

Xamarin Mobile Application
Development for Android

Learn to develop full featured Android apps using
your existing C# skills with Xamarin.Android

Mark Reynolds

BIRMINGHAM - MUMBAI

[FM-2]

Xamarin Mobile Application Development for Android

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1080114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-916-9

www.packtpub.com

Cover Image by Gagandeep Sharma (er.gagansharma@gmail.com)

[FM-3]

Credits

Author
Mark Reynolds

Reviewers
Carlo Wahlstedt

Edward Wilde

Acquisition Editors
Meeta Rajani

Martin Bell

Commissioning Editor
Shaon Basu

Technical Editors
Novina Kewalramani

Menza Mathew

Pratik More

Copy Editors
Dipti Kapadia

Kirti Pai

Project Coordinator
Sherin Padayatty

Proofreader
Amy Johnson

Indexer
Mehreen Deshmukh

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

[FM-4]

About the Author

Mark Reynolds is a software enthusiast who has worked in the industry for nearly
30 years. He began his career with Electronic Data Systems, building and supporting
systems for the manufacturing sector. Over the years, he has worked with companies
ranging in size from startups to Fortune 500 across a diverse set of industries including
manufacturing, entertainment, financial services, government, and telecom. In 1993,
Mark started a consulting practice focused on delivering training and mentoring
services in the areas of software architecture, design, and implementation. With the
rise of mobile computing, Mark has returned to what he loves the most, designing,
developing, and delivering software solutions, now focusing in the mobile computing
space. He continues his private consulting practice based in Allen, TX, where he also
resides with his wife and son.

Mark works as an independent consultant through his own private consulting
practice (RSEG) based in Allen, TX, a community located north of Dallas.
You can find out more about the services he offers from his website, rseg.net.

I would like to say thank you to my wonderful, God-given wife for
all her encouragement and support, to my wonderful, God-given
son for his creative inspiration, to all my customers who fund my
interest in mobile computing, and to all the supporting staff and
reviewers associated with Packt Publishing—they've had a big
impact on the content and usability of this book.

[FM-5]

About the Reviewers

Carlo Wahlstedt, a husband and a follower of Jesus, is a lover of technology.
Since graduating from Berea College, he's held jobs dealing with hardware testing,
and software designing. He's been focusing on software in some capacity since 2006
but feels that to be a good software engineer, you need to understand many aspects of
hardware as well. His software experience ranges across many technologies, but he has
the most experience on the Microsoft stack. He's been a self-proclaimed geek since 1990
and an Android lover since 2007.

Edward Wilde started his programming adventure with the BBC Micro Model
B at the tender age of seven. He entered the software industry commercially in
1997, when he founded a web consultancy with his brother, Andrew. He has a keen
interest in all the aspects of software development, ranging from web development
to low latency, multithreaded, financial applications.

[FM-6]

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads
related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt''s online
digital book library. Here, you can access, read and search across Packt''s entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to
access PacktLib today and view nine entirely free books. Simply use your login
credentials for immediate access.

Table of Contents
Preface 1
Chapter 1: The Anatomy of an Android App 7

The Android platform 7
Linux 8
Native libraries 8
The Android runtime 9
The Application Framework 9
Applications 9

The Android packages (.apk) 10
The application manifest 10

Versions of Android 10
The Android applications 11

Activities 11
The life cycle of an activity 12
The states of an activity 12
The events of an activity 13

Services 14
Content providers 14
Broadcast receivers 14
Views and ViewGroups 14

Declarative versus programmatic View creation 15
User interface widgets 15
Common layouts 15
Adapter layouts 16

XML layout files 17
Element and attribute names 17
IDs 17
Using XML layouts from activities 18

Intents 18

Table of Contents

[ii]

Resources 18
The R.java file 19

Summary 19
Chapter 2: Xamarin.Android Architecture 21

Why Xamarin.Android? 21
What is Mono? 23
Mono and Dalvik side by side 23

The Java Native Interface 24
Peer objects 24

Xamarin.Android application packaging 25
The Android bindings design 25

Design principles 25
C# properties 25
Delegates 26
Constants to enumerations 26

Development environments 27
Xamarin Studio 27
Xamarin for Visual Studio 28
IDE comparison 29
Compatibility 29

Summary 29
Chapter 3: Creating the Points of Interest App 31

The sample app 31
Installing Xamarin.Android 32
Creating the app 34

Xamarin Studio IDE 35
The Project Options View 36

Setting the target framework 36
Setting the app icon and package name 37

The initial activity 38
Running and debugging the app 38
Creating and customizing emulators 41
Using the x86 emulator 43
Debugging with an Android device 44

Enabling USB debugging 44
Installing a USB driver 44
Running apps on a device 44

Behind the scenes 45
Peer object 45
The AndroidManifest.xml file 46

Summary 46

Table of Contents

[iii]

Chapter 4: Creating a Data Storage Mechanism 47
Creating the Point of Interest entity class 48
Creating the POI storage interface 50
Implementing the POI storage services 51

Using Xamarin.Android NUnitLite 52
Setting up for tests 53
Creating the test methods 54
Executing the tests 57

Json.NET 59
Downloading Json.NET 59

Implementing and testing the POIJsonService methods 60
Implementing caching 61
Implementing SavePOI() 62
Implementing GetPOI() 64
Implementing DeletePOI() 64

Summary 64
Chapter 5: Adding a List View 65

Creating the POI ListView layout 65
Adding a RelativeLayout view group 70
Adding an ImageView widget 71
Adding a LinearLayout widget 71
Adding the name and address TextView classes 72
Adding the Distance TextView 73

Populating the ListView item 73
Shared instance of IPOIDataService 74

Permissions 75
Creating POIListViewAdapter 76
Implementing a constructor 76
Implementing Count { get; } 76
Implementing GetItemId() 77
Implementing the index getter method 77
Implementing GetView() 77

Reusing row Views 78
Populating row Views 78

Hooking up POIListViewAdapter 79
Adding actions to ActionBar 79

Defining the menu .xml file 80
Setting menus in OnCreateOptionsMenu 81
Handling selection in OnOptionsItemSelected() 81

Configuring an SD card for the emulator 82
Running POIApp 82
Android Device Monitor 82

Table of Contents

[iv]

Handling row clicks 84
Summary 85

Chapter 6: Adding a Detail View 87
Creating the POIDetail layout 87

Working with InputType 90
Creating POIDetailActivity 91
Binding variables to controls 91

Adding navigation to POIDetailActivity 92
Navigating on new action 92
Navigating on POI Click 92
Receiving data in POIDetailActivity 93
Populating user interface widgets 94

Adding Save and Delete actions 94
Disabling the Delete action 95
Creating SavePOI() 96
Creating DeletePOI() 97

Adding validation 97
Using the EditText.Error property 98

Adding a Delete confirmation prompt 99
Toasting success 101
Refreshing POIListActivity 101
Wrapping up 102
Summary 102

Chapter 7: Making POIApp Location Aware 103
Location services 103

Setting app permissions 104
Configuring the emulator 106
Obtaining an instance of LocationManager 107
Requesting location change notifications 107

Implementing ILocationListener 108
Adding location services to POIApp 108

Adding location services to POIListActivity 109
Adding location services to POIDetailActivity 111
Getting an address for a location 114
Keeping the user informed 116
Dealing with configuration changes 116

Adding map integration 119
Navigating to the map app 120

Checking for registered map apps 121
Summary 122

Table of Contents

[v]

Chapter 8: Adding Camera App Integration 123
Picking an integration approach 123

Permissions and Features 124
Configuring the Emulator 125
Extending the data service 125

Defining GetImageFilename() 125
Implementing GetImageFilename() 126
Updating DeletePOI() 126

Capturing an image from POIDetailActivity 126
Adding UI elements 127
Creating the intent 128
Checking for registered camera apps 128
Providing additional information with the intent 129

Providing a filename and location 129
Providing size limit 129

Starting the intent 130
Completing the NewPhotoClicked() method 130

Processing the results of the intent 131
Displaying existing images in POIDetailActivity 133
Displaying POI images in POIListActivity 133
Summary 134

Chapter 9: Deploying Your App 135
App distribution options 135
Preparing for a release APK 137

Disabling debug 137
AndroidManifest.xml 137
AssemblyInfo.cs 138

Linking 138
Linking options 138
Side effects of linking 139

Selecting supported ABIs 140
Publishing a signed APK 141

Keystores 141
Publishing from Xamarin.Android 141
Republishing 144

Summary 144
Index 145

Preface
In the fall of 2013, when Packt Publishing first approached me about writing this
book, it was a no brainer; of course I would. Why? Why not? A book about mobile
development using Xamarin.Android; I'm in! I have to admit, I didn't start here;
it was a journey for me.

I've always been keen on cross-platform development environments. I'm not
really fond of learning new ways to do the same thing using a different syntax unless
there is significant productivity gains associated with it. Ten years ago, the foregone
conclusion for most was that cross-platform development belonged to Java; I was on
board with that. Had anyone told me that in 2013, with the rise of mobile computing,
I would be doing all my cross-platform mobile development with C#, I would have
laughed. So, how did I get here?

It started in 2010. I was struggling with Objective-C, trying to get an iOS prototype
up and running. One day, I described the prototype to a colleague, Ed Tighe. Ed
suggested that I look into MonoTouch. As I recall, the conversation went something
as follows:

Me: MonoTouch? What is that?

Ed: A Mono-based development environment for iOS.

Me: Mono… you mean Mono; as in the open source cross-platform C# thing?

Ed: That's the one.

Me: Is that still around? Who would trust Mono with a mission critical solution?
What's the likelihood they will be around in four to five years?

Preface

[2]

Sometimes Ed says funny things; I chalked this one up to that. I was completely
dismissive of the idea. It wasn't that I didn't respect what the Mono project and
contributors had achieved; it was more about the overriding belief that at some point
Microsoft would decide Mono did not need to exist and would work against its
continued progress. I also had serious reservations about whether support and long
term commercial viability was there. However, the one thing Mono had in its favor
was a mass of C# developers that could adopt their platform with minimal investment.

In early 2012, I was approached by Andy LaBrunda, VP of IT, for a telecom-based
on Guam, about developing mobile apps for prepaid customers. I knew they were
a .NET shop and were looking for both iOS and Android apps with the possibility
of a Windows Phone app in the future. I also knew they had a relatively small set of
developers, who would be tasked with supporting the apps, and they already knew
C#, .NET, and rich client development using WPF.

With all this in mind, it only made sense to consider MonoTouch and Mono for
Android. The GTA staff would not have to learn Objective-C and Java, and we
would achieve some level of reuse between the two apps, so we framed up a small
proof of concept effort, the goal being to build two apps with only a few screens,
hook the apps up to RESTful services, and share some code between the apps. As
always, when I get to play with new technology, I am excited so I approached this
effort with great optimism. I wasn't disappointed; the Xamarin products delivered
on everything we set out to prove. I was sold and have never looked back. We built
out the two prepaid apps and moved on to build out two postpaid apps.

Since then, I have spent significant time and energy building out my Xamarin
practice, including writing this book. I've also taken what we learned at GTA and
I'm now working with a company in the Dallas area in the entertainment industry
building customer facing apps. With the recent strengthening of the relationship
between Xamarin and Microsoft, I believe that Mono and the Xamarin product line
have a bright future.

The idea behind this book was to bring the base set of knowledge required to build
Android apps with Xamarin.Android together in a convenient, concise, productive
format that could be used by those looking to get started with the product. I have
always been a fan of learning experiences structured around building solutions, or
examples, incrementally throughout the book so that the approach
we settled on for this book. We begin with two chapters of general Android and
Xamarin architecture and then step through building a Point of Interest app that
demonstrates the basics of building Android apps, including some of the more
interesting features such as integration with location services, the map app, and the
camera app. Our goal has been to provide you with a productive learning experience;
I hope we have achieved that and I thank you for taking the time to read it.

Oh! And one more thing on this topic; Ed, you were right.

Preface

[3]

What this book covers
Chapter 1, The Anatomy of an Android App, provides an overview of the Android
platform and what Android apps are composed of.

Chapter 2, Xamarin.Android Architecture, describes the use of Mono, describes how
Mono and the Dalvik runtime work together, and the Android platform coexist
and allow developers to build Android apps using C#.

Chapter 3, Creating the Points of Interest App, walks the reader through creating a new
app and running the app within the Android emulator.

Chapter 4, Creating a Data Storage Mechanism, presents a number of options for
storing data on an Android device and steps the reader through creating a
JSON-based solution.

Chapter 5, Adding a List View, describes Android's AdapterView architecture
and steps the reader through using ListView and creating a custom adapter.

Chapter 6, Adding a Detail View, walks the reader through creating a detail view to
view a point of interest, adding navigation from the list view, and adding actions
for saving and deleting information.

Chapter 7, Making POIApp Location Aware, presents the various options that developers
have to make their apps location aware and walks the reader through adding logic to
determine a device's location and the address of a location, and displaying a location
within the map app.

Chapter 8, Adding Camera App Integration, presents the various options that developers
have to add integration with the device camera and walks the reader through adding
integration with camera apps on device.

Chapter 9, Deploying Your App, discusses the various options for distributing Android
apps and walks the reader through preparing a Xamarin.Android app
for distribution.

What you need for this book
All of the examples in this book can be completed using a 30-day trial version
of Xamarin.Android. The examples were developed using Windows 7, Xamarin
Studio 4.0.13, and Xamarin.Android 4.8.3 (Trial Edition). Any later versions should
work fine as long as they are valid Xamarin configurations. Check the Xamarin
website for specifics.

Preface

[4]

Xamarin.Android can also be used in other configurations. Xamarin Studio can also
be used in OS X. Visual Studio 2012 and the Xamarin plugin can be used instead of
Xamarin Studio. Using a different configuration from what was used in developing
the example may result in slight variations in the screens or steps described in
the book.

To run the example app on an actual device, you will need a device running
Android 4.1 or advanced.

Who this book is for
This book is great for C# developers that have a desire to develop Android apps
using their existing skill sets. It's assumed that you have a good working knowledge
of C#, .NET, and object-oriented software development. Familiarity with rich client
technologies such as WPF or Silverlight is also helpful but not required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text are shown as follows: "An Android package is created as the
result of compiling an Android app and is an archive file with a .apk extension."

A block of code is set as follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:text="Enter Search Criteria"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/searchCriteriaTextView" />
 <Button
 android:text="Search"
 android:layout_width="fill_parent"

Preface

[5]

 android:layout_height="wrap_content"
 android:id="@+id/searchButton" />
</LinearLayout>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click
through the first two welcome pages and the agreement page until you come to the
Product selection page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the errata submission
form link, and entering the details of your errata. Once your errata are verified,
your submission will be accepted and the errata will be uploaded to our website,
or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

The Anatomy of an
Android App

While most of this book will be focused on learning how to develop Android apps
using C# and Xamarin.Android, we will start with a more general discussion of
Android. What is Android? How does Android facilitate the task of creating great
mobile apps? The Anatomy of an Android App will help to answer these questions by
providing a base-level understanding of the following topics:

• The Android platform
• Android applications (Building Blocks)

The Android platform
The Android platform has been one of the most successful platforms developed in
recent years and provides developers with many services and features required to
create rich mobile applications. The following diagram provides a high-level view
of how the Android platform is organized, and the subsequent sections provide a
brief description of each major component:

The Anatomy of an Android App

[8]

Contacts Phone E-mail Browser
Third-Party

App

Apps

Activity
Manager

Window
Manager

Content
Providers

View
System

Notification
Manager

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

...

Application Framework

Surface
Manager

Media
Framework Core Libraries

Dalvik VMFreeType Webkit ...

SQLite

Native Libraries Android Runtime

Display
Driver

Camera
Driver

Bluetooth
Driver

Flash
Driver

...

Linux Kernel

Linux
Android is a Linux-based operating system designed primarily for mobile devices
such as smartphones and tablets. The latest versions of Android are based on Linux
kernel Version 3.x (Version 2.6 for versions prior to Android 4.0).

Native libraries
Android is delivered with a set of native libraries written in C/C++, which provide
various types of services. These libraries predominantly come from the open
source community.

Chapter 1

[9]

The Android runtime
Android apps run within the Dalvik Virtual Machine (Dalvik VM), which is
similar to a Java VM but has been optimized for devices with limited memory and
processing capacity.

Android apps are initially compiled to the Java byte code using the Java compiler,
but they have an additional compilation step that transforms the Java byte code to the
Dalvik byte code, suitable to run within the Dalvik VM.

*.dex files
Dalvik byte code

Java
Source

Java
Compiler

*.class files
Java byte code

Dalvik Compiler
(dex)

Dalvik is delivered with the Android core libraries. These libraries do not align with
a specific Java platform (JSE, JEE, or JME) but rather act as a hybrid platform most
closely aligned with JSE, minus the user interface-focused components AWT and
Swing. The Android Application Framework (AAF) provides an alternate means
of creating user interfaces.

The Application Framework
The Application Framework is the part of the Android platform, most familiar
to developers. It is delivered as a set of Java libraries and allows you to build user
interfaces, interact with device capabilities such as the camera or location services,
load and work with various types of application resources, and perform many
more useful tasks.

Applications
At the top of the stack sits the humble application, the component that actually
delivers value to the user. Android comes with a set of applications that provide
base functionality such as managing contacts, using the phone, checking email,
and browsing the Web. The key to Android's success is the vast array of third-party
applications that can be installed, which allow users to do things such as stream live
sports' events, edit a movie captured on the phone, interact with friends through
their favorite social media site, and much more.

The Anatomy of an Android App

[10]

The Android packages (.apk)
Applications are delivered for installation in an Android package format. An Android
package is created as the result of compiling an Android app and is an archive file with
a .apk extension. An Android package contains all of the code and the supporting files
required to run a single application including the following:

• Dalvik executables (*.dex files)
• Resources
• Native libraries
• The application manifest

Android packages can be installed directly via e-mails, URLs, or memory cards. They
can also be installed indirectly through app stores such as Google Play.

The application manifest
All Android applications have a manifest file (AndroidManifest.xml) that tells the
Android platform everything it needs to know to successfully run the application,
including the following:

• Minimum API Level required by the application
• Hardware/software features used or required by the application
• Permissions required by the application
• The initial screen (Android activity) to start with when the application

is launched
• Libraries, other than AAF, required by the application
• And so on

Versions of Android
Identifying the version of the Android platform can be somewhat confusing; there is
a version number, API level, and nickname, and these are sometimes
used interchangeably.

The version number represents a release of the platform. Sometimes, a new release
is created to deliver new capabilities, while sometimes it is created to fix bugs.

The API level represents a set of capabilities. As the API level increases, new
capabilities are delivered to the developer.

Chapter 1

[11]

The following table lists the versions of the platform in the reverse chronological order:

Platform version API level Nickname Released
4.4 19 KitKat 10/31/2013
4.3 18 Jelly Bean 07/24/2013
4.2, 4.22 17 11/13/2012
4.1, 4.11 16 07/09/2012
4.0.3, 4.0.4 15 Ice Cream Sandwich 12/16/2011
4.0, 4.01, 4.02 14 10/19/2011
3.2 13 Honeycomb 07/15/2011
3.1.x 12 05/10/2011
3.0.x 11 02/22/2011
2.3.3, 2.3.4 10 Gingerbread 02/02/2011
2.3, 2.3.1, 2.3.2 9 12/06/2010
2.2.x 8 Froyo 05/20/2010
2.1.x 7 Éclair 01/12/2010
2.0.1 6 12/03/2009
2.0 5 10/26/2009
1.6 4 Donut 09/15/2009

The Android applications
Now, let's spend some time discussing applications—those things we write that
provide value to the user. Android applications are made up of various types of
classes and resources. The following sections describe the different types
of classes or building blocks that an application can be composed of.

Activities
One of the most fundamental parts of an Android application is an activity.
An activity provides a single function that a user can perform with an application
such as list contacts, enter new contact, and display location(s) on a map. A single
application is composed of many activities.

A user interacts with an activity through one or more Views, which are described
later in this chapter. If you are familiar with the Model-View-Controller pattern,
you would have noticed that activities fulfill the role of the Controller.

The Anatomy of an Android App

[12]

The life cycle of an activity
Activities have a well-defined life cycle that can be described in terms of states,
transitions, and events. The following diagram provides a graphical view of the life
cycle of an activity:

onResume()

1. onCreate()
2. onStart()
3. onResume()

Running Paused Stopped

destroyed

onDestroy ()

onStop()
onPause()

prior to
launch

1. onRestart()
2. onStart()
3. onResume()

The states of an activity
The states depicted in the previous diagram are derived, meaning there is no
"State" variable on an activity that explicitly identifies one of these states, but the
state is implied and useful for discussion. The following table describes the behavior
of an activity based on its state:

State Description
Running The activity has been created and initialized, and is visible and

available to the user for interaction.
Paused The activity view is being partially blocked by another activity.
Stopped The activity is no longer visible to the user, The activity has not been

destroyed, and state is retained but it is placed in the background
and no processing is allowed.

Chapter 1

[13]

The events of an activity
During the transition between states, a series of events are called on the activity.
These events provide developers a platform for various types of processing.

Event Called Typical processing
onCreate When an activity is created,

generally from a user choosing
to start the app

• Create Views
• Initialize variables
• Allocate long-lived

resources
onStart After onCreate or onRestart

and right before an activity becomes
visible to the user

• Allocate resources

onResume Before an activity is ready to start
interacting with a user

• Initialize UI widgets
for viewing

• Starting animations or
videos

• Start listening for GPS
updates

onPause When an activity's view has become
partially blocked and is not the focus
of input

• Commit unsaved
updates

• Pause animations or
videos

• Stop listening for GPS
updates

onStop When an activity's view is no longer
visible to the user

• Release resources

onRestart An activity is being placed back in
the foreground, generally because
the user has selected the back button

• Allocate resources

onDestroy Before the activity is destroyed • Cleanup resources
that may have been
allocated in onCreate

The Anatomy of an Android App

[14]

Something that is not obvious to developers new to Android is the way the
framework deals with device orientation changes. By default, when the orientation
of a device is changed from portrait to landscape, Android destroys and recreates
existing activities to help ensure that the most appropriate layout is used. Unless
this behavior is planned for, it can be very disruptive to processing. If needed, this
behavior can be overridden and activities can be retained. We will discuss special
considerations in dealing with state and other processing concerns related to this
topic in Chapter 7, Making POIApp Location Aware.

Services
Services are components that run in the background to perform long-running
operations with no direct user interface. Services may load data into a cache,
play music, or perform some other type of processing, while a user interacts
with other activities uninterrupted.

Content providers
Content providers manage access to a central repository of data such as contacts.
A content provider is a part of an application, which usually provides a user
interface to manage its data. A standard interface is also provided, which allows
other applications to access its repository.

Broadcast receivers
Broadcast receivers are components that perform some type of processing in
response to system-wide broadcasts. Broadcasts are generally initiated by the
system for events such as low battery, taking a picture, or turning on Bluetooth.
Applications may also choose to send broadcasts; a content provider might send
a broadcast when data, such as a contact, has been updated. While broadcast
receivers do not have a user interface, they may indirectly cause updates to
a status.

Views and ViewGroups
Everything that you see in an Android app is a View; buttons, labels, text boxes,
and radio buttons are all examples of Views. Views are organized in a hierarchy
using various types of ViewGroups. A ViewGroup is a special kind of View
which is used to arrange (layout) other Views on the screen.

