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Introduction

Humanity has entered a new era. We are now living in a world that is
increasingly wired by billions of predictive algorithms, a world in which
almost everything can be predicted and risk and uncertainty appear to be
diminishing in almost all areas of life. We are living longer, thanks to
advances in health care and precision medicine. We have a greater mastery
of the physical world that allows us to dream of, and build, new
technologies that allow us to explore other planets and visualize billions of
galaxies. We can model markets, disease, and traffic with increasingly
greater precision, and we’re getting very close to handing over the keys to
the car so it can drive itself. Even more striking, our tools may be revealing
the genesis of some elusive and stubborn complexities of human behavior,
and algorithms are even being used to alter people’s behavior. Predictive
algorithms have changed the world, and all the worlds to come, and there is
no going back.

To better understand this new era, this book is focused on two
abstractions that are increasingly shaping our lives: prediction and risk.
Prediction speaks of what is to come; risk, less visibly, calculates the
probability that a model is wrong and, like a grim accountant, totals up the
costs of that error. Where prediction serves as a light projecting into the
likely future, risk is the shadow of what cannot be seen or predicted. Their
relationship is often paradoxical, particularly as prediction changes age-old
apprehensions about risk and reshapes the very type of society and world in
which we live.

We call this new era the Age of Prediction. In this emerging age,
prediction is growing more powerful, ubiquitous, and precise, both because
the tools for making predictions are advancing quickly and because the fuel
of prediction—data—is accumulating at such a rapid and exponential
(sometimes super-exponential) rate. Yet, none of this is easy. When it comes
to many natural processes, we have grown more and more quantitative—
and thus more predictive. Even quantum physics, a field that has seen some
of the most dramatic scientific advances in the past century, requires the



ability to precisely calculate elements of indeterminism, randomness, chaos,
and probabilistic functions. Biology and medicine now require the same
ability, as they adapt to ever-changing genetic mutations and environmental
variables, such as drug-resistant tumors or an invasive species disrupting an
ecosystem.

There are limits to our reach, of course. The COVID-19 pandemic
emerged before we could stop it. But, as we will see in chapter 1,
companies were rapidly able to develop vaccines against COVID-19 using
predictive algorithms, and as chapter 5 explains, epidemiologists and
geneticists have grown more adept at modeling infectious-disease spread
once it begins. Modern medicine generally has become increasingly precise,
personal, and predictive, especially when it comes to identifying and even
repairing dangerous mutations.

However, the challenge of dealing with social processes is more difficult.
Any trend fueled by the decisions of one or many human agents involves
more risk—sometimes much more. As the economist John Kay and the
former Bank of England governor Mervyn King note in their book Radical
Uncertainty (2020), “The world of economics, business, and finance is non-
stationary—it is not governed by scientific law.” People are often the
hardest things to predict, and that makes prediction more difficult in these
social areas.

Regardless of this difficulty, we now have the tools and the data to
predict more things with greater accuracy and farther out in time. In the
Age of Prediction, this trend will continue, expand, and accelerate, and risk
will shrink but not disappear. Risk is a realm of the unknown, of the
incalculable and uncertain. The relationship between prediction and risk is
conventionally an inverse one: if our ability to accurately predict the
weather a week ahead were ever to approach 100 percent, the risk that you
would fail to bring your umbrella on a rainy day would, in theory, approach
zero (you might forget the umbrella or lose it, but the likelihood of this too
could be quantified). Prediction in natural, stationary systems can approach
perfection once those processes are truly understood; large numbers drive
certainty so close to 100 percent that we can declare a process a scientific
law. Empirical proof of this phenomenon, known as inverse probability, was
scribbled down as a now-ubiquitous equation in an essay by the then
obscure nineteenth-century British nonconformist cleric Thomas Bayes.



From him, we have Bayesian models, in which new data continually update
probabilistic judgments about future events.

Yet, the relationship between prediction and risk is not as simple as
getting more data, running them through an algorithm, and applying them
broadly. For instance, whose risk are we talking about? In chapter 8, we
discuss the rise of autonomous, predictive weaponry. A military that
unleashes such weaponry obviously believes it will be effective in military
terms; smart weapons may kill more of the enemy and fewer of that
military’s own soldiers. However, given the competitive nature of armed
conflict and the cross-fertilization of technologies such as artificial
intelligence (AI), robotics, and modern munitions, any prediction about the
evolution of warfare is profoundly uncertain and represents a rising risk.

There are other ways to look at prediction and risk. The convention that
better predictions mean reduced risks may well reflect how the human
condition has evolved since our emergence as self-aware, humanoid
animals in Africa. The human brain has evolved into an instrument of
forethought, planning, and prediction. One could argue this is a
quintessential aspect of being human: projecting dreams, plans, and ideas
into the future. For many millennia, prediction was more accurate under
relatively simple conditions and over short periods of time—for planting,
hunting, and fighting. Much of life remained uncertain, and much thought
went into the role of what seemed like fate. Death appeared suddenly and
arbitrarily. Disaster lurked at every turn. Risk was omnipresent.

The advent of modern science began to push back that darkness, at first
very slowly. The seventeenth century brought us advances in physics and
mathematics, including calculus, which enabled Isaac Newton to predict
accurately the regularities of the heavens and the flight of bullets. That
same period also saw the first breakthroughs in what we now know as
probability and statistics. A better understanding of probability opened the
door to a deeper understanding of random processes such as chance and
luck, and statistics drove efforts to gather data and analyze them with
sophistication. By the nineteenth century, data gathering and analysis had
entered a capitalist world that focused increasingly on prediction;
significantly, this period saw the development of robust futures markets,
which consumed agricultural statistics and weather forecasts to set national
and global prices. Later, but no less important, advances came from a



deeper understanding of life itself, from evolution to genetics to genomics,
unleashing the powers of modern medicine. All these advances have altered
myriad perspectives on risk, spanning predictions of a single cell’s response
to a drug or a single stock’s fluctuations or an individual’s likely next vote.
As we describe in this book, a surprising common thread of prediction is
that the methods used in one discipline can inform another; metrics like the
Gini coefficient can measure economic differences, yet we can also use the
same formula to map shifts in bacterial DNA to predict growth and
resistance to antibiotics.

Predictive algorithms have fundamentally changed almost all aspects of
our world, yet such a change has been brewing for several centuries. In her
book describing the changing relationship between prediction and
uncertainty in late nineteenth-century America, the historian Jamie
Pietruska offers up striking conclusions about that era. Americans quickly
grew accustomed to predictions in many areas of life, but they also grew
skeptical of those predictions’ accuracy and more willing and able to
discriminate between scientific efforts and fortune-telling or phrenology, as
well as to accommodate the potential corruption stemming from the rising
value of data and prediction. Yet even as new predictive technologies
surfaced, new risks appeared: economic instability, social dislocation, and
inequality as well as, Pietruska notes, “industrial accidents, steamboat
explosions, and railroad collisions.” Americans changed their behavior in
nuanced ways as they struggled with what she calls “the spectre of
Uncertainty.”

In our book, we are focused on examining changes in behavior that are
likely to arise as prediction grows better and risk changes. We look at the
history of predictive tools, the current armamentarium, and the likely future
growth and application of these algorithms and powerful tools. We ask the
following questions: If prediction in, say, forensics, genomics, markets,
warfare, politics, and other arenas grows significantly better, how will that
change the apprehension of risk and the resulting human behavior? How
will the world be better or worse or both?

Behavioral responses to changing risk have undoubtedly always been
fluid, but at a rate of change that was barely discernible. Now we are
beginning to see more rapid spikes in predictive capacity and more
challenging responses. Many of these responses are counterintuitive or



paradoxical, resembling Pietruska’s description of a Gilded Age of both
greater predictability and greater uncertainty. The risk comes in different
guises. For instance, insurance has employed the term moral hazard to
describe a common risk undertaken by an insurance provider since the mid-
nineteenth century. At first, it referred to a kind of customer who was
viewed, often for biased reasons, as a bad risk: a minority, a woman, or a
foreigner. In time, moral hazard grew more focused on incentives that
increase rather than reduce risk. Yet, holders of insurance may have less
incentive to behave prudently—the classic example is the entrepreneur who
insures his failing business before torching it—thus accentuating risk.
Today, the term, as often used by economists as by insurers, has taken on an
even broader, less moralistic or ethical meaning. Moral hazard has more
recently been attributed to financial players who shoulder large risk while
believing that, if things go badly, they will be bailed out. Dangerous
incentives can occur when predictability increases and risk appears to
decline or disappear. Predictably, when individual risk approaches zero,
behavior can grow more reckless.

Risk can also take on unexpected characteristics produced by feedback
mechanisms. As you reduce risk in some systems, you may also drive new
complexity, thus producing new opportunities for risk. If risk depends on
who is engaging with it, it also depends on how that person is thinking
about it. That is, risk can be subjective—more so individually than
collectively. This makes sense when you realize that purely rational
decision-making, the foundation of much economic theory, remains elusive.

One of the most significant outgrowths of predictive technologies is the
demand for the kind of data that many people view as intimate or private.
This issue, of course, is increasingly contentious. Early genetic analysis led
to the first legislation regulating who gets access to the results and what
they can do with that data. But the trend continues to spread: privacy issues
show up in many of the following chapters in areas ranging from genomics
to forensics to politics. Even today, the feedback loop created by individuals
reacting to demands for intimate data or real-time monitoring has spawned
a wide range of new risks, which may include people not only refusing to
share their own data but also rejecting a hold on the very realities that
underlie that risk. Ironically, this can limit predictions and increase risk, but
still satisfy a need for some to feel they have more control.



As coauthors, we come from different fields—finance and medicine—but
much of the way we view the world has been shaped by our efforts to make
predictions and to reduce risk in our separate, yet sometimes overlapping,
careers. The chapters in this book focus on areas we know quite well, but
we also apply the lessons from our own fields to emerging areas to test
some ideas about prediction and risk. These ideas are, as is this book,
speculative in nature. We are imagining a future where the ground is
shifting and the “conventions,” as described by the Scottish philosopher
David Hume, are changing.

As the dawn of the Age of Prediction rises, there are clearly some
dangers, but we believe that over time the greater scientific ability to predict
will prove broadly beneficial. We are optimists. But we also recognize the
challenges and the unknowns that enhanced prediction carries with it.
Predicting human behavior is a particularly difficult task. We realize that
predictions about prediction are a risk in themselves, and that the light from
our data and our algorithms reaches only so far into the future. Nonetheless,
we cannot escape the powerful currents sweeping humans toward greater
and greater predictability. Only by exploring its complexities, across many
disciplines, can we begin to master both prediction and the changing nature
of risk.



1

Prediction and Risk

Virology is not a field most people have mastered. At some point, everyone
must cope with a virus—the flu, a cold, measles—but even the distinction
between a virus and a bacterium is a nuance lost on many. As a result, 64
percent of people interviewed in a World Health Organization study
believed that viruses could be knocked out by antibiotics, which is not only
false but also deepens the problem of bacterial resistance to antibiotics due
to overuse. In fact, viruses are far smaller than bacteria, 20–500 nanometers
versus some bacteria that are 100 times larger.

Viruses can be seen only through an electron microscope and are
relatively rudimentary: anywhere from four to several hundred genes
wrapped in a protein coat. They are cellular parasites that can reproduce
only by invading a cell and commandeering its genetic machinery to make
copies of itself. There are two broad categories of these tiny molecular
machines, DNA viruses and RNA viruses, and the latter mutate particularly
quickly. That mutational instability makes them adept survivors. An RNA
virus such as Ebola is structurally simple—a thin, wormlike filament, or
filovirus, containing only four genes—yet is savage in its attack and elusive
in its pattern of emergence, remission, and reemergence. Researchers have
spent decades trying to find the animal reservoir for Ebola. Some think it
might be a fruit bat or primates, but the quest is ongoing to find the hosts of
Ebola as well as of many other viruses that can come from animals, known
as zoonotic diseases.

We can’t escape viruses, which are ubiquitous, but our immune system
disposes of most of them painlessly and quickly. Vaccines can provide
protection from viruses that can’t be naturally or easily repelled, such as
smallpox and polio. However, the real threat posed by a virus occurs when
it becomes unrecognizable by an individual’s immune system, especially if
the virus has mutated in a way that makes it more infectious and more



lethal. That mutational process is, like all evolution, a blend of random
chance, drift, and selection, and thus difficult to predict.

The challenge of prediction is perhaps nowhere more evident than in the
COVID-19 outbreak that started in December 2019. The outbreak told us
about our limited ability to more accurately predict complex change as well
as about the social and economic challenges of responding to changing
perceptions of risk.

The chance of a novel virus was well known at the end of 2019, but most
people and politicians viewed its spread as an unlikely event. Since the
1960s, a parade of malevolent viruses had caused dreaded diseases such as
Ebola, AIDS (acquired immunodeficiency syndrome), SARS (severe acute
respiratory syndrome), MERS (Middle East respiratory syndrome), Zika,
swine flu, and bird flu, but people were mollified by the fact that the
outbreaks were quickly contained. Yet infectious-disease experts and
scientists predicted that more were coming. Movies such as Contagion
(2011) and fiction best sellers such as Richard Preston’s The Hot Zone
(1994), about a grisly Ebola outbreak, were built around the notion of
modern plagues, as were more sober, scientific books, such as Laurie
Garrett’s pioneering work The Coming Plague in 1995 and David
Quammen’s Spillover in 2013. In his book, Quammen noted that more than
30 million humans had died since 1981 from “the emergence of virulent
new realities on this planet”—he specifically warned of zoonosis, an
infectious disease that can be transmitted from various animals to humans
—and notably pointed to the chances of a dangerous virus coming from
China. Even the US government was aware of the potential for such a
pandemic. In 2019, the US Department of Health and Human Services
engaged in a series of mock exercises called “Crimson Contagion” based on
a fictional new virus brought to the United States by a single American
tourist returning from China and attending a musical event in Chicago. The
exercise posited some 586,000 US deaths in this scenario.

Yet when the SARS-CoV-2 pathogen (the virus that causes COVID-19)
arrived in the United States, few were prepared. Like a financial crisis, the
often-discussed pandemic ironically still came as a surprise to almost
everyone, and it proved to have systemic repercussions, rippling through
areas that seemed to have no relation to public health: state and federal



relations, racial and class conflicts, supply chains, education, technology,
mental health, entertainment, and myriad social and economic strife.

The first official reports of COVID-19 came from Wuhan, China, in
December 2019, with most evidence pointing to the first cases clustered
around a “wet market,” where livestock, fish, and other animals are bought,
transferred, and moved. But in the United States, reports about the new
virus did not emerge until early January 2020, and most people presumed it
would stay in Asia. After all, China had experienced other novel zoonotic
virus outbreaks, but their effects on the United States, although
newsworthy, were ultimately minor. The terror of the global flu epidemic of
1918–1919 was an exception—the disease killed some 50 million people
around the world—but that happened a century ago, and most people
assumed they were less susceptible in 2020. The bubonic plague was
another epidemic, but it struck medieval Europe; the global hubris in 2020
presumed that humanity would be less vulnerable. However, all the
preceding pandemics had existed in a time without rapid, global mass
transit. Whereas older viruses had to move by foot, boat, or train, SARS-
CoV-2 spread as quickly as a plane could fly. The first cases of community
spread in the United States emerged in Washington State, then in New
Rochelle, 20 miles north of New York City. Quickly cities, regions, and
whole countries fell into lockdown like dominoes. By early March 2020,
Italy had shut down, then California, then New York. By the middle of that
month, much of the developed world was struggling to cope with the
invisible, still poorly understood virus.

What ensued was a series of unprecedented—and by definition surprising
—consequences. Schools closed. Offices shuttered. Travel stopped.
Restaurants, bars, sports, hair salons, and bowling alleys shut down.
Hospitals in hard-hit areas were overwhelmed, and COVID-19 deaths swept
through nursing homes, prisons, and industrial facilities such as
meatpacking plants. The federal response was at best uncertain, at worst
dysfunctional: states scrambled to grab scarce ventilators and buy basic
protective equipment such as masks, gloves, gowns, and swabs; testing was
sporadic, and the reagents needed for testing were sparse; data were
problematic. Shortages in toilet paper and meat ebbed and flowed. The US
economy didn’t die, but at least a quarter of it went idle, and the
unemployment rate jumped to 14.7 percent, the highest level since the Great
Depression.



No one really had a clue about what was coming next. Millions of
workers were laid off, particularly in smaller businesses that had to close;
some 22 million signed up for unemployment support in April. Economic
growth (as measured by gross domestic product, or GDP) dropped by 32.9
percent from April to June 2020. Prices of commodities, notably oil,
collapsed as growth slowed. The price of West Texas Intermediate crude oil
dropped to negative levels for the first time in history as producers ran out
of places to store excess oil and had to pay others to dispose of it. Financial
markets, perhaps the most influential of predictive-fever charts, began to
tumble, reviving memories of the collapse of Lehman Brothers in 2008.
Stocks in the S&P 500 peaked on February 16; as news of the virus spread,
the index began to slide, and by March 24 it had fallen some 34 percent.
With lockdowns spreading, particularly on the East and West Coasts,
commentators darkly declared the possibility of another Great Depression.

Then, just as suddenly as COVID-19 had arrived, stocks bottomed out,
reversed, and soared; on April 6 the S&P 500 rose 7 percent. There was
knowingly gloomy talk of the proverbial “dead-cat bounce.” The narrative
that the world was heading into a long-lasting depression persisted after the
recession was officially declared over. Many remained deeply skeptical of
the continuing rally, which was widely viewed as an example of how Wall
Street is rigged for the wealthy.

Wall Street had its own explanations for the reversal, though. In late
March, the Federal Reserve had taken its first aggressive steps to lower
interest rates to near zero, promising to keep them there for some time and
to buy billions of dollars in securities every month, thus providing liquidity
to the financial system. The Fed also ramped up direct lending to banks,
securities firms, and corporations. Congress, shocked into bipartisanship,
passed the first of three major COVID-19 aid packages. On the health side,
there were signs—sketchy but hopeful—that the number of cases in the
hardest-hit areas of the Northeast, in particular New York City, was
plateauing. The draconian lockdown seemed to be working. Dozens of
vaccines were heading to clinical testing. At the same time, however,
conspiracy theories, soon to be associated with both the origins of the virus
and the pandemic response, emerged.

Those were the headline events. But there were other, quieter signs of an
upturn. Quantitative investment firms across Wall Street had built literally



millions of algorithms to exploit marketplace signals of all kinds.
Algorithms are computer code, instructions that send an input through a
finite number of steps to produce some sort of output. Today, they are
ubiquitous, although as invisible as the COVID-19 virus itself, and, like the
growth of data and computer power, they continue to proliferate
exponentially.

Algorithms are predictive models of data. A financial algorithm attempts
to predict the movement of a stock, bond, commodity, or derivative price;
macro- and microeconomic data; intrinsic values; or the state of dynamic
relationships between financial instruments and data. An algorithm can
establish either a correlation between two data points (if one increases,
another rises in tandem), an inverse correlation (one data point falls, driving
up another point, thus providing a hedge), or other nonlinear relationships.
Algorithms can produce strong or weak signals or die out entirely. In their
totality, algorithms resemble a vast array of sensors responsive to a diverse
and profoundly complex flowing stream of signals.

By late March 2020, many of the financial algorithms that had ceased to
function in the sudden collapse brought on by the pandemic just as
suddenly began to show signs of life. This reversal came days before the
market itself began to rally, and the outlook was still bleak. The stock
markets were reeling with panic, massive selling, and huge losses. All kinds
of organizations, including hedge funds, had liquidated their holdings; cash
was the only safe haven. Analysts slashed corporate-earnings estimates,
particularly for hard-hit industries: airlines, cruise lines, hotels, commercial
real estate. City dwellers fled to the suburbs or beyond, like the characters
in Boccaccio’s Decameron gathering in the countryside to escape the Black
Death.

But in the midst of this free fall, those predictive algorithms suddenly
began suggesting not only that the market was functioning but also that
enormous opportunities were dawning and that the time to act was now. The
algorithms were saying it was time to buy again. And, in fact, investors
began to return to the market, and stocks stabilized, then moved upward,
less concerned with the grim state of the present and more focused on a
postpandemic future.

The movement back to the market was a bet that the future would be
better than the present. It was driven by the belief that the COVID-19 virus



would be defeated or would burn itself out, which to many people, still
stuck at home mastering sourdough bread, sitting through Zoom calls, and
schooling their kids, seemed to be an immensely long shot. By December
2021, though, some 20 months later, the rally was still rolling along, even
though 2022 would prove to be more problematic for the markets for a
number of reasons, some pandemic-related, others entirely independent.

Predicting a Vaccine
Humanity needed a vaccine to protect itself against the virus, but, as with
the markets, pessimism hung over the possibility that such a panacea would
develop quickly. Vaccine development had become a tough business. The
technical challenges were large; the regulatory approvals came slowly,
given the reality that millions of people would receive shots, and the
business itself wasn’t a huge spinner of profits. In addition, a small (but
noisy) minority of critics thought vaccines were dangerous. Traditional
vaccines—which use an inactivated virus, or components of a virus, to
induce immunity—took as long as a decade to develop and test. Many
never made it to market. Vaccines as a commercial product suffered from a
“productivity gap”: the expected revenue from new vaccines wasn’t high
enough to justify the effort and required investment. These factors forced
the industry to consolidate, thus reducing competition and driving up prices.

But COVID-19 forced a reconsideration of the economics of vaccine
development, which now became a huge potential market with significant
and immediate global need. Fortuitously, years of investment had created
innovative tools that allowed vaccine development to move much, much
more quickly and much more effectively.

On Saturday, January 25, 2020, in Mainz, Germany, an ancient city on
the Rhine River, those factors met. At a company called BioNTech, its
husband-and-wife cofounders, Ugur Sahin and Özlem Türeci, read an
article in the British medical journal the Lancet about the outbreak in
Wuhan. They thought they might be able to develop a vaccine quickly.
There wasn’t a lot of bureaucracy to deal with: the pair, children of Turks
who had settled in Germany, had founded BioNTech in 2008 and taken it
public in September 2019. For a decade, they had researched a new



approach in vaccines, known as messenger RNA, or mRNA, for use first
against cancer and then against infectious diseases. Before the weekend was
over, they had used a suite of predictive algorithms and the newly
sequenced genetic code of the virus, first released by Chinese researchers
only two weeks earlier, to craft ten vaccine models for COVID-19; ten more
would follow in the weeks ahead.

BioNTech’s vaccine used a coded sequence of mRNA—the single-
stranded nucleic acid that transmits instructions from DNA to the cell’s
ribosomes, which assemble proteins—to induce the production of SARS-
CoV-2 viral proteins, and eventually antibodies against the virus. The
company used sophisticated sequence analysis and software that predicted
how the proteins would fold. Specifically, its models homed in on RNA
coding for protein components of the virus that might be most capable of
triggering a strong immune response while also being stable enough for
mass production. This RNA strategy broke with traditional vaccine
development, which used attenuated or dead viruses to induce immunity.
An mRNA vaccine was relatively easy to design and manufacture and was
exquisitely targeted to the most important part of the virus, the spike
protein, which studs the outer membrane of the virus and is used to
penetrate human cells. In contrast to a traditional vaccine, in which a body’s
cells are ravaged as the immune system tries to learn all 30,000 letters of
the genetic code of a virus the size of SARS-CoV-2, an mRNA vaccine
means the immune system has to master only 4,284 letters. (BioNTech was,
of course, not alone in the search for a vaccine. Scientists at the US biotech
firm Moderna quickly followed, building models for its own mRNA
vaccine.)

In a few weeks, BioNTech and the US drug giant Pfizer, which had
already been partnering on mRNA applications for infectious diseases,
planned and then launched human clinical trials; in three months, more than
120,000 people were enrolled. In nine months, the vaccine had gone from a
prediction on a screen to 95 percent efficacy and received an emergency-use
authorization from the US Food and Drug Administration, and eventually
full approval.

BioNTech’s use of predictive algorithms in vaccine development was
hardly unique, but the use of machine learning, a form of AI in which the
computer learns from the data over time, identifies patterns, and makes



decisions, was integral to the explosion of vaccine work that has come from
the COVID-19 pandemic. During their computational design of the vaccine,
scientific teams could compare the sequence data from all other known
viruses and tests. Before the end of 2020, the World Health Organization
counted 34 vaccine candidates being tested in humans and an additional 145
tested on animals or in the lab. Predictive algorithms were used to
understand viruses better, predict what design elements would generate the
greatest immune response, track the evolution of variants, and make sense
of both experimental and clinical trial data.

Stocks and markets have been around since the early seventeenth century
and vaccines since the eighteenth century, yet never before have the
algorithms used in drug and vaccine discovery and the algorithms that
shape much of the market had so much in common. These algorithms, fed
by oceanic amounts of data and increasing computer power, define the Age
of Prediction.



2

The Complexity of Prediction

No one, of course, would say that the COVID-19 pandemic demonstrated a
triumph of prediction. As then–New York governor Andrew Cuomo often
declared in his much-watched daily briefings during the initial COVID-19
surge, public-health officials lagged behind the virus at every turn. Not only
during periods when infections exploded exponentially, but also in the
secondary and tertiary consequences of the reopening, we saw the snarl of
supply chains, the inflationary surge, the disparity in deaths, and even the
misinformation, antivaccine and antimask sentiment, and conspiracy
mongering that emerged. The Crimson Contagion report was wrong in one
fairly significant way: it had underestimated the US death toll.

Yet, COVID-19 also showed the speed and power of the algorithms that
drove a variety of predictive technologies. Such algorithms could be used
for more than just stocks and vaccines. Corporations increasingly applied
predictive technologies, often using machine learning, to a variety of
business challenges that arose throughout the pandemic: how to handle
inventory, what to stock, when to buy, how to understand the changing
nature of consumer demand. The role of predictive technologies in the
COVID-19 pandemic was a classic example of a counterfactual. The virus
presented nearly every individual and every institution with a radically
altered reality. The question is not really whether this pandemic was a
failure of prediction but, rather, how bad it would have been if a variety of
predictive technologies, often operating behind the scenes, had not been in
place. Would markets have responded so quickly? Would vaccine
development and testing have moved so rapidly from cell culture to animal
and human testing and then to the arms of billions of people? Also, will
some of these postpandemic effects—chip shortages; supply-chain snarls;
inflation in commodities, energy, and food—prove to be more easily
remediable because of the predictive algorithms that currently exist? So far,
yes.



Today, prediction can ascribe features and probabilities to each cell of an
embryo, to each biochemical change in an astronaut in space, to each cancer
patient, to each tendency in financial markets, to complex natural processes,
and to social behavior. A key word to describe this ability is complex.
Prediction in complex nonlinear systems has traditionally been nearly
impossible because these systems often appear to behave randomly: think
about trying to predict the course of a turbulent stream of water, consumer
choice in an economy, the actions of an angry mob, or the mutations that
drive evolution.

In the past, both the tools and the computational power to penetrate such
complexity and to determine an underlying order were absent. Markets
seemed to take a “random walk,” and genetic mutations appeared to be
arbitrary copying errors and a mostly opaque selection process.
Earthquakes, volcanoes, the weather, climate change, schools of fish, flocks
of birds, crowds, and crime waves react to nonlinear inputs that until
recently have been beyond our ability to recognize, understand, and
anticipate.

So, what has changed? Three things: the accelerating growth in
computing power—driven mostly by Moore’s law, which describes the
doubling of capacity for every generation of semiconductors (roughly every
18 months); the explosively exponential growth in data (especially genomic
data); and the development of increasingly sophisticated analytical
processes using machine learning and AI. The algorithms can now model
all of the data to continually improve the predictions, and it doesn’t matter
which aspect of the data or metadata creates the improved model. All data
is fuel for the prediction.

In time, the powers of prediction will be central to almost all our
activities and products. Today, we can already see the broad outlines of this
centrality, and we know that it will spawn consequences that few have
anticipated or considered in depth: certain kinds of risk will decline, but,
paradoxically, that decline will be one of the major challenges in a world of
advancing predictability.

The Role of Moral Hazard



Normally, prediction and risk are inversely correlated. Since an upright,
apelike animal resembling Homo sapiens emerged on the scene millions of
years ago, the relation between these two factors has consisted of weak
prediction and overpowering risk; one theory of the nature of human
consciousness is that it evolved to cope with that disparity, to constantly
update inferences based on sketchy and changeable data. Humans are, at
least in part, Bayesian calculators. With a few exceptions, such as the
seasons, humanity could not be confident of anything beyond the next few
hours or days, and even that span could be a stretch. As a result, humankind
has long been fixated on the inexplicable determinations of fate, which the
ancient Greeks depicted as three goddesses, the Fates, who determined
one’s path in life: Clotho spun the thread of life, Lachesis dispensed it, and
Atropos cut it, signifying death. Escape from life’s manifold hazards came
only outside space and time: in heaven, a world of ideal forms, or through
the second sight of an officially sanctioned oracle, such as the one at
Delphi. That sense of life as a plaything of the gods or God—as in Jonathan
Edwards’s eighteenth-century sermon “Sinners in the Hands of an Angry
God”—began to slowly change only with the Enlightenment as
mathematicians and physicists explored increasingly complex aspects of
nature.

As Peter Bernstein, an investment manager, noted in Against the Gods:
The Remarkable Story of Risk (1996), “The revolutionary idea that defines
the boundary between modern times and the past is the mastery of risk: the
notion that the future is more than a whim of the gods and that men and
women are not passive before nature.”

Bernstein’s history features a slow and steady accumulation of insights
and knowledge over many centuries, but that slow accumulation begins to
accelerate in the twentieth century, launching an era of exponential growth.
In 1996, the human genome hadn’t yet been elucidated; that would take
until 2001. Artificial intelligence as a field was struggling to attract funding.
The internet was still in its infancy, and the smartphone was science fiction.
Few could really anticipate the explosive growth in data that was coming.
Bernstein even touched on the emerging development of neural networks,
genetic algorithms, chaos theory, and the belief “that all complex systems
like democracy, the path of technological development, and the stock
market share common patterns and responses.” But he was skeptical that
these techniques could truly be predictive. “Nothing is more soothing or



more persuasive than the computer screen, with its imposing arrays of
numbers,” he wrote, noting, “Likeness to truth is not the same thing as
truth.” Anticipating surprise—what he called “wildness” in nature, markets,
or human conflict—would remain difficult, if not impossible.

What Bernstein could not see is how we would be swept forward by a
tsunami of data and computing power and how that immense growth would
begin to hone our predictive tools and make them more effective, and even
a little eerie, like when algorithms (e.g., ChatGPT) can create almost perfect
Shakespearean prose. As models improve, as the tools grow faster and
become less expensive, and as the data flows are larger and more diverse, it
is tempting to imagine that we can eliminate much of the variance in
prediction and risk, particularly as we improve the iterative learning process
at the heart of machine learning.

For example, if we can monitor genetic alterations that occur over time,
we can predict health problems a year, a decade, or even a quarter century
early for patients. We can also get a jump on infections before they become
epidemics, guess the likely reaction of cancer cells to targeted drugs, and
prepare for problems such as antibiotic resistance, which may kill millions
of people per year by 2050, according to a study by Marlieke de Kraker and
colleagues from 2016. Personal and predictive medicine will have its
analogue in personal and predictive insurance. AI will improve everything
from weather forecasting to earthquake prediction to disease diagnosis—
indeed, it already has in some ways.

However, none of this will occur easily or without disruption. An
autonomous vehicle is predictive, but it will never become ubiquitous if it
doesn’t significantly reduce the risk that it will hit something. Sales and
marketing are less risky but more subjective. They have already attempted
to apply predictive algorithms to our tastes and desires, with promising if
mixed results. Forensics is being transformed—the ability to trace DNA left
behind by killers has already cleared up thousands of cold cases—but
predictive enterprises such as hiring and polling remain little changed.

This is a book about the next few decades, which we can already see
quite clearly, when improved prediction will reduce risk, but won’t sweep it
away. Aging, mortality, and the hazards of everyday life will remain. Also,
we know that these changes in risk will change how people and society act
and react.



One embedded trade-off of greater certainty is the human propensity to
take on more risk. Here again we see moral hazard, a familiar concept for
insurance companies and financial regulators. When people are convinced
that their risk is much reduced, they tend to engage in more or different
activities, climbing out on the risk curve, whether they’re building homes
on floodplains or betting their 401(k) accounts on dot-com stocks. Bernstein
called this the “seat-belt problem.” Seat belts convince people that they are
safer; one result of their use is fewer deaths on the road, but another is more
reckless driving and more accidents. Particularly in markets, risk tends to be
correlated with reward. How does the reduction of risk alter this well-
known relationship? How will tools of prediction remake and disrupt entire
industries—and nations—and will they spawn greater uncertainties? How
will the advent of increasingly better predictions and the reduction of risk
affect democratic politics? Will risk generally fade away?

We explore those questions in the coming chapters. Although we strongly
believe in the long-term benefits of the Age of Prediction, we also
understand that more accurate prediction, like any great advance, will create
tensions and stresses, unexpected consequences, and unanticipated realities.
The changing relationship of prediction and risk has already triggered
tensions between security and privacy, democracy and control, rationality
and irrationality. Those who master these predictive tools will have a
tremendous advantage over those who don’t, and manifestations of
inequality, already a problem, will afflict individuals, corporations, nations,
and entire regions. Improved prediction may drive economic growth and
change, enriching some, impoverishing others; the effects will be powerful
and intrusive.

The Dynamics of Risk
A prediction is a statement about the future. Risk is the probability that the
statement is wrong. Absolute certainty, if such a thing exists, is 100 percent;
absolute uncertainty is 0 percent. The probabilities of one future over
another, whether it’s a car weaving through city traffic, a medical diagnosis
based on a genomic analysis, or the chances of one political candidate
defeating another, fall somewhere in between. Certainty and uncertainty



shift within that 0 to 100 percent range. Most of the mechanisms that drive
predictive technologies involve calculations, based on data, that try to
define the line between the two or to maximize certainty over uncertainty.
The language of prediction is probability. What are the odds of a hurricane
taking one path or another? What is the probability of getting struck by
lightning on a golf course or of an asteroid hitting Earth? Risk is associated
with failure. In finance, that failure is the trading strategy that goes wrong;
in medicine, it’s the therapy that kills; in government, it’s the policy that
fails.

How can we reconcile these two linked but very different concepts,
prediction and risk? How can we be living in the Age of Prediction and still
feel that risks—uncertainties—are piling up around us? Nearly all these
predictive technologies involve people, and that makes the problem far
more complex. Humans are not machines or only physical systems. They
change their minds. They calculate based on incomplete information. They
act, and then react, and then react to the reaction. They live in complex
social groups. They “follow their gut.” They aren’t, despite the hopes of
generations of economists, rigidly rational and self-interested, but they’re
not essentially irrational, either. The world around them never stops
changing. Human consciousness is plastic, flexible, and diverse. Human
behavior, in short, is difficult to predict.

The Age of Prediction is not an age of perfect certainty. Risk will not
evaporate; it may move, change shape, evolve like a virus. For all the deep
thinking about risk and management of risk, the relation between prediction
and risk remains something of a mystery. Like so many aspects of our
world, the relationship between these two forces is ceaselessly changing,
and, in our experience, one of the key factors driving this mutability is the
ability to accurately predict the effects of prediction itself.

What do we mean by that? People tend to behave differently when they
are no longer fearful of the consequences. This can be either good or bad or
both. It’s subjective and often paradoxical. Removing a risk may be
liberating because it eliminates a source of anxiety and even in some cases
harm or near-certain death. We no longer worry about smallpox,
tuberculosis, and polio, for instance, because vaccines have minimized their
threat. We trust airplanes, anesthesiology, most prescription drugs, and
smartphones despite most users lacking an understanding of how they work.



It’s hard to find the downsides of such advances beyond some occasional
side effects.

But even as some risks can be predicted, reduced, and perhaps
eliminated, others continue to emerge, like a game of whack-a-mole. From
a risk perspective, the chances of dying from heart disease, cancer, and
neurological disease have risen, while the threat of infectious diseases,
which traditionally preyed on the very young, has receded. Overall, longer
life expectancy is a good thing, a wonderful trade-off. Yet, even that
advance has its complexities: the high cost of caring for older people, the
economic burden of an aging society, the moral dilemmas of old age that
currently affect the most advanced economies.

Many people hope that future innovations will solve these issues, but it is
worth noting that optimism creates conditions that nurture and encourage
risk, as the economist Hyman Minsky noted in the context of financial
markets. Reducing risk can shrink incentives to behave in risk-minimizing
ways—to watch your health, to care for your home and car, to behave, in
that old-fashioned word, prudently. Reducing risk tends to increase the
sense that you can safely take on more risk. In the markets, risk is
correlated with reward.

Traders move from securities that are declining in risk and reward to
those increasing in risk and reward, but traders are not perfectly rational,
which can lead to poor decision-making. There is even a backlash to some
predictive technologies that require intimate or private data about
individuals. Some of the rise of COVID-19 antivaccination sentiment was
driven by a resistance to being told what to do, a protest in defense of
personal autonomy or freedom, despite very apparent risks to the
antivaxxers and others. Prediction can seem to be coercive or oppressive,
narrowing current behavior and future options.

Thus, predictive technologies can and do spawn unintended
consequences. In fact, there may always be limits to prediction in human
affairs; 100 percent certainty may be forever out of reach. We may grow
confident that some targeted and quantifiable predictions are
overwhelmingly likely to occur, but we may not be as certain about what
the secondary and tertiary effects will be and whether they can suddenly
mushroom into a threat even greater than the initial problem.



The fact that prediction and risk are inextricably linked explains why the
optimism that often characterizes the Age of Prediction is also shadowed by
anxiety, fear, and active opposition to what accurately predicting the future
will entail. At its most fundamental level, the enhanced ability to predict
creates change, which can be destabilizing and anxiety provoking. What
will the change mean? How will we adjust to it? Will it release unforeseen
risks, like the demons in Pandora’s box? In the great debates in seventeenth-
century France over whether to engage in smallpox inoculations for
children—using not a vaccine but the virus itself—a common objection was
that the inoculations were against God’s will, even if they worked.

As we enter the Age of Prediction, the deepest fear among some people
is that we will develop techniques to approach absolute predictability or
certainty and thus render aspects of life completely determined, as if people
were machines and humanity were assuming the omniscient role many once
ascribed to God. A large literature speaks to this fear. Such a possibility
would have bizarre effects. It would erase reward from the markets,
destroying their function, and it would rob individuals of free will or at least
of the perception that they can act freely. However, such an eventuality
remains far off, theoretical, and perhaps unrealistic. Some quantity of risk
will undoubtedly remain. As a result, we may be fated always to wonder if
the very potency of our predictive tools means we are missing some new
risk out there, quietly gestating in the dark.

No Turning Back
Returning to the COVID-19 pandemic, we can now ask with more detail:
How did that pandemic occur, and could we have predicted it? Quite
possibly. We now have global systems that are sequencing DNA and RNA
from human patients, wastewater, and animals to find and track new
viruses, such as the MetaSUB Consortium, the CDC’s National Wastewater
Surveillance System, the Cornell Center for Pandemic Prevention and
Response, and GeoSeeq, an infectious disease tracking platform launched
by Biotia (a health-tech company cofounded by Chris). Also, we now know
the conditions that are driving the emergence of zoonotic pathogens,
including rapid, human-driven ecological change (such as climate change



and urbanization) and destruction exacerbated by the impact of increasing
populations of humans living longer and traveling more. A pandemic is not
just the bats’ fault. Pathogens are being driven from animal and plant
reservoirs where they have coexisted symbiotically (and relatively
benignly) for long periods of time; once they are disturbed, they can
naturally take up residence in the humans who are crowding in on them but
who lack immunity against them. The phenomenon is thus a result—a
paradoxical result from humankind’s point of view—of our increasing
success as a species on this planet leading to our increased risk. Once again,
the power of human “success,” much of it attributable to prediction,
minimizes older risks only to see newer ones rise up, demanding ever more
novel and innovative predictive tools.



3

The Quantasaurus

We represent an odd pairing: a geneticist who maps dynamics across human
and microbial genomes and a quant who trades in financial markets by
analyzing all kinds of data. In March 2016, the two of us were eating lunch
and talking, mostly about data, but especially about how to get more of it.
We were, and are, both fixated on getting as much data as possible. We
often compare notes on algorithms and AI, examining the range and types
of data that are pouring out of our various experiments and operations. Both
of us are awash in data, and we still want more. We know that data
propagate more data, which is why Igor so often talks about the possibilities
of exponential increases in data. The sheer scale of the data has led to a
syllogism that Chris often uses: if data give us more power to predict and
more data are produced every day, then every day we wake up is the best
day to be a scientist.

It is an exciting time.
Our fields, although very different, are converging around computer-

driven, quantitatively based techniques for sorting through massive amounts
of data in search of patterns, regularities, and signals of any kind. The
jargon of the two fields is different, but the underlying tasks are much alike:
both of us are in the prediction game. We are focused on the raw material of
prediction, data, increasingly characterized as Big Data. We aren’t alone, of
course—Big Data have become a big deal. We joke about our fixation, as if
it were a pet, and it has a name:

The Quantasaurus.
Quanta suggests quantum, as in quantitative, quantum physics, quantum

mechanics, quantum computing. The word quantum simply means “a
quantity.” Igor makes a living in quantitative investing. Besides creating
early video games as a teenager and working at Bell Laboratories for a
while, he helped pioneer trading-based algorithms. Early in his finance
career, he developed a single algorithm that sought to predict the



fluctuations of stocks around market closing times; he built a business
around that algorithm and, later, lots of other models (called “alphas”). One
of the fields that Chris works in is computational biology, which involves
using algorithms and models to untangle the increasingly complex
molecular world that genomics has revealed. Both of us obsess over quanta.

Sauros is Greek for “lizard” and combined with deinos, or “fearful,”
produces “fearful lizard or dinosaur.” We like the paradox of a quantum
dinosaur. There once was an actual dinosaur called the Qantassaurus, a two-
legged, plant-eating ornithischian that once roamed what is now Australia.
The ornithischian group consisted of lizards with birdlike hips; its members
may have been the forebears of birds—some grew what appear to be early
versions of feathers.

Our Quantasaurus is abstract and metaphoric; it has more in common
with the faux monsters Igor created in his 1980s video games than with
anything that wandered around Australia chewing plants 115 million years
ago. It is a product of the digital age, an amalgam of advanced AI
technologies. Unlike the extinct dinosaurs slowly turning into oil, our
creature is growing quickly and turning into myriad other forms and
models. Exponentially quickly.

