

XML

This page intentionally left blank.

Emerging Business Technology Series

XML
Solomon H. Simon, Ph.D.

McGraw-Hill
New York Chicago San Francisco Lisbon London

Madrid Mexico City Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Copyright © 2001 by Solomon H. Simon. All rights reserved. Manufactured in the United States of America. Except as permitted under
the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-138127-9

The material in this eBook also appears in the print version of this title: 0-07-137188-5

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071381279

 abc
McGraw-Hill

For Gus and Naomi Simon,
Thanks for your patience with my Chemistry,

Quanta, and other things Relative.

This page intentionally left blank.

Foreword xiii
Preface xvii
Acknowledgments xix
Introduction xxi

Chapter 1—Executive Summary 1

Introduction 1
Overview 2
What Is a Markup Language? 4
Rationale for XML 4
Contrasts—XML, SGML, HTML 5
DTDs 6
Schemas 7
XML Does Not Replace SGML or HTML 7
Key XML Technologies 10
Corporate Support for XML 13
Why Managers Are Interested in XML 13
Some of the Risks of XML 14
DTD Repositories and Standards 15
Exploiting XML 16

vii

Contents

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

Leveraging XML DTDs 19
Peer-to-Peer Processing 20
Conclusion 21

Chapter 2—XML Schemas and DTDs 23

Introduction 23
What Is a Schema? 23
Attributes 26
Datatypes 26
What Is a Namespace? 27
Differences between Schemas and DTDs 28
Why Use Schemas? 29
Guidelines and Best Practices 31
Transforming Schema Meta-Data 33
Why Use DTDs? 35
What Is the Function of a DTD? 35
Defining Rules 36
Defining Meta-Data 36
DTD Standards Debate 40

Chapter 3—XML Documents 42

Introduction 42
Reasons for Building XML Documents 44
Taxonomies 45
XML Document Design—Deciphered, Delineated, and Demystified 46
The Simplicity of Modular Design 47
Data vs. Documents 49
Customer Example 50
Dual Functions 51
Hierarchical Structure 52
Made for Man and Machine 53
Security 54
How Does XML Provide More Meaningful Markup? 55
Content 56
XML Structure and Grammar 57
XML Document Size 59
Saving Some Work 61
XML Tools 61
XML Trees 62

viii Contents

Chapter 4—XML Style Sheets (XSLs) and
Transformations (XSLTs) 63

Introduction 63
Formatting Capability 64
Repurposing XML Documents 65
XSLT 67
XSLT Foundations 69
Conclusion 75

Chapter 5—XML Linking Language (XLink) 76

Introduction 76
XLink Linking Classifications 77
Simple Links 78
Extended Links 78
XPointers 79
XPath 80
XML Infoset 81
Implementing XLink: Speculation 81
Content Is King 83
Implementing the XML Linking Language 85

Chapter 6—XML Applications 87

General Trends 87
General Markup Language Applications 92
XML Browsers 103
XML and HTML Data Contrasts 104

Chapter 7—XML for Databases and EDI 108

Introduction 108
Storing XML in Databases 109
Document Decomposition 110
Exchanging XML Data 114
Data Transfer Format 114
Using Legacy Data 114
Data Warehouse 115
Data, Information, Knowledge 119
Data Mining 120
EDI 121
XML/EDI Foundation 123
XML/EDI Models 124
Advantages of the XML/EDI Approach 125

Contents ix

XML/EDI Document Management 126
Intelligent Agents 126
XML/EDI Connects to EDI 127
Risks 127
XML Document Design Architecture 130

Chapter 8—B2B Exchange 132

Introduction 132
Strategic Advantages of E-Business 133
The Makings of a Successful B2B Implementation 135
Advertising Impact 139
Benefits of B2B E-Commerce 139
B2B Defined 140
Three Models 141
The Payoff 141
B2B Design Requirements 141
Developing the XML Documents 142
Processing XML 142
Storing the XML Data 143
Protect XML Documents from Manual Modifications 144
B2B E-Commerce Examples 144
The Alliance 145
Antitrust Red Flags 145
Linking Rivals 147
How Can I Benefit? 148
B2B Opportunities 150

Chapter 9—XML Strategic Plan 153

Introduction 153
Customer Focused Strategy 153
Leveraging XML Features 155
Creating Customer Satisfaction 155
Extending New Opportunities 156
Discovering Viable Core Competencies 156
Customer-Motivated Creativity 157
Value-Added Response 158
The Business Model 158
Anticipating Change 160
Migration to New Services 160
The Plan 162
XML Vocabulary Development 166

x Contents

E-Business Decisions 167
Outline of an Example XML Document Implementation Plan 168

Chapter 10—Concerns, Myths, and Hype 172

Introduction 172
Move Quickly 172
Educate the Executives 173
Avoid the Wait-and-See Approach 173
Best Foot Forward 174
Changing Standards 174
Security Concerns 174
Legal Issues 175
Financial Planning 175
Adequate Infrastructure 176
Interoperability Concerns 176
Transforming HTML 177
Unstable DTD Standards 178
Even One Can Make a Difference 178
Sloppy HTML Coders 179
Industry Standards 179
Splintering 180
International Trade Agreements 181
Overreaction? 181
Semantic Web 182
Start Over? 183
Fighting Apathy and Ignorance 183
Summary of XML Standards Issues 184

Chapter 11—Summary of Industry XML Projects 187

Introduction 187
Automotive 188
Chemical 189
Computer 191
Education 193
Financial 194
Insurance Firms 197
News Media 198
Telecommunications 199
USENET 199
Microsoft 200
Microsoft.NET Changes for Applications 204

Contents xi

The Risks of .NET 204
Simple Object Access Protocol (SOAP) 205

Chapter 12—The Outlook for XML 207

Introduction 207
Universal Data Format 207
XML-Based Data Warehouses 208
Semantic Web 208
Corporate Backing: IBM, Oracle, Microsoft 209
Forecast for the Next Decade 210
Faster Connections 210
B2B E-Business 210
International Trade 210
Convergence 210
Peer-to-Peer Computing 211
Wireless Internet 211
Ubiquitous Web Servers 212
Emerging Specifications 212
Opportunities 214
Semantic Web: Machine-Understandable Information 215

Chapter 13—Summary and Conclusion 219

Introduction 219
How to Apply XML 220
Planning an XML Implementation 221
Leveraging Collaboration 222
Business Potential 222
Polylingual Potential 223
Information Reuse 223
Moving to XML 224
Omnimorphic Possibilities 229

Appendix: WC3 Addressses 233
Glossary 235
Index 249

xii Contents

XML is rapidly becoming an integral part of standard IT infrastructure.
Most of us agree that no IT executive or IT-focused business executive can
afford to ignore this fact. Even so, too few of them take the time to under-
stand XML’s business value; instead, they perceive XML as another tech-
nology solution to a technology problem. Nothing could be less true: As
Solomon Simon intones in these pages, “Business on the Internet is not
about a technology model; business on the Internet, as with business any-
where, is about a business model.” And few technologies give rise to more
interesting e-business models than XML.

Taking a historical view can be instructive. Manuel Castells, a scholar at
the University of California at Berkeley, has argued that the new informa-
tion economy is largely a product of two historic trends: (1) the recently
emergent “post-Fordism” model of supply chain execution—one that rests
on the principles of flexible and just-in-time manufacturing, a la Dell
Computer—and (2) the development of IT networks. The intersection of
these trends is giving rise, according to Castells, to a new organizational
form called the “network enterprise,” whose sole purpose is to process
information more efficiently than the competition.

In 2001, evidence of these trends abounds. Many companies are building
(or have already built) messaging transport pathways among their previ-
ously monolithic enterprise applications to enable a unified view of corpo-
rate information. The most enterprising ones are also building new path-

xiii

Foreword

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

ways among each other, pathways that obsolete rigid, old-style EDI con-
nections by enabling open, dynamic exchange of business information.
Furthermore, B2B trading exchanges, which exploded in number in 2000
(although most will surely fail for business execution, not technology, rea-
sons), are enabling market transparency that elevates in importance infor-
mation about goods over that of the goods themselves—more grist for the
network enterprise’s mill.

These developments have a common enabler: the presence of an eXtensi-
ble Markup Language (XML) layer. As Solomon Simon writes in these
pages, “XML serves as a catalyst for the integration of data from legacy
systems, current systems, and future sources by creating a universal data
transfer format.”

XML developers can now integrate data and structure in an extremely
simple way; the original XML spec, published by the World Wide Web
Consortium in 1996, is fewer than 40 pages long. But perhaps more impor-
tant, because XML is, as Simon describes it, an “omnimorphic” markup
language—it provides a syntax for creating an infinite number of data tags,
not a limited number of tags themselves—developers can add context to
business information exchange. For example, the Covisint B2B collabora-
tion hub, which Ford, GM, DaimlerChrysler, and Renault/Nissan estab-
lished last year to consolidate worldwide automotive industry procurement,
development, and supply chain processes (more than 30,000 participants),
will be held together by a membrane of agreed-upon XML tags that
describe parts, transactions, and services. No supplier need build brittle, ad
hoc EDI pathways to multiple partners again: one data set will fit all.

The Covisint example is a useful one because it brings several interesting
issues to light. First of all, as Simon describes, it underscores how “trading
partners must come to some consensus about what XML standards to use.”
Indeed, as VerticalNet CTO David Ritter wrote in Intelligent Enterprise in
1999 (“XML: The Missing Link for B2B E-Commerce,” May 11), “Even
with all [its] advantages, basic XML isn’t enough XML immediately
begs for the next layer of standards.” Scores of horizontal and vertical syn-
tax standards are already in development by various vendors, standards
bodies, and consortia; thus, independent efforts to deploy XML
“microschemas” are likely to be fruitless. As Simon explains, “If a corpo-
ration embraces XML technology, but does so blindly, it may discover less
functionality, not more.” Thus, it’s extremely important to understand

xiv Foreword

business requirements—particularly those involving extraenterprise collab-
oration—well ahead of time.

Second, as I touched on previously, the market transparency facilitated
by XML-based data exchange is already making transaction information a
commodity. In the future, many successful trading exchanges may well
attribute their survival to the ability to provide value-added services, such
as selling market information and analytic reports to “premium” partici-
pants.

In this book, Solomon Simon carefully explains the technical subtleties of
XML in a clear business context, providing a valuable resource for IT spe-
cialists and business managers alike. Read on; I’m confident you’ll get the
synthesis of technical and business viewpoints that is so important for all of
us to have these days.

Justin Kestelyn
Editor in Chief
Intelligent Enterprise

Foreword xv

This page intentionally left blank.

Some of the difficulties that managers and executives have with new tech-
nologies, such as XML (eXtensible Markup Language), are separating out
the hype, digging through the technical terms, and pulling out the pearls of
profitable wisdom. XML is the new standard for data and information
transactions, it is the foundation for B2B e-commerce, and it is as pervasive
as the World Wide Web.

My intention with this book is to explain the highly technical XML lan-
guage in business terms, so that an information technology manager, vice
president, and chief technical officer can understand and make decisions
that lead to profitable use. In contrast to most XML books on the market,
this book focuses on the business reasons for XML rather than the techni-
cal reasons.

Developers who have experience with XML may find that some of the
discussions in this book will help them to explain its potential business
advantages to their management. Compared to the amazing palette provid-
ed by XML, HTML (HyperText Markup Language) is paint-by-numbers.
With a flexibility that is comparable to Post-it Notes, XML allows devel-
opers to label any data or information, providing a context that is comput-
er-readable. In contrast, HTML-based data and its related Web page infor-
mation provide no more meaning to the computer than the string
“#%$^&**&$#@%” provides to the reader of this book.

In addition to discussions of many of the uses of XML, this book offers
suggestions for design, development, and implementation of an XML cor-

xvii

Preface

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

porate strategy. This book also serves as an executive handbook of guide-
lines for using XML to support the corporate business strategies and objec-
tives.

With such powerhouses as Ford, GE, GM, IBM, and Microsoft betting
billions of dollars on XML, this new standard is clearly sparking a forest
fire of change, burning through the business world. While some companies
will be reduced to ashes, some companies, such as Ford, expect to rise up
from the ashes and ascend to new heights as e-Ford. Other companies, like
Microsoft, plan for similar transformations based on XML and the Web.

The core of XML is the XML document. XML has a set of strict rules,
and an XML document has a rigorous, hierarchical tree structure. These
rules and structures form a solid foundation for constructing data and infor-
mation structures with near limitless flexibility. This book provides just a
small taste of the XML banquet.

xviii Preface

This book was built from contributions and the support of Max Tunnicliff,
Mark Beckwith, R. Anne Hendrick, JD Davidson, Sharon S. Riley, Missy
Kruger, Michelle Williams, Gillian Grady, Nancy Warner, Justin Kestelyn,
Janice Race, and George Magillicuty. I appreciate the efforts and encour-
agement that each of you provided.

xix

Acknowledgments

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

This page intentionally left blank.

The Internet and the World Wide Web form a collection of many subcompo-
nents that provide overlapping information and services. Increasing market
demand to supply ever-increasing capabilities fuels the acceleration of techno-
logical innovation. Industry leaders are left behind as yesterday’s laggards if they
cannot follow Moore’s Law (see Figure I.1) to adapt, innovate, and change on
a rapid cycle of 18 months or faster. Due to the fierce competition, many com-
panies market laboratory prototypes, regardless of whether they are truly mar-
ketable products, within that 18-month cycle. One of the innovations driving
these business changes is XML (eXtensible Markup Language).

FIGURE I.1 Moore’s Law states that the number of transistors on a microprocessor will
double every 18 months. Another way of interpreting Moore’s Law is that technology and
processing power will double about every two years.

1990 1992 1994 1996 1998 2000

N
u

m
b

er
 o

f
T

ra
n

si
st

o
rs

0.5M

1M

2M

4M

8M

16M
Moore’s Law

xxi

Introduction

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

This book addresses XML from a business perspective. Although XML is
a relatively new Internet technology, like many other advances on the Web,
XML will soon be as commonplace as Java or HTML (HyperText Markup
Language). At conferences throughout the world, one of the most sought
after information and courses are about profitable applications of XML.
Managers and executives recognize that XML provides a mechanism for
storing and identifying information in innovative and useful ways.

B2B E-commerce

In fact, XML is the spark that lit the forest fire of business-to-business (B2B)
Web exchanges. The “Big Three” automakers, Ford, General Motors, and
DaimlerChrysler, announced their $250 billion Web-based supply chain collab-
oration in February 2000. That announcement was the catalyst for subsequent
news releases describing about 20, multibillion dollar B2B collaborations in
other industries, as well as nearly 1,000 smaller efforts. One detail that was
missing from the announcement is that most B2B exchanges are based on and
enabled by XML. The XML B2B e-commerce server is the backbone of the
entire process. The companies that leverage the benefits of XML in the supply
chain have the potential to win big by saving as much as 90 percent in pro-
curement costs, as indicated in Figure I.2. A billion dollars here, a billion dol-
lars there, with this kind of financial impact, can result in savings of hundreds
of billions of dollars. So clearly XML is an important, strategic business enabler.

FIGURE I.2 Procurement costs will decrease by as much as 90 percent by using XML to
automate the processes and paperwork that are used to transfer information among the
various corporations.

Traditional XML Based

R
el

at
iv

e
S

ca
le

Procurement Costs

90% Savings

xxii Introduction

According to some analysts, the B2B market may represent a market that
is ten times the size of the business-to-consumer (B2C) market. The emer-
gence of the Web as a predominant force in business results in many tradi-
tional brick and mortar Fortune 500 companies reexamining their business
models. Bastions of industry, such as General Motors and IBM, are revamp-
ing their business models to enter the e-business arena. Oracle is a leader in
XML development toward B2B exchanges. More than 1000 companies par-
ticipate in its Oracle Exchange, which focuses on the automation of the pro-
curement cycle and the integration of supply chain management among col-
laborators and vendors. The very interesting outcome is that these old dogs
are showing the new pups, the dot coms, a new trick or two.

This possible reversal results from an underlying misconception. Business
on the Internet is not about a technology model; business on the Internet,
as with business anywhere, is about a business model. While the dot coms
focus on improving their technology, the older companies merely modify
their already very successful business models to include the changes needed
to compete in the e-business.

From the viewpoint of these corporate behemoths, the Web is simply
another opportunity to improve their value chains, increase efficiency,
reduce costs, and, thereby, increase productivity and ultimately increase
profits. Clearly, those companies who cannot transform themselves will be
overtaken, but in the evolution of business that is always true. In the
Darwinian model, the fittest survives. Those businesses who can find a
niche or who can adapt and make a buck will survive. But survival is not
about being the best company to work for or about producing the best
product (unfortunately). Survival and growth are based on making a profit
by adapting to supply what the market demands.

The new e-business entrepreneurs supply customer service and fulfillment
to an ever-impatient marketplace. Traditional businesses may rest on the lau-
rels of their past achievements, smug in the success of their business models.
This is a fatal mistake. Their superior business models succeed only if they can
adapt to the changing market demands. Mr. Customer says, “Yes, I want a
car, but I want it in colors other than black.” Or “Yes, I want an insanely
great computer with a graphical interface, but I want a wider choice of soft-
ware that is compatible with my computers at home and at work.” Or, “I
understand that your products are supposed to be better, but the other guy’s
products don’t break, or don’t crash, or don’t take 6 weeks for delivery.”

Introduction xxiii

The ability to adapt cuts both ways. The traditional business that can
adapt may eventually overtake an escalating startup that steals market share
without a solid business model. Growth and flexibility need to be incorpo-
rated into the business model from the start, although it is not a necessary
condition. Successful businesses can learn from their mistakes. In fact the
most successful leaders are not the ones that never make mistakes; they are
the ones who can quickly recover and learn from the mistakes that they do
make.

Although the e-business revolution is strong in the United States, oppor-
tunities still exist in Europe and Asia, where Internet penetration is just
beginning. China presents an unbelievable opportunity with 1 billion poten-
tial customers who are just now getting a taste of the Web and e-commerce.

XML Business Opportunities

In addition to igniting B2B efforts, XML also fuels other business opportu-
nities. XML serves as the catalyst for the integration of data from legacy
systems, current systems, and future sources by creating a universal data
transfer format. The XML standard uses meta-data to define the content,
structure, and relationships of the data within a document, regardless of
whether that data is text, e-mail, images, audio, or a database. XML repre-
sents the next rung up the computer evolutionary ladder to improve inter-
operability, data transfer, and information communications. For example, a
growing list of telecommunications companies, such as Ericsson, Nokia,
and Motorola, have come together to define a common standard for wire-
less Web access called Wireless Application Protocol (WAP). WAP is a pro-
tocol and an open specification for requesting, transmitting, and receiving
data across a wireless network in a format that can be presented on wire-
less devices such as cell phones, PalmPilots, handheld devices, Personal Dig-
ital Assistants (PDAs), and pagers. In contrast to desktop computers, these
small-screen devices use a minibrowser to surf the Internet and to read Web
pages designed especially for the smaller displays. This is where XML comes
in, because WAP developers use Wireless Markup Language (WML), which
is a derivative of XML, to create Web pages for these minibrowsers and
wireless devices. The flexibility and extensibility of XML facilitated the cre-
ation of the WML standard, enabling many corporations to agree on the
WAP features for the wireless devices that they build, sell, and support.

xxiv Introduction

XML is used to create many other standard languages, such as the voice
standard VoiceML, (also called VoxML) which is used to translate content
and text into speech. VoiceML facilitates computer-based speech processing
because the standard format permits developers to manage and predict how
their information will be processed.

According to industry analysts, in June 1998 only 1 percent of surveyed
Fortune 500 corporate executives were using XML in their companies. That
percentage grew to 67 percent by August 1999, and to 83 percent by May
2000, as indicated in Figure I.3.

FIGURE I.3 The percentage of Fortune 500 companies using XML grew from 1 percent in
1998 to more than 80 percent in 2000.

The World Wide Web has been a catalyst for the remarkable speed of
change in business and in information technology. Innovations, such as
HTML and Java, are introduced to millions of users nearly overnight. This
user population quickly embraces or rejects new ideas, resulting in a rapid
evolution of capabilities that were previously little more than science fic-
tion. Although the Internet has been around for more than twenty years, it
took the simple elegance and flexibility of HTML to deliver the functional-
ity to business and to the general population.

Before XML, HTML and Web browsers went through four releases since
1993, resulting in greater capabilities for the global delivery of information.
However, customized applications required detailed and expensive technical
knowledge of programming. XML has the potential to deliver customized
applications without as much need for technical expertise.

1998 1999 2000

P
er

ce
n

ta
g

es

10

20

40

60

80

Fortune 500 Companies Using XML100

Introduction xxv

XML Is Like a Database

According to Dr. Charles Goldfarb, one of the creators of Standardized
Generalized Markup Language (SGML), ISO 8879, XML is to HTML like
a database is to a word processor. A word processor can set up the appear-
ance of a document, but a database can manage the content and the context
of data. XML can manage data content, which provides information, and
data context, which provides meaning. Therefore, XML supports knowl-
edge management since information with context is knowledge.

The difference between XML and HTML is one of generality. HTML is
the more specific markup language, providing tags that tell a Web browser
how to display the text and other elements of a Web page. In contrast, XML
is not a markup language; it is a meta-language: the general language used
to create a specific markup language, such as the Wireless (WML), Voice
(VoxML), or Mathematics (MathML) markup languages.

The DTD Foundation

The core of XML is the document type definition (DTD). For a specific
markup language, the DTD defines how a browser should handle text or
other elements in a document. Typically, the DTD relates element defini-
tions to tags and actions. The user inserts tags into the document where the
desired actions are to occur. For example, in HTML the and tags
indicate that text between these two tags should be boldface type In WML,
similar tags indicate menu pages. Tags can also be defined to identify ele-
ments within a document. For example, a <date> tag could be used to iden-
tify the date within a memo. Later, that tag can be used to sort the docu-
ment by date, and other tags, such as <price> or <salary>, can be used to
identify the respective price and salary data.

The XML set of tools includes a powerful XML Stylesheet Language
(called XSL), an application interface called the Document Object Model
(DOM), and an Extensible Linking Language (XLL or XLink).

If we look at the Internet industry as a collection of simultaneously com-
peting and cooperating companies, then XML serves as the common basis
to simplify cooperation and smooth out the cycles. In addition, the story of
XML is an interesting and ongoing tale with a strong supporting cast of
companies and emerging applications. XML can transform and deliver con-
tent to various devices, and XML is the key to content management. Since

xxvi Introduction

predicting the devices or uses for content is not feasible, XML is a good
choice for providing a vanilla standard format that can be used by all fore-
seeable systems. As the industry and the standards mature, XML will allow
a company to develop a solution once, and then implement it, reuse it, and
repurpose it many times.

Chapter Summaries

Chapter 1: Executive Summary provides an overview of the trends of Web
applications being driven by XML. It highlights current XML applications
as well as the potential for new applications in searching the Web and in
creating data warehouses. This chapter also summarizes efforts of some
major corporate players in the XML game.

Chapter 2: XML Schemas and DTDs provides an overview of XML meta-
data: schemas and DTDs as the core to defining markup language applica-
tions.

Chapter 3: XML Documents summarizes the components needed to define
an XML document. It emphasizes the hierarchical structure of an XML doc-
ument.

Chapter 4: XML Style Sheets (XSLs) and Transformations (XSLTs) discuss-
es the methods of presenting XML documents using the XML Stylesheet
Language (XSL) capability. Information about transformations to other for-
mats is included.

Chapter 5: XML Linking Language (XLink) relates some of the methods of
connecting XML documents to other documents, to Web locations, and to
other applications. XLink is the foundation for creating virtual documents by
aggregating information from distributed sources. This chapter also discusses
recent developments in peer-to-peer networking as it relates to XLink.

Chapter 6: XML Applications describes XML applications that are avail-
able for use. It also discusses methods for interpreting XML. HTML Web
Browsers can be expanded to understand XML. Also, SGML parsers can
interpret XML documents with only minor modifications. A summary of
each application provides a URL and sufficient information for exploration,
experimentation, and use.

Introduction xxvii

Chapter 7: XML for Databases and EDI presents an overview of XML used
to connect with legacy applications, such as relational databases and EDI
transactions. One of the great strengths of XML is its ability to adapt to
a wide variety of data formats, even those used by older systems and
back-end data repositories.

Chapter 8: B2B Exchange applies proven business-to-business planning to
address the questions to ask when exchanging data among businesses.

Chapter 9: XML Strategic Plan applies proven business strategic planning
to address the questions to ask when implementing an innovation like
XML.

Chapter 10: Concerns, Myths, and Hype addresses the risks and impedi-
ments within a corporate environment when implementing XML and raises
questions about external issues such as evolving standards and potential pit-
falls.

Chapter 11: Summary of Industry XML Projects highlights a small sample
of the hundreds of XML products being developed and offered by major
corporations and emerging companies.

Chapter 12: The Outlook for XML discusses emerging standards and fea-
tures of XML. It also covers evolving trends in e-business, such as XHTML,
B2B exchanges, and WAP.

Chapter 13: Summary and Conclusion summarizes the core business oppor-
tunities that XML provides. It discusses the trends and applications for
which executives and managers should plan.

xxviii Introduction

Om ni mor phic \ ,ahm nee `mor fik \ adj. [L. omnis universal + Gr. morphos

form] 1: ability to take on any form, structure, character, or style. 2: serving

as a universal foundation on which to construct any form, structure, charac-

ter, or style. <XML, just like SGML, is an ~ markup language that provides the

capability to tag data using a universal format so that, with no modifications,

any application can use the data. > 3: having, assuming, or occurring in all

forms, structures, characters, or styles. (Source: S.H. Simon, 2000.)

Introduction

XML (eXtensible Markup Language) is the spark that has set fire to a new
information revolution. The level of major corporate interest and support
for XML is extremely high, but there is a corresponding level of misunder-
standing, confusion, and uncertainty about the basic technology. Most of
the information written about XML has been technical, how-to details with
little focus on high-level strategic and design information.

Briefly, XML addresses the problem of using different data formats for
different applications. In analogy, consider the problem of communicating
with people who speak different languages. Fortunately, for most business-
men in the United States, English is the main language of business and of
the Internet. It serves as a universal language for communication. Computer

1

Executive
Summary

C H A P T E R 1

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

programmers had the same problem, this need for a universal method of
communication, until computer languages were standardized. However,
computer applications still require different data formats for data exchange.
For example, invoice programs, bills of materials, spreadsheets, graphics,
and Web pages all use data that are in different formats. This means that
data may have to be translated or exported from one application to another.

XML supplies a method for creating a single data format for many appli-
cations. English has no single word to describe what XML does, so I’ve
coined the word, “omnimorphic.” XML is an omnimorphic markup lan-
guage that provides a universal data-tagging format so that applications can
seamlessly transfer and exchange data. This chapter will clarify this state-
ment and attempt to alleviate some of the misunderstanding, confusion, and
uncertainty by summarizing the fundamental concepts about XML and
related tools.

Overview

XML is a relatively new technology that was developed in the late 1990s to
enable applications to share data and information over the Web. In addi-
tion, XML fills in the gaps to allow developers to create new features and
functions in a Web page or in other XML documents.

Benefits

XML facilitates interoperability by enabling developers to extend the
markup tags used in their documents and applications. They can modify
existing tags, define new meanings, or create entirely new tags.

XML facilitates the use of context and meaning. An XML-enabled search
engine would be smart enough to understand the term mustang and allow
car owners and horse-lovers to retrieve two entirely different sets of docu-
ments based on the context of the query. In addition, XML will enable a
new generation of Web-based data viewing and manipulation applications.

XML is the foundation for B2B e-commerce and the backbone of the
emerging Wireless Application Protocol (WAP). It will simplify Electronic
Data Interchange (EDI) and may level the playing field to encourage more
startups to enter e-commerce. XML will continue to be the driving force
behind new ways to share information, transfer data, and send communi-
cations to a wide variety of devices.

2 XML

Changes

One of the first questions that a manager wants to know about any innovation
is: What changes are required in order to take advantage of the idea? With
XML, the changes are not drastic, but they are pervasive. Also, the changes are
not about if you will make them, but when. Companies that do not follow the
lead of IBM, Microsoft, GM, Ford, and others will be left behind.

Progressive companies have already implemented the biggest change—an
intranet. Companies now need to form partnerships with vendors, industry
colleagues, and with customers. Negotiations can then start on how to best
exploit XML in order to facilitate the sharing of information and transfer-
ring of data among these partners. Finally, companies must build an imple-
mentation plan that includes a design phase for analyzing and building a
corporate XML document architecture. This plan should map out how
information will be reused and repurposed.

Risks

Right after the changes, the manager wants to know about risk. The risk of
XML is minimal; most of the bugs have been shaken out by the mega-cor-
porations. Assessing risks involves exploring two issues that revolve around
Document Type Definitions (DTDs).