Chapter 1

[15]

Declarative versus programmatic View creation
Views and ViewGroups can be created using two different methods,
programmatically or declaratively. When using a programmatic approach,
a developer makes API calls to create and position each individual View in the
UI. When using a declarative approach, a developer creates XML layout files that
specify how Views should be arranged. The declarative method enjoys several
advantages stated as follows:

• Provides better separation of the visual design of an application from the
processing logic

• Allows multiple layouts to be created to support multiple devices or device
configurations with a single code base

• Development tools, such as Android Studio and the Android plugin for
Eclipse, allow you to view the user interface as you build it, without needing
to compile and execute your application after each change

While I prefer the declarative method for most things, I have found that, in practice,
some combination of programmatic and declarative methods are often required.

User interface widgets
Android provides a comprehensive set of user interface widgets that can be used
to build a rich user experience. All of these widgets are subtypes of View and can
be organized into sophisticated layouts using various types of ViewGroups. All of
the user interface widgets can be found in the android.widget package within the
Application Framework.

Common layouts
The Application Framework has a number of subclasses of ViewGroup, each of
which provides a unique and useful way of organizing content.

Relative LayoutLinear Layout Table Layout

The Anatomy of an Android App

[16]

The previous diagram depicts a few of the more common layouts, each of which can
be used for specific needs.

Layout Description Scenario
Linear layout Organizes its children into a

single horizontal or vertical row
and creates a scrollbar when
required.

Use when a widget positions
flow horizontally or vertically.

Relative layout Organizes child objects relative
to each other or to the parent.

Use when widget positions can
best be described in relationship
to another widget (to the left
of) or the boundary area of the
parent (right side, centered).

Table layout Organizes its children into rows
and columns.

Use when widget positions
would naturally fit into rows
and columns. Great when
multiple columns of entry and
labels are needed.

For complex layout scenarios, Android allows layouts to be nested. Deeply nested
layouts can impact performance and should be avoided if possible.

Adapter layouts
For layouts that are driven by a dynamic data source, the Application Framework
has a set of classes derived from AdapterView.

Adapter Adapter

List View Grid View

SourceSource

The previous diagram depicts two of the most common adapter layouts.

• List View: Organizes content from the data source into a scrolling
single column list

• Grid View: Organizes content from the data source into a grid of
columns and rows

Chapter 1

[17]

XML layout files
To create a UI using a declarative method, Android provides an XML vocabulary
with tags that define the various types of elements that can compose a View.
The concept behind Android XML layout files is very similar to the way HTML
tags are used to define web pages or Microsoft's XAML tags are used to define
WPF (Windows Presentation Foundation) user interfaces. The following example
shows a simple View using a linear layout and containing a search entry field and
search button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk
/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:text="Enter Search Criteria"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/searchCriteriaTextView" />
 <Button
 android:text="Search"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/searchButton" />
</LinearLayout>

Element and attribute names
Care has been taken to aligning the names for elements and attributes in the
XML vocabulary with class and method names from the Application Framework.
In the previous example, the element names LinearLayout, TextView, and Button
correspond to class names in the Application Framework. Likewise, in the Button
element, the android:text attribute corresponds to the setText()setter on the
Button class.

IDs
Each View can have a unique integer ID associated with it and can be used to
reference the View from within an application's code. In the XML file, the ID
is specified as a user friendly text name. For example, consider the following
line of code:

android:id="@+id/searchButton"

The Anatomy of an Android App

[18]

In this example, the @ operator tells the parser that it should treat the remainder of
the string as an ID resource; the + symbol tells the parser that this is a new resource
name that should be added to the resource file, R.java. The resource file defines
integer constants that can be used to reference resources.

Using XML layouts from activities
XML layouts can easily be loaded by an application at runtime. This task is
generally performed from within the onCreate() method of an activity using
the setContentView() method. For example, consider the following line of code:

setContentView(R.layout.main);

Intents
Intents are messages that can be sent to the various types of components in an
Android App in order to request some type of action to be performed. Intents may
be used to accomplish any of the following:

1. Start an activity with the option of receiving a result.
2. Start or stop a service.
3. Notify the component of conditions like low battery or time zone change.
4. Request an action from another app, such as request the map app to display

a location or request that the camera app take a picture and save it.

Resources
Creating an Android application involves more than simply writing code. A rich
mobile app requires things such as images, audio files, animations, menus, and style,
just to name a few. The Application Framework provides APIs that can be used to
load and utilize the various types of resources with your Android apps.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Chapter 1

[19]

The R.java file
Resources are generally referenced from within an application using an integer
constant that is automatically assigned when the resource is added to the project
and compiled. These constants are placed in a Java source file named R.java.
The following example shows the R.java class from a simple application:

public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int icon=0x7f020000;
 }
 public static final class id {
 public static final int myButton=0x7f050000;
 public static final int searchButton=0x7f050002;
 public static final int searchCriteriaTextView=0x7f050001;
 }
 public static final class layout {
 public static final int main=0x7f030000;
 public static final int search=0x7f030001;
 }
 public static final class string {
 public static final int app_name=0x7f040001;
 public static final int hello=0x7f040000;
 }
}

Summary
In this chapter, we have tried to provide a concise and adequate description of
the Android platform and the application's building blocks. In the next chapter,
we will turn our attention to Xamarin.Android and the facilities it provides to
allow for Android development with .NET and C#.

Xamarin.Android Architecture
Now that we have an understanding of the Android platform, let's talk about
Xamarin. In this chapter, we will look at the architecture of Xamarin.Android and
how it facilitates the development of Android apps using C# and .NET. This chapter
covers the following topics:

• The benefits and drawbacks of adopting Xamarin.Android
• What is Mono?
• Mono and Dalvik side by side (peer objects)
• Xamarin.Android binding libraries
• IDE choices

Xamarin is a company which provides commercial software development tools that
leverage the Mono open source project in order to allow you to develop applications
for Android, iOS, and OS X using C# and the .NET framework. The product that is
used to develop Android apps is Xamarin.Android.

Why Xamarin.Android?
Before we take a dive into the architecture of Xamarin.Android, let's first discuss
the question of why Xamarin.Android is our choice. Like any significant platform
decision, one size does not fit all, and there are a number of things that should be
considered. The following two lists identify some of the key benefits and drawbacks
of using Xamarin.Android.

Xamarin.Android Architecture

[22]

Benefits of using Xamarin.Android:

• Leverages existing C# and .NET skills
Developers invest a great deal of time and energy in mastering the many
features of the C# language and the effective use of the .NET framework.
Yes, Java and all OO languages have many similarities, but there is a real
cost associated with going from being proficient in C# and .NET to making
the same claim in Java. Individuals and groups that have made a significant
investment in C# and .NET and have a need to develop Android apps would
be well served to at least consider Xamarin.Android.

• Reuse in cross-platform development

While Xamarin.Android will not allow you to build a single app that can be
deployed to Android, iOS, and WP8, it does give you the capability to reuse
large portions of your code base across all of these platforms. In general, the
user interface code and the code that deals with the device capabilities tend
to be written for each platform, while things such as service client logic,
client side validation, data caching, and client side data storage can
potentially be reused, saving a significant amount of time.

Drawbacks of using Xamarin.Android:

• Licensing requirement
Xamarin.Android as well as Xamarin.iOS and Xamarin.OS X are all
commercial tools and must be licensed, so there is a tangible cost of
entry. Check the Xamarin's website for current pricing.

• Waiting for updates
There is some lag time between a new release of the Android platform
and the corresponding release of Xamarin.Android.

• Performance and memory management
In some cases, Xamarin.Android allocates both Java and C# objects to
achieve some of the "magic" of developing in C#/.NET on an Android
device. This has an impact on both the memory footprint and execution
performance. Unfortunately, at this time, I do not have any objective data
to quantify this impact. What I can report is that with two apps built and
another one underway, my Android customers have not reported any
concerns in this area.

Chapter 2

[23]

• Distribution size

There are a number of runtime libraries that must be distributed with a
Xamarin.Android application. We will discuss the actual size and strategies
for minimizing the distribution size in the last chapter.

While the list of drawbacks may seem extensive, in most cases, the impact of each
can be minimized. If you are a group or individual that places a high value on the
benefits, you should seriously consider Xamarin.Android.

What is Mono?
Mono is an open source, cross-platform implementation of a C# complier, and a
Common Language Runtime (CLR) that is binary compatible with Microsoft .NET.
The Mono CLR has been ported to many platforms, including Android, most Linux
distributions, BSD, OS X, Windows, Solaris, and even some game consoles such as
Wii and Xbox 360. In addition, Mono provides a static compiler that allows apps to
be compiled for environments such as iOS and PS3.

Mono and Dalvik side by side
As you can recall from Chapter 1, The Anatomy of an Android App, Android apps run
within the Dalvik VM, and we now know that Mono apps run within the Mono
CLR. So how does a Xamarin.Android app run? A simple answer is that it uses
both the Mono CLR and the Dalvik VM. The following diagram depicts how the
runtimes co-exist:

So, how do the Mono CLR and Dalvik VM work together in a Xamarin.Android app?
The magic is accomplished through a concept called peer objects and a framework
called the Java Native Interface (JNI).

Xamarin.Android Architecture

[24]

The Java Native Interface
Java Native Interface (JNI) is a framework that allows a non-Java code (such as C++
or C#) to call or be called by a Java code running inside a JVM. As you can see from
the preceding diagram, JNI is a critical component in the overall Xamarin.Android
architecture.

Peer objects
Peer objects are a pair of objects consisting of a managed object residing in the
Mono CLR and a Java object residing in the Dalvik VM, which work together
to perform the functions of a Xamarin.Android app.

Xamarin.Android is delivered with a set of assemblies called the Android binding
libraries. Classes in the Android binding libraries correspond to the Java classes
in the Android application framework, and the methods on the binding classes
act as wrappers to call corresponding methods on Java classes. Binding classes are
referred to as Managed Callable Wrappers (MCW). Anytime you create a C# class
that inherits from one of these binding classes, a corresponding Java proxy class
is generated at build time. The Java proxy contains a generated override for each
overridden method in your C# class and acts as a wrapper to call the corresponding
method on the C# class.

The creation of peer objects can be initiated from within the Dalvik VM by the
Android application framework or from within the Mono CLR by the code you
write in the overridden methods. A reference between the two peer objects is kept
by each instance of a MCW and can be accessed through the Android.Runtime.
IJavaObject.Handle property.

The following diagram depicts how peer objects collaborate:

Mono CLR

MyActivity

Inherited Methods (MCW)

SetContentView()

Virtual Overridden Methods

onCreate()

Virtual Overridden Methods

onCreate()

Inherited Methods

setContentView()

Dalvik VM

MyActivity

The Java proxy contains generated overrides which act
as a wrapper and call the managed peer object’s
corresponding override.

The managed object inherits from a class in a binding
library which contains wrapper methods that call the
corresponding Java object’s method.

Chapter 2

[25]

Xamarin.Android application packaging
In Chapter 1, The Anatomy of an Android App, we discussed Android packages (.apk
files). Xamarin.Android creates the .apk files but also includes the following
additional types of files:

• The C# code is stored as assemblies in the assembly folder of the archive
• The Mono runtime is packaged as native libraries

The Android bindings design
Core parts of Xamarin.Android are the bindings for the Android APIs. The Xamarin
team focused a great deal in developing a consistent approach to creating the
bindings so that a C# .NET developer would feel at home when using them. This has
resulted in a number of key benefits as follows:

• The Android API feels natural to a C# .NET developer and allows
the developer to explore the API using code completion and pop-up
documentation from within the IDE

• C# developers can leverage the vast array of Java/Android examples
and documentation that can be easily transformed for use with C#
and Xamarin.Android

Design principles
A complete set of design principles can be found on the Xamarin website;
we have included only a few for discussion:

• Allowing developers to subclass Java classes from the Android
application framework

• Exposing a strongly typed API
• Exposing JavaBean properties as C# properties
• Exposing Java event listeners as C# delegates

C# properties
The JavaBean properties, the getter and setter methods, are transformed to C#
properties, when appropriate. The following rules are used to determine when
properties should be created:

• Read/write properties are created for the getter and setter method pairs

Xamarin.Android Architecture

[26]

• Read-only properties are created for getters without corresponding
setter methods

• No write-only properties are created for the rare case that only a
setter exists

• Properties are not created when the type would be an array

As you may be aware, Java does not have a property construct but instead
follows a design pattern defined in the JavaBean specification. In order to
define a property, a developer simply creates the public getter and setter
methods with read-only properties that only provide a getter method.

Delegates
The Android APIs follow the Java pattern for defining and hooking up event
listeners. The C# developers are more familiar with using delegates and events,
so the Android bindings attempt to facilitate this using the following rules:

• When a listener callback has a void return, an event is generated based
on the EventHandler delegate

• When a listener callback does not have a void return, a specific delegate
is generated that supports the appropriate signature

These events or properties are only created under the following conditions:

• The Android event handling method has a prefix, for example,
setOnClickListener

• The Android event handler has a void return type
• The Android event handler has a single parameter

Constants to enumerations
It is common in the Android APIs to see methods that accept or return an int type
that must be mapped to a constant to determine its meaning. When possible, the
Xamarin team creates a .NET enumeration to replace the constants and adjusts the
appropriate methods to work with the enumerations. This provides a significant
productivity gain by being able to use IntelliSense from within the IDE as well as
enhancing the type safety of the methods.

Chapter 2

[27]

Development environments
Developers have two choices when it comes to IDEs, Xamarin Studio or Visual Studio.

Xamarin Studio
Xamarin Studio is a customized version of the MonoDevelop IDE, which can be used
to develop Android, iOS, and OS X applications. Xamarin Studio is available on both
OS X and Windows and has many advanced features as follows:

• Code completion
• Smart syntax highlighting
• Code navigation
• Code tooltips
• Integrated debugging for mobile apps running in emulators or on devices
• Source control integration with Git and subversion built-in

The following screenshot shows Xamarin Studio with the Android user interface
designer opened:

Xamarin.Android Architecture

[28]

Xamarin for Visual Studio
Xamarin for Visual Studio is an add-in that supports the development of the
Xamarin.Android apps. If you already have a license to Visual Studio and are
comfortable with the environment, the add-in will likely be more appealing than
Xamarin Studio because of the simplicity of adoption. The following screenshot
shows Visual Studio 2012 with the Android user interface designer opened:

Chapter 2

[29]

IDE comparison
The following table summarizes some of the pros and cons of adopting each IDE:

IDE Pros Cons
Xamarin Studio It comes with Xamarin.Android

No additional license is required
Runs on Windows and OS X

It does not support the use of
TFS for source control

Visual Studio Most of the C# developers are
already familiar and comfortable
with Visual Studio
It allows the use of TFS for source
control, which is used in many
.NET shops

It requires an addition license
It runs on Windows only

Compatibility
The solution and project files created and updated by Xamarin Studio are
compatible with Visual Studio, making it easy to switch between the two
environments throughout the duration of a project. This also allows the team
members to adopt the tool that they are most comfortable with or that runs
on their platform of choice.

Summary
In this chapter, we have discussed the architecture of Xamarin.Android and
the magic of how it facilitates the creation of Android apps using C# and .NET.
We also reviewed a set of benefits and drawbacks of adopting Xamarin.Android.
In the next chapter, we will install Xamain.Android and create a project that we
will build on for the remainder of the book.

Creating the Points of
Interest App

In this chapter, we will move to the practical side of creating an app and cover
the facilities Xamarin.Android provides developers for creating, executing,
 and debugging applications. This chapter covers the following topics:

• Overview of the sample app
• Installing Xamarin.Android
• Creating the sample app
• Running and debugging apps

The sample app
In this chapter, we will begin building a sample app that will be completed through
the remaining chapters of the book. The app we have defined allows for the capture
and management of points of interest and supports the following features:

• Capture information about points of interest, including name, description,
address, latitude, longitude, and photos

• Save points of interest to a local file or files on the device using a
combination of JSON text and image files

• List points of interest
• Capture address, latitude, and longitude of a point of interest using the

devices location capabilities
• Capture and save a photo of a point of interest using the devices camera

Creating the Points of Interest App

[32]

Installing Xamarin.Android
Before we move on, we need to get Xamarin.Android installed. This section walks
through installing Xamain.Android Version 4.8.3 on the Windows operating system.
You may choose to install Xamarin.Android and work through the sample on Mac
OSX, in which case you will encounter only minor deviations in some of the directions.

To install Xamarin.Android, perform the following steps:

1. Go to Xamarin.com, download the Windows installer, and launch it.
2. Click through the first two welcome pages and the agreement page until

you come to the Product selection page. The installer allows the installation
of both Xamarin.Android and Xamarin.iOS, as shown in the following
screenshot. Xamarin.iOS will not be needed for the exercises in this book.

3. Uncheck Xamarin.iOS for Visual Studio and click on Next.
4. You should now be viewing the Android SDK installation page with the

default installation location being displayed. There should be no need to
make any changes on this page unless there is some form of conflict with
a previously installed version of the Android SDK; click on Next, as shown
in the following screenshot:

Chapter 3

[33]

5. The Requirements page should be presented listing the various packages
that will need to be installed along with the corresponding versions.
Click on Next and click through the agreement pages presented.

Creating the Points of Interest App

[34]

6. An installation progress page will be displayed depicting the progress.
As each component is installed, a check mark will be placed next to the
component and once all items are installed, a final installation completion
page will be displayed.

Creating the app
We are now ready to create the Point of Interest app as follows:

1. Launch Xamarin Studio.
2. From the File menu, navigate to New | Solution. The New Solution view

will be presented as shown in the following screenshot:

3. Select the Android section under C# on the left-hand side of the screen,
Android Application from the middle list, and enter POIApp in the Name
field. Review the project location and adjust if desired. Click on OK.

4. Xamarin Studio will create both a solution and project folder. The
project folder will contain a default MainActivity.cs class and a Main.
axml layout file.

Chapter 3

[35]

Xamarin Studio IDE
After creating POIApp, the project will be opened within the environment.
The following screenshot depicts Xamarin Studio after the project has been created:

Xamarin Studio is organized like many modern IDEs with a set of menus at the top
of the screen, a context-sensitive toolbar below it, and a series of dockable pads for
viewing and manipulating various types of content. By default Xamarin Studio is
configured with the following options:

• The Solution pad is docked on the left-hand side and allows you to
explore the structure and content contained in the project

• Editor windows are in the middle and present the content of files for
viewing and manipulation

• Task-specific pads are collapsed on the right-hand side and bottom,
and can be expanded by hovering over the icon and caption

Additional pads can be accessed from View | Pads.

Creating the Points of Interest App

[36]

The Project Options View
There are numerous options that can be set, which affect the way an app
is built and executed. These options can be adjusted from within the Project
Options view.

Setting the target framework
The target framework setting determines which API level will be available to you
during development and testing. If you review the Android platform version table
from Chapter 1, The Anatomy of an Android App, you will find that Version 4.0.3 was
released on December 16, 2011, and has the corresponding API level 15. Selecting this
level for the target framework will allow the app to run on numerous older devices.
If you want to experiment with a later API level, you can adjust the target framework
setting.

In order to set the target framework, perform the following steps:

1. Select the POIApp project under the POIApp solution in the Solution pad.
2. Right-click on it and click on Options.
3. Select Build | General on the left-hand side.

Chapter 3

[37]

4. For the Target framework field, select Android 4.0.3 (Ice Cream Sandwich).
5. Click on OK.

Setting the app icon and package name
Xamarin.Android provides a default icon and package name for apps. The icon will
be displayed on the home view in Android as well as on the action bar at the top of
each view.

In order to adjust the defaults for these settings, perform the following steps:

1. Using Windows Explorer, copy the image file ic_app.png from drawable
present in the assets location to POIApp\ POIApp\Resources\drawable
in the code bundle.

2. From within Xamarin Studio, navigate to Resources\drawable, right-click
on it, and click on Add Files.

3. Navigate to POIApp\Resources\drawable in the code bundle, select
ic_app.png, and click on Open. You should now see ic_app.png listed
under drawable in the Solution pad, making it available for use within
the app.

4. Select the POIApp project, right-click on it, and click on Options.
5. Select Build | Android Application.
6. Change the Package name to POIApp. This will cause the resulting

APK file to be named as POIApp.apk.
7. Change Application icon selection to @drawable/ic_app.
8. Click on OK.

We will cover additional options in Chapter 9, Deploying Your App, as we prepare the
app for deployment.

Creating the Points of Interest App

[38]

The initial activity
When an app is selected from the home screen on an Android device, the Android
OS creates an instance of the activity in the application you have declared to be the
launch activity. When developing with the Android SDK, this is specified in the
AndroidManifest.xml file. The following code excerpt from AndroidManifest.xml
shows how to specify that MainActivity should be launched first:

<activity android:label="POIApp"
 android:name="poiapp.MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

Xamarin.Android provides a more convenient method of specifying this by the use
of .NET attributes. These .NET attributes are used at build time to construct the
ApplicationManifest.xml file so that you rarely ever need to worry about working
with the file directly. In the case of specifying the initial activity to launch, setting
MainLauncher to true does the job, as seen in the following code example:

[Activity (Label = "POIApp", MainLauncher = true)]
public class MainActivity : Activity
{
 . . .
}

Running and debugging the app
The way in which you run and debug apps is very important to developers as it
has a big impact on productivity and timelines. Xamarin Studio and the Android
emulator team up to make the testing and debugging cycle as painless as possible.
Let's go through the steps:

1. Start a debugging session by clicking on the Start button on the left-hand side
of the taskbar, by pressing F5, or by navigating to Run | Start Debugging.

Chapter 3

[39]

2. Select MonoForAnroid_API_15 (emulator) from the list and click on Start
Emulator. You will need to wait for the emulator to start up.

3. Select MonoForAnroid_API_15 (emulator-5554) at the top of the Devices
list and click on OK. Xamarin Studio will deploy the compiled app to the
emulator. The progress of the deployment can be monitored from the status
view in the middle of the toolbar and from the Application Output pad
at the bottom of the IDE.

Creating the Points of Interest App

[40]

4. Toggle to the Android emulator and unlock the screen. The POI app will
be present.

The Android emulator is used for testing Android apps during the
development process. The left-hand side of the screen depicts what
would be seen on a device and the right-hand side provides keys that
replicate the device hardware.

5. Click on the Hello World button and the app will increment a counter and
update the button's caption.

6. Toggle back to Xamarin Studio and stop the app by clicking on the Stop
button at the extreme left of the toolbar.

7. Open MainActivity.cs and set a breakpoint on line 21 by clicking on the
left margin of the editor, just to the left of the line number.

8. Restart the app by clicking on the Start button. Since the Android emulator is
still running, you will not need to make a device selection. The app will stop
at the breakpoint previously set.

Chapter 3

[41]

9. You will notice a set of debug controls present in the toolbar. There are
controls to continue execution, namely step over current line, step into
current function, and step out of current function.

10. You will also notice a new set of pads related to the debugging apps
present at the bottom of the IDE. These pads allow for viewing of
objects, breakpoints, threads, and the call stack.

11. Click on Step Over twice to watch the progress of the execution, and then
click on Continue to let the app start.

As you can see from this section, Xamarin Studio and the Android emulator
facilitates a robust intuitive way of executing and debugging applications.