The Quantasaurus feeds off data. Much of these data race across the
internet, where various electronic devices vacuum them up, package them
into data sets, and pass these data sets along to customers and users, who
apply them to tasks that spawn even more data. Other data may never
appear on the internet but can be directly accessed through sensors
(cameras, thermostats, satellites, smartphones—detectors across many
spectra) or other proprietary-data-collection methods, such as surveys or
polls. In the 1950s, Walmart founder Sam Walton used helicopters to count
cars in parking lots, trying to judge real-estate asset values. Today, satellites
can do the same but also now track weather; pollution; agriculture;
deforestation; the speed, location, and direction of your car; and lots of
activities people would like to keep secret. As more and more devices are
linked to one another—smartphones, the internet of things, self-driving
cars, weather satellites, internet searches, online videos, social media posts,
GPS tracking information—the data grow larger and more diverse.
Anything that can be sensed can be counted, bundled into a data set, and
analyzed in multiple ways.



Whether and how data prove to be compelling rather than a random
collection of observations are the big questions of the Age of Prediction.
Vast quantities of data are not an unalloyed benefit. Data have to be cleaned
and standardized to be useful. Too much data can be as much of a problem
as too little, although as analytical and computational tools grow more
sophisticated, data that once seemed merely “noise”—random, useless stuff
—may reveal new patterns and insights. But, in general, as more data are
unleashed, the time it takes for new, useful, and meaningful data to be
commoditized shortens. In markets, this commoditization produces what’s
known as a crowded trade: too many users of a certain kind of data, like too
many traders pursuing a certain kind of trade, drive down the value. If
everyone has it, it’s less valuable. In finance, you keep your best, most
unique data to yourself, and get as much of it as you can. This is also true in
medicine; some companies like Myriad Genetics keep all their data on
cancer risk for a gene called BRCA1 from the rest of the world, so that only
they can make the best predictions. In contrast to finance, siloing medical
data is a detriment. As more and more people share their genomic and
medical data, the data’s utility continually increases for all future patients.

Two Universes of Data
How much data are out there? In 2012, IBM announced that the world
produced some 2.5 quintillion bytes of data (that’s 2.5 followed by 18
zeros) every day and that 90 percent of the data that existed at that time had
been created in the previous two years. Since then, the world has now
produced enough digital data that they now span about 100 zettabytes (100
followed by 21 zeros)—and the rate of data generation is only increasing.
The advent of 5G service for smartphones is opening up vast new horizons
of products and services, with ever-deeper interconnections, massive
amounts of fresh data, and new forms of heretofore unimagined data in
barely imaginable quantities.

The growth curve of data soars like a rocket. The mathematics of
exponential growth trace a steepening curve on a graph, with big numbers
being multiplied annually—not like GDP of, say, 3 percent a year, but



increases of 40 to 80 percent every year (figure 3.1). That growth adds up
fast.

Figure 3.1
Total data created, captured, copied, and consumed worldwide. Estimates from Arne Holst show that
world data production exceeded 97 Zettabytes (Zb) in 2022 and is on track to reach 181 Zb by 2025.
Asterisks indicate estimates. Source: Arne Holst.

A famous example of exponential growth is the increasing density of
semiconductor chips since the invention of the integrated circuit in 1961.
Semiconductors have literally transformed our world, and they have done it
at the pace of Moore’s law, first stated in 1965. This law observed that the
number of transistors in an integrated circuit doubles about every two years,
while the cost of the chip is halved. Gordon Moore, the Fairchild
Semiconductor and Intel engineer who made that prediction, updated it in
the 1970s to a doubling every 18 months. Intel has said the growth of chip
capacity has been slowing of late, a reality Moore agreed was inevitable,
but the tech industry may yet be able to extend that capacity with quantum
computing in the wings. Moore, who turned 93 in 2022, offered up another
law, Moore’s second, that has also proved prescient: every doubling of chip
capacity doubles the costs necessary to fabricate it. Those two laws
essentially define the opportunities and challenges of the semiconductor
industry (figure 3.2).



The growth in data creates its own unsettling new reality. At first, it
seems minor, even trivial. Data are, after all, abstract, though their effects
may not be. For long periods, data grew like a gently rising pile of sand,
partly attributable to an initial, very small base, partly because critical mass
hadn’t been achieved and explosive, self-perpetuating acceleration hadn’t
yet occurred. The early years of integrated circuits—which saw one
transistor etched on a silicon slab become 10, then 20, then 40—may have
appeared a technological feat, but it was not apparent that these
improvements were changing the world. Once 10,000 became 20,000 and
then 40,000, the sense of acceleration became tangible. Now that we can
talk millions or billions, with components as small as a few nanometers (a
hydrogen atom is 0.1 nanometer), we’re seeing powerful, mutually
reinforcing, accelerated growth.

We’re in a new world of exponential growth of data that is, ironically,
extremely difficult to predict.

Igor operates a business, quantitative investing, that is experiencing
exponential growth. He has lived with the symbiotic relationship between
the growth of data and the growth of predictive algorithms (his alphas)
fueled by those data. At the operating level, he has amassed large numbers
of alphas—from a handful in the 1990s to millions today—that are used to
construct tradable portfolios. Because alphas use data that evolve with time,
they continually generate more data. Everything is automated, and the
performance of individual alphas is continuously monitored.

Exponential growth produces a distinctive psychological dynamic. In
enterprises shaped by exponential growth, stakes rise, and competition
intensifies. Exponential thinking means living with risk in new ways. The
world that exists today will be dramatically different tomorrow. There is a
ruthless meritocracy to this dynamic, which in turn requires a deeply
empirical, flexible mindset: keep your eye on the goal, but be willing to cut
your losses. It means knowing that what is shocking today may be routine
tomorrow and obsolete the day after. It requires a belief that limits are
meant to be broken. In an exponential world, the terrain ahead is always
unknown. Turbulence is inevitable. Old risks recede, while new, unknown
uncertainties may emerge.



Power Laws
Genomics is the new kid on the exponential-growth block, having ridden an
explosive growth in data since the mid-2000s and the development of
massively parallel next-generation DNA sequencing (NGS) methods at
Solexa, which Illumina acquired in 2006. That development is one of the
most important, if relatively unknown, keys to the Age of Prediction. The
growth rate described by Moore’s law has held for more than five decades,
but the pace of NGS has advanced even more quickly. NGS has produced
precipitous decreases in the cost of DNA sequencing and analysis that have
averaged 50 percent reduction every five months. The falling cost of
sequencing, the increase in speed, and the growing number of NGS
instruments mean that each day sees a new record for the total amount of
sequence data. It now costs less than $200 to sequence a 3 billion base-pair
genome in under eight hours. That represents a millionfold drop in cost
from the first sequencing projects, which took about a decade to complete,
and a 10,000-fold increase in speed. And newer technologies from
companies such as Illumina, Ultima, Element, BGI, and Oxford Nanopore
are driving the cost to less than $100 per genome. Every day is the best day
to be a geneticist.



Figure 3.2
Moore’s law. The line corresponds to exponential growth with the transistor count doubling
approximately every two years. The y axis is in log-space. Significant chip types are labeled by each
data point. Source: Hannah Ritchie and Max Roser, “Technological Change,” Our World in Data,
2013, https://ourworldindata.org/technological-change (CC-BY).

The sheer volume of genomic data threatens to exceed even astronomical
data scales. The genomic sciences generate vast amounts of data by
exploring everything from the far reaches of the universe to the quantum
world to the intricate machinery of the cell. Astronomers held previous
records for “large-scale data analysis,” producing exabytes of raw data.
(One exabyte equals 10 to the 18th power number of bytes, well deserving
of the term astronomical.) Genomics, however, can now create a yottabyte
(1 trillion terabytes or 1 million exabytes) of data, from things as small as
the RNA molecules in a single human cell to a genome for all 7.9 billion
individuals on Earth. Projects such as the UK Biobank and other national
initiatives have now sequenced millions of human genomes and linked



them to long-term medical records, and this also accelerates the data
growth.

Human cells also possess genomical-scale complexity, which massively
multiplies the available data. In a cell, RNA copies of specific DNA
sequences can be modified and spliced, transported to the ribosomes, then
used to “program” the assemblage of proteins. The human genome has
roughly 21,000 genes that code for proteins, but that doesn’t begin to cover
the underlying complexity. Genes can be spliced into a wide array of forms,
much like mixing and matching a large set of standardized Scrabble letters
to make different words. Each subunit is called an “exon,” and although
some genes contain just one or two exons, others have many more: the
largest gene in the genome—called TTN, or Titin—has 363 exons. Because
exons can be shuffled and rearranged in potentially any linear order, the
number of possible splice variants—different DNA sequences—for a
human being is staggering, totaling 9.4 × 10108 combinations. As a
comparison, astronomers estimate that there are about 8.2 × 1081 atoms in
the entire universe. Thus, strikingly, the inherent combinatorial complexity
of DNA sequences within a single human cell is larger than the number of
atoms estimated in the entire universe.

Because all living organisms use DNA and RNA, far more than just
human DNA and RNA is being sequenced, analyzed, and modeled.
Organisms used in biological research include mice and fruit flies as well as
bacterial, viral, and fungal strains in clinical labs. The science of all these
genomic data is known as metagenomics. Each day builds up more data and
accretes a larger catalog of genetic knowledge, layering information from
different species, biological states, and locations.

But just because you have access to genomic-scale data doesn’t mean
they’re organized or processed—or that they’re immediately useful. Many
of the scientists in Chris’s lab have observed how messy biological data are
compared with financial data, much of which has been gathered and
standardized for decades or longer. Ideally, raw data become organized
information, which is then processed into predictive knowledge, driving an
appropriate action. However, data in genomics or anywhere else rarely
attain that state.



Figure 3.3
Growth of DNA sequencing and data. The plot shows the growth of DNA sequencing both in the
total number of human genomes sequenced (left axis) as well as in the worldwide annual sequencing
capacity (right axis: Tera-base pairs, Tbp; Peta-base pairs, Pbp; Exa-base pairs, Ebp; Zetta-base pairs,
Zbp). The values through 2015 are based on the historical publication record, with selected
milestones in sequencing (from the first Sanger genome through to the first PacBio human genome
published) as well as three exemplar projects using large-scale sequencing: the 1000 Genomes
Project, aggregating hundreds of human genomes by 2012; the Cancer Genome Atlas (TCGA),
aggregating more than several thousand tumor/normal genome pairs; and the Exome Aggregation
Consortium (ExAC).

That said, markets and biology share deeper affinities that large amounts
of data can sometimes reveal. Both consist of many interacting individual
agents that often appear to be acting randomly but display evidence of self-
organizing behavior. You can see this tendency in flocks of birds, in
mudslides, in turbulent flows of liquids or neutrons, and in the weather
itself. Organization emerges from simple agent interactions and from
bottom-up rather than top-down control. These processes don’t require a
master controller to operate. Evolution itself is one of the most powerful
decentralized self-organizing processes, “directed” by what the evolutionary
biologist Richard Dawkins famously called the “blind watchmaker,”
without discernible goals beyond survival, but determining many other
natural systems and shaped by them in turn. Feedback is among the most



powerful aspects of complex self-organizing processes and a driving force
in both exponential growth and systemic breakdowns.

These self-organizing systems often display processes that, despite the
appearance of disorder and even chaos, grow at a rate based on a so-called
power law. A power law is a fixed, often exponential relationship between
two quantities in which a change in one quantity results in a proportional
relative change in another. Perhaps the simplest power law is the fact that if
you double the length of the sides of a square, its area quadruples; if you
triple it, the area grows by nine times, or three squared. Data today are
growing by a power-law exponent over time. Moore’s law clearly defines a
relation between time and semiconductor capacity. Mathematically, if you
graph a power law, you produce a straight line with a slope (positive or
negative, rising or falling) that fixes the relationship between two
quantities.

Nature is rife with these regularities. Metabolism operates more
efficiently as animals grow in body mass (by a 0.75 exponential increase),
and aspects of urban infrastructure—length of roads, electrical cables, water
pipes, the number of gas stations—scale in the same way in cities of very
different sizes. At the start of the twentieth century, the Italian economist
Vilfredo Pareto articulated the now-famous 80–20 relationship, which
defines the allocation of wealth in a society: 20 percent of the population
controls 80 percent of the wealth (or, in a more popular formulation: 20
percent of the people do 80 percent of the work). Since Pareto articulated
this general distribution, it has been found to apply to a number of
economic, sociological, and natural phenomena: the distribution of cities by
size in a country (fewer large cities and many smaller); the values of oil
reserves (a few large fields and many small); hard-disk-drive error rates (a
few large errors and many small); companies by size (a few very large
companies and many small). Like Moore’s law or the rate of genomic
sequencing, the exact Pareto relationship may drift—say, in income
allocation—but the notion that a few big entities (cities, meteorites, the
wealthy, genomes, the hardworking) exist in a fixed relationship with a
much greater number of smaller or lesser entities appears to have the
straight-line slope characteristic of a power law. Power laws, in short, are
predictive.



The Foundation of Finance
Finance has long been a matter of prediction and has extensively used
power laws and other tools. Economists describe markets as pricing
mechanisms, but at the heart of the pricing mechanism is a trade, a bet, a
gamble, a belief on a future price. Markets are probabilistic and
prospective. Markets are also leading indicators, with the shortest-term
traders and the longest-term investors trying to gauge the future of
everything from the growth of the global economy to the path individual
stocks and bonds will take.

Early in the twentieth century, the attempt to predict future prices took on
a more scientific air with the introduction of forecasting and statistics.
Forecasting pioneers such as Roger Babson, John Moody, Yale’s Irving
Fisher, and Columbia’s Wesley Clair Mitchell developed statistical systems
to try to predict the future course of stocks. Though such systems were
popular throughout the 1920s—many were sold on a subscription basis to
investors—nearly all of them failed to predict the crash of 1929 and the
Great Depression. Fisher, in particular, famously declared that “stock prices
have reached what looks like a permanently high plateau” just before the
crash. He, at least, had tenure to fall back on.

Although the Great Depression battered the reputations of market
forecasters, it also drove academic research to explore market processes and
dynamics; that research began to produce results after World War II. Much
of the work on markets and investing occurred in and around the University
of Chicago from the 1950s to the 1970s and involved an attempt to build a
stronger, more quantitative foundation for investing. That movement, now
known as Modern Portfolio Theory (MPT), included assumptions,
techniques, and hypotheses that continue to define mainstream investment
practice: efficient and rational markets, the random walk of prices, portfolio
diversification, volatility, and arbitrage. MPT began in an era when
calculations were still done with slide rules and mechanical calculators, but
advances in computer technology soon came to play an increasingly major
role. And, as we’ve seen, the ability to crunch more and more numbers
drove an explosion of data, producing powerful feedback loops and igniting
exponential growth in data.



That didn’t mean that markets had suddenly grown predictable. Markets
are complex and elusive. As Emanuel Derman, a physicist turned Goldman
Sachs quant, wrote in 2002: “There is no fundamental theory in finance.
There are no laws. Models in finance are used to turn opinions into prices,
and prices into implied opinions.” Finance is not physics, Derman
emphasized, but more like social science. “Models in social science are . . .
toy-like descriptions of idealized worlds that can only approximate the
hurly-burly, chaotic and unpredictable world of finance and people and
markets.”

Nevertheless, the new thinking about investment did provide a way for
investors to attempt to balance two attributes that have long been known to
shape any investment: risk and reward—the greater the risk, the greater the
expected reward, and vice versa. Market practitioners have long understood
“risk and reward” as a general concept that is all but impossible to quantify.
There’s no certainty, for instance, that by adding a fixed quantity of risk you
will get a fixed quantity of reward; indeed, anyone who says so would be
considered hopelessly naive. Rather, increasing risk suggests that your
reward may be large, but it may also be small or nonexistent or a brutal
loss.

That’s because risk embodies a quality of future price movements known
as uncertainty. Like any attempt to predict the future, investing is laden
with uncertainty, a factor defined by the University of Chicago economist
Frank Knight in 1921 as a risk that can’t be rendered as a probability and
therefore can’t be predicted. Much of what MPT did was to begin to define
—quantify—risks that were not in the realm of uncertainty. Investors had to
take some risk to generate some reward, and with MPT they could in theory
identify, quantify, and minimize risks to tilt the probabilities of reward in
their direction. Yet, MPT hardly provided the secret of accurate prediction.
Even though US stock markets were viewed as increasingly efficient—they
adjusted to changes in new information quickly and made beating the
market very difficult—they continued to be vulnerable to sudden and
unpredictable drawdowns, bubbles, crashes, and devastating losses.

MPT Going Digital and the Birth of AI



Beginning in the 1930s, developments were unfolding outside the world of
investing and markets that would change how those risks and rewards were
quantified. Like so many aspects of digital computing, the story begins with
Alan Turing, a British mathematician, cryptologist, and logician. In 1936,
just as the possibility of modern computing was emerging, Turing laid out
in a paper titled “On Computable Numbers” the basic functions that such
machines would require. Turing theorized about a machine that “could read,
write, remember, and erase marks on an unbounded supply of tape,” as
George Dyson writes in Turing’s Cathedral. Such a machine became known
as the “universal Turing machine,” a device that, given sufficient time, tape,
and description, could simulate the behavior of any other computing
machine with the same attributes. Turing laid out these requirements for
digital computing without regard for the underlying technology. “Being
digital,” he wrote, “should be of greater interest than . . . being electronic.”

As computers and data grew exponentially, computer and data science
developed new tools and techniques to exploit that growth, and from that
development came the broad field popularly known as artificial
intelligence. Humanity had speculated about the possibilities of “machines”
that could think like people since the ancient Greeks, from Pygmalion’s
statue in Ovid’s Metamorphoses to Leonardo da Vinci’s humanoid robot to
Thomas Hobbes’s Leviathan, an “artificial human” that embodies his ideal
state. Dyson once described Hobbes as “the patriarch of artificial
intelligence.”

The first serious work on AI began in the 1950s as computer technology
rapidly advanced. The phrase artificial intelligence was coined by the
Dartmouth College mathematics professor John McCarthy in a proposal to
the Rockefeller Foundation for a summer meeting in 1955 that would bring
together the leading lights of the nascent field. McCarthy had invented the
name to distinguish AI from what he considered narrower pursuits, such as
automata theory and cybernetics. Over the decades, however, AI has been
plagued by an often-confusing tangle of definitions—the symptom of an
open-ended and fast-moving field. As one commentator noted, the problem
was less in the term artificial (though some early AI researchers associated
it with “phony”) than in the term intelligence, which suggested machines
that could think like humans. Particularly in those early days, computers
were often described as “giant electronic brains” or “thinking machines,”
though they were actually just fast (for the time) calculators and filers. But



what is intelligence? Is it the ability to recognize and distinguish human
faces or handwriting? Is it skill at playing complex strategy games or
solving difficult questions? Or is it the ability to learn?

Turing played much the same kind of role in AI that he had in digital
computing. In 1950, he wrote a paper, “Computing Machinery and
Intelligence,” that attempted to define an intelligent machine. The issue, he
contended, was not whether the machine was infallible and correctly
answered every question submitted to it. The Turing test of machine
intelligence was whether a human interacting with a computer through an
exchange of texts could not reliably tell whether it was human or machine.
Turing, who believed machines could learn, made provocative proposals for
what he called a “learning machine” and discussed the possibilities of
“evolutionary computation.” He had a keen sense that evolution could
expand beyond biology.

In contrast to the early, limited machines, AI in the Age of Prediction is a
vast, diverse, and swiftly moving field with a rich interplay between
computer science and many other fields, from materials science to
medicine. Although most predictions concerning AI continue to improve
with more data, the history of AI is also a graveyard of failed predictions. In
a 1957 talk, Herbert Simon, a Carnegie Mellon economist and AI pioneer,
predicted that in ten years machines would be champion chess players,
compose music, prove a mathematical theorem, and embody a
psychological theory as a program. He said, “Machines will be capable,
within 20 years, of doing any work a man can do.” Another AI giant, the
MIT computer scientist Marvin Minsky, predicted in a 1968 press release
for the movie 2001: A Space Odyssey that “within a generation . . . the
problem of creating ‘artificial intelligence’ will substantially be solved.”
Neither prediction came true on schedule. AI experienced booms and busts,
including a stretch in the late 1980s and early 1990s dubbed the “AI
winter,” when many practitioners lost heart and funding was scarce. Lots of
excitement had been generated in the 1970s by programs known as expert
systems that tried to capture the expertise of, say, physicians, accountants,
and lawyers in computer programs. But expert systems were inflexible—
mechanical.

Expert systems never regained their preeminence, but other techniques of
machine learning, such as neural networks, came to the fore. For example,



the growth in computing power enabled the development of larger neural
networks with more layers and connections for identifying subtle patterns in
data. Data became increasingly important. Expert systems were
programmed to provide logic to the machines, which processed the
instructions fed into them. The instructions were essential, not the data.
Computer scientists and programmers began to design and build computer
architectures that didn’t just respond to instructions but “learned” from data,
extracting patterns, logic, and signals from rich, deep, and increasingly
diverse data sets.

Today, AI takes many forms, including machine learning, deep learning,
natural-language processing (NLP), expert systems, and fuzzy logic. The
first, machine learning, is a way of programming learning based on test and
training data and includes supervised, unsupervised, and reinforcement
learning. For more complex data, deep learning implements variations of
neural networks that resemble aspects of the human brain, processing high-
dimensional data to seek emerging patterns. NLP involves learning patterns
of word interactions and vectors. Amazon employs it to understand patterns
in customer reviews and to improve user experiences on its website, while
academics have shown that NLP algorithms can even be used to detect
crime-related tweets on Twitter. Expert systems, although less common
today as independent programs, are part of almost every programming
language. Fuzzy logic uses program parameters that estimate the probability
of an answer being correct, as opposed to the simple “yes/no” of Boolean
logic.

Fortunately, the AI winter began to thaw in the 1990s with a handful of
splashy promotional triumphs. In 1996, IBM’s Deep Blue, initially
developed at Carnegie Mellon, defeated the chess champion Gary
Kasparov, belatedly affirming Simon’s prediction of 1957. In 2011, IBM
used a question-answering system—a combination of an information-
retrieval system such as a structured database and NLP—called “Watson” to
defeat several Jeopardy! champions. And in 2014, DeepMind Technologies
published a description of a program called AlphaGo that could play the
Chinese game Go. Though Go’s rules and board are simple, the game is
difficult to master. Because each 19-by-19 location on the square board can
be either empty, black, or white, there is a total of 3361 possible board
positions and more than 10170 board configurations. In March 2016,



AlphaGo, using an advanced search tree with deep neural networks, played
Lee Sedol, one of the world’s best professional Go players. AlphaGo won
four out of five games.

AI for Finance
In 1995, Igor took a job as a portfolio manager at a New York City hedge
fund firm. At the time, mathematically sophisticated, academically trained
professionals were popping up on Wall Street, and “quant finance” was
emerging. Though markets often appeared to be chaotic, research was
turning up persistent regularities. Some were stronger and more persistent
than others. Igor built his first algorithm and over the next decade evolved
his own set of ideas about the most effective way to use his “alphas” to try
to predict prices. Much of this work involved scaling up the number of
alphas into what he began to call an “alpha factory.” In 2007, he formed his
own firm, WorldQuant.

Just as our immune system keeps learning about evolving microbes, Igor
recognized a similar reality of market regularities: no regularity lasts
forever, so there’s a constant need for new alphas to identify new market
signals derived from new data sets and new insights. Over time, he
developed what he calls “tenets of prediction,” which laid out a kind of
mathematical circularity among models, data, and predictive accuracy. He
found that with his strategy the accuracy of models tended to rise
logarithmically with the number of algorithmic models, so 100 times more
models produce, in theory, 10 times better predictions.

WorldQuant is in the business of trying to predict stock prices and market
trends. Every model or formula attempts to predict returns based on a very
specific piece of information or a very specific way of looking at a piece of
information. For example, WorldQuant has several hundred thousand alphas
built on relatively simple and publicly available price and volume
information. One alpha may look at five-day returns, another at one-day
returns, yet another at returns relative to similar stocks. Each different way
of looking at data yields a slightly different prediction, which, in turn,
interacts with other predictions. Broadly speaking, if combined predictions
are uncorrelated, Igor concluded that they increase their power with the



square root of the number of predictions. If they are correlated, the increase
is less steep, typically following a logarithmic improvement for each new
alpha. (The shorthand of logarithms is an essential tool in dealing with
exponential growth.) But if you combine an exponential number of
logarithmic improvements, you get a linear improvement with the logarithm
of alpha quantity. That’s why Igor believes it is an advantage to have
millions of alphas. These alphas can reveal a signal that is much stronger
than any of the component signals, which cannot be described by a simple
formula.

This is a complex endeavor in practice. To predict something based on
different data, you can mix the data and then try to predict, or you can make
predictions based on each alpha derived from each data set. The latter is
much simpler, especially at scale with thousands of data sets and millions of
predictions. It’s not the amount of data but the number of quality models
built from the data that ultimately drives prediction in a strategy like
WorldQuant’s. But the raw number of models is proportional to the number
of useful fields in any given data set. This prediction strength is
proportional to the logarithm of the volume of quality data, which explains
why exponential growth in data is required to keep prediction improving
linearly. Quantity is necessary to win the prediction war in the markets, in
the immune system, and in any predictive system.

But this begs the question, why do signals come and go? First, markets
are fluid and prone to continual and often random change. That fluidity isn’t
just a metaphor. Quants borrow a term from physics that describes a
turbulent, nonlinear flow—stochastic, which means the flow is somewhat
random and therefore can only be analyzed statistically. Markets are clearly
nonlinear, and prediction is almost never a black-and-white binary choice,
but rather a probability. Second, profitable strategies attract imitators, which
may flatten out that probability and the associated profits—a remorseless
process in financial markets known as arbitrage. This is why Igor uses the
metaphor of a “prediction war” and why getting data is effectively an arms
race.

That arbitrage often comes from rivals. Few really good ideas go
unnoticed, and if enough professional traders, ceaselessly hunting for
mispricings, show up at the same place at the same time, a strong signal
will get smothered and leave everyone disappointed, like when everyone



goes to the same good restaurant at the same time. More subtly, an
organization can find itself inadvertently moving in sync, like sheep in a
flock blithely heading over a cliff. Algorithms may contain internal biases
in approach that their developers never recognize. A bias can create
inadvertent correlations in seemingly diverse strategies, spawning a
crowded trade; if such unconscious herding is large enough, it can result in
serious losses that spill throughout the market and into the larger economy.
The result is that specific strategies suddenly cease to generate profits or
that entire markets suddenly decline. These biases are psychologically
difficult to recognize or eliminate, and they may be deepened by the
overconfidence that you are beyond bias.

Idea Arbitrage
Let’s continue looking at one of the big ideas that shaped MPT: arbitrage.
University of Chicago economists had long argued that the ceaseless
activities of self-interested professional investors established the market’s
essential nature as efficient and rational. As skilled consumers of financial
information—in contrast to what the economist and proto-quant Fischer
Black, one of the creators of the Black–Scholes options pricing model,
referred to as “noise” traders, who operate irrationally or emotionally—
these investors are continually searching for market irregularities: stocks
that are mispriced, such as two securities with the same underlying asset but
two different prices trading on different exchanges. These traders engage in
arbitrage—for example, by buying, or going long on, an underpriced
security and by selling, or going short on, an overpriced one they bet will
fall. Arbitrage is a fundamental aspect of trading, but devotees of the
Chicago school viewed it even more broadly as the engine driving the
market toward accurate prices—price discovery itself as a form of
prediction—thus rendering financial markets efficient (quick to react to
changes in information) and rational (driving a securities price to its
intrinsic value or true equilibrium price).

The power and centrality of arbitrage have always provoked debate. But
the essence of arbitrage is really just the power of competition to produce a
winner. By analogy, Darwinian evolution is a competition as well, with



survivors representing not greater perfection but expedient adjustment to
current conditions; markets are always about current or future conditions.
Gather enough agents to freely compete, you may well generate better
results than a lone trader, even if that competition isn’t always efficient,
rational, or accurate. Igor’s alpha factory was designed to be flexible and
expedient and to aggregate many different signals.

In 2018, Igor started the company WorldQuant Predictive to apply the
same ideas beyond finance, and to commercialize prediction in other
industries. The company used the same basic approach of iterative testing
and competition—“idea arbitrage”—as WorldQuant. To predict more
effectively, you need algorithms that approach the problem from many
different directions. To do that, you need model builders who think
creatively and data sets that offer as many different perspectives on a
problem as possible. Scale is essential. Through iterative backtesting, the
ideas embodied in algorithms compete with one another. Arbitrage occurs,
and the best-performing ideas emerge. All this was baked into a formula:
ideate (develop ideas), arbitrate (the verbal form of arbitrage), and predict.
The same process works for aggregating cancer data mutations, drug
combinations, and patient outcomes or even for tracking a novel infection;
the models continually need to improve and be adjusted based on the latest
data.

Again, Igor’s strategy of amassing large numbers of alphas is just one of
many processes that have emerged in the race to make more accurate
predictions. The operations of any of these prediction businesses combine
human talent, powerful machines, and fire hoses of data. Moving beyond
finance to a more diverse set of industries, which is what WorldQuant
Predictive and a number of other companies are doing, is not necessarily
easy. Health care, transportation, insurance, telecommunications, and
consumer products are very different from finance, with its rich historical
and market-pricing data, high transaction volumes, fixed numbers of
instruments, and many, if weaker, signals. Each of these industries poses
different problems, operates with different dynamics, requires different data
sets, and possesses different limitations. And it remains an open question as
to how many alphas or signals are necessary to build a strong-enough
library of predictive algorithms for each one. We learn by doing.



An algorithm, for instance, may be built around the predictive notion that
a tech stock that goes up three days in a row is likely to go up on the fourth.
That signal may be relatively weak, though: it may be true some of the
time, but you wouldn’t necessarily want to bet big on it. But if you get
hundreds or thousands of such signals operating together, you might be able
to build a model that is right 55 percent of the time, which may be all you
need as an investor.

Of course, 55 percent will not work particularly well if you’re making
predictions about health outcomes or even trends in, say, grocery shopping.
Take a hypothetical insight that could emerge from survey and supermarket
data: “A mother with two children buys apple juice only on Wednesdays.”
You probably wouldn’t want to bet much money on that. But you can use
machine learning across many predictions and “ensemble” them—the term
comes from statistics and means a probability distribution of the state of a
system that is combined from several models—so that they all are merged
into a production model. The output of signals, which themselves are
models, produces inputs to generate even stronger models and better
outputs. For example, for predicting which species (out of the possible
millions) is causing an infection, ensemble methods in genomics can
combine the best features of various models to give the best prediction, as
was shown in a paper from Chris’s lab in 2017, “Ensemble Approaches for
Metagenomic Classifiers.”

An important benefit of the “ideate, arbitrate, predict” process and the
ensemble method is that you can integrate signals from very disparate data
sets. For instance, you might not think to integrate weather data with credit
card data, but you can build ensemble models that come from weather data
and credit card data to predict the products people might buy when the
weather is nice rather than, say, cold and rainy. In influenza and now
COVID-19 models, researchers in Chris’s lab and others now integrate
epidemiological data with weather data, transportation data, and data from
proxies for social distancing, such as mobile phones. Then predictions can
be built to discern whether an area is high risk or low risk for transmission
of a virus, such as SARS-CoV-2, but the same models can also be used for
other infectious diseases.



Proxy Predictions
The fuel for prediction remains data. The diversity of data types, especially
when they are combined with today’s algorithms, effectively reveals
developments that were formerly invisible, such as viral movement and
evolution. The accuracy of prediction grows with a logarithm of the amount
of data that one can access, meaning that more and more data are needed to
predict things more accurately. But with data growing exponentially—and
there’s no evidence that this state of things will soon change—predictive
power is growing increasingly accurate.

One key to predictive performance is to access not just publicly available
data and client data, but a kind of secondary data spawned in a world that’s
ever more densely interconnected. This proxy data can often provide
striking new insights from unusual sources. For example, in the early days
of the COVID-19 pandemic, Kinsa, a company that sells “smart” digital
thermometers, was able to upload data from millions of its Bluetooth-
enabled devices to create a map of elevated temperatures across the United
States that was updated in real time. Kinsa was not directly measuring the
spread of the virus, but by measuring abnormally high temperatures that
could be associated with the viral infection, the company was able to
produce a real-time sense of the evolving spread—an important service,
given the paucity of testing at the time.

In 2009, the United Nations launched Global Pulse to bring data-based
prediction to policy making, which up to that time had relied on traditional
surveys and statistics. Led by Robert Kirkpatrick, a pioneer of software
development for humanitarian purposes, Global Pulse engages in what’s
known as “global data philanthropy.” Companies gather data, and Global
Pulse taps into those data to extract real-time predictive insights. In
Rwanda, the amount of money people spend on mobile phones can predict
with 89 percent accuracy how much market-dependent households are
allotting for food. In effect, every mobile operator in Africa is running a
food-security-monitoring network without knowing it. Mobile phone
records can reveal where people have been displaced by disasters or where
they’re assembling in need of assistance or when warfare has started
between sects, and such models can be used to understand where supplies
need to go. When you relate the movement of a population hit by disease
outbreaks with information on vectors and rainfall, you can feed that into



epidemiological models, which can be powerfully predictive and helpful.
Purchasing trends can even predict when a war has started because
noncombatants begin to purchase staples and basic supplies in advance of
troops, as the Global Pulse data have demonstrated.

Other examples have already been piloted and are being deployed. For
example, shipping data in the Mediterranean can detect migrant rescue
events and predict where refugees are likely to come ashore. Deep learning
models can be trained to recognize those patterns, so authorities can be
prepared to receive people before they arrive and help them or redirect
them. Similarly, xenophobic and hate speech can be mapped by mining
Twitter and Facebook pages using NLP. Researchers can use data from
companies such as PayPal, Walmart, and Amazon.com to create a real-time
map of the progress of every neighborhood in the world in, for example, the
transition from incandescent to LED lighting, from dining-room sets made
of rain forest mahogany to those made from bamboo, from equipment used
to upgrade old heating and cooling systems to new, energy-efficient
technology.

Proxy data are hardly perfect, particularly in the use of diverse and
poorly understood data sets. In statistics and data science, there’s a concept
known as overfitting, in which researchers fit a function too closely to a
limited set of data points so that they are led to believe the results will be
more predictive than they turn out to be. Indeed, one subtle temptation in
modeling is to pluck from a sea of data only those data points that confirm
your already-existing predilections and biases. Proxy data are, by definition,
limited. You’re measuring not the primary reality but an inferred secondary
characteristic. What if those Kinsa temperatures are not from COVID-19
but from the flu, or from the density of people who like to run outside when
it’s hot? All models have imperfections, and these imperfections have to be
balanced and normalized as well. As the statistician George Box famously
said, “All models are wrong, but some are useful.”

However, all those limitations are just part of the modeling. Through
arbitrage, which can test, model, and ruthlessly compare—separating true
from false and fantasy from realistic prognostication—it is possible to
account for such risks and errors. Indeed, this leads us to the question of
risk: the trade-offs, paradoxes, and unanticipated feedback loops that may
emerge if prediction actually works.



4

The Trouble with Risk

It was a crisp December morning, and Igor was having his DNA sequenced.
Most people would buy a kit from, say, 23andMe or have a test ordered by
their physician. Igor asked Chris.

DNA analysis today is relatively straightforward, comes with many
predictions, and has become common; millions of people have had their
DNA profiled. This is no small feat because the genome is big—if a typical
human genome were printed and bound into a book, it would require 130
volumes of text consisting of only four letters (A, C, G, T), with no spaces,
syntax, or obvious sentences. A reasonably fast reader would need about 95
years to read what would appear to be a random script about these four
nucleotides. Sequencing technology is much faster; a whole human genome
can now be sequenced, analyzed, and clinically applied in just a few hours.

Genes are fundamental elements of heredity, some quite small (less than
1,000 letters, or bases, long), others large (more than 100,000 bases). Many
encode for specific proteins, but many are noncoding and have their own
functions or operate in concert with protein-coding genes. Some are
mysterious, yet the genome is not uniformly random. Rather, within
seemingly random sequences lurk structural elements of biological
prediction; there’s a code that we can read.

In the popular culture, genes translate into traits. You’re smart because
you have “smart” genes; you sing opera because you inherited a set of
“singing” or “musical” genes. But, in fact, the translation of genes into a
phenotype (trait) is far more complex than that. All genes are activated,
modified, and attenuated in response to changes in the environment; they
are controlled by epigenetic mechanisms: these mechanisms operate “on
top” (epi) of the genetics—they alter the operation of DNA without
changing the code. For instance, the four letters of the genetic code are
sprinkled with chemical alterations in which a methyl group attaches to
specific bases and, in some instances, helps repress a gene’s activity. This



process enables the single genetic code from the first single cell in every
human embryo to modify its functions and genes’ activities to fit the needs
of the eventual trillions of cells in the human body.

What genes do is almost magic, and it comes with a set of its own
predictions, too. Specifically, every human genome offers a glimpse into a
possible future of a range of illnesses, disabilities, and cellular disorders as
well as abilities and putative “genetic superpowers” that may protect us
from some diseases, such as HIV, or reduce the risk of others, such as heart
disease or cancer. We are dealt shuffled cards from the DNA of our parents,
each of whom contributes half the genomic deck, which we then shuffle
again into the next generation.

In a genomic analysis, we often isolate the DNA and use what’s called a
“shotgun-sequencing” approach, fragmenting the chromosomes into pieces
(like shooting with a shotgun) that are around 300 to 500 bases long. We
then align, or map, fragments of DNA to the known human genome and
look for differences. Small differences of only one letter—a single base—
are called “single-nucleotide polymorphisms” (SNPs) or “single-nucleotide
variants” (SNVs). But there are also larger variants, such as insertions or
deletions (indels), entire chromosome-size changes, extra sections of DNA,
and even extra chromosomes, as in Down syndrome, which is marked by an
extra copy of chromosome 21. All of the variants of a genome are then
compiled, mapped, and summarized, which is what Chris did for Igor.

Altogether, Igor had 5,031,353 genetic variants, which is not unusual.
Every human is about 98.7 percent genetically the same as other humans;
family members are even closer. The big question is which of the 1.3
percent of differences, the variants, matter the most for health and disease.
This is a fundamental question in what’s become known as precision
medicine and is relevant for every person: Can my particular mutations
predict which health conditions I might develop in my lifetime and which
drugs or treatments I can and should receive?

Genomes are evidence of ancestry. The color of our eyes, skin, and hair
as well as subtle facial and body features are somewhat defined by our
ancestry, as are the ability to process lactose in milk, variations in blood
types, and vulnerabilities to various diseases. The genome of each person
must be understood in the context of human ancestry. Igor’s ancestry



showed overall eastern European origins, with a clustering of Bulgarian
Jewish origins. Indeed, this matched his Jewish heritage.

One mutation in Igor’s genome matched a reference SNP called
rs12913832 that is a link to eye color in a gene known as OCA2, or
oculocutaneous albinism II. Igor had inherited a G allele (a gene variation)
from both parents, meaning he was homozygous for this allele—that is,
both copies of the gene were the same; if he had two different versions, he
would have been heterozygous for that trait. This homozygous variant and
his European ancestry gave Igor a more than 99 percent chance of having
blue eyes, which he does.

Igor was homozygous for another SNP, rs762551, which meant he was a
fast metabolizer of caffeine. Other variants suggested he had a better than
average ability to taste bitter foods and a reduced risk of migraines, was
likely to be a sprinter (versus a long-distance runner), and likely had higher
resistance to norovirus infections.

Some variants illuminated Igor’s choice of careers, but making this link
took us into more speculative territories. One of his variants linked to
increased susceptibility to “novelty- or risk-seeking.” These mutations
regulate dopamine D4 receptor levels. Dopamine is a neurotransmitter that,
when released, makes us feel happy, satisfied, rewarded, or on a high. In
some people, there appear to be fewer receptors that regulate dopamine
production, leading to a predilection for risk; these people need to take on
more risk to experience the euphoria that dopamine produces. The
willingness—indeed, the eagerness—to engage in risk extends to many
areas, from sports to personal behavior to businesses that involve risk-
taking, such as gambling, trading, auto racing, and sky diving. Scientists
have speculated that addictive behavior results from a surfeit of dopamine-
inhibiting receptors, which produces a craving for dopamine. Other studies
have shown a possible link between risk engagement and the density of
dopamine-transporter proteins, regulated by another dopamine gene.

Igor also had a variant associated with faster learning in so-called Go
versus No-Go situations that is also associated with the dopamine receptor
gene. Subjects with this mutation tend to exhibit better episodic memory,
helpful for making rapid decisions. Clearly, risk-taking and its rewards and
punishments are important elements of learning, competition, and
evolution. Some studies assert that human evolution has positively selected



overall risk-taking behaviors as well as behaviors once associated with
mass migrations, competition, and, potentially, cooperation. These
mutational elements are fluid over time among a population, just as they are
among individuals. They also involve an interaction between nature (the
reality of individual dopamine systems) and nurture (the complexity of
human interactions with the social and physical environment).

The fact that Igor is comfortable with risk shouldn’t come as a big
surprise, given his job. Yet the overall likelihood of someone having a
predilection for risk-taking is built on a predictive model that, itself, has
some risk of being inaccurate. Indeed, a genomic analysis captures the two
basic concepts that shape the Age of Prediction: prediction and risk. Both
are probabilistic; what they reveal provides possibilities, not certainties.
Straightforward predictions are rare. And what is risk? To answer that, we
have to start with the nature of luck.

Luck and the Modern Era
What is luck?

Luck is success brought on by chance rather than through one’s own
actions or skills. Metaphorically, luck is a winning result in a game of
chance, such as a game of dice. Tumbling dice display a random quality,
and the gambler has no choice but to call on some superstitious power or
totem—a rabbit’s ear, a lucky coin, a kiss from a stranger, a four-leaf clover.
Luck exists in some metaphysical netherworld where stars and the moon
can shape events. Luck can send the gambler on a hot streak or to disaster;
luck can enrich or impoverish. It is, after all, impossible to predict what
numbers will come up when the dice hit the green felt and roll.

In contrast, games of skill involve mental or physical prowess. In games
of chance, all the skill in the world can’t guarantee success. In fact, some
skills, such as card counting, are banned by casinos. But gamblers have
developed skills that, although technically not predictive, can tilt the odds in
their favor. Indeed, games of chance, with their dependence on luck,
provided the seedbed of probability and statistics, two symbiotic sciences
that revolutionized how we perceive and handle random phenomena, from
dice to market prices to observational errors to the shuffling of parental



DNA at conception. These twinned scientific disciplines, which emerged in
their modern forms in the sixteenth and seventeenth centuries, transformed
the landscape of prediction—at first a little, then a lot—by exposing
regularities and order beneath seemingly random change. At the same time,
they led to the ability to define and quantify the risk of every prediction.

As the eighteenth-century Scottish philosopher and historian David
Hume wrote, we can never be absolutely certain that the sun, having set the
night before, will return in the morning. We believe that will be the case,
and each day confirms the case a tiny bit more, but there always exists that
narrowing sliver of uncertainty, or risk, that it may not return. As the
stockbrokers say, “Past performance is no guarantee of future success.” This
is known as Hume’s induction problem, and it hangs over any predictive
enterprise. In fact, the world appears more akin to stock prices, which
wander into the future with a jittery, random walk, than to the sun at dawn
announcing the new day, which scientists beginning with Isaac Newton
effectively explained as a mechanical process involving a relatively small
number of (today) easily calculated variables. Today, prediction has grown
more accurate.