First, which DTD is best for the specific industry and the specific corpo-
ration? Many companies were concerned about making the wrong choice of
DTD a few years ago, but that is no longer a threat. If the chosen DTD
proves to be wrong, then developers can change the DTD by using any of
the tools that are emerging from IBM, Apache, or even the XSLT
(eXtensible Stylesheet Language Transformations) specification.

Second, should the company use a DTD or wait for a schema? The best
business advice is “Don’t wait!” A good manager is not someone who
makes no mistakes. A good manager is someone who makes mistakes early
and recovers quickly. Learn about XML now. When schemas emerge, the
tools to convert for DTDs will quickly follow.

Companies should also consider another risk: the risk of doing nothing.
XML is not a fad and it is not going away. In the auto industry alone, XML is
responsible for a $300 billion supply chain. Even Microsoft cannot argue with
$300 billion. So it is time to jump on the train to avoid getting left behind. In
this case, the longer-term rewards for making a few minor errors up front are
much greater than the immediate gratification of maintaining status quo.

Executive Summary 3

Costs

The cost of entry and exploration is minimal. Many fine tools available are
free. A search on the Web for some of these tools seems to result in thou-
sands of hits. Fortunately, XML is a Web technology; so much of the infra-
structure is already in place. After initial exploration, cost is proportionate
to project size. However, tool quality is not necessarily related to price tag,
so explore carefully.

What Is a Markup Language?

Markup languages describe how the text within a file or a document is
structured according to tags. Tags are used to mark words or sections to
indicate actions or identifications. For example, in HyperText Markup
Language (HTML), text is bolded by surrounding text with two “BOLD”
tags that are the word “BOLD” enclosed between two angle brackets “<”
and “>”. For example: <BOLD> important </BOLD> = important.

In Web pages on the World Wide Web, the tags in this example are, in
fact, simplified to important . There are about ten categories of
almost one hundred HTML commands or tags that are used on the World
Wide Web to make Web pages. HTML is limited to the presentation of how
information looks on the computer screen. For the most part, HTML tags
do not provide any information or context about the words or text enclosed
within the tags. These tags only provide formatting information that
instructs the browser how to display the text on the various output devices.
A drawback of HTML-based Web pages is that information and data can-
not be easily manipulated by other applications. Although a table of data
can be copied from a Web page into a spreadsheet, the user still must go
through tedious, time-consuming manipulations to complete the transfer.
XML addresses this drawback, providing additional programming func-
tionality without the need for detailed programming knowledge.

Rationale for XML

XML was created to improve Web page functionality beyond HTML and to
simplify Standard Generalized Markup Language (SGML). Few technologies
have the breadth of industry support in the way that XML does. For exam-
ple, IBM and Oracle have incorporated XML into much of their software.
The “Big Three” automobile manufacturers—Ford, General Motors, and

4 XML

Executive Summary 5

DaimlerChrysler—have entrusted XML with their $300 billion per year
parts and services procurement supply network. And Sun Microsystems,
Netscape, and Microsoft have been involved with XML from the very begin-
ning. The co-editors—Jon Bosak (Sun Microsystems), Tim Bray (represent-
ing Netscape), Jean Paoli (Microsoft), and Michael Sperberg-McQueen
(University of Chicago)—carefully designed XML to be simpler and more
portable than SGML, and more powerful and flexible than HTML.

XML has considerably more flexibility and power than HTML for
manipulating documents, information, text, and data. While HTML was
designed mainly for the display of text and information, XML was designed
to facilitate the manipulation of text, information, and data. XML is a sub-
set of SGML, and both languages are really meta-languages. A meta-lan-
guage, in this context, is a general standard used to define more specialized
markup languages such as the Wireless Markup Language (WML) for
transmitting information and data to wireless devices, and the Music
Markup Language (MusicML) for manipulating music notes. Both WML
and MusicML were created using XML. A developer can use XML to create
a set of structures (for example, menus for wireless devices) and a grammar
(actions based on menu selection) to manipulate those structures.

The exciting aspect of XML is the flexibility and robustness that it
brings to the Web. Just as HTML provides the method for presenting doc-
uments, XML provides the method for defining the meaning or semantics
of the document. More important is the promise behind the hype. Many
large corporations, such as IBM, Microsoft, Sun Microsystems, Oracle, are
putting significant efforts into XML support. The number of XML-based
applications—Biosequence ML, Chemical ML, Financial ML, Java XML,
MathML, MusicML, Pattern ML, Pixel Graphics ML, Real Estate ML,
TextML, Vector ML, VoiceML, Wireless ML, etc.—is growing daily. With
the interest and support from the B2B activities, XML development tools
have begun to mature. As a result of all the money being pumped to sup-
port B2B and XML development, the number of XML applications has
exploded.

Contrasts—XML, SGML, HTML

SGML is a large complex set of rules for defining document structure. It has
been evolving for almost 30 years and has been used mainly by defense con-
tractors, government agencies, semiconductor manufacturers, publishing

companies, and large data-processing users as a tool for document manage-
ment systems. Toward the end of the 1980s and into the early 1990s, Tim
Berners-Lee, creator of the World Wide Web, designed a simple SGML-
based formatting language called HTML.

HTML is relatively small and easy to implement, but it is difficult to
extend because it uses a predefined set of formatting identifiers, known as
tags. XML augments HTML’s static set of tags with the dynamic and exten-
sible ability to define new, customized tags and document structures. With
XML, the structure of the document is described in a DTD, which contains
rules that describe how XML tags are defined and related within the docu-
ment. XML also permits new tags to be created on the fly.

DTDs

The DTD is a construct that was inherited from the original SGML func-
tionality. The effectiveness of the DTD concept is that it allows a document
to be self-describing. This idea is similar to a glossary that describes the
words used in a book, but it is also much more comprehensive and perva-
sive. A much better analogy is that of a foreign language interpreter.

An XML document is used to communicate data between two applica-
tions, in the same way that a diplomat might communicate between two
countries. To avoid difficulties due to differences in the languages, a diplo-
mat may use an interpreter who can explain the meaning of the diplomat’s
words to the new country. A DTD serves a similar function by defining the
meaning of the data and tags within the XML document to any XML-
enabled application that uses that document.

The use of the DTD was crucial to the rapid acceptance of XML. One of
the advantages of XML is that most of the infrastructure to support it is
already in place. The methods for transferring XML documents already exist
on the Internet and on the Web. The methods for displaying XML documents
exist in many of the browsers, such as Internet Explorer 5, Netscape 6, and
Opera. But the most important aspect is that all XML documents that use a
DTD can be read, parsed, and manipulated by existing legacy SGML applica-
tions. One reason for the wide acceptance of XML was that this expertise
already existed. Now that the base of XML expertise has grown, independent
of the SGML users, XML development will diverge somewhat from the SGML
development path. Plans are underway to replace XML DTDs with schemas.

6 XML

Executive Summary 7

Schemas

The XML DTD is really an SGML construct held over from the early days of
the XML specification. But a DTD is not a part of the XML simplicity. It is
like a changeling that is different from its siblings. While XML has a hierar-
chical structure that is easy to read, a DTD has an arcane programming defi-
nition that requires special expertise to decipher and invoke. Although an
XML DTD is much easier to use than its SGML counterparts, a schema pro-
vides an approach that is more consistent with the philosophy of XML.

Where a DTD uses a special format, a schema uses the XML format and
structure to provide document definitions. The reason for acceptance of the
DTD was one of practicality. Many people were already knowledgeable
about SGML and DTDs, and these people embraced XML. As the founda-
tion of XML developers has grown, the drawbacks of DTDs are being left
behind, replaced by the simpler and more progressive schema specifications.

The schema specification is still being worked on so that it will remain
backward compatible with existing XML documents that use DTDs. Like
a DTD, a schema is a meta-data construct, and it follows a simpler XML
format than DTDs. Both DTDs and schemas are discussed further in
Chapter 2. In addition, a significant advantage exists to maintaining com-
patibility with legacy SGML documents. The final XML schema specifica-
tion will address many of these issues.

XML Does Not Replace SGML or HTML

Some confusion exists about XML replacing SGML and HTML. XML will
not replace SGML or HTML because these languages have different pur-
poses. For example, SGML uses special capabilities to handle very large
document databases. And HTML is used mainly to present Web page infor-
mation on the Internet or a corporate intranet. If a corporation attempts to
apply XML in a function where SGML or HTML would be better, it will be
like trying to use a hammer like a screwdriver. The incorrect application of
XML will result in poorly defined DTDs and XML documents. The multi-
ple usage would pull XML apart into many nonstandard and incompatible
dialects within the corporation. In addition, XML could also split due to
different DTDs based on poor document design and analysis. Finally, poor
design could result in more difficult access to corporate data rather than
facilitated access, as is the intent of XML.

Although XML will not replace HTML and SGML, the XML-based lan-
guage, XHTML, has supplanted HTML 4.0 as the lingua franca of the Web.
XML separates the content of a document from the display of a document.
XML tags information so that computers can more easily manipulate it.
HTML displays content and presents a document that is more appealing to
the reader’s eyes. Even with XML, HTML or XHTML can be used to display
an XML document. XHTML will slowly take over for HTML in the same
way that the successive versions of HTML have replaced previous versions.

For the most part, XHTML is very similar to HTML. HTML is based on
SGML, and XHTML is based on XML. XHTML was designed to use XML
features while following the general formatting of HTML. Therefore,
XHTML coding is more rigorous than HTML, but it also allows more flex-
ibility in the design and introduction of new, customized document tags.
And XHTML was designed to allow a smooth transition from legacy
HTML documents, so HTML can be easily translated to XHTML format.

For separating data and documents, XML provides the ability to put the
document together once and display it any number of ways with HTML.
This ability to create a “virtual document” is one of the revolutionary fea-
tures of the XML toolbox. The ability to put together a reusable, hypertext
document is not a new concept. But providing the tools to do this to the
everyday user, the nonprogrammer, and even to children will have as dra-
matic an impact on the Web as the Gutenberg printing press had on books
and reading in the 1400s.

XML also provides the mechanism for separating the content of a docu-
ment and the display of a document. The idea of separating data and pres-
entation is a foundation concept of computer science and of database
design. However, it has been difficult to implement because of proprietary
data formats. The omnimorphic capability of XML facilitates the separa-
tion of data from applications that will use, manipulate, and present the
XML data and information.

For example, consider an XML document that contains all of the financial
data for a corporation, including the balance sheet, income statement, and cash
flow. To review all of that data, the user merely opens the document with a
browser, such as Internet Explorer 5.0, and a hierarchical list of data appears.
To see a balance sheet of these data, the user opens an XSL style sheet that for-
mats the data into a standard balance sheet. The same data can be used to
review income and cash flow by applying the appropriate XSL style sheets.

8 XML

In addition, another user might want to run some analyses on these
financial data. An XSL spreadsheet can be used to format the data so the
user can run through the desired analysis. A third user might want to com-
pare these financials with those from other companies. To run this analysis,
the user employs an XSL style sheet that includes XML Linking Language
(XLink) information. This XLink information enables the user to open dis-
tributed XML documents of financial data from across the Web or on the
company’s intranet. When these data are collected from the various loca-
tions, a browser window opens to reveal a virtual document with all the
data in a predefined tabular format. This window looks the same as any
other browser window, and the fact that it is virtual is transparent to the
user. The user has no way of distinguishing between single XML documents
and aggregated virtual documents.

The point is that the data in an XML document can be reused in many
different ways, including ways that were not anticipated by the original cre-
ator. In this example, the XSL documents were predefined, probably by
someone in the finance department or by a programmer.

In addition, an XSL style sheet could be used to format the data for pres-
entation on other devices. For example, an XSL style sheet might format the
data for view on a cell phone by using standards that following the Wire-
less Application Protocol (WAP).

Some XML documents will never be displayed for people to see or use
directly. An XML document may go from one company’s database to anoth-
er company’s database and never get displayed by a Web browser. Or an
XML document might be used as a behind-the-scenes intermediary to trans-
fer information from one application to another, or from one computer to
another, such as in B2B applications.

In addition, XML will not replace the terabytes of existing legacy SGML, but
XML will support a subset of the legacy documents as well as new documents.

In a small number of cases involving programming details, XML fails to
be a pure subset of SGML. XML introduces the concept of a document hav-
ing the property of being well-formed. A well-formed document is one that
conforms to all the constraints of being well formed, as described in
Chapter 2. A well-formed document need not conform to a DTD or schema.
Well-formed documents that do conform to a DTD or to a schema are said
to be “valid.” Validity is simply the concept of following its own rules. For
example, an interpreter hired to translate French must speak French in

Executive Summary 9

order to be “valid.” A French interpreter who cannot speak French is
“invalid.” Validity is a necessary requirement for an XML parser or an
application to be able to read and manipulate an XML document. These
features of being well formed or valid result in a clearly defined structure
for XML documents. In contrast, SGML documents and HTML Web pages
do not follow the same rigor as XML documents. However, the advantage
of the rigor of XML documents is that the resulting structure is much easi-
er to parse and understand, and thus requires much smaller parsers and
applications than SGML.

Key XML Technologies

The ability of the XML document language to abstract meta-data about
information in an open format will increase the capabilities of Web sites and
intranets. A single, unifying, omnimorphic data format facilitates the reuse
and repurposing of information and data across a variety of applications.
Because XML documents enable easy analysis by a variety of applications,
knowledge workers can spot and understand trends among collections of
data, or drill down for relevant information in related documents for data
sources with a greater capability than before XML.

Users and novice developers will not need to learn all the protocols and
acronyms because the tools will hide the unnecessary details. The tools may
even hide the concept of programming in order to make development more
like word processing or graphics design; the underlying details may be
transparent to all but advanced developers. Nonprogrammers will think of
an XML application as browsing or searching for information. And in most
applications, that’s what it will be: information searching or data mining.

XML also provides a number of methods for importing other files and
defining macros and shortcuts. In an XML document, namespaces are used,
especially in a DTD, to assign a URL to a name. Named entities are used to
assign a string or macro to a name. In an XSL document, named styles are used
to assign a style to a name and inline styles are used to define brief, local styles.

The World Wide Web Consortium (W3C) defined the XML effort in
three steps:

1. XML—the syntax rules

2. XLink—the linking rules

3. XSL—the presentation and transformation rules.

10 XML

Some of the tools that support XML include DTDs, schemas, XSL, XSLT,
DOM, XLink, XPointer, XPath, Namespace, SOAP, SAX, and XHTML.
Some of these tools are shown in Figure 1.1.

FIGURE 1.1 Some of the basic tools that support XML include XSL, XLink, XSLT,
XPointer, DTDs, schemas, DOM, and SAX. Each of these technologies is described in more
detail in later chapters.

DTD—The Document Type Definition defines the XML document, struc-
tures, rules, and elements. The DTD is used to define the elements and tags in
a document. The tags in XML correspond to tags in HTML and they identi-
fy components in the document. Typically, the DTD is placed at the top of a
document, where its tags, rules, and definitions can easily be interpreted by
an XML parser or browser. The DTD is optional. It can be shared from
another application or it can be used to define unique tags that are required
in a specific document. Once tags are defined, they can be used anywhere and
other users can copy them onto their own documents. Tags define document
elements, entities, and attributes. Entities are the physical structure, and ele-
ments are the logical structure. Attributes specify qualifiers for elements.

Schemas—Schemas carry the same function as DTDs but in a different for-
mat and structure. While DTDs follow the SGML syntax, schemas follow the
XML syntax. Because schemas follow the XML syntax, applications can easi-
ly manipulate schemas, extending the dynamic features, flexibility, and ability
to customize an XML document. This capability is in contrast to DTDs, which
have a difficult syntax to modify by computer. Therefore, schemas will add to
the extensibility of XML documents over the current DTD methods.

XML
(Data)

XLink
(Links)

DOM/
SAX

DTD/
Schema

XSLT/
XPointer

XSL
(Rules)

Executive Summary 11

XSL—The eXtensible Stylesheet Language refers to formatting objects
that are similar to the Cascading Style Sheets (CSSs) in HTML. However,
XSL provides scripting, conditional, and decision capabilities that are not
available under CSS. So, XSL can be used to customize the presentation of
an XML document for a variety of users and purposes.

XSLT—The eXtensible Stylesheet Language Transformations is a script-
ing and pattern matching language, which includes features such as tem-
plates, patterns, scripting, and tree processing. XSL is a more general lan-
guage for building flexible style sheets. XSLT is a subset of XSL, which
includes processing instructions beyond what is conventionally considered
style sheet capabilities. In addition to providing a mechanism for presenting
XML documents, XSLT instructions can be used to build scripts that can
transform XML documents and data to work between other documents,
other DTDs, and other schemas, by extracting information and data from
the source document and converting them to another format.

DOM—The Document Object Model (DOM) is an Application
Programming Interface (API) that defines the standards for developing
interactions with XML tree structured elements. The DOM supplies a uni-
form method for external applications to interact with XML. The DOM
stores the XML document information in a predictable format so that an
application can easily extract pertinent information and data.

XLink—XML Linking Language (XLink or XLL) specification provides
a functional approach to document linking using XML. XLink includes
flexible linking capabilities such as bi-directionality and custom linking
capabilities. XPointer is used for internal page access to specific locations or
elements. XPath defines the pathname to the specific locations or elements.

XML Namespaces—Namespaces are used to collect data from multiple
sources into one document and to tag the information with its respective
source. An XML namespace is a collection of universal resource identifier
(URI) names. The XML namespace specification provides the context for
labeling and disambiguating tags with similar names but different intents.
For example, <Material> could refer to cloth, to a type of witness in a legal
investigation, or to the products in a bill of materials. In speaking, the con-
text would be clear. Now, with XML Namespace, the context will also be
clear for computers.

SOAP—The Simple Object Access Protocol (SOAP) increases the inter-
operability among applications and platforms by making legacy applica-

12 XML

tions available through XML. As lightweight protocol for information
exchange in a decentralized, distributed environment, SOAP provides
intraprocess information and data transfer across computers.

SAX—The Simple Application Programming Interface (API) for XML
(SAX) is a standard interface for event-based parsing of XML. In contrast
to DOM, SAX is an interface for processing a stream of XML data rather
than an entire XML document. It supports the use of parsers, browsers, and
other applications to interface with XML documents and applications.

XHTML—XHTML is the translation of HTML 4.0 as an XML applica-
tion language. XHTML provides the foundation for the extensibility and
portability needed to support a wide range of new functions that are com-
patible with XML.

Corporate Support for XML

Fortune 500 companies across most industries are developing XML com-
patible applications or tools. As mentioned, the major automakers are
exploiting XML for B2B opportunities. In fact, most B2B exchanges are
constructed on top of an XML foundation. Microsoft, Netscape, IBM, and
Oracle are all developing XML technology to enable meta-directories. A
meta-directory is a directory of meta-information about files stored in a col-
lection of directories. Just as XML can tie documents together, meta-direc-
tories link different directories to create a common index of files.

IBM has also developed an entire suite of XML-capable tools. The
newest versions of WordPerfect and Lotus SmartSuite have varying levels of
XML support. Microsoft has delivered MS Office 2000 with XML com-
patibility and has announced continuing support. Microsoft.NET is built on
XML. Oracle is delivering XML tools that are compatible with its databas-
es and legacy systems. Sun Microsystems has developed XML systems to be
compatible with Java and with other applications. XML is pervasive
throughout the computer industry, and it is also being widely embraced
throughout most other industries.

Why Managers Are Interested in XML

XML has the potential to speed the development of e-business application
and integration efforts. XML is specifically designed and optimized to run on

Executive Summary 13

the Web. It provides a scaffolding for creating common standards for meta-
data and element tags. The tags allow a developer to define a product catalog
for the corporate offerings. With good planning and collaboration, these tags
will transfer to other applications, other companies, and other industries. This
concept is the key issue that led to the popularity of the B2B exchanges.

B2B exchanges are collaborations among many companies, as many as
30,000 different companies with diverse products and services. Exchanging
information among these many companies is a nightmare if the information
has to be massaged, manipulated, and translated for each new application.
For example, to go from a catalog to an invoice to an inventory to a bill of
materials would require at least four different steps to format the data for
the specific application. XML provides the omnimorphic glue that seam-
lessly links these applications. All applications within a B2B exchange can
use the same data. In the automotive industry alone, the savings exceed bil-
lions of dollars per year, simply by reducing the procurement steps.

Major corporations such as Microsoft and IBM have strongly embraced
XML, and they are rapidly developing applications to leverage their capability
for data interoperability across industries, corporations, and customers. In fact,
Microsoft appears to be building a strategy that will base much of its new busi-
ness on XML. Developers from one company can create an application and
data that other companies will be able to use. For example, a developer could
use XML to tag the genes in the Human Genome Project to build a far more
intelligent and more useful database. Then other researchers and pharmaceuti-
cal companies could use the information. And size will not matter as much.

Some of the Risks of XML

The most visible drawback to XML is the wide variety of B2B exchange
DTDs. Early in the game, Ford and GM created separate B2B exchanges
with separate DTDs. Although this method provided savings for each com-
pany, it was a bookkeeping catastrophe for the common vendors who had
to keep dual books for the two companies and their separate DTD vocabu-
laries. After the vendors protested, the two automakers agreed to collabo-
rate on a common B2B exchange with only one DTD. But not all industries
will agree on a single DTD. The issue of converging DTDs among different
industries is currently under development by companies such as IBM,
OASIS, and Microsoft.

14 XML

An advantage of HTML is that it is forgiving of sloppy or unplanned
development. The Web caught on quickly because Web page developers did
not need to be experienced programmers. XML does not forgive sloppy plan-
ning and programming. This is both an advantage and a disadvantage. A
well-planned corporate data model implemented in a set of XML DTDs pro-
vides significant improvements in interoperability, communications, and
data sharing. Poor planning results in miscommunications and loss of data
through incompatible applications. This idea can be summed up by the
anonymous statement that, “Computers are powerful tools for making more
errors, more quickly, and more precisely.” That statement pertains to XML.

If a corporation embraces XML technology but does so blindly, it may dis-
cover less functionality, not more. Designers and developers must carefully
analyze their requirements in order to apply XML appropriately. A developer
can build models of the legacy data structures and map data models to a set of
XML data elements. The XML data elements are collected into a set of DTDs
that can be used to build a well-defined tree structure for each document.

However, DTD development should not occur in a vacuum. As with the
automaker example, collaboration is key. If a corporation tries to develop
its own applications and DTDs, it may find that its development is incom-
patible with other companies, vendors, and partners. Developers can avoid
incompatibilities and “standards wars” by learning about the various indus-
try-standard DTDs.

Because XML’s predominant advantage is for sharing data, companies
will benefit by using the same standards. Compromises can be made to
ensure widespread and future interoperability. These trade-offs may make
XML documents larger or less focussed than other solutions, but the
increase in data sharing will be more than worth the compromise.

DTD Repositories and Standards

James Watson, co-discoverer of DNA’s structure, once said, “Nothing that
is new comes about without collaboration.” Companies and industry lead-
ers are collaborating to develop standardized DTDs to share information
and to automate business processes. For example, if Ford, GM, and
DaimlerChrysler agree on a standard DTD with a set of rules for their pro-
curement needs, then they could ensure that their partners, vendors, and
customers could write compatible applications. The interoperability that

Executive Summary 15

XML promises will become a reality as more and more companies develop
industry-specific DTDs.

The focus across vertical industries such as the auto industry has been to
define specific DTDs so businesses can exchange data. B2B e-commerce and
document management are among the areas that have benefited from the
use of standardized sets of XML tags. After invested parties collaborate on
a set of XML tags and a corresponding DTD for a given industry and appli-
cation, they can seamlessly exchange data encoded with those tags. As each
company or industry decides on a level of detail for its DTD and document
structure, other companies can build on top of the standards and ignore
details as appropriate.

Companies should keep watch of many of the industry standards efforts
to help define consistent XML DTDs and data elements. Some of these stan-
dards groups can be found at www.accord.com, www.biztalk.org,
www.oasis.org, www.xmledi.com, and www.openapplicationsgroup.com.
CommerceXML at www.cXML.org is a registry for order processing and
catalogs, and it is growing in support.

The military is also using XML. The DII COE (Defense Information
Infrastructure Common Operating Environment) is building an XML reg-
istry at diides.ncr.disa.mil/xmlreg/index.cfm used to support military opera-
tions, such as mission planning and supply chain management. DII COE
promotes military-based interoperability and software reuse in a secure,
reliable, and global networked environment. The DII COE data service
infrastructure is implemented as shared DTDs and schema, data manage-
ment services, and run-time applications, etc., for supporting military appli-
cations and operations.

CommerceXML, Oasis, and Oracle are all three working on developing a
set of XML DTDs to support current industry needs, such as B2B. Microsoft,
IBM, and Sun Microsystems are all working on strategies for leveraging XML
to improve the portability and interoperability of data and information.

Exploiting XML

Decision makers gather information; they think about it, combine it in different
ways, and finally make the decision. If information is free and easy to access,
then having information is no longer a competitive advantage. Converting raw
data and information into decisionable knowledge becomes the most critical
competitive advantage of executives in the Information Economy.

16 XML

XML provides advantages to communications, data sharing, interoper-
ability, e-commerce, information retrieval, and data warehouses. A dramat-
ic advantage of XML emerges when corporations within an industry stan-
dardize XML tags to automate the supply chain, communications, and busi-
ness processes. B2B e-commerce ascends to a higher plane of functionality
and integration with the use of omnimorphic XML formats. XML simpli-
fies e-business by supporting Electronic Data Interchange (EDI) standards
across companies, industries, and countries, providing the possibility of an
international, industry-independent set of standards.

While HTML describes how a Web page looks, XML describes informa-
tion about what the content of a document means. XML tags identify a
number as a date, a price, or an invoice. So if retailers like Wal-Mart, K-
Mart, and Target use the same DTD elements for customer, price, and
inventory, they can improve information interoperability by using the same
tags, as depicted in Figure 1.2. If Ford, GM, and DaimlerChrysler use the
same DTD vocabulary, and enforce this vocabulary on their vendors, pro-
curement costs drop, as in Figure 1.3. In addition, comparison shopping
becomes easier, because all vendors use the same tag to identify their widg-
ets. So, the automakers can compare widget to widget, tracking price, deliv-
ery, or other germane attributes.

Figure 1.2 In an XML-based B2B collaboration among retailers, corporations such as
Wal-Mart, K-Mart, and Target can agree to use the same DTDs or schemas to define con-
cepts like customer, price, and inventory. Through this agreement, they can improve
information interoperability and general communications by using a common set of data
element tags.

XML Document

Customer
Price

Inventory
Target K–Mart

Wal–Mart

Executive Summary 17

18 XML

FIGURE 1.3 In the XML-based B2B Exchange, Covisint, among automobile manufactur-
ers, such as GM, Ford, and DaimlerChrysler, these companies can gain cost advantages by
using a common DTD or schema for procurement.

Similarly, interoperability is a big issue in the U.S. military. If each
branch of the service conforms to a government DTD, improvements in
interoperability and integration increase immensely among the military,
suppliers, and coalition forces. DII COE, as already mentioned, has already
initiated an XML registry that will store military, government, and con-
tractor DTDs. As these DTDs are collected into a single repository, com-
bining them into common vocabularies to foster interoperability will be eas-
ier. The government has a history of enforcing standards on its aerospace
and defense contractors. If all branches of the military, as well as all ven-
dors, use the same set of DTDs, then interoperability will be an achievable
goal.

The commercial world and the military world may want to share some
common DTDs. In anticipation of and excitement over standardized DTDs,
developers have created XML registries for different industries and across
industries. A registry may contain DTDs and information about tags for
various industries and fields, such as automotive, chemicals, oil, retail, man-
ufacturing, and music. A DTD registry encourages cross-communications of
tags; for example, retailers might use DTDs and tags for music and for math
for part of their inventory and pricing.

D. Chrysler GM

XML Document

Widget
Price

Delivery

Ford

COVISINT

While developing corporate- and industry-specific DTDs from scratch is
natural, the effort and the results are inefficient on two counts. First, for a
given industry, a good start for a set of DTDs probably exists already. A
company can use the standard DTD and modify as needed. Second, an
industry-specific DTD may hinder communications across industries. For
example, if a vendor trades with both the automotive industry and the aero-
space industry, then two sets of DTDs may require the vendor to keep two
sets of records. Having a separate DTD for each industry artificially seg-
ments products and services by industry, often requires a vendor to dupli-
cate efforts, and then results in higher costs. However, many vendors cross
industries without needing to separate and duplicate their efforts.
Collaboration on DTDs across industries can result in lower costs.

None other then venerable IBM has seen the light. IBM has initiated an
effort to create a common DTD that will be used across all industries and
will be augmented by DTDs that are specific to a given corporation or
industry. This effort, if accepted and embraced by all industries, will help
the world to collaborate and share information.