Creating and customizing emulators
The emulators presented when we ran our app were set up as part of the Xamarin
install. You can customize these existing emulators or create your own in order to
adjust the features and software configuration for the device being emulated.

Creating the Points of Interest App

[42]

In order to modify an existing emulator, perform the following steps:

1. From the main menu bar, select Tools | Open Android Emulator Manager.
2. In the Android Virtual Device Manager dialog box, select the AVD named

MonoForAndroid_API15 and click on Edit.

3. Note the Target setting; this specifies the version of the Android platform
and the API level that will be used for the emulator.

4. Set the Device field to Nexus S, reset the Target field to Android 4.0.3, if
needed, uncheck the Hardware keyboard present option, and click on OK.

5. Run POIApp using the modified configuration.

Chapter 3

[43]

There are many options that can be modified in order to emulate any device and
configuration needed. The Android Virtual Device Manager dialog box also has
a tab named Device Definitions that can be used to set up the devices that are
available when configuring an AVD. The following screenshot shows what can
be configured as part of the device definition:

Using the x86 emulator
Android provides an x86 emulator that can speed up development considerably due to
faster start and execution times for the AVD. The x86 emulator is not a part of the base
Xamarin install, but the directions for installation can be found on the Xamarin website
as well as the Android developer website. A very specific version may be required,
particularly if using OSX Mavericks, so we will not replicate the directions here.

Once installed, you can take advantage of the x86 emulator by the selected Intel
Atom (x86) for the CPU/ABI when editing an AVD configuration.

Creating the Points of Interest App

[44]

Debugging with an Android device
Apps can be executed and debugged on actual devices with the same simplicity
of working with an emulator. To prepare for using a physical device, you need
to perform a few steps as follows:

1. Enable USB debugging on the device.
2. Install an appropriate USB driver for the device (Windows only).

Enabling USB debugging
In order to enable USB debugging on a device with Android 4.0 and newer,
perform the following steps:

1. For devices running Android 4.2 or newer, there is an extra step;
Developer options is initially hidden. Navigate to Settings | About phone
and tap Build number seven times. On some configurations, the exact menu
structure may differ. On my HTC One with Android 4.3, the menu is Settings |
About | Software information | More.

2. Navigate to Settings | Developer options.
3. Click on USB debugging.

Installing a USB driver
Windows users are required to install a USB driver that matches their device;
please refer to the Android developer website under a section titled Using
Hardware Devices for more details or consult your device manufacturer.

OS X users should be good to go.

Running apps on a device
After completing the previous steps, simply connect the device to your development
computer with a USB cable, start the app from Xamarin Studio, and choose the actual
hardware device from the device selection view rather than starting an emulator.

Chapter 3

[45]

Behind the scenes
It is interesting at this point to take a quick look at a few of the things that go on
behind the scenes, which we previously discussed.

Peer object
Let's start with the peer object (proxy object) discussed in Chapter 2, Xamarin.Android
Architecture. Navigate to POIApp\POIApp\obj\Debug\android\src\poiapp in the
code bundle in Windows XP and open MainActivity.java using Notepad.
The following code listing depicts some of the key pieces of the source file:

package poiapp;

public class MainActivity extends android.app.Activity implements
 mono.android.IGCUserPeer
{
 . . .

 public void onCreate (android.os.Bundle p0)
 {
 n_onCreate (p0);
 }

 private native void n_onCreate (android.os.Bundle p0);
 . . .

}

Note the following points:

• The MainActivity class extends android.app.Activity, which is what
you would expect

• An onCreate() proxy method is created that calls the native method
n_onCreate(), which points to the overridden OnCreate() method
in our managed C# class

• The MainActivity class has a static initializing block and a constructor
that establishes the link between the Java class and it's managed C# peer,
including initializing n_onCreate()

Creating the Points of Interest App

[46]

The AndroidManifest.xml file
Navigate to POIApp\POIApp\obj\Debug\android in the code bundle and open
the AndroidManifest.xml file. The following code listing depicts a portion of
the manifest file:

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1" android:versionName="1.0"
 package="POIApp.POIApp">
 <uses-sdk android:minSdkVersion="15" />
 <application android:label="POIApp"
 android:name="mono.android.app.Application"
 android:debuggable="true">
 <activity android:label="POIs"
 android:name="poiapp.MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER"
 />
 </intent-filter>
 </activity>
 . . .
 </application>
 <uses-permission android:name="android.permission.INTERNET" />
</manifest>

Note the following points:

• The target SDK is set to 15 in the <uses-sdk\> element
• The initial activity is set using the <category\> element within the

activity definition

Summary
In this chapter we have started a sample app that we will complete through the
remaining chapters of the book, and we have demonstrated the facilities we have
for executing and debugging apps. In the next chapter we will continue with
building of the app by building a set of data-persistence capabilities.

Creating a Data Storage
Mechanism

We now turn our attention to data storage requirements; we need a way to store
and retrieve Point of Interest (POI) data. This chapter covers the following topics:

• Approaches to data storage solutions
• Creating the POI entity class
• Creating the POI data storage interface
• Implementing the POI data storage service
• Using Xamarin.Android unit tests to support development

Data storage solutions fall into two general categories, web services and local
storage. While many real-world mobile apps rely on web services, we will focus
on a local storage solution for a couple of reasons. First, it eliminates the need to
maintain a hosted service for the example to work, and second, we simply do not
have sufficient time to adequately deal with creating and accessing a web service
solution in this book.

There are a number of solutions that can be used for storing data locally. SQLite
is a lightweight transactional database engine that is delivered with the Android
platform. SQLite is widely used on mobile platforms such as Android and iOS as
well as on embedded systems of all types. SQLite is a great solution if you need
the robust capabilities that a relational engine provides, but we have much
simpler requirements; a simple file-based solution will be adequate for POIApp.

Creating a Data Storage Mechanism

[48]

As such, we have decided to go with a solution that stores the POI data as local files.
This leads us to our next decision: how do we structure the data inside the file? JSON
and XML are the two predominant standards that are used to store structured data in
a text format. XML tends to be more verbose and is used in conjunction with SOAP/
WSDL based web services. Data encoded with JSON is smaller than the equivalent
XML, and thus, JSON has gained a lot of traction in the RESTful web-service
community. Either of these standards meet our needs. The example presented in this
chapter uses a JSON-based solution. In order to accommodate other implementations
in the future we will, however, establish a standard interface for the storage service.
This means that other implementations such as a web-service version of the
XML-based version could be developed and plugged in with a minimal effort.

Creating the Point of Interest entity class
The first class that is needed is the one that represents the primary focus of the
application, a Point of Interest class. POIApp will allow the following attributes
to be captured for a Point of Interest:

• Id

• Name

• Description

• Address

• Latitude

• Longitude

The POI entity class can be nothing more than a simple .NET class, which houses
these attributes.

To create a POI entity class, perform the following steps:

1. Select the POIApp project from the Solution pad in Xamarin Studio. Select
the POIApp project and not the solution which is the top-level node in the
Solution pad.

2. Right-click on it and select New File.

Chapter 4

[49]

3. On the left-hand side of the New File dialog box, select General.
4. At the top of the template list, in the middle of the dialog box, select Empty

Class (C#).
5. Enter the name PointOfInterest and click on OK. The class will be created

in the POIApp project folder.
6. Change the visibility of the class to public and fill in the attributes based on

the list previously identified.

The following code snippet is from 9169_04_Codes\POIApp\POIApp\
PointOfInterest.cs from the code bundle available for this book:

public class PointOfInterest
{
 public int? Id { get; set;}
 public string Name { get; set; }
 public string Description { get; set; }
 public string Address { get; set; }
 public double? Latitude { get; set; }
 public double? Longitude { get; set; }
}

Creating a Data Storage Mechanism

[50]

Note that the Id, Latitude, and Longitude attributes are all marked as nullable.
In the case of Latitude and Longitude, (0,0) is actually a valid location so a null
value indicates the attributes have never been set. The Id attribute is required but
having a null value tells POIJsonService to assign an actual value when the POI
is saved.

Creating the POI storage interface
Now, we need to create a standard interface that will define the methods provided
by the storage service. The interface will need to allow basic CRUD (create, read,
update, and delete) operations. We would also like to provide basic caching
capabilities. Caching can dramatically enhance app responsiveness by storing
data that will likely be accessed multiple times in the memory locally and
preventing multiple reads from a file or accesses to a web service.

To create the data service interface, perform the following steps:

1. Select the POIApp project in the Solution pad in Xamarin Studio.
2. Right-click on it and select New File.
3. On the left-hand side of the New File dialog, select General.
4. At the top of the template list, in the middle of the dialog,

select Empty Interface (C#).
5. Enter the name IPOIDataService and click on OK.
6. Fill in the methods to support the CRUD operations and caching. You will

need to also add a collection property for the caching of POIs based on
IReadOnlyList. The use of IReadOnlyList ensures that POIs cannot be
added directly to the cache but must be added or deleted through the
CRUD operations.

The following example shows the interface's definition from the 9169_04_Codes\
POIApp\POIApp\IPOIDataService.cs from the code bundle of this book. Note that
in this example, SavePOI() accounts for the create and update portion of CRUD.

 public interface IPOIDataService
 {
 IReadOnlyList<PointOfInterest> POIs { get; }
 void RefreshCache();
 PointOfInterest GetPOI (int id);
 void SavePOI(PointOfInterest poi);
 void DeletePOI(PointOfInterest poi);
 }

Chapter 4

[51]

Implementing the POI storage services
Now that we know what the POI service needs to do, let's create an actual
implementation:

1. Create a class called POIJsonService.
2. Change the visibility of the class to public, and specify that POIJsonService

implements the IPOIDataService interface.
3. Place the cursor over IPOIDataService, right-click on it, and go to Refactor

| Implement interface. Use the arrow keys to move the prompt to the
location in the file where you would like to place the implementation
methods and press Enter.

You should now have a class with method stubs for all the required methods for
the IPOIDataService interface. The following example shows what the class
should contain at this point:

public class POIJsonService : IPOIDataService
{
 public POIJsonService ()
 {
 }

 #region IPOIDataService implementation

 public void RefreshCache ()
 {
 throw new NotImplementedException ();
 }

 public PointOfInterest GetPOI (int id)
 {
 throw new NotImplementedException ();
 }

 public void SavePOI (PointOfInterest poi)
 {
 throw new NotImplementedException ();
 }

 public void DeletePOI (PointOfInterest poi)

Creating a Data Storage Mechanism

[52]

 {
 throw new NotImplementedException ();
 }

 public System.Collections.Generic.IReadOnlyList<PointOfInterest>
POIs {
 get {
 throw new NotImplementedException ();
 }
 }

 #endregion
}

The next step is to fill in the logic for each method and write any supporting
methods that may be required.

Using Xamarin.Android NUnitLite
You may be familiar with a process called test-driven development (TDD). At a
high-level, the approach proposes that you create automated unit test cases to test
the features that your software will need to support and use these test cases to drive
the development and unit testing cycle.

This chapter will not cover the concepts behind test-driven development in detail,
but we will introduce a feature delivered with Xamarin.Android, which supports
teams using TDD. This feature is NUnitLite. NUnitLite is a lightweight, open
source testing framework which is based on the same ideas as NUnit. NUnitLite has
been designed to use minimal resources, making it ideal for embedded and mobile
software development.

When working with NUnitLite, you create classes called test fixtures. These classes
contain test methods that are used to test the various facets of the testing target, in
our case, the POIJsonService class. To designate a class as a test fixture or a method
as a test method, NUnitLite uses the .NET attributes. Once the test fixtures and test
methods have been created, Xamarin.Android provides a user interface that allows
the tests to be executed within the Android emulator or on a device.

To start using NUnitLite, we need to create a test project in the Solution that we
have been working with.

To create a test project, perform the following steps:

1. Select the POIApp solution from the Solution pad in Xamarin Studio.

Chapter 4

[53]

2. Right-click on it and select Add New Project.
3. On the left-hand side of the New Project dialog, go to C# | Android.
4. In the template list, in the middle of the dialog box, select the Android

Unit Test project.
5. Enter POITestApp for the name and click on OK. The new unit test project

is created and added to the POIApp solution.
6. Go to the Options dialog for the new project, and set the Package name

to POITestApp and the Target framework to 4.0.3.

You will notice that the new unit test project has the following files:

• MainActivity.cs: This activity inherits from TestSuiteActivity and
provides a test suite user interface when we run our tests. Basically, it allows
us to run our tests and see the results.

• TestsSample.cs: This class acts as a test fixture and allows us to add test
methods that will exercise the features provided by POIJsonService.

Now, we need to create the test methods in order to exercise the features of our data
service. Initially, when we execute the tests, they will fail because the methods are
only stubs and immediately throw an exception, NotImplementedException. As we
fill in the actual logic for our data service, the tests will begin to pass.

Setting up for tests
NUnitLite provides a place to execute any initialization code that may be required by
the tests. In our case, we need to create an instance of our data service, which the test
methods will later interact with. The Setup() method is the perfect place since it will
be called before each test.

1. Rename the TestsSample.cs file to POITestFixture.cs. Rename the
corresponding class inside the file as well.

2. In POITestApp, select References, right-click on it, and select Edit
References. Select the Projects tab in the Edit References dialog, check
on the POIApp project, and click on OK. POITestApp needs to reference
POIApp so that it can work with IPOIDataService and POIJsonService.

3. Open the POITestFixture class and within it declare a private variable of
type IPOIDataService. In the Setup() method initialize the private variable
to an instance of POIJsonService:

[TestFixture]
public class POITestFixture

Creating a Data Storage Mechanism

[54]

{
 IPOIDataService _poiService;

 [SetUp]
 public void Setup ()
 {
 _poiService = new POIJsonService ();
 }

Creating the test methods
Now the real work begins; we need to create test methods to test each significant
scenario. In the case of the data service, we need to be sure of covering the following:

• Creating a new POI
• Updating an existing POI
• Deleting an existing POI

There are many more scenarios we could choose to test, but the preceding small set
should help to verify if the basics of our data service are functioning.

The Create POI test
The first test method we will start with is CreatePOI() and, as the name implies,
we will test the process of creating and saving a new POI. To accomplish this,
we need to perform the following steps:

1. Create a new instance of PointOfInterest and fill out some attributes.
2. Call SavePOI() on the data service.
3. Save the Id for the newly created POI.
4. Refresh the cache to ensure whether the new POI was appropriately saved

and can be restored from storage.
5. Call GetPOI() to retrieve the POI, based on the saved ID.
6. Use the Assert class to ascertain that the POI was retrieved (the reference

is not null) and the name of the POI is what you expected it to be.

The following code shows an implementation of CreatePOI():

[Test]
public void CreatePOI ()

Chapter 4

[55]

{
 PointOfInterest newPOI = new PointOfInterest ();
 newPOI.Name = "New POI";
 newPOI.Description = "POI to test creating a new POI";
 newPOI.Address = "100 Main Street\nAnywhere, TX 75069";
 _poiService.SavePOI (newPOI);

 int testId = newPOI.Id.Value;

 // refresh the cache to be sure the data was
 // saved appropriately
 _poiService.RefreshCache ();

 // verify if the newly create POI exists
 PointOfInterest poi = _poiService.GetPOI (testId);
 Assert.NotNull (poi);
 Assert.AreEqual (poi.Name, "New POI");
}

The Update POI test
Next, we will implement UpdatePOI(); again, as the name implies, we want to test
the updating and existing POIs. We should strive to make our tests independent of
each other, which means that UpdatePOI should not rely on CreatePOI() to run
successfully. As such, UpdatePOI will first create a new POI that will then
be updated. UpdatePOI() will perform the following steps:

1. Create a new instance of PointOfInterest and fill out some attributes.
2. Call SavePOI() on the data service.
3. Save the Id for the newly created POI.
4. Refresh the cache to ensure that the new POI was appropriately saved

and can be restored from storage.
5. Call GetPOI() to retrieve the POI, based on the saved ID.
6. Set the Description property to a new value.
7. Call SavePOI() to save the updates.
8. Refresh the cache to ensure that the updated POI was appropriately

saved and can be restored from storage.
9. Call GetPOI() to retrieve the POI, based on the saved ID.
10. Use the Assert class to be sure that the POI was retrieved (the reference

is not null) and the description of the POI is what you expected it to be.

Creating a Data Storage Mechanism

[56]

The following code shows an implementation of UpdatePOI():

[Test]
public void UpdatePOI ()
{
 PointOfInterest testPOI = new PointOfInterest ();
 testPOI.Name = "Update POI";
 testPOI.Description = "POI being saved so we can test update";
 testPOI.Address = "100 Main Street\nAnywhere, TX 75069";
 _poiService.SavePOI (testPOI);

 int testId = testPOI.Id.Value;

 // refresh the cache to be sure the data and
 // poi was saved appropriately
 _poiService.RefreshCache ();

 PointOfInterest poi = _poiService.GetPOI (testId);
 poi.Description = "Updated Description for Update POI";
 _poiService.SavePOI (poi);

 // refresh the cache to be sure the data was
 // updated appropriately
 _poiService.RefreshCache ();

 PointOfInterest poi = _poiService.GetPOI (testId);
 Assert.NotNull (poi);
 Assert.AreEqual (poi.Description, "Updated Description for
 Update POI");
}

The DeletePOI() test
Finally, we will implement DeletePOI(). Again, we want DeletePOI() to be
independent of other tests, so we will first need to create a POI which will be
deleted later. On calling DeletePOI(), the following steps will be performed:

1. Create a new instance of PointOfInterest and fill out some attributes.
2. Call SavePOI() on the data service.
3. Save the Id for the newly created POI.
4. Refresh the cache to ensure that the new POI was appropriately saved

and can be restored from storage.

Chapter 4

[57]

5. Call GetPOI() to retrieve the POI, based on the saved ID.
6. Call DeletePOI() to delete the POI file and remove it from the cache.
7. Refresh the cache to ensure that the updated POI was appropriately deleted.
8. Call GetPOI() to retrieve the POI, based on the saved ID.

Use the Assert class to ensure that the POI is not found (the reference is null).
The following code show an implementation of DeletePOI():

 [Test]
public void DeletePOI ()
{
 PointOfInterest testPOI = new PointOfInterest ();
 testPOI.Name = "Delete POI";
 testPOI.Description = "POI being saved so we can test delete";
 testPOI.Address = "100 Main Street\nAnywhere, TX 75069";
 _poiService.SavePOI (testPOI);

 int testId = testPOI.Id.Value;

 // refresh the cache to be sure the data and
 // poi was saved appropriately
 _poiService.RefreshCache ();

 PointOfInterest deletePOI = _poiService.GetPOI (testId);
 Assert.IsNotNull (deletePOI);
 _poiService.DeletePOI (deletePOI);

 // refresh the cache to be sure the data was
 // deleted appropriately
 _poiService.RefreshCache ();

 PointOfInterest poi = _poiService.GetPOI (testId);
 Assert.Null (poi);
}

Executing the tests
Now that the tests have been developed, we are ready to execute them. To do
this, we simply run the test app using the Android emulator or a physical device.

Creating a Data Storage Mechanism

[58]

To execute the tests in an emulator, perform the following steps:

1. Run POITestApp using the Android emulator. Note that the POITestApp is
not set as the Startup Project, so you will need to select the project when you
select run. You can make POITestApp as the Startup Project by selecting it,
right-clicking on it, and choosing Set as Startup Project. Once POITestApp
is running, you should see the following screen when the app has been
deployed and started:

2. Execute the tests by clicking on the Run Tests label. You should see a red
message label indicating that all the tests have failed. You can drill down
into the tests to see the failure details. The tests currently fail because the
stub methods throw exceptions, which is not the expected behavior.

So far, we have created a skeleton of POIJsonService and have a suite of automated
tests to test the CRUD methods. It is now time to focus on filling in the logic so that
all the tests pass.

Chapter 4

[59]

Json.NET
One of the first decisions we need to make regarding the implementation of the
services is how we will deal with JSON serialization, meaning how will we get our
.NET objects converted to JSON for storage and vice versa. There are a number of
options available, including DataContractJsonSerailzier from .NET. Json.NET
is an open source library created by James Newton-King, and this is definitely worth
considering:

• It's small and fast
• It's reliable
• It's available for many platforms including as a free component in the

Xamarin Component Store
• It makes simple tasks extremely simple to accomplish

With these characteristics in mind, we will go with Json.NET for serialization.

Downloading Json.NET
To download and add Json.NET to the POIApp project, perform the following steps:

1. Select the components package in POIApp, right-click on it, and select Get
More Components.

2. Enter Json.NET in the search field in the upper-left corner of the form,
as shown in the following screenshot:

3. Select Json.NET to see the details page and select Add to App. The Json.NET
library will be downloaded and added to your project.

Adding Json.NET to POITestApp is easy because we have already downloaded it;
simply select the components package in a project, right-click on it, and select Edit
Components, and then select Add to Project, which is next to Json.NET.

Creating a Data Storage Mechanism

[60]

Implementing and testing the POIJsonService
methods
We are now ready to start building the methods on POIJsonService and
incrementally test them. We will store POIs as individual JSON text files in a
single directory using a naming scheme that incorporates the ID (poi<id>.json).
POIJsonService will need to know which directory to locate these JSON files in.
To facilitate this, we will create a private string that will hold the storage location
path, which will be passed to the constructor when the service is created. The
constructor should check whether the directory exists and create it if it doesn't.

We would also like to build the cache so that it will be ready for use. We can
accomplish this with a call to RefreshCache().

The following code is from the code bundle of this book:

private string _storagePath;

public POIJsonService (string storagePath)
{
 _storagePath = storagePath;

 // create the storage path if it does not exist
 if (!Directory.Exists(_storagePath))
 Directory.CreateDirectory(_storagePath);

 RefreshCache ();
}

Now that the constructor accepts a storage location, we need to go back and update
the Setup method in POITestFixture.

During testing, we would want to store our files in the sandbox associated with our
application. This location can be obtained from the Environment.GetFolderPath()
method.

We should also delete any existing JSON files found in this folder prior to executing
the test so that we know the starting state for the test.

The following code shows an updated Setup method:

[SetUp]
public void Setup ()
{
 string storagePath =
 Environment.GetFolderPath (Environment.SpecialFolder.MyDocuments);

Chapter 4

[61]

_poiService = new POIJsonService (storagePath);

 // clear any existing json files
 foreach (string filename in Directory.EnumerateFiles(storagePath,
 "*.json")) {
 File.Delete (filename);
 }
}

Implementing caching
We will need a private collection to facilitate the caching of the POIs, and the
RefreshCache() method will be used to load the POIs into the collection. Add the
following List definition to the POIJsonService class. You will need to use the
System.Collections.Generic namespace.

private List<PointOfInterest> _pois = new List<PointOfInterest>();

We need to expose this list as a read-only collection to fulfill the interface
requirements of IPOIDataService. The following code shows what is needed:

public IReadOnlyList<PointOfInterest> POIs {
 get { return _pois; }
}

We now need to implement the RefreshCache() method to load the cache when
POIJsonService is constructed. Once constructed, the service will maintain the
cache each time SavePOI() or DeletePOI() is called. Let's look at how to create
a .NET object from a JSON text file using Json.NET:

1. First, we read the entire contents of the text file into a string. The string
will contain valid JSON encoded data.

2. Next, we call JsonConvert.DeserializeObject<> to construct a .NET
object from the string:

string poiString = File.ReadAllText (filename);
PointOfInterest poi = JsonConvert.DeserializeObject<PointOfIntere
 st> (poiString);

To load the cache, we need to obtain a directory of all the *.json files and load each
POI into the cache. The following listing demonstrates how to accomplish this using
the Directory class from System.IO:

public void RefreshCache()
{
 _pois.Clear ();

Creating a Data Storage Mechanism

[62]

 string[] filenames = Directory.GetFiles (_storagePath, "*.json");

 foreach (string filename in filenames) {
 string poiString = File.ReadAllText (filename);
 PointOfInterest poi = JsonConvert.DeserializeObject<PointOfIntere
 st> (poiString);
 _pois.Add (poi);
 }
}

Implementing SavePOI()
SavePOI() will be called to save the new and existing POIs, so it fulfils two of the
CRUD functions, create and update. In the case of a new POI, SavePOI() needs
to assign a value to Id. As you may recall from earlier in the chapter, we can
determine whether a POI is new by checking if it has a null ID.