Yet regularity is not necessarily the norm. Much of the world around us
and in us is spontaneous and random. Many natural processes, from the
weather to earthquakes to a lurking cancer to a novel coronavirus, are
riddled with uncertainty. The mutational propensities of DNA may have an
external cause—a blast of radiation, for instance—or an internal one, such
as a genetic copying error. Tracing the origins of mutations may, in some
cases, be done through modeling, but many remain opaque. There are also
social realities driven by the decisions and actions of human agents, with
their hidden currents, biases, complexities, and feedback loops.

Igor’s amped-up dopamine gene might give him a propensity to take
greater risks, but it does not ultimately determine his behavior or decision-
making. Indeed, the knowledge that he can tolerate a high level of risk may
make him more aware of its perils—nature and nurture. A prediction about
behavior envisions an array of options or possibilities and the emergence of
uncertainties, or risks, often with the goal of ruthlessly culling multiple
possibilities down to the one that is the most likely. Both nature and nurture
as well as their interactions are difficult to distill into just one future, though
people insist on trying.



The First Games
For centuries after Newton, a kind of rigid determinism held sway over the
scientific community, argues the Canadian philosopher Ian Hacking in his
study of what he calls “the emergence of probability.” Far into the twentieth
century, the finest scientific minds believed that the appearance of
randomness was simply our failure to fully comprehend natural laws; many
still do. Determinists insisted that just one road from the past led into the
future; freedom to choose was an illusion. In The Taming of Chance,
Hacking quotes Hume, who, despite his congenital skepticism,
characterized free will as a false belief: “Tis commonly allowed by
philosophers that what the vulgar call chance is nothing but a secret and
conceal’d cause.” Even as late as the nineteenth century, the French
mathematician Pierre-Simon Laplace, a key synthesizer of probability as a
science, could imagine a deity-like intelligence behind the Newtonian
universe “that, at a given instant, could comprehend all the forces by which
nature is animated and the respective situation of the beings that make it
up. . . . For such an intelligence, nothing would be uncertain, and the future,
like the past, would be open to its eyes.”

Yet, as Hacking suggests, chance was not so easily dismissed. The more
deeply science probed the natural world, the more the random quality gave
way to order—not the linear, mechanical order of Newton but something
more complex. For example, the mechanisms underlying Charles Darwin’s
natural selection are still driven mostly by random genetic mutations, as
was thought in the late nineteenth century, but there is now an appreciation
of more complex factors, including genetic drift, location-specific radiation
levels, transgenerational epigenetic inheritance, and host–microbial
interactions, that are also genetically driven. Recent studies from Chris’s lab
and others have shown that humans are continually adapting and shifting
immune cells relative to specific bacteria in their environment; even
astronauts’ T-cells shift to match the microbes on the walls of the
International Space Station. The astronauts’ bodies are adapting at the same
time as the bacteria are evolving to resist detection, antibiotics, or
containment, meaning that both systems (host and microbe) are required to
understand the relevant biology.

In the twentieth century, physics revealed a quantum world that resisted
determinism, consisting of particles defined by a probabilistic framework



(for example, a wave function). Specifically, the stronger a prediction on the
exact location of a particle, the weaker the measure will be for the
momentum. Yet these wave equations can be analyzed statistically and
measured with even greater precision than Newtonian mechanics ever could
provide. As Hacking points out, that resurgence of indeterminism—of
chance—has produced a powerful paradox that could be the banner of
modern science: “The more the indeterminism, the more the control.”

But first, let us go back a few centuries. Although some of the first
betting games and probability mapping can be found as early as ancient
Egypt, the modern discipline of probability traces itself to a sixteenth-
century Italian physician and mathematician, Girolamo Cardano, who
enjoyed his time at the betting tables. In the 1520s, he wrote Liber de ludo
aleae, or The Book on Games of Chance. Cardano appears to be among the
first to wrestle with the “frequencies”—what we know as the odds—
produced by a pair of dice tossed multiple times. He discerned an order
beneath the random numbers of chance and took the first steps toward the
quantification of risk and uncertainty.

Cardano was a Renaissance polymath—brilliant, but focused on a less
than respectable game. By the 1660s, a remarkable group of European
intellectuals had begun to explore the mathematics of probability beyond
Cardano’s games of chance: the deeply devout French mathematician Blaise
Pascal, who applied probabilistic thinking to the decision to believe in God;
his colleague, the mathematician Pierre de Fermat; as well as Antoine
Arnauld, who led a group at the Parisian monastery Port-Royal, where
Pascal had taken up residence, and who seems to have been the main author
of an authoritative book on logic that contained four seminal chapters on
probability. Meanwhile, a tight world of inquiring minds was making
important contributions, often in response to real-world problems: the
Dutch mathematician and astronomer Christiaan Huygens, the German
mathematician and philosopher Gottfried Leibniz, and Johan de Witt, the
Grand Pensionary of the Netherlands, who applied probabilistic techniques
to an important mechanism for financing the Dutch government.

A key figure in this period was Jacob Bernoulli, who, as Peter Bernstein
writes in Against the Gods (1996), was the first to consider linkages
between probability and the quality of information, thus making probability
applicable to a broad range of social statistics, such as patterns of births and



deaths, disease, mental capacities, even the disposition of legal opinions.
Stephen Stigler, in his authoritative history of statistics, calls Bernoulli “the
father of the quantification of uncertainty.” Bernoulli, part of a large,
mathematically renowned Swiss family and a supporter of Leibniz’s claim
to have invented calculus, versus Newton, articulated what became known
as the law of large numbers, which demonstrated that the more random
occurrences there were—whether the tossing of dice or, in Bernoulli’s
favorite example, a known quantity of black or white pebbles in a jar—the
closer you would get to a theoretical numerical figure that could be
calculated beforehand: the abstract “likeliest” number. Bernoulli’s law of
large numbers did not dispel Hume’s induction problem, but it did provide a
tool for defining and reducing uncertainty. As Stigler writes, “What was
new was Bernoulli’s attempt to give formal treatment to the vague notion
that the greater the accumulation of cases, the closer we are to certain
knowledge about that proportion.”

That brings us to Reverend Thomas Bayes, the English cleric who had an
interest in probability and, before his death in 1761, wrote down a theorem
that attempted to quantify the probability of an event taking place if the
probability of its cause or causes—that is, its conditional or prior
probability—was known. Like Bernoulli with his law of large numbers,
Bayes did not directly refute Hume; he instead provided another method for
quantifying probabilities by, as Bernstein notes, “mathematically blending
new information into old information.” Bayes’s theorem took a while to
become famous; he apparently never realized what he had wrought. Today,
one of the key hypotheses about how the brain works focuses on the mind
as a Bayesian inference mechanism—that is, a kind of prediction-error-
minimization machine.

The Emergence of Statistics
As the study of probability grew more sophisticated, statistics also emerged
more powerfully. Cities, particularly in Italy, had long gathered statistical
data on their citizens, but now the eruption of tools from probability
beginning in the sixteenth century drove data acquisition. Individuals and
then states began to compile statistical materials—state numbers—starting



in London in 1603 with weekly tallies of christenings and burials. John
Graunt, a haberdasher with wide interests, used that trove of statistical
material going back a century to calculate the first mortality and life-
expectancy tables, essentially inventing demography and epidemiology. In
the Netherlands, de Witt used statistical data on individual lives as part of
his attempt to calculate a more accurate actuarial analysis of Dutch
annuities. In 1700, Leibniz wrote up a plan for the Prussian state to gather
and analyze statistical data. By the end of the eighteenth century, the
decennial census was written into the US Constitution, the start of a now-
vast collection of data that extends well beyond counting heads.

The essence of statistics is counting and measuring. As Francis Galton
said, “Whenever you can, count.” Galton, born in 1822, was the precocious
son of an affluent English family; Charles Darwin was his half-cousin. Like
Darwin, he had traveled extensively as a young man, particularly in the
Middle East and Africa, and he was something of a scientific magpie. He
believed in phrenology, which asserted that bumps on the skull were an
indication of intellectual powers; he published Britain’s first weather maps;
and he pioneered the use of fingerprinting. But his real interests were
heredity and inheritance—not terribly surprising in a near relative of the
author of On the Origin of Species. Galton believed particularly in the
ability to improve the human race through a kind of rational breeding
program he called “eugenics.”

He was also a devotee of statistics. In his history of eugenics, Yale
University’s Daniel Kevles notes that Galton, who was not a formally
trained mathematician, brought statistics into biology “at a time when no
biologist dealt with any part of his subject mathematically.” In the early
nineteenth century, the German mathematician Carl Friedrich Gauss had
grown interested in the frequency of errors in astronomical observations.
For a variety of reasons, astronomers rarely noted the exact same
coordinates for heavenly objects. Gauss discovered that these errors, when
plotted, formed a bell-shaped, or normal, curve (now called Gaussian). He
recognized that a line bisecting the curve represented the theoretical mean,
with more distant errors—outliers—falling in frequency the farther they
were from the mean. In the mid-nineteenth century, the Belgian
mathematician and astronomer Lambert Adolphe Jacques Quetelet made a
splash by applying the Gaussian normal curve to a plethora of human
measurements in an attempt to describe a theoretically average man.



Galton seized on the normal curve, but instead of attempting to define
“normal” as “average,” as Quetelet had, he focused on differences,
particularly as they applied to heredity and questions about the distribution
of talent or ability. In a series of experiments with sweet peas (one of his
collaborators was Darwin), Galton recognized patterns in inheritance data
suggesting that traits tended to revert (he used the more normative term
regress) from one generation to the next. This finding challenged his belief
that a better human stock could be rationally bred. Galton also failed in his
attempt to pin certain physical traits to criminal tendencies. Yet he did
recognize how physical traits, such as height, the length of an arm, or the
size of a foot, appeared to be correlated in quantifiable ways. That could be
explained by applying laws of probability to statistics, which allowed him
to map a wide range of trait (phenotype) correlations.

The concepts of regression and correlation were major advances in
probability and statistics and a credit to Galton, though he never succeeded
in explaining the mechanism of inheritance or, in terms of biology, of
regression and correlation. Experiments by the Moravian Augustinian friar
Gregor Mendel, also with pea plants (which led to his speculations on the
role of discrete, inheritable units—genes), took place during Galton’s mid-
nineteenth-century heyday but in near-total obscurity and failed to surface
for decades. The rediscovery of the gene would be a seminal breakthrough
in the twentieth century. However, despite Galton’s failure to link physical
characteristics to other qualities, his larger proposed program of human
breeding, eugenics, flourished in America in part due to the broad belief
that physical traits, or phenotypes, determined less-tangible qualities such
as intelligence. Indeed, laws requiring the sterilization of so-called mental
defectives, most often targeting minorities, occurred in 32 states in the early
twentieth century. Eugenics found its most aggressive and awful
embodiment in Nazi Germany’s racial policies and concentration camps;
though discredited today, it still lurks on the margins. Eugenics purported to
be the scientific application of Darwinian evolution to human stock, and,
for at least a century, it reveled in its scientific credentials, including its use
of probability and statistics. It was at its heart predictive and in the end
terribly wrong, both scientifically and morally, swallowed up by the risk of
error that it had long ignored. It was also scientifically bankrupt, since it
involved a prediction without a substrate. There wasn’t a hint of either
DNA or the genome at the time.



New Predictions from the Genome
In 2003, the Human Genome Project announced that an entire human
genome had been sequenced for the first time. This was fantastic—except
technically it wasn’t the entire genome. The project sequenced some 92
percent of the genome, including 99.9 percent of the so-called euchromatin,
which are loosely packed, uncoiled, and chemically active DNA sequences
—the familiar protein-encoding DNA. But the initial sequencing didn’t deal
with the more obscure heterochromatin, chemically inactive DNA that’s
tightly packed in the chromosomes. (Heterochromatin is chromatin, the
material of chromosomes, but it is found in the centromeres, which provide
structural support as cells divide, and the telomeres, which cap and protect
the ends of chromosomes with repetitive nucleotide sequences, TTAGGG-
TTAGGG-TTAGGG, and shrink with the aging process.) In 2009, an
update of the entire human genome still had 300 gaps; by 2022, however,
that number had been reduced to zero.

Indeed, soon after the first human genome was published, reality set in—
not just in scientific circles but on Wall Street and in the media. The
elucidation of the genome, like so many scientific advances, served to point
out how much we still didn’t know, and it opened far more doors than it
closed. Sequencing was a powerful tool to further explore the nuanced
mechanisms of the genome within its cellular environment. The simplistic
metaphor of the sequenced genome as a book of life was rapidly replaced
by a far greater complexity of interacting networks, embodied in fields such
as statistical bioscience, bioinformatics, and synthetic biology. Mastering
the genetic code was not as simple as knowing the combination to a safe.

For example, of the 20,000 or so protein-coding genes in the human
genome, most are exquisitely specific, used in a particular cell, in a specific
manner, and at a particular time. To control these genes, complex epigenetic
mechanisms are deployed that regulate how and when DNA is packed into
structures—euchromatin (open chromatin) or heterochromatin (closed
chromatin)—how proteins that compose the packaging are modified, and
whether the DNA itself is methylated or modified in response to
environmental or biological cues. At first, researchers thought there were
only a handful of modifications to histones—the scaffolding that packages
DNA—but now we know there are hundreds of ways to alter the chromatin.
Also, DNA and RNA were first seen as stable; now we know that both



DNA and RNA may undergo hundreds of modifications that can change the
stability, accessibility, and function of specific genes. Moreover, from 2010
to 2020 an additional 10,000 genes were discovered in the human genome,
showing that the fundamental task of counting the number of functional
units of our human genetic heritage is still ongoing and changing.

Figure 4.1
Continual discovery of human genes. The total number of genes (top line) found and annotated in the
human genome continues to increase, coming mostly from the discovery of long, noncoding RNAs
(ncRNAs) and pseudogenes. Almost all other gene categories (small ncRNA and protein coding)
have been found.

There’s a lesson here as we explore the changing relationship between
prediction and risk; the key word is change. We have already touched on
the exponential explosion of data and computing power. The innovative use
of those two factors, fueled by several centuries of scientific research and
technological innovation, enabled the success of the Human Genome
Project. This means that the landscape we are exploring will not remain the



same; it is changing even as we make our way through it. Indeed, it is
changing because we are making our way through it. Similarly, as we
sequence more DNA from other species and map the genetic dynamics of
the world around us, we can readily see and map how the world is evolving
and mutations are emerging every single day. Since life is always evolving
and mutations are emerging every minute, any genetic catalog of life on
Earth (or any planet) will be incomplete the moment it is finished.

Similarly, the number of algorithms and databases for analyzing and
characterizing genomic data has increased at an exponential pace. This
means that older data can and must be reanalyzed with (likely) improved
and more comprehensive methods, and also that any database is also
incomplete the moment it is indexed and loaded. The garden of biology and
data is always growing and changing, and it must always be tended.

Genetic Risks
A few years after Chris gave Igor his genomic analysis, he asked Igor what
he remembered about the process. “I thought a lot of the traits were
accurate,” Igor said. “But I remember thinking it was highly dependent on
the algorithm you ran. There could be a lot of variability. After you updated
the algorithm, I became more Jewish. A surprise was that I was 5 percent
African.”

A more recent algorithm and analysis of Igor’s DNA knocked that down
to 2 percent, but if you go back far enough, everyone has a little bit of
Africa in them; that’s where Homo sapiens came from. The models are
always being updated, and a lot hinges on the data. It really depends on
what’s called anchor points in gene pools: sequences that mark the
boundaries of geographies with a specific frequency of a gene—an allele.
Just as various places in the world have unique genetic flora and fauna, the
same is true of unique genetic variants that define human traits, pooled in
various places around the world. The gene pool of an indigenous population
tucked away behind remote mountains will remain hidden. We can see only
the universe of data that we have access to; if certain data don’t exist in a
database, then certain human ancestors don’t exist to that algorithm—a
genomic version of the old philosophical puzzler about a tree falling in the



forest. The algorithm might describe a 100 percent aboriginal Australian as
Asian because there is a plethora of data on Asians but very little on
aboriginal Australians. We’re only as good as the models. The models
define measurement and accuracy, and there’s always a risk of missing data.

There are many perspectives on risk. There is the determinist view: if we
know more, if we have more and better algorithms and more and better data
—which are coming—we will be able to quantify risk and master it. In
short, we could make risk go away. This is the Humean view. But some
aspects of nature and life and even the structure of atoms themselves remain
stubbornly probabilistic at best. How do we reduce the realm of risk to
predict more accurately? How do we separate out quantifiable risk and deal
with unquantifiable uncertainty? And what happens to risk as accurate
prediction narrows it further and further?

In genetics, risk has already changed a great deal. The three billion bases
of the human genetic code represent a lot of biology, and we already see
extensive variation in the human stock. When we do a genomic analysis, we
look for specific variants that we believe define a gene pool. A common
tool of genomic analyses is a so-called confusion matrix, which is often
used in fields such as diagnostic testing to compare the accuracy of a
prediction of the spread of a disease with actual cases: the number of true
positives and true negatives as well as of false positives and false negatives
from which you can calculate accuracy and precision as probabilities. The
Genome Analysis Toolkit (GATK) from the Broad Institute uses those
methods to improve the discovery of genetic variants. Even though the
GATK is one of the most widely used programs in genetics, it undergoes
continual updating, which means laboratories must stay updated as well.

These updates are not just academic—there is a concrete legal risk if a
lab doesn’t stay updated. A key case around this issue started in 2005, when
a four-month-old boy in South Carolina began to experience epileptic-like
seizures. His physician ordered a genetic test and sent the DNA sample to a
lab. The analysis revealed a mutation in the SCN1A gene, which provides
instructions for creating sodium channels, but described it as “a variant of
unknown significance.” Doctors treated the infant based on that
information; he died in 2008. But the mutation turned out to be not an
unknown variant but one associated with a condition known as Dravet
syndrome, which is rare, catastrophic, and characterized by severe seizures,



often induced by fevers. Although there’s no known treatment for Dravet,
the regimen the doctors chose may have contributed to the child’s death.
The mother sued the diagnostic company, Quest, in federal court some eight
years later for wrongful death, claiming it had failed to update its database.
The case wandered through various South Carolina courts, including a stop
at the state Supreme Court, which decided a narrow, if controversial, issue:
a diagnostics company is a “health care provider,” like a hospital, and can
take advantage of the state’s relatively lenient malpractice procedures.

Having the most recent data is important—sometimes life-and-death
important. Dravet syndrome is one of more than 25,000 diseases caused by
defects in the genomic machinery, according to the Online Mendelian
Inheritance in Man database. Some diseases are well known: Down
syndrome, the most common chromosomal disorder, occurs when the body
produces three rather than the usual two copies of chromosome 21. The risk
of a Down syndrome baby, who may experience a wide variety of
developmental delays, increases with the mother’s age. Many mutations
simply do not manifest a risk during a person’s life, but others can lead to
rare and sometimes lethal disorders. Although we have gotten much better
at identifying and diagnosing these conditions, our ability to alleviate or
cure the worst manifestations improves more slowly.

In fact, we all carry various alleles that either add to or subtract from our
risks for diseases. This picture is not black-and-white, as it is for some
genetic mutations; rather it is streaky and gray. In Igor’s case, his genome
showed he carries alleles that give him a higher risk of obesity, Type 2
diabetes, and coronary artery disease. He has some variants that could also
give him a higher risk for atrial fibrillation, which can lead to a stroke. This
indicates he should eat a heart-healthy diet and drink alcohol only in
moderation to lower this risk. Some of his risks are 1.3 or 1.6 times higher
than the baseline. Igor also showed mutations in some genes that could be
important for what he has passed on to his children (such as breast cancer
alleles in BRCA1) or could face later in his own life, such as prostate
cancer, lung cancer, or age-related macular degeneration.

Then there’s Igor’s epigenetic age, a measure of how DNA’s regulation
changes over time. In all of our cells, the epigenetic state, measured by the
degree of DNA methylation, slowly drifts from our primordial first cell.
Just as sands move through an hourglass, DNA methylation marks in our



blood and other tissues slowly drift over time, and they can be readily used
to predict both chronological age—the number of times a person has circled
the sun, measured by the candles on his birthday cakes—and biological age,
a compilation of all the genetic and environmental factors in someone’s
biology. The variegated stresses, insults, and damage to DNA as well as
frequency of exercise, eating habits, and general health contribute to the
calculation of epigenetic age and indicate if someone is aging more quickly
or more slowly than normal.

The good news for Igor is that his epigenetic age is lower than his
chronological age. Being in shape helps. Igor was 51.3 chronological years
old at the time, but when we tested his blood, whole blood, and purified T-
cells, each had a different epigenetic age: 48.2, 48.5, and 49.3 years old,
respectively. This shows that even very specific cell types, such as T-cells
and other blood cells, can have slightly different (albeit consistently low)
epigenetic ages.

There are ongoing efforts to better understand what drives these changes
and how we can continue to further slow our biological ages. So far,
evidence has shown that vegetarians have a lower epigenetic age than
omnivores and meat eaters, that those who exercise are epigenetically
younger, and that obesity drives one’s epigenetic age higher. However,
recent work has also shown that different tissues and organs have their own
pace of aging, meaning that your heart could be biologically younger than
your liver. Drinking excessively, for example, can damage the liver and age
it more quickly. Smoking ages the lungs. In general, the more molecular
insults you sling at any tissue, the more quickly it ages.

All these variables notwithstanding, epigenetic metrics for aging and
DNA methylation are quite robust. Since some of the first work on
epigenetic drift in the 1960s showed that such changes occur, follow-up
work in 2005 by the Spanish genomics researcher Mario Fraga and other
scientists such as Sven Bocklandt indicated, based on DNA methylation,
that identical twins slowly become less identical over time. Thus, it has
become clear that the epigenetic clock ticks away in each of us as the years
pass. Subsequent work by the biostatistician Gregory Hannum at the
University of California, San Diego, in 2012 and Steve Horvath at UCLA in
2013 established the key markers that broadly work across many tissues and
sample types. This got the error estimate down to three to five years, even



without knowing anything beyond epigenetic factors about the person, such
as lifestyle (e.g., smoker, drinker, athlete, vegetarian). This also opens up
the work for forensic purposes because any DNA left behind at the scene of
a crime can roughly reveal the age of the person from whom it came. We
delve into that subject more deeply in chapter 7, which may permanently
change the way you think about crime and how we track it.

However, for these genetic, epigenetic, and molecular risks, it’s important
to note that higher risk is not necessarily a significantly larger danger. For
example, most of these disease risks are 30 to 60 percent higher, which
might sound like a lot, but it has to be understood in the context of overall
risk. If you have a 1 in 10,000 chance of a danger in your life, and that
chance goes up by 60 percent, then you have a 1.6 in 10,000 chance of that
bad event happening. And all risk can be tempered with a bit of luck.

Of course, the risk of every prediction is different, and the definition of
success will often vary dramatically from one enterprise to another. Broadly
speaking, a financial trade that works out a little more than 50 percent of the
time is going to be quite successful over time if that performance continues,
which is difficult in markets prone to imitation. In medicine, the stakes are
higher: lives are in the balance. Therefore, the demands on predictive
accuracy in medicine—on accurate diagnosis and effective therapies—are
higher. Generally, in medicine you have to be right at least 80 to 85 percent
of the time, or people don’t take you seriously. You wouldn’t want to tell
someone, “Well, you know, you might die, or you might not; I’ll just flip a
coin.”

In medicine, the very definition of failure comes from Hippocrates: do no
harm. A therapy that has no effect may not be worth the time and money to
prescribe it, but at least it doesn’t inflict injury. Defining success in
treatment, however, can be difficult, an exercise in relativism, and may not
be possible until decades have passed. There may be no immediate benefit
or incentive, and probabilities can be complex. If there are no cures, then a
15 percent chance of success for a new therapy looks pretty good.
Neuroblastomas (cancers in certain types of nerve cells) are very difficult to
treat, but an improvement in diagnosis or treatment might mean a patient
could get 11 instead of 10 months to live, and that extra month could mean
a great deal to that person and their family and friends.



We wrestle with a final nuance in the chapters ahead: understanding how
increasing predictive accuracy affects risk. Again, we must deal with moral
hazard, the tendency of people to take risks or abandon prudence if they
believe there is a safety net beneath them. A genomic analysis may
convince some that they can eat and drink to excess because they appear not
to have a predisposition to coronary disease or liver cancer.

How do we begin to take all these data, ever growing, and all those
complexities and ambiguities into consideration? The answer is the
increasingly sophisticated marriage of software and hardware that falls
under the rubric of machine learning. To identify a mutation—say, the
BRCA1 and BRCA2 mutations that can elevate the risk of breast and
ovarian cancer—is, relatively speaking, straightforward, though in this case
it’s a risk factor, not an inevitability, and what you can do with that
information is often a challenge. But, given the ease of DNA sequencing
and analysis, such mutations are among the most straightforward signals of
a future problem, certainly compared with the vast number of things that
can go awry in one’s life. To detect, diagnose, and understand the rapid
changes in biology requires far more sophisticated tools, but many of these
exciting new tools have arrived. That’s where we’ll turn next.



5

New Tools of Prediction

Cancer is one of medicine’s most difficult problems of prediction. Cancer
has many faces and can proliferate for many reasons in almost any cell in
the body. Cancer is dynamic, like markets, like evolution. Accordingly,
some cancers respond at first to a therapy, only to reemerge, shrugging off
treatments that once worked to suppress or kill them and too often striking
more lethally than before, like bacteria developing resistance to antibiotics
or viruses to vaccines. Cancer features an amped-up engine of genetic
mutations and epigenetic changes that helps it elude or resist the orthodox
set of therapeutic options: surgery, chemotherapy, radiation, and, more
recently, immunotherapy. Surgery may fail to remove all the cancerous
cells. Chemotherapy and radiation may ravage both healthy and cancer cells
alike and may drive the development of resistant cells, which, after a period
of seeming disease regression, powerfully reemerge. The best option may
be to detect cancer—or, better yet, the possibility of cancer—as early as
possible, before carcinogenic outcomes. Of course, prediction isn’t much
use if something can’t be done in response to it. Increasingly, after decades
of trial and error, new, multicancer blood tests are beginning to roll out;
even the first approved gene-therapy treatments—“repairing” mutational
errors in the genome—have begun to appear.

In short, like the plethora of algorithms that Igor uses in the markets,
medicine is rapidly building an armamentarium of increasingly predictive
tools and models, from genomic analysis to sophisticated epidemiological
models and data sets to machine learning, expanding far beyond rapid
diagnostics, and now aiding drug discovery and continual monitoring for
the first sign of any cancer.

Chris recently experienced this in his own family. In December 2018,
something was wrong with his uncle, Ben, in Wisconsin. His gregarious
uncle was suddenly tired all the time. He had a persistent cough, though he
was not a smoker, and he would suddenly feel winded after climbing a



flight of stairs. When Ben went in for a checkup, the family figured he had
a case of the flu. Instead, the doctors told him he had lung cancer.

His doctors initially planned for a course of aggressive chemo and
radiation. Then more data came back: Ben went from a diagnosis of one
spot on a lung to several more in his lymph nodes. Then came even worse
news; there were 18 “mets,” or metastasized cancer spots, in his brain. The
cancer had spread. He was presented with some difficult choices. He might
have only two to three months to live. He could undergo harsh treatment to
gain more time, but with more pain, or he could forgo therapy, live less
long, and pleasantly enjoy the few days he had left.

Speed was essential. When Ben went in for a tumor biopsy, which would
allow for analysis of the tumor DNA and possibly find clues to more
effective treatment, the doctors failed to extract enough clean material.
However, new treatments had recently emerged, driven by applications that
have been possible only in the past decade, long after the human genome
was first sequenced. These applications include the ability to sequence
tumor DNA without needing to gain access to the tumor itself. This is
possible because tumors and other cells shed DNA fragments known as
cell-free DNA (cfDNA), which float through the bloodstream; these
snippets of DNA can reveal significant clues about their tumor of origin. As
a tumor grows, it releases more cells, and thus more DNA fragments. The
fragments also contain signs of DNA methylation known as epigenetic
marks, specific to each part of the body. Because each tissue has a specific
methylation signature and tumors develop from tissue, the DNA
methylation profile can show both tumor mutations and epigenetic clues of
a DNA fragment’s origin.

Chris suggested using the new cfDNA test to track mutations in his
uncle’s cancer. Like a hook on a fishing rod, the test captures molecules in
the blood that match specific genes. Within two weeks, Ben’s Wisconsin
medical team and Chris’s team at Weill Cornell in New York had sequenced
and analyzed hundreds of genes from the tumors without having to extract
them from the tumor. This genetics-from-a-distance test allowed the team to
find a mutation in a gene called EGFR, which codes for a receptor protein
in the cell membrane that responds to a growth initiator called “epidermal
growth factor.” The bad news was that this genetic aberration may have
contributed to Ben’s cells growing uncontrollably. The good news was that



there was a drug that could target, or block, the receptor; Ben started on the
drug immediately.

After eight months, most of Uncle Ben’s tumors had disappeared, and the
remaining spots had shrunk. The therapy worked, at least for a time,
because precision medicine allowed his doctors to see aspects of biology
that in the past were hidden. Ben returned to his normal life, including
vacations and holidays with his family. Meanwhile, his doctors watched
him carefully for any sign of recurrence.

Whole-Body Molecular Scan
Cancer is not the only area in medicine where cfDNA analysis can
illuminate physiology. CfDNA has been used since the early 2010s to safely
reveal information not only about one patient, but actually about multiple
patients in one, such as a pregnant mother carrying a fetus. In 2014, Eric
Topol, a Scripps Research Institute professor of molecular medicine,
published a paper titled “Individualized Medicine from Prewomb to Tomb,”
describing how the nucleic acids of DNA and RNA provide data on the risk
of specific diseases, miscarriage, or cancer for an individual even before
birth. This kind of predictive medicine can have remarkable repercussions.

Historically, it has been difficult to gauge the health of babies before they
are born, and it was dangerous to even attempt to gain genetic information
from them. In the 1960s, amniocentesis was developed to collect
chromosomal information about a fetus, usually to try to diagnose Down
syndrome babies. The test involves taking a small amount of fluid from the
amniotic sac and analyzing the fetal DNA, which then can be profiled for
genetic abnormalities. Originally, the syringe used in the procedure was
“blind,” inserted according to an estimate of the best depth in the mother’s
swollen belly. Then in 1972, amniocentesis began to be guided by
ultrasound to reduce the risk of miscarriage or fetal injury. Ultrasound then
improved enough to visualize changes in the fetus and to detect problems
without the needle.

But even with the invention of ultrasound mapping technologies, the
visual cues (for example, gross anatomical malformations or nuchal
translucency, a collection of fluid behind the neck in a fetus) did not



necessarily reveal underlying genetic defects. In 1983, the Italian biologists
Bruno Brambati and Giuseppe Simoni developed chorionic villus sampling
(CVS), which tested placental tissue for genetic abnormalities. By the mid-
1980s, physicians had three options for testing the health of babies before
birth: ultrasound, amniocentesis, and CVS.

But there were risks. With both CVS and amniocentesis, there was a 1 to
2 percent risk of miscarriage. For many expecting parents, that risk was
simply too high. Even with technical improvements in the early 2000s, the
danger hung around a 1 percent chance of miscarriage, and parents—
especially parents with increased risk of genetic abnormalities—faced the
difficult decision of hoping for the best with a 5 to 10 percent chance of a
genetic abnormality or taking a 1 percent chance of losing their child.
Especially for women who had a hard time getting pregnant, this choice
was between two awful options.

But all that changed in 2011 and 2012 with the emergence cfDNA
profiling. With this new technology, the amniotic sac does not need to be
punctured; pregnant women only have to have blood drawn from their arm
—peripheral blood that contains cell-free fetal DNA (cffDNA)—and then
have the plasma (the clear part of blood in a tube) separated from the cells,
and the cfDNA can be sequenced. The mother’s genetic profile can then be
compared with the fetus’s cfDNA, and traces of Down syndrome or other
trisomy events that involve defects on chromosomes 18 and 13 can be
mapped.

From the first proof-of-principle experiments in the early 2010s, it was
clear that this technique had no greater risk than taking a normal blood
sample, and researchers and clinicians quickly began testing variations of
the sequencing and genome-profiling methods. It became evident that the
sensitivity, specificity, and accuracy of the method were just as good, if not
better, than the CVS and amniocentesis methods of prior decades. This led
to large-scale clinical trials around the world that validated the results. By
2015, a flurry of new biotech companies that could perform cfDNA
profiling for cell-free fetal DNA had launched. In 2010, 99 percent of fetal
testing was by CVS and amniocentesis but only 1 percent by cfDNA, but by
2022 the numbers had flipped: CVS and amniocentesis now represent less
than 1 percent of prenatal testing in the US market, and the rest is done with
noninvasive, cfDNA prenatal testing. Cell-free analysis has proved to be an



entirely new predictive medical procedure, with extraordinary power to
sequence the genome of a baby before it is born.

Before birth, the amount of fetal DNA floating in a pregnant woman’s
bloodstream can be as high as 30 percent of her total DNA, and it steadily
increases with each month as gestation progresses. Yet within two to three
hours of birth, fetal DNA disappears from the mother’s bloodstream. This
indicates that there is a continual stream of fetal DNA being splashed into
the mother’s bloodstream during pregnancy, representing a targeted loss of
cells (known as apoptosis), a continual shedding of dead cells, and ejections
of DNA by the fetus (figure 5.1).

Figure 5.1
Origins of cell-free DNA for noninvasive fetal testing. The mother’s blood, containing both her DNA
(black) and placental DNA from the fetus (gray), the latter of which contributes to the cell-free DNA
found in blood, can be used for noninvasive prenatal testing (NIPT).

CfDNA has also proved to be a key predictive tool in nonfetal settings.
Another amazing predictive power of cfDNA is in heart transplants, where
the organ recipient suddenly has a large mass of cells and the DNA of
another human (the donor heart) inside his or her body. A study led by
Cornell University biomedical engineer Iwijn De Vlaminck and Stanford
University professor Stephen Quake in 2014 showed that cfDNA can
predict that a heart transplant is being rejected by the body before doctors
can detect the symptoms. As the host’s immune cells attack the foreign
organ, the organ’s dying cells boost the amount of foreign DNA in the
bloodstream, which serves as a measure of the rate and scale of
degradation. This same concept has been applied to kidney, liver, and lung
transplants.



In fact, cfDNA can act as a predictive molecular whole-body scan that
can discern which tissues are dying. Sequenced cfDNA in urine has been
used to discern if kidneys are being damaged from infection; the presence
of nonhuman cfDNA from, say, microbes can be used to detect and
diagnose the source of infection. This method of cfDNA urine sequencing
is a simple, noninvasive method to profile possible low-grade infections and
a way to examine the damaged states of tissues and cells around the body.
Every fragment of DNA has its own origin story and possibly an origin
from someone or something else (a fetus, a donor organ, or a new bacteria);
we just have to listen.

Even tiny mitochondria—semiautonomous organelles in cells that
generate energy inside of our own cells—turn out to be an early-warning
system for stress. Mitochondria have their own DNA, called mtDNA,
separate from human cellular DNA. MtDNA levels spike in the blood of
people giving speeches, for instance. The Swedish
psychoneuroendocrinologist Daniel Lindqvist and his colleagues showed
elevated mtDNA in the blood plasma of people who had recently attempted
suicide. And mtDNA peculiarities even occur in space, popping up in the
NASA Twins Study, a large project led by the Mason lab that analyzed the
genetic changes of identical twins who were both astronauts: Scott Kelly,
who spent a year in the space station circling Earth, and Mark, who
remained earthbound (and is now a US senator from Arizona, which is a
whole different world). During his first week in space and again toward the
end of his mission, Scott showed large increases in the amount of mtDNA
in his blood, indicating significant immune stress from radiation, fluid
shifts, and environmental changes. The fluid shift, for instance, involved
three liters of volume that normally reside in the lower body suddenly
moving into the upper torso and head during space flight, making the body
react in strange ways, including spikes of mtDNA in the blood. This
mtDNA spike, or lack thereof, may represent a way to gauge the health and
stress levels of future astronauts.

Techniques such as cfDNA and circulating mtDNA combine
personalization and predictability in precision medicine. These tools are a
more sophisticated application of the genomic analysis discussed in the
previous chapter. By using genomic tools to look deep into the complex
biology of an individual patient, physicians can make an informed guess—a
prediction—about what might be driving a disease and get clues as to how



to stop it. This individual approach contrasts with methods we examine
later in this chapter that analyze the effects of diseases such as smallpox and
COVID-19 on broad populations. But the two endeavors are linked. These
epidemiological techniques are predictive and involve model building,
algorithms, and lots of data and computer power. Both perspectives, micro
and macro, involve predictive strategies. And as we shall see, they echo and
amplify similar techniques in many other fields.

Disease as a Math Problem
The emergence of the novel coronavirus SARS-CoV-2 in December 2019
posed significant and scary challenges. Although the genome of the virus
was quickly sequenced and released in January 2020, allowing researchers
to begin work on vaccines and track the cascade of new strains that
emerged, many of the early guesses about its nature had to be quickly
revised. Its origins and mutation rate were widely debated; how it spread
and when were unclear; why some people were seemingly immune but
others dangerously vulnerable was a mystery; the infectious potential of
asymptomatic cases was unknown; and what kind of immunity the virus left
behind was undetermined. This collection of unknowns spawned mixed
messaging and sudden shifts in policy on matters such as wearing masks; it
also opened up claims for untested “cures.” Still, beneath all that, COVID-
19’s dynamics in the population resembled those of other pathogenic
diseases. We have models, which will only improve as empirical knowledge
of the virus and its variants deepen. And there are tools that crack the door
open not only to predicting the course of the pandemic but also to finding
out the wide range of ways the pandemic alters broader human behavior.

But long before COVID-19, there was smallpox, which arguably brought
us the first marriage of data and disease as well as the first models of how a
disease determines life expectancy and how it spreads. Scientists first
believed that smallpox might have emerged thousands of years ago, based
mostly on evidence of facial scarring in Egyptian mummies, descriptions
that appear in fourth-century China and seventh-century India, and
indications that the virus may have originated in an African rodent, the
naked-soled gerbil. More recently, after discovering and sequencing the



DNA of the actual virus found in a seventeenth-century child mummy
buried in a Lithuanian church, some scientists argued that the infamous
scourge developed as late as the fifteenth century—that the Egyptian
mummy’s facial scars came not from smallpox but from measles or chicken
pox. However, even more recent genomic analysis of nucleotide mutations
of viral DNA and its various ancestors suggests that smallpox likely
emerged 3,000 to 4,000 years ago in Africa.

Regardless of origin, we know that the “speckled disease”—named for
the smallpox pustules that cover the face and extremities of its victims—has
been a major killer, striking rich and poor, kings and peasants alike, and is
particularly deadly to children younger than ten (the opposite of COVID-
19). In early-modern Europe, roughly one-third of those who contracted the
disease died from it; cases and deaths mounted in the sixteenth and
seventeenth centuries and peaked in the eighteenth century, when smallpox
had a major demographic effect, with 15 million dying from it over a 25-
year period and some 10 to 15 percent of all deaths attributable to it, 80
percent of them involving children. Like COVID-19, smallpox spread
quickly. Sketchy accounts of rudimentary inoculations against what may
have been smallpox suggest that the practice was invented in China in the
tenth century, and by the sixteenth century had spread to India and to the
Ottoman Empire and Europe.

The inoculation involved implanting a live smallpox virus, variola virus,
just beneath the skin, producing an infection—although ideally not one
severe enough to kill. The aristocrat and writer Lady Mary Wortley
Montagu famously introduced the practice to Britain in 1721 after surviving
an infection and witnessing inoculations in Turkey; she had both her
children successfully inoculated. The possible payoff from inoculation was
straightforward but grim: if you survived, you gained immunity against
smallpox for life, but many died from the practice or were severely
disfigured. Although some practitioners of inoculations claimed high
survival records, the outcome often appeared to be arbitrary. But back then,
much about medicine was mysterious.

In the decades before Edward Jenner developed the first “safe” smallpox
vaccine in 1796 (derived from the nonlethal-to-humans cowpox virus),
smallpox inoculations stirred a fierce debate in Europe that in many ways
foreshadowed current antivaccine fears. Very little was known about the



various strains of the virus, some of which produced more severe infections
than others. Data were sketchy and imprecise, and misidentification rife.
There was no safe way to know who was already immune. The temptation
was to accept some deaths by inoculating children, but there were
objections. Many believed inoculations were intrusions into God’s right to
decide who would become ill and who would live or die. And if a child was
inoculated but then succumbed to the introduced virus, was that murder?

With the inoculation debate heating up, Daniel Bernoulli attempted to
bring some certainty to that risk. Daniel was a son of Johann Bernoulli, a
professor of mathematics in Groningen in the Netherlands, and a nephew of
Jacob Bernoulli, who held the mathematics chair in Basel and discovered
the law of large numbers. Clearly, math was in the family. Johann wanted
Daniel to go into business, but he instead first studied medicine and then
drifted back to the family trade, mathematics. After a stint in Peter the
Great’s Imperial Academy of Sciences in St. Petersburg—his older brother
Nicolaus hired him—he returned to Basel, where he taught botany,
physiology, and math.

Bernoulli’s work in St. Petersburg focused on what are known as “utility
functions” to help categorize risk. He distinguished between mathematical
calculations of probability versus the subjective “gut” of individuals
confronting risk. “The utility . . . is dependent on the particular
circumstances of the person making the estimate,” he wrote. “There is no
reason to assume . . . the risks anticipated by each must be deemed equal in
value.” He then took this commonsensical, empirical notion one step
further, arguing that for many who shoulder risk, the utility from an
increase in wealth is inversely proportional to the quantity of goods
previously possessed. Peter Bernstein offers his take on Bernoulli’s work on
utilities: “For the first time in history, Bernoulli is applying measurement to
something that cannot be counted [Bernstein’s italics]. He has acted as a go-
between in the wedding of intuition and measurement.” That work brought
new quantification and predictive power to inference.

In his thirties, Bernoulli published a paper on a decision-theory puzzler
known as the St. Petersburg paradox, which his brother Nicolaus had first
laid out. The paradox involves a simple game of coin flipping in which a
player gets paid every time the coin comes up heads; the payoff rises
exponentially with the number of total flips: $2 on flip one, $4 on flip two,



$8 on flip three. The game ends when the coin comes up tails and the player
takes the pot. How much should a gambler pay to play the game? For a
player, the game’s rewards are theoretically infinite. But, as Bernoulli
observed, gamblers resist putting up even a relatively small amount of
money to take a chance on those infinite rewards. He concluded that there’s
an inverse relationship between wealth and utility: once you have enough
wealth, the utility of getting more declines. Moreover, as later
commentators on the St. Petersburg paradox noted, there’s no casino in the
world that could or would bankroll infinite gains.

