L�;r) is a subset of the right-hand side of (5:4:10):

(c) If Re(!) < 0 and � � Re(�) =2 EH ; then

H�;�(L�;r) =
�
I�!
�;1=a�

1
;a�
1
(���)La

�

1
;���

��
L��Re(���);r

�
: (5.4.11)

When � �Re(�) 2 EH ; H�;�(L�;r) is a subset of the right-hand side of (5.4.11).

Theorem 5.32. Let a�1 = 0; a�2 > 0; n > 0; � < 1� � +Re(�) < � and ! = ��a�2�+1=2

and let 1 < r <1:

(a) If � �Re(�) =2 EH ; or if 1 < r 5 2; then the transformH�;� is one-to-one on L�;r.

(b) If Re(!) = 0 and � � Re(�) =2 EH ; then

H�;�(L�;r) = L�a�
2
;���+!=a�

2

�
L��Re(���);r

�
: (5.4.12)

When � �Re(�) 2 EH ; H�;�(L�;r) is a subset of the right-hand side of (5:4:12):

(c) If Re(!) < 0 and � � Re(�) =2 EH ; then

H�;�(L�;r) =
�
I�!0+;1=a�

2
;a�
2
(���)�1L�a

�

2
;���

��
L��Re(���);r

�
: (5.4.13)

When � �Re(�) 2 EH ; H�;�(L�;r) is a subset of the right-hand side of (5.4.13).

Theorem 5.33. Let a� > 0; a�1 > 0; a�2 < 0; � < 1� � +Re(�) < � and let 1 < r <1:

(a) If � �Re(�) =2 EH ; or if 1 < r 5 2; then the transformH�;� is one-to-one on L�;r.
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(b) Let !; �; � 2 C be chosen as

! = a�� � � �
1

2
; (5.4.14)

a�Re(�) = (r) + 2a�2[� �Re(�)� 1] + Re(�); (5.4.15)

Re(�) > � � Re(�)� 1; (5.4.16)

Re(�) < 1� � +Re(�): (5.4.17)

If � �Re(�) =2 EH ; then

H�;�(L�;r) =
�
M�+1=2+!=(2a�

2
)H�2a�

2
;2a�

2
�+!�1L�a�;1=2+��!=(2a�

2
)

�
�
L3=2��+Re(!)=(2a�

2
)�Re(�);r

�
: (5.4.18)

When � �Re(�) 2 EH ; H�;�(L�;r) is a subset of the right-hand side of (5.4.18).

Theorem 5.34. Let a� > 0; a�1 < 0; a�2 > 0; � < 1� � +Re(�) < � and let 1 < r <1:

(a) If � �Re(�) =2 EH ; or if 1 < r 5 2; then the transformH�;� is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� ��� ��
1

2
; (5.4.19)

a�Re(�) = (r)� 2a�1[� �Re(�)] + � +Re(�); (5.4.20)

Re(�) > �� +Re(�); (5.4.21)

Re(�) < � �Re(�): (5.4.22)

If � �Re(�) =2 EH ; then

H�;�(L�;r) =
�
M��1=2�!=(2a�

1
)H 2a�

1
;2a�

1
�+!�1La�;1=2��+!=(2a�

1
)

�
�
L1=2���Re(!)=(2a�

1
)�Re(�);r

�
: (5.4.23)

When � �Re(�) 2 EH ; H�;�(L�;r) is a subset of the right-hand side of (5.4.23).

The relation (5.1.8) and Lemma 3.1(i) imply that (5.1.3) is equaivalent to

HM�f = M��H�;�

by taking into account the isometric property (5.4.1) and the relation

M�1
� = M�� : (5.4.24)

Thus, if a� = 0; from the results of Sections 4.9 and 4.10 by applying (4.9.1), (4.9.2) and

(5.4.24), we obtain the inversion formulas for the transformH�;� in the form

f(x) = hx1���(�+1)=h
d

dx
x(�+1)=h

�

Z
1

0
Hq�m;p�n+1

p+1;q+1

"
xt

����� (��; h); (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m; (��� 1; h)

#

� t��
�
H�;�f

�
(t)dt (5.4.25)
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or

f(x) = �hx1���(�+1)=h
d

dx
x(�+1)=h

�

Z
1

0
Hq�m+1;p�n

p+1;q+1

"
xt

����� (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n; (��; h)

(��� 1; h); (1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m

#

� t��
�
H�;�f

�
(t)dt: (5.4.26)

The conditions for the validity of (5.4.25) and (5.4.26) follow from Theorems 4.11{4.14

and we obtain the following inversion theorems for the transformH1 in the cases when a� = 0

and either � = 0 or � 6= 0.

Theorem 5.35. Let a� = 0; � < 1 � � + Re(�) < � and �0 < � � Re(�) < �0; and let

� 2 C ; h > 0.

(a) If �[1 � � + Re(�)] + Re(�) = 0 and f 2 L�;2; then the inversion formula (5:4:25)

holds for Re(�) > [� �Re(�)]h� 1 and (5:4:26) for Re(�) < [� � Re(�)]h� 1.

(b) If � = Re(�) = 0 and f 2 L�;r (1 < r < 1); then the inversion formula (5:4:25)

holds for Re(�) > [� �Re(�)]h� 1 and (5:4:26) for Re(�) < [� � Re(�)]h� 1.

Theorem 5.36. Let a� = 0; 1 < r <1 and �[1� � +Re(�)]+Re(�) 5 1=2� (r); and

let � 2 C ; h > 0.

(a) If � > 0; m > 0; � < 1 � � + Re(�) < �; �0 < � � Re(�) < min[�0; fRe(� +

1=2)=�g + 1] and if f 2 L�;r ; then the inversion formulas (5:4:25) and (5:4:26) hold for

Re(�) > [� � Re(�)]h� 1 and for Re(�) < [� � Re(�)]h� 1; respectively.

(b) If � < 0; n > 0; � < 1 � � + Re(�) < �; max[�0; fRe(� + 1=2)=�g + 1] <

� � Re(�) < �0 and if f 2 L�;r; then the inversion formulas (5:4:25) and (5:4:26) hold for

Re(�) > [� � Re(�)]h� 1 and for Re(�) < [� � Re(�)]h� 1; respectively.

Remark 5.2. The results in this section generalize those in Sections 3.6 and 4.1{4.10. In

fact, when � = � = 0; Theorems 3.6 and 3.7 follow from Theorem 5.25, Theorems 4.1 and 4.2

from Theorems 5.26 and 5.27, Theorems 4.3 and 4.4 from Theorem 5.28, Theorems 4.5{4.10

from Theorems 5.29{5.34, Theorems 4.11 and 4.12 from Theorem 5.35, and Theorems 4.13

and 4.14 from Theorem 5.36.

5.5. H1
�;�-Transform on the Space L�;r

Now we proceed to the transformH1
�;� de�ned in (5.1.4). In view of (5.1.9) this transform is

connected with the transformH1 via the elementary operators M� and M� in the same way

as the H�;� in (5.1.3) is connected with the H-transform in (3.1.1). Therefore by virtue of

(5.1.9) and the isometric property (5.4.1), we apply the results in Section 5.2 for the transform

H
1 by replacing � by � �Re(�):

Theorem 5.37. Suppose that (a) � < ��Re(�) < � and that either of conditions (b)

a� > 0; or (c) a� = 0; �[� � Re(�)] + Re(�) 5 0 holds. Then we have the following results:
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(i) There is a one-to-one transformH1
�;� 2 [L�;2; L��Re(�+�);2] such that (5:1:14) holds for

Re(s) = ��Re(�+�) and f 2 L�;2. If a
� = 0;�[��Re(�)]+Re(�) = 0 and 1��+Re(�) =2 EH ;

then the transformH1
�;� maps L�;2 onto L��Re(�+�);2.

(ii) If f 2 L�;2 and g 2 L1��+Re(�+�);2; then the relation (5:1:19) holds for H1
�;�.

(iii) Let � 2 C ; h > 0 and f 2 L�;2: When Re(�) > [� �Re(�)]h� 1; H1
�;�f is given by

�
H

1
�;�f

�
(x) = hx�+1�(�+1)=h

d

dx
x(�+1)h

�

Z
1

0
Hm;n+1

p+1;q+1

"
x

t

����� (��; h); (ai; �i)1;p(bj ; �j)1;q; (��� 1; h)

#
t��1f(t)dt: (5.5.1)

When Re(�) < [� �Re(�)]h� 1;

�
H

1
�;�f

�
(x) = �hx�+1�(�+1)=h

d

dx
x(�+1)=h

�

Z
1

0
H

m+1;n
p+1;q+1

"
x

t

����� (ai; �i)1;p; (��; h)(��� 1; h); (bj; �j)1;q

#
t��1f(t)dt: (5.5.2)

(iv) The transform H1
�;� is independent of � in the sense that, if � and e� satisfy (a),

and either (b) or (c), and if the transforms H1
�;� and g

H
1
�;� are de�ned in L�;2 and Le�;2

respectively by (5:1:14); then H1
�;�f = g

H
1
�;�f for f 2 L�;2 \ Le�;2.

(v) If a� > 0 or if a� = 0; �[� � Re(�)] + Re(�) < 0; then for f 2 L�;2; H
1
�;�f is given

in (5.1.4).

We now present the L�;r-theory of the transform H1
�;� when a� = 0 by virtue of the re-

sults in Section 5.2, (5.1.9) and Lemmas 3.1(i) and 3.2. From Theorems 5.2{5.4 we deduce

the mapping properties and the range of H1
�;� on L�;r in three di�erent cases when either

� = Re(�) = 0 or � = 0; Re(�) < 0 or � 6= 0.

Theorem 5.38. Let a� = � = 0;Re(�) = 0; � < � �Re(�) < � and let 1 < r <1.

(a) The transform H1
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L��Re(�+�);r ].

(b) If 1 < r 5 2; then the transform H1
�;� is one-to-one on L�;r and there holds the

equality (5:1:14) for f 2 L�;r and Re(s) = � �Re(�+ �):

(c) If f 2 L�;r and g 2 L1��+Re(�+�);r0 with r0 = r=(r � 1); then the relation (5:1:19)

holds.

(d) If 1� � +Re(�) =2 EH ; then the transformH1
�;� is one-to-one on L�;r and there holds

H
1
�;�(L�;r) = L��Re(�+�);r: (5.5.3)

(e) If f 2 L�;r ; � 2 C and h > 0; thenH1
�;�f is given in (5:5:1) forRe(�) > [��Re(�)]h�1;

while in (5:5:2) for Re(�) < [� � Re(�)]h� 1:

Theorem 5.39. Let a� = � = 0;Re(�) < 0; � < � �Re(�) < �; and let either m > 0 or

n > 0. Let 1 < r <1.
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(a) The transform H
1
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L��Re(�+�);s] for all s = r such that 1=s > 1=r+Re(�).

(b) If 1 < r 5 2; then the transform H1
�;� is one-to-one on L�;r and there holds the

equality (5:1:14) for f 2 L�;r and Re(s) = � �Re(�+ �):

(c) If f 2 L�;r and g 2 L1��+Re(�+�);s with 1 < s < 1 and 1 5 1=r + 1=s < 1� Re(�);

then the relation (5:1:19) holds.

(d) Let k > 0. If 1� � +Re(�) =2 EH ; then the transformH1
�;� is one-to-one on L�;r and

there hold

H
1
�;� (L�;r) = I��

�;k;(���)=k

�
L��Re(�+�);r

�
(5.5.4)

for m > 0; and

H
1
�;� (L�;r) = I��0+;k;(���)=k�1

�
L��Re(�+�);r

�
(5.5.5)

for n > 0. When 1� � +Re(�) 2 EH ; H
1
�;� (L�;r) is a subset of the right-hand sides of (5:5:4)

and (5:5:5) in the respective cases.

(e) If f 2 L�;r ; � 2 C and h > 0; thenH1
�;�f is given in (5:5:1) forRe(�) > [��Re(�)]h�1;

while in (5:5:2) for Re(�) < [� � Re(�)]h� 1. Furthermore H1
�;�f is given in (5.1.4).

Theorem 5.40. Let a� = 0;� 6= 0; � < � �Re(�) < �; 1 < r <1 and �[� � Re(�)] +

Re(�) 5 1=2� (r): Assume that m > 0 if � > 0 and n > 0 if � < 0.

(a) The transform H1
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L��Re(�+�);s] for all s with r 5 s <1 such that s0 = [1=2��f� �Re(�)g �Re(�)]�1

with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; then the transform H1
�;� is one-to-one on L�;r and there holds the

equality (5:1:14) for f 2 L�;r and Re(s) = � �Re(�+ �):

(c) If f 2 L�;r and g 2 L1��+Re(�+�);s with 1 < s <1; 1=r+1=s = 1 and �[��Re(�)]+

Re(�) 5 1=2�max[(r); (s)]; then the relation (5:1:19) holds.

(d) If 1 � � + Re(�) =2 EH ; then the transform H1
�;� is one-to-one on L�;r. If we set

� = ������ 1 for � > 0 and � = ������ 1 for � < 0; then Re(�) > �1 and there hold

H
1
�;�(L�;r) =

�
M�+�=�+1=2H�;�

��
L1=2���Re(�)=��Re(�);r

�
: (5.5.6)

When 1� � + Re(�) 2 EH ; H
1
�;�(L�;r) is a subset of the right-hand side of (5:5:6):

(e) If f 2 L�;r; � 2 C ; h > 0 and �[� �Re(�)]+Re(�) 5 1=2� (r); then H1
�;�f is given

in (5:5:1) for Re(�) > [� � Re(�)]h � 1; while in (5:5:2) for Re(�) < [� � Re(�)]h � 1. If

�[� �Re(�)] + Re(�) < 0; H1
�;�f is given in (5.1.4).

From (5.1.9), (5.4.1) and Theorem 5.5, the L�;r-theory of the transform H1
�;� in (5.1.4)

with a� > 0 in L�;r-space can be established for any � 2 R and 1 5 r 5 1:

Theorem 5.41. Let a� > 0; � < � �Re(�) < � and 1 5 r 5 s 5 1:

(a) The transform H1
�;� de�ned on L�;2 can be extended to L�;r as an element of [L�;r;

L��Re(�+�);s]. If 1 5 r 5 2; then H1
�;� is a one-to-one transform from L�;r onto L��Re(�+�);s.

(b) If f 2 L�;r and g 2 L1��+Re(�+�);s0 with 1=s+1=s
0 = 1; then the relation (5:1:19) holds.
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By virtue of (5.1.9), (5.4.1), Theorems 5.6{5.10 and Lemma 3.2 we characterize the bound-

edness and the range of H1
�;� on L�;r for a

� > 0 in �ve cases.

Theorem 5.42. Let a�1 > 0; a�2 > 0; m > 0; n > 0; � < � � Re(�) < � and

! = �+ a�1� � a�2� + 1 and let 1 < r <1:

(a) If 1� � +Re(�) =2 EH ; or if 1 5 r 5 2; then the transformH1
�;� is one-to-one on L�;r.

(b) If Re(!) = 0 and 1� � +Re(�) =2 EH ; then

H
1
�;�(L�;r) =

�
La�

1
;���La�

2
;1��+��!=a�

2

� �
L��Re(�+�);r

�
: (5.5.7)

When 1� � + Re(�) 2 EH ; H
1
�;�(L�;r) is a subset of the right-hand side of (5:5:7):

(c) If Re(!) < 0 and 1� � +Re(�) =2 EH ; then

H
1
�;�(L�;r) =

�
I�!
�;1=a�

1
;a�
1
(���)La

�

1
;���La�

2
;1��+�

��
L��Re(�+�);r

�
: (5.5.8)

When 1� � + Re(�) 2 EH ; H
1
�;�(L�;r) is a subset of the right-hand side of (5.5.8).

Theorem 5.43. Let m > 0; a�1 > 0; a�2 = 0; � < � � Re(�) < � and ! = � + a�1� + 1=2

and let 1 < r <1:

(a) If 1� �+Re(�) =2 EH ; or if 1 < r 5 2; then the transformH1
�;� is one-to-one on L�;r.

(b) If Re(!) = 0 and 1� � +Re(�) =2 EH ; then

H
1
�;�(L�;r) = La�

1
;����!=a�

1

�
L1��+Re(�+�);r

�
: (5.5.9)

When 1� � + Re(�) 2 EH ; H
1
�;�(L�;r) is a subset of the right-hand side of (5:5:9):

(c) If Re(!) < 0 and 1� � +Re(�) =2 EH ; then

H
1
�;�(L�;r) =

�
I�!
�;1=a�

1
;a�
1
(���)La

�

1
;���

� �
L1��+Re(�+�);r

�
: (5.5.10)

When 1� � + Re(�) 2 EH ; H
1
�;�(L�;r) is a subset of the right-hand side of (5.5.10).

Theorem 5.44. Let a�1 = 0; a�2 > 0; n > 0; � < � � Re(�) < � and ! = � � a�2� + 1=2

and let 1 < r <1:

(a) If 1� �+Re(�) =2 EH ; or if 1 < r 5 2; then the transformH1
�;� is one-to-one on L�;r.

(b) If Re(!) = 0 and 1� � +Re(�) =2 EH ; then

H
1
�;�(L�;r) = L

�a�
2
;���+!=a�

2

�
L1��+Re(�+�);r

�
: (5.5.11)

When 1� � + Re(�) 2 EH ; H
1
�;�(L�;r) is a subset of the right-hand side of (5:5:11):

(c) If Re(!) < 0 and 1� � +Re(�) =2 EH ; then

H
1
�;�(L�;r) =

�
I�!0+;1=a�

2
;a�
2
(���)�1L�a

�

2
;���

� �
L1��+Re(�+�);r

�
: (5.5.12)

When 1� � + Re(�) 2 EH ; H
1
�;�(L�;r) is a subset of the right-hand side of (5.5.12).

Theorem 5.45. Let a� > 0; a�1 > 0; a�2 < 0; � < � �Re(�) < � and let 1 < r <1:

(a) If 1� �+Re(�) =2 EH ; or if 1 < r 5 2; then the transformH1
�;� is one-to-one on L�;r.
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(b) Let !; �; � 2 C be chosen as

! = a�� � � �
1

2
; (5.5.13)

a�Re(�) = (r) + 2a�2[� �Re(�)] + Re(�); (5.5.14)

Re(�) > �� +Re(�); (5.5.15)

Re(�) < � �Re(�): (5.5.16)

If 1� � + Re(�) =2 EH ; then

H
1
�;�(L�;r) =

�
M�+1=2+!=(2a�

2
)H�2a�

2
;2a�

2
�+!�1L�a�;1=2+��!=(2a�

2
)

�
�
L�+1=2+Re(!)=(2a�

2
)�Re(�);r

�
: (5.5.17)

When 1� � + Re(�) 2 EH ; H
1
�;�(L�;r) is a subset of the right-hand side of (5.5.17).

Theorem 5.46. Let a� > 0; a�1 < 0; a�2 > 0; � < � �Re(�) < � and let 1 < r <1:

(a) If 1� �+Re(�) =2 EH ; or if 1 < r 5 2; then the transformH1
�;� is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� ��� ��
1

2
; (5.5.18)

a�Re(�) = (r)� 2a�1[� �Re(�)] + � +Re(�); (5.5.19)

Re(�) > �� +Re(�); (5.5.20)

Re(�) < � �Re(�): (5.5.21)

If 1� � + Re(�) =2 EH ; then

H
1
�;�(L�;r) =

�
M��1=2�!=(2a�

1
)H 2a�

1
;2a�

1
�+!�1La�;1=2��+!=(2a�

1
)

�
�
L��1=2�Re(!)=(2a�

1
)�Re(�);r

�
: (5.5.22)

When 1� � + Re(�) 2 EH ; H
1
�;�(L�;r) is a subset of the right-hand side of (5.5.22).

The inversion formulas for the transformH1
�;� can be found in a similar manner as before

by only noting that (5.1.4) is equaivalent to

H
1M�f = M��H

1
�;�f

for f 2 L�;r. Thus by virtue of (5.2.27) and (5.2.28) we have formally that

f(x) = �hx(�+1)=h��
d

dx
x�(�+1)=h

�

Z
1

0
Hq�m;p�n+1

p+1;q+1

"
t

x

����� (��; h); (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m; (��� 1; h)

#

� t��
�
H

1
�;�f

�
(t)dt (5.5.23)
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or

f(x) = hx(�+1)=h��
d

dx
x�(�+1)=h

�

Z
1

0
Hq�m+1;p�n

p+1;q+1

"
t

x

����� (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n; (��; h)

(��� 1; h); (1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m

#

� t��
�
H

1
�;�f

�
(t)dt: (5.5.24)

The conditions for the validity of (5.5.23) and (5.5.24) follow from Theorems 5.11{5.12.

Theorem 5.47. Let a� = 0; � < � � Re(�) < � and �0 < 1 � � + Re(�) < �0; and let

� 2 C ; h > 0.

(a) If �[� � Re(�)] + Re(�) = 0 and f 2 L�;2; then the inversion formula (5:5:23) holds

for Re(�) > [1� � + Re(�)]h� 1 and (5:5:24) for Re(�) < [1� � + Re(�)]h� 1.

(b) If � = Re(�) = 0 and f 2 L�;r (1 < r < 1); then the inversion formula (5:5:23)

holds for Re(�) > [1� � +Re(�)]h� 1 and (5:5:24) for Re(�) < [1� � +Re(�)]h� 1.

Theorem 5.48. Let a� = 0; 1 < r <1 and �[� �Re(�)] + Re(�) 5 1=2� (r); and let

� 2 C ; h > 0.

(a) If � > 0; m > 0; � < ��Re(�) < �; �0 < 1��+Re(�) < min[�0; fRe(�+1=2)=�g+1]

and if f 2 L�;r; then the inversion formulas (5:5:23) and (5:5:24) hold for Re(�) > [1 � � +

Re(�)]h� 1 and for Re(�) < [1� � +Re(�)]h� 1; respectively.

(b) If� < 0; n > 0; � < ��Re(�) < �;max[�0; fRe(�+1=2)=�g+1] < 1��+Re(�) < �0
and if f 2 L�;r; then the inversion formulas (5:5:23) and (5:5:24) hold for Re(�) > [1 � � +

Re(�)]h� 1 and for Re(�) < [1� � +Re(�)]h� 1; respectively.

Remark 5.3. The results in this section generalize those in Section 5.2. Namely, Theo-

rems 5.1{5.12 follow from Theorems 5.37{5.48 when � = � = 0:

5.6. H2
�;�-Transform on the Space L�;r

Finally, let us study the transform H2
�;� de�ned in (5.1.5). According to (5.1.10) this trans-

form is connected with the transform H2 via the elementary operators M� and M� in the

same way as the H1
�;� in (5.1.4) is connected with the H1. Therefore by using (5.1.10) and

the isometric property (5.4.1), we can apply the results in Section 5.3 for the transformH2f

by replacing � by � �Re(�).

Theorem 5.49. Suppose that (a) � < 1 � � + Re(�) < � and that either of the

conditions (b) a� > 0; or (c) a� = 0; �[1� � +Re(�)] + Re(�) 5 0 holds. Then we have

the following results:
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(i) There is a one-to-one transform H2
�;�2 [L�;2; L��Re(�+�);2] such that (5:1:15) holds

for Re(s) = � � Re(� + �) and f 2 L�;2. If a� = 0; �[1 � � + Re(�)] + Re(�) = 0 and

� � Re(�) =2 EH ; then the transformH2
�;� maps L�;2 onto L��Re(�+�);2.

(ii) If f 2 L�;2 and g 2 L1��+Re(�+�);2; then the relation (5:1:20) holds for H2
�;�.

(iii) Let � 2 C ; h > 0 and f 2 L�;2: When Re(�) > [1� � + Re(�)]h� 1; H2
�;�f is given

by �
H

2
�;�f

�
(x) = �hx�+(�+1)=h

d

dx
x�(�+1)h

�

Z
1

0
Hm;n+1

p+1;q+1

"
t

x

����� (��; h); (ai; �i)1;p(bj; �j)1;q; (��� 1; h)

#
t�f(t)dt: (5.6.1)

When Re(�) < [1� � + Re(�)]h� 1;�
H

2
�;�f

�
(x) = hx�+(�+1)=h

d

dx
x�(�+1)=h

�

Z
1

0
Hm+1;n

p+1;q+1

"
t

x

����� (ai; �i)1;p; (��; h)(��� 1; h); (bj; �j)1;q

#
t�f(t)dt: (5.6.2)

(iv) The transform H2
�;� is independent of � in the sense that; if � and e� satisfy (a),

and either (b) or (c), and if the transforms H2
�;� and g

H
2
�;� are de�ned in L�;2 and Le�;2

respectively by (5:1:15); then H2
�;�f = g

H
2
�;�f for f 2 L�;2 \ Le�;2.

(v) If a� > 0 or if a� = 0; �[1 � � + Re(�)] + Re(�) < 0; then for f 2 L�;2; H
2
�;�f is

given in (5.1.5).

The results in Section 5.3 deduce the L�;r-theory of the transform H2
�;� when a� = 0 by

virtue of (5.1.10), (5.4.1) and Lemmas 3.1(i) and 3.2.

Theorem 5.50. Let a� = � = 0;Re(�) = 0; � < 1� � + Re(�) < � and let 1 < r <1:

(a) The transform H2
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L��Re(�+�);r ].

(b) If 1 < r 5 2; then the transform H2
�;� is one-to-one on L�;r and there holds the

equality (5:1:15) for f 2 L�;r and Re(s) = � �Re(�+ �):

(c) If f 2 L�;r and g 2 L1��+Re(�+�);r0 with r0 = r=(r � 1); then the relation (5:1:20)

holds.

(d) If � � Re(�) =2 EH ; then the transformH2
�;� is one-to-one on L�;r and there holds

H
2
�;�(L�;r) = L��Re(�+�);r: (5.6.3)

(e) If f 2 L�;r ; � 2 C and h > 0; then H2
�;�f is given in (5:6:1) for Re(�) > [1 � � +

Re(�)]h� 1; while in (5:6:2) for Re(�) < [1� � +Re(�)]h� 1:

Theorem 5.51. Let a� = � = 0;Re(�) < 0 and � < 1� � + Re(�) < �; and let either

m > 0 or n > 0. Let 1 < r <1.

(a) The transform H2
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L��Re(�+�);s] for all s = r such that 1=s > 1=r+Re(�).
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(b) If 1 < r 5 2; then the transform H2
�;� is one-to-one on L�;r and there holds the

equality (5:1:15) for f 2 L�;r and Re(s) = � �Re(�+ �):

(c) If f 2 L�;r and g 2 L1��+Re(�+�);s with 1 < s < 1 and 1 5 1=r + 1=s < 1� Re(�);

then the relation (5:1:20) holds.

(d) Let k > 0. If � � Re(�) =2 EH ; then the transform H2
�;� is one-to-one on L�;r and

there hold

H
2
�;� (L�;r) = I��0+;k;(1����)=k�1

�
L��Re(�+�);r

�
(5.6.4)

for m > 0; and

H
2
�;� (L�;r) = I

��
�;k;(�+��1)=k

�
L��Re(�+�);r

�
(5.6.5)

for n > 0. When ��Re(�) 2 EH ;H
2
�;� (L�;r) is a subset of the right-hand sides of (5:6:4) and

(5:6:5) in the respective cases.

(e) If f 2 L�;r ; � 2 C and h > 0; then H2
�;�f is given in (5:6:1) for Re(�) > [1 � � +

Re(�)]h� 1; while in (5:6:2) for Re(�) < [1� � +Re(�)]h� 1. FurthermoreH2
�;�f is given in

(5:1:5):

Theorem 5.52. Let a� = 0;� 6= 0; m > 0; � < 1 � � + Re(�) < �; 1 < r < 1 and

�[1� � + Re(�)] + Re(�) 5 1=2� (r): Assume that m > 0 if � > 0 and n > 0 if � < 0.

(a) The transform H2
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L��Re(�+�);s] for all s with r 5 s <1 such that s0 = [1=2��f1��+Re(�)g�Re(�)]�1

with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; the transform H2
�;� is one-to-one on L�;r and there holds the equality

(5:1:15) for f 2 L�;r and Re(s) = � �Re(�+ �):

(c) If f 2 L�;r and g 2 L1��+Re(�+�);s with 1 < s <1; 1=r+1=s = 1 and �[��Re(�)]+

Re(�) 5 1=2�max[(r); (s)]; then the relation (5:1:20) holds.

(d) If � � Re(�) =2 EH ; then the transform H2
�;� is one-to-one on L�;r. If we set

� = ��� � � � 1 for � > 0 and � = ��� � � � 1 for � < 0; then Re(�) > �1 and there

holds

H
2
�;�(L�;r) =

�
M���=��1=2H��;�

��
L3=2��+Re(�)=�+Re(�);r

�
: (5.6.6)

When � �Re(�) 2 EH ; H
2
�;�(L�;r) is a subset of the right-hand side of (5:6:6):

(e) If f 2 L�;r; � 2 C ; h > 0 and �[1� � + Re(�)] + Re(�) 5 1=2� (r); then H2
�;�f is

given in (5:6:1) for Re(�) > [1��+Re(�)]h�1; while in (5:6:2) forRe(�) < [1��+Re(�)]h�1.

If �[1� � +Re(�)] + Re(�) < 0; H2
�;�f is given in (5.1.5).

From (5.1.10), (5.4.1) and Theorem 5.5, the L�;r-theory of the transformH2
�;� in (5.1.5)

with a� > 0 in L�;r-space can be established for any � 2 R and 1 5 r 5 1:

Theorem 5.53. Let a� > 0; � < 1� � + Re(�) < � and 1 5 r 5 s 5 1:

(a) The transform H2
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L��Re(�+�);s]. If 1 5 r 5 2; then H2
�;� is a one-to-one transform from L�;r onto

L1��+Re(�+�);s.
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(b) If f 2 L�;r and g 2 L1��+Re(�+�);s0 with 1=s+1=s0 = 1; then the relation (5:1:20) holds.

By virtue of (5.1.10), (5.4.1), Theorems 5.18{5.22 and Lemma 3.2 we characterize the

boundedness and the range of H2
�;� on L�;r for a� > 0.

Theorem 5.54. Let a�1 > 0; a�2 > 0; m > 0; n > 0; � < 1 � � + Re(�) < � and

! = �+ a�1� � a�2� + 1 and let 1 < r <1:

(a) If � �Re(�) =2 EH ; or if 1 5 r 5 2; then the transformH2
�;� is one-to-one on L�;r.

(b) If Re(!) = 0 and � � Re(�) =2 EH ; then

H
2
�;�(L�;r) =

�
L�a�

1
;1����L�a�

2
;�+�+!=a�

2

��
L��Re(�+�);r

�
: (5.6.7)

When � �Re(�) 2 EH ; H
1
�;�(L�;r) is a subset of the right-hand side of (5:6:7):

(c) If Re(!) < 0 and � � Re(�) =2 EH ; then

H
2
�;�(L�;r) =

�
I�!0+;1=a�

1
;a�
1
(1����)�1L�a

�

1
;1����L�a�

2
;�+�

� �
L��Re(�+�);r

�
: (5.6.8)

When � �Re(�) 2 EH ; H
2
�;�(L�;r) is a subset of the right-hand side of (5.6.8).

Theorem 5.55. Let a�1 > 0; a�2 = 0; m > 0; � < 1�� +Re(�) < � and ! = �+a�1�+1=2

and let 1 < r <1:

(a) If � �Re(�) =2 EH ; or if 1 < r 5 2; then the transformH2
�;� is one-to-one on L�;r.

(b) If Re(!) = 0 and � � Re(�) =2 EH ; then

H
2
�;�(L�;r) = L�a�

1
;1����+!=a�

1

�
L1��+Re(�+�);r

�
: (5.6.9)

When � �Re(�) 2 EH ; H
2
�;�(L�;r) is a subset of the right-hand side of (5:6:9):

(c) If Re(!) < 0 and � � Re(�) =2 EH ; then

H
2
�;�(L�;r) =

�
I�!0+;1=a�

1
;a�
1
(1����)�1L�a

�

1
;1����

� �
L1��+Re(�+�);r

�
: (5.6.10)

When � �Re(�) 2 EH ; H
2
�;�(L�;r) is a subset of the right-hand side of (5.6.10).

Theorem 5.56. Let a�1 = 0; a�2 > 0; n > 0; � < 1� � +Re(�) < � and ! = �� a�2�+1=2

and let 1 < r <1:

(a) If � �Re(�) =2 EH ; or if 1 < r 5 2; then the transformH2
�;� is one-to-one on L�;r.

(b) If Re(!) = 0 and � � Re(�) =2 EH ; then

H
2
�;�(L�;r) =

�
La�

2
;1�����!=a�

2

� �
L1��+Re(�+�);r

�
: (5.6.11)

When � �Re(�) 2 EH ; H
2
�;�(L�;r) is a subset of the right-hand side of (5:6:11):

(c) If Re(!) < 0 and � � Re(�) =2 EH ; then

H
2
�;�(L�;r) =

�
I�!
�;1=a�

2
;a�
2
(�+��1)La

�

2
;1����

� �
L1��+Re(�+�);r

�
: (5.6.12)

When � �Re(�) 2 EH ; H
2
�;�(L�;r) is a subset of the right-hand side of (5.6.12).
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Theorem 5.57. Let a� > 0; a�1 > 0; a�2 < 0; � < 1� � +Re(�) < � and let 1 < r <1:

(a) If � �Re(�) =2 EH ; or if 1 < r 5 2; then the transformH2
�;� is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� � � �
1

2
; (5.6.13)

a�Re(�) = (r) + 2a�2[� �Re(�)� 1] + Re(�); (5.6.14)

Re(�) > � � Re(�)� 1; (5.6.15)

Re(�) < 1� � +Re(�): (5.6.16)

If � �Re(�) =2 EH ; then

H
2
�;�(L�;r) =

�
M��1=2�!=(2a�

2
)H 2a�

2
;2a�

2
�+!�1La�;1=2��+!=(2a�

2
)

�
�
L��1=2�Re(!)=(2a�

2
)�Re(�);r

�
: (5.6.17)

When � �Re(�) 2 EH ; H
2
�;�(L�;r) is a subset of the right-hand side of (5.6.17).

Theorem 5.58. Let a� > 0; a�1 < 0; a�2 > 0; � < 1� � +Re(�) < � and let 1 < r <1:

(a) If � �Re(�) =2 EH ; or if 1 < r 5 2; then the transformH2
�;� is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� ��� ��
1

2
; (5.6.18)

a�Re(�) = (r)� 2a�1[� �Re(�)] + � +Re(�); (5.6.19)

Re(�) > �� +Re(�); (5.6.20)

Re(�) < � �Re(�): (5.6.21)

If � �Re(�) =2 EH ; then

H
2
�;�(L�;r) =

�
M�+1=2+!=(2a�

1
)H�2a�

1
;2a�

1
�+!�1L�a�;1=2+��!=(2a�

1
)

�
�
L�+1=2+Re(!)=(2a�

1
)�Re(�);r

�
: (5.6.22)

When � �Re(�) 2 EH ; H
2
�;�(L�;r) is a subset of the right-hand side of (5.6.22).

The inversion formulas for the transformH2
�;� follow by noting that (5.1.5) is equaivalent

to

H
2M�f = M��H

2
�;�

from (5.1.10) and Lemma 3.1(iii), where the isometric property (5.4.1) and the relation (5.4.24)

for the operator (M�)
�1 inverse to M� are used, and we have formally

f(x) = hx1���(�+1)=h
d

dx
x(�+1)=h
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�

Z
1

0
H

q�m;p�n+1
p+1;q+1

"
x

t

����� (��; h); (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n

(1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m; (��� 1; h)

#

� t���1
�
H

2
�;�f

�
(t)dt (5.6.23)

or

f(x) = �hx1���(�+1)=h
d

dx
x�(�+1)=h

�

Z
1

0
Hq�m+1;p�n

p+1;q+1

"
x

t

����� (1� ai � �i; �i)n+1;p; (1� ai � �i; �i)1;n; (��; h)

(��� 1; h); (1� bj � �j ; �j)m+1;q; (1� bj � �j ; �j)1;m

#

� t���1
�
H

2
�;�f

�
(t)dt: (5.6.24)

The validity of (5.6.23) and (5.6.24) can be proved by virtue of Theorems 5.23{5.24.

Theorem 5.59. Let a� = 0; � < 1 � � + Re(�) < � and �0 < � � Re(�) < �0; and let

� 2 C ; h > 0.

(a) If �[1 � � + Re(�)] + Re(�) = 0 and f 2 L�;2; then the inversion formula (5:6:23)

holds for Re(�) > [� �Re(�)]h� 1 and (5:6:24) for Re(�) < [� � Re(�)]h� 1.

(b) If � = Re(�) = 0 and f 2 L�;r (1 < r < 1); then the inversion formula (5:6:23)

holds for Re(�) > [� �Re(�)]h� 1 and (5:6:24) for Re(�) < [� � Re(�)]h� 1.

Theorem 5.60. Let a� = 0; 1 < r <1 and �[1� � +Re(�)]+Re(�) 5 1=2� (r); and

let � 2 C ; h > 0.

(a) If � > 0; m > 0; � < 1 � � + Re(�) < �; �0 < � � Re(�) < min[�0; fRe(� +

1=2)=�g + 1] and if f 2 L�;r ; then the inversion formulas (5:6:23) and (5:6:24) hold for

Re(�) > [� � Re(�)]h� 1 and for Re(�) < [� � Re(�)]h� 1; respectively.

(b) If � < 0; n > 0; � < 1 � � + Re(�) < �; max[�0; fRe(� + 1=2)=�g + 1] <

� � Re(�) < �0 and if f 2 L�;r; then the inversion formulas (5:6:23) and (5:6:24) hold for

Re(�) > [� � Re(�)]h� 1 and for Re(�) < [� � Re(�)]h� 1; respectively.

Remark 5.4. The results in this section generalize those in Section 5.3 by putting

� = � = 0:

5.7. Bibliographical Remarks and Additional Information on Chapter 5

For Section 5.1. The integral transforms withH-function kernels (5.1.1){(5.1.5) are also investigated
with a variable x in the upper or lower limit of the integral. These transformations, generalizing
the Riemann{Liouville and Erd�elyi{Kober fractional integrals (2.7.1), (3.3.1) and (2.7.2), (3.3.2), are
de�ned for x > 0 by�

HU;0+f
�
(x) = �x�����1

Z x

0

(x� � t�)Hm;n
p;q

"
kU

�
t

x

������ (ai; �i)1:p

(bj; �j)1;q

#
t�f(t)dt (5.7.1)

and �
HU;�f

�
(x) = �x�

Z
1

x

(t� � x�)Hm;n
p;q

"
kU

�x
t

� ����� (ai; �i)1:p

(bj ; �j)1;q

#
t�����1f(t)dt; (5.7.2)
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respectively, where

U (z) = (1� z�)�z�� (5.7.3)

and � > 0, �, �, , � and k are complex numbers. Such generalized operators were introduced by R.K.
Saxena and Kumbhat [2] who investigated these transforms in the space Lr(R+) (r = 1), and proved
their Mellin transforms for f(x) 2 Lr(R+) (1 5 r 5 2) and the relation of integration by partsZ

1

0

g(x)
�
HU;0+f

�
(x)dx =

Z
1

0

f(x)
�
HU;�g

�
(x)dx (5.7.4)

�
f 2 Lr(R+); g 2 Lr0 (R+);

1

r
+

1

r0
= 1

�
;

provided that a� = 0, j arg(k)j < a��=2 and some other conditions are satis�ed.
It should be noted that such results for the integral operators (5.7.1) and (5.7.2) with  = � = 0

were �rst obtained by Kalla [4]. In [5] Kalla established the inversion formulas for such operators on
the basis of their representations in the form of the Mellin convolution

(k � f)(x) �
Z
1

0

k
�x
t

�
f(t)

dt

t
(5.7.5)

with the kernel k involving the H-functions considered. Srivastava and Buschman [1] showed that the
product of two operators of the form (5.7.1) and (5.7.2), studied by Kalla in [4] and [5], is the integral
transform the kernel of which contains the H-function of two variables (see, for example, Srivastava,
Gupta and Goyal [1]). One may �nd the results above in Kalla [4], [5], [10, Section 4] and Srivastava
and Buschman [1]. We also mention the paper by Galu�e, Kalla and Srivastava [1] where results similar
to the above were established for the multiplier of Erd�elyi{Kober type operators of the forms (3.3.1)
and (3.3.2) involving the H-functions in their kernels.

Dighe and Bhise [1] derived the composition of fractional integral operators withH-function kernels
more general than those in (5.7.1) and (5.7.2), which led to an integral operator having a Fourier type
kernel and generalizing the operator studied by Srivastava and Buschman [1]. Bhise and Dighe [1] also
gave the conditions for the operator obtained to be bounded from Lr(R+) to Lq(R+).

R.K. Saxena and Singh [1] studied the existence, the Mellin transform, composition properties
and the inversion relations for more general integral transforms than (5.7.1) and (5.7.2) in which the
H-function Hm;n

p;q (z) is replaced by a more general construction.
A method based on the Laplace transform was used by Srivastava and Buschman [2] and Srivastava

[7] (see also Srivastava and Buschman [4]) to obtain the inversion formulas for the H-transforms

�cH0+f
�
(x) =

Z x

0

(x� t)H1;n
p;q

"
x� t

����� (ai; �i)1:p(0; 1); (bj; �j)2;q

#
t�f(t)dt (5.7.6)

and �cH�f
�
(x) =

Z
1

x

(t � x)Hm;n
p;q

"
t� x

����� (ai; �i)1:p(bj ; �j)1;q

#
t�����1f(t)dt; (5.7.7)

respectively, which are the modi�cations of the transforms (5.7.1) and (5.7.2) with � = 1, � = 1 and
� = �1.

For Sections 5.2 and 5.3. The results presented in these sections were proved by the authors
in Kilbas and Saigo [7].

McBride and Spratt [2] (see also McBride [4], [5]) investigated the transform H1 in (5.1.1) in the
subspace Fr;� of the space L�;r de�ned for � 2 C and 1 5 r 5 1 by

Fr;� =

�
' 2 C1(R+) : xn

dnf

dxn
2 L��;r; n 2 N0

�
: (5.7.8)
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This space, studied by McBride in [2], is a Fr�echet space with respect to the topology generated by
the seminorms

�
r;�n

	
1

0
, where

r;�n (f) =

xndnfdxn


��;r

(f 2 Fr;� ; n 2 N0): (5.7.9)

McBride and Spratt de�ned the transformH1 by the relation (5.1.11) in the space Fr;� with 1 < r <1
and � < � < �, where � and � are any real numbers such that H(s) = Hm;n

p;q (s) given by (1.1.2) is
analytic in the strip � < Re(s) < �. They proved the following results [2, Theorems 5.4 amd 5.6]:

1) If a� = 0 and if 1�� does not belong to the exceptional set EH ofH(s) (see De�nition 3.4), then
H

1 is a continuous linear mapping from Fr;� into Fr;� , and if, in addition, 1�� does not belong to the
exceptional set 1=EH , that H1 is a homeomorhism of Fr;� onto Fr;� whose inverse is the transform of
the form (5.1.11) with H(s) replaced by 1=H(s).

2) If a� > 0 and if 1 � � =2 EH , then H1 is a continuous linear mapping from Fr;� into the space
Fr;�;a� , and if, in addition, 1� � =2 E1=H , that H1 is a homeomorhism of Fr;� onto Fr;�;a� .

Here the space Fr;�;a� is a certain subspace of Fr;� which is de�ned in terms of the simplest

transformH1 in (5.1.11) with H1;0
0;1(s) = �(�+ s=m) with � 2 C and m > 0, which for 1 5 p <1 and

Re(� � �=m) > 0 is given by�
N
�
mf

�
(x) = m

Z
1

0

tm� exp (�tm) f
�x
t

� dt

t
(x > 0; � 2 C ; m > 0) (5.7.10)

for f 2 L�;r. The substitution t = x� show that this transform is the modi�ed Laplace type transform
of the form (7.1.10) with  = m�, k = m, � = � = 0 and f being replaced by Rf :�

N
�
mf

�
(x) = m

�
L
�

m�;m;0;0Rf
�
(x); (5.7.11)

where R is the elementary transform (3.3.13).

Several authors have studied modi�ed transforms H1 and H2 in (5.1.1) and (5.1.2) in the form
(5.7.1) and (5.7.2). Kiryakova [3] and Kalla and Kiryakova [1] investigated the operators

�
I;��;mf

�
(x) =

1

x

Z x

0

Hm;0
m;m

2664 t

x

��������
�
i + �i + 1� 1

�i
;
1

�i

�
1:m�

j + 1� 1

�j
;
1

�j

�
1;m

3775 f(t)dt; (5.7.12)

�
K;�

�;mf
�
(x) =

1

x

Z
1

x

Hm;0
m;m

2664xt
��������
�
i + �i +

1

�i
;
1

�i

�
1:m�

j +
1

�j
;
1

�j

�
1;m

3775 f(t)dt (5.7.13)

in the space Lp(R+) (p = 1). They obtained the conditions for the boundedness of the operators I;��;m

and K;�
�;m in Lp(R+), and proved some properties of them including the relations for their Mellin

transforms, inversion formulas and the representations of the operators in (5.7.11) and (5.7.12) as
compositions of m commuting Erd�elyi{Kober type fractional integral operators (3.3.1) and (3.3.2),
respectively. Kiryakova [4] established some of these properties for the operator (5.7.12) in some space
of analytic functions. See also the book by Kiryakova [5] in this connection.

Raina and Saigo [1] studied the generalized fractional integral operators I;��;m and K;�
�;m in the

spaces Fr;� and proved the conditions for their boundedeness, and some properties including their
compositions with the di�erential operator � de�ned by�

�f
�
(x) = x

df

dx
(x): (5.7.14)
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These investigations were continued by Saigo, Raina and Kilbas [1] who proved some properties of the
operators (5.7.12) and (5.7.13), their Mellin transforms, the relation of fractional integration by partsZ

1

0

�
I;��;mg

�
(x)f(x)dx =

Z
1

0

�
K;�

�;mf
�
(x)g(x)dx (5.7.15)

�
f 2 Fr;� ; g 2 Fr0;�� ; 1 5 r <1;

1

r
+

1

r0
= 1

�
;

the decomposition relations in terms ofm commuting Erd�elyi{Kober type fractional integral operators
(3.3.1) and (3.3.2), extensions of the range of parameteres and the compositions of I;��;m and K;�

�;m with
the axisymmetric di�erential operator of potential theory L� de�ned by�

L�f
�
(x) = x�2��1 d

dx
x2�+1 d

dx
f(x) =

d2f(x)

dx2
+

2� + 1

x

df(x)

dx
: (5.7.16)

Using (5.7.15), Saigo, Raina and Kilbas [1] also de�ned the operators I;��;m and K;�
�;m in the spaces

F
0

r;� of generalized functions (space of continuous linear functionals on Fr;� equipped with the weak
topology for which see McBride [2]), and proved in such a space F

0

r;� the properties of the integral
operators (5.7.12) and (5.7.13) similarly to those obtained in the space Fr;� . Raina and Saigo [2]
investigated in F

0

r;� the compositions of such H-transforms with the fractional integration operators
involving the Gauss hypergeometric function (2.9.2) in the kernel de�ned by Saigo in [1] (see (7.12.45)
and (7.12.46) in Section 7.12).

More general than (5.7.12) and (5.7.13) the modi�edH-transforms

�
I
m;n
p;q f

�
(x) =

1

x

Z x

0

Hm;n
p;q

"
t

x

����� (ai; �i)1:p(bj; �j)1;q

#
f(t)dt (5.7.17)

and �
K

m;n
p;q f

�
(x) =

1

x

Z
1

x

Hm;n
p;q

"
x

t

����� (ai; �i)1:p(bj ; �j)1;q

#
f(t)dt (5.7.18)

in the spaces Fr;� and F
0

r;� were investigated by Kilbas and Saigo. The mapping properties were proved
in Kilbas and Saigo [2], [3], while the compositions of these transforms with the di�erential operator
of axisymmetric theory L� in (5.7.16) were given in Saigo and Kilbas [2], [3].

For Sections 5.4{5.6. As was indicated in Section 4.11 (For Sections 4.9 and 4.10), the papers
by R. Singh [1], K.C. Gupta and P.K. Mittal [1], [2] and Nasim [2] are devoted to the inversion of
the tramsforms H1;0 and H0;� given by (5.1.3). Mittal [1] showed that the composition of the H-
transform considered by K.C. Gupta and P.K. Mittal [1], with the Varma transform (see Section 7.2)
also gives the H-transform with another H-function in the kernel.

Using the Mellin transform, Mehra [2] proved the inversion formula for the generalized
H

1-transform (5.1.5) of the form

�
H

1f
�
(x) =

Z
1

0

Hm;n+1
p+1;q

"
a
�x
t

�� ����� (0; �); (ai; �i)1;p(bj ; �j)1;q

#
f(t)

dt

t
(x > 0) (5.7.19)

with real a and �.
de Amin and Kalla [1] derived the relation betweeen the Hardy transform (8.12.6) and the

H-transform of the form (4.11.17) considered by K.C. Gupta and P.K. Mittal [1], and pointed out
that in special cases their result reduces to the relations between the Hardy transform and the Mejer,
Varma, Hankel and Laplace transforms (see Chapter 7).

Treating the H-function transform of the form H0;1 given by (5.1.3), Srivastava and Buschman
[3] established an expression for the H-function transform of the Mellin convolution (5.7.4) of two
functions in terms of the Mellin convolution of H-function transforms of a function.
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Dange and Chaudhary [1] proved the Abelian theorems for the modi�edH2-transform of the form

�
H

2
0;0f

�
(x) =

1

x

Z
1

0

H1;2
2;2

"�x
t

�� ����� (a1; �1); (1� a2 � �2; ��2)

(b1; �1); (b2; �2)

#
f(t)dt (x > 0) (5.7.20)

with real � and showed that such Abelian theorems also hold for the special space of distributions f
discussed by Zemanian [6].

Malgonde [1] extended the modi�ed H-transform (5.1.4) of the form

(H1
0;�f)(x) =

Z
1

0

t��

�(�)
Hm;n+1

p+1;q

"
x

t

����� (1� �; 1); (ai; �i)1:p

(bj; �j)1;q

#
f(t)dt (x > 0) (5.7.21)

with � > 0 to a class of Banach space valued distributions, following the procedure by Zemanian [6],
and derived a complex inversion formula for such a transform.

Virchenko and Haidey [1] considered the modi�edH-transform

Z
1

0

H0;1
2m;0

264x
t

������� �1� �

2
; 1
�
m times

;

�
� + 1� ��

2
; �

�
m times

375f(2pt)dt (x > 0) (5.7.22)

and proved its existence and the inversion relation in the spaceM�1
c; (see Samko, Kilbas and Marichev

[1, Section 36]).
The results in Sections 5.4{5.6 have not been published before.



Chapter 6

G-TRANSFORM AND MODIFIED G-TRANSFORMS

ON THE SPACE L�;r

6.1. G-Transform on the Space L�;r

This section deals with the G-transforms, namely, the integral transforms of the form of

(3.1.2):

�
Gf

�
(x) =

Z
1

0
Gm;n
p;q

"
xt

����� (ai)1;p(bj)1;q

#
f(t)dt (6.1.1)

with the Meijer G-function Gm;n
p;q

"
z

����� (ai)1;p(bj)1;q

#
de�ned in (2.9.1) as kernel. A formal Mellin

transformM, de�ned in (2.5.1), of (6.1.1) gives a similar relation to (3.1.5)

�
MGf

�
(s) = Gm;n

p;q

"
(ai)1;p

(bj)1;q

����� s
# �
Mf

�
(1� s); (6.1.2)

where

Gm;n
p;q

"
(ai)1;p

(bj)1;q

����� s
#
= Gm;n

p;q

"
(a)p

(b)q

����� s
#
= Gm;n

p;q

"
a1; � � � ; ap

b1; � � � ; bq

����� s
#

=

mY
j=1

�(bj + s)
nY
i=1

�(1� ai � s)

pY
i=n+1

�(ai + s)
qY

j=m+1

�(1� bj � s)

: (6.1.3)

In this section on the basis of the results in Chapters 3 and 4 we charactrerize the map-

ping properties such as the existence, boundedness and representative properties of the

G-transform (6.1.1) on the spaces L�;r and also give inversion formulas for this transform. As

indicated in Section 3.1, (6.1.1) is a particular case of the H-transform in (3.1.1) when

�1 = � � �= �p = �1 = � � � = �q = 1: (6.1.4)

The numbers a�;�; a�1; a
�

2; � and � given in (1.1.7), (1.1.8), (1.1.11), (1.1.12), (3.4.1) and

(3.4.2) for the H-function (1.1.1), are simpli�ed for the Meijer G-function (6.1.2) and take

165
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the forms:

a� = 2(m+ n)� p� q; (6.1.5)

� = q � p; (6.1.6)

a�1 = m+ n� p; (6.1.7)

a�2 = m+ n � q; (6.1.8)

� =

8<: � min
15j5m

[Re(bj)] if m > 0;

�1 if m = 0;
(6.1.9)

and

� =

8<: 1� max
15i5n

[Re(ai)] if n > 0;

1 if n = 0;
(6.1.10)

while � in (1.1.10) remains the same:

� =
qX

j=1

bj �
pX

i=1

ai +
p� q

2
: (6.1.11)

De�nition 3.4 on the exceptional set takes the following form.

De�nition 6.1. Let the function G(s) = Gm;n
p;q

"
z

����� (ai)1;p(bj)1;q

#
be given in (6.1.3) and let

the real numbers � and � be de�ned in (6.1.9) and (6.1.10), respectively. We call the excep-

tional set of G the set EG of real numbers � such that � < 1 � � < � and G(s) has a zero on

the line Re(s) = 1� �.

From Theorems 3.6 and 3.7 we obtain the L�;2-theory of the G-transform (6.1.1).

Theorem 6.1. We suppose that (a) � < 1 � � < � and either of the conditions (b)

a� > 0; or (c) a� = 0; �(1� �) + Re(�) 5 0 holds. Then we have the results:

(i) There is a one-to-one transformG2 [L�;2; L1��;2] such that (6:1:2) holds for Re(s) =

1� � and f 2 L�;2. If a
� = 0; �(1� �) + Re(�) = 0 and � =2 EG ; then the transform G maps

L�;2 onto L1��;2.

(ii) If f; g 2 L�;2; then the relationZ
1

0
f(x)

�
Gg

�
(x)dx =

Z
1

0

�
Gf

�
(x)g(x)dx (6.1.12)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; then Gf is given by

�
Gf

�
(x) = x��

d

dx
x�+1

Z
1

0
Gm;n+1
p+1;q+1

"
xt

����� ��; a1; � � � ; apb1; � � � ; bq;��� 1

#
f(t)dt: (6.1.13)
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When Re(�) < ��;

�
Gf

�
(x) = �x��

d

dx
x�+1

Z
1

0
Gm+1;n
p+1;q+1

"
xt

����� a1; � � � ; ap;����� 1; b1; � � � ; bq

#
f(t)dt: (6.1.14)

(iv) The transform G is independent of � in the sense that; if � and e� satisfy (a), and

either (b) or (c), and if the transformsG and eG are de�ned in L�;2 and Le�;2; respectively; by
(6:1:2); then Gf = eGf for f 2 L�;2 \ Le�;2.

(v) If a� > 0 or if a� = 0; �(1� �) +Re(�) < 0; then Gf is given in (6:1:1) for f 2 L�;2:

Corollary 6.1.1. Let � < � and let one of the following conditions hold:

(b) a� > 0;

(e) a� = 0; � > 0 and � < �
Re(�)

�
;

(f) a� = 0; � < 0 and � > �
Re(�)

�
;

(g) a� = 0; � = 0 and Re(�) 5 0:

Then the G-transform can be de�ned on L�;2 with � < � < �.

Theorem 6.2. Let � < 1� � < � and either of the following conditions hold:

(b) a� > 0;

(d) a� = 0; �(1� �) + Re(�) < 0:

Then for f 2 L�;2 and x > 0;
�
Gf

�
(x) is given in (6:1:1).

Corollary 6.2.1. Let � < � and let one of the following conditions hold:

(b) a� > 0;

(h) a� = 0; � > 0 and � < �
Re(�) + 1

�
;

(i) a� = 0; � < 0 and � > �
Re(�) + 1

�
;

(j) a� = 0; � = 0 and Re(�) < 0:

Then the G-transform can be de�ned by (6:1:1) on L�;2 with � < � < �.

Using the results in Sections 4.1{4.4, we present the L�;r-theory of the G-transform (6.1.1)

when a� = 0. From Theorems 4.1{4.4 we obtain the mapping properties and the range of G

on L�;r in three di�erent cases when either � = Re(�) = 0 or � = 0; Re(�) < 0 or � 6= 0.

Here a�;�; a�1; a
�

2; �; � and � are taken as in (6.1.5), (6.1.6), (6.1.7), (6.1.8), (6.1.9), (6.1.10)

and (6.1.11), respectively.
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Theorem 6.3. Let a� = � = 0;Re(�) = 0 and � < 1� � < �: Let 1 < r <1.

(a) The transformG de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L1��;r].

(b) If 1 < r 5 2; then the transformG is one-to-one on L�;r and there holds the equality

(6:1:2) for f 2 L�;r and Re(s) = 1� �.

(c) If f 2 L�;r and g 2 L�;r0 with r0 = r=(r� 1); then the relation (6:1:12) holds.

(d) If � =2 EG ; then the transform G is one-to-one on L�;r and there holds

G(L�;r) = L1��;r : (6.1.15)

(e) If f 2 L�;r and � 2 C ; then Gf is given in (6:1:13) for Re(�) > ��; while in (6:1:14)

for Re(�) < ��:

Theorem 6.4. Let a� = � = 0;Re(�) < 0 and � < 1� � < �; and let either m > 0 or

n > 0. Let 1 < r <1.

(a) The transformG de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L1��;s]

for all s = r such that 1=s > 1=r+ Re(�).

(b) If 1 < r 5 2; then the transformG is one-to-one on L�;r and there holds the equality

(6:1:2) for f 2 L�;r and Re(s) = 1� �.

(c) If f 2 L�;r and g 2 L�;s with 1 < s < 1 and 1 5 1=r + 1=s < 1 � Re(�); then the

relation (6:1:12) holds.

(d) Let k > 0. If � =2 EG ; then the transform G is one-to-one on L�;r and there hold

G (L�;r) = I��
�;k;��=k (L1��;r) (6.1.16)

for m > 0; and

G (L�;r) = I
��
0+;k;�=k�1 (L1��;r) (6.1.17)

for n > 0. If � 2 EG ; G (L�;r) is a subset of the right-hand sides of (6:1:16) and (6:1:17) in the

respective cases.

(e) If f 2 L�;r and � 2 C ; then Gf is given in (6:1:13) for Re(�) > ��; while in (6:1:14)

for Re(�) < ��. Furthermore Gf is given in (6.1.1).

Theorem 6.5. Let a� = 0;� 6= 0; � < 1�� < �; 1 < r <1 and�(1��)+Re(�) 5 1=2�

(r); where (r) is de�ned in (3:3:9): Assume that m > 0 if � > 0 and n > 0 if � < 0.

(a) The transformG de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L1��;s]

for all s with r 5 s <1 such that s0 = [1=2��(1� �)� Re(�)]�1 with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; then the transformG is one-to-one on L�;r and there holds the equality

(6:1:2) for f 2 L�;r and Re(s) = 1� �.

(c) If f 2 L�;r and g 2 L�;s with 1 < s <1; 1=r+1=s = 1 and �(1��)+Re(�) 5 1=2�

max[(r); (s)]; then the relation (6:1:12) holds.

(d) If � =2 EG ; then the transform G is one-to-one on L�;r . If we set � = ���� �� 1 for

� > 0 and � = ��� � � � 1 for � < 0; then Re(�) > �1 and there holds

G(L�;r) =
�
M�=�+1=2H�;�

��
L��1=2�Re(�)=�;r

�
: (6.1.18)

When � 2 EG ; G(L�;r) is a subset of the right-hand side of (6:1:18):
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(e) If f 2 L�;r; � 2 C and �(1 � �) + Re(�) 5 1=2� (r); then Gf is given in (6:1:13)

for Re(�) > ��; while in (6:1:14) for Re(�) < ��. If �(1� �) + Re(�) < 0; Gf is given in

(6.1.1).

Corollary 6.5.1. Let 1 < r <1; � < �; a� = 0 and let one of the following conditions

hold:

(a) � > 0; � <
1

�

�
1

2
� Re(�)� (r)

�
;

(b) � < 0; � >
1

�

�
1

2
�Re(�)� (r)

�
;

(c) � = 0; Re(�) 5 0:

Then the transform G can be de�ned on L�;r with � < 1� � < �.

From Theorem 4.5 in Section 4.5 we obtain the L�;r-theory of the G-transform (6.1.1)

with a� > 0 in L�;r-spaces for any � 2 C and 1 5 r 5 1:

Theorem 6.6. Let a� > 0; � < 1� � < � and 1 5 r 5 s 5 1:

(a) TheG-transform de�ned on L�;2 can be extended to L�;r as an element of [L�;r ;L1��;s].

When 1 5 r 5 2; G is a one-to-one transform from L�;r onto L1��;s.

(b) If f 2 L�;r and g 2 L�;s0 with 1=s+ 1=s0 = 1; then the relation (6:1:12) holds.

According to Theorems 4.6{4.10 we characterize the boundedness and the range of G on

L�;r for a� > 0 but with various combinations of the signs of a�1 and a�2 which are classi�ed

in �ve cases: a�1 > 0; a�2 > 0; a�1 > 0; a�2 = 0; a�1 = 0; a�2 > 0; a� > 0; a�1 > 0; a�2 < 0; and

a� > 0; a�1 < 0; a�2 > 0:

Theorem 6.7. Let a�1 > 0; a�2 > 0; m > 0; n > 0; � < 1�� < � and ! = �+a�1��a�2�+1

and let 1 < r <1:

(a) If � =2 EG ; or if 1 5 r 5 2; then the transform G is one-to-one on L�;r.

(b) If Re(!) = 0 and � =2 EG ; then

G(L�;r) =
�
La�

1
;�La�

2
;1���!=a�

2

�
(L1��;r): (6.1.19)

When � 2 EG ; G(L�;r) is a subset of the right-hand side of (6:1:19):

(c) If Re(!) < 0 and � =2 EG ; then

G(L�;r) =
�
I�!
�;1=a�

1
;�a�

1
�La

�

1
;�La�

2
;1��

�
(L1��;r): (6.1.20)

When � 2 EG ; G(L�;r) is a subset of the right-hand side of (6.1.20).

Theorem 6.8. Let a�1 > 0; a�2 = 0; m > 0; � < 1� � < � and ! = � + a�1� + 1=2 and let

1 < r <1:

(a) If � =2 EG ; or if 1 < r 5 2; then the transform G is one-to-one on L�;r.

(b) If Re(!) = 0 and � =2 EG ; then

G(L�;r) = La�
1
;��!=a�

1

(L�;r): (6.1.21)
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When � 2 EG ; G(L�;r) is a subset of the right-hand side of (6:1:21):

(c) If Re(!) < 0 and � =2 EG ; then

G(L�;r) =
�
I�!
�;1=a�

1
;�a�

1
�La�

1
;�

�
(L�;r): (6.1.22)

When � 2 EG ; G(L�;r) is a subset of the right-hand side of (6.1.22).

Theorem 6.9. Let a�1 = 0; a�2 > 0; n > 0; � < 1� � < � and ! = �� a�2� + 1=2 and let

1 < r <1:

(a) If � =2 EG ; or if 1 < r 5 2; then the transform G is one-to-one on L�;r.

(b) If Re(!) = 0 and � =2 EG ; then

G(L�;r) = L�a�
2
;�+!=a�

2

(L�;r): (6.1.23)

When � 2 EG ; G(L�;r) is a subset of the right-hand side of (6:1:23):

(c) If Re(!) < 0 and � =2 EG ; then

G(L�;r) =
�
I�!0+;1=a�

2
;a�
2
��1L�a

�

2
;�

�
(L�;r): (6.1.24)

When � 2 EG ; G(L�;r) is a subset of the right-hand side of (6.1.24).

Theorem 6.10. Let a� > 0; a�1 > 0; a�2 < 0; � < 1� � < � and let 1 < r <1:

(a) If � =2 EG ; or if 1 < r 5 2; then the transform G is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� � � �
1

2
; (6.1.25)

a�Re(�) = (r) + 2a�2(� � 1) + Re(�); (6.1.26)

Re(�) > � � 1; (6.1.27)

Re(�) < 1� �: (6.1.28)

If � =2 EG ; then

G(L�;r) =
�
M1=2+!=(2a�

2
)H�2a�

2
;2a�

2
�+!�1L�a�;1=2+��!=(2a�

2
)

�
�
L3=2��+Re(!)=(2a�

2
);r

�
: (6.1.29)

When � 2 EG ; G(L�;r) is a subset of the right-hand side of (6.1.29).

Corollary 6.10.1. Let a� > 0; a�1 > 0; a�2 < 0; � < 1� � < � and let 1 < r <1:

(a) If � =2 EG ; or if 1 < r 5 2; then the transform G is one-to-one on L�;r.

(b) Let ! = a�� � � � 1=2 and let � and � be chosen such that any of the following

conditions holds:

(i) a�Re(�) = (r)� 2a�2� + Re(�); Re(�) = � �; Re(�) 5 � if m > 0; n > 0;

(ii) a�Re(�) 5 (r)� 2a�2� + Re(�); Re(�) > � � 1; Re(�) < 1� � if m = 0; n > 0;
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(iii) a�Re(�) = (r) + 2a�2(� � 1) + Re(�); Re(�) = � �; Re(�) 5 � if m > 0; n = 0:

Then; if � =2 EG ;G(L�;r) can be represented by the relation (6:1:29):When � 2 EG ; G(L�;r)

is a subset of the right-hand side of (6.1.29).

Corollary 6.10.2. Let a� > 0; a�1 > 0; a�2 < 0; m > 0; n > 0; � < 1 � � < � and

1 < r <1:

(a) If � =2 EG ; or if 1 < r 5 2; then the transform G is one-to-one on L�;r.

(b) Let a���2a�2�+Re(�)+(r) 5 0; ! = �a�����1=2 and let � be chosen such that

Re(�) 5 �. Then if � =2 EG ; G(L�;r) can be represented in the form (6:1:29). When � 2 EG ;

G(L�;r) is a subset of the right-hand side of (6.1.29).

Theorem 6.11. Let a� > 0; a�1 < 0; a�2 > 0; � < 1� � < � and let 1 < r <1:

(a) If � =2 EG ; or if 1 < r 5 2; then the transform G is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� ��� ��
1

2
; (6.1.30)

a�Re(�) = (r)� 2a�1� + �+Re(�); (6.1.31)

Re(�) > ��; (6.1.32)

Re(�) < �: (6.1.33)

If � =2 EG ; then

G(L�;r) =
�
M�1=2�!=(2a�

1
)H 2a�

1
;2a�

1
�+!�1La�;1=2��+!=(2a�

1
)

�
�
L1=2���Re(!)=(2a�

1
);r

�
: (6.1.34)

When � 2 EG ; G(L�;r) is a subset of the right-hand side of (6.1.34).

Corollary 6.11.1. Let a� > 0; a�1 < 0; a�2 > 0; � < 1� � < � and let 1 < r <1:

(a) If � =2 EG ; or if 1 < r 5 2; then the transform G is one-to-one on L�;r.

(b) Let ! = a�������1=2; and let � and � be chosen such that either of the following

conditions holds:

(i) a�Re(�) = (r)�2a�1(1��)+�+Re(�); Re(�) = ��1; Re(�) 5 1�� if m > 0; n > 0;

(ii) a�Re(�) = (r)� 2a�1� + �+ Re(�); Re(�) = � � 1; Re(�) 5 1� � if m = 0; n > 0;

(iii) a�Re(�) = (r)� 2a�1(1� �) + �+Re(�); Re(�) > ��; Re(�) < � if m > 0; n = 0:

Then; if � =2 EG ;G(L�;r) can be represented by the relation (6:1:34):When � 2 EG ; G(L�;r)

is a subset of the right-hand side of (6.1.34).

Corollary 6.11.2. Let a� > 0; a�1 < 0; a�2 > 0; m > 0; n > 0; � < 1 � � < �; and let

1 < r <1:

(a) If � =2 EG ; or if 1 < r 5 2; then the transform G is one-to-one on L�;r.
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(b) Let 2a�1� � a�2� + Re(�) + (r) 5 0; and let � be chosen such that Re(�) 5 1 � �.

Then; if � =2 EG ; G(L�;r) can be represented by the relation (6:1:34): When � 2 EG ; G(L�;r) is

a subset of the right-hand side of (6.1.34).

It follows from the results in Sections 4.9 and 4.10 that the inversion formulas for the

G-transform (6.1.1) have the respective forms:

f(x) = x��
d

dx
x�+1

�

Z
1

0
G
q�m;p�n+1
p+1;q+1

"
xt

����� ��;�an+1; � � � ;�ap;�a1; � � � ;�an�bm+1; � � � ;�bq;�b1; � � � ;�bm;��� 1

#
(Gf)(t)dt; (6.1.35)

f(x) = �x��
d

dx
x�+1

�

Z
1

0
Gq�m+1;p�n

p+1;q+1

"
xt

����� �an+1; � � � ;�ap;�a1; � � � ;�an;����� 1;�bm+1; � � � ;�bq;�b1; � � � ;�bm

#
(Gf)(t)dt (6.1.36)

corresponding to (6.1.13) and (6.1.14), provided that a� = 0: The conditions for the validity

of (6.1.35) and (6.1.36) follow from Theorems 4.11{4.14, if we take into account that the

numbers �0 and �0 in (4.9.6) and (4.9.7) take the forms:

�0 =

8>><>>:
max

m+15j5q
[Re(bj)] if q > m;

�1 if q = m

(6.1.37)

and

�0 =

8>><>>:
min

n+15i5p
[Re(ai)] + 1 if p > n;

1 if p = n:

(6.1.38)

We note that if �0 < � < �0; � is not in the exceptional set of G (see De�nition 6.1).

From Theorems 4.11 and 4.12 we obtain the conditions for the inversion formulas (6.1.35)

and (6.1.36) in the space L�;2.

Theorem 6.12. Let a� = 0; � < 1� � < � and �0 < � < �0; and let � 2 C .

(a) If �(1� �) +Re(�) = 0 and if f 2 L�;2; then the inversion formula (6:1:35) holds for

Re(�) > � � 1 and (6:1:36) for Re(�) < � � 1.

(b) If � = Re(�) = 0 and if f 2 L�;r (1 < r < 1); then the inversion formula (6:1:35)

holds for Re(�) > � � 1 and (6:1:36) for Re(�) < � � 1.

Theorems 4.13 and 4.14 give the conditions for the inversion formulas (6.1.35) and (6.1.36)

in L�;r-space when � 6= 0.

Theorem 6.13. Let a� = 0; 1 < r < 1 and �(1 � �) + Re(�) 5 1=2 � (r); and let

� 2 C .
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(a) If � > 0; m > 0; � < 1� � < �; �0 < � < min[�0; fRe(�+ 1=2)=�g+1] and f 2 L�;r;

then the inversion formulas (6:1:35) and (6:1:36) hold for Re(�) > ��1 and for Re(�) < ��1;

respectively.

(b) If � < 0; n > 0; � < 1 � � < �;max[�0; fRe(� + 1=2)=�g + 1] < � < �0 and if

f 2 L�;r ; then the inversion formulas (6:1:35) and (6:1:36) hold for Re(�) > � � 1 and for

Re(�) < � � 1; respectively.

6.2. Modi�ed G-Transforms

Let us consider the following modi�cations of the G-transform (6.1.1):

�
G

1f
�
(x) =

Z
1

0

Gm;n
p;q

"
x

t

�����
(ai)1;p

(bj)1;q

#
f(t)

dt

t
; (6.2.1)

�
G

2f
�
(x) =

Z
1

0

Gm;n
p;q

"
t

x

�����
(ai)1;p

(bj)1;q

#
f(t)

dt

x
; (6.2.2)

�
G�;�f

�
(x) = x�

Z
1

0

Gm;n
p;q

"
xt

�����
(ai)1;p

(bj)1;q

#
t�f(t)dt; (6.2.3)

�
G

1

�;�f
�
(x) = x�

Z
1

0

Gm;n
p;q

"
x

t

�����
(ai)1;p

(bj)1;q

#
t�f(t)

dt

t
(6.2.4)

and

�
G

2

�;�f
�
(x) = x�

Z
1

0

Gm;n
p;q

"
t

x

�����
(ai)1;p

(bj)1;q

#
t�f(t)

dt

x
; (6.2.5)

where �; � 2 C .

These transforms are connected with the G-transform (6.1.1) by the relations

�
G

1f
�
(x) =

�
GRf

�
(x); (6.2.6)

�
G

2f
�
(x) =

�
RGf

�
(x); (6.2.7)

�
G�;�f

�
(x) =

�
M�GM�f

�
(x); (6.2.8)

�
G

1

�;�f
�
(x) =

�
M�GRM�f

�
(x) =

�
M�G

1M�f
�
(x) (6.2.9)

and

�
G

2

�;�f
�
(x) =

�
M�RGM�f

�
(x) =

�
M�G

2M�f
�
(x); (6.2.10)

respectively, where R and M� are the operators given in (3.3.13) and (3.3.11). Due to (6.2.6){

(6.2.10), (6.1.2) and Lemma 3.1 the Mellin transforms of the modi�ed G-transforms (6.2.1){
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(6.2.5) for \su�ciently good" function f are given by the relations

�
MG

1f
�
(s) = Gm;n

p;q

"
(ai)1;p

(bj)1;q

����� s
# �
Mf

�
(s); (6.2.11)

�
MG

2f
�
(s) = Gm;n

p;q

"
(ai)1;p

(bj)1;q

����� 1� s

# �
Mf

�
(s); (6.2.12)

�
MG�;�f

�
(s) = Gm;n

p;q

"
(ai)1;p

(bj)1;q

����� s+ �

#�
Mf

�
(1� s� � + �); (6.2.13)

�
MG

1

�;�f
�
(s) = Gm;n

p;q

"
(ai)1;p

(bj)1;q

����� s+ �

#�
Mf

�
(s+ � + �) (6.2.14)

and

�
MG

2

�;�f
�
(s) = Gm;n

p;q

"
(ai)1;p

(bj)1;q

����� 1� s � �

#�
Mf

�
(s+ � + �) (6.2.15)

in terms of the function Gm;n
p;q

"
(ai)1;p

(bj)1;q

����� s
#
de�ned in (6.1.3).

It is directly veri�ed that for the \su�ciently good" functions f and g the following

formulas hold Z
1

0

f(x)
�
G

1g
�
(x)dx =

Z
1

0

�
G

2f
�
(x)g(x)dx; (6.2.16)

Z
1

0

f(x)
�
G

2g
�
(x)dx =

Z
1

0

�
G

1f
�
(x)g(x)dx; (6.2.17)

Z
1

0

f(x)
�
G�;�g

�
(x)dx =

Z
1

0

�
G�;�f

�
(x)g(x)dx; (6.2.18)

Z
1

0

f(x)
�
G

1

�;�g
�
(x)dx =

Z
1

0

�
G

2

�;�
f
�
(x)g(x)dx (6.2.19)

and Z
1

0

f(x)
�
G

2

�;�g
�
(x)dx =

Z
1

0

�
G

1

�;�
f
�
(x)g(x)dx: (6.2.20)

The modi�ed G-transforms (6.2.1){(6.2.5) are particular cases of the modi�ed

H-transforms (5.1.1){(5.1.5) when the condition (6.1.4) is satis�ed. Therefore the properties

in L�;r-space for the modi�ed G-transforms follow from the corresponding results for the

modi�ed H-transforms proved in Chapter 5.

We suppose in Sections 6.2{6.6 below that a�;�; a�
1
; a�

2
; �; � and � are given in (6.1.5),

(6.1.6), (6.1.7), (6.1.8), (6.1.9), (6.1.10) and (6.1.11), respectively
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6.3. G1-Transform on the Space L�;r

We �rst investigate the transform G1 de�ned in (6.2.1). Let EG be the exceptional set of the

function G
m;n
p;q (s) given in De�nition 6.1. From the results in Section 5.2 we obtain the L�;2-

and L�;r-theory of the modi�edG1-tranform (6.2.1). The �rst result follows fromTheorem 5.1.