When assigning a new ID, we will take a very simplistic approach. We will inspect
the cache of the POIs to determine the highest Id and increment it by 1 to get the
next Id.

Create a private method named GetNextId(), which returns an integer based on
the logic previously described. The following code snippet is from the code bundle
of this book. You will need to use the System.Linq namespace.

private int GetNextId()
 {
 if (_pois.Count == 0)
 return 1;
 else
 return _pois.Max (p => p.Id.Value) + 1;
 }

We need to create one more supporting method to determine the filename. Create
a private method named GetFilename(), which accepts an integer ID and returns
a string containing the filename. The following code snippet is from the code bundle
of this book:

Chapter 4

[63]

private string GetFilename(int id)
{
 return Path.Combine(_storagePath,"poi" + id.ToString() + ".json");

}

Note the use of Path.Combine() to build the path. This ensures that the proper
delimiter is used to construct the path based on the platform on which the code
is being executed.

We will now turn our attention to the main logic in SavePOI(). Let's consider how
we take a .NET object and store it in a JSON-formatted text file using Json.NET,
essentially just the opposite of what we accomplished in the RefreshCache()
method. The process in reverse is just as easy.

1. Convert the .NET object to a JSON string using JsonConvert.
SerializeObject().

2. Save the string to a text file:

string poiString = JsonConvert.SerializeObject (poi);
File.WriteAllText (GetFilename (poi.Id), poiString);

Now it is just a matter of putting all of these pieces together in the SavePOI()
method. The following code snippet is from the code bundle of this book:

public void SavePOI (PointOfInterest poi)
{
 Boolean newPOI = false;
 if (!poi.Id.HasValue) {
 poi.Id = GetNextId ();
 newPOI = true;
 }

 // serialize POI
 string poiString = JsonConvert.SerializeObject (poi);
 // write new file or overwrite existing file
File.WriteAllText (GetFilename (poi.Id.Value), poiString);

 // update cache if file save was successful
 if (newPOI)
 _pois.Add (poi);
}

Creating a Data Storage Mechanism

[64]

Note that we only need to add a POI to the cache when creating a new one and
only after successfully writing the file.

Implementing GetPOI()
GetPOI() is a simple method to implement since we have a cache. We simply need
to use the Find method on the _poi list and return the results. You will need to use
System.Linq. The following code snippet is from the code bundle of this book:

public PointOfInterest GetPOI (int id)
{
 PointOfInterest poi = _pois.Find (p => p.Id == id);
 return poi;
}

Run POITestApp and execute the tests. The test for CreatePOI() and UpdatePOI()
should now be executed successfully.

Implementing DeletePOI()
DeletePOI() is also relatively simple. File.Delete() can be used to delete the
file and, when successful, we need to be sure to remove the POI from the cache.
The following code is from the code bundle of this book:

public void DeletePOI (PointOfInterest poi)
{
 File.Delete (GetFilename (poi.Id));
 _pois.Remove (poi);
}

Run POITestApp and execute the tests. Everything should run successfully now.

Summary
In this chapter, we have created a JSON-based storage service for our POI data and
created a series of unit tests to verify whether the service is functioning. In the next
chapter, we begin to develop the user interface by creating a list view with a search/
filtering capability.

Adding a List View
In this chapter, we finally get to what many of you have been waiting for,
developing the user interface. We will walk through the activities related to
creating and populating a list view, which includes the following topics:

• The ListView and ListAdapter classes
• Creating the Points of Interest list view layout
• Extending BaseAdapter<> to provide data to the ListView widget
• Creating a custom cell layout
• Handling row selections

Creating the POI ListView layout
When we created the POIApp project, a default layout and activity was created
for us. Rather than deleting these, let's give them more appropriate names and
remove unnecessary content as follows:

1. Select main.axml in Resources | Layout.
2. Right-click on it, select Rename, and enter the name as POIList.axml.
3. Double-click on it to open POIList.axml.
4. Click on the Hello World button and then click on the the Delete button.
5. Select MainActivity.cs and rename it as POIListActivity.cs.
6. Double-click on it to open POILIstActivity.cs.
7. Rename the class inside as POIListActivity.
8. Change the layout ID referenced in the SetContentView() API call to

Resources.Layout.POIList.

Adding a List View

[66]

9. Remove the code related to the Hello World button that we removed from
the layout. Your class should now look like the following code:

[Activity (Label = "POIs", MainLauncher = true)]
public class POIListActivity : Activity
{
 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 SetContentView (Resource.Layout.POIList);
 }
}

Now, we need to add a ListView widget from the Toolbox pad. By default
the Toolbox pad is displayed on the top right-hand side of the IDE as follows:

The Toolbox pad is organized with basic widgets at the top of the list and container
widgets such as ListViews further down the list. There is a search box at the top
that allows you to filter the widgets in the list, and there are two buttons to the
right-hand side of the search box that allow you to adjust the way widgets are
listed. Now, perform the following steps:

Chapter 5

[67]

1. Enter ListView in the search field.
2. Select the ListView widget, drag it over the content area of the layout

designer, and drop it on the layout.

You have now added a ListView widget to POIList.axml. On the bottom
right-hand side of the IDE, you will notice the Properties and Document
Outline pads.

Activate the Document Outline pad and you will see an outline of your
layout document listing all the widgets, Views, or view groups contained in it.
The Document Outline pad provides a convenient means of navigating and
selecting widgets, particularly as layouts get more complex. Select listView1
and then click on the Properties tab.

Adding a List View

[68]

The Properties pad allows you to modify the properties of the currently selected
widget. There are five buttons at the top of the pad that switch the set of properties
being edited. As you may recall from Chapter 1, The Anatomy of an Android App, the
@+id notation notifies the compiler that a new resource ID needs to be created to
identify the widget in API calls, and listView1 identifies the name of the constant.
Now, perform the following steps:

1. Change the ID name to poiListView and save the changes.
2. Switch back to the Document Outline pad and note the changed name.
3. Switch back to the Properties pad and click on the Layout button.
4. Under the View Group section of the layout properties; note that the width

is set to match_parent. Enter the same setting for the height. This simply
tells the control that it can use the entire content area provided by the
parent, excluding any margins specified. In our case, the parent would
be the top-level LinearLayout.

Prior to API level 8, fill_parent was used instead of
match_parent to accomplish the same effect. In API level 8,
fill_parent was deprecated and replaced with match_parent
for clarity. Currently, both the constants are defined as the same
value, so they have exactly the same effect. However, fill_
parent may be removed from the future releases of the API;
so, going forward, match_parent should be used.

Now let's focus on the layout designer. You will notice two buttons, Content and
Source, at the bottom of the designer, which allow you to switch between a visual
representation of the layout (Content) and an XML source code view of the layout
(Source). This is very useful as some tasks are just quicker in the Source view;
however, the Content view is useful in viewing the arrangement of widgets
visually. The Content view's usefulness is somewhat limited only because
many times portions of a view must be constructed with code at runtime;
however, when the view can be specified completely in XML, the Content
view is very useful.

In the Content view, you will notice a few useful tools arranged at the top
of the window, as shown in the following screenshot:

Chapter 5

[69]

In the upper-right corner, you will find a set of zooming controls. These allow you
to zoom the layout in or out depending on your monitor size and the level of details
you would like to view. Across the top, you will find drop-down menus that also let
you select things such as the screen size of the device to simulate, orientation of the
device, and the version of the Android platform to simulate.

We now turn our attention to the layout for each row in the ListView widget.
The Android platform provides a number of default layouts that can be used
with a ListView widget.

Layout Description
SimpleListItem1 A single line with a single caption field.
SimpleListItem2 A two-line layout with a larger font and a brighter text

color for the first field.
TwoLineListItem A two-line layout with an equal sized font for both lines

and a brighter text color for the first line.
ActivityListItem A single line of text with an image view.

For more control over content layout, a custom layout can also be created, which is
what is needed for poiListView.

To create a new layout, perform the following steps:

1. In the Solution pad, select Resources | Layout, right-click on it, and select
Add | New File.

2. Select Android from the list on the left-hand side, Android Layout from
the template list, enter POIListItem in the name column, and click on New.

There are a number of ways to achieve this layout, but we will go with a
RelativeLayout utility to demonstrate its capabilities. The following diagram
shows the way the POI data should be organized:

<RelativeLayout/>

Photo
POI Name

POI City, State, Postal Code

<LinearLayout />

204 miles

Adding a List View

[70]

There is a lot going on in this diagram. Let's break it down as follows:

• A RelativeLayout view group is used as the top-level container; it provides
a number of flexible options for positioning a relative content, its edges,
or other content.

• An ImageView widget is used to display a photo of the POI, and it is
anchored to the left-hand side of the RelativeLayout utility.

• Two TextView widgets are used to display the POI name and address
information. They need to be anchored to the right-hand side of the
ImageView widget and centered within the parent RelativeLayout utility.
The easiest way to accomplish this is to place both TextView classes inside
another layout; in this case, a LinearLayout widget with the orientation set
to vertical.

• An additional TextView widget is used to display the distance, and it
is anchored on the right-hand side of the RelativeLayout view group
 and centered vertically.

Now, our task is to get this definition into POIListItem.axml. The next few
sections describe how to accomplish this using the Content view of the designer
when feasible and the Source view when required.

Adding a RelativeLayout view group
When POIListItem.axml was created, a top-level LinearLayout was added.
Change this top-level ViewGroup drawable to be a RelativeLayout view group:

1. With POIListItem.axml opened in the content mode, select the entire
layout by clicking on the content area. You should see a blue outline going
around the edge.

2. Press Delete. The LinearLayout view group will be deleted and you will
see a message indicating that the layout is empty.

3. Locate the RelativeLayout view group in the toolbox and drag it onto
the layout.

4. With the RelativeLayout view group selected, use the Properties pad to set
the Padding option to 5dp, the Layout Height option to wrap_content, and
the Layout Width option to match_parent. The padding controls how much
space will be placed around each ListView item as a margin, and the height
determines how much of the parent control height is used. The Padding
and Layout Height values can be set from the Layout section of the
Properties pad.

Chapter 5

[71]

Setting the Layout Width option to match_ parent will cause the
POIListItem content to consume the entire width of the screen, while
setting the Layout Height option to wrap_content will cause each row
to be equal to the longest control; in this case, it is the ImageView widget.
Android runs on a variety of devices that offer different screen sizes and
densities. When specifying dimensions, you can use a number of different
units including pixels (px), inches (in), and density-independent pixels
(dp). Density-independent pixels are abstract units based on 1 dp being
1 pixel on a 160 dpi screen. At runtime, Android will scale the actual
size up or down based on the actual screen density. It is best practice to
specify dimensions using density-independent pixels.

Adding an ImageView widget
Add an ImageView widget to the left-hand side of the layout to display an image if
available for the POI as follows:

1. Locate the ImageView widget in the toolbox and drag it onto the layout.
2. With the ImageView widget selected, use the Properties pad to set the name

to poiImageView, and the height and width to 65dp. The name can be set
from the Widget section of the Properties pad, and the Height and Width
options from the Layout section.

3. In the property grouping named RelativeLayout, set Center Vertical to
true. Simply clicking on the checkbox does not seem to work, but you can
click on the small icon that looks like an edit box to the right-hand side and
just enter true. If everything else fails, just switch to the Source view and
enter the following code line:

android:layout_centerVertical="true"

Adding a LinearLayout widget
Add a LinearLayout view group that will be used to lay out the POI name and
address data as follows:

1. Locate the LinearLayout (vertical) view group in the toolbox. Adding this
widget is a little trickier because we want it anchored to the right-hand side of
the ImageView widget. Drag the LinearLayout view group to the right-hand
side of the ImageView widget until the edge turns to a blue dashed line, and
then drop the LinearLayout view group. It will be aligned with the
right-hand side of the ImageView widget.

Adding a List View

[72]

2. In the property grouping named RelativeLayout of the Layout section,
set Center Vertical to true. As before, you will need to enter true in the
edit box or manually add it in the Source view.

3. Switch to the Code view to see what has been added to the layout.
Notice the following code lines from the listing:

android:layout_toRightOf="@id/poiImageView"
android:layout_centerVertical="true"

Adding the name and address TextView
classes
Add TextView classes to display the POI name and address:

1. Locate TextView in the toolbox and add a TextView to the layout.
This TextView needs to be added within the LinearLayout view group
 we just added, so drag TextView over the LinearLayout view group
until it turns blue and drop it.

2. Name the TextView as nameTextView and set the text size to 22sp. The text
size can be set in the Style section of the Properties pad; you will need to
expand the Text Appearance group by clicking on the ellipsis button on the
right-hand side.

Scale-independent Pixels (sp) are like dp units, but they are also
scaled by the user's font size preference. Android allows users to select
a font size in the Accessibility section of Settings. When font sizes are
specified using sp, Android will not only take into account the screen
density when scaling text, but will also consider the user's accessibility
settings. It is recommended you specify font sizes using sp.

3. Change the sample text in nameTextView to POI Name. This can be
accomplished by double-clicking on the widget in the Content view
and entering the text directly. Alternately, it can be entered in the Widget
section of the Properties pad.

4. Add another TextView to the LinearLayout view group using the same
technique except dragging the new widget to the bottom edge of the
nameTextView until it changes to a blue dashed line and dropping it.
This will cause the second TextView to be added below nameTextView.
Set the font size to 14sp.

Chapter 5

[73]

5. Name the new TextView as addrTextView and set the sample text to
City, State, Postal Code.

Adding the Distance TextView
Add a TextView to show the distance from POI:

1. Locate the TextView in the toolbox and add a TextView to the layout.
This TextView needs to be anchored to the right-hand side of the
RelativeLayout view group, but there is no way to visually accomplish
this; so, we will use a multistep process. Initially, align the TextView with
the left-hand edge of the LinearLayout view group by dragging it to the
left-hand side until the edge changes to a dashed blue line and drop it.

2. In the Widget section of the Properties pad, name the widget as
distanceTextView and set the font size to 14sp.

3. In the Layout section of the Properties pad, set Align Parent Right to true,
Center Vertical to true, and clear out the linearLayout1 view group name
in the To Right Of layout property. Change the sample text to 204 miles.

The following diagram depicts what should be seen from the Content view at
this point:

Populating the ListView item
There are a number of ways to populate a ListView item within the Android
platform; they all work with some type of adapter, meaning a subtype of
BaseAdapter or some type of class that implements the IListAdapter interface.
For simple lists, you will commonly see the use of ArrayAdapter<T>.

We will create a subtype of BaseAdapter<T> as it meets our specific need,
works well in many scenarios, and allows for the use of our custom layout.

Adding a List View

[74]

Shared instance of IPOIDataService
Prior to creating the adapter, we need to consider how we will get access to an
instance of the data service since it will be the source of our POI data. As you may
recall from Chapter 4, Creating a Data Storage Mechanism, we simply created an
instance within the test fixture. That worked fine for testing; however, in the POIApp
project, we need a single instance that we can use throughout the app, meaning each
activity and view needs to share the same instance of the data service. There are
many ways to accomplish this; for our purposes, we can create a class that houses
a single static field that is an instance of IPOIDataService. The following code
demonstrates this approach:

public class POIData
{
 public static readonly IPOIDataService Service = new
 POIJsonService(
 Path.Combine(
 Android.OS.Environment.ExternalStorageDirectory.Path,
 "POIApp"));
}

Note that in this example, we used the Android.OS.Environment class to get the
path for the external storage directory. This is a storage location different from the
one we used in POITestApp. We are now using the external storage directory for
the following reasons:

1. The external storage directory will not be automatically deleted when our
app is uninstalled; as we develop our app, we will not face a risk of losing
data if we need to uninstall the app. For POITestApp, it was advantageous
to always have the data removed.

2. While running on a physical device, it is much easier to access the external
storage directory to copy files to and from than access an apps data directory,
which is secured.

3. Directories inside the external storage directory can be accessed by other
apps. In Chapter 8, Adding Camera App Integration, we will add integration
with a camera app, and using the external storage directory means we can
have the camera app store our picture for us.

Create the POIData class or an equivalent implementation.

Chapter 5

[75]

Permissions
Android apps must be granted permissions to accomplish certain tasks. One of these
tasks is writing to the external storage directory. You specify permissions that an app
requires in the AndroidManifest.xml file. This allows the installer to show potential
users the set of permissions an app requires at install time.

To set the appropriate permissions, perform the following steps:

1. Double-click on AndroidManifest.xml from Properties in the Solution pad.
The file will be open in the manifest editor. There are two tabs, Application
and Source, at the bottom of the screen, which can be used to toggle between
viewing a form for editing the file and the raw XML, as shown in the
following screenshot:

2. In the Required permissions list, check WRITE_EXTERNAL_STORAGE and
navigate to File | Save.

3. Switch to the Source view to view the XML as follows:

Adding a List View

[76]

Creating POIListViewAdapter
In order to create POIListViewAdapter, start by creating a custom adapter as follows:

1. Create a new class named POIListViewAdapter.
2. Open the class file, make the class a public class, and specify that it inherits

from BaseAdapter<PointOfInterest>.
Now that the adapter class has been created, we need to provide a constructor and
implement four abstract methods.

Implementing a constructor
We need to implement a constructor that will accept all the information we will need
to work with to populate the list. Typically, you will at least need two parameters
passed in; an Activity parameter, because we need to use some of its services to
create our custom list view, and some form of list that can be enumerated to
populate the ListView item. In our case, we have a global reference to the data
service we created, which caches POIs, so we only need a single parameter, an
Activity parameter. The following code shows the constructor from the
code bundle:

private readonly Activity _context;

public POIListViewAdapter(Activity context)
{
 _context = context;
}

Implementing Count { get; }
The BaseAdapter<T> class provides an abstract definition for a read-only Count
property. In our case, we simply need to provide the count of POIs that we have in
our cache. The following code example demonstrates the implementation from the
code bundle:

public override int Count
{
 get { return POIData.Service.POIs.Count; }
}

Chapter 5

[77]

Implementing GetItemId()
The BaseAdapter<T> class provides an abstract definition for a method that returns
an int ID for a row in the data source. We can use the position parameter to access
a POI in the cache and return the corresponding ID. The following code example
demonstrates the implementation from the code bundle:

public override long GetItemId(int position)
{
 Return POIData.Service.POIs[position].Id.Value;
}

Implementing the index getter method
The BaseAdapter<T> class provides an abstract definition for an index getter
method that returns a typed object based on a position parameter passed in as an
index. We can use the position parameter to access the POI in the cache and return
an instance. The following code example demonstrates the implementation from the
code bundle:

public override PointOfInterest this[int position]
{
 get { return POIData.Service.POIs[position]; }
}

Implementing GetView()
The BaseAdapter<T> class provides an abstract definition for GetView(),
which returns a view instance that represents a single row in the ListView item.
As in other scenarios, you can choose to construct the view entirely in code or to
construct it from a layout file. We will use the layout file we previously created.
The following code example demonstrates "inflating" a view from a layout file:

var view =
 _context.LayoutInflater.Inflate(Resource.Layout.POIListItem,
 null);

The first parameter of Inflate is a resource ID and the second is a root ViewGroup,
which in this case can be left null since the view will be added to the ListView item
when it is returned.

Adding a List View

[78]

Reusing row Views
The GetView() method is called for each row in the source dataset. For datasets
with large numbers of rows, hundreds or even thousands, it would require a great
deal of resources to create a separate view for each row and it would seem wasteful
since only a few rows are visible at any given time. The AdapterView architecture
addresses this need by placing row Views into a queue that can be reused as
they scroll out of view of the user. The GetView() method accepts a parameter
named convertView, which is of type View. When a view is available for reuse,
convertView will contain a reference to the view; otherwise, it will be null and a
new view should be created. The following code example has depicted the use of
convertView to facilitate the reuse of row Views:

View view = convertView;
if (view == null)
view =
 _context.LayoutInflater.Inflate(Resource.Layout.POIListItem,
 null);

Populating row Views
Now that we have an instance of the view, we need to populate the fields. The View
class defines a named FindViewById<T> method, which returns a typed instance of
a widget contained in the view. You pass in the resource ID defined in the layout file
to specify the control you wish to access. The following code returns access to the
nameTextView and sets the Text property:

PointOfInterest poi = POIData.Service.POIs [position];

view.FindViewById<TextView>
(Resource.Id.nameTextView).Text = poi.Name;

Populating addrTextView is slightly more complicated because we only want to
use the portions of the address we have, and we want to hide the TextView if none
of the address components are present.

The View.Visibility property allows for controlling whether a view is visible
or not. It is based on the ViewStates enum, which defines the following values:

Value Description
Gone Tells the parent ViewGroup to treat View as though it

does not exist, so no space will be allocated in the layout.
Invisible Tells the parent ViewGroup to hide the content for the

View.

Chapter 5

[79]

Value Description
Visible Tells the parent ViewGroup to display the content of the

View.

In our case, we want to use the Gone value if none of the components of the address
are present. The following code shows the logic in the GetView:

if (String.IsNullOrEmpty (poi.Address))
 view.FindViewById<TextView>
 (Resource.Id.addrTextView).Visibility = ViewStates.Gone;
else
 view.FindViewById<TextView>
 (Resource.Id.addrTextView).Text = poi.Address;

Hooking up POIListViewAdapter
The last task related to the adapter is hooking it up to the ListView item. We need
to switch back to the POIListActivity class and add the following declarations:

ListView _poiListView;
POIListViewAdapter _adapter;

Now, within the OnCreate method, we need to create an instance of
POIListViewAdapter and connect it to the Listview item. The following
code is from the code bundle:

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

 SetContentView (Resource.Layout.POIList);

 _poiListView = FindViewById<ListView>
 (Resource.Id.poiListView);
 _adapter = new POIListViewAdapter (this);
 _poiListView.Adapter = _adapter;
}

Adding actions to ActionBar
Android apps have access to add activity-specific actions to the ActionBar at the
top of the device screen, just below the status bar. We will define two actions for the
POIListActivity class; New, to create a new POI, and Refresh, to refresh the cache
of POIs from the device's local storage.

Adding a List View

[80]

The Activity class provides the following virtual methods that can be overridden
to add actions:

Virtual Method Description
OnCreateOptionsMenu It allows for the creation of the actions either through

API calls or through inflating an XML definition.
OnOptionsItemSelected It is called when an action in the ActionBar is clicked.

Defining the menu .xml file
Actions can be defined in a menu XML file that resides in the Resources/menu
folder, or it can be created programmatically using API calls. We will define the
New and Refresh actions in an XML file named POIListViewMenu.xml.