With these odds in mind, Bernoulli was persuaded to tackle the
inoculation problem in 1760. France was involved in an intense debate over
smallpox inoculations. In a paper to the Académie des sciences in Paris,
Bernoulli used the data from a study that Edmond Halley, Britain’s
Astronomer Royal and the discoverer of the comet that bears his name, had
made of the population of Breslau, which was then part of the Hapsburg
Empire (now in Poland). Halley’s goal for the Breslau data, acquired with
the help of Gottfried Leibniz, was to improve the actuarial basis of
annuities, not to track smallpox deaths, but his study helped both.
Bernoulli’s work on smallpox thus was lauded by insurance actuaries, for
whom life expectancy is a key metric, long before it was recognized as an
epidemiological breakthrough.

Bernoulli broke the population into compartments: those who had not
been infected and those who, having recovered, were immune. From that,
he was able to extract some key insights: total deaths by all causes except
smallpox; the rate that “susceptibles” were infected; the fatality rate from
the infection, known as the force of infection; the probability for a newborn
to survive to a given age. Bernoulli derived these insights through a series
of differential equations. He concluded that fatalities from smallpox
occurred in one of eight cases, or 12.5 percent, which allowed him in turn to
calculate the chance of infection each year from birth to 25 years old.

From those calculations, he showed that the life expectancy for that
group would rise from 11.1 years to 25.5—some 14 years—with
inoculations. A study of Bernoulli by the Oxford historian Catriona Seth
concluded that “the demonstration was striking on an immediate level as
offering scientific support for inoculation, but also, more widely—though
this possibly would have escaped the common man—for offering



mathematics an interesting applied role in thinking of how contagion
works.”

Yet there were some flaws in Bernoulli’s work, which was hardly
predictive. Halley’s data were suspect, and Bernoulli admitted that he could
not get data on smallpox fatalities by age group. As a result, he used the
assumption that all inoculated children would survive. The French
philosopher Jean le Rond d’Alembert criticized him for treating the
decision to inoculate as a cold, rational, quantifiable choice, which it
certainly wasn’t for any parent. This argument was often heard regarding
COVID-19. But d’Alembert, a formidable mathematician in his own right,
also suggested improvements to Bernoulli’s calculations, arguing that the
conception of risk changes dramatically with age. Bernoulli, annoyed by
d’Alembert’s criticism, insisted he would never again read the Frenchman’s
work, even though the two agreed on the overall merits of inoculations.

Making Room for Uncertainty
Although others made further improvements in Bernoulli’s compartmental
model, it mostly slumbered until the 1920s, when a renewed interest in
mathematical disease modeling emerged. The Scottish physician and
epidemiologist Anderson Gray McKendrick, who had worked as a public-
health physician in Africa and as a lieutenant colonel in the Indian Medical
Service, returned home in 1920 with his family after contracting a disease
known as tropical sprue and took up a position as a lab supervisor at the
Royal College of Physicians of Edinburgh. In 1925, McKendrick published
a paper that included a Bernoulli-like compartmental approach to analyzing
infectious diseases. More striking, McKendrick included nondeterministic
random elements—that is, stochastic elements—in the model. In doing so,
he anticipated work that was to come decades later in a number of other
scientific fields, from hydrodynamics (a rushing stream is a stochastic
system) to nuclear physics (streams of particles are stochastic) to
telecommunications theory.

McKendrick’s model incorporated a so-called Poisson distribution,
named for Siméon Denis Poisson, a mid-nineteenth-century French
mathematician and successor of Pierre-Simon Laplace. Poisson’s work in



probability focused mostly on criminal behavior and jury verdicts, and the
formula at the heart of the Poisson distribution was a mere page in a much
longer study he did in 1837, but, fortunately, another eminent French
mathematician, Antoine-Augustin Cournot, recognized the power of the
method and in 1843 explored it more thoroughly.

The Poisson distribution effectively took probability into the realm of
chance. It is used to calculate the probability of events that occur randomly,
such as a coin flip, in a given amount of time, area, or volume: customers
arriving at a store, traffic passing on a street, the rate of radioactive decay,
even search requests on the internet. It requires two assumptions. The first
is that the events occur at a steady rate over time; you don’t know when
they will occur, but their rate can be calculated. The second is that events
occur randomly and independently, not correlated in any way. The action of
one customer, one search, or one particle is not linked to the actions of
others.

By means of the Poisson distribution, McKendrick introduced
mathematical tools to analyze aspects of disease spread that were not
deterministic. After all, diseases spread not by viral forethought but by
contagion, the random contact of individuals in a conducive environment.
(Of course, the genetic evolution of new variants of pathogens is also
mostly random, which makes pandemic prediction difficult.) Human
interactions may be as random as stock prices. How many people capable of
transmitting a disease will intersect with individuals susceptible to
becoming infected at, say, a pool party? How will lockdowns, quarantines,
or mask-wearing reshape the underlying math that drives an epidemic—the
curves of contagion? What’s the role of poverty or age in contagion or
control? A stochastic process allows demography—births and deaths—to
come into play. Births add to the most susceptible part of the population,
while deaths subtract across all compartments. Both are independent and
random in their timing.

Despite that insight, McKendrick decided to discontinue his initial
stochastic models, turning instead to more conventional deterministic
models using differential equations. Stochastic processes are useful in
smaller groups, such as families, but deterministic methods work well with
larger populations, where trends of mass action and movement apply. In
1927, McKendrick and the Scottish biochemist William Ogilvy Kermack,



who had been blinded early in his career in a lab explosion, developed the
so-called age-of-infection model, in which the infectivity of individuals
depends on the time since they became infected. Kermack and McKendrick
used three compartments in their model: susceptibles (S), infectives (I), and
removed or recovered (R); therefore, the generic class of epidemic models
that resulted from their work became known as SIR models. The pair
envisioned individuals working through the three compartments over time.
Importantly, the model allowed them to calculate a reproduction rate that
determines whether the infection will die out, persist, or explode into an
exponentially growing epidemic—that is, the model was predictive.

SIR models also underlie the modeled curves of the COVID-19
pandemic. The reproduction number (R0)—the number of secondary
infections caused by a single infected person—has also received a lot of
attention. Generally, “flattening the curve” of infections requires a
reproduction rate (R0) of less than one. To achieve that, each new infected
person must infect fewer than one other person—thus, the demands for
social distancing, masks, and quarantines. Whenever R0 is larger than one,
it means the infection is spreading, sometimes explosively.

Kermack and McKendrick’s SIR model became a kind of template for
the far more complex epidemiological models that have proliferated since
the 1950s, driven by the emergence of novel infectious diseases, by a far
deeper understanding of how these infections spread, by increasing amounts
of data, and by computers. These new models contain additional
compartments: M (for newborns who temporarily receive disease
immunities from their mothers) and E (exposed but not yet infected).
Models such as MSEIR, SEIR, SEI, or SIRS are based on the flow of
specific infections.

Beginning in the late 1940s with the work of the English statistician
M. S. Bartlett, the models increasingly blended stochastic and deterministic
elements, capturing far more complex social and biological realities and
unifying the two sides of McKendrick’s work. These ever more dynamic
models have unfolded over time, driven by diverse variables. On
computers, they can produce simulations of disease spread. They can be
remarkably predictive if the data are good, the underlying understanding of
the disease is relatively complete, and the ability to change social behavior
is effective.



Alas, the human element remains an uncertainty. Some people reject the
science, or at least what they think the science is saying. Others judge risk
and utility differently—a problem of competing risks that Daniel Bernoulli
identified centuries ago. Others resist being told what to do or have wildly
different conceptions of self-interest. Many blame the models for failing to
anticipate or accurately predict changes that may in fact be driven by
subjective reactions to the models themselves. Success in flattening an
infectious spread, for instance, may lead to overconfidence. Models do not
determine or encompass reality; they’re hostage to underlying assumptions
and data. Alter those assumptions and data, and the prediction changes, just
as the odds of an individual winning an election change as polls reflect
changing voter sentiment.

In their various iterations, SIR models dominate infectious-disease
epidemiology. When COVID-19 “infects” other aspects of behavior,
understanding and predicting how the pandemic is reshaping myriad social
forces must begin with that SIR foundation. For all the public-policy
challenges during its spread, the COVID-19 pandemic helped to open
broader predictive perspectives and possibilities that have been building for
centuries.

A Layer Cake of Models
COVID-19 quickly changed the behavior of populations around the globe,
albeit in different ways in different places as a result of varying public
policies, cultures, economic systems, and levels of development. COVID-
19 fits into the compartments of the basic SIR model; McKendrick’s
original notion of vectors moving from compartment to compartment of
varying size broadly reflects the migration of the virus through a
population. There is an underlying deterministic course to the disease:
infections quickly spread through a population of susceptibles, producing
recoveries and deaths. But there is also a stochastic element: community
spread, the passage of infection throughout the population via people’s
interactions, is essentially random and, without effective therapies and
vaccines, can be dampened only by reducing activity through quarantines or
lockdowns or through the costly process of gaining “herd immunity”—that



is, enough recovered cases that the reproduction rate, R0, will fall below
one and the virus will decline.

The COVID-19 coronavirus reshaped behavior beyond public-health
measures. There was, of course, an enormous impact on the health-care
system, schools, and lifestyles. With countries forced to lock down, to turn
off their economies, many industries suffered. Others prospered: essential
services such as groceries (Walmart and Kroger) and drugstores (CVS),
food delivery (Grubhub and Uber Eats), online meeting tools (Zoom and
WebEx), and digitally mediated retail delivery (Amazon.com). Broadly
speaking, digital services thrived, from home cycling to videoconferencing
to cloud computing. Restaurants and bars did not.

Industries and companies confronted a radically altered economic and
commercial landscape. What products would be popular in the midst of a
pandemic, and which would not? How would online sales compare with in-
store sales? How would consumer trends such as pantry loading (the
tendency in a crisis for consumers to hoard goods) and dips in sales (the
result of earlier pantry loading) or the shift to meal takeout or delivery
unfold in a world of social distancing? All of these dynamics evolved as
internal and external shocks—COVID-19 spikes, supply constraints, the
effect of therapies or vaccines—rippled through society, reshaping
macroeconomic indices from declining disposable incomes to increasing
household medical expenses to increasing (or decreasing) savings. Like the
layers of regulation and coding that orchestrate the genome, the effects of
COVID-19 resemble a layer cake of models: the SIR epidemic models
overlaying macroeconomic models, atop increasingly microeconomic
models for industries and companies, families, and individual consumers.
Like the genome and all its genetic and epigenetic regulatory layers, this
layered social and epidemiological structure is in constant flux, both
deterministically and stochastically.

This is prediction on steroids—prediction applied extremely broadly. In
fact, the pandemic may well have cracked open the door to a wider
application of prediction. WorldQuant Predictive used SIR-like models to
predict the spread of COVID-19, gathered as much data as possible from
public sources and companies, satellites, and hospitals, and then built and
tested diverse algorithms that attempted to predict relations among multiple
variables. As we saw in chapter 3, these models can then be ensembled into



metamodels or ensembles—fewer, perhaps, than the number of alphas
WorldQuant assembles into investment portfolios, but the underlying idea is
the same: the use of machine-learning systems to extract deeper patterns.
The goal: predict risk, demand, infection, pricing, and value—and then act.

The possibilities are intriguing. Prognosticating consumer behavior isn’t
radically different from predicting biological activity—say, COVID-19
patients who are likely to develop dangerous cytokine storms, an immune
overreaction, rather than immune suppression. An even more important
question is whether these tools can be used to predict the molecules most
likely to inhibit interactions between COVID-19 and a specific protein. In
short, can this approach be used to significantly shorten the process of drug
discovery?

So far, the answer is . . . sometimes yes. Companies have long sought to
find molecules with chemical structures that bind to key receptors and block
or amplify response; this search is often a long, laborious, and expensive
process that turns on either mastering the three-dimensional structure of
specific molecules, which fit into a protein receptor or enzyme, or
conducting a brute-force mass screening of thousands of compounds.
COVID-19 appears to be so efficient in transmission and infection because
the spike proteins lining its outer surface bind to cellular receptors, allowing
the virus to inject its RNA into a cell’s replication machinery, suppress the
immune response, and generate copies of itself by the millions in little time.
(The coronavirus grows increasingly infectious as the spikes improve their
efficiency through mutations.)

The key innovation is to break this mechanism down into a prediction
problem—in this case, to find molecules from compounds that have already
shown antiviral activity through mutations, including those from drugs used
against HIV, Marburg, or Ebola, or those with efficacy against other
coronaviruses, such as SARS, that might inhibit the ability of COVID-19 to
enter and take over cells. Like any prediction problem, this breakdown
requires several steps. First, it must define key targets, from protease
receptors that allow entry through the cell membrane to the polymerase that
enables viral replication within the cell. Second, it must get data. In the
COVID case, the data came from a company called Chemical Abstracts
Service (CAS), a division of the American Chemical Society, which for
more than a century has quietly accumulated chemical data. CAS had a



database of 50,000 known antivirals, providing WorldQuant Predictive with
a treasure trove of observational data on bioactivity. Using that data, the
company built algorithms and then ran them through machine learning, not
seeking deep scientific answers but rather correlations—the stronger the
correlation, the likelier the compound would have an effect.

This is empiricism, but with a difference. The process allowed
WorldQuant Predictive to narrow the number of candidate compounds for
testing. Of course, it’s much too early to know whether this AI-driven
screening program will be effective in broad drug discovery, where
validation often takes years. But it does demonstrate the potential of these
techniques. And if it works for COVID-19, there’s every possibility that it
could work for other pathogens, old and new, not to say more baffling
diseases such as cancer.

Anticipating Resistance
Drug discovery is the Holy Grail of medicine, a metaphor, the biologist
Richard Lewontin once warned, that molecular biology embraced in the
run-up to the Human Genome Project, harkening back to “the most
mystery-laden object of medieval Christianity.” That said, patients want
cures to their diseases—or at least control of them. Presumably, steady
testing of cfDNA should provide some sign of new mutations or sets of
mutations that could lead to resistance, whether through conventional
chemotherapies and radiation, newer biological drugs, or targeted drugs,
such as the one prescribed to Uncle Ben. Meanwhile, work on cancer
resistance continues. In a computational biomedicine lab at Weill Cornell
run by Olivier Elemento, a professor of physiology and biophysics and
codirector of the WorldQuant Initiative for Prediction at Weill Cornell,
scientists have pursued strategies that are conceptual cousins to WorldQuant
Predictive’s drug-discovery screening program.

A good example is a machine-learning algorithm developed by Neel
Madhukar in the Elemento lab. Called the Bayesian ANalysis to Determine
Drug Interaction Targets (BANDIT), the algorithm uses a diverse collection
of data on drugs—some 20 million data points on six data types—to predict
the most effective response from enzymes or receptors, both of which are



often key to the proliferative tendencies of cancer cells. Employing data-
cleaning methods used in finance, BANDIT aims to accelerate the
traditional mass screening of compounds and the winnowing down of a
large number of drugs to a select handful that can be tested. For instance,
Elemento’s group tackled a compound known as Onco201 that showed
anticancer activity, though researchers did not know the compound’s
specific target. BANDIT concluded that it was targeting the dopamine
receptor D4, which, as we saw in chapter 4, is one of the receptors that
regulates risk taking and aggression. Because D4 is most commonly found
in the brain, it’s notoriously difficult to attack therapeutically.

In 2019, the Elemento lab published work with another lab led by Dan
Landau that described a technique for “mapping” the capacity of tumor
cells to develop resistance to specific drugs. This is a formidable
computational task given the number of genes that can be involved in
resistance—the paper focused on 10,000—and the growing number of
anticancer drugs that are increasingly used in combination and with
different dosages. The key is systematic sequencing and analyses of
genomes in the lab, tracking mutations over time. The goal: to define likely
resistance pathways and optimal drug regimens in advance, then narrow the
field for clinical trials. One of the genes targeted in malignant lung cancer
was EGFR, the growth receptor that had mutated in Uncle Ben’s case. But
as so often happens with cancer, the conclusions arrived at in this study are
neither simple nor straightforward. Change is chaotic in cancer cells. Under
pressure from drugs, some cells radically transform into stem cells. Others
reestablish signaling mechanisms blocked by drugs. Two drugs in
combination may find themselves blocked by genes that have no effect on
each drug individually.

Those are just two forays against the phenomenon of cancer resistance.
Work on the problem is being done in many medical centers and labs all
over the world. The data pile up; the knowledge base deepens and broadens;
and the models get better. The search for new signals and new correlations
continues in every blood draw. Indeed, cfDNA can reveal which tissues in
the body’s cells are dying from COVID-19 just as well as it can map out
which cells are dying from the targeted therapy in a cancer patient. But
what is most striking is how computational and model-building techniques
used to predict disease spread are also being employed in mapping
pathways of resistance and, possibly, streamlining drug discovery and



delivering new avenues to attack the cancer as it begins to escape. In the
race against ever-evolving diseases such as cancer and viruses, predictive
algorithms provide perhaps the best light for where to go next.



6

Mortality and Its Possibilities

In 2011, a professor of risk mathematics named Michael Powers bundled
together some thoughts about risk and insurance and wrote a series of
essays in a book that echoed Bernstein’s Against the Gods. In Acts of God
and Man: Ruminations on Risk and Insurance, Powers cuts to the chase on
the first page of the first chapter, asserting that all matters of risk “flow
from the same source: the specter of mortality [Powers’s italics]. Like a
serpent coiled around the trunk and branches of the Tree of Life, the risk of
death squeezes at every aspect of human existence.”

That’s much more exciting, if a little grimmer, than the fine print of an
insurance policy. But Powers identifies the core of insurance: the attempt to
price what an actuary would call life’s contingencies and what Powers
characterizes as “life exposure”—the variable possibility of death that
follows mortals as they move through life. He argues that both insurance
and financial-risk management hinge upon life exposure. Insurance policies
are designed to pay off relatively quickly, before “the policyholder’s life
terminates.” And lenders must be compensated for the possibility that
borrowers may, well, die (at least in the corporate form). Mortality hangs
over so-called life tables, which try to capture the risk of living, breaking it
down into one- or five-year slices and producing a curve of “mortality
hazard rates” for each birthday (insurers and actuaries, Powers says, always
assume that someone’s death will occur on his or her birthday; this does not
make them popular). Powers reviews the complexities of such an analysis,
and, even with lots of data, insurers remain at some distance from the fate
of individuals because of the underlying role played by health, class, and
racial differences.

Powers looks to a future when science may be able to take greater control
over the aging process—and with that, our Quantasaurus, with its data-
driven reduction of risk, lumbers into the room. He writes, “As we approach
that privileged time, the notion of risk inevitably will undergo dramatic



change and perhaps even disappear from the human vocabulary.” In fact,
some of this change, Powers notes, has already begun. Modern medicine
has helped flatten (though not eliminate) both the once-robust hazards of
being born and of being very young as well as the similar rising curve that
occurs with advancing age. Powers posits a time when the entire curve has
been flattened to such an extent that every age period has the same hazard
of dying in the next year. Average life expectancy, not surprisingly, will
rise; although death will still occur from accidents and disease and suicide,
“the rate of death will be independent of age.” Although there are no
guarantees of not dying young, Powers writes, individuals will not feel that
they are approaching death—that time is running out, like the proverbial
sands through the hourglass. Death will appear randomly, striking at any
time. Powers mulls over how people might react in such a situation. Will
the perception of death be more or less terrible? Will the death of a very old
person be viewed as more or less a blow than the sudden demise of a
younger person? In theory, it would be the same.

Powers’s thought experiment is similar to what we are pursuing here:
How do behavior and perceptions change as the ability to predict advances
exponentially and risk proportionately retreats? Such change shouldn’t be a
surprise; the insurance industry and actuarial science have long sought to
more accurately predict outcomes and fix prices on risk. Actuarial science
has grown increasingly sophisticated and data rich, but it always faces the
inherent limitations posed by any predictive enterprise because of its
Humean uncertainties: it uses data from the past to provide glimpses of the
future. Indeed, insurance did not become predictive until the science of
statistics married the tools of probability in the seventeenth century. The
notion of a flattened mortality hazard curve is a kind of prediction, based on
data, that changes the nature of the risk. Insurance is thus arguably the
world’s oldest application of prediction and risk, one that is currently being
transformed by many of the powerful tools that we have already described:
exponentially growing data and computer power as well as a host of
algorithmically based techniques. Like Powers’s notion of a flattening
hazard curve, the ultimate results may not be fully here yet, but the process
has clearly begun.



A Response to Uncertainty
For a product that few people understand, insurance has been with us for a
very long time. Its original uses appear to have been to grease the wheels of
commerce, especially in trade. Reports from China as far back as the third
millennium BCE describe efforts by traders to reduce the risk of loss by
spreading goods across multiple ships. Babylonians developed a scheme in
which merchants took out loans and paid an extra amount for a proviso that
if a ship were lost, the loan would be canceled; it was thought an important
enough innovation to end up in the Code of Hammurabi in 1750 BCE. The
Achaemenid Empire in Persia in the third century BCE developed a form of
life insurance. Greek and Roman traders bought insurance policies with
premiums that fluctuated based on the risk; the Roman emperor Claudius
personally insured shipments for the transport of corn. Benevolent societies
arose to insure the life and health of their members—perhaps the first social
welfare system.

Insurance slowly evolved to cope with a world rife with uncertainties.
Thomas Hobbes’s description of humankind’s lives as “solitary, poor, nasty,
brutish, and short” was true of his own seventeenth century and had been
true since prehistory. (Ironically, just as Hobbes wrote those words,
uncertainties were beginning to shrink.) Back then, mortality loomed large
over humankind, from natural disasters to infectious diseases to eruptions of
violence to lack of workplace safety. Lives and livelihoods were besieged
by risk. Insurance would not prevent infectious diseases such as smallpox
or various plagues or the ever-present threats of famine and pillaging, but it
could make life better for the survivors. The demand for assurance drove
the pricing of uncertainty and thus attempts at prediction, however crude.

Insurance was an attempt to reduce the harm for the survivors of events
that could not be specifically predicted, even though it was reasonably
certain that they would occur at some time—the maritime storm, the city
fire, the sudden death from lightning or a burst aneurysm. The annuity, in
contrast, flipped the equation: rather than be compensated for loss, the
beneficiary received regular payments to support life until death. The state
(historically the only enterprise with the resources to fund such a venture)
sold the rights to participate in the annuity for a figure that was priced at a
certain number of times the annual income that annuitants would receive in
return. The state then invested the fund at a prevailing interest rate and paid



the annuitants out of the proceeds until they died. The state got to use a
large pot of money plus the tax proceeds on the payments. The annuity gave
people a theoretically consistent, safe source of income.

In the Roman Empire, life annuities grew common, mostly as a means of
passing along wealth between generations or of rewarding loyal retainers,
though no one yet understood that pricing should vary with the age of the
annuitant; most annuities were bought for small children, who, if they
survived infancy, had a pretty decent chance of living a full life and
maximizing their income. Annuities also inevitably posed tax questions:
How do you tax an annuity, and how do you predict those tax revenues?
Annuities benefited the living, but to finance them the state required some
sense of mortality and life expectancy.

In his history of finance Money Changes Everything (2016), William
Goetzmann calls the annuity contract “one of Europe’s greatest
contributions to humanity.” Goetzmann contends that the ability to write a
contract on a single life or a group of lives allowed citizens to shift “the risk
of longevity or untimely death” from the family to the state. Annuities were
an early form of social welfare or social insurance. The state could pool and
diversify risks, but at a cost: the state rarely understood or had the tools to
calculate its total risk exposure over longer periods of time. The answer
came from probability and statistics, but those nascent fields were still
gestating in the Roman era. Insolvency was a risk in any annuity scheme.
Even today, Social Security, the most ubiquitous annuity in the United
States, carries the continual risk that it will run out of money as the rate of
population growth slows.

Controlling annuity risk requires an understanding of demographics.
How large is the population? What is the average citizen’s life expectancy
at different ages? What is the balance of births and deaths or the effect of
immigration and emigration? What role does infant mortality play? The rate
of growth for humanity has changed many times over the centuries (figure
6.1), but it is now starting to flatline.

Enter a Roman lawyer, Domitius Ulpianus, more commonly known as
Ulpian. Born in the Phoenician port of Tyre, not far from modern Beirut,
Ulpian appears as a senior civil servant in the Roman bureaucracy in the
third century CE, first under Emperor Septimius Severus, then, after the
emperor’s death in 211, under his sons, who engaged in a bloody succession



struggle. In 222, young Alexander Severus, helped by his sister and mother,
seized control, and Ulpian, who by then had codified and written
commentaries on a vast swath of Roman law, became prefect of the
Praetorian guard, the emperor’s personal military wing. This was a
powerful and precarious position. In 223, in Alexander’s presence, some
Praetorian guards murdered Ulpian during riots between Roman citizens
and the guard.

Historically speaking, Ulpian is less known for his career in the civil
service or his bloody end than for his extensive legal commentaries. Three
centuries after his death, the Byzantine emperor Justinian ordered the
compilation of Roman legal commentaries in what became known as
Justinian’s Digest. Some two-fifths of the Digest, one of the most influential
works in Western legal history, is attributed to Ulpian.

Buried in the Digest is the earliest of life tables—Ulpian’s life table.
There are complexities to Ulpian’s attempt to grasp essential

demographics for Roman life annuities. He likely did not assemble the life
table himself, but he quite clearly used statistical material on Roman births
and deaths that existed within the empire’s tax bureaucracy. That
compilation of statistical material is interesting in itself: the bureaucrats
were counting heads and keeping records, although those records have
never been found. The life table was included in the Digest in a roundabout
way. Another near-contemporary jurist, Aemilius Macer, wrote of Ulpian’s
life table as part of Macer’s own commentaries on tax policies from the
reign of Augustus three centuries earlier. The table was not employed in the
pricing of annuities, as it might be today, but instead used to forecast tax
inflows from annuities depending on the age and life expectancy of the
annuitant.

Despite all that, Ulpian’s life table had a considerable afterlife, providing
a rare illumination of some of the most intimate details of the Roman
Empire: births and deaths. It would be cited well into the nineteenth
century, when it was seen not just as a mirror of Roman society but as an
anticipation of the modern actuarial table.

Life tables generally capture a specific demography and provide an
anatomy of the inner dynamics of human populations. In a study of Ulpian’s
life table in 1982, the University of Michigan classics professor Bruce Frier
outlined the essentials of historical demography. “The required data fall into



three classes: first, the functions of mortality indicating how many males
and females of varying ages will pass out of the population through death;
second, the functions of fertility indicating how many new members will be
born into the population; and third, the functions of migration indicating the
transfer of members into and out of the population.” Birth, death, and the
movement of people—these, wrote Frier, are “universal and profoundly
affecting themes.”

Figure 6.1
Rate of growth and world population, 1700–2100. The population growth of the world rapidly
accelerated after 1900, but the rate of growth is now slowing and is expecting to be near flat by the
year 2100. Source: Max Roser, Hannah Ritchie, and Esteban Ortiz-Ospina, “World Population
Growth,” Our World in Data, 2013, https://ourworldindata.org/world-population-growth (CC BY),
based on data from History Database of the Global Environment (HYDE), the United Nations (UN),
and the UN Population Division.

Ulpian’s life table had its deficiencies, as Frier makes clear. No one really
knows what Ulpian considered to be the population base—some scholars
have argued that it consisted of slaves or former slaves who received
annuities after their owners died—or what assumptions and statistical
methods, if any, lay behind the numbers. His notion of life expectancy was



not the average number of years still left at a specific age but rather the
median, or the number of years it would take until half of a given age group
was dead. Perhaps most significantly, Ulpian’s life table ignored the large
number of children who died before the age of five, particularly from
infectious diseases, which created enormous demographic pressures on
families to produce more children. As Frier notes, the omission of children
may simply have been practical: children didn’t pay taxes. But it’s also true
that the tools to link mortality in age groups to cause-of-death patterns,
“bringing together thereby demography and epidemiology,” did not yet
exist.

How well did Ulpian’s life table reflect Roman reality? Given all the
caveats, Frier thinks it did so reasonably well. He calculates that Ulpian’s
life table reflects a life expectancy at birth of between 19 and 23 years,
driven by infant mortality of some 499 out of 1,000—not that different from
the demographics of the Bronze Age.

Rebirth of the Life Table
Ulpian’s life table stands out prominently because, oddly, there would be
nothing like it for another 14 centuries. But by the time demography began
to systematically count things, in the mid-seventeenth century, many of the
same dynamics behind Ulpian’s life table had recurred: again, annuities
played a central role, and, again, the state was a key player that needed data
from life tables. Notably, the rebirth of these statistics came from two key
sources: Johan de Witt’s pioneering work on annuities in the Netherlands in
the 1670s, and Edmond Halley’s statistical breakdown of the population of
a middling city in the Holy Roman Empire two decades later.

De Witt was an Ulpian-like figure who came to an Ulpian-like end. The
son of a politician, he was a mathematician of some skill who became the
grand pensionary of Holland—leader of the largest and richest state in the
Netherlands—in 1653 at age 28. This made him a kind of prime minister of
the Dutch Republic. He held the job for 19 years. This was Holland’s
Golden Age; having freed itself from Spain in 1648, the small country
became a global trading and financial power of increasing prosperity. In
1654, it narrowly lost the first Anglo–Dutch War, then in 1667 it won the



second; both were fought to control maritime trade. For decades, the Dutch
had financed the government by selling annuities and perpetuities, bonds
with no fixed maturity date. But as the wars began, the importance of
annuities as a fund-raising vehicle increased. By 1670, de Witt, who had
read John Graunt’s statistical study of London’s birth and deaths, the Bills
of Mortality (1662), was convinced that the government was pricing life
annuities too cheaply at 14 times annual income. De Witt’s study was the
first rigorous analysis of annuities.

There were inevitable limitations to that analysis. For one thing, de Witt
lacked solid data. He finally turned to a close friend, Johannes Hudde, the
mayor of Amsterdam and another skilled mathematician, who had played a
role in Newton’s development of calculus and had helped design the curves
of dikes. Hudde mined data from Dutch annuities going back to the late
sixteenth century, but that did not provide the kind of robust birth-to-death
data that was necessary for de Witt’s analysis. So de Witt instead made a
series of generalizations about infant mortality and the uniformity of
mortality rates for every age level older than three and younger than 80; his
life-expectancy chart resembled stairs—constant for a period, then a sudden
leap, then constant again—and he and Hudde argued over this picture. As
Goetzmann writes, de Witt “attacked this question with mathematics,”
marrying the calculation of the time value of money with the still-infant
mathematics of probability. “De Witt recognized that the central challenge
in the calculation of life annuity values was the probability of life
expectancy—the need to estimate how long the cash flows would extend
forward through time, on average, for annuitants of different ages.” He
sought, in other words, to quantify the very risk that annuitants “insured
themselves against.” He concluded that the annuities rate should be priced
not at 14 times annual income but at 16 times, based on a prevailing 4
percent interest rate.

De Witt shared something else with Ulpian: a violent end. In 1672, a year
after he completed his annuities analysis, France, Britain, and two German
states went to war with the Netherlands. Tensions rose between the
republican state led by the grand pensionary and the ambitious young Dutch
king, William III of the House of Orange. De Witt, who was blamed for the
war and for resisting the king, resigned after a series of Dutch defeats. In
August, his brother, Cornelis, was imprisoned in the Hague on charges that
he had threatened to murder the king. Johan, who had survived one



assassination attempt, was lured to the prison with a fake letter. A mob
dragged the brothers out of the jail and lynched them in the street. De Witt’s
annuities plan was never implemented.

The war drove the Netherlands into a deep financial crisis and ended
inconclusively in 1678. King William III, whose father had died of
smallpox eight days before his birth, by then had assumed control of the
Dutch state. In 1688, he was offered the crown of Britain after the Glorious
Revolution forced out the Catholic king Charles II. William brought to
Britain many of the innovative financial techniques that the Dutch had
employed throughout the war years, including the use of annuities as a
source of government funding. In many ways, William and his wars
nurtured the rise of London as a global center of finance.

Getting a Fix on Mortality
The second big advance in insurance came from Edmond Halley. Powers
credits Halley with the first “comprehensive mortality table,” noting how
appropriate it was that, given the association of mortality with fate and
destiny, the man “who made the first scientific prediction of a comet’s
appearance—long considered a portent of good or bad fortune—should also
offer the first scientific analysis of the human life span.”

The year was 1693. William III had become King William of Britain. The
British government planned a significant increase in the issuance of life
annuities, aimed at financing the Protestant William’s continuing war with
Catholic France. Halley grew interested in the same problem posed by
annuities that had driven de Witt: pricing. Like Dutch annuities, the
traditional British offerings were not age dependent; that is, the cost of an
annuity for a five-year-old who might live to be 80 was the same as the cost
of an annuity for a 50-year-old.

Halley, like de Witt, had a data problem. Current data (from Graunt’s
statistics) did not give ages at death or the number of people surviving at a
given age, so Halley couldn’t calculate life expectancy. He also lacked a
stable sense of the population in a city with large immigrant flows.
However, a Lutheran minister, Caspar Neumann, had gathered mortality
statistics from 1687 to 1691 in the much smaller city of Breslau, and he had



shared them with Leibniz, the court librarian of the Electors of Hanover.
Liebniz passed them to Henry Justel, the royal librarian of England, who
gave them to the Royal Society, a scientific organization where Halley
worked as a clerk. (Significantly, Liebniz noted that Neumann’s data
effectively refuted the ancient concept of climacteric years, the belief that
certain chronological ages saw more deaths than others and that deaths were
influenced by the moon.)

Halley used the Breslau data to construct a life table, did some
calculations, and published his analysis in the Royal Society’s
Philosophical Transactions. He noted that, based on the data, the British
government was pricing its annuities far too cheaply at around six times
annual income, particularly considering that pricing did not vary with age
(echoing de Witt’s conclusion). The Breslau data gave Halley the ability to
vary his analysis by age, as modern actuarial analysis does. Using his table
and an interest rate of 6 percent, Halley produced an annuity that was priced
at 13.4 times annual income for a 10-year-old and at 7.6 times for a 60-
year-old. When the government finally did sell the annuity, more than half
of the 1,002 lives that subscribed were younger than 11 years, suggesting
that investors knew age insensitivity was a bargain, albeit one that the
government wouldn’t realize for decades.

Halley’s Breslau data found other uses. As we’ve seen, 40 years later
Daniel Bernoulli used them to complete his analysis of the effect of
smallpox inoculations on life expectancy that merged epidemiology,
demography, and the relatively new sciences of probability and statistics.
Halley’s analysis was hardly perfect. He left out data on ages older than 85,
and as with his handwritten astronomical calculations, he took shortcuts,
fudging and smoothing some of the results. But the results were still
powerful. In the decades ahead, Britain effectively built a mighty financial
engine, centered in the City of London, around new institutions such as the
Royal Society (founded in 1660), the Bank of England (1694), and the
maritime insurance bought and sold at Edward Lloyd’s coffeehouse on
Lombard Street—a business that eventually became Lloyds of London.
(The term underwriters came from investors willing to accept some liability
for potential losses by writing their names under the line.) These institutions
provided what the historian John Brewer calls “the sinews of power” that
fueled Britain’s aggressive global expansion. The conflation of
mathematical reasoning and useful knowledge was embodied in “political



arithmeticians” such as Graunt and Halley, notes Brewer. “The object of
applying mathematical science to ‘useful knowledge’ was to make accurate
decisions, to reduce elements of chance and caprice in what was perceived
to be an unpredictable world. The risks and dangers associated with ‘Meer
Hazard and Chance’ were contrasted with the security conferred by reason
and computation.” Brewer adds, however, that the confidence in
mathematical probability, “stretched to a point of extreme credulity,” also
helped create a proliferation of popular life insurance schemes. Some were
simply scams for raising money. Others, lacking the rigorous mathematical
basis they touted, went out of business.

Beginning in the late eighteenth century, insurance products were
increasingly offered outside of government. A key figure was the
remarkable Richard Price: Unitarian minister; pamphleteer in support of the
American and French Revolutions (and target for Edmund Burke in
Reflections on the Revolution in France [1790]); friend of Benjamin
Franklin, John Adams, and Thomas Jefferson; philosopher; mathematician;
and literary executor for the statistician and Church of England minister
Thomas Bayes. Price, in fact, not only presented Bayes’s theorem on
statistical inference at the Royal Society but also wrote an introduction that
put philosophical flesh on Bayes’s bare-bones observations. Price was also
a formidable demographer and what historian Craig Turnbull called “a titan
of actuarial thought” and “arguably the first actuary.” He advised a number
of early insurance companies, including the Society for Equitable
Assurances on Lives and Survivorship, one of the pioneers of the new
industry; his mortality tables from eighteenth-century Northampton and
Norwich parish registers provided the actuarial foundations for the
company’s groundbreaking policy of pricing premiums by age. The
Northampton tables quickly became canonical in Britain and the United
States, despite Price’s overestimation of mortality—later studies suggest he
calculated life expectancy at 24 years when it now appears to have been
around 30 and improving rapidly with declining infant mortality. As the
historian Ian Hacking notes, Price’s conservative table worked well for life
insurance. Because the population was living longer, insurers could take
longer to pay out while collecting premiums. The situation, however, was
the opposite with annuities. “In 1808, the British government, hard pressed
by war and inflation, decided to issue annuities ‘soundly based’ on Price’s



tables,” wrote Hacking. “Hence it lost millions of pounds because people
lived longer than is implied by any sound insurance table.”

In 1771, Price published a book with the very long, if descriptive, title
Observations on Reversionary Payments; on Schemes for Providing
Annuities for Widows, and for Persons in Old Age; on the Method of
Calculating the Values of Assurances on Lives; and on the National Debt.
To Which Are Added, Four Essays on Different Subjects in the Doctrine of
Life-Annuities and Political Arithmetick. One could simply call it Age- and
Risk-Adjusted Annuities. In addition to publishing Price’s mortality tables,
Observations discussed how to adjust for immigration and the tendency to
understate infant mortality. Price offered some generalizations learned at the
Society for Equitable Assurances: (1) avoid adverse selection, such as
writing too many policies for any specific risk; (2) how to deal with adverse
variation in experience, such as war and plague; and (3) how to distribute
the surplus that a well-run insurance scheme can generate. As Turnbull’s
history of actuarial science declares, Price was “inarguably one of the most
important and influential actuaries in the profession’s history.”

By the nineteenth century, advances in probability and statistics
embodied in life (or death) tables reshaped the nature and process of
insurance and the underlying actuarial science. But as Price’s Observations
suggest, the great advances were organizational. The credit for much of the
latter goes to an insurance entrepreneur named James Dodson, who not only
took advice from Price but also launched what would become Equitable
Life in the 1760s. (Dodson died in 1757, before a nervous government
approved what Turnbull calls “a revolutionary life assurance design” in
1762.) Dodson’s insight was how to effectively package the predictive
conclusions from Price’s table into an ongoing enterprise, in particular the
development of age-specific pricing in so-called whole-of-life policies,
which covered an entire life, as opposed to short-term policies. Dodson, in
effect, married prediction and the quantification of risk and made insurance
a mass product. He also developed an innovative financing mechanism for
his new company, including two tiers of investors: participating investors,
who bought policies and shares in the company, and buyers of only the
insurance. The surplus from operations went to the participating investors.



Modern Models
With its mutual financial structure and whole-of-life policies, Dodson’s
Equitable became the model for many insurers for more than 200 years, up
to the present. But today that model is changing with incredible speed.
Behind the change are two factors we’ve visited again and again: (1) the
sheer growth of data of all kinds from a densely woven cocoon of digital
sensors held together by the internet, powered by the Cloud and rapidly
advancing mobile, Wi-Fi, and automation technology; and (2) the full
panoply of AI, which can handle enormous data sets and can learn. The
mounting tide of data, particularly from the internet of things (IoT), offers
increasingly sophisticated tools to predict and price individual outcomes,
both in the long term and in the short. This is a long way from Equitable
Life’s whole-of-life strategy. For most of recorded human history, only a
handful of risks mattered—essentially, property and life. Mortality may be
the ultimate source of risk, as Powers says, but it has increasingly become
surrounded by the underbrush of other risks. Coverage is disaggregating to
cover smaller, more easily quantified risks: travel insurance, phone and
phone battery insurance, flight-delay insurance, separate coverage for
washers and dryers, vacation-package insurance, pet insurance, catastrophe
insurance, insurance on insurance.

The data may come from wearables, electronic devices that can be worn
and may monitor individual health metrics; IoT devices in your car (driving
or self-driving); increasingly “smarter” homes; and secondary or proxy
data. To take advantage of this trend, insurers will have to shift from the
traditional practice of pricing risk by category, which included demography,
income group, age, or sex. Risk will no longer be a purely group
phenomenon based on the past but a real-time feed of data from your car on
your driving habits, activities in your house, posts on social media, and
even fitness monitors on your body. Insurance companies now give
discounts for adding devices to policyholders’ cars (“safe driver” programs)
and homes, and use these data to adjust rates. Much of these data flow
through your phone and onto the internet. Insurance is now less about a
single event such as a car accident, illness, or death and more about the
constant flow of risk, which will wax and wane as you go through your day
and your life, constantly altering and adjusting premiums.



Figure 6.2
Survivorship according to mortality rates experienced or projected in persons born 1851–2031 in
England and Wales. Although mean life span has increased, maximum life span has remained
essentially unchanged. Source: Max Roser, Esteban Ortiz-Ospina, and Hannah Ritchie, “Life
Expectancy,” Our World in Data, 2013, https://ourworldindata.org/life-expectancy (CC BY-SA), with
data from the UK Office for National Statistics.

In short, the prediction of risk is steadily moving toward real time, and
these tools will be needed to move the maximum life expectancy beyond
122 (the current record for a human; see figure 6.2). This isn’t science
fiction. As a McKinsey & Co. report on insurance and AI from 2021 notes,
“All the technologies required . . . already exist, and many are available to
consumers. With the new wave of deep learning techniques, such as
convolutional neural networks, artificial intelligence has the potential to
live up to its promise of mimicking the perception, reasoning, learning, and
problem solving of the human mind. In this evolution, insurance will shift
from its current state of ‘detect and repair’ to ‘predict and prevent.’”

Insurance is also being personalized, much like health care. No two
customers are alike, and differences among them will only grow. Insurers
will want that stream of data coming from your wearable or your regular
genetics test. Gained a few pounds over the holidays? That information,
along with your cholesterol level and blood pressure, could be transmitted



to your insurer, which may contact you about a healthier diet or offer the
number of a nearby gym while slightly increasing your premium. Lose a
few pounds, keep up with regular checkups (supplemented by data from
wearables), engage in increased exercise, and your health premiums may
fall. We have already seen the first wave of this real-time risk monitoring—
for instance, in “safe driver” policies. Machine learning will increasingly be
able to discern patterns and make predictions from very different data,
including proxy data, beyond just underwriting ever more granular health
risks revealed by genomic analysis. Policies will reflect your financial risk
profile, your driving, your penchant for sports, your level of natural-disaster
or crime risk based on where you live.