Theorem 6.14. We suppose that (a) � < � < � and that either of the conditions (b)

a� > 0; or (c) a� = 0; �� +Re(�) 5 0 holds. Then we have the following results:

(i) There is a one-to-one transformG1 2 [L�;2; L�;2] such that (6:2:11) holds forRe(s) = �

and f 2 L�;2. If a� = 0; �� + Re(�) = 0 and 1� � =2 EG ; then the transform G1 maps L�;2

onto L�;2.

(ii) If f 2 L�;2 and g 2 L1��;2; then the relation (6:2:16) holds for G1.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > � � 1; then G1f is given by

�
G

1f
�
(x) = x��

d

dx
x�+1

Z
1

0
G
m;n+1
p+1;q+1

"
x

t

����� ��; a1; � � � ; apb1; � � � ; bq;��� 1

#
f(t)

t
dt: (6.3.1)

When Re(�) < � � 1;

�
G

1f
�
(x) = �x��

d

dx
x�+1

Z
1

0
Gm+1;n
p+1;q+1

"
x

t

����� a1; � � � ; ap;����� 1; b1; � � � ; bq

#
f(t)

t
dt: (6.3.2)

(iv) The transform G1 is independent of � in the sense that, if � and e� satisfy (a), and

(b) or (c), and if the transforms G1 and g
G

1 are de�ned in L�;2 and Le�;2; respectively; by
(6:2:11); then G1f = g

G
1f for f 2 L�;2 \ Le�;2.

(v) If a� > 0 or if a� = 0; �� +Re(�) < 0; then for f 2 L�;2; G
1f is given in (6.2.1).

When a� = 0; from Theorems 5.2{5.4 we obtain the mapping properties and the range

ofG1 on L�;r in three di�erent cases when either � = Re(�) = 0 or � = 0;Re(�) < 0 or � 6= 0.

Theorem 6.15. Let a� = � = 0;Re(�) = 0; � < � < � and let 1 < r <1.

(a) The transformG1 de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L�;r].

(b) If 1 < r 5 2; then the transformG1 is one-to-one on L�;r and there holds the equality

(6:2:11) for f 2 L�;r and Re(s) = �.

(c) If f 2 L�;r and g 2 L1��;r0 with r0 = r=(r� 1); then the relation (6:2:16) holds.

(d) If 1� � =2 EG ; then the transform G1 is one-to-one on L�;r and there holds

G
1(L�;r) = L�;r: (6.3.3)

(e) If f 2 L�;r and � 2 C ; then G1f is given in (6:3:1) for Re(�) > � � 1; while in (6:3:2)

for Re(�) < � � 1:

Theorem 6.16. Let a� = � = 0;Re(�) < 0 and � < � < �; and let either m > 0 or

n > 0. Let 1 < r <1.

(a) The transformG1 de�ned on L�;2 can be extended to L�;r as an element of [L�;r ;L�;s]

for all s = r such that 1=s > 1=r+ Re(�).
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(b) If 1 < r 5 2; then the transformG1 is one-to-one on L�;r and there holds the equality

(6:2:11) for f 2 L�;2 and Re(s) = �.

(c) If f 2 L�;r and g 2 L1��;s with 1 < s < 1 and 1 5 1=r+ 1=s < 1� Re(�); then the

relation (6:2:16) holds.

(d) Let k > 0. If 1� � =2 EG ; then the transform G1 is one-to-one on L�;r and there hold

G
1 (L�;r) = I��

�;k;��=k (L�;r) (6.3.4)

for m > 0; and

G
1 (L�;r) = I��0+;k;�=k�1 (L�;r) (6.3.5)

for n > 0. When 1� � 2 EG ; G
1 (L�;r) is a subset of the right-hand sides of (6:3:4) and (6:3:5)

in the respective cases.

(e) If f 2 L�;r and � 2 C ; then G1f is given in (6:3:1) for Re(�) > � � 1; while in (6:3:2)

for Re(�) < � � 1. Furthermore G1f is given in (6.2.1).

Theorem 6.17. Let a� = 0;� 6= 0; � < � < �; 1 < r <1 and ��+Re(�) 5 1=2�(r):

Assume that m > 0 if � > 0 and n > 0 if � < 0.

(a) The transformG1 de�ned on L�;2 can be extended to L�;r as an element of [L�;r ;L�;s]

for all s with r 5 s <1 such that s0 = [1=2��� �Re(�)]�1 with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; then the transformG1 is one-to-one on L�;r and there holds the equality

(6:2:11) for f 2 L�;2 and Re(s) = �.

(c) If f 2 L�;r and g 2 L1��;s with 1 < s < 1; 1=r+ 1=s = 1 and �� + Re(�) 5 1=2�

max[(r); (s)]; then the relation (6:2:16) holds.

(d) If 1� � =2 EG ; then the transformG1 is one-to-one on L�;r. If we set � = ������ 1

for � > 0 and � = ��� � � � 1 for � < 0; then Re(�) > �1 and there holds

G
1(L�;r) =

�
M�=�+1=2H�;�

��
L1=2���Re(�)=�;r

�
: (6.3.6)

When 1� � 2 EG ; G
1(L�;r) is a subset of the right-hand side of (6:3:6):

(e) If f 2 L�;r; � 2 C and �� + Re(�) 5 1=2 � (r); then G1f is given in (6:3:1) for

Re(�) > � � 1; while in (6:3:2) for Re(�) < � � 1. If �� +Re(�) < 0; G1f is given in (6.2.1).

From Theorem 5.5 we obtain the L�;r-theory of the transformG1 in (6.2.1) for a� > 0.

Theorem 6.18. Let a� > 0; � < � < � and 1 5 r 5 s 5 1:

(a) The transformG1 de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L�;s].

If 1 5 r 5 2; then G1 is a one-to-one transform from L�;r onto L�;s.

(b) If f 2 L�;r and g 2 L1��;s0 with 1=s+ 1=s0 = 1; then the relation (6:2:16) holds.

When a� > 0; the boundedness and the range of G1 on L�;r can be obtained in �ve cases

as in Theorems 5.6{5.10.

Theorem 6.19. Let a�1 > 0; a�2 > 0; m > 0; n > 0; � < � < � and ! = �+ a�1�� a�2� + 1

and let 1 < r <1:
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(a) If 1� � =2 EG ; or if 1 5 r 5 2; then the transform G1 is one-to-one on L�;r.

(b) If Re(!) = 0 and 1� � =2 EG ; then

G
1(L�;r) =

�
La�

1
;�La�

2
;1���!=a�

2

�
(L�;r): (6.3.7)

When 1� � 2 EG ; G
1(L�;r) is a subset of the right-hand side of (6:3:7):

(c) If Re(!) < 0 and 1� � =2 EG ; then

G
1(L�;r) =

�
I�!
�;1=a�

1
;�a�

1
�La�

1
;�La�

2
;1��

�
(L�;r): (6.3.8)

When 1� � 2 EG ; G
1(L�;r) is a subset of the right-hand side of (6.3.8).

Theorem 6.20. Let a�1 > 0; a�2 = 0; m > 0; � < � < � and ! = � + a�1� + 1=2 and let

1 < r <1:

(a) If 1� � =2 EG ; or if 1 < r 5 2; then the transform G1 is one-to-one on L�;r.

(b) If Re(!) = 0 and 1� � =2 EG ; then

G
1(L�;r) = La�

1
;��!=a�

1

(L1��;r): (6.3.9)

When 1� � 2 EG ; G
1(L�;r) is a subset of the right-hand side of (6:3:9):

(c) If Re(!) < 0 and 1� � =2 EG ; then

G
1(L�;r) =

�
I�!
�;1=a�

1
;�a�

1
�La

�

1
;�

�
(L1��;r): (6.3.10)

When 1� � 2 EG ; G
1(L�;r) is a subset of the right-hand side of (6.3.10).

Theorem 6.21. Let a�1 = 0; a�2 > 0; n > 0; � < � < � and ! = � � a�2� + 1=2 and let

1 < r <1:

(a) If 1� � =2 EG ; or if 1 < r 5 2; then the transform G1 is one-to-one on L�;r.

(b) If Re(!) = 0 and 1� � =2 EG ; then

G
1(L�;r) = L�a�

2
;�+!=a�

2

(L1��;r): (6.3.11)

When 1� � 2 EG ; G
1(L�;r) is a subset of the right-hand side of (6:3:11):

(c) If Re(!) < 0 and 1� � =2 EG ; then

G
1(L�;r) =

�
I�!0+;1=a�

2
;a�
2
��1L�a

�

2
;�

�
(L1��;r): (6.3.12)

When 1� � 2 EG ; G
1(L�;r) is a subset of the right-hand side of (6.3.12).

Theorem 6.22. Let a� > 0; a�1 > 0; a�2 < 0; � < � < � and let 1 < r <1:

(a) If 1� � =2 EG ; or if 1 < r 5 2; then the transform G1 is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� � � �
1

2
; (6.3.13)

a�Re(�) = (r)� 2a�2� + Re(�); (6.3.14)

Re(�) > ��; (6.3.15)

Re(�) < �: (6.3.16)
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If 1� � =2 EG ; then

G
1(L�;r) =

�
M1=2+!=(2a�

2
)H�2a�

2
;2a�

2
�+!�1L�a�;1=2+��!=(2a�

2
)

�
�
L�+1=2+Re(!)=(2a�

2
);r

�
: (6.3.17)

When 1� � 2 EG ; G
1(L�;r) is a subset of the right-hand side of (6.3.17).

Theorem 6.23. Let a� > 0; a�1 < 0; a�2 > 0; � < � < � and let 1 < r <1:

(a) If 1� � =2 EG ; or if 1 < r 5 2; then the transform G1 is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� ��� ��
1

2
; (6.3.18)

a�Re(�) = (r) + 2a�1(� � 1) + �+Re(�); (6.3.19)

Re(�) > � � 1; (6.3.20)

Re(�) < 1� �: (6.3.21)

If 1� � =2 EG ; then

G
1(L�;r) =

�
M�1=2�!=(2a�

1
)H 2a�

1
;2a�

1
�+!�1La�;1=2��+!=(2a�

1
)

�
�
L��1=2�Re(!)=(2a�

1
);r

�
: (6.3.22)

When 1� � 2 EG ; G
1(L�;r) is a subset of the right-hand side of (6.3.22).

The inversion formulas for the transform G1 in (6.2.1) follow from those for (5.2.27) and

(5.2.28). They take the forms

f(x) = �x�+1
d

dx
x�(�+1)

�

Z
1

0
Gq�m;p�n+1

p+1;q+1

"
t

x

����� ��;�an+1; � � � ;�ap;�a1; � � � ;�an�bm+1; � � � ;�bq;�b1; � � � ;�bm;��� 1

#
(G1f)(t)dt (6.3.23)

and

f(x) = x�+1
d

dx
x�(�+1)

�

Z
1

0
Gq�m+1;p�n

p+1;q+1

"
t

x

����� �an+1; � � � ;�ap;�a1; � � � ;�an;����� 1;�bm+1; � � � ;�bq;�b1; � � � ;�bm

#
(G1f)(t)dt; (6.3.24)

respectively.

The conditions for the validity of (6.3.23) and (6.3.24) follow from Theorems 5.11 and

5.12, if we take into account that the numbers �0 and �0 are given in (6.1.37) and (6.1.38).

Theorem 6.24. Let a� = 0; � < � < � and �0 < 1� � < �0; and let � 2 C .
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(a) If �� + Re(�) = 0 and f 2 L�;2; then the inversion formula (6:3:23) holds for

Re(�) > �� and (6:3:24) for Re(�) < ��.

(b) If � = Re(�) = 0 and f 2 L�;r (1 < r < 1); then the inversion formula (6:3:23)

holds for Re(�) > �� and (6:3:24) for Re(�) < ��.

Theorem 6.25. Let a� = 0; 1 < r <1 and �� + Re(�) 5 1=2� (r); and let � 2 C .

(a) If � > 0; m > 0; � < � < �; �0 < 1 � � < min[�0; fRe(� + 1=2)=�g + 1] and

if f 2 L�;r; then the inversion formulas (6:3:23) and (6:3:24) hold for Re(�) > � and for

Re(�) < ��; respectively.

(b) If � < 0; n > 0; � < � < �; max[�0; fRe(� + 1=2)=�g + 1] < 1 � � < �0 and

if f 2 L�;r; then the inversion formulas (6:3:23) and (6:3:24) hold for Re(�) > � and for

Re(�) < ��; respectively.

6.4. G2-Transform on the Space L�;r

Now we treat the transform G2 de�ned in (6.2.2). From the results in Section 5.3 we obtain

L�;2- and L�;r-theory for this transform. The �rst result comes from Theorem 5.13.

Theorem 6.26. We suppose that (a) � < 1� � < � and that either of the conditions

(b) a� > 0; or (c) a� = 0; �(1� �) +Re(�) 5 0 holds. Then we have the following results:

(i) There is a one-to-one transformG2 2 [L�;2; L�;2] such that (6:2:12) holds forRe(s) = �

and f 2 L�;2. If a
� = 0; �(1� �) + Re(�) = 0 and � =2 EG ; then the transform G2 maps L�;2

onto L�;2.

(ii) If f 2 L�;2 and g 2 L1��;2; then the relation (6:2:17) holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; then G2f is given by

�
G

2f
�
(x) = �x�+1

d

dx
x���1

Z
1

0
Gm;n+1
p+1;q+1

"
t

x

����� ��; a1; � � � ; apb1; � � � ; bq;��� 1

#
f(t)dt: (6.4.1)

When Re(�) < ��;

�
G

2f
�
(x) = x�+1

d

dx
x���1

Z
1

0
G
m+1;n
p+1;q+1

"
t

x

����� a1; � � � ; ap;����� 1; b1; � � � ; bq

#
f(t)dt: (6.4.2)

(iv) The transform G2 is independent of � in the sense that, if � and e� satisfy (a), and

(b) or (c), and if the transforms G2 and
g
G

2 are de�ned in L�;2 and Le�;2; respectively; by
(6:2:12); then G2f = g

G
2f for f 2 L�;2 \ Le�;2.

(v) If a� > 0 or if a� = 0; �(1��)+Re(�) < 0; then for f 2 L�;2;G
1f is given in (6.2.2).

When a� = 0; from Theorems 5.14{5.16 we obtain the mapping properties and the range

ofG2 on L�;r in three di�erent cases when either � = Re(�) = 0 or � = 0;Re(�) < 0 or � 6= 0.

Theorem 6.27. Let a� = � = 0;Re(�) = 0 and � < 1� � < �; and let 1 < r <1.

(a) The transformG2 de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L�;r].
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(b) If 1 < r 5 2; then the transformG2 is one-to-one on L�;r and there holds the equality

(6:2:12) for f 2 L�;2 and Re(s) = �:

(c) If f 2 L�;r and g 2 L1��;r0 with r0 = r=(r� 1); then the relation (6:2:17) holds.

(d) If � =2 EG ; then the transform G2 is one-to-one on L�;r and there holds

G
2(L�;r) = L�;r: (6.4.3)

(e) If f 2 L�;r and � 2 C ; then G2f is given in (6:4:1) for Re(�) > ��; while in (6:4:2)

for Re(�) < ��:

Theorem 6.28. Let a� = � = 0;Re(�) < 0 and � < 1� � < �; and let either m > 0 or

n > 0. Let 1 < r <1.

(a) The transformG2 de�ned on L�;2 can be extended to L�;r as an element of [L�;r ;L�;s]

for all s = r such that 1=s > 1=r+ Re(�).

(b) If 1 < r 5 2; then the transformG2 is one-to-one on L�;r and there holds the equality

(6:2:12) for f 2 L�;2 and Re(s) = �:

(c) If f 2 L�;r and g 2 L1��;s with 1 < s < 1 and 1 5 1=r+ 1=s < 1� Re(�); then the

relation (6:2:17) holds.

(d) Let k > 0. If � =2 EG ; then the transform G2 is one-to-one on L�;r and there hold

G
2 (L�;r) = I��0+;k;(1��)=k�1 (L�;r) (6.4.4)

for m > 0; and

G
2 (L�;r) = I��

�;k;(��1)=k (L�;r) (6.4.5)

for n > 0. If � 2 EG ; then G
2 (L�;r) is a subset of the right-hand sides of (6:4:4) and (6:4:5)

in the respective cases.

(e) If f 2 L�;r and � 2 C ; then G2f is given in (6:4:1) for Re(�) > ��; while in (6:4:2)

for Re(�) < ��. Furthermore G2f is given in (6.2.2).

Theorem 6.29. Let a� = 0;� 6= 0; � < 1 � � < �; 1 < r < 1 and �(1 � �) +

Re(�) 5 1=2� (r): Assume that m > 0 if � > 0 and n > 0 if � < 0.

(a) The transformG2 de�ned on L�;2 can be extended to L�;r as an element of [L�;r ;L�;s]

for all s with r 5 s <1 such that s0 = [1=2��(1� �)� Re(�)]�1 with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; then the transformG2 is one-to-one on L�;r and there holds the equality

(6:2:12) for f 2 L�;2 and Re(s) = �:

(c) If f 2 L�;r and g 2 L1��;s with 1 < s <1; 1=r+1=s = 1 and �(1��)+Re(�) 5 1=2�

max[(r); (s)]; then the relation (6:2:17) holds.

(d) If � =2 EG ; then the transform G2 is one-to-one on L�;r. If we set � = ��� � � � 1

for � > 0 and � = ��� � � � 1 for � < 0; then Re(�) > �1 and there holds

G
2(L�;r) =

�
M��=��1=2H��;�

� �
L3=2��+Re(�)=�;r

�
: (6.4.6)

When � 2 EG ; G
2(L�;r) is a subset of the right-hand side of (6:4:6):

(e) If f 2 L�;r; � 2 C and �(1� �) + Re(�) 5 1=2� (r); then G2f is given in (6:4:1)

for Re(�) > ��; while in (6:4:2) for Re(�) < ��. If �(1� �) + Re(�) < 0; G2f is given in
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(6.2.2).

From Theorem 5.17 we have the L�;r-theory of the transform G2 in (6.2.2) with a� > 0:

Theorem 6.30. Let a� > 0; � < 1� � < � and 1 5 r 5 s 5 1:

(a) The transformG2 de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L�;s].

If 1 5 r 5 2; then G2 is a one-to-one transform from L�;r onto L�;s.

(b) If f 2 L�;r and g 2 L1��;s0 with 1=s+ 1=s0 = 1; then the relation (6:2:17) holds.

When a� > 0; from Theorems 5.18{5.22 we obtain the characterization of the boundedness

and the range of G2 on L�;r in �ve di�erent cases.

Theorem 6.31. Let a�1 > 0; a�2 > 0; m > 0; n > 0; � < 1�� < � and ! = �+a�1��a
�

2�+1

and let 1 < r <1:

(a) If � =2 EG ; or if 1 5 r 5 2; then the transform G2 is one-to-one on L�;r.

(b) If Re(!) = 0 and � =2 EG ; then

G
2(L�;r) =

�
L�a�

1
;1��L�a�

2
;�+!=a�

2

�
(L�;r): (6.4.7)

When � 2 EG ; G
2(L�;r) is a subset of the right-hand side of (6:4:7):

(c) If Re(!) < 0 and � =2 EG ; then

G
2(L�;r) =

�
I�!0+;1=a�

1
;(1��)a�

1
�1L�a

�

1
;1��L�a�

2
;�

�
(L�;r): (6.4.8)

When � 2 EG ; G
2(L�;r) is a subset of the right-hand side of (6.4.8).

Theorem 6.32. Let a�1 > 0; a�2 = 0; m > 0; � < 1� � < � and ! = �+ a�1�+ 1=2 and let

1 < r <1:

(a) If � =2 EG ; or if 1 < r 5 2; then the transform G2 is one-to-one on L�;r.

(b) If Re(!) = 0 and � =2 EG ; then

G
2(L�;r) = L

�a�
1
;1��+!=a�

1

(L1��;r): (6.4.9)

When � 2 EG ; G
1(L�;r) is a subset of the right-hand side of (6:4:9):

(c) If Re(!) < 0 and � =2 EG ; then

G
2(L�;r) =

�
I�!0+;1=a�

1
;(1��)a�

1
�1L�a

�

1
;1��

�
(L1��;r): (6.4.10)

When � 2 EG ; G
2(L�;r) is a subset of the right-hand side of (6.4.10).

Theorem 6.33. Let a�1 = 0; a�2 > 0; n > 0; � < 1� � < � and ! = �� a�2� + 1=2 and let

1 < r <1:

(a) If � =2 EG ; or if 1 < r 5 2; then the transform G2 is one-to-one on L�;r.

(b) If Re(!) = 0 and � =2 EG ; then

G
2(L�;r) = La�

2
;1���!=a�

2

(L1��;r): (6.4.11)

When � 2 EG ; G
2(L�;r) is a subset of the right-hand side of (6:4:11):
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(c) If Re(!) < 0 and � =2 EG ; then

G
2(L�;r) =

�
I�!
�;1=a�

2
;a�
2
(��1)La

�

2
;1��

�
(L1��;r): (6.4.12)

When � 2 EG ; G
2(L�;r) is a subset of the right-hand side of (6.4.12).

Theorem 6.34. Let a� > 0; a�1 > 0; a�2 < 0; � < 1� � < � and let 1 < r <1:

(a) If � =2 EG ; or if 1 < r 5 2; then the transform G2 is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� � � �
1

2
; (6.4.13)

a�Re(�) = (r) + 2a�2(� � 1) + Re(�); (6.4.14)

Re(�) > � � 1; (6.4.15)

Re(�) < 1� �: (6.4.16)

If � =2 EH ; then

G
2(L�;r) =

�
M�1=2�!=(2a�

2
)H 2a�

2
;2a�

2
�+!�1La�;1=2��+!=(2a�

2
)

�
�
L��1=2�Re(!)=(2a�

2
);r

�
: (6.4.17)

When � 2 EG ; G
2(L�;r) is a subset of the right-hand side of (6.4.17).

Theorem 6.35. Let a� > 0; a�1 < 0; a�2 > 0; � < 1� � < � and let 1 < r <1:

(a) If � =2 EG ; or if 1 < r 5 2; then the transform G2 is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� ��� ��
1

2
; (6.4.18)

a�Re(�) = (r)� 2a�1� + �+Re(�); (6.4.19)

Re(�) > ��; (6.4.20)

Re(�) < �: (6.4.21)

If � =2 EG ; then

G
2(L�;r) =

�
M1=2+!=(2a�

1
)H�2a�

1
;2a�

1
�+!�1L�a�;1=2+��!=(2a�

1
)

�
�
L�+1=2+Re(!)=(2a�

1
);r

�
: (6.4.22)

When � 2 EG ; G
2(L�;r) is a subset of the right-hand side of (6.4.22).

The inversion formulas for the transformG2 in (6.2.2) on L�;r when a� = 0, are obtained

from (5.3.25) and (5.3.26) under the condition (6.1.4), and take the forms

f(x) = x��
d

dx
x�+1

�

Z
1

0
Gq�m;p�n+1

p+1;q+1

"
x

t

����� ��;�an+1; � � � ;�ap;�a1; � � � ;�an�bm+1; � � � ;�bq;�b1; � � � ;�bm;��� 1

#
1

t
(G2f)(t)dt (6.4.23)
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and

f(x) = �x��
d

dx
x�+1

�

Z
1

0
Gq�m+1;p�n

p+1;q+1

"
x

t

����� �an+1; � � � ;�ap;�a1; � � � ;�an;����� 1;�bm+1; � � � ;�bq;�b1; � � � ;�bm

#
1

t
(G2f)(t)dt: (6.4.24)

The validity of (6.4.23) and (6.4.24) are deduced from Theorems 5.23 and 5.24, where

a�;�; �; �; �; �0 and �0 are given in (6.1.5), (6.1.6), (6.1.9), (6.1.10), (6.1.11), (6.1.37) and

(6.1.38), respectively.

Theorem 6.36. Let a� = 0; � < 1� � < � and �0 < � < �0; and let � 2 C .

(a) If �(1� �) + Re(�) = 0 and f 2 L�;2; then the inversion formula (6:4:23) holds for

Re(�) > � � 1 and (6:4:24) for Re(�) < � � 1.

(b) If � = Re(�) = 0 and f 2 L�;r (1 < r < 1); then the inversion formula (6:4:23)

holds for Re(�) > � � 1 and (6:4:24) for Re(�) < � � 1.

Theorem 6.37. Let a� = 0; 1 < r < 1 and �(1 � �) + Re(�) 5 1=2 � (r); and let

� 2 C .

(a) If � > 0; m > 0; � < 1 � � < �; �0 < � < min[�0; fRe(� + 1=2)=�g + 1] and if

f 2 L�;r ; then the inversion formulas (6:4:23) and (6:4:24) hold for Re(�) > � � 1 and for

Re(�) < � � 1; respectively.

(b) If � < 0; n > 0; � < 1 � � < �; max[�0; fRe(� + 1=2)=�g + 1] < � < �0 and if

f 2 L�;r ; then the inversion formulas (6:4:23) and (6:4:24) hold for Re(�) > � � 1 and for

Re(�) < � � 1; respectively.

6.5. G�;�-Transform on the Space L�;r

We consider the transform G�;� de�ned in (6.2.3). From the results in Section 5.4 we obtain

L�;2- and L�;r-theory for the transform G�;�.The �rst result follows from Theorem 5.25.

Theorem 6.38. We suppose that (a) � < 1 � � + Re(�) < � and that either of the

conditions (b) a� > 0; or (c) a� = 0; �[1� � +Re(�)] + Re(�) 5 0 holds. Then we have

the following results:

(i) There is a one-to-one transformG�;� 2 [L�;2; L1��+Re(���);2] such that (6:2:13) holds

for Re(s) = 1 � � + Re(� � �) and f 2 L�;2. If a� = 0; �[1 � � + Re(�)] + Re(�) = 0 and

� � Re(�) =2 EG ; then the transform G�;� maps L�;2 onto L1��+Re(���);2.

(ii) If f 2 L�;2 and g 2 L�+Re(���);2; then the relation (6:2:18) holds for G�;�.

(iii) Let � 2 C and f 2 L�;2: If Re(�) > �� + Re(�); then G�;�f is given by

�
G�;�f

�
(x) = x���

d

dx
x�+1

Z
1

0
Gm;n+1
p+1;q+1

"
xt

����� ��; ; a1; � � � ; apb1; � � � ; bq;��� 1

#
t�f(t)dt: (6.5.1)

When Re(�) < �� +Re(�);
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�
G�;�f

�
(x) = �x���

d

dx
x�+1

Z
1

0
G
m+1;n
p+1;q+1

"
xt

����� a1; � � � ; ap;����� 1; b1; � � � ; bq

#
t�f(t)dt: (6.5.2)

(iv) The transformG�;� is independent of � in the sense that; if � and e� satisfy (a), and

(b) or (c), and if the transforms G�;� and eG�;� are de�ned in L�;2 and Le�;2; respectively; by
(6:2:13); then G�;�f = eG�;�f for f 2 L�;2 \ Le�;2.

(v) If a� > 0 or if a� = 0; �[1� �+Re(�)]+Re(�) < 0, then for f 2 L�;2; G�;�f is given

in (6.2.3).

If a� = 0, Theorems 5.26{5.28 give the mapping properties and the range of G�;� on L�;r.

Theorem 6.39. Let a� = � = 0;Re(�) = 0 and � < 1� � +Re(�) < �: Let 1 < r <1.

(a) The transform G�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L1��+Re(���);r ].

(b) If 1 < r 5 2; then the transform G�;� is one-to-one on L�;r and there holds the

equality (6:2:13) for f 2 L�;r and Re(s) = 1� � +Re(�� �).

(c) If f 2 L�;r and g 2 L�+Re(���);r0 with r0 = r=(r� 1); then the relation (6:2:18) holds.

(d) If � � Re(�) =2 EG ; then the transform G�;� is one-to-one on L�;r and there holds

G�;�(L�;r) = L1��+Re(���);r: (6.5.3)

(e) If f 2 L�;r and � 2 C ; then G�;�f is given in (6:5:1) for Re(�) > �� + Re(�); while

in (6:5:2) for Re(�) < �� + Re(�):

Theorem 6.40. Let a� = � = 0;Re(�) < 0 and � < 1� � + Re(�) < �; and let either

m > 0 or n > 0. Let 1 < r <1.

(a) The transform G�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L1��+Re(���);s] for all s = r such that 1=s > 1=r+Re(�).

(b) If 1 < r 5 2; then the transform G�;� is one-to-one on L�;r and there holds the

equality (6:2:13) for f 2 L�;r and Re(s) = 1� � +Re(�� �).

(c) If f 2 L�;r and g 2 L�+Re(���);s with 1 < s < 1 and 1 5 1=r + 1=s < 1 � Re(�);

then the relation (6:2:18) holds.

(d) Let k > 0. If ��Re(�) =2 EG ; then the transformG�;� is one-to-one on L�;r and there

hold

G�;� (L�;r) = I��
�;k;(���)=k

�
L1��+Re(���);r

�
(6.5.4)

for m > 0; and

G�;� (L�;r) = I��0+;k;(���)=k�1

�
L1��+Re(���);r

�
(6.5.5)

for n > 0. When � �Re(�) 2 EG ; G�;� (L�;r) is a subset of the right-hand sides of (6:5:4) and

(6:5:5) in the respective cases.

(e) If f 2 L�;r and � 2 C ; then G�;�f is given in (6:5:1) for Re(�) > �� + Re(�); while

in (6:5:2) for Re(�) < �� + Re(�). Furthermore G�;�f is given in (6.2.3).
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Theorem 6.41. Let a� = 0;� 6= 0; � < 1� � + Re(�) < �; 1 < r < 1 and �[1� � +

Re(�)] + Re(�) 5 1=2� (r): Assume that m > 0 if � > 0 and n > 0 if � < 0.

(a) The transform G�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r;L1��+Re(���);s] for all s with r 5 s <1 such that s0 = f1=2��[1��+Re(�)]�Re(�)g�1

with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; then the transform G�;� is one-to-one on L�;r and there holds the

equality (6:2:13) for f 2 L�;r and Re(s) = 1� � +Re(�� �).

(c) If f 2 L�;r and g 2 L�+Re(���);s with 1 < s <1; 1=r+1=s = 1 and �[1��+Re(�)]+

Re(�) 5 1=2�max[(r); (s)]; then the relation (6:2:18) holds.

(d) If � � Re(�) =2 EG ; then the transform G�;� is one-to-one on L�;r. If we set

� = ��� � � � 1 for � > 0 and � = ��� � � � 1 for � < 0; then Re(�) > �1 and

there holds

G�;�(L�;r) =
�
M�+�=�+1=2H�;�

��
L��1=2�Re(�)=��Re(�);r

�
: (6.5.6)

When � �Re(�) 2 EG ; G�;�(L�;r) is a subset of the right-hand side of (6:5:6):

(e) If f 2 L�;r; � 2 C and �[1 � � + Re(�)] + Re(�) 5 1=2 � (r); then G�;�f is

given in (6:5:1) for Re(�) > �� + Re(�); while in (6:5:2) for Re(�) < �� + Re(�). If

�[1� � + Re(�)] + Re(�) < 0; G�;�f is given in (6.2.3).

From Theorem 5.29 we obtain the L�;r-theory of the transformG�;� in (6.2.3) with a� > 0.

Theorem 6.42. Let a� > 0; � < 1� � +Re(�) < � and 1 5 r 5 s 5 1:

(a) The transform G�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L1��+Re(���);s]. If 1 5 r 5 2; then G�;� is a one-to-one transform from L�;r onto

L1��+Re(���);s.

(b) If f 2 L�;r and g 2 L��Re(���);s0 with 1=s+1=s0 = 1; then the relation (6:2:18) holds.

For a� > 0; Theorems 5.30{5.34 imply the characterization theorems of the boundedness

and the range of G�;� on L�;r:

Theorem 6.43. Let a�1 > 0; a�2 > 0; m > 0; n > 0; � < 1 � � + Re(�) < � and

! = �+ a�1� � a�2� + 1 and let 1 < r <1:

(a) If � �Re(�) =2 EG ; or if 1 5 r 5 2; then the transform G�;� is one-to-one on L�;r .

(b) If Re(!) = 0 and � � Re(�) =2 EG ; then

G�;�(L�;r) =
�
La�

1
;���La�

2
;1��+��!=a�

2

��
L1��+Re(���);r

�
: (6.5.7)

When � �Re(�) 2 EG ; G�;�(L�;r) is a subset of the right-hand side of (6:5:7):

(c) If Re(!) < 0 and � � Re(�) =2 EG ; then

G�;�(L�;r) =
�
I�!
�;1=a�

1
;a�
1
(���)La

�

1
;���La�

2
;1��+�

��
L1��+Re(���);r

�
: (6.5.8)

When � �Re(�) 2 EG ; G�;�(L�;r) is a subset of the right-hand side of (6.5.8).

Theorem 6.44. Let a�1 > 0; a�2 = 0; m > 0; � < 1�� +Re(�) < � and ! = �+a�1�+1=2

and let 1 < r <1:
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(a) If � �Re(�) =2 EG ; or if 1 < r 5 2; then the transform G�;� is one-to-one on L�;r .

(b) If Re(!) = 0 and � � Re(�) =2 EG ; then

G�;�(L�;r) = La�
1
;����!=a�

1

�
L��Re(���);r

�
: (6.5.9)

When � �Re(�) 2 EG ; G�;�(L�;r) is a subset of the right-hand side of (6:5:9):

(c) If Re(!) < 0 and � � Re(�) =2 EG ; then

G�;�(L�;r) =
�
I�!
�;1=a�

1
;a�
1
(���)La�

1
;���

��
L��Re(���);r

�
: (6.5.10)

When � �Re(�) 2 EG;!; G�;�(L�;r) is a subset of the right-hand side of (6.5.10).

Theorem 6.45. Let a�1 = 0; a�2 > 0; n > 0; � < 1� � +Re(�) < � and ! = �� a�2�+1=2

and let 1 < r <1:

(a) If � �Re(�) =2 EG ; or if 1 < r 5 2; then the transform G�;� is one-to-one on L�;r .

(b) If Re(!) = 0 and � � Re(�) =2 EG ; then

G�;�(L�;r) = L
�a�

2
;���+!=a�

2

�
L��Re(���);r

�
: (6.5.11)

When � �Re(�) 2 EG ; G�;�(L�;r) is a subset of the right-hand side of (6:5:11):

(c) If Re(!) < 0 and � � Re(�) =2 EG ; then

G�;�(L�;r) =
�
I�!0+;1=a�

2
;a�
2
(���)�1L�a

�

2
;���

��
L��Re(���);r

�
: (6.5.12)

When � �Re(�) 2 EG ; G�;�(L�;r) is a subset of the right-hand side of (6.5.12).

Theorem 6.46. Let a� > 0; a�1 > 0; a�2 < 0; � < 1� � + Re(�) < � and let 1 < r <1:

(a) If � �Re(�) =2 EG ; or if 1 < r 5 2; then the transform G�;� is one-to-one on L�;r .

(b) Let !; �; � 2 C be chosen as

! = a�� � � �
1

2
; (6.5.13)

a�Re(�) = (r) + 2a�2[� �Re(�)� 1] + Re(�); (6.5.14)

Re(�) > � � Re(�)� 1; (6.5.15)

Re(�) < 1� � +Re(�): (6.5.16)

If � �Re(�) =2 EG ; then

G�;�(L�;r) =
�
M�+1=2+!=(2a�

2
)H�2a�

2
;2a�

2
�+!�1L�a�;1=2+��!=(2a�

2
)

�
�
L3=2��+Re(!)=(2a�

2
)+Re(�);r

�
: (6.5.17)

When � �Re(�) 2 EG ; G�;�(L�;r) is a subset of the right-hand side of (6.5.17).

Theorem 6.47. Let a� > 0; a�1 < 0; a�2 > 0; � < 1� � + Re(�) < � and let 1 < r <1:

(a) If � �Re(�) =2 EG ; or if 1 < r 5 2; then the transform G�;� is one-to-one on L�;r .
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(b) Let !; �; � 2 C be chosen as

! = a�� ��� ��
1

2
; (6.5.18)

a�Re(�) = (r)� 2a�1[� �Re(�)] + � +Re(�); (6.5.19)

Re(�) > �� +Re(�); (6.5.20)

Re(�) < � �Re(�): (6.5.21)

If � �Re(�) =2 EG ; then

G�;�(L�;r) =
�
M��1=2�!=(2a�

1
)H 2a�

1
;2a�

1
�+!�1La�;1=2��+!=(2a�

1
)

�
�
L1=2���Re(!)=(2a�

1
)�Re(�);r

�
: (6.5.22)

When � �Re(�) 2 EG ; G�;�(L�;r) is a subset of the right-hand side of (6.5.22).

The inversion formulas for the transformG�;� in (6.2.3) on L�;r when a� = 0, are obtained

from (5.4.25) and (5.4.26) under the relation (6.1.4), and take the form

f(x) = x����
d

dx
x�+1

�

Z
1

0
Hq�m;p�n+1

p+1;q+1

"
xt

����� ��;�an+1; � � � ;�ap;�a1; � � � ;�an�bm+1; � � � ;�bq;�b1; � � � ;�bm;��� 1

#

� t��
�
G�;�f

�
(t)dt (6.5.23)

or

f(x) = �x����
d

dx
x�+1

�

Z
1

0
Hq�m+1;p�n

p+1;q+1

"
xt

����� �an+1; � � � ;�ap;�a1; � � � ;�an;����� 1;�bm+1; � � � ;�bq;�b1; � � � ;�bm

#

� t��
�
G�;�f

�
(t)dt: (6.5.24)

The conditions for the validity of (6.5.23) and (6.5.24) follow from Theorems 5.35 and

5.36, where a�;�; �; �; �; �0 and �0 are given in (6.1.5), (6.1.6), (6.1.9){(6.1.11), (6.1.37) and

(6.1.38), respectively.

Theorem 6.48. Let a� = 0; � < 1 � � + Re(�) < � and �0 < � � Re(�) < �0; and let

� 2 C .

(a) If �[1 � � + Re(�)] + Re(�) = 0 and f 2 L�;2; then the inversion formula (6:5:23)

holds for Re(�) > � � Re(�)� 1 and (6:5:24) for Re(�) < � � Re(�)� 1.

(b) If � = Re(�) = 0 and f 2 L�;r (1 < r < 1); then the inversion formula (6:5:23)

holds for Re(�) > � � Re(�)� 1 and (6:5:24) for Re(�) < � � Re(�)� 1.
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Theorem 6.49. Let a� = 0; 1 < r <1 and �[1� � +Re(�)] + Re(�) 5 1=2� (r); and

let � 2 C .

(a) If � > 0; m > 0; � < 1��+Re(�) < �; �0 < ��Re(�) < min[�0; fRe(�+1=2)=�g+1]

and if f 2 L�;r; then the inversion formulas (6:5:23) and (6:5:24) hold for Re(�) > ��Re(�)�1

and for Re(�) < � �Re(�)� 1; respectively.

(b) If� < 0; n > 0; � < 1��+Re(�) < �;max[�0; fRe(�+1=2)=�g+1] < ��Re(�) < �0
and if f 2 L�;r; then the inversion formulas (6:5:23) and (6:5:24) hold for Re(�) > ��Re(�)�1

and for Re(�) < � �Re(�)� 1; respectively.

Remark 6.1. The results in this section generalize those in Section 6.1. Namely, Theo-

rems 6.1{6.12 follow from Theorems 6.37 and 6.38 when � = � = 0:

6.6. G1
�;�-Transform on the Space L�;r

Let us study the transform G1
�;� de�ned in (6.2.4). The theory of the transform G1

�;� on the

spaces L�;2 and L�;r is obtained from that in Section 5.5, for which the parameters are de�ned

in (6.1.5){(6.1.11).

Theorem 6.50. We suppose that (a) � < � � Re(�) < � and that either of the

conditions (b) a� > 0; or (c) a� = 0; �[� � Re(�)] + Re(�) 5 0 holds. Then we have the

following results:

(i) There is a one-to-one transformG1
�;� 2 [L�;2; L��Re(�+�);2] such that (6:2:14) holds for

Re(s) = ��Re(�+�) and f 2 L�;2. If a� = 0;�[��Re(�)]+Re(�) = 0 and 1��+Re(�) =2 EG ;

then the transform G1
�;� maps L�;2 onto L��Re(�+�);2.

(ii) If f 2 L�;2 and g 2 L1��+Re(�+�);2; then the relation (6:2:19) holds for G1
�;�.

(iii) Let � 2 C and f 2 L�;2: If Re(�) > � � Re(�)� 1; then G1
�;�f is given by

�
G

1
�;�f

�
(x) = x���

d

dx
x�+1

Z
1

0
Gm;n+1
p+1;q+1

"
x

t

����� ��; a1; � � � ; apb1; � � � ; bq;��� 1

#
t��1f(t)dt: (6.6.1)

When Re(�) < � � Re(�)� 1;

�
G

1
�;�f

�
(x) = �x���

d

dx
x�+1

Z
1

0
Gm+1;n
p+1;q+1

"
x

t

����� a1; � � � ; ap;����� 1; b1; � � � ; bq

#
t��1f(t)dt: (6.6.2)

(iv) The transform G
1
�;� is independent of � in the sense that, if � and e� satisfy (a),

and either (b) or (c), and if the transforms G1
�;� and g

G
1
�;� are de�ned in L�;2 and Le�;2;

respectively; by (6:2:14); then G1
�;�f = g

G
1
�;�f for f 2 L�;2 \ Le�;2.

(v) If a� > 0 or if a� = 0; �[� �Re(�)] + Re(�) < 0; then for f 2 L�;2; G
1
�;�f is given in

(6.2.4).

If a� = 0; Theorems 5.38{5.40 yield the mapping properties and the range of G1
�;� on L�;r.

Theorem 6.51. Let a� = � = 0;Re(�) = 0 and � < � � Re(�) < �: Let 1 < r <1.
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(a) The transform G
1
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L��Re(�+�);r ].

(b) If 1 < r 5 2; then the transform G
1
�;� is one-to-one on L�;r and there holds the

equality (6:2:14) for f 2 L�;r and Re(s) = � �Re(�+ �).

(c) If f 2 L�;r and g 2 L1��+Re(�+�);r0 with r0 = r=(r � 1); then the relation (6:2:19)

holds.

(d) If 1� � +Re(�) =2 EG ; then the transform G1
�;� is one-to-one on L�;r and there holds

G
1
�;�(L�;r) = L��Re(�+�);r: (6.6.3)

(e) If f 2 L�;r and � 2 C ; then G1
�;�f is given in (6:6:1) for Re(�) > � �Re(�)� 1; while

in (6:6:2) for Re(�) < � � Re(�)� 1:

Theorem 6.52. Let a� = � = 0;Re(�) < 0 and � < ��Re(�) < �; and let eitherm > 0

or n > 0. Let 1 < r <1.

(a) The transform G
1
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L��Re(�+�);s] for all s = r such that 1=s > 1=r+Re(�).

(b) If 1 < r 5 2; then the transform G
1
�;� is one-to-one on L�;r and there holds the

equality (6:2:14) for f 2 L�;r and Re(s) = � �Re(�+ �).

(c) If f 2 L�;r and g 2 L1��+Re(�+�);s with 1 < s < 1 and 1 5 1=r + 1=s < 1� Re(�);

then the relation (6:2:19) holds.

(d) Let k > 0. If 1� � +Re(�) =2 EG ; then the transform G1
�;� is one-to-one on L�;r and

there hold

G
1
�;� (L�;r) = I��

�;k;(���)=k

�
L��Re(�+�);r

�
(6.6.4)

for m > 0; and

G
1
�;� (L�;r) = I��0+;k;(���)=k�1

�
L��Re(�+�);r

�
(6.6.5)

for n > 0. If 1� � +Re(�) 2 EG ; then G
1
�;� (L�;r) is a subset of the right-hand sides of (6:6:4)

and (6:6:5) in the respective cases.

(e) If f 2 L�;r and � 2 C ; then G1
�;�f is given in (6:6:1) for Re(�) > � �Re(�)� 1; while

in (6:6:2) for Re(�) < � � Re(�)� 1. Furthermore G1
�;�f is given in (6.2.4).

Theorem 6.53. Let a� = 0;� 6= 0; m > 0; � < � � Re(�) < �; 1 < r < 1 and

�[� �Re(�)] + Re(�) 5 1=2� (r): Assume that m > 0 if � > 0 and n > 0 if � < 0.

(a) The transform G
1
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L��Re(�+�);s] for all s with r 5 s <1 such that s0 = [1=2��f� � Re(�)g �Re(�)]�1

with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; then the transform G
1
�;� is one-to-one on L�;r and there holds the

equality (6:2:14) for f 2 L�;r and Re(s) = � �Re(�+ �).

(c) If f 2 L�;r and g 2 L1��+Re(�+�);s with 1 < s <1; 1=r+1=s = 1 and �[��Re(�)]+

Re(�) 5 1=2�max[(r); (s)]; then the relation (6:2:19) holds.

(d) If 1 � � + Re(�) =2 EG ; then the transform G
1
�;� is one-to-one on L�;r. If we set

� = ��� � � � 1 for � > 0 and � = ��� � � � 1 for � < 0; then Re(�) > �1 and there
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holds

G
1
�;�(L�;r) =

�
M�+�=�+1=2H�;�

��
L1=2���Re(�)=��Re(�);r

�
: (6.6.6)

When 1� � + Re(�) 2 EG ; G
1
�;�(L�;r) is a subset of the set on the right-hand side of (6:6:6):

(e) If f 2 L�;r ; � 2 C and �[��Re(�)]+Re(�) 5 1=2�(r); thenG1
�;�f is given in (6:6:1)

forRe(�) > ��Re(�)�1;while in (6:6:2) forRe(�) < ��Re(�)�1. If�[��Re(�)]+Re(�) < 0;

G
1
�;�f is given in (6.2.4).

From Theorem 5.41 we obtain the L�;r-theory of the transformG1
�;� in (6.2.4) with a� > 0:

Theorem 6.54. Let a� > 0; � < � � Re(�) < � and 1 5 r 5 s 5 1:

(a) The transform G
1
�;� de�ned on L�;2 can be extended to L�;r as an element

of [L�;r;L��Re(�+�);s]. If 1 5 r 5 2; then G1
�;� is a one-to-one transform from L�;r onto

L��Re(�+�);s.

(b) If f 2 L�;r and g 2 L1��+Re(�+�);s0 with 1=s+1=s0 = 1; then the relation (6:2:19) holds.

By virtue of Theorems 5.42{5.44 we characterize the boundedness and the range of G1
�;�

on L�;r in �ve cases.

Theorem 6.55. Let a�1 > 0; a�2 > 0; m > 0; n > 0; � < � � Re(�) < � and

! = �+ a�1� � a�2� + 1 and let 1 < r <1:

(a) If 1� � +Re(�) =2 EG ; or if 1 5 r 5 2; then the transformG1
�;� is one-to-one on L�;r.

(b) If Re(!) = 0 and 1� � +Re(�) =2 EG ; then

G
1
�;�(L�;r) =

�
La�

1
;���La�

2
;1��+��!=a�

2

� �
L��Re(�+�);r

�
: (6.6.7)

When 1� � + Re(�) 2 EG ; G
1
�;�(L�;r) is a subset of the right-hand side of (6:6:7):

(c) If Re(!) < 0 and 1� � +Re(�) =2 EG ; then

G
1
�;�(L�;r) =

�
I�!
�;1=a�

1
;a�
1
(���)La�

1
;���La�

2
;1��+�

��
L��Re(�+�);r

�
: (6.6.8)

When 1� � + Re(�) 2 EG ; G
1
�;�(L�;r) is a subset of the right-hand side of (6.6.8).

Theorem 6.56. Let a�1 > 0; a�2 = 0; m > 0; � < � � Re(�) < � and ! = � + a�1� + 1=2

and let 1 < r <1:

(a) If 1� � +Re(�) =2 EG ; or if 1 < r 5 2; then the transformG1
�;� is one-to-one on L�;r.

(b) If Re(!) = 0 and 1� � +Re(�) =2 EG ; then

G
1
�;�(L�;r) = La�

1
;����!=a�

1

�
L1��+Re(�+�);r

�
: (6.6.9)

When 1� � + Re(�) 2 EG ; G
1
�;�(L�;r) is a subset of the right-hand side of (6:6:9):

(c) If Re(!) < 0 and 1� � +Re(�) =2 EG ; then

G
1
�;�(L�;r) =

�
I�!
�;1=a�

1
;a�
1
(���)La

�

1
;���

� �
L1��+Re(�+�);r

�
: (6.6.10)

When 1� � + Re(�) 2 EG ; G
1
�;�(L�;r) is a subset of the right-hand side of (6.6.10).
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Theorem 6.57. Let a�1 = 0; a�2 > 0; n > 0; � < � � Re(�) < � and ! = � � a�2� + 1=2

and let 1 < r <1:

(a) If 1� � +Re(�) =2 EG ; or if 1 < r 5 2; then the transformG1
�;� is one-to-one on L�;r.

(b) If Re(!) = 0 and 1� � +Re(�) =2 EG ; then

G
1
�;�(L�;r) = L�a�

2
;���+!=a�

2

�
L1��+Re(�+�);r

�
: (6.6.11)

When 1� � + Re(�) 2 EG ; G
1
�;�(L�;r) is a subset of the right-hand side of (6:6:11):

(c) If Re(!) < 0 and 1� � +Re(�) =2 EG ; then

G
1
�;�(L�;r) =

�
I�!0+;1=a�

2
;a�
2
(���)�1L�a

�

2
;���

� �
L1��+Re(�+�);r

�
: (6.6.12)

If 1� � + Re(�) 2 EG ; G
1
�;�(L�;r) is a subset of the right-hand side of (6.6.12).

Theorem 6.58. Let a� > 0; a�1 > 0; a�2 < 0; � < � �Re(�)) < � and let 1 < r <1:

(a) If 1� � +Re(�) =2 EG ; or if 1 < r 5 2; then the transformG1
�;� is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� � � �
1

2
; (6.6.13)

a�Re(�) = (r) + 2a�2[� �Re(�)] + Re(�); (6.6.14)

Re(�) > �� +Re(�); (6.6.15)

Re(�) < � �Re(�): (6.6.16)

If 1� � + Re(�) =2 EG ; then

G
1
�;�(L�;r) =

�
M�+1=2+!=(2a�

2
)H�2a�

2
;2a�

2
�+!�1L�a�;1=2+��!=(2a�

2
)

�
�
L�+1=2+Re(!)=(2a�

2
)�Re(�);r

�
: (6.6.17)

When 1� � + Re(�) 2 EG ; G
1
�;�(L�;r) is a subset of the right-hand side of (6.6.17).

Theorem 6.59. Let a� > 0; a�1 < 0; a�2 > 0; � < � �Re(�) < � and let 1 < r <1:

(a) If 1� � +Re(�) =2 EG ; or if 1 < r 5 2; then the transformG1
�;� is one-to-one on L�;r.

(b) Let !; �; � 2 C be chosen as

! = a�� ��� ��
1

2
; (6.6.18)

a�Re(�) = (r)� 2a�1[� �Re(�)] + � +Re(�); (6.6.19)

Re(�) > �� +Re(�); (6.6.20)

Re(�) < � �Re(�): (6.6.21)

If 1� � + Re(�) =2 EG ; then

G
1
�;�(L�;r) =

�
M��1=2�!=(2a�

1
)H 2a�

1
;2a�

1
�+!�1La�;1=2��+!=(2a�

1
)

�
�
L��1=2�Re(!)=(2a�

1
)�Re(�);r

�
: (6.6.22)
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When 1� � + Re(�) 2 EG ; G
1
�;�(L�;r) is a subset of the right-hand side of (6.6.22).

The inversion formulas for the transformG1
�;� in (6.2.4) on L�;r, when a

� = 0, are obtained

from (5.5.23) and (5.5.24) under the condition (6.1.4):

f(x) = �x�+1��
d

dx
x���1

�

Z
1

0
Gq�m;p�n+1

p+1;q+1

"
t

x

�����
��;�an+1; � � � ;�ap;�a1; � � � ;�an

�bm+1; � � � ;�bq;�b1; � � � ;�bm;��� 1

#

� t��
�
G

1
�;�f

�
(t)dt (6.6.23)

or

f(x) = x�+1��
d

dx
x���1

�

Z
1

0
Gq�m+1;p�n

p+1;q+1

"
t

x

�����
�an+1; � � � ;�ap;�a1; � � � ;�an;��

��� 1;�bm+1; � � � ;�bq;�b1; � � � ;�bm

#

� t��
�
G

1
�;�f

�
(t)dt: (6.6.24)

Theorems 5.47 and 5.48 deduce the validity of the inversion formulas (6.6.23) and (6.6.24).

Theorem 6.60. Let a� = 0; � < � � Re(�) < � and �0 < 1 � � + Re(�) < �0; and let

� 2 C .

(a) If �[� � Re(�)] + Re(�) = 0 and f 2 L�;2; then the inversion formula (6:6:23) holds

for Re(�) > �� +Re(�) and (6:6:24) for Re(�) < �� +Re(�).

(b) If � = Re(�) = 0 and f 2 L�;r (1 < r < 1); then the inversion formula (6:6:23)

holds for Re(�) > �� + Re(�) and (6:6:24) for Re(�) < �� +Re(�).

Theorem 6.61. Let a� = 0; 1 < r <1 and �[� �Re(�)] + Re(�) 5 1=2� (r); and let

� 2 C .

(a) If � > 0; m > 0; � < ��Re(�) < �; �0 < 1��+Re(�) < min[�0; fRe(�+1=2)=�g+1]

and if f 2 L�;r; then the inversion formulas (6:6:23) and (6:6:24) hold for Re(�) > ��+Re(�)

and for Re(�) < �� +Re(�); respectively.

(b) If� < 0; n > 0; � < ��Re(�) < �;max[�0; fRe(�+1=2)=�g+1] < 1��+Re(�) < �0
and if f 2 L�;r; then the inversion formulas (6:6:23) and (6:6:24) hold for Re(�) > ��+Re(�)

and for Re(�) < �� +Re(�); respectively.

Remark 6.2. The results in this section generalize those in Section 6.3. That is, Theo-

rems 6.13{6.24 follow from Theorems 6.48{6.60 when � = � = 0:
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6.7. G2
�;�-Transform on the Space L�;r

Lastly we treat the transform G2
�;� de�ned in (6.2.5) by using the results in Section 5.6.

Theorem 6.62. We suppose that (a) � < 1 � � + Re(�) < � and that either of the

conditions (b) a� > 0; or (c) a� = 0; �[1� � +Re(�)] + Re(�) 5 0 holds. Then we have

the following results:

(i) There is a one-to-one transform G2
�;� 2 [L�;2; L��Re(�+�);2] such that (6:2:15) holds

for Re(s) = � � Re(� + �) and f 2 L�;2. If a� = 0; �[1 � � + Re(�)] + Re(�) = 0 and

� � Re(�) =2 EG ; then the transform G2
�;� maps L�;2 onto L��Re(�+�);2.

(ii) If f 2 L�;2 and g 2 L1��+Re(�+�);2; then the relation (6:2:20) holds for G2
�;�.

(iii) Let � 2 C and f 2 L�;2: If Re(�) > �� + Re(�); then G2
�;�f is given by

�
G

2
�;�f

�
(x) = �x�+�+1

d

dx
x���1

Z
1

0
Gm;n+1
p+1;q+1

"
t

x

����� ��; a1; � � � ; apb1; � � � ; bq;��� 1

#
t�f(t)dt: (6.7.1)

When Re(�) < �� +Re(�);

�
G

2
�;�f

�
(x) = x�+�+1

d

dx
x���1

Z
1

0
Gm+1;n
p+1;q+1

"
t

x

����� a1; � � � ; ap;����� 1; b1; � � � ; bq

#
t�f(t)dt: (6.7.2)

(iv) The transform G
2
�;� is independent of � in the sense that; if � and e� satisfy (a),

and either (b) or (c), and if the transforms G2
�;� and g

G
2
�;� are de�ned in L�;2 and Le�;2;

respectively; by (6:2:15); then G2
�;�f = g

G
2
�;�f for f 2 L�;2 \ Le�;2.

(v) If a� > 0 or if a� = 0; �[1� �+Re(�)]+Re(�) < 0; then for f 2 L�;2; G
2
�;�f is given

in (6.2.5).

Theorems 5.50{5.52 lead to the mapping properties and the range of G2
�;� on L�;r for

a� > 0.

Theorem 6.63. Let a� = � = 0;Re(�) = 0 and � < 1� � +Re(�) < �: Let 1 < r <1.

(a) The transform G2
�;� de�ned on L�;2 can be extended to L�;r as an element of [L�;r;

L��Re(�+�);r].

(b) If 1 < r 5 2; then the transform G
2
�;� is one-to-one on L�;r and there holds the

equality (6:2:15) for f 2 L�;r and Re(s) = � �Re(�+ �).

(c) If f 2 L�;r and g 2 L1��+Re(�+�);r0 with r0 = r=(r � 1); then the relation (6:2:20)

holds.

(d) If � � Re(�) =2 EG ; then the transform G2
�;� is one-to-one on L�;r and there holds

G
2
�;�(L�;r) = L��Re(�+�);r: (6.7.3)

(e) If f 2 L�;r and � 2 C ; then G2
�;�f is given in (6:7:1) for Re(�) > �� + Re(�); while

in (6:7:2) for Re(�) < �� + Re(�):

Theorem 6.64. Let a� = � = 0;Re(�) < 0 and � < 1� � + Re(�) < �; and let either

m > 0 or n > 0. Let 1 < r <1.
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(a) The transform G2
�;� de�ned on L�;2 can be extended to L�;r as an element of [L�;r;

L��Re(�+�);s] for all s = r such that 1=s > 1=r +Re(�).

(b) If 1 < r 5 2; then the transform G
2
�;� is one-to-one on L�;r and there holds the

equality (6:2:15) for f 2 L�;r and Re(s) = � �Re(�+ �).

(c) If f 2 L�;r and g 2 L1��+Re(�+�);s with 1 < s < 1 and 1 5 1=r + 1=s < 1� Re(�);

then the relation (6:2:20) holds.

(d) Let k > 0. If ��Re(�) =2 EG ; then the transformG2
�;� is one-to-one on L�;r and there

hold

G
2
�;� (L�;r) = I��0+;k;(1����)=k�1

�
L��Re(�+�);r

�
(6.7.4)

for m > 0; and

G
2
�;� (L�;r) = I��

�;k;(�+��1)=k

�
L��Re(�+�);r

�
(6.7.5)

for n > 0. When � �Re(�) 2 EG ; G
2
�;� (L�;r) is a subset of the right-hand sides of (6:7:4) and

(6:7:5) in the respective cases.

(e) If f 2 L�;r and � 2 C ; then G2
�;�f is given in (6:7:1) for Re(�) > �� + Re(�); while

in (6:7:2) for Re(�) < �� + Re(�). Furthermore G2
�;�f is given in (6:2:5):

Theorem 6.65. Let a� = 0;� 6= 0; � < 1� � + Re(�) < �; 1 < r < 1 and �[1� � +

Re(�)] + Re(�) 5 1=2� (r): Assume that m > 0 if � > 0 and n > 0 if � < 0.

(a) The transform G
2
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r;L��Re(�+�);s] for all s with r 5 s <1 such that s0 = [1=2��f1��+Re(�)g

�Re(�)]�1 with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; then the transform G
2
�;� is one-to-one on L�;r and there holds the

equality (6:2:15) for f 2 L�;r and Re(s) = � �Re(�+ �).

(c) If f 2 L�;r and g 2 L1��+Re(�+�);s with 1 < s <1; 1=r+1=s = 1 and �[��Re(�)]+

Re(�) 5 1=2�max[(r); (s)]; then the relation (5:1:20) holds.

(d) If � � Re(�) =2 EG ; then the transform G
2
�;� is one-to-one on L�;r . If we set � =

��� � � � 1 for � > 0 and � = ��� � �� 1 for � < 0; then Re(�) > �1 and there holds

G
2(L�;r) =

�
M���=��1=2H��;�

� �
L3=2��+Re(�)=�+Re(�);r

�
: (6.7.6)

When � �Re(�) 2 EG ; G
2
�;�(L�;r) is a subset of the set on the right-hand side of (6:7:6):

(e) If f 2 L�;r; � 2 C and �[1 � � + Re(�)] + Re(�) 5 1=2 � (r); then G2
�;�f is

given in (6:7:1) for Re(�) > �� + Re(�); while in (6:7:2) for Re(�) < �� + Re(�). If

�[1� � + Re(�)] + Re(�) < 0; G2
�;�f is given in (6.2.5).

From Theorem 5.53 we have the L�;r-theory of the transform G2
�;� in (5.2.5) with a� > 0

in L�;r-spaces.

Theorem 6.66. Let a� > 0; � < 1� � +Re(�) < � and 1 5 r 5 s 5 1:

(a) The transform G
2
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r; L��Re(�+�);s]. If 1 5 r 5 2; then G2
�;� is a one-to-one transform from L�;r onto

L��Re(�+�);s.
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(b) If f 2 L�;r and g 2 L1��+Re(�+�);s0 with 1=s+1=s0 = 1; then the relation (6:2:20) holds.

Now we have the characterization theorems from Theorems 5.54{5.58 of the boundedness

and the range of G2
�;� on L�;r.

Theorem 6.67. Let a�1 > 0; a�2 > 0; m > 0; n > 0; � < 1 � � + Re(�) < � and

! = �+ a�1� � a�2� + 1 and let 1 < r <1:

(a) If � �Re(�) =2 EG ; or if 1 5 r 5 2; then the transform G2
�;� is one-to-one on L�;r .

(b) If Re(!) = 0 and � � Re(�) =2 EG ; then

G
2
�;�(L�;r) =

�
L�a�

1
;1����L�a�

2
;�+�+!=a�

2

��
L��Re(�+�);r

�
: (6.7.7)

When � �Re(�) 2 EG ; G
1
�;�(L�;r) is a subset of the right-hand side of (6:7:7):

(c) If Re(!) < 0 and � � Re(�) =2 EG ; then

G
2
�;�(L�;r) =

�
I�!0+;1=a�

1
;a�
1
(1����)�1L�a

�

1
;1����L�a�

2
;�+�

� �
L��Re(�+�);r

�
: (6.7.8)

When � �Re(�) 2 EG ;G
2
�;�(L�;r) is a subset of the right-hand side of (6.7.8).

Theorem 6.68. Let a�1 > 0; a�2 = 0; m > 0; � < 1�� +Re(�) < � and ! = �+a�1�+1=2

and let 1 < r <1:

(a) If � �Re(�) =2 EG ; or if 1 < r 5 2; then the transform G2
�;� is one-to-one on L�;r .

(b) If Re(!) = 0 and � � Re(�) =2 EG ; then

G
2
�;�(L�;r) = L�a�

1
;1����+!=a�

1

�
L1��+Re(�+�);r

�
: (6.7.9)

When � �Re(�) 2 EG ; G
2
�;�(L�;r) is a subset of the right-hand side of (6:7:9):

(c) If Re(!) < 0 and � � Re(�) =2 EG ; then

G
2
�;�(L�;r) =

�
I�!0+;1=a�

1
;a�
1
(1����)�1L�a

�

1
;1����

� �
L1��+Re(�+�);r

�
: (6.7.10)

When � �Re(�) 2 EG ; G
2
�;�(L�;r) is a subset of the right-hand side of (6.7.10).

Theorem 6.69. Let a�1 = 0; a�2 > 0; n > 0; � < 1� � +Re(�) < � and ! = �� a�2�+1=2

and let 1 < r <1:

(a) If � �Re(�) =2 EG ; or if 1 < r 5 2; then the transform G2
�;� is one-to-one on L�;r .

(b) If Re(!) = 0 and � � Re(�) =2 EG ; then

G
2
�;�(L�;r) = La�

2
;1�����!=a�

2

�
L1��+Re(�+�);r

�
: (6.7.11)

When � �Re(�) 2 EG ; G
2
�;�(L�;r) is a subset of the right-hand side of (6:7:11):

(c) If Re(!) < 0 and � � Re(�) =2 EG ; then

G
2
�;�(L�;r) =

�
I�!
�;1=a�

2
;a�
2
(�+��1)La

�

2
;1����

� �
L1��+Re(�+�);r

�
: (6.7.12)

When � �Re(�) 2 EG ; G
2
�;�(L�;r) is a subset of the right-hand side of (6.7.12).
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Theorem 6.70. Let a� > 0; a�1 > 0; a�2 < 0; � < 1� � + Re(�) < � and let 1 < r <1:

(a) If � �Re(�) =2 EG ; or if 1 < r 5 2; then the transform G2
�;� is one-to-one on L�;r .

(b) Let !; �; � 2 C be chosen as

! = a�� � � �
1

2
; (6.7.13)

a�Re(�) = (r) + 2a�2[� �Re(�)� 1] + Re(�); (6.7.14)

Re(�) > � � Re(�)� 1; (6.7.15)

Re(�) < 1� � +Re(�): (6.7.16)

If � �Re(�) =2 EG ; then

G
2
�;�(L�;r) =

�
M��1=2�!=(2a�

2
)H 2a�

2
;2a�

2
�+!�1La�;1=2��+!=(2a�

2
)

�
�
L��1=2�Re(!)=(2a�

2
)�Re(�);r

�
: (6.7.17)

When � �Re(�) 2 EG ; then G
2
�;�(L�;r) is a subset of the right-hand side of (6.7.17).

Theorem 6.71. Let a� > 0; a�1 < 0; a�2 > 0; � < 1� � + Re(�) < � and let 1 < r <1:

(a) If � �Re(�) =2 EG ; or if 1 < r 5 2; then the transform G2
�;� is one-to-one on L�;r .

(b) Let !; �; � 2 C be chosen as

! = a�� ��� ��
1

2
; (6.7.18)

a�Re(�) = (r)� 2a�1[� �Re(�)] + � +Re(�); (6.7.19)

Re(�) > �� +Re(�); (6.7.20)

Re(�) < � �Re(�): (6.7.21)

If � �Re(�) =2 EG ; then

G
2
�;�(L�;r) =

�
M�+1=2+!=(2a�

1
)H�2a�

1
;2a�

1
�+!�1L�a�;1=2+��!=(2a�

1
)

�
�
L�+1=2+Re(!)=(2a�

1
)�Re(�);r

�
: (6.7.22)

When � �Re(�) 2 EG ; G
2
�;�(L�;r) is a subset of the right-hand side of (6.7.22).

Now we state the inversion formulas for the transformG2
�;� in (6.2.5) on L�;r when a� = 0.

From (5.6.23) and (5.6.24), we �nd

f(x) = x����
d

dx
x�+1

�

Z
1

0
Gq�m;p�n+1

p+1;q+1

"
x

t

����� ��;�an+1; � � � ;�ap;�a1; � � � ;�an�bm+1; � � � ;�bq;�b1; � � � ;�bm;��� 1

#

� t���1
�
G

2
�;�f

�
(t)dt (6.7.23)
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or

f(x) = �x����
d

dx
x�+1

�

Z
1

0

Gq�m+1;p�n
p+1;q+1

"
x

t

����� �an+1; � � � ;�ap;�a1; � � � ;�an;����� 1;�bm+1; � � � ;�bq;�b1; � � � ;�bm

#

� t���1
�
G
2
�;�f

�
(t)dt: (6.7.24)

The conditions for the validity of (6.7.23) and (6.7.24) follow from Theorems 5.59 and

5.60, where a�;�; �; �; �; �0 and �0 are taken as in (6.1.5), (6.1.6), (6.1.9){(6.1.11), (6.1.37)

and (6.1.38).

Theorem 6.72. Let a� = 0; � < 1 � � + Re(�) < � and �0 < � � Re(�) < �0; and let

� 2 C .

(a) If �[1 � � + Re(�)] + Re(�) = 0 and f 2 L�;2; then the inversion formula (6:7:23)

holds for Re(�) > � � Re(�)� 1 and (6:7:24) for Re(�) < � � Re(�)� 1.

(b) If � = Re(�) = 0 and f 2 L�;r (1 < r < 1); then the inversion formula (6:7:23)

holds for Re(�) > � � Re(�)� 1 and (6:7:24) for Re(�) < � � Re(�)� 1.

Theorem 6.73. Let a� = 0; 1 < r <1 and �[1� � +Re(�)] + Re(�) 5 1=2� (r); and

let � 2 C .

(a) If � > 0; m > 0; � < 1��+Re(�) < �; �0 < ��Re(�) < min[�0; fRe(�+1=2)=�g+1]

and if f 2 L�;r; then the inversion formulas (6:7:23) and (6:7:24) hold for Re(�) > ��Re(�)�1

and for Re(�) < � �Re(�)� 1; respectively.

(b) If� < 0; n > 0; � < 1��+Re(�) < �;max[�0; fRe(�+1=2)=�g+1] < ��Re(�) < �0
and if f 2 L�;r; then the inversion formulas (6:7:23) and (6:7:24) hold for Re(�) > ��Re(�)�1

and for Re(�) < � �Re(�)� 1; respectively.

Remark 6.3. The results in this section generalize those in Section 5.3. Namely, Theo-

rems 6.25{6.36 follow from Theorems 6.61{6.72 when � = � = 0:

6.8. Bibliographical Remarks and Additional Information on Chapter 6

For Section 6.1. The integral transforms with the general Meijer G-function (2.9.1) as kernel were
�rst considered by Kesarwani [8]{[10] while investigating the G-function as an unsymmetrical Fourier
kernel, though earlier he treated in [2] the particular case

�
Gf

�
(x) =

Z
1

0

G4;0
2;4

264xt
�������
m � k +

1

2
; � � �

2m; 0; �+ �� 1

2
; � � � � 1

2

375 f(t)dt: (6.8.1)

Kesarwani [8] showed that the functions

Km;p
p+q;m+n(x) = 2x�1=2Gm;p

p+q;m+n

"
x2

����� a1; � � � ; ap; b1 � � � ; bqc1; � � � ; cm; d1; � � � ; dn

#
(6.8.2)
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and

Hn;q
q+p;n+m(x) = 2x�1=2Gn;q

q+p;n+m

"
x2

����� �b1; � � � ;�bq;�a1 � � � ;�ap�d1; � � � ;�dn;�c1; � � � ;�cm

#
(6.8.3)

are a pair of unsymmetrical kernels, since their Mellin transforms (MG1)(s) and (MG2)(s) satisfy the
relation (MG1)(s)(MG2)(1� s) = 1, where

G1(x) =

Z x

0

Km;p
p+q;m+n(t)dt; G2(x) =

Z x

0

Hn;q
q+p;m+n(t)dt: (6.8.4)

In [9] Kesarwani considered the transform G

�
Gf

�
(x) = 2

Z
1

0

(xt)�1=2Gm;p
p+q;m+n

"
(xt)2

����� a1; � � � ; ap; b1 � � � ; bqc1; � � � ; cm; d1; � � � ; dn

#
f(t)dt (6.8.5)

and proved its inversion formula

f(x + 0) + f(x� 0)

2

= 2

Z
1

0

(xt)�1=2Gn;q
q+p;n+m

"
x2

����� �b1; � � � ;�bq;�a1 � � � ;�ap�d1; � � � ;�dn;�c1; � � � ;�cm

#
(Gf)(t)dt; (6.8.6)

provided that

 > 0; n� p = m � q =
�

2
> 0;

pX
i=1

ai �
qX

i=1

bi =
mX
j=1

cj �
nX

j=1

dj ;

Re(ai) <
�� 1

2�
(1 5 i 5 p); Re(bi) >

1��

2�
(1 5 i 5 q);

Re(cj) >
1��

2�
(1 5 j 5 m); Re(dj) <

�� 1

2�
(1 5 j 5 n);

(6.8.7)

f(t)t�=�1=2 2 L1(R+) and f(t) is of bounded variation near t = x (x > 0).
In [10] Kesarwani established that if the conditions in (6.8.7) are satis�ed, and further, Re(ai) < 1=2

(1 5 i 5 p), Re(bi) > �1=2 (1 5 i 5 q), Re(cj) > �1=2 (1 5 j 5 m), Re(dj) < 1=2 (1 5 j 5 n) and
f(x) 2 L2(R+) are assumed, then the formula

g(x) =
d

dx

Z
1

0

G1(xt)f(t)
dt

t
(6.8.8)

is de�ned as a function in L2(R+), and the reciprocal formula

f(x) =
d

dx

Z
1

0

G2(xt)g(t)
dt

t
(6.8.9)

holds almost everywhere, where G1(x); G2(x) are given in (6.8.4).
The special case of the above results by Kesarwani [9], [10] in which q = p, n = m and bi = �ai,

dj = �cj for each 1 5 i 5 p, 1 5 j 5 m was earlier studied by Fox [2, Theorems 1 and 2]. Fox [2] also
indicated that the function

G(x) = �Gq;p
2p;2q

"
x1=�

����� a1; � � � ; ap; 1� �� a1; � � � ; 1� �� ap

b1; � � � ; bq; 1� � � b1; � � � ; 1� �� bq

#
(6.8.10)

with � > 0 is a symmetric Fourier kernel. Such a result was also given by Masood and Kapoor [1] in
a di�erent way.
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Kesarwani [12] and Wong and Kesarwani [1] derived necessary and su�cient conditions for the
pair of functions f(x) 2 L2(R+) and g(x) 2 L2(R+) to be the G-transform of each other:

f(x) =

Z
1

0

G(xt)g(t)dt; g(x) =

Z
1

0

G(xt)f(t)dt; (6.8.11)

where G(x) is given by

G(x) = �=2x(�1)=2Gq;p
2p;2q

"
(�x)

����� a1; � � � ; ap;�a1 � � � ;�apb1; � � � ; bq;�b1; � � � ;�bq

#
(6.8.12)

with positive  > 0 and � > 0.
Bhise [5] established theorems on functions connected by the G-transform of the form

�
Gf

�
(x) =

Z
1

0

G2;1
2;4
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�������
k �m� �

2
� 1
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;�k +m+

�

2
+
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2
�

2
;
�

2
+ 2m;��

2
;�2m � �

2

375 f(t)dt: (6.8.13)

Raj.K. Saxena [1] expressed via this transform the transform containing the Whittaker functionW�; (x)
(see (7.2.2)) in the kernel. R.U. Verma [2] proved Parseval's theorem and some properties for a more
general integral transform than (6.8.13) with the G2;1

2;4-function as kernel. Using the technique of the

Laplace transform L and its inverse L�1 developed by Fox in [4] and [5], R.U. Verma in [6], [7] and [8]
proved the inversion formulas for the G-transforms (6.1.1) with the functions G0;p

2p;q(x), G
q+m;p
2p+n;2q+m(x)

and Gq;0
p;q(x) as the kernels, respectively.

Using the method developed by Zemanian [6], Misra [3] proved that the real inversion formula
for the general G-transform (6.1.1) can be extended to certain spaces of generalized functions. In [4]
Misra obtained such a result for the particular case of the G-transform with m = q = 2, n = 1, p = 1�

Gf
�
(x) =

Z
1

0

G2;0
1;2

"
xt

����� ab1; b2
#
f(t)dt; (6.8.14)

which is reduced to the Laplace transform (2.5.2) when a = b1 and b2 = 0. Pathak and J.N. Pandey
[4] extended the G-transform (6.1.1) to another class of generalized functions. In particular, they
established that the inversion formula (6.8.6) due to Kesarwani [9] can be extended to distributions
in the sense of weak convergence. The above results were presented in Brychkov and Prudnikov [1,
Section 8.1].

O.P. Sharma [2] used the transform (6.8.5) to obtain the formula for the Meijer transform (8.9.1)
of the product of two functions f(x) and g(x). Pathak [9] gave two Abelian theorems for the transform
(6.8.4) and showed that Abelian theorems for integral transforms such as the Hankel transform H� in
(8.1.1), the Y�-transform in (8.7.1), the Struve transform H� in (8.8.1), the Meijer transform K� in
(8.9.1) and the Hardy transform J�;� in (8.12.6) follow by suitably specializing the parameters in the
kernel Km;p

p+q;m+n(x) given in (6.8.2) (see also Section 8.14 in this connection).
The technique of factorization of the G-transform (6.1.1) to representations via simpler

G-transforms, together with special tables and notation, were �rst developed by Brychkov, Glaeske
and Marichev [1], without characterization of conditions and spaces of functions (see also their [2]).
The factorization of the G-transform as well as its mapping properties and inversion formulas in the

special spaces of functions M�1
c; and L

(c;)
2 were proved by Marichev and Vu Kim Tuan [1], [2], Vu

Kim Tuan, Marichev and Yakubovich [1] and Vu Kim Tuan [1] (see the results in the bibliography in
Sections 36 and 39.1 of the book by Samko, Kilbas and Marichev [1], and in the book by Yakubovich
and Luchko [1].).