Leveraging XML DTDs

At the most basic level, the context of documents can be captured manual-
ly by workers entering data into specific fields on a form or by assigning
documents to various categories. But capturing meta-data and using it for
searching exploits just a small fraction of its capability. The structure, com-
position, and use of the meta-data and its tags are valuable knowledge
assets of the enterprise that are leveraged by context-mining functions.
XML promises to convert the presentation-based World Wide Web into a
content-based Semantic Web, as Tim Berners-Lee calls it. By tagging content
and meaning, XML facilitates and focuses information retrieval on the Web
and in intranets. One killer application for XML has been B2B e-commerce.
XML is waiting for the next killer app to help drive the effort. One com-
pelling application, possibly the next killer app, is the data warehouse.

An exciting aspect of XML tags is that they form a set of meta-data about
the document. The DTD of an XML document describes the data elements
and structures within a document. The data elements are represented as tags
used to mark up a document. And if a common DTD with standardized tags
is used for a set of documents within a repository, the result is a data ware-
house with little fuss, muss, or hassle. This concept extends outward to the

Executive Summary 19

entire corporation, many corporations within an industry, many industries,
and potentially to the entire World Wide Web and Internet. This sensation-
al concept has broad implications that can allow a type of globally distrib-
uted data mining from the world-wide data warehouse.

A developer can design a Web page with XML tags to simplify searching.
XML developers can create tags and rules that describe a document’s data,
information, and content. These tags provide a method for indexing the
content within a document by using commonly defined elements. These
common elements have specific meanings expected by a search engine or
another application. Data and tables can be functional, so that their mean-
ing can be imported into spreadsheets and databases even more easily and
smoothly than Web page text is currently saved onto the local PC.

The implication of combining multiple documents is significant. In
HTML, if a user wants to locate and combine information from different
documents, he uses a search engine to locate the information, filters that
information manually, and then combines it manually. The process can take
minutes, hours, or days. With XLink, the entire process is not only auto-
matic, but it is immediate. As quickly as the documents are accessed, their
information is combined, in a way that is transparent to the user, and dis-
played as one document. Clearly, the process will require significant band-
width and planning, but the payback is many-fold in terms of information
access and analysis.

Peer-to-Peer Processing

One of the big developments on the horizon for XML is the idea of virtual
documents. Virtual documents are collections of information that exist only
for immediate use. Typically a virtual document is composed of portions of
information from a variety of distributed documents across the network.

The idea of a virtual document is not new. A trivial example of a virtual
document is a child’s report that is glued together from information gleaned
from magazines and encyclopedia articles. A more pertinent example is the
results of a Web search. When someone searches for information using a
search engine such as Yahoo!, then the returned collection of Web pages is
a virtual document.

Unfortunately, the creation of a virtual document currently requires some
programming skills. However, with XML, specifically XLink, even people

20 XML

with no programming skills will be able to create their own virtual docu-
ments. XLink has not yet been fully defined and implemented, but other
news may support the concept. This news has to do with Napster.

Napster software was created to allow users to search for MP3 music
files and then download them. The unique aspect of Napster is that users
search through a Napster community of other users and not through the
entire Web. Because of questions with MP3 files, Napster had some legal
issues with copyright infringement. Those issues are not germane to this dis-
cussion. What is important is that Napster provides a method of searching
and retrieving information dynamically by using peer-to-peer networking.

Peer-to-peer networking (P2P) presents the concept of sharing data
among distributed systems. Data sharing is exactly what is needed to imple-
ment virtual documents. The peer content provider allows the community
to access predefined information. Members of the community can then
include the information as part of an XML document. In addition, the con-
tent provider can control which information is shared and under what con-
ditions. A protocol that combines the distributed appeal of P2P with the
power of XML and XLink standards will create a formidable agent for
change. In fact, P2P is the potential spark of Web and Internet access that
will fan the roaring flame of universal information retrieval to meet the
business needs of the 21st century.

Conclusion

XML is an enabling technology. As an omnimorphic data format, it will
encourage interoperability. However, as it becomes more pervasive, XML
will virtually disappear from the media. If it is everywhere, it will be like an
ocean to a fish, unseen. This has already begun to happen with B2B e-com-
merce. The first major articles in February and March 2000 about the B2B
collaboration among the big automakers never even hinted at XML. The
Wall Street Journal, the Dallas Morning News, and the Washington Post
were all silent about XML. A few weeks later, though, a tidbit about XML
began to surface. The enabling technology is not news. The business and the
billions make the headlines. And that is the way that it should be. Business
drives technology and technology enables business. But a good businessper-
son needs to be aware of emerging trends and how they might impact the
business.

Executive Summary 21

The technology that XML represents is similar to that of the transistor.
Except for electronic engineers, no one cares about the lonely transistor.
Just after the vacuum tube, companies used to brag about how many tran-
sistors were in their radios. Then integrated circuits were invented and
microprocessors with millions of transistors. The number of transistors in a
Pentium III is no longer common knowledge. Intel will be more than happy
to reveal this information, but no one wants to listen, except for competi-
tors. Consumers are now interested in processing speed. The same thing will
happen to XML as happened to transistors. In fact, it is almost there.

The news about B2B greatly outweighed the underlying XML technolo-
gy. More articles exist about B2B or about wireless data access than about
XML. But XML is the foundation of these technologies. A general under-
standing about XML helps in understanding more about these technologies
and what their business potential could bring. Although XML will not bring
in the money, the applications that are developed using XML will. From
B2B to WML to holographic processing in the more distant future; these
applications are the ones that will bring in the profits.

With XML applications, the Web has the potential to become a worldwide
data warehouse with connectivity to a wide variety of devices. Each applica-
tion has its own separate potential to make money. A businessperson should
maintain awareness of emerging technologies. To paraphrase Bill Gates, how
will a user react when information is free? Each manager can answer that
question in the way that is most profitable to the specific organization.

22 XML

Introduction

Schemas and Document Type Definitions (DTDs) form the meta-data that
enables an XML document to be self-describing. Although they have very
different constructs, schemas and DTDs serve the same general purpose: to
define the rules and data elements within an XML document. They attach
context to XML documents that can be read by humans and by machines.
The specific flavor of XML syntax that a given DTD or schema defines is
called a vocabulary. The vocabulary may cover a set of XML documents or
only one document. Although DTDs are the more mature technology, the
World Wide Web Consortium (W3C) is pushing the specification and
acceptance of schemas. Each construct has advantages, but advocates
believe that schemas provide the superior extensibility and compatibility
with the XML format.

What Is a Schema?

Schema may be an unfortunate choice of terms because database theory also
uses the term schema. In fact, the word schema is used in different model-
ing disciplines and means something different in each context. An XML
schema has no relationship to a database schema. An XML schema is a con-
struct used to represent the data elements, attributes, and their relationships

23

XML Schemas
and DTDs

C H A P T E R 2

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

as defined in the data model. An XML schema defines a class of XML doc-
uments by documenting the meaning, usage, and relationships of their con-
stituent parts. The function of a schema is the same as the function of a
DTD. However, a DTD does not use a hierarchical structure, while a
schema does use a hierarchical structure to indicate relationships.

In other words, the XML schema serves much the same function as the
DTD, but it follows the XML syntax rather than the SGML syntax that the
DTD follows. Otherwise, schemas specify the meaning and rules for data
elements within an XML document much the same as DTDs do.

DTDs, the only holdover from SGML, do not conform to the XML syn-
tax. Therefore, an application that can manipulate an XML document may
not be able to manipulate the DTD. In addition, a DTD does not include
data typing, but a schema does. The schema will also facilitate the ability to
exchange data and to transform XML documents from one vocabulary to
another.

The purpose of a schema is to define a class of XML documents. A
schema specifies both the structure of an XML document and the con-
straints on its content.

While XML is the meta-language for defining a set of data element tags,
an XML schema is the specification for the syntax of one particular tag lan-
guage. The tag language defined by a schema is also called the vocabulary
for that schema. A schema is used to validate the XML document content.
An XML parser validates an XML document by determining the vocabulary
of the document and comparing the vocabulary to the schema for consis-
tency. In addition, the XML schema describes the vocabulary for use by
other applications and by other people when exchanging data.

The XML schema defines the data elements that can appear within the
document and the attributes associated with a data element. It defines
the structure of the document, the interrelationships of data elements, the
sequence in which elements can appear, and the number of elements.
The schema defines whether an element is empty, can include text, or has
default attribute values. Schemas also document an external namespace
vocabulary and its constraints, as described in this chapter.

Many companies, led by Microsoft, have been working with the W3C to
develop the meta-data standard for XML schemas. Schemas serve the same
function as DTDs in that they define XML documents and provide a mech-
anism for allowing an XML document to be self-describing. Self-describing

24 XML

means that an XML document uses tags to describe and mark up the data
and information, and the XML document uses meta-data in the form of a
DTD or schema to describe and define the meanings and actions associated
with the tags.

Schemas are easier to read and to create than DTDs because they are
written using a set of XML-compliant tags and following an XML compli-
ant format. In contrast, DTDs follow the older format found in SGML;
XML was piggybacked on the already existing SGML infrastructure in
order to introduce XML quickly into the existing development environ-
ment.

Different file specifications are associated with schemas. Consider a file
that we will call document, for lack of imagination and improvement in
clarity. If it is a pure XML document containing only XML data, then the
file specification used is “.xml,” resulting in the file name “document.xml.”
If the document contains only DTD information, then the file specification
used is “.dtd,” resulting in the file name “document.dtd.” For a schema
there are two choices, not yet a single standard. The file specification can be
“.xdr” (an abbreviation for XML Data Reduced), or the file specification
can be “.xsd” (short for XML Schema Data). The respective file names
would be “document.xdr” and “document.xsd.” Notice also that all file
names are in lowercase, because XML is case sensitive. This means that
“document.XML” is different than “document.xml.”

While we are describing file specifications, we can include three others.
If the XML document is a formatting style sheet that contains XSL com-
mands, then the file specification is “.xsl” and the file name is “docu-
ment.xsl.” If it is a transformation style sheet that contains XSLT com-
mands, then the file specification is usually XSL, rather than XSLT, because
XSLT is simply a different set of style sheet commands. If the XML docu-
ment is used to contain linking information, then the file specification is
“XLL” and the file name is “document.xll” (short for XML Linking
Language). These types of files have not yet been introduced into the ver-
nacular and may change before the XLink specification is completed.

For the most part, XML file specifications are fairly straightforward.
Most of them will be simple, three-letter acronyms that represent the XML
tool of interest. Now back to schemas.

Schemas make it easy to insert business rules into the core of the XML
documents. The rules are usually very readable, and they have an addition-

XML Schemas and DTDs 25

al benefit. As an XML document, the business rules defined by an XML
schema can be manipulated by XSL and XSLT just like any other XML doc-
ument. Therefore, XML-based business rules can be transformed from one
set into another set (e.g., from one company’s set of rules into a second com-
pany’s set of rules). These transformations facilitate information exchange
and data transactions among multiple companies.

Attributes

In a schema tag definition, the tag type is defined using either the
complexType tag or the simpleType tag; then it is declared. In addition to
the types, tags can also have attributes that are associated with them. The
advantage of attributes is that they can supply a richer context to the data,
providing for a much more precise meaning applied to the data element
type. One disadvantage of attributes is that they cannot easily be manipu-
lated using style sheets.

Developers building their XML document design architectures must
address this question of attribute manipulation. Should developers define
modifiers and create meaning by using attributes, or should they use com-
plex tags or simple tags? With no simple answers available, the general
guideline is that if the information will be variable and modified, then it
should be in a tag format; however, if the modifier provides context and it
will never need to be changed, then an attribute is more efficient.

Datatypes

Schemas also allow a variety of datatypes as defined in the datatype speci-
fication portion of the overall schema specification. A datatype is simply a
kind of data. In schemas, datatypes can be simple or complex, and they
include decimal, floating point, strings, and the standard datatypes used by
developers in most programming tasks.

In addition, as inherent in XML, the developer can extend the datatypes
to contain any information needed to do the job. For example, to build an
Earned Value Management System (EVMS) that monitors cost and sched-
ule progress on a major project, a Difference datatype could be defined to
contain and monitor the difference between planned and actual costs (or
any other monitored difference).

26 XML

Datatypes can be defined to have default values and optional values, but
they can also be defined to have a list of variables or even a set of variables
that change with context. For example, in the financial field, a monetary
datatype could be designed to define a variety of currency types from vari-
ous countries. In addition, the definition of these currencies might be
extended so that a change in the presentation display might automatically
result in a correct conversion from one amount of money to the appropri-
ate amount in the different currency.

A great advantage of schemas over DTDs is the ability to automatically
import multiple definitions from different schemas, rather than having to
redefine data element types each time a new schema is developed. The abil-
ity to reuse previously tested and debugged data element types or entire
schemas can result in a significant savings in development efficiency. In
addition, separate schemas can be created for individual departments and
then combined as appropriate. Of course, what works for a few depart-
ments will also work among trading partners in a B2B exchange. This abil-
ity to combine, trade, and reuse schema information—sharing meta-data—
goes a long way toward building the foundation needed for industry inter-
operability of information.

Although DTDs can handle many of these same functions, the DTD pro-
cessing, in terms of computer cycles and people cycles, can be prohibitive.
However, after the initial schema development, the schema processing is
usually minor in terms of people cycles.

What Is a Namespace?

A namespace is a simple method of bringing multiple definitions and vocab-
ularies into a single XML document. In addition, a namespace declaration
(xmlns:) provides an alias that helps separate and identify data element
types from different external locations. The namespace addresses many
issues.

By using a namespace, a developer can reuse an existing schema in the
current document. Rather than reinventing the wheel, the developer can
save time and effort by building from previous work. In fact, rather than
using an internal schema, the namespace can reference an external schema.

External schemas may include data element types that already exist in the
current XML document. The namespace alias clearly identifies the origin of

XML Schemas and DTDs 27

a data element type, allowing different tags to have separate but similar
meanings. For example, Ford may have a <name> tag that means “last-
name” and “first-name,” while GM may simply use “name.” In the schema,
these differences can be represented as Ford:name and GM:name, eliminat-
ing any ambiguity.

Differences between Schemas and DTDs

DTDs have three advantages:

■ SGML legacy of users

■ Well-understood standard

■ Mature technology with thousands of vocabularies

DTDs have four limitations:

■ Not written in XML and not Document Object Model (DOM) compatible

■ Minimal support to use namespaces, and only indirectly

■ Minimal support for data typing

■ Difficult to modify, customize, or extend

Schemas address these DTD limitations as follows:

■ Written in the XML format and can support DOM

■ Support of namespaces directly

■ Support of data typing and element relationships

■ Extensible to user-defined data elements and types

Schemas and DTDs use different content models. When a content model
is open, the data elements can include elements, attributes, and mixed con-
tent not specified in the content model. When the content model is closed,
the data elements can include only content and data elements specified in
the content model. The DTD uses a closed content model, and XML
schemas use an open content model. Therefore the data element types
between DTDs and schemas may differ.

In addition, the placement of namespace (xmlns:) declarations is not eas-
ily modeled using a DTD. Using more than one namespace declaration with
a DTD is difficult. In an XML schema, the namespace attributes (xmlns:)

28 XML

can go anywhere. In fact, multiple xmlns declarations can appear in differ-
ent locations because schemas follow an open content model. Therefore, the
user can more easily customize definitions and declarations through the use
of a schema.

Namespace placement in a DTD is not an option, but placement is a use-
ful feature of schemas. Because of its hierarchical structure, a schema can
use the same name in different places to have different meanings. For exam-
ple, the term mustang can only be used once in a DTD. But in a schema,
mustang could be used in an automotive context and in an equine context
at different locations within the hierarchy.

Unlike DTDs, XML schemas are extensible. Developers can add their
own customized elements, tags, and attributes to XML schema documents
in order to extend them. In fact, a developer can create a customized schema
by combining components from many external, standard schemas. With
namespaces, external schemas can be used directly with a reference to the
original schema rather than copying the definition. To reference an element
defined in another schema, the developer must first use a namespace decla-
ration to introduce the other schema. This declaration consists of an attrib-
ute beginning with xmlns, followed by a prefix name and a path to the other
schema. For example, the resulting customized schema might include ele-
ments from the Ford schema and the GM schema. So elements such as
Ford:name and GM:name could be sprinkled throughout the schema where
the specific declarations are needed.

Why Use Schemas?

The main reason to use schemas is to improve compatibility and consisten-
cy within an XML document or application. In isolation, whether an XML
document uses a DTD or a schema does not matter significantly. However,
the moment that a developer or user wants to modify the document, share
the document, or combine multiple documents, the differences become
apparent.

Because schemas follow the XML format, developers can more easily
design tools, such as XSLT scripts, that will modify them. A real concern
about XML documents is that developers will use different vocabularies,
which will minimize interoperability. To leverage the omnimorphic capabil-
ities of XML, developers must be able to bend the syntax rules of a specif-

XML Schemas and DTDs 29

ic document without breaking the vocabulary. For example, when working
both with Ford in the automotive industry and with Boeing in the aerospace
industry, a vendor would like to exchange data using the most compatible
format. With XSLT, the vendor may be able to build a normalized schema
that enables sharing of data with Boeing or Ford without requiring any
extra translation steps.

In addition, schemas are easy to create, easy to read, and easy to modify.
The reason that schemas are not yet widespread is that an agreed-upon def-
inition and specification have not yet been designed. But the use of XML
technology is already beginning to push the envelope beyond the current
DTD capabilities. Just as schemas permit modifications for interoperability,
they also permit modifications for a changing marketplace. Currently,
DTDs and schemas are fairly static, but consider an example of a very rap-
idly changing marketplace, such as the wireless market.

In the wireless market, the industry is changing hardware and software
almost weekly as subscribers demand more and more functionality. Nokia
and Motorola send specification product descriptions to their vendors every
week. Imagine that these documents are in a schema format. Now, if these
manufacturers design new features and capabilities, or if service providers
step up the bandwidth significantly, or if the wireless application protocol
(WAP) specification evolves with more capabilities, then the schema must
change to reflect these improvements. A DTD might require a completely
new overhaul, but schemas are more flexible, more extensible, and are
omnimorphic.

To incorporate information about the improvements, Nokia and
Motorola can simply add the new features to the schema. The change does
not affect existing applications, because they will either use the new data or
ignore it if necessary. In most cases, the new applications will be flexible
enough to adapt to new information. This is what XML is all about, being
able to extend smoothly to fit increasing capabilities as needed. This capa-
bility is what makes XML an omnimorphic language.

As this example implies, a foundation schema can be agreed upon and
developed for the exchange of information and data. When new informa-
tion is added to the schema, no modifications are needed to the applications
or to the basic schema. And the information is automatically distributed to
the market, to vendors, and to partners. At a later date, as the amount of
new information increases beyond some threshold, the partners may come

30 XML

together to agree on an upgrade to the basic schema, but that may not even
be necessary.

Guidelines and Best Practices

Although XML use is a new activity, the creation of meta-data, schemas,
and especially DTDs is an old, well-practiced art. The design and develop-
ment of an XML document and its meta-data parallels the design method-
ology used by data analysts to create data models and to design database
architectures. DTDs have been around in SGML development activities for
around thirty years. The combined experience of expert SGML developers
and mature database designers has resulted in many good guidelines, rules-
of-thumb, and best practices that can apply to meta-data, schemas, and
DTD development activities.

First, before going through a long development on a project, carefully
spec out the requirements and generate a data model. In fact, use this
approach even for a small prototype to avoid those horror stories of a pro-
totype being put into a production environment and then breaking during
business critical tasks.

There is a story about an R&D engineer, who, by the gift of gab, got hold
of the ear of the systems engineering vice president (VP) and explained how
great XML, Java, and Web technology were for interoperability. This engi-
neer, a very articulate incompetent, was able to con a few million dollars out
of the VP to develop a prototype Web interface to a cost-and-schedule data-
base. The prototype took 6 months to develop under the engineer’s random,
unwritten directions . . . and it appeared to work marvelously. The VP was
overwhelmed and directed the engineer to develop an enterprise-wide multi-
database production-quality Web interface.

If either the engineer or the VP had any knowledge of computers or infor-
mation technology, they would have sought the experience of a data ana-
lyst. The data analyst would have purchased a $40 book (not this one)
about Web-based database interfaces, popped the accompanying CD into a
computer, and in less than a week, for less than $100, he would have pro-
totyped a terrific interface. Then when the VP ordered an enterprise-wide
interface in 6 months, the analyst would have laughed.

The data analyst would have laughed because you cannot scale a cob-
bled-together prototype into a corporate-ready interface. The engineer

XML Schemas and DTDs 31

wasted millions of dollars and never could figure out why the resulting large
interface would never work. The project was taken away from R&D and
given to an Information Technology (IT) architect, who scrapped the pro-
totype and started from scratch. In this case, the R&D engineer did not
have the business sense to accept the sunken costs of the prototype and kept
trying to scale it up. But trying to scale a quick and dirty prototype is like
trying to use an average frying pan to make scrambled eggs for a thousand
people. It simply will not scale up in the time required.

The lesson here is that if you develop a quick and dirty XML prototype,
scrap it and start over when you plan for the production phase. The IT
architect’s side of the story is an interesting contrast.

The IT architect went through a disciplined three-phase design:

1. Gathered requirements and built a conceptual architecture, which was
used to gain consensus with all the stakeholders;

2. Designed a logical architecture that depicted how all the general pieces
went together, how the communications worked, what the general data
element types were, and where the gaps occurred. The IT architect
reviewed this logical architecture with the stake-holders, negotiated
changes in the requirements, and got buy-off on this phase;

3. Filled in all the gaps, developed the DTDs, designed the interfaces, and
implemented a physical architecture. While the interface had plenty of
bugs, the IT architect could backtrack to the logical architecture to
locate where the reasoning was incorrect. With a few changes and a few
iterations, the system worked.

Even with the legacy problems inherited from the R&D engineer, the IT
architect was able to put a working enterprise-wide database interface up
and running in just under 6 months, and for less than one fourth the cost of
the engineer’s prototype fiasco.

The lesson here is that disciplined design is the key to XML implementa-
tion success. In developing a set of DTDs or XML documents, gather the
requirements, build a logical model of the data element types, and then
build a “prototype” of XML tags and the physical implementation. Use
production-quality design and development, then iterate through the imple-
mentation to work out the bugs and get it right.

When designing schemas or DTDs, be careful of inherited changes. In
good programming, developers commonly place a variable where it can be

32 XML

changed once and the change propagated throughout. However, with a
schema, reuse makes inheritance hazardous: the ripples due to small
changes may avalanche into massive modifications without the developer’s
knowledge. Changes in a distributed environment can have unpredictable
consequences. The safe approach is to make all changes manually in the
beginning of the development cycle.

Whenever a schema is developed, freeze it and put it under configuration
management. Some XML document or application depends heavily on that
schema. If a schema is modified, make an entirely new copy that does not
depend on the original. If the new one does not work with a particular appli-
cation or XML document, go back to the old one and debug the new one.

Do not simply discard the new one. Instead, try to learn from the mis-
takes. A few corrected mistakes result in dramatic increases in experience.
These are good learning exercises.

When creating a schema, plan it like an XML document. Rather than
building a collection of apparently unrelated definitions, try to build a col-
lective whole that fits into a hierarchy. One of the advantages of using
schemas over DTDs is the coherence and relationships among elements.
Another advantage is the ability to build XSLT scripts that can transform
the schemas as needed, automatically.

Transforming Schema Meta-Data

One of the significant issues about XML DTDs and schemas is how to con-
vert an XML document with one vocabulary to a document with another
vocabulary.

XSLT

DTDs are not easy to transform, but schemas are a different story. Because
a schema is an XML document, it can be manipulated just like any other
XML document. XSLT was designed to handle just these kinds of manipu-
lations and transformations.

The XSL Transformations (XSLT) specification defines an XML-based
style sheet scripting-type language for expressing transformation rules that
map one XML document into another. When XML schemas become the
dominant meta-data for XML documents, XSLT will be help provide the
basic infrastructure for building interoperable systems. Because XSLT can

XML Schemas and DTDs 33

transform XML documents and because schemas are XML documents,
XSLT is a superb vehicle for mapping the schema of one corporation into
that of another corporation.

For example, imagine that Ford wants to make fuel cells for Boeing.
Ford sends its XML documents to Boeing, and Boeing’s XML translation
Web server compares the Ford schemas to the standard Boeing schemas.
The server then runs an XSLT translation engine that maps the Ford vocab-
ulary to the Boeing vocabulary. XSLT is a scripting or programming lan-
guage, so this kind of mapping is not much more difficult than a table
lookup. Then the modified Ford document is sent to the appropriate
departments for review. Either Boeing or Ford may reverse the process for
documents sent from Boeing to Ford. Designing the XSLT translation
engine may require some clever artificial intelligence programming, but
maintaining and running the engine should be straightforward. Developing
this XSLT translation engine or providing this type of service is probably a
window of opportunity for some clever entrepreneur.

Caveat Emptor

XSLT can address the significant challenge caused by using multiple XML
schemas describing similar data within different XML documents. With
XSLT, a developer can map XML documents to one another, and create a
new XML document that conforms to the schema of choice. Of course, sim-
ply mapping documents and vocabularies doesn’t ensure that they can work
together in the way expected. Manual intervention and direct communica-
tions are still required to interpret the meaning of the data.

While the mechanics of meta-data transformation may be worked out,
the logistics are a completely different story. The syntax may be portable,
but corporate semantics are not. For example, if you ask for a glass of water
and I bring you a glass of warm water from the tap, you may be disap-
pointed that I did not understand you. You may have wanted: cold water,
water with ice, water with a slice of lemon, or bottled water. The syntax was
clear; the meaning was not. This is the same situation with data exchange
between corporations.

One corporation may identify a customer by using <name>. However,
does <name> refer to last name, or full name? The same dilemma occurs for
<address>, for <product>, for <inventory number>, etc. The basic business
vocabulary for a corporation varies greatly across industries and may vary

34 XML

within an industry. Do Sears, Wal-Mart, and Target all use the same vocab-
ularies? They are all retailers, but they have different corporate histories to
build upon.

Consider the importance of communications and vocabulary as you build
a corporate XML strategy. Document all data element types from the busi-
ness perspective, the user perspective, the designer perspective, and the
developer perspective. And save that document as an important white paper
to share with all partners when you send them your DTDs or schemas.

Why Use DTDs?

The reason to use a DTD is merely historical. DTDs are the prevalent forms
of building XML document vocabularies. They exist, they work, and they
are accepted. They are also obscure and arcane, requiring a little program-
ming background to write them, and even more programming knowledge to
read or modify existing DTDs.

Of course, SGML programmers are comfortable with DTDs, as are
SGML applications. However, one goal of the schema definition effort is to
come up with a simple way to make schemas backwards compatible with
DTDs. This way, the billions of dollars that are being devoted to DTDs will
not need to be redirected into manually rewriting legacy XML documents
using schemas.

What Is the Function of a DTD?

DTDs are the meta-data for XML. They serve as the foundation of XML
documents and applications because they define the rules for building an
XML document and for instructing an XML application how to process it.
The DTD indicates valid syntax, structure, and format for defining the
XML markup for a document. Using different codes to identify important
information, mandatory information, and optional information, the DTD
instructs a parser about how to process an XML document. The DTD also
identifies where elements appear and how they are related. In comparison
to an SGML DTD, an XML DTD was specifically designed to be relatively
easy to read by both people and computers. It presents the document out-
line or map for the author of the XML document, for users of the docu-
ment, and for XML parsers.

XML Schemas and DTDs 35

The author of an XML document is like a construction worker using a
blueprint. The blueprint for an XML document is the DTD. The DTD pro-
vides a list of elements, rules, and specifications that define a content model
for a category of documents. These categories can be anything from cata-
logs, purchase orders, and inventories to data warehouses and training soft-
ware.

The DTD specifies the relationships among all components of an XML
document, such as item, item name, inventory number, and price. XML
applications use the DTD as a guide to ascertain which structures and rules
will be used in a given document type. For example, specific structures and
elements can identify a catalog, a customer order, a bill of materials, or an
inventory.

Defining Rules

The DTD defines rules and the elements of an XML document. The DTD is
embedded within the document, or referenced from outside of the docu-
ment. Because embedded DTDs are read first, they can be used to override
and redefine outside definitions. This feature is useful for applying specific
rules to predefined, user-customized documents. It can also be used to inher-
it general outside definitions.

An XML document follows two rules of syntax. First, if a document fol-
lows the general specifications of XML, then it is well formed. If the docu-
ment has a DTD and follows the specific rules in the DTD, then it conforms
to the XML specification and it is considered to be valid. An important
characteristic of valid XML documents is that they are also compatible with
SGML and can be processed by most SGML tools.