All of these new data, of course, are highly disruptive in exactly the same
way that disruption has ripped through other industries. The large, stable,
highly regulated, and bureaucratic ecosystem of insurance carriers, agents,
brokers, reinsurance providers, and consultants is shaking as it confronts a
wave of startups with quirky names, such as Lemonade, Root, Vouch, Slice,
Hippo, and Trov. These insurgents have a quirky label, too—insurtech—
and they offer mobile apps or artificial intelligence or novel data-driven
ways to underwrite policies; a few provide all these things—in insurance
jargon, “the full stack.” Most will fail or find themselves absorbed by larger
carriers. Yet, in aggregate, they are already forcing large insurers to develop
far more sophisticated and accurate predictive algorithms using increasingly
novel and personalized data sets. The incumbents have already embraced
mobile apps and internet interfaces for everything from sales to automated
damage analysis, and some are offering almost real-time claims processing.
They have also picked up the insurgents’ flexibility, particularly in pricing
—as the ad says, giving you only what you need without charging you for
what you don’t.

That’s the good news. Increasing data and improving algorithms will lead
to more precise and diverse prediction, and potentially lower burdens. Risk
may well decline, and prices may as well. But there are negatives, ranging
from the moral-hazard consequences of risk reduction to issues of
transparency and control and thorny questions about privacy. These themes
will recur in the chapters that follow.

Insurance companies, with their forbidding bureaucracies and opaque
actuarial underpinnings, are famously unloved. Although flexibility, real-



time sales, low prices, and faster claim resolution may make insurance
easier and less expensive, they also raise issues that are part and parcel of
any ambitious predictive enterprise. Who really understood the actuarial
calculations that went into pricing insurance in the first place? As we’ve
seen, for centuries even providers of products such as annuities made
fundamental errors in pricing—often, ironically, in favor of annuitants,
though hardly in favor of the taxpayers who footed the bills. However, with
today’s outpouring of data and algorithms, underwriting has grown
increasingly precise and personal. But how do buyers of insurance, not to
say regulators, know what lies beneath a price? As insurance is ever more
deeply woven into everyday digital life, who, including regulators, will
really know whether the eternal flow of risk—some calm, some bubbling
along, some turbulent—is being accurately or wisely priced? For one thing,
it’s a flow, not a single calculation. Second, the data are being processed by
machine-learning systems, which have great strengths but can resemble
black boxes. We may only replace one opacity with another.

Privacy and Moral Hazard
That lack of clarity leads us to a broader issue: privacy. Currently, a
significant portion of the population is happy to trade some privacy for a
better price or product. For example, we might agree to a medical exam
before getting a life insurance policy. But how far does this go, even in
terms of health? As medicine learns to truly exploit genomic sequences and
other cutting-edge tools to predict probabilities of future health, will
consumers accede to insurers’ demands to access their most intimate data,
particularly if there’s a chance their premium could rise after they allow
such access? Will consumers resist allowing insurers to get real-time data
feeds from their cars that will reveal how fast they drive? Despite the
emphasis on individual data, will entire groups—say, those with the
possibility of early-onset dementia—find themselves priced out of the
insurance market because their future appears probabilistically so grim?
And at what point will individuals rebel against the constraints of
insurance?



Last, consider the question of moral hazard, which today broadly—
sometimes too broadly—refers to the reshaping of behavior, nearly always
negatively, because of the reduction of risk. In one of our earliest
conversations, Igor called it “Google Maps syndrome.” Since the
introduction of digital mapping, drivers have eliminated the time they used
to spend consulting maps, asking for directions, or just getting lost. Google
almost perfectly estimates the time it will take to drive somewhere, so
people reasonably leave less and less time for error. The problem here is
that by reducing the margin of safety, travelers run other risks that may
occur randomly: an accident or breakdown ahead, a sudden storm, an
unanticipated traffic jam, car trouble.

Google Maps syndrome is a variant of moral hazard. Technically, this
carelessness or negligence is known as “morale hazard,” as opposed to the
more calculating and deliberate attempt to game insurance known as moral
hazard. But as Powers notes, most economists don’t make these fine
distinctions. The observation that some individuals will change their
behavior if they are insured has probably been around since marine
insurance first emerged in the third millennium BCE. It wasn’t called moral
hazard, then, which is a term closely associated with the world that first
gave us probability and statistics. Hazard entered the English language with
the Norman Conquest to describe a game of dice; in his dictionary in 1755,
Samuel Johnson defined hazard as “chance; accident; fortuitous
happening.”

The use of the word moral in this case has little to do with morality or
ethics—a matter of some rhetorical confusion. Instead, it emerged from the
same set of ideas that resulted in the eighteenth-century mathematical and
probability thinkers insisting they were engaged in a “moral science,”
roughly synonymous with what we now call “social science.” Daniel
Bernoulli, for instance, referred to “moral expectation” to describe his
concept of utilities. As the paper “A History of the Term ‘Moral Hazard’”
(2012) notes, “Bernoulli’s assertion that risks of equal mathematical
expectation depending on ‘the particular circumstance of the person making
the estimate’ made a seminal contribution to the theory of risk.” This
conceptual milestone was critical to the eventual development of a theory of
moral hazard that “predicts changes in individual behavior following the
purchase of insurance.” Moral hazard has proved to be a flexible concept.
Because insurance reduces risk, it may also result in a reduction of



preventive measures, thus paradoxically nurturing other risks. It’s the logic
behind the decision not to buy fire alarms if you have insurance. It’s the
notion that a bailout of banks in a financial crisis will only create incentives
for them to act with greater recklessness in the future. It’s even been applied
to the belief that welfare creates poverty, that workplace regulations spawn
accidents, or, as we saw during the COVID-19 pandemic, that too generous
unemployment benefits will feed joblessness.

The history of the term—the “genealogy of moral hazard,” as one study
called it—is an example of how attitudes about prediction and risk have
evolved.

The term moral hazard emerged in the nineteenth century as the
insurance industry rapidly expanded, and it was initially associated with
insurers weeding out customers with “bad” character—moral hazards—who
were liable to practice bad habits (such as arson or drug use) or engage in
fraudulent, loss-making ends. The development of this notion led to several
less than quantitative measures to determine a good risk, including
physiognomy, the “science” of linking physical traits to moral behavior. Its
practical effect was a systematic bias against minorities, foreigners,
outsiders, the unconventional, and those broadly viewed for whatever
reason as moral risks. This was not just prejudice. The mysteries of
prediction and risk, probabilities and chance, had made insurance a suspect
business to the public in its early years; insurance scams and failures didn’t
help. In his article “On the Genealogy of Moral Hazard,” the University of
Pennsylvania law professor Tom Baker notes that insurers in the Victorian
age felt the need to convince the public that insurance was above reproach,
“not a form of gambling, a handmaiden to crime, or above all, a
presumptuous interference with Divine Providence itself,” but rather a
scientific product designed for those who deserved it. One way to do so was
to embrace the virtues of the day by selling only to the “right people” and
thus avoiding the perils of moral hazard.

By the twentieth century, insurance’s dubious reputation had been
replaced by a conservative, even stuffy image. Bias continued, but it was
less overt and often justified by blaming actuaries and their mysterious
calculations. By the late 1960s, the meaning of the term moral hazard had
shifted again. In 1963, the Stanford economist Kenneth Arrow published a
seminal paper, “Uncertainty and the Welfare Economics of Medical Care,”



that analyzed the economics of the American health-care system, with a
particular focus on the insurance market for medical care. In effect, Arrow
brought medical markets, including insurance, into economic models that
featured competing, maximizing agents; this was new. Arrow argued that
medical insurance was particularly plagued by moral hazard and as a result
markets had failed to provide insurance, either for significant portions of
the population or for certain kinds of medical problems. Health and medical
services featured a great deal of uncertainty; they were, as a result, difficult
to predict. One manifestation of that uncertainty is a paradox, Arrow wrote:
“Widespread medical insurance increases the demand for medical care.”
Given uncertainty and a resulting unpredictability, there was little incentive
for consumers or their physicians to reduce costs. Arrow recognized that
while individuals cannot control many illnesses, they can pick their doctors,
who have no reason not to provide a full range of services. Insurers, in turn,
respond to what they perceive to be a moral hazard by restricting coverage
or by raising prices.

Given all this, Arrow concluded that the “welfare case for insurance of
all sorts is overwhelming,” and that the government should provide
insurance “where the market, for whatever reason, has failed to emerge.”
Arrow’s paper was published two years before Congress passed Medicare.

In 1968, Mark Pauly, a health economist then at Northwestern University,
replied to Arrow’s paper, providing a somewhat different view of incentives
and moral hazard, as well as a different conclusion. He argued that moral
hazard was less a question of morality than a rational response to subsidies
and the clash between the collective need for lower medical costs and an
individual’s desire for more care—that is, it was an economic problem. He
compared the situation to game theory’s prisoner’s dilemma, in which two
rational prisoners, each seeking the best deal, inadvertently betray each
other. And he argued that “some uncertain medical expenses will not and
should not be insured in an optimal [economic] situation. No single
insurance policy is ‘best’ or ‘most efficient’ for a whole population of
diverse tastes.” In short, Pauly’s comment undermined the argument for
universal coverage. Arrow responded to Pauly, in turn, arguing that medical
market incentives alone did not determine consumer choice, and that for the
economy to properly function there had to be a degree of trust and
professional obligations between the principal and the health-care agents.



Pauly disagreed, and on that issue he proved prescient. More and more,
health care became a business. Over the next 50 years, moral hazard
became a matter of external incentives rather than internal moral
considerations. As costs rose, economists and policy makers increasingly
viewed health care as less about trust and service—what in health-care
economics has been called “the Marcus Welby medical economy”—and
more about efficiency, market forces, and incentives to reduce use, such as
deductibles and copays. Arrow himself never fully lost his belief in a less
competitive system. Today, moral hazard has little to do with moral probity
and more to do with the incentives insurance creates and the behavior it
engenders. Moreover, economics increasingly has embraced the term to
include the consequences of a range of principal-and-agent issues, such as
social welfare or regulation, arguing in effect that welfare creates poverty or
that regulation ensures more, not less, abusive behavior.

One result of this debate over what became known as welfare economics,
however, was to reveal how complex consumers’ response to insurance
actually is, particularly as medicine and insurance become more
personalized and predictive. That complexity is just the start. Now that we
can measure more than ever before, we can predict better, and the entire
system is poised for change.



7

Crime and Privacy

“Everything is different now. We can solve almost any crime, anywhere.”
That’s the audacious claim of the geneticist and forensics expert David

Mittelman, who built the first private forensics genomics laboratory,
Othram, to bring the power of modern genome sequencing to forensic
evidence. Located just north of Houston, the company has one of the
world’s cleanest “clean rooms,” necessary for scraping every fragment of
DNA from any given crime scene sample and ensuring almost no
contamination, with the goal of revealing myriad hidden clues about who
did what and when. Othram’s motto matches its ambition: “Justice through
genomics.” For a company that launched in 2018, it has an extraordinary
track record, having already helped solve hundreds of cold cases, including
some seemingly impossible cases from the 1950s.

Mittelman, Othram’s CEO and cofounder, resembles a bodybuilder fresh
from a Mr. Universe contest yet is gentle, curious, and friendly. He wants to
improve the way crimes are solved. His passion for forensic science stems
from his belief that the world today has a substantially different predictive
capacity than ever before that can be used to reveal unprecedented
molecular narratives of individuals who leave their DNA behind. “Our
DNA markers tell a story, and we are just now finally starting to listen,” he
says.

Othram’s team notes that established forensic testing frameworks, such
as the FBI’s CODIS (Combined DNA Index System), are inadequate for
solving many older crimes and were never designed to tackle the challenge
of unidentified human remains, which primarily belong to victims and not
perpetrators. CODIS DNA profiles, known as “DNA types,” are stored in a
database after FBI technicians genotype parts of forensic DNA. These
genotyping efforts focus on short tandem repeats (STRs) in the human
genome, simple sequences that repeat the same sequence of 100 to 300
bases. To perform an analysis, DNA is extracted from a sample; the region



containing each STR is amplified by a polymerase chain reaction, which
massively multiplies the sample. The set of repeats is then examined for its
size and pattern, thus creating a person’s STR type. The STR type is an
“allele,” which is an individual’s version of a genetic sequence or gene;
normally everyone gets one allele from each parent. As such, an individual
with a specific set of STR repeats or alleles will share 50 percent of them
with siblings, 50 percent with each parent, 25 percent with their
grandparents, and 12.5 percent with their cousins, and so on.

Beyond similarities within families, a specific STR profile should be
relatively unique. The CODIS forensics system today is based on 20 STRs,
which should produce a relatively unique combination for each person. This
assumes that all 20 STRs are scattered widely across the genome and don’t
move together, which is usually true, and that the population randomly
mates, which is somewhat true. The FBI-determined STR allele frequencies
generate a statistical prediction that the chance of two unrelated Caucasians
having identical STR profiles, or DNA types, is approximately one in 575
trillion.

Though such a chance sounds quite rare, it’s important to note that this
number is for matches of pairs of people—and there are a lot of possible
pairs of people in this world. Matching N people to the number of possible
pairs would involve (N*(N − 1))/2 possible combinations. For example, if
one were to look at 100 million Caucasians across the world, there would
be 4,999 trillion possible pairs and 8.69 pairs that match by chance alone.
For most crimes, this might be sufficiently precise, but it remains an
imperfect system for cases that involve serious crimes and long prison
sentences and is wholly unsuitable for identifying victims of crimes.

Othram uses more markers than CODIS does, including a method of so-
called shotgun sequencing and enrichment, like the swabbing and
sequencing methods of the New York City subways performed by Chris’s
lab at Cornell, which looked at hundreds of millions of DNA fragments, not
just 20, to build a profile. This method changes the profile of each person
from a yes/no match (if that person’s profile is in the FBI database) to a
much more dynamic and wide-ranging profile of anyone who leaves his or
her DNA behind—that is, potentially everyone.



Ubiquitous Genomic Data
DNA testing and other molecular forensics technologies have transformed
traditional forensics, enabling predictions about guilt and innocence based
not only on DNA left at the scene of the crime but also on the analysis of
DNA that could have been found anywhere. It need not be the result of a
crime. We all leave DNA on every surface we touch; all an employer needs
to do is shake your hand or wait for you to leave a cup behind, grab a
sample, and draw predictive conclusions based on your DNA. This DNA
may reveal not only your disease risk, traits, and facial features but also
your epigenetic age, based on technologies for DNA methylation analysis.
Each surface offers clues to where you’ve been and what you’ve been
doing.

Every investigation is, in the end, an attempt at prediction, and now we
can do it with methods that were impossible only a few years ago. Recent
advances in the utilization of genetic technologies have begun to change the
very nature of forensics, albeit at a cost: the narrowing of reasonable
expectations of privacy. Today, investigators can tap vast new pools of data,
from networks of security cameras to millions of devices in the IoT, from
social media and smartphone videos and internet searches to telltale
genomic identifiers. As more people take genetic tests from companies such
as 23andMe, Onegevity, MyHeritage, and Ancestry.com, more people can
be matched with their relatives. Making sense of all this are a number of AI
tools that employ algorithms used in computer vision and graphics, data
visualization, and machine-learning programs to discern patterns in images,
documents, addresses, electronic records, and biological evidence—the
kind of genomic evidence that led to the capture of the Golden State Killer
a few years ago after a decades-long hunt.

However, the toolbox of forensics and genomics can also be used as a
weapon, making identity tracing and genetic discrimination easy, and
opening up a particularly thorny set of issues around aggressive predictive
tools.

Such concerns have been building for a while. In the movie Gattaca
(1997), widespread genetic profiling, biometric identification, and
institutionalized eugenics have led to the normalization of discrimination
based on genetic makeup. Gattaca’s fictional society is grounded on the



notion that an individual’s fate is not only determined at birth but also
reinforced by continual, ubiquitous DNA sequencing and surveillance made
possible by rapid genetic profiling at every stage of life. This profiling
includes routine testing of embryos prior to in vitro fertilization (known as
preimplantation genetic diagnosis), rapid genetic testing of potential mates
(to assess long-term “dating potential”), and job stratification and
placement.

In the late 1990s, such routine and pervasive genetic profiling was far too
technologically challenging and costly to be realistic. As such, Gattaca was
viewed largely as a cautionary tale about genetic discrimination and the
dangers of anchoring a multitude of pivotal life decisions on DNA alone.
Yet the film’s depiction of issues pertaining to privacy, genetic
discrimination, and genetic engineering can be seen as prophetic because
the methods and tools of diagnostics and surveillance it features are now a
reality.

Around the time Gattaca was hitting theaters, the debate over genetic
privacy began to simmer, fueled by new genomic tools and the development
of genetic testing. The first headline case involved professional basketball.

Private and Public
In 1987, the Boston Celtics drafted Reggie Lewis, who in 1992 became a
National Basketball Association all-star. But in April 1993, Lewis suddenly
collapsed during a game. He was diagnosed with rare genetic mutations that
conferred a risk of hypertrophic cardiomyopathy, caused by an abnormally
thick heart muscle that can make it harder to pump blood. Carriers of the
mutations in any one of 27 specific genes have a higher chance of death
from arrhythmia, valve problems, and sudden heart failure. At the time,
however, there were few easy ways to do the kind of genetic testing
necessary to diagnose the condition. Later in 1993, Lewis again collapsed
during an unofficial practice. This time he died. The shock reverberated
throughout the NBA.

After the Michael Jordan era, the Chicago Bulls needed some new
players, and they signed a promising young player named Eddy Curry. Late
in the 2004–2005 season, Curry was hospitalized with an irregular



heartbeat. He missed the playoffs, but doctors then cleared him for playing.
Because of Curry’s heart issues, the Bulls management asked him to take a
genetic test to prove he did not carry hypertrophic cardiomyopathy
mutations. Curry resisted, asserting that such testing was an invasion of his
privacy and an unethical breach of his medical information. The Bulls
management insisted that it did not have an ulterior motive beyond concern
for Curry, and they offered him an annuity of $400,000 per year for 50
years if he “failed” the genetic test and carried some mutations. But, he
refused again, and his medical team insisted that his cardiac issues had been
resolved. The Bulls then traded him to the New York Knicks, and he was
traded several more times over the subsequent years. Curry’s career
sputtered, but he never had a recurrence of the irregular heartbeat.

Around the same time, another case of alleged genetic discrimination
emerged at the Burlington Northern and Santa Fe Railway (BNSF), one of
the largest US rail companies.

As at most businesses, railway employees were increasingly working on
computer keyboards, and a growing number had begun to request medical
support for carpal tunnel syndrome, a common ailment among office
workers. The carpal tunnel is a narrow passageway surrounded by bones
and ligaments on the palm side of the hand; if the median nerve is
compressed—by excessive typing, say—people can experience numbness,
tingling, and weakness in the hand and arm. The condition can make it
impossible to work on a computer. BNSF employees filed some 125 carpal
tunnel claims in 2000–2001, and more were expected in 2002.

As with hypertrophic cardiomyopathy, some manifestations of carpal
tunnel syndrome have a genetic component. BNSF’s management saw
genetic testing as a way to identify potential “problem employees” and to
avoid responsibility, both occupationally and medically, for its employees.
If the company could “prove” that some employees were genetically at risk
and likely to have the syndrome, it might not have to pay workers’
compensation. Management eventually asked 36 employees for blood
samples, with no informed consent. The workers’ union then filed charges
with the Equal Employment Opportunity Commission (EEOC), which filed
suit in a federal district court in Iowa. The EEOC argued that the case
represented violations of the Americans with Disabilities Act (ADA) of
1990, which bars discrimination based on disability. However, carrying a



genetic risk is not technically a disability—rather, it’s a probability of a
range of ability—so the EEOC’s argument was a risky legal move.

But it worked. The suit was settled through mediation in 2002, with the
railroad agreeing to pay a total of $2.2 million to the 36 employees for
violating the ADA by genetically testing or seeking to test them without
their knowledge or consent. The settlement stated that BNSF would not
directly or indirectly require employees to submit blood for genetic tests;
analyze any blood previously obtained; evaluate, analyze, or consider any
gene test previously performed on any of its employees; or retaliate or
threaten to take any adverse action against any person who opposed the
genetic testing or participated in the EEOC’s proceedings.

By then, advocacy groups and lawyers had begun calling for an updating
of the laws around discrimination, genetics, and privacy. This was the
genesis of the Genetic Information Nondiscrimination Act (GINA), passed
in 2008. Title I of the law prohibits issuers of health insurance from
discriminating on the basis of genetic information for eligibility, coverage,
underwriting, or premium-setting decisions. Title II prevents employers
from using genetic information in employment decisions, such as hiring,
firing, promotions, pay, and job assignments. Lastly, Title III prohibits
employers or other covered entities, such as unions, from requiring or
requesting genetic information and/or genetic tests as a condition of
employment.

The Devious Defecator
The law’s first big test came in 2012, when an Atlanta grocery distributor,
Atlas Logistics Group Retail Services, could not figure out who was leaving
feces on the floor of a warehouse. Atlas was looking to track down what
appeared to be a prankster employee. First, the company tried to use time
sheets and video to find the culprit. Failing at that, it asked two employees
for their DNA; they felt they had to comply to requests for cheek swabs for
testing, or they would be fired. Both DNA tests came back negative, so the
source of the defecations remained unknown.

The men filed a lawsuit against Atlas Logistics—a case that was
poetically dubbed the “mystery of the devious defecator” by US District



Court judge Amy Totenberg. Atlas argued it was simply trying to keep a
safe workplace, while plaintiffs argued they had been singled out, accused,
and illegally tested, losing time, money, and reputation. The case went on
for two years. In 2015, a Georgia jury awarded $2.25 million in damages to
the two men. Similar court cases have kept appearing; since 2010, the
EEOC has filed 200 to 300 cases per year under GINA.

The law is hardly perfect. It does not apply to employers with fewer than
15 employees because legislators thought compliance would be too onerous
for small companies. Also, the law’s protections do not extend to the US
military, the Tricare military health system, the Indian Health Service, the
Veterans Health Administration, or the Federal Employees Health Benefits
Program.

More importantly, by the time GINA passed, the technology, particularly
next-generation sequencing (NGS), was already racing past it. As we saw in
chapter 3, DNA sequencing is now inexpensive enough that it can be
employed at every crime scene, in every bedroom, toilet, or turnstile.
Access to this type of biological material and genetic information can
identify location and trace movements with a DNA sequencer the size of a
suitcase—a process dubbed “ubiquitous sequencing.”

But is it legal to sequence DNA found in a public space? How do we
draw the line between public and private? The US legal system’s notion of
privacy is based on “what a person knowingly exposes to the public.” The
US Supreme Court stipulates that whenever people are aware that they are
exposing something to the public, even in their home or office, that
something is “not subject to protections from the Fourth Amendment.” The
Fourth Amendment protects Americans from “unreasonable searches and
seizures” in their “persons, houses, papers, and effects.”

Some legal precedents set limits on privacy. Take, for instance, the case
of Danny Kyllo, who was arrested for growing large amounts of marijuana
at home after the police used thermographic cameras to observe the heat
emanating from his house. Even though the police got a search warrant to
use the special camera, Kyllo challenged this search because most people
cannot “see” within the infrared range of light. Thus, Kyllo argued, the
police had violated his right to privacy in the infrared range of the
electromagnetic spectrum, and the police’s use of the cameras violated his
Fourth Amendment rights. The Supreme Court ruled in favor of Kyllo in



2001, arguing that the Constitution protected his right to privacy, while
maintaining the requirement of a search warrant to monitor individuals.

Despite Kyllo’s victory, such cases illustrate the fact that expectations of
privacy are both time and context specific. If the Kyllo case were argued
today, the result would not necessarily be the same. Reasonable
expectations of privacy constantly shift. Once a technology becomes
ubiquitous and inexpensive, it becomes reasonable to assume someone can
use that technology to monitor someone else’s activity.

In 2016, an executive order issued by President Barack Obama
established the Federal Privacy Council, which aimed to update and
coordinate privacy measures across the government. Obama’s order was
prompted by several incidents, including the rise of warrantless wiretapping
and highly accurate facial-recognition software used in an FBI database that
contained photos of about one-third of all Americans. In the context of
genetics, these privacy concerns can have an even graver impact because
they concern both individuals and entire families. Although GINA outlawed
genetic discrimination for health insurance and employment, a person’s
genetic profile (or that of a relative) can still be utilized for legal genetic
discrimination in denying or adjusting life, long-term care, and disability
insurance. Some genetic discrimination is legal if it is based on DNA
people have left behind. Thus, the key question recurs: When people leave
DNA behind wherever they go, what exactly are they knowingly exposing?

Molecular Signatures
What can we find in a pile of DNA left behind at a crime scene? A great
deal (figure 7.1).

With NGS devices getting smaller and more portable, sequencing can be
done anywhere and anytime, such as during an Ebola disease outbreak, or
even on the space station. NGS has enabled us not only to sequence DNA
but to go beyond it; this makes the Age of Prediction a postgenomic era. We
are using these technologies to investigate all aspects of the central dogma
of molecular biology, including gene expression, DNA structure, and
regulation, and to explore areas of human biology such as the dynamic



epigenome, which has its own epigenetic age, and the landscape of RNA
modifications and regulation known as the epitranscriptome.

Additional individual-identifiable data have also come from the
microbiome, or the vast diversity of microorganisms that are in, on, and
around us, including bacteria, viruses, protozoa, and fungi residing within
or on the body, and from the metagenome, the genome across all species.
Recent estimates suggest that there are likely as many bacterial cells alive
in our bodies as there are human cells—sometimes more. NGS has been
used to discern where these organisms are located in the human body,
creating a kind of molecular cartography. Investigating the microbiome has
also enabled the discovery of new drugs, and recent work in metagenomics
has examined life across kingdoms, including urban genetic maps of cities
around the world (the MetaSUB project), a comprehensive microbiome
map of Earth’s cities, as well as an analysis of extremophiles,
microorganisms that live in extreme conditions.



Figure 7.1
Cross-kingdom methods of forensics. Categories of multiomic and multikingdom measurements can
create both a forensic profile and a social profile for a person based on that person’s metabolome
(M), metagenome (mG), genome (G), epigenome (*G), transcriptome (T), and epitranscriptome (*T).
Categories for types of inferred information are detailed by the trait/activity and the revelatory
information.

Given all of this, what can a fragment of DNA left on a surface tell us?
Published data indicate that at least 11 phenotypes can be tracked with at
least 16 methods, spanning many areas of molecular profiling: ancestry,
facial features, age, identity, cell type, environmental history, geospatial
localization, obesity, presence of a disease or infection, circadian rhythm,
and pregnancy. These phenotypes can be detected across five categories of
molecule: human DNA, human RNA, epigenetics, epitranscriptomes, and
metagenomes. Each of these categories produces its own identifying data
that can be used both medically and forensically.



The first molecular target is the best known: human DNA. Researchers
have been able to use DNA to construct the map of Europe from ancestry-
informative markers (AIMs), while placing genetic information in a “data
continent” that resembles the actual geographical one. These maps can help
pinpoint a birth city within a few hundred kilometers. With recent tools
such as DNA.Land (by Yaniv Erlich and Joe Pickrell) and genomic and
metagenomic GPS built from MetaSUB data, researchers can subclassify
ancestry and location anywhere in the world with even greater accuracy.
With these AIMs and other genetic markers, we can predict likely hair type,
eye color, skin darkness, and other physical features, such as earlobe type,
dimples, mouth shape, or a widow’s peak. Human Longevity, a genomics
startup launched by Craig Venter and Peter Diamandis, has shown that we
can also predict someone’s voice, height, and facial features with high
degrees of precision. Other data have shown the ability to detect gray hair,
beard thickness, even the shape of a head of hair.

Still other techniques offer the ability to predict age based on DNA. Most
people have a set of 46 chromosomes, with 23 each from their mother and
father. But this number changes over time, with cells losing chromosomes
as a person ages. Every time cells replicate, errors can occur, and the
likelihood of such errors gradually increases over time. Men’s cells slowly
lose their Y chromosomes, while both women and men lose their X
chromosomes. As we age, the telomeres at the ends of our chromosomes
steadily shrink, and new mutations emerge in our bone marrow from what’s
known as clonal hematopoiesis, producing a population of mutant blood
cells that may anticipate cancer or other diseases of aging. Knowledge of
these various dynamics provides a way to compute a person’s age and risk
of long-term disease.

Moreover, identity can be traced. STRs from the Y chromosome can
reveal the surname of a person who contributed a supposedly anonymous
data set to a public archive. These markers can be used to find a relative,
who if he or she has ever been arrested is likely to show up in the CODIS
database, just as a familial DNA search led to the Golden State Killer. In
general, you should not commit crimes. But, if you have a relative who has
been arrested, it’s a particularly bad idea for you to commit a crime, since
part of your genetic code is already in the database.



Beyond human DNA, there is RNA, the active form of DNA. Here, too,
the transcription level—that is, the amount of RNA—is dependent on gene
regulation, which usually occurs at the level of DNA and is a reflection of
ancestry. These “control boxes” are called “quantitative trait loci” (QTLs);
when they are linked to gene expression, they are called eQTLs. Amazingly,
an individual’s levels of gene expression can reveal what genetic variants
that person is carrying and by extension that person’s ancestry.

RNA also tells a story on a cell-by-cell basis. Each cell type has a
specific and unique expression program, so that measuring RNA can tell
you the cells of origin. This includes the ability to distinguish between
different areas of your skin and can reveal what part of your skin touched a
surface.

The third forensics category is epigenetics, which are changes in gene
expression that don’t involve changes in the DNA sequence. In an embryo,
all DNA methylation markers are reset to give that first cell the full capacity
to differentiate into any cell in the body. But this lineage specification of
cells is not permanent; certain areas of your genome slowly lose
methylation, and some slowly gain it. In fact, there are 353 specific sites in
your body that can almost perfectly predict your age, and more have been
discovered by research fellows at Weill Cornell on loan from Igor’s firm,
WorldQuant. Chris’s lab at Weill Cornell used these methods to solve part
of the case of Steven Avery, the subject of the television documentary series
Making a Murderer (2015). Avery accused the police of planting old blood
at the scene of a crime, but epigenetic methods from Chris’s lab showed it
was actually fresh blood, and the legal teams had to change their arguments.

Another aspect of epigenetics is how DNA is wrapped or packaged inside
cells. These chromatin states have been shown to be heritable and
potentially distinct for different ethnic groups. Analyzing those different
states also works in primates, whales, and other species, although these
epigenetic differences are also a reflection of the proportion of cell types in
a tissue as it ages. As a result, these epigenetic marks can be used to discern
family and genetic background.

If RNA doesn’t tell you enough about the type of cell present, you can
use DNA’s epigenetic signatures as clues. Because small epigenetic marks
define the function of genes in cells and thus cell types, measuring
epigenetic marks can provide clues as to which cells are present. This is



important for cancer research on metastasis—the spread of cancer cells
from their organs of origin—because even a rogue cancer cell that is on the
move still carries its epigenetic history and holds clues about the organ from
which the original tumor developed. These differences in cell types may
also explain why some tumors develop specific kinds of mutations.

The fourth class of identifying molecules comes from nonhuman parts of
DNA and RNA—the microbiome and the metagenome. Sampling a surface
can reveal a shift in an ecosystem that has persisted over years. The
MetaSUB project saw this after the South Ferry subway station in New
York City was flooded during Hurricane Sandy in 2012; more than a year
after the storm, Chris, Evan Afshin, and colleagues found that the walls of
the station still contained evidence of marine and water-based microbial
life, as a kind of molecular echo.

Forensic geology is a field that uses the nonrandom distribution of
geological elements, chemicals, and mineral deposits to ascertain the
geospatial provenance of samples. Toward the end of World War II, for
instance, forensic geology was used to prove that the Japanese had launched
a series of secret balloon bombs on some western American states. The
investigators tracked down sand used in the ballast bags to the west coast of
Honshu, Japan, which had beaches of that exact sand; the technology has
since then been used in crime scene forensics. Now metagenomic forensic
methods can potentially tell where on your body a hair came from, identify
your gender based on sex-enriched bacteria, and even say whether the soil
on your shoe came from a park or a median near the park.

One of the targets of metagenomic analysis is the microbiome—
specifically, the genomes of anything microscopic. Microbiome profiles of
obese and skinny people differ in their fungal and bacterial markers. These
molecular differences reveal important information on how individuals
digest and process food that can be linked to a person’s identity. Also, each
human gut appears to have a specific metagenomic genotype. The gut
metagenome is thus similar to human DNA in the sense that it can be used
to determine location; this includes matching your microbiome identity to
your personal computer even if you haven’t touched it in several weeks. If
you set up a DNA sequencer in every toilet, you could readily track
people’s movements due to their “gut print” and identify the part of the



body that touched various surfaces based on a molecular cartography of the
body.

Collections of microorganisms sometimes include pathogenic bacteria
responsible for the spread of infections. These bacteria can be used to
predict people’s sickness phenotypes (observable sickness characteristics or
traits), and they can be used in “smart” sewage systems that can provide
early warnings of infectious-disease outbreaks. Several towns and colleges
have used such systems to try to control the spread of COVID-19. In 2015,
MIT began Underworlds, a sewage census of cities around the world to map
urban epidemiology. The fact is that different microorganisms within the
human microbiome tend to gather in different areas of a city, and
macroorganisms have a phylogenetic structure across a city.

Even the placenta, once thought to be a sterile organ, can sometimes
harbor bacterial species such as Streptococcus agalactiae (Strep B), which
is normally quite benign in the gut but can cause a nasty infection in infants,
the elderly, and the immune compromised. If sequencers were installed on
every toilet in a geographical area, we could determine the respective
locations of pregnant women. Some creative attempts have been tried
without plumbing. In a classic example of proxy data, in 2012 the retailer
Target developed an algorithm that predicted which women shoppers were
pregnant based on their purchases and demographic details. The Target
computer focused on 25 products associated with nascent pregnancies,
which when analyzed together produced a pregnancy-prediction score. The
retailer sent flyers to customers with a high score, in one case inadvertently
revealing a woman’s pregnancy before she told her family.

The fifth type of molecule with forensic potential is the epitranscriptome,
which describes the biochemical modifications of RNA. Despite its
relatively recent discovery in 2012 by Chris, Samie Jaffrey, and colleagues,
the epitranscriptome is likely to be as important to RNA regulation as
epigenetics is to DNA regulation. In fact, it’s possible to use the presence of
specific epitranscriptomic markers, such as methyl-6-adenosine, to
determine if someone slept in a bed or just left cells on the sheets while
awake due to the cells’ tight coupling with circadian rhythm. Assuming
RNA is preserved on a surface, modifications to RNA can indicate if a
person’s body is responding to an HIV infection as well as the type and
severity of the infection.



Of note, many of the other advances in genomics and biomedicine have
recently come from improved cameras and imaging. These tools have
enabled us to peer inside single cells with unparalleled resolution, and the
low cost and high resolution of cameras have enabled their ubiquity and
applications in forensics. By using drones that maintain a geosynchronous
location above a city, you can make a “time machine” of movement by
taking a picture every minute of every day. The drones are made by the
company Persistent Surveillance Systems and were originally used for
tracking people planting roadside bombs in Iraq. They have also tracked
and led to the arrest of alleged criminals in Dayton, Ohio, and Juárez,
Mexico, and dramatically changed the nature of warfare, the subject of
chapter 8.

This kind of surveillance has serious implications for expectations of
privacy. Movements can be tracked in criminal investigations or, for less
uplifting ends, in marital disputes or employment cases. Combined with
data-mining methods, such as Target’s pregnancy-detection algorithm, these
types of surveillance tools are eroding traditional notions of privacy.

Not surprisingly, these encroachments on privacy have also produced
new ways to obfuscate; some methods of obfuscation have even been
patented. To mask your presence, synthetic oligonucleotides can be sprayed
behind any chair or area you occupy. However, this “genetic camouflage”
works only if it perfectly matches your genome; if it doesn’t, it can be used
as evidence against you. The synthetic DNA would need to match the real
DNA, with identical DNA methylation and epigenetic groups, as well as
microbiome and RNA profiles.

Yet the prospect of an ability to create such a precise molecular match
leads to problems. Technology for accurate and specific matches at the
genetic, epigenetic, RNA, epitranscriptome, and microbial levels makes it
very easy to frame anyone for a crime as long as you have full access to that
person’s biomolecules. Moreover, with precise methods for
transdifferentiation and redifferentiation of cells, it might be possible to
convert skin cells left behind into red blood cells to suggest that blood had
been spilled. With CRISPR (clustered regularly interspaced short
palindromic repeats) genomic-editing systems and epigenetic-modification
mechanisms, precise and potentially malicious genetic manipulations are
possible.



This is the new world of forensics. These powerful new tools and scant
privacy protections may turn out to be the greatest threat to both the new
forensics and to precision medicine, epidemiology, and real-time insurance
because they create impediments—legislative, legal, personal—to the free
creation and sharing of data. Ironically, our unprecedented ability to
sequence entire genomes has simultaneously spawned personal concerns
about what those data may reveal to law enforcement, insurers, and
employers, concerns that may significantly affect large-scale attempts to use
those data to reduce crime and track everything from pandemics to migrant
flows to cancers. This kind of data is a little like free trade, which for all its
ability to create wealth globally, has resulted in balkanization, trade wars,
tariffs, economic decoupling, and belligerent nationalism. The resistance to
sharing data is just one potential paradoxical consequence of these powerful
tools of prediction. Beyond that, the new tools create even more dystopian
possibilities in autocratic surveillance states, which are called police states
for a reason.

GINA 2.0
Without question, many of these predictive tools are probabilistic, and
genotyping methods and interpretation can never be 100 percent accurate.
But given the number of possible tests across different data types, metrics,
and kingdoms of life, a new genomic forensic landscape has emerged that
turns previous notions of privacy to rubble. The speed and easy availability
of these tools, algorithms, and many-layered mechanisms for detection and
reprogramming of identity from genomics and postgenomic data will create
challenges for judicious enforcement because you can quite literally change
the markers of your identity. They also raise questions about who has access
to metadata, genetic material, and the potentially revelatory information
contained in microscopic particles left on every surface. Such information
and metadata pose a significant risk of discrimination. For example, while
GINA covers employment and health insurance discrimination, it does not
prevent life insurance underwriters from changing premiums based on
genetic markers. Moreover, any information about family members could
also legally be used as a basis for altered eligibility, coverage, or premiums
on life, disability, or long-term-care insurance. By extension, any of these



forensic mechanisms may be used to change, deny, or alter coverage for a
person or that person’s relatives.

Also, GINA was originally designed to protect human DNA and genetic
information, but the statute does not necessarily apply to the microbiome or
the metagenome. All of the personal identifying information based on
microbial signatures can be used for the precise activity that GINA was
trying to avoid: health insurance and employment discrimination. Given
this loophole, an updated GINA should account for these nonhuman
markers as well as for the battery of molecular signatures described in this
chapter. Indeed, a more inclusive bill might specify that any “personally
identifying molecular signature” be exempt from use in insurance and
employment decisions and options for individuals or their relatives.

Along with the current set of existing human and genetic rights, a new
GINA could also legally establish certain genetic rights afforded to each
person. These rights would include the right to sequence your own DNA,
have your doctor sequence your DNA, modify your DNA, amplify your
genes, sequence the DNA of things you encounter in the world, interpret
your DNA, and leave your cells behind without risk of discrimination.
Because there are now so many methods to identify a person, the inability
to remain anonymous may be a foregone conclusion; we can only try to
ensure that there is no illegal or unethical discrimination.

Because being born is the most universal “preexisting condition,” one
could argue, using what the political philosopher John Rawls called the
“veil of ignorance”—a device for ethical reasoning that involves not
knowing the benefit or outcome of a set of conditions—that it is unethical
to penalize people for genetics they could not prevent or control; no one can
choose the body into which one is born. Yet actuarial calculations for
insurers depend on some ability to hedge or pool risk across large numbers
of people. Thus, absent a system of universal coverage for all individuals
for all types of insurance, the question of appropriate utilization of these
insurance mechanisms will likely lean toward more expensive and punitive
measures for congenital conditions.

However, the greatest reason to resist discrimination based on genetic
markers is their fallibility, which is driven by biological complexity
generally and by DNA’s pleiotropic nature more specifically, where one
gene may have multiple functions. The statistical probability of the



emergence of a phenotype is not the same as the actual manifestation of that
trait. The transition from potential trait to actual trait should be acted upon
only when it occurs and perhaps only if the “owner” agrees. As things stand
now, as soon as you leave a room, you give up all your rights to your library
of personal molecular information. And because it is unlikely that
hermetically sealed space suits will come into fashion, the goal should be to
ensure that discrimination and malicious use of the “leftover” biomaterials
that you shed everywhere be banned. However, removing loopholes of
currently legal, if unethical, discrimination and mitigating the risk of future
discrimination require changes in legislation, in people’s expectations of
privacy, and in the use of DNA from all species.

So much of the burgeoning digital architecture—the IoT, social media,
mobile telephony—has become both a tool for policing and security and a
vector for criminals. The algorithm itself has become a tool for good and
evil, just like other powerful technologies, from fire to atomic energy to
gene editing. These technologies represent a potential evisceration of
traditional views of and expectations for privacy. Balanced against this
negative cost is the law enforcement benefit. Criminals could be caught
more quickly, there might be fewer wrongful prosecutions, and personal
responsibility for most public actions would be anchored more securely in
data. In the past, people have traded privacy for even the illusion of
security. We predict many people will accept a loss of privacy for the actual
reduction of risk as long as someone is watching how these algorithms and
data are being used. But, even if this prediction is only partly true, this
coming world will be dramatically different.



8

The Smart Killing Machine

Chula Vista is a California municipality of 52 square miles and a population
of 270,000 tucked between San Diego and the Mexican border. To the west,
the Pacific Ocean sparkles; to the south is Tijuana. Over the past few years,
the Chula Vista Police Department has used drones built by a San Diego
company to support local law enforcement, particularly in emergency
situations. Relatively inexpensive drones are regularly dispatched to the
sites of fires, car crashes, and crimes. This practice makes good sense in a
pandemic, when reducing exposure to the virus is a constant concern. But
the drones—far smaller than the Reaper or Predator drones the US military
uses for surveillance or missile strikes—raise the same questions of privacy
as the persistent surveillance systems we discussed in the previous chapter
on forensics. And in one way, Chula Vista has gone where the US military
has not: powered by AI software, the police drones have the ability to
independently track suspects.