To create POIListViewMenu.xml, perform the following steps:

1. Select the Resources folder in POIApp, right-click on it and click on
Add | New Folder.

2. Name the folder menu.
3. Select the menu folder, right-click on it and click on Add | New File.
4. Select XML | Empty XML File, enter POIListViewMenu.xml for the

name and click on New.

You now need to fill in the definitions for the two actions we identified. Unfortunately,
Xamarin Studio does not contain a template for menu XML files, so you have to hunt
the format down from Android documentation or online examples. The following
code contains definitions for actionNew and actionRefresh:

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/actionNew"
 android:icon="@drawable/ic_new"
 android:title="New"
 android:showAsAction="ifRoom" />
 <item android:id="@+id/actionRefresh"
 android:icon="@drawable/ic_refresh"
 android:title="Refresh"
 android:showAsAction="ifRoom" />
</menu>

Note that from the menu definition, we have referenced two new drawables; ic_new
and ic_refresh. We need to add these images to the project the same way that we
did for the ic_app icon in Chapter 3, Creating the Points of Interest App. The images
can be found in the drawable folder present in the assets location.

Chapter 5

[81]

Setting menus in OnCreateOptionsMenu()
The OnCreateOptionsMenu() method is called to give an opportunity to the
Activity parameter to define actions for the ActionBar. The Activity class
provides a MenuInflater method, which reads the XML definition file and places
the action defined on the ActionBar. The following code shows the implementation
from the code bundle:

public override bool OnCreateOptionsMenu(IMenu menu)
{
 MenuInflater.Inflate(Resource.Menu.poiListViewMenu, menu);
 return base.OnCreateOptionsMenu(menu);
}

Handling selection in
OnOptionsItemSelected()
The OnOptionsItemSelected() method is called whenever an action in the
ActionBar is clicked and an instance of IMenuItem is passed in. The IMenuItem.
ItemId instance corresponds to the ID specified in the item definition and can be
used to determine which action was clicked on. The following code shows the
implementation of OnOptionsItemSelected() from the code bundle:

public override bool OnOptionsItemSelected (IMenuItem item)
{
 switch (item.ItemId)
 {
 case Resource.Id.actionNew:
 // place holder for creating new poi
 return true;

 case Resource.Id.actionRefresh:
 POIData.Service.RefreshCache ();
 _adapter.NotifyDataSetChanged ();
 return true;

 default :
 return base.OnOptionsItemSelected(item);
 }
}

Adding a List View

[82]

Note that we have simply created a placeholder for actionNew and
placed two method calls for actionRefresh.
The POIJsonService.RefreshCache() method is called to refresh
the cache with the *.json files stored locally on the device.
The _adapter.NotifyDataSetChanged method is called so that
poiListView will be refreshed based on the updated cache of POIs.

Configuring an SD card for the emulator
If using the emulator for development, you will need to configure it to have an SD
card for storing the POI data.

To configure an SD card for the emulator, perform the following steps:

1. From the main menu, navigate to Tools | Open Android Emulator Manager.
2. Select the emulator you have been working with and click on Edit.
3. At the bottom of the Edit AVD dialog box, you will see the SD Card section.

Click on Size, enter 1023 in the edit box and select MiB from the drop-down
menu on the right-hand side. Click on OK to save.

Running POIApp
We have done a great deal of work so far, now it's time to compile and run the
app. Compile and run the application using the Android emulator based on the
procedure we used in the previous chapters.

You will probably be disappointed to see an empty screen after all that work.
Obviously, the issue is that we do not have any data to display, and we have
not yet created the features that allow us to create new data. Bummer!

The next section discusses how to use the Android Device Monitor to push files
to an emulator or device so that we can see some data in our app. Leave the app
running in the emulator and go through the next section.

Android Device Monitor
The Android SDK ships with the Android Device Monitor (ADM) app, which is
packed with features that help you develop and debug your app either while it is
running in an emulator or on a device. The Android Device Monitor supersedes the
Dalvik Debug Monitor Service (DDMS) app, which provides similar capabilities.
In this section, we will look at how we can use ADM to manage files.

Chapter 5

[83]

First, let's add a menu item under the Tools menu in Xamarin Studio for easy
access by performing the following steps:

1. Select Tools | Options.
2. Under the Environment section, click on External Tools and then click

on Add.
3. Enter Android Device Monitor for the title.
4. Click on the Browse action for the command, navigate to Tools under the

SDK location, select Android Device monitor.bat and click on Open.
The SDK location can be determined by clicking on SDK Locations |
Android in the Options dialog box.

To copy files to an emulator or device, perform the following steps:

1. Start ADM by selecting the newly created Tools menu item. When ADM
starts, you will see currently running emulators and connect devices listed
on the left-hand side of the window.

2. Select the emulator instance or connected device you would like to
work with.

3. Select the File Explorer tab on the right-hand side of the window. If the
File Explorer tab is not visible, select Window | Show View from the
main menu and click on File Explorer.

4. Navigate to /storage/sdcard/POIApp. There should be no files listed
under the folder. While working with actual devices rather than emulators,
the physical folder to navigate to may not be obvious due to various mounts
that may be in place. For example, the actual location on my HTC One, /mnt/
shell/emulated/0. ADM will display mounts to the right-hand side of each
folder listed as follows:

5. Click on the Push file onto the Device button in the upper-right corner of
the tab. Navigate to the data folder in the assets location, select poi1.json,
and click on Open.

6. Repeat step 5 for each *.json file in the data folder.
7. Switch back to the Android emulator and click on the Refresh action in

POIApp. You should now see the POIs listed.

Adding a List View

[84]

The files that we uploaded from the assets folder are simple text files encoded
using JSON. The JSON specifications can be viewed at www.json.org. We will not
cover the JSON specifications in this book, but you can create additional JSON files
using any text editor and using the existing files as templates.

Handling row clicks
When a user clicks on a row, the POI app will navigate to a detailed view to allow
viewing and updating of the complete set of information. We will build the detailed
view in the next chapter but will go ahead and discuss handling clicks now. Clicks
can be handled using a traditional event handler. The ListView item provides
an ItemClick event handler, which accepts a ListView.ItemClickEventArgs
parameter. The ListView.ItemClickEventArgs parameter provides the following
information that can be used for processing the event:

Property Description
Id It is the ID for the data associated with the row that was clicked.

This would be the value returned from GetItemId().
Position It is the position in the ListView item of the row that was clicked.
View It is the view associated with the row that was clicked. This would be

the view returned from GetView().
Parent It is the AdapterView architecture that contains the row that was

clicked. In our case, it is ListView.

Chapter 5

[85]

Create an event handler in POIListActivity for processing click events on the
ListView item. We are not ready to add the navigation since we have not yet
created our detailed view, so we will just write a line out to the console showing
which POI was clicked. The following code is from the code bundle:

protected void POIClicked(object sender,
 ListView.ItemClickEventArgs e)
{
 PointOfInterest poi = POIDataService.GetPOI ((int)e.Id);
 Console.WriteLine ("POIClicked: Name is {0}", poi.Name);
}

We also need to hook up the event handler. Add the following line of code to the
end of the OnCreate method:

_poiListView.ItemClick += POIClicked;

Run the POIApp project and click on a POI; switch to Xamarin Studio to view the
Application Output pad.

Summary
In this chapter, we have covered the details of creating and populating a list view.
In the next chapter, we will add a detailed view to POIApp.

Adding a Detail View
In this chapter, we will walk through creating a detailed view for displaying,
updating, and deleting POIs. The following topics will be covered:

• Creating the POIDetail layout and activity
• Binding variables to user interface widgets
• Navigating between activities
• Passing data with the Intent class
• Adding validation and using EditText.Error to display error messages
• Displaying confirmation prompts
• Displaying toasts

Creating the POIDetail layout
We will start by creating a new layout:

1. Select the Resources/Layout folder in the Solution pad.
2. Right-click on Add and select New File.
3. In the New File dialog, click on Android and select Android Layout,

enter POIDetail in the Name field, and select New.
By default, layouts are created with LinearLayout as the top-level
container. The POIDetail view will have a number of fields and will likely
require scrolling on most devices. The POIList layout gave us scrolling for
free because we were using ListView; however, in the case of POIDetail,
we will need to use ScrollView.

4. With the POIDetail.xaml file opened in the Content view, select the
top-level Linear Layout and press the Delete key.

Adding a Detail View

[88]

5. In the Toolbox pad, locate the ScrollView widget and drag it onto the
Content View.

6. In the Toolbox pad, locate the LinearLayout (vertical) widget and drag
it onto the Content View inside ScrollView.

7. With LinearLayout selected, set Padding in the Layout section of the
Properties pad to 5dp.

We are now ready to add field labels and edit controls to the layout. The following
screenshot depicts the layout we are trying to achieve:

We will use simple TextView widgets to serve as labels and EditText widgets
to serve as input controls. The EditText widget contains a number of properties
that can be used to customize its behavior. One of these properties is named
InputType, and it controls aspects such as which type of keyboard to use for inputs
(Alpha, Numeric, and so on) and how many lines of text are allowed. The Toolbox
pad presents a number of templates or preconfigured EditText widgets in the list
under the group name Text Fields. The following screenshot depicts the list:

Chapter 6

[89]

Add a series of TextView and EditText controls for the Name, Description, and
Address fields. Name the EditText widgets according to the following table and
use the corresponding Toolbox widget so that the appropriate editing characteristics
are applied:

Name Widget toolbox name
nameEditText Plain Text

descrEditText Multiline Text

addrEditText Multiline Text

Adding a Detail View

[90]

We are now ready to address the Latitude and Longitude fields, and we will employ
a new layout manager, TableLayout. We would like to see these fields depicted in
a table with two rows and two columns with the top row being used for the labels
and the bottom row being used for the edit fields. In order to do so, perform the
following steps:

1. Locate TableLayout in the Toolbox pad, drag it onto the Content View
below the addrEditText widget and drop it. A TableLayout will be
created with three rows and three columns.

2. Select one of the rows in TableLayout, right-click on and select Delete Row.
3. Select one of the columns in the TableLayout, right-click on and select

Delete Column.
4. Select the first column, right-click on and select Stretch Column. Similarly,

do it for the second column.

You should now have a TableLayout with a visible outline of two rows, each having
two columns like what is depicted in the following screenshot:

We now need to add TextView widgets for the two labels in the first row
and Number (decimal) widgets for the Latitude and Longitude edit controls,
naming them latEditText and longEditText.

We have now completed the POIDetail.xaml layout, and the Content View
you see should look the same as the previous diagram.

Working with InputType
The EditText element provides a property named InputType that checks the
behavior of the control when data is being entered. When the description and
address widgets were added, we selected Multiline Text from the Toolbox pad.
The following code shows that in this case the input type was automatically set:

<EditText
 p1:inputType="textMultiLine"
 p1:layout_width="fill_parent"
 p1:layout_height="wrap_content"
 p1:id="@+id/descrEditText" />

Chapter 6

[91]

The InputType property can also be set or changed from within the Properties
pad under the Widget tab in the Input Format section. What may not be obvious
is that Input Type can combine values, which come in handy in our situation.
The following table shows a reasonable set of values for Input Type; feel free
to experiment:

Widget Input Type
nameEditText inputType="textCapWords"

descrEditText inputType="textMultiLine|textCapSentences"

addrEditText inputType="textMultiLine"

latEditText inputType="numberDecimal|numberSigned"

longEditText inputType="numberDecimal|numberSigned"

Creating POIDetailActivity
Now that we have the layout complete, we need a corresponding activity. To create
POIDetailActivity, perform the following steps:

1. With the POIApp project selected in the Solution pad, right-click on it and
navigate to Add | New File.

2. From the New File dialog, click on Android and select Android Activity,
enter POIDetailActivity as Name, and click on New.

As you may recall from the last chapter, one of the first things that need to be done
when an activity is created is to set the content, which is accomplished with a call
to SetContentView(). Add the following line of code to the OnCreate() method
of the new activity:

SetContentView (Resource.Layout.POIDetail);

Binding variables to controls
As we learned in the previous chapter, we need to manually bind user interface
widgets to internal program references in order to manipulate their content, assign
event handlers, and so on. Declare a set of private variables for each of the input
widgets we created in the layout. The following listing is from the source folder:

EditText _nameEditText;
EditText _descrEditText;
EditText _addrEditText;
EditText _latEditText;
EditText _longEditText;
ImageView _poiImageView;

Adding a Detail View

[92]

A call to FindViewById<T> is required to bind each variable to its corresponding
user interface widget. The following listing depicts what should be added to the
OnCreate() method somewhere after the call to SetContentView().

SetContentView (Resource.Layout.POIDetail);

_nameEditText = FindViewById<EditText> (Resource.Id.nameEditText);
_descrEditText = FindViewById<EditText> (
 Resource.Id.descrEditText);
_addrEditText = FindViewById<EditText> (Resource.Id.addrEditText);
_latEditText = FindViewById<EditText> (Resource.Id.latEditText);
_longEditText = FindViewById<EditText> (Resource.Id.longEditText);
_poiImageView = FindViewById<ImageView>
 (Resource.Id.poiImageView);

Adding navigation to POIDetailActivity
There are two scenarios where we need to navigate from POIListActivity to
POIDetailActivity, when we select New to create a new POI or when we select
an existing POI to display and update. In both of these scenarios, we need to start
POIDetailActivity. The main difference between the two scenarios is that when
selecting an existing POI to update, we will have an ID to pass to the detail View;
when creating a new POI, we will not.

Navigating on new action
We'll start with the simplest scenario first. The Activity class provides a method
named StartActivity(), which can be used in a number of different scenarios.
In our simple scenario, we are using it in its most basic form. All that we need to
do is to invoke StartActivity() passing in a type for the activity we want to start.
The following listing demonstrates the code that needs to be added in the placeholder
we added to POIListActivity within the OnOptionsItemSelected() method:

case Resource.Id.actionNew:
StartActivity (typeof(POIDetailActivity));
return true;

Navigating on POI Click
In the second scenario, we need to pass the ID for the clicked POI to display
POIDetailActivity. To accomplish this we will use the Intent class. The Intent
class can be used in conjunction with StartActivity() in order to launch various
types of activities. We will use the Intent class to launch POIDetailActivity and
pass the ID of the selected POI.

Chapter 6

[93]

First, we need to construct an instance of Intent by providing the current
activity for context and the type of activity that will receive the intent; in our case,
POIDetailActivity. The following listing demonstrates how to properly construct
the intent.

Intent poiDetailIntent =new Intent (this,
 typeof(POIDetailActivity));

The Intent object has an Extras property that acts as a bundle for addition, or extra
data that you would like to send to a receiving activity. The Intent class provides a
series of overloaded versions of the PutExtra() method, which allows you to add
various types of name/value pairs to the Extras property.

poiDetailIntent.PutExtra ("poiId", poi.Id);

The last step is a call to StartActivity(), passing in the Intent we constructed.

StartActivity (poiDetailIntent);

The next stop will be the OnCreate() method of POIDetailActivity.

Receiving data in POIDetailActivity
When we get to the OnCreate() method of the POIDetail View, we need access
to the POI ID so that we can retrieve and display it. Each activity has an Intent
property that contains the intent and corresponding information that was used to
start it. The Intent class provides a number of methods for accessing any of the
Extras setup for the intent. To start with we would like to know if an extra was set
up with the name poiId. We can determine this by calling HasExtra ("poiId");
if false is returned, we can assume that we are creating a new POI; otherwise, we
need to retrieve the value of the extra. The Intent class has a series of GetXXExtra()
methods where XX represents the type for the value of a name/value pair. In our
case we can use the GetIntExtra() method on the intent to get the ID passed
in from POIListActivity. The GetIntExtra() method accepts a string (which
is the name for the name/value pair originally set on the intent) and an integer
(which specifies a default to return if a value was not specified for the name passed
in). The following listing shows what is needed in the OnCreate() method of
POIDetailActivity:

// Private declarations
PointOfInterest _poi;

if (Intent.HasExtra ("poiId")) {
int poiId = Intent.GetIntExtra ("poiId", -1);
 _poi = POIData.Service.GetPOI (poiId);
}

Adding a Detail View

[94]

else
 _poi = new PointOfInterest ();

Populating user interface widgets
At this point we have a reference to POI, but we have not taken any action to
populate the content of our user interface widgets. This is pretty straightforward.
EditText has a property named Text, which we can set to initialize the content for
the widget. Create a simple method named UpdateUI(), which performs the task of
moving the content to the user interface widgets; call this method at the end of the
OnCreate() method. The following listing shows what is needed for UpdateUI():

protected void UpdateUI()
{
 _nameEditText.Text = _poi.Name;
 _descrEditText.Text = _poi.Description;
 _addrEditText.Text = _poi.Address;
 _latEditText.Text = _poi.Latitude.ToString ();
 _longEditText.Text = _poi.Longitude.ToString ();

}

You should be able to run POIApp now and test the navigation and viewing of data.

Adding Save and Delete actions
Using POIDetailActivity, users can choose to save new or existing POIs, or delete
existing POIs. We need a way to accomplish these tasks from the user interface.
We will use ActionBar again and add two actions, Save and Delete.

The following listing shows what is needed for POIDetailMenu.xml:

<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/actionSave"
 android:icon="@drawable/ic_save"
 android:title="Save"
 android:showAsAction="ifRoom" />
<item android:id="@+id/actionDelete"
 android:icon="@drawable/ic_delete"
 android:title="Delete"
 android:showAsAction="ifRoom" />
</menu>

Chapter 6

[95]

Note that each menu item has an icon specified. These icons can be found in the
[assets location]\drawable folder.

The OnCreateOptionsMenu() and OnOptionsItemSelected() methods are also
very similar to what we created in the previous chapter. The following code snippet
is the modified version:

public override bool OnCreateOptionsMenu(IMenu menu)
{
MenuInflater.Inflate(Resource.Menu.POIDetailMenu, menu);
 return base.OnCreateOptionsMenu(menu);
}

public override bool OnOptionsItemSelected (IMenuItem item)
{
 switch (item.ItemId)
 {
 case Resource.Id.actionSave:
 SavePOI ();
 return true;

 case Resource.Id.actionDelete:
 DeletePOI ();
 return true;

 default :
 return base.OnOptionsItemSelected(item);
 }
}

In this case notice that we have added the methods SavePOI() and DeletePOI(),
which get called to do all the work. This keeps the OnOptionsItemSelected()
method clean and concise.

Disabling the Delete action
One thing that's different in POIDetailView is that we have a scenario where
we need to disable an action. If a new POI is being created, the Delete action
should not be allowed. We get a chance to make these types of changes in the
OnPrepareOptionsMenu() method.

Adding a Detail View

[96]

The following listing shows how to disable the Delete action when a new
POI is being entered:

public override bool OnPrepareOptionsMenu (IMenu menu)
{
 base.OnPrepareOptionsMenu (menu);

 // disable delete for a new POI
 if (!_poi.Id.HasValue) {
 IMenuItem item =
 menu.FindItem (Resource.Id.actionDelete);
 item.SetEnabled (false);
 }

 return true;
}

Notice that IMenu provides a FindItem() method that can be used to obtain
a reference to a specific IMenuItem, which in turn provides the SetEnabled()
method for enabling and disabling actions.

Creating SavePOI()
The SavePOI() method was created so that we could avoid placing a lot of logic
in the OnOptionsItemSelected() method. The SavePOI() methods needs to
accomplish the following:

1. Validate the user input.
2. Move data from the user interface widgets to the POI entity properties.
3. Call SavePOI() on POIJsonService.
4. Close the POIDetailActivity activity by calling Finish().

We will cover validation in an upcoming section and focus now on the remaining
three items. The following listing shows what should be present in SavePOI():

protected void SavePOI()
{
 _poi.Name = _nameEditText.Text;
 _poi.Description = _descrEditText.Text;
 _poi.Address = _addrEditText.Text;

Chapter 6

[97]

 _poi.Latitude = Double.Parse(_latEditText.Text);
 _poi.Longitude = Double.Parse(_longEditText.Text);

 POIData.Service.SavePOI (_poi);
 Finish ();
}

Creating DeletePOI()
Like SavePOI(), the DeletePOI() method was created to simplify the logic in
OnOptionsItemSelected(). The DeletePOI() method needs to accomplish
the following:

1. Call DeletePOI() on POIJsonService.
2. Close the POIDetailActivity activity by calling Finish().

The following listing shows what should be present in the DeletePOI() method:

protected void DeletePOI()
{
 POIData.Service.DeletePOI (_poi);
 Finish ();
}

You should now be able to run the app and add, change, and delete POIs.

Adding validation
Any nontrivial app will have some level of the validation required. The POIApp app
is somewhat trivial, but we have a small set of rules we need to enforce that will
facilitate the discussion.

Property Rule
Name Cannot be empty or null.
Latitude Valid decimal number between -90

and 90.
Longitude Valid decimal number between -180

and 180.

Adding a Detail View

[98]

Using the EditText.Error property
The EditText widget has a string property named Error, which simplifies the
effort of displaying errors to the user, particularly if you want to be able to show
all the fields with errors at once. The following screenshot displays the error
received for leaving the Name field empty:

To use this facility, simply set the property to an error message and clear the property
when no errors exist. The following example demonstrates implementing the rule for
the Name property.

bool errors = false;

if (String.IsNullOrEmpty (_nameEditText.Text)) {
_nameEditText.Error = "Name cannot be empty";
 errors = true;
}
else
 _nameEditText.Error = null;

Notice the local Boolean variable named errors, which is used to keep track of
whether any errors have been found. Edits for Latitude and Longitude are a little
more involved, as you need to account for converting text to a double value and
allow for a null value to be specified. The following code demonstrates one of the
approaches to implement the edits:

double? tempLatitude = null;
if (!String.IsNullOrEmpty(_latEditText.Text)) {
 try {
 tempLatitude = Double.Parse(_latEditText.Text);
 if ((tempLatitude > 90) | (tempLatitude < -90)) {
 _latEditText.Error = "Latitude must be a decimal value
 between -90 and 90";
 errors = true;
 }
 else
 _latEditText.Error = null;
 }

Chapter 6

[99]

 catch {
 _latEditText.Error = "Latitude must be valid decimal number";
 errors = true;
 }
}

Implement the rules identified at the start of this section in the SavePOI() method
using the EditText.Error property.

The actual updating of the POI properties and saving should only be performed if
all of the edits are passed. The following listing shows one of the ways to structure
the logic:

if (!errors) {
 _poi.Name = _nameEditText.Text;
 _poi.Description = _descrEditText.Text;
 _poi.Address = _addrEditText.Text;
 _poi.Latitude = tempLatitude;
 _poi.Longitude = tempLongitude;
 POIData.Service.SavePOI (_poi);
 Finish ();
}

Notice that the Finish() method is called at the end of the preceding code snippet.
This causes the POIDetailActivity activity to be closed and the previous activity
on the stack will be brought back to the foreground; in our case, POIListActivity.
Refer to the code bundle for a more complete example.

Run POIApp and confirm that the validations are working correctly.

Adding a Delete confirmation prompt
It's best practice for apps to provide a confirmation before performing any type of
destructive update, particularly if it cannot be undone. As such we need to provide
a confirmation for the Delete action. Fortunately, Android makes this relatively
easy with the AlertDialog and AlertDialog.Builder classes. The AlertDialog
class allows you to display a modal confirmation dialog. The AlertDialog.Builder
class is an embedded class that helps to construct an instance of an AlertDialog
method; you can think of it as a factory class. The steps are as follows:

1. Create an instance of AlertDialog.Builder.
2. Set various properties on the builder instance, such as the message, the

button text, the calling of event handlers when a button is clicked, and so on.