Because it conforms to the XML specification, a well-formed XML doc-
ument does not require a DTD. However, the XML syntax is more rigid
than the HTML syntax.

Defining Meta-Data

Meta-data describes data element tags or attributes. Many different ways of
marking up an XML document exist. An XML document can be marked up
to facilitate searching for information, or it may be marked up to relate
information among a set of XML documents. Meta-data can tag data to

36 XML

help provide meaning, content, or context as germane to the requirement.
Well-designed DTD meta-data will determine the success or failure of XML
projects and the triumph of corporate conversion to XML documents.

The conventional definition of meta-data is “data about data.” XML
DTD meta-data is a way of documenting information about datasets. Meta-
data information explains the creation of a dataset and provides an idea of
what its attached document was designed to do.

When creating a new XML document, the developer, who does not know
how to proceed, is like a tourist in a new city without a road map. The DTD
is like a tourist information center that provides complete information on
what path to follow to arrive at the desired destination. By using the DTD
as a document creation roadmap, the developer is in a confident position to
plan the document without wandering around aimlessly.

XML tags can be used as meta-data to enable B2B e-commerce over the
Web. Existing legacy systems can exploit XML tags and Web-enabled tech-
nology for database access, migrating into a new capability without using
additional software or middleware.

The Importance of Being Meta-Data

Data and information are valuable corporate assets. Unfortunately, these
assets may be stored in repositories that don’t support easy retrieval. One
way to improve access is through the use of meta-data (information about
data), which describes these intangible assets. The key is to have carefully
defined meta-data.

Well-defined meta-data presents a competitive advantage because it facil-
itates the use of corporate information and data. In addition, providing
partners, customers, and suppliers with corporate meta-data allows them to
more seamlessly share and transfer information.

Meta-Data Evolves

With the advent of XML, meta-data takes on a whole new life in the form
of DTDs and schemas. DTDs and schemas define the data elements and
attributes of an XML document. Although simple to understand, meta-data
is difficult to manage. First, meta-data is not straightforward to define at
consistent levels of detail. In some cases, meta-data may describe a collection
of documents. In other cases, it may describe data elements within a specific
document. How to coordinate these different levels is not obvious and no

XML Schemas and DTDs 37

clear guidelines are available. But meta-data is much too valuable not to
solve this problem. In fact, XML DTDs may be worth billions of dollars.

DTDs and schemas support the ability to deliver individualized data to
customers in an e-business interaction, whether e-commerce, m-commerce,
or mobile Web access to data. In addition, DTDs support the reuse and
repurposing of data and information. For example, the flexibility of DTDs
can be used to define customizable data elements that change the look and
feel of a Web page for each customer. Or a Web page can be repurposed to
work with other devices such as wireless devices or text-to-speech systems.
Reuse and repurposing results in lower costs for two reasons. First, infor-
mation does not need to be recreated each time it is used, saving costs in
redundant use. Second, by using XML to deliver customized Web pages, a
corporation does not incur the costs of more detailed scripting or program-
ming costs. Programming languages, such as Java and Perl, require higher
development costs than XML and XSL. Greater use of XML and XSL
results in less use of Java and Perl to define the same tasks.

XML presents a powerful paradigm for providing meta-data and data
within a single document. Data element tags identify specific data elements,
similar to how a Post-it Note might be used to identify an important book.
The Post-it Note tags real items, and the data element tags identify elec-
tronic items, within an XML document. In the XML document, the DTD
defines what the tags mean and what the data elements represent. For
example, a temperature tag, <Celsius> or <Fahrenheit>, could be used to
distinguish the difference between the freezing point of water,
<Celsius>0</Celsius> and the balance in someone’s bank account, <dol-
lars>0</dollars>. Both values are zero, but now a computer can tell the dif-
ference and manipulate them as needed. XML provides a universal data
transfer format that is independent of both platform and application.

Many computer standards are independent of platform. For example, MS
Word and MS Excel can transfer data between PCs and Macintoshes. They
are independent of platform. Also, ASCII is the same on all platforms.
Finally, Web pages and HTML are independent of platform, working on
PCs, Macintoshes, and all Unix machines. However, data from a Linux or
Unix application may not work on a PC application without some inter-
vening massaging. This extra step takes valuable machine and people cycles
for the translation. XML eliminates that extra cycle because it transfers
among all applications.

38 XML

A significant advantage of application independence is interoperability
and application integration. This means that I can take my favorite database
to extract specific information, use my favorite spreadsheet to run “what-
if” analyses, generate a report with my favorite word processor, generate
graphs with my favorite drawing routine, and animate them with my
favorite video program. Then I can deliver the entire package over the Web
as a single, seamless document that anyone with an XML-enabled browser
can read. Now for the caveats.

Caveats

What I have described is not here, yet, but it is not a pipe dream or an ide-
alized vision. Mega-corporations such as IBM, Microsoft, and Oracle are all
collaborating to make this vision into a reality. Oracle has already made
some progress towards interoperability in the B2B e-commerce supply chain
arena. Greater capability is rapidly approaching. We are currently at the
same stage with XML as we were in 1995 with HTML. In fact, we are much
further along because the infrastructure in already in place and many pro-
totype tools are available.

Just as no one had heard about the Internet yesterday, but everyone uses
it today, XML will silently mature and appear in just a few months. Two
issues to overcome are specifications and vocabularies.

The specifications are easy. Web committees are working furiously to
define all the necessary specifications for XML. Vocabularies are another
thing.

A vocabulary is the set of data elements defined by a class of DTDs. For
example, a chemist may define a mole as <mole>6 10**23</mole>, and a
zoologist may use more to define <mole>small furry animal</mole>. But
seriously, in inventory management is something called an <item>, a <prod-
uct>, or an article, part, or component? This is a real issue that the auto-
mobile industry had to deal with. Should customers be identified by <cus-
tomer> or <name> or <Last_name>? Each company uses a different
method. Each method can be defined using a DTD, and each DTD defines
a different vocabulary.

The issue and the question is how to correlate the various vocabularies.
No one answer has surfaced yet because the field is still immature. However,
two possibilities exist: XLST and Apache’s Cocoon software. XSLT might
be used to transform from one DTD to another. And Cocoon might also be

XML Schemas and DTDs 39

used for transformation. This early in the game, Cocoon is a little more reli-
able. But the problem is well-known and many smart people are working on
potential solutions.

DTD Standards Debate

DTDs are a growing subject of debate because some industries want IT ven-
dors to provide industry-standard DTDs. But industry groups, not vendors
or consultants, should define DTDs. A number of DTD standards are avail-
able. A DTD starts out as a content or data model that describes an appli-
cation or a class of documents. For example, Oracle has created a DTD for
B2B e-commerce, which describes the structure of that class of documents.
If the developer of corporate DTDs carefully creates a well-thought out, log-
ical model, then the defined DTD standards can be simple to understand
and use. From this logical model, the developer can use existing industry
standards, such as those already defined by vendors, defined in DTD repos-
itories, or found in Microsoft’s BizTalk repository.

As with any standards process, creating DTDs can become more complex
as the number of people to please increases. DTD developers could learn a
lot by using a bottom-up approach to solving big document problems.
Creating DTDs that describe corporate applications and then standardizing
the results will help cooperation. Corporate business partners can share
DTDs to improve interoperability. By solving one part of the data inter-
change problem and doing it logically, simply, and correctly, DTD develop-
ers provide a target for others to shoot for if they want to share informa-
tion and data. Going halfway and starting with any DTD is better than hav-
ing no standards at all.

The auto industry presents a good example. Ford and GM had the chance
to compete or cooperate in the definition of their B2B DTDs. Happily, they
chose to cooperate to develop Covisint, an automotive B2B exchange.
Scratch the surface a little bit and you find Oracle enabling the B2B tech-
nology. Dig a little deeper and you find the potential for a global XML
vocabulary standard. . . backed by a $300 billion per year flow of parts and
services from the auto industry. The Covisint DTD sounds like a candidate
for a global de facto standard, considering that it has the backing of the
“Big Three” auto makers to the tune of $300 billion-worth of business and
30,000 vendors are using it.

40 XML

Although the retail industry and the food industry will not want to use
the DTD from the auto industry, some concepts probably overlap. Rather
than splintering the XML vocabularies created by various DTDs, industries
would save money by finding a way to cooperate on the DTDs at some
level. By working behind the scenes and keeping quiet about it, Oracle was
part of the massive Covisint venture. If Oracle continues to build up quiet
collaborations, it has the opportunity for being the XML integrator of
choice. If these multi-billion dollar B2B efforts result in (XML-based infor-
mation transfer) bridges among the various industries, the promise of infor-
mation anywhere, anytime, to anyone, about anything, may become a real-
ity within 18 months or faster. The company that pulls off that unification
will gain more than profits, it will gain corporate and public support.

XML Schemas and DTDs 41

Introduction

An XML document is an ordered, hierarchical tree structure that has ele-
ments and attributes, as shown in Figure 3.1. This is not the conventional
definition of a document as words and text placed in some order for a spe-
cific purpose. But this simple definition provides significant potential. An
XML document is much more than a conventional document. An XML
document is a flexible and extensible collection of information that is struc-
tured for some purpose. While a database record is not a document, it can
be restructured into an XML document. The important parts are the struc-
ture, elements, and attributes.

One of the useful functions of an XML document is the ability to contain
information and data in a format that is independent of any platform or
application. XML takes the device independence of HTML and Web clients
one step further. XML wraps data into a self-describing document that can
tell an application about its structure and elements instead of counting on
the client for all of the processing capability.

The schema or DTD associated with a document describes the contents.
XML is an object-oriented markup language and the schema or DTD
defines how to use the language. The DTD defines how objects, attributes,
and their values are used within an XML document. XML physical elements
are defined by the DTD, and they are indicated in the document by using

42

C H A P T E R 3

XML Documents

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

FIGURE 3.1 An XML document is a hierarchical tree-structure of elements and attrib-
utes. Some elements have been omitted for clarity in this picture. All XML documents
also have one root element as a foundation.

logical tags. In the process of building an XML document, the designer
keeps the logical parts and the physical parts separated, just like in the
process of database design. If an application can read and parse the DTD or
schema, then it can process an XML document.

The XML document designer is the architect who identifies the design,
the subcomponents, the internal structure, and the relationships with other
XML documents. This designer takes responsibility for mapping the busi-
ness model to the XML document. An XML document architecture is not
just how documents are used in the enterprise. It also touches on databas-
es, procedures, configurations, and products. It is about which processes use
the data, information, and documents, and how they will use them.

The first part of an XML document architecture is a conceptual model of
all functional subcomponents. The architect will synthesize an understand-
ing of the entire corporate XML document situation by identifying the rela-
tionships among subcomponents and sub-elements. The purpose of a given
document, the current corporate standards, the industry standards, and the
influencing standards will be identified. Then the architect can easily map
one set of XML application tags to another as the standards mature.

XML allows the architect to create flexible XML documents that can be
extended in various ways, such as including specific, one-time changes and
unique requirements as needed. And the changes in the local document can
be independent of the general XML document structure, so they will not

XML Documents 43

Element

Element Element

Element Element

Element Element

Root

affect other users. Well-designed XML documents enable communications
and information transfer among computers, and between computers and
people in a more natural manner.

XML document design is becoming very important to developers now
that major vendors such as Microsoft, IBM, Oracle, Sun Microsystems, and
others are becoming heavily involved with XML technologies. Many tradi-
tional structured techniques, such as database design and object-oriented
analysis, can be integrated into a basic framework for XML document cre-
ation. XML documents constitute a uniform methodology for transferring
and processing information. Well-established structured analysis and design
techniques can be successfully applied to build a robust XML document
architecture.

An XML document architecture that consists of many document tem-
plates is more flexible and more stable over time. When the architect and
developer analyze business requirements and model the XML document
templates based on business functions, the resulting capability provides a
strong foundation for building XML documents and migrating existing,
legacy documents to an XML document environment.

Reasons for Building XML Documents

One reason that an organization may choose to use XML documents is that
data can be stored and accessed in a way that aligns with the corporate
structure. Another reason is that XML documents provide robust access to
data—information does not have to be stored in one location. XML docu-
ments can manage large amounts of information with minimal extra over-
head. By using a standardized XML document template and by reusing doc-
ument information to create new documents, a corporation can more easi-
ly manage and control its intellectual assets.

In addition, many legacy systems have been built using older technology.
These legacy systems cannot simply be scrapped, but they also cannot easi-
ly be maintained. XML can facilitate the transfer and upgrade process.
Some of the benefits that result from the upgrade include:

■ Enhancing current systems

■ Implementing changes and upgrades faster and more effectively

■ Improving system quality

44 XML

■ Developing new systems faster

■ Migrating to new architectures and tools

■ Taking advantage of new technology and new capabilities

XML document design with its emphasis on extensibility, growth, and
flexibility, supports more sophisticated applications than were possible with
legacy systems. It makes sense to invest the dollars today to transform exist-
ing and historical corporate documents into XML documents.

Taxonomies

We need to take a further step in identifying a property that is crucial to
understanding the distinctive qualities of complex XML documents. This
property is the hierarchical relationship among all components within a
document. This hierarchy, represented as a tree structure, enables the
designer to show relationships between document components in a system-
atic, orderly fashion. For example, by using outer tags, such as <horse> or
<car>, the XML document designer can distinguish a <mustang> data ele-
ment as an equine or an automobile as needed by creating the appropriate
hierarchy to establish the appropriate semantic context.

A specific hierarchy template can define an XML document type. A sys-
tematic collection of related XML document templates is called a taxono-
my. For example, the XML document taxonomy of business cards, e-mail,
memos, business letters, and white papers for an organization’s R&D
department might differ from the taxonomy of XML documents for the
sales department. However, the defined patterns of ordered relationships
within a set of XML documents provide a predictable and powerful way to
represent data and information.

A process is something that someone wants to accomplish including the
flow of actions from start to completion. The processes are a subset of the
architecture. XML documents and processes can help integrate activities
across departments and stovepipes to leverage resources and improve effi-
ciencies.

Processing data about the environment is fundamental to understanding
an environment or an enterprise. A data model embodies the rules for doc-
umenting what a company has done, is doing, and will do. It would be nice
to have a modeling tool that works with both XML and databases.

XML Documents 45

XML is the foundation for Web-based application. Remember that just
because XML is an open standard, documents created with XML are not
necessarily open. The XML used to create the document may not be com-
patible with other XML applications.

Loss of integrity and performance can occur due to translation from one
model to XML to another model for the sake of interoperability.

XML Document Design—Deciphered, Delineated,
and Demystified

One of the issues to be aware of when designing XML documents, espe-
cially Web pages, is that the information may be used on a variety of
devices. Obviously, many applications are being used to support wireless
surfing by cell phone and by PalmPilot. Anticipating all the possible per-
mutations of devices that might use an XML document is not possible. In
addition, XML provides a new adventure for the user, who can experience
the Web page in a way uniquely customized to personal tastes and choices.
For example, a totally blind man regains partial vision through the use of
implants and video cameras. If he unplugs his video camera, he can plug his
implant directly into the video port of a PC. His implant works just like a
monitor. But how do you anticipate a device like that? Again, you don’t.
You simply create a well-designed XML document architecture, and the
resulting omnimorphic design will adapt to most situations.

A dramatic advantage of XML is the granularity of the definitions and
logic that it supports. A Web page can be constructed from many different
XML documents, from sections, or even from individual elements by using
multiple, distributed XML documents. Simply by synchronizing the docu-
ments, the designer can create a myriad of Web pages using minimal band-
width. This provides some of the best features originally described in the
client/server literature of separate tier maintenance.

The XML document life cycle involves a number of steps: creation of
well-formed XML documents, defining them with DTDs or schemas, and
retrieving segments of XML documents using XLink and XPointers.

When books, magazines, and trade journals discuss developing XML
documents, many times they describe coding the schema or DTD, but
important steps must occur before developing the DTD. One critical step in
developing XML documents is the process of designing the XML document

46 XML

architecture. Document design is a well-defined activity. Using simple com-
monsense, a rational design can result in a clear, logical XML document
architecture.

The most efficient use of XML for document exchange and data
exchange revolves around the broad adoption of a uniform, industry-
strength vocabulary of tags, meta-data, schema, and DTDs.

We want to interchange documents with others and we want to use each
others’ documents. This involves the contention of customized languages vs.
universal tags and also the support for the full document life cycle.

The Simplicity of Modular Design

For example, consider Mr. Potato Head, a Hasbro toy, made famous by
Pixar’s movie, Toy Story. This modular toy has a standard potato-shaped
head and a set of eyes, ears, noses, mouths, and hats that can be mixed in
almost infinite combination. The well-defined facial structures provide a
solid foundation for creativity. The rules, guidelines, and tags of XML pro-
vide a similar foundation for data and information transfer.

XML will help to organize the Web and improve the quest for knowledge
in the tidal wave of information. XML standards and products support a
method for unlocking content from legacy and proprietary data formats to
facilitate free exchange among businesses, partners, customers, and ven-
dors.

XML offers dramatic advantages for Web publishing and document man-
agement. Once a document has been marked up with XML, its contents can
be easily combined with the content from other XML documents. When the
user retrieves an XML document, he can view the contents in many differ-
ent ways, simply by changing the style sheet used to define the presentation
tier. For example, a presentation could be built from text, and a training sys-
tem or a service manual might be built from the same technical data.

Everyday massive amounts of paperwork traverse corporate boundaries,
both from the outside and on the inside. Much of that paperwork is elec-
tronic, but information still needs to be converted from one format to
another. XML documents help reduce that conversion by providing a uni-
versal data transfer format. However, there is still the question of creating
XML documents to optimize information flow and reduce the need for con-
version.

XML Documents 47

One reason that XML poses such a quandary to executives is because
the standards are being stretched in opposite directions by very strong
forces, as depicted in Figure 3.2. No, these forces are not Microsoft and
Oracle. For the most part, major corporations (such as IBM, Microsoft,
Oracle, and Sun) are all pulling in the same direction towards some stan-
dards of uniformity.

FIGURE 3.2 Bidirectional forces pulling XML document schemas and DTDs for different
purposes.

The misperceived instability in XML is caused by opposing forces to cre-
ate a single, universal XML standard and forces to create separate industry-
specific standards. One company calls customers by one name, and anoth-
er uses a different name. Or the terms profit, revenue, and income have dif-
ferent meanings across the different industries. There needs to be a common
ground where each company can describe its terms.

An XML document can represent any relationship that can fit a tree struc-
ture. There is a question of self-reference, but hypertext is a nonlinear propo-
sition. New datatypes and attributes can be added as needed. Data are sepa-
rate from the presentation and can be separate from the document. Data can
be widely distributed, aggregated only for the specific document application.
Distribution, layers, and nesting are limited only by the Web, the bandwidth,
and the speed of the processor hardware. Data may be used by any applica-
tion—it is a universal format. Standards remain in development.

The idea of data management is well understood, with corporate depart-
ments devoted to it and an entire industry supporting it. Data management
deals with managing operational data to process transactions and historical
data processed by decision support systems.

As data management evolves to include information and document man-
agement, business users will require facile access to the wide varieties of cor-

XML Document

End-User
Industry
Independence
Autonomy

Interoperability
Universality
Uniformity
Consistency

48 XML

porate data, information, and documents. They want to access, manipulate,
and manage this information, but it has been difficult because of differing
formats.

XML documents deal with data and information, just as data manage-
ment systems deal with data and information. Although data management
systems use repositories and query languages, XML documents may be
searched using a variety of Web-based search engines or XML applications.
The documents may be stored anywhere, even distributed throughout the
Web, rather than in a controlled, centralized corporate repository.

XML documents do not focus on the activities of conventional knowl-
edge management or even information management. However, XML docu-
ments support these activities as well as data warehousing, data mining, and
decision support systems. As the collection of XML documents grows, it
becomes like a data warehouse, which is easily searched for useful patterns.
These patterns may be used for data mining, just like current HTML-based
Web pages. With the appropriate applications, the documents can be used
in decision support.

Data vs. Documents

An XML document is a new creature. It is like a Web page, it is like a text
document, and it is like a database. In fact, it is a hybrid with the best fea-
tures of all these things. Like a database, the data are organized and acces-
sible—unlike an HTML-based Web page, where data are not organized in a
format that can be easily manipulated by computers. For example, assume
a Web page includes the statement that “My inventory includes 10 widgets
at $7.00 each.” If this statement is written in HTML, the information is all
text with no computable meaning. However, if this is an XML document,
then an XML application can determine the number of widgets, how much
they cost, and how much total cash is tied up in widget inventory.

HTML only presents the information. With XML, the information is pre-
sented as simple text, or it can be processed for other purposes. As a simple
analogy, consider data as grapes and the XML document as the grapevine.
Data mining is like picking the grapes. A data repository might be like a
bushel basket or a grocery shelf. A document repository is like a vineyard.
There are many ways to get at the grapes or the data, as well as many ways
to process the product after retrieval.

XML Documents 49

It is possible to cut a section of the vine that has the grapes. This is anal-
ogous to the document with its data. An alternative is to use some expert
grape pickers, data mining tools, to select only the best fruit. Developers can
design applications that separate the various types of (data) grapes, green
vs. ripe vs. finest, (inventory and cost of inventory). And it is possible to cal-
culate how much the grapes are worth, or to develop XML applications to
perform similar manipulations with the data in the documents.

XML enables a company to repackage and reformat information so that
it can be resold over and over again to different marketing segments. Data
and information—in the form of intellectual capital—do not rot, rust, or
spoil, so they can be resold over and over again, as proven billions of times
by Microsoft. This concept of repurposing XML document data will be a
killer app for the next generation of the Web.

Customer Example

Suppose a company wanted to collect all information for a customer from
across the Web into one local report. In fact, let’s go one better to a more
realistic example. Suppose the company wanted to collect all information
for one customer about specific preferences and demographics into one
report: all documented preferences and trends, such as buying patterns,
buying trends, interest in sales, and whatever else the customer provides as
potentially useful information. Some companies already have partial infor-
mation about their customers, but the information is clearly not complete
and may not be up to date. And some information was entered manually,
not automatically.

But the information is available. This sounds like an excellent opportu-
nity for a startup service—to provide collective public information for
informed customers by using XML. For the sake of privacy, customers
would have to explicitly agree to allow this collected information. But most
people will not mind if a major business (such as Ford, Burger King, or Wal-
Mart) were to collect information that could not be shared and could only
be used for targeted marketing purposes. Although the privacy laws may
not be sufficiently strong in these cases, if the industries are prudent, then
many customers—a profitable group—might be willing to provide the infor-
mation. Once the information is collected, it can be placed into an XML
document format and shared internally for various marketing purposes.

50 XML

For example, when a young mother gives birth to a child, she will receive
various offers related to diapers and newborns. If she provided information
about her family status to Ford, Burger King, or Wal-Mart, these corporations
might develop a marketing strategy to follow the growth of the child and of
the family. With permission from the family, Ford might send offers for new,
larger cars or for a child’s seat. Wal-Mart might send coupons for baby food
and clothing. In fact, it might create a long-term marketing campaign that noti-
fies the mother about toddler’s clothing, children’s toys and clothing, and
teenager needs. A long-term plan of this type would need to include an option
for the mother to opt out. But if the sales and ads are for items that have to be
purchased, why not consider Wal-Mart, or Ford, or Burger King?

XML supports this type of data exchange, and Financial XML standards
called FinXML and OFX (Open Financial Exchange) already exist for
exchanging personal finance information between financial business and
products. Similar automotive, food, and retail XML standards would sup-
port the previous example.

If an organization keeps its customer data in the standard XML format,
then data exchange and collection are a piece of cake. And if a company
requests data for a specific customer, it only has to use the agreed upon tags
in order to retrieve the data.

So a customer requesting a mortgage loan can use the same application
information for other credit applications without rekeying the information.
The real estate broker, the title company, and the county title office can all
use that original loan information.

XML will have a profound effect on all data exchange industries—finan-
cial services, e-commerce, supply chain, etc. All businesses today are infor-
mation corporations and depend on information exchange to further their
revenues. Future success will hinge on interoperability and the ability to
share information seamlessly. Leveraging information effectively requires
the ability to understand its context and to resolve conflicts in meaning.
XML provides the foundation to launch the information industry rocket.

Dual Functions

Two different types of XML documents are available. One type of document
is used for presentation similar to a Web page but with a little more potential
for self-description. The other type, used for data exchange, is more like a

XML Documents 51

Customer Order

Customer Name Customer Address

First Last Street City

Order Number Price

database with better labels and communication skills, rather than tables.
These two types issued from the standard model of data processing, where
data, processing, and presentation are separate. As the number of XML appli-
cations grew and developers grew more sophisticated, the two types of XML
documents are understood to be different sides of the same coin. Because of
the existing Web infrastructure, XML functionality has caught on quickly.

The result of using one type of document, or two, should not be a sig-
nificant issue, because the reality of an XML document, as a collection of
text, does not change in either case. The importance of the document does
not come from what it looks like. The usefulness of an XML document
comes from how it is packaged, parsed, and processed.

Hierarchical Structure

As illustrated in Figure 3.3, an XML document uses a hierarchical tree
structure that is reminiscent of hierarchical database technology in the
1960s. The artifacts of the 60s, hierarchical databases and sequential pro-
cessing, were left behind when relational databases were built. However, an
XML document is not a step backward: it is a dramatic leap forward. Even
though an XML document hierarchy will initially be processed sequential-
ly, what happens next will be revolutionary. The revolution comes in the
form of schemas, DTDs, data element tags, faster computers, and associa-
tive processing.

FIGURE 3.3 An XML document is a hierarchical tree structure. This organization is very
easy to parse and manipulate.

52 XML

The exciting contrast between a hierarchical database and an XML hier-
archy comes from the DTD and tags. The database used the hierarchy in
order to identify data elements. XML uses the hierarchy to identify associ-
ations during the initial processing by an XML application. Because the
hierarchy introduces a neutral structure, different applications can use the
XML document for completely different purposes, resulting in the founda-
tion for omnimorphism. The initial processing of the XML document does
not result in the poor response that was typical of hierarchical databases;
computers in the 21st century are much faster than computers were in the
1960s. Moreover, the simple hierarchical organization of an XML docu-
ment can provide a new capability called associative processing.

The specifications for associative processing are still emerging, but XML
will support the ability to search a corporate document management system
and aggregate the retrieved information into virtual documents that are
related through the query. Extending this concept to the Internet and the
Web, XML documents will be able to use multidirectional linking to build
connections with associated Web sites. Associative processing, as a reality,
is a new concept and the details are still being defined.

Made for Man and Machine

XML documents use data element tags to facilitate computer processing,
but the tags also facilitate human processing. XML documents were defined
to be marked-up text files that can be read and understood by both man and
machine.

All three markup languages, XML, SGML, and HTML, employ a hierarchi-
cal relation of data element tags to designate where a section of text belongs in
the tree structure of the XML document. From the tree structure perspective
indicated in Figure 3.4, the XML tags identify branches, nodes, and leaves.
These text-based tags are indicated by left-angle and right-angle brackets, “<”
and “>” respectively. For example, <price>45</price>, indicates a price of 45.

Although the concept of machine- or man-readable formats is not new,
the ability to view data elements by man or any application is new. People
can read and understand a text document, like a manual or a Web page.
However, the binary data used for data interchange formats and database
update commands could only be read by specialized programs. With XML,
both man and machine can read data formats.

XML Documents 53

54 XML

FIGURE 3.4 An XML document is a tree of data element nodes.

Users can use their browsers to display XML data structures and com-
mands. Initially, they may even modify them with an editor. However, devel-
opers will design intelligent interfaces to protect users from themselves and
allow them to modify XML data safely.

XML will drive new methods of computing because it separates the data
from the application. The XML document is emerging as a universal data
exchange format, and browsers are becoming universal interfaces for a wide
variety of applications. The boundaries between data, databases, and docu-
ments grow less important as XML grows more pervasive.

The text in an XML document is built of character strings that represent
the markup tags and data content. The markup tags describe the document’s
logical structure. For the most part, XML documents and HTML-based
Web pages look similar because the data element tags are similar.

Security

There is no single correct answer for security with XML. A full range of
security capabilities is desired from the document level all the way down to
the detailed tag level. An XML document may contain both secure and
unsecured information. Having the server determine which components are
restricted and which are open may not be the most efficient form of securi-
ty. Although not part of the XML specification, the security concern is an
active effort among the development community.

Node

Node

Node

Node

Node

Node

Node

Node

Root

Although XML has no specific security features per se, XML can be used
with other systems to secure data. For example, according to the Aberdeen
Group, XML can be combined with LDAP (Lightweight Directory Access
Protocol) and PKI (Public Key Infrastructure) to provide data and document
access control. LDAP is a method for providing access to a directory of all
corporate information. PKI is a security system using encryption and digital
certificates that maintain both information integrity and information trans-
mission security to the sender and the receiver.