The results of these sections concerning the boundedness, representation, range and inversion of
theG-transforms (6.1.1) in L�;r-spaces (3.1.3) were proved by Rooney [6]. We obtained these results as
the particular cases of the corresponding statements for the H-transforms (3.1.1) presented in Chapters
3 and 4. They basically coincide with those in Rooney [6] if we replace � by � and take into account
the relations

� =
a�

2
; k = a�1; l = a�2; � = �+

�

2
; (6.8.15)
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comparing Rooney's notation with ours.
We only note that in Theorem 6.4 the representations (6.1.16) and (6.1.17) for any k > 0 gener-

alize those given by Rooney [6, Theorem 6.2] for k = 1; and in Theorems 6.9 and 6.10 the conditions
(6.1.26){(6.1.28) and (6.1.31){(6.1.33) for the validity of the relations (6.1.29) and (6.1.34), respec-
tively are more general and simpler than those proved by Rooney [6, Theorems 7.5 and 7.6]. We also
indicate that Corollaries 6.10.1, 6.10.2 and 6.11.1, 6.11.2 present the su�cient conditions for (6.1.26){
(6.1.28) and (6.1.31){(6.1.33) to hold.

For Section 6.2. A series of papers was devoted to investigating the generalizations and the modi�-
cations of the G-transform (6.1.1) which are di�erent from those in (6.2.1){(6.2.5). Kesarwani [1] �rst
considered the modi�ed Meijer G-transform of the form�

Gf
�
(x) = 2��

Z
1

0

(xt)�+1=2��;k;m

�
x2t2

4

�
f(t)dt;

��;k;m(x) = x��G2;1
2;4

24x
������ k �m � 1

2
; � � k +m +

1

2
�; � + 2m;�2m; 0

35 ; (6.8.16)

which reduces to the Hankel transform H�f in (8.1.1) when k + m = 1=2. Kesarwani [1] proved the
inversion formula for such a transform and discussed self-reciprocal functions connected with the kernel
of this transform.

K.C. Sharma [3] de�ned the integral transform

�
Gf
�
(x) =

Z
1

0

e�nxt=4G4;n
m+n;m+n+2

"
axt

����� a1; � � � ; an; c1; � � � ; cmb1; � � � ; b4; d1; � � � ; dm+n�2

#
f(t)dt (6.8.17)

with 0 5 m 5 3, n = 0, m + n = 2, n 2 N0 and proved the inversion formula for such a transform by
using the Mellin transform M and its inverse M�1. For such a transform with m = 2 and n = 0 S.P.
Goyal [2] obtained three chains connecting the originals and their images.

R.P. Goyal [2] and Golas [1] gave the conditions of convergence and uniform convergence for the
modi�ed G-transform�

Gf
�
(x) =

Z
1

0
e�bxtGm;n

p+1;q

"
axt

����� a1; � � � ; ap; �b1; � � � ; bq

#
d�(t): (6.8.18)

Misra [2] generalized part of the Abelian theorems for the Laplace transform given in Widder [1, p.181]
to the G-transform�

Gf
�
(x) =

Z
1

0
e�bxtGm;n+1

p+1;q

"
2

xt

����� �; a1; � � � ; apb1; � � � ; bq

#
f(t)dt (6.8.19)

for functions and for generalized functions that are equivalent to Lebesgue integrable functions in the
neighborhood of the origin.

R.U. Verma [1] gave an inversion formula for the transform

�
Gf
�
(x) =

Z
1

0

e�xt=2Gm;n+1
p+1;q

"
(xt)2

����� (ai)1;p(bj)1;q

#
f(t)dt; (6.8.20)

provided that xcf(x) 2 L(R+).
Kapoor and Masood [1] obtained the inversion formula for the generalized G-transform (6.1.1) of

the form �eGf�(x) = Z
1

0

Gm;n
p;q

"
a(xt)�

����� a1; � � � ; ap; �b1; � � � ; bq

#
f(t)dt (6.8.21)
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in terms of the Mellin transform and of another G-function.

For Sections 6.3 and 6.4. The results presented in these sections were proved by the authors
in Saigo and Kilbas [5].

Kapoor [1] introduced the G1-transform (6.2.1) in the form

�
G

1f
�
(x) =

Z
1

0
Gm;n+1
p+1;q

"
x

t

����� 0; a1; � � � ; apb1; � � � ; bq

#
f(t)

t
dt (6.8.22)

as a generalization of the Stieltjes transform, and proved its inversion formula in terms of the Mellin
transform and of another G-function. In [3] Kapoor iterated this transform with the Laplace transform
L in (2.5.2) to obtain generalizations of the third and fourth iterates of Laplace transforms and to
establish some operational results.

R.K. Saxena and N. Gupta [1] studied the asymptotic expansion of the transform G1
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0

G3;1
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"
x

t

����� ��; � + �;  + �

0; ; �

#
f(t)

t
dt: (6.8.23)

For Sections 6.5{6.7. Bhise [1] �rst considered the modi�ed Meijer G-transform of the form
(6.2.3) with � = 1 and � = 0:

�
G1;0f

�
(x) = x

Z
1

0
Gm+1;0
m;m+1

"
xt

����� �1 + �1; � � � ; �m + �m

�1; � � � ; �m; �

#
f(t)dt (6.8.24)

and proved its inversion formula. Further, Bhise studied properties of such a transform, namely,
certain rules and recurrence relations [3], certain �nite and in�nite series [4] and composition relations
[6]. Mittal [2] established two theorems involving H-functions for the G-transform which generalize
the result given by Bhise [1], while K.C. Gupta and P.K. Mittal [3] developed a chain rule for the
transform (6.8.24).

Kapoor [2] obtained the relations of a more general transform
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1

0
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xt

����� (ai)1;p(bj)1;q

#
f(t)dt (6.8.25)

than (6.8.24) with the Hankel transform H� and theY�-transform given in (8.1.1) and (8.7.1), respec-
tively.

Using the Laplace transform L and its inverse L�1, R.U. Verma [10] proved the inversion formula
for the modi�ed transform in (6.2.3)

�
G�;��f

�
(x) =

Z
1

0

�x
t

��
G2;0
1;2

"
xt

����� ab; c
#
f(t)dt (6.8.26)

in the form

f = M��bL
�1Ma�bLMa�cL

�1M�c��Gf; (6.8.27)

where the operator M� is given by (3.3.11).
A series of papers was devoted to investigating the integral transforms with the Meijer G-functions

as kernels of the form (5.7.1) and (5.7.2) which generalize the Riemann{Liouville and Erd�elyi{Kober
type fractional integrals (2.7.1), (3.3.1) and (2.7.2), (3.3.2). Parashar [1] �rst de�ned such generaliza-
tions in the form�

G0+f
�
(x) = x���1

Z x

0

Gm;n
p+2;q+2

"
at

x

����� �; 1� � + l; a1; � � � ; ap
�; 1� �; b1; � � � ; bq

#
t�f(t)dt (6.8.28)
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and �
G�f

�
(x) = x�

Z
1

x

Gm;n
p+2;q+2

"
ax

t

����� �; 1� � + l; a1; � � � ; ap
�; 1� �; b1; � � � ; bq

#
t���1f(t)dt (6.8.29)

with a > 0 and investigated some properties of these transforms including their domains and ranges.
Kalla [6] studied the operators

�
G�;0+f

�
(x) = x���1

Z x

0

Gm;n
p;q

"
a

�
t

x

��
����� a1; � � � ; ap�; 1� �; b1; � � � ; bq

#
t�f(t)dt (6.8.30)

and �
G�;�f

�
(x) = x�

Z
1

x

Gm;n
p;q

"
a

�
t

x

��
����� a1; � � � ; apb1; � � � ; bq

#
t���1f(t)dt (6.8.31)

with � > 0 and complex � and � in the space Lr(R+) (r = 1) and proved their existence for Re(�) >
1=r � 1 and Re(�) > �1=r, respectively. Kalla [6] also proved the formulas for the Mellin transforms
of these integrals for f(x) 2 Lr(R+) (1 5 r 5 2) and the relation of integration by partsZ

1

0

�
G�;0+f

�
(x)g(x)dx =

Z
1

0
f(x)

�
G�;�g

�
(x)dx (6.8.32)

�
f 2 Lr(R+); g 2 Lr0 (R+);

1

r
+

1

r0
= 1

�
;

provided that 2(m+ n) > p+ q and Re(�) > (r), where (r) is given by (3.3.9). Further, in [7] Kalla
obtained inversion formulas for the integral transforms (6.8.30) and (6.8.31).

Kiryakova [1], [2] introduced the modi�ed G-transform of the form (5.7.12) and (5.7.13) in the
form �

I
m;n
p;q f

�
(x) �

�
K

m;n
p;q f

�
(x) =

Z 1

0

Gm;0
m;m

"
t

����� (i + �i)1:m

(j)1;m

#
f(xt1=�)dt; (6.8.33)

and studied some of its properties in inversion formulas provided that f(x) is continuous on R+ or
analytic in a starlike complex domain, considering an associated power weight (see also Kalla and
Kiryakova [1] and Kiryakova [5] in this connection). Kiryakova, Raina and Saigo [1] expressed the
operator Im;n

p;q in terms of the Laplace transform L and its inverse L�1 in the space Lr(R+) (r = 1).
Luchko and Kiryakova [1] considered the modi�ed G-transforms

�
G

1
�f
�
=

�p
�

Z
1

0

Gm;0
0;2m

264�x
�

��

�������
�
j + 1� 1

�

�
1;2m

375 f(t)dt (x > 0) (6.8.34)

and

�
G

2
�f
�
=

�p
�

Z
1

0
Gm;0
0;2m

264�x
�

��

�������
�
j + 1� 1

�

�
1;m

; (�j)1;m

375 f(t)dt
(x > 0) (6.8.35)

with � > 0; � > 0 and j 2 R(j = 1; � � � ; 2m), proved the isomorphismofG1
� andG

2
� in a special space,

found the inversion relations, and established compositions of (6.8.34) and (6.8.35) with hyper-Bessel
di�erential operators.

The results in Sections 6.5{6.7 have not been published before.



Chapter 7

HYPERGEOMETRIC TYPE INTEGRAL

TRANSFORMS ON THE SPACE L�;r

7.1. Laplace Type Transforms

We consider the integral transform�
L
�

;kf
�
(x) =

Z
1

0
(xt)e�(xt)

k
f(t)dt (7.1.1)

with  2 C and k > 0. This is a modi�cation of the generalized Laplace transform Lk;� given

in (3.3.3):�
L
�

;kf
�
(x) = k�=k

�
Wk�1=kL1=k;�f

�
(x) = k�=k

�
L1=k;�f

��
k1=kx

�
; (7.1.2)

where the operator W� is de�ned by (3.3.12).

According to (7.1.2), (3.3.15) and (3.3.8) the Mellin transform (2.5.1) of (7.1.1) for a

\su�ciently good" function f is given by the relation�
ML

�

;kf
�
(s) =

1

k
H

1;0
0;1(s)

�
Mf

�
(1� s); H

1;0
0;1(s) = �

�
 + s

k

�
(7.1.3)

for Re( + s) > 0: This relation shows that (7.1.1) is the H-transform (3.1.1) of the form

�
L
�

;kf
�
(x) =

1

k

Z
1

0
H1;0

0;1

264xt
������� �k ; 1k

�
375 f(t)dt: (7.1.4)

The constants a�;�; a�1; a
�

2; �; � and � in (1.1.7), (1.1.8), (1.1.11), (1.1.12), (3.4.1), (3.4.2)

and (1.1.10) take the forms

a� =
1

k
; � =

1

k
; a�1 =

1

k
; a�2 = 0; � = �Re(); � =1; � =



k
�

1

2
: (7.1.5)

Let E1 be the exceptional set of the function H1;0
0;1(s) in (7.1.3) given in De�nition 3.4.

Since the gamma function �(z) does not have zeros, then E1 is empty.

From Theorems 3.6, 3.7 and 4.5, 4.7 we obtain the L�;2- and L�;r-theory of the transform

(7.1.1).

Theorem 7.1. Let 1� � > �Re():

(i) There is a one-to-one transformL
�

;k 2 [L�;2;L1��;2] such that (7:1:3) holds for Re(s) =

1� � and f 2 L�;2.

203
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(ii) If f; g 2 L�;2; then the relationZ
1

0
f(x)

�
L
�

;kg
�
(x)dx =

Z
1

0

�
L
�

;kf
�
(x)g(x)dx (7.1.6)

holds for L�;k.

(iii) Let f 2 L�;2; � 2 C and h > 0. When Re(�) > (1� �)h� 1; L�;kf is given by�
L
�

;kf
�
(x) = hx1�(�+1)=h d

dx
x(�+1)=h

�

Z
1

0
H1;1

1;2

264xt
�������
(��; h)�


k
;
1

k

�
; (��� 1; h)

375 f(t)dt: (7.1.7)

When Re(�) < (1� �)h� 1;�
L
�

;kf
�
(x) = �hx1�(�+1)=h d

dx
x(�+1)=h

�

Z
1

0
H2;0

1;2

264xt
�������
(��; h)

(��� 1; h);

�


k
;
1

k

�
375 f(t)dt: (7.1.8)

(iv) The transform L
�

;k is independent of � in the sense that if 1 � � > �Re() and

1� e� > �Re() and if the transforms L�;k and eL�;k on L�;2 and Le�;2; respectively; are given
in (7:1:3); then L�;kf = eL�;kf for f 2 L�;2 \ Le�;2.

(v) For f 2 L�;2 and x > 0;
�
L
�

;kf
�
(x) is given in (7:1:1) and (7:1:4).

Theorem 7.2. Let 1� � > �Re() and 1 5 r 5 s 5 1.

(a) The transformL
�

;k de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L1��;s].

If 1 5 r 5 2; then L�;k is a one-to-one transform from L�;r onto L1��;s.

(b) If f 2 L�;r and g 2 L�;s0 with 1=s+ 1=s0 = 1; then the relation (7:1:6) holds.

(c) If 1 < r <1; then there holds the representation

L
�

;k(L�;r) = L1=k;�(L�;r); (7.1.9)

where the operator L
�;1=k is given in (3.3.3).

Next we consider a further modi�cation of the integral transform (7.1.1) in the form (5.1.3):�
L
�

;k;�;�f
�
(x) = x�

Z
1

0
(xt)e�(xt)

k
t�f(t)dt (7.1.10)

with ; �; � 2 C and k > 0. For this transform the relations (7.1.3) and (7.1.6) take the forms

(5.1.13) and (5.1.18):�
ML

�

;k;�;�f
�
(s) =

1

k
�

�
 + s+ �

k

��
Mf

�
(1� s � � + �) (7.1.11)

and Z
1

0
f(x)

�
L
�

;k;�;�g
�
(x)dx =

Z
1

0

�
L
�

;k;�;�f
�
(x)g(x)dx; (7.1.12)
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respectively. It follows from (7.1.11) that (7.1.10) is a kind of H�;�-transform of the form

�
L
�

;k;�;�f
�
(x) =

x�

k

Z
1

0
H1;0

0;1

264xt
������� � + �

k
;
�

k

�
375 t�f(t)dt: (7.1.13)

Theorems 5.25, 5.29 and 5.31 lead to the L�;2- and L�;r-theory of the transform (7.1.10).

Theorem 7.3. Let 1� � + Re(�) > �Re():

(i) There is a one-to-one transform L
�

;k;�;� 2 [L�;2;L1��+Re(���);2] such that (7:1:11)

holds for Re(s) = 1� � + Re(�� �) and f 2 L�;2.

(ii) If f 2 L�;2 and g 2 L�+Re(���);2; then the relation (7:1:12) holds for L�;k;�;�.

(iii) Let � 2 C ; h > 0 and f 2 L�;2. When Re(�) > [1 � � + Re(�)]h � 1; L�;k;�;�f is

given by�
L
�

;k;�;�f
�
(x) = hx�+1�(�+1)=h d

dx
x(�+1)=h

�

Z
1

0
H1;1

1;2

264xt
�������
(��; h)�
 + �

k
;
�

k

�
; (��� 1; h)

375 t�f(t)dt: (7.1.14)

When Re(�) < [1� � + Re(�)]h� 1;�
L
�

;k;�;�f
�
(x) = �hx�+1�(�+1)=h d

dx
x(�+1)=h

�

Z
1

0
H

2;0
1;2

264xt
�������
(��; h)

(��� 1; h);

�
 + �

k
;
�

k

�
375 t�f(t)dt: (7.1.15)

(iv) The transform L
�

;k;�;� is independent of � in the sense that if 1��+� > �Re() and

1� e� + � > �Re() and if the transforms L�;k;�;� and eL�;k;�;� on L�;2 and Le�;2; respectively;
are given in (7:1:11); then L�;k;�;�f = eL�;k;�;�f for f 2 L�;2 \ Le�;2.

(v) For f 2 L�;2 and x > 0; (L�;k;�;�f)(x) is given in (7:1:10) and (7:1:13).

Theorem 7.4. Let 1� � + Re(�) > �Re() and 1 5 r 5 s 5 1.

(a) The transform L
�

;k;�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r;L1��+Re(���);s]. If 1 5 r 5 2; then L
�

;k is a one-to-one transform from L�;r onto

L1��+Re(���);s.

(b) If f 2 L�;r and g 2 L�+Re(���);s0 with 1=s+1=s0 = 1; then the relation (7:1:12) holds.

(c) If 1 < r <1;

L
�

;k;�;�(L�;r) = L1=k;���(L��Re(���);r); (7.1.16)

where the operators L1=k;��� is given in (3.3.3).

When  = 0 and k = 1, (7.1.4) is the Laplace transform (2.5.2), and (7.1.3) and (7.1.4)

take the forms �
MLf

�
(s) = G1;00;1(s)

�
Mf

�
(1� s); G

1;0
0;1(s) = �(s) (7.1.17)
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and

�
Lf

�
(x) =

Z
1

0
G1;0

0;1

"
xt

����� �0
#
f(t)dt; (7.1.18)

respectively. Then from Theorems 6.1, 6.2, 6.6 and 6.8 we have

Corollary 7.4.1. Let � < 1 and 1 5 r 5 s 5 1:

(a) There is a one-to-one transform L 2 [L�;2;L1��;2] such that the relation (7:1:17) holds

for Re(s) = 1� � and f 2 L�;2.

(b) Let � 2 C and f 2 L�;2. If Re(�) > ��; then Lf is given by

�
Lf

�
(x) = x��

d

dx
x�+1

Z
1

0
G1;1

1;2

"
xt

����� ��0;��� 1

#
f(t)dt; (7.1.19)

while if Re(�) < ��;

�
Lf

�
(x) = �x��

d

dx
x�+1

Z
1

0
G2;0

1;2

"
xt

����� ����� 1; 0

#
f(t)dt: (7.1.20)

(c) L is independent of � in the sense that if � < 1 and e� < 1 and if the transforms L

and eL on L�;2 and Le�;2; respectively; are given in (7:1:17); then Lf = eLf for f 2 L�;2 \ Le�;2.
(d) For x > 0 and f 2 L�;2; Lf is given in (2:5:2) and (7:1:18).

(e) The Laplace transform L de�ned on L�;2 can be extended to L�;r as an element of

[L�;r;L1��;s]. If 1 5 r 5 2; then L is a one-to-one transform from L�;r onto L1��;s.

(f) If f 2 L�;r and g 2 L�;s0 with 1=s+ 1=s0 = 1; thenZ
1

0
f(x)

�
Lg

�
(x)dx =

Z
1

0

�
Lf

�
(x)g(x)dx: (7.1.21)

7.2. Meijer and Varma Integral Transforms

We consider the Meijer transformMk;m de�ned by�
Mk;mf

�
(x) =

Z
1

0
(xt)�k�1=2e�xt=2Wk+1=2;m(xt)f(t)dt (7.2.1)

with k;m 2 R containing the Whittaker functionWl;m(z) in the kernel. This function is given

by

Wl;m(z) = e�z=2zm+1=2 	

�
m� l +

1

2
; 2m+ 1; z

�
; (7.2.2)

where 	(a; c; x) is the conuent hypergeometric function of Tricomi:

	(a; c; x) =
1

�(a)�(a� c+ 1)
G2;1

1;2

"
xt

����� 1� a

0; 1� c

#
; (7.2.3)
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which has the integral representation

	(a; c; x) =
1

�(a)

Z 1

0

e�xtta�1(1 + t)c�a�1dt (Re(a) > 0) (7.2.4)

(see the formulas in Erd�elyi, Magnus, Oberhettinger and Tricomi [1, 6.9(4) and 6.5(2)] and in

Prudnikov, Brychkov and Marichev [3, 8.4.46.1]).

When k = �m; since 	(a; a+ 1; z) = z�a from (7.2.4) and Wk+1=2;m(x) = x�m+1=2e�x=2

by (7.2.2), we �nd that the transformM�m;m (7.2.1) coincides with the Laplace transform

(2.5.2).

By (3.3.11), (3.3.14) and the formula in Prudnikov, Brychkov and Marichev [3, 8.4.44.1]

we have the following relation for the Mellin transform of Mk;mf for a \su�ciently good"

function f : �
MMk;mf

�
(s) = G

2;0
1;2(s)

�
Mf

�
(1� s) (7.2.5)

with

G
2;0
1;2(s) =

�(m� k + s)�(�m� k + s)

�(�2k + s)
; Re(s) > jmj+ k: (7.2.6)

By (7.2.6)Mk;m is the G-transform (5.1.1) in the form

�
Mk;mf

�
(x) =

Z 1

0

G2;0
1;2

"
xt

����� �2km� k;�m� k

#
f(t)dt (7.2.7)

and the constants (6.1.5){(6.1.11) take the forms

a� = � = a�1 = 1; a�2 = 0; � = k + jmj; � =1; � = �
1

2
; (7.2.8)

respectively.

Let E2 be the exceptional set of the function G2;01;2(s) in (7.2.6), which is the set of s 2 C

of zero points of the function G
2;0
1;2(s) having zero only at the poles of the gamma function

�(�2k + s). Then, in accordance with De�nition 6.1, � =2 E2 means that

s 6= 2k � i (i = 0; 1; 2; � � �) for Re(s) = 1� �: (7.2.9)

From Theorems 6.1, 6.2 and 6.6, 6.8 we obtain the L�;2- and L�;r-theory of the integral

transform given in (7.2.1).

Theorem 7.5. Let � = k + jmj and 1� � > �:

(i) There is a one-to-one transform Mk;m 2 [L�;2;L1��;2] such that (7:2:5) holds for

Re(s) = 1� � and f 2 L�;2.

(ii) If f; g 2 L�;2; then the relationZ 1

0

f(x)
�
Mk;mg

�
(x)dx =

Z 1

0

�
Mk;mf

�
(x)g(x)dx (7.2.10)

holds.
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(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; thenMk;mf is given by

�
Mk;mf

�
(x) = x��

d

dx
x�+1

Z 1

0

G
2;1
2;3

"
xt

����� ��;�2km� k;�m� k;��� 1

#
f(t)dt: (7.2.11)

When Re(�) < ��;

�
Mk;mf

�
(x) = �x��

d

dx
x�+1

Z 1

0

G3;0
2;3

"
xt

����� �2k;����� 1; m� k;�m� k

#
f(t)dt: (7.2.12)

(iv) The transformMk;m is independent of � in the sense that if 1�� > � and 1� e� > �

and if the transforms Mk;m and fMk;m on L�;2 and Le�;2; respectively; are given in (7:2:5);

then Mk;mf = fMk;mf for f 2 L�;2 \ Le�;2.
(v) For f 2 L�;2 and x > 0;

�
Mk;mf

�
(x) is given in (7:2:1) and (7:2:7).

Theorem 7.6. Let � = k + jmj and 1� � > �.

(a) Let 1 5 r 5 s 5 1: The transformMk;m de�ned on L�;2 can be extended to L�;r as

an element of [L�;r;L1��;s]. If 1 5 r 5 2; thenMk;m is a one-to-one transform from L�;r onto

L1��;s.

(b) Let 1 5 r 5 s 5 1: If f 2 L�;r and g 2 L�;s0 with 1=s+ 1=s0 = 1; then the relation

(7:2:10) holds.

(c) Let 1 < r <1 and the condition (7:2:9) holds. Then Mk;m is one-to-one on L�;r.

(d) Let 1 < r <1 and � = 0. If (7:2:9) holds; then

Mk;m(L�;r) = L(L�;r); (7.2.13)

where the Laplace operator L is given in (2:5:2): If (7:2:9) is not valid; then Mk;m(L�;r) is a

subset of the right-hand side of (7:2:13):

(e) Let 1 < r <1 and � < 0. If (7:2:9) holds; then

Mk;m(L�;r) =
�
I���;1;��L1;�

�
(L�;r); (7.2.14)

where the operators I���;1;�� and L1;� are given in (3:3:2) and (3:3:3): If (7:2:9) is not valid;

then Mk;m(L�;r) is a subset of the right-hand side of (7.2.14).

We also consider the Varma transform de�ned by�
V k;mf

�
(x) =

Z 1

0

(xt)m�1=2e�xt=2Wk;m(xt)f(t)dt: (7.2.15)

According to (3.3.11) and (3.3.14) and Prudnikov, Brychkov and Marichev [3, 8.4.44.1], the

Mellin transform (2.5.1) of (7.2.1) for a \su�ciently good" function f is given by the relation�
MV k;mf

�
(s) = G

2;0
1;2(s)

�
Mf

�
(1� s) (7.2.16)

with

G
2;0
1;2(s) =

�(2m+ s)�(s)

�

�
m� k +

1

2
+ s

� ; Re(s) > �m+ jmj: (7.2.17)
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The relation (7.2.17) shows that (7.2.1) is the G-transform (5.1.1) of the form

�
V k;mf

�
(x) =

Z 1

0

G2;0
1;2

24xt
������
1

2
+m� k

2m; 0

35 f(t)dt: (7.2.18)

When m + k = 1=2, from (7.2.2) and (7.2.4) we know W1=2�m;m = x1=2�me�x=2 and we

�nd the transform V k;m in (7.2.15) coincides with the Laplace transform (2.5.2).

The constants a�;�; a�1; a
�
2; �; � and � in (6.1.5){(6.1.11) take the forms

a� = � = a�1 = 1; a�2 = 0; � = �m + jmj; � =1; � = m+ k � 1: (7.2.19)

We note that if Re(s) = 1� �; then the condition (7.2.17) is equivalent to 1� � > �.

Let E3 be the exceptional set of the function G
2;0
1;2(s) in (7.2.17). Since G2;01;2(s) has zero only

in the poles of the gamma function �(m � k + 1=2 + s); then in accordance with De�nition

6.1 in Section 6.1 the condition � =2 E3 means that

s 6= k �m�
1

2
� i (i = 0; 1; 2; � � �) for Re(s) = 1� �: (7.2.20)

Similarly to Theorems 7.5 and 7.6, we obtain the L�;2- and L�;r-theory of the transform

(7.1.1) from Theorems 6.1, 6.2 and 6.6, 6.8.

Theorem 7.7. Let � = �m + jmj and 1� � > �:

(i) There is a one-to-one transform V k;m 2 [L�;2;L1��;2] such that (7:2:16) holds for

Re(s) = 1� � and f 2 L�;2.

(ii) If f; g 2 L�;2; then the relationZ 1

0

f(x)
�
V k;mg

�
(x)dx =

Z 1

0

�
V k;mf

�
(x)g(x)dx (7.2.21)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; then V k;mf is given by

�
V k;mf

�
(x) = x��

d

dx
x�+1

Z 1

0

G
2;1
2;3

24xt
������ ��;m� k +

1

2
2m; 0;��� 1

35 f(t)dt: (7.2.22)

When Re(�) < ��;

�
V k;mf

�
(x) = �x��

d

dx
x�+1

Z 1

0

G3;0
2;3

24xt
������ m� k +

1

2
;��

��� 1; 2m; 0

35 f(t)dt: (7.2.23)

(iv) The transform V k;m is independent of � in the sense that if 1� � > � and 1� e� > �

and if the transforms V k;m and fV k;m on L�;2 and Le�;2; respectively; are given in (7:2:16);

then V k;mf = fV k;mf for f 2 L�;2 \ Le�;2.
(v) For f 2 L�;2 and x > 0;

�
V k;mf

�
(x) is given in (7:2:15) and (7:2:18).

Theorem 7.8. Let � = �m + jmj and 1� � > �.
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(a) Let 1 5 r 5 s 5 1: The transform V k;m de�ned on L�;2 can be extended to L�;r as

an element of [L�;r ;L1��;s]. If 1 5 r 5 2; then V k;m is a one-to-one transform from L�;r onto

L1��;s.

(b) Let 1 5 r 5 s 5 1: If f 2 L�;r and g 2 L�;s0 with 1=s+ 1=s0 = 1; then the relation

(7:2:21) holds.

(c) Let 1 < r <1. If the condition (7:2:20) holds; then V k;m is one-to-one on L�;r.

(d) Let 1 < r <1 and jmj+ k � 1=2 = 0. If (7:2:20) holds; then

V k;m(L�;r) = L1;1=2�k�m(L�;r); (7.2.24)

where the operator L1;1=2�k�m is given in (3:3:3): If (7:2:20) is not valid; then V k;m(L�;r) is

a subset of the right-hand side of (7:2:24):

(e) Let 1 < r <1 and jmj+ k � 1=2 < 0. If (7:2:20) holds; then

V k;m(L�;r) =
�
I
�jmj�k+1=2
�;1;�� L1;�

�
(L�;r); (7.2.25)

where the operators I
�jmj�k+1=2
�;1;�� and L1;� are given in (3:3:2) and (3:3:3): If (7:2:20) is not

valid; then V k;m(L�;r) is a subset of the right-hand side of (7.2.25).

In conclusion of this section we note that the relations (7.2.13), (7.2.14), (7.2.24) and

(7.2.25) exhibit the ranges of the transformsMk;m and V k;m in (7.2.1) and (7.1.15) on the

spaces L�;r for any 1 < r < 1. They were obtained from the results in Section 6.1 for the

G-transform (6.1.1). But such ranges of the G-transform can be estimated more precisely for

certain integral transforms. For example, using the technique of the Mellin transformM and

taking into acount the formulas (3.3.6){(3.3.8) and (3.3.14), we directly prove the following

relations:

�
MLx�I�0+f

�
(s) =

�(�� � � + s)�(s)

�(�� + s)

�
Mf

�
(1� s+ �+ �) (7.2.26)

(Re(s� �) = 1� � + �)

and

�
MI��x

�
Lf

�
(s) =

�(�+ � + s)�(s)

�(�+ s)

�
Mf

�
(1� s� �� �) (7.2.27)

(Re(s+ �) = 1� � � �)

for the Riemann{Liouville fractional integration operators I�0+ and I�� in (2.6.1) and (2.6.2)

and the Laplace transform L in (2.5.2).

On the other hand, by using (7.2.16) and (3.3.14) we have

�
MV k;mx

�+�f
�
(s) =

�(2m+ s)�(s)

�

�
m� k +

1

2
+ s

��Mf
�
(1� s+ �+ �) (7.2.28)

(Re(s� �) = 1� � + �)
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and �
MV k;mx

����f
�
(s) =

�(2m+ s)�(s)

�

�
m� k +

1

2
+ s

��Mf
�
(1� s� �� �) (7.2.29)

(Re(s+ �) = 1� � � �):

(7.2.26) coincides with (7.2.28) when � = 1=2�m� k; � = k �m� 1=2, and�
MLxk�m�1=2I

1=2�m�k
0+ f

�
(s) =

�
MV k;mx

�2mf
�
(s) (Re(s) = 1� � � 2m)

or �
MLxk�m�1=2I

1=2�m�k
0+ x2mf

�
(s) =

�
MV k;mf

�
(s) (Re(s) = 1� �): (7.2.30)

Similarly, (7.2.27) coincides with (7.2.29) when � = m� k + 1=2; � = m+ k � 1=2, and�
MI

m�k+1=2
� xm+k�1=2

Lf
�
(s) =

�
MV k;mx

�2mf
�
(s) (Re(s) = 1� � � 2m)

or �
MI

m�k+1=2
� xm+k�1=2

Lx2mf
�
(s) =

�
MV k;mf

�
(s) (Re(s) = 1� �): (7.2.31)

Motivated by the relations (7.2.30) and (7.2.31), we de�ne the transforms V 1
k;m and V 2

k;m

by

V
1
k;m = LMk�m�1=2I

1=2�m�k
0+ M2m (7.2.32)

and

V
2
k;m = I

m�k+1=2
� Mm+k�1=2LM2m: (7.2.33)

Applying the relations�
I�0+f

�
(x) = x�

�
I�0+;1;0f

�
(x);

�
I��f

�
(x) =

�
I��;1;0t

�f
�
(x); L= L1;0 (7.2.34)

connecting the Riemann{Liouville fractional integrals (2.7.1) and (2.7.2) with the Erd�elyi{

Kober type integrals (3.3.1) and (3.3.2), and the Laplace transform (2.5.2) and the generalized

Laplace transform (3.3.3), as well as (3.3.23) and (3.3.22), we can rewrite (7.2.32) and (7.2.33)

as

V
1
k;m = LI

1=2�m�k
0+:1;2m (7.2.35)

and

V
2
k;m = I

m�k+1=2
�;1;0 L1;�2m; (7.2.36)

respectively.

On the basis of (7.2.35) and (7.2.36) we obtain the following results from Theorem 3.2(a){

(c).
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Theorem 7.9. Let 1 5 r 5 1 and � < 1 + 2m.

(a) If m+ k < 1=2 and � < 1; then for all s = r such that 1=s > 1=r+m+ k� 1=2; the

operator V 1
k;m belongs to [L�;r ;L1��;s] and is a one-to-one transform from L�;r onto L1��;s.

For 1 5 r 5 2 and f 2 L�;r�
MV

1
k;mf

�
(s) =

�(2m+ s)�(s)

�

�
m� k +

1

2
+ s

��Mf
�
(1� s) for Re(s) = 1� �: (7.2.37)

(b) If m�k > �1=2 and � > 0; then for all s = r such that 1=s > 1=r+k�m� 1=2; the

operator V 2
k;m belongs to [L�;r ;L1��;s] and is a one-to-one transform from L�;r onto L1��;s.

For 1 5 r 5 2 and f 2 L�;r�
MV

2
k;mf

�
(s) =

�(2m+ s)�(s)

�

�
m� k +

1

2
+ s

��Mf
�
(1� s) for Re(s) = 1� �: (7.2.38)

According to this theorem and (7.2.15){(7.2.17) the Varma transform can be interpreted

by the transforms V 1
k;m and V 2

k;m as V k;m=V 1
k;m and V k;m=V 2

k;m for m + k < 1=2 and

m�k > �1=2; respectively. Taking the same arguments as in Chapter 4, we obtain the range

of the Varma transform.

Theorem 7.10. Let 1 < r <1 and � < 1 + 2m.

(a) Let k +m < 1=2 and � < 1. If (7:2:9) holds; then

V k;m(L�;r) =
�
LI

1=2�m�k
0+:1;2m

�
(L�;r): (7.2.39)

When (7:2:9) is not valid; then V k;m(L�;r) is a subset of the right-hand side of (7:2:39):

(b) Let m� k > �1=2 and � > 0. If (7:2:9) holds; then

V k;m(L�;r) =
�
I
m�k+1=2
�;1;0 L1;�2m

�
(L�;r): (7.2.40)

When (7:2:9) is not valid, then V k;m(L�;r) is a subset of the right-hand side of (7.2.40).

Remark 7.1. The relations (7.2.32) and (7.2.33) can be used to �nd the inverse formulas

for the Varma transform V k;m in L�;r-spaces.

7.3. Generalized Whittaker Transforms

We consider the integral transform�
W

k
�;f

�
(x) =

Z 1

0

(xt)ke�xt=2W�;(xt)f(t)dt (7.3.1)

with �;  2 C and k 2 R; containing the Whittaker function (7.2.2) in the kernel. It is known

that the Meijer transform (7.2.1) and the Varma transform (7.2.15) are particular cases of

this generalized Whittaker transformW k
�; :�

Mk;mf
�
(x) =

�
W

�k�1=2
k+1=2;mf

�
(x);

�
V k;mf

�
(x) =

�
W

m�1=2
k;m f

�
(x): (7.3.2)
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Due to Prudnikov, Brychkov and Marichev [3, 8.4.44.1], the Mellin transform (2.5.1) of

(7.3.1) for a \su�ciently good" function f is given by the relation�
MW

k
�;f

�
(s) = G

2;0
1;2(s)

�
Mf

�
(1� s); (7.3.3)

G
2;0
1;2(s) =

�

�
k +  +

1

2
+ s

�
�

�
k �  +

1

2
+ s

�
�(k � �+ 1 + s)

;

provided that

Re(s) > jRe()j � k �
1

2
: (7.3.4)

The relation (7.3.3) shows that (7.3.1) is the G-transform (5.1.1) of the form

�
W

k
�;f

�
(x) =

Z
1

0
G2;0

1;2

264xt
�������
1� �+ k

k +  +
1

2
; k�  +

1

2

375 f(t)dt: (7.3.5)

The constants a�;�; a�1; a
�

2; �; � and � in (6.1.5){(6.1.11) take the forms

a� = � = a�1 = 1; a�2 = 0; � = jRe()j � k �
1

2
; � =1; � = k + %�

1

2
: (7.3.6)

We note that for Re(s) = 1� � the condition (7.3.4) is equivalent to 1� � > �.

Lat E4 be the exceptional set of the function G
2;0
1;2(s) in (7.3.3). Since G2;01;2(s) has a zero

only at the poles of the gamma function �(k � � + 1 + s); De�nition 6.1 implies that the

condition � =2 E4 means that

s 6= �� k � 1� i (i = 0; 1; 2; � � �) for Re(s) = 1� �: (7.3.7)

From Theorems 6.1, 6.2 and 6.6, 6.8 we obtain the L�;2- and L�;r-theory of the transform

(7.3.1).

Theorem 7.11. Let � = jRe()j � k � 1=2 and 1� � > �:

(i) There is a one-to-one transform W k
�; 2 [L�;2;L1��;2] such that (7:3:3) holds for

Re(s) = 1� � and f 2 L�;2.

(ii) If f; g 2 L�;2; then the relationZ
1

0
f(x)

�
W

k
�;g

�
(x)dx =

Z
1

0

�
W

k
�;f

�
(x)g(x)dx (7.3.8)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; thenW k
�;f is given by�

W
k
�;f

�
(x)

= x��
d

dx
x�+1

Z
1

0
G2;1

2;3

264xt
�������
��; 1 + k � �

k +  +
1

2
; k �  +

1

2
;��� 1

375 f(t)dt: (7.3.9)
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When Re(�) < ��;�
W

k
�;f

�
(x)

= �x��
d

dx
x�+1

Z
1

0
G3;0

2;3

264xt
�������
1 + k � �;��

��� 1; k+  +
1

2
; k �  +

1

2

375 f(t)dt: (7.3.10)

(iv) Moreover; W k
�; is independent of � in the sense that if 1 � � > � and 1 � e� > �

and if the transformsW k
�; and fW k

�; on L�;2 and Le�;2; respectively; are given in (7:3:3); then

W
k
�;f = fW k

�;f for f 2 L�;2 \ Le�;2.
(v) For f 2 L�;2 and x > 0;

�
W

k
�;f

�
(x) is given in (7:3:1) and (7:3:5).

Theorem 7.12. Let � = jRe()j � k � 1=2 and 1� � > �.

(a) Let 1 5 r 5 s 5 1: The transformW k
�; de�ned on L�;2 can be extended to L�;r as

an element of [L�;r;L1��;s]. If 1 5 r 5 2; thenW k
�; is a one-to-one transform from L�;r onto

L1��;s.

(b) Let 1 5 r 5 s 5 1; f 2 L�;r and g 2 L�;s0 with 1=s + 1=s0 = 1: Then the relation

(7:3:8) holds.

(c) Let 1 < r <1. If the condition (7:3:7) holds; thenW k
�; is one-to-one on L�;r.

(d) Let 1 < r <1 and Re(�) + jRe()j � 1=2 = 0. If (7:3:7) holds; then

W
k
�;(L�;r) = L1;�k��(L�;r); (7.3.11)

where the operator L1;�k�� is given in (3:3:3): If (7:3:7) is not valid; then W k
�;(L�;r) is a

subset of the right-hand side of (7:3:11):

(e) Let 1 < r <1 and Re(�) + jRe()j � 1=2 < 0. If (7:3:7) holds; then

W
k
�;(L�;r) =

�
I
�(�+�+k)
�;1;�� L1;�

�
(L�;r); (7.3.12)

where the operators I
�(�+�+k)
�;1;�� and L1;� are given in (3:3:1) and (3:3:3): If (7:3:7) is not valid;

then W k
�;(L�;r) is a subset of the right-hand side of (7.3.12).

Remark 7.2. In view of (7.3.2), Theorems 7.5, 7.7 and 7.6, 7.8 in the previous section

are particular cases of Theorems 7.11 and 7.12.

Now we consider the modi�cation of the transform (7.3.1) in the form (6.2.3):�
W

k
�;;�;�f

�
(x) = x�

Z
1

0
(xt)ke�xt=2W�;(xt)t

�f(t)dt (7.3.13)

with �; ; �; � 2 C and k 2 R. For this transform the relations (7.3.3), (7.3.5) and (7.3.8) take

the forms, by consulting (6.2.13), (6.2.3) and (6.2.18):�
MW

k
�;;�;�f

�
(s) = G

2;0
1;2(s+ �)

�
Mf

�
(1� s� � + �); (7.3.14)

where G2;01;2(s) is given in (7.3.3);

�
W

k
�;;�;�f

�
(x) = x�

Z
1

0
G2;0

1;2

264xt
�������
1 + k � �

k +  +
1

2
; k�  +

1

2

375 t�f(t)dt (7.3.15)
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and Z
1

0
f(x)

�
W

k
�;;�;�g

�
(x)dx =

Z
1

0

�
W

k
�;;�;�f

�
(x)g(x)dx: (7.3.16)

The exceptional set for this kernel G2;01;2(s) is the same as E4 for (7.3.3). Then (7.3.7) shows

that the condition � �Re(�) =2 E4 means that

s 6= �� k � 1� i (i = 0; 1; 2; � � �) for Re(s) = 1� � + Re(�): (7.3.17)

From Theorems 6.38, 6.42 and 6.44 we have the L�;2- and L�;r-theory of the transform

(7.3.13).

Theorem 7.13. Let � = jRe()j � k � 1=2 and 1� � +Re(�) > �:

(i) There is a one-to-one transform W k
�;;�;� 2 [L�;2;L1��+Re(���);2] such that (7:3:14)

holds for Re(s) = 1� � + Re(�� �) and f 2 L�;2.

(ii) If f 2 L�;2 and g 2 L�+Re(���);2; then the relation (7:3:16) holds forW k
�;;�;�.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > �� +Re(�); thenW k
�;;�;�f is given by�

W
k
�;;�;�f

�
(x)

= x���
d

dx
x�+1

Z
1

0
G2;1

2;3

264xt
�������
��; 1+ k � �

k +  +
1

2
; k �  +

1

2
;��� 1

375 t�f(t)dt: (7.3.18)

When Re(�) < �� +Re(�);�
W

k
�;;�;�f

�
(x)

= �x���
d

dx
x�+1

Z
1

0
G3;0

2;3

264xt
�������
1 + k � �;��

��� 1; k +
1

2
; k�  +

1

2

375 t�f(t)dt: (7.3.19)

(iv) The transformW k
�;;�;� is independent of � in the sense that if 1� � + � > � and

1� e� + � > � and if the transformsW k
�;;�;� and fW k

�;;�;� on L�;2 and Le�;2; respectively; are
given in (7:3:14); then W k

�;;�;�f = fW k

�;;�;�f for f 2 L�;2 \ Le�;2.
(v) For f 2 L�;2 and x > 0;

�
W

k
�;;�;�f

�
(x) is given in (7:3:13) and (7:3:15).

Theorem 7.14. Let � = jRe()j � k � 1=2 and 1� � +Re(�) > �.

(a) If 1 5 r 5 s 5 1; then the transformW k
�;;�;� de�ned on L�;2 can be extended to L�;r

as an element of [L�;r ;L1��+Re(���);s]. If 1 5 r 5 2; then W k
�;;�;� is a one-to-one transform

from L�;r onto L1��+Re(���);s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L�+Re(���);s0 with 1=s + 1=s0 = 1; then the

relation (7:3:16) holds.

(c) If 1 < r <1 and the condition (7:3:17) holds; thenW k
�;;�;� is one-to-one on L�;r .

(d) Let 1 < r <1 and Re(�) + jRe()j � 1=2 = 0. If (7:3:17) holds; then

W
k
�;;�;�(L�;r) = L1;�k����

�
L��Re(���);r

�
; (7.3.20)
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where the operator L1;�k���� is given in (3:3:3):When (7:3:17) is not valid,W k
�;;�;�(L�;r) is

a subset of the right-hand side of (7:3:20):

(e) Let 1 < r <1 and Re(�) + jRe()j � 1=2 < 0. If (7:3:17) holds; then

W
k
�;;�;�(L�;r) =

�
I
�(�+�+k)
�;1;��� L1;���

��
L��Re(���);r

�
: (7.3.21)

If (7:3:17) is not valid; then W k
�;;�;�(L�;r) is a subset of the right-hand side of (7.3.21).

Remark 7.3. The results in Theorems 7.11 and 7.12 follow from those in Theorems 7.13

and 7.14 when � = � = 0:

7.4. D-Transforms

We consider the integral transform�
Df

�
(x) = 2�=2

Z
1

0
e�xt=2D

�
(2xt)1=2

�
f(t)dt (7.4.1)

with  2 C ; containing the parabolic cylinder function D(z) de�ned in terms of the conuent

hypergeometric function of Tricomi (7.2.3) by

D(z) = 2=2e�z
2=4	

 
�

2
;
1

2
;
z2

2

!
(7.4.2)

(see Erd�elyi, Magnus, Oberhettinger and Tricomi [2, 8.2]). According to Prudnikov, Brychkov

and Marichev [3, 8.4.18.1] the Mellin transform (7.4.1) for a \su�ciently good" function f is

given by

�
MDf

�
(s) = G

2;0
1;2(s)

�
Mf

�
(1� s); G

2;0
1;2(s) =

�(s)�

�
1

2
+ s

�
�

�
1� 

2
+ s

� ; (7.4.3)

provided that Re(s) > 0. This relation shows that (7.4.1) is the G-transform (6.1.1) of the

form

�
Df

�
(x) =

Z
1

0
G2;0

1;2

264xt
�������
1� 

2

0;
1

2

375 f(t)dt: (7.4.4)

The constants a�;�; a�1; a
�

2; �; � and � in (6.1.5){(6.1.11) take the forms

a� = � = a�1 = 1; a�2 = 0; � = 0; � =1; � =
 � 1

2
: (7.4.5)

Let E5 be the exceptional set of the function G
2;0
1;2(s) in (7.4.3). Since G2;01;2(s) has zero only

at the poles of the gamma function �(s+(1�)=2); De�nition 6.1 implies that the condition

� =2 E5 means that

s 6=
 � 1

2
� i (i = 0; 1; 2; � � �) for Re(s) = 1� �: (7.4.6)
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From Theorems 6.1, 6.2 and 6.6, 6.8 we obtain the L�;2- and L�;r-theory of the transform

(7.4.1).

Theorem 7.15. Let � < 1:

(i) There is a one-to-one transformD 2 [L�;2;L1��;2] such that (7:4:3) holds for Re(s) =

1� � and f 2 L�;2.

(ii) If f; g 2 L�;2; then the relation

Z
1

0
f(x)

�
Dg

�
(x)dx =

Z
1

0

�
Df

�
(x)g(x)dx (7.4.7)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; then Df is given by

�
Df

�
(x) = x��

d

dx
x�+1

Z
1

0
G

2;1
2;3

2
64xt

�������
��;

1� 

2

0;
1

2
;��� 1

3
75 f(t)dt: (7.4.8)

When Re(�) < ��;

�
Df

�
(x) = �x��

d

dx
x�+1

Z
1

0
G3;0

2;3

2
64xt

�������
1� 

2
;��

��� 1; 0;
1

2

3
75 f(t)dt: (7.4.9)

(iv) The transformD is independent of � in the sense that if � < 1 and e� < 1 and if the

transforms D and fD on L�;2 and Le�;2; respectively; are given in (7:4:3); then Df = fDf

for f 2 L�;2 \ Le�;2.
(v) For f 2 L�;2 and x > 0;

�
Df

�
(x) is given in (7:4:1) and (7:4:4).

Theorem 7.16. Let � < 1 and 1 5 r 5 s 5 1:

(a) The transformD de�ned on L�;2 can be extended toL�;r as an element of [L�;r;L1��;s].

If 1 5 r 5 2; D is a one-to-one transform from L�;r onto L1��;s.

(b) If f 2 L�;r and g 2 L�;s0 with 1=s+ 1=s0 = 1; then the relation (7:4:7) holds.

(c) If 1 < r <1 and the condition (7:4:6) holds; then D is one-to-one on L�;r.

(d) If 1 < r <1; Re() = 0 and the condition (7:4:6) holds; then

D(L�;r) = L1;�=2(L�;r); (7.4.10)

where the operator L1;�=2 is given in (3:3:3): When (7:4:6) is not valid, D(L�;r) is a subset

of the right-hand side of (7:4:10):

(e) If 1 < r <1; Re() < 0 and (7:4:6) holds; then

D(L�;r) =
�
I
�=2
�;1;0L

�
(L�;r); (7.4.11)

where the operators I
�=2
�;1;0 and L are given in (3:3:2) and (2:5:2): When (7:4:6) is not valid;

D(L�;r) is a subset of the right-hand side of (7.4.11).
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Now we consider a generalization of (7.4.1) in the form

�
D;�;�f

�
(x) = 2�=2x�

Z
1

0
e�xt=2D

�
(2xt)1=2

�
t�f(t)dt (7.4.12)

with ; �; � 2 C . In view of (6.2.8) and (7.4.4) this is a modi�ed transform (6.2.3) of the form

�
D;�;�f

�
(x) = x�

Z
1

0
G2;0

1;2

2
64xt

�������
1� 

2

0;
1

2

3
75 t�f(t)dt: (7.4.13)

The Mellin transform (2.5.1) of (7.4.12) for a \su�ciently good" function f is given by�
MD;�;�f

�
(s) = G

2;0
1;2(s + �)

�
Mf

�
(1� s� � + �); (7.4.14)

where G2;01;2(s) is the function in (7.4.3).

For the exceptional set E5 of the function G2;01;2(s) in (7.4.3), the condition � � Re(�) =2 EG
means that

s 6=
 � 1

2
� i (i = 0; 1; 2; � � �) for Re(s) = 1� � +Re(�): (7.4.15)

From Theorems 6.38, 6.42 and 6.44 we give the L�;2- and L�;r-theory of the transform

(7.4.12).

Theorem 7.17. Let � � Re(�) < 1:

(i) There is a one-to-one transformD;�;� 2 [L�;2;L1��+Re(���);2] such that (7:4:14) holds

for Re(s) = 1� � + Re(�� �) and f 2 L�;2.

(ii) If f 2 L�;2 and g 2 L�+Re(���);2; then the relation

Z
1

0
f(x)

�
D;�;�g

�
(x)dx =

Z
1

0

�
D;�;�f

�
(x)g(x)dx (7.4.16)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > �� +Re(�); then D;�;�f is given by

�
D;�;�f

�
(x) = x���

d

dx
x�+1

Z
1

0
G2;1

2;3

2
64xt

�������
��;

1� 

2

0;
1

2
;��� 1

3
75 t�f(t)dt: (7.4.17)

When f 2 L�;2 and Re(�) < �� + Re(�);

�
D;�;�f

�
(x) = �x���

d

dx
x�+1

Z
1

0
G3;0

2;3

2
64xt

�������
1� 

2
;��

��� 1; 0;
1

2

3
75 t�f(t)dt: (7.4.18)

(iv) The transformD;�;� is independent of � in the sense that if 1� � +Re(�) > 0 and

1� e� +Re(�) > 0 and if the transformsD;�;� and fD;�;� on L�;2 and Le�;2; respectively; are
given in (7:4:14); then D;�;�f = fD;�;�f for f 2 L�;2 \ Le�;2.

(v) For f 2 L�;2 and x > 0;
�
D;�;�f

�
(x) is given in (7:4:12) and (7:4:13).
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Theorem 7.18. Let � � Re(�) < 1 and 1 5 r 5 s 5 1:

(a) The transform D;�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r;L1��+Re(���);s]. If 1 5 r 5 2; then D;�;� is a one-to-one transform from L�;r onto

L1��+Re(���);s.

(b) If f 2 L�;r and g 2 L�+Re(���);s0 with 1=s+1=s0 = 1; then the relation (7:4:16) holds.

(c) If 1 < r <1 and the condition (7:4:15) holds; then D;�;� is a one-to-one transform

on L�;r.

(d) If 1 < r <1; Re() = 0 and the condition (7:4:15) holds, then

D;�;�(L�;r) = L1;���=2

�
L��Re(���);r

�
; (7.4.19)

where the operator L1;���=2 is given in (3:3:3): If (7:4:15) is not valid, then D;�;�(L�;r) is a

subset of the right-hand side of (7:4:19):

(e) If 1 < r <1; Re() < 0 and (7:4:15) holds; then

D;�;�(L�;r) =
�
I
�=2
�;1;�L1;��

��
L��Re(���);r

�
; (7.4.20)

where the operators I
�=2
�;1;� and L1;�� are given in (3:3:2) and (3:3:3): If (7:4:15) is not valid;

then D;�;�(L�;r) is a subset of the right-hand side of (7.4.20).

7.5. 1F 1-Transforms

We now proceed to consider the integral transform�
1F 1

k f
�
(x) =

�(a)

�(c)

Z
1

0
(xt)k 1F1(a; c;�xt)f(t)dt (7.5.1)

with a; c 2 C (Re(a) > 0) and k 2 R containing the conuent hypergeometric or Kum-

mer function 1F1(a; c; z) in the kernel (see (2.9.3) and (2.9.14)). The transform (7.5.1), �rst

considered by Erd�elyi [3], is called the 1F1-transform. According to Prudnikov, Brychkov

and Marichev [3, 8.4.45.1], (3.3.11) and (3.3.14), the Mellin transform (2.5.1) of (7.5.1) for a

\su�ciently good" function f is given by�
M 1F

k
1 f

�
(s) = G

1;1
1;2(s)

�
Mf

�
(1� s); G

1;1
1;2(s) =

�(k + s)�(a� k � s)

�(c� k � s)
; (7.5.2)

provided that 0 < Re(s + k) < Re(a). This relation shows that (7.5.1) is the G-transform

(6.1.1) of the form

�
1F 1

k f
�
(x) =

Z
1

0
G1;1

1;2

"
xt

����� 1� a+ k

k; 1� c+ k

#
f(t)dt: (7.5.3)

The constants a�;�; a�1; a
�

2; �; � and � in (6.1.5){(6.1.11) take the forms

a� = � = a�1 = 1; a�2 = 0; � = �k; � = Re(a� k); � = a� c+ k �
1

2
: (7.5.4)

Let E6 be the exceptional set of the function G
1;1
1;2(s) in (7.5.2). It is composed of the poles

of the gamma function �(c�k� s); so De�nition 6.1 implies the condition � =2 E6 means that

s 6= c� k + i (i = 0; 1; 2; � � �) for Re(s) = 1� �: (7.5.5)
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From Theorems 6.1, 6.2 and 6.6, 6.8 we obtain the L�;2- and L�;r-theory of the transform

(7.5.1).

Theorem 7.19. Let �Re(k) < 1� � < Re(a� k):

(i) There is a one-to-one transform 1F 1
k 2 [L�;2;L1��;2] such that (7:5:2) holds for

Re(s) = 1� � and f 2 L�;2.

(ii) If f; g 2 L�;2; then the relationZ
1

0
f(x)

�
1F 1

k g
�
(x)dx =

Z
1

0

�
1F 1

k f
�
(x)g(x)dx (7.5.6)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; then 1F 1
k f is given by

�
1F 1

k f
�
(x) = x��

d

dx
x�+1

Z
1

0
G1;2

2;3

"
xt

����� ��; 1� a+ k

k; 1� c+ k;��� 1

#
f(t)dt: (7.5.7)

When Re(�) < ��;

�
1F 1

k f
�
(x) = �x��

d

dx
x�+1

Z
1

0
G2;1

2;3

"
xt

����� 1� a+ k;��

��� 1; k; 1� c+ k

#
f(t)dt: (7.5.8)

(iv) The transform 1F 1
k is independent of � in the sense that if�Re(k) < 1�� < Re(a�k)

and �Re(k) < 1 � e� < Re(a � k) and if the transforms 1F 1
k and 1

fF 1
k
on L�;2 and Le�;2;

respectively; are given in (7:5:2); then 1F 1
k f = 1

fF 1
k
f for f 2 L�;2 \ Le�;2.

(v) For f 2 L�;2 and x > 0;
�
1F 1

k f
�
(x) is given in (7:5:1) and (7:5:3).

Theorem 7.20. Let �Re(k) < 1� � < Re(a� k) and 1 5 r 5 s 5 1:

(a) The transform 1F 1
k de�ned on L�;2 can be extended to L�;r as an element of

[L�;r;L1��;s]. When 1 5 r 5 2; 1F 1
k is a one-to-one transform from L�;r onto L1��;s.

(b) If f 2 L�;r and g 2 L�;s0 with 1=s+ 1=s0 = 1; then the relation (7:5:6) holds.

(c) If 1 < r <1 and the condition (7:5:5) holds; then 1F 1
k is a one-to-one transform on

L�;r .

(d) If 1 < r <1; Re(a� c) = 0 and the condition (7:5:5) holds; then

1F 1
k(L�;r) = L1;c�a�k(L�;r); (7.5.9)

where the operator L1;c�a�k is given in (3:3:3): When (7:5:5) is not valid; 1F 1
k(L�;r) is a

subset of the right-hand side of (7:5:9):

(e) If 1 < r <1; Re(a� c) < 0 and (7:5:5) holds; then

1F 1
k(L�;r) =

�
Ic�a
�;1;kL1;�k

�
(L�;r); (7.5.10)

where the operators Ic�a
�;1;k and L1;�k are given in (3:3:2) and (3:3:3):When (7:5:5) is not valid;

1F 1
k(L�;r) is a subset of the right-hand side of (7.5.10).
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Now we treat a generalization of (7.5.1) in the form�
1F 1

�;� f
�
(x) =

�(a)

�(c)
x�

Z
1

0
1F1(a; c;�xt)t

�f(t)dt (7.5.11)

with a; c; �; � 2 C (Re(a) > 0; c 6= 0;�1;�2; � � �). This is a modi�ed transform (6.2.3) of the

form

�
1F 1

�;� f
�
(x) = x�

Z
1

0
G1;1

1;2

"
xt

����� 1� a

0; 1� c

#
t�f(t)dt: (7.5.12)

The Mellin transform (2.5.1) of (7.5.11) for a \su�ciently good" function f is given by�
M 1F 1

�;� f
�
(s) = G

1;1
1;2(s+ �)

�
Mf

�
(1� s � � + �); G

1;1
1;2(s) =

�(s)�(a� s)

�(c� s)
; (7.5.13)

provided that 0 < Re(s+�) < Re(a). The constants a�;�; a�1; a
�

2; �; � and � in (6.1.5){(6.1.11)

take the forms

a� = � = a�1 = 1; a�2 = 0; � = 0; � = Re(a); � = a� c�
1

2
: (7.5.14)

Let E7 be the exceptional set of the function G
1;1
1;2(s) in (7.5.12). Then similarly to (7.5.5)

the condition � � Re(�) =2 E7 means that

s 6= c+ i (i = 0; 1; 2; � � �) for Re(s) = 1� � +Re(�): (7.5.15)

Thus Theorems 6.38, 6.42 and 6.44 lead to the L�;2- and L�;r-theory of the transform

(7.5.11).

Theorem 7.21. Let 0 < 1� � +Re(�) < Re(a):

(i) There is a one-to-one transform 1F 1
�;� 2 [L�;2;L1��+Re(���);2] such that (7:5:13)

holds for Re(s) = 1� � + Re(�� �) and f 2 L�;2.

(ii) If f 2 L�;2 and g 2 L�+Re(���);2; then the relationZ
1

0
f(x)

�
1F 1

�;� g
�
(x)dx =

Z
1

0

�
1F 1

�;� f
�
(x)g(x)dx (7.5.16)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > �� +Re(�); then 1F 1
�;� f is given by

�
1F 1

�;� f
�
(x) = x���

d

dx
x�+1

Z
1

0
G1;2

2;3

"
xt

����� ��; 1� a

0; 1� c;��� 1

#
t�f(t)dt: (7.5.17)

When Re(�) < �� +Re(�);

�
1F 1

�;� f
�
(x) = �x���

d

dx
x�+1

Z
1

0
G2;1

2;3

"
xt

����� 1� a;��

��� 1; 0; 1� c

#
t�f(t)dt: (7.5.18)

(iv) The transform 1F 1
�;� is independent of � in the sense that if 0 < 1��+Re(�) < Re(a)

and 0 < 1 � e� + Re(�) < Re(a) and if the transforms 1F 1
�;� and 1

eF 1
�;�

on L�;2 and Le�;2;
respectively; are given in (7:5:13); then 1F 1

�;� f = 1
eF 1

�;�
f for f 2 L�;2 \ Le�;2.
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(v) For f 2 L�;2 and x > 0;
�
1F 1

�;� f
�
(x) is given in (7:5:11) and (7:5:12).

Let � = � = k 2 C . We have

Corollary 7.21.1. Let 0 < 1� � + Re(k) < Re(a).

(iii0) Let f 2 L�;2 and � 2 C . If Re(�) > �� + Re(k); then 1F 1
k f is given by

�
1F 1

k f
�
(x) = xk��

d

dx
x�+1

Z
1

0
G1;2

2;3

"
xt

����� ��; 1� a

0; 1� c;��� 1

#
tkf(t)dt: (7.5.19)

When Re(�) < �� +Re(k);

�
1F 1

k f
�
(x) = �xk��

d

dx
x�+1

Z
1

0
G2;1

2;3

"
xt

����� 1� a;��

��� 1; 0; 1� c

#
tkf(t)dt: (7.5.20)

Theorem 7.22. Let 0 < 1� � +Re(�) < Re(a) and 1 5 r 5 s 5 1:

(a) The transform 1F 1
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r;L1��+Re(���);s]. If 1 5 r 5 2; then 1F 1
�;� is a one-to-one transform from L�;r onto

L1��+Re(���);s.

(b) If f 2 L�;r and g 2 L�+Re(���);s0 with 1=s+1=s0 = 1; then the relation (7:5:16) holds.

(c) If 1 < r <1 and the condition (7:5:15) holds; then 1F 1
�;� is a one-to-one transform

on L�;r.

(d) If 1 < r <1; Re(a� c) = 0 and the condition (7:5:15) holds; then

1F 1
�;�(L�;r) = L1;c�a��

�
L��Re(���);r

�
; (7.5.21)

where the operator L1;c�a�� is given in (3:3:3): When (7:5:15) is not valid; 1F 1
�;�(L�;r) is a

subset of the right-hand side of (7:5:21):

(e) If 1 < r <1; Re(a� c) < 0 and (7:5:15) holds; then

1F 1
�;�(L�;r) =

�
Ic�a
�;1;�L1;��

� �
L��Re(���);r

�
; (7.5.22)

where the operators Ic�a
�;1;k and L are given in (3:3:2) and (2:5:2): When (7:5:15) is not valid,

1F
�;�

1
(L�;r) is a subset of the right-hand side of (7.5.22).

Corollary 7.22.1. Let 0 < 1� � + Re(k) < Re(a).

(d0) If 1 < r <1; Re(a� c) = 0 and the condition (7:5:5) holds; then

1F 1
k(L�;r) = L1;c�a�k(L�;r); (7.5.23)

where the operator L1;c�a�k is given in (3:3:3): When (7:5:5) is not valid; 1F 1
k(L�;r) is a

subset of the right-hand side of (7:5:23):

(e0) If 1 < r <1; Re(a� c) < 0 and (7:5:5) holds; then

1F 1
k(L�;r) =

�
Ic�a
�;1;kL1;�k

�
(L�;r); (7.5.24)
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where the operators Ic�a
�;1;k and L1;�k are given in (3:3:2) and (3:3:3):When (7:5:5) is not valid,

1F 1
k(L�;r) is a subset of the right-hand side of (7.5.24).

Remark 7.4. When � = � = k; the transform 1F 1
k in (7.5.13) coincides with the trans-

form 1F 1
k in (7.5.1). From Theorems 7.21 and 7.22 we obtain the statements (i), (ii), (iv),

(v) of Theorem 7.19 and the statements (a), (b), (c) of Theorem 7.20, respectively. As for

the statements given in Theorem 7.19(iii) and Theorem 7.20(d){(e), characterizing the rep-

resentation and the range of the 1F 1
k-transform (7.5.1), Corollaries 7.21.1 and 7.22.1 show

that the latter in (7.5.23) and (7.5.24) are the same as in (7.5.9) and (7.5.10), while the for-

mer are changed. This is caused by the fact that these representations are valid for di�erent

conditions: the representations in (7.5.19) and (7.5.20) hold for Re(�) > �� + Re(k) and

Re(�) < �� +Re(k); while those in (7.5.7) and (7.5.8) hold for Re(�) > �� and Re(�) < ��;

respectively.

7.6. 1F 2-Transforms

We consider the integral transform

�
1F 2 f

�
(x) =

�(a)

�(c)�(d)

Z
1

0
1F2(a; c; d;�xt)f(t)dt (7.6.1)

with a; c; d 2 C (Re(a) > 0) containing the hypergeometric function 1F2(a; c; d; z) in the

kernel. According to Prudnikov, Brychkov and Marichev [3, 8.4.48.1] the Mellin transform

(2.5.1) of (7.6.1) for a \su�ciently good" function f is given by

�
M1F 2 f

�
(s) = G

1;1
1;3(s)

�
Mf

�
(1� s); G

1;1
1;3(s) =

�(s)�(a � s)

�(c� s)�(d� s)
; (7.6.2)

provided that 0 < Re(s) < min[Re(a); 1=4 + Re(fc + d � ag=2)]. This relation shows that

(7.6.1) is the G-transform (6.1.1) of the form

�
1F 2 f

�
(x) =

Z
1

0
G

1;1
1;3

"
xt

����� 1� a

0; 1� c; 1� d

#
f(t)dt: (7.6.3)

The constants a�;�; a�1; a
�

2; �; � and � in (6.1.5){(6.1.11) take the forms

a� = 0; � = 2; a�1 = 1; a�2 = �1; � = 0; � = Re(a); � = a� c� d: (7.6.4)

Let E8 be the exceptional set of the function G
1;1
1;3(s) in (7.6.2). Then the condition � =2 E8

means that

s 6= c+ i; s 6= d+ j (i; j = 0; 1; 2; � � �) for Re(s) = 1� �: (7.6.5)

Thus from Theorems 6.1, 6.2 and 6.5 we have the L�;2- and L�;r-theory of the transform

(7.6.1).

Theorem 7.23. Let 0 < 1� � < Re(a) and 2(1� �) + Re(a� c� d) 5 0:
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(i) There is a one-to-one transform 1F 2 2 [L�;2;L1��;2] such that (7:6:2) holds for Re(s) =

1� � and f 2 L�;2. If 2(1� �) +Re(a� c� d) = 0 and if the condition (7:6:5) holds, then the

transform 1F 2 maps L�;2 onto L1��;2.

(ii) If f; g 2 L�;2; then the relationZ
1

0
f(x)

�
1F 2 g

�
(x)dx =

Z
1

0

�
1F 2 f

�
(x)g(x)dx (7.6.6)

holds for 1F2.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; then 1F 2 f is given by

�
1F 2 f

�
(x) = x��

d

dx
x�+1

Z
1

0
G1;2

2;4

"
xt

����� ��; 1� a

0; 1� c; 1� d;��� 1

#
f(t)dt: (7.6.7)

When Re(�) < ��;

�
1F 2 f

�
(x) = �x��

d

dx
x�+1

Z
1

0
G2;1

2;4

"
xt

����� 1� a;��

��� 1; 0; 1� c; 1� d

#
f(t)dt: (7.6.8)

(iv) The transform 1F 2 is independent of � in the sense that if 0 < 1 � � < Re(a);

2(1� �) +Re(a� c� d) 5 0; 0 < 1� e� < Re(a) and 2(1� e�) + Re(a� c� d) 5 0; and if the

transforms 1F 2 and 1
eF 2 on L�;2 and Le�;2; respectively; are given in (7:6:2); then 1F 2 f = 1

eF 2 f

for f 2 L�;2 \ Le�;2.
(v) If 2(1� �) + Re(a� c� d) < 0; then for x > 0 and f 2 L�;2;

�
1F 2 f

�
(x) is given in

(7:6:1) and (7:6:3).

Theorem 7.24. Let 0 < 1�� < Re(a); 1 < r <1 and 2(1��)+Re(a�c�d) 5 1=2�(r);

where (r) is de�ned in (3:3:9):

(a) The transform 1F 2 de�ned on L�;2 can be extended to L�;r as an element of

[L�;r;L1��;s] for all s with r 5 s < 1 such that s0 = [1=2 � 2(1 � �) � Re(a � c � d)]�1

with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; the transform 1F 2 is one-to-one on L�;r and there holds the equality

(7:6:2) for f 2 L�;r and Re(s) = 1� �.

(c) If f 2 L�;r and g 2 L�;s with 1 < s < 1; 1=r + 1=s = 1 and 2(1 � �) + Re(a �

c� d) 5 1=2�max[(r); (s)]; then the relation (7:6:6) holds.

(d) If the conditions in (7:6:5) hold; the transform 1F 2 is one-to-one on L�;r and there

holds the relation

1F 2(L�;r) =
�
M(a�c�d+1)=2H2;c+d�a�1

� �
L��Re(a�c�d)=2�1=2;r

�
; (7.6.9)

where M� and H2;� are given in (3:3:11) and (3:3:4):When (7:6:5) is not valid; then 1F 2(L�;r)

is a subset of the right-hand side of (7:6:9):

(e) If f 2 L�;r ; � 2 C and 2(1� �) + Re(a� c� d) 5 1=2� (r); then 1F 2 f is given in

(7:6:7) for Re(�) > ��; while in (7:6:8) for Re(�) < ��. If 2(1� �)+Re(a� c�d) < 0; 1F 2 f

is given in (7:6:1) and (7:6:3) for f 2 L�;r .

Theorems 6.12 and 6.13 give the inversion formulas for the transform (7.6.1).



7.6. 1F 2-Transforms 225

Theorem 7.25. Let 0 < 1� � < Re(a) and �0 = max[1� Re(c); 1�Re(d)].

(a) If � > �0; 2(1� �) + Re(a� c� d) = 0 and f 2 L�;2; then the inversion formula

f(x) = x��
d

dx
x�+1

Z
1

0
G2;1

2;4

"
xt

����� ��; a� 1

c� 1; d� 1; 0;��� 1

# �
1F 2 f

�
(t)dt (7.6.10)

holds for Re(�) > � � 1 and

f(x) = �x��
d

dx
x�+1

Z
1

0
G3;0

2;4

"
xt

����� a� 1;��

��� 1; c� 1; d� 1; 0

#�
1F 2 f

�
(t)dt (7.6.11)

for Re(�) < � � 1.

(b) Let 1 < r <1; �0 < � < Re(a�c�d)=2+5=4 and 2(1��)+Re(a�c�d) 5 1=2�(r);

where (r) is given in (3:3:9). If f 2 L�;r; then the inversion formulas (7:6:10) and (7:6:11)

hold for Re(�) > � � 1 and for Re(�) < � � 1; respectively.

Now we consider a modi�cation of (7.6.1) in the form

�
1F 2

�;� f
�
(x) =

�(a)

�(c)�(d)
x�

Z
1

0
1F2(a; c; d;�xt)t

�f(t)dt (7.6.12)

with a; c; d; �; � 2 C (Re(a) > 0). From (7.6.2) and (3.3.14) the Mellin transform of (7.6.12)

for a \su�ciently good" function f is given by�
M 1F 2

�;� f
�
(s) = G

1;1
1;3(s+ �)

�
Mf

�
(1� s� � + �) (7.6.13)

for 0 < Re(s+�) < Re(a); Re(s+�) < 1=4+Re(c+d�a)=2; c; d 6= 0;�1;�2; � � � and G1;11;3(s)

in (7.6.2). Hence the transform (7.6.12) is a modi�ed transform (6.2.3) of the form

�
1F 2

�;� f
�
(x) = x�

Z
1

0
G1;1

1;3

"
xt

����� 1� a

0; 1� c; 1� d

#
t�f(t)dt: (7.6.14)

If E8 is the exceptional set of the function G
1;1
1;3(s) in (7.6.2), then the condition � =2 E8

means that

s 6= c+ i; s 6= d+ j (i; j = 0; 1; 2; � � �) for Re(s) = 1� � +Re(�): (7.6.15)

From Theorems 6.38 and 6.41 we obtain the L�;2- and L�;r-theory of the 1F2
�;�-transform

(7.6.12).

Theorem 7.26. Let 0 < 1� �+Re(�) < Re(a) and 2[1� �+Re(�)]+Re(a� c�d) 5 0:

(i) There is a one-to-one transform 1F 2
�;� 2 [L�;2;L1��;2] such that (7:6:13) holds for

Re(s) = 1� � + Re(� � �) and f 2 L�;2. If 2[1� � + Re(�)] + Re(a � c � d) = 0 and if the

condition (7:6:15) holds; then the transform 1F 2
�;� maps L�;2 onto L1��+Re(���);2.

(ii) If f 2 L�;2 and g 2 L�+Re(���);2; then the relationZ
1

0
f(x)

�
1F 2

�;� g
�
(x)dx =

Z
1

0
g(x)

�
1F 2

�;� f
�
(x)dx (7.6.16)
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holds.

(iii) Let � 2 C and f 2 L�;2. If Re(�) > �� +Re(�); then 1F 2
�;� f is given by�

1F 2
�;� f

�
(x)

= x���
d

dx
x�+1

Z
1

0
G1;2

2;4

"
xt

����� ��; 1� a

0; 1� c; 1� d;��� 1

#
t�f(t)dt: (7.6.17)

When Re(�) < �� +Re(�);�
1F 2

�;� f
�
(x)

= �x���
d

dx
x�+1

Z
1

0
G2;1

2;4

"
xt

����� 1� a;��

��� 1; 0; 1� c; 1� d

#
t�f(t)dt: (7.6.18)

(iv) The transform 1F 2
�;� is independent of � in the sense that if 0 < 1� � + Re(�) <

Re(a); 2[1��+Re(�)]+Re(a�c�d) 5 0 and 0 < 1�e�+Re(�) < Re(a) and 2[1�e�+Re(�)]+

Re(a� c� d) 5 0: and if the transforms 1F 2
�;� and 1

eF 2
�;�

on L�;2 and Le�;2; respectively; are
given in (7:6:13); then 1F 2

�;� f = 1
eF 2

�;�
f for f 2 L�;2 \ Le�;2.

(v) If 2[1� � +Re(�)] + Re(a� c� d) < 0; then for f 2 L�;2 and x > 0;
�
1F 2

�;� f
�
(x) is

given in (7:6:12) and (7:6:14).

Theorem 7.27. Let 0 < 1 � � + Re(�) < Re(a); 1 < r < 1 and 2[1 � � + Re(�)] +

Re(a� c� d) 5 1=2� (r); where (r) is de�ned in (3:3:9):

(a) The transform 1F 2
�;� de�ned on L�;2 can be extended to L�;r as an element of

[L�;r;L1��+Re(���);s] for all s with r 5 s <1 such that s0 = [1=2�2f1��+Re(�)g�Re(a�

c� d)]�1 with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; the transform 1F 2
�;� is one-to-one on L�;r and there holds the equality

(7:6:13) for f 2 L�;r and Re(s) = 1� � +Re(�� �).

(c) If f 2 L�;r and g 2 L�+Re(���);s with 1 < s <1; 1=r+1=s = 1 and 2[1��+Re(�)]+

Re(a� c� d) 5 1=2�max[(r); (s)]; then the relation (7:6:16) holds.