Policing and military organizations share many similar features; they are
cultures shaped by the need to achieve security through (if necessary) the
legal use of deadly weaponry. Part of the current debate over policing
involves police departments’ use of military-grade hardware, from armored
carriers to assault rifles. Since the dawn of history, there has never been a
machine capable of autonomously making life-or-death decisions. The
decision to take or save a life has occurred within the human chain of
military command. Though their use may be controversial, military drones
are operated by human handlers in the United States; unlike self-driving
cars, they are deliberately not autonomous. And the Chula Vista drones
carry cameras, not weaponry.

Nonetheless, the potential to build autonomous missiles, automated-firing
technologies, self-guided defense systems, robots that can hunt down
improvised explosive devices, and autonomous swarms of air- or land-
based robots has arrived. All of these advances, now being explored by



militaries around the globe, use some form of AI, which operates by
processing constant streams of data to make rapid decisions—that is,
predictions. Just as a self-driving car must identify pedestrians crossing an
intersection ahead and calculate the best strategy to avoid them, so must AI
for military use, processing data about enemy intentions and capabilities,
calculate the best strategy to respond to them, to knock them out, and,
ideally, to win. The question at this point is not if we engage with such
technology, but rather how.

Precision Warfare
Predictions are a raw power with an innate capacity to create as well as to
destroy. Perhaps nowhere is that range of divergent possibilities so stark and
so wide as in warfare. Precision warfare spawns the comforting belief that
armed conflict can proceed with a minimum of civilian and military
casualties. In fact, it might be possible for there to be no human casualties
at all, with countries waging entirely virtual and mechanical battles and
humans controlling the hardware but putting no human lives at risk. Such a
future world is not yet here and may never be. Reducing casualties to zero
may be a deeply rational and human instinct, but war is not rational or
humane; it’s about anger, revenge, and terror. A video game war may be
expensive to make, but it’s relatively antiseptic. It lacks deterrence and
coercion; you can easily walk away from it. Real war, as we’ve
rediscovered in Ukraine, is about punishment and power. The same
technologies that bring us the seductive possibilities of more precise
warfare also bring us autonomous warfare with its unsettling questions
about ethics and control.

Like medicine, conventional warfare has grown increasingly precise and,
in a sense, personal. Precision-guided missiles and bombs can exact
devastation with controls as simple as those of a video game and from
thousands of miles away. Telemetry sensors and guidance systems for
intercontinental ballistic missiles (ICBMs) can easily target distant cities.
Cyberwarfare can disrupt a city or a business or even a single phone with
smart weapons.



But this begs the question, what is a “smart” weapon? It’s a munition that
(in theory) can hit its intended target and nothing else. That’s not easy, and
there have been many errors, much as a fully autonomous driving system
remains a work in progress. Many weapons may be sophisticated but not
very smart; they may be automated, like machine guns, but not at all
autonomous; they have to be controlled by humans. Thermal- and image-
sensing technologies can guide an explosive to a precise target, but they
cannot ensure that collateral damage will not occur or, for that matter, that
the underlying intelligence was correct. Sometimes, collateral damage is the
point. For example, cluster bomb units (CBUs) have been used since World
War II to maximize the explosive weight of a single dropped bomb. These
bombs are used in strategic attacks that are distinct from carpet- or
saturation-bombing strategies, which attempt to destroy as much of a given
area as possible. The killing is random, not precise. It’s a weapon designed
to create terror.

However, recent CBUs have grown more sophisticated and technically
more precise. For example, the CBU-97 Sensor Fuzed Weapon, a Textron
Systems bomb developed in the late 1990s for the US Air Force, is a 1,000-
pound free-fall CBU married to a wind-corrected munitions-dispenser
guidance tail kit for targeting. As the bomb falls, its skin pops open,
releasing ten submunitions. Each submunition contains a small parachute
that slows its descent. If you were to look up, ten blackbirds would appear
to be gently falling. They would almost look cute.

But they’re not cute. Each “blackbird” has rotating “skeets,” like a set of
mini hoverboards, that spin to slow down the submunition and allow both
laser and infrared sensors to identify the best target, such as a missile turret,
tank, fighter jet, just-run car engine, or armored personnel carrier. When the
skeet passes an identified target, the software can fire a two-pound
penetrator explosive that can rip through heavy-plated armor, ignite fires,
and provide a fragmentation ring that throws shrapnel into nearby soldiers.
Cluster bombs are released by a person, but after that launch, the sequence
of events is fully automated.

Although death and dismemberment from multipronged, multitargeting
cluster bombs are extensive, these bombs are more precise than carpet
bombing, which is indiscriminate. In theory, CBUs target only sites that
match the software. With thermal imaging, a military programmer can even



ensure that CBUs avoid the precise temperature range of humans and attack
only unoccupied vehicles or equipment. Bombs such as the CBU-97 are far
more “future-friendly” in terms of civilians because they are programmed
to explode at 50 feet in the air if they cannot find a target. If the sensor fails,
a timer activates the bomb, reducing the long-term threat of personnel
mines that can kill innocent civilians decades after a war.

However, CBUs are not perfect, and they can kill the innocent. For
example, thermal imaging reveals humans in general, not the specific
features of soldiers or members of a terrorist group. Also, a bomb may drift
and suddenly target a crowded city street or market or a village full of
children. A convoy or car containing a target may also carry
noncombatants. CBUs may leave unexploded bombs behind—not nearly as
often as carpet bombing or sowing mines does, but they do have a failure
rate. Children, farmers, anyone taking a casual walk can stumble on an
undetonated bomb.

CBUs remain controversial, especially because early versions of the
CBU-97 had high rates of safety failure, including estimates of 17 to 20
percent of the bombs remaining live after deployment. In 2008, US defense
secretary Robert Gates signed a memo declaring that after 2018 American
forces would “only employ cluster munitions containing submunitions that,
after arming, do not result in more than 1 percent unexploded ordnance.”
The requirement, Gates said, could not be waived. He was reacting to the
United Nations Convention on Cluster Munitions of 2010, which prohibits
the production, use, transfer, and stockpiling of these weapons. Even though
111 nations signed the ban, the United States, Russia, China, Iran, and
North Korea did not (a revealing group listing); Russia has since been
accused of using cluster munitions in Ukraine against civilian targets. Even
with such permissive markets and thus high potential for sales, though,
Textron announced in 2016 that it would stop making CBU-97s. In
statements in Securities and Exchange Commission filings, the company
noted that it had discontinued production because orders had declined and
“the current political environment has made it difficult” to obtain sales
approvals. However, in November 2017 the Trump administration reversed
Gates’s 1 percent policy, calling cluster munitions “legitimate weapons with
clear military utility . . . providing distinct advantages against a range of
threats in the operating environment.”



This fluctuating appetite for precision bombing hints at its ongoing
challenges, with the most notable being the chance of error. Between 2010
and 2020, the Bureau of Investigative Journalism tracked US drone strikes
and other military actions in Pakistan, Afghanistan, Yemen, and Somalia
and created a comprehensive list and profile of civilian deaths. In 2020, the
group reported its findings to the White House: it counted at least 14,040
confirmed drone strikes, with at least 8,858 people killed (the upper
estimate was 16,901). The analysis of this first set of strikes was taken from
military records, and thus it was hoped that 99 percent or more of kills in
such strikes would be military personnel or targets, not civilians. However,
the analysis concluded that at least 910 (10.3 percent) of the drone kills
were likely civilians, with an upper estimate as high as 13 percent. The
bureau’s report found that at least 283, or 3 percent, of the mistaken deaths
were of children.

Clearly, these estimated “false positives” exceed Gates’s 1 percent limit
for error on unexploded munitions and smart weapons. Some have noted,
correctly, that the larger fault lies more with the final hard choices made by
operators using imperfect information and limited camera footage than with
the drones’ software and ordinances, but the errors still exist and are still
stark.

Almost certainly, the predictive aspects of these tools and intelligence
will improve, and it is likely that relevant metadata and information on
military versus civilian targets will get better as well. However, for reasons
ranging from saving money to the more compelling competitive need to
match rivals who can use autonomous decision-making, pressure will
increase to replace the humans making decisions with AI, which will open
the door to advances that raise a host of issues, including turning war over
to so-called killer robots.

Swarming Drones
Today, semiautomated weapons such as cluster bombs seem crude
compared with the weapons currently on the drawing boards of militaries
around the world.



In his book Army of None: Autonomous Weapons and the Future of War
(2018), Paul Scharre is blunt. “Artificial intelligence will transform
warfare,” he writes. “In the early twentieth century, militaries harnessed the
industrial revolution to bring tanks, aircraft and machine guns to war,
unleashing destruction on an unprecedented scale. Mechanization enabled
the creation of machines that were physically stronger and faster than
humans, at least for certain tasks. Similarly, the AI revolution is enabling
the cognitization [Scharre’s italics] of machines, creating machines that are
smarter and faster than humans for narrow tasks.”

More specifically, Scharre discusses how autonomous machines
represent the culmination of an arms race in speed. The speed of computer
processing has grown as Moore’s law has unfolded. Human operators may
have a greater sense of context and greater flexibility, but intelligent
machines are exponentially quicker to make predictions and act on them.
But, as Scharre points out, such abilities immediately raise legal and ethical
questions that the US Department of Defense has struggled over. Scharre
also notes that autonomy is not an absolute term. Smart weapons such as
missiles and ICBMs have long had some degree of autonomy. The target
and the flight are predetermined, and the missiles can’t be recalled—as he
writes, it’s a matter of “fire and forget”—and they carry advanced guidance
systems that can use a variety of technologies to stay on course and seek
their predetermined target. But there are missile systems that once launched
can use radar to search and select targets; a human operator then approves
the attack. One of the problems with smart-weapon systems is that they can
easily home in on friendly as well as enemy aircraft or ships. (Early World
War II German precision-guided torpedoes had an unsettling tendency to
circle back and attack the U-boat that launched them.)

Full autonomy is something entirely different. In the essay “The Ethics &
Morality of Robotic Warfare” (2016), the University of Pennsylvania
political science professor Michael Horowitz succinctly defines an
autonomous weapon as “a weapon system, not a person, that selects and
engages targets on its own.” A fully autonomous weapon would not only
search for and identify targets but navigate what could be a complex,
treacherous battleground and—this is where the ethical questions emerge—
make the decision to attack and kill or not. Human operators might play
little or no role, even in determining targets. Autonomous drones, for
instance, could hover, waiting to detect a target.



Thus, there is a self-fulfilling prophecy of lost control with respect to
these systems. In an attack, for example, only autonomous drones might be
able to react quickly enough to be effective, and they could accelerate the
action on the battlefield to the speed with which a computer could calculate
all the probabilities. They have the potential to drive the action on a
coordinated, multidimensional battlefield network of significant size to
levels of complexity and speed that are simply beyond the full
comprehension of human operators. Like all weapons systems, they drive
developments with a dynamic that is nakedly bottom line: who wins and
who loses, who lives and who dies.

That may be why there has been such resistance in the Department of
Defense to full autonomy. As Max Tegmark, a physics professor and AI
researcher at MIT and the president of the Future of Life Institute, wrote in
an open letter coauthored with University of California computer science
professor Stuart Russell in 2016, “If any major military power pushes ahead
with AI weapons development, a global arms race is virtually inevitable,
and the endpoint of this technological trajectory is obvious: autonomous
weaponry will become the Kalashnikovs of tomorrow,” referring to the
global ubiquity of the Russian assault rifle. The letter noted how relatively
inexpensive such weapons are—certainly compared with nuclear arms—
and how easily they could spread. “It will be only a matter of time before
they appear on the black market and in the hands of terrorists, dictators
wishing to better control their population, warlords wishing to perpetrate
ethnic cleansing.”

Scharre focuses on development work undertaken on another aspect of
drone warfare: swarming drones. Right now, one of the cutting edges of
military autonomy is the ability to control not just one small drone but a
swarm of them. But control may be the wrong word. In fact, the underlying
process here may more resemble the kind of interplay between a bird and its
flock. Birds in a flock, like ants in a colony, appear to operate seamlessly
and with purpose because they are wired to quickly respond to a handful of
relatively simple stimuli. For birds, that may involve flying at a certain
distance from the other members of the flock or following the bird directly
in front of them. The flock operates autonomously, with no central
controller. Now take this to another level: airborne combat. Scharre
describes a relatively simple algorithm, called the “greedy shooter,” that
shapes the behavior of two drone swarms engaged in aerial combat. The



swarms are autonomous: after a human operator hits a button to start, the
attack develops without human intervention. In fact, given enough data, the
attacks could be simulated ahead of time, which is a powerful tool of
prediction.

Superficially, there is an element of play to all this. The drones
themselves are unarmed—they “win” with accurate simulated shots—but,
even so, the aerial combat creates a fast, swirling, intricate battle. The big
question is not just how effective these algorithms are as weapons but,
rather, what will happen when powerful AI is programmed into more
powerful computing devices on the drones. And more than just drones can
be programmed in this way. Why can’t robotic ships or tanks swarm?
Recall the problems of unexploded bombs scattered across a war-torn
countryside. In Iraq and Afghanistan, the United States found that the best
way to clean them up was with simple ground-based robots known as
PackBots—more than 6,000 of them by 2015. But what if these robots
carried their own bombs and were drawn to human targets?

AI would allow drones not only to engage in complex tasks but also
possibly to learn. In terms of prediction, AI systems such as neural nets
could turn drones or missiles or entire networked battlefields into chesslike
games that could quickly evolve in ways incomprehensible to their human
observers and ostensible masters. Success in warfare has long been a matter
of better weaponry and intelligent tactics and strategy: technology and
prediction. AI warfare will become ever more dependent on blindingly fast,
accurate prediction—a military version of high-frequency trading. And that
opens the door to a variety of new risks.

AI and Ethics
Let’s begin with the ethical questions that arise from the development of
autonomous weapons systems—what some call “killer robots.” There are a
number of considerations, some secondary, some fundamental, some
ethical, some legal. Machines—at least, any we can imagine today—may be
fast and farseeing, but they lack humans’ ability to discriminate and to
understand, even if fallibly, and to examine complex context. For example,
a human can readily discern that a stick is not a gun, that a soldier is



wounded, that a soldier is surrendering. Machines so far are not so
discriminating.

Legally, autonomous weaponry may violate notions of a just war, notably
jus in bello—that is, the conduct of war—or transgress what’s known as the
Martens Clause, which was formulated in 1899 at the Hague Convention.
Friedrich Martens, a Russian diplomat, set out a rule that applies to
individuals caught up in a war where no international law applies: “Human
persons are protected by the principles of humanity and the dictates of
human conscience.” The more fundamental rule is that humans are
accountable because they have consciences (some perhaps more than
others) and can be punished for violating the maddeningly vague
“principles of humanity.” The Martens Clause has long been subject to
argument and reinterpretation, particularly over the use of nuclear weapons.
In the case of autonomous weaponry, it’s true that a machine, no matter how
intelligent, cannot reflect on goals and purpose, right and wrong.
Punishment is meaningless. A machine, in short, lacks human agency and
long-term responsibility. An autonomous killing machine is thus, almost by
definition, amoral.

What’s clear are two realities: Militaries around the world possess and
use semiautonomous weapons such as human-piloted drones, but even
countries such as the United States and China, which are fully capable of
developing autonomous weaponry and have engaged in research on it, have
held back on actively deploying it. In 2020, after 15 months of deliberation,
the US Department of Defense officially adopted a series of five ethical
principles for the use of AI. The agency concluded that “AI technology will
change much about the battlefield of the future,” noting that “the adoption
of AI ethical principles will enhance the department’s commitment to
upholding the highest ethical standards . . . [and] embrac[e] the U.S.
military’s strong history of applying rigorous testing and fielding standards
for technology innovations.”

The five principles are that the development, deployment, and use of AI
capabilities must be (1) responsible, with appropriate levels of judgment
and care; (2) equitable, taking deliberate steps to minimize unintended bias
in AI capabilities; (3) traceable, meaning that AI will be developed and
deployed so that the personnel managing and using the systems possess an
appropriate understanding of the technology, development processes, and



operational methods applicable to AI capabilities, including auditable
methodologies, data sources, and design procedure and documentation; (4)
reliable, with explicit, well-defined uses and with the safety, security, and
effectiveness of such capabilities subject to testing and assurance within
those defined uses across their entire life cycles; and (5) governable, with
AI capabilities designed not only to fulfill their intended functions but also
to possess the ability to detect and avoid unintended consequences and the
ability to disengage or deactivate deployed systems that demonstrate
unintended behavior.

Though such principles sound reasonable, we are in uncharted territory.
The laudable goal of having AI be “traceable” so that personnel will
“possess an appropriate understanding of the technology” may be harder
than it looks. A 2017 study from Pegasystems titled “What Consumers
Really Think about AI” showed that while 34 percent of people thought
they had interacted with AI, 32 percent were not sure. The truth was that 84
percent had done so. This implies that half of the people using AI don’t
even know it.

Beyond this traceability fog, it’s not clear how well these guidelines will
translate into real-world combat or how to avoid the biases of a program
that is deciding who is a target and who is not (the reliability problem). The
bias of the machines will always reflect the bias of the programmers who
make them.

Five Levels of AI
Autonomous weaponry taps deeper concerns about artificial intelligence.
On August 2, 2014, Tesla CEO Elon Musk famously tweeted: “We need to
be super careful with AI. Potentially more dangerous than nukes.” Musk’s
tweet was based on the presumption that eventually, as he said on CNBC in
July 2017, “robots will be able to do everything better than us” and that a
self-aware intelligence may someday emerge that is a “fundamental risk to
the existence of human civilization.” Because Musk is actively developing
AI systems for self-driving cars at Tesla and is a cofounder of Neuralink, a
company working to create a way to connect the brain with machine
intelligence, his comments stirred anxieties. Some immediately criticized



him, noting that fears of machines turning on humans like in a Terminator
movie are unfounded, given the AI technologies that exist today or will
exist in the near future. Some, such as Facebook cofounder Mark
Zuckerberg, even called such statements irresponsible.

But Musk, in an April 6, 2018, tweet, clarified that his fear was not about
a narrow-task AI, like the kind that enables self-driving cars, but about a
more complex and self-aware “digital super-intelligence” that could at first
take jobs and then, eventually, threaten humanity itself—a sentiment
supported by the former Google CEO Eric Schmidt and Toby Ord in his
book The Precipice (2020), among others. Musk went on to participate in
and fund efforts by the AI community, including Max Tegmark’s Future of
Life Institute, to build safety into AI processes. Still, Musk’s questions
remain. Could AI really attain a state that could threaten humanity? Could
autonomous weaponry, powered by AI, be the cutting edge of that
eventuality?

Perhaps, but first we need to break down AI into four kinds of machines
based not on structure or function, such as deep learning or NLP, but more
on abstract attributes with increasing complexity: (1) ability to react, (2)
limited memory, (3) theory of mind, and (4) self-awareness. Reactive
machines lack any concept of the past, so they have no working memory of
what happened, say, in previous games and have no way to construct the
future. Deep Blue and AlphaGo, the AI that respectively mastered
Jeopardy! and Go, were reactive; they could not adapt easily or at all to
simple rule changes, such as adding a new piece.

One of the most powerful examples of limited-memory AI that can look
into the past is the self-driving car. This kind of AI can observe other
vehicles’ speed, movement, and direction. Such computation requires a
working memory and the ability to track specific objects, monitor them
over time, and predict trajectories. These observations and predictions
merge with knowledge of traffic laws, signals, data from the car, global-
positioning data, and other user inputs. However, the self-driving car’s
knowledge of the past is limited. The software cannot accumulate its own
experience and learn like a human driver, read the face of another driver to
derive intention, or recall complex situations. But eventually it will.

The third type of AI would be able not only to see, quantify, and make
predictions about the world from its own data but also to make inferences



and predictions. In psychiatry, this is called having a “theory of mind,”
where you become aware that other conscious entities have thoughts,
emotions, volition, and direction. Most important, AI would project this
awareness and respond to it as most humans do without any effort in
conversation, where we read body language, tone, eye direction, and
unspoken communication to infer others’ responses.

Of note, not every human even has this ability. Autism spectrum disorder
(ASD) is a complex psychiatric disorder in which individuals may lack such
a theory of mind and thus cannot understand why some of their actions
might upset others; this inability is why people with ASD can seem distant
and unengaged to people without ASD. It is possible and even likely that
future machines might also have a range of cognitive abilities; indeed, Deep
Blue became Deeper Blue, more advanced versions of AlphaGo have been
developed, and the AI of the future will almost certainly feature a variety of
attributes. Even human individuals evolve versions of themselves as they
age and change.

The fourth state of AI is a machine that can form a representation of itself
and view it from the outside—a form of self-consciousness. This would
become the final metamorphosis of Descartes’s aphorism “I think, therefore
I am” but taken to the self-reflective step where a machine could state, “I
think about me thinking that I am.” At this point, the machine might come
to realize its own mortality, become self-defensive, and seek self-
preservation.

This is a common theme in popular science-fiction movies such as
Terminator (1984), The Matrix (1999), I, Robot (2004), and others in which
an AI system decides that humans pose too large of a risk to its own
survival and that it must exterminate us all.

Even though humanity has a spotty track record of preserving species, we
do have a key, unique trait that represents hope for a new AI. Humans have
evolved in such a way that our self-consciousness places us at what can be
described as an even higher, fifth level of AI: extinction awareness. We are
aware of the actions, trajectories, and changes that affect our species as well
as all other species on the planet. We found and fixed a hole in the ozone
layer, and we are tracking changes to Earth’s climate. Interspecies and
planetary-scale engineering transcends the life span of a person or even a



family; it is the stewardship of life itself, including AI, which could become
a form of life.

Given that humans eventually acquired and have acted on extinction
awareness to preserve life, there is a possibility that a self-aware AI could
attain this fifth stage of intelligence and decide that humans present not
only a partial risk, but also a possible benefit, to its long-term survival. This
future AI may appreciate that the viability of humans, other creatures, and
varied types of AI are important for its own self-preservation. This,
however, depends not only on our own programming of nascent AI but also
at some future time on AI’s ability to program itself. But how well can AI
be programmed for morals, and is there a set of universal morals that we
can teach machines? It turns out, we know some of the answer already.

The Moral Machine
In 2018, the researchers Azim Shariff, Jean-François Bonnefon, Iyad
Rahwan, and their colleagues published “The Moral Machine Experiment,”
a paper that stemmed from an online experimental platform exploring moral
dilemmas faced by autonomous vehicles and that used data on 39.61
million decisions, spanning ten languages, by millions of people in 233
countries. Participants had to decide what to do if a self-driving car suffered
brake failure: continue straight, which would kill pedestrians but save the
passengers, or swerve, saving pedestrians but killing passengers. There
were only two possible outcomes, and each would result in death. The study
then presented variables of this scenario across nine factors: sparing
humans (versus pets), staying on course (versus swerving), sparing
passengers (versus pedestrians), sparing more lives (versus fewer lives),
sparing men (versus women), sparing the young (versus the elderly),
sparing pedestrians who were crossing legally (versus jaywalkers), sparing
the fit (versus the less fit), and sparing those with higher social status
(versus lower social status). Additional characters appeared in some
scenarios, such as criminals, pregnant women, and doctors, who were not
linked to any of the nine factors but existed merely to gauge their impact.

The results were a fascinating exploration of moral choice under
pressure. First, the researchers found three distinct “moral clusters” that



were broadly consistent in both geographical and cultural proximity:
Western, including North America and European countries that belong to
Protestant, Catholic, and Orthodox Christian cultural groups; Eastern and
Far Eastern, including countries such as Japan and Taiwan of the
Confucianist cultural group and countries such as Indonesia, Pakistan, and
Saudi Arabia of the Islamic cultural group; and Southern, including Latin
American countries as well as countries with some French influence, such
as French overseas territories.

The differences among the three were striking. The authors observed
“systematic differences between individualistic cultures and collectivist
cultures.” The preference for sparing the young (versus older people) and
those of higher economic status was much less pronounced in the Eastern
cluster and much higher in the Southern cluster. Countries in the Southern
cluster exhibited a much weaker preference for sparing humans over pets,
compared with the Eastern and Western clusters. Individualistic cultures,
defined as those that emphasize the distinctive value of individuals, showed
a stronger preference for sparing the greater number of people. Participants
from collectivistic cultures, defined as those that emphasize respect for
older members of the community, showed a weaker preference for sparing
younger people, as expected.

Some intercluster differences revealed that individuals were preferred for
demographic and country-specific reasons. For example, the authors found
that higher country-level economic inequality, as calculated by the country’s
Gini coefficient, corresponded to how unequally individuals of different
social status were treated. Countries with more equality between rich and
poor treated the two groups more equally in a life-or-death decision.



Figure 8.1
Clusters of moral codes between countries. One hundred and thirty countries with at least 100
respondents were selected (range, 101–448,125). Distributions across the three clusters (top row)
reveal stark differences between parts of the world. For instance, the Eastern cluster (Eastern
hemisphere countries) consists mostly of countries of Islamic and Confucian cultures. By contrast,
the Western cluster (Western hemisphere countries) has large percentages of Protestant, Catholic, and
Orthodox countries in Europe. Countries belonging to the Southern cluster (Southern hemisphere
countries) show a strong preference for sparing females compared to countries in other clusters.
Combined clusters (lower right) and moral decision points (lower left) are also shown (bottom row).
Source: Adapted from Edmond Awad, Sohan Dsouza, Richard Kim, Jonathan Schulz, Joseph
Henrich, Azim Shariff, Jean-François Bonnefon, and Iyad Rahwan, “The Moral Machine
Experiment,” Nature 563, no. 7729 (November 2018): 59–64.

Sex was also a dividing line. The study revealed a large country-level
gender gap in the health and survival of women by calculating the ratios of
female-to-male life-expectancy and sex ratios at birth (a marker of female
infanticide and antifemale sex-selective abortion). In nearly all countries
across all clusters, participants showed a preference for females, yet this
preference was stronger in nations with better health and survival prospects
for women. The authors wrote that in countries where there is “less



devaluation of women’s lives in health and at birth, males are seen as more
expendable.”

Yet some trends were universal. A slight preference for sparing
pedestrians over passengers, and for sparing the lawful over the unlawful,
appeared to be shared by all cultures in all data clusters. The overall
preference for saving women versus men mostly held. But in general, an
ideal set of universal ethical laws for machines may not yet exist across the
world’s ethics.

Nevertheless—though this complex task is well beyond our current
capabilities—AI could possibly be programmed to match the needs of the
society that built it and to create predictions based on nuances that change
when a machine crosses a border into a new “moral” cluster. Indeed, this
means that country-specific normative ethics could at least be considered
for, if not implemented into, frameworks that would be making life-and-
death decisions. This implementation could eventually lead to completely
autonomous machines that carry an “ethical chip,” making them similar to
the continuously adapting, imperfect humans who programmed them.

Military Risks
There are darker possibilities, of course.

As a matter of prediction, we can barely see past the next generation of
AI-enabled weaponry; the fifth level, whether it’s a Musk-forecasted
extinction of humans by machine or a flowering of moral machines that
defend life, is not yet clear. What exists directly before us is unsettling
enough. The dynamics of war hinge on shifting advantages, often
seemingly minor, of offensive tactics versus defensive ones, which are
increasingly fluid, as we see in the global, highly technical, and shadowy
jousting of cyberwarfare. AI accelerates both the predictive quality of
autonomous weaponry and the rapidity of adjustment and modification,
which resembles aspects of the nuclear arms race (and follows earlier
destabilizing arms races, such as battleships), but at a potentially much
greater rate of change. And, of course, the new technologies do not exist in
isolation. They join bulging weapons arsenals that have already been
amassed all around the world. Imagine strapping a nuclear weapon onto an



autonomous drone or chemical weapons onto swarms of miniaturized
drones.

Warfare is one area where enhanced prediction by autonomous weaponry
increases risk rather than reduces it. The shadow of military risk is a shroud
as dark as the night—and it’s been lengthening with the sequential
development of automatic weapons, air power, tanks and missiles, chemical
warfare and nuclear bombs, AI, and cyberwarfare. Weapons technology has
grown exponentially more powerful, more rapid, more surgically delivered,
and, of course, increasingly intelligent and predictive. This mix is lethal.
The ability of weapons to calculate, choose, and learn with blinding speed
raises the potential for disaster to much higher levels. Weapons are
increasingly precise and more destructive; they can be employed by nations
with enormous resources or by insurgents and terrorists pursuing
asymmetric warfare. Long before the technology exists to attain the fifth
stage of AI or for machines to develop a sense of self-consciousness, we
could easily destroy ourselves with weapons that we dispatch, if not control
—weapons that are both unthinking and intelligent.

We, in short, are the problem.
This enormous risk of AI-enabled warfare arguably plays a larger role in

the human reaction to autonomous, predictive-based weaponry than do
moral or ethical considerations, which, as history shows, can be easily
shredded, twisted, and tossed aside. That fear of intelligent, predictive
weaponry is responsible for nations keeping true autonomous weapons on
the shelf so far (or, for that matter, not using nuclear weapons, though it
hasn’t stopped proliferation); for statements such as the US Defense
Department’s AI principles; and for attempts by groups such as Tegmark’s
Future of Life Institute—the name says it all—to get responsible control
over AI development. Is that possible?

Maybe. Such control would involve a long-range prediction planted
deeply in the realm of global and species-wide uncertainty. If history is any
guide, humanity has a strong penchant for war and for using the brightest
new toys of destruction available. The odds of predicting war, sadly, have
always been greater than those of predicting peace. Despite such a
gruesome history, in the past few decades humanity has experienced a
downward trend in the number of deaths from war, among the lowest shares
of battle-related deaths in history, according to Harvard University



cognitive psychology professor Steven Pinker. Against these trends, the
scale of destruction in recent wars (Syria, Ukraine) is a reminder of a
sobering reality.
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Predicting Performance

Every year millions of people apply for jobs: big jobs, little jobs; full-time
or part-time jobs; blue-collar or white-collar jobs; internships. This process
has been going on for decades, but the pandemic (with its flood of workers
quitting current jobs to find better ones) has helped move job hunting onto
computers, and new algorithms have changed the game entirely. Job
hunting has become a game much like social media, with job seekers
desperately shaping themselves in ways they think will be attractive, while
companies and vendors press ever harder to automate and seek ever more
predictive tools that can anticipate how candidates will function when they
get the job.

As a result, job hunting has become more and more a mystery for both
ends of the process. It involves the writing of a résumé, the composing of a
letter hardly anyone reads (except an algorithm hunting for keywords); the
filling out of applications; the hunt for references; the anxiety of the
interview, often an asynchronous video interview without a human
interviewer; and a battery of tests. A large corporate bureaucracy has grown
up around hiring, consisting of consultants, experts, recruiters, human-
resource staff, test developers, and, increasingly, model builders. For job
seekers, the process is an anxiety-provoking puzzle that has spilled over
well beyond the job hunt. Admission to colleges and universities now
features its own armies of consultants and admissions experts, tests,
interviews, essays, and an ever-expanding demand for credentials—as well
as, famously, charges of bias and cases of corruption, both civil and
criminal. In both job hunts and college admissions, the challenges are
wildly inflationary: job seekers send out reams of résumés; college seekers
dispatch dozens of applications. That process has also now seeped down to
elite and expensive preschools, which even test, and deeply interview,
three-, four-, and five-year-olds.



This is all a mass exercise in trying to define and capture talent—in some
cases even before it has a chance to blossom. Thus, the hunt is also about a
person’s potential. Yet when the candidates get older, the view is
predominantly backward looking and static. Companies claim to want the
best talent they can find; schools, from high to low, say they want students
who will not only perform at an elite level but go on to elite jobs. It’s no
shock that the accumulation of credentials—degrees, awards, quantifiable
assets—tends to be self-fulfilling and endlessly self-assessing.

The Challenges of Predicting Success
There is, however, a problem with this process: we’re not very good at
assessing future performance. We have never been all that good at it, and
some claim that we are getting worse at it. As Peter Cappelli, a management
professor at the University of Pennsylvania’s Wharton School, notes in a
Harvard Business Review survey of the hiring scene: “Businesses have
never done as much hiring as they do today. They’ve never spent as much
money doing it. And they’ve never done a worse job of it.”

Cappelli’s critique is sweeping. A great deal changed in the way hiring
took place from the post–World War II period to the 1970s, when 90
percent of hires came from within the same company. The majority of hires
today are not people searching for jobs but so-called passive candidates,
most of whom don’t realize they’ve become active candidates. Companies,
Cappelli writes, try to fill a “recruiting funnel” with as many names as
possible, so they’re constantly searching for new recruits, even if they don’t
have jobs to fill. (In some cases, actively looking for a job may be a
disadvantage.) According to the consulting firm Korn Ferry, about 40
percent of companies have outsourced hiring; they use subcontractors to
search the internet for candidates and track key words. Other vendors
specialize in, as Cappelli says, “an astonishing array of smart-sounding
tools that claim to predict who will be a good hire.”

We often say that finding and hiring the best possible talent is key to
driving our labs and businesses. Many CEOs say hiring is their biggest
challenge. Indeed, many of the arguments for AI-enabled recruiting begin
with the notion that human capital is a much more important asset than ever



before. Yet within companies hiring is a cost center that’s not afforded
prestige or resources. Rising turnover is a problem that has transformed
hiring from a custom task into an industrial process driven by automation.
Hiring takes a relatively long time and is expensive; it costs a company an
average of $4,129 to hire someone, notes Cappelli. And then, who has the
company got? How long will they stay, and what will they do?

Hiring is always an attempt to predict human behavior and future
performance. This task is far more complex than key words on a résumé
written by a consultant because measuring loyalty, hard work, and
competence can be difficult. Subject-matter expertise is somewhat easy to
gauge because it is based on education and work experience, but it is not as
easy to measure a willingness to learn new things or innate ambition. Also,
it is hard to predict how new hires will fit into a company’s culture, or if
they will help lead the company to new heights versus create disruptions.
These challenges happen with every new hire.

The paradox here is that, although CEOs say hiring is the most important
thing they do, many companies are disengaged from the process. Only a
third of US companies say they monitor whether their recruiting process
system is working or is cost effective. One unintended consequence of
hiring from the outside is that it allows companies to reduce training,
development, or assessment of employees, which means constant hiring
beyond the traditional entry level. Retention has all but collapsed. Census
data suggest that 95 percent of hiring before the COVID-19 pandemic was
to fill existing positions—Cappelli was writing in 2019—at a time when
millions were not suddenly quitting or retiring. In fact, as Cappelli notes,
hiring is increasingly not about the ability to master new areas and skills but
about doing a specific job. For that, knowing someone’s recent job
experience is all you need.

Companies aren’t alone in struggling with performance assessments. A
pair of studies by a research team at the University of North Carolina at
Chapel Hill and by another at Vanderbilt in 2017 showed that supposedly
“objective metrics” for accepting graduate students to competitive PhD
programs in the United States did a poor job of predicting who would be
successful. The North Carolina study noted that “standardized test scores,
undergraduate grade point average, letters of recommendation, a resume
and/or personal statement highlighting relevant research or professional



experience, and feedback from interviews with training faculty” should, in
theory, correlate with research success in graduate school. Yet none of these
metrics appeared to matter. Indeed, not one of the conventional “objective
credentials” could predict the normal metrics of early-stage scientific
success, such as the number of first-author publications or conference
presentations, the ability to acquire fellowships or grants, graduation
success, qualifying-exam success, or time to degree. Moreover, the
Vanderbilt data set showed that Graduate Record Examinations (GRE)
scores were only “moderate predictors of first semester grades” and “weak
to moderate predictors of graduate GPA.” The authors concluded even more
strongly that there is “no relationship between general GRE scores and
graduate student success in biomedical research.”

Although standard metrics for predicting success struggled, according to
these studies, that does not mean they didn’t provide clues for more fertile
areas of inquiry. The feature with the greatest capacity to predict future
success turned out to be letters of recommendation from undergraduate
teachers and scientific mentors. Unexpectedly, traditional subjective
assessments from people who knew the students for the longest period of
time in the context of their chosen field provided the most relevant metrics.

Using predictive algorithms to mine letters of recommendation could
thus become a new metric for admissions. Such free-text and predictive
analyses are an important part of NLP algorithms, which scan and organize
large amounts of text to look for patterns. By converting the text into
vectors or abstract data structures, new patterns may be found, quantified,
and analyzed relative to other metadata in order to create new predictions.

Prediction Games
In fact, predictive algorithms of many sorts have swarmed into the hiring
game, though so far there’s little evidence that they have transformed
outcomes. The claims for AI-enabled recruiting are large. In one survey of
the field in 2019, the authors J. Stewart Black and Patrick van Esch argued
that we are at the start of what they called “Digital Recruiting 3.0,” driven
by the shift to human capital and the increased use of machine learning.
(Recruiting 1.0 and 2.0 involved advances in search and data.) “Computers



can now perform tasks and make decisions that normally require human
intelligence,” they wrote. “Some key potential advantages include the
ability to more effectively identify, attract, screen, assess, interview, and
coordinate with job candidates.” AI can process information and make
decisions at volumes and speeds far beyond what people can do, the authors
noted. AI-enabled recruiting tools and systems can “overcome common
cognitive biases that hurt the reliability and validity of human judgment in
recruiting activities.”

Many of the new algorithmic tools are, by any measure, straightforward
and effective. They gather, screen, and coordinate many candidates, usually
on the internet. Although data gathering itself is not a predictive activity,
the data assessment and modeling are very much a prediction game.
Machine learning is often used to gather a huge pile of names, eliminate 50
to 80 percent of the candidates, and then cull the remaining pool. Unilever,
for instance, used a series of 12 neuroscience-based test games from a
company called Pymetrics on internship candidates who had survived a first
screening. One three-minute game attempted to assess “risk-taking” by
inflating a balloon with money and balancing the opportunity to score high
on the money front with the risk that the balloon would burst. As the
authors of the survey in 2019 admitted, before the game could be designed,
Unilever needed “to understand the relationship between risk propensity
and job success for certain positions.” Company research showed, not
surprisingly, that moderately high levels of propensity for risk were
positively related to job performance as opposed to very low or very high
propensities. In theory, the company could supplement this result by doing a
genome test and checking the applicant’s dopamine genes (though, as we
have and will see, that step could raise privacy and legal issues).

After applicants played the games, a third of them moved on to the
asynchronous video interviews. The questions were based on the
capabilities and characteristics of “successful and average” employees, in
this case interns. The AI system analyzed not just the answers but also word
choice, tone of voice, and microfacial movements. Based on this research,
Unilever determined what capabilities and characteristics were likely to
lead to success. The vendor, HireVue, later removed the microfacial part of
the assessment due to privacy concerns.



Experts on hiring admit that, for many decades, the hiring process has
been biased in favor of men, whites, graduates of a small number of
schools, and employees who resemble corporate decision makers—who “fit
in” with what society already looked like. Machine learning, which is often
trained on data from a company’s hiring and reviewing history, has
struggled to escape those tendencies, although its proponents often insist
that it is free of cognitive biases. Such traditional practices sparked
legislation such as Title VII of the Civil Rights Act of 1964, which bans
discrimination by race, color, national origin, sex, and religion in hiring but
is difficult to enforce, and using proxy data such as elite schools, family
backgrounds, or even proficiency in certain sports (golf, lacrosse) only
replicates deep systemic biases.

Unilever did conduct some research to try to define “successful”
employees, though whether that research could predict a reasonable
percentage of candidates who would thrive remains a more difficult
question. Even if it could, why would the same system of prediction
necessarily work for other companies or other jobs? The use of test games
also creates a situation in which candidates learn over time how to game the
games. Hiring has always had this aspect: candidates have long been urged
to try to understand what a prospective employer wants and to provide it—
by, for instance, mastering interview questions beforehand. Various so-
called psychometric tests have been used for nearly a century, though they
have been limited since the passage of the Americans with Disabilities Act
in 1990, which forbids employers from inquiring about physical or mental
disabilities. And, of course, an intense debate over assessment testing in
general—SATs, GREs, IQ tests, and a variety of personality tests—has
simmered for decades.

In a wide-ranging 2019 Harvard Business Review article looking at the
legal and ethical issues around using AI in hiring, Ben Dattner and
coauthors note that there is little information available about many of the
new AI assessment tools, which are “technological innovations, rather than
scientifically derived methods or research programs.” As a result, they
conclude, “it is not always clear what [these tools] assess, whether their
underlying hypotheses are valid, or why they may be expected to predict
job candidates’ performance.”



Predicting Athletes and Twin Astronauts
There is one business that’s often considered a paragon of talent scouting,
recruitment, and hiring: professional sports. Few professionals receive as
much scrutiny over a long period of time as athletes. They are scouted,
filmed, tested, poked, and prodded from childhood on. How fast do they
run? How high do they jump? How much can they lift? Sports, particularly
at the highest levels, claim to be among the most meritocratic of activities:
it comes down to performing in visible ways—winning and losing. The
recent trend toward applying massive amounts of data and analytics to
athletics is an effort to predict performance and outcome that’s not all that
different from forecasting securities prices or genomic tendencies; the surge
in legal sports betting adds another layer of analysis and prediction. But for
all the time and effort put into attempting to select the very best performers
and maximize their performances through increasing amounts of data, even
casual sports fans know of highly touted young athletes who flame out and
relative unknowns who end up giving hall-of-fame speeches.

Much of such outcomes, of course, turns on aspects of high performance
that resist quantification. There is much we still don’t know about biology
or about the relationship between the body and the mind, as well as the
relationship between nature and nurture. The application of tools such as
machine learning to performance and proxy data may improve the ability to
predict, say, successful draft picks, discounting the effect of uncertainties
such as bad luck, bad coaching, personal difficulties, and injuries. But the
kind of data that may take some uncertainty out of scouting and assessment
may involve what’s normally viewed as invasions of privacy, which may
create a variety of data limitations and may run the risk of overfitting—that
is, finding a false pattern in inadequate data.

Let’s start with the gene and with the conventional wisdom that genetics
is part of your destiny.

If you are an astronaut on the International Space Station, your genome is
an open book: astronaut DNA gets tested, sequenced, matched, and
monitored. Indeed, all the cells that astronauts shed on the walls and in the
air of the space station mix with the DNA remnants of previous inhabitants.
In 2015, Chris became a principal investigator of the NASA Twins Study,
analyzing the human and microbial DNA of astronauts and identical twins



Scott and Mark Kelly. During the study, the team compared the Kellys’
DNA to data collected in previous years. Both astronauts showed some
evidence of the “ingestion” of microbes found on the space station walls.
Scott, who has spent nearly ten times the number of days in space as Mark,
showed that 56 percent of his gut microbes matched the gut microbes of
others on the space station, whereas Mark showed 5 percent less. To
understand any change during spaceflight, we use all the data from the
environment, the astronaut, ground simulations, and even other organisms
such as flies, worms, rodents, and bacteria to build a better model (figure
9.1).



Figure 9.1
Predicting astronaut health. NASA and other space agencies build data models for their astronauts
based on medical data, environmental monitoring, model organism testing, previous experiments,
and many other factors to create predictive models and develop countermeasures to mitigate the
risks. Source: Sonia Iosim, Matthew MacKay, Craig Westover, and Christopher E. Mason,
“Translating Current Biomedical Therapies for Long Duration, Deep Space Missions,” Precision
Clinical Medicine (December 2019): 259–269.