One way to provide security capabilities to XML is to have the LDAP
catalog cross-reference XML documents and tags, and then provide a deep-
er level of directory intelligence down to the tag level if desired. Security
access information can be tagged and LDAP can record that parameter also.
LDAP can use PKI verification to automatically ensure access control.

How Does XML Provide More Meaningful Markup?

Most managers have never thought deeply about the kinds of information
contained on their Web site or perhaps even their document repositories,
much less about the relationships that occur between these kinds of data.
Nevertheless, in order to devise meaningful element names, a developer
needs to analyze the best way to group together, label, and classify the dif-
ferent kinds of corporate data.

The next step is to determine which of those corporate data classifica-
tions will be defined independently and which are more generic for the
industry, in which case simply building upon the experience of others might
be more efficient.

For example, BEA Systems in San Jose, California, offers the E-Collaborate
transformation engine, which maps between different XML schemas.

As discussed in Chapter 2, a schema is the method of building the meta-
data that defines and describes the content, meaning, and structure of
XML document’s data elements. Two extremes exist with regards to XML
meta-data standards for document type descriptions, whether DTDs or
schemas. On one hand, there is the concern that XML will splinter into
many, different, incompatible corporate standards. On the other hand,
there is a wish to have a single, universal standard that covers all docu-
ment examples, serving as a panacea that cures all document ills for all
people.

XML Documents 55

In fact, the best solution is a negotiation of the best of both worlds. IBM,
OASIS, and the United Nations are separately working on tpaML and
ebXML as methods to provide a common foundation of standard XML tags
and definitions across all users worldwide. These vocabularies are not
designed to cover all requirements. They were designed to provide a set of
common, overlapping tags that are used across most applications and busi-
ness needs. Creating a single common format for all XML data transfer and
exchanges is not feasible. However, a common foundation on which to build
customized DTDs, schemas, and XML documents should fulfill the needs of
the individual industries and businesses and also serve as a guide for achiev-
ing greater communications and information exchange interoperability
among all users. And that is what the ultimate goal is. Not a set of rigid stan-
dards, but an omnimorphic vehicle for wider, seamless communications.

Content

The idea of document management (archiving, maintaining, protecting) will
soon be automated by XML and will evolve into the notion of content man-
agement, which focuses on reuse and repurposing information. XML pro-
vides the backbone needed to add value to documents and to the informa-
tion that they contain. The value added is the ability to link and manipulate
information and knowledge, wherever it may exist, in the same way that
you can currently manipulate data using a spreadsheet or a database.

To make this happen, information and content have to reside in a single,
common format so that they can be used by a variety of applications. The
format must be standardized so that information can be used with legacy,
current, or future data.

At the heart of this capability is XML, which pumps new energy into the
lifeblood of business—its information—by giving it meaning. By identifying
the meaning of data and information, XML tags enable this information to
flow across business arteries from one application to another with no slow-
downs or impediments due to translation from one format to another. The
fast flow of information can quickly turn from a trickle into a tidal wave,
so it is important to have useful content with the appropriate level of detail
for the task at hand. To address that concern, XML permits the concept of
content tuning, customizing the information for the specific user, as well as
for the method of access, such as desktop or wireless.

56 XML

XML Structure and Grammar

Like any other language, XML has a structure and a grammar that are com-
posed of a syntax, a vocabulary, and semantics. The syntax is clearly
defined by the XML specification, which provides the rules for creating an
omnimorphic framework. Although these rules of syntax are quite rigid,
their crispness and clarity support a very malleable XML structure within a
set of simple guidelines.

The vocabulary is defined by the DTD, schema, and meta-data. Each
XML document may conform to a separate vocabulary, or a class of XML
documents may all follow a single standard vocabulary. Each XML lan-
guage, such as XHTML and WML, is made up of its own individual vocab-
ulary. Each industry is also customizing its own specialized XML vocabu-
lary. Just for B2B e-commerce, more than one thousand different XML
vocabularies may be needed. With some corporations also defining their
own unique vocabularies, clearly the resilience of XML can lead to more
XML languages than existing natural languages.

However, just like the natural languages of the world, most of the XML
vocabularies overlap, with many similarities. For example, only a few ways
exist to define customer information, inventory data, or financial facts. As
discussed previously, efforts are underway to collect the common subset of
vocabularies into an agreed-upon standard across multiple industries and
corporations. A common standard will help smooth communications and
data exchange.

The semantics are defined by the data element tags and how they create
the context and meaning in the XML document. Just like the traceability
matrix defined in a business-based Information Technology (IT) architec-
ture, the semantics of an XML document link a business function to a data
element tag. The tag is more than just an identifier; it also provides per-
spective and context, showing the relationships among the data within an
XML document. For example, consider the word, balance. To a creditor,
balance relates to accounts receivable. To a financial analyst, balance may
refer to the record of profit and loss. To a chemist, a balance relates to
weights and measures. The combination of XML tags and the document
tree structure form the semantic relationships that define the most pertinent
context.

Typically, the business functions that are defined to support a corporate
strategy follow some general trends for consistency within a corporation.

XML Documents 57

The data element tags that describe these business functions follow the same
consistency trends. A common semantics and understanding emerges from
the consistent mapping of function to tag. When creating a DTD or schema
to define this mapping, the XML document designer is, in effect, creating a
traceability matrix. This mapping results in an XML document architecture
that defines uniform semantic meanings for the data element tags.
Uniformity in XML semantics encourages a common pattern of XML usage
and results in better transfer of data and information at both corporate and
industry levels.

One of the important issues worth reemphasizing is that even when two
companies agree on a DTD or schema, differences can still exist in the
semantics. For example, when Ford uses tags such as <products> and <serv-
ices>, these will have different meanings from when Wal-Mart uses them. In
addition, the options and attributes under <customer> and <services> have
very different semantics when comparing Ford and Wal-Mart. So, even
though the vocabularies may be the same across companies or industries,
the meanings may have subtle differences to the corporate business or cul-
ture. When drawing up a carefully crafted XML document architecture, a
designer will take these variances into account to disambiguate conflicts in
meaning and to normalize tags when possible.

When the differences between two DTDs or schemas are too great
to combine them, the designer may use another approach to unify
the exchange of information. The XML Stylesheet Language for
Transformations (XSLT) was specified to help the transfer of XML data and
documents among different users. Developers can use XSLT to transform an
XML document that has one DTD or schema into a new document that uses
a second, predefined DTD or schema. The concept is similar to the fairly
straightforward translation from one language or dictionary to another. For
example, imagine that Ford and Wal-Mart want to exchange XML docu-
ments. The receiving company programs an intermediate XSLT transforma-
tion style sheet that translates one set of tags to the corresponding set of
tags. This style sheet is another XML document that serves as a look-up
table, dictionary, or translator between two predefined DTDs or schemas.
XSLT can even convert between DTDs and schemas.

However, XSLT is limited to simple transformations. For example, a
transformation from Wal-Mart schemas to Target schemas may be straight-
forward. However, a transformation from Wal-Mart schemas to Eli Lilly

58 XML

schemas may not be feasible because of the diversity of the vocabularies.
The business processes may be similar enough to convert, but other trans-
lation may require a more hands-on touch until more intelligent, automat-
ed tools are developed. Moreover, because schemas follow the XML syntax
and DTDs follow the legacy SGML syntax, converting between two
schemas is much easier than converting from or to a DTD.

These translation limitations are well understood, and new tools and
methods are under development to address them. As mentioned earlier, the
Apache Cocoon and the IBM transcoder are a first attempt. As the technol-
ogy matures, which it does very rapidly in Internet time, these issues will be
addressed, resolved, and codified.

However, the current methods using XSLT are completely adequate to
allow the early majority of users to apply XML documents to core business
functions, such as data exchange and B2B procurement activities. Some
companies have hesitated in their experimentation with XML because they
are waiting for a final standard to be defined. That final standard was
released in the late 1990s, and its evolution has involved only minor tweaks
and refinements that have not hindered IBM, Microsoft, or Oracle from
embracing the language and building a corporate strategy to exploit it. Now
is the time to explore the use of XML and to create XML documents in
order to avoid losing a competitive position.

The explosion of B2B activities has resulted in a growing number of
XML meta-data repositories. Since many of the schemas and DTDs in these
repositories can be transformed using XSLT, a new XML specification will
not obviate all the old XML work. XML is forward compatible to new and
improved standards. So if a company, such as Microsoft, creates early XML
tools and XML documents that do not conform to a new standard, then a
simple XSLT style sheet can be used to update the changes. Incompatibility
and technological dead ends will be minimized.

XML Document Size

One important trade-off with XML is file size. The omnimorphic capability and
the uniformity come at a price. An XML file is large. An XML document
is larger than most corresponding files because of all of the text tags. First, it is
larger than a text file because it includes many tags. Second, it is much larger
than the corresponding binary file because it contains Unicode text.

XML Documents 59

When efficient binary files are converted to XML, they grow tremen-
dously. An XML document may be ten times larger than the corresponding
binary file. Compression can partially counteract this size because the
redundant text tags tend to compress very efficiently. However, for the
sake of significantly improved interoperability, businesses and vendors will
have to consider the trade-offs of converting all or part of their systems
to XML.

In the 21st century document size should be less of a problem than it was
in the 1960s. Compression ratios are very good for XML documents, but,
in today’s environment and with the immaturity of the tools, short-term,
internal document transfer may be more efficient in existing formats.
There is a significant caveat. Be very clear that non-XML documents are
truly short-term and truly internal. Misconceptions about the concept of
short term led to the Y2K problem.

In addition, gigabit (109 or 230) transfer rates are common. Terabit (1012

or 240) storage capacity is a standard corporate requirement, with some cor-
porations already eyeing terabit transfer rates and petabit (1015 or 250) stor-
age capacities. Even home Internet connections using cable modems and
DSL can achieve megabit (106 or 220) transfer rates.

So the problem of manipulating and e-mailing multi-megabit XML doc-
uments across the ’Net and the Web will not be a major problem over the
next few years. But initially, as with any emerging technology, the trade-offs
must be considered.

According to Chris Lovett, who writes for Microsoft, a rough rule of
thumb of the computer memory requirements for processing an XML doc-
ument is on the order of four times the disk storage needed for the XML
document. This means that a 100 MB XML document file stored on disk
will require 400 MB of RAM to process and manipulate the XML data
using an application. These estimates depend on the number of tags used in
the document and whether or not the document is in a Unicode format.
Lovett’s formula for estimating XML document size is given by

WS = 32 * (N+T) + 12*T + 50*U + 2*W

where WS is the working set in bytes;

N is the number of element and attribute nodes in the XML tree structure;

T is the number of text nodes;

60 XML

U is the number of unique elements and attribute names;

and W is the number of Unicode characters used in the text.

Note: Single-byte ANSI characters translate into double-byte Unicode
characters.

Lovett describes his formula in detail, with examples, in his article, Inside
MSXML Performance, which can be found at (http://msdn.microsoft.com/
xml/articles/xml02212000.asp).

Saving Some Work

Whenever possible, a corporate document developer should use an existing
DTD or schema. Using a standard schema or DTD makes data interchange
easier and may make it possible to use data-aware tools developed by oth-
ers. If an industry standard exists, consider referencing that DTD with an
external parameter entity or a namespace. Two common repositories for
industry-standard DTDs reside at the Organization for the Advancement
of Structured Information Standards (OASIS) at www.XML.org and
CommerceOne’s XML Exchange at www.xmlx.com.

XML Tools

Many companies have documents written in different formats. Historically,
it has been easier to transfer and translate raw text to different formats and
across platforms. One vendor advantage and user disadvantage was the
switching cost that related to the transfer and translation. For example,
some corporations simply did not want to deal with the trouble of switch-
ing between Macintoshes and PCs, or WordPerfect and MS Word. This
avoidance helped Microsoft capture the PC software market. However,
XML opens information transfer, leading to reduced switching costs. Aware
of this, Microsoft has put an XML strategy in place to guarantee customers
that they will be able to exchange information with other customers, cor-
porations, and entities.

One thing to consider about an XML parser when creating a document
concerns validating the document. An incomplete XML document may be
neither well formed nor valid. Although the developer may be aware of this
fact about works in-progress, some XML tools may not make this distinc-

XML Documents 61

tion. So, during the development process, the author of the XML document
must be aware that some tools and parsers will simply fail to work ade-
quately with an incomplete XML document. The stubbornness on the part
of the tool may result in frustration on the part of the developer. This is a
function to keep in mind during tool selection.

XML Trees
by S.H. Simon
[With a nod to Joyce Kilmer]

I think that I shall only see
That XML is like a tree.

A tree that’s built from documents
To show the data elements;

A tree whose structured elements
Show logic from the concept, thence;

A tree that represents what’s meant,
To disambiguate intent;

Upon the schema, it is shown;
The meaning that each tag will own.

Data are made by fools like me,
But XML can make a tree.

62 XML

Introduction

XML documents contain data and text with little regard for the ultimate
display, presentation, or device. In this way, XML serves to separate data
from presentation, fulfilling the standard client/server model of computer
processing. To support the other part of this equation, XML also provides
methods for extensible presentation and for processing. These methods are
special XML documents and are part of the XML style sheets specifications
for XSL (eXtensible Stylesheet Language) and XSLT (XML Stylesheet
Language—Transformations).

XSL includes a formatting capability and a transformation capability
(XSLT). Both capabilities are XML applications and they are represented as
XML documents. The two different capabilities are represented separately
as two different specifications, XSL and XSLT. The formatting capability
functions like a style sheet language to process a document for presentation.

The transformation capability provides elements that define rules for
transforming an XML document into another format, such as HTML,
WML, TeX, or even another XML document. The transformed XML doc-
ument may use the tags and schema from the original document, or it may
use a completely different set of tags. XSLT can transfer data between two
XML documents, between applications, or between computer systems. Its
ability to move data from one XML document to another is a critical com-

63

XML Style Sheets
(XSLs) and

Transformations
(XSLTs)

C H A P T E R 4

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

ponent of e-commerce, XML-based Electronic Data Interchange (EDI),
schema transformations, and other conversions between different XML rep-
resentations.

Formatting Capability

XSL is similar to the Cascading Style Sheet (CSS) in HTML. However, just
like the extensibility and flexibility of XML over HTML, XSL provides
greater fine-tuning and flexibility over document scripting and display than
CSS does. And just as XML evolved from SGML, XSL is related to DSSSL
(Document Style Semantics and Specification Language), which is the pow-
erful formatting and scripting language for SGML documents.

A style sheet can be used to fine tune text placement and overall appear-
ance of a Web page. Just as CSS serves as the predominant style sheet lan-
guage for HTML-based Web pages, XSL defines the programming, presen-
tation, and appearance for XML documents. In general, style sheets furnish
a method for designing Web pages that can conform to a variety of differ-
ent displays and devices. However, CSS can only be used for presentation,
while XSL can also be used for conditional processing.

For example, HTML is a presentation language itself. Therefore, it does
not absolutely require a CSS. The “data” and the display are one and the
same. However, CSS gives the developer much more control over the
appearance of the resulting Web page. In contrast, XML is a data descrip-
tion language, with no predefined formatting tags for presentation. The
data, the processing, and the presentation are all separate. Therefore, to dis-
play the XML data, a developer has to create a corresponding XSL docu-
ment, which will present the XML document in the desired way.

XSL functions at both the detailed and the coarse levels as it provides
presentation instructions for both XML elements and documents. Just as
with a programming language, developers can use XSL to script instructions
that can manipulate the XML document at the element level to carry out
actions and make decisions based on conditional statements.

XSL can be used to build an XML document’s tree structure, which char-
acterizes the relationships among the element nodes. For example, think of
an XML document as the main root of a tree. Document components
branch off from the root. Element nodes form the branches of the tree, and
each branch may have many twigs and leaves that stem from the branch.

64 XML

XSL uses the tree structure to define the relationships among the elements
within the XML document. The relationships of one element to another will
drive the style sheet actions that are performed.

In general, XSL rules are elements, or, more precisely, meta-elements, that
contain information about formatting other elements. XSL rules and condi-
tion statements match predetermined patterns to decide which style sheet
rules to apply to which element nodes within the source XML document. A
developer can effectively provide access control by creating a separate style
sheet for a variety of views of the XML document. For example, one style
sheet can show a summary of the document for executive presentations, and
another style sheet can show successive levels of detail. Or in the case of
financials, one style sheet could present details to the executive committee
yet provide only high level views to other readers.

A developer can design a set of XML tags and then write a style sheet
that will interpret the tags similar to the way that a browser interprets con-
ventional HTML. Condition statements and decision trees in XSL depend
on patterns found in the XML document; these patterns determine which
presentation or processing instructions to apply. In many ways, XSL is just
like any other programming language with conditions and actions. The dif-
ference is that XSL has much of the power of Java for high level functions,
yet it is less complex than Java Script. This means that most HTML coders
can learn to write XSL in a few weeks by simply copying some existing XSL
examples from the Web—in the same way that they learned HTML.

In contrast to most conventional programming languages, XSL is a
declarative programming language. Typically, a declarative language is used
to build statements that describe the desired end result, rather than defining
the details and steps required to achieve this result. Using a declarative pro-
gramming language can be easier because the developer is not concerned
with the process details. The details and the steps are left up to the proces-
sor, application, or browser.

Repurposing XML Documents

XML does not describe the appearance or layout of a document. The orig-
inal designers did this on purpose. By separating the structure of a docu-
ment and its appearance, the designer can quickly and easily modify the
presentation of the document or the device used to display the document

XML Style Sheets (XSLs) and Transformations (XSLTs) 65

(for example, monitor, voice, Braille, handheld, or wireless telephone) with-
out a significant amount of reprogramming. The document can easily be
formatted in different ways for different audiences and for different plat-
forms, as indicated in Figure 4.1. Also, readers of the document may be able
to reformat the presentation in real time using customized styles as desired.

FIGURE 4.1 XSL can repurpose an XML document for presentation over wireless
devices, voice, XHTML, etc.

The different style sheets that process XML documents may have differ-
ent purposes. The term style sheet is very broad. It may have nothing to do
with the presentation style. It may have to do with the math calculated on
a price data element. Any script that can be referenced from a dynamic
HTML page can also be referenced from an XSL style sheet to process an
XML document. XSL provides the mechanism for keeping these three
things separate: the data, the markup tags that provide the meta-data infor-
mation, and the XSL-scripted processing procedures. This separation fol-
lows the standard computing paradigm of separating data, processing, and
presentation into three conceptual layers, so that items in any layer can be
modified without affecting the other two layers, similar to the way a data-
base is constructed.

With XML, this computing paradigm is realized. The XML document
designer can use markup tags any way desired and can create more when
needed. This freedom is allowed because XML tags do not come with pre-
defined meanings as HTML tags do. The developer can also change the data
as needed. Then the XSL style sheets can be separately created to control
processing or presentation. An XSL style sheet is an XML document that
tells an XML application, such as a parser or browser, how to process or

66 XML

WML
Document

VoiceML
Document

XHTML
Document

XML Repository

XSL Processor

translate the logical structure of the source XML document into a new for-
mat or a new presentation structure. XSL can also specify what an element
is, how it should be presented, and what the semantics of the source docu-
ment are.

What all of this means is that XSL can use the data from an XML docu-
ment to create a variety of outputs. Where financial data in an XML docu-
ment might have been created for an annual report, an XSL style sheet
might repurpose the data for a balance sheet, for a stock performance
report, or for a portfolio comparison, when combined with the financial from
other companies. An XML document may be used for many different purpos-
es than it was originally intended and XSL can enable this repurposing.

XSLT

XSLT has a complete expression programming language with a very pow-
erful pattern matching syntax. XSLT is not a pure programming language,
but it can access other languages to import other applications and increase
capabilities. XSLT provides the capability for selecting one or more ele-
ments, specifying the conditions for modifying these elements, and generat-
ing new elements for the result tree.

Rather than doing all data processing on the server, a developer or user
can use XSL and XSLT to off-load processing to the local client. Style sheets
facilitate the capability of modifying an XML document offline, then send-
ing the processed document back to the server. XSLT provides the power of
an entire programming language in a comparatively easy-to-use package.
XSL is infinitely more flexible than HTML.

XSLT excels at mapping one XML-based representation onto another.
The XSLT specification defines an XML-based language for expressing
transformation rules that the developer can use for transforming one class
of XML documents and vocabularies to another or one schema definition
to another. XSLT is similar to a traditional, but simplified programming
language. So, the developer can also use XSLT documents as a general-pur-
pose programming language for manipulating XML documents by applying
some simple processing instructions.

As described before, different industries will use a different vocabulary of
schemas and DTDs for their XML documents. When corporations want to
exchange XML documents, they need a common schema. It is difficult to

XML Style Sheets (XSLs) and Transformations (XSLTs) 67

correlate schemas unless a person manually reads and understands both
schemas to determine the relationships among the data element types and
attributes. After those relationships are determined, recorded, and tabulat-
ed, mostly by hand, XSLT provides the transformation instructions for con-
verting XML schemas and documents from one definition to another.

Example: Building XSLT Conversions

For example, when Ford and Wal-Mart share their XML documents, a
developer from Ford will have to sit down with a developer from Wal-Mart
to compare their respective schemas and data element types, as well as the
meanings of these data element types. They can perform these comparisons
by e-mail, telephone, and telecommunications, rather than having to take
the time to meet face to face.

After they build a table that maps the Ford vocabularies, schemas, and
elements to the Wal-Mart vocabularies, schemas, and elements, the devel-
opers can codify the table into an XSLT document. Then when XML docu-
ments are exchanged, the XSLT document will convert them from one cor-
porate format to the other. If one corporation modifies its underlying
schemas, these changes can be easily incorporating into the XSLT document
with minimal effort. Once the original manual collaboration is completed,
the resulting XSLT document should serve as a continuing and dynamic
Rosetta Stone between the two companies.

Why Not Use Java

Possibly a transformation table could be built in a traditional programming
language such as Java, C++, Perl, or LISP. These languages could easily han-
dle the pattern matching and the translations from one schema to another
and from one XML document to another. However, using one of these lan-
guages requires a higher level of programming skills. Also, modifying the
resulting program to make additions and changes would require the same
level of programming skills. In addition, these programming languages
require a server or a special environment to execute their code. Typically,
the source code can only be read and understood by an experienced pro-
grammer.

But XSLT simplifies all of these tasks to free up the programmer to con-
centrate on tasks that are more difficult or challenging than the simple table
transformations that are typical of XML document translations. XSLT

68 XML

requires logical thinking, but not detailed programming expertise. It is an
XML document, so it does not require a special programming environment.
All that is needed is a simple text editor to create the XSLT documents and
an XML-enabled browser to run them.

Example: Using XSLT Conversions

Running an XSLT document is fairly straightforward, but understanding
the process requires a little rehashing of the basics of XML documents. An
XML document is a text file that contains tags and data. Typically, no for-
matting or presentation instructions exist within the XML document itself;
however, the XML document may refer to an external file, such as an XSL
or XSLT file, for the formatting commands. For example, a Ford XML doc-
ument about car data might be presented as directions to the salesman, as a
price comparison to the show floor manager, as marketing collateral for the
general public, or as a focus video commercial for an interested customer.
Each of these applications uses the same XML document, but the individ-
ual presentations use separate XSL documents for the display. In addition,
all the presentations are run through a standard XML-enabled browser as
the interface. In a thumbnail, this is the basic theory of operation of an
XML document.

XSLT follows the same general format. Ford sends the XML document
to Wal-Mart. Someone in the Information Technology (IT) department
uses a browser and the XSLT document to convert the Ford document to a
Wal-Mart format. The source Ford document is placed into an archive, and
the target Wal-Mart document is distributed to the various departments. If
the Ford XSL documents used for the presentations accompany the XML
document, then the XSLT document might also convert them into Wal-
Mart formats. This would enable Wal-Mart associates to review the pre-
sentations, which would also be compatible with other Wal-Mart XML
documents.

XSLT Foundations

As described in the previous paragraphs, XSLT is an XML-based style sheet
and scripting language that describes transformations from XML docu-
ments into other text-based formats. These formats are not exclusively
XML. For example, they can also be HTML, WML, XSL, XSLT, TeX, or

XML Style Sheets (XSLs) and Transformations (XSLTs) 69

PDF. XSLT depends on the use of three text documents: source, XSLT, and
target. The source document is the initial well-formed XML document,
which requires transformation. The basic reason for the transformation is
to convert from one vocabulary to another. The XSLT document is a text
document in an XML format that uses the style sheet transformation vocab-
ulary of rules to convert from the source document vocabulary to the target
document vocabulary. The target document vocabulary does not have to be
based on an XML schema. It could also be a completely different format,
such as a TeX file or a PDF file. The only requirement is that the target doc-
ument is a text file. The XSLT generates the target document by applying
the transformation rules to the source XML document.

The target document can be any of a variety of text formats. Although
XML, TeX, PDF, and Postscript are common formats, there are many other
types of text formats, such as WML for wireless, VoiceML for voice, and
even more formats for graphics and for Braille. In addition, text is not lim-
ited to English or even to the Latin alphabet. A discussion of alternate char-
acter and symbol transformations using Unicode follows.

Conditionals

An XSLT document is composed of XSLT templates. A template is a condi-
tional statement made of a pattern to match and a set of actions to follow,
depending on the pattern match. The set of commands and actions available
in XSLT is as rich as those in most other programming languages. The most
common action is to write a text string into the target document. The text
string can be a direct copy of text or tags from the source document, it can
be a copy from text in the XSLT document, or it can be some modification
of these elements based on XSLT actions.

The conditional statements used in XSLT, such as xsl:if and xsl:when,
are similar to those found in Java and in C++. Although these statements
have sufficient flexibility to generate most of the required test situations,
the underlying functionality remains the same. XSLT runs a specific test,
pattern, or condition. If the terms of the test are met, then the subsequent
action is carried out. The actions are also sufficiently flexible to generate
most of the required results needed to build the target text document,
either one tag at a time, one line at a time, or even the entire target docu-
ment.

70 XML

Pattern Matching

XSLT processing is based on pattern matching. Because pattern matching is
at the core of this language, XSLT has a complex hierarchy of how tem-
plates and patterns are matched. For example, imagine that an XSLT docu-
ment is searching through the telephone book and looking for names. It
might contain a rule that looks for names that begin with the letter J. It
might also have a rule that looks for names that start with John. These two
rules may result in a double result, because both will match the word John.
In XSLT, template rules are independent of each other, so the duplicated
match would result in an incorrect target document. To prevent these con-
flicts, the XSLT pattern matching hierarchy permits only the most impor-
tant rule with the highest priority to achieve the match. So in case of a tie,
the most important rule is invoked. In case of equal importance, the first
rule wins. In this example, the J rule always wins over the John rule because
it is first. Therefore, a careful developer would give the John rule a higher
priority than the J rule, or make it come first.

Style Sheets

XSLT template rules are used for simple pattern matching. For more com-
plex patterns, template rules can be collected into style sheets. The
xsl:stylesheet format is used to define the collection of template rules for
pattern matching. The output from a style sheet match can range from a
simple action to a partial document tree to a full document. The output can
also be to multiple documents. For example, XSLT might use a source XML
document to generate an HTML document, a WML document, and a
VoiceML document. The simultaneous creation of multiple target docu-
ments that use the same content, but in different predefined formats, saves
time and maximizes one of the foundations of XML—the ability to reuse
and repurpose XML document data.

Iterations

As with any other programming language, XSLT has a mechanism for
repeating actions. These looping instructions are similar in syntax to those
found in C++, Java, Perl, and LISP. The developer can use the looping
instructions to traverse the XML tree structure, locate element nodes, and
perform the required transformation actions.

XML Style Sheets (XSLs) and Transformations (XSLTs) 71

XSLT loops permit linear iteration, nonlinear iteration, and recursion.
Thus, looping can be programmed to be efficient and to work with parallel
processing if the capability becomes available. Also, a very complex XSLT
document might be designed to run over multiple Web sites simultaneously,
enabling the Web as a parallel processor. Although this capability was not
the intent of the designers, parallel processing using XSLT via the Web may
open opportunities for language transformations that were previously too
computer intensive to be practicable.

Parameters and Variables

The XSLT specification includes the use of parameters and variables, named
respectively xsl:param and xsl:variable. The terms are used to define gener-
al variables or specific parameters for use in the XSLT document or to be
passed on to the target document or style sheet. The main difference
between xsl:param and xsl:variable is that parameters can have their initial
values changed at run time. Also, xsl:param occurs only at the beginning of
a template, while xsl:variable can occur throughout the document. Both
instructions are global, as opposed to lexical, in scope.