(d) If the conditions in (7:6:15) hold; then the transform 1F 2
�;� is one-to-one on L�;r and

there holds the relation

1F 2
�;�(L�;r) =

�
M�+(a�c�d+1)=2H 2;c+d�a�1

��
L��Re(a�c�d+1)=2�Re(�);r

�
; (7.6.19)

where M� and H 2;� are given in (3:3:11) and (3:3:4): When (7:6:15) is not valid; then

1F 2
�;�(L�;r) is a subset of the right-hand side of (7:6:19):

(e) If f 2 L�;r with 1 < r <1; � 2 C and 2[1� �+Re(�)] +Re(a� c� d) 5 1=2� (r);

then 1F2
�;�f is given in (7:6:17) for Re(�) > �� + Re(�); while 1F 2

�;� f is given in (7:6:18)

for Re(�) < �� +Re(�). If 2[1� � +Re(�)]+ Re(a� c� d) < 0; 1F 2
�;� f is given in (7.6.12).

From Theorems 6.48 and 6.49 we have the inversion formulas for the transform (7.6.12).

Theorem 7.28. Let 0 < 1� � +Re(�) < Re(a) and �0 = max[1� Re(c); 1� Re(d)].
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(a) If � > �0; 2[1 � � + Re(�)] + Re(a � c � d) = 0 and f 2 L�;2; then the inversion

formulas

f(x) = x����
d

dx
x�+1

�

Z
1

0
G2;1

2;4

"
xt

����� ��; a� 1

c� 1; d� 1; 0;��� 1

#
t��

�
1F 2

�;� f
�
(t)dt (7.6.20)

hold for Re(�) > � � Re(�)� 1 and

f(x) = �x����
d

dx
x�+1

�

Z
1

0
G

3;0
2;4

"
xt

����� a� 1;��

��� 1; c� 1; d� 1; 0

#
t��

�
1F 2

�;� f
�
(t)dt (7.6.21)

for Re(�) < � � Re(�)� 1.

(b) Let 1 < r <1; �0 < ��Re(�) < Re(a�c�d)=2+5=4 and 2[1��+Re(�)]+Re(a�

c� d) 5 1=2� (r); where (r) is given in (3:3:9). If f 2 L�;r ; then the relations (7:6:20) and

(7:6:21) hold for Re(�) > � �Re(�)� 1 and for Re(�) < � � Re(�)� 1; respectively.

7.7. 2F 1-Transforms

Let us consider the integral transforms�
2F 1 f

�
(x) =

�(a)�(b)

�(c)

Z
1

0
2F1(a; b; c;�xt)f(t)dt (7.7.1)

and �
2F 1

� f
�
(x) =

�(a)�(b)

�(c)

Z
1

0
2F1

�
a; b; c;�

1

xt

�
f(t)dt (7.7.2)

with a; b; c 2 C (Re(a) > 0; Re(b) > 0) involving the Gauss hypergeometric function

2F1(a; b; c; z) in the kernels. According to Prudnikov, Brychkov and Marichev [3, 8.4.49.13

and 8.4.49.14] the Mellin transforms of (7.7.1) and (7.7.2) for a \su�ciently good" function

f are given by�
M 2F 1 f

�
(s) = G

1;2
2;2(s)

�
Mf

�
(1� s); G

1;2
2;2(s) =

�(s)�(a� s)�(b� s)

�(c� s)
(7.7.3)

and �
M 2F 1

� f
�
(s) = G

2;1
2;2(s)

�
Mf

�
(1� s); G

2;1
2;2(s) =

�(�s)�(a + s)�(b+ s)

�(c+ s)
(7.7.4)

under the restrictions 0 < Re(s) < min[Re(a);Re(b)] and �min[Re(a);Re(b)] < Re(s) < 0,

respectively. These relations show that (7.7.1) and (7.7.2) are G-transforms (6.1.1) of the

form �
2F 1 f

�
(x) =

Z
1

0
G1;2

2;2

"
xt

����� 1� a; 1� b

0; 1� c

#
f(t)dt (7.7.5)
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and

�
2F 1

� f
�
(x) =

Z
1

0
G2;1

2;2

"
xt

����� 1; ca; b

#
f(t)dt: (7.7.6)

The constants a�;�; a�1; a
�

2; �; � and � in (6.1.5){(6.1.11) have the forms

a� = 2; � = 0; a�1 = 1; a�2 = 1;

� = 0; � = min[Re(a);Re(b)]; � = a+ b� c� 1
(7.7.7)

and

a� = 2; � = 0; a�1 = 1; a�2 = 1;

� = �min[Re(a);Re(b)]; � = 0; � = a+ b� c� 1:
(7.7.8)

Let E9 and E10 be the exceptional sets of the functions G1;22;2(s) and G
2;1
2;2(s) in (7.7.3) and

(7.7.4). Due to De�nition 6.1 the conditions � =2 E9 and � =2 E10 mean that

s 6= c+ i (i = 0; 1; 2; � � �) for Re(s) = 1� � (7.7.9)

and

s 6= �c� i (i = 0; 1; 2; � � �) for Re(s) = 1� �; (7.7.10)

respectively.

Theorems 6.1 and 6.2 deduce the following L�;2-theory of the transforms 2F 1 and 2F 1
�.

Theorem 7.29. Let 0 < 1� � < min[Re(a);Re(b)]:

(i) There is a one-to-one transform 2F 1 2 [L�;2;L1��;2] such that (7:7:3) holds for Re(s) =

1� � and f 2 L�;2.

(ii) If f; g 2 L�;2; then the relationZ
1

0
f(x)

�
2F 1g

�
(x)dx =

Z
1

0

�
2F 1 f

�
(x)g(x)dx (7.7.11)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; then 2F 1 f is given by

�
2F 1 f

�
(x) = x��

d

dx
x�+1

Z
1

0
G1;3

3;3

"
xt

����� ��; 1� a; 1� b

0; 1� c;��� 1

#
f(t)dt: (7.7.12)

When Re(�) < ��;

�
2F 1 f

�
(x) = �x��

d

dx
x�+1

Z
1

0
G2;2

3;3

"
xt

����� 1� a; 1� b;��

��� 1; 0; 1� c

#
f(t)dt: (7.7.13)

(iv) The transform 2F 1 is independent of � in the sense that if 0 < 1 � � < min[Re(a);

Re(b)] and 0 < 1� e� < min[Re(a);Re(b)] and if the transforms 2F 1 and 2
eF 1 on L�;2 and Le�;2;

respectively; are given in (7:7:3); then 2F 1 f = 2
eF 1 f for f 2 L�;2 \ Le�;2.
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(v) For f 2 L�;2 and x > 0;
�
2F 1 f

�
(x) is given in (7:7:1) and (7:7:5).

Theorem 7.30. Let �min[Re(a);Re(b)] < 1� � < 0:

(i) There is a one-to-one transform 2F 1
� 2 [L�;2;L1��;2] such that (7:7:4) holds for

Re(s) = 1� � and f 2 L�;2.

(ii) If f; g 2 L�;2; then the relationZ
1

0
f(x)

�
2F 1

� g
�
(x)dx =

Z
1

0

�
2F 1

� f
�
(x)g(x)dx (7.7.14)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; then 2F 1
� f is given by

�
2F 1

� f
�
(x) = x��

d

dx
x�+1

Z
1

0
G2;2

3;3

"
xt

����� ��; 1; ca; b;��� 1

#
f(t)dt: (7.7.15)

When Re(�) < ��;

�
2F 1

� f
�
(x) = �x��

d

dx
x�+1

Z
1

0
G3;1

3;3

"
xt

����� 1; c;����� 1; a; b

#
f(t)dt: (7.7.16)

(iv) The transform 2F 1
� is independent of � in the sense that if �min[Re(a);Re(b)] <

1� � < 0 and �min[Re(a);Re(b)] < 1� e� < 0 and if the transforms 2F 1
� and 2

eF 1
�

on L�;2

and Le�;2; respectively; are given in (7:7:4); then 2F 1
� f = 2

eF 1
�

f for f 2 L�;2 \ Le�;2.
(v) For f 2 L�;2 and x > 0;

�
2F 1

� f
�
(x) is given in (7:7:2) and (7:7:6).

From Theorems 6.6 and 6.7 we obtain the L�;r-theory of the transforms 2F 1 and 2F 1
�.

Theorem 7.31. Let � = min[Re(a);Re(b)], 0 < 1� � < � and ! = a+ b� c� � .

(a) If 1 5 r 5 s 5 1; then the transform 2F 1 de�ned on L�;2 can be extended to L�;r as

an element of [L�;r;L1��;s]. If 1 5 r 5 2; then 2F 1 is a one-to-one transform from L�;r onto

L�;s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L�;s0 with 1=s + 1=s0 = 1; then the relation

(7:7:11) holds.

(c) If 1 < r <1 and the condition (7:7:9) holds; then 2F 1 is one-to-one on L�;r .

(d) Let 1 < r <1 and Re(!) = 0. If the condition (7:7:9) holds; then

2F 1(L�;r) =
�
LL1;1+c�a�b

�
(L1��;r); (7.7.17)

where L and L1;1+c�a�b are given in (2:5:2) and (3:3:3): If (7:7:9) is not valid; then 2F 1(L�;r)

is a subset of the right-hand side of (7:7:17):

(e) Let 1 < r <1 and Re(!) < 0. If the condition (7:7:9) holds; then

2F 1(L�;r) =
�
I�!
�;1;0LL1;1��

�
(L1��;r); (7.7.18)

where I�!
�;1;0 is given in (3:3:2). If (7:7:9) is not valid; then 2F 1(L�;r) is a subset of the right-

hand side of (7.7.18).
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Theorem 7.32. Let � = �min[Re(a);Re(b)] , � < 1� � < 0 and ! = a+ b� c+ �.

(a) If 1 5 r 5 s 5 1; then the transform 2F 1
� de�ned on L�;2 can be extended to L�;r

as an element of [L�;r ;L1��;s]. If 1 5 r 5 2; then 2F 1
� is a one-to-one transform from L�;r

onto L1��;s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L�;s0 with 1=s + 1=s0 = 1; then the relation

(7:7:14) holds.

(c) If 1 < r <1 and the condition (7:7:10) holds; then 2F 1
� is one-to-one on L�;r.

(d) Let 1 < r <1 and Re(!) = 0. If the condition (7:7:10) holds; then

2F 1
�(L�;r) =

�
L1;�L1;1�!

�
(L1��;r); (7.7.19)

where L1;� is given in (3:3:3): If (7:7:10) is not valid; then 2F 1
�(L�;r) is a subset of the

right-hand side of (7:7:19):

(e) Let 1 < r <1 and Re(!) < 0. If the condition (7:7:10) holds; then

2F 1
�(L�;r) =

�
I�!
�;1;��L1;�L1;1

�
(L1��;r); (7.7.20)

where I�!
�;1;�� is given in (3:3:2). If (7:7:10) is not valid; then 2F 1

�(L�;r) is a subset of the

right-hand side of (7.7.20).

Now we treat generalizations of (7.7.1) and (7.7.2) in the forms

�
2F 1

�;� f
�
(x) =

�(a)�(b)

�(c)
x�

Z
1

0
2F1(a; b; c;�xt)t

�f(t)dt (7.7.21)

and �
2F 1

�;�;� f
�
(x) =

�(a)�(b)

�(c)
x�

Z
1

0
2F1

�
a; b; c;�

1

xt

�
t�f(t)dt (7.7.22)

with a; b; c; �; � 2 C (Re(a) > 0;Re(b) > 0). By virtue of (7.7.3), (7.7.4) and (3.3.14) the

Mellin transforms of (7.7.21) and (7.7.22) for a \su�ciently good" function f are given by�
M 2F 1

�;� f
�
(s) = G

1;2
2;2(s+ �)

�
Mf

�
(1� s� � + �) (7.7.23)

and �
M 2F 1

�;�;� f
�
(s) = G

2;1
2;2(s+ �)

�
Mf

�
(1� s � � + �); (7.7.24)

where G1;22;2(s) and G
2;1
2;2(s) are de�ned in (7.7.3) and (7.7.4). Thus the transforms (7.7.21) and

(7.7.22) are modi�ed transforms (6.2.3) of the forms

�
2F 1

�;� f
�
(x) = x�

Z
1

0
G1;2

2;2

"
xt

����� 1� a; 1� b

0; 1� c

#
t�f(t)dt (7.7.25)

and

�
2F 1

�;�;� f
�
(x) = x�

Z
1

0
G2;1

2;2

"
xt

����� 1; ca; b

#
t�f(t)dt; (7.7.26)
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respectively.

For the exceptional sets E9 and E10 of the functions G1;22;2(s) and G
2;1
2;2(s) in (7.7.3) and

(7.7.4), � �Re(�) =2 E9 and � �Re(�) =2 E10 mean that

s 6= c+ i (i = 0; 1; 2; � � �) for Re(s) = 1� � + Re(�) (7.7.27)

and

s 6= �c� i (i = 0; 1; 2; � � �) for Re(s) = 1� � +Re(�): (7.7.28)

Theorem 6.38 yields the L�;2-theory of the transforms 2F 1
�;� and 2F 1

�;�;�.

Theorem 7.33. Let 0 < 1� � +Re(�) < min[Re(a);Re(b)]:

(i) There is a one-to-one transform 2F 1
�;� 2 [L�;2;L1��+Re(���);2] such that (7:7:23)

holds for Re(s) = 1� � + Re(�� �) and f 2 L�;2.

(ii) If f 2 L�;2 and g 2 L�+Re(���);2; then the relationZ
1

0
f(x)

�
2F 1

�;� g
�
(x)dx =

Z
1

0

�
2F 1

�;� f
�
(x)g(x)dx (7.7.29)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > �� +Re(�); then 2F 1
�;� f is given by

�
2F 1

�;� f
�
(x) = x���

d

dx
x�+1

Z
1

0
G1;3

3;3

"
xt

����� ��; 1� a; 1� b

0; 1� c;��� 1

#
t�f(t)dt: (7.7.30)

When Re(�) < �� +Re(�);

�
2F 1

�;� f
�
(x) = �x���

d

dx
x�+1

Z
1

0
G2;2

3;3

"
xt

����� 1� a; 1� b;��

��� 1; 0; 1� c

#
t�f(t)dt: (7.7.31)

(iv) The transform 2F 1
�;� is independent of � in the sense that if 0 < 1 � � <

min[Re(a);Re(b)] and 0 < 1� e� < min[Re(a);Re(b)] and if the transforms 2F 1
�;� and 2

eF 1
�;�

on L�;2 and Le�;2; respectively; are given in (7:7:23); then 2F 1
�;� f = 2

eF 1
�;�

f for f 2 L�;2\Le�;2.
(v) For f 2 L�;2 and x > 0;

�
2F 1

�;� f
�
(x) is given in (7:7:21) and (7:7:25).

Theorem 7.34. Let �min[Re(a);Re(b)] < 1� � +Re(�) < 0:

(i) There is a one-to-one transform 2F 1
�;�;� 2 [L�;2;L1��+Re(���);2] such that (7:7:24)

holds for Re(s) = 1� � + Re(�� �) and f 2 L�;2.

(ii) If f 2 L�;2 and g 2 L�+Re(���);2; then the relationZ
1

0
f(x)

�
2F 1

�;�;� g
�
(x)dx =

Z
1

0

�
2F 1

�;�;� f
�
(x)g(x)dx (7.7.32)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > �� +Re(�); then 2F 1
�;�;� f is given by

�
2F 1

�;�;� f
�
(x) = x���

d

dx
x�+1

Z
1

0
G2;2

3;3

"
xt

����� ��; 1; ca; b;��� 1

#
t�f(t)dt: (7.7.33)
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When Re(�) < �� +Re(�);

�
2F 1

�;�;� f
�
(x) = �x���

d

dx
x�+1

Z
1

0
G

3;1
3;3

"
xt

����� 1; c;����� 1; a; b

#
t�f(t)dt: (7.7.34)

(iv) The transform 2F 1
�;�;� is independent of � in the sense that if �min[Re(a);Re(b)] <

1� � < 0 and �min[Re(a);Re(b)] < 1� e� < 0 and if the transforms 2F 1
�;�;� and 2

eF 1
�;�;�

on

L�;2 and Le�;2; respectively; are given in (7:7:24); then 2F 1
�;�;� f = 2

eF 1
�;�;�

f for f 2 L�;2\Le�;2.
(v) For f 2 L�;2 and x > 0;

�
2F 1

�;�;� f
�
(x) is given in (7:7:22) and (7:7:26).

Theorems 6.42 and 6.43 produce the L�;r-theory of the transforms 2F 1
�;� and 2F 1

�;�;�.

Theorem 7.35. Let � = min[Re(a);Re(b)]; 0 < 1� �+Re(�) < � and ! = a+ b� c��.

(a) If 1 5 r 5 s 5 1; then the transform 2F 1
�;� de�ned on L�;2 can be extended to L�;r

as an element of [L�;r;L1��+Re(���);s]. If 1 5 r 5 2; then 2F 1
�;� is a one-to-one transform

from L�;r onto L1��+Re(���);s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L�+Re(���);s0 with 1=s + 1=s0 = 1; then the

relation (7:7:29) holds.

(c) If 1 < r <1 and the condition (7:7:27) holds; then the transform 2F 1
�;� is one-to-one

on L�;r.

(d) Let 1 < r <1 and Re(!) = 0. If the condition (7:7:27) holds; then

2F 1
�;�(L�;r) =

�
L1;��L1;1+c�a�b+�

�
(L1��+Re(���);r); (7.7.35)

where L1;�� and L1;1+c�a�b are given in (3:3:3): If (7:7:27) is not valid; then 2F 1
�;�(L�;r) is

a subset of the right-hand side of (7:7:35):

(e) Let 1 < r <1 and Re(!) < 0. If the condition (7:7:27) holds; then

2F 1
�;�(L�;r) =

�
I�!
�;1;�L1;��L1;1��+�

�
(L1��+Re(���);r); (7.7.36)

where I�!
�;1;� is given in (3:3:2). If (7:7:27) is not valid; then 2F 1

�;�
L�;r) is a subset of the

right-hand side of (7.7.36).

Theorem 7.36. Let � = �min[Re(a);Re(b)]; � < 1��+Re(�) < 0 and ! = a+b�c+�.

(a) If 1 5 r 5 s 5 1; then the transform 2F 1
�;�;� de�ned on L�;2 can be extended to L�;r

as an element of [L�;r;L1��+Re(���);s]. If 1 5 r 5 2; then 2F 1
�;�;� is a one-to-one transform

from L�;r onto L1��+Re(���);s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L�+Re(���);s0 with 1=s + 1=s0 = 1; then the

relation (7:7:32) holds.

(c) If 1 < r <1 and the condition (7:7:28) holds; then the transform 2F 1
�;�;� is one-to-

one on L�;r.

(d) Let 1 < r <1 and Re(!) = 0. If the condition (7:7:28) holds; then

2F 1
�;�;�(L�;r) =

�
L1;���L1;1+��!

�
(L1��+Re(���);r); (7.7.37)

where L1;��� and L1;1+��! are given in (3:3:3): If (7:7:28) is not valid; then 2F 1
�;�;�(L�;r) is

a subset of the right-hand side of (7:7:37):
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(e) Let 1 < r <1 and Re(!) < 0. If the condition (7:7:28) holds; then

2F 1
�;�;�(L�;r) =

�
I�!
�;1;���L1;���L1;1+�

�
(L1��+Re(���);r); (7.7.38)

where I�!
�;1;��� is given in (3:3:2). If (7:7:28) is not valid; then 2F 1

�;�;�(L�;r) is a subset of the

right-hand side of (7.7.38).

7.8. Modi�ed 2F 1-Transforms

Let us study the transforms�
2F 1

1 f
�
(x) =

�(a)�(b)

�(c)

Z
1

0
2F1

�
a; b; c;�

x

t

�
f(t)

t
dt (7.8.1)

and �
2F 1

2 f
�
(x) =

�(a)�(b)

�(c)

Z
1

0
2F1

�
a; b; c;�

t

x

�
f(t)

x
dt (7.8.2)

with a; b; c 2 C (Re(a) > 0;Re(b) > 0) which are modi�cations of the transforms (7.7.1) and

(7.7.2) in the forms (6.2.1) and (6.2.2). Comparing with (6.2.11) and (6.2.12), we �nd that

the Mellin transforms of (7.8.1) and (7.8.2) have the forms�
M 2F 1

1 f
�
(s) = G

1;2
2;2(s)

�
Mf

�
(s) (7.8.3)

and �
M 2F 1

2 f
�
(s) = G

1;2
2;2(1� s)

�
Mf

�
(s); (7.8.4)

where G1;22;2(s) is given in (7.7.3). These relations show that (7.8.1) and (7.8.2) can be regarded

as the modi�ed G-transforms (6.2.1) and (6.2.2) in the forms

�
2F 1

1 f
�
(x) =

Z
1

0
G

1;2
2;2

"
x

t

����� 1� a; 1� b

0; 1� c

#
f(t)

t
dt (7.8.5)

and

�
2F 1

2 f
�
(x) =

Z
1

0
G1;2

2;2

"
t

x

����� 1� a; 1� b

0; 1� c

#
f(t)

x
dt: (7.8.6)

Now we can apply the results in Sections 6.3 and 6.4 to obtain the L�;2- and L�;r-theory

of the transforms (7.8.1) and (7.8.2) if we take into account that by (7.7.9) the conditions

1�� =2 E9 and � =2 E9 for the exceptional set E9 of the function G
1;2
2;2(s) in (7.7.3) are equivalent

to

s 6= c+ i (i = 0; 1; 2; � � �) for Re(s) = � (7.8.7)

and

s 6= c+ i (i = 0; 1; 2; � � �) for Re(s) = 1� �; (7.8.8)
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respectively.

From Theorems 6.14 and 6.26 we obtain the L�;2-theory of the transforms (7.8.1) and

(7.8.2).

Theorem 7.37. Let 0 < � < min[Re(a);Re(b)]:

(i) There is a one-to-one transform 2F 1
1 2 [L�;2] such that (7:8:3) holds for Re(s) = �

and f 2 L�;2.

(ii) If f 2 L�;2 and g 2 L1��;2; then the relationZ
1

0
f(x)

�
2F 1

1 g
�
(x)dx =

Z
1

0

�
2F 1

2 f
�
(x)g(x)dx (7.8.9)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > � � 1; then 2F 1
1 f is given by

�
2F 1

1 f
�
(x) = x��

d

dx
x�+1

Z
1

0
G1;3

3;3

"
x

t

����� ��; 1� a; 1� b

0; 1� c;��� 1

#
f(t)

t
dt: (7.8.10)

When Re(�) < � � 1;

�
2F 1

1 f
�
(x) = �x��

d

dx
x�+1

Z
1

0
G2;2

3;3

"
x

t

����� 1� a; 1� b;��

��� 1; 0; 1� c

#
f(t)

t
dt: (7.8.11)

(iv) The transform 2F 1
1 is independent of � in the sense that if 0 < � < min[Re(a);Re(b)]

and 0 < e� < min[Re(a);Re(b)] and if the transforms 2F 1
1 and

g
2F 1

1 are de�ned on L�;2 and

Le�;2; respectively by (7:8:3); then 2F 1
1 f = g

2F 1
1f for f 2 L�;2 \ Le�;2.

(v) For f 2 L�;2 and x > 0;
�
2F 1

1 f
�
(x) is given in (7:8:1) and (7:8:5).

Theorem 7.38. Let 0 < 1� � < min[Re(a);Re(b)]:

(i) There is a one-to-one transform 2F 1
2 2 [L�;2] such that (7:8:4) holds for Re(s) = �

and f 2 L�;2.

(ii) If f 2 L�;2 and g 2 L1��;2; then the relationZ
1

0
f(x)

�
2F 1

2 g
�
(x)dx =

Z
1

0

�
2F 1

1 f
�
(x)g(x)dx (7.8.12)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; then 2F 1
2 f is given by

�
2F 1

2 f
�
(x) = �x�+1 d

dx
x��

Z
1

0
G1;3

3;3

"
t

x

����� ��; 1� a; 1� b

0; 1� c;��� 1

#
f(t)

x
dt: (7.8.13)

When Re(�) < ��;

�
2F 1

2 f
�
(x) = x�+1 d

dx
x��

Z
1

0
G

2;2
3;3

"
t

x

����� 1� a; 1� b;��

��� 1; 0; 1� c

#
f(t)

x
dt: (7.8.14)

(iv) The transform 2F 1
2 is independent of � in the sense that if 0 < � < min[Re(a);Re(b)]

and 0 < e� < min[Re(a);Re(b)] and if the transforms 2F 1
2 and g

2F 1
2 are de�ned on L�;2 and

Le�;2; respectively by (7:8:4); then 2F 1
2 f = g

2F 1
2f for f 2 L�;2 \ Le�;2.
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(v) For f 2 L�;2 and x > 0;
�
2F 1

2 f
�
(x) is given in (7:8:2) and (7:8:6).

From Theorems 6.18, 6.19 and 6.30, 6.31 we obtain the L�;r-theory of the transform (7.8.1)

and (7.8.2).

Theorem 7.39. Let � = min[Re(a);Re(b)], 0 < � < � and ! = a+ b� c� � .

(a) If 1 5 r 5 s 5 1; then the transform 2F 1
1 de�ned on L�;2 can be extended to L�;r

as an element of [L�;r;L�;s]. If 1 5 r 5 2; then 2F 1
1 is a one-to-one transform from L�;r onto

L�;s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L1��;s0 with 1=s + 1=s0 = 1; then the relation

(7:8:9) holds.

(c) If 1 < r <1 and the condition (7:8:7) holds; then 2F 1
1 is one-to-one on L�;r.

(d) Let 1 < r <1 and Re(!) = 0. If the condition (7:8:7) holds; then

2F 1
1(L�;r) =

�
LL1;1+c�a�b

�
(L�;r); (7.8.15)

where L and L1;1+c�a�b are given in (2:5:2) and (3:3:3): If (7:8:7) is not valid; then 2F 1
1(L�;r)

is a subset of the right-hand side of (7:8:15):

(e) Let 1 < r <1 and Re(!) < 0. If the condition (7:8:7) holds; then

2F 1
1(L�;r) =

�
I�!
�;1;0LL1;1��

�
(L�;r); (7.8.16)

where I�!
�;1;0 is given in (3:3:2). If (7:8:7) is not valid; then 2F 1

1(L�;r) is a subset of the right-

hand side of (7.8.16).

Theorem 7.40. Let � = min[Re(a);Re(b)], 0 < 1� � < � and ! = a+ b� c� �.

(a) If 1 5 r 5 s 5 1; then the transform 2F 1
2 de�ned on L�;2 can be extended to L�;r

as an element of [L�;r;L�;s]. If 1 5 r 5 2; then 2F 1
2 is a one-to-one transform from L�;r onto

L�;s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L1��;s0 with 1=s + 1=s0 = 1; then the relation

(7:8:12) holds.

(c) If 1 < r <1 and the condition (7:8:8) holds; then 2F 1
2 is one-to-one on L�;r.

(d) Let 1 < r <1 and Re(!) = 0. If the condition (7:8:8) holds; then

2F 1
2(L�;r) =

�
L�1;1L�1;�+!

�
(L�;r); (7.8.17)

where L1;� is given in (3:3:3): If (7:8:8) is not valid; then 2F 1
2(L�;r) is a subset of the right-

hand side of (7:8:17):

(e) Let 1 < r <1 and Re(!) < 0. If the condition (7:8:8) holds; then

2F 1
2(L�;r) =

�
I�!0+;1;0L�1;1L�1;�

�
(L�;r); (7.8.18)

where I�!
�;1;�� is given in (3:3:2). If (7:8:8) is not valid; then 2F 1

2(L�;r) is a subset of the

right-hand side of (7.8.18).
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Now we discuss further generalizations of (7.8.1) and (7.8.2) in the forms

�
2F 1

1;�;� f
�
(x) =

�(a)�(b)

�(c)
x�

Z
1

0
2F1

�
a; b; c;�

x

t

�
t��1f(t)dt (7.8.19)

and �
2F 1

2;�;� f
�
(x) =

�(a)�(b)

�(c)
x��1

Z
1

0
2F1

�
a; b; c;�

t

x

�
t�f(t)dt (7.8.20)

with a; b; c; �; � 2 C (Re(a) > 0;Re(b) > 0). The Mellin transforms of (7.8.19) and (7.8.20)

for a \su�ciently good" function f are given by�
M 2F 1

1;�;� f
�
(s) = G

1;2
2;2(s+ �)

�
Mf

�
(s + � + �) (7.8.21)

and �
M 2F 1

2;�;� f
�
(s) = G

1;2
2;2(1� s� �)

�
Mf

�
(s+ � + �) (7.8.22)

with G1;22;2(s) being de�ned in (7.7.3). Then they are modi�ed G-transforms (6.2.4) and (6.2.5)

of the forms

�
2F 1

1;�;� f
�
(x) = x�

Z
1

0
G

1;2
2;2

"
x

t

����� 1� a; 1� b

0; 1� c

#
t��1f(t)dt (7.8.23)

and

�
2F 1

2;�;� f
�
(x) = x��1

Z
1

0
G1;2

2;2

"
t

x

����� 1� a; 1� b

0; 1� c

#
t�f(t)dt: (7.8.24)

Now we apply the results in Section 6.6 and 6.7 to obtain the L�;2- and L�;r-theory of

the transforms (7.8.19) and (7.8.20), by taking into account that from (7.8.7) and (7.8.8) the

condition 1� � + Re(�) =2 E9 and � � Re(�) =2 E9 for the exceptional set E9 are equivalent to

s 6= c+ i (i = 0; 1; 2; � � �) for Re(s) = � � Re(�) (7.8.25)

and

s 6= c+ i (i = 0; 1; 2; � � �) for Re(s) = 1� � +Re(�): (7.8.26)

Theorems 6.50 and 6.62 yield the L�;2-theory of the transforms 2F 1
1;�;� and 2F 1

2;�;�.

Theorem 7.41. Let 0 < � �Re(�) < min[Re(a);Re(b)]:

(i) There is a one-to-one transform 2F 1
1;�;� 2 [L�;2;L��Re(�+�);2] such that (7:8:21) holds

for Re(s) = � �Re(�+ �) and f 2 L�;2.

(ii) If f 2 L�;2 and g 2 L1��+Re(�+�);2; then the relationZ
1

0
f(x)

�
2F 1

1;�;� g
�
(x)dx =

Z
1

0

�
2F 1

2;�;� f
�
(x)g(x)dx (7.8.27)

holds.
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(iii) Let f 2 L�;2 and � 2 C . If Re(�) > � � Re(�)� 1; then 2F 1
1;�;� f is given by

�
2F 1

1;�;� f
�
(x) = x���

d

dx
x�+1

Z
1

0
G1;3

3;3

"
x

t

����� ��; 1� a; 1� b

0; 1� c;��� 1

#
t��1f(t)dt: (7.8.28)

When Re(�) < � � Re(�)� 1;

�
2F 1

1;�;� f
�
(x) = �x���

d

dx
x�+1

Z
1

0
G2;2

3;3

"
x

t

����� 1� a; 1� b;��

��� 1; 0; 1� c

#
t��1f(t)dt: (7.8.29)

(iv) The transform 2F 1
1;�;� is independent of � in the sense that if 0 < � � Re(�) <

min[Re(a);Re(b)] and 0 < e� � Re(�) < min[Re(a);Re(b)] and if the transforms 2F 1
1;�;� and

2
eF 1

�;�
are de�ned on L�;2 an Le�;2; respectively by (7:8:21); then 2F 1

1;�;� f = 2
eF 1

�;�
f for

f 2 L�;2 \ Le�;2.
(v) For f 2 L�;2 and x > 0;

�
2F 1

1;�;� f
�
(x) is given in (7:8:19) and (7:8:23).

Theorem 7.42. Let 0 < 1� � +Re(�) < min[Re(a);Re(b)]:

(i) There is a one-to-one transform 2F 1
2;�;� 2 [L�;2;L��Re(�+�);2] such that (7:8:22) holds

for Re(s) = � �Re(�+ �) and f 2 L�;2.

(ii) If f 2 L�;2 and g 2 L1��+Re(�+�);2; then the relationZ
1

0
f(x)

�
2F 1

2;�;� g
�
(x)dx =

Z
1

0

�
2F 1

1;�;� f
�
(x)g(x)dx (7.8.30)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > �� +Re(�); then 2F 1
2;�;� f is given by

�
2F 1

2;�;� f
�
(x) = �x�+�+1 d

dx
x���1

Z
1

0
G1;3

3;3

"
t

x

����� ��; 1� a; 1� b

0; 1� c;��� 1

#
t�f(t)dt: (7.8.31)

When Re(�) < �� +Re(�);

�
2F 1

2;�;� f
�
(x) = x�+�+1 d

dx
x���1

Z
1

0
G2;2

3;3

"
t

x

����� 1� a; 1� b;��

��� 1; 0; 1� c

#
t�f(t)dt: (7.8.32)

(iv) The transform 2F 1
2;�;� is independent of � in the sense that if 0 < 1� � +Re(�) <

min[Re(a);Re(b)] and 0 < 1 � e� + Re(�) < min[Re(a);Re(b)] and if the transforms 2F 1
2;�;�

and 2
eF 1

2;�;�
are de�ned on L�;2 an Le�;2; respectively by (7:8:22); then 2F 1

2;�;� f = 2
eF 1

2;�;�
f

for f 2 L�;2 \ Le�;2.
(v) For f 2 L�;2 and x > 0;

�
2F 1

2;�;� f
�
(x) is given in (7:8:20) and (7:8:24).

Theorems 6.54, 6.55 and 6.66, 6.67 give the L�;r-theory of the transforms 2F 1
1;�;� and

2F 1
2;�;�.

Theorem 7.43. Let � = min[Re(a);Re(b)]; 0 < � �Re(�) < � and ! = a+ b� c� �.

(a) If 1 5 r 5 s 5 1; then the transform 2F 1
1;�;� de�ned on L�;2 can be extended to

L�;r as an element of [L�;r;L��Re(�+�);s]. If 1 5 r 5 2; then 2F 1
1;�;� is a one-to-one transform

from L�;r onto L��Re(�+�);s.
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(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L1��+Re(�+�);s0 with 1=s + 1=s0 = 1; then the

relation (7:8:27) holds.

(c) If 1 < r <1 and the condition (7:8:25) holds; then 2F 1
1;�;� is one-to-one on L�;r.

(d) Let 1 < r <1 and Re(!) = 0. If the condition (7:8:25) holds; then

2F 1
1;�;�(L�;r) =

�
L1;��L1;1+c�a�b+�

��
L��Re(�+�);r

�
; (7.8.33)

where L1;�� and L1;1+c�a�b+� are given in (3:3:3): If (7:8:25) is not valid; then 2F 1
1;�;�(L�;r)

is a subset of the right-hand side of (7:8:33):

(e) Let 1 < r <1 and Re(!) < 0. If the condition (7:8:25) holds; then

2F 1
1;�;�(L�;r) =

�
I�!
�;1;�L1;��L1;1��+�

��
L��Re(�+�);r

�
; (7.8.34)

where I�!
�;1;� is given in (3:3:2). If (7:8:25) is not valid; then 2F 1

1;�;�(L�;r) is a subset of the

right-hand side of (7.8.34).

Theorem 7.44. Let � = min[Re(a);Re(b)]; 0 < 1� � +Re(�) < � and ! = a+ b� c� �

(a) If 1 5 r 5 s 5 1; then the transform 2F 1
2;�;� de�ned on L�;2 can be extended to

L�;r as an element of [L�;r;L��Re(�+�);s]. If 1 5 r 5 2; then 2F 1
2;�;� is a one-to-one transform

from L�;r onto L��Re(�+�);s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L1��+Re(�+�);s0 with 1=s + 1=s0 = 1; then the

relation (7:8:30) holds.

(c) If 1 < r <1 and the condition (7:8:26) holds; then 2F 1
2;�;� is one-to-one on L�;r.

(d) Let 1 < r <1 and Re(!) = 0. If the condition (7:8:26) holds; then

2F 1
2;�;�(L�;r) =

�
L�1;1��L�1;a+b�c+�

��
L��Re(�+�);r

�
; (7.8.35)

where L�1;1�� and L�1;a+b�c+� are given in (3:3:3): If (7:8:26) is not valid; then 2F 1
2;�;�(L�;r)

is a subset of the right-hand side of (7:8:35):

(e) Let 1 < r <1 and Re(!) < 0. If the condition (7:8:26) holds; then

2F 1
2;�;�(L�;r) =

�
I�!0+;1;��L�1;1��L�1;�+�

� �
L��Re(�+�);r

�
; (7.8.36)

where I�!0+;1;�� is given in (3:3:1): If (7:8:26) is not valid; then 2F 1
2;�;�(L�;r) is a subset of the

right-hand side of (7.8.36).

7.9. The Generalized Stieltjes Transform

As an application of the results in the previous section, we consider the integral transform

�
S�;�;�f

�
(x) =

�(� + � + 1)�(� + 1)

�(� + � + � + 1)

�

Z
1

0

�
t

x

��

2F1

�
� + � + 1; � + 1;�+ � + � + 1;�

t

x

�
f(t)

x
dt (7.9.1)
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with �; �; � 2 C (Re(� + �) + 1 > 0;Re(�) + 1 > 0). When � = 0; by the known relation

2F1(a; b; a; z) = 1F0(b; z) = (1� z)�b, (7.9.1) takes the form�
S�;�;0f

�
(x) = �(� + 1)

Z
1

0

�
t

x

��

1F0

�
� + 1;�

t

x

�
f(t)

x
dt

= �(� + 1)

Z
1

0

t�

(t+ x)�+1
f(t)dt (7.9.2)

and becomes the Stieltjes transform for � = 0:

(Sf)(x) =
Z
1

0

1

t + x
f(t)dt: (7.9.3)

The transform (7.9.1) is a particular case of the modi�ed transform 2F 1
2;�;� (7.8.20) for

which

� = ��; � = �; a = � + � + 1; b = � + 1; c = � + � + � + 1: (7.9.4)

The relations (7.8.22), (7.8.24), (7.8.30) and (7.8.26) have the forms�
MS�;�;�f

�
(s) =

�(1 + � � s)�(� + s)�(s)

�(�+ � + s)

�
Mf

�
(s); (7.9.5)

�
S�;�;�f

�
(x) =

Z
1

0

�
t

x

��

G1;2
2;2

"
t

x

����� �� � �;��

0;��� � � �

#
f(t)

x
dt; (7.9.6)

Z
1

0

f(x)
�
S�;�;�g

�
(x)dx =

Z
1

0

�
S
�

�;�;�f
�
(x)g(x)dx (7.9.7)

with �
S
�

�;�;�f
�
(x) =

�(� + � + 1)�(� + 1)

�(�+ � + � + 1)

�

Z
1

0

�
x

t

��

2F1

�
� + � + 1; � + 1;�+ � + � + 1;�

x

t

�
f(t)

t
dt (7.9.8)

and

s 6= �+ � + � + 1 + i (i = 0; 1; 2; � � �) for Re(s) = 1� � +Re(�): (7.9.9)

Theorems 7.42 and 7.44 lead to the L�;2- and L�;r-theory of the generalized Stieltjes trans-

form S�;�;�.

Theorem 7.45. Let �Re(�) < 1� � < 1 +min[0;Re(�)]:

(i) There is a one-to-one transform S�;�;� 2 [L�;2] such that the relation (7:9:5) holds for

Re(s) = � and f 2 L�;2.

(ii) If f 2 L�;2 and g 2 L1��;2; then the relation (7:9:7) holds for S�;�;�.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > �� +Re(�); then S�;�;�f is given by�
S�;�;�f

�
(x)

= �x��+�+1 d

dx
x���1

Z
1

0

G1;3
3;3

"
t

x

����� ��;�� � �;��

0;��� � � �;��� 1

#
t�f(t)dt: (7.9.10)
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When Re(�) < �� +Re(�);�
S�;�;�f

�
(x)

= x��+�+1 d

dx
x���1

Z
1

0

G2;2
3;3

"
t

x

����� �� � �;��;��

��� 1; 0;��� � � �

#
t�f(t)dt: (7.9.11)

(iv) The transform S�;�;� is independent of � in the sense that if �Re(�) < 1 � � <

1 + min[0;Re(�)] and �Re(�) < 1 � e� < 1 + min[0;Re(�)] and if the transforms S�;�;�

and eS�;�;� are de�ned on L�;2 and Le�;2; respectively by (7:9:5); then S�;�;�f = eS�;�;�f for

f 2 L�;2 \ Le�;2.
(v) For f 2 L�;2 and x > 0;

�
S�;�;�f

�
(x) is given in (7:9:1) and (7:9:6).

Theorem 7.46. Let �Re(�) < 1� � < 1 +min[0;Re(�)].

(a) If 1 5 r 5 s 5 1; then the transform S�;�;� de�ned on L�;2 can be extended to L�;r

as an element of [L�;r ;L�;s]. If 1 5 r 5 2; then S�;�;� is a one-to-one transform from L�;r

onto L�;s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L1��;s0 with 1=s + 1=s0 = 1; then the relation

(7:9:7) holds.

(c) If 1 < r <1 and the condition (7:9:9) holds, then S�;�;� is one-to-one on L�;r.

(d) Let 1 < r <1 and Re(�) + min[0;Re(�)] 5 0. If the condition (7:9:9) holds; then

S�;�;�(L�;r) =
�
L�1;1+�L�1;1��

�
(L�;r); (7.9.12)

where L�1;1+� and L�1;1�� are given in (3:3:3): If (7:9:9) is not valid; then S�;�;�(L�;r) is a

subset of the right-hand side of (7:9:13):

(e) Let 1 < r <1 and Re(�) + min[0;Re(�)] > 0. If the condition (7:9:9) holds; then

S�;�;�(L�;r) =
�
I�!
0+;1;�L�1;1+�L�1;0

�
(L�;r); (7.9.13)

where ! = �� � min[0;Re(�)] and I�!
0+;1;� is given in (3:3:1): If (7:9:9) is not valid, then

S�;�;�(L�;r) is a subset of the right-hand side of (7.9.14).

7.10. pF q-Transform

Let us investigate the integral transform of the type

�
pF q f

�
(x) =

pY
i=1

�(ai)

qY
j=1

�(bj)

Z
1

0
pFq(a1; � � � ; ap; b1; � � � ; bq;�xt)f(t)dt (7.10.1)

with ai; bj 2 C (Re(ai) > 0; i = 1; 2; � � � ; p; j = 1; 2; � � �q); for which we take p 2 N and either

q = p, q = p + 1 or q = p � 1. These transforms, containing the generalized hypergeometric

function (2.9.2) in the kernel, generalize the transforms 1F 1, 1F 2 and 2F 1 given in (7.5.1),

(7.6.1) and (7.7.1), respectively.
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Due to Prudnikov, Brychkov and Marichev [3, 8.4.51.1], the Mellin transform of (7.10.1)

for a \su�ciently good" function f is given by the relation�
M pF q f

�
(s) = G1;pp;q+1(s)

�
Mf

�
(1� s) (7.10.2)

with

G
1;p
p;q+1

"
(1� ai)1;p

0; (1� bj)1;q

����� s
#
=

�(s)
pY

i=1

�(ai � s)

qY
j=1

�(bj � s)

; (7.10.3)

provided that

0 < Re(s) < min
15i5p

Re(ai) (7.10.4)

for q = p and q = p� 1; and

0 < Re(s) < min
15i5p

Re(ai); Re(s) <
1

4
�
1

2
Re

0@ pX
i=1

ai �
p+1X
i=1

bi

1A (7.10.5)

for q = p+ 1.

The relations (7.10.2) and (7.10.3) show that, for the cases q = p; q = p+1 and q = p� 1;

(7.10.1) is the G-transform (1.5.1) of the forms

�
pF p f

�
(x) =

Z
1

0
G1;p

p;p+1

"
xt

����� 1� a1; � � � ; 1� ap

0; 1� b1; � � � ; 1� bp

#
f(t)dt; (7.10.6)

�
pF p+1 f

�
(x) =

Z
1

0
G
1;p
p;p+2

"
xt

����� 1� a1; � � � ; 1� ap

0; 1� b1; � � � ; 1� bp+1

#
f(t)dt (7.10.7)

and

�
pF p�1 f

�
(x) =

Z
1

0
G1;p

p;p

"
xt

����� 1� a1; � � � ; 1� ap

0; 1� b1; � � � ; 1� bp�1

#
f(t)dt: (7.10.8)

For the transforms (7.10.6), (7.10.7) and (7.10.8), the constants a�;�; a�1; a
�

2; �; � and � in

(6.1.5){(6.1.11) take the forms

a� = 1; � = 1; a�1 = 1; a�2 = 0; � = 0; � = min
15i5p

[Re(ai)];

� =
pX

i=1

(ai � bi)�
1

2
;

(7.10.9)

a� = 0; � = 2; a�1 = 1; a�2 = �1; � = 0; � = min
15i5p

Re(ai);

� =
pX

i=1

ai �
p+1X
i=1

bi � 1
(7.10.10)
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and

a� = 2; � = 0; a�1 = 1; a�2 = 1;

� = 0; � = min
15i5p

Re(ai); � =
pX

i=1

ai �
p�1X
i=1

bi;
(7.10.11)

respectively. According to these relations, the conditions in (7.10.4) and (7.10.5) take the

forms

0 < Re(s) < � (7.10.12)

for q = p and q = p� 1; and

0 < Re(s) < �; Re(s) < �
1

4
�
1

2
Re(�) (7.10.13)

for q = p+ 1.

Let E11 be the exceptional set of the function G
1;p
p;q+1(s) in (7.10.3). Considering the poles

of the gamma functions �(bj � s) (1 5 j 5 q) in the function G1;pp;q+1(s), we �nd that � =2 E11
means that

s 6= bj + i (j = 1; 2; � � � ; q; i = 0; 1; 2; � � �) for Re(s) = 1� �: (7.10.14)

First we state the L�;2- and L�;r-theory of the transform (7.10.1) in the case when q = p

by using Theorems 6.1, 6.2 and 6.6, 6.8.

Theorem 7.47. Let � is be given in (7:10:9) and 0 < 1� � < �:

(i) There is a one-to-one transform pF p 2 [L�;2;L1��;2] such that (7:10:2) holds for q = p;

Re(s) = 1� � and f 2 L�;2.

(ii) If f; g 2 L�;2; then the relationZ
1

0
f(x)

�
pF p g

�
(x)dx =

Z
1

0

�
pF p f

�
(x)g(x)dx (7.10.15)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; then pF pf is given by�
pF p f

�
(x)

= x��
d

dx
x�+1

Z
1

0
G1;p+1

p+1;p+2

"
xt

����� ��; 1� a1; � � � ; 1� ap

0; 1� b1; � � � ; 1� bp;��� 1

#
f(t)dt: (7.10.16)

When Re(�) < ��; then pF pf is given by�
pF p f

�
(x)

= �x��
d

dx
x�+1

Z
1

0
G2;p

p+1;p+2

"
xt

����� 1� a1; � � � ; 1� ap;��

��� 1; 0; 1� b1; � � � ; 1� bp

#
f(t)dt: (7.10.17)
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(iv) The transform pF p is independent of � in the sense that if 0 < 1 � � < � and

0 < 1� e� < � and if the transforms pF p and p
eF p are de�ned on L�;2 an Le�;2; respectively by

(7:10:2) with q = p; then pF pf = p
eF pf for f 2 L�;2 \ Le�;2.

(v) For f 2 L�;2 and x > 0;
�
pF p f

�
(x) is given in (7:10:6) as well as (7:10:1) with q = p.

Theorem 7.48. Let � and � be given in (7:10:9); 0 < 1 � � < �; ! = � + 1=2 and

1 5 r 5 s 5 1:

(a) The transform pF p de�ned on L�;2 can be extended toL�;r as an element of [L�;r;L1��;s].

When 1 5 r 5 2; pF p is a one-to-one transform from L�;r onto L1��;s.

(b) If f 2 L�;r and g 2 L�;s0 with 1=s+ 1=s0 = 1; then the relation (7:10:15) holds.

(c) If 1 < r < 1 and the condition (7:10:14) for q = p holds; then the transform pF p is

one-to-one on L�;r.

(d) If 1 < r <1; Re(!) = 0 and the condition (7:10:14) for q = p holds; then

pF p(L�;r) = L1;�!(L�;r); (7.10.18)

where the operator L1;�! is given in (3:3:3): If the condition (7:10:14) for q = p is not valid;

then pF p(L�;r) is a subset of the right-hand side of (7:10:18):

(e) If 1 < r <1; Re(!) < 0 and the condition (7:10:14) for q = p holds, then

pF p(L�;r) =
�
I�!
�;1;0L

�
(L�;r); (7.10.19)

where the operators I�!
�;1;0 and L are given in (3:3:2) and (2:5:2): If the condition (7:10:14) for

q = p is not valid; then pF p(L�;r) is a subset of the right-hand side of (7.10.19).

Theorems 6.1, 6.2 and 6.5 lead to the L�;2- and L�;r-theory of the transform (7.10.1) in

the case when q = p+ 1.

Theorem 7.49. Let � and � be given in (7:10:10); 0 < 1�� < � and 2(1��)+Re(�) 5 0:

(i) There is a one-to-one transform pF p+1 2 [L�;2;L1��;2] such that (7:10:2) holds for

q = p+ 1; Re(s) = 1� � and f 2 L�;2. If 2(1� �) + Re(�) = 0 and if the condition (7:10:14)

with q = p+ 1 holds, then the transform pF p+1 maps L�;2 onto L1��;2.

(ii) If f; g 2 L�;2; then the relationZ
1

0
f(x)

�
pF p+1 g

�
(x)dx =

Z
1

0

�
pF p+1 f

�
(x)g(x)dx (7.10.20)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; then pF p+1f is given by�
pF p+1 f

�
(x)

= x��
d

dx
x�+1

Z
1

0
G1;p+1

p+1;p+3

"
xt

����� ��; 1� a1; � � � ; 1� ap

0; 1� b1; � � � ; 1� bp+1;�(�+ 1)

#
f(t)dt: (7.10.21)

When Re(�) < ��;�
pF p+1 f

�
(x)

= �x��
d

dx
x�+1

Z
1

0
G2;p

p+1;p+3

"
xt

����� 1� a1; � � � ; 1� ap;��

��� 1; 0; 1� b1; � � � ; 1� bp+1

#
f(t)dt: (7.10.22)
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(iv) The transform pF p+1 is independent of � in the sense that if 0 < 1 � � < �;

2(1��)+Re(�) 5 0 and 0 < 1� e� < �; 2(1� e�)+Re(�) 5 0 and if the transforms pF p+1 and

p
eF p+1 are de�ned on L�;2 and Le�;2; respectively by (7:10:2) with q = p + 1; then pF p+1f =

p
eF p+1f for f 2 L�;2 \ Le�;2.
(v) If 2(1��)+Re(�) < 0; then for f 2 L�;2 and x > 0;

�
pF p+1 f

�
(x) is given in (7:10:7)

as well as (7:10:1) with q = p+ 1.

Theorem 7.50. Let � and � be given in (7:10:10); 0 < 1 � � < �; 1 < r < 1 and

2(1� �) + Re(�) 5 1=2� (r); where (r) is de�ned in (3:3:9):

(a) The transform pF p+1 de�ned on L�;2 can be extended to L�;r as an element of

[L�;r;L1��;s] for all s with r 5 s < 1 such that s0 = [1=2� 2(1� �) � Re(�)]�1 with 1=s +

1=s0 = 1.

(b) If 1 < r 5 2; the transform pF p+1 is one-to-one on L�;r and there holds the equality

(7:10:2) with q = p+ 1 and Re(s) = 1� �.

(c) If f 2 L�;r and g 2 L�;s with 1 < s <1; 1=r+1=s = 1 and 2(1� �) +Re(�) 5 1=2�

max[(r); (s)]; then the relation (7:10:20) holds.

(d) If the condition (7:10:14)with q = p+1 holds; then the transform pF p+1 is one-to-one

on L�;r. If we set � = �� � 1; then Re(�) > �1 and there holds

pF p+1(L�;r) =
�
M(�+1)=2H 2;�

� �
L��Re(�)=2�1=2;r

�
; (7.10.23)

where M� and H 2;� are given in (3:3:11) and (3:3:4): When the condition (7:10:14) with

q = p+ 1 is not valid; then pF p+1 is a subset of the right-hand side of (7:10:23):

(e) If f 2 L�;r with � 2 C and 2(1� �) + Re(�) 5 1=2� (r); then pF p+1f is given in

(7:10:21) for Re(�) > ��; while in (7:10:22) for Re(�) < ��. If 2(1� �)+Re(�) < 0; pF p+1f

is given in (7:10:7) as well as (7:10:1) with q = p+ 1.

For the case q = p+ 1; we can apply the inversion formulas in Theorems 6.12 and 6.13.

Theorem 7.51. Let � and � be given in (7:10:10); 0 < 1� � < �; � 2 C and

�0 = 1� min
15j5p+1

[Re(bj)].

(a) If � > �0 and 2(1� �) + Re(�) = 0; then for f 2 L�;2 the inversion formulas

f(x) = x��
d

dx
x�+1

�

Z
1

0
Gp+1;1

p+1;p+3

"
xt

����� ��; a1 � 1; � � � ; ap � 1

b1 � 1; � � � ; bp+1� 1; 0;��� 1

#�
pF p+1 f

�
(t)dt (7.10.24)

and

f(x) = �x��
d

dx
x�+1

�

Z
1

0
Gp+2;0

p+1;p+3

"
xt

����� a1 � 1; � � � ; ap � 1;��

��� 1; b1� 1; � � � ; bp+1 � 1; 0

#�
pF p+1 f

�
(t)dt (7.10.25)

hold for Re(�) > � � 1 and Re(�) < � � 1; respectively.
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(b) Let 1 < r < 1; �0 < � < Re(� + 1=2)=2 + 1 and 2(1 � �) + Re(�) 5 1=2 � (r);

where (r) is given in (3:3:9). If f 2 L�;r; then the relations (7:10:24) and (7:10:25) hold for

Re(�) > � � 1 and for Re(�) < � � 1; respectively.

Lastly we obtain the L�;2- and L�;r-theory of the transform (7.10.1) in the case when

q = p� 1 from Theorems 6.1, 6.2 and 6.6, 6.7.

Theorem 7.52. Let p = 1; � be given in (7:10:11) and 0 < 1� � < �:

(i) There is a one-to-one transform pF p�1 2 [L�;2;L1��;2] such that (7:10:2) holds for

q = p� 1; Re(s) = 1� � and f 2 L�;2.

(ii) If f; g 2 L�;2; then the relationZ
1

0
f(x)

�
pF p�1 g

�
(x)dx =

Z
1

0

�
pF p�1 f

�
(x)g(x)dx (7.10.26)

holds.

(iii) Let f 2 L�;2 and � 2 C . If Re(�) > ��; then pF p�1f is given by�
pF p�1 f

�
(x)

= x��
d

dx
x�+1

Z
1

0
G1;p+1

p+1;p+1

"
xt

����� ��; 1� a1; � � � ; 1� ap

0; 1� b1; � � � ; 1� bp�1;��� 1

#
f(t)dt: (7.10.27)

When Re(�) < ��;�
pF p�1 f

�
(x)

= �x��
d

dx
x�+1

Z
1

0
G2;p

p+1;p+1

"
xt

����� 1� a1; � � � ; 1� ap;��

��� 1; 0; 1� b1; � � � ; 1� bp�1

#
f(t)dt: (7.10.28)

(iv) The transform pF p�1 is independent of � in the sense that if 0 < 1 � � < � and

0 < 1�e� < � and if the transforms pF p�1 and p
eF p�1 are de�ned on L�;2 and Le�;2; respectively

by (7:10:2) with q = p� 1; then pF p�1f = p
eF p�1f for f 2 L�;2 \ Le�;2.

(v) For f 2 L�;2 and x > 0;
�
pF p�1 f

�
(x) is given in (7:10:8) as well as (7:10:1) with

q = p� 1.

Theorem 7.53. Let p = 1; � and � be given in (7:10:11); 0 < 1� � < �; ! = �� � + 1

and 1 5 r 5 s 5 1:

(a) The transform pF p�1 de�ned on L�;2 can be extended to L�;r as an element of

[L�;r;L1��;s]. If 1 5 r 5 2; then pF p�1 is a one-to-one transform from L�;r onto L1��;s.

(b) If f 2 L�;r and g 2 L�;s0 with 1=s+ 1=s0 = 1; then the relation (7:10:26) holds.

(c) If 1 < r < 1 and the condition (7:10:14) for q = p � 1 holds; then pF p�1 is a

one-to-one transform on L�;r.

(d) If 1 < r <1; Re(!) = 0 and the condition (7:10:14) for q = p� 1 holds, then

pF p�1(L�;r) =
�
LL1;��

�
(L1��;r); (7.10.29)
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where the operators L and L1;�� are given in (2:5:2) and (3:3:3): If the condition (7:10:14)

for q = p� 1 is not valid; then pF p�1(L�;r) is a subset of the right-hand side of (7:10:29):

(e) If 1 < r <1; Re(!) < 0 and the condition (7:10:14) for q = p� 1 holds, then

pF p�1(L�;r) =
�
I�!
�;1;0LL1;1��

�
(L1��;r); (7.10.30)

where the operator I�!
�;1;0 is given in (3:3:2): If the condition (7:10:14) for q = p � 1 is not

valid, then pF p�1(L�;r) is a subset of the right-hand side of (7.10.30).

7.11. The Wright Transform

We consider the integral transform of the form�
p	q f

�
(x) =

Z
1

0
p	q

"
(ai; �i)1;p

(bj; �j)1;q

�����xt
#
f(t)dt (7.11.1)

containing the Wright function p	q(z) de�ned in (2.9.30) in the kernel. Due to (2.9.29) this

transform is the H-transform (3.1.1) of the form�
p	q f

�
(x) =

Z
1

0
H1;p

p;q+1

"
xt

����� (1� ai; �i)1;p

(0; 1); (1� bj; �j)1;q

#
f(t)dt: (7.11.2)

Therefore the Mellin transform of (7.11.1) is given by�
M p	q f

�
(s) = H1;p

p;q+1(s)
�
Mf

�
(1� s); (7.11.3)

where

H
1;p
p;q+1(s) = H

1;p
p;q+1

"
(1� ai; �i)1;p

(0; 1); (1� bj; �j)1;q

����� s
#
=

�(s)
pY

i=1

�(ai � �is)

qY
j=1

�(bj � �js)

: (7.11.4)

Applying the results in Sections 3.6 and 4.1{4.8, we can construct the L�;2- and L�;r-theory

of the transform (7.11.1) by taking into account that the constants a�;�; �; �; a�1; a
�

2; � and �

in (1.1.7){(1.1.13), (3.4.1) and (3.4.2) have the forms

a� =
pX

i=1

�i �
qX

j=1

�j + 1; (7.11.5)

� =
qX

j=1

�j �
pX

i=1

�i + 1; (7.11.6)

� =
pY

i=1

���i

i

qY
j=1

�
�j
j ; (7.11.7)

� =
pX

i=1

ai �
qX

j=1

bj �
p� q + 1

2
; (7.11.8)

a�1 = 1; a�2 =
pX

i=1

�i �

qX
j=1

�j (7.11.9)
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and

� = 0; � = min
15i5p

�
Re(ai)

�i

�
: (7.11.10)

Let E12 be the exceptional set of the function H1;p
p;q+1(s) in (7.11.4) and s =2 E12 means that

s 6=
bj + i

�j
(i = 0; 1; 2; � � � ; j = 1; � � � ; q) for Re(s) = 1� �: (7.11.11)

Now Theorems 3.6 and 3.7 lead to the L�;2-theory of the transform (7.11.1).

Theorem 7.54. Let a�;�; � and � be given in (7:11:5); (7:11:6); (7:11:8) and (7:11:10):

We suppose that (a) 0 < 1 � � < � and that either of conditions (b) a� > 0; or (c)

a� = 0;�(1� �) + Re(�) 5 0 holds. Then we have the following results:

(i) There is a one-to-one transform p	q 2 [L�;2;L1��;2] such that (7:11:3) holds for

Re(s) = 1 � � and f 2 L�;2. If a� = 0; �(1 � �) + Re(�) = 0 and the condition (7:11:11)

holds; then the transform p	q maps L�;2 onto L1��;2.

(ii) If f; g 2 L�;2; then the relationZ
1

0
f(x)

�
p	q g

�
(x)dx =

Z
1

0

�
p	q f

�
(x)g(x)dx (7.11.12)

holds.

(iii) Let f 2 L�;2; � 2 C and h > 0. If Re(�) > (1� �)h� 1; then p	qf is given by�
p	q f

�
(x) = hx1�(�+1)=h

d

dx
x(�+1)=h

�

Z
1

0
H1;p+1

p+1;q+2

"
xt

����� (��; h); (1� ai; �i)1;p

(0; 1); (1� bj ; �j)1;q; (��� 1; h)

#
f(t)dt: (7.11.13)

When Re(�) < (1� �)h� 1;�
p	q f

�
(x) = �hx1�(�+1)=h

d

dx
x(�+1)=h

�

Z
1

0
H2;p

p+1;q+2

"
xt

����� (1� ai; �i)1;p; (��; h)

(��� 1; h); (0; 1); (1� bj; �j)1;q

#
f(t)dt: (7.11.14)

(iv) The transform p	q is independent of � in the sense that if � and e� satisfy (a), and

(b) or (c), and if the transforms p	q and p
e	q are de�ned on L�;2 and Le�;2; respectively by

(7:11:3); then p	qf = p
e	qf for f 2 L�;2 \ Le�;2.

(v) If either (b) a� > 0 or (d) a� = 0; �(1 � �) + Re(�) < 0; then for f 2 L�;2 and

x > 0;
�
p	q f

�
(x) is given in (7:11:1) and (7.11.2).

From Theorems 4.1, 4.2 and 4.3, 4.4 we obtain the L�;r-theory of the transform (7.11.1)

in the case when a� = 0.

Theorem 7.55. Let a�;�; � and � given in (7:11:5); (7:11:6); (7:11:8) and (7:11:10) be

such that a� = � = 0;Re(�) = 0 and 0 < 1� � < �:
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(a) The transform p	q de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L1��;r]

for 1 < r <1.

(b) If 1 < r 5 2; the transform p	q is one-to-one on L�;r and there holds the equality

(7:11:3) for f 2 L�;r .

(c) If the condition (7:11:11) is satis�ed; then p	q is one-to-one on L�;r and there holds

p	q(L�;r) = L1��;r: (7.11.15)

(d) If f 2 L�;r and g 2 L�;r0 with 1 < r < 1 and r0 = r=(r � 1); then the relation

(7:11:12) holds.

(e) If 1 < r < 1; f 2 L�;r; � 2 C and h > 0; then p	qf is given in (7:11:13) for

Re(�) > (1� �)h� 1; while p	qf in (7:11:14) for Re(�) < (1� �)h� 1.

Theorem 7.56. Let a�;�; � and � given in (7:11:5); (7:11:6); (7:11:8) and (7:11:10) be

such that a� = � = 0;Re(�) < 0 and 0 < 1� � < �.

(a) Let 1 < r < 1. The transform p	q de�ned on L�;2 can be extended to L�;r as an

element of [L�;r;L1��;s] for all s = r such that 1=s > 1=r +Re(�).

(b) If 1 < r 5 2; then p	q is a one-to-one transform on L�;r and there holds the equality

(7:11:3):

(c) If the condition (7:11:11) is satis�ed; then the transform p	q is one-to-one on L�;r

and there hold

p	q (L�;r) = I��
�;k;0 (L1��;r) (7.11.16)

for k = 1; and

p	q (L�;r) = I��0+;k;�=k�1 (L1��;r) (7.11.17)

for 0 < k 5 1 and p > 0; where the operators I��
�;k;0 and I��0+;k;�=k�1 are de�ned in (3:3:1) and

(3:3:2). If the condition (7:11:11) is not satis�ed; p	q (L�;r) is a subset of the right-hand sides

of (7:11:16) and (7:11:17) in the respective cases.

(d) If f 2 L�;r and g 2 L�;s with 1 < r <1; 1 < s <1 and 1 5 1=r + 1=s < 1�Re(�);

then the relation (7:11:12) holds.

(e) If 1 < r < 1; f 2 L�;r ; � 2 C and h > 0; then p	qf is given in (7:11:13) for

Re(�) > (1� �)h � 1; while p	qf in (7:11:14) for Re(�) < (1� �)h � 1. Furthermore p	qf

is given in (7:11:1) and (7.11.2).

Theorem 7.57. Let a�;�; � and � given in (7:11:5); (7:11:6); (7:11:8) and (7:11:10) be

such that a� = 0; � 6= 0; 0 < 1 � � < �; 1 < r < 1 and �(1 � �) + Re(�) 5 1=2 � (r);

where (r) is de�ned in (3:3:9): Further assume that p > 0 if � < 0.

(a) The transform p	q de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L1��;s]

for all s with r 5 s <1 such that s0 = [1=2��(1� �)� Re(�)]�1 with 1=s+ 1=s0 = 1.

(b) If 1 < r 5 2; the transform p	q is one-to-one on L�;r and there holds the equality

(7:11:3):

(c) If the condition (7:11:11) is satis�ed; then the transform p	q is one-to-one on L�;r.

If we set � = �� � 1 for � > 0 and � = ��� � �� 1 for � < 0; then Re(�) > �1 and there
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holds

p	q(L�;r) =
�
M�=�+1=2H�;�

� �
L��Re(�)=��1=2;r

�
: (7.11.18)

If the condition (7:11:11) is not satis�ed; p	q(L�;r) is a subset of the right-hand side of

(7:11:18):

(d) If f 2 L�;r and g 2 L�;s with 1 < s <1; 1=r+1=s = 1 and �(1��)+Re(�) 5 1=2�

max[(r); (s)]; then the relation (7:11:12) holds.

(e) If f 2 L�;r ; � 2 C ; h > 0 and �(1 � �) + Re(�) 5 1=2 � (r); then p	qf is given

in (7:11:13) for Re(�) > (1 � �)h � 1; while p	qf in (7:11:14) for Re(�) < (1� �)h � 1. If

�(1� �) + Re(�) < 0; p	qf is given in (7:11:1) and (7:11:2).

From Theorems 4.5{4.7 and 4.9 we obtain the L�;r-theory of the transform (7.11.1) in the

case when a� 6= 0.

Theorem 7.58. Let a� and � given in (7:11:5) and (7:11:10) be such that a� > 0;

0 < 1� � < � and 1 5 r 5 s 5 1:

(a) The transform p	q de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L1��;s].

When 1 5 r 5 2; the transform p	q is one-to-one from L�;r onto L1��;s.

(b) If f 2 L�;r and g 2 L�;s0 with 1=s+ 1=s0 = 1; then the relation (7:11:12) holds.

Theorem 7.59. Let �; a�2 and � given in (7:11:8); (7:11:9) and (7:11:10) be such that

a�2 > 0; 0 < 1� � < � and ! = �� a�2� + 1 and let 1 < r <1: Let further p > 0.

(a) Let the condition (7:11:11) be satis�ed; or if 1 5 r 5 2; then the transform p	q is

one-to-one on L�;r.

(b) If Re(!) = 0 and the condition (7:11:11) is satis�ed; then

p	q(L�;r) =
�
LLa�

2
;1���!=a�

2

�
(L1��;r); (7.11.19)

where L and Lk;� are given in (2:5:2) and (3:3:3): If the condition (7:11:11) is not satis�ed;

then p	q(L�;r) is a subset of the right-hand side of (7:11:19):

(c) If Re(!) < 0 and the condition (7:11:11) is satis�ed; then

p	q(L�;r) =
�
I�!
�;1;0LLa�

2
;1��

�
(L1��;r); (7.11.20)

where I�!
�;1;0 is given in (3:3:2): If the condition (7:11:11) is not satis�ed; then p	q(L�;r) is a

subset of the right-hand side of (7.11.20).

Theorem 7.60. Let �; a�2 and � given in (7:11:8); (7:11:9) and (7:11:10) be such that

a�2 = 0; 0 < 1� � < � and ! = �+ 1=2 and let 1 < r <1:

(a) Let the condition (7:11:11) be satis�ed; or if 1 < r 5 2; then p	q is a one-to-one

transform on L�;r .

(b) If Re(!) = 0 and the condition (7:11:11) is satis�ed; then

p	q(L�;r) = L1;�!(L�;r); (7.11.21)

where L1;�! is given in (3:3:3): If the condition (7:11:11) is not satis�ed; then p	q(L�;r) is a

subset of the right-hand side of (7:11:21):
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(c) If Re(!) < 0 and the condition (7:11:11) is satis�ed; then

p	q(L�;r) =
�
I�!
�;1;0L

�
(L�;r); (7.11.22)

where I�!
�;1;0 and L are given in (3:3:2) and (2:5:2): If the condition (7:11:11) is not satis�ed;

then p	q(L�;r) is a subset of the right-hand side of (7.11.22).

Theorem 7.61. Let a�; �; a�2 and � given in (7:11:5); (7:11:8); (7:11:9) and (7:11:10) be

such that a� > 0; a�2 < 0; 0 < 1� � < � and let 1 < r <1:

(a) Let the condition (7:11:11) be satis�ed; or if 1 < r 5 2; then the transform p	q is

one-to-one on L�;r.

(b) Let !; �; � be chosen as

! = a�� � � �
1

2
; (7.11.23)

a�Re(�) = (r) + 2a�2(� � 1) + Re(�); Re(�) > � � 1; (7.11.24)

Re(�) < 1� �; (7.11.25)

where (r) is given in (3:3:9): If the condition (7:11:11) is satis�ed; then

p	q(L�;r) =
�
M1=2+!=(2a�

2
)H�2a�

2
;2a�

2
�+!�1L�a�;1=2+��!=(2a�

2
)

�
�
L3=2+Re(!)=(2a�

2
)��;r

�
: (7.11.26)

If the condition (7:11:11) is not satis�ed; then p	q(L�;r) is a subset of the right-hand side of

(7.11.26).

If a� = 0; from (4.9.1) and (4.9.2) we get the inversion formulas for the transform (7.11.1):

f(x) = hx1�(�+1)=h
d

dx
x(�+1)=h

�

Z
1

0
Hq;1

p+1;q+2

"
xt

����� (��; h); (ai� �i; �i)1;p;

(bj � �j ; �j)1;q; (0; 1); (��� 1; h)

# �
p	q f

�
(t)dt (7.11.27)

and

f(x) = �hx1�(�+1)=h
d

dx
x(�+1)=h

�

Z
1

0
Hq+1;0

p+1;q+2

"
xt

����� (ai � �i; �i)1;p; (��; h)

(��� 1; h); (bj � �j ; �j)1;q; (0; 1);

# �
p	q f

�
(t)dt; (7.11.28)

respectively.

Then Theorems 4.11, 4.12 and 4.13, 4,14 imply the conditions of the inversion formulas

(7.11.27) and (7.11.28) for the transform (7.11.1) in the cases when � = 0 and � 6= 0;

respectively. The constants �0 and �0 in (4.9.6) and (4.9.7) take the forms

�0 = 1� min
15j5q

"
Re(bj)

�j

#
; �0 =1: (7.11.29)
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Theorem 7.62. Let a�;�; �; � and �0 be given in (7:11:5); (7:11:6); (7:11:8); (7:11:10)

and (7:11:29): Let a� = 0; 0 < 1� � < �; �0 < � < 0; � 2 C and h > 0:

(a) If �(1 � �) + Re(�) = 0 and if f 2 L�;2; the inversion formula (7:11:27) holds for

Re(�) > �h � 1 and (7:11:28) for Re(�) < �h� 1.

(b) If � = Re(�) = 0 and if f 2 L�;r (1 < r < 1); then the inversion formula (7:11:27)

holds for Re(�) > �h� 1 and (7:11:28) for Re(�) < �h � 1.

Theorem 6.63. Let a�;�; �; � and �0 be given in (7:11:5); (7:11:6); (7:11:8); (7:11:10)

and (7:11:29). Let a� = 0 and �(1� �) + Re(�) 5 1=2� (r); where (r) is given in (3:3:9);

and let 1 < r <1; � 2 C and h > 0:

(a) If � > 0; 0 < 1 � � < �; �0 < � < Re(� + 1=2)=� + 1 and if f 2 L�;r ; then the

inversion formulas (7:11:27) and (7:11:28) hold for Re(�) > �h � 1 and for Re(�) < �h � 1;

respectively.

(b) If p > 0;� < 0; 0 < 1 � � < �;max[�0; fRe(� + 1=2)=�g + 1] < � < 0 and if

f 2 L�;r; then the inversion formulas (7:11:27) and (7:11:28) hold for Re(�) > �h� 1 and for

Re(�) < �h � 1; respectively.

7.12. Bibliographical Remarks and Additional Information on Chapter 7

The results presented in Sections 7.1{7.11 were obtained by the authors and have not been published
before except those in Section 7.9. Below we give historical comments and a review of other investiga-
tions connected with the integral transforms of hypergeometric type.

For Section 7.1. The classical theory of the Laplace transform L in (2.5.2), in particular its
properties in the space L2(R+), is well known, for which see the books by Doetsch [1], [2], Widder
[1], Titchmarsh [3], Sneddon [1] and Ditkin and Prudnikov [1]. The Laplace transform of generalized
functions was considered by Zemanian [6] and by Brychkov and Prudnikov [1, Section 3.4].

The existence and the range of the generalized Laplace transform Lk;� given in (3.3.3) in the space
L�;r presented in Theorem 3.2(c) was proved by Rooney [6, Theorem 5.1(d)]. McBride and Spratt [1]
studied the range and invertibiliy of the generalized Laplace type transform N�

m given in (5.7.10) in
L�;r. In particular, they proved in [1, Theorem 5.4] that, if � 2 C , � 2 C and m > 0 are such that
Re(� � �=m) > 0, then for the transform N�

m on L�;r (1 5 r <1) there holds the following inversion
formula

f(x) = lim
n!1

�
Ln;�;�
m N�

mf
�
(x) (f 2 L�;r); (7.12.1)

where (for su�ciently large n)

�
Ln;�;�
m g

�
(x) =

n�(�+�)

�(n)

�
Wn�1=mK�+�+n;���n

m g
�
(x) (g 2 Fr;�): (7.12.2)

Here W� is given in (3.3.12) and K�;�
m = I�

�;m;� is the Erd�elyi{Kober type operator (3.3.2) de�ned
in terms of the Mellin transform by (3.3.7) for f 2 Fr;� (1 5 r 5 2), where the space Fr;� is de�ned
in (5.7.8), � 2 C , � 2 C and m > 0 such that Re(� + �=m) 6= �j (j = 0; 1; 2; � � �). By (5.7.10) one
may deduce from (7.12.1) and (7.12.2) the corresponding inversion formula for the generalized Laplace
transform L

�

;k;�;� given in (7.1.10).

For Section 7.2. The transform Mk;m de�ned by (7.2.1) was introduced by Meijer [3] (1941)
and is given his name. Meijer [3], [4] has proved the inversion formula for the transformMk;m in the
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form

f(x) = lim
R!1

1

2�i

�(1� k +m)

�(1 + 2m)

Z �+iR

��iR

(xt)k�1=2ext=2Mk�1=2;m(xt)
�
Mk;mf

�
(t)dt; (7.12.3)

where Mk�1=2;m(z) is the Whittaker function de�ned via the conuent hypergeometric function of
Tricomi (7.2.3) by

Mk�1=2;m(z) = e�z=2z2m+1	(1 � k +m; 2m+ 1; z) (7.12.4)

(see Erd�elyi, Magnus, Oberhettinger and Tricomi [1, 6.9(1)]). Meijer [3], [4] gave su�cient conditions
on f(x) under which (7.12.3) follows from (7.2.1) in the case k 5 m 5 � k, and under which (7.2.1)
is a consequence of (7.12.3), when Re(k) 5 � Re(m) < 1=2:

It should be noted that, when k = �m, the relation (7.2.1) is reduced to the Laplace transform L

in (2.5.2), while (7.12.3) is reduced to the inverse Laplace transform L
�1 known as a complex inversion

formula. Saksena [3] constructed a real inversion formula for the Meijer transform (7.2.1), analogous
to that constructed by Widder [1] for the Laplace integral, with the aid of the operator K�

�;�, which is
one of the so-called Kober fractional integration operators de�ned for � > 0 by

�
I+�;�f

�
(x) �

�
I�0+;1;�f

�
(x) =

x����

�(�)

Z x

0

t�

(x� t)1��
f(t)dt; (7.12.5)

�
K�

�;�f
�
(x) �

�
I�
�;1;�f

�
(x) =

x�

�(�)

Z
1

x

t����

(t� x)1��
f(t)dt (7.12.6)

(see Samko, Kilbas and Marichev [1, (18.5){(18.6)]). Saksena [3] de�ned sequences of di�erential
operators

�
Unf

�
(x) = (�1)nxn�k�m

�
d

dx

�n

[xk+mf(x)] (7.12.7)

and proved the inversion formula in the form

f(x) = lim
n!1

1

t�(n)

�
UnMk;mf

�
(t)

����
t=n=x

(x > 0); (7.12.8)

provided that f(t) is bounded for 0 < t < 1. He also deduced necessary and su�cient conditions
for a given function g(x) to be represented by the integral g(x) = (M k;mf)(x) with bounded f(x).
K.J. Srivastava [1] applied the Kober operators (7.12.5) and (7.12.6) to the investigation of the Meijer
transformMk;m as the operator acting from Lr(R+) into Lr0 (R+) for 1 5 r 5 2 (1=r + 1=r0 = 1).