Beyond the microbial species, Chris and his fellow investigators detected
intriguing changes in human genes from time spent in outer space. During
the analysis of gene-expression data, it became clear that some of the genes
that had turned on while Scott was in space for a year did not completely



turn off when he returned to Earth. They included genes for DNA repair and
immune-system maintenance as well as for bone and muscle formation. It
was obvious from looking at the genetic data that Scott’s body was still
adapting to Earth’s gravity after he returned home. The same changes did
not occur with Mark, who had remained on Earth, so it seemed as if these
changes were unique adaptations of activated genes that were a
consequence of spaceflight.

Gene expression is not the same as the catalog of genes in a person; gene
expression creates a level of greater complexity, flexibility, and potential.
Because the Kelly brothers are slightly different due to varying exposures to
space and, with the passing of time, greater genetic divergences, would it be
possible to pick one as a better choice to send into space? Are there genes
that we could add, tweak, or modify that would make humans better suited
for spaceflight—or for, say, accounting? Could we predict, based on
someone’s genetic code, who would be best for a given job? Could we use
knowledge of individual genomes to make job-related assessments? Should
we?

Predicting which genes will create specific traits is an age-old dream,
pondered by every parent, that straddles the difference between nurture (the
effect of the environment) and nature (your genetic inheritance). To know
what genes are important for a specific phenotype, you first need to know if
that trait is driven by training and experience or innate ability and genetics.
Almost all of our physical and mental traits have some genetic basis; it’s
just a question of how much. From previously published studies of identical
twins, such as those by the Dutch biological psychologist Dorret Boomsma
and colleagues, religion is one of the few traits that have no genetic
component (a good negative control). Other traits, such as height, eye color,
and susceptibility to a range of diseases, are more obviously related to
genes.

Much of the estimated heritability for traits comes from twin studies, in
which researchers examine the difference in a given phenotype for identical
(monozygotic, or MZ) twins, such as Scott and Mark Kelly, who were born
with the same DNA, and dizygotic (DZ) twins, who have 50 percent of the
same DNA and shared the same womb. The larger the difference between
the twins for a given trait, the more that trait can be attributed to the
environment. This difference is called the “heritability estimate,” or h2,



which is twice the difference between MZ and DZ correlations: h2 = 2(pMZ
– pDZ).

For example, typical MZ and DZ correlations for depression are about
0.4 and 0.2, respectively, and heritability is estimated at around 40 percent
(h2 = 2(0.4–0.2)). Higher correlations are usually observed for lifestyle
factors, indicating the importance of a shared family environment. For the
likelihood of smoking during adolescence, typical MZ and DZ correlations
are 0.9 and 0.7, respectively, also leading to a heritability estimate of 40
percent.

Other traits with very high heritability include specific molecular
phenotypes such as lipoprotein (cholesterol and triglyceride) levels (90
percent) as well as the likelihood of certain behaviors, which may be
surprising. For example, boredom susceptibility, although seemingly a
function of age or access to distracting technology, also has a genetic
component of 52 percent, as indicated by twin studies. Yet this is not as
high as the heritability estimates for anxiety (58 percent), disinhibition (61
percent), or even adventure-seeking behavior (65 percent). Such estimates
raise the question: How much of our personality is truly our own compared
with a subtle influence of traits distilled over the coals of our ancestors’
sexual choices?

The Right Genes for the Right Job
Given heritability estimates for so many traits, it might seem that, with
enough data, the likelihood for success in a specific job could be
successfully predicted. If that were the case, we might find ourselves,
depending on our point of view, either in an occupational utopia that would
place people in the right job with the right coworkers, or in a dark,
vocational dystopia in which lives are rigidly determined by genetics.

This scenario raises the always controversial question of genetic
engineering for performance.

A wealth of genes have been found by studying outlier and extreme
populations, such as mountain climbers and people who should have a
disease such as AIDS yet have avoided it. In the large-scale Resilience
Project at the Icahn School of Medicine at Mount Sinai in New York City,



there is an ongoing effort to find people who should be dead but are not:
genetic “superheroes” who have mutations that should lead to a significant
disease but for some reason don’t.

The project has already found new classes of superheroes for HIV
resistance. One group is made up of so-called elite controllers—patients
who maintain HIV at very low levels even though they remain infected;
another consists of long-term nonprogressors, those who never lose their
immune-system function; and then there are the elite neutralizers, who
produce highly potent, neutralizing antibodies to HIV that are not normally
seen. In 2011, building on such discoveries, Harvard Medical School’s
George Church proposed a list of protective genes that are known to confer
advantages on their lucky hosts and could be used to stratify potentially
high-risk and low-risk employees for specific jobs.

Those hiring for high-stress environments should look no further than
PDE4B: higher expression of this gene can be associated with lower anxiety
and higher problem-solving capacity. Higher expression of the APOE,
TERT, and APP genes appears to provide physical and mental longevity,
and higher levels of the DEC2 gene allow humans to sleep less but still
function at high levels and achieve increased overall vitality. Employees
with such genes could be encouraged to apply for jobs that require long
hours, such as physicians, drivers, and pilots, and their gene-expression
patterns could be monitored to make sure the genes are fully genetically
active.

Overexpression in the so-called sirtuin genes—SIRT1, SIRT6, and SIRT7
—has been implicated in influencing a wide range of cellular processes,
including aging, transcription, apoptosis (a kind of programmed cell death),
inflammation, and stress resistance as well as energy efficiency and
alertness in low-calorie situations. Sirtuins can also control circadian clocks
and mitochondrial biogenesis (in which cells increase mitochondrial mass)
and help people get back to work after long shifts.

If you were planning to travel in space with limited oxygen or climb
mountains like Sherpas in the Himalayas, a well-developed cardiovascular
system would be necessary to increase oxygen uptake, maintain
hemoglobin function, and secure normal blood levels. It could also provide
protection against increased cardiovascular disease risk. Studies show that
Tibetans have variants in the EPAS1 gene that provide larger chest and lung



capacity as well as a better tolerance for low air pressure and minimal
oxygen.

For radiation oncology technicians or workers operating near sources of
radiation, there may be genetic solutions to the risk they are taking. A
variant of the NOS3 gene has anti-inflammatory effects in radiation-
induced pneumonitis and provides protection against radiation damage.
Increased melanin may offer protection against radiation and genomic
instability as well as against muscle and bone deterioration. In addition, the
NOS3 gene can reduce an astronaut’s risk of developing cancer. Moreover,
the DSUP and TP53 genes provide increased skin density, protect the DNA
and tissues from radiation, and reduce the risk of gene-expression
dysregulation, persistent telomere loss, and critical chromosome shortening.

If you happen to be an astronaut anticipating a long mission, some
exemplars for gene modifications can serve as a guide for future
interventions. For example, a gene called LRP5 is known to increase height
and bone density and to protect bones from radiation and microgravity-
caused deterioration. A striking example of the power of the LRP5 gene is
given in the movie Unbreakable (2000), about a man who can survive
almost any crash or fight and never gets a broken bone. Similarly, the
MSTN gene leads to increased muscle growth, protects against muscular
deterioration, and supports a strong and lean muscle structure. When the
same version of MSTN is present in dogs, they look like WWE wrestlers.

For astronauts, there are plenty of other ways to improve the safety of the
mission. For example, their immune system could be optimized and
tweaked to develop faster and with greater flexibility. A well-regulated
immune system can adapt to highly sanitized, low microbial-diversity
environments like the space station, protect against postflight-induced stress
and inflammation, improve intravascular fluid management, and potentially
prevent long-term cardiac problems (figure 9.2).

For athletes who need extra endurance or are aging, there are also plenty
of options. Instead of inserting genes or components of genes into players,
they can get SIRT1 or NAD “gene boosters,” which use epigenetic methods
to activate these genes for a short period to mimic exercise and provide the
body with endurance and better blood flow. In addition, SIRT1 and NAD
can help protect the brain and the body from cosmic and ultraviolet
radiation. If cells need to be regenerated, the short-term cyclic expression of



four genes, OCT4, SOX2, KLF4, and MYC, together known as OSKM,
shows signs of partially reprogramming mature cells and reversing aging,
maintaining muscular atrophy, and providing greater longevity. The
expression of related genes such as UCP2 and 5’-AMP can provide
increased cryoprotection (that is, protection against cold), which might be
useful for recovery from and/or enabling deep hibernation.

Reprogramming for a New Job
Of course, the great mass of humanity does not consist of astronauts and
pro athletes. They’re people who hold down jobs that are relatively
complex, require a range of subtle skills, and often generate problems of
considerable ambiguity.

Although exciting, these “genetic therapeutics” are still only biomedical
predictions based on thousands of genomes and samples, not millions or
billions. To truly know the efficacy of such genetic predictions for traits and
genetic tweaks, longitudinal medical profiling of patients and integration
with clinical metadata would be needed to ascertain if such single-gene
changes could really lead to persistent and functional alterations in people
across a range of jobs. It might turn out that some of these genes or variants
have unexpected negative impacts later in life or affect health in ways that
could not be predicted from a small set of patients.

Yet genetic fate does not need to be permanent. Recent variations of
CRISPR gene-editing technology have demonstrated that epigenetic
enzymes can be combined to allow for transient activation or suppression of
specific genes. For example, some genetic tools have been created that
exploit the power of hybrid human and bacterial proteins, which can
temporarily toggle on genes related to DNA repair and then toggle them off.
Studies in 2016–2018 by the Whitehead Institute’s Rudolf Jaenisch and
Duke University’s Charles Gersbach showed that both histones, which
provide the scaffolding for DNA, and DNA itself can be reprogrammed to
alter gene activity and context. The genome, in short, is a kind of plastic
playground.



Figure 9.2
Genetic improvements to human cells for spaceflight. Experimental data from altered genes and gain-
of-function or loss-of-function tests on human and mouse models, both on Earth and on the
International Space Station, have shown potential avenues of new therapeutics or protective effects
that could improve cardiac function, bone density and function, muscle strength and persistence, and
other areas of health. Evidence from living humans, mice, and cell lines is shown for each gene, and
ideal alteration types are shown for an increase (dark gray), decrease (light gray), or completely new
function (gray).

In 2018, the Defense Advanced Research Projects Agency (DARPA)
funded grants for a project called PReemptive Expression of Protective
Alleles and Response Elements (PREPARE). DARPA wanted to prevent



acute radiation syndrome, more commonly known as radiation sickness, by
using epigenetic-editing methods to activate genes before exposure to
radiation. This application could help astronauts on long-duration missions;
soldiers deployed into irradiated areas, such as after a nuclear explosion;
and cancer patients enduring radiotherapy. These studies are ongoing in a
variety of labs, including Chris’s lab at Weill Cornell and the Innovative
Genomics Institute, a joint effort of the University of California, Berkeley,
and the University of California, San Francisco.

Given these advances, if all of the genes in a cell become as easy to turn
off and on as light switches, then it is simply a question of having the right
“genetic electrician” for specific cellular construction projects. This means
that the fatalism of genes will eventually be replaced with the transience of
genetic and epigenetic editing methods. Any person could be modified to be
the best for any job, and it would be harder to predict what someone should
or could do (as in Gattaca) because that person’s genome might be
completely different at one point from what it once was.

If you can reprogram nature to fundamentally change it, does this mean
that nature is no longer a factor and that nurture reigns supreme? Not
entirely, but it does mean that nurture (for example, gene therapies) can
change what nature means and that nature is (more than ever) malleable
through cell- and genome-editing methods. Even though these genome- and
epigenome-editing methods and technologies are very new, they reveal the
fallacies of previous metrics of performance, employment, and abilities,
which were assumed to be fixed at birth. They represent a possibility for
newfound “cellular liberty” to enable a person to reprogram any cell to add
traits of any other cell, which in theory could enable new job opportunities
not previously possible for an individual.

Yet knowing about these genes does not mean that we can engineer all
results. Gene therapies today work mostly to alleviate the effects of lethal
mutations, and they are advancing rapidly. So what are the risks from what
might be called “predictive genetic engineering,” a kind of cosmetic surgery
for the genome? One issue is the same problem that afflicts many AI-
enabled assessments: without truly knowing what constitutes a successful
employee or student, prediction is a moving target. The risk of a big
mistake remains large. Assessment may well involve a cloud of traits, some
more predictive than others and all prone to change, fed by many more



sources of data than we have today, all the while skirting privacy and
discrimination issues. Like medicine, assessment is always personal, which
may run contrary to the institutional desire for low-cost, efficient name-
gathering and assessment guidelines. But the answer to the assessment
question will almost certainly involve more algorithms and more data, not
less.

Opening the door to predictive genetic engineering also ushers in the
issue of behavioral responses. Many sports have struggled to deal with
doping as athletes eager for a competitive edge attempt to artificially bolster
their natural attributes or extend them, despite quite clear risks. Doping is a
way of gaming the system. Meanwhile, given the money involved in sports,
there will always be pressure to dig deeper into the genome and to alter it to
improve performance or to tweak the epigenome. That pressure comes from
both athletes and management. And as sports go, so, too, does the broader
public.

Looming above these questions is the specter of eugenics, which, as
we’ve seen, was viewed for many decades as scientifically rigorous and
socially and ethically responsible. Eugenics, of course, was based on a
deterministic calculus of heritability (without any knowledge of the gene);
nurture was rejected as sentimental twaddle arrayed against the Darwinian
realities of nature; and failure could be eliminated by breeding. Eugenics, in
the nineteenth and the early twentieth centuries, was convinced that it had
answered the assessment question: What are the secrets to success? The
answer was, first, the hierarchy of “races” and, second, the hierarchy of
“class.” Race was static and determinative, not plastic; certain races were
superior to others, and even within races, genetics determined the success or
failure of individuals. These assumptions were not only scientifically
incorrect but sociologically and generationally harmful. And given the tools
of today, genetic fatalism is not only unwise, it is simply untrue.

We now know extraordinarily more about genetics, but as the rapid
progress of the past few decades suggests, an enormous amount remains to
be discovered, one prediction at a time.
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The Plague of Polling

Short of economic or weather forecasting, the best-known—and most
controversial—predictive enterprise is political polling. In the modern
sense, polling has been around since the 1930s, and it has grown into a
sizable and diverse industry. Over that time, it has accumulated a large,
rabid following, particularly during presidential elections, as well as a long
list of critics; polls are both cited constantly and attacked continually for
their failures. As W. Joseph Campbell elucidates in entertaining detail in
Lost in a Gallup: Polling Failure in U.S. Presidential Elections (2020),
some of the most respectable polling organizations in the United States
miscalled presidential races in 1936 (Franklin Roosevelt won in a landslide
over Alf Landon), 1948 (“Dewey Defeats Truman”), 1952 (Dwight
Eisenhower wiped out Adlai Stevenson), 1980 (Ronald Reagan won in a
landslide over Jimmy Carter), 2000 (Bush versus Gore), and 2016 (Donald
Trump upset Hillary Clinton). In 2020, the year Campbell’s book was
published, Trump lost to Joe Biden and claimed massive fraud, once again
stirring controversy over polling and pollsters.

In fact, a panel assembled by the main US trade group for pollsters, the
American Association for Public Opinion Research (AAPOR), described
the polling for the 2020 presidential election as the most inaccurate in 40
years. The 2020 polls overstated Biden’s support by 3.9 percent, well above
the 1.9 percent error in 2016, and the worst since the 6 percent whiff at
Reagan’s victory in 1980.

For all the talk of yet another failure, pollsters did get the top line correct
in 2020: Biden won 306 of 538 electoral votes and received 7 million more
votes than Trump. But that outcome was obscured by the fact that the votes
in a few battleground states that went to Biden were far closer than pollsters
had suggested, and Trump won a higher than anticipated proportion of votes
from some minority groups, such as Latinos. The large number of mail-in
ballots whipsawed both sides, and the pandemic roiled the outcome.



Despite the litany of presidential polling failures described by Campbell,
the public’s appetite for polling has only grown. Polling provides
satisfaction for those consumed by the horse-race aspect of politics. Cable
news dwells on polls years before actual elections. Cognoscenti famously
return again and again to sites that run multiple polls through complex
models, such as Nate Silver’s FiveThirtyEight, which shrewdly packages
results into easily digested percentages, or to poll aggregators that average
major polls, such as RealClearPolitics. Another kind of political junkie
consults the betting markets, which track the changing odds of a candidate’s
potential win or loss. Betting markets, like modeling operators or
aggregators, feed off polling data; they do not run polls. All this surveying,
sampling, number crunching, and projecting is amplified by the media,
which creates complex repercussions, feedback loops of excitement or
despair (depending on the poll numbers), and a tendency to congeal into a
version of the conventional wisdom. Donors queue up or exit depending on
polls, and campaigns make key tactical decisions—where to put resources
or take them away—that hinge on polling data.

Since 1936, when George Gallup’s pioneering poll beat a crude survey by
a popular (if fading) magazine, the Literary Digest, pollsters have claimed
that polling is an objective and scientific endeavor, an amalgam of
probability and statistics and mathematical models. (Gallup pioneered more
than just techniques: he was quick to publicize his polls by syndicating
them in newspapers, and he moved into polling public-policy issues.) Polls
are almost never straightforward reflections of the electorate’s preferences,
however. Because they sample small slices of larger populations, they
require a number of assumptions, each of which may skew results one way
or the other. Despite the criticism polls receive—they have been attacked
from the very beginning—pollsters insist that their increasingly
sophisticated statistical-modeling techniques can predict the behavior of
fluid, complex electorates, resolving key questions such as who will vote
and who will not; how large the ranks of undecideds will be; and whether
potential voters are telling the truth about their preferences or will change
their minds. (The so-called shy Trump voter, who supposedly resisted
publicly admitting to that preference, appears to have been something of a
myth.) These conclusions can be presented in many ways. What does it
really mean that Donald Trump had only a 2 to 11 percent chance of
winning in 2016, depending on the pollster? What does it mean that



telephone survey work requires more and more calls as response rates fall?
What effect does a polarized society have on public opinion when millions
of voters occupy the echo chambers of right-wing or left-wing cable TV,
talk radio, and social media?

In fact, traditional polling probably does a better job than many think, at
least within a 4 to 5 percent margin for error. Nate Silver, who made a name
by picking Obama in 2012—driving the Gallup organization, which picked
Republican challenger Mitt Romney, out of presidential polling—has long
sparred with those who claim polls are wildly off, particularly given the
complexities of the US Electoral College system, which involves 50
elections, not just one. Although Silver is probably right, from a historical
perspective there’s little evidence that polling has grown significantly more
accurate over time. Polling today runs complex models through powerful
computers, but despite some innovations, particularly in techniques for
sampling and poll aggregation, the basic set of ideas driving opinion
surveys has remained much the same.

Over time, survey work has shifted from relatively expensive and slow
in-person interviewing to inexpensive and faster telephone (or internet and
mail) surveys. Telephone polling in particular has seen a dramatic decline in
response rates for a variety of much-speculated-upon reasons: resistance to
aggressive telemarketing, the spread of answering machines and caller ID,
and especially the replacement of traditional landline phones, which have
mostly publicly available numbers, with cellphones, whose numbers are far
more difficult to access. The Pew Research Center reported that phone
response rates dropped from 37 percent in 1997 to 6 percent in 2018, and
that was for general polls, which are less upsetting to people than political
polls.

Other experts blame an increasingly polarized US electorate for the
response problem. For some time, conservatives have appeared to harbor a
greater distaste for polling than liberals. Today, that divide may be even
wider. The AAPOR panel suggested that much of the error could be
attributed to a failure to include voters with less education. The latter were
not shy Trump voters; they were instead voters who refused to take polls.
Polls, by their very nature, represent established opinion, with polling
widely viewed as part of the national “elite” or “liberal” media. Skepticism
about “fake news” is routinely aimed at polling, not least by former



president Trump, who bashed even the polls taken by his ally Fox News.
Even if a pollster managed to get a Trump supporter on a landline phone,
that voter would likely have hung up.

In short, traditional polling has been a predictive enterprise for which
good data have grown more difficult to accumulate and analyze. Although
much of the finger-pointing about presidential polling has a kind of knee-
jerk quality, a mounting body of literature generated from within the polling
world is asking why polling is not better. Natalie Jackson, who oversaw the
Huffington Post polling operation that in 2016 projected that Hillary
Clinton had a 98 percent chance of winning the presidential election, has
argued that too many people think polling is a crystal ball; she believes
polls and aggregators need to do a better job, particularly of “eliminating
bad or redundant data” and ignoring “low-quality polls.” Jackson criticizes
both the emphasis on the horse-race aspect of polling—the predictive
quality—and the public’s failure to recognize that polls are mere snapshots
in time. Silver, who dismissed Trump’s chances of winning in 2016, has
long blamed the media for unrealistic expectations. After the 2020 election,
Silver’s critique on the FiveThirtyEight blog concluded, “Voters and the
media need to recalibrate their expectations around polls—not necessarily
because anything has changed, but because those expectations demanded an
unrealistic level of precision.”

The revealing phrase is “not necessarily because anything has changed.”
Silver is essentially admitting that in polling not much has changed. And,
he says, folks need to get used to it.

The problem with both critiques is that if you eliminate the snapshot (a
constant stream of opinion, resembling the betting markets, is economically
unrealistic for pollsters) and the horse race (the predictive nature of polling)
and succeed in recalibrating the public’s expectations, few will care about
polls, and the industry will wither.

Data and Uncertainty
Is there a better way?

For more than 80 years, pollsters have attempted to capture mass public
opinion by focusing on individuals. Probability and statistics provided the



path toward surveying relatively small and commercially desirable numbers
of people who would accurately mirror the larger population. That was the
achievement of Gallup and his colleagues and rivals.

The problem is not the underlying science; the problem is the data.
Preferences are tabulated through questions, whether in personal interviews
or on the telephone. As we’ve seen, response rates have plunged. But how
trustworthy are the data coming from many participants even if you succeed
in doing interviews? Do respondents tell the truth? Do they have firm
opinions about candidates or issues? (“Undecided” is a big problem for
predictive clarity.) Will they vote? And if they have a tendency not to vote,
will they admit it? Many pollsters still adhere publicly to Gallup’s ideal of
the autonomous, civic-minded voter who carefully digests the news (mostly
from that relic the daily newspaper), weighs choices, and makes rational
decisions—in other words, an efficient market in democratic, well-informed
participation. But that’s an unrealistic idealization, especially of the well-
informed voter who can keep up on current affairs despite the bewildering
variety of sources.

People produce polling data, not natural forces or machines; they are
individuals negotiating complex, shifting environments and social mores,
not traders seeking profits. An election, like many aspects of life, is a
complex decision that has no right or wrong; it’s a decision based on what
the economists John Kay and Mervyn King call “radical uncertainty”—that
is, a future in which voters in the best of all circumstances lack information
and knowledge of available options and potential consequences. Much like
investing, voting is never fully rational. As Kay and King note, people don’t
normally optimize, as economists have claimed since the nineteenth
century; rather, they cope by making incremental and empirical decisions
based on limited information. It’s not surprising that people may change
their minds when pollsters come calling. They may fib about what they’re
thinking (sometimes without realizing it). They can be led astray by
deceptive questions, particularly those that tap into their biases. They are
often not deeply conversant with public affairs—the proverbial low-
information voters—and may not even know who’s running for office.

In 1922, the columnist and public intellectual Walter Lippmann published
an explosive book titled Public Opinion that questioned the very foundation
of democracy: the belief that individuals can rule themselves. Lippmann



was a newspaperman and during World War I a propagandist for the US
government, and he knew how the papers—then the largest source of
information—presented stereotypical “pictures of the world” to “the mass
of absolutely illiterate, . . . feeble minded, grossly neurotic, undernourished,
and frustrated individuals.” That criticism was harsh, but Lippmann was
both an unabashed elitist and a proud realist. His answer to the problem was
technocracy—rule by experts—which he would write about in a later book
and which would triumph with the New Deal and a growing administrative
state.

His condescension aside, Lippmann got a few things right about public
opinion. Sources of information, presented by a fallible media perceiving an
elusive reality while trying to shape news that will attract large numbers of
people on a daily basis, are often suspect. And news consumers are often
distracted or ignorant of public affairs, particularly in a world that’s both
tightly connected and increasingly fragmented (and here we’re not even
getting into social media echo chambers and rampant conspiracy theories).
Following current political matters may well be low on their list of
priorities. Thus, surveying the public’s feelings about candidates or pop
stars or fashion trends provides data but perhaps not, as Silver admits,
precise predictions.

In the run-up to the 2020 election, Jackson, still pondering her errors in
predicting the 2016 result, wrote an essay for Sabato’s Crystal Ball, an
online publication of the University of Virginia’s Center for Politics, that
began: “Humans generally do not like uncertainty. We like to think we can
predict the future.” In two sentences, she manages to lash together the two
themes that are the focus of this book: prediction and risk, which she (like
Frank Knight, John Maynard Keynes, and Kay and King) defines as
uncertainty. She admits that the failure of her polling in 2016 led her to
consider “what went wrong and the impact of my work.” Her conclusion
involved two entwined issues. “The first is that we do not really know how
to measure all the different sources of uncertainty in any given poll,” she
writes. “That’s particularly true of election polls that are trying to survey a
population—the voters in a future election—that does not yet exist.” The
second involves “marketing those attempts to solve it [uncertainty] to the
general public in the form of a seemingly simple probability or odds
statement that the public lacks the tools and context to appropriately
interpret.”



Jackson runs through stubborn uncertainties that plague the polling
process, from changes in telephones to suspect internet polls to the ability to
identify likely voters. The past, she argues, has ceased to be a reliable
guide: “Because both technology and populations are constantly changing,
we might not be able to count on error rates in past elections being
indicative of error rates in future elections.” Thus, she believes that
calculating an accurate measure of uncertainty or risk is growing more, not
less, difficult.

Her final point, however, may be even more important. Efforts to
calculate uncertainty and error rates have made the models increasingly
complex. The public, Jackson notes, doesn’t understand probability, and the
models are “thoroughly inaccessible for those not trained in statistics, no
matter how hard writers try to explain it. I tried, too, but my guess is that
most people probably closed the page when they got to the word
‘Bayesian.’”

What can be done? A vast amount of data about individuals or groups
never finds its way into the models of opinion polling. These data are what
we referred to earlier as “proxy data”—secondary data sources that may
provide clues to what someone might or might not do. Proxy data are
secondary data; they are usable if they show a correlation with key issues,
such as rising cellphone usage or sudden movements of people. It’s like the
attempt to anticipate consumer behavior during the pandemic—pantry
loading, a rising demand for delivery of goods, nuanced shifts in consumer
purchases—that we described in chapter 5. No proxy data can definitively
predict the behavior of any individual at any time. But taken in aggregate,
combined with other data sources, and run through machine-learning
programs, proxy data should, in theory, generate better predictions.

What kind of data are we talking about? Most of it is still being
discovered. We have only scratched the surface of, say, the relation between
consumer choices and behavior: home location, credit rating, car make and
model, education level, church membership, country club attendance, or
gun ownership? Then there’s demographic, census, and financial data. NLP
of social media activity may offer clues to preferences buried among
Facebook likes and Twitter posts. Traditional polling will continue to be a
useful if not determinative component, but there is an expanding universe
of unexplored data sources out there.



A few attempts have been made in this direction, mostly from data
science firms rather than traditional polling organizations. With the rise of
internet fund-raising, political parties and campaigns have built deep data
sets of donors (often small-dollar contributors) and supporters; Trump
rallies were opportunities not just to energize his base but to sell
merchandise and gather data. That has led to the ability to focus on a more
granular analysis of the electorate, not just on national, state, or county
preferences but on towns, neighborhoods, even households and individuals.
Campaigns use some of this type of granular analysis to marshal their
troops, the door knockers and postcard writers, and to spend their money
and time more effectively, particularly on media.

And there’s an additional factor. The line between knowing what
someone may do and getting them to do it has been blurring. The same data
that can produce an accurate survey of preferences can be used in that
political dark art par excellence: messaging.

This is an important point that applies to many predictive enterprises.
The ability to target and understand voters’ deeper motives and patterns can
be used not only to predict their electoral choices but also potentially to
manipulate them. Data, in particular proxy data, can be weaponized. The
data may open the door to self-fulfilling prophecies, which may in turn
produce paradoxical effects, particularly in nations that claim to be
democratic.

Polling as Persuasion
During the 2016 US presidential race, the Trump campaign, which started
with a relatively rudimentary campaign structure, made a giant leap into
predictive messaging. Democrats had pioneered the use of greater voter
data in the 1990s, mostly for fund-raising and targeting. But in 2015 the
Trump campaign signed up a UK-based data firm called Cambridge
Analytica (CA), which marketed more ambitious plans. CA was backed by
Robert Mercer, one of the cofounders of the quantitative investment firm
Renaissance Technologies. In late 2013, Steve Bannon, the publisher and
filmmaker who would soon become Donald Trump’s campaign manager,
persuaded Mercer to provide $15 million to start a political strategy firm,



which would eventually be formed around a team from the UK military
contractor SCL Group. The SCL Group was engaged in selling
communications and information-warfare services to overseas clients,
mostly in the military and intelligence. The company began working on
elections overseas and then on elections in the United States and the United
Kingdom. The relationship between SCL and CA was complex, in part to
allow CA to operate in the United States but keep Mercer’s ownership
quiet. Mercer owned 90 percent of CA and 10 percent of SCL.

CA plunged into the project of trying to understand American society by
analyzing how cultural and psychological tendencies shape larger ideas,
such as politics. In his book on CA, Christopher Wylie, one of the early data
scientists at the firm and later a whistleblower on its efforts, described what
Mercer was after: “To put it crudely, if we could copy everyone’s data
profiles and replicate society in a computer—like the [video]game The Sims
but with real people’s data—we could simulate and forecast what would
happen in society and the market. This seemed to be Mercer’s goal. If we
created this artificial society, we thought we would be on the threshold of
creating one of the most powerful market intelligence tools in the world.
We would be venturing into a new field—cultural finance and trend
forecasting for hedge funds.” The big dream was known as “simulating
society in silico”—capturing every individual in a society in a data set on a
computer chip.

As Wylie discovered, Mercer was less interested in CA’s near-term
commercial possibilities than in understanding the US electorate well
enough to win elections instead of just predicting them. “Mercer looked at
winning elections as a social-engineering problem,” writes Wylie.

To achieve this goal required lots of data. In 2015, CA managed to find
that treasure trove at Facebook, which had some 3 billion users around the
world. The social media giant was a vast repository of personal data, most
of it volunteered by its own users. Facebook routinely allowed outsiders
access to that data for everything from targeting advertising to allowing
outsiders to help the company better understand its own users. As a result,
CA was able to download Facebook files on some 87 million US users—a
fact that, once it became public knowledge, proved to be intensely
embarrassing to Facebook, which initially denied that the data had even
been lifted.



CA was not engaged in traditional polling, though its big US election
project began with a 120-question personality survey in the form of a quiz,
which paid a few dollars to those who filled it out. The survey was not
trying to guess public opinion; it wanted to go deeper. The survey, known as
Ocean, broke participants down along five axes: openness to experience,
conscientiousness, extraversion, agreeableness, and neuroticism. To get
paid, participants had to log onto Facebook and download an app developed
by a Soviet-born Cambridge University academic, Aleksandr Kogan, who
had done academic research on personality profiling. Immediately, the app
downloaded the user’s responses to the survey quiz onto one table, the user
profile onto another, and all the information on the user’s friends onto a
third. The data from a few hundred thousand participants were then used to
build a 100-million-feature data set ensembled by a variety of machine-
learning programs; as we saw in chapter 3, ensembling allows machine-
learning algorithms to work through a variety of hypotheses, iteratively
seeking the most predictive one for the data. One of the architects of that
process told the Guardian in mid-2018 that the ensembling allowed the
group to build 253 algorithms, “which meant there were 253 predictions per
profiled record.” Those predictions involved guesses about political
affiliations, personalities, and lifestyle choices. All of this was perfectly
legal.

Cambridge Analytica then married those profiles to publicly available
voting records in 11 states, which it would use to refine messaging to
individuals on social media. This project was not about prediction but rather
about control. Bannon’s candidate won.

How effective was CA’s Facebook-driven simulation in silico? We don’t
fully know, even now. What we do know is that Trump won by the
narrowest of margins in a handful of swing states, a victory that resulted
from myriad factors. CA employees boasted that their tools “helped Trump
clinch the election” in 2016, and they were caught bragging about it again
in 2018, when it was still in CA’s self-interest to say that. Headlines in the
United States and the United Kingdom repeated the clincher claim while
also endlessly discussing Russian hacking, former FBI chief James
Comey’s late intervention in the campaign, and other factors. In a narrow
win, a clincher might be tiny. Wylie himself does not mince words in
describing what happened: he insists CA used the Facebook data on voters
to create a “psychological warfare mindfuck tool.”



Wylie and Kogan believed they were pioneers of a new science of
“behavioral simulation” that could “bypass individuals’ cognitive defenses
by appealing directly to their emotions, using increasingly segmented and
subgrouped personality type designation and precisely targeted messaging
based on those designations.” Beyond these bold claims, however, no one
really knows how effective these techniques were. CA was not engaged in a
randomized clinical trial; there was no ability to test counterfactuals, such
as what would have happened if CA hadn’t appeared, or to engage in a
direct comparison, as in the NASA identical twins study Chris worked on.
An aide in Senator Ted Cruz’s campaign, which briefly hired CA in the
2015 primaries, told the news and opinion website Gizmodo in 2018 that
one of CA’s political products, a voter-analysis package called Ripon that
was designed to help classify voters by personality types, never actually
worked and was essentially “vaporware.” How illuminating was the Ocean
survey? As the Guardian noted on May 6, 2018, “While this was
undoubtedly a highly sophisticated targeting machine, questions remain
about Cambridge Analytica’s psychometric model. . . . When Kogan gave
evidence to parliament in April [2018], he suggested that it was barely
better than chance at applying the right Ocean scores to individuals.” In
testimony before Congress, quoted in the Guardian on June 19, 2018,
Kogan was even more definitive: “This is science fiction. The data is
entirely ineffective.”

Even if the specific impact is debatable or very small, there are enough
data to show that such techniques can be predictive and powerful enough to
sway people’s views. A study by Chris Sumner and colleagues in July 2018
at the UK-based Online Privacy Foundation showed that they could not
only find subjects for the study based on Facebook’s understanding of their
social profiles but also predict their tendencies, including their
psychological and political leanings. Specifically, they tested whether
people could be swayed to be more authoritarian in their views (based on
comments, likes, and links shared) and support mass surveillance. They said
such psychographic targeting is a “weaponized, artificially intelligent
propaganda machine” that is effective because “you don’t need to move
people’s political dials by much to influence an election, just a couple of
percentage points to the left or right.” In their view, this kind of targeting
was a clear return on marketing investment.



Facebook itself has claimed that such targeting works. In a pioneering set
of experiments in 2014, known as mood-control experiments, Facebook
purposely manipulated user news feeds, which show selected content and
updates from friends. The company worked with sociologists to alter the
feeds so they would be predominately positive or negative in terms of
content. They then observed whether the original recipients shared these
stories, photos, and emotional states with friends, who would then “acquire”
the mood and spread it further. In the paper published by the Proceedings of
the National Academy of Sciences about the study, the researchers explained
that they wanted to find if “emotional states can be transferred to others via
emotional contagion, leading people to experience the same emotions
without their awareness.” Indeed, people’s views could be shaped by these
methods, the researchers concluded.

“The data provide, to our knowledge, some of the first experimental
evidence to support the controversial claims that emotions can spread
throughout a network,” the authors wrote. Even though they framed their
work by saying that “the effect sizes from the manipulations are small,”
they were clear about the possible implications, arguing that “given the
massive scale of social networks such as Facebook, even small effects can
have large aggregated consequences” across billions of users. They even
speculated about possible instances of large-scale changes affecting the
physiological health of entire populations, noting that “the well-documented
connection between emotions and physical well-being suggests the
importance of these findings for public health.”

None of this academic verification of the effect of CA’s methods did the
company any good. Cambridge Analytica, which also worked for the
winning Brexit “leave” campaign in 2016, was eventually shuttered,
brought down not only by charges that it stole the Facebook data but also by
recordings of its CEO, Alexander Nix, boasting about using a variety of less
sophisticated but traditional means, including prostitutes, honey traps, and
bribery, to influence more than 200 elections overseas. But Cambridge
Analytica left its mark. Its use of behavioral research and psychometrics
remains controversial and, like early cases of genetic testing and the use of
autonomous military drones, the subject of considerable debate over big
tech’s policies on data, privacy, surveillance, and how far predictive
technologies can be pushed.



An Attack on Democracy?
Some critics have long viewed polling as an attack on democracy,
potentially poisoning that source of democratic legitimacy, voting. In 1996,
a journalist named Daniel S. Greenberg wrote a column in the Baltimore
Sun that effectively summed up his problem with what he called “the
quadrennial plague of presidential election polling.” Greenberg was hardly
a crank. He was a veteran journalist who had helped transform science
reporting at Science, the journal of the American Association for the
Advancement of Science, and who published the Science & Government
Report. He knew of polling’s prediction failures, but that wasn’t really what
bothered him about what he characterized as an “infestation of polling
moving deeper into the electoral system.” Greenberg’s critique focused on
polling results that “are easily confused with political reality, producing
bandwagon effects, heartening the leaders and disheartening the laggards.”
Polls can make it seem as if an election is over long before Election Day,
undermining “the historic role of campaigns . . . to educate the voters about
candidates and issues.” Polling encourages candidates to alter their
personae or issues based on “voters’ anxieties and fears,” leading to
governance by polling. Worst of all, in Greenberg’s view, were deceptive
push polls, which under the guise of a conventional poll try to influence
voters through deceptive questions, spreading “political poison.” (Push
polls were the primitive predecessors to CA’s efforts.) How can citizens
protect their rights against this insidious force? Easily, wrote Greenberg:
refuse to reply, or lie. After all, small events can create large errors, which
could bring polling down.

A few years after Greenberg’s jeremiad, Kenneth F. Warren, a
professional pollster, spent 317 pages of his book In Defense of Public
Opinion Polling (2001) reviewing and refuting the case against the practice.
His first chapter went straight to the problem: “Why Americans Hate
Polls.” He broke the reasons down into six capacious buckets: polls are un-
American; polls are illegal, if not unconstitutional; polls are undemocratic;
polls invade our privacy; polls are flawed and inaccurate; and polls are
(paradoxically) very accurate and intimidating.

That was two decades ago, an age before social media, smartphones,
mainstream conspiracy theories, and CA’s psychometric techniques.
Warren’s sunny defense of polling, although comprehensive, showed no



appreciation for the darker currents already running through modern
American society. (Many of these currents, such as paranoia and
conspiracies, have, of course, long been part of US history.) In fact, the
anxieties provoked by polling are in their own way predictive. Moreover,
many of those fears emerged in more potent form with the new technologies
and techniques.

To be successful, prediction technologies at a certain point run into
questions over privacy, as we’ve seen in all other predictive applications in
this book. They require data unique to individuals, such as their genome or
(far dicier and less developed) the bubbling contents of their minds and
personalities—what the late nineteenth-century psychologist William James
called “the stream of consciousness.” Prediction of nature is the subject of
that awe-inspiring endeavor known as modern science. We want to know
what the weather will be, how the pandemic will spread, or when the
earthquake will occur. We may doubt that prediction is possible or may
believe that we, like early proponents of smallpox inoculations, are engaged
in a rebellion against God’s will and so resist the advice of science.
Prediction in humans, however, cuts far more deeply and is far more
difficult. To achieve a degree of predictive precision or even to develop a
better quantitative sense of uncertainty and risk requires an understanding
of human impulses and dynamics—and thus raises the specter of control or
manipulation.

Artificial intelligence that can be used for prediction and control has
proved to be a boon for authoritarians—the double-edged sword that AI
critics such as Elon Musk have warned about. In their obsession with
control, authoritarian or totalitarian states are often rigid, lacking the kind of
free-flowing data that a liberal democracy and a free-market economy—the
liberal political economy that the political economist Francis Fukuyama, in
a burst of post–Cold War optimism, once saw as possessing a global
manifest destiny for democracy and capitalism (figure 10.1). For all their
inefficiencies and redundancies, democracies do produce a rich flow of
economic, social, and political signals that provide early warnings of social
tensions and feed flexible and creative individuals, from entrepreneurs to
artists to scientists.



Figure 10.1
Proportion of countries of varying regime types around the world. Data since 1946 show that the
proportions of different regimes (autocratic, democratic, and mixed) have fluctuated but that the
majority of countries are now democratic. Source: Data compiled from Our World in Data,
https://ourworldindata.org/democracy.

Fukuyama’s prediction, of course, hit some bumps, even if the trend did
continue. Liberal democracies no longer seem quite as inevitable as he
suggested in 1992 in The End of History and the Last Man. Indeed, today
we worry about democracies, beginning with elections, which suddenly
seem to be fragile vehicles for capturing the popular will. Imagine a set of
algorithmic tools, diverse and ample proxy data, and powerful machine-
learning programs focused not on manipulation but on learning how to
more accurately predict elections. The system would target such key
questions as who is likely to vote, how big the undecided pool is, and what
deeper psychological factors determine how individuals make decisions.
The use of techniques aimed at manipulating voters would be banned.
Imagine that over time the failures punctuating the history of scientific
polling will fade away, the error rates will shrink, and public confidence
will rise. In effect, as predictive capacity grows, the risk of a prediction
failing will steadily decline until it approaches zero.

Would that be good or bad from a democratic perspective, meaning not
that the “best” candidate necessarily will win an election but that the polls
will accurately mirror the sentiments of voters? How would potential voters
react to a deep belief that the preelection polls are correct? Except in
elections that look extremely close, why would they bother to ponder public



issues or vote, except as a sort of civic gesture or a comforting rite? (Today,
there’s an analogous situation in markets, where increasing numbers of
investors opt to buy indices without applying any effort at research or
analysis.) This is a complaint long made about conventional polls—that
they can make or break candidates needlessly or, more acutely, that calling
elections can deter people from voting in states whose booths are still open.
If the polls become extremely accurate, will millions simply not bother to
vote, believing that the polls aren’t wrong? Falling voter participation tends
to introduce volatility in the results, like a stock with a small float of shares
or like primaries or runoff elections. And what about governing? If
prediction gets so precise, why not govern by poll, going directly to the
people and getting rid of the leeway traditionally afforded to elected
lawmakers to make decisions in a republic governed by representation?