Once the value of a parameter or variable has been defined in XSLT, it
cannot be changed. In this way, XSLT differs from Java, C++, and Perl.
This difference is due to the way that XSLT functions. The execution of the
XSLT processing model was designed as simply as possible to support the
independence of template rules, allowing for enhanced and distributed
processing capabilities. If a template changed the value of a parameter or
a variable, then subsequent templates would be affected. The results of the
subsequent template rules would depend on the first template, and this
would complicate the XSLT processing model, requiring dramatically more
overhead.

Although XSLT can be used for other purposes, the main goal of XSLT
is to transform a source XML document into a target text document using
the simplest path.

Specific Output Formats

The XSLT specification includes four commands that produce specific out-
puts. These commands are xsl:comment, xsl:element, xsl:attribute, and
xsl:processing instruction. From a high-level perspective, these commands
simplify the developer’s life. To include comments or instructions in the tar-

72 XML

get document, a developer would have to write a long, complex string in
order to prevent the XSLT document from processing the string. The devel-
oper may want to use the results of a namespace or XPath (which defines
the pathname to the specific locations or elements) in the target document.
Rather than constructing these four items in a convoluted manner designed
to circumvent the XSLT processor, the developer can apply these commands
to produce specific results. These four commands may not be used with high
frequency, but when they are used, they will greatly simplify the program-
ming and the readability of the XSLT document.

In addition, the target document of a transformation is not necessarily
another XML document. The default output is an XML document, but that
can easily be changed to an HTML format or to a text document. HTML
format is the familiar Web page. But a text output format has an under esti-
mated value with many broad implications.

As long as the source document follows the rules of being well formed,
XSLT can create any document format that uses a text format. Of course,
this includes XML and HTML, but those formats are already defined. But
XSLT can also generate other markup language formats, such as WML and
VoiceML, as well as any B2B e-commerce format. Also, the possibilities do
not stop with markup languages. As mentioned before, XSLT can transform
XML documents into TeX, PDF, and Postscript formats. In addition, an
XSLT document can be developed to convert an XML document into Rich
Text Format (RTF), which is a standard used by Microsoft Word. Finally,
XSLT may be used as an intermediary to transform among any of these text
formats. Just as XML will become the universal data transfer format, XSLT
may approach the concept of a universal transformation format.

Transforming the Tower of Babel

XSLT transforms an XML document into another text format. This text
format does not need to be an XML document, and it also does not even
need to be in the same language or character set. One very important clari-
fication is that XSLT will not translate the contents of a document; it will
only translate the tags or the format of the information. However, format
translation is still very useful. For example, XSLT can translate the vocabu-
lary, schema, and tags for the format of one company, such as Ford, to that
of another company, such as Wal-Mart. This transformation could also
occur among countries rather than companies.

XML Style Sheets (XSLs) and Transformations (XSLTs) 73

Ford has subsidiaries in the United Kingdom. Rather than enforcing U.S.-
centric tagging conventions, an XSLT document could transform from U.S.
terms to U.K. terms. For example, in the United States, customers are inter-
ested in trunk capacity. In the United Kingdom, that transforms into boot
capacity. XSLT can easily transform <trunk> into <boot>. There are a num-
ber of simple translations of that type. In addition, XSLT can convert meas-
urements and capacities from English to metric.

For subsidiaries in France or other non-English speaking countries, Ford
can produce an XSLT to translate the tags to the language of choice.
Although Ford could build a monolithic XSLT document for all Ford deal-
ers, having one document for each language is more prudent and efficient.
The XSLT to convert numbers from English to metric can be reused by sim-
ply importing it using a namespace.

One issue to consider about non-English language is the use of accent
marks and special characters in the tags. This simple matter is addressed by
using Unicode. XSLT has no trouble transforming an English tag into a non-
English Unicode equivalent. To map one representation to another simply
requires a table lookup. From this point, the potential for XSLT grows more
interesting and very exciting.

If Ford can use XSLT to translate XML document vocabularies to non-
English, can it develop an XSLT document to translate to a new alphabet,
such as Greek, Russian, Hebrew, or Arabic? Sure! Again, we have the caveat
that XSLT is transforming one XML tag and vocabulary to a corresponding
XML tag and vocabulary. A real translation of meaning is not occurring. It
is simply a mindless table lookup.

In addition to transforming alphabetic tags, XSLT can exploit Unicode
to transform between alphabetic tags and symbolic (ideograph), character-
based tags. So if Ford wants to transform its XML documents into
Chinese, then it can build an XSLT document to make the appropriate
transforms. Again, these transforms are dictionary lookups, not language
translations.

However, we can stick our toe into the translation ocean. We can take a
sip of a few words, but XSLT will drown if it is used to translate free text.
In the specific case of cars, the text information is fairly well bounded with
terms such as color, speed, and distance. These simple terms and their trans-
lations can be stored as a table or a dictionary in an XSLT document, and
then transformed. The glorious marketing analogies that magnify car own-

74 XML

ership with terms like joie de vivre or liefs lieben are much more difficult
to transform using XSLT.

Conclusion

XML style sheets, in the form of XSL and XSLT, enhance XML’s ability to
separate data from presentation. XSL provides a flexible and extensible way
to allow the developer to control the display format of an XML document.
By creating a range of style sheets, the developer provides the user with a
choice of different displays. Different style sheets allow the user to view the
data according to individual tastes. By supporting the creation of different
style sheets, XSL enables the reuse of XML documents.

XSLT provides a flexible and extensible way to allow developers to
change the data format of the XML document. By using the content in the
source XML document, the developer can transform the information into
other documents. The transformation may be as simple as a change of
schema and tags or as complex as a change of underlying natural language.
The transformation can even result in a target document in a new format,
such as HTML or TeX, or in a new markup language, such as WML,
VoiceML, or Braille devices.

XSL and XSLT cannot yet transform meaning and intention. People are
still required for that type of translation. XML style sheets and transforma-
tions, however, provide a good start. And someone may yet build an XML-
based translation markup language. Many of the tools are already here.

Although XML DTDs and schemas provide the methods for representing
data type definitions, their extensibility could be a bottleneck to communi-
cations as each company tends to roll its own schemas. Therefore, without
a single, unifying DTD or schema, people are still needed as boundary span-
ners between organizations, industries, corporations, and even departments
to establish tables to map among different vocabularies. But once the map
is built and the communications links are forged, XSLT is an XML-centric
method to strengthen the chain of interoperability.

XML Style Sheets (XSLs) and Transformations (XSLTs) 75

Introduction

The terrific expansion of the World Wide Web is due to the hyperlinking
capability of HTML beyond other functions, even its simplicity. The con-
cepts of hyperlinking and hypertext have been written about and applied for
decades. Millions of Web pages are linked worldwide using HTML, and
developers are always looking for more capability. The World Wide Web
Consortium (W3C) XML committee leveraged the infrastructure of the Web
and extracted linking features from SGML to extend to XML the power and
the popularity of hyperlinking.

The goal of the W3C XML committee was to use XML to bring the flex-
ibility of SGML to the Web and to include a new kind of linking. Developers
use linking to connect documents, pages, and sites so that users can gain
access to information distributed throughout the Internet, the Web, and the
corporate intranet.

The XML committee designed XML to fulfill some of the limitations of
SGML for use on the Web. XML applications are smaller than SGML, so
they use less bandwidth, and XML documents transfer faster. Also, each
SGML application requires separate linking features to be defined for each
instance.

In addition to the limitations of SGML, the XML committee wanted to
overcome the limitations of HTML links. HTML links are the best thing to

76

C H A P T E R 5

XML Linking
Language (XLink)

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

hit the Internet. They are clean, simple, and easy to navigate, and that is
where they are also limited. HTML links have three basic drawbacks: loca-
tion, states, and relations. It almost sounds like a real estate ad.

The standard URL takes the user from one Web page to another—not
from paragraph to paragraph, not from title to contents, and not from table
of contents to pages. If the developer carefully inserts anchors within the
Web page, then the user can make these navigations, but these anchors have
to be explicitly designed into the Web page before use. In addition, the user
cannot go just anywhere within a Web page. The user can only go to a spe-
cific anchor, not to the next paragraph and not to three or four different
anchors without a few extra clicks.

The HTML Web page is a stateless system. A browser does not remem-
ber the state of the Web pages or the history of navigation. The existing
record of previous Web sites is a static list with no interactive capability;
therefore, the Web page visitor cannot skip around in his or her search his-
tory unless it is done manually. Also, the standard browser does not keep a
memory of user-entered information. Again, there are ways around these
limitations, but they exist outside the HTML specification.

Things are relative, but not within HTML Web pages. The standard
browser maintains no connection among the various Web pages that a user
might visit. For example, if a user visits three Web pages on the Yahoo site,
five pages on Ford, and two pages on the Wal-Mart site, the browser has no
mechanism for making the connection. As far as its records go, the user vis-
ited ten unrelated Web pages with nothing to link them together.

The W3C XML committee wanted to address these limitations and to
design a permanent, extensible linking language to complement XML’s
other extensible capabilities. To satisfy this requirement, they built the spec-
ification for XLink, the XML Linking Language. Throughout the various
W3C steps leading to specification, XLink has also been called names such
as XLL, XML Linking Language, and Extensible Linking Language. All of
these names refer to the same functionality.

XLink Linking Classifications

XLink specifies the methods used to travel from one document to another,
and to link information among many XML documents. The XLink specifi-
cation defines two methods of linking using either simple links or extended

XML Linking Language (XLink) 77

links. XLink simple links provide the same general functions as HTML
hyperlinks. XLink extended links provide new features that usually require
a conventional programming language.

Simple Links

A simple link is similar to an HTML link in that it can link to XML docu-
ments, HTML Web pages, the corporate intranet, and other information on
the Internet or the Web. In addition, the similarity with HTML continues in
how an XLink is used in an XML document because simple links include
other standard features, such as event handlers, that previously required
Java, Perl, or Java Script in order to implement the same features in HTML.

An XML document has a well-defined tree structure. Therefore, it is rela-
tively easy for an XLink simple link to access a specific point in a Web page
or a specific XML document element. One way to achieve this treasure hunt
is to access and follow a map, the schema of the XML document, to the
treasured element. In addition, a simple XLink extends beyond the capabili-
ties of HTML by linking structures because it includes qualifiers such as link
labels, opened link information, and link activation options that allow the
developer greater linking freedom than possible with standard HTML links.

Extended Links

While simple links correspond to HTML hyperlinks, extended links provide
a new set of advanced linking features. Some of these features include mul-
tidirectional links, two-way links, out-of-line links, and menu capabilities.
Multidirectional links allow the user to circumnavigate a selected collection
of documents. The documents usually have some relationship, such as a col-
lection of restaurants or a list of semiconductor companies. Two-way links
are a limited multidirectional capability between only two documents. Out-
of-line links are external links that are collected in a separate file. Menu
links give the user options from which to choose, just like a customer in a
restaurant who can choose one entrée or select different items from a buf-
fet. The extended links menu function in XML allows the user to sample
from the larger buffet of many choices, rather than the single entrée pro-
vided by HTML. The out-of-line and multidirectional attributes allow XML
to create a network of documents for the user to traverse.

78 XML

XPointers

HTML has internal pointers, indicated by a pound sign (#) in the anchor
link and used to link to a specific location within an HTML Web page.
Through clever coding, a Web page developer can guide a user from a loca-
tion in one Web page to locations in other Web pages. However, just like
HTML links, HTML pointers have some limitations. First, the specific tar-
get anchor point within the Web page must be explicitly coded in the cor-
rect location. This involves an extra step in the Web design process, and, if
a Web page belongs to someone else or it is read only, then a new pointer
cannot be inserted. Second, an HTML pointer refers to a location within a
Web page, not to a section of the Web page. Thus, an entire Web page must
be downloaded in order to access only a portion of it. If the Web page is
huge, there is no way to reduce the resource requirements. XML eliminates
these limitations through the XPointer Specification.

The XPointer specification defines the syntax for stating the location
information within an XML Document. XML Stylesheet Language
Transformation (XSLT) also uses XPointers to process transformations.
XPointers are indicated by a pound sign (#) and are similar to HTML point-
ers that specify a location within an XML document. They can also be indi-
cated with a bar (|) to specify a fragment within the document, discarding
the remainder of the document. This feature is far more efficient than the
HTML pointer.

XPointer is used to link from the current location in the document to
another location within the document or to a specific location within anoth-
er document. It does not point to another location in general; it points to a
specific location within a document. Unlike HTML pointers, XPointers can
reference existing nodes and tags within an XML document. This means
that an XPointer reference can point to information in any XML document
without having to insert a target location.

One feature of XPointers is the ability to define a number of ranges with-
in the same XML document, so that a long file can be decomposed into
manageable components. This feature is important in repurposing XML
document information. For example, imagine that an XML document con-
tains quarterly financial data. Developers can use XPointers to extract only
the information needed for a balance sheet or to show cash flow. Developers
for a financial analyst might use XPointers to combine selected information
from the original XML document with similar information from other cor-

XML Linking Language (XLink) 79

porations to provide an overview of the industry. XPointers are an impor-
tant contribution to the idea of reusing and repurposing data.

XPath

The XPath specification outlines the syntax for defining an XML docu-
ment’s precise location information down to the tag level or even down to
individual characters in a text element. Both XSLT and XPointer use XPath
to access nodes within an XML document. XPath operates on the details of
the logical structure of an XML document, and it supports basic string
manipulation. Traversing the internal hierarchy of an XML document, it
uses the logical tree structure to locate pertinent tags or predefined text ele-
ments. XPath operates on the internal structures of XML documents and
provides detailed references to data elements, attributes, text strings, as well
as other document nodes within a specific XML document.

A simple functional hierarchy describes the relationships among XLink,
XPointer, and XPath. XLink manages external links and interdocument
connections. Control is passed to XPointer to manage access to information
components within an XML document or resource. XPath manages the spe-
cific address for locating information components within an XML docu-
ment.

For example, to connect two or more XML documents, a developer uses
XLink. To obtain specific information with an XML document, the devel-
oper also uses XPointer and XPath. To access specific tags or text elements
within a single XML document, then the developer uses XPath. To collect
components and fragments from multiple documents in order to create a
virtual document, then the developer uses all three specifications.

XPath uses a path-based syntax that is reminiscent of URLs and paths in
Unix. It defines the navigation process through an XML document using a
specific set of nodes. The XPath specification defines node types such as
root, element, attribute, text, comment, processing instruction, and name-
space nodes. It provides an efficient syntax for specifying a location within
an XML document. Developers can use XPath rather than programming
instructions to climb the XML document tree structure. In addition, the
XPath syntax supports other XML technologies such as XSLT, XPointer,
and XLink. Finally as the specifications for XML grow and mature, the
specifications for XPath will also change

80 XML

XML Infoset

The XML Information Set (Infoset) specification standardizes the abstract
data model defined by the XML specification. A standard data model facil-
itates the design of an XML document architecture. Designers can use the
higher level abstractions without having to know the details of XML.

The Infoset data model is a hierarchical tree structure in terms of gener-
al, logical data elements, such as parent and child. It is independent of the
physical data. As the Infoset specification is better defined, tools will
emerge to help designers to create robust, corporatewide XML document
architectures.

Implementing XLink: Speculation

The XLink information specification defines what XLink can do, but not
how to implement it. For example, one big question is how to implement
out-of-line links. XPath has no mechanism with which to peer into any
XML document available on the Internet, the Web, or a corporate intranet.
The logistics and the infrastructure simply do not yet exist. However,
XLink, which is a foundation-enabling technology for XML, provides the
powerful ability to collect remote information into a virtual document. One
approach for implementing XLink might be using the current rage: peer-to-
peer networking. But first a little background.

Napster and MP3 were in court and in the news because of copyright
issues, which are just a diversion from the real issue of a grass roots effort
to build peer-to-peer networking over the Internet. While these networking
efforts are effectively open, they are nonmainstream, network communities
within the Web that do not use centralized servers. These distributed net-
work communities will have a significant impact on traditional content
providers. First we will look at these peer-to-peer applications, then further
explore their implications.

MP3 is a music standard that was released a few years ago. Although not
its intent, MP3 can be used to record music from existing music CDs and
then to upload these music files to the Web. The words piracy, copyright
infringement, and violation easily come to mind and are reminiscent of the
old Internet cry that “Information wants to be free.”

Napster software indexes MP3 music files on the user’s PC and displays
this index to other Napster users over the Internet. A simple search locates

XML Linking Language (XLink) 81

the music of interest, which can then be downloaded through the free
Napster network. Napster, as well as other network software, enables
peer-to-peer networking (P2P). This means that I can connect directly to
your computer, and you to mine, without the intervention of an external
server.

If Napster were an isolated instance of P2P, it might not be so interest-
ing. But there are five or more different P2P offerings. One of the more flex-
ible P2P systems is Gnutella, which works with more than just MP3. It will
also work with corporate data!

Gnutella Network

Gnutella is a protocol for connecting computers on a peer-to-peer basis
across the Internet, in contrast to Napster, which is more like a centralized
index of file servers. Gnutella client software on the local computer allows
users to select what they want to share, to index that information, and to
search for shared files and information across a distributed Gnutella net-
work. Gnutella provides more than simply a search engine and file server. It
also provides the protocol for a distributed capability that is similar to the
founding concept and protocol behind the Internet itself.

In fact, Gnutella is like a mini-Internet within the Internet. While the
Internet uses large servers and Cisco switches, Gnutella leverages the result-
ing bandwidth capabilities to permit local computers to function as nodes
and servers for the Gnutella network.

Software and protocols such as Napster and Gnutella provide the pipe,
the pathway, the journey, and the network rolled all in one. The network of
a million nodes starts with but a single user. It is how to get to where you
want to go as well as how to find out where you want to go. One user can
connect successively through other users to gain access to the entire network
of content providers. The destination is the millions of distributed PCs or
other content providers. And the content can be music, multimedia, or cor-
porate data. This is where P2P gets tremendously interesting.

The P2P protocols, architecture, and approach that enable content to
flow directly from client to client, without the intervention of a middleman,
middleware, or central server, present both a threat and an opportunity to
traditional content providers. Indeed, this kind of P2P across the Web has
two interrelated implications. First, P2P changes the nature of search
engines and content providers because it enables direct and fresh access to

82 XML

the content without time delays from centralized indexing. Second, P2P may
be the method of implementing some of the advanced, complex linking fea-
tures of the XML Linking Language.

Content Is King

Currently, the Web and the Internet are massive sources of content for the
user. This content is stored on millions of servers throughout the world.
Companies such as Intel may spend as much as $80 million to support the
servers and network infrastructure that supplies the Internet content to the
world. If bandwidth requirements shift from a server model to a P2P model,
then that $80 million budget will have to be reconsidered.

Rather than building up bandwidth resources for centralized access to
the content server, corporations will have to redirect these resources to sat-
isfy P2P software requests from individual computers. This is not a bad
thing, just another decentralized thing, and that can be significantly lever-
aged into a good thing.

Today, standard search engines catalog server-based, centralized Web-
based content and store the indexed information in a centralized database
for retrieval. As they have demonstrated a few times, hackers can attack and
shut down a centralized content server. However, a distributed content net-
work, just like the Internet itself, is much more difficult to attack success-
fully. Sure, hackers can shut down one segment of a network, denying
access to its information. But for the most part, traffic will be diverted to
other segments.

Another limitation of conventional search engines is that they retrieve
Web page information by using intelligent agents or automated Web
crawlers to index Web sites. However, search engine technology has not
been able to keep up with the increasing number of Web pages, estimated at
more than one billion and growing. In fact, according to George Cybenko,
a Dartmouth computer scientist, the Web is growing so fast that a search
engine needs a 50 Mbps (T3) network line just to keep up with its auto-
mated Web crawlers and spiders as they index new Web sites. The unveri-
fied extrapolation is that the number of Web pages doubles every 60 days.
This is not unreasonable when you recall that a Web site will have many
Web pages and that corporations can publish or update hundreds or thou-
sands of Web pages per day.

XML Linking Language (XLink) 83

So, much of the Web site information is static, out of date, and incorrect,
pointing the user at broken links and nonexistent Web pages. Even Yahoo!,
which screens its information manually, has the problem of too much infor-
mation to keep it all up to date. Moreover, centralized search engines can-
not retrieve dynamic content from pages that are built on the fly from e-
commerce sites, database searches, or user interactions. Users have been
screaming for better search engine technology since the start of the Web
popularity in 1994.

The next step up the Web evolutionary, information-sharing ladder is a
P2P parallel search and file-sharing community, distributed throughout the
regions of the Web and the Internet. P2Ps decentralize information as well
as the search capability. They also provide access to dynamic content, rather
than the static information provided by traditional search engines.

Content providers can define which files and content are sharable. This
is a departure from today’s search paradigm in which search engines mere-
ly point users to the correct Web site, and then the user has to navigate to
the information of interest. With P2P capability, the journey is also the des-
tination because users can search for and go directly to the information of
interest, as defined by the content providers.

The potential behind this is remarkable. Simply select content and share
it. It’s really that easy, and the power of sharing content is limitless. The file
and information formats are not important. Any media can be shared—and
pushed. Because the user has control over what is shareable, the user can
also “push” information as responses. This capability provides a significant
opportunity for portals, traditional search engines, and other commercial
content providers.

Just as search engines such as Yahoo! and Altavista make money by sell-
ing keywords and advertising, any commercial content provider can create
interesting content-rich advertisements that are pushed in response to
search queries. However, these ads will present a double-edged sword
because they cannot be purely self-serving.

In a competitive information space like the Web, where time and atten-
tion are golden, users resent content-free ads that waste time by providing
no information or entertainment. P2P software works both ways. Users can
boycott a blatant ad and filter out an entire Web site. Just as SPAM refers
to unwanted junk e-mail, the P2P user community will coin a term to
describe content-free ads to be ostracized.

84 XML

But the financial opportunities are too great, so commercial content
providers will learn quickly what works and what does not. This has been
a part of the Web browsing experience that companies have not been able
to manage previously. Now companies will be able to control how search
queries are answered more intelligently. They will be able to take charge and
drive the flow of information traffic. P2P-based content will do for search-
ing what the Web did for information, and it will do for the Web what
advertising did for radio and TV. The die is cast and the map is in hand; the
only question now is how long the journey will take. Like everything else
that is Web based, probably not very long.

Leveraging P2P for B2B

Intel has started a P2P working group accessible at http://www.peer-to-peer-
wg.com/ to explore the various technical and business implications of P2P.
This working group, which includes IBM, Hewlett Packard, and numerous
dot coms, will ultimately agree on standards that will have an impact on the
Internet and on B2B. Rather than storing all information on servers and let-
ting search engines index this information, corporations will be able to
leverage P2P to provide focused and up-to-date information, services, and
products to the interested customer.

Clearly, P2P will be linked with m-commerce, so that some peers will be
interconnected by wireless LANs and by Bluetooth applications. In addi-
tion, one XML technology, the XML Linking Language, will also be an
important P2P business enabler.

Implementing the XML Linking Language

The second implication deals with the XML Linking Language (XLink).
XLink is a very powerful language that dramatically extends the capabili-
ties of linking documents much beyond the abilities of mere HTML Web
pages. XLink enables bidirectional linking, multiway linking, and out-of-
line linking. Bidirectional linking implies the idea of visiting a Web page and
returning to the starting point by clicking on the same link again. Multiway
linking is the implementation of Web rings by using XLink. Rather than
using the navigational buttons, a user can traverse back and forth and all
around within a predefined set of Web pages. Out-of-line linking is the con-
cept of hyperlinking between two or more pages that were not originally

XML Linking Language (XLink) 85

linked; a separate file is used for the links that connect the Web pages. Menu
links provide the user with a selection of pathways from which to choose.
The concept is similar to the results page generated by a search engine. If a
user wants to learn more about the specific companies in an industry, a
menu link would provide a selection of company links to explore. These and
a few others are the specifications for XLink.

These extended linking capabilities support the virtual XML document
feature because these links will allow a developer to access specific content
within a variety of distributed documents and then to display the results to
a user. The user will not be aware of the fact that the “current” document
exists only while it is being looked at. Another type of individualized, vir-
tual document already exists. When a user interacts with a database-gener-
ated or script-based Web page, the resulting Web page of dynamic content
exists only in response to the user’s unique parameters. Although tradition-
al search engines cannot index dynamic content from other Web sites, these
same search engines create dynamic content, themselves, in the form of
retrieval results. Dynamic content was once the realm of the Perl or Java
programmer. XLink provides this ability to the nonprogrammer.

The issue with XLink is that implementing the solution to these specifi-
cations is not clear. One possibility may be a relative of Napster or Gnutella
that will define a robust P2P protocol for developing the XLink capabilities.
A protocol that combines the distributed appeal of P2P with the power of
XML and XLink standards would be a formidable agent for change. In fact,
P2P is the potential spark of Web and Internet access that will fan the roar-
ing flame of universal information retrieval to meet the business needs of
the 21st century.

86 XML

General Trends

XML has enabled many different business applications. Business-to-busi-
ness (B2B) e-commerce is quickly becoming a business competency, because
XML facilitates a simpler way to transfer data. Some of the features of e-
commerce include electronic methods for on-line catalogs and order fulfill-
ment because the information that supports these features is easier to con-
trol and maintain by using XML.

In addition, XML supports document and information handling, control,
and management. An XML document is easy to put under document con-
figuration control by careful definition of its components. The hierarchical
nature of an XML document is a natural match to the drill-down capabili-
ties found in product data managers and in data warehouses. All of these
capabilities help to create the general foundation needed for intellectual
capital. These trends are described in more detail below.

E-Commerce

XML lit the B2B e-commerce rocket by fueling a new choice to Electronic
Data Interchange (EDI) systems. XML supports the ability to transfer data
and to modify electronic business forms as simply and rapidly as needed.
Developers can create new XML vocabularies to provide individualization.
For example, an invoice from Ford can be modified to include new options,

87

XML Applications

C H A P T E R 6

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

price changes, and data exchange activities with Wal-Mart or other corpo-
rations. Then any XML-enabled application can read the documents and
register the changes.

XML empowers both people and companies to exchange information
clearly and simply. While this is useful in the creation of both Web pages
and XML documents, XML’s greatest return on investment exists in B2B e-
commerce. XML expands upon three concepts in e-commerce: the explod-
ing use of electronic ordering, the accelerating application of Web sites for
product catalogs, and the transition from traditional commerce to Web-
based storefronts.

B2B E-Commerce

B2B e-commerce includes sales of products and services between different
companies rather than from company to customer. B2B also covers part-
nering information, vendors, subcontractor support, etc. For example, the
auto companies provide parts and service requirements information to ven-
dors and to subcontractors. This information is transmitted by using the
Internet, Web, intranet, extranet, or direct connection using the same gen-
eral protocols established using agreed upon XML formats.

Legacy EDI systems use relational database structures because that was
the simplest method for implementation. XML fuels the wildfire growth of
B2B exchanges by supplying an omnimorphic standard for data generation,
collection, processing, and transfer. Chapter 7 discusses EDI in more detail.

On-Line Business

The homepage of an on-line business helps to establish the brand and
entices customers to enter the Web site. Books on marketing communica-
tions and on Web site design are useful resources for developing a com-
pelling on-line business. The main idea is to bring a visitor into the Web site
and then to transform that visitor into a paying customer. To sell the mer-
chandise, the vendor has to display it. XML supports the activities needed
to build an appealing and easy to find Web site, because the data element
tags can serve as meta-data information to guide search engines directly to
the products and services. The layout and information still require the
human touch, but XML provides the capability to develop a Web business
that can automatically customize to meet the requirements of each cus-
tomer.

88 XML

On-Line Catalogs

A mix of HTML, databases, and a programming language is the conven-
tional way to build on-line catalogs. However, XML provides a simpler
mechanism for developing on-line catalogs that are easier to search. One
advantage of XML is that the schemas, DTDs, and data element tags can be
developed and supported by using emerging applications and automated
tools. Many levels of applications are available and being developed for
handling XML. Developers use XML editors to build the DTDs, XML
systems, and catalogs. Developers also use presentation to simplify posting
the catalog to the Web site. Customers use browsers to look at the catalog
items, and they also use search engines to locate products, services, and
information. Finally, site maintenance tools and applications help the
developer to update the catalog, build the inventory, send the bills, etc.
Catalog software is being developed rapidly to meet demand.

Order Fulfillment

The process of taking catalog orders can be represented in five steps: receive
the order, accept the credit card, generate packing instructions, fetch the
order, and mail the order. XML simplifies these steps by providing a com-
mon presentation language that transitions each application transparently.
With the use of XML, the customer’s client-side computer supports many of
the computing activities that recently required a large server for processing.

A developer can easily create an XML system that sends payment, ship-
ping, and other order information to the order-entry computers. At the
same time, the application provides the customer with billing, shipping, and
tracking data. The system might also handle procurement and reordering of
out-of-stock items.