Adding a Detail View

[100]

3. Call Show() on the instance of AlertDialog.Builder to create and display
an instance of AlertDialog.
In our case we want an AlertDialog class with a simple message and an
OK and Cancel button. When Cancel is clicked on, we simply need to close
the dialog and not do anything else. When OK is clicked on, we need to
delete the POI and close the activity.

4. Create an event handler that will be called when OK is clicked on and move
the delete and finish logic into this new event handler. The following
listing depicts these changes:
protected void ConfirmDelete(object sender, EventArgs e)
{
 POIData.Service.DeletePOI (_poi);
 Finish ();
}

5. Add the logic that constructs the AlertDialog class into the existing
DeletePOI() method. The following listing depicts this logic:

protected void DeletePOI()
{
 AlertDialog.Builder alertConfirm =
 new AlertDialog.Builder(this);
 alertConfirm.SetCancelable(false);
 alertConfirm.SetPositiveButton("OK", ConfirmDelete);
 alertConfirm.SetNegativeButton("Cancel", delegate {});
 alertConfirm.SetMessage(String.Format("Are you sure you
 want to delete {0}?", _poi.Name));
 alertConfirm.Show();
}

The SetPositiveButton() and SetNegativeButton() methods allow button
captions and event handlers to be specified. In the case of the NEGATIVE button Cancel,
we provide an empty event handler because there is nothing to do; Android will take
care of closing the dialog. AlertDialog also provides a NEUTRAL button.

On devices prior to Honeycomb, the button order (left to right) was
POSITIVE - NEUTRAL - NEGATIVE. On newer devices using the
Holo theme, the button order (left to right) is NEGATIVE - NEUTRAL -
POSITIVE.

Run POIApp and verify if the delete confirmation is working correctly.

Chapter 6

[101]

Toasting success
Sometimes it is nice to have a positive confirmation when actions are completed
successfully. Toasts are a way within Android to display a short message that will
disappear after a specified amount of time. The Toast class is used to accomplish
this. The following listing depicts calls to MakeText() and Show():

Toast toast = Toast.MakeText (this, String.Format ("{0} deleted.",
 _poi.Name), ToastLength.Short);
toast.Show();

Add toasts prior to the call to Finish() in both the SavePOI() and ConfirmDelete()
methods. Refer to the source in the code bundle for an example.

Run POIApp and confirm that the toasts are displaying correctly.

Refreshing POIListActivity
Actions we take on POIDetailActivity, such as Save and Delete, have an effect on
the data that would have been previously displayed on POIListActivity; we need
to be sure that ListView on POIListActivity is refreshed when it becomes active
again. BaseAdapter<> provides a method NotifyDataSetChanged(), which can be
used to cause an adapter to refresh or repopulate an adapter View. The best place
to call NotifyDataSetChange() would be in the OnResume() method. As you may
recall from Chapter 1, The Anatomy of an Android App, when an activity is moved to
the background due to the start of a new activity, the OnPause() method is called.
This would have happened for POIListActivity when POIDetailActivity was
started. When POIDetailActivity is completed, POIListActivity will be brought
back to the foreground and the OnResume() method will be called. The following
listing shows what is needed to refresh POIListActivity:

protected override void OnResume (){
 base.OnResume ();

 _adapter.NotifyDataSetChanged ();
}

Adding a Detail View

[102]

Wrapping up
We have covered a lot of ground in this chapter. The following screenshot shows
what the detailed View should look like. If you have any unintended deviations,
you can refer to the code bundle:

Screenshots can be captured from within the Android Device Monitor (ADM).
Simply start ADM, select an emulator or connected device from the list, and click
on the Screen Capture button just above the list.

Summary
In this chapter we developed a detailed View which allows for the viewing, updating,
and deleting of POIs, as well as the navigation between the POIListActivity and
POIDetailActivity. In the next chapter, we will integrate our app with Android's
location services.

Making POIApp Location
Aware

One of the most interesting aspects for mobile development is interacting with
device capabilities such as motion sensors, cameras, and location sensors. While
these capabilities are new and fun to many developers, they can also bring a great
deal of value to the users of our mobile apps. In this chapter, we will walk through
adding location awareness to POIApp including the following topics:

• Setting application permissions
• Obtaining the current longitude and latitude
• Obtaining the address for a longitude and latitude
• Calculating the distance between two locations
• Displaying a POI within the map app

Location services
While working with location services on the Android platform, you will primarily
work with an instance of LocationManager. The process is fairly straightforward
as follows:

1. Obtain a reference to an instance of LocationManager.
2. Use the instance of LocationManager to request location change

notifications, either ongoing or a single notification.
3. Process OnLocationChange() callbacks.

Making POIApp Location Aware

[104]

Android devices generally provide two different means for determining a location:
GPS and Network. When requesting location change notifications, you must specify
the provider you wish to receive updates from. The Android platform defines a set
of string constants for the following providers:

Provider Name Description
GPS_PROVIDER (gps) This provider determines a location using satellites.

Depending on conditions, this provider may take
a while to return a location fix. This requires the
ACCESS_FINE_LOCATION permission.

NETWORK_PROVIDER
(network)

This provider determines a location based on the
availability of a cell tower and Wi-Fi access points.
Its results are retrieved by means of a network lookup.

PASSIVE_PROVIDER
(passive)

This provider can be used to passively receive location
updates when other applications or services request
them without actually having to request for the
locations yourself. It requires the ACCESS_FINE_
LOCATION permission, although if the GPS is not
enabled, this provider might only return coarse fixes.

You will notice specific permissions in the provider descriptions that must be set on
an app to be used.

Setting app permissions
App permissions are specified in the AndroidManifest.xml file. To set the
appropriate permissions, perform the following steps:

1. Double-click on Properties/AndroidManifest.xml in the Solution pad.
The file will be opened in the manifest editor. There are two tabs at the
bottom of the screen, Application and Source, which can be used to toggle
between viewing a form for editing the file or the raw XML as follows:

Chapter 7

[105]

2. In the Required permissions list, check AccessCoarseLocation,
AccessFineLocation, and Internet. Select File | Save.

3. Switch to the Source View to view the XML as follows:

Making POIApp Location Aware

[106]

Configuring the emulator
To use an emulator for development, this chapter will require the emulator to
be configured with Google APIs so that the address lookup and navigation to map
app works.

To install and configure Google APIs, perform the following steps:

1. From the main menu, select Tools | Open Android SDK Manager.
2. Select the platform version you are using, check Google APIs, and click

on Install 1 package…, as seen in the following screenshot:

3. After the installation is complete, close the Android SDK Manager and
from the main menu, select Tools | Open Android Emulator Manager.

4. Select the emulator you want to configure and click on Edit.
5. For Target, select the Google APIs entry for the API level you want to work

with; for example, Google APIs (Google Inc.) – API Level 15 was used for
the development of the book examples as follows:

Chapter 7

[107]

6. Click on OK to save.

Obtaining an instance of LocationManager
The LocationManager class is a system service that provides access to the location
and bearing of a device, if the device supports these services. You do not explicitly
create an instance of LocationManager; instead, you request an instance from a
Context object using the GetSystemService() method. In most cases, the Context
object is a subtype of Activity. The following code depicts declaring a reference of
a LocationManager class and requesting an instance:

LocationManager _locMgr;
. . .
_locMgr = GetSystemService (Context.LocationService) as
 LocationManager;

Requesting location change notifications
The LocationManager class provides a series of overloaded methods that can
be used to request location update notifications. If you simply need a single
update, you can call RequestSingleUpdate(); to receive ongoing updates,
call RequestLocationUpdate().

Making POIApp Location Aware

[108]

Prior to requesting location updates, you must identify the location provider
that should be used. In our case, we simply want to use the most accurate provider
available at the time. This can be accomplished by specifying the criteria for the
desired provider using an instance of Android.Location.Criteria. The following
code example shows how to specify the minimum criteria:

Criteria criteria = new Criteria();
criteria.Accuracy = Accuracy.NoRequirement;
criteria.PowerRequirement = Power.NoRequirement;

Now that we have the criteria, we are ready to request updates as follows:

_locMgr.RequestSingleUpdate (criteria, this, null);

Implementing ILocationListener
You will notice that the second parameter to RequestSingleUpdate() must be an
object that implements ILocationListener, which defines the following methods:

• void OnLocationChanged (Location location);

• void OnProviderDisabled (string provider);

• void OnProviderEnabled (string provider);

• void OnStatusChanged (string provider, Availability status,
Bundle extras);

For the most part, we will create blank stubs for all of the methods except
OnLocationChanged(). While writing more sophisticated applications, it will
be useful to provide implementations for some of the other methods. For example,
you might call RequestLocationUpdate() to begin receiving updates and then
receive a notification via OnProviderEnabled() that a preferred provider is now
available, in which case you would want to stop updates and start them again
using the preferred provider.

Adding location services to POIApp
In POIApp, we have the following two different scenarios for requesting
location updates:

• On the POIListActivity class, we need to calculate the distance to each listed
POI. In this scenario, we want to request location change notifications on an
ongoing basis and use the most current location to calculate the distance.

• On POIDetailActivity, we would like to request the current location when
adding a new POI. In this scenario, we will want to request a single location
change notification.

Chapter 7

[109]

Adding location services to POIListActivity
Now that we have some idea of how to add location services to an app, let's add
location services to POIListActivity as follows:

1. Declare a private instance of LocationManager and obtain a reference in
OnCreate() as follows:
LocationManager _locMgr;
. . .
protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);
 SetContentView (Resource.Layout.POIList);

 _locMgr = GetSystemService (Context.LocationService) as
 LocationManager;
. . .

2. In OnResume(), obtain the best location provider and call
RequestLocationUpdates() to start receiving updates as follows:
protected override void OnResume ()
{
 base.OnResume ();

 _adapter.NotifyDataSetChanged ();

 Criteria criteria = new Criteria ();
 criteria.Accuracy = Accuracy.NoRequirement;
 criteria.PowerRequirement = Power.NoRequirement;

 string provider = _locMgr.GetBestProvider (criteria,
 true);
 _locMgr.RequestLocationUpdates(provider, 20000, 100,
 this);
}

3. Add a call to RemoveUpdates() in OnPause(). This eliminates unnecessary
processing of location changes when the POIListActivity class is not
visible, as shown in the following code:
protected override void OnPause ()
{
 base.OnPause ();
 _locMgr.RemoveUpdates (this);
}

Making POIApp Location Aware

[110]

4. Specify that POIListActivity implements Android.Locations.
ILocationListener and implement stub methods using the
Refactor|Implement interface. Remove any code placed in the stub
methods, we will provide logic for OnLocationChange().

5. Add a CurrentLocation property to POILIstViewAdapter.
The POIListActivity class will use this property to communicate
location changes to the adapter:
public Location CurrentLocation { get; set; }

6. Add a logic in OnLocationChanged() to set CurrentLocation on
POIListViewAdapter when a location change is received and call
NotifyDataSetChange() to cause the ListView to be refreshed
as follows:
public void OnLocationChanged (Location location)
{
 _adapter.CurrentLocation = location;
 _adapter.NotifyDataSetChanged ();
}

7. Add logic to the GetView() method on POIListViewAdapter to calculate
the distance between the CurrentLocation and a POI's location properties
and update distanceTextView with the results. The calculation should
only be done if CurrentLocation is not null and the Latitude and
Longitude properties for the POI being added to the ListView are not
null. If any of these values are null, simply place ?? in the distance
field to indicate it cannot be calculated at this time as follows:

if ((CurrentLocation != null) && (poi.Latitude.HasValue) &&
 (poi.Longitude.HasValue)) {
 Location poiLocation = new Location ("");
 poiLocation.Latitude = poi.Latitude.Value;
 poiLocation.Longitude = poi.Longitude.Value;
 float distance = CurrentLocation.DistanceTo (poiLocation)
 * 0.000621371F;
 view.FindViewById<TextView>
 (Resource.Id.distanceTextView).Text = String.Format
 ("{0:0,0.00} miles", distance);
}
else {
 view.FindViewById<TextView>
 (Resource.Id.distanceTextView).Text = "??";
}

Now, run POIApp and view the results in POIListView.

Chapter 7

[111]

Adding location services to POIDetailActivity
The steps for adding location services to POIDetailActivity will be very similar
to the previous section, but will be slightly simpler.

Updating the user interface
Prior to adding the logic, we need to add a few buttons to our app; one for getting
our location and one for navigating to the map, which we will cover later in this
chapter. We can add these as a row of buttons at the bottom of POIDetail.axml,
as depicted in the following screenshot:

Using ImageButton allows a drawable class to be specified.

To add the ImageButton widgets, perform the following steps:

1. Add a LinearLayout instance to the bottom of POIDetail.axml just
below the TableLayout used to arrange the latitude and longitude
content. The orientation should be "horizontal".

2. On the LinearLayout instance, the orientation should be horizontal,
the content should be wrapped (both height and width), and it should be
centered horizontally in the parent. The layout gravity can be used to center
content horizontally within its parent. The top and bottom padding of 10dp
will provide a good spacing for the buttons.

3. Add the two ImageButton widgets, locationImageButton and
mapImageButton, within the LinearLayout instance. Images for these
buttons can be found in the drawable folder in the assets location.

4. The following XML code shows the result:

. . .
</TableLayout>
<LinearLayout
 p1:orientation="horizontal"
 p1:layout_width="wrap_content"

Making POIApp Location Aware

[112]

 p1:layout_height="wrap_content"
 p1:layout_gravity="center_horizontal"
 p1:minWidth="25px"
 p1:minHeight="25px"
 p1:layout_marginTop="10dp"
 p1:layout_marginBottom="10dp">
 <ImageButton
 p1:src="@drawable/ic_locate"
 p1:layout_width="wrap_content"
 p1:layout_height="wrap_content"
 p1:id="@+id/locationImageButton" />
 <ImageButton
 p1:src="@drawable/ic_map"
 p1:layout_width="wrap_content"
 p1:layout_height="wrap_content"
 p1:id="@+id/mapImageButton" />
</LinearLayout>

Adding the code
Now that we have buttons on the UI, we can add the code to obtain the location
as follows:

1. Declare a private instance of LocationManager and obtain a reference
in OnCreate() in the same way we did for POIListView in the previous
section.

2. Add a GetLocationClicked event handler and hook it up to the
ImageButton as follows:
_locationImageButton = FindViewById<ImageButton>
 (Resource.Id.locationImageButton);

_locationImageButton.Click += GetLocationClicked;

Chapter 7

[113]

3. Add a call to RequestSingleUpdate() in GetLocationClicked().
The RequestSingleUpdate() method allows for a Criteria object to
be passed in so that we do not need a separate call to GetBestProvider()
as follows:
protected void GetLocationClicked(object sender, EventArgs e)
{
 Criteria criteria = new Criteria();
 criteria.Accuracy = Accuracy.NoRequirement;
 criteria.PowerRequirement = Power.NoRequirement;

 _locMgr.RequestSingleUpdate (criteria, this, null);
}

4. Specify that POIDetailActivity implements Android.Locations.
ILocationListener and implement stub methods using the
Refactor|Implement interface. Remove any code placed in the
stub methods; we will provide a logic for OnLocationChange().

5. Add a logic in OnLocationChange() to update the location fields
as follows:

public void OnLocationChanged (Location location)
{
 _latEditText.Text = location.Latitude.ToString();
 _longEditText.Text = location.Longitude.ToString ();
}

Run POIApp and test adding a new POI and getting the location. While running
the app in the emulator, you will notice that apparently nothing happens when
the location button is clicked. The app is actually waiting for a callback to
OnLocationChanged() from the location manager; to trigger this callback,
you must use the Android Device Monitor.

To trigger OnLocationChanged(), perform the following steps:

1. Start ADM and select the emulator instance on the left-hand side.

Making POIApp Location Aware

[114]

2. Click on the Emulator Control tab on the right-hand side. If the Emulator
Control tab is not present, navigate to Window | Show View to display
the tab. Notice that at the bottom of the panel, there is a nested tab titled
Location Controls, as shown in the following screenshot:

3. Select the Manual tab, adjust Longitude and Latitude, if desired, and click
on Send. This will cause the OnLocationChanged() method to be fired on
POIDetailActivity.

Note the other two tabs under Location Controls, that is GPX and KML. These tabs
can be used to load a series of location updates from a file and play them back to
your app to test more sophisticated scenarios.

Getting an address for a location
Another useful feature provided by the Android platform is called Geocoding.
This is the process of obtaining the location in terms of latitude and longitude from
a known address. Android also supports Reverse Geocoding, which is what you
would expect from the name, obtaining an address from a known location.

Chapter 7

[115]

The Android.Locations.Geocoder class is the class used to perform geocoding
and reverse geocoding. It's a very straightforward process to use, as shown in the
following steps:

1. Create an instance of Android.Locations.Geocoder.
2. Call GetFromLocation() passing in the location you would like to find the

address for.
3. Process the IList<Address> collection returned. The collection of addresses

returned from GetFromLocation() vary in specifics; meaning, some are
specific street addresses, some specify a city, country, and so on. The first
address is always the most specific, so we will automatically choose it,
using the following code:

public void OnLocationChanged (Location location)
{
 _latEditText.Text = location.Latitude.ToString();
 _longEditText.Text = location.Longitude.ToString ();

 Geocoder geocdr = new Geocoder(this);
 IList<Address> addresses = geocdr.GetFromLocation
 (location.Latitude, location.Longitude, 5);

 if (addresses.Any()) {
 UpdateAddressFields (addresses.First ());
 }
}

You can see that we chose to call a method to format the address information.
The FeatureName property may contain a title such as Golden Gate Bridge or
Empire State Building. More times than not, FeatureName will simply contain
the street number. The address contains a list of address lines, which we combine
and place in _addrEditText, as follows:

protected void UpdateAddressFields(Address addr)
{
 if (String.IsNullOrEmpty(_nameEditText.Text))
 _nameEditText.Text = addr.FeatureName;

 If (String.IsNullOrEmpty(_addrEditText.Text)) {
 for (int i = 0; i < addr.MaxAddressLineIndex; i++) {
 if (!String.IsNullOrEmpty(_addrEditText.Text))

Making POIApp Location Aware

[116]

 _addrEditText.Text += System.Environment.NewLine;
 _addrEditText.Text += addr.GetAddressLine (i);
 }

 }
}

Now, run POIApp and test adding a new POI and getting the address for a location.

Keeping the user informed
After using the get location button, you will notice that requests for location
information take some amount of time to process; generally a few seconds or more.
It would be best to keep users informed that processing is taking place so that they
don't continually click on the button. The ProgressDialog class provides just the
solution needed, which is a simple means of displaying a dialog with a spinning
progress widget and text description of what process is taking place.

To add a progress dialog, perform the following steps:

1. Add a private variable of type ProgressDialog to POIDetailActivity
as follows:
ProgressDialog _progressDialog;

2. At the top of GetLocationClicked(), call the static method
ProgressDialog.Show() saving the result in the private variable we just
created. The Show(), method accepts an activity, a title, and a message as
parameters. This call causes the progress dialog to be presented to the user
as follows:
_progressDialog = ProgressDialog.Show (this, "", "Obtaining
 location...");

3. At the bottom of OnLocationChanged(), call the Cancel() method on the
progress dialog causing the dialog to be closed as follows:

_progressDialog.Cancel ();

Now, run POIApp and test the new progress dialog.

Dealing with configuration changes
In the previous section, we solved the problem of keeping the user informed while
they wait for location updates, but we unknowingly created another problem.
As you may recall from Chapter 1, The Anatomy of an Android App, we mentioned
that by default Android destroys and recreates an activity when a configuration
change such as a device orientation change occurs.

Chapter 7

[117]

This is done to take advantage of a feature that Android provides, which allows you
to specify different layouts to use based on device orientation. In our app, we have a
single folder named layout, which holds all our layouts. If we wanted POIDetail.
axml to have a different layout when the device is in landscape, we would simply
create a new folder in Resources named layout-land and create our alternate
layout in it using the same name, POIDetail.axml. When Android destroys and
recreates our activity because the device was rotated to landscape, our call to
SetContentView() would cause Android to first look in layout-land to see if a
layout exists.

This is neat, but a fallout of this approach arises when an activity initiates any type
of asynchronous processing such as requesting location updates. The problem is
when a configuration change takes place and Android destroys the original activity;
you no longer want asynchronous callbacks to come in for the original activity.

To observe the issue, run POIApp, press the get location button, and rotate the screen.
In the emulator, press Ctrl + F11 or Ctrl + F12 to rotate the device. If you are in the
debug mode, you should see an exception thrown when you try and cancel the
progress dialog; this is due to the fact that Android has already removed the dialog
from the view hierarchy when it destroyed the activity.

Android provides the following ways of dealing with this issue:

• Prevent the activity from being destroyed based on specifications made
for the activity in the AndroidManifest.xml file

• Override virtual methods on Activity to save and restore the state
appropriately when configuration changes occur

Saving and restoring a state
To allow for saving and restoring of a state, Android provides
OnSaveInstanceState() and OnRestoreInstanceState().
The OnSaveInstanceState() method is called as a part of the destruction
of the activity due to configuration changes and allows you to save processing
a state in the Bundle object that is passed in. The OnRestoreInstanceState()
method is called after OnStart() when an activity is being reinitialized
and receives the same Bundle object that OnSaveInstanceState()
would have populated.

In our case, we simply want to cancel any pending location changes within
OnSaveInsatnceState() and restart the process in OnRestoreInstanceState(),
if we were indeed waiting for location updates when the configuration change
occurred. Unfortunately, many asynchronous scenarios are far more complex
than ours and are beyond what can be considered here.

Making POIApp Location Aware

[118]

To save and restore a state, perform the following steps:

1. Create a private bool that will be used to indicate if we are waiting for
location updates as follows:
bool _obtainingLocation = false;

2. Add a line of code at the top of GetLocationClicked() to set this variable
to true, and at the bottom of OnLocationChanged() to set this variable
to false.

3. Override OnSaveInstanceState() and save the value of the processing
variable and cancel any location updates that might be pending as follows:
protected override void OnSaveInstanceState (Bundle
 outState)
{
 base.OnSaveInstanceState (outState);

 outState.PutBoolean("obtaininglocation",
 _obtainingLocation);

 // if we were waiting on location updates; cancel
 if (_obtainingLocation) {
 _locMgr.RemoveUpdates (this);
 }
}

4. Override OnRestoreInstanceState() and restore the value of the
processing variable, and if the value is true, restart the request for
location update as follows:

protected override void OnRestoreInstanceState (Bundle
 savedInstanceState)
{
 base.OnRestoreInstanceState (savedInstanceState);

 _obtainingLocation =
 savedInstanceState.GetBoolean("obtaininglocation");

 // if we were waiting on location updates; restart
 if (_obtainingLocation)
 GetLocationClicked (this, new EventArgs ());
}

Now, run POIApp and test the changes.