We also indicate some other investigations of the Meijer transform Mk;m in (7.2.1). Arya [3]
studied the convergence and some properties of the Meijer type transform of the form (7.2.1) in which
f(t)dt is replaced by da(t) with a special function a(t). Misra [1] gave Abelian and Tauberian theorems
for the transformMk;m. Mehra [1], [3] studied some operational properties of the transform (7.2.1).
In particular, he considered the images of the Meijer transforms which are self-reciprocal in the Hankel
transform (8.1.1). Pathak and Rai [1] proved certain Abelian (initial and �nal value) theorems for the
Meijer transformMk;m.

The Varma transform V k;m in (7.2.15) is a generalization of the Laplace integral transform L in
(2.5.2), when k+m = 1=2. Saksena [1] (1953) probably �rst called this transform the Varma transform.
Varma himself in [3] (1951) studied some properties of a more general transform than (7.2.15) of the
form Z

1

0

(xt)m�1=2e�xt=2Wk;m(xt)da(t) (7.12.9)

with a certain function a(x) and, in particular, he gave several real inversion formulas for such a
transform. Earlier Varma in [1] (1947) obtained for the transform

x

Z
1

0

(2xt)�1=4Wk;m(2xt)f(t)dt (7.12.10)
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theorems which are analogous to certain results for the Laplace transform (2.5.2), while in [2] (1949)
he derived a complex inversion formula for the transform (7.12.10).

Saksena [1] established three inversion formulas for the transform V k;m which correspond to an
inversion for the Laplace transform L in (2.5.2). In [2] and [4] Saksena proved representations for the
Varma transform (7.2.15) as compositions of the Laplace operator L and the Kober operators (7.12.5)
and (7.12.6). The representations by Saksena can be obtained from (7.2.30) and (7.2.31) and have the
forms �

V k;mf
�
(x) =

�
LI+2m;1=2�k�mf

�
(x) (7.12.11)

and �
V k;mf

�
(x) =

�
K�

0;m�k�1=2x
2m
Lx2mf

�
(x): (7.12.12)

By using such representations Saksena proved a real inversion formula for the Varma transform. Similar
results were also obtained by R.K. Saxena [7], Kalla [1], [3], Pathak [6] and Habibullah [2] for the Varma
transform (7.2.15) and by Habibullah [3] for the transform of the form (7.2.15), in which the Whittaker
function Wk;m(xt) given in (7.2.2) is replaced by the Whittaker function Mk;m(xt) given in (7.12.4).
We also indicated that Fox [5] established the inversion formula for the Varma transform V k;m in
terms of the direct L and inverse L�1 Laplace transforms.

Gupta [3] established connections between the Meijer and Varma transforms given in (7.2.1) and
(7.2.15). Connections of the Varma transform V k;m with the Hankel transform H � in (8.1.1) and the
Meijer transform K� in (8.9.1) were studied by R.K. Saxena [4] and Gupta [1], respectively. R.K. Saxena
and K.C. Gupta [1] and Kalla and Munot [1] obtained several theorems involving the Laplace transform
(2.5.2) and the Varma transform (7.2.15). Saigo, Goyal and S. Saxena [1] proved a relationship between
L, V k;m and the fractional integral, more general than the Riemann{Liouville fractional integral I�

�

in (2.7.2), involving the general class of polynomials and a generalized polynomial set.
Kesarwani [2]{[7] and R.K. Saxena [1]{[3], [5]{[6] studied the properties of the simple modi�cation

of the Varma transform (7.2.15) in the form

x

Z
1

0

(xt)m�1=2e�xt=2Wk;m(xt)f(t)dt: (7.12.13)

Pathak in [7] and [8] extended the Varma transform (7.2.15) and the Meijer transformM k;m in
(7.2.1) to certain spaces of generalized functions and investigated properties such as analyticity, the
inversion relation, uniqueness, characterization and the structure formulas. Tiwari [1] obtained similar
results for the transform V k;m in another space of tested functions (see Brychkov and Prudnikov [1,
Sections 7.1 and 7.2] in this connection).

For Section 7.3. H.M. Srivastava [5] (1968) �rst considered the generalized Whittaker transform
W

k
�; in (7.3.1) and proved that if f(x) 2 L2(R+) and �k 5 � 5 k + 1=2, then an inversion formu-

la for the transform W
k
�; is given via the inverse Laplace transform L

�1 and the Kober fractional

integration operator K�

1+k��;k+� in (7.12.6) by

f(x) =
�
L
�1K�

1+k��;k+�W
k
�;f

�
(x): (7.12.14)

Pathak [5] gave two other inversion relations for the generalized Whittaker transform (7.3.1). The
�rst one has the form

f(x) =
�
M�(k++1=2)L

�1M�(k++1=2)K
�

1+k��;�+�1=2W
k
�;f

�
(x); (7.12.15)

where M�(k++1=2) is the elementatry operator (3.3.11), provided that 1 + k > max[jj; � � 1=2],

 + � > 1=2 and f(x) 2 L2(R+), x
k++1=2f(x) 2 L2(R+). The second inversion relation is given by

f(x) =
�
L
�1(K�

k++1=2;1=2���)
�1
W

k
�;f

�
(x); (7.12.16)
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provided that �k � 1 <  < 1=2� �, f(x) 2 L2(R+) and the right-hand side of (7.12.16) exists.
Nasim [3] derived the inversion operators in terms of certain di�erential operators, for the operator

W
k
�; and for the operator of the form (7.3.1) with W�; (xt) being replaced by M�; (xt) given in

(7.12.4).
Srivastava and Vyas [1] obtained the relationship between the transformW k

�; and the generalized
Hankel transform given in (8.14.57).

Srivastava [6] (1968) introduced the generalization of the Whittaker transform (7.3.1) in the form

�
S
�;�
q;k;mf

�
(x) =

Z
1

0

(xt)��1=2e�qxt=2Wk;m(pxt)f(t)dt; (7.12.17)

investigated its inversion formula and obtained the relation of this transform with the Hardy transform
(8.14.51). Srivastava, Goyal and Jain [1] studied the relationship between the transform (7.12.17) and
the fractional integral, more general than the Riemann{Liouville fractional integral I�

�
in (2.7.2),

involving the general class of polynomials.
Tiwari [4], [5], Tiwari and Ko [1] and Rao [9] extended the generalized Whittaker transform S�;�

q;k;m

in (7.12.17) to certain spaces of generalized functions and discussed such properties as smoothness, the
inversion formula and uniqueness. Tiwari [4] also proved some Abelian theorems for this transform.

Carmichael and Pathak [1] considered the transform
�
S
�;�
q;k;mf

�
(x) for complex x 2 C , studied its

behavior as x !1 and as x ! 0 provided that f(t) has a certain behavior when t ! 0+ or t !1,
respectively, and extended the results obtained to a certain space of generalized functions described
previously by Pathak [7].

We also mention C.K. Sharma [1] who established some properties of the transform, more general
than the transform (7.3.1) involving the H-function.

Banerjee [1] (1961) and Mainra [1] (1961) probably �rst considered further modi�cations of the
generalized Whittaker transform (7.3.13) in the forms

Z
1

0

(2xt)m�1=2e�pxt=2	(a; c; 2xt)f(t)dt (7.12.18)

and

�
W

���1=2
k+1=2;m;1;0f

�
(x) = x

Z
1

0

(xt)���1=2e�xt=2Wk+1=2;m(xt)f(t)dt; (7.12.19)

respectively. We note that, in accordance with (7.2.2), the transform in (7.12.18) with the Tricomi hy-
pergeometric function (7.2.3) in the kernel is the generalized Whittaker transform of the form (7.3.13).
Banerjee [1] also introduced the transform of the form (7.12.18) in which 	(a; c; 2xt) is replaced by an-
other conuent hypergeometric function �(a; c; 2xt) (see Erd�elyi, Magnus, Oberhettinger and Tricomi
[2, Chapter VI]) and proved the inversion formulas for these transforms. Bora [1] proved two results
for the transform (7.12.18). Mainra [1] studied (7.12.19) with complex x 2 C (Re(x) > 0) and proved
several properties, in particular an analogy of the relation (7.3.16) and an inversion formula. Gupta
[3] proved a theorem connecting the transform (7.12.19) and a generalized Stieltjes transform.

U.C. Jain [2] and Parashar [2] established some other properties for the transform (7.12.19). R.P.
Goyal [1] investigated the convergence of the generalized Whittaker transform of the form

Z
1

0

(2xt)�Wk;m(2xt)da(t); (7.12.20)

where a(t) is a normalized function of bounded variation. Habibullah [3] considered the integral
transform of the form (7.12.18)

x�
Z
1

0

(xt)a�1	(a; c;�xt)f(t)dt; (7.12.21)

proved its representation as a composition of the transforms generalizing Stieltjes' and Laplace's,
(7.9.3) and (2.5.2), and apply this result to investigate the boundedness of the transform (7.12.21)
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from Lp(R+) (p = 1) into Lq(R+) (1=q = 1� 1=p� � = 0). We also mention Arya [4] who proved the
Abelian theorem for the integral transform

Z
1

0

(xt)2me�xt	(�k +m;m+ 1;xt)da(t): (7.12.22)

For Section 7.4. The transform D in (7.4.1) was de�ned and studied by Saksena [6] in a spe-
cial space of generalized functions, in which the properties such as analyticity, the inversion formula
and characterization were investigated (see the book by Brychkov and Prudnikov [1, Sections 7.8]). Ma-
hato and Saksena [1]{[3] studied the transform D in other spaces of tested and generalized functions
and indicated the application to solve a special boundary value problem.

We also indicate that earlier Saksena in [5] obtained in terms of the transform D the following
inversion formula for the Laplace transform (2.5.2):

�
L
�1f

�
(x)

= lim
k!1

kk+12���(k+1)=2p
��(k + 1)

Z
1

0

(xt)���k=2e�k
2=(8xt)Dk+2��1

�
kp
2xt

��
Lf

�
(t)dt (7.12.23)

under certain conditions on f(x).
Marichev and Vu Kim Tuan [1], [2] (see also Samko, Kilbas and Marichev [1, Theorem 36.14]) stud-

ied the isomorphic property of the modi�cation of the integral transform (7.4.1) with e�xt=2D

�p
2xt

�
being replaced by e�x=(2t)D

�p
2x=t

�
. They proved two composition representations for such a trans-

form in terms of the Riemann{Liouville fractional integral operator I�
�
in (2.7.2) and a modi�cation of

the Laplace transform (7.1.1) with k = 1 in which xt is replaced by x=t and the multiplier 1=t is added.

For Section 7.5. The transform 1F
k
1 in (7.5.1) was �rst introduced by Erd�elyi [3] in the form

�
1F

�
1f
�
(x) =

�(� + � + 1)

�(�+ � + � + 1)

Z
1

0

(xt)� 1F1(� + � + 1;�+ � + � + 1;�xt)f(t)dt (7.12.24)

with complex parameters �, � and �.
Joshi [1], [3] investigated this transform in the space Lp(R+) (p = 1) and proved two real inversion

formulas and a representation theorem for this transform. The �rst inversion relation is based on the
representation of (7.12.24) as the composition of the Kober fractional integral operator I+�;� in (7.12.5)
and the generalized Laplace transform L1;�� in (3.3.3):

1F
�
1 = I+�;�L1;��: (7.12.25)

The second inversion formula contains a di�erential operator which is an inverse to the Stieltjes trans-
form (7.9.3) and has a similar form to the one given in (7.12.7) and (7.12.8) for the Meijer transform
(7.2.1). Joshi used the �rst inversion formula to give in a representation theorem necessary and su�-

cient conditions for the function g(x) to have the representation in the form (7.12.24): g = 1F
�
1f with

f 2 Lp(R+) (p = 1).
In [2] Joshi showed that the Laplace transform (2.5.2) of the transform (7.12.24) yields the gener-

alized transform 2F
�
1 of the form (7.8.20):

�
L 2F

�
1f
�
(x) =

�(� + � + 1)�(� + 1)

�(�+ � + � + 1)

� 1
x

Z
1

0

�
t

x

��

2F1

�
� + � + 1; � + 1;�+ � + � + 1;� t

x

�
f(t)dt: (7.12.26)

Joshi in [4] also proved certain Abelian theorems for the transform 1F
�
1 in (7.12.24), and in [6], [7]

gave a representation theorem for such a transform on Lorentz spaces.
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Habibullah [3] and Love, Prabhakar and Kashyap [1] investigated the generalized transform 1F
�;�
1

in (7.5.11) with � = � + a � 1, � = a � 1 and � = 0, � = c � 1, respectively. They obtained the
representations for such transforms as the compositions of the Kober fractional integral operator K�

�;�

in (7.12.6) and a certain generalized Laplace transform Lk;� in (3.3.3) and applied these results to �nd
the inversion formulas of the transforms considered.

Rao [1], [3]{[7] extended the transform 1F
�
1 in (7.12.24) of the form (7.5.1) to a certain space of

generalized functions and established analyticity, representation, inversion and uniqueness. In [8] Rao
proved the Abelian theorems for such a transform and extended the results in the distributional sense
(see Brychkov and Prudnikov [1, Sections 7.5] in this conection).

We also mention that Wimp [1], Prabhakar [1], [2] and Habibullah [1] obtained the inversion
formulas for the integral transform containing 1F1(a; c; z) in the kernel by generalizing the Riemann{
Liouville fractional integration operators to the form

1

�(�)

Z x

a

(x� t)��1 1F1 (�;�;�(x� t)) f(t)dt (� > 0); (7.12.27)

and the corresponding integral transform with integration over (x; b) under certain conditions on f(t)
and the integral in (7.12.27), where �1 < a < x < b < 1. The boundedness and inversion of these
operators in the space Lp(a; b) (1 5 p <1) were given by Marichev (see Samko, Kilbas and Marichev
[1, Section 37.1]). In Section 10.4 of the book, Marichev also proved the representation and bounded-
ness theorem for such operators with a = 0 and b =1 in Lp(R+) (1 5 p <1).

For Sections 7.7 and 7.8. The modi�ed transform 2F 1
2 in (7.8.2) was �rst considered by Swaroop

[1] (1964). Using the inverse Mellin transform (see, for example, the book by Marichev [1, Theorem
25]), he gave several complex inversion formulas for this transform, proved the uniqueness theorem
and the relation of integration by parts (7.8.12) also called a Parseval type property. K.C. Gupta and
S.S. Mittal [1]{[3] established several theorems involving the transform 2F 1

2 and the modi�cation of
the Whittaker transform (7.12.19). Kalla [2] showed that the composition of the transform (7.8.2)
and a modi�cation of the Varma transform (7.2.15) yields the integral transform containing the Mei-
jer G-function (2.9.1) as a kernel. Marichev [1, Section 8.2] showed that the transform 2F 1

2 can be
represented in the form

2F 1
2 = Ma�1LMa�1Lx

b�1Ic�b
�

M1�c; (7.12.28)

where the operators M� ; L and Ic�b
�

are given in (3.3.11), (2.5.2) and (2.7.2), and proved the relation
(7.8.12).

Several authors used the compositions of the fractional integration operators of Riemann{Liouville
(2.7.1), (2.7.2) and of Erd�elyi{Kober type (3.3.1), (3.3.2) with the generalized Stieltjes transform
(7.9.1) to obtain the inversion formulas for the generalized hypergemetric transforms. Love [3] �rst

proved such an inversion formula for the transform 2F
1;0;b
1 in (7.8.19). Prabhakar and Kashyap [1] and

Habibullah [3] established the inversion relations for the transforms 2F
2;0;c�1
1 in (7.8.20) and 2F

�+b;b
1

in (7.7.21), respectively. We also mention that Erd�elyi [4] considered the transform 2F
1;0;�b
1 of the

form (7.8.19) in a certain space of generalized functions.
Many authors investigated the integral transforms involving the Gauss hypergeometric function

2F1(a; b; c; z) in kernels, which generalize the fractional integration operators of Riemann{Liouville
(2.7.1), (2.7.2), Kober (7.12.5), (7.12.6) and Erd�elyi{Kober type (3.3.1), (3.3.2). Love [1] (1967), [2]
(1967) �rst considered the integral transforms of the forms for x > 0

�
1I

c
0+(a; b)f

�
(x) =

1

�(c)

Z x

0

(x� t)c�1 2F1

�
a; b; c; 1� x

t

�
f(t)dt; (7.12.29)

�
2I

c
0+(a; b)f

�
(x) =

1

�(c)

Z x

0

(x� t)c�1 2F1

�
a; b; c; 1� t

x

�
f(t)dt (7.12.30)

and

�
1I

c
�
(a; b)f

�
(x) =

1

�(c)

Z
1

x

(t� x)c�1 2F1

�
a; b; c; 1� x

t

�
f(t)dt; (7.12.31)
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�
2I

c
�
(a; b)f

�
(x) =

1

�(c)

Z
1

x

(t� x)c�1 2F1

�
a; b; c; 1� t

x

�
f(t)dt (7.12.32)

with a; b; c 2 C (Re(c) > 0). Love proved the representations of the above transforms as compo-
sitions of two Riemann{Liouville fractional integrals (2.7.1) and (2.7.2) with power weights. These
representations for the integrals (7.12.29) and (7.12.30) have the forms

1I
c
0+(a; b) = Ic�b0+ M�aI

b
0+Ma = Mc�a�bI

b
0+Ma�cI

c�b
0+ Mb; (7.12.33)

2I
c
0+(a; b) = MaI

b
0+M�aI

c�b
0+ Mc�b = MbI

c�b
0+ Ma�cI

b
0+Mc�b; (7.12.34)

where M� is the elementary operator (3.3.11). The representations for the integrals in (7.12.31) and
(7.12.32) are obtained from (7.12.33) and (7.12.34) by replacing 1I

c
0+(a; b), 2I

c
0+(a; b), I

c�b
0+ and Ib0+

by 1I
c
�
(a; b), 2I

c
�
(a; b), Ic�b

�
and Ib

�
, respectively.

Love [1], [2] established the boundedness of the operators 1I
c
0+(a; b), 2I

c
0+(a; b) in the space L

q
1(0; d)

and 1I
c
�
(a; b), 2I

c
�
(a; b) in Lr

1(e;1), where 0 < d; e <1; 1 5 p <1, q; r 2 C ,

Lq
p(0; d) = ff(x) : xqf(x) 2 Lp(0; d)g (7.12.35)

and

Lr
p(e;1) = ff(x) : xrf(x) 2 Lp(e;1)g: (7.12.36)

He applied the results obtained to �nd the explicit inversion formulas for these transforms. Marichev
extended the results by Love to more general weighted spaces Lq

p(0; d) and Lr
p(e;1) with any p

(1 5 p <1) (see Samko, Kilbas and Marichev [1, Sections 10.1 and 35.1]).
It should be noted that earlier Wimp [1] (1964) and Higgins [2] (1964) proved the inversion formulas

for the transforms of the forms (7.12.31) and (7.12.32) in which the upper limit 1 is replaced by 1
(see Samko, Kilbas and Marichev [1, Section 39.2, Note 35.1]).

R.K. Saxena [9] (1967) introduced the operators

�x���1

�(1� �)

Z x

0
2F1

�
�; � +m; ;

at�

x�

�
t�f(t)dt (7.12.37)

and

�x�

�(1� �)

Z
1

x
2F1

�
�; � +m; ;

ax�

t�

�
t���1f(t)dt (7.12.38)

with complex parameters �; �;  2 C satisfying certain conditions and � = a = 1. He gave the formulas
of their Mellin transform for f(x) 2 Lp(R+) if 1 5 p 5 2 and for f(x) in a special space Mp if p > 2,
and the relation of integration by parts being an analog of (7.7.11). Kalla and R.K. Saxena in [1]
extended these results to the general transforms (7.12.37) and (7.12.38) with � > 0 and complex
a 2 C , and in [3] obtained the inversion formulas for these transforms (see also Kalla [10, Section 3]).

We note that such a transform of the form (7.12.37) was �rst studied by Erd�elyi [1] (1940) while
investigating the composition of the Kober operators (7.12.5) and (7.12.6) with the elementary operator
R in (3.3.13):

�
T�f

�
(x) =

�
I+�+�=2;��K

�

�=2;�Rf
�
(x) (7.12.39)

with f(x) 2 L2(R). In particular, when Re(�) > �1 and n 2 N, he obtained the relation

�
Tnf

�
(x) = (�1)n(Rf)(x)

+
�(� + 1)

�(n)�(� + 1)

Z 1=x

0
(xt)�=2 2F1(1� n; �+ n� 1; �+ 1;xt)f(t)dt: (7.12.40)

If we replace x by 1=x, then the second term is reduced to the transform of the form (7.12.37).
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R.K. Saxena and Kumbhat [1], [3] studied the generalizations of the transforms (7.12.5) and (7.12.6)
in the forms

x����

�(�)

Z x

0

(x � t)��1 2F1

�
�+ �;��;�; 1� t

x

�
t�f(t)dt (7.12.41)

and

x�

�(�)

Z
1

x

(t � x)��1 2F1

�
�+ �;��;�; 1� x

t

�
t����f(t)dt (7.12.42)

with � > 0, �; � 2 C , f(x) 2 Lp(R+) (1 5 p 5 2). In [1] they investigated the relations between these
transforms and the Kober transforms I+�;� and K�

�;� given in (7.12.5) and (7.12.6), while in [3] they
established the uniqueness theorem and the inversion formulas and gave the relations between the
operators in (7.12.41) and (7.12.42) and the Hankel transform H� in (8.1.1) and the Laplace transform
L in (2.5.2).

Using the approach by Love [1], [2], McBride [1] obtained the inversion formulas for the transform

Z x

0

(xm � tm)c�1

�(c)
2F1

�
a; b; c; 1� xm

tm

�
mtm�1f(t)dt (x > 0) (7.12.43)

with m > 0, a; b; c 2 C (Re(c) > 0), more general than (7.12.29), and for similar generalizations of
(7.12.30){(7.12.32) in spaces of generalized functions F0r;� (see For Section 5.7 (Sections 5.2 and 5.3)),
while Prabhakar [3] gave the inversion relation for the transform

Z d

x

(tm � xm)c�1

�(c)
2F1

�
a; b; c; 1� xm

tm

�
mtm�1f(t)dt (a < x < d; m > 0) (7.12.44)

with m > 0, a; b; c 2 C (Re(c) > 0) in the space L1(a; b). We also mention that Braaksma and
Schuitman [1] obtained the inversion relations for the integral transform of the form (7.12.32) with
(t� x)c�1 being replaced by (1� x=t)c�1 in certain spaces of tested and generalized functions.

Saigo [1] (1979) introduced the transforms

�
I�;�;�0+ f

�
(x) =

x����

�(�)

Z x

0
(x� t)��1 2F1

�
�+ �;��;�; 1� t

x

�
f(t)dt (7.12.45)

and

�
I�;�;�
�

f
�
(x) =

1

�(�)

Z
1

x

(t� x)��1 2F1

�
�+ �;��;�; 1� x

t

�
t����f(t)dt (7.12.46)

with �; �; � 2 C (Re(�) > 0), which are modi�cations of the transforms (7.12.30) and (7.12.31), and
investigated composition properties, the relation of integration by parts and inversion formulas in the
space Lp with any 1 5 p 5 1 (see also Samko, Kilbas and Marichev [1, Section 23.2, Note 18.6] in

this connection). Srivastava and Saigo [1] evaluated multiplications of the operators I�;�;�0+ and I�;�;�
�

.
Saigo and Glaeske [1] extended these and other properties of the transforms (7.12.45) and (7.12.46)
to McBride spaces of tested and generalized functions F�;r and F

0

�;r. Kilbas, Repin and Saigo [1]

constructed L�;r-theory for the operators I�;�;�0+ and I�;�;�
�

as special cases of the modi�ed G2
��;0- and

G
1
0;�-transforms (6.2.5) and (6.2.4) with m = p = q = 2 and n = 0. Glaeske and Saigo [2] evaluated the

Laplace transform (2.5.2) of the generlaized fractional integrals (7.12.45) and (7.12.46) and conversely
these fractional integrals of the Laplace transform in F

0

�;r. Saigo and Raina [1] obtained the images

of some elementary functions under the operators I�;�;�0+ and I�;�;�
�

and gave applications to certain
statistical distributions. Saigo, R.K. Saxena and Ram [2] established the relations between the Mellin

transformM of x�I�;�;�0+ , x�I�;�;�0+ andMf , and proved the representations of the transforms (7.12.45)

and (7.12.46) via the Laplace transform L and the inverse L�1. Compositions of I�;�;�0+ and I�;�;�
�

with
the axisymmetric di�erential operator of potential theory L� in (5.7.16) was studied by Kilbas, Saigo
and Zhuk [1].
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Grin'ko and Kilbas [1] investigated the mapping properties of the operators 1I
c
0+(a; b), 2I

c
0+(a; b),

1I
c
�
(a; b) and 2I

c
�
(a; b) given in (7.12.29){(7.12.32) in weighted H�older spaces with power weight on

the half-axisR+, established the conditions for these operators to realize an isomorphism between two
such weighted H�older spaces and gave applications to the integral transforms (7.12.45) and (7.12.46).
In [2] Grin'ko and Kilbas found the conditions on the parameters a; b and c in (7.12.29){(7.12.32)
su�cient for all compositions of these operators with special power weights to be operators of the
same form. See in this connection Samko, Kilbas and Marichev [1, Section 17.2, Note 10.1]. The
authors in Saigo and Kilbas [1] proved mapping properties of the operator (7.12.45) de�ned on a �nite
interval (0; d) (0 < d <1) in the space of H�older functions.

A series of papers was devoted to studying the inversion for special cases of the integral transform
of the form (7.12.32) on a �nite interval (0; 1), integration over (x;1) being replaced by integration
over (x;1), with the Chebyshev polynomial Tn(x) and the Legendre polynomial Pk(x) in the kernels,
and for modi�cations of these transforms with the Legendre function P �

� (x), the Jacobi polynomial

P
�;�)
n (x), the Gegenbauer polynomial C�

k (x) and other generalized polynomials in the kernels (see
Samko, Kilbas and Marichev [1, Section 35.1 and Section 39.2, Notes 35.1 and 35.2]). Heywood and
Rooney [5] investigated in the space L�;r (1 5 r 5 1; � 2 C ) the integral transform of the form

�
G

�
kf
�
(x) =

2

�(�+ 1=2)

Z
1

x

�
1� x2

t2

���1=2

G�k
�x
t

�
f(t)

dt

t
(k 2 N0); (7.12.47)

where G�k (x) = C�
k (x)=C

�
k (1) (� > �1=2; � 6= 0), C�

k (x) is the Gegenbauer polynomial of index � and
order k de�ned by

C�
k (x) =

(2�)k
k!

2F1

�
�k; k + 2�;�+

1

2
;
1� x

2

�
(k 2 N; � 2 C ) (7.12.48)

and G0k(x) = Tk(x) is the Chebyshev polynomial of degree k (see Erd�elyi, Magnus, Oberhettinger and
Tricomi [2, Section 10.9]). Heywood and Rooney [5] established the boundedness and the range of
the transform (7.12.47) in L�;r and proved its inversion formulas. We also mention that earlier the
inversion relations for the integral transforms of the form (7.12.47) and similar transforms with inte-
gration over (x; d) (0 < d 5 1) were given by K.N. Srivastava [1] (1961/62), Buschman [1] (1962) and
Higgins [1] (1963). We also mention Saigo and Maeda [1] who investigated on the McBride space F�;r
properties of integral transforms generalizing (7.12.45) and (7.12.46) and involving the Appell function
F3 in (2.10.4) as the kernels.

For Section 7.9. The results presented in this section were obtained by the authors in Saigo
and Kilbas [5].

The generalized Stieltjes transform S�;�;� (7.9.1) in the particular case when � = 0; � = 2m and
� = �m � k + 1=2�

S0;2m;�m�k+1=2f
�
(x)

=
�(2m + 1)

�(m � k + 3=2)

Z
1

0
2F1

�
2m+ 1; 1;m� k +

3

2
;� t

x

�
f(t)

dt

x
(7.12.49)

with Re(m) > �1=2 was �rst considered by Arya. In [1] (1958) he proved Abelian type theorems for
the transform which generalize the corresponding Abelian theorems for the Laplace transform (2.5.2)
proved by Widder [1]. In [2] (1958) Arya used the Mellin transformM in (2.5.1) to establish the real
inversion formula for the transform (7.12.49) in the form

1

2
[f(t + 0) + f(t � 0)]

=
1

2�i

Z c+i1

c�i1

�(m� k + s + 1=2)

�(2m + s)�(s)�(1 � s)
t�s

�
MS0;2m;�m�k+1=2f

�
(s)ds (7.12.50)

under certain conditions on f(x) as well as the result that f(x) 2 Lc;1: xc�1f(x) 2 L1(R+). In
[5] (1960) Arya proved the complex inversion formula for (7.12.49) on the basis of the corresponding
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complex inverse formula for the Meijer transform K� in (8.9.1). Rao [2], [7] extended the transform
S0;2m;�m�k+1=2 to a certain space of generalized functions and proved a number of Abelian (an initial-
value and a �nal-value) theorems for this transform.

Golas [2] investigated the invertibility of the transform (7.9.1) and its generalization

�(� + � + 1)�(� + 1)

�(�+ � + � + 1)

1

x

�
Z
1

0

�
t

x

��

2F1

�
� + � + 1; � + 1;�+ � + � + 1;� t

x

�
da(t); (7.12.51)

where a(t) is a function of bounded variation in every �nite interval. He established the real inversion
formulas for these transforms via a certain integro-di�erential operator. In [3] Golas investigated
some other properties of the transform (7.9.1). Joshi [5] proved the complex inversion relation for
the generalized Stieltjes transform S�;�;� in (7.9.1). Tiwari [2], [3], [6] extended this transform to a
certain space of generalized functions. Tiwari and Koranne [1] proved Abelian theorems of the initial
and �nal value type for the transform (7.9.1) and extended the results to a certain class of generalized
functions. See in this connection also Brychkov and Prudnikov [1, Section 7.11].

We also note that Glaeske and Saigo [2] investigated the left- and right-sided compositions of the
generalized Stieltjes transform

�
S�f

�
(x) =

Z
1

0

f(t)

(x + t)�
dt (7.12.52)

with the generalized fractional integrals (7.12.45) and (7.12.46) in the McBride space F0p;� of general-
ized functions and showed that such compositions are expressed in terms of the Kamp�e de F�eriet series
(see the book by Srivastava and Karlsson [1]).

For Section 7.10. Mehra and R.K. Saxena [1] (1967), by considering the transform pF p in (7.10.1),
proved two theorems and derived some results in particular cases when p = 1 and p = 2.

Goyal and Jain [1] studied the generalizations of the integral transforms (7.12.41) and (7.12.42) in
the forms

x����

�(�)

Z x

0

(x� t)��1 pFq

�
a1; � � � ; ap; b1; � � � ; bp;�

�
1� t

x

��
t�f(t)dt (7.12.53)

and

x�

�(�)

Z
1

x

(t� x)��1 pFq

�
a1; � � � ; ap; b1; � � � ; bp;�

h
1� x

t

i�
t����f(t)dt (7.12.54)

with complex parameters � (Re(�) > 0); �; ai (1 5 i 5 p), bj (1 5 j 5 q) and �. They showed that
the composition of two transforms (7.12.53) (or (7.12.54)) with di�erent parameters �, �, ai, bj and
� becomes the integral transform of the form (7.12.53) (or (7.12.54)) with pFq being replaced by a
special triple hypergeometric series. Goyal and Jain [1] also proved formally the Mellin transforms
of (7.12.53) and (7.12.54) and applied the relations to give their inversion formulas and then they
established certain relations of the generalized Hankel transform (8.14.62). Goyal, Jain and Gaur [1],
[2] extended some of these results to more general integral transforms involving additionally in the
kernels of (7.12.53) and (7.12.54) the terms with a general class of polynomials.

Srivastava, Saigo and Raina [1] investigated compositions of the Laplace transform (2.5.1) with the
generalized fractional integral operators (7.12.45) and (7.12.46). They proved that the compositions

Lx�I�;�;�
�

f and I�;�;�0+ x�Lf are the transform 2F2 of the form

�(�+ 1)�(�� � + � + 1)

�(�� � + 1)�(� + �+ � + 1)
x���

�
Z
1

0
2F2 (�+ 1; �� � + � + 1;�� � + 1; �+ �+ � + 1;�xt)f(t)dt; (7.12.55)
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while Lx�I�;�;�0+ f and I�;�;�
�

x�Lf take more complicated shapes and are represented as sums of three
kinds of transform 2F 2.

We also indicate that Prabhakar [4] studied the inversion of the integral transforms of the form
(7.12.43) and (17.12.44) with 2F1 being replaced by the conuent hypergeometric function of two
variables in the space L1(a; b). He proved that such an integral transform can be represented as the
composition of two Riemann{Liouville fractional integrals (2.7.1) with power-exponential weights and
applied this result to prove the inversion fomula. In [5] Prabhakar extended these assertions to more
general integral transforms (in this connection see Samko, Kilbas and Marichev [1, (10.63), (10.64)
and Section 17.1, Notes to x10.4]).



Chapter 8

BESSEL TYPE INTEGRAL TRANSFORMS

ON THE SPACE L�;r

8.1. The Hankel Transform

We consider the Hankel integral transform de�ned in (2.6.1) by

�
H �f

�
(x) =

Z
1

0
(xt)1=2J�(xt)f(t)dt (x > 0) (8.1.1)

for Re(�) > �1. This transform (8.1.1) is clearly de�ned for a continuous function f 2 C0

with compact support on R+ for the range of parameters indicated.

We note that the Hankel transform H � generalizes the Fourier cosine transform

�
Fcf

�
(x) =

�
H�1=2f

�
(x) =

�
2

�

�1=2 Z 1

0
cos(xt)f(t)dt (x > 0) (8.1.2)

and the Fourier sine transform

�
Fsf

�
(x) =

�
H 1=2f

�
(x) =

�
2

�

�1=2 Z 1

0
sin(xt)f(t)dt (x > 0) (8.1.3)

in view of the well-known formulas (Erd�elyi, Magnus, Oberhettinger and Tricomi [2, 7.11(14),

(15)])

J�1=2(z) =

�
2

�z

�1=2

cos z; J1=2(z) =

�
2

�z

�1=2

sin z:

First we present the results characterizing the boundedness and the representation of the

Hankel transform (8.1.1) in L�;r-space.

Theorem 8.1. Let 1 5 r 5 1 and let (r) be given in (3:3:9):

(a) If 1 < r < 1 and (r) 5 � < Re(�) + 3=2; then for all s = r such that s0 = 1=�

and 1=s + 1=s0 = 1; the operator H � belongs to [L�;r;L1��;s] and is a one-to-one transform

from L�;r onto L1��;s. If 1 < r 5 2 and f 2 L�;r; then the Mellin transform of (8:1:1) for

Re(s) = 1� � is given by

�
MH �f

�
(s) = 2s�1=2

�

�
1

2

�
� + s+

1

2

��

�

�
1

2

�
� � s+

3

2

���Mf
�
(1� s): (8.1.4)

263
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(b) If 1 5 � 5 Re(�) + 3=2; then H � 2 [L�;1;L1��;1]. If 1 < � < Re(�) + 3=2; then for

all r (1 5 r 5 1) H � 2 [L�;1;L1��;r ].

(c) If f 2 L�;r and g 2 L�;s; where 1 < r <1 and 1 < s <1 are such that 1=r+1=s = 1

and max[(r); (s)] 5 � < Re(�) + 3=2; then the following relation holds:

Z
1

0
f(x)

�
H �g

�
(x)dx =

Z
1

0

�
H �f

�
(x)g(x)dx: (8.1.5)

(d) If f 2 L�;r; where 1 < r <1 and (r) 5 � < Re(�) + 3=2; then for almost all x > 0

�
H �f

�
(x) = x�(�+1=2) d

dx
x�+1=2

Z
1

0
(xt)1=2J�+1(xt)f(t)

dt

t
: (8.1.6)

Proof. The assertion (a) coincides with those in Theorem 8.50(a),(b) which will be proved

in Section 8.12. To prove (b) we �rst note that by (2.6.2) and Erd�elyi, Magnus, Oberhettinger

and Tricomi [2, 7.13(3)] the asymptotic behavior of J�(z) near zero and in�nity have the forms

J�(z) �
2��

�(� + 1)
z� (z ! 0); (8.1.7)

J�(z) �

�
2

�z

�1=2

cos

�
z �

1

2

�
� +

1

2

�
�

�
(z !1): (8.1.8)

Hence there is a constant K� such that, for all x > 0;

jJ�(x)j 5 K�x
��3=2;

if 1 5 � 5 Re(�) + 3=2. Then for f 2 C0 and 1 5 � 5 Re(�) + 3=2; we have

����H �f
�
(x)

��� 5
Z
1

0
(xt)1=2jJ�(xt)jjf(t)jdt 5 K�x

��1
Z
1

0
t��1jf(t)jdt = K�x

��1kfk�;1

and

ess sup
x2R

h
x1��

����H �f
�
(x)

���i = H �f

1��;1

5 K�kfk�;1:

Thus H � can be extended to L�;1 for 1 5 � 5 Re(�) + 3=2; and

H � 2 [L�;1;L1��;1] (8.1.9)

and H � is clearly given in (8.1.1) on L�;1.

If 1 < � < Re(�) + 3=2; we have

Z
1

0
x1��

����H �f
�
(x)

���dx
x

5

Z
1

0
x��dx

Z
1

0
(xt)1=2jJ�(xt)jjf(t)jdt

=
Z
1

0
t1=2jf(t)jdt

Z
1

0
x1=2�� jJ�(xt)jdx

= M

Z
1

0
t��1jf(t)jdt;

where

M =
Z
1

0
x1=2�� jJ�(x)jdx <1; (8.1.10)
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if and only if 1 < � < Re(�) + 3=2 in view of (8.1.7) and (8.1.8). Hence

H � 2 [L�;1;L1��;1]: (8.1.11)

By the interpolation of Banach spaces (see Stein [1, Theorem 2]), if 1 < � < Re(�)+ 3=2 and

1 5 r 5 1, we obtain H � 2 [L�;1;L1��;r], which completes the proof of the assertion (b).

To prove (c) we note that for f; g 2 C0; the relation (8.1.5) is proved directly by using

Fubini's theorem. Hence, since C0 is dense in L�;r and L�;s (see Rooney [1, Lemma 2.2]), (8.1.5)

will be true if we show that both sides of (8.1.5) represent bounded bilinear functionals on

L�;r�L�;s. Now the assumption 1=r+1=s = 1 implies r0 = s and the fact that 1=r 5 (r) 5 �

yields (r0)0 = r = 1=�: Thus the assumption (a) deduces H � 2 [L�;s;L1��;r0 ]. Applying the

H�older inequality (4.1.13) we have

����
Z
1

0
f(x)

�
H �g

�
(x)dx

���� 5
Z
1

0
jx�f(x)j

���x1���H �g
�
(x)

��� dx
x

5 Kkfk�;r
H �g


1��;r0

5 K�kfk�;rkgk�;s;

where K� is a bound for H � as an element of [L�;s;L1��;r0 ]. So the left-hand side of (8.1.5) is

a bounded bilinear functional on L�;r � L�;s as the right-hand side of (8.1.5) is by a similar

calculation, which shows (c).

To prove (d) we need in the function of the form (3.5.5):

g�;x(t) =

8<
:

t�+1=2; if 0 < t < x;

0; if t > x
(8.1.12)

and the function

h�;x(t) = x�+1t�1=2J�+1(xt); (8.1.13)

for which we prove the following auxiliary result.

Lemma 8.1. Let 1 < r <1: The following assertions hold:

(a) g�;x 2 L�;r if and only if � > �Re(�)� 1=2:

(b) If Re(�) > �3=2; then h�;x 2 L�;r if and only if �Re(�)� 1=2 < � < 1:

(c) If Re(�) > �1; then

H �g�;x = h�;x (8.1.14)

and

H �h�;x = g�;x: (8.1.15)

Proof. According to (3.1.3)

kg�;xk�;r =

�Z x

0
tr(�+Re(�)+1=2)�1dt

�1=r

<1;

if and only if � > �Re(�)� 1=2; which proves (a).
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Since from (8.1.7), if Re(�) > �2

h�;x(t) �
1

2�+1�(� + 2)
x2�+2t�+1=2 (t! +0) (8.1.16)

and from (8.1.8)

h�;x(t) �

�
2

�

�1=2

x�+1=2t�1 cos

�
xt �

1

2

�
� +

1

2

�
�

�
(t!1); (8.1.17)

then h�;x 2 L�;r ; if and only if

Z �

0
tr(�+�+1=2)�1dt <1;

Z
1

R
tr(��1)�1dt <1

for some positive � and R; and thus, for �Re(�)� 1=2 < � < 1 guaranteed by the assumption

Re(�) > �3=2; (b) is proved.

Putting � = 1=2; r = 2 in (a), we have g�;x 2 L1=2;2 = L2(R+) if Re(�) > �1. By noting

that

(ut)1=2J�(ut) =
1

u

d

dt

Z ut

0
v1=2J�(v)dv;

when Re(�) > �1=2, and by taking into account (8.1.12) and the relation

Z
z�+1J�(z)dz = z�+1J�+1(z) (8.1.18)

(see Erd�elyi, Magnus, Oberhettinger and Tricomi [2, 7.7(1)]), we have

�
H �g�;x

�
(t) =

d

dt

Z
1

0
g�;x(u)

du

u

Z ut

0
v1=2J�(v)dv =

d

dt

Z x

0
u��1=2du

Z ut

0
v1=2J�(v)dv

=
d

dt

Z x

0
u�+1du

Z t

0
v1=2J�(uv)dv =

d

dt

Z t

0
v1=2dv

Z x

0
u�+1J�(uv)du

= t1=2
Z x

0
u�+1J�(ut)du = t�(�+3=2)

Z xt

0
u�+1J�(u)du = x�+1t�1=2J�+1(xt)

= h�;x(t):

It follows from the Titchmarsh theorem

f(x) =
d

dx

Z
1

0
k(xt)g(t)

dt

t
; g(x) =

d

dx

Z
1

0
k(xt)f(t)

dt

t
(8.1.19)

in L2(R+) (see Titchmarsh [3, Theorem 129]) and (8.1.4), that on L1=2;2 the operator H
2
� is

an identity: H 2
� = I . Since h�;x 2 L1=2;2 = L2(R+) by the result of Theorem 8.1(a),

H �h�;x = H
2
�g�;x = g�;x;

which completes the proof of Lemma 8.1.
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Now we can prove the assertion (d) of Theorem 8.1. By Lemma 8.1(a), g�;x 2 L�;r0 :

Applying (8.1.12), Theorem 8.1(c), (8.1.14) and (8.1.13), we have for x > 0

Z x

0
t�+1=2

�
H �f

�
(t)dt =

Z
1

0
g�;x(t)

�
H �f

�
(t)dt =

Z
1

0

�
H �g�;x

�
(t)f(t)dt

=
Z
1

0
h�;x(t)f(t)dt = x�+1=2

Z
1

0
(xt)1=2J�+1(xt)f(t)

dt

t

and the result in (8.1.6) follows on di�erentiating. Thus Theorem 8.1 is proved.

Next we present the results characterizing the range of the Hankel transform (8.1.1) in the

space L�;r. First we indicate the constancy of the range of H �:

H �(L�;r) = H �(L�;r); (8.1.20)

if 1 < r <1; (r) 5 � < min[Re(�);Re(�)]+3=2: This relation for real � and � was proved by

Rooney [3, Theorem 1] by using a technique based on Mellin multipliers, and can be clearly

extended to complex � and �.

To give a complete description of H �(L�;r) we prove the representation of H �f in terms of

the shift operator M� and the Erd�elyi{Kober operator

�
I�;�f

�
(x) =

2x�2(�+�)

�(�)

Z x

0
(x2 � t2)��1t2�+1f(t)dt (�; � 2 C ; Re(�) > 0) (8.1.21)

(see Samko, Kilbas and Marichev [1, (18.8)]) with

�
I0;�f

�
(x) = f(x); (8.1.22)

where (8.1.21) is the special case of the operator I�0+;�;� de�ned in (3.3.1) as I�;� = I�0+;2;�.

Lemma 8.2. Let 1 < r <1; (r) 5 � < Re(�)+3=2; where  = (r) is given in (3:3:9):

If f 2 L�;r; then the representation

H �f = 2��M��I��;(���+�1=2)=2H ���+M��f (8.1.23)

holds.

Proof. By putting � = �� � +  and � = � � ; we rewrite (8.1.23) in the simpler form

H �+�f = 2��M�I�;(��1=2)=2H�M�f; (8.1.24)

which we are going to prove. Let f 2 C0. Note that Re(�) > �1 and � = 0 from the

assumptions. The result is obvious if � = 0 in view of (8.1.22). Let � > 0. Using the relation

J�+�(xt) =
1

2��1�(�)
x�(�+�)t�

Z x

0
(x2 � u2)��1u�+1J�(tu)du (8.1.25)

in Prudnikov, Brychkov and Marichev [2, (2.12.4.6)] and Fubini's theorem, we have

�
H�+�f

�
(x) =

Z
1

0
(xt)1=2J�+�(xt)f(t)dt
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=
1

2��1�(�)
x1=2�(�+�)

Z
1

0
t�+1=2f(t)dt

Z x

0
(x2 � u2)��1u�+1J�(tu)du

=
1

2��1�(�)
x1=2�(�+�)

Z x

0
(x2 � u2)��1u�+1=2du

Z
1

0
(tu)1=2J�(tu)t

�f(t)dt

= 2��
�
M�I�;(��1=2)=2H �M�f

�
(x)

and (8.1.24) is proved for f 2 C0.

Due to Rooney [2, Lemma 2.2], C0 is dense in L�;r and by Theorem 8.1(a), we have

H � 2 [L�;r;L1��;r]. Thus to complete the proof we must show that

M�I�;(��1=2)=2H �M� 2 [L�;r;L1��;r]: (8.1.26)

But by Lemma 3.1(i) M� maps L�;r isometrically onto L���;r = L;r and by Theorem 8.1(a)

H � maps L;r boundedly into L1�;r under  < Re(�) + 3=2: Then according to Theorem

3.2(a) I�;(��1=2)=2 maps L1�;r boundedly into itself, if 1 �  < Re(�) + 3=2 which is valid

from the assumption. FinallyM� maps L1�;r isometrically onto L1���;r = L1��;r; and thus

the result in (8.1.24) follows. This completes the proof of Lemma 8.2.

Now we are ready to prove the range of the Hankel transform (8.1.1) in terms of the shift

operator M� in (3.3.11), the Erd�elyi{Kober operator I�;� in (8.1.21) and the cosine transform

Fc in (8.1.2).

Theorem 8.2. Let 1 < r < 1 and  5 � < Re(�) + 3=2; where  = (r) is given in

(3:3:9): Then there holds

H �(L�;r) =
�
M��I��;�1=2Fc

�
(L;r): (8.1.27)

In particular; if r = 2 and 1=2 5 � < Re(�) + 3=2; then

H �(L�;2) =
�
M��1=2I��1=2;�1=2Fc

� �
L2(R+)

�
: (8.1.28)

Proof. Let � = ���1=2: Then �+3=2 = ��+1 > �; since  < 1: Hence by (8.1.20),

H �(L�;r) = H �(L�;r) = H ���1=2(L�;r): (8.1.29)

According to Lemma 8.2 and (8.1.2), if f 2 L�;r; we have

H ���1=2f = 2��M��I��;�1=2H�1=2M��f

= 2��M��I��;�1=2FcM��f: (8.1.30)

Let g 2 H �(L�;r): Then by (8.1.29) and (8.1.30) there exists f 2 L�;r such that

g = 2��M��I��;�1=2FcM��f:

Since M��f 2 L;r, g 2 (M��I��;�1=2Fc)(L;r) which means that

H �(L�;r) �
�
M��I��;�1=2Fc

�
(L;r): (8.1.31)
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Conversely, if g 2
�
M��I��;�1=2Fc

�
(L;r); there exists f 2 L;r such that g =

M��I��;�1=2Fcf . Let f1 = M��f . Then f1 2 L�;r and g = 2��H ���1=2f1 from (8.1.30),

which imply that g 2 H ���1=2(L�;r). Thus by virtue of (8.1.29) we �nd

�
M��I��;�1=2Fc

�
(L;r) � H �(L�;r): (8.1.32)

From (8.1.31) and (8.1.32) we obtain (8.1.27), which completes the proof of Theorem 8.2.

Theorem 8.1(c) and Lemma 8.1 allow us to �nd the inversion formula for the Hankel

transform (8.1.1) in the space L�;r.

Theorem 8.3. Let 1 < r <1 and (r) 5 � < min[1;Re(�) + 3=2]: If f 2 L�;r ; then the

inversion relation

f(x) = x�(�+1=2) d

dx
x�+1=2

Z
1

0
(xt)1=2J�+1(xt)

�
H �f

�
(t)

dt

t
(8.1.33)

holds for almost all x > 0:

Proof. Since Re(�) > �1 and �Re(�)� 1=2< 1=2 5 (r) 5 � < 1; Lemma 8.1(b) yields

that h�;x de�ned in (8.1.13) is in the space L�;r0 . Then by Theorem 8.1(c) and Lemma 8.1(c)

we have

x�+1=2
Z
1

0
(xt)1=2J�+1(xt)

�
H �f

�
(t)

dt

t
=

Z
1

0
h�;x(t)

�
H �f

�
(t)dt

=
Z
1

0

�
H �h�;x

�
(t)f(t)dt =

Z x

0
t�+1=2f(t)dt

and the result in (8.1.33) follows on di�erentiating.

Corollary 8.3.1. If 1 < r < 1 and (r) 5 � < Re(�) + 3=2, then the transform H � is

one-to-one on L�;r.

Proof. Let f 2 L�;r and H �f = 0. If (r) 5 � < min[1;Re(�) + 3=2], then f = 0

according to Theorem 8.3. When (r) 5 � < Re(�) + 3=2, then by Lemma 8.2

M��I��;(���+�1=2)=2H ���+M��f = 0

and hence H ���+M��f = 0 taking into account the isomorphism of the operator M� and

I�;� (see Lemma 3.1(i) and Rooney [1, Lemma 3.4]). Thus M��f 2 L;r. If we note  < 1

and  < Re(�)� � +  + 3=2, then by the previous result with � being replaced by �� � + ,

we have M��f = 0 and f = 0.

This result will be used in Section 8.7 while studying the transformY�.

Remark 8.1. The right-hand sides of (8.1.6) and (8.1.33) are the same except that in

(8.1.33) f is replaced by H �f which means formally H�1� = H � or H 2
� is an identity: H 2

� = I .

However, except for the case L1=2;2 = L2(R+) this is purely formal. If f 2 L�;r (1 < r < 1)

and (r) 5 � < Re(�) + 3=2; then H �f 2 L1��;r and thus for H 2
� to be de�ned we require

that (r) 5 1� � < Re(�) + 3=2. But since (r) = 1=2 with the equality only if r = 2; then
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1� � 5 1=2 5 (r) with the equality only if r = 2; and thus � = 1=2 and r = 2.

In Theorem 8.3 we found the inversion for the Hankel transform H � on L�;r, but with the

restriction that � < 1. The result below is the exception of this restriction.

Theorem 8.4. Let 1 < r <1 and (r) 5 � < Re(�)+3=2; or r = 1 and 1 5 � 5 Re(�)+

3=2 where (r) is given in (3:3:9): If we choose the integer l > � and if f 2 L�;r; then the

inversion relation

f(x) = x��+1=2
�
1

x

d

dx

�l

x�+l�1=2
Z
1

0
(xt)1=2J�+l(xt)

�
H �f

�
(t)

dt

tl
(8.1.34)

holds for almost all x > 0;

Proof. This is proved similarly to Theorem 8.3 on the basis of Theorem 8.1(c) and

Lemma 8.1 if we choose the function

h�;x(t) = x�+lt�l+1=2J�+l(xt) (l 2 N) (8.1.35)

instead of that in (8.1.13) and take into account Theorem 8.1(b) and the property

�
1

z

d

dz

�l

[z�J�(z)] = z��lJ��l(z) (8.1.36)

(see Erd�elyi, Magnus, Oberhettinger and Tricomi [2, 7.2(52)]).

8.2. Fourier Cosine and Sine Transforms

We consider the Fourier cosine and sine transforms Fc and Fs de�ned in (8.1.2) and (8.1.3).

As indicated in Section 8.1, these transforms are particular cases of the Hankel transform

(8.1.1) when � = �1=2 and � = 1=2; respectively. Therefore from the results in Section 8.1

we obtain the L�;r-theory of them.

The boundedness and the representation of the cosine and sine transforms in the space

L�;r follow from Theorem 8.1.

Theorem 8.5. Let 1 5 r <1 and let (r) be given in (3:3:9):

(a) If 1 < r < 1 and (r) 5 � < 1; then for all s = r such that s0 = 1=� and

1=s+1=s0 = 1; the operator Fc belongs to [L�;r;L1��;s] and is a one-to-one transform from L�;r

onto L1��;s. If 1 < r 5 2 and f 2 L�;r ; then the Mellin transform of (8:1:2) for Re(s) = 1� �

is given by

�
MFcf

�
(s) = 2s�1=2

�

�
s

2

�

�

�
1� s

2

��Mf
�
(1� s): (8.2.1)

(b) Fc 2 [L1(R+); L1(R+)].

(c) If f 2 L�;r and g 2 L�;s; where 1 < r <1 and 1 < s <1 are such that 1=r+1=s = 1

and max[(r); (s)] 5 � < 1; then the following relation holds:
Z
1

0
f(x)

�
Fcg

�
(x)dx =

Z
1

0

�
Fcf

�
(x)g(x)dx: (8.2.2)
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(d) If f 2 L�;r; where 1 < r <1 and (r) 5 � < 1; then for almost all x > 0;

�
Fcf

�
(x) =

d

dx

Z
1

0

(xt)1=2J1=2(xt)f(t)
dt

t
=

�
2

�

�1=2 d

dx

Z
1

0

sin(xt)f(t)
dt

t
: (8.2.3)

Theorem 8.6. Let 1 5 r <1 and let (r) be given in (3:3:9):

(a) If 1 < r < 1 and (r) 5 � < 2; then for all s = r such that s0 = 1=� and

1=s+1=s0 = 1; the operator Fs belongs to [L�;r;L1��;s] and is a one-to-one transform from L�;r

onto L1��;s. If 1 < r 5 2 and f 2 L�;r ; then the Mellin transform of (8:1:3) for Re(s) = 1� �

is given by

�
MFsf

�
(s) = 2s�1=2

�

�
1 + s

2

�

�

�
2� s

2

��Mf
�
(1� s): (8.2.4)

(b) If 1 5 � 5 2; then Fs 2 [L�;1;L1��;1]. If 1 < � < 2; then for all r (1 5 r 5 1);

Fs 2 [L�;1;L1��;r].

(c) If f 2 L�;r and g 2 L�;s; where 1 < r <1 and 1 < s <1 are such that 1=r+1=s = 1

and max[(r); (s)] 5 � < 2; then the following relation holds:
Z
1

0

f(x)
�
Fsg

�
(x)dx =

Z
1

0

�
Fsf

�
(x)g(x)dx: (8.2.5)

(d) If f 2 L�;r; where 1 < r <1 and (r) 5 � < 2; then for almost all x > 0;

�
Fsf

�
(x) =

1

x

d

dx
x

Z
1

0

(xt)1=2J3=2(xt)f(t)
dt

t
: (8.2.6)

Theorem 8.2 gives the range of the Fourier sine transform in the space L�;r.

Theorem 8.7. Let 1 < r <1 and (r) be given in (3:3:9): If  5 � < 2; then

Fs(L�;r) =
�
M��I��;�1=2Fc

�
(L;r); (8.2.7)

where I�;� is the Erd�elyi{Kober operator (8:1:21). In particular if r = 2 and 1=2 5 � < 2;

Fs(L�;2) =
�
M��1=2I��1=2;�1=2Fc

� �
L2(R+)

�
: (8.2.8)

From Theorem 8.4 we come to the inversion formulas for the Fourier cosine and sine trans-

forms in the space L�;r

Theorem 8.8. Let 1 < r <1; and let l be an integer such that l > �.

(a) Let (r) 5 � < 1; or r = 1 and � = 1. If f 2 L�;r; then the inversion relation

f(x) = x

�
1

x

d

dx

�l

xl�1
Z
1

0

(xt)1=2Jl�1=2(xt)
�
Fcf

�
(t)

dt

tl
(8.2.9)
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holds for almost all x > 0: In particular; when l = 1;

f(x) =
d

dx

Z
1

0

(xt)1=2J1=2(xt)
�
Fcf

�
(t)

dt

t

=

�
2

�

�1=2 d

dx

Z
1

0

sin(xt)
�
Fcf

�
(t)

dt

t
: (8.2.10)

(b) Let (r) 5 � < 2; or r = 1 and 1 5 � 5 2. If f 2 L�;r; then the inversion relation

f(x) =

�
1

x

d

dx

�l

xl
Z
1

0

(xt)1=2Jl+1=2(xt)
�
Fsf

�
(t)

dt

tl
(8.2.11)

holds for almost all x > 0: In particular; when l = 1;

f(x) =
1

x

d

dx
x

Z
1

0

(xt)1=2J3=2(xt)
�
Fsf

�
(t)

dt

t
: (8.2.12)

Remark 8.2. It follows from Theorems 8.5{8.8 that the range of the parameter �; for

which the L�;r-theory of the Fourier cosine and sine transforms (8.1.2) and (8.1.3) is valid, is

wider for the former than for the latter. We also note that direct di�erentiation of the right

sides in (8.2.10) and (8.2.12), by using (8.1.36) with l = 1 for the latter, yields the known

inversion formulas

f(x) =

�
2

�

�1=2 Z 1

0

cos(xt)
�
Fcf

�
(t)dt (8.2.13)

and

f(x) =

�
2

�

�1=2 Z 1

0

sin(xt)
�
Fsf

�
(t)dt (8.2.14)

for the cosine and sine transforms (8.1.2) and (8.1.3), respectively.

8.3. Even and Odd Hilbert Transforms

Let us consider the even and odd Hilbert integral transformsH+ and H� de�ned by

H+ = �FsFc (8.3.1)

and

H� = FcFs; (8.3.2)

where Fc and Fs are the Fourier cosine and Fourier sine transforms de�ned in (8.1.2) and

(8.1.3), respectively. Since Fc;Fs 2 [L1=2;2]; H+ and H� also belong to [L1=2;2]. The fact

that

F2c = F
2
s = I (8.3.3)
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on L1=2;2 = L2(R+) implies the relations

H+H� =H�H+ = �I (8.3.4)

on L2(R+), where I is an identical operator.

Applying Theorem 8.1 twice, once with � = �1=2 and once with � = 1=2; it follows that

if f; g 2 L1=2;2; then the relation of integration by parts (8.1.5) takes the forms

Z
1

0

�
H+f

�
(t)g(t)dt = �

Z
1

0
f(t)

�
H�g

�
(t)dt (8.3.5)

and Z
1

0

�
H�f

�
(t)g(t)dt = �

Z
1

0
f(t)

�
H+g

�
(t)dt: (8.3.6)

Taking g to be the characteristic function

�x(t) =

(
1; if 0 < t < x;

0; if t > x;
(8.3.7)

we obtain, by virtue of the simple equalityZ
1

0

1

x
fcosax� cos bxgdx = log

�
b

a

�
(a; b > 0)

(see Prudnikov, Brychkov and Marichev [1, (2.5.29.16)]), the integral representations

�
H+f

�
(x) = �

1

�

d

dx

Z
1

0
log

�����1� x2

t2

����� f(t)dt (8.3.8)

and �
H�f

�
(x) = �

1

�

d

dx

Z
1

0
log

���� t � x

t + x

���� f(t)dt (8.3.9)

for almost all x > 0. Comparing (8.3.8) and (8.3.9) with Theorem 90 in Titchmarsh [3], it is

evident thatH� is the restriction on R+ of the Hilbert transform of even functions, whileH+

is the restriction on R+ of the Hilbert transform of odd functions; hence the names, even and

odd Hilbert transforms are given to them. It follow from (8.3.8) and (8.3.9) that for suitable

functions f and almost all x > 0, H+f and H�f can be represented in the forms

�
H+f

�
(x) =

2x

�
p:v:

Z
1

0

1

t2 � x2
f(t)dt (8.3.10)

and �
H�f

�
(x) =

2

�
p:v:

Z
1

0

t

t2 � x2
f(t)dt; (8.3.11)

where p.v. denotes the Cauchy principal value of the integral at t = x.

The action of the Mellin transform on H+ and H� on L1=2;2 is directly computed from

(8.1.4). This yields that, if f 2 L1=2;2; then for Re(s) = 1=2 we have

�
MH+f

�
(s) = � tan

�
�s

2

��
Mf

�
(s) (8.3.12)
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and �
MH�f

�
(s) = cot

�
�s

2

��
Mf

�
(s): (8.3.13)

According to (8.3.1) and (8.3.2) and Theorems 8.5 and 8.6,H+ and H� can be extended

to L�;r for 1 < r < 1. The properties of these operators on this space are given in the

following result.

Theorem 8.9.

(a) Let 1 < r < 1 and �1 < � < 1. The transformH+ belongs to [L�;r ]: When � 6= 0;

H+ maps L�;r one-to-one onto itself. For f 2 L�;r the representations (8:3:8) and (8:3:10)

hold.

If 1 < r 5 2 and f 2 L�;r; the Mellin transform of H+ for Re(s) = � is given in (8:3:12):

(b) Let 1 < r <1 and 0 < � < 2: The operator H� belongs to [L�;r]: When � 6= 1; H�

maps L�;r one-to-one onto itself. For f 2 L�;r the representations (8:3:9) and (8:3:11) hold.

If 1 < r 5 2 and f 2 L�;r; the Mellin transform of H� for Re(s) = � is given in (8:3:13):

(c) Let 1 < r < 1; f 2 L�;r and g 2 L1��;r0 . If �1 < � < 1; then the formula of

integration by parts (8:3:5) holds; while when 0 < � < 2; (8:3:6) holds.

(d) Let 1 < r < 1: On L�;r with 0 < � < 1; the formula (8:3:4) holds. Further; the

relation

H+ = M1H�M�1 (8.3.14)

holds for �1 < � < 1; while the relation

H� = M�1H+M1 (8.3.15)

holds for 0 < � < 2; where the shift operator M� is given in (3.3.11).

Proof. The functionm(s) = � tan(�s=2) in (8.3.12) belongs to the class A (see De�nition

3.2) with �(m) = �1 and �(m) = 1. In fact, elementary arguments show that (a) m(s) is

analytic in �1 < Re(s) < 1; (b) m(s) is bounded in every closed substrip �1 5 Re(s) 5 �2;

where �1 < �1 5 �2 < 1; (c) for �1 < � < 1;

jm0(� + it)j =
�

2

����sec2
�
�

2
(� + it)

����� = O

�
1

x

�
(jtj ! 1):

Thus Theorem 3.1 yields that, since (8.3.12) holds on L1=2;2; the operator H+ 2 [L�;r]

for �1 < � < 1; and if f 2 L�;r with 1 < r < 1 and �1 < � < 1; then (8.3.12) holds for

Re(s) = �.

From

1

m(s)
= � cot

�
�s

2

�
= � tan

�
�(1� s)

2

�
= m(1� s);

we have 1=m 2 A with �(1=m) = 0 and �(1=m) = 2; which imply, by Theorem 3.1, that H+

maps L�;r one-to-one onto itself if 0 < � < 1: Further, we have 1=m(s) = m(�1�s) and hence

also 1=m 2 A with �(1=m) = �2 and �(1=m) = 0. So, again by Theorem 3.1, H+ maps

L�;r one-to-one onto itself if �1 < � < 0: The representation (8.3.10) follows from (8.3.8) by
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di�erentiating, while the representation (8.3.8) follow from the relation (8.3.5) by taking g as

the characteristic function (8.3.7). Thus once (8.3.5) is proved for f 2 L�;r and g 2 L�;r0 , (a)

is proved.

The proof of the statement (b) is exactly similar.

The relations of integration by parts (8.3.5) and (8.3.6) follow from the fact that these

formulas hold for f 2 L1=2;2; g 2 L1=2;2 and that both sides of them represent bounded

bilinear functionals on L�;r � L1��;r0 :

The formula (8.3.4) holds since it is valid on L1=2;2 and its both sides represent bounded

operators on L�;r. The equalities (8.3.14) and (8.3.15) follow on L�;2 on taking the Mellin

transform, and then on their respective L�;r; since both sides of (8.3.14) and (8.3.15) represent

bounded operators on those spaces. This completes the proof of Theorem 8.9.

According to (8.3.1) and (8.3.2), the inversion formulas for the even and odd Hilbert trans-

forms H+ and H� can be obtained from that for the Fourier cosine transform Fc and the

Fourier sine transform Fs given in Theorem 8.8.

Theorem 8.10. Let m and l be integers such that m > 1=2 and l > 1=2. Let F(m)
c and

F(l)s be given by

�
F(m)
c f

�
(x) = x

�
1

x

d

dx

�m

xm�1
Z
1

0
(xt)1=2Jm�1=2(xt)

�
Fcf

�
(t)

dt

tm
; (8.3.16)

�
F(l)s f

�
(x) =

�
1

x

d

dx

�l

xl
Z
1

0
(xt)1=2Jl+1=2(xt)

�
Fsf

�
(t)

dt

tl
: (8.3.17)

(a) If f 2 L2(R+); then the inversion relation

f(x) = �
�
F(m)
c F(l)s H+f

�
(x) (8.3.18)

holds for almost all x > 0.

(b) If f 2 L2(R+); then the inversion relation

f(x) =
�
F(l)s F

(m)
c H�f

�
(x) (8.3.19)

holds for almost all x > 0.

Proof. Let f 2 L�;r with 1 < r < 1, � 2 R and let (r) be given by (3.3.9). According

to (8.3.1)

Fs(Fsf) = �H+f:

If (r) 5 � < 1, then by Theorem 8.5(a) Fsf 2 L1��;r. Applying Theorem 8.8(b) with �

being replaced by 1� � we have

Fsf = �F(l)s H+f;

provided that (r) 5 1�� < 2 and l is an integer such that l > 1��. Similarly, if (r) 5 � < 1

and m is an integer such that m > �, then by Theorem 8.8(a) and the last relation we obtain

f = �F(m)
c F(l)s H+f;
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and (8.3.18) is proved. From the above conditions this relation holds only when (r) 5 �

5 1� (r). In accordance with (3.3.9) such a fact is possible in the case r = 2 which yields

� = (2) = 1=2. Hence the relation (8.3.18) holds for f 2 L1=2;2 � L2(R+). This completes

the proof of (a). The assertion (b) is proved similarly.

Theorem 8.10 give the inversion formulas for the even and odd Hankel transforms de�ned

by (8.3.1) and (8.3.2) in the space L2(R+). Another inversion formula for these transforms

given in (8.3.10) and (8.3.11), was proved in the space L�;r by Heywood and Rooney [3, The-

orem 4.1].

Theorem 8.11. Let 1 < r <1.

(a) If �1 < � < 0 and f 2 L�;r ; then

f(x) =
2

�
p:v:

Z
1

0

�
1

t
�

t

t2 � x2

��
H+f

�
(t)dt: (8.3.20)

(b) If 1 < � < 2 and f 2 L�;r; then

f(x) =
2x

�
p:v:

Z
1

0

�
x

x2 � t2
�

1

x

� �
H�f

�
(t)dt: (8.3.21)

8.4. The Extended Hankel Transform

We consider the so-called extended Hankel integral transform de�ned by

�
H �;lf

�
(x) =

Z
1

0
(xt)1=2J�;l(xt)f(t)dt (8.4.1)

for Re(�) > �1; a non-negative integer l and x 2 R+. The function J�;k(z) called a \cut"

Bessel function,

J�;l(z) =
1X
k=l

(�1)k(z=2)2k+�

�(� + k + 1)k!
: (8.4.2)

The extended Hankel transform H �;l is de�ned for f 2 C0 and for � 2 C (� 6= �1;�3; � � �) and

for the least non-negative integer l = l� such that Re(�) + 2l > �1.

It is directly proved that if f 2 L1=2;2 = L2(R+); then for Re(s) = 1=2 the Mellin transform

of (8.4.1) is given by

�
MH �;lf

�
(s) = G�(s)

�
Mf

�
(1� s); G�(s) = 2s�1=2

�

�
1

2

�
� + s+

1

2

��

�

�
1

2

�
� � s+

3

2

�� : (8.4.3)

It is easy to see that if 1 < r 5 2 and (r) 5 � < Re(�)+2l+3=2; (r) being given in (3.3.9),

and if f 2 L�;r ; then (8.4.3) is valid for Re(s) = 1� �; because both sides of (8.4.3) represent

the bounded linear transforms of L�;r into Lr0(R+):



8.4. The Extended Hankel Transform 277

The boundedness and the representation for the extended Hankel transform (8.4.1) is giv-

en by the following result.

Theorem 8.12. Let 1 5 r 5 1 and let (r) be given by (3:3:9):

(a) If 1 < r <1 and (r) 5 � < Re(�) + 2l+ 3=2; then for all s = r such that s0 = 1=�

and 1=s+1=s0 = 1; the operator H �;l belongs to [L�;r;L1��;s]. If 1 < r 5 2 and f 2 L�;r; then

the Mellin transform of (8:4:1) for (Re(s) = 1� � is given in (8:4:3).

(b) If 1 5 � 5 Re(�) + 2l+ 3=2; then H �;l 2 [L�;1;L1��;1]. If 1 < � < Re(�) + 2l+ 3=2;

then for all r; 1 5 r <1; H �;l 2 [L�;1;L1��;r ].

(c) If f 2 L�;r and g 2 L�;r0 ; where 1 < r < 1 and (r) 5 � < Re(�) + 2l + 3=2; then

the following relation holds:
Z
1

0

f(x)
�
H �;lg

�
(x)dx =

Z
1

0

g(x)
�
H �;lf

�
(x)dx: (8.4.4)

(d) If f 2 L�;r; where 1 < r <1; (r) 5 � < Re(�)+2l+3=2; then for almost all x > 0;

�
H �;lf

�
(x) = �x��1=2

d

dx
x1=2��

Z
1

0

(xt)1=2J��1;l+1(xt)f(t)
dt

t
: (8.4.5)

Proof. The asssertions (a){(c) are proved similarly to those in Theorem 8.1(a){(c). As

for (d) it is proved similarly to that in Theorem 8.1(d), using the following statement similar

to Lemma 8.1 in Section 8.1.

Lemma 8.3. For x > 0 let

g�;x(t) =

8<
:

t1=2��; if 0 < t < x;

0; if t > x:
(8.4.6)

If either 1 5 r < 1 and � > Re(�) � 1=2; or if r = 1 and � = � Re(�) � 1=2; then the

function g�;x(t) 2 L�;r and its extended Hankel transform is given by

�
H �;lg�;x

�
(t) = �x1��t�1=2J��1;l+1(xt): (8.4.7)

The inversion theory of the extended Hankel operator H �;l on L�;r is di�erent according

as � is less than, greater than, or equal to �Re(�)� 2l+3=2: The �rst two cases are given by

the following statements.

Theorem 8.13 Let 1 5 r <1 and (r) 5 � < Re(�)+2l+3=2; and � < �Re(�)�2l+3=2:

If f 2 L�;r; then for almost all x > 0; the following inversion relation holds:

f(x) = �x�+1=2
�
1

x

d

dx

�3
x5=2��

Z
1

0

(xt)1=2J��3;l+3(xt)
�
H �;lf

�
(t)

dt

t3
: (8.4.8)

If; in addition; � < 2; then for almost all x > 0;

f(x) = x�+1=2
�
1

x

d

dx

�2

x3=2��
Z
1

0

(xt)1=2J��2;l+2(xt)
�
H �;lf

�
(t)

dt

t2
; (8.4.9)
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while; if in addition; � < 1; then for almost all x > 0

f(x) = �x��1=2
d

dx
x1=2��

Z
1

0

(xt)1=2J��1;l+1(xt)
�
H �;lf

�
(t)

dt

t
: (8.4.10)

Theorem 8.14. Let 1 5 r < 1 and (r) 5 � < Re(�) + 2l + 3=2; and � > �Re(�)

� 2l + 3=2: If f 2 L�;r; then for almost all x > 0 the following inversion relation holds:

f(x) = �x�+1=2
�
1

x

d

dx

�3
x5=2��

Z
1

0

(xt)1=2J��3;l+2(xt)
�
H �;lf

�
(t)

dt

t3
: (8.4.11)

If; in addition; � < 2; then for almost all x > 0

f(x) = x�+1=2
�
1

x

d

dx

�2

x3=2��
Z
1

0

(xt)1=2J��2;l+1(xt)
�
H �;lf

�
(t)

dt

t2
; (8.4.12)

while; if in addition; � < 1; then for almost all x > 0

f(x) = �x��1=2
d

dx
x1=2��

Z
1

0

(xt)1=2J��1;l(xt)
�
H �;lf

�
(t)

dt

t
: (8.4.13)

The proofs of Theorems 8.13 and 8.14 are based on the relation (8.4.4) in Theorem 8.12

and the auxiliary results for the three integrals I1; I2 and I3 de�ned below for x > 0 and

being taken in the principal value sense at in�nity. These integrals are the inverse Mellin

transforms for the function G�(s) in (8.4.3).

Lemma 8.4. There hold the following statements.

(i) If � < 3=2; then

I1 =
1

2�i

Z �+i1

��i1

G�(s)
3

2
� � � s

x�sds = �x�1=2J��1;l+1(x) (8.4.14)

for �Re(�)� 2l� 1=2 < � < �Re(�)� 2l+ 3=2; and

I1 =
1

2�i

Z �+i1

��i1

G�(s)
3

2
� � � s

x�sds = x�1=2J��1;l(x) (8.4.15)

for �Re(�)� 2l+ 3=2 < � < �Re(�)� 2l+ 7=2.

(ii) If � < 5=2; then

I2 =
1

2�i

Z �+i1

��i1

G�(s)�
3

2
� � � s

��
7

2
� � � s

�x�sds = x�3=2J��2;l+2(x) (8.4.16)

for �Re(�)� 2l� 1=2 < � < �Re(�)� 2l+ 3=2; and

I2 =
1

2�i

Z �+i1

��i1

G�(s)�
3

2
� � � s

��
7

2
� � � s

�x�sds = x�3=2J��2;l+1(x) (8.4.17)
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for �Re(�)� 2l+ 3=2 < � < �Re(�)� 2l+ 7=2.

(iii) If � < 7=2; then

I3 =
1

2�i

Z �+i1

��i1

G�(s)�
3

2
� � � s

��
7

2
� � � s

��
11

2
� � � s

�x�sds

= �x�5=2J��3;l+3(x) (8.4.18)

for �Re(�)� 2l� 1=2 < � < �Re(�)� 2l+ 3=2; and

I3 =
1

2�i

Z �+i1

��i1

G�(s)�
3

2
� � � s

��
7

2
� � � s

��
11

2
� � � s

�x�sds

= �x�5=2J��3;l+2(x) (8.4.19)

for �Re(�)� 2l+ 3=2 < � < �Re(�)� 2l+ 7=2.