XML Document Configuration Control

XML provides the capability to build structured, omnimorphic documents
that separate data from presentation. By isolating the data in the document
from the method of presentation in the browser, the XML document can be
applied to many different, and perhaps, unrelated applications. Also,
because the documents contain a schema or DTD that self-describes the
document data, information within the document tends to be easier to
locate because it has useful tags. Therefore, when the document is being

XML Applications 89

searched, it actively helps the search function, because the tags serve as red
flags to focus the attention of the search engine. The use of similar tags
allows similar XML documents to be collected into a combined configura-
tion of information. Then all similar information can be more easily con-
trolled. This type of function is the core of a document management system.

XML facilitates the storage and retrieval of information from a document
management system. First, XML makes the storage of documents easier,
because they are in a uniform format and they are independent of applica-
tion. In addition, they can be stored electronically without the need for spe-
cial document management software. A simple computer-based file system
found on standard platforms can work as an XML document repository.

Second, XML makes retrieval of the information easier because docu-
ments with similar tags are stored together. However, this implies that the
information within the documents is tagged in a uniform format, so that
tags and meta-data have been normalized. Again, because XML document
data is independent of application or presentation, keeping the data syn-
chronized is easier. In the past, a secretary or filing clerk would keep all the
documents coordinated in her mind. So she would know that location in
one document meant the same as address in another document. XML will
help to automate and standardize these activities.

Efforts are already underway to build the XML tools needed to support
document management and configuration control. Search engines are also
being developed to exploit the capabilities of XML. As B2B expands, and
as other XML applications become business critical, the applications will
become more commonplace. However, growth in the field makes any
attempt to produce an exhaustive or up-to-date list of XML applications
futile.

Product Data Manager

A Product Data Manager (PDM) is used to store data about the products
offered by a corporation. This data is usually stored in a relational and hier-
archical format, resembling a well-structured tree. The PDM application
allows the user to traverse the tree and to drill down for increasingly
detailed levels of information about the product. In addition, the PDM
allows the user to extract portions of the data and to combine different data
to produce a variety of customized views. XML is a natural for this process.
In fact, replace the term PDM with the term XML, and the paragraph reads

90 XML

the same. However, a PDM also offers workflow management and auto-
mated reporting and notification functions.

The marriage of a PDM with XML applications is a natural combina-
tion of structure and automation. PDM vendors are beginning to provide
XML capabilities to PDM users. Automated tools and interfaces can be
developed to improve the data entry process to support XML or PDM.
XML will drive the development of these kinds of tools and applications,
while PDM workflow will support the general program management needs
of the corporation.

Intellectual Capital

Intellectual capital is a growing concern in most corporations: how to cap-
ture it, store it, retrieve it, and protect it. With the dramatic mobility of
today’s knowledge workers, intellectual capital collected over years or
decades can easily walk out the door. Although XML cannot help with the
retention of this intangible good, it can be used for collecting and storing
this valuable information in the forms of documented processes, customer
information, and other valuable lessons learned. By storing documents in an
XML format, memos, meeting minutes, and e-mail can be easily combined
and searched to glean the results for valuable tidbits of knowledge. In addi-
tion, an exit interview form can be designed to help automate the collection
of intellectual capital. As the collection grows, more and more valuable les-
sons learned and best practices will emerge from this knowledge.

Data Warehousing

Data warehousing systems are developed using well-structured information
that is similar to the foundation of XML documents. Also, XML provides
meta-data that enables the user to search for exactly the term, in context,
germane to his requirements. For example, a user wanting information on
currency can specify the type and country, while excluding terms that are of
no interest. The XML-based search engine will locate the correct informa-
tion and exclude other information based on the data element tags and doc-
ument hierarchy.

A seductive power of XML is the ability to search distributed XML doc-
uments, then create virtual documents that satisfy the query. This function
is vaguely similar to how a conventional search engine works with HTML-
based Web pages. However, the conventional search engine function relies

XML Applications 91

on powerful programming languages, and it returns only a list of interest-
ing URLs. An XML-based data warehouse would return the actual infor-
mation gathered from the separate documents and collected into a single
document that intends to satisfy the query. The implication is that the mil-
lion dollar data warehouse development project will one day be replaced
with a much cheaper XML-based data warehouse project that is also part
of the corporate XML document design architecture.

General Markup Language Applications

XML has spawned a number of general markup languages. Extensible
HTML (XHTML) is the XML replacement for HTML, which is based on
SGML. Scalable Vector Graphics (SVG) provides a flexible method for
using markup languages to create two-dimensional graphics. Synchronized
Multimedia Integration Language (SMIL) makes it easier to work with data
from various media types. Electronic Data Interchange (EDI)-XML and
Open Financial Exchange (OFX) are transaction and financial standards
that XML improves by providing a uniform base. The Channel Definition
Format provides a standardized way for pushing information to the user.

XML also facilitates a set of standards for the wireless industry. The
Wireless Application Protocol, Wireless Markup Language, and Bluetooth
protocols are built on top of XML or are compatible with XML. All of
these applications will expand e-commerce to a more mobile m-commerce
and into an even more global endeavor. This section discusses these appli-
cations in more detail.

EXtensible HyperText Markup Language (XHTML)

Although XML does not replace HTML, EXtensible HyperText Markup
Language (XHTML) is an XML-based markup language that does replace
HTML 4.0. In fact, HTML 5.0 will never truly exist because whatever the
next generation is, it will be a variation of XHTML, not HTML. However,
XHTML will replace HTML for Web page development only gradually,
because people like HTML and know how to use it. Also, HTML is ade-
quate for many Web developers and is compatible with all browsers.

For the most part, XHTML is exactly like HTML, with the programming
rigor and rules of XML. Most Web developers can read and understand
XHTML Web pages immediately with only minor guidance. For example,

92 XML

an HTML-based Web page uses relaxed programming because the browser
is big and smart enough to handle minor tagging errors. By definition, an
XHTML Web is well formed, following the stricter XML standards for doc-
ument design. So, XHTML may be the initial XML application released for
prime time on the Web.

XHTML inherits all the tags from HTML, in addition to a few from
XML. XHTML also inherits the rules for well formedness from XML. This
means that each tag has a corresponding close tag or a termination tag. So
commands such as list tags and paragraph tags <p> have corresponding
close tags and </p>. Unlike HTML, XHTML is case sensitive, so
is different than in XHTML. HTML is forgiving about nesting tags, but
a browser cannot read an XHTML Web page if the tags are not correctly
nested. Also, HTML is forgiving about attributes, so
is allowable. With XHTML, the same tag must use quotes for the attributes,
 and have a corresponding somewhere in the
document.

In reality, the changes from HTML to XHTML are minor and should be
used as a matter of good programming to produce clean, crisp Web page
programming. Mainly, Web developers need to embrace better coding
habits. Tools are under development to convert HTML to XHTML. And as
more Web pages conform to XML standards, developers will apply
companion technologies, such as XML Stylesheet Language (XSL), XML
Stylesheet Language Transformations (XSLT), and XLink to well-formed
Web pages.

Scalable Vector Graphics (SVG)

Scalable Vector Graphics (SVG) is the technology that will simplify two-
dimensional graphics on the Web. SVG is an XML technology that devel-
opers can use to create graphics that work equally well on high resolution
and low-resolution devices, small screens and large screens, digital and
paper. An SVG picture is smaller than a corresponding GIF or JPG format.
It can be scaled up or down smoothly to meet the needs of the device or
presentation.

Just as XML allows the developer to reuse text and data, SVG will allow
the developer to reuse graphics. It already has the support of IBM, Adobe,
and Corel, among others. The next step in the process will be for Netscape
and IE to include SVG as a native graphics format.

XML Applications 93

Synchronized Multimedia Integration Language (SMIL)

As bandwidth rates across the Web exceed megabit per second speeds, mul-
timedia presentations become more feasible and more available. The stan-
dard combination is movies with audio and video. A variety of multimedia
tools are currently available for creating these kinds of information.
Quicktime, developed by Apple Computers, is one of the oldest multimedia
applications. Macromedia and Flash provide other formats. All of these
multimedia formats are proprietary, requiring special tools, plug-ins, or
extensions to develop and view.

RealNetworks, famous for streaming audio (RealAudio) and streaming
video (RealVideo) lead the development of Synchronized Multimedia
Integration Language (SMIL) as a generic multimedia language. SMIL is an
XML-based language that describes media type, intermedia synchroniza-
tion, and external media location links. SMIL is not a method for creating
the multimedia files; it is instead a language for integrating and coordinat-
ing multimedia into a coherent presentation. It describes the media data and
relationships. In addition, as an XML vocabulary, SMIL can take advantage
of XSL, XSLT, XLink, and other XML technologies.

XML and EDI

During the Information Age, the exchange of data and information has
accelerated to a frenetic pace. As corporations attempt to exchange
megabytes and gigabytes, they fly into the format barrier. The format bar-
rier has to do with the problem of agreeing on standard data formats
needed to exchange data between companies. XML transcends that barri-
er by providing a universal data transfer format that collaborating com-
panies can concur upon. However, before the advent of XML, companies
depended on Electronic Data Interchange (EDI) as the uniform method for
sharing data, such as bills of material, invoices, personnel information,
and schedules. EDI provided a common data structure encoded in data
dictionaries at both the sender’s and receiver’s sites. Because of the
similarity between EDI and XML, EDI-XML combination is a natural
evolution.

XML can describe the EDI data, the EDI structure, the EDI exchange,
and the EDI messages, so that existing software can be updated to read and
process the EDI-XML data streams. The advantage of this approach is that
the existing investment in EDI does not need to be written off. The existing

94 XML

EDI can be leveraged to support the XML modifications. This allows a
migration from proprietary EDI tools to more general XML applications.
The EDI-XML information can take advantage of XSL, XSLT, XLink, and
other XML technologies, promising forward compatibility with future tech-
nologies. This example demonstrates how XML can be used to provide
backward compatibility to leverage an existing legacy system. For more
information about XML and EDI, see Chapter 7.

Open Financial Exchange (OFX)

Microsoft, Intuit, and CheckFree used XML to create a financial markup
language called Open Financial Exchange (OFX). OFX is an XML vocab-
ulary developed to coordinate and simplify the transfer of financial data
among financial institutions, customers, and applications. A single, uni-
versal financial data format facilitates electronic checking and on-line
banking.

The OFX example demonstrates how business competitors can benefit by
agreeing on an open standard for representing, exchanging, and sharing
business data and information. Providing superior services, products, or
proprietary data to manipulate and leverage the data and information cre-
ates the individual competitive advantage. The proprietary format is no
longer the discriminator.

Channel Definition Format (CDF)

Channel Definition Format (CDF) is an XML vocabulary for defining and
describing methods for pushing Web information to the browser or desktop
client. These methods are called channels. Channels are simply pathways
for information and are analogous to marketing channels, TV channels, or
channels of waters. When setting up a Web channel, a user requests an open
line of communication that the Web server will use to push information
onto the user’s screen without having to ask for the information explicitly
after the initial link is established.

After the user subscribes to the channel and gives the server permission
to send information, the CDF document can be used to define the channel,
the format, and the presentation layout. Typically, a browser reads the CDF,
accepts the information push to the client desktop, and configures the
information layout based on the CDF document.

XML Applications 95

Wireless Application Protocol (WAP)

Wireless Application Protocol (WAP) is one of the emerging XML applica-
tions and it is smoking. With more than 100 million users worldwide, wire-
less access to data is the wave of the future. In fact, it is already huge in
Japan and in Europe. The United States is only just beginning to catch up.

Only a few years ago, the World Wide Web was the next big thing for
global information transfer. Today, the Web is an accepted part of our cul-
ture—the cost of doing business—just like a telephone and fax. Tomorrow
offers a new promise: wireless Web access, anytime and especially any-
where, by using wireless devices such as a laptop computer, cell phone,
handheld computer, or even pager. This new freedom from wires and cables
is the purpose of WAP.

WAP is a fresh new innovation with much potential. It’s a protocol for
requesting, transmitting, and receiving data across a wireless network in a
format that a mobile platform can present on a small screen through a
minibrowser. It is based on an open specification distributed by the WAP
Forum, which Ericsson Inc., Nokia Corp., Motorola, and Phone.com Inc.
(formerly Unwired Planet) founded in 1997 to create an Internet standard
for wireless phones. Phone.com also makes the standard WAP minibrowser
that it licenses to wireless phone manufacturers. WAP Forum has grown to
include most of the wireless industry, including hardware, software, and
service providers. In fact, most new cell phones are manufactured with WAP
capability already built in.

WAP requires minimal resources on the wireless end, making it useful for
small devices like cell phones and palmtops. The real work happens at the
server end, just as in many browser-based applications on PCs. WAP
devices, both server and minibrowser, communicate using Wireless Markup
Language (WML), an XML derivative that is based on the earlier Handheld
Device Markup Language (HDML) developed by Phone.com.

The WAP standard works with Cellular Digital Packet Data (CDPD),
Code Division Multiple Access (CDMA), Time Division Multiple Access
(TDMA), Global Systems for Mobile Communications (GSM), and other
wireless standards. Wireless devices communicate through the wireless net-
work to a WAP server. A WAP server converts data or Web pages between
WAP and TCP/IP. This conversion lets conventional Web servers send
WML pages to wireless devices, which use minibrowsers that let users surf
the Web.

96 XML

The conventional Web protocol, HTTP (HyperText Transport Protocol),
is mainly text-based and works poorly over a wireless network. In addition,
browsing an 8-by-11-inch page represented by an 800x600 screen would be
difficult on a 3-inch cell phone screen. WAP and WML are optimized for
small screens, two-line text displays, and the graphics on smart phones,
handheld devices, and palmtops.

WAP capability is different from conventional desktop browsing. A WAP-
enabled device can browse only WML sites. If the Web site doesn’t have WML
access, then a WAP device can’t get to it. Wireless technology must both sup-
port and enhance productivity of the enterprise, or it’s not worthwhile.

WAP supports business by improving productivity with its other capabil-
ities. For example, Web-based calendars and messaging services are useful
business applications for personnel on the road. WAP can send data from a
Web page to any WAP-enabled wireless device. Other productivity-enhanc-
ing applications include address books, email, and Web-based database
access. Users on the road can access their email, and salespeople can access
customer and catalog data. For example, they can check inventory, place
orders, and confirm order status, providing on-demand information to the
customer as needed. Real-time data goes a long way toward closing the deal
and satisfying the customer. For those who can accept the size vs. data-access
trade-off, the cost, productivity, and convenience can be very appealing.

Most commercial wireless networks support only about 9,600 bps data-
transmission rates. (Remember V.32 modems in 1994?) More important,
what kind of surfing can the user do on a three-inch screen? At those trans-
mission rates, graphics are minimal or nonexistent at best. Although the
user cannot use complex graphics, he can browse simple things such as
email, messaging, customer information, and catalog data, as well as access
weather, stocks, airplane reservations, and so forth. The disadvantage of
simpler presentation may be balanced by the advantage that business trav-
elers can access information on the fly.

Wireless Markup Language (WML)

Wireless Markup Language (WML) is the wireless markup language that
sits on top of WAP. WML is to WAP what HTML is to the conventional
Web. WML is similar to HTML, but it is derived from XML (eXtensible
Markup Language) to specifically support the delivery of Web pages on the
limited real estate available on most wireless devices. WML lets Web page

XML Applications 97

developers create information that handheld computers, palmtops, smart
cell phones, pagers, and other wireless devices can read.

Because of the unique nature of WML, simply porting HTML pages to
WML is not straightforward. Although XSLT can be used for transforma-
tions, a separate site may be necessary. WML sites are mostly text and
maybe a few simple graphics. However, most phones do not even display
graphics yet. WML has tags, just like HTML, with some modifications to
adapt to the needs of the small screen. Wireless Web sites are mostly a set
of menus through which to navigate. Due to the screen size constraints and
difficulty of text entry on today’s devices, simplicity of use is key to design.

Other than developing the content, which is mainly text, the wireless-
enabled Web server must be configured to distinguish WML devices from
the traditional desktop browsers and serve up different content. Then, the
information available on the HTML Web page is reformatted in WML for
wireless devices. Or completely new information and services is presented
to the wireless devices.

Although WML sites are much simpler than HTML sites, they are inher-
ently more personal and must be more customizable. Personalized services
and Internet-based services specified to the user’s needs are easier to deploy
with a personal item such as the mobile phone. In practice, the wireless-
enabled Web server can gather more information about the user to provide
a more individual experience. WAP and WML simply extend the Web and
its information sources for the wireless arena. The applications are limitless,
and the possibilities for profit are plentiful.

Bluetooth

Bluetooth technology was named for the ancient Viking Warrior, Harold
Bluetooth. The technology involves a small, single chip, short range (30
feet) radio transmitter that allows a wireless device to transmit short-range
signals. These can be Local Area Network (LAN) type signals or financial
transactions (like electronic credit cards).

Bluetooth is completely WAP compatible and totally complementary with
WAP functions. There are two major differences between WAP and
Bluetooth. First, the ranges are different. WAP is LAN to Wide Area
Network (WAN) distances, covering whatever access is available to a cell
phone call. In contrast, Bluetooth is short range, on the order of 30 feet,
although it may expand up to 30 meters.

98 XML

The second major difference between the two technologies relates to the
recipient of a WAP or Bluetooth message. WAP is intended to connect to the
Internet or to the Web via a cell phone relay to a Web server, allowing the
user to surf the Web or to get access to data via wireless. In contrast,
Bluetooth is a device-to-device protocol that provides the user with a serv-
ice, not necessarily information or data. For example, a Bluetooth interac-
tion may involve credit cardlike access to buy a soft drink. Or a Bluetooth
dongle on back of a desktop PC may, with the appropriate authorizations,
allow it to connect to any wireless LAN within a 30-foot radius. Or a
Bluetooth-enabled PalmPilot may move in and out of different corporate
LANs, as the user walks from one department to another. What this means
is that the Information Technology (IT) department can set up a corpo-
ratewide LAN environment without the need for cables. Simply establish
the wireless servers, then provide all computers with a Bluetooth LAN card.
No more spaghetti cables to connect all the desktops.

Bluetooth technology is simply a short-range radio on a single chip that
can translate digital data from computers. For explanation purposes, anoth-
er way of thinking about Bluetooth is to consider it to be like a radio-based
modem rather than a telephone-based modem. The radio sends and receives
voice and data signals generated by other Bluetooth radios that come with-
in the broadcast range of 30 feet. Because radio waves pass through walls
and other barriers, Bluetooth devices can communicate in situations that
stop competing technologies such as infrared.

A Bluetooth-enabled cell phone becomes a portable phone as soon as you
walk into your home, or functions as a walkie-talkie when communicating
with another Bluetooth cell phone. A Bluetooth headset leaves your hands
free to talk on the phone while you wash the dishes or drive to work. In
fact, your cell phone can automatically unlock your car and set up your seat
and stereo preferences as you are walking in the parking lot. In short, you
do the walking. Your devices do the talking.

Mobile Commerce (M-Commerce)

Mobile commerce (m-commerce) is not a new technology; it is simply the
natural convergence of wireless data access and Web-based electronic com-
merce. M-commerce elevates e-commerce to a new level of mobile freedom
for Web commerce. E-commerce provides access to anyone at anytime. M-
commerce provides the next dimension in access to anyone anytime, to

XML Applications 99

include anywhere, not just from a fixed desktop, but also from the highway,
the restaurant, and eventually from the beach.

M-commerce is accelerating faster than Internet time. In the next few
years, the majority of devices accessing the Web will be wireless, and most
e-commerce will be wireless m-commerce. It took nearly four years for the
Web to develop a base of 50 million users. However, the infrastructure was
not really in place. Now, more people buy wireless devices than PCs and all
the technologies are in place. In Europe, Japan, and Finland—as shown by
60 Minutes—people are using their wireless devices to access information
and to conduct financial transactions. In fact, the United States is behind the
learning curve in m-commerce. We are like a Third World country com-
pared to Finland, Japan, and some parts of Europe, and we are just now
catching up.

In Asia and Europe, wireless phones are everywhere, used for communi-
cations, financial transactions, and information. The typical Asian or
European businessman travels frequently and depends on the wireless
phone as a portal to the world. This portal allows easy checks of calendars,
stock portfolios, bank balances, and airline reservations. As Web access
evolves from wired to wireless, e-business evolves into m-commerce. And,
as U.S. companies embrace the wireless world, they will indeed tap into a
wireless world! This is because there are more Web-ready wireless phones
than wired Internet connections from a global perspective. So, U.S. compa-
nies that embrace the wireless Web will tap into a surprisingly large wire-
less market, which is not easily accessible from the desktop.

One aspect of m-commerce development is designing for multiple
devices, which include both wireless and conventional Web pages, and
anticipating emerging platforms, such as voice, TV, and Nippon Telegraph
& Telephone (NTT) i-mode.

Each type of information has to be tagged and repurposed differently for
each platform, but with XSL and XSLT, data can be automatically trans-
formed from one device format to another. That is the core foundation of
XML: to provide an omnimorphic format that is independent of platform,
device, medium, and application.

Overall, Europe is far ahead of the United States in its adoption of wire-
less data. Since cell phones are usually charged on a per-minute price basis
in the United States, the consumer incurs a significant cost when using a cell
phone to browse the Web. However, the m-commerce business model can

100 XML

replace this pricing scheme by free unlimited access, with m-commerce serv-
ice fees and advertising used to offset the costs.

A variety of services are feasible. For example, a sports trivia team may
compete together against other teams using their cell phones at the local
pub. Or a bicyclist can be notified when the latest carbon fiber Trek road
bike is delivered to his local bike shop. Your phone can notify you if a movie
starring Sandra Bullock is out, where and when it will be playing, how to
get there, and how much it will cost. Your cell phone can even buy the
movie tickets for you! Or you could walk up to a soft drink machine and
then order and pay for a soda via your cell phone. The cost is part of the
resulting phone bill.

Advertising is a major revenue source. Advertising is what transformed
radio from an interesting technology into a viable business. However, m-
commerce-based advertising will be much smarter than the conventional
Web advertising. For example, your phone may display an advertisement
for Burger King at lunchtime. When you select this item using your mini-
browser, directions to the nearest Burger King will be displayed, perhaps
also reserving and prepaying for a burger.

The main appeal to mobile devices is giving people on the go easy access
to products and services without being tied down to their desktops. People
will want to access services when mobile and away from their desks. This
customer need will drive businesses to deliver mobile services. As a result in
customer growth, there will be a corresponding growth in customer demands
and services. All companies in all industries will need to adapt to maintain a
competitive advantage. The cost of doing business will quickly become busi-
ness as usual, just as telephone, FAX, and Internet have become.

The following is an interesting and compelling scenario resulting from m-
commerce: Mark walks into Wal-Mart and finds a PlayStation 2 he wants
to buy. He takes out his cell phone and finds on the Internet that he can buy
the same model for $50 dollars less. So Mark shows the salesperson the
competitor’s price and tells the salesperson that he will leave unless Wal-
Mart matches the price. If the price is not matched, Wal-Mart becomes just
a really nice show room. In addition, after seeing how the wireless Web is
hurting business, Wal-Mart automatically lowers its prices when the on-line
catalog is accessed from a wireless device within a competitor’s store!

The two technologies at the core of m-commerce are WAP and Bluetooth.
According to Gartner Group, technologies such as WAP will create the

XML Applications 101

foundation of the new m-commerce capabilities for wireless devices over the
next three years.

The emerging way for a corporation to implement m-commerce is to
focus on WAP and then explore Bluetooth after gaining a little experience.
The WAP Forum is the organization that sets the protocols and standards
for m-commerce. The organization, working with a collection of nearly 400
member companies, developed WAP as the standard for wireless Internet
applications. The WAP forum includes large companies, such as Motorola,
Nokia, and Ericsson, as well as an increasing number of smaller dot coms.
The WAP standard has been adopted by 95 percent of all handset manufac-
turers. WAP-enabled phones are already the rage in Europe and will prolif-
erate in the United States over the course of 2001 and 2002.

Businesses of all sizes are discovering remarkable opportunities as they
use m-commerce to tap into the global marketplace, providing both B2B
and business-to-consumer (B2C) services. For example, NTT’s i-mode pro-
vides a wide variety of services like news, stock prices, on-line banking, and
even car navigation. I-mode has a user base that exceeds 4 million sub-
scribers and a mission statement called Vision 2010, which used to sound
like magic or at least science fiction. But now it merely sounds like advanced
technology: “A world in which mobile communications are limited only by
imagination and actions speak louder than words.” The future will be
mobile. Perhaps the most important event in this decade will be the conver-
gence of the Internet and the mobile phone.

In Scandinavia, cell phone penetration is very high and m-commerce is a
way of life. In Finland, as described on 60 Minutes in 1999, mobile users
can buy CDs, bid in auctions, pay for car washes, or get a drink from a
vending machine using their cell phones. The wide range of WAP shopping
services is not far off in the United States either. However, true m-commerce
requires fast connection speeds and reliable coverage so that consumers feel
secure about their connections.

China has a population of 1.25 billion, and each of these people is a
potential candidate for m-commerce. Siemens and Deutsche Telecom are
working in a joint venture called Xin De Telecom to build thousands of
miles of fiber optic cable infrastructure that follows the country’s railroad
and will potentially set up train stations as centers for e-commerce. In
addition, the Chinese wireless market includes more than 40 million
WAP-enabled cell phone users. To fulfill exploding market demand, wire-

102 XML

less Web access and m-commerce will probably grow at triple-digit rates
for the next decade.

As a major city, Shanghai also affects Chinese Internet and wireless
activity. Because of city competition with Beijing, Shanghai is sometimes
more friendly with foreign technology companies. Chengdu is a large
southwestern city off the beaten path that also treats foreign companies
well. In fact, to take advantage of the competition and the regional gov-
ernment agencies, interested companies and Internet entrepreneurs might
set up a main shop in Shanghai with representative offices in Beijing and
in Chengdu.

XML Browsers

The primary application for using XML documents is the browser. An XML
browser consists of a parser and a display or processing application. The
XML parser interprets the tag information and extracts it from the XML
document. After the parser extracts the data, it then passes it to the appli-
cation, such as the browser. The XML parser reads the schema or DTD of
an XML document and then verifies that the document is valid or well
formed. Most XML applications include a built-in parser to verify XML
documents. Many XML parsers are available for free throughout the Web.
An XML parser is simpler than an SGML parser because the XML specifi-
cation requires that all elements have complete start and end tags. The pars-
er also validates the XML document by comparing elements with the
schemas or DTDs. Because of these more rigorous requirements, an XML
parser can be simpler and smaller since it does not need as much built-in
intelligence as the corresponding SGML parser.

Just like an XML parser, an XML processor also checks whether an XML
document is well formed and whether it conforms to all the rules. However,
a processor does not check an XML document against the DTD for validi-
ty. A processor may apply XML data in a variety of ways, such as editing,
printing, or transmitting.

Although a well-formed document uses correct structures and syntax, it
may not conform to its schema or DTD. However, a valid document is a
well-formed document that also conforms strictly to its DTD, schema, or
meta-data. Also, an HTML can be well-formed, if it follows the syntax rules
of XML. If a document is not well-formed, then an XML parser and some

XML Applications 103

applications will signal a fatal error. For this reason, some XML applica-
tions, such as editors, do not include a validating parser.

Processing an XML Document

A developer can use two different ways to process an XML document. SAX
will process the document incrementally into its elements and subcompo-
nents parts, and DOM will process the document as a single hierarchical
structure. The advantage of SAX-based incremental processing is that data
is accessed piece-by-piece and processing is faster. The disadvantage of this
approach is that data must be accessed sequentially. The advantage of the
DOM-based hierarchical structure processing is that data can be accessed
directly, in any order, and less systematically than in SAX processing. The
disadvantage of hierarchical structure processing is that it is slower,
because the entire structure is read into memory before processing can
occur.

Both SAX and DOM are interfaces for accessing XML document infor-
mation without the need for writing a new parser. The XML format facili-
tates the use of SAX or DOM Application Programming Interfaces (APIs) to
retrieve document information because the XML standard specifies that
parsers must implement SAX and DOM for uniform information access. So
both SAX and DOM were created to serve the same purpose, which is pro-
viding access to the information stored in XML documents using any pro-
gramming language and parser of choice. However, SAX and DOM take
very different approaches to information retrieval.

XML and HTML Data Contrasts

XML is a method for defining markup languages such as HTML. Its pred-
ecessor, SGML, requires detailed technical knowledge to use. However, just
as HTML made the Internet available to the masses, XML makes mark-up
languages available to nontechnical users. In addition, tools and browsers
are under development to automate the use of XML and make implemen-
tations transparent to the end-user.