Chapter 7

[119]

Preventing activity destruction
By now, you may be wondering if we have a similar problem in POIListActivity.
But we do not because of our decision to turn on and off location updates in
the OnResume() and OnPause() methods. These methods are called as part of the
normal construction and destruction processes. As a result, there are no scenarios
where an asynchronous callback will be called after the activity is destroyed.
You will, however, notice that when you change the orientation of the device,
the distance labels are changed to ?? due to the activity being reconstructed. This
actually provides a good opportunity to demonstrate an alternate way of dealing
with this issue; preventing the activity from being destroyed. Android allows for
the specification of the configChanges attribute in the activity element of the
AndroidManifest.xml file. Specifying configChanges tells Android that you will
take care of reconfiguring the layout, if needed, and the activity class will not be
destroyed. The following code example shows how to specify that orientation and
the screen size changes for POIListActivity will be dealt manually by the app:

<activity
 android:name="poiapp.POIListActivity"
 android:configChanges="orientation|screenSize"
 android:label="POIs" >
. . .
</activity>

Xamarin.Android provides a more convenient way to specify how to prevent
activity destruction using an attribute on the activity class. The following
code example shows the use of the ConfigurationChanges attribute;

[Activity (Label = "POIs", MainLauncher = true,
 ConfigurationChanges =
 (Android.Content.PM.ConfigChanges.Orientation |
 Android.Content.PM.ConfigChanges.ScreenSize))]
public class POIListActivity : Activity, ILocationListener
{
 . . .

After placing the ConfigurationChanges attribute on POIListActivity, run
POIApp and observe that once the distances have been calculated, they will not
be lost during device orientation changes.

Adding map integration
Maps are another truly cool part of mobile computing. They provide a means
of navigation, finding points of interest in an area, as well as supporting many
other useful scenarios.

Making POIApp Location Aware

[120]

There are two basic approaches to interfacing with maps from an app:

• Navigate to the existing Android map app showing a point of interest.
• Integrate with the Google Maps API.

The first option is much easier to implement, whereas the second option allows for
tighter integration and control of the maps at the cost of more code and complexity.

We chose to go with the first option for the POIApp example for the following reasons:

• The second option requires very specific versions of Xamarin.Android
binding libraries corresponding to Google Play libraries, which at the time
of the writing of this book were difficult to locate and configure

• It is very difficult to get the second option working inside an emulator,
meaning you would have to test and view the results of the code on an
actual device, which may not be an option for all readers

• We would need to dedicate more time than we have available in this
chapter to get the second option up and running

Xamarin's website contains articles with all the details required to get the second
option working.

Navigating to the map app
To navigate to the map app, we will rely on the Intent class we used earlier in the
book; however, rather than specifying the Activity class we want to start, we will
specify the type of information we would like to view using a URI. Android contains
a registry of apps that can display different types of information and will launch the
most appropriate app.

The Android platform defines a set of Intent classes that can be used to launch
Google apps on Android devices. The following table summarizes the Intent
classes related to locations:

URI Action
geo:latitude,longitude This action opens the map application

centered at a latitude or longitude.
geo:latitude,longitude?z=zoom This action opens the map application

centered at a latitude or longitude and
zoomed to the specified level.

geo:0,0?q=my+street+address This action opens the map application to
the location of a street address.

geo:0,0?q=business+near+city This action opens the map application and
displays the annotated search results.

Chapter 7

[121]

In our case, we have a street address, latitude and longitude, or both. If the street
address is present, we should build the Intent class with it, because this will cause
the street address to appear in the map app, making it more user friendly. If the
street address is not present, we will build the Intent class using latitude and
longitude. The following code shows the logic for building the Intent class:

Android.Net.Uri geoUri;
if (String.IsNullOrEmpty (_addrEditText.Text)) {
 geoUri = Android.Net.Uri.Parse (String.Format("geo:{0},{1}",
 _poi.Latitude, _poi.Longitude));
}
else {
 geoUri = Android.Net.Uri.Parse (String.Format("geo:0,0?q={0}",
 _addrEditText.Text));
}

Intent mapIntent = new Intent (Intent.ActionView, geoUri);

Prior to launching the Intent class, we need to be sure there is an app that can
handle the Intent class; otherwise, we might end up with an unhandled exception
from StartActivity().

Checking for registered map apps
Apps provide information about any capabilities they provide (the Intent classes)
in their manifest files as an <intent-filter/> element. Since we are relying on an
external map app to display our location for us, we should check to be sure such
an app exists on the device we are running on. We accomplish this with a few calls
to the PackageManager class. The PackageManager class allows you to retrieve
various types of information about the application packages installed on a device.
The QueryIntentActivities() method allows you to check if there are any apps
available to handle a specific Intent class. The following code demonstrates the use
of QueryIntentActivities():

PackageManager packageManager = PackageManager;
IList<ResolveInfo> activities =
 packageManager.QueryIntentActivities(mapIntent, 0);

if (activities.Count == 0) {
 AlertDialog.Builder alertConfirm = new AlertDialog.Builder
 (this);
 alertConfirm.SetCancelable (false);
 alertConfirm.SetPositiveButton ("OK", delegate {});

Making POIApp Location Aware

[122]

 alertConfirm.SetMessage ("No map app available.");
 alertConfirm.Show ();

}
else
 StartActivity (mapIntent);

Create a MapClicked() event handler, attach it to the mapImageButton, and fill in
the logic for building and starting the Intent class.

Run POIApp and test navigating to the map from POI. You will notice that once the
map app has been presented with the POI location, you have the option of choosing
to navigate to it from your current location.

Summary
In this chapter, we stepped through integrating POIApp with location services and
the Google map app. In the next chapter, we will continue integrating with device
capabilities by adding integration with the camera.

Adding Camera App
Integration

Another exciting feature of mobile computing is that most devices have some type
of camera that can be used to capture photos and/or videos. This chapter will walk
through the steps required to add the ability to capture a picture of a POI and will
include the following topics:

• Approaches to adding camera integration
• Camera permissions and features
• Capturing and displaying a photo
• Displaying a photo in the List View

Picking an integration approach
The Android platform provides two primary ways to add camera integration to
your app:

• Using existing camera apps to integrate using intent
• Creating your own custom activity that interacts directly with the camera

using the Android API

The second approach allows for a high degree of control over how the camera View
is presented to the user and how the user interacts with the View. The first approach
is much simpler to implement and focuses on reusing existing apps to capture the
picture. We will go with the first approach as it represents a very practical way to
add camera integration.

Adding Camera App Integration

[124]

Permissions and Features
Prior to getting into the details of adding camera integration, we will discuss more
about the general permissions and features related to the camera. The following
table contains the various permissions that may be required. In our case, we need
not specify any of these, because we are using an external camera app to capture
the picture.

Permission Description
CAMERA If your app requests permission to use the device's

camera, this is not required if you make the request
through an intent

WRITE_EXTERNAL_STORAGE If your app saves images or videos to the devices
external storage (SD card)

RECORD_AUDIO If your app records audio with video capture
ACCESS_FINE_LOCATION If your app tags photos with GPS location information

Camera-specific features can be set up in an app's manifest file using the <uses-
feature/> element. The following features are defined:

Feature Description
android.hardware.camera The application uses the device's camera.

If the device supports multiple cameras,
the application uses the camera that faces
away from the screen.

android.hardware.camera.autofocus Subfeature. The application uses the
device camera's autofocus capability.

android.hardware.camera.flash Subfeature. The application uses the
device camera's flash.

android.hardware.camera.front Subfeature. The application uses a
front-facing camera on the device.

android.hardware.camera.any The application uses at least one camera
facing any direction. Use this in preference
to android.hardware.camera if a
back-facing camera is not required.

In our case, we will not specify any features as requirements, but at runtime, we will
check to be sure an external app is available to capture a photo. This would allow
anyone to install and use our app even if their device did not have a camera.

Chapter 8

[125]

Configuring the Emulator
If using the emulator for development, you will need to configure it to have a
camera. If the computer you are using has a webcam, the emulator can use it as
the camera; otherwise, you can choose to have an emulated camera.

To configure the emulator for a camera, perform the following steps:

1. From the main menu navigate to Tools | Open Android
Emulator Manager.

2. Select the emulator you have been working with and choose Edit.
3. In the middle of the Edit AVD dialog, you will see two dropdowns;

one for Front Camera and one for Back Camera. Make your selections
and click on OK.

Extending the data service
Another topic we need to consider is which new features we require from the data
service. Since we will be using an external camera app to capture the picture, we will
have it save the picture in the same location as the JSON using a naming scheme like
poiimage<id>.jpg. The data service will not be responsible for saving the images,
but it would be convenient for it to provide a location and filename. Also, since the
data service deletes POIs, it would be a good idea for it to also delete corresponding
POI images, if they exist.

Defining GetImageFilename()
As we previously mentioned, the filename and location is something we should obtain
from the data service. To do so, we will first add a method to the IPOIDataService
interface and then implement it in POIJsonServices. The following listing shows
the method we need to add to IPOIDataService:

Adding Camera App Integration

[126]

public interface IPOIDataService
{
...
string GetImageFilename (int id);
}

Implementing GetImageFilename()
Now, we need to implement the method in POIJsonService.cs. Image files will be
named as poiimage<id>.jpg. The following listing shows how the filename can be
constructed:

public string GetImageFilename(int id)
{
 return Path.Combine (_storagePath, "poiimage" + id.ToString () +
 ".jpg");
}

Updating DeletePOI()
The DeletePOI() method needs to be enhanced in order to delete an image that
corresponds to a POI, if one exists. The following listing shows the changes:

Public void DeletePOI (PointOfInterest poi)
{
 // delete POI JSON file
 if (File.Exists(GetFilename (poi.Id)))
 File.Delete (GetFilename (poi.Id));

 // delete POI image file
 if (File.Exists(GetImageFilename (poi.Id)))
 File.Delete (GetImageFilename(poi.Id));

 // remove POI from cache
 _pois.Remove (poi);
}

Capturing an image from
POIDetailActivity
We are now ready to take on the task of capturing a photo. This will involve
the following tasks:

Chapter 8

[127]

• Adding new user interface widgets to initiate capturing a photo and
display it

• Building a photo intent to navigate to an external camera app to capture
a photo

• Processing the results of the photo intent and displaying a photo if one
was successfully captured

The following sections describe the details of each step.

Adding UI elements
There are a few new UI elements we will need to add to support capturing an
image; we need an ImageButton element to initiate the process of capturing an image,
and we also need an ImageView element to display the image. We will add the new
ImageButton element at the bottom of the View next to the location and map buttons.
We will add the ImageView element just below the Latitude and Longitude fields and
just above the buttons at the bottom. The following list shows the definition for the
ImageView, which should be placed just below the TableLayout used for the
Latitude and Longitude widgets:

 ...
 </TableRow>
 </TableLayout>
 <ImageView
 p1:src="@android:drawable/ic_menu_gallery"
 p1:layout_width="wrap_content"
 p1:layout_height="wrap_content"
 p1:padding="10dp"
 p1:id="@+id/poiImageView"
 p1:layout_gravity="center_horizontal"
 p1:scaleType="fitCenter" />
 <LinearLayout
 ...

Create a private reference object in POIDetailActivity and assign the reference
in OnCreate():

ImageView _poiImageView;
...
_poiImageView = FindViewById<ImageView> (
 Resource.Id.poiImageView);

Adding Camera App Integration

[128]

Now, we need a button. Start by copying the ic_new_picture.png icon from
the assets folder to the project's drawable folder and adding it to the project in
the same manner as we did in the previous chapters. Add the following button
definition to the LinearLayout that contains the other buttons:

 <ImageButton
 p1:src="@drawable/ic_new_picture"
 p1:layout_width="wrap_content"
 p1:layout_height="wrap_content"
 p1:id="@+id/photoImageButton" />

Create a private reference object in POIDetailActivity and assign the reference
in OnCreate() as follows:

ImageButton _photoImageButton;
...
_photoImageButton =FindViewById<ImageButton> (
 Resource.Id.photoImageButton);

Creating the intent
To start an external camera app to capture a photo, we rely on the Intent class
again, this time combined with an action. The following listing depicts creating
an Intent with the image capture action:

Intent cameraIntent = new Intent(MediaStore.ActionImageCapture);

The MediaStore.ActionImageCapture action tells the Android platform you want
to capture a photo and are willing to use any existing app that provides
those capabilities.

Checking for registered camera apps
In Chapter 7, Making POIApp Location Aware, we used PackageManager to check
to see if a map app was present to handle our intent. We now need to perform
the same check for an app that can handle our ActionImageCapture intent.
The following listing shows the logic we need:

PackageManager packageManager = PackageManager;
IList<ResolveInfo> activities =
 packageManager.QueryIntentActivities(cameraIntent, 0);

Chapter 8

[129]

if (activities.Count == 0) {
 //display alert indicating there are no camera apps
}
else {
 //launch the cameraIntent
}

Providing additional information with the
intent
Prior to starting the intent, we need to provide some information to the camera
app that processes our request; specifically, a filename and location, and the
maximum size of the resulting photo. We do this by adding Extras to the intent.
The MediaStore class defines a number of standard Extras that can be added to
an intent to control how an external app fulfils the intent.

Providing a filename and location
The MediaStore.ExtraOutput extra can be added to control the filename and location
the external app should use in order to capture an image. We previously enhanced the
data service to provide this information. Unfortunately, we will need to convert the
string path we get from the data service to an instance of Android.Net.Uri, which is
the expected format for camera apps that consume MediaStore.ExtraOutput.

This is a two-step process. First, we create a Java.IO.File object using the
string path from the data service and then create an Android.Net.Uri object.
The following listing shows how to accomplish the construction of the URI
and set up the MediaStore.ExtraOutput extra:

Java.IO.File imageFile = new Java.IO.File(
 POIData.Service.GetImageFilename(_poi.Id.Value));

Android.Net.Uri imageUri = Android.Net.Uri.FromFile (imageFile);

cameraIntent.PutExtra (MediaStore.ExtraOutput, imageUri);

Providing size limit
The MediaStore.ExtraSizeLimit extra limits the image size. It is much more
straightforward to set up as follows:

cameraIntent.PutExtra (MediaStore.ExtraSizeLimit, 1.5 * 1024);

Adding Camera App Integration

[130]

Starting the intent
We are now ready to start the intent. In other cases where we used the Intent class,
we were not looking for any information to be provided as a result. In this case,
we are expecting the photo app to provide either a photo or a notification that the
user cancelled the photo. You accomplish this by using StartActivityForResult()
by passing in the intent. The StartActivityForResults() method works in
conjunction with a callback to OnActivityResult(), to communicate the results
of the intent. The following listing depicts the calling of StartActivityForResult():

const int CAPTURE_PHOTO = 0;
. . .
StartActivityForResult(cameraIntent, CAPTURE_PHOTO);

Notice the second parameter to StartActivityForResult(). It is an int
value named requestCode that will be returned as a parameter in the callback to
OnActivityResult() and help identify the original reason for launching an intent.
The best practice is to define a constant value to pass in for each requestCode that
can potentially cause OnActivityResult() to be called.

Completing the NewPhotoClicked() method
We have covered a number of topics related to starting the camera app in a
somewhat fragmented fashion. The following listing is the complete
implementation for NewPhotoClicked():

public void NewPhotoClicked(object sender, EventArgs e)
{
if (!_poi.Id.HasValue) {
 AlertDialog.Builder alertConfirm=new AlertDialog.Builder(this);
 alertConfirm.SetCancelable(false);
 alertConfirm.SetPositiveButton("OK", delegate {});
 alertConfirm.SetMessage(
 "You must save the POI prior to attaching a photo");
 alertConfirm.Show ();
 }
 else {
 Intent cameraIntent = new Intent (
 MediaStore.ActionImageCapture);
 PackageManager packageManager = PackageManager;
 IList<ResolveInfo> activities = packageManager.
 QueryIntentActivities(cameraIntent, 0);

Chapter 8

[131]

 if (activities.Count == 0) {
 AlertDialog.Builder alertConfirm = new
 AlertDialog.Builder(this);
 alertConfirm.SetCancelable(false);
 alertConfirm.SetPositiveButton("OK", delegate {});
 alertConfirm.SetMessage(
 "No camera app available to capture photos.");
 alertConfirm.Show ();
 }
 else {
 Java.IO.File imageFile = new Java.IO.File(
 POIData.Service.GetImageFilename(_poi.Id.Value));

 Android.Net.Uri imageUri = Android.Net.Uri.FromFile (
 imageFile);

 cameraIntent.PutExtra (MediaStore.ExtraOutput, imageUri);
 cameraIntent.PutExtra (MediaStore.ExtraSizeLimit,
 1.5 * 1024);

 StartActivityForResult (cameraIntent, CAPTURE_PHOTO);
 }
 }
}

Processing the results of the intent
The initiating activity is notified of the results of an intent via the
OnActivityResult() callback method. The following listing shows the signature
for the OnActivityResult() method:

OnActivityResult (int requestCode, Result resultCode, Intent data)

We discussed requestCode in the previous section. The resultCode parameter
indicates the result of the intent that was launched and is of type Result,
which can have the following values:

Value Meaning
RESULT_OK The activity completed the request successfully.
REQUEST_CANCELED The activity was cancelled, generally by a user action.
REQUEST_FIRST_USER The first value that can be used for a custom meaning.

Adding Camera App Integration

[132]

The third parameter, data, is of type Intent and can be used to pass additional
information back from the activity that was launched. In our case, we are only
concerned with requestCode and resultCode. The following listing shows
the implementation of OnActivityResult() in POIDetailActivity:

protected override void OnActivityResult (int requestCode,
 Result resultCode, Intent data)
{
 if (requestCode == CAPTURE_PHOTO) {
 if (resultCode == RESULT_OK) {
 // display saved image
 Bitmap poiImage = POIData.GetImageFile (_poi.Id.Value);
 _poiImageView.SetImageBitmap (poiImage);
 if (poiImage != null)
 poiImage.Dispose ();
 }
 else {
 // let the user know the photo was cancelled
 Toast toast = Toast.MakeText (this, "No picture captured.",
 ToastLength.Short);
 toast.Show();
 }
 }
 else
 base.OnActivityResult (requestCode, resultCode, data);
}

Notice that when resultCode is RESULT_OK, we load the photo that was captured
into a Bitmap object and then set the image for _poiImageView. This causes the
image to be displayed at the bottom of the POIDetail layout. If resultCode is
not RESULT_OK, we display a toast message to the user indicating that the action
was cancelled.

You will also notice the magic method GetImageFile() on POIData that just showed
up from nowhere. It is actually not magic; we need to add it. The GetImageFile()
method is a simple utility method that accepts a POI ID and loads Android.
Graphics.Bitmap using the Android utility class BitmapFactory.
The following listing shows the GetImageFile() method:

public static Bitmap GetImageFile(int poiId)
{
 string filename = Service.GetImageFilename (poiId);
 if (File.Exists (filename)) {

Chapter 8

[133]

 Java.IO.File imageFile = new Java.IO.File (filename);
 return BitmapFactory.DecodeFile (imageFile.Path);
 }
 else
 return null;
}

We could have simply embedded this code in OnActivityResult(), but we will
need the same functionality in a few more places. We could have also chosen to
add the method to POIJsonService, but that would have required us to introduce
specific Android types to the data service, which would have limited its reuse in
other platforms.

We have added a lot of code. Run POIApp and test adding a photo.

Displaying existing images in
POIDetailActivity
You may have realized from experimenting with POIApp that images only show
up after capturing them; if you go back to the list View and select the same POI,
the previously captured image will not be displayed. To solve this, we need to
add some lines of code to the OnCreate() method to load the image if an ID
for a POI was passed in with the intent.

if (Intent.HasExtra ("poiId")) {
 int poiId = Intent.GetIntExtra ("poiId", -1);
 _poi = POIData.Service.GetPOI (poiId);
 Bitmap poiImage = POIData.GetImageFile (_poi.Id.Value);
 _poiImageView.SetImageBitmap (poiImage);
 if (poiImage != null)
 poiImage.Dispose ();
 }
 else
 _poi = new PointOfInterest ();

Displaying POI images in POIListActivity
The last task in completing our app is to add the logic to display POI
images in POIListActivity. As you may recall from the previous chapters,
POIListViewAdapter is responsible for creating and setting up the POILIstItem
layout for the POIs listed. The changes we need to make are in the GetView() method
of POIListViewAdapter. The following listing shows the code that should be added:

Adding Camera App Integration

[134]

//load image into image View
Bitmap poiImage = POIData.GetImageFile (poi.Id.Value);
view.FindViewById<ImageView> (
 Resource.Id.poiImageView).SetImageBitmap (poiImage);
if (poiImage != null)
 poiImage.Dispose ();

Run POIApp and view the results.

You have now completed an Android app that exercises many of the features you
will need to utilize for developing a professional app. I hope these chapters have
provided a good launchpad for you and I wish you the best of luck as you continue
developing with Xamain.Android!

Summary
In this chapter, we have completed POIApp by adding integration with the camera.
We now have an app that demonstrates many of the features of the Android platform
and while the app is relatively simple in nature, the hope is that we have provided a
broad base of information to move forward in your career, developing Android apps.
In the last chapter, we will discuss the many options available for distributing Android
apps and the process you go through to accomplish its distribution.

Deploying Your App
An app is useful if everyone can enjoy it and that means finding a way to make
it available to the masses. In this chapter, we will look into the options you have
for deploying your app and discuss various aspects of getting your app ready for
deployment. This chapter covers the following topics:

• App distribution options
• Compiling and linking for release
• Publishing a signed APK

App distribution options
Android developers have a number of options for distributing their applications,
which include the following:

• Website links
• E-mail attachments
• App stores

Deploying Your App

[136]

Website links and e-mail attachments are pretty straightforward, easy to accomplish,
and may be suitable for some apps that are used primarily internally by a company
or by a small group of friends or associates. Prior to installing apps from a website
link or an e-mail attachment, you must first update a security setting on your device
to allow apps to be installed from unknown sources. Refer the following screenshot:

After enabling this option, you will be prompted to install an app when selecting an
e-mail attachment or a web link that is an APK, as shown in the following screenshot:

Chapter 9

[137]

For general consumers, website links and e-mails as a means of distribution are not
ideal. Marketplaces such as Google Play and Amazon Appstore provide significant
advantages, which include the following:

• Provide a review process to ensure that apps are not malicious in nature
• Provide a robust infrastructure for reaching millions of consumers and

distributing apps
• Promote apps and allow consumer rating
• Handle financial settlements for purchases
• Encourage consumer trust

These advantages do come at a cost; fees paid to the marketplace and time spent
in the distribution process. All of these aspects must be considered in conjunction
with the goal of the app and the target audience.

Preparing for a release APK
As you may recall from Chapter 1, The Anatomy of an Android App, Android apps are
delivered to devices for installation in an Android package format. The following
sections discuss topics that should be considered prior to producing a release APK.

Disabling debug
During the development of an application, Xamarin Studio supports debugging
Xamarin.Android apps through the use of Java Debug Wire Protocol (JDWP). This
is great for development purposes but poses security risks for deployed applications
and thus needs to be disabled in released apps.

There are two different ways to accomplish this:

• Setting in AndroidManifest.xml
• Setting in AssemblyInfo.cs

AndroidManifest.xml
The following listing shows how to turn off JDWP debugging from the manifest file:

<application
. . .
 android:debuggable="false"
. . .
</application>

Deploying Your App

[138]

AssemblyInfo.cs
The following listing shows how to use a conditional directive to turn JDWP
debugging off or on based on the configuration that is selected. This approach has
the advantage of being based on the currently selected configuration.