For example, to prove (8.4.8) two functions are introduced:

h�;x(t) =

8>><
>>:

1

8
t1=2��(x2 � t2)2; if 0 < t < x;

0; if t > x

(8.4.20)

and

��;x(t) = �x3��t�5=2J��3;l+3(xt): (8.4.21)

By using Lemma 8.4 it is proved that their Mellin transforms are given by

�
Mh�;x

�
(s) =

xs��+9=2�
s� � +

1

2

��
s� � +

5

2

��
s� � +

9

2

�

and
�
M��;x

�
(s) =

x11=2���s�
3

2
� � � s

��
7

2
� � � s

��
11

2
� � � s

� :

From these formulas for Re(s) = 1� � the following relation follows�
MH �;l��;x

�
(s) = G�(s)

�
M��;x

�
(1� s) =

�
Mh�;x

�
(s);

so that

H �;l��;x = h�;x: (8.4.22)

Then in accordance with (8.4.4)

�x5=2��
Z
1

0

(xt)1=2J��3;l+3(xt)
�
H k;�f

�
(t)

dt

t3
=

Z
1

0

��;x(t)
�
H �;lf

�
(t)dt

=
Z
1

0

�
H �;l��;x

�
(t)f(t)dt =

Z
1

0

h�;x(t)f(t)dt

=
1

8

Z x

0

t1=2��(x2 � t2)2f(t)dt: (8.4.23)



280 Chapter 8. Bessel Type Integral Transforms on the Space L�;r

A direct calculation shows that

1

8

�
1

x

d

dx

�3 Z x

0

t1=2��(x2 � t2)2f(t)dt = x�1=2��f(x)

and so di�erentiating (8.4.23), (8.4.8) follows. The validity of the above are justi�ed by the

conditions of the theorem.

The third case when � = �Re(�)� 2l + 3=2 is much harder, and the results are given in

terms of the integral in the Cauchy sense de�ned by

Z
!1

0

f(t)dt = lim
R!1

Z R

0

f(t)dt; (8.4.24)

provided that f(x) is integrable over (0; R) for every R > 0 (see Titchmarsh [3, Section 1.7]).

Theorem 8.15. Let 1 < r <1 and � = �Re(�)� 2l+ 3=2.

(a) If 0 < Re(�) + 2l < 3=2� (r) and f 2 L�;r; then for almost all x > 0; the following

inversion relation holds:

f(x) = x�+1=2
�
1

x

d

dx

�2

x3=2��
Z
!1

0

(xt)1=2J��2;l+2(xt)
�
H �;lf

�
(t)

dt

t2
: (8.4.25)

(b) If 1=2 < Re(�)+2l 5 3=2�(r) and f 2 L�;r ; then for almost all x > 0; the following

inversion relation holds:

f(x) = �x��1=2
d

dx
x1=2��

Z
!1

0

(xt)1=2J��1;l+1(xt)
�
H �;lf

�
(t)

dt

t
: (8.4.26)

Proof. For real � the statements (a) and (b) were proved by Heywood and Rooney [6,

Theorems 6.6 and 6.9]. They are directly extended to complex � by the same arguments

which were used in Heywood and Rooney [6].

In conclusion we note that the extended Hankel transform (8.4.1) has constancy of the

range similar to that for the Hankel transform in (8.1.20): if 1 < r <1, (r) 5 � < Re(�) +

2l+ 3=2 and Re(�) = jRe(�)+ 2lj, then except when � = �Re(�)� 2l+ 3=2 and Re(�) < �1,

H �;l(L�;r) = H �;l(L�;r): (8.4.27)

The proof of this property is given by the same arguments that were used by Rooney [5,

Theorem 2] to prove such a result for real � and �.

8.5. The Hankel Type Transform

We consider the integral transform de�ned by

�
H �;�;$;k;�f

�
(x) = x�

Z
1

0

J�
�
�(xt)1=k

�
t$f(t)dt (x > 0); (8.5.1)

where Re(�) > �1, � 2 R, $ 2 R, k > 0, � > 0 and J�(x) is the Bessel function of

the �rst kind of order �. This transform is clearly de�ned for f 2 C0. When � = k and
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� = $ = 1=k�1=2, the transform coincides with the generalized Hankel transform H k;� given

in (3.3.4), which, if further k = 1, is the Hankel transform H � in (8.1.1). So, H �;�;$;k;� is

named a Hankel type transform.

As in Section 8.1, we �rst give the results characterizing the boundedness and the repre-

sentation of the Hankel type transform (8.5.1) in the space L�;r.

Theorem 8.16. Let 1 5 r 5 1 and let (r) be given in (3:3:9):

(a) If 1 < r < 1 and (r) 5 k(� � $ � 1) + 3=2 < Re(�) + 3=2; then for all s = r

such that s0 > [k(� �$ � 1) + 3=2]�1 and 1=s + 1=s0 = 1; the operator H �;�;$;k;� belongs to

[L�;r;L1��+$��;s ] and is a one-to-one transform from L�;r onto L1��+$��;s . If 1 < r 5 2 and

f 2 L�;r; then the Mellin transform of (8:5:1) for Re(s) = 1� � +$ � � is given by

�
MH �;�;$;k;�f

�
(s)

=
k

2

�
2

�

�k(�+s) �

�
1

2
f� + k� + ksg

�

�

�
1

2
f� � k� � ksg+ 1

��Mf
�
(1 +$ � � � s): (8.5.2)

(b) If 1 5 k(� � $ � 1) + 3=2 5 Re(�) + 3=2; then H �;�;$;k;� 2 [L�;1;L1��+$��;1 ]. If

1 < k(��$�1)+3=2 < Re(�)+3=2; then H �;�;$;k;� 2 [L�;1;L1��+$��;r ] for all r (1 < r <1).

(c) If f 2 L�;r and g 2 L�+$��;s ; where 1 < r < 1 and 1 < s < 1 are such that

1=r+ 1=s = 1 and max[(r); (s)] 5 k(� �$ � 1) + 3=2 < Re(�) + 3=2; then the relation

Z
1

0
f(x)

�
H �;�;$;k;�g

�
(x)dx =

Z
1

0

�
H �;$;�;k;�f

�
(x)g(x)dx (8.5.3)

holds.

(d) If f 2 L�;r; where 1 < r <1 and (r) 5 k(� �$� 1)+ 3=2 < Re(�)+ 3=2; then the

relation

�
H �;�;$;k;�f

�
(x) =

k

�
x�+1�(�+2)=k d

dx
x(�+1)=k��

�
H �+1;�;$;k;�M�1=kf

�
(x)

=
k

�
x�+1�(�+2)=k d

dx
x(�+1)=k

Z
1

0
J�+1

�
�(xt)1=k

�
t$f(t)

dt

t1=k
(8.5.4)

holds for almost all x > 0.

Proof. It is directly veri�ed that the Hankel type transform (8.5.1) can be represented

via the Hankel transform (8.1.1) as

�
H �;�;$;k;�f

�
(x) = k��k($+1)

�
M��1=(2k)N1=kH �Mk($+1)�3=2W�Nkf

�
(x) (8.5.5)

or

�
H �;�;$;k;�f

�
(x) = k��k($+1)

�
N1=kMk��1=2H �Mk($+1)�3=2W�Nkf

�
(x); (8.5.6)

where the operators M� and W� are given in (3.3.11) and (3.3.12) and the operator Na is

de�ned by

�
Naf

�
(x) = f(xa) (a 2 R; a 6= 0): (8.5.7)



282 Chapter 8. Bessel Type Integral Transforms on the Space L�;r

Here we used the clear operator equality

NaM� = Ma�Na: (8.5.8)

Then the assertion (a) follows from Theorem 8.1(a), Lemma 3.1(i),(ii) and from the fol-

lowing similar result for the operator (8.5.7):

Lemma 8.5 For � 2 R and 1 5 r < 1; Na is an isometric isomorphism of L�;r onto

La�;r: If f 2 L�;r (1 5 r 5 2); then for Re(s) = a�

�
MNaf

�
(s) =

1

jaj

�
Mf

��s
a

�
: (8.5.9)

Assertion (b) follows from (8.5.5) and Theorem 8.1(b) if we note that Lemmas 3.1(i) and

8.5 remain true for the space L�;1. (c) is proved similarly to that in Theorem 8.1(c). The

statement (d) is proved on the basis of (8.5.6), if we use Theorem 8.1(d), the equality (8.5.8)

and the directly veri�ed operator relation

NaD =
1

a
M1�aDNa with D =

d

dx
: (8.5.10)

The range of H �;�;$;k;�(L�;r) of the Hankel type transform (8.5.1) in L�;r-space is charac-

terized in terms of the operators M� ; Na in (3.3.11), (8.5.7), the Erd�elyi{Kober operator I�;�
in (8.1.21) and the Fourier cosine transform Fc in (8.1.2).

Theorem 8.17. Let 1 < r < 1 and let (r) be given by (3:3:9). If (r) 5 k(� � $

� 1) + 3=2 < Re(�) + 3=2; then there holds

H �;�;$;k;�(L�;r) =
�
N1=kMk(�+��$�1)+1�(r)Ik(��$�1)�(r)+3=2;�1=2Fc

��
L(r);r

�
: (8.5.11)

In particular; if 1=2 5 k(� �$ � 1) + 3=2 < Re(�) + 3=2; then

H �;�;$;k;�(L�;2) =
�
N1=kMk(�+��$�1)+1=2Ik(��$�1)+1;�1=2Fc

��
L2(R+)

�
: (8.5.12)

Proof. Using the representation (8.5.6), Lemma 3.1(i),(ii) and Lemma 8.5 and applying

Lemma 8.2 with � being replaced by k(��$�1)+3=2, we have for f 2 L�;r the representation

H �;�;$;k;�f = k��k($+1)2(r)�k(��$�1)�3=2N1=kMk(�+��$�1)+1�(r)

� Ik(��$�1)�(r)+3=2;[��k(��$�1)+(r)�2]=2

� H ��k(��$�1)+(r)�3=2Mk��(r)W�Nkf: (8.5.13)

From here, taking the same arguments as in Theorem 8.2, we obtain (8.5.11) and (8.5.12).

Finally we present the inversion for the Hankel type transform (8.5.1) in the space L�;r.
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Theorem 8.18. Let 1 < r <1 and (r) 5 k(� �$� 1) + 3=2 < Re(�) + 3=2; or r = 1

and 1 5 k(� � $ � 1) + 3=2 5 Re(�) + 3=2; where (r) is given in (3:3:9). If we choose an

integer m > k(� �$ � 1) + 3=2 and if f 2 L�;r ; then the inversion relation

f(x) =

�
�

k

�2�m

x(2��)=k�$�1
�
x1�2=k d

dx

�m

x(�+m)=k

�

Z
1

0
J�+1

�
�(xt)1=k

�
t2=k���1

�
H �;�;$;k;�f

�
(t)

dt

tm=k
(8.5.14)

holds for almost all x > 0: In particular; if 1 < r < 1 and (r) 5 k(� � $ � 1) + 3=2 <

min[1;Re(�) + 3=2]; then

f(x) =
�

k
x�$��=k

d

dx
x(�+1)=k

�

Z
1

0
J�+1

�
�(xt)1=k

�
t2=k���1

�
H �;�;$;k;�f

�
(t)

dt

t1=k
: (8.5.15)

Proof. According to (3.3.11), (3.3.12), (8.5.7), Lemma 3.1(i),(ii) and Lemma 8.5 the

operators inverse to M� , W� and Na have the forms

M�1
� = M�� ; W�1

� = W1=� and N�1
a = N1=a; (8.5.16)

respectively, and they are isometric isomorphisms in the corresponding spaces. It also follows

from Theorem 8.4 that under the conditions of our theorem the operator H � can be inverted

in the space Lk(��$�1)+3=2;r.

Then from the relation (8.5.6) we obtain the inversion formula for (8.5.1):

f(x) =

��
k��k($+1)N1=kMk��1=2H �Mk($+1)�3=2W�Nk

�
�1
H �;�;$;k;�f

�
(x)

=
1

k
�k($+1)

�
N�1
k W�1

� M�1
k($+1)�3=2H

�1
� M�1

k��1=2N
�1
1=kH �;�;$;k;�f

�
(x)

=
1

k
�k($+1)

�
N1=kW1=�M3=2�k($+1)H

�1
� M1=2�k�NkH �;�;$;k;�f

�
(x); (8.5.17)

where H�1
� is the operator inverse to the Hankel transform (8.1.1). Using the relation (8.1.34),

the equalities (8.5.8), (3.3.22) and the directly veri�ed formulas

W�(M�D)m = �(1��)m(M�D)mW� (m = 1; 2; � � �); (8.5.18)

Na(M�D)m = a�m(Ma(��1)+1D)mNa (m = 1; 2; � � �); (8.5.19)

we arrive at (8.5.14). In particular, if k(� �$ � 1) + 1=2 < 0; we obtain (8.5.15).

Setting � = $ = 1=k� 1=2 and � = k, from Theorems 8.16{8.18 we have the correspond-

ing statements for the generalized Hankel transform H k;� given in (3.3.4).

Theorem 8.19. Let 1 5 r 5 1 and let (r) be given in (3:3:9):

(a) If 1 < r <1 and (r) 5 k(�� 1=2)+1=2 < Re(�)+3=2; then for all s = r such that

s0 > [k(� � 1=2) + 1=2]�1 and 1=s+ 1=s0 = 1; the operator H k;� belongs to [L�;r;L1��;s] and



284 Chapter 8. Bessel Type Integral Transforms on the Space L�;r

is a one-to-one transform from L�;r onto L1��;s. If 1 < r 5 2 and f 2 L�;r; then the Mellin

transform of H k;�f for Re(s) = 1� � is given in (3:3:10) :

�
MH k;�f

�
(s) =

�
2

k

�k(s�1=2) �

�
1

2

�
� + k

�
s �

1

2

�
+ 1

��

�

�
1

2

�
� � k

�
s �

1

2

�
+ 1

���Mf
�
(1� s): (8.5.20)

(b) If 1 5 k(� � 1=2) + 1=2 5 Re(�) + 3=2; then H k;� 2 [L�;1;L1��;1]. If 1 < k(� � 1=2)

+ 1=2 < Re(�) + 3=2; then H k;� 2 [L�;1;L1��;r ] for all r (1 < r <1).

(c) If f 2 L�;r and g 2 L�;s; where 1 < r < 1 and 1 < s < 1 such that 1=r + 1=s = 1

and max[(r); (s)] 5 k(� � 1=2) + 1=2 < Re(�) + 3=2; then the relationZ
1

0
f(x)

�
H k;�g

�
(x)dx =

Z
1

0

�
H k;�f

�
(x)g(x)dx (8.5.21)

holds.

(d) If f 2 L�;r; where 1 < r < 1 and (r) 5 k(� � 1=2) + 1=2 < Re(�) + 3=2; then the

relation �
H k;�f

�
(x) = x1=2�(�+1)=k d

dx
x�=k+1=2

�
H k;�+1M�1=kf

�
(x)

= x1=2�(�+1)=k d

dx
x(�+1)=k

Z
1

0
J�+1

�
k(xt)1=k

�
t�1=2f(t)dt (8.5.22)

holds for almost all x > 0.

Theorem 8.20. Let 1 < r <1 and (r) be given by (3:3:9). If (r) 5 k(� � 1)+ 1=2 <

Re(�) + 3=2; then there holds

H k;�(L�;r) =
�
N1=kMk(��1)+1�(r)Ik(��1=2)�(r)+1=2;�1=2Fc

� �
L(r);r

�
: (8.5.23)

In particular; if 1=2 5 k(� � 1) + 1=2 < Re(�) + 3=2; then

H k;�(L�;2) =
�
N1=kMk(��1)+1=2Ik(��1=2);�1=2Fc

��
L2(R+)

�
: (8.5.24)

Theorem 8.21. Let 1 < r < 1 and (r) 5 k(� � 1=2) + 1=2 < Re(�) + 3=2; or r = 1

and 1 5 k(��1=2)+1=2 5 Re(�)+3=2; where (r) is given in (3:3:9): If we choose an integer

m > k(� � 1=2) + 1=2 and if f 2 L�;r; then the inversion relation

f(x) = x(1��)=k�1=2
�
x1�2=k d

dx

�m

x(�+m�1)=k+1=2

�

Z
1

0
(xt)1=k�1=2J�+1

�
k(xt)1=k

� �
H k;�f

�
(t)

dt

tm=k
(8.5.25)

holds for almost all x > 0. In particular; if 1 < r < 1 and (r) 5 k(� � 1=2) + 1=2 <

min[1;Re(�) + 3=2]; then

f(x) = x1=2�(�+1)=k d

dx
x�=k+1=2

�

Z
1

0
(xt)1=k�1=2J�+1

�
k(xt)1=k

��
H k;�f

�
(t)

dt

t1=k
: (8.5.26)
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8.6. Hankel{Schwartz and Hankel{Cli�ord Transforms

Let us investigate the integral transforms

�
h�;1f

�
(x) = x2�+1

Z
1

0
J�(xt)f(t)dt (x > 0); (8.6.1)

�
h�;2f

�
(x) =

Z
1

0
J�(xt)t2�+1f(t)dt (x > 0); (8.6.2)

and
�
b�;1f

�
(x) = x�

Z
1

0
C�(xt)f(t)dt (x > 0); (8.6.3)

�
b�;2f

�
(x) =

Z
1

0
C�(xt)t

�f(t)dt (x > 0) (8.6.4)

with the kernels

J�(z) = z��J�(z); C�(z) = z��=2J�(2
p
z) (8.6.5)

for � 2 R (� > �1):
The transforms (8.6.1), (8.6.2) and (8.6.3), (8.6.4) de�ned for f 2 C0 are called the

Hankel{Schwartz and Hankel{Cli�ord transforms, respectively. They are special cases of the

general Hankel transform H �;�;$;k;� given in (8.5.1):

�
h�;1f

�
(x) � x�+1

Z
1

0
J�(xt)t

��f(t)dt =
�
H �;�+1;��;1;1f

�
(x); (8.6.6)

�
h�;2f

�
(x) � x��

Z
1

0
J�(xt)t

�+1f(t)dt =
�
H �;��;�+1;1;1f

�
(x); (8.6.7)

and
�
b�;1f

�
(x) � x�=2

Z
1

0
J�(2(xt)

1=2)t��=2f(t)dt =
�
H �;�=2;��=2;2;2f

�
(x); (8.6.8)

�
b�;2f

�
(x) � x��=2

Z
1

0
J�(2(xt)

1=2)t�=2f(t)dt =
�
H �;��=2;�=2;2;2f

�
(x) (8.6.9)

for � > �1 and x > 0: These relations show that h�;1 and h�;2 as well as b�;1 and b�;2 are

mutually conjugate operators.

Using the results in Theorems 8.16{8.18, we obtain the following statements giving the

theory of the transforms h�;1;h�;2;b�;1 and b�;2 in the space L�;r.

Theorem 8.22. Let 1 5 r 5 1 and let (r) be given in (3:3:9):

(a) If 1 < r <1 and (r)���1=2 5 � < 1; then for all s = r such that s0 > [�+�+1=2]�1

and 1=s+1=s0 = 1; the operator h�;1 belongs to [L�;r;L���2�;s] and is a one-to-one transform

from L�;r onto L���2�;s. If 1 < r 5 2 and f 2 L�;r ; then the Mellin transform of h�;1f for

Re(s) = �� � 2� is given by

�
Mh�;1f

�
(s) = 2�+s

�

�
� +

s + 1

2

�

�

�
1� s

2

� �
Mf

�
(�2� � s): (8.6.10)
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(b) If 1=2 � � 5 � 5 1; then h�;1 2 [L�;1;L���2�;1]. If 1=2 � � < � < 1; then h�;1 2
[L�;1;L���2�;r] for all r (1 < r <1).

(c) If f 2 L�;r and g 2 L��2��1;s; where 1 < r < 1 and 1 < s < 1 are such that

1=r+ 1=s = 1 and max[(r); (s)]� � � 1=2 5 � < 1; then the relation
Z
1

0
f(x)

�
h�;1g

�
(x)dx =

Z
1

0

�
h�;2f

�
(x)g(x)dx (8.6.11)

holds; where h�;2 is the operator (8:6:2) conjugate to h�;1:

(d) If f 2 L�;r; where 1 < r <1 and (r)� � � 1=2 5 � < 1; then the relation

�
h�;1f

�
(x) =

d

dx
x�+1

Z
1

0
J�+1(xt)t

��f(t)
dt

t
(8.6.12)

holds for almost all x > 0.

(e) If 1 < r <1 and (r)� � � 1=2 5 � < 1; then there holds the relation

h�;1(L�;r) =
�
M�+2�+1�(r)I�+��(r)+1=2;�1=2Fc

� �
L(r);r

�
: (8.6.13)

In particular;

h�;1(L�;2) =
�
M�+2�+1=2I�+�;�1=2Fc

��
L2(R+)

�
: (8.6.14)

(f) Let 1 < r < 1 and (r)� � � 1=2 5 � < 1; or r = 1 and �� + 1=2 5 � 5 1. If we

choose an integer m > � + � + 1=2 and if f 2 L�;r ; then the inversion relation

f(x) = x

�
1

x

d

dx

�m
x�+m

Z
1

0
J�+1(xt)t

�(�+m)
�
h�;1f

�
(t)dt (8.6.15)

holds for almost all x > 0. In particular; if 1 < r < 1 and (r)� � � 1=2 5 � < min[1;��
+ 1=2]; then

f(x) =
d

dx
x�+1

Z
1

0
J�+1(xt)t

���1
�
h�;1f

�
(t)dt: (8.6.16)

Theorem 8.23. Let 1 5 r 5 1:

(a) If 1 < r < 1 and (r) + � + 1=2 5 � < 2� + 2; then for all s = r such that

s0 > [� � � � 1=2]�1 and 1=s + 1=s0 = 1; the operator h�;2 belongs to [L�;r ;L2�+2��;s] and is

a one-to-one transform from L�;r onto L2�+2��;s. If 1 < r 5 2 and f 2 L�;r; then the Mellin

transform of h�;2f for Re(s) = 2� + 2� � is given by

�
Mh�;2f

�
(s) = 2s���1

�

�
s

2

�

�

�
� + 1� s

2

��Mf
�
(2� + 2� s): (8.6.17)

(b) If � + 3=2 5 � 5 2� + 2; then h�;2 2 [L�;1;L2�+2��;1]. If � + 3=2 < � < 2�+ 2; then

h�;2 2 [L�;1;L2�+2��;r] for all r (1 < r <1).

(c) If f 2 L�;r and g 2 L�+2�+1;s; where 1 < r < 1 and 1 < s < 1 are such that

1=r+ 1=s = 1 and max[(r); (s)]+ � + 1=2 5 � < 2� + 2; then the relation
Z
1

0
f(x)

�
h�;2g

�
(x)dx =

Z
1

0

�
h�;1f

�
(x)g(x)dx (8.6.18)
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holds; where h�;1 is the operator (8:6:1) conjugate to h�;2.

(d) If f 2 L�;r; where 1 < r <1 and (r) + � + 1=2 5 � < 2� + 2; then the relation

�
h�;2f

�
(x) = x�2��1

d

dx
x�+1

Z
1

0
J�+1(xt)t

�f(t)dt (8.6.19)

holds for almost all x > 0.

(e) If 1 < r <1 and (r) + � + 1=2 5 � < 2� + 2; then there holds the relation

h�;2(L�;r) =
�
M��2��1�(r)I����(r)�1=2;�1=2Fc

� �
L(r);r

�
: (8.6.20)

In particular; if � + 1 5 � < 2� + 2; then

h�;2(L�;2) =
�
M��2��3=2I����1;�1=2Fc

��
L2(R+)

�
: (8.6.21)

(f) Let 1 < r <1 and (r)+ �+ 1=2 5 � < 2�+ 2; or r = 1 and � + 3=2 5 � 5 2�+ 2.

If we choose an integer m > � � � � 1=2 and if f 2 L�;r; then the inversion relation

f(x) = x�2�
�
1

x

d

dx

�m
x�+m

Z
1

0
J�+1(xt)t

��m+1
�
h�;2f

�
(t)dt (8.6.22)

holds for almost all x > 0. In particular; if 1 < r < 1 and (r) + � + 1=2 5 � < min[� +

3=2; 2�+ 2]; then

f(x) = x�2��1
d

dx
x�+1

Z
1

0
J�+1(xt)t

�
�
h�;2f

�
(t)dt: (8.6.23)

Theorem 8.24. Let 1 5 r 5 1:

(a) If 1 < r < 1 and ((r) � �)=2 + 1=4 5 � < 1; then for all s = r such that s0 >

[2� + � � 1=2]�1 and 1=s + 1=s0 = 1; the operator b�;1 belongs to [L�;r;L1����;s] and is a

one-to-one transform from L�;r onto L1����;s. If 1 < r 5 2 and f 2 L�;r; then the Mellin

transform of b�;1f for Re(s) = 1� � � � is given by

�
Mb�;1f

�
(s) =

�(� + s)

�(1� s)

�
Mf

�
(1� � � s): (8.6.24)

(b) If ��=2 + 3=4 5 � 5 1; then b�;1 2 [L�;1;L1����;1]. If ��=2 + 3=4 < � < 1; then

b�;1 2 [L�;1;L1����;r] for all r (1 < r <1).

(c) If f 2 L�;r and g 2 L���;s; where 1 < r < 1 and 1 < s < 1 are such that

1=r+ 1=s = 1 and (max[(r); (s)]� �)=2+ 1=4 5 � < 1; then the relation

Z
1

0
f(x)

�
b�;1g

�
(x)dx =

Z
1

0

�
b�;2f

�
(x)g(x)dx (8.6.25)

holds; where b�;2 is the operator (8:6:4) conjugate to b�;1:

(d) If f 2 L�;r; where 1 < r <1 and ((r)� �)=2+ 1=4 5 � < 1; then the relation

�
b�;1f

�
(x) =

d

dx
x(�+1)=2

Z
1

0
J�+1

�
2(xt)1=2

�
t�(�+1)=2f(t)dt (8.6.26)

holds for almost all x > 0.
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(e) If 1 < r <1 and ((r)� �)=2+ 1=4 5 � < 1; then there holds the relation

b�;1(L�;r) =
�
N1=2M2(�+�)�1�(r)I2�+��(r)�1=2;�1=2Fc

��
L(r);r

�
: (8.6.27)

In particular; if (1� �)=2 5 � < 1; then

b�;1(L�;2) =
�
N1=2M2(�+�)�3=2I2�+��1;�1=2Fc

��
L2(R+)

�
: (8.6.28)

(f) Let 1 < r <1 and ((r)� �)=2+ 1=4 5 � < 1; or r = 1 and ��=2+ 3=4 5 � 5 1. If

we choose an integer m > 2� + � � 1=2 and if f 2 L�;r; then the inversion relation

f(x) =

�
d

dx

�m
x(�+m)=2

Z
1

0
J�+1

�
2(xt)1=2

�
t�(�+m)=2

�
b�;1f

�
(t)dt (8.6.29)

holds for almost all x > 0. In particular; if 1 < r < 1 and ((r) � �)=2 + 1=4 5 � <

min[1;��=2+ 3=4]; then

f(x) =
d

dx
x(�+1)=2

Z
1

0
J�+1

�
2(xt)1=2

�
t�(�+1)=2

�
b�;1f

�
(t)dt: (8.6.30)

Theorem 8.25. Let 1 5 r 5 1:

(a) If 1 < r < 1 and ((r) + �)=2 + 1=4 5 � < � + 1; then for all s = r such that

s0 > [2� � � � 1=2]�1 and 1=s+ 1=s0 = 1; the operator b�;2 belongs to [L�;r;L1��+�;s] and is

a one-to-one transform from L�;r onto L1��+�;s . If 1 < r 5 2 and f 2 L�;r; then the Mellin

transform of b�;2f for Re(s) = 1� � + � is given by

�
Mb�;2f

�
(s) =

�(s)

�(1 + � � s)

�
Mf

�
(1 + � � s): (8.6.31)

(b) If �=2+3=4 5 � 5 �+1; then b�;2 2 [L�;1;L1��+�;1]. If �=2+3=4 < � < �+1; then

b�;2 2 [L�;1;L1��+�;r] for all r (1 < r <1).

(c) If f 2 L�;r and g 2 L�+�;s; where 1 < r < 1 and 1 < s < 1 are such that

1=r+ 1=s = 1 and (max[(r); (s)]+ �)=2+ 1=4 5 � < � + 1; then the relation

Z
1

0
f(x)

�
b�;2g

�
(x)dx =

Z
1

0

�
b�;1f

�
(x)g(x)dx (8.6.32)

holds; where b�;1 is the operator (8:6:3) conjugate to b�;2:

(d) If f 2 L�;r; where 1 < r <1 and ((r) + �)=2+ 1=4 5 � < � + 1; then the relation

�
b�;2f

�
(x) = x��

d

dx
x(�+1)=2

Z
1

0
J�+1

�
2(xt)1=2

�
t(��1)=2f(t)dt (8.6.33)

holds for almost all x > 0.

(e) If 1 < r <1 and ((r) + �)=2+ 1=4 5 � < � + 1; then there holds the relation

b�;2(L�;r) =
�
N1=2M2(���)�1�(r)I2����(r)�1=2;�1=2Fc

��
L(r);r

�
: (8.6.34)

In particular; if (1 + �)=2 5 � < � + 1; then

b�;2(L�;2) =
�
N1=2M2(���)�3=2I2����1;�1=2Fc

��
L2(R+)

�
: (8.6.35)
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(f) Let 1 < r <1 and ((r)+�)=2+1=4 5 � < �+1; or r = 1 and �=2+3=4 5 � 5 �+1.

If we choose an integer m > 2� � � � 1=2 and if f 2 L�;r ; then the inversion relation

f(x) = x��
�
d

dx

�m

x(�+m)=2
Z
1

0
J�+1

�
2(xt)1=2

�
t(��m)=2

�
b�;2f

�
(t)dt (8.6.36)

holds for almost all x > 0. In particular; if 1 < r < 1 and ((r) + �)=2 + 1=4 5 � <

min[�=2+ 3=4; �+ 1]; then

f(x) = x��
d

dx
x(�+1)=2

Z
1

0
J�+1

�
2(xt)1=2

�
t(��1)=2

�
b�;2f

�
(t)dt: (8.6.37)

8.7. The Transform Y�

We consider the integral transformY� de�ned by

�
Y�f

�
(x) =

Z
1

0
(xt)1=2Y�(xt)f(t)dt (x > 0); (8.7.1)

where Y�(z) is the Bessel function of the second kind (or Neumann function) given via the

Bessel function of the �rst kind (2.6.2) by

Y�(z) =
1

sin(��)
[J�(z) cos(��)� J��(z)] (8.7.2)

(see Erd�elyi, Magnus, Oberhettinger and Tricomi [2, 7.2(4)]). Since the Hankel transform

(2.6.1) is de�ned for � 2 C (Re(�) > �1) the transformY� can be de�ned for � 2 C (jRe(�)j

< 1).

First we give the representation of the transform Y� in (8.7.1) in terms of the Hankel

transform H � in (8.1.1), the even Hilbert transformH+ in (8.3.1) and the elementary opera-

tor M� in (3.3.11).

Theorem 8.26. For � 2 C with jRe(�)j< 1 there holds the relation

Y� = H �M��1=2H+M1=2�� (8.7.3)

on C0 being the collection of continuous functions with compact support on R+.

Proof. SinceM1=2��f 2 C0 � LRe(�);2 and jRe(�)j < 1; by Theorem 8.9(a)H+M1=2��f 2

LRe(�);2 and thus Lemma 3.1(i) implies M��1=2H+M1=2��f 2 L1=2;2 = L2(R+). Hence Theo-

rem 8.1(d) and the use of the function h�;x in (8.1.13) imply that for almost all x > 0

�
H �M��1=2H+M1=2��f

�
(x)

= x�(�+1=2)
d

dx
x�+1=2

Z
1

0
(xt)1=2J�+1(xt)t

��1=2
�
H+M1=2��f

�
(t)

dt

t

= x�(�+1=2)
d

dx

Z
1

0

�
M��1=2h�;x

�
(t)

�
H+M1=2��f

�
(t)dt: (8.7.4)
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Since the intervals (�Re(�)� 1=2; 1=2) and (Re(�)� 1=2;Re(�) + 3=2) intersect, � is taken

from their intersection. From �Re(�)� 1=2 < � < 1=2; h�;x 2 L�;r for any r (1 < r <1) due

to Lemma 8.1(b), we have

M��1=2h�;x 2 L��Re(�)+1=2;r; (8.7.5)

when 0 < � � Re(�) + 1=2 < 2 because of Re(�)� 1=2 < � < Re(�) + 3=2.

Replacing � �Re(�)+ 1=2 by 1� �1, we see that the new number �1 satis�es �1 < �1 < 1

and M��1=2h�;x 2 L1��1 ;r; in particular, M��1=2h�;x 2 L1��1;2. But since f 2 C0; we �nd

M1=2��f 2 L�;2 for any �. So

M1=2��f 2 L�1;2; M��1=2h�;x 2 L1��1 ;2

for such a �1 (�1 < �1 < 1). Then we can apply Theorem 8.9(c) to (8.7.4) and in accordance

with the formula of integration of parts (8.3.5), we have�
H �M��1=2H+M1=2��f

�
(x)

= �x�(�+1=2)
d

dx

Z
1

0

�
H�M��1=2h�;x

�
(t)t1=2��f(t)dt: (8.7.6)

To evaluate the inner integral in (8.7.6) we prove the following auxiliary result.

Lemma 8.6. If � 2 C with jRe(�)j < 1; then for almost all x > 0;

�
H�M��1=2h�;x

�
(t) = �x�+1t��1

"
Y�+1(xt) +

�(� + 1)

�

�
2

xt

��+1
#
: (8.7.7)

Proof. The proof is based on the technique of the Mellin transform (3.2.5) and residue

theory. By (8.7.5) and Theorem 8.9(b), (H�M��1=2h�;x)(t) exists almost everywhere on R+

and belongs to L��Re(�)+1=2;r for some � (jRe(�)j < 1) and any r (1 < r <1). Then for r = 2

we take the Mellin transform of the left-side of (8.7.7). Applying (8.3.13), (3.3.14), (8.1.14),

(8.1.4) and the clear equality

�
Mg�:x

�
(s) =

x�+s+1=2

� + s+
1

2

; (8.7.8)

we have for Re(s) = � �Re(�) + 1=2

�
MH�M��1=2h�;x

�
(s) = cot

�
�s

2

��
MM��1=2h�;x

�
(s)

= cot

�
�s

2

��
Mh�;x

��
s+ � �

1

2

�

= cot

�
�s

2

��
MH �g�;x

��
s+ � �

1

2

�

= 2s+��1
�

�
� +

s

2

�

�

�
1�

s

2

� cot

�
�s

2

��
Mg�;x

��3
2
� � � s

�
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= 2��2x2
�
x

2

�
�s �

�
� +

s

2

�

�

�
2�

s

2

� cot

�
�s

2

�
:

Hence, by (3.2.6)

�
H�M��1=2h�;x

�
(t) = 2��2x2I(xt); (8.7.9)

where

I(z) = lim
R!1

1

2�i

Z �1+iR

�1�iR

�
z

2

��s �
�
� +

s

2

�

�

�
2�

s

2

� cot

�
�s

2

�
ds

and the limit is taken in the topology of L�1 ;2.

Closing the contour to the left and calculating the residues of the integrand at the simple

poles s = �2(k + �) (k = 0; 1; 2; � � �) and s = �2m (m = 0; 1; 2; � � �) in view of the relations

(1.3.3), (2.1.6) and (2.6.2), we have

I(z) =
1X
k=0

�
z

2

�2(�+k) 2(�1)k

k!�(2 + k + �)
cot[�(� + k)�]

+
2

�

1X
m=�1

�
z

2

�2m �(� �m)

�(2 +m)
�

2

�

�
z

2

��2
�(� + 1)

= �2

�
z

2

���1

cot[(� + 1)�]
1X
k=0

(�1)k

k!�(� + k + 2)

�
z

2

�2k+�+1

+2

�
z

2

���1 1

sin[(� + 1)�]

1X
k=0

(�1)k

k!�(k � �)

�
z

2

�2k���1
�

2

�

�
z

2

��2
�(� + 1)

= �2

�
z

2

���1 1

sin[(�+ 1)�]
[cos((�+ 1)�)J�+1(z)

�J�(�+1)(z)]�
2

�

�
z

2

��2
�(� + 1)

= �2

�
z

2

���1

Y�+1(z)�
2

�

�
z

2

��2
�(� + 1)

according to (8.7.2). Substituting this result into (8.7.9) we obtain (8.7.7), and the lemma is

proved.

We continue the proof of Theorem 8.26. Substituting (8.7.7) into (8.7.6), we have

�
H �M��1=2H+M1=2��f

�
(x)

= x�(�+1=2)
d

dx
x�+1

Z
1

0
t�1=2

"
Y�+1(xt) +

�(� + 1)

�

�
2

xt

��+1
#
f(t)dt: (8.7.10)
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Due to (8.7.2) and the formulas

d

dz
[z�J�(z)] = z�J��1(z);

d

dz
[z��J�(z)] = �z��J�+1(z) (8.7.11)

(see Erd�elyi, Magnus, Oberhettinger and Tricomi [2, 7.2.51]), we have

d

dz
[z�+1Y�+1(z)] = z�+1Y�(z): (8.7.12)

Since f 2 C0; the di�erentiation may be taken under the integral sign of (8.7.10). Taking

such a di�erentiation and using (8.7.12), we have for almost all x > 0;

�
H �M��1=2H+M1=2��f

�
(x) =

Z
1

0
(xt)1=2Y�(xt)f(t)dt;

which completes the proof of Theorem 8.26.

Now we can present the results characterizing the boundedness, the range and the repre-

sentation of the transformY� (8.7.1) in the space L�;r.

Theorem 8.27. Let 1 5 r 5 1 and let (r) be given in (3:3:9).

(a) If 1 < r < 1 and (r) 5 � < 3=2 � jRe(�)j; then for all s = r such that s0 > 1=�

and 1=s+ 1=s0 = 1; the transformY� can be extended to L�;r as an element of [L�;r ;L1��;s].

If further 1 < r 5 2 and f 2 L�;r; then the Mellin transform of (8:7:1) for Re(s) = 1 � � is

given by

�
MY�f

�
(s) = �2s�1=2

�

�
1

2

�
� + s +

1

2

��

�

�
1

2

�
� � s +

3

2

�� cot

�
�

2

�
s� � +

1

2

��
(Mf)(1� s): (8.7.13)

(b) If 1 < r < 1 and (r) 5 � < 3=2� jRe(�)j; then except when � = 1=2� Re(�); Y�

is a one-to-one transform from L�;r onto L1��;s; and

Y�(L�;r) = H �(L�;r): (8.7.14)

Further

Y� = H �M��1=2H+M1=2�� (8.7.15)

and

Y� = �M1=2��H�M��1=2H �: (8.7.16)

(c) For � 6= 0; if 1 5 � 5 3=2�jRe(�)j;Y� 2 [L�;1;L1��;1]; and; if 1 < � < 3=2�jRe(�)j;

Y� 2 [L�;1;L1��;r ] for all r (1 5 r <1). For � = 0; if 1 5 � < 3=2; Y0 2 [L�;1;L1��;1]; and;

if 1 < � < 3=2; Y0 2 [L�;1;L1��;r] for all r (1 5 r <1).

(d) Let 1 < r < 1 and 1 < s < 1 such that 1=r + 1=s = 1 and max[(r); (s)] 5 � <

3=2� jRe(�)j; then for f 2 L�;r ; g 2 L�;s the following relation holds:Z
1

0
f(x)

�
Y�g

�
(x)dx =

Z
1

0

�
Y�f

�
(x)g(x)dx: (8.7.17)
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(e) If f 2 L�;r; where 1 < r <1 and (r) 5 � < 3=2� jRe(�)j; then for almost all x > 0

the following relation holds:

�
Y�f

�
(x) = x�(�+1=2)

d

dx
x�+1=2

�

Z
1

0
(xt)1=2

"
Y�+1(xt) +

�(� + 1)

�

�
2

xt

��+1
#
f(t)

dt

t
: (8.7.18)

Proof. Since (r) = 1=2; the assumption (r) < 3=2� jRe(�)j implies jRe(�)j < 1; and

hence by Theorem 8.26 the relation (8.7.15) holds on C0. It is directly veri�ed by using Lemma

3.1(i), Theorem 8.9(a) and Theorem 8.1(a) that, since the assumption (r) 5 � < 3=2�jRe(�)j

implies j� � 1=2 + Re(�)j < 1; the transform on the right side of (8.7.15) is in [L�;r;L1��;s]

for any s = r such that s0 > 1=�. Thus we may extend Y� to L�;r by de�ning it by (8.7.15)

and then Y� 2 [L�;r;L1��;s]. The relation (8.7.13) is proved directly by using (8.7.15), (8.1.4),

(3.3.14) and (8.3.12). Thus (a) is established.

Due to Lemma 3.1(i), M�(��1=2) are isometric isomorphisms. By Theorem 8.9(a) H+

maps L�+Re(�)�1=2;r one-to-one onto itself except when � = 1=2�Re(�). The transform H � is

also one-to-one by Corollary 8.3.1. Then it follows from (8.7.15) that Y� is one-to-one except

when � = 1=2�Re(�); and hence (8.7.14) holds.

Further Theorem 8.1(a), Lemma 3.1(i) and Theorem 8.9 (b) yield under the conditions

in (b) that the transform in the right side of (8.7.16) is in [L�;r;L1��;s] for some parameter

ranges for Y�. Also, if f 2 L1=2;2; then (3.3.14), (8.3.13), (3.3.14) and (8.1.4) lead to the

equality

�
�
MM1=2��H�M��1=2H �f

�
(s)

= �2s�1=2
�

�
1

2

�
� + s+

1

2

��

�

�
1

2

�
� � s+

3

2

�� cot

�
�

2

�
s � � +

1

2

�� �
Mf

�
(1� s):

Thus, by (8.7.13), the relation (8.7.16) holds on L1=2;2; and hence on L�;r ; since both sides of

(8.7.16) are in [L�;r;L1��;s]. This completes the proof of assertion (b).

The results in (c) for � 6= 0 follow from Theorem 8.1(b), since by (8.7.2)Y� = cot(��)H��

csc(��)H��: When � = 0; the results in (c) are proved by direct estimates similar to that in

Theorem 8.1(b), if we take into account the asymptotic estimates of Y0(z) near zero and

in�nity:

Y0(z) = O
�
log(z)

�
(z ! 0); Y0(z) = O

�
z�1=2

�
(z !1) (8.7.19)

(see Erd�elyi, Magnus, Oberhettinger and Tricomi [2, 7.2(33) and 7.13(4)]).

The assertion (d) is proved similarly to that in Theorem 8.1(c).

To prove (e) we note that, since � = (r) = 1=2 > �Re(�)� 1=2; g�;x 2 L�;r0 by Lemma

8.1(a). Thus from (8.7.17) we have for all x > 0;

Z x

0
t�+1=2

�
Y�f

�
(t)dt =

Z
1

0
g�;x(t)

�
Y�f

�
(t)dt =

Z
1

0

�
Y�g�;x

�
(t)f(t)dt: (8.7.20)
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From (8.7.16), (8.1.14) and (8.7.7), we have�
Y�g�;x

�
(t) = �

�
M1=2��H�M��1=2H �g�;x

�
(t) = �

�
M1=2��H�M��1=2h�;x

�
(t)

= x�+1=2(xt)1=2
"
Y�+1(xt) +

�(� + 1)

�

�
2

xt

��+1
#
1

t
;

and hence (8.7.20) takes the formZ x

0
t�+1=2

�
Y�f

�
(t)dt

= x�+1=2
Z
1

0
(xt)1=2

"
Y�+1(xt) +

�(�) + 1

�

�
2

xt

��+1
#
f(t)

dt

t
: (8.7.21)

Then the result in (8.7.18) follows on di�erentiation. Thus Theorem 8.27 is proved.

Corollary 8.27.1. If 1 < r < 1 and (r) 5 � < 3=2 � jRe(�)j; except when � =

1=2� Re(�); then

Y�(L�;r) =
�
M��(r)I��(r);�1=2Fc

�
(L�;r): (8.7.22)

In particular; if 1=2 5 � < 3=2� jRe(�)j; except when � = 1=2� Re(�); then

Y�(L�;2) =
�
M��1=2I��1=2;�1=2Fc

��
L2(R+)

�
: (8.7.23)

Corollary 8.27.2. If 1 < r < 1 and (r) 5 � < 3=2 � jRe(�)j; except when � =

1=2� Re(�); then the range H �(L�;r) of the Hankel transform (8:1:1) is invariant under the

operator M1=2��H�M��1=2.

Corollaries 8.27.1 and 8.27.2 follow from Theorems 8.27 and 8.2, if we take into account

(8.7.14), (8.1.27) and (8.7.14), (8.7.16), respectively.

Remark 8.3. The boundedness conditions in Theorem 8.27(a) can be extended for

� = �1=2. In fact, if � = �1=2; (8.7.2) implies Y�1=2 = J1=2 and hence Y�1=2 = H 1=2 = Fs by

virtue of (8.1.3). Hence by Theorem 8.6(a), Y�1=2 = Fs is a one-to-one transform from L�;r

onto L1��;s provided that (r) 5 � < 2.

Remark 8.4. The exceptional value � = 1=2�Re(�); for whichY�(L�;r) 6= H �(L�;r) and

the results in Corollaries 8.27.1 and 8.27.2 fail, is only possible if �1=2 < Re(�) 5 0; since

the condition (r) 5 1=2�Re(�) < 3=2�jRe(�)j is equivalent to �1=2 < Re(�) 5 1=2�(r)

and (r) = 1=2. Further, if Re(�) = 0; then r = 2; and thus

Yi�(L�;r) = H i�(L�;r)

�
� 2 R; 1 < r <1; r 6= 2;

1

2
< � <

3

2

�
: (8.7.24)

In particular,

Y0(L�;r) = H 0(L�;r)

�
1 < r <1; r 6= 2;

1

2
< � <

3

2

�
: (8.7.25)
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Remark 8.5. Since on L1=2;2 = L2(R+); H
2
� = I (see Remark 8.1 in Section 8.1), then

H �

�
L2(R+)

�
= L2(R+) and in accordance with (8.7.14),

Y�

�
L2(R+)

�
= H �

�
L2(R+)

�
= L2(R+) (jRe(�)j < 1): (8.7.26)

Finally we present the inversion for the transform Y� in (8.7.1) on L�;r in terms of the

Struve function H�(z) de�ned by

H�(z) =
1X
k=0

(�1)k

�

�
k +

3

2

�
�

�
k + � +

3

2

� �z
2

�2k+�+1

(8.7.27)

(see Erd�elyi, Magnus, Oberhettinger and Tricomi [2, 7.5(55)]).

Theorem 8.28. Let 1 < r < 1 and (r) 5 � < min[1=2� Re(�); 3=2+ Re(�)]; where

(r) is given in (3:3:9). For f 2 L�;r and for almost all x > 0; the following inversion relation

holds:

f(x) = x�(�+1=2)
d

dx
x�+1=2

Z
1

0
(xt)1=2H�+1(xt)

�
Y�f

�
(t)

dt

t
: (8.7.28)

Proof. Since (r) = 1=2; 1=2 < min[1=2 � Re(�); 3=2 + Re(�)]; and it follows that

�1 < Re(�) < 0; so that (r) 5 � < 3=2 + Re(�) = 3=2 � jRe(�)j. Thus from Theorem

8.27(a), Y�f exists and is in L1��;r . Hence, by Lemma 3.1(i), M�+1=2Y�f 2 L1=2���Re(�);r:

Since �1 < Re(�) < 0;

�

�
Re(�) +

1

2

�
<

1

2
5 (r) 5 � < min

�
1

2
�Re(�);

3

2
+ Re(�)

�
5 1:

Hence, by Lemma 8.1(b), h�;x 2 L�;r0 ; and thus M�(�+1=2)h�;x 2 L1=2+�+Re(�);r0 . We also note

that �1 < 1=2 + � + Re(�) < 1; since from Re(�) > �1 and the assumption

�Re(�)�
3

2
< �

1

2
< � <

1

2
�Re(�):

Therefore we can apply Theorem 8.9(c) to obtain from (8.3.5) the relation

�

Z
1

0

�
M�(�+1=2)h�;x

�
(t)

�
H�M�+1=2Y�f

�
(t)dt

=
Z
1

0

�
H+M�(�+1=2)h�;x

�
(t)

�
M�+1=2Y�f

�
(t)dt: (8.7.29)

Noting

1

�

Z
1

�1

J�(ajxj)
jxj��

x� y
dx = �sign yjyj��H�(ajyj)

�
a > 0; Re(�) > �

3

2

�

(see Erd�elyi, Magnus, Oberhettinger and Tricomi [4, 15.3(15)]) and remembering thatH+ is

the restriction on R+ of the Hilbert transform of even functions, we �nd�
H+M�(�+1=2)h�;x

�
(t) = �x�+1t�(�+1)H�+1(xt); (8.7.30)
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whereH�+1(z) is the Struve function (8.7.27). Also, by applying (8.7.16), (8.3.14) and (8.3.4),

we have

H�M�+1=2Y�f = �H�M�+1=2M1=2��H�M��1=2H �f

= �H�M1H�M�1M�+1=2H �f = �H�H+M�+1=2H �f

=M�+1=2H �f: (8.7.31)

Substituting (8.7.30) and (8.7.31) into (8.7.29) and using (8.1.13), we obtain

x�+1=2
Z
1

0
(xt)1=2J�+1(xt)

�
H �f

�
(t)

dt

t

= x�+1=2
Z
1

0
(xt)1=2H�+1(xt)

�
Y�f

�
(t)

dt

t
: (8.7.32)

Since, as noted, (r) 5 � < Re(�)+3=2 and � < 1; the result in (8.7.28) follows from Theorem

8.3. This completes the proof of Theorem 8.28.

In Theorem 8.28 the inversion formula for the transform Y� was established for � <

1=2� Re(�). In the case � > 1=2� Re(�) there holds the following result.

Theorem 8.29. Let 1 < r <1 and (r) 5 � < 1; where (r) is given in (3:3:9); and let

1=2 < � + Re(�) < 3=2: If f 2 L�;r; then for almost all x > 0;

f(x) = x�(�+1=2)
d

dx
x�+1=2

Z
1

0
(xt)1=2

h
H�+1(xt)�A�(xt)

�
i�
Y�f

�
(t)

dt

t
; (8.7.33)

where

A� =
1

2��1=2�

�
� +

3

2

� : (8.7.34)

Proof. The proof is based on two preliminary lemmas for the auxiliary functions

h�(t) = t�1=2
h
H�+1(t)� A�t

�
i

(8.7.35)

and

r�;x(t) =

8<
:

t�+1=2x�(�+3=2); if 0 < t < x;

0; if t > x:
(8.7.36)

Lemma 8.7. If 1=2�Re(�) < � < 1; then h� 2 L�;r for 1 5 r <1. If 1=2 5 � < 1 and

1=2� � < Re(�) < 1; then for Re(s) = �;

�
Mh�

�
(s) = 2s�1=2

�

�
1

2

�
� + s+

1

2

��

�

�
1

2

�
� � s+

3

2

�� tan

�
�

2

�
s + � +

1

2

��
1

� � s +
3

2

: (8.7.37)
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Lemma 8.8. If 1=2 5 � < 1 and 1=2 5 � + Re(�) < 3=2; then for x > 0;

Y�W1=xh� = r�;x; (8.7.38)

where the operator W� is given in (3.3.12).

For real � Lemmas 8.7 and 8.8 were proved by Heywood and Rooney [4, Lemmas 4.3 and

4.4]. Their proofs can be directly extended to complex �.

To prove Theorem 8.29, we �rst note that, from the assumption of the theorem, Re(�) < 1

and � < 3=2� jRe(�)j. Thus by Lemma 8.7, h� 2 L�;r0 ; and by Theorem 8.27(a) Y�f exists.

So we can apply Theorem 8.27(d) and Lemma 8.8, and by virtue of (8.7.35), (8.7.17), (8.7.38)

and (8.7.36) we have

x�+1=2
Z
1

0
(xt)1=2

h
H�+1(xt)� A�(xt)

�
i�
Y�f

�
(t)

dt

t

= x�+3=2
Z
1

0
(W1=xh�)(t)

�
Y�f

�
(t)dt = x�+3=2

Z
1

0

�
Y�W1=xh�

�
(t)f(t)dt

= x�+3=2
Z
1

0
r�;x(t)f(t)dt =

Z x

0
t�+1=2f(t)dt; (8.7.39)

and the result in (8.7.33) follows on di�erentiation. So Theorem 8.29 is proved.

Corollary 8.29.1. Under the hypotheses of Theorem 8:29; there holds the formula

Z x

0
t�+1=2f(t)dt = x�+1=2

Z
1

0
(xt)1=2

h
H�+1(xt)�A�(xt)

�
i�
Y�f

�
(t)

dt

t
(8.7.40)

for x > 0.

The relation (8.7.40) leads to another inversion result for the transformY�.

Theorem 8.30. Let f 2 L�;r and let either of the following assumptions hold:

(a) 1 < r <1; (r) 5 � < 3=2� jRe(�)j and � > 1=2� Re(�);

(b) r = 1; Re(�) 6= 0 and 1 5 � 5 3=2� jRe(�)j;

(c) r = 1; Re(�) = 0 and 1 5 � < 3=2.

Then for almost all x > 0;

f(x) = x�(�+1=2)
�
1

x

d

dx

�2

x�+3=2

�

Z
1

0
(xt)1=2

h
H�+2(xt)� A�+1(xt)

�+1
i �
Y�f

�
(t)

dt

t2
: (8.7.41)

Proof. If f 2 C0 and � satis�es the hypotheses (a), (b) or (c), then by Corollary 8.29.1

the relation (8.7.40) holds for any x > 0. If we replace x by y; multiply both sides of the
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obtained result by y; integrate from 0 to x in y and interchange the order of integration, direct

calculations show that for f 2 C0 the relation

1

2

Z x

0
t�+1=2(x2 � t2)f(t)dt

= x�+3=2
Z
1

0
(xt)1=2

h
H�+2(xt)� A�+1(xt)

�+1
i �
Y�f

�
(t)

dt

t2
(8.7.42)

holds, if we take into account the formulaZ
z�H��1(z)dz = z�H�(z) (8.7.43)

for the Struve function (8.7.27) (see Erd�elyi, Magnus, Oberhettiger and Tricomi [2, 7.5(48)]).

It is easily veri�ed that for each x > 0; under the hypotheses of the theorem both sides of

(8.7.42) represent bounded linear functionals on L�;r ; and hence (8.7.42) is valid for f 2 L�;r.

Then by di�erentiation of (8.7.42) twice, as in the proof of Theorem 8.29, we obtain the result

in (8.7.41), and theorem is proved.

The inversion of the transformY� in (8.7.1) in the limiting case � = 1=2�Re(�) is given

in terms of the integral in the Cauchy sense de�ned in (8.4.24).

Theorem 8.31. Let 1 < r <1 and �1=2 < Re(�) 5 1=2� (r); where (r) is given in

(3:3:9). If f 2 L1=2��;r; then for almost all x > 0;

f(x) = x�(�+1=2)
d

dx
x�+1=2

Z
!1

0
(xt)1=2H�+1(xt)

�
Y�f

�
(t)

dt

t
: (8.7.44)

Proof. For real � the result in (8.7.44) was proved by Heywood and Rooney [4, Theorem

5.3]. It is directly veri�ed that their proof can be extended to complex �. We only note

that such a proof, which is more complicated than that in Theorem 8.29, is based on the

representations of the form (8.7.28) and (8.7.33) for the characteristic function f1 of (1;1)

and for f2 = f � f1; respectively, some auxiliary assertions and Theorem 8.27(d).

Using the notation, similar to (8.4.24),Z
1

!0
f(t)dt = lim

�!0

Z
1

�
f(t)dt; (8.7.45)

we have the clear corollary:

Corollary 8.31.1. If f 2 L1=2��;r; where 1 < r < 1 and �1=2 < Re(�) 5 1=2� (r);

then for almost all x > 0;

f(x) = x�(�+1=2)
d

dx
x�+1=2

Z
1

!0
(xt)1=2

h
H�+1(xt)�A�(xt)

�
i�
Y�f

�
(t)

dt

t
: (8.7.46)

Remark 8.6. The results in (8.7.44) and (8.7.46) are formally similar to those in (8.7.28)

and (8.7.33). But the integrals in these relations have di�erent convergences, that is, the for-

mer is convergent in the Cauchy sense (8.4.24) and (8.7.45), while the latter is convergent in
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the sense of L1(R+).

8.8. The Struve Transform

We consider the integral transform H� de�ned by

�
H�f

�
(x) =

Z
1

0
(xt)1=2H�(xt)f(t)dt (x > 0); (8.8.1)

where H�(z) is the Struve function (8.7.27).

First we show that the Struve transform H� is represented via the Hankel transform H �+1

in (8.1.1). Such a result is based on the following preliminary assertions.

Lemma 8.9. Let 1 < r <1 and

m�(s) =
�

�
1

2

�
s+ � +

3

2

��
�

�
1

2

�
s� � �

1

2

��

�

�
1

2

�
s+ � +

1

2

��
�

�
1

2

�
s� � +

1

2

�� (� 2 C ; Re(�) > �2): (8.8.2)

(a) If � > max[Re(�) + 1=2;�Re(�)� 3=2]; then there is a transform S� 2 [L�;r] such

that; for f 2 L�;r; 1 < r 5 2 and Re(s) = �; there holds

�
MS�

�
(s) = m�(s)

�
Mf

�
(s): (8.8.3)

If further � > �Re(�)� 1=2; then the transform S� is one-to-one on L�;r into itself.

(b) If � < min[1=2�Re(�);Re(�) + 5=2]; then there is a transform T� 2 [L�;r ] such that;

for f 2 L�;r; 1 < r 5 2 and Re(s) = �; there holds�
MT�f

�
(s) = m�(1� s)

�
Mf

�
(s): (8.8.4)

If further � < Re(�) + 3=2; then the transform T� is one-to-one on L�;r into itself.

(c) If f 2 L�;r and g 2 L1��;r0 ; where � > max[Re(�) + 1=2;�Re(�)� 3=2]; then

Z
1

0

�
S�f

�
(x)g(x)dx =

Z
1

0
f(x)

�
T�g

�
(x)dx: (8.8.5)

(d) If Re(�) > �2; then for almost all x > 0;

�
T�h�+1;x

�
(t) = x�+3t�(�+5=2)

Z t

0
y�+2H�(xy)dy; (8.8.6)

where h�+1;x(t) is given in (8.1.13).

Proof. The �rst assertion in (a) follows from Theorem 3.1, if we take m(s) = m�(s);

�(m�) = max[Re(�) + 1=2;�Re(�) � 3=2] and �(m�) = 1. Using (1.2.4) and (3.4.19), we

�nd jm�(� + it)j � 1 uniformly in �(m�) < �1 5 � 5 �2 < �(m�) and m0

�(� + it) = O(1=t)

as jtj ! 1. To prove the one-to-one property of S� on L�;r; we only note that 1=m�(s) is

holomorphic in the strip �1(m�) < � < �1(m�) with �1(m�) = max[Re(�)�1=2;�Re(�)�1=2]

and �1(m�) =1.
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If we put k�(s) = m�(1 � s); then m� 2 A implies k� 2 A with �(k�) = �1 and

�(k�) = 1� �(m�); and (b) follows from (a).

For r = 2 the result in (8.8.5) is proved similarly to that in Theorem 3.5(c), and it may

be extended to any 1 < r < 1; since under the hypotheses of (c) both sides of (8.8.5) are

bounded linear functionals on L�;r � L1��;r0 .

To prove (d) we note that, since Re(�) > �2; we can choose � such that �Re(�)� 3=2 <

� < min[1;�Re(�)+1=2;Re(�)+5=2]. Thus, by Lemma 8.1 and the assertion in (b), we have

h�+1;x 2 L�;2; h�+1;x = H �+1g�+1;x and T�h�+1;x 2 L�;2. Hence, in accordance with (8.8.4)

and (8.1.4) and by using (8.8.2), (8.7.8) and (2.1.6), we have for Re(s) = ��
MT�h�+1;x

�
(s) =

�
MT�H �+1g�+1;x

�
(s)

=m�(1� s)2s�1=2
�

�
1

2

�
� + s+

3

2

��

�

�
1

2

�
� � s+

5

2

��(Mg�+1;x)(1� s)

= 2s�1=2
�

�
1

2

�
� + s+

3

2

��
�

�
1

2

�
�� � s +

1

2

��
�
� � s+

5

2

�
�

�
1

2

�
� � s+

3

2

��
�

�
1

2

�
�� � s +

3

2

��x��s+5=2

= 2s�1=2
� sec

�
�

2

�
� + s+

3

2

��
x��s+5=2�

� � s+
5

2

�
�

�
1

2

�
� � s+

3

2

��
�

�
1

2

�
�� � s +

3

2

�� : (8.8.7)

Hence by (3.2.6), �
T�h�+1;x

�
(t) = x�+5=2I(xt);

where

I(z) = lim
R!1

1

2�i

�+iRZ
��iR

2s�1=2
� sec

�
�

2

�
� + s+

3

2

��
�
� � s+

5

2

�
�

�
1

2

�
� � s+

3

2

��
�

�
1

2

�
�� � s +

3

2

��z�sds;

and the limit is taken in the topology of L�;r. By closing the contour to the left, straight-

forward residue calculus (similar to that in the proof of Lemma 8.6) of the integrand at the

simple poles s = �� � 3=2� 2k (k = 0; 1; 2; � � �), by taking into consideration the assumption

� < �Re(�) + 1=2; yields the result in (8.8.6). Thus Lemma 8.9 is proved.

Now we study the representation of the Struve transform (8.8.1) via the Hankel transform

(8.1.1)

Theorem 8.32. For � 2 C (Re(�) > �2) and f 2 C0; there holds

H�f = H �+1S�f; (8.8.8)

where the transform S� is given in Lemma 8.9.
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Proof. For all � > max[Re(�) + 1=2;�Re(�)� 3=2] and f 2 C0; we �nd S�f 2 L�;r by

Lemma 8.9(a). Since Re(�) > �2; there exists � such that

1

2
5 � < Re(�) +

5

2
; � > max

�
Re(�) +

1

2
;�Re(�)�

3

2

�
;

and, according to Theorem 8.1(a), H �+1S�f can be de�ned. Lemma 8.1(b) assures h�+1;x(t) 2

L1��;2. Hence we can apply Theorem 8.1(d), and in accordance with (8.1.6) and (8.8.5) we

have for almost all x > 0�
H �+1S�f

�
(x) = x�(�+3=2)

d

dx

Z
1

0
h�+1;x(t)

�
S�f

�
(t)dt

= x�(�+3=2)
d

dx

Z
1

0

�
T�h�+1;x

�
(t)f(t)dt:

Then applying (8.8.6), we obtain for almost all x > 0

�
H �+1S�f

�
(x) = x�(�+3=2)

d

dx
x�+3

Z
1

0
t�(�+5=2)f(t)dt

Z t

0
y�+2H�(xy)dy

= x�(�+3=2)
d

dx

Z
1

0
t�(�+5=2)f(t)dt

Z xt

0
s�+2H�(s)ds

=

Z t

0
(xt)1=2H�(xt)f(t)dt =

�
H�f

�
(x);

which completes the proof of the theorem.

Now, as in the previous section, we present the results characterizing the boundedness,

range and representation of the Struve transform (8.8.1) in L�;r-space.

Theorem 8.33. Let 1 5 r 5 1 and let (r) be given in (3:3:9).

(a) If 1 < r < 1; Re(�) + 1=2 < � < Re(�) + 5=2 and � = (r); then for all s = r such

that s0 = 1=� and 1=s+ 1=s0 = 1; H� can be extended to L�;r as an element of [L�;r ;L1��;s].

If 1 < r 5 2 and f 2 L�;r; then the Mellin transform of (8:8:1) for Re(s) = 1� � is given by

�
MH�f

�
(s) =

2s�1=2� sec

�
�

2

�
s+ � +

1

2

��

�

�
1

2

�
� � s+

3

2

��
�

�
1

2

�
�� � s +

3

2

���Mf
�
(1� s): (8.8.9)

(b) If 1 < r <1; jRe(�)+1=2j < � < Re(�)+5=2 and � = (r); then H� is a one-to-one

transform from L�;r onto L1��;s; and

H�(L�;r) = H �+1(L�;r): (8.8.10)

Further; if jRe(�) + 1=2j < � < Re(�) + 3=2; then

H� = H �M���1=2H�M�+1=2 (8.8.11)

and

H� = �M�+1=2H+M���1=2H �: (8.8.12)
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(c) If Re(�) + 1=2 5 � 5 Re(�) + 5=2 and � = 1; then H� 2 [L�;1;L1��;1]; and if

Re(�) + 1=2 < � < Re(�) + 5=2 and � > 1; then for all r (1 5 r <1); H� 2 [L�;1;L1��;r].

(d) If f 2 L�;r and g 2 L�;s; where 1 < r < 1 and 1 < s < 1 such that 1=r + 1=s = 1

and Re(�)+1=2 < � < Re(�)+5=2 and � = max[(r); (s)]; then the following relation holds:Z
1

0
f(x)

�
H�g

�
(x)dx =

Z
1

0

�
H�f

�
(x)g(x)dx: (8.8.13)

(e) If f 2 L�;r; where 1 < r <1 and Re(�)+ 1=2 < � < Re(�)+ 5=2 and � = (r); then

for almost all x > 0 the following relations hold:

�
H�f

�
(x) = x���1=2

d

dx
x�+1=2

Z
1

0
(xt)1=2H�+1(xt)f(t)

dt

t
; (8.8.14)

if Re(�) > �1; and

�
H�f

�
(x) = �x��1=2

d

dx
x1=2��

�

Z
1

0
(xt)1=2

2
664H��1(xt)�

21��

�1=2�

�
� +

1

2

�(xt)�
3
775 f(t)dtt ; (8.8.15)

if �2 < Re(�) < 1:

Proof. Since Re(�) > �2; Theorem 8.32 impliesH� = H �+1S� on C0. Lemma 8.9(a) guar-

antees S� 2 [L�;r ] under � > max[Re(�)+1=2;�Re(�)�3=2]. The case Re(�)+1=2 5 �Re(�)

� 3=2 occurs only if �2 < Re(�) 5 � 1 and for � such that �Re(�)� 3=2 < 1=2 5 (r) 5 �.

Therefore for the value � under consideration in (a), S� 2 [L�;r ]. Also, since (r) 5 � <

Re(�) + 5=2 by Theorem 8.1(a), H �+1 2 [L�;r ;L1��;s] for all s = r such that s0 = 1=�. Hence

H �+1S� 2 [L�;r;L1��;s] for such s. Thus we can extend H� on C0 to L�;r by de�ning it by

(8.8.8) and then H� 2 [L�;r ;L1��;s]. The relation (8.8.9) is proved directly by using (8.1.4)

and (8.8.3). Thus (a) is proved.

By Lemma 8.9(a), S� 2 [L�;r] is one-to-one for � > jRe(�)+ 1=2j, and by Theorem 8.1(a),

H �+1 is one-to-one from L�;r onto L1��;s for (r) 5 � < Re(�) + 5=2. Then H� = H �+1S� is

also one-to-one. Thus (8.8.10) holds.

Under the hypotheses of (b), Lemma 3.1(i), Theorems 8.9(b) and 8.1(a) yield that

H �M���1=2H�M�+1=2 maps L�;r boundedly into L1��;s. Further, if f 2 L�;r and 1=2 5 � <

Re(�) + 3=2; then by using (8.1.4), (3.3.14) and (8.3.13) for Re(s) = 1 � � we obtain the

relation �
MH �M���1=2H�M�+1=2f

�
(s)

=
2s�1=2� sec

�
�

2

�
s+ � +

1

2

��

�

�
1

2

�
� � s +

3

2

��
�

�
1

2

�
�� � s+

3

2

���Mf
�
(1� s);

which yields (8.8.11) according to (8.8.9). But both sides of (8.8.11) are in [L�;r;L1��;s] if

1 < r < 1; Re(�) + 1=2 < � < Re(�) + 3=2 and � = (r); and hence we have the relation

(8.8.11). Similarly (8.8.12) is shown.
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(c) is proved similarly to Theorem 8.1(b) by using the asymptotic estimates for the Struve

function (8.7.27) at zero and in�nity:

H �(z) = O(z�+1) (z ! 0); H �(z) = O(z�min[1�Re(�);1=2]) (z !1) (8.8.16)

(see Erd�elyi, Magnus, Oberhettinger and Tricomi [2, 7.5(55) and 7.5(63)]).

The assertion (d) is also shown as in Theorem 8.1(c).

To prove (e) we note that, if Re(�) > �1; �Re(�)� 1=2 < 1=2 5 (r) 5 �; and hence by

Lemma 8.1(a), g�;x 2 L�;r0 . Then from (8.8.13), if x > 0; we obtainZ x

0
t�+1=2

�
H�f

�
(t)dt =

Z
1

0
g�;x(t)

�
H�f

�
(t)dt =

Z
1

0

�
H�g�;x

�
(t)f(t)dt: (8.8.17)

We evaluate (H�g�;x)(t) as in Lemma 8.9(d) by using the technique of the Mellin transform

and residue theory. Namely, since g�;x 2 L�;2, (8.8.9) and (8.7.8) imply for Re(s) = 1� �

�
MH�g�;x

�
(s) =

�2s�1=2x��s+3=2 sec

�
�

2

�
s+ � +

1

2

��

�

�
1

2

�
� � s +

7

2

��
�

�
1

2

�
�� � s+

3

2

�� :

Applying (3.2.6) and closing the contour to the left and calculating the residues of the in-

tegrand at the poles s = �� � 2m � 3=2 (m = 0; 1; 2; � � �) by noting that Re(s) = 1 � � <

�Re(�) + 1=2; we obtain

�
H�g�;x

�
(t) = x�+3=2

1

2�i
lim
R!1

1��+iRZ
1���iR

�2s�1=2 sec

�
�

2

�
s+ � +

1

2

��

�

�
1

2

�
� � s+

7

2

��
�

�
1

2

�
�� � s +

3

2

��(xt)�sds

= x�+1=2(xt)1=2H�+1(xt)
1

t
:

Thus the result in (8.8.14) follows on di�erentiation.

If Re(�) < 1; (8.8.15) is proved in a similar manner by using g��;x 2 L�;r0 . Thus Theorem

8.33 is established.

In view of Theorems 8.2 and 8.33, we have

Corollary 8.33.1. Let 1 < r <1; jRe(�)+ 1=2j < � < Re(�)+ 3=2 and � = (r): Then

H�(L�;r) =
�
M�+1=2H+M�����1=2I��;�1=2Fc

��
L(r);r

�
: (8.8.18)

In particular, if jRe(�) + 1=2j < � < Re(�) + 3=2 and � = 1=2;

H�(L�;2) =
�
M�+1=2H+M����1I��1=2;�1=2Fc

��
L2(R+)

�
: (8.8.19)

Corollary 8.33.2. If 1 < r < 1; jRe(�) + 1=2j < � < Re(�) + 3=2 and � = (r);

then the range H �(L�;r) of the Hankel transform (8:1:1) is invariant under the operator

M�+1=2H+M���1=2.
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Proof. From relations (8.1.20), (8.8.10), (8.8.12) and (8.1.28), we have

H �(L�;r) = H �+1(L�;r) = H�(L�;r) = (M�+1=2H+M���1=2H �)(L�;r)

= (M�+1=2H+M���1=2)
�
H �(L�;r)

�
:

Remark 8.7. The exceptional value � = �Re(�)�1=2; for which H�(L�;r) 6= H �+1(L�;r);

can only occur for �3=2 < Re(�) 5 � 1 since 1=2 5 (r) 5 � < Re(�) + 5=2. Further, if

Re(�) = �1; then r = 2 and thus

H�1+i�(L�;r) = H i�(L�;r)

�
� 2 R; 1 < r <1; r 6= 2; �

1

2
< � <

3

2

�
: (8.8.20)

In particular,

H�1(L�;r) = H 0(L�;r)

�
1 < r <1; r 6= 2; �

1

2
< � <

3

2

�
: (8.8.21)

Remark 8.8. Since on L1=2;2 = L2(R+); H
2
� = I (see Remark 8.1 in Section 8.1), then

H �+1(L2(R+)) = L2(R+) and in accordance with (8.8.10),

H�

�
L2(R+)

�
= L2(R+) (�2 < Re(�) < 0; Re(�) 6= �1): (8.8.22)

Theorems 8.28{8.31 show that the H�-transform (8.8.1) is inverse toY�-transform (8.7.1).

Moreover these transforms are inverse to each other. First we prove such a result for the space

L1=2;2 = L2(R+).

Theorem 8.34. If �1 < Re(�) < 0; then on L1=2;2;

H�Y� =Y�H� = I: (8.8.23)

Proof. Since �1 < Re(�) < 0; 1=2 < 3=2 + Re(�) = 3=2� jRe(�)j and Re(�) + 1=2 <

1=2 < Re(�) + 3=2. Then we can apply Theorems 8.27(b) and 8.33(b). Using (8.8.12) and

(8.7.15), the equality H 2
� = I being held on L1=2;2; and (8.3.15) and (8.3.4), we have

H�Y� = �M�+1=2H+M���1=2H �H �M��1=2H+M1=2��

= �M�+1=2H+M�1H+M1=2�� = M�+1=2M���1=2 = I:

Thus the �rst relation in (8.8.23) is valid. The second one is shown similarly by using (8.8.11)

and (8.7.16).

Theorem 8.28 in Section 8.7 is a considerable extension of the �rst result in Theorem 8.34.

The next result gives such an extension of the second one.
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Theorem 8.35. Let 1 < r < 1 and jRe(�) + 1=2j < � < min[1;Re(�) + 3=2] and

� = (r). For f 2 L�;r and almost all x > 0; the inversion relation

f(x) = x���1=2
d

dx
x�+1=2

�

Z
1

0
(xt)1=2

"
Y�+1(xt) +

�(� + 1)

�

�
2

xt

��+1
#�
H�f

�
(t)

dt

t
(8.8.24)

holds.

Proof. Since Re(�) + 1=2 < 1 and (r) 5 � < Re(�) + 3=2; �1 < Re(�) < 1=2; then

under the hypotheses of the theorem

M1=2��H�f 2 L1=2��+Re(�);r; M��1=2h�;x 2 L1=2+��Re(�);r0

in accordance with Theorem 8.33(a), Lemmas 3.1(i), 8.1(b) and 3.1(i). The assumption implies

�1 < (1=2)��+Re(�) < 1 and therefore we can apply Theorem 8.9(c) to obtain from (8.3.5)

the relation Z
1

0

�
M��1=2h�;x

�
(t)
�
H+M1=2��H�f

�
(t)dt

= �

Z
1

0

�
H�M��1=2h�;x

�
(t)
�
M1=2��H�f

�
(t)dt: (8.8.25)

From (8.8.12), (8.3.14) and (8.3.4)

H+M1=2��H�f = �H+M1=2��M�+1=2H+M���1=2H �f

= �M1H�H+M���1=2H �f = M1=2��H �f: (8.8.26)

Substituting this and the relation (8.7.7) for (H�M��=2h�;x)(t) in (8.8.25) and using (8.1.13),

we obtain

x�+1=2
Z
1

0
(xt)1=2J�+1(xt)

�
H �f

�
(t)

dt

t

= x�+1=2
Z
1

0
(xt)1=2

"
Y�+1(xt) +

�(� + 1)

�

�
2

xt

��+1
# �
H�f

�
(t)

dt

t
;

and the result in (8.8.24) follows fromTheorem 8.3. This completes the proof of Theorem 8.35.

In Theorem 8.35 the inversion formula for the transform H� was proved for jRe(�)+1=2j <

� < min[1;Re(�) + 3=2] and � = (r). The result below gives a formula for the inverse of H�

in the nearly full range of boundedness of the transform.

Theorem 8.36. Let 1 5 r <1; m 2 N and����Re(�) + 1

2

���� < � < Re(�) +
5

2
; (r) 5 � < m:

If f 2 L�;r; then for almost all x > 0;

f(x) = 2�mx���5=2
�
1

x

d

dx

�m

x�+2m+3=2

�

Z
1

0
(xt)1=2[��;m(xt)�m��;m+1(xt)]

�
H�f

�
(t)dt; (8.8.27)
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where

��;m(x) =

�
2

x

�m
"
Y�+m(x) +

1

�

m�1X
k=0

�
x

2

�2k���m �(� +m� k)

k!