Those questions take us to a very different world, a long way from the
one the US Founding Fathers envisioned—in fact, to a democratic reality
that they (and later Lippmann) feared. Politics and governance are
enterprises engaged in coping with an uncertain future; polls are flickering
flashlights in the dark. Lippmann was essentially right about a democratic
citizenry uninformed on many important matters, in particular economics,
science, and foreign policy. But he may have misjudged the potency of his
solution, which was to find experts to tackle issues that in some cases might
have no clear-cut solutions, that run roughshod over popular conceptions of
fair play or morality, or that require sacrifices by voters. (Think of the
difficulties of doing anything about a relatively straightforward prediction
problem such as climate change.) In a democracy, politics is ambivalent
about prediction: on the one hand worshipping market sages or political
commentators who wear the mantle of prescience (until they’re wrong
enough times) but on the other resisting limitations on free will and
incursions into the individual’s autonomy. Prediction that eliminates risk
and uncertainty may require the kind of personal-data gathering that can
feel like a transgression (and in a few cases already requires payment).
Moreover, the line between prediction and control—no access to data, no
insurance—is often a contested one.

All this raises fewer questions about whether enhanced prediction is
possible than about the effects of the backlash to it. There is no doubt that
improving prediction promises enormous benefits in any number of areas,
shrinking risks that have hung over humanity since prehistory. But it also



brings with it new problems and risks, which we have highlighted
throughout this book. The drive toward better prediction clearly increases
the appetite for more and better data, leading to recent critiques such as Age
of Surveillance Capitalism (2019) by Harvard Business School’s Shoshana
Zuboff, who argued in a New York Times commentary in 2021 that an
“epistemic coup” has been perpetrated by the big tech companies,
particularly with respect to the kind of data that drive many advanced
prediction technologies. Zuboff believes that if democracy is going to
survive, we must regain control over our personal data—“over the right to
know our lives.” Her solution to the “coup” is for democracies to take back
commercial control of data and resist the encroachments of technological
surveillance, much as Daniel Greenberg advised folks weary of pollsters
telling them what to think not to respond to them, or to lie. Zuboff’s
somewhat apocalyptic scenario is an illustration of the kind of feedback
loops that can be set up by transformations as profound as the enhanced
power of prediction.
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Free Will, AI Jobs, and the Ultimate Paradox

The ancient Greek myth of Prometheus is part family drama, part political
allegory, part soap opera. Prometheus was the Titan god of fire and the
nephew of the Titan king Kronos. The Titans favored mankind, who lived in
a golden age without sickness, pain, work—and women. Zeus, the son of
Kronos, eventually turned on his father, forcing Prometheus to choose
between them. Prometheus backed Zeus. With Kronos banished, however,
tensions mounted between the two gods. Prometheus, a patron of mankind,
tricked Zeus, who was more skeptical of men, by allowing them to keep the
best part of animals used in sacrificial rites. Zeus, angry, took back from
men a key technology associated with Prometheus—fire. Prometheus
promptly stole back the fire, hidden in, of all things, a hollow fennel bulb,
and returned it to mankind. Zeus escalated, creating the first woman,
Pandora, with her box of mischief and unhappiness, and made mankind go
to work.

Zeus then ordered Hephaestus, the god of blacksmithing, to chain
Prometheus to a rock at the far edge of the world. Every day, an eagle
arrived to eat his liver, thought to be the source of emotion, but every night
Prometheus’s liver grew back, only to be consumed again the next day. The
half-human son of Zeus, Heracles, eventually killed the eagle and freed
Prometheus after negotiating with Zeus; fire has remained in the human
world ever since.

Like all of Greek mythology, the Prometheus story and its manifold
meanings emerge from works by men: Homer, Hesiod, Aeschylus, even
Plato. In their hands, the myth became a commentary on rebellion and
authority, crime and punishment, hubris (or excessive cleverness) and
tragedy. But in romantic literature many centuries later, Prometheus also
became a symbol of man’s refusal to succumb to the larger order of things
and of the power of science and technology, which seeks to dislodge divine
power. Prometheus became more akin to a cosmic disrupter than to a divine



trickster—a human cry against divine limits. Mary Shelley’s subtitle for her
novel Frankenstein (1818) was, aptly, The Modern Prometheus, referring to
the young scientist Victor Frankenstein, not to his Faustian creation.

For the Greeks, prediction was a divine gift. The name “Prometheus” is
usually translated as “forethought,” though this god does not appear to have
foreseen his own destiny or mankind’s. Even Zeus, who had access to
portents, lacked absolute clarity about the future. Part of his problem with
Prometheus was the latter’s refusal to clue him in on a secret about his own
fate, which, in the end, involved women. What the Prometheus story
illustrates is the complexity of prediction and risk as well as of free will and
determinism. The immortal gods—even Zeus—appeared to act with free
will and agency, yet they understood that there were limits to what they
could know and how far they could go. Zeus would not rule forever.
Uncertainty persisted even on Olympus.

Thinkers have been debating free will and determinism for almost as long
as human foresight has existed. At the heart of the debate are key questions
that resist black-and-white answers: What does it mean to be human? How
do we truly know we are acting freely—that we aren’t really machines?
From those questions emerge religion, philosophy, and a bewildering array
of perspectives, opinions, and beliefs. Today, as we enter the Age of
Prediction, those questions recur, particularly around the meaning and
possibilities of artificial intelligence.

A World of Certainty
For ten chapters, we have been dancing around this subject. In this book,
we set out to describe the near-term development of the Quantasaurus—
looking ahead, predicting 20 or 30 or 50 years into the future. We have
described a world where prediction grows more accurate in almost all
domains. It’s a world of autonomous robots (cars, drones, vacuum cleaners)
and precision medicine. It’s a world of algorithms—billions and billions of
them, each in some sense embodying a prediction—and of relentlessly
rising levels of data. It’s a world that features the possibility of ever more
intimate monitoring of people and things, often in real time. This is a world
that includes a deepening understanding of the genome, the epigenome, and



the microbiome, each of which opens pathways to more accurate diagnosis
and more effective personalized health treatment. It’s a world where the
urge to “improve” the human stock will grow stronger and where the ability
to simulate human beings in silicon (hello, Alexa!) and blur the lines
between human and machine grows apace.

On the other side of the ledger, certain kinds of risk will recede, and in a
generation they may well be forgotten, for good or for ill. Who today
worries about bubonic plague? Not even smallpox inspires the dread once
felt by all parents. Vaccines for new diseases can be developed in a matter
of months instead of in years or decades. To a certain extent, we will come
to trust the opaque logic of the machine, much as we accept the
semiconductors at the heart of our computers and our phones, the
instructions rattled off by our GPS system of choice, air travel,
vaccinations, and robotic surgery even on organs as delicate as the brain
and the heart.

We are not describing a utopia, but rather a reality. Advances in
prediction bring good and bad. As some risks shrink, others will grow:
threats to privacy, economic disruption, epistemic confusion, antiscience
sentiments, mass surveillance, authoritarianism. There is no evidence that
risk overall is about to evaporate. In fact, there are suggestions that, given
the role of Homo sapiens at the center of the prediction-and-risk equation,
the reduction of some risks spawns other, different risks and in some cases
more dangerous, more complex risks—unknown risks, even existential risks
(for example, hyperintelligent AI). These new risks are especially difficult
to handle when they are things we have never confronted, such as more
novel pathogens or autonomous swarms of missile-laden drones. The speed
of change accelerates, which is a class of risk all by itself.

What happens to risk when prediction approaches absolute certainty? For
most predictions, this absolute state of accuracy probably will not occur in
30, 50, or 100 years, if ever, but that’s part of the deceptively strange
relation between prediction and risk that we have been exploring. This is
the Bayesian confidence we all feel, instilled by experience, that flipping
the switch will always turn on the light as we enter a room. What happens
when the same overwhelming certainty appears in medicine, employment,
or warfare?



We can only speculate, not know. Igor, for instance, believes that such a
situation may well create strange effects that could be profoundly
unpredictable. He argues that you can never eliminate all risk or
uncertainty. In Igor’s field of quantitative investing, absolute prediction
would eliminate risk, and asset values would simply move up in straight
lines like interest-bearing risk-free accounts. The asset prices would go up
until the rate of return produced by them equaled the risk-free rate.
Essentially reward would be eliminated.

Eliminating reward is a pretty big risk if you’re an investor or an
entrepreneur. As the economist Frank Knight insisted more than a century
ago, the energy source of entrepreneurial dynamism is uncertainty, which is
a bit of a paradox but for the world at large a profitable one.

Different Views
This takes us to issues that the two of us do not always see eye to eye on.
They’re related to the kind of quantum spookiness that seems to accompany
absolute prediction. People may create algorithms, but those algorithms
have to be processed by powerful computing machines, and as machines
learn to learn, they will grow more and more opaque: unpredictable or at
least unknowable. We are not suggesting a science-fiction dystopia of
machines running amok—at least, not for some time. But predictions will
increasingly pour forth from machines in forms we will often not recognize
or even think much about, and when we do think about them, we may
struggle to untangle their logic. Machines can be as opaque as people,
particularly because machines think in real time as a process, continually
recalculating and rethinking. Earlier, we discussed how central AI will be to
an advancing regime of prediction. Chris embraces the possibility that
machines will one day be able to capture all that makes humans human:
self-awareness, a moral sense, curiosity, forethought, and stewardship of
life. Igor takes a different view: machines are machines; they’re not human.

Igor raises the question of what happens if you achieve 100 percent
predictive accuracy. That’s a state he finds deeply counterintuitive, like
some aspects of quantum mechanics. What if machines monopolize all the
areas that can be predicted? Such a world would leave humans to deal only



with the matters in life that are not predictable, which is a scary place to be.
What would these matters be? Certain aspects of markets, war, politics. In
short, Igor argues, as AI gets more predictable and as we increase the
precision of those predictions, humans will grow less predictable. That’s a
paradox.

What do we mean when we talk about prediction and paradox? We are
not referring to ordinary and anticipated consequences, good or bad. For
decades, many predicted that key technological advances, from genomics to
AI, would create privacy issues for individuals. The question normally
devolved to how the trade-off between privacy and data could be managed,
legislatively or legally, and that effort continues. A paradox is an
unexpected or counterintuitive reaction. One such paradox occurred in the
rise of social media. The pioneers of services such as Facebook, Twitter,
and TikTok, which link large numbers of individuals online, proclaimed
that social media would create communities, enhance sharing, unleash
creativity, and promote democracy. Some of those things did occur, but
there were other, paradoxical effects, such as cat videos and “deep fake”
TikTok videos and metaverses, each with their own realities. Social media
provided a stage for self-promotion, a release from the constraints of more
conventional methods of social interaction, and a kind of epistemic
liberation that led to literal revolutions like the Arab Spring in 2010. Yet
they also created echo chambers, spawning disinformation, polarization,
and at times a kind of psychological state of nature. They nurtured both
democratic uprisings and authoritarian crackdowns. The aggregation of
millions of people’s activities and emergent communities occurred on the
same platform that could deepen and sharpen people’s loneliness.

A paradox is, as Igor often says, spooky. When he speaks of “quantum
effects,” he’s referring to the breakdown in determinism that occurred as
physicists explored the world at increasingly smaller scales. The natural
world that we observe appears to be predominantly deterministic; Isaac
Newton thought so, and Albert Einstein, with less certitude, hoped so. The
law of large numbers smooths out the random, indeterminate wrinkles. In a
deterministic system, one thing always leads to another, and cause and
effect can be quantified. Planets circle suns, gravity brings the book you just
knocked off the table to the floor at a rate you can calculate, and a baseball
hit with enough force leaves the ballpark. We can send a rover to Mars and
land it on a metaphorical Martian dime. But quantum effects are strange;



particles behave in unusual, even self-contradictory ways. Heisenberg’s
uncertainty principle begins with two fundamental questions: Why is it so
hard to measure both the speed and direction of a particle? When one
prediction improves, must another prediction fail?

Let Chance Pour In
Ian Hacking ends his history of the science of probability in the nineteenth
century, The Taming of Chance (1990), with a profile of a unique character,
Charles Sanders Peirce. An American polymath from Cambridge,
Massachusetts, Peirce spent years at the US Coast and Geodetic Survey,
then taught at Johns Hopkins. He is paired with William James and Oliver
Wendell Holmes Jr. in Louis Menand’s The Metaphysical Club (2001), a
book about the development of American pragmatism, probability, and
statistics, and came to reject the popular mechanical physics and
metaphysics of the age. As Hacking writes, “Peirce denied determinism.”
He was among the first to use randomization in experimental design and
became a leading thinker in metrology, the scientific study of measurement
(and, inevitably, of error). He provided a rationale for statistical inference
and was a theorist of logic, language, and signs. He believed in “absolute
chance,” states Hacking. “He opened his eyes and chance poured in
[Hacking’s italics].” But above all, Hacking concludes, “he conceived of a
universe that is irremediably stochastic.”

What does this mean? Peirce’s “answer had many parts, and fitting them
together—in a form consistent with his belief in the existence of a personal
god—became the burden of his life,” Menand writes. “But one part of his
answer was that in a universe in which events are uncertain and perception
is fallible, knowing cannot be a matter of an individual mind ‘mirroring’
reality. Each mind reflects differently—even the same mind reflects
differently at different moments—and in any case reality doesn’t stand still
long enough to be accurately mirrored. Peirce’s conclusion was that
knowledge must therefore be social.”

When we talk about the paradoxical aspects of enhanced prediction—and
100 percent is as enhanced as it gets—we are normally talking about the
prediction’s effect on human behavior, not on photons, electrons, or



protons. The human factor enhances the uncertainty. Moreover, embedded
within a paradox is a hard kernel of unpredictability: risk. Paradox is less
about the prediction itself than about the effect of that prediction on human
behavior and the possibility that the effect may undermine or alter the
conditions that shaped the prediction in the first place.

Machines can already mirror people. Today, language-translation
algorithms such as GPT-3, which can generate human-sounding text, are
darlings of AI because they can translate between languages and match
mannerisms, dialects, and colloquialisms, making it appear as if the
machines grew up in a particular neighborhood—say, South Boston,
Massachusetts, or San Antonio, Texas. They are eerily good at imitating
speech patterns, can be taught to write poems and computer code, and can
even craft sonnets after being fed Shakespeare’s works. Researchers and
programmers in the field, such as Andrej Karpathy, former senior director
of AI at Tesla, first noted these abilities. Karpathy, who builds AI
algorithms and recurrent neural network tools, writes blog posts with titles
such as “The Unreasonable Effectiveness of Recurrent Neural Networks.”
He calls such network tools “magical.”

The word magical suggests something is happening, but we don’t know
what it is. Let’s call it paradoxical. If algorithms and predictions can reach a
state where they are correct 99.99999 percent of the time, they approach an
asymptote of a nearly 0 percent chance of error. Machines can approach
perfection, at least on simple tasks; one can imagine autonomous Uber or
Lyft cars always arriving within one or two minutes or less. Margins of
error for transportation would eventually be reduced to a matter of seconds.
Just such cases have already happened. In 2017, a Tokyo train left the
Minami-Nagareyama station 20 seconds early, at 9:44:20 a.m. instead of the
scheduled 9:44:40; the next day the train company issued an apology for a
“prediction infraction.”

It’s a straightforward prediction to say that more and more companies
will face pressure to be extremely precise in their temporal and logistical
predictions. “Just-in-time” production already exists, and it may get better,
eliminating some risks and creating others, as we’ve seen in a gigantic way
during the COVID-19 pandemic. The breakdown in supply chains as the
world tries to recover from the coronavirus is an unintended consequence of
the pandemic. There is a long history to just-in-time production: the coming



of the railroads, with their timetables and national route networks, set off
not only a communications revolution (beginning with the telegraph) but
also a revolution in accurate timekeeping (which necessitated the division
of the United States into time zones). This continued a century later with
the rise of United Parcel Service, FedEx, and, of course, Amazon.com. The
ability to order online with a click provided the gratification of faster
delivery. Time frames for the delivery of mail, packages, and other material
used to be weeks, days, or the next day (the latter only if you were willing
to pay more for the delivery), but we’re heading to ever-tighter windows. In
2017, Amazon launched a drone-delivery service called Prime Air with a
goal of getting an average “click to delivery” of 15 to 30 minutes. If that
happens, a person will be able to order a new outfit online, shave, take a
shower, and then don new clothes from a box leaning against the front door.

In 2020, Walmart and Quest Diagnostics rolled out a drone-delivery
service for home collection of viral tests for COVID-19, hoping to provide
easier, safer, and faster results to those who thought they might be infected.
Competitors immediately sprang up—Flirtey and Vault—and it is likely that
the drone-delivery race will continue to expand beyond COVID-19.
Eventually, any diagnostic test approved for home collection or home use
could be quickly delivered to a person’s home, including tests for
pathogens, pregnancy, sexually transmitted diseases, and chronic conditions
such as diabetes and AIDS. Companies are beginning to roll out tests for
liquid biopsies, where blood samples can be sequenced to detect a range of
mutations or in some cases methylation patterns; these tests not only offer
clues to cancer resistance but also provide early warnings. Many of them
may end up as home diagnostics.

Given these technologies and the ease of online ordering for tests, the
medical relevance of any molecule in your body could be ascertained within
minutes, which will fundamentally change how people interact with health
care. More of health care will become a service provided at any time and in
any place, and some care is already trending that way. Telehealth systems
slowly emerged in the late 2010s, but by March 2020, as the pandemic was
hitting, they grew 154 percent from the previous year, according to the US
Centers for Disease Control and Prevention. This trend will continue, with
customers expecting instant access to medicine, testing, and medical
information. The risks of medical complications from delays or limited



access to service will presumably shrink; with home testing, the risk of
passing a contagious pathogen between patients heads toward zero.

As risk falls away, behavior will change. Tolerance for failures of
prediction or for “prediction infractions” will decline. People will want
predictions to help in all areas of their lives. They will expect medicines to
work almost 100 percent of the time and new therapies to quickly arrive for
new problems. They will seek meals customized to their own bodies,
genomes, and microbiomes. They will want weather to be accurately
forecast out to two or three weeks, then months, and within a degree or two.
They will demand instant gratification in more areas of life and to be able to
see further and further into the future.

This expectation will affect not only companies. Everyone will find they
need to perform more predictively and within tighter time windows.

Even if predictions are not 100 percent accurate, they may get close
enough to dramatically change the world and how people interact with it.
As predictions improve, the elements of life that cannot be well predicted
will be left for humans to ponder, as Igor asserts. These elements will be the
most elusive, random, and unpredictable aspects of life. And there will
almost certainly be resisters and dropouts from the demands of prediction
and data, who will add a random element to further predictive endeavors.
Some people will resist.

A Question of Human Nature
Absolute prediction can be repressive; the future shrinks to one inevitable
option. Absolute prediction produces a deterministic world in which
humans, in theory, have no agency, no more free will than a billiard ball,
and thus, depending on your perspective, less humanity. Human behavior
becomes mechanistic—that is, like a fully determined machine. By
definition, the algorithm already knows all the choices you will make. At
that point, machines and humans will be, from a philosophical standpoint,
very similar.

There’s no inevitability to this predictive evolution toward the absolute,
however, unless you’re what philosophers refer to as a hard determinist or
someone, like the seventeenth-century Calvinists, who believes humanity



lacks free will and that life is just a very long set of fixed causative effects
known by an omniscient God.

Chris is an optimist. He believes that prediction in many areas will get
dramatically better, driven by advances in AI, but that humankind can avoid
the darkest possibilities. He argues not only that machines can attain level 4
self-awareness and level 5 awareness-of-species self-preservation, but also
that machines driven by such sophisticated AI can be limited in many of the
same ways as humans. Machines can be designed to include elements of
random decision-making that would make them unpredictable, individual,
and imperfect—as ornery, irritable, and erratic as humans. Randomness
could be built in, as could intuition and emotion. (It may well be that
creativity and resourcefulness are products of uncertainty and randomness.)
Of course, even if self-aware machines were to become a reality, they
would fall into the category of “creatures” that can be modeled and
predicted. It is possible that machines might even learn to break rules in a
cyber reenactment of Prometheus’s story or of the biblical parable of
original sin: man, woman, snake, fruit—and out of the garden and off to
work you go. This newfound liberty of unpredictability might even allow
machines to commit crimes with forethought and (somehow) be held
accountable for them. Thinking of that requires some conceptual
gymnastics. Remember that, as noted in chapter 8, the US Defense
Department refuses to allow drones and bots to fight autonomously because
they lack a conscience and moral self-awareness. They cannot feel the pain
of transgression. But what if they could?

Although level 4 or 5 AI might possess the appearance of free will—
determinists argue that humans possess only the illusion of freedom—such
machines may well have advantages over their human creators: they are
faster thinking, hardier, smarter. At that point, why keep the flesh-and-blood
version around?

Of course, philosophers have never agreed on human nature when it
comes to free will and determinism, and there’s no sign today of consensus.
As a result, there remains a question of how to apply free will to highly
determined AI-engineered systems. For now, machines and algorithms
remain exemplars of “hard determinism.” But when AI algorithms get
sophisticated enough to become autonomous, or self-aware, what moral
framework should we provide to them? Can we program them to have soft-



deterministic states, or will their programming condemn them to exist as
code and hard determinists? Or can we program free will? Where do we
draw the line between determinism and free will in machines if we still
struggle to define that line in humans? Should we fill the machines with
tales of Greek myths, like the one about Prometheus, or with the stories of
Buddha, Moses, Abraham, and Jesus? And what would doing that mean?

The algorithms might well become so smart that they approach human-
level ingenuity, where they can think like humans: writing stories, crafting
new concepts, showing emotions such as remorse, procreating, evolving.
This future world of emotive and unpredictable AI would disrupt
humanity’s unique place in the universe as the only beings that we know of
who struggle with such epistemic questions. At the same time, humans
might gain new genuine friends to meet at the pub to gripe about the
universe.

Anticipating Disruption
One expected impact of the Age of Prediction is economic disruption; such
disruptions have clear precedent. Indeed, since the first Industrial
Revolution was unleashed in England, predictions of mass joblessness,
economic dystopia, and mass privation have been common—and some
have come true. But not all. The early nineteenth-century Luddites swept
across the English countryside smashing the textile looms that threatened
them. In the mid-nineteenth century, Karl Marx presented his vision of class
warfare that would force industrial workers into poverty and misery and,
eventually, to revolution, which would result in the withering of the state
and the triumph of the proletariat in a communist paradise of equality and
freedom. Not only did such a utopian communist state fail to emerge
(though revolutions did), but, some argue, the closest example of a workers’
paradise also flickered to life, albeit intermittently, in the United States and
postwar Europe.

Of course, it didn’t last; paradises never do. In fact, theoreticians of
capitalism, from Adam Smith in the eighteenth century to Joseph
Schumpeter in the twentieth, predicted that the combination of a free
market and technological progress would continually destroy old jobs and



create new ones and new wealth. Schumpeter’s “creative destruction” has
been a rallying cry of capitalism since he coined the phrase in his book
Capitalism, Socialism, and Democracy in 1942. But Schumpeter also
foresaw the seeds of destruction in capitalism’s very success.

These tensions exist today, particularly when it comes to AI. Consider the
employment destruction that might occur with the widespread
commercialization of autonomous driving, which is simply the application
of predictive algorithms to vehicles. In the United States alone, there are 3.5
million truck drivers, more than 200,000 taxi drivers, and 750,000 Lyft and
Uber drivers; the latter group appeared in the past decade thanks to another
technology wonder, the mobile internet, and brutally disrupted the taxi
industry. If self-driving cars and trucks were widely deployed, this loss of
roughly 4.5 million jobs would represent unemployment for 3 percent of the
approximately 150 million active workers in the United States.

Of course, car companies insist that such a future will have a wide range
of benefits for former drivers, passengers, and society at large, including
less traffic, faster commutes, and safer rides. If there were fewer accidents,
fewer cars would need to be repaired and maintained. There would be better
air quality and an improved quality of life, especially for city dwellers.
Workers might get back some of their commuting time; they might be able
to spend more time with their families, leading to lower divorce rates,
improved happiness, more sex, and greater well-being for millions of
people.

Or maybe not.
The rosy scenario neglects the broad network effects of such a radically

altered economy. For example, fewer car repairs mean many auto shops
would close (the way electric vehicles have endangered gas stations). The
oil and gas industry, already battered by technological and climate change,
would suffer. Families might have less need for childcare. Factories could
be run by robots, and AI could take over many service tasks and,
increasingly, white-collar jobs.

These kinds of broad social predictions are among the most difficult to
make, particularly given the sheer number of variables and the
unimaginable amount of data required to truly model a society. (Plus, by the
time you’re done with your model, the world has changed and introduced
new risks.) Two inputs are particularly uncertain and protean: technological



progress and human behavior. Marx got a lot right, but he never really could
take into account a continually shifting technological base and, of course,
the frailties of people when it comes to politics and power. He never
envisioned the mass starvation precipitated by Stalin in the Soviet Union or
nearly anything about China and the rise of its Communist Party, including
its move toward capitalism. He did not imagine the genocidal tendencies of
some totalitarian states. He also could not have imagined the rapid increase
of the purchasing power of citizens in modern democracies (figure 11.1).

That remains the case today. In 1995, the American social theorist
Jeremy Rifkin published The End of Work: The Decline of the Global Labor
Force and the Dawn of the Post-market Era, which contended that
worldwide unemployment would increase as information technology
eliminated tens of millions of jobs in manufacturing, agriculture, and
services. Rifkin predicted that “a small elite of corporate managers and
knowledge workers would reap the benefits of the high-tech world
economy” but that “the American middle class would continue to shrink
and the workplace become ever more stressful.”



Figure 11.1
Gross domestic product (GDP) per capita, 1600–2016. The GDP for most countries remained flat
until the mid-1800s and then exponentially increased. Source: Data compiled from the University of
Groningen’s Maddison Project database,
https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2020?
lang=en (CC BY 4.0).

Rifkin was partially right, mostly about trends that were already clear in
1995, such as automation. Deindustrialization had already begun, hollowing
out the industrial Midwest and sending jobs overseas, where labor costs
were lower. Inequality had been increasing in the United States since the
1970s, when the postwar boom ended, and the resulting social and
economic stresses over the following decades appear to have fueled some of
the populism that swept Donald Trump to the presidency. Wages, as
measured by purchasing power, stagnated for the middle and lower classes.
However, families at the ninetieth percentile have seen their inflation-
adjusted wealth increase fivefold, and the wealth of those at the ninety-
ninth percentile has grown sevenfold, according to data from the US



Treasury Department, the Urban Institute, and the US Bureau of Labor
Statistics.

But Rifkin was wrong about worldwide unemployment and a postmarket
era. Much of the loss of industrial jobs in the United States and Europe
came from a liberalized global trading regime, engineered by the United
States, that fed new sectors in the developed world: information technology,
consumer businesses, and a massive service sector. Postindustrial jobs—
jobs held by what Rifkin called “knowledge workers”—boomed, putting a
greater emphasis on education. Consumer consumption dominated growth.
With the exception of an occasional downturn such as the financial crisis of
2008 and the COVID-19 pandemic of 2020, markets grew larger, more
powerful, and more deeply integrated into the global economy than they
had ever been. In fact, the single largest factor driving inequality was a
global network of markets in financial assets such as stocks, bonds, and
commodities. Yet, for all of the stresses, unemployment remained relatively
low; in what’s now known as the emerging markets, there is a vast and
growing middle class around the world—a demographic revolution. This
has been particularly the case across Asia, where growth has exploded: in
China, Taiwan, Singapore, and South Korea, as well as in Indonesia,
Malaysia, and the Philippines. Japan, of course, was already a developed
economic power.

Rifkin also predicted that as jobs in developed economies declined, a
new, third sector of the workforce would grow built on voluntary and
community-based service organizations. He argued that these entities would
create new jobs, possibly with government support, to lead the
reconstruction of inner cities and drive the distribution of social services. To
finance such a society, Rifkin advocated scaling down the military budget,
enacting a value-added tax on “nonessential goods and services” that are
consumed in particular by the ultrawealthy, and redirecting federal and state
funds to provide a “social wage” in lieu of welfare payments to third-sector
workers.

A quarter century after the publication of The End of Work, there are no
real signs that market economies (or military budgets) are in decline, that a
third sector tackling inner cities has developed, or that a value-added tax is
about to come to the United States, though it’s common across Europe. It is
true that a variation on the concept of a social wage, universal basic income



(UBI), has surfaced recently as one way to plug the wealth gap. The idea
behind a UBI has been around for some time now: guarantee everyone at
least a minimum income. It’s the idea behind the social welfare states of
Europe; the free-market hero, University of Chicago economist, and Nobel
Prize winner Milton Friedman once proposed a “negative income tax” for
the poor, which would create an income floor. In the 1980s and 1990s,
Alaska and Norway created large oil funds that would either directly
disburse funds to residents (Alaska) or be used to fund pensions (Norway).
Academic studies on UBI experiments have been conducted in Namibia,
Finland, Canada, and Spain, with mixed results.

A common argument against the UBI is the paradox that people might
not work as much if they aren’t motivated by the threat of unemployment—
a common argument on issues as varied as minimum wages and pandemic
relief. This effect, for all its polemical power, is very hard to quantify, but
there may be some truth to the argument: a Canadian UBI study did show
slight reductions in hours worked for participants, though the reductions
were not spread evenly. In fact, the only two groups that worked
significantly less were new mothers and teenagers. A paper that examined
data from the University of Manitoba economists Derek Hum and Wayne
Simpson showed that new mothers spent this time with their infant children
and that working teenagers put significant additional time into their
schooling. Overall, the “lost work” was only a small percentage of total
work of the previous years and was time arguably spent quite well.

Another critique is that a UBI would stop the natural disruptions and
movements of the workforce, which some economists see as an integral
feature of capitalism. Schumpeter wrote in Capital, Socialism, and
Democracy that “capitalist reality is first and foremost a process of
change.” But there are many sources of change in the modern world, and
arguing that capitalism will wither if the poorest members of society aren’t
forced to work is a stretch. The behavioral forces at work here are turbulent
and fluid. You might call them stochastic.

The Final Paradox



Writing a book about the Age of Prediction requires humility about the
mysteries of this world—and, more important, some sense of the plasticity
of human behavior. People are shape-shifters, like a number of Olympian
gods, including Zeus. We often view humankind as chained to a rock, like
Prometheus, our fetters forged by evolution, material self-interest, poverty,
ill health, and bad luck. In fact, what’s most striking about people is their
ability to adjust, change, evolve, remember, and forget. Prometheus does
not always appear to be a paragon of virtue, but he shares something with
humankind—not just the ember of fire in the fennel bulb but also the
cleverness, the slipperiness, the trickery. One can imagine he was glib. And
he was, of course, associated with that very human trait forethought, which,
as we have seen here, makes its own demands on behavioral change. Why,
given that forethought, did he play that trick on Zeus? Was it because he felt
an impulse to resist the determinism of the all-powerful and create a space
for his own free will, even if he could envision the consequences? Or was
he passing on that free will to mortal men?

The Age of Prediction has been coming for decades, even centuries, and
it is now upon us. Our Quantasaurus is growing up. And we are just
beginning to grasp the challenges ahead. We are not gods, but we possess
increasingly powerful tools of prediction, unprecedented genetic
engineering technologies, and ever-increasing computational power that is
impacting almost all facets of life and society.

Here’s our final paradox to ponder. Perhaps the most profoundly difficult
predictive task in this world is the prediction of prediction. How will we
know that our predictive capacity is truly predictive or simply the
elimination of all other paths to the future? To know, we need to continually
test, in the Bayesian sense, all our results and predictions, and closely
follow the changing risks. The possibilities are amazing, but so are the
risks. The fire of prediction cannot be snuffed out now, nor should it be.
The risk of being challenged and charred by our algorithms, while
dangerous, is worth the illuminated future.



Afterword: The Future of the Universe

Texas is too cold. California is too hot. The Gulf Coast is too wet. The
Southwest is too dry. Greenland is melting; so is Antarctica. A vast amount
of data is suggesting that the planet is getting warmer. Carbon dioxide
(CO2) levels and global temperatures are rising, which is worrisome, given
that CO2 is the greenhouse gas that keeps Venus at an average temperature
of 837 degrees Fahrenheit, compared with Earth’s balmy 59-degree
average. Worse yet, the impact of the rise in global temperature lags behind
total CO2 levels, and downstream effects on sea levels are years behind the
temperature rise. This means the risks we measure today will not be felt for
years to come.

Climate change encompasses much of the relation between prediction
and risk that we have explored in this book. It is a physical change caused
by human behavior. That’s the bad news. That’s also the good news: we can
understand the physical mechanisms of climate change. (Imagine how
terrifying it would be if we had no clue about why the climate was changing
or no models.) Although the climate is a planetary-scale system and is
obviously complex, we can still model it—and predict it. We can roughly
quantify the risk. Humanity can take steps to identify, restrain, even roll
back that risk. New technologies can be mobilized; behaviors can change.

But, of course, that’s the rub. The consensus on the science of climate
change is strong; the public perception is less so. Individuals, groups, and
nations have their own self-interests and perceive the risk differently;
reactions are subjective, relative, changeable, and variable according to
time horizons. Moreover, the issue is not just a matter of diverging self-
interests. As with the COVID-19 pandemic and vaccinations, the consensus
creates a backlash among those who have come, for whatever reason, to
distrust science or (more generally) expertise. As a result, the effort to
combat climate change is complex and shifting; the uncertainty is greater
than if it were merely a scientific problem.



Many threads make up this giant snarl: political, regulatory, and market
responses; technological innovations; varying perceptions about
sustainability. But the shift to electric vehicles has begun. There are active
projects to capture, modify, or reprocess carbon so that we can control
global levels of CO2 and other gases. The US Department of Energy now
supports several Clean Energy Hubs, such as Nuclear Energy Modeling and
Simulation, Energy Storage Research, and the Critical Materials Institute.
Funding from that department has propelled work by many scientists,
including Harvard University’s Pamela Silver and Daniel G. Nocera, who in
2011 made a “bionic leaf” that converted sunlight five to ten times more
efficiently than plants. Their leaf was a wafer of silicon-and-solid substrates
that when exposed to sunlight and water broke the water down into
hydrogen and oxygen. Later work combined the bionic leaf with genetically
engineered bacteria that can take hydrogen from the bionic leaf and create
liquid fuel, such as isobutanol or potent ammonium nitrate fertilizer.

Science and technology can dramatically reshape the contours of
prediction and risk. That’s reason for hope because the historical reality is
sobering. Every time Earth’s climate has changed by 50 to 100 degrees
Fahrenheit over the past 500 million years, things have not gone well. There
have been five mass extinctions, all of them caused by changes in
temperature, geochemistry, and global climate. The extinctions were
devastating to life on Earth, from the Ordovician-Silurian (85 percent of
species lost 440 million years ago) to the Devonian (75 percent lost 365
million years ago), the Permian-Triassic (96 percent lost 260 million years
ago), the Triassic-Jurassic (80 percent lost 200 million years ago), and the
Cretaceous-Paleogene (76 percent lost, including the dinosaurs, 65 million
years ago). Of course, humans weren’t around to initiate or remediate these
extinctions. There was no species that could foresee the need to act in order
to save itself, until now.

Predicting the end of the universe is far more challenging than analyzing
and fixing climate change. Astronomical models depend on factors that are
difficult, even impossible, to measure, such as the amount and stability of
dark matter and dark energy as well as the shape and structure of a universe
that will exist trillions of years in the future—well beyond the ambit of this
book. In contrast, we have focused here on predictive models, data, and



calculations that are trying to push out the practical prediction horizon by
mere days or months or years.

The cosmologists are after bigger game.
Predictions about the demise of the universe have two major weaknesses.

First, too many unknowns and deep mysteries remain. Second, the scale of
space–time is bewilderingly immense, which means very small errors may
lead to very large errors over long time frames. Still, over the past few
centuries, our knowledge of our universe has risen exponentially. Evidence
of an expanding universe goes back a century, the notion of a Big Bang to
the mid-twentieth century. Stephen Hawking’s work on black holes came in
the 1970s; deep-space telescopes such as Hubble and Webb are even now
peering more deeply into the universe’s past. But scientific progress has
rarely proceeded in a straight, ascending line. Will humankind continue to
advance its understanding of the mechanisms of our universe? Is there a
point where we can learn no more—a kind of analogous situation to perfect
predictability and zero risk? Are there limitations to knowing everything
about how this universe works? For that matter, are there other universes?

Today, astronomers predict that our solar system has a finite life span.
The planets’ orbits, their moons, and the trajectory of celestial bodies are,
given enough time, transient and decaying.

The current science tells us that the solar system’s demise will start
slowly. In some 50,000 years, the length of the day will get longer due to
the moon “pulling” on Earth and decelerating its rotation. Within a few
million years, most of today’s constellations will be unrecognizable, and
Cupid and Belinda, two moons of Uranus, will likely collide, creating
debris and new ring material for that planet. Current astronomical models
show that the sun will increase its luminosity by 1 percent every 100
million years. By that time, most of Earth will resemble a desert. In about
180 million years, Earth’s rotation will have slowed enough that a day will
become 25 hours long. In 280 million years, plate tectonics will have driven
the northern coast of California into Alaska. In 600 million years, the moon
will have moved far enough from Earth that solar eclipses will no longer
occur. In 700 million years, increasing solar luminosity will accelerate the
weathering of surface rocks, and more CO2 will be trapped as carbonate.
More water will evaporate from Earth’s surface, and plate tectonics will
eventually slow, then stop. Most volcanic activity will cease.



Many animals will die off, and the fall in CO2 levels will kill plants that
use C3 photosynthesis—99 percent of known plant species. This will leave
only C4 plants, such as maize, which can function with less water and fewer
nutrients. With so much plant life eliminated, the oxygen level will begin to
fall in the atmosphere, likely eliminating the ozone layer that protects most
life from ultraviolet radiation.

In 800 million years, CO2 levels will drop to a level where C4 plants can
no longer survive. Without plant life cycling carbon and oxygen in the
atmosphere, most multicellular life will cease to exist. In their seminal book
The Life and Death of Planet Earth (2003), Peter Ward and Donald
Brownlee project that some animal life may survive in the oceans, but even
that will be difficult. Most life on the planet will not survive past 800
million years.

In a billion years, conditions will get even worse. The sun will grow
about 10 percent brighter, which will drive an increase in heat on Earth. The
oceans, air, and planet will absorb this heat and light, possibly triggering a
greenhouse effect that could make future Earth resemble the hot hellscape
of today’s Venus.

The predictive task gets tougher as the time frame expands. In about 3
billion years, the sun will increase in brightness by 35 percent, which will
be enough to cause the oceans to boil, whatever is left of the ice caps to
melt, and significant amounts of water vapor to float into space. Life will be
difficult to maintain on Earth’s surface, but Mars will suddenly be more
temperate. Around this time, the magnetic fields that protect Earth will
likely disappear as the shifting iron inside the planet’s core stops moving.

The sun will turn into a red giant in about 5 billion years. By then,
everything left on Earth will be charred to a cinder. Earth’s orbit around the
sun will drift outward, but even with the expanded radius, the planet will
likely be very close to the outer radius of the red giant sun or at the sun’s
surface. At that time, the planet will be reduced to a lava sphere with
floating icebergs of iron and other dense matter, drifting in a bath that’s
3,866 degrees Fahrenheit.

A new solar system will effectively emerge. The frigid climate of
Saturn’s largest moon, Titan, will become more akin to Martian conditions
as they are in the twenty-first century. This means that even if we have not
been able to escape the solar system in 5 billion years, we might get another



few hundred million or even a billion years to work things out in the outer
reaches of the solar system. But even that respite won’t last forever. In
about 7 billion years, Mars and Earth will become tidally locked to the sun,
with one side of each planet permanently facing the light. The sun will keep
growing, reaching its maximum size around 8 billion years from now,
almost certainly engulfing the inner planets (Mercury, Venus, Earth, and
likely Mars). This will be the sun’s last big act, and if any humans have not
made it out of the solar system by then, they will need to be living on the
outer planets or their moons to survive.

At 10 billion years, predictions get grimmer. The sun will cool, shriveling
up like a raisin into a white dwarf. The solar system will grow colder, with
almost no heat and very little light. The outer planets will effectively have
no light in their skies, and possibly only Mars will remain of the inner
planets.

In about 100 billion years, assuming the same speed of the accelerating
expansion of the universe, other galaxies will no longer be visible. This is
called the “cosmic light horizon”: the distances between galaxies will be so
great that the time it takes for light to go from one galaxy to another will be
longer than the estimated age of the universe.

In 150 billion years, the background radiation of the expanding universe
will drop to about 0.3 Kelvin. In 400 billion to 500 billion years, most other
stars will become invisible from any perspective. In a trillion years, new
stars will cease to form. Gas clouds that now serve as star nurseries will be
too far apart, and with stars hurtling away from one another, this stage will
see the birth of the last star.

The end of the universe could occur in several ways. First, the expanding
universe could end in a Big Freeze, an eventuality that kept Henry Adams
up at night in the early twentieth century, meditating on the second law of
thermodynamics. As planets drift apart, cells, molecules, atoms, and
eventually even electrons and subatomic particles would be too far away
from one another to interact. Unless there were a change in the universe’s
structure, the ever-expanding universe would get very, very cold,
approaching the lowest possible temperature, 0 degrees Kelvin. Any
remaining stars would run out of fuel and stop emitting energy. After
trillions of years, the only remaining objects would be black holes, and even
they wouldn’t last forever. Even protons would decay because their half-life



is predicted to be 8.2 × 1033 years. The universe would be dominated by
dark matter, electrons, and positrons. All activity would cease, with any
matter almost never encountering any other matter, antimatter, or anything
at all. The universe would settle into random, low-energy meaninglessness
—entropy, the blackest uncertainty.

There is a more hopeful alternative to death by expansion, however: the
Big Crunch, in which dark matter, dark energy, and visible matter possess
enough density to stop expanding and begin consolidating again. This
would take a while. Over trillions of years, as matter coalesces into a
singularity, a new Big Bang could occur.

Unless, of course, we’re missing something. All this cosmological
speculation takes us beyond science. Is there something outside the visible
universe? Is there a meaning to all this—a purpose, a plan, a God? These
questions verge on the philosophical or theological, just as mastering a
specific prediction does not tell us much about human free will and
determinism. The answers are unlikely to be revealed by predictive
technologies, which are less about meaning and more about mechanism.
Meanwhile, we keep acquiring new data and tools not just for the
predictions we seek to make today but for those we may need in years
ahead. The ever-growing Quantasaurus is a mirror of what humans have
always done, applying to the future our knowledge of the past. As more
data accumulate, predictions should improve, and eventually there may
even be enough data to reliably predict new means of energy production or
new methods of ensuring lasting peace. At least, that’s the hope.

The relentless emergence of prediction in all areas of life, science, and
finance will broadly reduce many forms of risk, and thus encourage some,
as we’ve seen, to embrace greater risk. People will live longer, and they
should have more productive and healthier lives. The same predictive
algorithms that help us live longer and build better financial models could
help us get to another world, like Mars, or to another solar system to live in
a different sun’s light, perhaps chauffeured by an AI-driven brain. The
future is open to many possibilities, many of which we can hardly imagine,
much less predict.
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