#if RELEASE
[assembly: Application(Debuggable=false)]
#else
[assembly: Application(Debuggable=true)]
#endif

Linking
By default, the release mode turns off using shared runtime and turns on linking so
that your distribution APK only contains the portions of Xamarin.Android runtime
required by your app. The linker does this by performing a static analysis of your
compiled code to determine which assemblies, types, and type members are used
by your application. All unused assemblies, types, and members are discarded
resulting in a significantly smaller deployable.

Linking options
Linker Options can be viewed and set in the Project Options dialog under the
Android Build section:

Chapter 9

[139]

When viewing and adjusting Linker Options, be sure to first select Release from
the Configuration drop-down box. Xamarin.Android provides the following
linking behaviors:

• Don't link: This turns off the linker; no linking will be performed.
• Link SDK assemblies only: This will only link the assemblies that are

required by Xamarin.Android. Other assemblies will not be linked; they will
be distributed as separate assemblies.

• Link All Assemblies: This will link all assemblies that are required by
the application and not just the ones required by Xamarin.Android.

Side effects of linking
In some cases linking can have some unintended side effects, including needed types
and members being accidentally discarded. It is very important for an application
compiled and linked in a release mode to be put through a thorough testing cycle
in order to be certain that the app is not suffering from this side effect. In fact, in
most cases, testing beyond the initial developer's testing should be conducted
using an APK file and produced in the release mode.

If you encounter runtime exceptions related to missing types or trouble locating
specific methods, you may need to provide a custom linker file that gives explicit
instructions concerning specific types or members to the linker.

The following listing is an example of a custom linking file that directs the linker
to always include a specific type and specific set of members for the type.

<?xml version="1.0" encoding="UTF-8" ?>
<linker>
 <assembly fullname="Mono.Android">
 <type fullname="Android.Widget.AdapterView" >
 <method name="GetGetAdapterHandler" />
 <method name="GetSetAdapter_Landroid_widget_Adapter_Handler" />
 </type>
 </assembly>
</linker>

Deploying Your App

[140]

A custom linking file can be added to a project as a simple XML file. After
adding the file to the project, select the file, open the Properties pad, and choose
LinkDescription for the Build action menu as shown in the following screenshot:

Selecting supported ABIs
Android supports several different CPU architectures. The Android platform
defines a set of Application Binary Interfaces (ABIs) that correspond to different
CPU architectures. By default, Xamarin.Android assumes that armeabi-v7a is
appropriate for most circumstances. If you need to support additional architectures,
you must check each that applies. This will cause the build process to generate code
that will run on all the target ABIs as well as include native libraries appropriate for
each architecture.

Supported ABIs can be specified in the Project Options dialog under the Android
Build section:

Chapter 9

[141]

One scenario where I have run into the need of specifying additional ABIs is the
testing process. I have worked with a group of testers many times, some of which
have physical devices and some of which use emulators. To support the use of the
x86 emulator, you will need to include x86 in the supported ABIs list.

Publishing a signed APK
Once we have made the previous decisions, we are ready to produce an APK.
The following sections discuss the steps of producing a signed APK from within
Xamarin Studio.

Keystores
A keystore is a database of security certificates created and managed by the keytool
program from the Java SDK. The keystore is an important aspect of creating Android
apps as the Android platform will not run apps that have not been digitally signed.
This may come as some surprise, because we have been running our app for some
time now. During the development process, Xamarin.Android uses a debug keystore
that allows your app to run. This keystore works for debugging purposes, but will
not be recognized as a valid keystore for the distribution of released apps.

While the command-line keytool program can be used directly to create and manage
keystores, Xamarin.Android provides a user interface to the tool, which is integrated
into the publishing process.

Publishing from Xamarin.Android
The following steps guide you through creating a new keystore as part of the process
of creating a signed APK:

1. In the Configuration drop-down box, select Release:

Deploying Your App

[142]

2. Navigate to Project | Publish Android Application; you will see the
Keystore selection page of the Publish Android Application wizard
as shown in the following screenshot:

3. Select Create new keystore, select a location including a filename for the
keystore, and enter the password and confirm it. In the example I placed
the keystore in the project folder and named it poiapp.keystore. I just
used password for the password.

4. Select Forward; you will see the Key creation page of the Publish Android
Application wizard, as shown in the following screenshot:

Chapter 9

[143]

5. Enter information for all of the fields. In the example I simply used poiapp
for the Alias field and password for the Password field.

6. Select Forward; you will see the Select destination page of the Publish
Android Application wizard:

7. Select a target directory where the app will be created and click on Create;
in this example I selected the code bundle. Xamarin Studio will compile the
app for release and generate a signed APK file. You should see the following
in the Publishing package Pad:

Deploying Your App

[144]

The resulting APK is ready for final testing and potential distribution. The keystore
that was created is very important and should be kept and reused for subsequent
deployments. The keystore, alias, and passwords should be kept secure so that
only those authorized to publish a new version of the app have access to them.
If a keystore is lost, it will not be possible to publish updates to an app with
Google Play. The only solution would be to create a new keystore and publish
the new version as a completely new app.

Republishing
As we just said, the subsequent publications of an app should use the same keystore.
To accomplish this, simply select Use existing keystore on the Keystore selection
page of the Publish Android Application wizard, locate the existing keystore, and
enter the previously assigned password and alias. Refer to the following screenshot:

Summary
In this chapter, we have briefly discussed the options available to developers for
distributing Android apps and stepped through creating a signed APK capable
of being distributed.

Index
A
ABIs

selecting 140, 141
ActionBar

actions, adding to 79
menus, setting in OnCreateOptionsMenu

81
menu .xml file, defining 80
selection, handling in

OnOptionsItemSelected() 81, 82
activity

about 11
events 13, 14
life cycle 12
states 12

Activity class 80, 120
activity events

onCreate 13
onDestroy 13
onPause 13
onRestart 13
onResume 13
onStart 13
onStop 13

ActivityListItem layout 69
Activity parameter 76
activity states

paused 12
running 12
stopped 12

adapter layouts
Grid View 16
List View 16

ADM app 82
used, for files managing 83, 84

AlertDialog.Builder class 99
AlertDialog class 100
Android application composition

activity 11-14
broadcast receivers 14
content providers 14
intents 18
resources 18
services 14
ViewGroups 14-16
Views 14-16
XML layout files 17, 18

Android Application Framework (AAF) 9
Android application resources

R.java file 19
Android device

apps, running on 44
preparing, for use 44

Android Device Monitor app. See ADM app
Android emulator

used, for tests executing 58
Android.Locations.Geocoder class 115
AndroidManifest.xml file 46
Android.Net.Uri object 129
Android.OS.Environment class 74
Android packages (.apk) 10
Android platform

about 7
Android runtime 9
Application Framework 9
applications 9
Linux 8
location services 103, 104
native libraries 8
organizing 7
versions 10

[146]

android:text attribute 17
Android Virtual Device Manager

dialog box 43
App distribution options 135-137
Application Binary Interfaces. See ABIs
application manifest 10
app permissions

setting 104, 105
Assert class 54, 55

B
BaseAdapter<T> class 77
BitmapFactory class 132
broadcast receivers 14
Button class 17

C
camera

emulator, configuring 125
camera app

additional information, providing 129
camera integration

adding, to app 123
camera permissions

about 124
ACCESS_FINE_LOCATION 124
CAMERA 124
RECORD_AUDIO 124
WRITE_EXTERNAL_STORAGE 124

camera-specific features
about 124
android.hardware.camera 124
android.hardware.camera.any 124
android.hardware.camera.autofocus 124
android.hardware.camera.flash 124
android.hardware.camera.front 124

CLR 23
Common Language Runtime. See CLR
common layouts

Linear layout 16
Relative layout 16

configChanges attribute 119
configuration changes

activity destruction, preventing 119
dealing with 116, 117
state, restoring 117, 118

state, saving 117, 118
ConfigurationChanges attribute 119
constructor

implementing 76
content providers 14
Context object 107
controls

variables, binding to 91, 92
convertView parameter 78
Count property

implementing 76
CreatePOI() method

implementing 54
Criteria object 113
CurrentLocation property 110

D
Dalvik Debug Monitor Service app. See

DDMS app
Dalvik Virtual Machine. See Dalvik VM
Dalvik VM

about 9
running, beside Mono 23

data service
DeletePOI(), updating 126
extending 125
GetImageFilename(), defining 125
GetImageFilename(), implementing 126

DDMS app 82
debug

disabling 137
disabling, AndroidManifest.xml used 137
disabling, AssemblyInfo.cs used 138

declarative View
versus programmatic View 15

Delete action
adding 94, 95
disabling 95

Delete confirmation prompt
adding 99, 100

DeletePOI() method
creating 97
implementing 56-64
updating 126

Description property 55
development environments

[147]

compatibility 29
IDE, comparing 29
Xamarin for Visual Studio 28
Xamarin Studio 27

Device button 83
Distance TextView

adding, to POI ListView layout 73
Document Outline pad 67

E
EditText.Error property

using 98, 99
emulator

configuring 106
configuring, for camera 125
creating 41-43
customizing 42, 43

Environment.GetFolderPath() method 60

F
FeatureName property 115
FindItem() method 96
Find method 64
FindViewById<T> method 78
Finish() method 99

G
Geocoding 114
GetFilename() method 62
GetImageFile() method 132
GetImageFilename() method

defining 125
implementing 126

GetIntExtra() method 93
GetItemId() method

implementing 77
get location button 117
GetNextId() method 62
GetPOI() method

implementing 64
GetSystemService() method 107
GetView() method

implementing 77
row Views, populating 78
row Views, reusing 78

H
Hello World button 66

I
Id property 84
image

capturing, from POIDetailActivity 127
displaying, in POIDetailActivity 133

image, capturing
intent, creating 128
registered camera apps, checking 128
UI elements, adding 127, 128

ImageView element 127
ImageView widget

adding, to POI ListView layout 71
index getter method

implementing 77
InputType

working with 90, 91
intent

about 18
creating 128
filename, providing 129
image size limit, providing 129
location, providing 129
NewPhotoClicked() method, completing

130, 131
results, processing 131, 132
starting 130
used, for additional information

providing 129
using 18

Intent class 92, 121
Intent object 93
IPOIDataService

permissions 75
shared instance, access obtaining 74

J
Java Debug Wire Protocol. See JDWP
Java.IO.File object 129
Java Native Interface. See JNI
JDWP 137
JNI 24
Json.NET

[148]

about 59
downloading 59

K
Key creation page 142
keystore 141
Keystore selection page 142

L
LinearLayout instance 111
LinearLayout widget

adding, to POI ListView layout 71
linking

about 138
options 138, 139
side effects 139

ListView item
constructor, implementing 76
Count property, implementing 76
GetItemId(), implementing 77
GetView(), implementing 77, 78
index getter method, implementing 77
IPOIDataService shared instance 75
POIListViewAdapter, creating 76
POIListViewAdapter, hooking up 79
populating 73

ListView.ItemClickEventArgs parameter 84
location address

obtaining 114-116
location button 113
location change notifications

ILocationListener, implementing 108
requesting 107, 108

LocationManager instance
obtaining 107

location services
adding, to POIApp 108
adding, to POIDetailActivity 111-114
adding, to POIListActivity 109, 110
app permissions, setting 104, 105
emulator, configuring 106, 107
location change notifications, requesting

107, 108
LocationManager instance, obtaining 107
working with 103, 104

M
MainActivity class 45
Managed Callable Wrappers. See MCW
map app

navigating to 120, 121
registered map apps, checking 121, 122

map integration
adding 119, 120

MCW 24
MediaStore class 129
menu .xml file

defining 80
Mono

about 23
running, beside Dalvik VM 23

N
new action

navigating on 92
NewPhotoClicked() method

completing 130, 131
NotifyDataSetChanged() method 101
NUnitLite. See Xamarin.Android NUnitLite

O
OnCreate() method 18, 45, 85, 92
OnCreateOptionsMenu method

about 80
menus, setting in 81

onCreate() proxy method 45
OnLocationChanged() method 114
OnOptionsItemSelected() method

about 80
selection, handling in 81

OnPause() method 101
OnRestoreInstanceState() method 117
OnResume() method 101
OnSaveInstanceState() method 117

P
PackageManager class 121
Parent property 84
peer objects

about 23, 24

[149]

apps, running on 45
collaborating 24
creating 24

POI 47
POIApp

creating 34
debugging 38-41
debugging, with Android device 44
emulators, creating 41
emulators, customizing 42
initial activity 38
location services, adding to 108
Project Options view 36
running 38-41, 82
x86 emulator, using 43
Xamarin Studio IDE 35

POI Click
navigating on 93

POIData class 74
POIDetailActivity

code, adding 112-114
creating 91
data, receiving in 93
existing images, displaying in 133
image, capturing from 126
location services, adding to 111
navigation, adding to 92
new action, navigating on 92
POI Click, navigating on 92
user interface, updating 111
user interface widgets, populating 94

POIDetail layout
creating 87-90
InputType, working 90, 91
POIDetailActivity, creating 91
variables, binding to controls 91, 92

POI entity class
creating 48-50

POI images
displaying, in POIListActivity 133, 134

POIJsonService class 52, 61
POIJsonService methods

caching, implementing 61
DeletePOI(), implementing 64
GetPOI(), implementing 64

implementing 60
SavePOI(), implementing 62, 63
testing 60

POIListActivity
location services, adding to 109, 110
POI images, displaying in 133, 134

POIListActivity class
about 79
distance, calculating 108
refreshing 101

POIListViewAdapter
hooking up 79

POI ListView layout
creating 65,-70
Distance TextView, adding 73
ImageView widget, adding 71
LinearLayout widget, adding 71
RelativeLayout utility, adding 70
TextView classes, adding 72

Point of Interest. See POI
POI storage interface

creating 50
POI storage services

implementing 51, 52
Json.NET 59
Json.NET, downloading 59
POIJsonService methods 60-64
Xamarin.Android NUnitLite, using 52-58

POITestFixture class 53
position parameter 77
Position property 84
programmatic View

versus declarative View 15
Project Options View

about 36
app icon, setting 37
package name, setting 37
target framework, setting 36

Properties pad 68
Publish Android Application wizard 143
Publishing package Pad 143
PutExtra() method 93

Q
QueryIntentActivities() method 121

[150]

R
RefreshCache() method 61-63
registered camera apps

checking for 128
RelativeLayout utility

adding, to POI ListView layout 70
release APK

debug, disabling 137
linking 138, 139
preparing for 137
supported ABIs, selecting 140, 141

RequestSingleUpdate() method 108, 113
resultCode parameter 131
Reverse Geocoding 114
row clicks

handling 84, 85
row Views

populating 78
reusing 78

S
sample app

features 31
Save action

adding 94, 95
SavePOI() method

creating 96
implementing 62, 63

Scale-independent Pixels (sp) 72
services 14
SetContentView() API 65
setContentView() method 18
SetEnabled() method 96
SetNegativeButton() method 100
SetPositiveButton() method 100
Setup() method 53
Show() method 116
signed APK

keystores 141
publishing 141
publishing, form Xamarin.Android 141-144
republishing 144

SimpleListItem1 layout 69
SimpleListItem2 layout 69

SQLite 47
StartActivityForResults() method 130
Success

toasting 101

T
test methods

Create POI test 54
creating 54
DeletePOI() test 56, 57
Update POI test 55, 56

tests
executing, Android emulator used 57, 58
Xamarin.Android NUnitLite, setting up for

53
Text property 78
TextView classes

adding, to POI ListView layout 72
Toast class 101
Toolbox pad 66
TwoLineListItem layout 69

U
UI elements

adding, for image support 127, 128
UpdatePOI() method

implementing 55, 56
UpdateUI() method 94
USB debugging

enabling 44
USB driver

installing 44
user

keeping informed 116
user interface widgets

about 15
populating 94

V
validation

adding 97
EditText.Error property, using 98, 99

variables
binding, to controls 91, 92

[151]

View class 78
ViewGroups

about 14
adapter layouts 16
common layouts 15, 16
creating 15

View property 84
Views

about 14
creating 15
integer IDs 17

View.Visibility property 78

W
WPF (Windows Presentation Foundation)

17

X
x86 emulator

using 43
Xamarin.Android

about 21
Android bindings design 25
application, packaging 25
benefits 22
development environments 27-29
drawbacks 22, 23
installing 32-34
signed APK, publishing from 141-144

Xamarin.Android bindings
C# properties 25
delegates 26
design principles 25
enumeration constants 26

Xamarin.Android NUnitLite
setting up, for tests 53
test methods, creating 54-57
tests, executing 58
using 52, 53

Xamarin for Visual Studio
about 28
cons 29
pros 29

Xamarin Studio
about 27
cons 29
features 27
pros 29

Xamarin Studio IDE
about 35
configuring 35

XML layout files
about 17
attribute names 17
element names 17
using 18

Thank you for buying
Xamarin Mobile Application
Development for Android

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one
of our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no
writing experience, our experienced editors can help you develop a writing career,
or simply get some additional reward for your expertise.

[154]

Xamarin Mobile Application
Development for iOS
ISBN: 978-1-78355-918-3 Paperback: 222 pages

If you know C# and have an iOS device, learn to use
one language for multiple devices with Xamarin

1. A clear and concise look at how to create your
own apps building on what you already know
of C#

2. Create advanced and elegant apps by yourself

3. Ensure that the majority of your code can also
be used with Android and Windows Mobile 8
devices

iOS Development Using
MonoTouch Cookbook
ISBN: 978-1-84969-146-8 Paperback: 384 pages

109 simple but incredibly effective recipes for
developing and deploying applications for iOS
using C# and .NET

1. Detailed examples covering every aspect of iOS
development using MonoTouch and C#/.NET

2. Create fully working MonoTouch projects
using step-by-step instructions

3. Recipes for creating iOS applications meeting
Apple's guidelines

Please check www.PacktPub.com for information on our titles

[155]

Android Application Security
Essentials
ISBN: 978-1-84951-560-3 Paperback: 218 pages

Write secure Android applications using the most
up-to-date techniques and concepts

1. Understand Android security from kernel
to the application layer

2. Protect components using permissions

3. Safeguard user and corporate data from
prying eyes

4. Understand the security implications of
mobile payments, NFC, and more

Android Development Tools for
Eclipse
ISBN: 978-1-78216-110-3 Paperback: 144 pages

Set up, build, and publish Android projects quickly
using Android Development Tools for Eclipse

1. Build Android applications using ADT
for Eclipse

2. Generate Android application skeleton
code using wizards

3. Advertise and monetize your applications

Please check www.PacktPub.com for information on our titles

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Anatomy of an
Android App
	The Android platform
	Linux
	Native libraries
	The Android runtime
	The Application Framework
	Applications
	The Android packages (.apk)
	The application manifest

	Versions of Android

	The Android applications
	Activities
	The lifecycle of an activity
	The states of an activity
	The events of an activity

	Services
	Content providers
	Broadcast receivers
	Views and ViewGroups
	Declarative versus programmatic View creation
	User interface widgets
	Common layouts
	Adapter layouts

	XML layout files
	Element and attribute names
	IDs
	Using XML layouts from activities

	Intents
	Resources
	The R.java file

	Summary

	Chapter 2: Xamarin.Android Architecture
	Why Xamarin.Android?
	What is Mono?
	Mono and Dalvik side by side
	The Java Native Interface
	Peer objects

	Xamarin.Android application packaging

	The Android bindings design
	Design principles
	C# properties
	Delegates
	Constants to enumerations

	Development environments
	Xamarin Studio
	Xamarin for Visual Studio
	IDE comparison
	Compatibility

	Summary

	Chapter 3: Creating the Points of
Interest App
	The sample app
	Installing Xamarin.Android
	Creating the app
	Xamarin Studio IDE
	The Project Options view
	Setting the target framework
	Setting the app icon and package name

	The initial activity
	Running and debugging the app
	Creating and customizing emulators
	Using the x86 emulator
	Debugging with an Android device
	Enabling USB debugging
	Installing a USB driver
	Running apps on a device

	Behind the scenes
	Peer object
	The AndroidManifest.xml file

	Summary

	Chapter 4: Creating a Data Storage Mechanism
	Creating the Point of Interest entity class
	Creating the POI storage interface
	Implementing the POI storage services
	Using Xamarin.Android NUnitLite
	Setting up for tests
	Creating the test methods
	Executing the tests

	Json.NET
	Downloading Json.NET

	Implementing and testing the POIJsonService methods
	Implementing caching
	Implementing SavePOI()
	Implementing GetPOI()
	Implementing DeletePOI()

	Summary

	Chapter 5: Adding a List View
	Creating the POI ListView layout
	Adding a RelativeLayout view group
	Adding an ImageView widget
	Adding a LinearLayout widget
	Adding the name and address TextView classes
	Adding the Distance TextView

	Populating the ListView item
	Shared instance of IPOIDataService
	Permissions

	Creating POIListViewAdapter
	Implementing a constructor
	Implementing Count { get; }
	Implementing GetItemId()
	Implementing the index getter method
	Implementing GetView()
	Reusing row views
	Populating row views

	Hooking up POIListViewAdapter

	Adding actions to ActionBar
	Defining the menu xml file
	Setting menus in OnCreateOptionsMenu
	Handling selection in OnOptionsItemSelected()

	Configuring an SD card for the emulator
	Running POIApp
	Android Device Monitor
	Handling row clicks
	Summary

	Chapter 6: Adding a Detail View
	Creating the POIDetail layout
	Working with InputType
	Creating POIDetailActivity
	Binding variables to controls

	Adding navigation to POIDetailActivity
	Navigating on new action
	Navigating on POI Click
	Receiving data in POIDetailActivity
	Populating user interface widgets

	Adding Save and Delete actions
	Disabling the Delete action
	Creating SavePOI()
	Creating DeletePOI()

	Adding validation
	Using the EditText.Error property

	Adding a Delete confirmation prompt
	Toasting Success
	Refreshing POIListActivity
	Wrapping up
	Summary

	Chapter 7: Making POIApp Location Aware
	Location services
	Setting app permissions
	Configuring the emulator
	Obtaining an instance of LocationManager
	Requesting location change notifications
	Implementing ILocationListener

	Adding location services to POIApp
	Adding location services to POIListActivity
	Adding location services to POIDetailActivity
	Getting an address for a location
	Keeping the user informed
	Dealing with configuration changes

	Adding map integration
	Navigating to the map app
	Checking for registered map apps

	Summary

	Chapter 8: Adding Camera App Integration
	Picking an integration approach
	Permissions and Features
	Configuring the Emulator
	Extending the data service
	Defining GetImageFilename()
	Implementing GetImageFilename()
	Updating DeletePOI()

	Capturing an image from POIDetailActivity
	Adding UI elements
	Creating the intent
	Checking for registered camera apps
	Providing additional information with the intent
	Providing a filename and location
	Providing size limit

	Starting the intent
	Completing the NewPhotoClicked() method

	Processing the results of the intent

	Displaying existing images in POIDetailActivity
	Displaying POI images in POIListActivity
	Summary

	Chapter 9: Deploying Your App
	App distribution options
	Preparing for a release APK
	Disabling debug
	AndroidManifest.xml
	AssemblyInfo.cs

	Linking
	Linking options
	Side effects of linking

	Selecting supported ABIs

	Publishing a signed APK
	Keystores
	Publishing from Xamarin.Android
	Republishing

	Summary

	Index