#
: (8.8.28)

Proof. The proof of this theorem is based on two preliminary assertions for two auxiliary

functions

��;m(x) = x1=2[��;m(x)�m��;m+1(x)] (8.8.29)

and

q�;x(t) =
2

�(m)

8<
:

t�+5=2x���2m�3=2(x2 � t2)m�1; if 0 < t < x;

0; if t > x:
(8.8.30)

Lemma 8.10. Let 1=2 5 � < m.

(a) If jRe(�) + 1=2j < � < Re(�) + 7=2; then ��;m 2 L�;r for 1 5 r <1.

(b) If jRe(�) + 1=2j < � < Re(�) + 5=2; then for Re(s) = �;

�
M��;m

�
(s) = 2s�3=2

�
� � s+

3

2

� �

�
1

2

�
� + s +

1

2

��

�

�
1

2

�
7

2
+ � � s + 2m

�� cot

�
�

2

�
� � s +

7

2

��
: (8.8.31)

Lemma 8.11. If jRe(�) + 1=2j < � < Re(�) + 5=2 and 1=2 5 � < m; then for almost all

x > 0;

H�W1=x��;m = q�;x; (8.8.32)

where the operator W� is given in (3.3.12).

For real � Lemmas 8.10 and 8.11 were proved by Heywood and Rooney [4, Lemmas 6.3

and 6.4]. Their proofs are directly extended to complex �.

Using Lemmas 8.10 and 8.11 and taking the same arguments as in Theorems 8.29 and

8.30 with direct calculations, we obtain (8.8.27).

Remark 8.9. For m = 1 the result in Theorem 8.36 is an improvement of that in The-

orem 8.35, whereas � < Re(�) + 3=2 is replaced by � < Re(�) + 5=2. Also the hypothesis

Re(�) > �1 assures that �[Re(�) + 1=2] < 1=2 5 �.

Remark 8.10. When � < Re(�)+3=2; direct calculation show that the inversion relation

(8.8.27) is simpli�ed by using only ��;m:

f(x) =
x���5=2

2m

�
1

x

d

dx

�m

x�+2m+3=2
Z
1

0
(xt)1=2��;m(xt)

�
H�f

�
(t)dt: (8.8.33)
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8.9. The Meijer K�-Transform

We consider the integral transform, named the Meijer transform, for � 2 C :

�
K�f

�
(x) =

Z 1

0
(xt)1=2K�(xt)f(t)dt (x > 0); (8.9.1)

where K�(z) is the modi�ed Bessel function of the third kind, or Macdonald function de�ned

by

K�(z) =
�

2 sin(��)
[I��(z)� I�(z)] =

�
�

2z

�1=2
W0;�(2z); (8.9.2)

in terms of the modi�ed Bessel function of the �rst kind

I�(z) = e�i��=2J�
�
zei�=2

�
=

1X
k=0

1

k!�(k + � + 1)

�
z

2

�2k+�

(8.9.3)

or the Whittaker function W0;�(z) in (7.2.2), for which see the book by Erd�elyi, Magnus,

Oberhettinger and Tricomi [2, 7.2 (11)].

When � = �1=2; K�1=2(z) = �1=2(2z)�1=2e�z and hence the Meijer transform K�1=2

coincides with the Laplace transform (2.5.2) within a constant multiplier:

�
K�1=2f

�
(x) =

�
�

2

�1=2 Z 1

0
e�xtf(t)dt =

�
�

2

�1=2 �
Lf
�
(x) (x > 0): (8.9.4)

The L�;r-theory for the Meijer transform (8.9.1) is based on the Mellin transform of the

kernel function x1=2K�(x).

Lemma 8.12. If � 2 C ; then for s 2 C with Re(s) > jRe(�)j � 1=2; there holds

�
Mx1=2K�(x)

�
(s) = 2��1�1=2

�

�
1

4
+
�

2
+
s

2

�
�

�
1

2
� � + s

�

�

�
3

4
�
�

2
+
s

2

�

= 2���1�1=2
�

�
1

4
�
�

2
+
s

2

�
�

�
1

2
+ � + s

�

�

�
3

4
+
�

2
+
s

2

� : (8.9.5)

Proof. It is well known that�
MK�(x)

�
(s) = 2s�2�

�
s+ �

2

�
�

�
s � �

2

�
(Re(s) > jRe(�)j) (8.9.6)

holds, for which see, for example, Prudnikov, Bruchkov and Marichev [2, 2.16.2.2]. Multiplying

the numerator and the denominator of the left-hand side of (8.9.6) by �([s� �]=2+ 1=2) and

using the Legendre duplication formula (see Erd�elyi, Magnus, Oberhettinger and Tricomi [1,

1.2(15)]):

�(2z) = 22z�1��1=2�(z)�

�
z +

1

2

�
; (8.9.7)
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we have

�
MK�

�
(s) = 2��1�1=2

�

�
s+ �

2

�
�(s� �)

�

�
s� � + 1

2

� : (8.9.8)

Applying the property (3.3.14) with � = 1=2, we obtain

�
Mx1=2K�(x)

�
(s) =

�
MM1=2K�

�
(s) =

�
MK�

��
s+

1

2

�

= 2��1�1=2
�

�
1

4
+
�

2
+
s

2

�
�

�
1

2
� � + s

�

�

�
3

4
�
�

2
+
s

2

� ;

which gives the �rst relation in (8.9.5). The second one is proved similarly if we multiply the

numerator and the denominator in the right-hand side of (8.9.6) by �[(s + �)=2 + 1=2] and

apply (8.9.7) and (3.3.14).

Employing (8.9.5), we can apply the results in Chapters 3 and 4 to characterize the L�;r-

properties of the Meijer transform (8.9.1). Indeed, by (8.9.5) and (1.1.2),
�
Mx1=2K�

�
(s) is

an H-function of the forms

�
Mx1=2K�(x)

�
(s) = 2��1�1=2H2;0

1;2

2
664
�
3

4
�
�

2
;
1

2

�
�
1

4
+
�

2
;
1

2

�
;

�
1

2
� �; 1

�
��������
s

3
775 (8.9.9)

and

�
Mx1=2K�(x)

�
(s) = 2���1�1=2H2;0

1;2

2
664
�
3

4
+
�

2
;
1

2

�
�
1

4
�
�

2
;
1

2

�
;

�
1

2
+ �; 1

�
��������
s

3
775 : (8.9.10)

Hence in view of (3.1.5), the transform K� is a special H-transform:

�
K�f

�
(x) = 2��1�1=2

Z 1

0
H2;0

1;2

2
664xt

��������

�
3

4
�
�

2
;
1

2

�
�
1

4
+
�

2
;
1

2

�
;

�
1

2
� �; 1

�
3
775 f(t)dt (x > 0) (8.9.11)

or

�
K�f

�
(x) = 2���1�1=2

Z 1

0
H2;0

1;2

2
664xt

��������

�
3

4
+
�

2
;
1

2

�
�
1

4
�
�

2
;
1

2

�
;

�
1

2
+ �; 1

�
3
775 f(t)dt (x > 0): (8.9.12)

By the notation in (3.4.1), (3.4.2), (1.1.7), (1.1.8), (1.1.10), (1.1.11) and (1.1.12), we have for

the transform K� in (8.9.11) or (8.9.12) that
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� = jRe(�)j �
1

2
; � = +1; a� = � = a�1 = 1; a�2 = 0; � = �

1

2
: (8.9.13)

We denote by E1
H
and E2

H
the exceptional sets of two functionsH2;0

1;2(s) in (8.9.9) and in (8.9.10)

(see De�nition 3.4). Let � < 3=2 � jRe(�)j. Then according to the property (1.3.3) of the

gamma function, � is not in the exceptional set E1
H
; if � = 1�Re(s) such that

s 6= � � 2k �
3

2
(k 2 N0) (8.9.14)

and � is not in the exceptional set E2
H
; if � = 1� Re(s) such that

s 6= �� � 2m�
3

2
(m 2 N0): (8.9.15)

Applying Theorems 3.6 and 3.7, we obtain the following results for the Meijer transform

(8.9.1) in the space L�;2.

Theorem 8.37. Let � 2 C and � < 3=2� jRe(�)j.

(i) There is a one-to-one transform K� 2 [L�;2;L1��;2] such that the relations

�
MK�f

�
(s) = 2��1�1=2

�

�
1

4
+
�

2
+
s

2

�
�

�
1

2
� � + s

�

�

�
3

4
�
�

2
+
s

2

� �
Mf

�
(1� s) (8.9.16)

and

�
MK�f

�
(s) = 2���1�1=2

�

�
1

4
�
�

2
+
s

2

�
�

�
1

2
+ � + s

�

�

�
3

4
+
�

2
+
s

2

� �
Mf

�
(1� s) (8.9.17)

hold for Re(s) = 1 � � and f 2 L�;2. If the condition (8:9:14) or (8:9:15) is valid; then the

transform K� maps L�;2 onto L1��;2.

(ii) For f; g 2 L�;2 there holds the relationZ 1

0

�
K�f

�
(x)g(x)dx=

Z 1

0
f(x)

�
K�g

�
(x)dx: (8.9.18)

(iii) Let f 2 L�;2; � 2 C and h 2 R+. If Re(�) > (1� �)h� 1; then K�f is given by

�
K�f

�
(x) = 2��1�1=2hx1�(�+1)=h

d

dx
x(�+1)=h

�

Z 1

0
H2;1

2;3

2
664xt

��������
(��; h);

�
3

4
�
�

2
;
1

2

�
�
1

4
+
�

2
;
1

2

�
;

�
1

2
� �; 1

�
; (��� 1; h)

3
775 f(t)dt
(x > 0) (8.9.19)

or

�
K�f

�
(x) = 2���1�1=2hx1�(�+1)=h

d

dx
x(�+1)=h
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�

Z 1

0
H2;1

2;3

2
664xt

��������
(��; h);
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3

4
+
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2
;
1

2

�
�
1

4
�
�

2
;
1

2

�
;

�
1

2
+ �; 1

�
; (��� 1; h)

3
775 f(t)dt
(x > 0): (8.9.20)

If Re(�) < (1� �)h� 1; then

�
K�f

�
(x) = �2��1�1=2hx1�(�+1)=h

d

dx
x(�+1)=h

�

Z 1

0
H3;0

2;3

2
664xt
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2
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2
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; (��; h)

(��� 1; h);

�
1
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2
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�
;

�
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2
� �; 1

�
3
775 f(t)dt
(x > 0) (8.9.21)

or �
K�f

�
(x) = �2���1�1=2hx1�(�+1)=h

d

dx
x(�+1)=h

�

Z 1

0
H3;0

2;3

2
664xt

��������

�
3
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+
�

2
;
1

2

�
; (��; h)

(��� 1; h);

�
1

4
�
�

2
;
1

2

�
;

�
1

2
+ �; 1

�
3
775 f(t)dt
(x > 0): (8.9.22)

(iv) The transform K� is independent of � in the sense that, if �1 and �2 are such that

�i < 3=2� jRe(�)j (i = 1; 2) and if the transforms K�;1 and K�;2 are given on L�1;2 and L�2;2;

respectively; by (8:9:16) or (8:9:17); then K�;1f = K�;2f for f 2 L�1;2
T
L�2;2.

(v) For f 2 L�;2; K�f is given in (8:9:1) and (8:9:11) or (8.9.12).

Now we present the results on the boundedeness, range and representation of the Meijer

transform (8.9.1) in the space L�;r, for which we need two lemmas.

Lemma 8.13. The modi�ed Bessel function of the third kind of complex order �; K�(x);

has the following asymptotic estimates at zero:

K�(x) � 2���1�(��)x� (x! +0; Re(�) < 0); (8.9.23)

K�(x) � 2��1�(�)x�� (x! +0; Re(�) > 0); (8.9.24)

K�(x) �
�

2 sin(��)

"
(x=2)��

�(1� �)
�

(x=2)�

�(1 + �)

#
(x! +0; Re(�) = 0; � 6= 0); (8.9.25)

K0(x) � � � log

�
x

2

�
(x! +0); (8.9.26)

and at in�nity

K�(x) �

r
�

2x
e�x (x! +1); (8.9.27)
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where  = � (1) is the Euler{Mascheroni constant (see Erd�elyi, Magnus, Oberhettiger and

Tricomi [1, 1.1(4) and 1.7(7)]).

Proof. The estimates (8.9.23) and (8.9.24) follow from (8.9.2) if we take into account

(7.2.3) and (7.2.4) for Re(�) > 0 and the relation 	(a; c; z) = z1�c	(a � c + 1; 2 � c; z)

(see Erd�elyi, Magnus, Oberhettinger and Tricomi [1, 6.5(6)]) and (7.2.3) and (7.2.4) when

Re(�) < 0. The estimate (8.9.25), being clear by (8.9.2) and (8.9.3), yields (8.9.26) in the

limiting case when � ! 0. The asymptotic estimate (8.9.27) is the particular case of the

relation given in Erd�elyi, Magnus, Oberhettinger and Tricomi [2, 7.13(7)].

In the next lemma we treat two auxiliary functions g�;x(t) given in (8.1.12) and

h�;x(t) = �t���3=2
h
(xt)�+1K�+1(xt)� 2��(� + 1)

i
(� 2 C ; Re(�) > 0): (8.9.28)

We have

Lemma 8.14. Let 1 < r <1 and Re(�) > 0. The following statements hold:

(a) g�;x(t) 2 L�;r if and only if � > �Re(�)� 1=2.

(b) h�;x(t) 2 L�;r if and only if � > Re(�) + 1=2.

(c) Further; there holds the relation

K�g�;x = h�;x: (8.9.29)

Proof. The assertion (a) was proved in Lemma 8.1(a). The statement (b) is proved

similarly to those in Lemma 8.1(b) on the basis of the asymptotic estimates (8.9.23), if we

take into accout that by (8.9.2) and (8.9.3) the function z�K�(z) is analytic for z 2 C . To

prove (c), we use the property

d

dz

h
z�+1K�+1(z)

i
= �z�+1K�(z) (8.9.30)

(see Erd�elyi, Magnus, Obrerhettinger and Tricomi [2, 7.11(21)]) and the asymptotic estimate

(8.9.23), and we have

�
K�g�;x

�
(t) =

Z 1

0
(t�)1=2K�(t�)g�;x(�)d� =

Z x

0
(t�)1=2K�(t�)�

�+1=2d�

= t���3=2
Z xt

0
u�+1K�(u)du = �t���3=2

Z xt

0

d

du
[u�+1K�+1(u)]du

= �t���3=2
h
(xt)�+1K�+1(xt)� 2��(� + 1)

i
= h�;x(t):

Thus the relation (8.9.29) is proved, which completes the proof of Lemma 8.14.

Theorem 8.38. Let � 2 C ; 1 5 r 5 s 5 1 and � < 3=2� jRe(�)j.

(a) The transformK� de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L1��;s].

If either (i) 1 < r 5 2 or (ii) 1 < r < 1 and the conditions in (8:9:14) or in (8:9:15) are

satis�ed; then K� is a one-to-one transform from L�;r onto L1��;s.

(b) If f 2 L�;r and g 2 L�;s0 with 1=s+ 1=s0 = 1; then the relation (8:9:18) holds.

(c) For � 5 3=2� jRe(�)j except when � = 0 and � = 3=2; K� belongs to [L�;1;L1��;1].
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(d) Let 1 < r < 1; jRe(�)j = 1=2 and the condition (8:9:14) or (8:9:15) be satis�ed.

Then

K�(L�;r) = L(L�;r): (8.9.31)

If neither (8:9:14) nor (8:9:15) is satis�ed; then K�(L�;r) is a subset of the right-hand side of

(8:9:31); where L is the Laplace transform (2:5:2):

Let jRe(�)j < 1=2 and the condition (8:9:14) or (8:9:15) be satis�ed. Then

K�(L�;r) = K��(L�;r) =
�
I
1=2�jRe(�)j
�;1;1=2�jRe(�)jL1;jRe(�)j�1=2

�
(L�;r); (8.9.32)

where I
1=2�jRe(�)j
�;1;1=2�jRe(�)j and L1;jRe(�)j�1=2 are the Erd�elyi{Kober type operator (3:3:2) and the

generalized Laplace transform (3:3:3); respectively. If neither (8:9:14) nor (8:9:15) is satis�ed;

then K�(L�;r) is a subset of the right-hand side of (8:9:32):

(e) Let Re(�) > 0; 1 < r < 1 and �1=2 � Re(�) < � < 3=2� Re(�). If f 2 L�;r; then

the relation

�
K�f

�
(x) = �x���1=2 d

dx

Z 1

0
t���1=2

h
(xt)�+1K�+1(xt)� 2��(� + 1)

i
f(t)

dt

t
(8.9.33)

holds for almost all x > 0.

Proof. The assertion (a) follows from Theorems 4.5(a) and Theorem 4.7(a), and (b) is

derived from Theorem 4.5(b). The assertion (c) is proved similarly to the proof of Theorem

8.1(b) on the basis of the asymptotic behavior of K�(x) established in Lemma 8.13. The

assertion (d) follows from Theorem 4.7(b){(c), if we use the relation

K�(z) = K��(z) (8.9.34)

(see Erd�elyi, Magnus, Oberhettinger and Tricomi [2, 7.2(14)]), which is also clear by (8.9.6).

To prove (e) we employ Lemma 8.14 and Theorem 8.38(e). By Lemma 8.14(a), g�;x 2 L�;r0 ;

and we can appply Theorem 8.38(c)

Z x

0
t�+1=2

�
K�f

�
(t)dt =

Z 1

0
g�;x(t)

�
K�f

�
(t)dt =

Z 1

0

�
K�g�;x

�
(t)f(t)dt

=

Z 1

0
h�;x(t)f(t)dt

= �t���3=2
Z 1

0

h
(xt)1=2K�+1(xt)� 2��(� + 1)

i
f(t)dt;

and the resullt in (8.9.33) follows on di�erentiation. Thus Theorem 8.38 is proved.

Remark 8.11. The result in (8.9.31) shows that in the case jRe(�)j = 1=2 the range

K�(L�;r) of the Meijer transform (8.9.1) coincides with the range L(L�;r) of the Laplace trans-

form (2.5.2).
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8.10. Bessel Type Transforms

We consider the integral transforms�
K�

�f
�
(x) =

Z
1

0
Z�
� (xt)f(t)dt (x > 0) (8.10.1)

and �
L(m)
� f

�
(x) =

Z
1

0
�(m)
� (xt)f(t)dt (x > 0) (8.10.2)

with the kernels

Z�
� (z) =

Z
1

0
t��1 exp

�
�t� � z

t

�
dt (� 2 R+; � 2 C ) (8.10.3)

and

�(m)
� (z) =

(2�)(m�1)=2
p
m

�

�
� + 1� 1

m

� � z

m

��m Z 1

1
(tm � 1)��1=me�ztdt (8.10.4)

�
m 2 N; � 2 C ; Re(�) > 1

m
� 1

�
being analytic functions of z 2 C for Re(z) > 0.

Particular cases of the functions Z�
� (z) and �

(n)
� (z) coincide with the Macdonald function

K�(z) (see Section 7.2.2 in Erd�elyi, Magnus, Oberhettinger and Tricomi [2] and the previous

Section 8.9). Namely, when � = 1; z = t2=4 and m = 2; then in accordance with the relation

[2, 7.12(23)]

K�(z) =
1

2

Z
1

0
exp

�
�z
2

�
t+

1

t

��
t���1dt (Re(z) > 0) (8.10.5)

and the formula [2, 7.12(19)]

�

�
1

2
� �

�
K�(z) =

p
�

�
2

z

�� Z 1

1
(t2 � 1)���1=2e�ztdt (8.10.6)

�
Re(z) > 0; Re(�) <

1

2

�
;

(8.10.3) and (8.10.4) take the forms

Z�
1

 
z2

4

!
= 2

�
z

2

��
K��(z)

�
Re(z) > 0; Re(�) > �1

2

�
(8.10.7)

and

�(2)� (z) = 2

�
2

z

��
K��(z)

�
Re(z) > 0; Re(�) > �1

2

�
; (8.10.8)

respectively. In these cases (8.10.1) and (8.10.2) are reduced to the Meijer type integral

transform considered in the previous section. In particular, when m = 1 and � = 1; �
(1)
1 (z) =

e�z and (8.10.2) is the Laplace transform (2.5.2):�
L
(1)
1 f

�
(x) =

Z
1

0
e�xtf(t)dt �

�
Lf
�
(x) (x > 0): (8.10.9)
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The L�;r-theory for the Bessel type transforms (8.10.1) and (8.10.2), as well as such a

theory for the Meijer transform (8.9.1), is based on the Mellin transforms of the functions

(8.10.3) and (8.10.4).

Lemma 8.15. Let � 2 C .
(a) If � 2 R+ and Re(s) > �min[0;Re(�)]; then�

MZ�
�

�
(s) =

1

�
�(s)�

�
� + s

�

�
: (8.10.10)

(b) If Re(�) > 1=m� 1 and Re(s) > �min[0; mRe(�)]; then

�
M�(m)

�

�
(s) =

(2�)(m�1)=2

mm�+1=2

�(m� + s)�

�
s

m

�
�

�
� + 1� 1

m
+

s

m

� : (8.10.11)

Proof. (8.10.10) and (8.10.11) are proved directly by applying (2.5.1) to (8.10.3) and

(8.10.4) by virtue of properties of the gamma and beta functions (see Erd�elyi, Magnus, Ober-

hettinger and Tricomi [1, 1.1(1), 1.5(1) and 1.5(5)]).

Now we can apply the results in Chapters 3 and 4 to characterize L�;r-properties of the

Bessel type transforms (8.10.1) and (8.10.2). According to (8.10.10) and (8.10.11) and (1.1.2),�
MZ�

�

�
(s) and

�
M�

(m)
� )(s) are H-functions of the form

�
MZ�

�

�
(s) =

1

�
H

2;0
0;2

264
(0; 1);

�
�

�
;
1

�

�
������� s
375 (8.10.12)

and

�
M�(m)

� )(s) =
(2�)(m�1)=2

mm�+1=2
H

2;0
1;2

2664
�
� + 1� 1

m
;
1

m

�
(m�; 1);

�
0;

1

m

�
�������� s
3775 ; (8.10.13)

respectively. Hence in accordance with (3.1.5), the transformK�
� in (8.10.1) and the transform

L
(m)
� in (8.10.2) are special H-transforms in (3.1.1):

�
K�

�f
�
(x) =

1

�

Z
1

0
H2;0

0;2

264xt
������� (0; 1);���; 1�

�
375 f(t)dt (8.10.14)

and

�
L(m)
� f

�
(x) =

(2�)(m�1)=2

mm�+1=2

Z
1

0
H2;0

1;2

2664xt
��������
�
� + 1� 1

m
;
1

m

�
(m�; 1) ;

�
0;

1

m

�
3775 : (8.10.15)

According to (3.4.1), (3.4.2), (1.1.7), (1.1.8), (1.1.10), (1.1.11) and (1.1.12) we have

� = �min[0;Re(�)]; � = +1; a� = � = a�1 = 1 +
1

�
; a�2 = 0; � = �1 + �

�
(8.10.16)
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for the H-function in (8.10.12) and

� = �min[0; mRe(�)]; � = +1; a� = � = a�1 = 1; a�2 = 0;

� = �(m� 1) +
1

m
� 3

2

(8.10.17)

for the H-function in (8.10.13).

Let E1
H
and E2

H
be the exceptional sets of the H-functions in (8.10.12) and (8.10.13) (see

De�nition 3.4 in Section 3.6). According to (8.10.10) and (8.10.12) the set E1
H

is empty

(because the gamma function �(z) is not equal to zero), while by (8.10.11) and (8.10.13) � is

not in the exceptional set E2
H
; if

s 6= 1�m(� + 1 + k) (k = 0;�1;�2; � � � ; Re(s) = 1� �): (8.10.18)

Applying Theorems 3.6 and 3.7 in Section 3.6, we obtain the following results for the

Bessel type transforms (8.10.1) and (8.10.2) in the space L�;2.

Theorem 8.39. Let � 2 R+; � 2 C and � be such that � < 1 +min[0;Re(�)].

(i) There is a one-to-one transform K�
� 2 [L�;2;L1��;2] such that the relation

�
MK�

�f)(s) =
1

�
�(s)�

�
� + s

�

��
Mf

�
(1� s) (8.10.19)

holds for Re(s) = 1� � and f 2 L�;2.
(ii) If f; g 2 L�;2; thenZ

1

0

�
K�

�f
�
(x)g(x)dx=

Z
1

0
f(x)

�
K�

�g
�
(x)dx: (8.10.20)

(iii) Let f 2 L�;2; � 2 C and h 2 R+. If Re(�) > (1� �)h� 1; then K�
�f is given by

�
K�

�f
�
(x) =

h

�
x1�(�+1)=h

d

dx
x(�+1)=h

�
Z
1

0
H2;1

1;3

264xt
�������
(��; h)

(0; 1);

�
�

�
;
1

�

�
; (��� 1; h)

375 f(t)dt (x > 0): (8.10.21)

If Re(�) < (1� �)h� 1; then�
K�

�f
�
(x) = �h

�
x1�(�+1)=h

d

dx
x(�+1)=h

�
Z
1

0
H3;0

1;3

264xt
�������
(��; h)

(��� 1; h); (0; 1);

�
�

�
;
1

�

�
375 f(t)dt (x > 0): (8.10.22)

(iv) K�
� is independent of � in the sense that if � and e� are such that max[�; e�] <

1 + min[0;Re(�)] and if the transforms K�
� and eK�

� are given in (8:10:19); then K�
�f = eK�

�f

for f 2 L�;2
T
Le�;2.

(v) K�
�f is given in (8:10:1) and (8:10:14) for f 2 L�;2.
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Theorem 8.40. Let m 2 N and let � 2 C be such that Re(�) > 1=m � 1 and � <

1 +min[0; mRe(�)].

(i) There is a one-to-one transform L
(m)
� 2 [L�;2;L1��;2] such that the relation

�
ML(m)

� f
�
(s) =

(2�)(m�1)=2

mm�+1=2

�(m� + s)�

�
s

m

�
�

�
� + 1� 1

m
+

s

m

��Mf
�
(1� s) (8.10.23)

holds for Re(s) = 1� � and f 2 L�;2.
(ii) If f; g 2 L�;2; thenZ

1

0

�
L(m)
� f

�
(x)g(x)dx=

Z
1

0
f(x)

�
L(m)
� g

�
(x)dx: (8.10.24)

(iii) Let f 2 L�;2; � 2 C and h 2 R+. If Re(�) > (1� �)h� 1; then L
(m)
� f is given by�

L(m)
� f

�
(x) =

(2�)(m�1)=2

mn�+1=2
hx1�(�+1)=h

d

dx
x(�+1)=h

�
Z
1

0
H2;1

2;3

2664xt
��������
(��; h);

�
� + 1� 1

m
;
1

m

�
(m�; 1);

�
0;

1

m

�
; (��� 1; h)

3775 f(t)dt (x > 0): (8.10.25)

If Re(�) < (1� �)h� 1; then�
L(m)
� f

�
(x) = �(2�)(m�1)=2

mm�+1=2
hx1�(�+1)=h

d

dx
x(�+1)=h

�
Z
1

0
H3;0

2;3

2664xt
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�
� + 1� 1

m
;
1

m

�
; (��; h)

(��� 1; h); (m�; 1);

�
0;

1

m

�
3775 f(t)dt (x > 0): (8.10.26)

(iv) L
(m)
� is independent of � in the sense that if � and e� are such that max[�; e� ] <

1 + min[0; mRe(�)] and if the transforms L
(m)
� and eL(m)

� are given in (8:10:23) on L�;2 and

Le�;2; respectively; then L
(m)
� f = eL(m)

� f for f 2 L�;2
T
Le�;2.

(v) L
(m)
� f is given in (8:10:2) and (8:10:15) for f 2 L�;2.

Corollary 8.40.1 Let f 2 L�;2; � 2 C and h 2 R+. If Re(�) > (1 � �)h � 1; then the

Laplace transform Lf is given by�
Lf
�
(x) = hx1�(�+1)=h

d

dx
x(�+1)=h

�
Z
1

0
H1;1

1;2

"
xt

����� (��; h)(0; 1); (��� 1; h)

#
f(t)dt (x > 0); (8.10.27)

while if Re(�) < (1� �)h � 1; then�
Lf
�
(x) = �hx1�(�+1)=h d

dx
x(�+1)=h

�
Z
1

0
H2;0

1;2

"
xt

����� (��; h)(��� 1; h); (0; 1)

#
f(t)dt (x > 0): (8.10.28)
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Proof. The corollary follows from Theorem 8.40(c) if we take into account (8.10.9) and

Property 2.2 of the H-function in Section 2.1.

Now we present the L�;r-theory of the Bessel type transformsK�
� and L

(m)
� . First we char-

acterize the boundedeness, range and representation of the Bessel type transform (8.10.1).

Theorem 8.41. Let � 2 R+; � 2 C and � < 1 + min[0;Re(�)].

(a) If 1 5 r 5 s 5 1; then the transformK�
� de�ned on L�;2 can be extended to L�;r as

an element of [L�;r ;L1��;s]. When 1 5 r 5 2; then K�
� is a one-to-one transform from L�;r

onto L1��;s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L�;s0 with 1=s + 1=s0 = 1; then the relation

(8:10:20) holds.

(c) Let 1 < r < 1 and let I�
�;�;� and Lk;� be the Erd�elyi{Kober type operator (3:1:1)

and the generalized Laplace operator (3:3:3); respectively. Then

K�
�(L�;r) = L(�+1)=�;(��2�)=2(�+1)(L�;r); (8.10.29)

if Re(�) 5 � 1=2 or Re(�) = �=2;

K�
�(L�;r) =

�
I
1=2��=�
�;�=(�+1);0L1+1=�;0

�
(L�;r); (8.10.30)

if 0 5 Re(�) < �=2; and

K�
�(L�;r) =

�
I
1=2��=�+(1+1=�)Re(�)
�;�=(�+1);(1+1=�)Re(�)L1+1=�;�Re(�)

�
(L�;r); (8.10.31)

if �1=2 < Re(�) < 0.

(d) If f 2 L�;r; where 1 < r < 1 and 0 < � < 1; and Re(�) > 0; then for almost all

x > 0 the following relation holds:�
K�

�f
�
(x) = � d

dx

Z
1

0

�
Z�+1
� (xt)� 1

�
�

�
� + 1

�

��
f(t)

dt

t
: (8.10.32)

Proof. The assertion (a) follows from Theorems 4.5(a). The assertions (b) and (c)

follow from Theorem 4.5(b) and Theorem 4.7(b)(c), respectively, with ! = �=� � (1 +

1=�)min[0;Re(�)]� 1=2 in the latter.

To prove (d) we need preliminary results for two auxiliary functions of the forms

�x(t) =

(
1; if 0 < t < x;

0; if t > x;
(8.10.33)

and

h�;x(t) =
1

t

�
Z�+1
� (xt)� 1

�
�

�
� + 1

�

��
: (8.10.34)

Lemma 8.16. Let 1 < r <1; � 2 R+ and � 2 C . The following statements hold.

(a) �x(t) 2 L�;r if and only if � > 0.
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(b) h�;x(t) 2 L�;r if and only if � > 0 for Re(�) > �1; � > 1 for Re(�) = �1 and

Im(�) 6= �1 or � = �1; and � > �Re(�) for Re(�) < �1.
(c) Further; if Re(�) > 0; then�

K�
��x

�
(t) = �h�;x(t): (8.10.35)

Proof. The assertions (a) and (b) are proved similarly to those in Lemma 8.1(a)(b) on

the basis of the asymptotic estimates of Z�
� (x) at zero and in�nity (Kr�atzel [5]):

Z�
� (x) �

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

1

�
�

�
�

�

�
; if Re(�) > 0;

1

�
�

�
�

�

�
+ �(��)x�; if Re(�) = 0; Im(�) 6= 0;

� logx; if � = 0;

�(��)x�; if Re(�) < 0

(8.10.36)

as x! +0; and

Z�
� (x) � x(2���)=(2�+2) exp

h
��x�=(�+1)

i
; (8.10.37)

with  =

�
2�

�+ 1

�
��(2�+1)=(2�+2); � =

�
1 +

1

�

�1=(�+1)
;

as x! +1. Further we note the formula in Kilbas and Shlapakov [2, (22)]�
� d

dz

�m
Z�
� (z) = Z��m

� (z) (m = 1; 2; � � �): (8.10.38)

Taking into account the �rst asymptotic estimate in (8.10.36) and the relation (8.10.34), we

have �
K�

��x
�
(t) =

Z
1

0
Z�
� (t�)�x(�)d� =

Z x

0
Z(�)
� (t�)d�

=
1

t

Z xt

0
Z�
� (u)du =

1

t

Z xt

0

d

du
Z�+1
� (u)du

= �1

t

�
Z�+1
� (xt)� 1

�
�

�
� + 1

�

��
= �h�;x(t);

and thus (8.10.35) is shown, which completes the proof of Lemma 8.16.

Returning to the proof of the assertion (d) of Theorem 8.41, we �nd from Lemma 8.16(a)

that �x 2 L�;r0 and we can appply Theorem 8.41(b) with s = r. Then (8.10.33), (8.10.20),

(8.10.35), (8.10.38) (with m = 1) and (8.10.34) yieldZ x

0

�
K�

�f
�
(t)dt =

Z
1

0
�x(t)

�
K�

�f
�
(t)dt =

Z
1

0

�
K�

��x
�
(t)f(t)dt

= �
Z
1

0
h�;x(t)f(t)dt = �

Z
1

0

1

t

�
Z�+1
� (xt)� 1

�
�

�
� + 1

�

��
f(t)dt;
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and the resullt in (8.10.32) follows on di�erentiation. Thus Theorem 8.41 is proved.

Now we present the results characterizing the boundedeness and the range of the Bessel

type transform (8.10.2) in the space L�;r.

Theorem 8.42. Let m 2 N; Re(�) > 1=m� 1; and � < 1 + min[0; mRe(�)].

(a) If 1 5 r 5 s 5 1; then the transform L
(m)
� de�ned on L�;2 can be extended to L�;r

as an element of [L�;r ;L1��;s]. If 1 5 r 5 2 or if 1 < r < 1 and the condition (8:10:18) is

satis�ed; then L
(m)
� is a one-to-one transform from L�;r onto L1��;s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L�;s0 with 1=s + 1=s0 = 1; then the relation

(8:10:24) holds.

(c) Let 1 < r <1 and let I�
�;�;� and Lk;� be the Erd�elyi{Kober type operator (3:1:1) and

the generalized Laplace operator (3:3:3); respectively. If the condition (8:10:18) is satis�ed;

then

L(m)
� (L�;r) = L1;(1�m)(��1=m)(L�;r); (8.10.39)

if Re(�) = 1=m;

L(m)
� (L�;r) =

�
I
(1�m)(��1=m)
�;1;0 L1;0

�
(L�;r); (8.10.40)

if 0 5 Re(�) < 1=m; and

L(m)
� (L�;r) =

�
I
�+1�1=m
�;1;m� L1;�m�

�
(L�;r); (8.10.41)

if 1=m� 1 < Re(�) < 0.

If the condition (8:10:18) is not satis�ed; then L
(m)
� (L�;r) is a subset of the right-hand

sides of (8:10:39); (8:10:40) and (8:10:41) in the cases when Re(�) = 1=m; 0 5 Re(�) < 1=m

and 1=m� 1 < Re(�) < 0; respectively.

(d) If f 2 L�;r; where 1 < r < 1 and � > m � 1; and Re(�) > 0; then for almost all

x > 0 the following relation holds:

�
L(m)
� f

�
(x) = �

�
x

m

�1�m d

dx

Z
1

0

"
�
(m)
�+1(xt)f(t)�

m�2Y
k=0

�

�
� + 1 +

k

m

�#
dt

tm
: (8.10.42)

Proof. The assertions (a), (b) and (c) follow from Theorems 4.5 and Theorem 4.7 with

! = �(m� 1) + 1=m� 1�min[0; mRe(�)].

In order to show (d) we prepare a lemma for the auxiliary functions:

gm;x(t) =

(
tm�1; if 0 < t < x;

0; if t > x
(8.10.43)

and

h�;x(t) = mm�1t�m
"
�
(m)
�+1(xt)�

m�2Y
k=0

�

�
� + 1 +

k

m

�#
: (8.10.44)
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Lemma 8.17. Let 1 < r < 1; m = 2; 3; � � � and Re(�) > 1=m � 1. Then the following

statements hold:

(a) gm;x(t) 2 L�;r if and only if � > 1�m.

(b) h�;x(t) 2 L�;r if and only if � > m� 1.

(c) Further, �
L(m)
� gm;x

�
(t) = �h�;x(t): (8.10.45)

Proof. The assertions (a) and (b) are proved similarly to those in Lemma 8.1(a),(b) on

the basis of the asymptotic estimates of �
(m)
� (x) at zero and in�nity (see Kr�atzel [1, (8a) and

(7)]):

�(m)
� (x) � A� with A� =

m�2Y
k=0

�

�
� +

k

m

�
(Re(�) > 0) (8.10.46)

as x! +0; and

�(m)
� (x) � Bx(m�1)��1+1=me�x; B = (2�)(m�1)=2m(1�m)�+1=2�1=m (8.10.47)

as x! +1 (see Kr�atzel [1, x 3]). To prove (c), by using the formula in Kr�atzel [1, (5)]

d

dz
�(m)
� (z) = �

�
z

m

�m�1
�
(m)
��1(z); (8.10.48)

and by the asymptotic estimate (8.10.46) and the relation (8.10.44), we have�
L(m)
� gm;x

�
(t) =

Z
1

0
�(m)
� (t�)gm;x(�)d� =

Z x

0
�(m)
� (t�)�m�1d�

= t�m
Z xt

0
�(m)
� (u)um�1du = �mm�1t�m

Z xt

0

d

du

h
�
(m)
�+1(u)

i
du

= �mm�1t�m
h
�
(m)
�+1(xt)�A�+1

i
= �h�;x(t);

and (8.10.45) is proved as well as Lemma 8.17.

Thus the assertion (d) of Theorem 8.42 follows. In fact, by Lemma 8.17(a), we have

gm;x 2 L�;r0 ; and we can appply Theorem 8.42(b) with s = r. Using (8.10.43), (8.10.24),

(8.10.45), (8.10.48) and (8.10.44), we haveZ x

0
tm�1

�
L(m)
� f

�
(t)dt =

Z
1

0
gm;x(t)

�
L(m)
� f

�
(t)dt =

Z
1

0

�
L(m)
� gm;x

�
(t)f(t)dt

= �
Z
1

0
h�;x(t)f(t)dt

= �mm�1
Z
1

0

"
�
(m)
�+1(xt)�

m�2Y
k=0

�

�
� + 1 +

k

m

�#
f(t)

dt

tm
;

and after di�erentiation we obtain (8.10.42). This completes the proof of Theorem 8.42.
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8.11. The Modi�ed Bessel Type Transform

We consider the integral transform

�
L

(�)
�;�f

�
(x) =

Z
1

0
�(�)�;�(xt)f(t)dt (x > 0) (8.11.1)

with the kernel

�(�)�;�(z) =
�

�

�
� + 1�

1

�

� Z
1

1
(t� � 1)��1=�t�e�ztdt (8.11.2)

�
� > 0; � 2 R; Re(�) >

1

�
� 1

�

being an analytic function of z 2 C for Re(z) > 0.

When � = 0;

�
(�)
�;0(z) =

�

�

�
� + 1�

1

�

� Z
1

1
(t� � 1)��1=�e�ztdt (8.11.3)

�
� > 0; Re(�) >

1

�
� 1

�

and, hence, for � = m 2 N the transform (8.11.1) is reduced to the transform (8.10.2):�
L
(m)
�;0 f

�
(x) = (2�)(1�m)=2mm�+1=2x�m�

�
L

(m)
� t�mf

�
(x): (8.11.4)

So, the transformL(�)
�;� is called the modi�ed Bessel type transform. We note that, when � = 0

and � = 2; by the relation (8.10.8), (8.11.1) is the Meijer type transform discussed in Section

8.9.

The L�;r-theory of the modi�ed Bessel type transform (8.11.1) is based on the Mellin

transform of the function (8.11.2).

The following lemma can be obtained similarly to Lemma 8.15.

Lemma 8.18. Let � > 0; � 2 R; and Re(s) > max[0; �Re(�) + �]. Then

�
M�(�)�;�

�
(s) =

�(s)�

�
�� �

�

�
+

s

�

�

�

�
1�

� + 1

�
+

s

�

� : (8.11.5)

Now we characterize the L�;r-properties of the modi�ed Bessel type transform (8.11.1).

The Mellin transform of �
(�)
�;�(t) in (8.11.5) is written as

�
M�(�)�;�

�
(s) = H2;0

1;2

2
664
�
1�

� + 1

�
;
1

�

�

(0; 1);

�
�� �

�

�
;
1

�

�
��������
s

3
775 ; (8.11.6)



322 Chapter 8. Bessel Type Integral Transforms on the Space L�;r

and hence the transform L(�)
�;� is a special H-transform:

�
L

(�)
�;�f

�
(x) =

Z
1

0
H2;0

1;2

2
664xt

��������

�
1�

� + 1

�
;
1

�

�

(0; 1);

�
�� �

�

�
;
1

�

�
3
775 f(t)dt (x > 0): (8.11.7)

The parameters de�ned in (3.4.1), (3.4.2), (1.1.7), (1.1.8), (1.1.10), (1.1.11) and (1.1.12)

are given with the su�x 0 in the forms

�0 = max[0; �Re(�) + �]; �0 = +1;

a�0 = �0 = a�1;0 = 1; a�2;0 = 0; �0 =
1

�
� � �

3

2

(8.11.8)

for the function H2;0
1;2(s) in (8.11.6).

Let EH be the exceptional set of this function (cf. De�nition 3.4). Then � is not in the

exceptional set EH ; if

� 6= k� � � (k 2 N): (8.11.9)

Applying Theorems 3.6 and 3.7, we obtain the following results for the modi�ed Bessel

type transform (8.11.1) in the space L�;2.

Theorem 8.43. Let � > 0; � 2 R and Re(�) > 1=� � 1 be such that � < 1 �

max[0; �Re(�) + �].

(i) There is a one-to-one transform L(�)
�;� 2 [L�;2;L1��;2] such that the relation

�
ML

(�)
�;�f

�
(s) =

�(s)�
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�� �

�

�
+

s

�

�

�

�
1�

� + 1

�
+

s

�

� �
Mf

�
(1� s) (8.11.10)

holds for Re(s) = 1� � and f 2 L�;2.

(ii) If f; g 2 L�;2; thenZ
1

0

�
L
(�)
�;�f

�
(x)g(x)dx=

Z
1

0
f(x)

�
L

(�)
�;�g

�
(x)dx: (8.11.11)

(iii) Let f 2 L�;2; � 2 C and h 2 R+. If Re(�) > (1� �)h� 1; then L(�)
�;�f is given by

�
L
(�)
�;�f

�
(x) = hx1�(�+1)=h d

dx
x(�+1)=h

�

Z
1

0
H2;1

2;3

2
664xt
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(��; h);
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� + 1

�
;
1
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�

(0; 1);

�
�� �

�

�
;
1

�

�
; (��� 1; h)

3
775 f(t)dt (x > 0): (8.11.12)

When Re(�) < (1� �)h� 1;�
L
(�)
�;�f

�
(x) = �hx1�(�+1)=h d

dx
x(�+1)=h

�

Z
1

0
H3;0

2;3

2
664xt

��������

�
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� + 1

�
;
1

�

�
; (��; h)

(��� 1; h); (0; 1);

�
�� �

�

�
;
1

�

�
3
775 f(t)dt (x > 0): (8.11.13)
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(iv) L
(�)
�;� is independent of � in the sense that; if � and e� are such that max[�; e�] <

1 � max[0; �Re(�) + �] and if the transforms L(�)
�;� and eL(�)

�;� are given on L�;2 and Le�;2;
respectively in (8:11:10); then L(�)

�;�f = eL(�)
�;�f for f 2 L�;2

T
Le�;2.

(v) L(�)
�;�f is given in (8:11:1) and (8:11:7) for f 2 L�;2.

Now we proceed to characterize the mapping properties of the modi�ed Bessel type trans-

form (8.11.1) in the space L�;r owing to Theorems 4.5 and 4.7. First we prepare a lemma on

the characteristic function �x(t) in (8.10.33) and

g�;x(t) =
1

t

2
664�(�)�;��1(xt)�

�

�
�� �

� � 1

�

�

�

�
1�

�

�

�
3
775 : (8.11.14)

Lemma 8.19. Let 1 < r < 1 and let � > 0; � 2 C and � 2 C be such that 1=� � 1 <

Re(�) < (1� �)=�. Then the following statements hold:

(a) �x(t) 2 L�;r if and only if � > 0.

(b) g�;x(t) 2 L�;r if and only if � > 0.

(c) Further,

L(�)
�;��x = �g�;x: (8.11.15)

Proof. The assertion (a) coincides with that in Lemma 8.15(a). (b) is proved similarly to

that in Lemma 8.1(b) on the basis of the asymptotic estimates of �
(�)
�;�(x) at zero and in�nity

(see Glaeske, Kilbas and Saigo [1]):

�(�)�;�(x) � A with A =
�

�
�� �

�

�

�

�

�
1�

� + 1

�

� for Re(�) < �
�

�
(8.11.16)

as x! +0; and

�(�)�;�(z) � Be�xx(1=�)���1 with B = ��+1�1=� for Re(�) >
1

�
� 1 (8.11.17)

as x! +1. As for (c), using the directly veri�ed relation�
d

dz

�m

�(�)�;�(z) = (�1)m�
(�)
�;�+m(z) (m = 1; 2; � � �) (8.11.18)

and the asymptotic estimate (8.11.16), we have�
L(�)
�;��x

�
(t) =

Z
1

0
�(�)�;�(t�)�x(�)d� =

Z x

0
�(�)�;�(t�)d�

=
1

t

Z xt

0
�(�)�;�(u)du = �

1

t

Z xt

0

d

du
�
(�)
�;��1(u)du

= �
1

t
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�

�
�� �
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�
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So the relation (8.11.15) is proved as well as Lemma 8.19.

Now we can state the L�;r-theory of the transform L(�)
�;�.

Theorem 8.44. Let � > 0; � 2 R and � 2 C be such that Re(�) > 1=� � 1 and

� < 1�max[0; �Re(�) + �].

(a) If 1 5 r 5 s 5 1; then the transform L(�)
�;� de�ned on L�;2 can be extended to L�;r

as an element of [L�;r;L1��;s]. If 1 5 r 5 2 or if 1 < r < 1 and the condition in (8:11:9) is

satis�ed; then L(�)
�;� is a one-to-one transform from L�;r onto L1��;s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L�;s0 with 1=s + 1=s0 = 1; then the relation

(8:11:11) holds.

(c) Let 1 < r <1 and ! = max[0; �Re(�)+ �]� �� 1+ 1=�: If the condition in (8:11:9)

is satis�ed; then

L
(�)
�;�(L�;r) = L1;�0�!(L�;r); (8.11.19)

when Re(!) = 0; and

L
(�)
�;�(L�;r) =

�
I�!
�;1;��0

L1;�0

�
(L�;r); (8.11.20)

when Re(!) < 0; where �0 is given in (8:11:8). If the condition (8:11:9) is not satis�ed; then

L
(�)
�;�(L�;r) is a subset of the right-hand sides of (8:11:19) and (8:11:20) in the respective cases

when Re(!) = 0 and Re(!) < 0.

(d) Let 1 < r <1; � > 0 and Re(�) < (1� �)=�; then for f 2 L�;r the relation

�
L

(�)
�;�f

�
(x) = �

d

dx

Z
1

0

2
664���;��1(xt)�

�

�
�� �

� � 1

�

�

�

�
1�

�

�

�
3
775 f(t)dtt (8.11.21)

holds for almost all x > 0.

Proof. The assertion (a){(c) can be obtained by appealing to Theorems 4.5 and 4.7.

For the assertion (d), since � > 0 and by Lemma 8.19(a), �x 2 L�;r0 and we can apply

Theorem 8.44(b) with s = r. Using (8.10.33), (8.11.11), (8.11.15) and (8.11.14), we haveZ x

0

�
L
(�)
�;�f

�
(t)dt =

Z
1

0
�x(t)

�
L
(�)
�;�f

�
(t)dt

=
Z
1

0

�
L

(�)
�;��x

�
(t)f(t)dt = �

Z
1

0
g�;x(t)f(t)dt

= �
Z
1

0

1

t

2
664�(�)�;��1(xt)�

�

�
�� �

� � 1

�

�

�

�
1�

�

�

�
3
775 f(t)dt;

and the resullt in (8.11.21) follows on di�erentiation. Theorem 8.44 is proved.
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8.12. The Generalized Hardy{Titchmarsh Transform

Let a; b; c; ! 2 C with Re(a) > 0. We consider the integral transform

�
Ja;b;c;!f

�
(x) =

Z
1

0
Ja;b;c;!(xt)f(t)dt (x > 0) (8.12.1)

with the kernel

Ja;b;c;!(z) =
�(a)

�(b)�(c)
z! 1F2

 
a; b; c;�z2

4

!
(8.12.2)

containing the hypergeometric function 1F2(a; b; c;x). When a = 1; b = 3=2 and c = ! =

�+3=2; then in accordance with (8.7.27) J1;3=2;3=2;�+3=2(z) = 2�+1
p
zH�(z) and this transform

coincides with the transformH� in (8.8.1) (apart from the constant multiplication factor 2�+1):�
J1;3=2;�+3=2;�+3=2f

�
(x) = 2�+1

�
H�f

�
(x): (8.12.3)

If a = 1; b = � + 1; c = � + � + 1 and ! = 2� + � + 1=2; (8.12.2) takes the form

J1;�+1;�+�+1;2�+�+1=2(z) = 2�+2�
p
zJ�;�(z); (8.12.4)

where J�;�(z) is the Lommel function

J�;�(z) =
1X
k=0

(�1)k

�(1 + � + k)�(1 + � + � + k)

�
z

2

��+2k+2�

=
22�2���

�(�)�(� + �)
s2�+��1;�(z) (8.12.5)

with �; � 2 C (Re(�) > �1; Re(� + �) > �1); where for the function s�;�(z) one may refer to

Erd�elyi, Magnus, Oberhettinger and Tricomi [2, 7.5(69)]. The transform with such a kernel

function �
J�;�f

�
(x) =

Z
1

0
(xt)1=2J�;�(xt)f(t)dt (x > 0) (8.12.6)

is known as the modi�ed Hardy transform. When a = � + � + 1=2; b = � + � + 1 and

c = ! = � + 2� + 1; (8.12.1) is known as the transform given by Titchmarsh [2]. This

transform as well as (8.12.3) and (8.12.4) are particular cases of the more general transform

(8.12.1) with ! = b + c � a � 1=2; indicated by Titchmarsh [3, Section 8.4, Example 3].

Therefore we call the transform (8.12.1) the generalized Hardy{Titchmarsh transform.

When � = l = 0; 1; 2; � � � ; then the modi�ed Hardy transform (8.12.6) coincides with the

extended Hankel transform (8.4.1) (apart from the constant multiplication factor (�1)l):�
J�;lf

�
(x) = (�1)l

�
H

l
�f
�
(x): (8.12.7)

In particular, when � = 0; the Lommel function J�;0(z) in (8.12.5) coincides with the

Bessel function J�(z); and then the modi�ed Hardy transform (8.12.6) reduces to the Hankel

transform (8.1.1): �
J�;0f

�
(x) =

�
H �f

�
(x): (8.12.8)
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The L�;r-theory of the generalized Hardy{Titchmarsh transform (8.12.1) and of the mod-

i�ed Hardy transform (8.12.6) are based on the Mellin transforms of the function Ja;b;c;!(x)

and x1=2J�;�(x) in (8.12.2) and (8.12.5), respectively.

Lemma 8.20. (a) Let a; b; c; ! 2 C (a 6= 0;�1; � � �) and s 2 C be such that

0 < Re(! + s) < 2Re(a); Re(! + s) <
1

2
+ Re(b + c� a): (8.12.9)

Then

�
MJa;b;c;!(x)

�
(s) = �1=2

�(! + s)�

�
a� !

2
� s

2

�
�

�
1

2
+
!

2
+
s

2

�
�

�
b� !

2
� s

2

�
�

�
c� !

2
� s

2

� : (8.12.10)

(b) Let �; � 2 C (Re(�) > �1; Re(� + �) > �1) and s 2 C be such that

�1

2
� Re(� + 2�) < Re(s) <

3

2
�Re(� + 2�); Re(s) < 1: (8.12.11)

Then �
M[x1=2J�;�(x)]

�
(s)

= 2���2��1=2
�

�
1

2
+ � + 2� + s

�
�

�
3

4
� �

2
� � � s

2

�
�

�
3

4
+
�

2
+ � +

s

2

�
�

�
3

4
� �

2
� s

2

�
�

�
3

4
+
�

2
� s

2

� : (8.12.12)

Proof. It is known (see, for example, Prudnikov, Brychkov and Marichev [3, 8.4.48.1])

that the Mellin transform of the hypergeometric function 1F2(a; b; c;�x) is given by�
M 1F2(a; b; c;�x)

�
(s) =

�(b)�(c)

�(a)

�(s)�(a � c)

�(b� s)�(c� s)
; (8.12.13)

provided that

0 < Re(s) < Re(a); Re(s) <
1

4
+

Re(b+ c� a)

2
(b; c 6= 0;�1;�2; � � �): (8.12.14)

Using the elementary operators M�; W� and Na; in (3.3.11), (3.3.12) and (8.5.7), we may

represent the function Ja;b;c;!(x) in (8.12.2) in the form

Ja;b;c;!(x) =
�(a)

�(b)�(c)
M!W2N2

n
1F2(a; b; c;�x)

o
: (8.12.15)

Applying (3.3.14), (3.3.15) and (8.5.9), we have�
MJa;b;c;!(x)

�
(s) =

�(a)

�(b)�(c)

�
M
h
M!W2N2

n
1F2(a; b; c;�x)

oi�
(s)

=
�(a)

�(b)�(c)

�
M

h
W2N2

n
1F2(a; b; c;�x)

oi�
(s + !)

=
�(a)

�(b)�(c)
2s+!

�
M
h
N2

n
1F2(a; b; c;�x)

oi�
(s + !)

=
�(a)

�(b)�(c)
2s+!�1

�
M
h
1F2(a; b; c;�x)

i��s + !

2

�
:
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Now we can apply (8.12.13) to obtain the relation

�
MJa;b;c;!(x)

�
(s) = 2s+!�1

�

�
!

2
+
s

2

�
�

�
a� !

2
� s

2

�
�

�
b� !

2
� s

2

�
�

�
c� !

2
� s

2

� : (8.12.16)

Multiplying the numerator and denominator in the right-hand side of (8.12.16) by �(!=2 +

s=2 + 1=2) and using the Legendre duplication formula (8.9.7), we obtain (8.12.10). We note

that the �rst two conditions in (8.12.4) with s being repalcing by (! + s)=2 yield conditions

in (8.12.9) while the conditions b; c 6= 0;�1;�2; � � � can be omitted by analytic continuation

of both sides of (8.12.16) in b and c.

Putting a = 1; b = � + 1; c = � + � + 1 and ! = 2� + � + 1=2 in (8.12.10) and taking into

account (8.12.5), we arrive at (8.12.12) under the conditions in (8.12.11), which completes the

proof of Lemma 8.19.

Remark 8.12. When � = 0; (8.12.12) takes the form

�
M[x1=2J�(x)]

�
(s) = 2���1=2

�

�
1

2
+ � + s

�
�

�
3

4
+
�

2
+
s

2

�
�

�
3

4
+
�

2
� s

2

� : (8.12.17)

Applying the Legendre duplication formula (8.9.7) for �(1=2 + � + s); we have

�
M[x1=2J�(x)]

�
(s) = 2s�1=2

�

�
1

4
+
�

2
+
s

2

�
�

�
3

4
+
�

2
� s

2

� : (8.12.18)

This formula is well known (see, for example, Prudnikov, Brychkov and Marichev [2, (2.12.2.2)]).

Now we can apply the results in Chapters 3 and 4 to characterize the L�;r-properties of the

generalized Hardy{Titchmarsh transform (8.12.1) and the modi�ed Hardy transform (8.12.6).

If b 6= a and c 6= a; then according to (8.12.10) and (1.1.2),
�
MJa;b;c;!(x)

�
(s) is represented

by the function H in the form

�
MJa;b;c;!(x)

�
(s) = �1=2H

1;1
2;3
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(!; 1);
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2
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�
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2
;
1

2

�
�������� s
3775 (8.12.19)

and hence, in accordance with (3.1.5), the transform Ja;b;c;! is a special H-transform:�
Ja;b;c;!f

�
(x)

= �1=2
Z
1

0
H1;1

2;3

2664xt
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2

�
3775 f(t)dt: (8.12.20)
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Similarly, by (8.12.12) and (1.1.2),
�
M[x1=2J�;�(x)]

�
(s) has the form

�
M[x1=2J�;�(x)]
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(s)

= 2���2��1=2H1;1
2;3
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and the transform J�;� in (8.12.6) is an H-transform of the form:�
J�;�f

�
(x) = 2���2��1=2
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3775 f(t)dt: (8.12.22)

In particular, when � = 0,

�
M[x1=2J�(x)]

�
(s) = 2���1=2H1;0

1;2
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and hence we have the new representation for the Hankel transform

�
H �f

�
(x) = 2���1=2
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0
H1;0

1;2
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3775 f(t)dt: (8.12.24)

According to (3.4.1), (3.4.2), (1.1.7), (1.1.8), (1.1.9), (1.1.10), (1.1.11) and (1.1.12) we

have

� = �Re(!); � = 2Re(a)� Re(!); a� = 0; � = � = 1;

� = ! + a� b� c; a�1 =
1

2
; a�2 = �1

2

(8.12.25)

for the H-function in (8.12.19),

� = �Re(� + 2�)� 1

2
; � = �Re(� + 2�) +

3

2
; a� = 0; � = � = 1;

� = �1

2
; a�1 =

1

2
; a�2 = �1

2

(8.12.26)

for the H-function in (8.12.21), and

� = �Re(�)� 1

2
; � = +1; a� = 0; � = � = 1;

� = �1

2
; a�1 =

1

2
; a�2 = �1

2

(8.12.27)
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for the H-function in (8.12.23).

Let E1
H

, E2
H

and E3
H

be the exceptional sets of the functions H in (8.12.19), (8.12.21)

and (8.12.23), respectively (see De�nition 3.4). Then � is not in the sets E1
H

, E2
H

and E3
H
; if

� = 1�Re(s) satis�es

s 6= 2b� ! + 2k; s 6= 2c� ! + 2l (k; l 2 N0); (8.12.28)

s 6= 3

2
� � + 2k; s 6= 3

2
+ � + 2l (k; l 2 N0) (8.12.29)

and

s 6= 3

2
+ � + 2k (k 2 N0); (8.12.30)

respectively

Applying Theorems 3.6 and 3.7, we obtain the following results for the generalized Hardy{

Titchmarsh transform Ja;b;c;! and the modi�ed Hardy transform J�;� in the space L�;2.

Theorem 8.45. Let a; b; c; ! 2 C ; (b 6= a; c 6= a) and � 2 R be such that

Re(!) + 1� 2Re(a) < � < Re(!) + 1; � = 1 + Re(! + a� b� c): (8.12.31)

(i) There is a one-to-one transform Ja;b;c;! 2 [L�;2;L1��;2] such that the relation�
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��Mf
�
(1� s) (8.12.32)

holds for Re(s) = 1 � � and f 2 L�;2. If the conditions in (8:12:28) are ful�lled; then the

transform Ja;b;c;! maps L�;2 onto L1��;2.

(ii) If f; g 2 L�;2; thenZ
1

0

�
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�
(x)g(x)dx =

Z
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0
f(x)

�
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�
(x)dx: (8.12.33)

(iii) Let f 2 L�;2; � 2 C and h 2 R+. If Re(�) > (1� �)h� 1; then J�;�f is given by
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3775
� f(t)dt (8.12.34)

for x > 0. When Re(�) < (1� �)h � 1; for x > 0

�
Ja;b;c;!f

�
(x) = ��1=2hx1�(�+1)=h d

dx
x(�+1)=h
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(iv) Ja;b;c;! is independent of � in the sense that if � and e� satisfy (8:12:31) and if the

transforms Ja;b;c;! and eJa;b;c;! are given in (8:12:32) on the respective spaces L�;2 and Le�;2;
then Ja;b;c;!f = eJa;b;c;!f for f 2 L�;2

T
Le�;2.

(v) If f 2 L�;2 and � > 1+Re(!+a�b�c); then Ja;b;c;!f is given in (8:12:1) and (8.12.20).

Theorem 8.46. Let �; � 2 C and � 2 R be such that

Re(�) > �1; Re(� + �) > �1;

Re(� + 2�)� 1

2
< � < Re(� + 2�) +

3

2
; � =

1

2
:

(8.12.36)

(i) There is a one-to-one transform J�;� 2 [L�;2;L1��;2] such that the relation�
Mfx1=2J�;�fg

�
(s)

= 2���2��1=2
�

�
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2
+ � + 2� + s

�
�
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� �
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� � � s
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+ � +
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4
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� s

2

��Mf
�
(1� s) (8.12.37)

holds for Re(s) = 1 � � and f 2 L�;2. If the conditions in (8:12:29) are ful�lled; then the

transform J�;� maps L�;2 onto L1��;2.

(ii) If f; g 2 L�;2; thenZ
1

0

�
J�;�f

�
(x)g(x)dx =

Z
1

0
f(x)

�
J�;�g

�
(x)dx: (8.12.38)

(iii) Let f 2 L�;2; � 2 C and h 2 R+. If Re(�) > (1� �)h� 1; then J�;�f is given by�
J�;�f

�
(x) = 2���2��1=2hx1�(�+1)=h

d

dx
x(�+1)=h
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� f(t)dt (x > 0): (8.12.39)

When Re(�) < (1� �)h� 1;�
J�;�f

�
(x) = �2���2��1=2hx1�(�+1)=h
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dx
x(�+1)=h
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�
3775

� f(t)dt (x > 0): (8.12.40)
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(iv) J�;� is independent of � in the sense that if � and e� satisfy (8:12:36) and if the

transforms J�;� and eJ�;� are given in (8:12:37) on the respective spaces L�;2 and Le�;2; then
J�;�f = eJ�;�f for f 2 L�;2

T
Le�;2.

(v) If f 2 L�;2 and � > 1=2; then J�;�f is given in (8:12:6) and (8.12.22).

From Theorem 8.46 we obtain the corresponding statement for the Hankel transform H �

considered in Section 8.1.

Theorem 8.47. Let � 2 C and � 2 R be such that Re(�) > �1 and 1=2 5 � <

Re(�) + 3=2.

(i) There is a one-to-one transform H � 2 [L�;2;L1��;2] such that the relation

�
MH �f

�
(s) = 2���1=2

�

�
1

2
+ � + s
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�

�
3

4
+
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2
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s
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2
� s
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��Mf
�
(1� s)

= 2s�1=2
�
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4
+
�

2
+
s

2

�
�
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4
+
�

2
� s

2

��Mf
�
(1� s) (8.12.41)

holds for Re(s) = 1 � � and f 2 L�;2. If the conditions in (8:12:30) are ful�lled; then the

transform H � maps L�;2 onto L1��;2.

(ii) If f; g 2 L�;2; thenZ
1

0

�
H �f

�
(x)g(x)dx =

Z
1

0
f(x)

�
H �g

�
(x)dx: (8.12.42)

(iii) Let f 2 L�;2; � 2 C and h 2 R+. If Re(�) > (1� �)h� 1; then H �f is given by�
H �f

�
(x) = hx1�(�+1)=h

d

dx
x(�+1)=h

�
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3775 f(t)dt

(x > 0): (8.12.43)

When Re(�) < (1� �)h� 1;�
H �f

�
(x) = �hx1�(�+1)=h d

dx
x(�+1)=h

�
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�
3775 f(t)dt

(x > 0): (8.12.44)

(iv) H � is independent of � in the sense that if � and e� are such that 1=2 5 � < Re(�)+3=2

and 1=2 5 e� < Re(�) + 3=2; and if the transforms H � and eH � are given in (8:12:41) on the

respective spaces L�;2 and Le�;2; then H �f = eH �f for f 2 L�;2
T
Le�;2.
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(v) If f 2 L�;2 and � > 1=2; then H �f is given in (8:1:1) and (8.12.24).

Now we can apply Theorem 4.3 to obtain the boundedeness, range and representation of

the generalized Hardy{Titchmarsh transform (8.12.1), the modi�ed Hardy transform (8.12.6)

and the Hankel transform (8:1:1) in the space L�;r . By (8.12.20), the �rst one is characterized

in the following:

Theorem 8.48. Let 1 < r < 1 and let a; b; c 2 C (Re(a) > 0; b 6= a; c 6= a); ! 2 C and

� 2 R be such that

Re(!) + 1� 2Re(a) < � < Re(!) + 1; � =
1

2
+ Re(! + a� b� c) + (r); (8.12.45)

where (r) is given in (3:3:9):

(a) The transform Ja;b;c;! de�ned on L�;2 can be extended to L�;r as an element of

[L�;r;L1��;s] for all s with r 5 s < 1 such that s0 = [� � 1=2 + Re(b + c � a � !)]�1 with

1=s + 1=s0 = 1.

(b) If 1 < r 5 2; then the transform Ja;b;c;! is one-to-one on L�;r and there holds the

equality (8:12:32) for f 2 L�;r and Re(s) = 1� �.

(c) Let f 2 L�;r and g 2 L�;s with 1 < s < 1 and 1=r + 1=s = 1. If � = 1=2 + Re(! +

a� b� c) + max[(r); (s)]; then the relation (8:12:33) holds.

(d) Let � = �Im(!)� a + b+ c� 1. If the conditions in (8:12:28) are satis�ed; then

Ja;b;c;!(L�;r) =
�
M!+a�b�c+1=2H �

�
(L��Re(!+a�b�c)�1=2;r); (8.12.46)

where H � is the Hankel transform (8:12:1) and M� is the operator in (3:3:11). When any

condition in (8:12:28) is not satis�ed;Ja;b;c;!(L�;r) is a subset of the right-hand side of (8:12:46):

(e) If f 2 L�;r ; � 2 C and h 2 R+; then Ja;b;c;!f is given in (8:12:34) for Re(�) >

(1� �)h � 1; while by (8:12:35) for Re(�) < (1� �)h� 1. If � > 2 + Re(! + a� b� c); then

Ja;b;c;!f is given in (8:12:1) and (8.12.20).

The replacement a = 1; b = � + 1; c = � + � + 1; ! = 2� + � + 1=2 in Theorem 8.48 yields

L�;r-theory of the modi�ed Hardy transform (8.12.6).

Theorem 8.49. Let 1 < r <1 and let �; � 2 C and � 2 R be such that

Re(�) > �1; Re(� + �) > �1;

Re(� + 2�)� 1

2
< � < Re(� + 2�) +

3

2
; � = (r);

(8.12.47)

where (r) is given in (3:3:9).

(a) The transformJ�;� de�ned on L�;2 can be extended to L�;r as an element of [L�;r ;L1��;s]

for all s with r 5 s <1 such that s0 = 1=� with 1=s + 1=s0 = 1.

(b) If 1 < r 5 2; then the transformJ�;� is one-to-one on L�;r and there holds the equality

(8:12:37) for f 2 L�;r and Re(s) = 1� �.

(c) Let f 2 L�;r and g 2 L�;s with 1 < s <1 and 1=r+ 1=s = 1. If � = max[(r); (s)];

then the relation (8:12:38) holds.
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(d) If the conditions in (8:12:29) are satis�ed; then

J�;�(L�;r) = HRe(�+2�)(L�;r): (8.12.48)

When any condition in (8:12:29) is not satis�ed; J�;�(L�;r) is a subset of the right-hand side

of (8:12:48):

(e) If f 2 L�;r ; � 2 C and h 2 R+; then J�;�f is given in (8:12:39) for Re(�) > (1��)h�1;

while by (8:12:40) for Re(�) < (1 � �)h � 1. If � > 5=2; then J�;�f is given in (8:12:6) and

(8.12.22).

From Theorem 8.49 we obtain the corresponding statement for the Hankel transform H �.

Theorem 8.50. Let 1 < r < 1 and let � 2 C and � 2 R be such that Re(�) > �1;

Re(�)� 1=2 < � < Re(�) + 3=2 and � = (r).

(a) The transformH � de�ned on L�;2 can be extended to L�;r as an element of [L�;r;L1��;s]

for all s with r 5 s <1 such that s0 = 1=� with 1=s + 1=s0 = 1.

(b) If 1 < r 5 2; then the transform H � is one-to-one on L�;r and there holds the equality

(8:12:41) for f 2 L�;r and Re(s) = 1� �.

(c) Let f 2 L�;r and g 2 L�;s with 1 < s <1 and 1=r+ 1=s = 1. If � = max[(r); (s)];

then the relation (8:12:42) holds.

(d) If the conditions in (8:12:30) are satis�ed; then

H �(L�;r) = HRe(�)(L�;r): (8.12.49)

When any condition in (8:12:30) is not satis�ed; H �(L�;r) is a subset of the right-hand side of

(8:12:49):

(e) If f 2 L�;r; � 2 C and h 2 R+; then H �f is given in (8:12:43) for Re(�) > (1��)h�1;

while by (8:12:44) for Re(�) < (1 � �)h � 1. If � > 5=2; then H �f is given in (8:1:1) and

(8.12.24).

Remark 8.13. It follows from Theorems 8.49, that the range J�;�(L�;r) of the modi�ed

Hardy transform (8.12.6) coincides with the range HRe(�+2�)(L�;r) of the Hankel transform,

while these transforms have di�erent representations: (8.12.6), (8.12.22) and (8.1.1), (8.12.24).

Since a� = 0 for the transforms Ja;b;c;!; J�;� and H �, we can apply the results from Sections

4.9 and 4.10 to obtain their inversions. The constants � and � are given in (8.12.25), (8.12.26)

and (8.12.27), while the constants �0 and �0 in (4.9.6) and (4.9.7) take the forms

�0 = Re(!) + 1� 2 min[Re(b);Re(c)]; �0 = Re(!) + 2 (8.12.50)

for Ja;b;c;!,

�0 = jRe(�)j � 1

2
; �0 = Re(� + 2�) +

5

2
(8.12.51)

for J�;� and, in particular,

�0 = jRe(�)j � 1

2
; �0 = Re(�) +

5

2
(8.12.52)
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for H �.

In the case of the transform Ja;b;c;! the inversion formulas (4.9.1) and (4.9.2) take the

forms

f(x) = ��1=2hx1�(�+1)=h
d

dx
x(�+1)=h

�
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0
H2;2

3;4

2664xt
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3775
� �Ja;b;c;!f� (t)dt (x > 0); (8.12.53)

f(x) = ���1=2hx1�(�+1)=h d
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3775
� �Ja;b;c;!;�f� (t)dt (x > 0): (8.12.54)

For the modi�ed Hardy transform J�;� the inversion relations are given by

f(x) = 2�+2���1=2hx1�(�+1)=h
d

dx
x(�+1)=h
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� �J�;�f� (t)dt (x > 0); (8.12.55)

f(x) = �2�+2���1=2hx1�(�+1)=h
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dx
x(�+1)=h
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� �J�;�f� (t)dt (x > 0): (8.12.56)

In particular, from (8.12.55) and (8.12.56) we have the inversion formulas for the Hankel

transform by putting � = 0:

f(x) = 2���1=2hx1�(�+1)=h
d

dx
x(�+1)=h

�
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(t)dt (8.12.57)
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(x > 0);

f(x) = �2���1=2hx1�(�+1)=h
d

dx
x(�+1)=h

�
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0
H2;1

2;3

2664xt
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3775�H �f

�
(t)dt (8.12.58)

(x > 0):

Thus, we obtain the inversion results from Sections 4.9 and 4.10 for the transforms Ja;b;c;!;

J�;� and H � in the spaces L�;r and L2(R+).

Theorem 8.51. Let a; b; c; ! 2 C (b 6= a; c 6= a); � 2 R; and let � 2 C and h > 0.

(a) Let

� = 1 + Re(! + a� b� c); 0 < Re(b+ c� a) < 2 min[Re(a);Re(b);Re(c)]: (8.12.59)

If f 2 L�;2; then the relation (8:12:53) holds for Re(�) > �h � 1; while (8:12:54) for Re(�) <

�h � 1.

(b) Let 1 < r <1 and

�2 min[Re(a);Re(b);Re(c)] < � �Re(!)� 1 < min

�
0;Re(a� b� c) +

1

2

�
;

� =
1

2
+ Re(! + a� b� c) + (r);

(8.12.60)

where (r) is given in (3:3:9). If f 2 L�;r ; then the relation (8:12:53) holds for Re(�) > �h�1;

while (8:12:54) for Re(�) < �h� 1.

Proof. The results (a) and (b) follow from Theorems 4.11 and 4.13, respectively. Indeed,

by (8.12.25) and (8.12.50) the conditions for � in Theorems 4.11 and 4.13 for the transform

Ja;b;c;! take the forms

1 + Re(!)� 2Re(a) < � < 1 + Re(!);

Re(!) + 1� 2 min[Re(b);Re(c)] < � < Re(!) + 2;

� = 1 + Re(! + a� b� c);

(8.12.61)

and

1 + Re(!)� 2Re(a) < � < 1 + Re(!);

Re(!) + 1� 2 min[Re(b);Re(c)] < �

< min

�
Re(!) + 2;Re(! + a � b� c) +

3

2

�
;

� =
1

2
+ Re(! + a� b� c) + (r):

(8.12.62)

The existence of such a value � in each case is guaranteed from the assumptions (8.12.59) and

(8.12.60).



336 Chapter 8. Bessel Type Integral Transforms on the Space L�;r

Similarly, in view of (8.12.26), the conditions of Theorems 4.11 and 4.13 for the transform

J�;� can be given by

�1

2
+ Re(� + 2�) < � <

3

2
+ Re(� + 2�);

jRe(�)j � 1

2
< � < Re(� + 2�) +

5

2
; � =

1

2
;

(8.12.63)

and

�1

2
+ Re(� + 2�) < � <

3

2
+ Re(� + 2�);

jRe(�)j � 1

2
< � < min

�
Re(� + 2�) +

5

2
; 1

�
; � = (r);

(8.12.64)

which are certi�ed by (8.12.65) and (8.12.66) below, respectively. Then by noting that

L1=2;2 = L2(R+), we have

Theorem 8.52. Let �; � 2 C be such that Re(�) > �1, Re(� + �) > �1; and let � 2 C
and h > 0.

(a) Let

jRe(�)j < 1; 0 < Re(� + 2�) < 1: (8.12.65)

If f 2 L2(R+); then the relation (8:12:55) holds for Re(�) > h=2 � 1; while (8:12:56) for

Re(�) < h=2� 1.

(b) Let 1 < r <1 and

max [Re(� + 2�); jRe(�)j]� 1

2
< � < min

�
1;Re(� + 2�) +

3

2

�
; � = (r); (8.12.66)

where (r) is given in (3:3:9): If f 2 L�;r; then the relation (8:12:55) holds for Re(�) > �h�1;

while (8:12:56) for Re(�) < �h� 1.

Taking � = 0 in Theorem 8.52 and using (8.12.8), we obtain the corresponding results for

the Hankel transform H � in the spaces  L2(R+) and L�;r .

Theorem 8.53. Let � 2 C ; Re(�) > �1; and let � 2 C and h > 0.

(a) Let jRe(�)j < 1. If f 2 L2(R+); then the relation (8:12:57) holds for Re(�) > h=2�1;

while (8:12:58) for Re(�) < h=2� 1.

(b) Let 1 < r < 1 and (r) 5 � < max[Re(�) + 3=2; 1]; where (r) is given in

(3:3:9). If f 2 L�;r ; then the relation (8:12:57) holds for Re(�) > �h � 1; while (8:12:58)

for Re(�) < �h� 1.

Remark 8.14. The relations (8.12.57) and (8.12.58) are new inversion formulas for the

Hankel transform H � compared with those in (8.1.33) and (8.1.34) proved in Section 8.1.
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8.13. The Lommel{Maitland Transform

We consider the integral transform

�
J

�;�f

�
(x) =

Z
1

0
(xt)1=2J

�;�(xt)f(t)dt (x > 0) (8.13.1)

with the generalized Bessel{Maitland function (2.9.26):

J
�;�(z) =

1X
k=0

(�1)k
�(1 + � + k)�(1 + � + � + k)

�
z

2

��+2k+2�

(8.13.2)

(0 <  5 1; �; � 2 C ; Re(�) > �1; Re(� + �) > �1)

as the kernel. Since, when  = 1; (8.13.2) is the Lommel function (8.12.6) and the transform

(8.13.1) coincides with the modi�ed Hardy transform (8.12.6) studied in the previous section,

we shall treat here the Lommel{Maitland transform J

�;� only for 0 <  < 1.

When � = 0;

J
� (z) � J

�;0(z) =
1X
k=0

(�1)k
k!�(1 + � + k)

�
z

2

��+2k

(8.13.3)

for Re(�) > �1; and (8.13.1) takes the form

�
J�f

�
(x) �

�
J

�;0f

�
(x) =

Z
1

0
(xt)1=2J

� (xt)f(t)dt (x > 0): (8.13.4)

We also note that the Bessel{Maitland function J�;�(z) in (2.9.24) is expressed via (8.13.3)

by

J�;�(z) =
1X
k=0

(�z)k
k!�(1 + � + �k)

= z��=2J�
� (2

p
z): (8.13.5)

The following L�;r-theory of the Lommel{Maitland transform (8.13.1) is based on the

Mellin transform of the function (8.13.2).

Lemma 8.21. Let 0 <  < 1 and �; � 2 C .
(a) If Re(�) > �1; Re(� + �) > �1 and s 2 C satis�es

�1

2
< Re(s) + Re(� + 2�) <

3

2
; (8.13.6)

then

�
M[x1=2J

�;�(x)]
�
(s) = 2���2��1=2

�
�
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2
+ � + 2� + s

�
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4
� �

2
� � � s
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2
� s

2

�
�

�
1 + � + � � 

�
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4
+
�

2
+ �

�
� s

2

� : (8.13.7)
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(b) Let Re(�) > �1 and s 2 C satisfy Re(s) > �Re(�)� 1=2. Then

�
M[x1=2J

� (x)]
�
(s) = 2���1=2

�

�
1

2
+ � + s

�

�

�
3

4
+
�

2
+

s

2

�
�

�
1 + � � 

�
1

4
+
�

2

�
� s

2

� : (8.13.8)

Proof. It is known (see Betancor [1]) that�
M[x1=2J

�;�(x)]
�
(s)

= 2s�1=2
�

�
1

4
+
�

2
+ � +

s

2

�
�

�
3

4
� �

2
� � � s
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� �

2
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�
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�
1

4
+ � +

�

2

�
� s

2

� : (8.13.9)

Then, (8.13.7) is deduced from (8.13.9) if we multiply both sides of (8.13.9) by �(�=2 + � +

3=4 + s=2) and use the Legendre duplication formula (8.9.7). The equality (8.13.8) follows

from (8.13.7) when � = 0; which completes the proof of Lemma 8.20.

Now we can apply the results in Chapters 3 and 4 to characterize the L�;r-properties of

the Lommel{Maitland transform (8.13.1). In view of (8.13.7) and (1.1.2), (M[x1=2J
�;�(x)])(s)

is a special case of the function H of the form�
M[x1=2J

�;�(x)]
�
(s) = 2���2��1=2

� H1;1
2;3

2
664
�
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2
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1
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� + 2� +

1

2
; 1
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2
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;
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2

�
;
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�
�

2
+ � +

1

4

�
� � � �;



2

�
�������� s
3
775 (8.13.10)

and hence, in accordance with (3.1.5), the transform J�;�f in (8.13.1) is regarded as a special

H-transform (3.1.1):�
J

�;�f

�
(x) = 2���2��1=2

�
Z
1

0
H1;1
2;3

2
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� f(t)dt: (8.13.11)

If � = 0; then by (8.13.8), (1.1.2) and Property 2.2 of the H-function, we �nd

�
M[x1=2J

� (x)]
�
(s) = 2���1=2H1;0

1;2

2
664
�
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and �
J

�f
�
(x)

= 2���1=2
Z
1

0
H1;0
1;2
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775 f(t)dt: (8.13.13)
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For the Lommel{Maitland transform J

�;� the parameters can be evaluated in view of their

de�nitions (3.4.1), (3.4.2), (1.1.7){(1.1.12), and we have

� = �Re(� + 2�)� 1

2
; � =

3

2
�Re(� + 2�); a� =

1� 

2
; � =

1+ 

2
;

� = 2

�


2

�=2

; � = ( � 1)

�
� +

�

2
+

1

4

�
� 1

2
; a�1 =

1

2
; a�2 = �

2

(8.13.14)

for the transform (8.13.11), and

� = �Re(�)� 1

2
; � = +1; a� =

1� 

2
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1 + 

2
;

� = 2

�


2

�=2

; � = ( � 1)

�
�

2
+

1

4

�
� 1

2
; a�1 =

1

2
; a�2 = �

2

(8.13.15)

for the transform (8.13.13).

Let E1
H
be the exceptional set of the H-function H1;1

2;3(z) in (8.13.11) (see De�nition 3.4).

According to (8.13.7), � is not in the exceptional set E1
H
; if � = 1�Re(s) with

s 6= �� � 2� � 3

2
� 2k (k 2 N0); s 6= 3

2
� � + 2m (m 2 N0);

s 6= �
�
� + 2� +

1

2

�
+

2


(1 + � + � + n) (n 2 N0):

(8.13.16)

If � = 0; then in accordance with (8.13.8) � is not in the exceptional set E2
H

of the

H-function H1;0
1;2(z) in (8.13.13), if � = 1� Re(s) with

s 6= �� � 3

2
� 2k (k 2 N0); s 6= �

�
� +

1

2

�
+

2


(1 + � + n) (n 2 N0): (8.13.17)

Applying Theorems 3.6 and 3.7, we obtain the following results for the Lommel{Maitland

transforms (8.13.1) and (8.13.4) in the space L�;2.

Theorem 8.54. Let � 2 C (� 6= 0); � 2 C and � 2 R be such that the conditions

Re(�) > �1;Re(� + �) > �1 and

Re(� + 2�)� 1

2
< � < Re(� + 2�) +

3

2
(8.13.18)

are satis�ed and let 0 <  < 1.

(i) There is a one-to-one transform J

�;� 2 [L�;2;L1��;2] such that the relation
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��Mf
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(1� s) (8.13.19)

holds for Re(s) = 1 � � and f 2 L�;2. If the conditions in (8:13:16) are ful�lled; then the

transform J

�;� maps L�;2 onto L1��;2.
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(ii) If f; g 2 L�;2; thenZ
1

0

�
J

�;�f

�
(x)g(x)dx=

Z
1

0
f(x)

�
J

�;�g

�
(x)dx: (8.13.20)

(iii) Let f 2 L�;2; � 2 C and h 2 R+. If Re(�) > (1� �)h� 1; then J�;�f is given by

�
J

�;�f
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When Re(�) < (1� �)h� 1;
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(iv) J

�;� is independent of � in the sense that; if � and e� satisfy the assumption and

if the transforms J�;� and eJ�;� are given on L�;2 and Le�;2 respectively by (8:13:19); then

J�;�f = eJ�;�f for f 2 L�;2
T
Le�;2.

(v) For f 2 L�;2; J�;�f is given in (8:13:1) and (8:13:11).

Theorem 8.55. Let � 2 C and � 2 R be such that Re(�) > �1 and � < Re(�) + 3=2

and let 0 <  < 1.

(i) There is a one-to-one transform J� 2 [L�;2;L1��;2] such that the relation

�
MJ


�f
�
(s) = 2���1=2

�

�
1

2
+ � + s

�

�

�
3

4
+

�

2
+

s

2

�
�

�
1 + � � 

�
1

4
+

�

2

�
� s

2
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(1� s) (8.13.23)

holds for Re(s) = 1 � � and f 2 L�;2. If the conditions in (8:13:17) are ful�lled; then the

transform J

� maps L�;2 onto L1��;2.

(ii) If f 2 L�;2 and g 2 L�;2; thenZ
1

0

�
J�f

�
(x)g(x)dx=

Z
1

0
f(x)

�
J�g

�
(x)dx: (8.13.24)
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(iii) Let f 2 L�;2; � 2 C and h 2 R+. If Re(�) > (1� �)h� 1; then J�f is given by
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(x > 0):

When Re(�) < (1� �)h� 1;
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(x > 0):

(iv) J� is independent of � in the sense that; if � and e� satisfy the assumption and if the

transforms J� and eJ� are given on L�;2 and Le�;2 respectively by (8:13:22); then J�f = eJ�f for

f 2 L�;2
T
Le�;2.

(v) For f 2 L�;2; J�f is given in (8:13:4) and (8:13:13):

Now we characterize the boundedeness, range and representation of the Lommel{Maitland

transform (8.13.1) and (8.13.4) in the space L�;r, for which since a� > 0; a�1 > 0; a�2 < 0; we

may refer to Theorems 4.5 and 4.9.

Theorem 8.56. Let � 2 C (� 6= 0); � 2 C and � 2 R be such that the conditions

Re(�) > �1;Re(� + �) > �1 and (8:13:18) are satis�ed and let 0 <  < 1.

(a) If 1 5 r 5 s 5 1; then the transform J�;� de�ned on L�;2 can be extended to L�;r as

an element of [L�;r;L1��;s]. If 1 < r 5 2 or if 1 < r < 1 and the conditions in (8:13:16) are

satis�ed; then J�;� is a one-to-one transform from L�;r onto L1��;s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L�;s0 with 1=s + 1=s0 = 1; then the relation

(8:13:20) holds.

(c) Let 1 < r <1 and let !; �; � 2 C be chosen as

! = (1� )

�
� + �

2
+ � +

1

4

�
;

Re(�) =
1

1� 

�
2max

�
1

r
; 1� 1

r

�
+ 2(1� �)� 1

�
�Re(2� + �)� 1

2
;

Re(�) > � � 1; Re(�) < 1� �:

(8.13.27)

If the conditions in (8:13:16) are satis�ed; then

J�;�(L�;r) =
�
M1=2�!=H ;!���1L(�1)=2;�+1=2+!=

�
(L3=2�Re(!)=��;r); (8.13.28)



342 Chapter 8. Bessel Type Integral Transforms on the Space L�;r

where Lk;� and H k;� are the generalized Laplace and generalized Hankel transforms de�ned

in (3:3:3) and (3:3:4). If any condition in (8:13:16) is not satis�ed; then J�;�(L�;r) is a subset

of the right-hand side of (8:13:28):

Theorem 8.57. Let � 2 C and � 2 R be such that Re(�) > �1 and � < Re(�) + 3=2

and let 0 <  < 1.

(a) If 1 5 r 5 s 5 1; then the transform J

� de�ned on L�;2 can be extended to L�;r as

an element of [L�;r;L1��;s]. If 1 < r 5 2 or if 1 < r < 1 and the conditions in (8:13:17) are

satis�ed; then J� is a one-to-one transform from L�;r onto L1��;s.

(b) If 1 5 r 5 s 5 1; f 2 L�;r and g 2 L�;s0 with 1=s + 1=s0 = 1; then the relation

(8:13:24) holds.

(c) Let 1 < r < 1: Let !; �; � 2 C be chosen as in Theorem 8:56. If the conditions in

(8:13:17) with � = 0 are satis�ed; then

J

�(L�;r) =

�
M1=2�!=H ;!���1L(�1)=2;�+1=2+!=

�
(L3=2�Re(!)=��;r): (8.13.29)

If any condition in (8:13:17) with � = 0 is not satis�ed; then J�(L�;r) is a subset of the

right-hand side of (8:13:29):

Proof. By virtue of (8.13.14) and (8.3.15), the assertions (a) of Theorems 8.56 and 8.57

follow from Theorems 4.5(a) and Theorem 4.9(a), while (b) and (c) are deduced from Theo-

rem 4.5(b) and Theorem 4.9(b), respectively.

Remark 8.15. The boundedness of the Lommel{Maitland transform J�;� for real � from

L�;r into L1��;s was given by Betancor [4, Theorem 2(a)] under more restrictive conditions

than that of Theorem 8.56(a) with real � (see Section 8.14).

8.14. Bibliographical Remarks and Additional Information on Chapter 8

For Section 8.1. The classical results in the theory of the Hankel transform H� in (8.1.1) are well
known (see, for example, the books by Titchmarsh [3, Chapter VIII], Sneddon [1, Chapter II], Ditkin
and Prudnikov [1, Part I, Chapter 3]) and Zayed [1, Section 27]. We only note that Titchmarsh [3,
Theorem 135] �rst proved the inversion formula for the Hankel transform in the form

1

2
[f(x+ 0) + f(x � 0)] =

Z
1

0

(xt)1=2J�(xt)
�
H�f

�
(t)dt; (8.14.1)

provided that � > �1=2 and f(x) belongs to L1(R+), and is a bounded variation near the point x.
Kober [1] was probably the �rst to consider the mapping properties of the Hankel type operators

in the space Lr(R+) (see the remarks on Section 8.4 below).
The results presented in Theorems 8.1{8.4 and Lemmas 8.1{8.2 are extensions of those proved by

Rooney [3], [4] and Heywood and Rooney [4] from real � to the complex case. In proving Theorems
8.1(b), 8.1(c,d), 8.2, 8.3 and 8.4 we followed the proofs of Heywood and Rooney [4, Theorem 2.1],
Rooney [4, Theorems 2.1, 2.2], Rooney [3, Theorem 2], Rooney [4, Theorem 2.3] and Heywood and
Rooney [4, Theorem 3.1].

From other results we note those by Rooney [8] who proved another inversion formula, in addition
to (8.1.33) and (8.1.34), for the Hankel transform (8.1.1) in the form

f(x) = lim
k!1

�
H k;�H�f

�
(x); (8.14.2)
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where �
H k;�g

�
(x) =

2kk+1

k!
x�(2k+�+3=2)

Z
1

0

t2k+�+3=2 exp

�
�k t

2

x2

�
g(t)dt (8.14.3)

and which is valid for f 2 L�;r; provided that either 1 5 r < 1, (r) 5 � 5 � + 3=2 or r = 1,
1 < � < � + 3=2 (Rooney [8, Theorem 4.1]). In terms of the operator Hk;� he also gave necessary and
su�cient conditions for f to be in the space of functions

H�(L�;r) = ff : f = H �g; g 2 L�;rg (8.14.4)

characterized by di�erent statements in the cases when � > �1 and � < �1 (� 6= �3;�5; � � �) (Rooney
[8, Theorem 5.1, 5.5, 6.1 and 6.3]). We also mention the paper by Heywood and Rooney [2] where
conditions were given on pairs of non-negative functions U (x) and V (x) which are su�cient for the
validity of the so-called two-weighted estimate�Z

1

0

jU (x)
�
H�f

�
(x)jsdx

�1=s
5

�Z
1

0

jV (x)f(x)jrdx
�1=r

(8.14.5)

with 1 < r 5 s < 1 for the Hankel transform H� . Heywood and Rooney [8] showed that the Hankel
transform (8.1.1) in an appropriate space L�;r satis�es ordinary and integral Lipschitz conditions.

Tricomi [1] proved the connection between the Hankel transform (8.1.1) and the Laplace transform
(2.5.2) in the form

�
Lt�=2H �f(t)

�
(x) = x���1

�
Lt�=2f(t)

��1

x

�
;

and in [2] he established some Abelian and Tauberian theorems for H�.
Relations between the Hankel transform H�, the Laplace transform L and the Varma transform

V k;m given in (8.1.1), (2.5.2) and (7.2.15) of t�f(t) were obtained by Bhonsle [2], [3] and by R.K.
Saxena [4], respectively. Soni [1] derived various expansions for the Hankel transform (8.1.1) of any
order � > 0 on L2(R+) by applying the fractional integration operators to the known expressions for H0.
Relations between the fractional integration operators (2.7.1), (2.7.2) and the Hankel transform (8.1.1)
were obtained by Bora and R.K. Saxena [1], and Marti�c [1], [2] gave an alternative proof of these results.

The Hankel transform H� in various spaces of tested and generalized functions was studied by Lions
[1], Zemanian [1]{[3], [5], [6], Feny�o [1], [2], Koh and Zemanian [1], Koh [1]{[4], Lee [1], [2], Braaksma
and Schuitman [1], McBride [3], Pathak [10], Pathak and A.B. Pandey [1], Pathak and Sahoo [1], Koh
and Li [1], [2], Pathak and Upadhyay [1], Malgonde and Chaudhary [1], Betancor, Linares and M�endez
[2], [3], Betancor and Marrero [1], Betancor and Rodriguez-Mesa [3], [4], Betancor and Jerez Diaz
[3], Vu Kim Tuan [3], Kanjin [1], et al. We also mention the papers by Bhonsle and Chaudhary [1]
who investigated the Laplace{Hankel transform with the kernel e�xt(xt)1=2J�(xt) in a certain space
of generalized functions, and by Betancor, Linares and M�endez [1], where Paley{Wiener theorems for
the Hankel transform H�f were proved. See in this connection the books by Zemanian [6], Brychkov
and Prudnikov [1, Section 6.2] and Zayed [1, Section 21.7.1].

For Section 8.2. The well-known classical results in the theory of the Fourier cosine and sine
transforms Fc and Fs, de�ned by (8.1.2) and (8.1.3), on the spaces L1(R+) and L2(R+) were �rst
presented by Titchmarsh [3]. The results of this section given in Theorems 8.5{8.8 and concerning the
properties of Fc and Fs on the space L�;r were not mentioned earlier.

For Section 8.3. The even and odd Hilbert transforms (8.3.1) and (8.3.2) were �rst studied by
Hardy and Littlewood [1] and Babenko [1], who proved that H+ 2 [L�;r] for �r < � < r and
H� 2 [L�;r] for 0 < � < r, respectively. Rooney [1, Corollary 8.1.2] extended the latter result to
0 < � < 2r and showed that H+ and H� are one-to-one from L�;r onto L�;r if 1 < r < 2 or 0 < � < r.
The statements of Theorem 8.9 except (8.3.6) were also given by Rooney [4, Theorem 3.1]. The results
in Theorem 8.11 were obtained by Heywood and Rooney [3, Theorem 4.1]. Using a technique of the
Mellin transform for some auxiliary operators, they obtained inversion relations (8.3.20) and (8.3.21)
and the characterization of the ranges H+(L�;r) and H�(L�;r).
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Prooving Theorem 8.9, we followed Rooney [4, Theorem 3.1]. The inversion formulas (8.3.18) and
(8.3.19) for the even and odd Hilbert transforms (8.3.1) and (8.3.2) are not mentioned earlier.

For Section 8.4. As noted above in the comments on Section 8.1, the extended Hankel transform
H�;l in (8.4.1) with real � was �rst considered in the space Lr(R+) by Kober [1]. He proved su�cient
conditions for the transform H �;l to be bounded from Lr(R+) into Lr0(R+), provided that 1 < r 5 2
(1=r + 1=r0 = 1) and f(x) satisfy some additional conditions. Busbridge [1] obtained simpler condi-
tions for such a result. Erd�elyi and Kober [1] investigated the modi�ed extended Hankel transform,
obtained from (8.4.1) by replacing the kernel (xt)1=2J�;l(xt) by J�;l[2(xt)1=2]. They gave conditions
for the boundedeness of this operator from Lr(R+) for 1 5 r 5 2 and �1=r0 < l + Re(�)=2 < 1=r,
proved a Parseval theorem and discussed connections between two such operators with di�erent � and
l. Erd�elyi [2] investigated connections between the extended Hankel transforms of di�erent order.

The results presented in Section 8.4 are extensions of those proved by Rooney [5] and Heywood
and Rooney [6] from real � to the complex case. In the proofs of Theorem 8.12(a) and Theorems
8.12(b), 8.13, 8.14 and 8.15 we follow that by Rooney [5, Theorem 1] and Heywood and Rooney [6,
Theorem 2.1], [6, Lemma 3.3], [6, Theorem 4.1], [6, Theorem 5.1], [6, Theorem 5.2] and [6, Theorems
6.6 and 6.9], respectively.

We also mention Ahuja [1], [2] who investigated the extended Hankel transform H�;l in McBride
spaces of tested and generalized functions Fp;� and F

0

p;� (see (5.7.8) and McBride [2]), and Vu Kim
Tuan [3] who studied H�;l in a space of rapidly decreasing functions and in the spaces Lp and in�nitely
di�erentiable functions with bounded support.

For Section 8.5. The results presented in this section were proved by Kilbas and Trujillo [1].
They generalize those considered by many authors in the particular cases of the Hankel type transform
H�;�;$;k;� in (8.5.1).

Information concerning the investigation of the Hankel{Schwartz transforms h�;1 = H�;�+1;��;1;1

and h�;2 = H�;��;�+1;1;1 in (8.6.1) and (8.6.2) as well of the Hankel{Cli�ord transforms b�;1 =
H�;�=2;��=2;2;2 and b�;2 = H�;��=2;�=2;2;2 in (8.6.3) and (8.6.4), are given below in the comments
on Section 8.6.

As for other types of such transforms, we �rst note the investigations by Sneddon who studied the
transform

H�[f(at);x] �
Z
1

0

tJ�(xt)f(at)dt = a�2
�
H�;0;1;1;1=af

�
(x) (8.14.6)

with a > 0 and � > �1=2, provided that x1=2f(x) is a piecewise continuously and absolutely integrable
function on R+. In particular, he proved the inversion formula of the form (8.13.1):

1

2
[f(x+ 0) + f(x� 0)] =

Z
1

0

tJ�(xt)H� [f(t);x]dt: (8.14.7)

His results were presented in his book Sneddon [4, Chapter 5], where one can �nd many references.
Using the results obtained, Sneddon gave in terms of the integral transform (8.14.6) the exact solutions
of axisymmetric Dirichlet problems for a half-space, for a thick plate and for the biharmonic equation,
and applied these representations to problems in symmetrical vibrations of a large membrane and of
a thin elastic plate, and in the motion of a viscous uid under a surface load (Sneddon [4, Chapter
5.10]). He also applied his results to the solution of dual integral equations and mixed boundary value
problems [2], [4, Chapter 5.11] and of generalized axisymmetric potentials (Sneddon [4, Chapter 5.12]).

We note that the inversion formula (8.14.7) was �rst obtained by Cooke [1] for special functions f
and � = � 1=2, and Bradley [1] extended this result to � > �1.

Rooney [1, Sections 8 and 9] and Kilbas and Trujillo [2] considered the Hankel type transform
de�ned for f 2 C0 by�

H�;�f
�
(x) = x1��

Z
1

0

J�(xt)t
�f(t)dt =

�
H �;1��;�;1;1f

�
(x) (� > �1): (8.14.8)

Rooney showed that H�;� can be extended on L�;2 as a unitary transform of the space into itself, i.e.
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H�1�;� = H�;�, and that, if f 2 L2�;2, its Mellin transform is given by

�
MH�;�f

�
(s) = 2s��

�

�
� � �+ 1 + s

2

�

�

�
� + �+ 1� s

2

��Mf
�
(2� � s) (Re(s) = �): (8.14.9)

Rooney also proved that H�;� belongs to [L2�=r;r;L2�=r0;r0 ], provided that 1 5 r 5 2 and 1=2 5 �
5 � + 1, and characterized the constancy of its range as

H�;�+ (L2�=r;r) = H�;�(L2�=r;r); (8.14.10)

provided that 1 < r < 2 and 1=2 5 � 5 min[�+1; �++1]. The former results were applied to study
the product of two transforms (8.14.8) de�ned by H�;�; = H�;�+H�;�. The representations

H�;�; =
�
I
=2
�;2;(���+1)=2

��1
I
=2
0+;2;(�+��1)=2 ( > 0; � > �1) (8.14.11)

and

H �;�; =
�
I
�=2
0+;2;(�++�+1)=2

�
�1
I
�=2
�;2;(�+��+1)=2 ( < 0; � +  > �1) (8.14.12)

were obtained in terms of the Erd�elyi{Kober type fractional integration operators (3.3.1) and (3.3.2)
and inverses to them, and on the basis of these relations the results on the boundedness and the
one-to-one nature of H�;�; in L�;r were proved.

Kilbas and Trujillo [2] generalized the boundedness results by Rooney and gave the representation
for H�;�.

Theorem 8.58. (Kilbas and Trujillo [2, Theorem 3.1]) Let 1 5 r 5 1 and let (r) be given by

(3:3:9):
(a) If 1 < r < 1 and (r) 5 � � Re(�) + 1=2 < Re(�) + 3=2; then for all s = r such that

s0 > [��Re(�)+ 1=2]�1 and 1=s+1=s0 = 1; the operator H�;� in (8:14:8) belongs to [L�;r;L2Re(�)��;s]
and is a one-to-one transform from L�;r onto L2Re(�)��;s. If 1 < r 5 2 and f 2 L�;r; then the Mellin

transform of H�;�f for Re(s) = �� + 2Re(�) is given by (8:14:9):
(b) If 1 5 ��Re(�)+1=2 5 Re(�)+3=2; then H�;� 2 [L�;1;L2Re(�)��;1]. If 1 < ��Re(�)+1=2 <

Re(�) + 3=2; then for all r (1 < r <1) H�;� 2 [L�;1;L2Re(�)��;r].
(c) If f 2 L�;r and g 2 L2Re(�)+��1;s for 1 < r < 1; 1 < s < 1 such that 1=r + 1=s = 1 and

max[(r); (s)] 5 � � Re(�) + 1=2 < Re(�) + 3=2; then the relationZ
1

0
f(x)

�
H�;�g

�
(x)dx =

Z
1

0
g(x)

�
H1��;�f

�
(x)dx (8.14.13)

holds.

(d) If f 2 L�;r for 1 < r < 1; (r) 5 � � Re(�) + 1=2 < Re(�) + 3=2; then for almost all x > 0
the relation �

H�;�f
�
(x) = x����

d

dx
x�+1

Z
1

0

J�+1(xt)t
�f(t)

dt

t
(8.14.14)

holds.

They also gave, in addition to (8.14.14), another representation for H�;�f and characterized the
range H�;�(L�;r) of the Hankel type transform (8.14.8) in L�;r-space in terms of the elementary op-
erators (3.3.11) and (3.3.12), the Erd�elyi{Kober operator (8.1.21) and the Fourier cosine transform
(8.1.2) by

H�;�(L�;r) =
�
M��2�+1�I����+1=2;�1=2Fc

�
(L;r); (8.14.15)

provided that 1 < r <1 and  � (r) 5 � � Re(�) + 1=2 < Re(�) + 3=2. The inversion theorem was
also proved.
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Theorem 8.59. (Kilbas and Trujillo [2, Theorem 3.3]) Let 1 < r < 1 and (r) 5 � � Re(�)
+ 1=2 < Re(�) + 3=2 or r = 1 and 1 5 � �Re(�) + 1=2 5 Re(�) + 3=2; where (r) is given by (3:3:9):
If we choose the integer m > � �Re(�) + 1=2 and if f 2 L�;r; then for almost all x > 0 the inversion

relation

f(x) = x1����
�
1

x

d

dx

�m

x�+m
Z
1

0
J�+1(xt)t

�
�
H�;�f

�
(t)

dt

tm
(8.14.16)

holds. In particular; if 1 < r <1 and (r) 5 � � Re(�) + 1=2 < min[1;Re(�) + 3=2]; then

f(x) = x����
d

dx
x�+1

Z
1

0

J�+1(xt)t
�
�
H�;�f

�
(t)
dt

t
: (8.14.17)

Kilbas and Marichev studied the generalized Hankel transform

�
S�;�;�f

�
(x) = ��x���=2

Z
1

0

t���=2+��1J2�+�

�
2

�
(xt)�=2

�
f(t)dt

� ��
�
H2�+�;���=2;���=2+��1;2=�;2=�f

�
(x) (8.14.18)

�
Re(2� + �) = � 1

2
; � > 0

�

and established its inversion formula and connections with the Erd�elyi{Kober type operators (3.3.1)
and (3.3.2), and Marichev applied the results to solve dual and triple integral equations with the
Bessel function J�(x) in the kernels (see Samko, Kilbas and Marichev [1, Sections 18.1 and 38.1-38.2]).
These investigations generalize those by Sneddon [2], who �rst suggested such a method by using the
operators (8.14.18) with � = 2: S�;�f = S�;�;2f to solve dual integral equations. We also mention
that Kalla and R.K. Saxena [2] obtained the relations between the operator S�;� and the generalized
fractional integration operators containing the Gauss hypergeometric function in the kernels.

K. Soni and R.P. Soni [1] obtained the Tauberian theorems for the generalized Hankel transformZ
1

0

(xt)��J�(xt)dF (t) (8.14.19)

with � = � 1=2 and a probability measure F on [0;+1).
Betancor [2], [3] studied the Hankel type transform de�ned by

�
F�0;�1;�2

f
�
(x) = x�0��2

Z
1

0

(xt)(1��1)=2��2J�

�
2

2 + k
(xt)(2+k)=2

�
f(t)dt

=
�
H�;�0�2�2+(1��1)=2;(1��1)=2��2;2=(2+k);2=(2+k)f

�
(x) (8.14.20)

with real �0; �1, �2 and k and � = (�1�1)=(2+k) = �1=2. He proved the inversion formula for such a
transform provided that f is of bounded variation in a neighborhood of the point x0 > 0 and belongs to
L�;1 with � = (1�k��1)=2��2, and Parseval's type relations for such a transform. Betancor in [10] and
[11] investigated the transform (8.14.20) in some spaces of generalized functions and gave applications
to solve a Cauchy problem involving the Bessel type operator B�0;�1;�2

= x�0Dx�1Dx�2 (D = d=dx)
in [10] and to solve several di�erential equations involving such a Bessel type operator in [11].

Marichev and Vu Kim Tuan [1], [2] studied the isomorphism and factorization properties of the
operator Z

1

0

J�

�
2

r
x

t

�
f(t)

dt

t

in special spaces of functions (see Samko, Kilbas and Marichev [1, Theorem 36.11]). We also note that
Okikiolu [1], [2] studied the boundedness of the operator of the form (8.5.1) H �;���+1=2;1=2��;1;1 from
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Lr(R+), and Duran [1] proved the isomorphism of some subspaces of the space of in�nitely di�eren-
tiable functions C1(R+) with respect to the Hankel type operator H�;�;!;1;1.

For Section 8.6. The results presented in this section were proved by Kilbas and Trujillo [3].

Concerning other results on the Hankel{Schwartz transforms h�;1 and h�;2 in (8.6.1) and (8.6.2)
and the Hankel{Cli�ord transforms b�;1 and b�;2 in (8.6.3) and (8.6.4), we �rst indicate Heywood
and Rooney [1, Lemma 3] who proved that the Hankel{Cli�ord operator b�;1 (� > �1) de�ned
on C0 can be extended to a bounded operator in [L�;r;L1����;s], provided that 1 < r 5 s < 1,
max[1=r; 1� 1=s] 5 2� + � � 1=2 and � < 1. They de�ned the operator

�
Rk;�;�f

�
(x) = x��

�
b�+�;1Tkb�;1f

�
(x) (x > 0; k > 0; � > 0; � 2R) (8.14.21)

being the composition of two Hankel{Cli�ord operators b�+�;1 and b�;1 with the translation operator
Tk such that (Tkf)(x) = f(x� k2=4) for x > k2=4 and f(x) = 0 for 0 5 x 5 k2=4, and they showed it
is bounded in L�;r; provided that 1 < r <1, � < 1 and

max

�
(r) � 2� +

1

2
;
1

r0
� �

�
5 � 5

3

2
+ �� 2� � (r);

where (r) is given by (3.3.9). Heywood and Rooney applied the latter statement to investigate the
integral operators

�
Jk(�; �)f

�
(x) = 2�k1��x�2(�+�)

Z x

0

t2�+1(x2 � t2)(��1)=2J��1
�
k(x2 � t2)1=2

�
f(t)dt (8.14.22)

and

�
Rk(�; �)f

�
(x) = 2�k1��x2�

Z
1

x

t1�2(�+�)(t2 � x2)(��1)=2J��1
�
k(t2 � x2)1=2

�
f(t)dt (8.14.23)

in L�;r with k > 0 and � > 0 and real �, containing the Bessel function of the �rst kind (2.6.2) in the
kernels. They proved the following result.

Theorem 8.60. (Heywood and Rooney [1, Theorem 4]) Let 0 < � < 1=2. Then

(i) If 2=(1 + �) 5 r 5 2; then Jk(�; �) 2 [L�;r] for � 5 1 + 2(� + �); and Rk(�; �) 2 [L�;r] for
� 5 4p�1 � 2(�+ �)� 1;

(ii) If 2 5 r 5 2(1��); then Jk(�; �) 2 [L�;r] for � 5 4p�1+ 2(�+ �)� 1; and Rk(�; �) 2 [L�;r]
for � = 1� 2(�+ �).

Soni [3] proved the criterion of invertibility of a simpler modi�ed operator of the form (8.14.22)

k(1��)=2
Z x

0

(x2 � t2)(��1)=2J��1
�
k(x2 � t2)1=2

�
f(t)dt (x > 0) (8.14.24)

in the space L2(R+). This operator was considered by many authors (see Samko, Kilbas and Marichev
[1, (37.41) and Section 39.1, To Section 37.2]). In Sections 37 and 39 of this book one may �nd the
results and bibliographical remarks concerning other types of convolution and non-convolution oper-
ators generalizing the fractional integral operators (2.7.1) and (2.7.2) and containing Bessel functions
J�(z) and I�(z) in the kernels. We only indicate the paper by Soni [2], who considered the simplest
non-convolution operators

Z x

0
J0

�
kt1=2(x2 � t2)1=2

�
f(t)dt;

Z
1

x

J0

�
kx1=2(t2 � x2)1=2

�
f(t)dt (x > 0); (8.14.25)

proved the boundedness of these operators fromLp(R+) to Lp0 (R+) when 1 5 p 5 2 and 1=p0+1=p = 1,
and obtained the inversion formulas for the �rst operator in the cases 2=3 < p 5 2 and p = 1.
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It should be noted that the operators (8.14.22) and (8.14.23), being generalizations of the Erd�elyi{
Kober type operators (3.3.1) and (3.3.2), were introduced by Lowndes [1] and given his name, who
de�ned the generalized Hankel transform�
S �a;b;y�;�;�

�
f
�
(x)

= 2�x2���(x2 � a2)��
Z
1

y

t1���2�(t2 � y2)�J2�+�
�
(x2 � a2)1=2(t2 � y2)1=2

�
f(t)dt (8.14.26)

and in [5] a new unsymmetrical generalized operator of fractional integration (see the relation (37.68) in
Samko, Kilbas and Marichev [1]). Then he gave applications of the operators to solving dual and triple
integral equations in [1] and boundary value problems involving Helmholtz type partial di�erential
equations in [2]{[5]. In this connection see Samko, Kilbas and Marichev [1; Sections 37.2, 37.3, 38.1
(Examples 38.2 and 38.5), 39.1, 40.2 (Lemmas 40.1{40.3) and 43.2, note 40.1].

We also indicate some other results. R.K. Saxena and Sethi [1] investigated relations between the
Lowndes operators (8.14.22), (8.14.23) and the generalized fractional integration operators involving
the Gaussian hypergeometric function, and Ahuja [3], [4] studied Lowndes operators in McBride spaces
Fp;� and F

0

p;� (see McBride [2] and (5.7.8)). Malgonde and Raj.K. Saxena [1] extended the operators
of the form (8.14.22) and (8.14.23), in which x2 and t2 are replaced by xm and tm with m > 0, to
spaces of generalized functions.

Gasper and Trebels [1] studied in L�;r the operator H(�)
� = D�

�
h�;2 of the composition of the

Riemann{Liouville fractional derivative (2.7.4) and the Hankel{Schwartz operator (8.6.2). They proved
the estimate

kH(�)
� fk�+1=2+1=r0;r0 5 c kfk�+�+1=2+1=r;r

�
1

r
+

1

r0
= 1

�
; (8.14.27)

provided that 1 < r 5 2, 0 < � < �+ 3=2 and f belongs to the space S0(k) (k = [2�] + 4) of functions
continuous on [0;1), rapidly decreasing and in�nitely di�erentiable away from the origin, and such

that H(�)
� has compact support in [0;1) for all � 2 (�1=2; k].

We note that the Hankel{Schwartz transforms h�;1 and h�;2 and the Hankel{Cli�ord transforms
b�;1 and b�;2 were studied in di�erent spaces of tested and generalized functions. The Hankel{Schwartz
transform h�;2, introduced by Schwartz [1], and its conjugate transform h�;1 were investigated by Lee
[3], Dube and Pandey [1], Schuitman [1], Altenburg [1], Chaudhary [1], van Eijndhoven and de Graaf
[1], M�endez [1], [2], M�endez and S�anchez Quintana [1], [2], S�anchez Quintana and M�endez [1], Betancor
[1], [9], Betancor and Negrin [1], van Eijndhoven and van Berkel [1], Linares and M�endez [1] and others
(see the papers above and the book by Brychkov and Prudnikov [1, Section 6.4]). The Hankel{Cli�ord
transforms b�;1 and b�;2 were considered by Betancor [5]{[7], M�endez and Socas Robayna [1]. Duran
[2] proved the isomorphism of some spaces of functions with respect to the modi�ed Hankel{Cli�ord
transform �

H�f
�
(x) =

1

2
x��=2

Z
1

0
J�

�
(xt)1=2

�
t�=2f(t)dt

=
1

2

�
H�;��=2;�=2;2;1f

�
(x) (� > �1): (8.14.28)

Mahato and Mahato [1] proved some Abelian theorems for the distributional Hankel{Cli�ord trans-
form (8.6.8). We also mention Betancor and Rodriguez-Mesa [1] who proved necessary and su�cient
conditions for a measurable function f(x) on R+ to satisfy the relation

f(x) = lim
T!1

Z T

0

t2�+1(xt)��J�(xt)
�
b�;2f

�
(t)dt

�
�1

2
< � <

1

2

�
(8.14.29)

for almost all x 2R+, and used this formula to obtain a new inversion formula for the Hankel{Cli�ord
transform b�;2 in (8.6.9).
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For Sections 8.7 and 8.8. The transform Y� in (8.7.1) and the Struve transform H� in (8.8.1)
were �rst considered by Titchmarsh [1], [3, xx8.1 and 8.5] as a pair of reciprocal transforms:

g(x) =

Z
1

0

k(xt)f(t)dt; f(x) =

Z
1

0

h(xt)g(t)dt (8.14.30)

with

k(x) = x1=2Y�(x); h(x) = x1=2H�(x): (8.14.31)

These transforms are given as a pair of transforms in Erd�elyi, Magnus, Oberhettinger and Tricomi [4,
Chapter IX and X], where it is also indicated that these transformations are the inverses of each other,
provided that �1=2 < � < 1=2.

It should be noted that Hardy [1] presented the similar reciprocal relations

g(x) =

Z
1

0

Y�(xt)tf(t)dt; f(x) =

Z
1

0

H�(xt)tf(t)dt; (8.14.32)

as a particular case of more general formulas given below in (8.14.52) and (8.14.53) with � = 1=2.
For real � the results presented in Sections 8.7 and 8.8 were proved by Rooney [4] and Heywood

and Rooney [4]. Theorems 8.26{8.36 and Lemmas 8.6{8.11 are extensions of those proved by Rooney
[4] and Heywood and Rooney [4] from real � to the complex case. In our proofs of Theorems 8.26,
8.27(a,b), 8.27(c), 8.27(d), 8.27(e), 8.28, 8.29, 8.30 and 8.31 we follow Rooney [4, Theorem 4.1],
Rooney [4, Theorem 4.2], Heywood and Rooney [4, Theorem 2.2], Rooney [4, Theorem 4.3], Rooney
[4, Theorem 4.4], Rooney [4, Theorem 6.2], Heywood and Rooney [4, Theorem 4.1], Heywood and
Rooney [4, Theorem 4.2] and Heywood and Rooney [4, Theorem 5.3], respectively. Similarly we follow
Rooney [4, Theorem 5.1], Rooney [4, Theorem 5.2], Heywood and Rooney [4, Theorem 2.3], Rooney
[4, Theorem 5.3], Rooney [4, Theorem 5.4], Rooney [4, Theorem 6.1], Rooney [4, Theorem 6.3] and
Heywood and Rooney [4, Theorem 6.1] while proving Theorems 8.32, Theorem 8.33(a,b), Theorem
8.33(c), 8.33(d), 8.33(e), 8.34, 8.35 and 8.36, respectively.

We note that the inversion formula for the Struve transform H� was obtained in Theorem 8.36 for
� 2 C such that � > �Re(�) � 1=2. Heywood and Rooney [7] proved the inversion formulas for the
Struve transform with real � for � 5 � � � 1=2:

Theorem 8.61. (Heywood and Rooney [7, Theorems 2.1, 2.3 and 3.2]) Let 1 < r <1; � = (r);
where (r) is given by (3:3:9); and f 2 L�;r . Then for almost all x > 0

f(x) = x�(�+1=2)
d

dx
x�+1=2

Z
1

0

(xt)1=2Y�+1(xt)
�
H�f

�
(t)
dt

t
(8.14.33)

for max[�(� + 1=2); �+ 3=2] < � < 1;

f(x) = x�(�+1=2)
d

dx
x�+1=2

�
Z
1

0

(xt)1=2

"
Y�+1(xt) � cot(��)

�(� + 2)

�
xt

2

��+1
#�
H�f

�
(t)
dt

t
(8.14.34)

for � < min[1;�(� + 1=2); �+ 5=2]; and

f(x) = x�(�+1=2)
d

dx
x�+1=2

Z
1

!0
(xt)1=2Y�+1(xt)(H�f)(t)

dt

t
(8.14.35)

for � = �(� + 1=2) and � + 3=2 < � < 1; where the integral in (8:14:35) is given in (8.7.46).

The L�;r-theory of the transformsY� and H� can be also constructed by using their representations
as special cases of the H-transform (3.1.1). Such an approach was developed by Kilbas and Gromak
[1]. In this way new representations and new inversion relations for Y�- and H�-transforms were
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established. Rooney [8, Corollaries 5.3 and 5.4 and Theorem 6.2] gave the necessary and su�cient
conditions for f to be in the spaces of functions

Y�(L�;r) = ff : f =Y�g; g 2 L�;rg (� 2R) (8.14.36)

and

H�(L�;r) = ff : f = H�g; g 2 L�;rg (� 2R) (8.14.37)

in terms of the operator Hk;� de�ned by (8.14.3). Rooney [7, Theorem 2] and Heywood and Rooney
[7, Theorem 3.4] characterized the ranges Y�(L�;r) and H�(L�;r) in the exceptional cases when
� = �� + 1=2 and � = �� � 1=2, respectively. We also indicate the paper by Vu Kim Tuan [2]
in which the range of the transformY� was studied in some spaces of functions.

Okikiolu [1], [2] studied the modi�edY�;� and H�;� transforms of the form

�
Y�;�f

�
(x) = x�

Z
1

0

(xt)1=2��Y��1=2(xt)f(t)dt (8.14.38)

and �
H�;�f

�
(x) = x�

Z
1

0

(xt)1=2��H��1=2(xt)f(t)dt (8.14.39)

in the space Lp(R+). He showed that the above operators can be represented as the compositions of
the Erd�elyi{Kober type operators (3.3.1) and (3.3.2) with the cosine- and sine-transforms (8.1.2) and
(8.1.3).

Love [4] studied the modi�ed Struve transform de�ned for � 2 C (Re(�) > �1=2) and x > 0 by

�
S�f

�
(x) =

Z
1

0
(x
p
t)�H�(x

p
t)f(t)dt (8.14.40)

in the space L��1;1 and established the inversion relation of the form

�
I
�+1=2
�

f
�
(x) =

2�p
�

Z
1

0

sin(t
p
x)t�2�

�
S�f

�
(t)dt; (8.14.41)

where I
�+1=2
�

f is the fractional integral (2.7.2). McKellar, Box and Love [1] proved the inversion
theorems for the modi�ed Struve transform��

2

�1=2 Z 1

0

(xt)1=2�nHn+1=2(xt)f(t)dt (n 2 N0): (8.14.42)

Isomorphism and factorization properties of the operators

Z
1

0

Y�

�
2

r
x

t

�
f(t)

dt

t
;

Z
1

0

H�

�
2

r
x

t

�
f(t)

dt

t
(8.14.43)

in special spaces of functions were investigated by Marichev and Vu Kim Tuan [1], [2] (see Samko,
Kilbas and Marichev [1, Theorems 36.12 and 36.13]).

For Section 8.9. The transform K� in (8.9.1) was introduced by Meijer [1] and therefore given
his name. Meijer [1], [2] considered the reciprocal formulas

g(x) =

�
2

�

�1=2 Z 1

0

(xt)1=2K�(xt)f(t)dt; (8.14.44)

f(x) =
1

i

�
2

�

�1=2 Z +i1

�i1

(xt)1=2I�(xt)g(t)dt; (8.14.45)
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where I�(z) is the modi�ed Bessel function of the �rst kind (8.9.3). Meijer [1], [2] proved that if f(t)

is a bounded variation function and the integral

Z
1

0

e�tjg(t)jdt is convergent, then (8.14.44) implies

(8.14.45) provided that �1=2 5 � 5 1=2. Such a result is also true for � 2 C , Re(�) = � 1=2 (see
Zayed [1, Section 23.5]).

When � = �1=2, the right side of (8.14.44) coincides with the Laplace transform (2.5.2) (see
(8.9.4)), while the right side of (8.14.45) coincides with the complex inversion formula for the Laplace
transform (see, for example, Titchmarsh [3, Sections 1.4 and 11.7]). Boas [1] gave an inversion formula
for the transform

g(x) =

�
2

�

�1=2 Z 1

0

(xt)1=2K�(xt)d�(t); (8.14.46)

which generalizes the Post{Widder inversion operator for the Laplace transform (see Widder [1]).
Using the Erd�elyi{Kober fractional integration operators (3.3.1) and (3.3.2), Fox [3] reduced the

modi�ed Meijer transform

�
K�;�f

�
(x) =

Z
1

0
(xt)�K�(xt)f(t)dt (x > 0) (8.14.47)

to the form of a Laplace transform and obtained its inversion formula. In [4] he gave such a solution
as an illustration of a method, developed by him and based on direct and inverse Laplace transforms,
to �nd a formal solution of the �rst equation in (8.14.30) with the kernel k(x) such that its Mellin
transform (2.5.1) has the form

(Mk)(s) =
nY
i=1

�(ai + �is)

2
4 mY
j=1

�(bj + �js)

3
5
�1

: (8.14.48)

Gonz�alez de Galindo and Kalla [1] used this method to �nd the inversion for the modi�ed Meijer
transform Z

1

0

extK�(xt)f(t)dt: (8.14.49)

It should be noted that earlier Conolly [1] on the basis of the direct and inverse Laplace transforms
suggested a formal process to obtain the inversion formula for the modi�ed Meijer transform

�
K�;�;!f

�
(x) = x!

Z
1

0

(xt)��1=2K��1=2(xt)f(t)dt (8.14.50)

with ! = 0 and � = 1=2. Such a modi�ed Meijer transform in the space Lp(R+) was studied by
Saksena [1] for p = 2, ! = 0 and � = � > 1=2, Okikiolu [1], [2] and Manandhar [1] for p = 1 and
� 2 R. They applied the Erd�elyi{Kober type fractional integrals (3.3.1) and (3.3.2) and the Mellin
transform to �nd the inversion relations for such a modi�ed Meijer transform. Okikiolu [1], [2] showed
that the operator K�;�;! can be represented as a composition of the generalized Laplace transform and
Erd�elyi{Kober type operator (3.3.2), and that K�;�;! is bounded from Lp(R+) into Lq(R+), where
1=q = 1� ! � 1=p > 0.

K.C. Sharma [1] investigated the compositions of the modi�ed Meijer transforms K�+1=2;1;1 in
(8.14.50) with di�erent indices �, and in [2] he gave four inversion formulas for such a transform in
terms of direct and inverse Mellin transforms and by means of the inversion formulas for Mellin and
Y-transforms, Mellin and Hankel transforms and a formal process suggested by Conolly [1]. Nasim [1]
obtained the inversion formula for the transform K�+1=2;�+1=2;0 with j�j 5 1=2 and � > 0 in terms of
the Hankel transform (8.1.1) by using an in�nite-order di�erential operator.

Bora and R.K. Saxena [1] showed that the Meijer K�-transform (8.9.1) can be represented as the
Laplace transform (2.5.2) of the functions I�0+f(x

2) and x2��2I�
�
f(x�2), where I�0+ and I�

�
are the

fractional integration operators given in (2.7.1) and (2.7.2). Marti�c [1], [2] gave an alternative proof
of these results. Connections of the Meijer transform (8.9.1) with the Laplace transform (2.5.2) and
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the generalized Varma transform (7.3.1) were studied by Bhonsle [1] and Bhise [2], with the Varma
transform (7.2.15) by Bhise [2] and Gupta [1], and with the Hankel transform (8.1.1) by Bhise [2].

Zemanian [3], [4], Feny�o [1], [2], Koh and Zemanian [1], Koh [1], Barrios and Betancor [4], [5],
Betancor and Barrios [1], Malgonde [2], Mahato and Agrawal [1], and Betancor and Rodriguez-Mesa
[2] studied the Meijer transform K� in some spaces of tested and generalized functions (see in this
connection the books by Zemanian [5], Brychkov and Prudnikov [1, Section 6.7]) and Zayed [1, Section
23.7]. Conlan and Koh [1], Koh, Deeba and Ali [1], [2], Deeba and Koh [1] investigated the Meijer
type transform

�
K�f

�
(x) =

Z
1

0

(xt)�=2K�

�
(xt)1=2

�
f(t)dt (8.14.51)

in some spaces of generalized functions and gave applications to construct an operational calculus for
the Bessel operator B� = t��Dt1+�D (D = d=dt), and to solve a boundary value problem for the
one-dimensional wave equation.

The results presented in Section 8.9 were obtained by Kilbas, Saigo and Trujillo [1].

For Section 8.10. The Bessel type transforms K�
� and L

(m)
� in (8.10.1) and (8.10.2) were intro-

duced by Kr�atzel in [5] and [1], respectively. For the transform K�
� an inversion and convolution

theorem were given by Kr�atzel [5], and an operational calculus was constructed by Rodriguez, Trujillo
and Rivero [1]. Compositions of K�

� with the Riemann{Liouville fractional integration (2.7.1), (2.7.2)
and fractional di�erentiation operators (2.7.3), (2.7.4) in certain weighted spaces of locally integrable
and �nite di�erentiable functions were proved by Kilbas and Shlapakov [1], [3] with applications to
the solution of ordinary linear di�erential equations of the second kind. Such compositions in McBride
spaces of tested and generalized functions Fp;� and F

0

p;� (McBride [2]) were given by Kilbas, Bonilla,
Rodriguez, Trujillo and Rivero [1].

The properties of L
(m)
� such as an inversion and convolution theorem, operational rules, di�erentia-

tion relations, and connections with di�erential operators were investigated by Kr�atzel [1]{[4]. Barrios
and Betancor [1] obtained two real inversion formulas and discuss Abelian and Tauberian theorems for

the transform L
(m)
� . Rao and Debnath [1], Barrios and Betancor [2], [3], and Malgonde [2] investigated

this transform in some spaces of generalized functions.
The results presented in Section 8.10 were proved by Kilbas and Glaeske [1] and Glaeske and Kilbas

[1].

For Section 8.11. The modi�ed Bessel type transform L
(�)
�;� in (8.11.1) was introduced by Kil-

bas, Saigo and Glaeske [1] and Glaeske, Kilbas and Saigo [1] and they proved its Mellin transform

(8.11.11), the asymptotic relations (8.11.20) and (8.11.21) and the composition formulas of L
(�)
�;� with

the left- and right-sided Liouville fractional integrals and derivatives on McBride spaces Fp;� and F0p;�.
The results presented in Section 8.11 were proved by Bonilla, Kilbas, Rivero, Rodriguez and Tru-

jillo [1].

For Section 8.12. The transform of the form (8.12.6) with (xt)1=2J�;�(xt) being replaced by J�;�(xt)
is known as the Hardy transform. Hardy [1] established a pair of reciprocal relations (8.14.30) of the
form

g(x) =

Z
1

0

C�;�(xt)tf(t)dt; C�;�(z) = cos(��)J�(z) + sin(��)Y�(z) (8.14.52)

and

f(x) =

Z
1

0

J�;�(xt)tg(t)dt; (8.14.53)

where J�;�(z) is given by (8.12.4). Because of this both transforms in (8.14.52) and (8.14.53) are called
Hardy transforms.

Cooke [1] obtained the following inversion formula for the transforms (8.14.52) and (8.14.53).
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Theorem 8.62. (Cooke [1]) Let � > �1; � + � > �1 and let f(t) be a function of bounded

variation in the neighborhood of the point t = x.
(i) If j� + 2�j < 3=2; t�f(t) 2 L(0; �) and

p
tf(t) 2 L(�;1); where � > 0 and � = min[1 � j�j;

(1� � � �)=2]; then

1

2
[f(x+ 0) + f(x � 0)] =

Z
1

0

J�;�(xt)tdt

Z
1

0

C�;�(t� )�f(� )d�: (8.14.54)

(ii) If � + 2� < 3=2; j�j 5 3=2; t�f(t) 2 L(0; �) and
p
tf(t) 2 L(�;1); where � > 0 and � =

min[1 + � + 2�; 1=2]; then

1

2
[f(x+ 0) + f(x � 0)] =

Z
1

0

C�;�(xt)tdt

Z
1

0

J�;�(t� )�f(� )d�: (8.14.55)

Srivastava [3] proved certain theorems for the Hardy transform (8.14.53). Connections of this
transform with the Varma transform (7.2.15) were investigated by Srivastava [4], with the generalized

Varma transform (7.3.1) by Srivastava [3], and with the integral operator (Kf)(x) = x

Z
1

0
k(xt)f(t)dt

of the general form by Kalla [9].
Moiseev, Prudnikov and Skurnik [1] considered the particular case of the transform (8.12.1) with

a = 1; b = � + 1; c = � + 3=2 and ! = 2� + 1 in the form

F (x) =

Z
1

0

(xt)2�+1

�(2� + 2)
1F2

�
1;� + 1; � +

3

2
;� (xt)2

4

�
f(t)dt (8.14.56)

in the space Lr(R+). They proved [1, Theorem 1] that this transform is one-to-one in Lr(R+) for
a 2 [�1=2; 1=2); and established its inversion formula

f(x) =
2

�

Z
1

0
sin(xt� ��)F (t)dt; (8.14.57)

provided that a 2 [�1=2; 1=4).
Pathak and J.N. Pandey in [1], [3] extended the Hardy transform (8.14.52) to special spaces of

generalized functions and, in particular, obtained the inversion formula for such a distributional Hardy
transform (see some of their results in Zayed [1, Section 22.6]). In [2] Pathak and J.N. Pandey proved
four Abelian theorems for the Hardy transforms (8.14.52) and (8.14.53).

The generalized Hardy{Titchmarsh transform (8.12.1) with ! = b+ c� a� 1=2

�
Ja;b;cf

�
(x) =

Z
1

0

Ja;b;c(xt)f(t)dt; (8.14.58)

where

Ja;b;c(x) =
1X
k=0

(�1)k�(a+ k)

�(b+ k)�(c+ k)k!

�x
2

�2k+b+c�a�1=2

=
�(a)

�(b)�(c)

�x
2

�b+c�a�1=2
1F2

�
a; b; c;�x

2

4

�
(8.14.59)

was studied by Titchmarsh [3, Section 8.4, Example 3]. Considering (8.14.58) as the �rst reciprocal
transform in (8.14.30) with the kernel k(x) = Ja;b;c(x), Titchmarsh proved the inversion formula in
the form of the second reciprocal transform in (8.14.30) with

h(x) =
sin(a� b)�

sin(c� b)�

�x
2

�a+b�c�1=2
1F2

�
1� a + b; 1 + b� c; b;�x

2

4

�

+
sin(a� c)�

sin(b� c)�

�x
2

�a�b+c�1=2
1F2

�
1� a + c; 1� b+ c; c;�x

2

4

�
: (8.14.60)
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Titchmarsh noted that these reciprocal transforms can also be obtained from the results by Fox [1].
The particular case a = � + 3=2, b = � + 1 and c = 2� + 1 with

k(x) =

p
�

2

d

dx

h
xJ2�

�x
2

�i
; h(x) = �p�J�

�x
2

�
Y�

�x
2

�
(8.14.61)

was investigated earlier by Bateman [1], [2]. The case a = �+�+1=2, b = �+�+1, c = 2�+�+1 yields
a more general transform considered by Titchmarsh [2]; the inversion relation for such a transform
was proved by Cook [1]. Bhise and Dighe [1] proved Tauberian theorems for the transform of the form
(8.14.58), while Dighe and Bhise [1] established Abelian theorems for such a transform.

H.M. Srivastava [1] introduced the transform more general than (8.14.58):

�
J�;�� f

�
(x) =

Z
1

0

t �;�;�

�
x2t2

4

�
f(t)dt (8.14.62)

with the kernel

 �;�;�(z) =
p
�

1X
k=0

(�1)k(� + k + 1)k
�(� + k + 1)�(�+ k + 1)k!

�x
4

�k+�=2
(8.14.63)

and investigated the relations of this transform with the Laplace transform (2.5.2) and the Meijer
transform (8.9.1) in [1] and [2], respectively. Srivastava and Vyas [1] obtained a relationship between
the J�;�� -transform and the generalized Whittaker transform (7.3.1).

The results presented in Section 8.12 were obtained in Kilbas, Saigo and Borovco [2], [3]. Some of
these assertions in the particular case ! = b+c�a�1=2 for real � were given by Kilbas and Borovco [1].

For Section 8.13. The Lommel{Maitland transform J

�;� in (8.13.1) was �rst considered by Pathak

[1]{[3], who obtained some elementary properties of this transform, proved the inversion formula and
indicated the relation of this transform with the Laplace transform and applied the results obtained
to evaluate a number of in�nite integrals involving Meijer's G-function.

The Lommel{Maitland transform J

�;� with real � in the spaces L�;r with 1 < r < 1, � 2

R, max[1=r; 1=r0] 5 � < 1 and r 5 s < 1=(1 � �) was considered by Betancor [4]. He proved the
boundedness of J�;� from L�;r into L1��;s provided that 0 <  < 1 and the conditions

� > �1; � + � > �1; 1 + max

�
1; � + 2� � 9

2

�
< � < � + 2� +

3

2
: (8.14.64)

These conditions are harder than that of Theorem 8.56(a) for real �. Betancor also gave conditions
for characterizing the range of the Lommel{Maitland transform (8.13.1) in terms of the Fourier co-
sine transform (8.1.2) by J�;�(L�;r) � Fc(L�;r) and J�;�(L�;r) = Fc(L�;r), and for the imbedding
J
1
�1;�1(L�;r) � J2�2;�2(L�;r) with di�erent i; �i and �i (i = 1; 2).

The results presented in Section 8.13 were obtained by the authors together with Borovco in Kilbas,
Saigo and Borovco [1].

The particular case of the Lommel{Maitland transform J

� in (8.13.4) in the form

�
J
;�f

�
(x) =

Z
1

0

(xt)�+1=2J;�
�
x2t2

4

�
f(t)dt (x > 0); (8.14.65)

where J;�(z) is the Bessel{Maitland function (8.13.5), was considered by Agarwal [1]{[3], who gave
the Parseval relation and some other properties of this transform proving three inversion formulas: in
a form similar to (8.13.4), in terms of a double integral and as a di�erential operator of in�nite order.
Betancor [12] obtained another inversion formula and proved Abelian theorems for the transform
(8.14.65).

We mention several results concerning integral transforms with the Bessel{Maitland function
(8.13.5) in the kernel. Marichev [1] studied the transform

�
J;�f

�
(x) =

Z
1

0

(xt)1=2J;�(xt)f(t)dt (x > 0) (8.14.66)
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in L2(R+). Kumar [1]{[4] studied properties of the modi�ed transform

�
J;�� f

�
(x) =

Z
1

0

(xt)�J;�(xt)f(t)dt (x > 0) (8.14.67)

including the existence, recurrence relations, and connections with Laplace and Hankel transforms and
gave applications to evaluate some integrals. R. Gupta and Jain [1], [2] investigated such a modi�ed
transform in some spaces of generalized functions.

Betancor [8] proved the boundedness and the range in L�;r of the so-called Watson{Wright trans-
form de�ned by

�
H;0;�

�;�0;�f
�
(x) =

Z
1

0

(xt)�w;0

�;�0;�

�
x2t2

�
f(t)dt (x > 0) (8.14.68)

with � > �1; �0 > �1, and 0 <  < 1 or  = 1; �0�� > �1=2, and 0 < 0 < 1 or 0 = 1; �+� > �1=2.
Such a transform, introduced by Olkha and Rathie [1], [2], contains the function

w;0

�;�0;�(x) = x1=2
Z
1

0

t��1J;�(xt)J
0;�0

�
1

t

�
dt (8.14.69)

in the kernel, which for  = 0 = 1 and � = 0 coincides with the function

w�;�0(x) = x1=2
Z
1

0

J�(xt)J�0

�
1

t

�
dt

t

�
� > �1

2
; �0 > �1

2

�
(8.14.70)

de�ned by Watson [1]. Bhatnagar [1], [2] studied the functions of this type as the kernels k(x) and
h(x) of a pair of reciprocal transforms (8.14.30). Using the Kober operators (7.12.5) and (7.12.6), K.J.
Srivastava [2], [3] investigated the integral transform

�
W �;�0f

�
(x) =

Z
1

0

w�;�0(xt)f(t)dt (8.14.71)

with such a function kernel in the space L2(R+).
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Watson{Wright transform, 355

Whittaker function, 64, 206

Whittaker transform
generalized, 212, 253{254
L�;2-theory, 213{214
L�;r-theory, 214
modi�cation, 214
modi�cation L�;2-theory, 215
modi�cation L�;r-theory, 215{216

Wright function, 65

Wright transform, 246
L�;2-theory, 247
L�;r-theory, 247{250
inversion formulas, 251

Y-transform, 289, 349
L�;r-theory, 292{294
inversion formulas, 295{298
modi�ed, 350
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�: parameter for G-function, 166

�: parameter for H-function, 77

�0: parameter for G-function, 172

�0: parameter for H-function, 119

�: parameter for G-function, 166

�: parameter for H-function, 77

�0: parameter for G-function, 172

�0: parameter for H-function, 119

�(z): Stirling relation of gamma function, 3

: Euler{Mascheroni constant, 311

r;�n : seminorm on Fr;�, 162

�: parameter for G-function, 166

�: parameter for H-function, 2

�: di�erential operator, 162

�: parameter for H-function, 2

�
(n)
 (z): generalized Macdonald function, 66,

67, 313

�
(�)
;�(z): generalized Macdonald function, 66,

321

�: parameter for G-function, 166

�: parameter for H-function, 2

�: parameter for H-function, 2

�a: elementary operator, 123

�: parameter of H-function asymptotic esti-
mate, 11, 12, 16

��: parameter of H-function asymptotic es-
timate, 20, 21, 23

��;x(t): function, 279

��;m(x): function, 306

�x(t): characteristic function, 273, 317

��;k;m(x): special case of G-function, 200

	(a; c;x): conuent hypergeometric function
of Tricomi, 206

p	q(z): Wright's generalized hypergeometric
function, 65

 (z): psi function, 6

 �;�;�(z): function, 354

p	q: Wright transform, 246

k � kr: norm on Lr(R+), 72

k � k�;r: norm on L�;r, 71

k � k�;1: norm on L�;1, 75

(k � f)(x): Mellin convolution, 161

�
�(k; ai); �i

�
1;p
: parameter sequence, 41

�
�(k; bj); �j

�
1;q
: parameter sequence, 41

[X;Y ]: collection of bounded linear opera-
tors, 74

[X]: collection of bounded linear operators,
74

A0: coe�cient of H-function expansion, 13

A�0: coe�cient of H-function expansion, 22

a�: parameter for G-function, 166

a�: parameter for H-function, 2

a�1: parameter for G-function, 166

a�1: parameter for H-function, 2

a�2: parameter for G-function, 166

a�2: parameter for H-function, 2

aik: pole of �(1� ai � �is), 1, 8

(a)k: Pochhammer symbol, 42

A: class, 73

bjl: pole of �(bj + �js), 1, 7

b�;1: Hankel{Cli�ord transform, 285

b�;2: Hankel{Cli�ord transform, 285

C1: coe�cient of H-function expansion, 17

C2: coe�cient of H-function expansion, 17

385
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C�: elementary operator, 73

C�
k (x): Gegenbauer polynomial, 259

C�1 : coe�cient of H-function expansion, 24

C�2 : coe�cient of H-function expansion, 24

c�: parameter for H-function, 2, 41

c0: coe�cient of H-function expansion, 12,
17

c�0: coe�cient of H-function expansion, 21,
24

C : �eld of complex numbers, 1

D1: coe�cient of H-function expansion, 17

D2: coe�cient of H-function expansion, 17

D�

1: coe�cient of H-function expansion, 24

D�

2: coe�cient of H-function expansion, 24

D�
0+: Riemann{Liouville fractional derivative,

52

D�
�
: Riemann{Liouville fractional derivative,
52

d0: coe�cient of H-function expansion, 12,
17

d�0: coe�cient of H-function expansion, 21,
24

D(z): parabolic cylinder function, 216

D : D -transform, 216

D;�;�: modi�ed D -transform, 218

E(z): auxilary function ofH-function expan-
sion, 12

E�(z): auxilary function of H-function ex-
pansion, 21

E(a1; � � � ; ap : b1; � � � ; bq : z): MacRobert E-
function, 64

EG : exceptional set for G, 166

EH : exceptional set for H, 86

E�;�(z): Mittag-Le�er function, 65

1F0(a; z): hypergeometric function, 63

1F1(a; c; z): conuent hypergeometric func-
tion of Kummer, 63

2F1(a; b; c; z): Gauss hypergeometric function,
62, 63

pFq(a1; � � � ; ap; b1; � � � ; bq; z): general hyperge-
ometric function, 62, 64

F3(a; a0; b; b0; c;x; y): Appell function, 69

1F
k
1: 1F 1-transform, 219

1F
�;�
1 : modi�ed 1F 1-transform, 221

1F
�
1 : generalization of modi�ed

1F 1-transform, 255

1F 2: 1F 2-transform, 223

1F
�;�
2 : modi�ed 1F 2-transform, 225

2F 1: 2F 1-transform, 227

2F
�

1: 2F 1-transform, 227

2F
�;�
1 : modi�ed 2F 1-transform, 230

2F
�;�;�
1 : modi�ed 2F 1-transform, 230

2F
1
1: modi�ed 2F 1-transform, 233

2F
2
1: modi�ed 2F 1-transform, 233

2F
1;�;�
1 : generalization of modi�ed

2F 1-transform, 236

2F
2;�;�
1 : generalization of modi�ed

2F 1-transform, 236

2F
�
1 : generalization of modi�ed

2F 1-transform, 255

pF p: pF p-transform, 241

pF p�1: pF p�1-transform, 241

pF p+1: pF p+1-transform, 241

pF q: pF q-transform, 240

F�0;�1;�2
: Hankel type transform, 346

Fr;�: McBride space, 161

F
0

r;�: McBride space, 163

Fr;�;a� : space, 162

F: Fourier transform, 73

Fc: Fourier cosine transform, 263

Fs: Fourier sine transform, 263

F(m)
c : transform relating to Fc, 275

F(m)
s : transform relating to Fs, 275

Gm;n
p;q (z): Meijer G-function, 62

ga(t): function, 82, 96, 124

g�;x(t): function, 265, 277, 323

gm;x(t): function, 319

G: G-transform, 71, 165

G
1: modi�ed G-transform, 173

G
2: modi�ed G-transform, 173

G�;�: modi�ed G-transform, 173

G
1
�;�: modi�ed G-transform, 173

G
2
�;�: modi�ed G-transform, 173

eG: generalized G-transform, 200

G0+: modi�cation of G-transform, 201

G�: modi�cation of G-transform, 202

G0;0: modi�cation of G-transform, 201

G1;0: modi�cation of G-transform, 201
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G�;��: modi�cation of G-transform, 201

G�;0+: modi�cation of G-transform, 202

G�;�: modi�cation of G-transform, 202

G
1
�: modi�ed G-transform, 202

G
2
�: modi�ed G-transform, 202

G
�
k: Gegenbauer transform, 259

G : modi�ed Meijer G-transform, 200

G
m;n
p;q (s): function G, 165

Hi: coe�cient of H-function expansion, 9

H�

j : coe�cient of H-function expansion, 8

Hikj: coe�cient of H-function expansion, 8

H�

jli: coe�cient of H-function expansion, 7

Hm;n
p;q (z): H-function, 1

H
n;q
q+p;n+m(x): G-function as unsymmetrical

Fourier kernel, 198

H
m;p
p+q;m+n(x): H-function as unsymmetrical

Fourier kernel, 126

H
n;q
q+p;n+m(x): H-function as unsymmetrical

Fourier kernel, 126

H
q;p
2p;2q(x): H-function as symmetrical

Fourier kernel, 26

hi: coe�cient of H-function expansion, 10

hik: coe�cient of H-function expansion, 6

h�j : coe�cient of H-function expansion, 19

h�jl: coe�cient of H-function expansion, 6

h1(s): function, 14, 15

ha(t): function, 84, 96

h�;x(t): function, 265, 270, 279, 311, 317, 319

h�(t): function, 296

H: H-transform, 71

H
1: modi�edH-transform, 133

H
2: modi�edH-transform, 133

H�;�: modi�edH-transform, 133

H
1
�;�: modi�edH-transform, 133

H
2
�;�: modi�edH-transform, 133

H
�
�: generalized H-transform, 127

H+: even Hilbert transform, 272

H�: odd Hilbert transform, 272

H!: modi�cation of H-transform, 91

H�;c: modi�cation of H-transform, 129

HU;0+: modi�cation of H-transform, 160

HU;�: modi�cation of H-transform, 160

H
1
0;�: modi�cation of H-transform, 164

H
2
0;0: modi�cation of H-transform, 164

cH0+: modi�cation of H-transform, 161

cH�: modi�cation of H-transform, 161

H�(z): Struve function, 295

H�: modi�ed Hankel{Cli�ord transform, 348

H
;0;�
�;�0;� : Watson{Wright transform, 355

H�: Hankel transform, 48, 263

Hk;�: generalized Hankel transform, 51, 74

H�;l: extended Hankel transform, 276

H�;�; : product of Hankel transforms, 345

H�;�;$;k;�: Hankel type transform, 280

H� : Struve transform, 299

H�;�: modi�ed Struve transform, 350

H�[f(at);x]: special case of Hankel type trans-
form, 344

H�;�: special case of Hankel type transform,
344

H
m;n
p;q (s): function H, 1

h�;1: Hankel{Schwartz transform, 285

h�;2: Hankel{Schwartz transform, 285

I�0+: Riemann{Liouville fractional integral,
51

I�
�
: Riemann{Liouville fractional integral, 51

I�0+;�;� : Erd�elyi{Kober type fractional inte-
gral, 74

I�
�;�;� : Erd�elyi{Kober type fractional inte-

gral, 74

I�;�: Erd�elyi{Kober operator, 267

I
�;�;�
0+ : Saigo operator, 258

I
�;�;�
�

: Saigo operator, 258

I�(z): modi�ed Bessel function of �rst kind,
307

I
;�
�;m: Kiryakova operator, 162

I+�;�: Kober fractional operator, 252

1I
c
0+(a; b): Love operator, 256

1I
c
�
(a; b): Love operator, 256

2I
c
0+(a; b): Love operator, 256

2I
c
�
(a; b): Love operator, 257

I
m;n
p;q : Kiryakova operators, 163, 202

J�(z): Bessel function of �rst kind, 48, 64

J�;�(z): Bessel{Maitland function, 65, 337

J
�
�;�(z): generalized Bessel{Maitland function,

65, 337

J� (z): special case of generalized Bessel{Maitland
function, 337
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J�;�(z): Lommel function, 325

J�;l(z): Bessel's cut function, 276

J�;�(z): generalized Bessel{Maitland func-
tion, 337

Ja;b;c(x): kernel function for Titchmarsh trans-
form, 353

Ja;b;c;!(z): kernel function for generalized Hardy{
Titchmarsh transform, 325

J
;�
� : modi�ed Bessel{Maitland transform,

354

J
;�: Bessel{Maitland transform, 354

J
�;�
� : integral transform, 355

Ja;b;c: Titchmarsh transform, 353

J
;� : particular case of Lommel{Maitland trans-

form, 354

J�;l: extended Hankel transform, 325

J�;� : modi�ed Hardy transform, 325

J

� : particular case of Lommel{Maitland trans-

form, 337

J

�;� : Lommel{Maitland transform, 337

Ja;b;c;!: generalized Hardy{Titchmarsh trans-
form, 325

Jk(�; �): Lowndes operator, 347

K�(z): modi�ed Bessel function of third kind
(Macdonald function), 64, 66, 307

K
m;p
p+q;m+n(x): G-function as unsymmetrical

Fourier kernel, 197{198

K�

�;�: Kober fractional operator, 252

K
;�
�;m: Kiryakova operator, 162

K: general integral transform, 82, 107

K
m;n
p;q : Kiryakova operators, 163, 202

K�: Meijer type transform, 352

K
�
�: Bessel type transform, 313

K� : Meijer K�-transform, 307

K�;� : modi�ed Meijer K�-transform, 351

K�;�;!: modi�ed Meijer K�-transform, 351

Lr(R+): Lebesgue space, 72

Lqp(0; d): weighted Lebesgue space, 257

Lrp(e;1): weighted Lebesgue space, 257

Ln;�;�m : modi�cation of Erd�elyi{Kober type
operator, 251

L�: axisymmetric di�erential operator, 163

L
(�)
�;�: modi�ed Bessel type transform, 321

L
(m)
� : Bessel type transform, 313

L: Laplace transform, 43, 206

L
�1: Laplace inversion, 43, 255

Lk;�: generalized Laplace transform, 47, 74

L
�

;k: Laplace type transform, 203

L
�

;k;�;�: Laplace type transform, 204

L�1: Mellin{Barnes contour, 2

L+1: Mellin{Barnes contour, 2

Li1: Mellin{Barnes contour, 2

L�;r: Rooney space, 71

L�;1: Rooney space, 75

M� : elementary operator, 76

Mk;m: Meijer transform, 206

M: Mellin transform, 43, 72

(Mf)(� + it): Mellin transform of f 2 L�;r,
73

M�1: Mellin inversion, 43

Na: elementary operator, 281

N
�
m: integral transform, 162

p.v.: Cauchy principal value, 273

q�;x(t): function, 306

R: elementary operator, 76

r�;x(t): function, 296

Rk;�;�: integral transform, 347

R: �eld of real numbers, 2

R+: half real line, 1

R: generalized fractional integral, 129

Rk(�; �): Lowndes operator, 347

R(�; �;m): Erd�elyi{Kober type fractional in-
tegral, 129

s�;�(z): Lommel function, 64

S
�;�
q;k;m: generalized Whittaker transform, 254

S: generalized fractional integral, 129

S�: modi�ed Struve transform, 350

S�;�;�: generalized Hankel transform, 346

S(a;b;y�;�;�): generalized Hankel transform, 348

S: Stieltjes transform, 239

S�: generalized Stieltjes transform, 260

S�;�;�: generalized Stieltjes transform, 238
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T : general integral transform, 107

Un: sequence of di�erential operators, 252

V k;m: Varma transform, 208

V
1
k;m: modi�ed Varma transform, 211

V
2
k;m: modi�ed Varma transform, 211

W�: elementary operator, 76

W�;�(z): Whittaker function, 64, 206

w�;�0(x): Watson function, 355

w
;0

�;�0;�(x): generalized Watson function, 355

W �;�0 : Watson transform, 355

W
k
�; : generalized Whittaker transform, 212

W
k
�;;�;�: modi�cation of generalized Whit-
taker transform, 214

Y�(z): Bessel function of second kind (Neu-
mann function), 64, 289

Y�: Y-transform, 289

Y�;�: modi�edY-transform, 350

Z

� (z): generalized Macdonald function, 66,

313
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