HTML data is primarily free text. XML data is text-based information
that has context. The text basis allows XML data to be read by any appli-
cation. The context adds meaning and usability to the text. In contrast,
HTML text is used only for display purposes, not processing.

104 XML

With XML, the designer creates a DTD that defines the document struc-
ture, as well as logical elements, tags, and attributes that are fine-tuned to
the needs fulfilled by the document. The DTD provides instructions for
parsing the document accurately. After the document is parsed, an XML
application can use the data for display, transformation, manipulation,
database processing, spreadsheet calculations, graphics, and many other
capabilities that depend on the data.

This is the core concept behind omnimorphism. With no modifications,
any application can use the XML data for the need at hand. In addition to
being independent of platform, device, and operating system like HTML,
XML is also application independent.

The well-defined tree structure of an XML document allows the data to
be individually updated. By making only the necessary modifications, XML
processing is more efficient than requiring a full document reload. In addi-
tion, an XML browser or any XML application can display only the
changes, resulting in more efficient user interactions. In contrast, an HTML
Web page must be totally refreshed every time there is any change, no mat-
ter how minute.

Developers can easily add new data element types and tags, such as
<item_color>, <wholesale_price>, and <whitewall_tires> to an XML docu-
ment. This expandability is a natural outcome of the tree structure. These
additions can be displayed on the client browser, or they can remain unseen,
depending on the application.

Tags are repeated throughout the XML document. The tags compress
well, resulting in efficient data transfer requirements. Data compression and
data transfer are important issues in Web-based systems because one major
purpose of the XML specification is to enable information to be transferred
across the Web from a source to a requestor.

XML allows the ability to embed database-type information in a document
without limiting names or specifying order. The data element tags, as defined
by the DTD, serve a similar purpose as the tables in a database. When each
company or industry uses an XML document, it can decide on a level of detail
for its DTD and document structure. And other companies can build on top
of the standards and ignore details as appropriate. Therefore, if Ford creates
a DTD for a B2B document that only uses <customer_name>, GM can use the
same document and add tags for <first_name> and <middle_initial>. Ford can
use the new document and include the new capability in its applications. Or

XML Applications 105

it can continue to use its existing applications, which will ignore the new GM
tags with no significant loss in processing.

Universal Data Exchange Format

The omnimorphic use of XML as a universal data format improves corpo-
rate interoperability and data transfer. One advantage of XML is that the
DTDs will be downloaded into the browser along with the document. It is
like having a translator interpret automatically during all international tele-
phone calls. XML enhances an application’s ability to work with systems
from yesterday, today, and tomorrow. A universal data format alone does
not guarantee interoperable access of information to everyone, everywhere,
every time. Data exchange applications require uniform standards for com-
munications. These standards include the data element types, a common
definition of the types, and uniform methods for data transfer. Meta-data,
in the form of XML schemas and DTDs, address the requirements for inter-
application standards and data transfer.

XML tools and applications can process, share, and modify XML docu-
ments very simply. XML’s database flavor integrates well with many exist-
ing database applications, such as Oracle. An XML document can be easi-
ly represented in a database format. If the components of an XML docu-
ment are stored in a database, the results of a query can be presented as an
XML document.

The most exciting development in data-integration, middle-tier, and
application-server tools are the B2B applications that facilitate different
companies, partners, and vendors talking to one another. These applica-
tions, which enable one Web site to use data from another Web site, ulti-
mately allow the user to compare information from many different vendor
Web sites. That is what’s new about XML in terms of browsing.

Another area of new development is XML-based vertical applications
such as integrated browsers, editors, and tools for a specific XML vocabu-
lary. One of the fast moving companies involved in XML development is
Intrig (www.intrig.com), based near Dallas, Texas. Intrig is a forward-
thinking company that is providing visions, strategies, and implementations
that are needed in today’s XML environment. In addition to significant
WAP and WML development, Intrig has developed an XML-based vertical
application suite. This next generation software suite is used to develop
advanced Internet and wireless protocol software.

106 XML

The specific application is dependent on the needs of the user. It is com-
parable to how different people might process information as they walk
down the street. One person might notice the people, another person might
see the cars, and a third person might focus on the noise. The information
obtained from an experience or from a document is based on the needs ger-
mane to the requirements. XML provides a method for tagging information
for easy filtering.

XML Applications 107

Introduction

XML is really all about data and databases. XML can be used to tag data
and information that are stored in a set of files. For example, the informa-
tion for invoices, billing information, and inventory data can be stored in a
single file that each application accesses and formats as needed. In addition,
the components of correspondence (such as addresses, dates, data, and even
text) can be stored in a set of files using an XML format and then reused as
appropriate. However, file systems are not always the best repositories. So,
XML formatted information can also be stored in databases.

XML is like a database technology in that each XML document is a table
within a database. This analogy, however, stretches thin fairly quickly
because a relational database is a relational, random-access beast, and an
XML document is a hierarchical, sequential-access animal. The underlying
assumption is that today’s and tomorrow’s faster processors and networks
will enable the hierarchical and associative aspects of XML to function ade-
quately, even in a sequential mode. And that’s a good assumption that
already has multibillion dollar backing and proof.

However, can we have the best of both world’s—a multifunctional, rela-
tional XML database? The answer is a resounding “Yes! Of course!”
Without the need for genetic engineering, we can design a new animal,
called an XML database, by taking components of XML documents and
storing them, like any other data, within a relational database.

108

C H A P T E R 7

XML for
Databases

and EDI

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

Retrieving a complete XML document from one database or many is no
more complicated than creating an XML document from any set of distrib-
uted sources, such as Web sites. With data retrieval out of the way, this
leaves two topics: data storage and data transfer. The topics that we will
explore are how to store the XML data in a database and how to exchange
XML data among different database sources to build dynamic XML docu-
ments. During these explorations, we will also see how XML helps to bridge
data from legacy systems, current systems, and future systems.

Storing XML in Databases

Typically, a user stores XML documents in a file system so that they can be
reused. Remember, XML data are independent of applications. A specific
XML document may have to be saved to a file system or to a database in
order to be reused in the same format. An XML document is a text file, so
after it is saved in a file system, it can be manipulated by a text editor, a
word processor, a spreadsheet, or a database.

Storing XML documents in a file system is adequate for many purposes.
However, a file system is too limited for mission critical information that
will be widely shared or reused. For example, a simple file system is not ade-
quate for very large documents, which are more easily broken into segments
for simpler use. Just as with Web pages, a set of smaller pieces is much eas-
ier to navigate and manipulate than one very large document.

If these segments will change frequently and independently, then separating
them is superior to maintaining a single monolithic document. With different
segments, each section can be worked on separately and in parallel with other
sections, resulting in faster changes, and more current, up-to-date documents.

In fact, each segment may be a different format, so that different tools are
used for different sections. A simple example is a compound document
under Microsoft Windows. If a spreadsheet and a graphic are embedded
within an MS Word document, then MS Excel and MS PowerPoint are used
for those sections. However, XML enables the next level of functionality.

Rather than a lower level application, a higher level system might be used
to manipulate the various sections. For example, an inventory system might
combine data from a few different sections and then automatically make
changes throughout the document as needed. Then a billing system might
make different calculations and propagate them throughout the document

XML for Databases and EDI 109

FIGURE 7.2 The data element tags in the XML document provide the scaffolding for build-
ing the tree structure.

The XML document is decomposed into its nodes, and the nodes are
stored in a database. Two common types of database systems can store
XML documents: a Relational Database (RDB) and an Object-Oriented
Database (OODB).

An RDB can store an XML document in the same way that it might store
any other files, such as image, audio, or video files. The XML document is
stored as strings of text in the familiar row and column approach. The row
represents an element, and the column represents the attributes. For exam-
ple, in Figure 7.3, a Name table can be designed to hold <first name> and
<last name> elements, and an Address table can be designed to hold
<Address> elements. In addition, text attributes, such as Street, Drive, or
Boulevard, can be represented in a column called PCDATA in order to parse
these specific attributes as text elements. In addition to storing elements in
the rows of a table, node relationships must also be defined.

FIGURE 7.3 A relational database can be designed with tables that hold XML data ele-
ments. For example, the Name table holds first and last names, while the Address table
holds address information.

XML for Databases and EDI 111

<customer>

<customer_name>

<first>Harris</first>

<last>Blatt</last>

</customer_name>

<customer_address>

<street>56 Clemson</street>

<city>Brooklyn</city>

</customer_address>

</customer>

Customer Database

Name Table Address Table

First Last Street City

Harris Blatt 56 Clemson Brooklyn

Defining tables to represent XML elements is easy, but the power of an
XML tree is the structured relationships among its nodes and elements.
Relationships in a relational database are defined by creating a separate
table called a join, which links two or more tables based on their keys. For
example, an Address table can be linked to a Customer table by using a
Customer Address table to join them, as seen in Figure 7.4.

FIGURE 7.4 A Customer Address table can join a Customer table and an Address table.

Using an RDB to represent XML documents presents two limitations.
First, representing a hierarchical XML data model in a relational format is
inefficient. And second, although a RDB can represent a simple, fixed
XML tree structure, it cannot represent the more advanced structures that
include optional or variable relationships. For example, a special row is
needed to account for an optional middle initial. In another example, an
RDB may not be able to represent two different relationships for an ele-
ment, such as a CD that belongs to a Music class or a Data class. A simi-
lar example is a cell phone that is a voice telephone or is an Internet data
device.

For the most part, an RDB can represent many XML elements and XML
documents. There are many cases where these exceptions do not appear. As
long as node relationships are well structured and fixed, an RDB is an ade-
quate solution for storing XML documents. When the XML document hier-
archy is flat, with only a few elements per node, then the RDB can be an
efficient model for the document. However, for storing an object-oriented,
hierarchical XML document, an OODB is better than an RDB.

An OODB can store the decomposed nodes of an XML document as a
set of objects. Information is easier to manage in an OODB, because it can
easily represent the hierarchical node structure of an XML document. In
addition, multiple users can manipulate information from a single XML
document by using an OODB.

112 XML

Customer Table

Customer Address Table

Address Table

The object approach is a natural complement to the XML representation.
An OODB allows analysts to build a faithful model of the XML document,
nodes, and data. In additional, an object tree is easy to represent within an
OODB. So, the basic foundation of an OODB does not have the limitations
that an RDB has with respect to advanced relationships. It provides a pow-
erful structure for a wide variety of XML documents and data.

A relational database RDBMS is not good with complex relationships. A
many-to-many relationship requires a Join table. If new unforeseen data
types or attributes are needed, then the tables must be rewritten to accom-
modate. Also, putting tables within tables is considered to be an advanced
skill. Typically data are in a DBMS-specific format.

An object-oriented database ODMS is good with complex relationships.
Each object holds data and relationships within it. If new datatypes are
needed, inheritance can help, but if new attributes are needed, work
arounds and wrappers can greatly complicate things. Data are usually inte-
gral to the object, so sharing data can result in redundancy. Objects can reg-
ularly hold other objects; however, from a practical standpoint, the number
of layers is limited. Typically data are in an ODMS-specific format.

One of the great advantages of XML over a conventional database is that
data can occur anywhere. For example, on one form last_name can come
before first_name, and on another form the reverse. Data can come in any
order because the tag—not the location, the table, the column, or the key—
determines the meaning of the data. An XML application or parser can
select the data needed, ignoring the rest, and then use and present the data
in any way desired.

Because of the complexity of the document object model of XML, as well
as its hierarchical components, relational databases aren’t practical for stor-
ing XML documents. In a relational database you have to be concerned
about foreign keys and model depth. However, mapping an XML compo-
nent model to an object database results in a simple object structure. The
object approach provides advantages in performance and simplicity.

Being able to combine information from large databases and repositories
is a significant competitive edge. Providing users with the right data at the
right time on an ad hoc, as-needed basis is a killer app.

An XML document is naturally subdivided into nodes and data elements.
This natural subdivision makes it easier to store XML in a database. XML
can be stored in the more widespread relational database or in the more

XML for Databases and EDI 113

functional object-oriented database. In an RDB, tables of XML data ele-
ments can be joined in order to establish the relationships among the nodes.
In an OODB, the relationships are a convenient outcome of the structure of
the database. The bottom line is that, regardless of the specific type, a data-
base is a convenient place to store XML data, facilitating the user’s ability
to modify and reuse the data.

Exchanging XML Data

With any new technology, there is always a risk related to change. One way
to mitigate the risk of changing to a new technology is to ensure that it is
backwards compatible and that it will work with legacy data. Working with
legacy data helps to reduce the risks of incurring additional costs through
loss of historical data or from translating all of the old data to the new sys-
tem. XML supports these factors in three ways. First, XML creates a stan-
dard format for transferring data among different systems, whether legacy,
current, or future. Second, it provides a standard format for retrieving data
from these different systems. Third, XML renders a more robust embodi-
ment of the client/server model.

Data Transfer Format

XML provides a universal format for data transfer between applications
and systems. In addition, it provides a strong foundation for implementing
a client/server data model. By exploiting the standards that XML enables, a
developer can create a method for transferring data among different appli-
cations, easily, seamlessly, and smoothly.

Using Legacy Data

Although converting legacy data to an XML format is possible, it is not nec-
essarily a good idea. Because of the investment and overhead, a strong busi-
ness case for converting the data should be present. Once the business case
is justified, a phased approach to XML conversion may be the most cost-
effective method. In any case, after the business needs and financial cases
have been made, converting legacy data to XML should enable maximum
reuse, compatibility, and interoperability with other corporate data, appli-
cations, and systems.

114 XML

Data Warehouse

XML allows a company to create a set of standards for an XML document
architecture that facilitates data and information exchange. Definition of
the full range of XML documents is a well-defined process. A well-defined
XML document architecture can help to automate the supply chain process;
the order fulfillment process; the blueprint, bill of materials and assembly
process; and the creation of a data warehouse from letters, memos, and e-
mail.

XML data elements and formats can link databases so that data and
information can easily be cross-referenced and retrieved, creating the virtu-
al data warehouse capability.

By analyzing the information in a corporate relational database, you can
determine trends about sales, inventory, and customers, etc. Documents, e-
mail, help desk logs, memos, letters, and white papers are examples of
unstructured sources of valuable corporate information.

XML documents support access to all of this valuable information
through data, text, and information mining activities. Data mining typical-
ly dealt with information stored in a relational database. Before XML, min-
ing collections of documents was not easy. A user could use full-text search-
ing on single documents but could not easily link the information. With
XML documents, the information can be linked through data element tags.
The user can mine the text of a document collection by using the tags as
search terms.

XML is also great for knowledge discovery. The user can automatically
discover nonobvious trends in the document that lead to new knowledge,
decisions, and opportunities.

Implementing an XML document system increases reusability and inter-
operability, and, therefore, also increases the value of existing intellectual
assets. Productivity increases because information is reused rather than rein-
vented. Also, users can draw new associations because they have seamless
access to a wider collection of information from a diverse document set. A
competitive advantage emerges from the new associations and integrated
information that can be extracted from XML documents.

One way that XML can integrate data from legacy systems with data in
relational databases is to leverage the meta-data, DTD, and tags. The DTD
and tags supply XML with an open architecture that can be more easily
integrated with older systems without having to expend the resources to

XML for Databases and EDI 115

totally redevelop them. For this reason, many database vendors are includ-
ing some form of XML functionality in their databases.

In fact, Oracle has developed completely new products that leverage the
capabilities of XML. These products embody Oracle’s experience develop-
ing B2B e-commerce projects for the Covisint automotive exchange and the
Sears B2B retail exchange.

In addition, IBM has developed software that will transform an XML
document into the rows and columns in a database. The software uses Java
and SAX to interactively drill down the XML document and successively
transform the elements to the appropriate rows and columns.

The data in a data warehouse comes from the operational environment
in almost every case. The data warehouse is a physically separate store of
data transformed from the application data found in the operational envi-
ronment. Data warehouses support information processing by providing a
solid platform of integrated, historical data for analysis. They are con-
structed in an evolutionary, step-at-a-time fashion to provide a facility for
data integration in a world of nonintegrated application systems. Data
warehouses organize and store the data needed for analytical processing
and trend analysis over a long historical time perspective.

One of the goals for XML is to collect various forms of information and
data into a common format to facilitate access, evaluation, and analysis.
XML supports the extraction, transformation, and loading of the data into
a fused perspective, where applicable, with the intent of creating decision
support, trend analysis, and knowledge discovery capabilities within a data
warehouse environment.

XML provides the capability to transform all corporate documents into
very flexible data warehouse entities that permit near infinite variety in the
information search possibilities and that can be searched using a Web
browser. This is in dramatic contrast to today’s reality for data warehouses.

A data warehouse, according to its inventor Bill Inmon, is a collection of
integrated, subject-oriented databases designed to supply the information
required for decision making.

Integrated

The most important aspect of the data warehouse environment is the fact
that the data is integrated. Integration appears in various ways, such as
meta-data, naming conventions, variables, and data formats. Compare the

116 XML

level of integration with that of the applications environment, and the dif-
ferences are startling.

Applications designers have made many separate choices in building
applications. The style and choice of design appear in myriad ways. These
differences have resulted in the lack of integration in the applications envi-
ronment. However, in a data warehouse environment, the data are inte-
grated regardless of their original sources. Because of its need for consis-
tency and integration, XML is a promising enabler for data warehouse
development.

Subject Oriented

The real world revolves around the flow of data and information such as
competitive information, inventory, financials, and medical information.
Corporate warehouses focus on subjects such as customer activity, vendor
information, and product data. The organization in subject areas influences
the design, development, and implementation of the data in the data ware-
house.

Application developers are involved with database design and process
design. Data warehouse developers concentrate mainly on data modeling
and database design. Data warehouse developers have little functional inter-
est in process design.

The difference between a data warehouse and an operational database is
that a data warehouse uses only decisional data that is germane to the deci-
sion support systems. Operational applications and databases are more
transaction oriented, focusing on the immediate requirements. In addition,
operational data is interrelated only in the current contexts, while data
warehouse data may be related over a long span of time. Except for these
functional differences, operational systems and data warehouse systems are
similar. Indeed, both types of systems can be represented by a set of XML
documents with equal ease.

Time Variant

The data warehouse contains data from a range of times. As mentioned
above, this is a difference between operational and data warehouse systems.
Operational systems have current data, and data warehouse systems have
time-spanned data. Thus, data warehouses are called time variant. In addi-
tion, because of this time variance, data warehouse data are not updated but

XML for Databases and EDI 117

collected continually. XML supports time variance in data warehouses
because it can be used as a common format for representing legacy, current,
and future data.

Nonvolatile

Because data are never updated, they do not change or expire. Therefore,
the data in the data warehouse tend to be fairly stable and nonvolatile.

The characteristics of a data warehouse—subject orientation of design,
integration of data within the data warehouse, time variance, and simplici-
ty of data management—all lead to an environment that is very different
from the classical operational environment.

The source of nearly all data warehouse data is the operational environ-
ment. It is a temptation to think that there is massive redundancy of data
between the two environments. Indeed, the first impression many people
draw is that of great data redundancy between the operational environment
and the data warehouse environment. Such an understanding is superficial
and demonstrates a lack of understanding as to what is occurring in the
data warehouse. In fact redundancy of data between the operational envi-
ronment and the data warehouse environment is minimal.

XML Advantages

Conventional data warehouses are expensive and complex client/server
applications that require technical expertise to maintain and special train-
ing to query. The Web and XML can unlock the treasures buried deep in the
warehouses to provide access to corporate intellectual capital in ways never
before possible. XML can also help to recover lost nuggets of knowledge
buried within the mountains of corporate documents, paperwork, and man-
uals. And, considering the rate of accelerating change inherent with any
Internet-related technology, XML-based data warehouses and knowledge
management will quickly become the standard across most industries and
will be considered the cost of doing business, just like having a Web site or
a FAX.

With XML, a corporation can define one access point for all enterprise
information sources, including databases, documents, reports, manuals,
applications, and query tools. Broad intranet access to corporate data and
information resources is just the beginning. Extended access to industry
partners, suppliers, and customers (with reciprocal agreements) will trigger

118 XML

an explosion in the creation of distributed data warehouses. As access to
useful information increases, the focus will shift dramatically from tools to
data. Top level executives will ask their staff for different ways to use, ana-
lyze, and leverage this newfound wealth of data.

Another advantage of XML and a distributed data warehouse is the abil-
ity to get information into the hands of the workers and salespeople who
need it. People will be taught how to think about their jobs, not how to use
complicated tools. Rather than training everyone on the use of difficult data
mining tools, training efforts will shift to knowledge management and busi-
ness intelligence concepts.

With the advent of accessibility, people will always want more. We have
insatiable appetites for information, intelligence, and insight. Instead of the
simple queries using SQL, there will be a new paradigm for searching
information. Data mining and data visualization tools will be simpler with
XML documents. XML has the potential to balance the user’s need for
information power and ease of use.

Data, Information, Knowledge

Data are the facts and the noise. Information is the patterns in the data.
Knowledge is validated information within a certain context. For the math-
ematically minded, think of data as being a scalar, a single point or fact.
Information is a vector, a fact with some direction or meaning. Knowledge
is a tensor, information with a specific orientation, context, or perspective.
Wisdom is knowledge coupled with history and experience.

Data are simple facts, such as 100 degrees Centigrade. Data can be
stored in a spreadsheet or in a database. Information is the combination of
two or more facts, such as water boils at 100 degrees Centigrade. A data-
base query that joins different data into new facts is creating information.
Because of the current flood of data and information, executives value peo-
ple and tools that can filter out irrelevant information and focus on useful
information.

Knowledge is aggregated information within a specific context, such as
the knowledge that water boils at different temperatures as the elevation
changes. One reason that knowledge management is so hard to define com-
pared to data is because of this difference. Data is fairly simple and fixed,
so it is easy to characterize with simple logic. However, knowledge changes

XML for Databases and EDI 119

with context or use, so it has to be characterized with a very flexible for-
mat, such as XML, to anticipate unspecified usage. It is difficult to build a
logical, open-ended structure to store knowledge.

Wisdom consists of ideas or actions that are flexible and are based on
experience, such as the wisdom that says that a watched pot doesn’t boil. In
business, wisdom is revealed by the ability to put knowledge into useful
action.

Data Mining

Data mining refers to using tools to find trends in the data automatically, or
to identify hypotheses that may yield valuable information upon explo-
ration. While standard SQL database queries can filter data into a specific
answer, a useful query depends on a good hypothesis. Data mining uses
algorithms or statistical models to locate less intuitive trends in the data in
order to provide new insights that a business executive can use.

Data mining is typically a complex activity that used to require the Infor-
mation Technology (IT) department to handle and then load the results into
the data warehouse for the business users. It is not considered to be a desk-
top application. XML has the potential to completely revamp the data min-
ing landscape. XML tags may serve as a type of meta-data. Meta-data is
information about data, and XML provides content information about data
in a document—not too far apart. Meta-data solutions such as XML can be
incorporated as an important enabler in the strategic enterprise IT plans and
architectures.

XML supports the data warehouse, and XSL supports the data mining.
A little Java may help but is not necessary. A data analyst, preferably with
some artificial intelligence experience, can help generate the knowledge ele-
ments and structures. XML will provide dramatic functionality to data
warehouse and data mining applications. Not only does it allow for model-
ing, XML also uses built-in meta-data in identifying data content, context,
and meaning. Taken the next step, an XML document repository can serve
double duty as a data warehouse with no additional development. This
capability can easily be extended to the Web. More and more documents
will be published in XML format, and these documents can be used as part
of a worldwide distributed data warehouse for intelligent data mining using
XML-enabled search engines and tools.

120 XML

EDI

Before B2B there was Electronic Data Interchange (EDI). EDI was where
e-commerce truly began. By using EDI, a company could build electronic
communication and business transaction systems that processed orders
and transferred invoices between organizations. The pure EDI architec-
ture is too cumbersome for the Web because transactions were direct com-
puter-to-computer links from a database on one mainframe to another
database on a mainframe in a different organization. The interactions
were transacted over privately leased lines as opposed to the open Web
networking.

EDI was an important method of communicating data transactions
between companies. Before the Web, this was the main digital form of B2B.
However, B2B is real time, in contrast to EDI’s batch processing. In addi-
tion, EDI communications were fixed to specified partners connected across
a Value Added Network (VAN), not a World Wide Web that enables B2B
communications with any corporation across the globe. To summarize, in
comparison to EDI, B2B communications are real time, automated, and
open to the world.

An EDI implementation was based on an explicit two-step agreement
between two companies. First, a specific industry or a group of cooperating
companies negotiated on the data element types and formats used for the
transactions. Second, the transactions and data formats were implemented
in the EDI systems. Because of the complexity of the EDI implementations,
each trading and transaction agreement was specific to a set of partners.
With each new set of trade agreements and business partners came a new
EDI application.

Corporate activities in conventional EDI are being replaced by B2B e-
commerce activities based on XML and Java. EDI was developed for pro-
prietary, leased VAN connections, not for the Internet. Industry analysts
predict that, over the next few years, EDI will grow in the billions of dol-
lars, while XML-based B2B e-commerce will grow into the trillions of dol-
lars. Therefore, the smart bet for EDI-based companies is to explore XML
solutions and technologies for data transactions.

EDI structures can be used as a basis for XML communications, allow-
ing both EDI and XML users to share the system. Corporations do not have
to write off all of their EDI investments and make a complete switch to
XML. After a few test cases are developed for selected departments, an

XML for Databases and EDI 121

EDI/XML system can propagate throughout the corporation addressing yes-
terday’s systems, today’s problems, and tomorrow’s opportunities.

Although EDI is typically a limited transaction between two companies,
the EDI structures are applicable to B2B efforts. B2B is typically an open
and unlimited trading agreement that can change fluidly and dynamically.
EDI was also based on building a consensus among trading partners. On the
Internet, this is a near impossibility, given the global nature and culture dif-
ferences among partners.

B2B e-commerce is based on an ephemeral community of trading part-
ners, vendors, and suppliers, who join and leave the community as needed.
This fluctuating environment requires a robust foundation, such as XML,
to maintain the dynamic stability required for today’s interactions.

Because of the cost and complexity of EDI systems, companies are look-
ing to XML as a method for cheaper and simpler data transfer. The com-
panies that use XML will have an uphill battle trying to persuade compa-
nies entrenched in EDI to try something new like XML. The popularity of
B2B has helped to drive the XML market. The growing market means a
growing demand for conversion services, which include XML and EDI. To
address this potential crossover, a growing number of companies are devel-
oping EDI/XML tools that work with both systems. In addition, many EDI
vendors see the handwriting on the walls and are beginning to offer trans-
lation applications that convert EDI transactions into XML documents.

Even though an XML document is a data file, it was not originally devel-
oped as a replacement for EDI or as an enabler of B2B e-commerce. It was
designed to provide developers with extensible markup, so that they could
build interoperable systems, seamless data exchanges, and application-inde-
pendent information that could be displayed on any device. These noble
design goals barely hint at the transactions typical of EDI, and they are
silent on e-commerce. However, developers can exploit XML to define busi-
ness meta-data, vocabularies, rules, and transactions.

An XML text file plus an XML DTD or schema equal a very structured
XML document. If all companies agree on the DTD vocabulary, then you
can zap your XML catalog document to another business who can then
apply an XSL style sheet to represent the data as a purchase order,
an inventory, or a mailing label. If the vocabularies are different, that’s
OK too, because an XSLT script can transform between the different
vocabularies.

122 XML

One useful function of XML schemas and DTDs is that they convey
meaning to applications, so that the applications can accurately distinguish
between useful and extraneous information. By using a simple XML docu-
ment, corporations can distribute information and data transactions across
a variety of business systems. In addition, XML documents can be trans-
ferred across the open Web at virtually no cost and can also cross the fire-
wall to enable data transfer in ways that are much more efficient and cost
effective than EDI.

XML and B2B efforts do not abruptly eliminate EDI. They gradually
incorporate lessons and best practices from EDI experiences and make
adjustments in the B2B e-commerce model to accommodate these experi-
ences and practices.

XML/EDI Foundation

The XML/EDI combination provides a new way to create documents and to
handle data transactions. The use of XML to handle EDI capabilities pro-
vides an additional layer of processing intelligence to the transaction equa-
tion. The XML standard provides a solid foundation for e-commerce and e-
business by enabling documents to be shared, searched, catalogued, and
inventoried. All of the basic building blocks for B2B e-commerce are con-
tained in the XML specifications. As more and more companies jump on the
B2B bandwagon, XML is the catalyst that will effect rapid business change
in managing and controlling critical transaction information.

XML provides a simple way for handling electronic business transactions
while also maintaining all the functionality of the legacy EDI systems that
were so complex and cumbersome. XML can adapt to existing technologies,
link with past databases, and be extended to include future business require-
ments and technologies. With all of that, XML is also an open standard,
unlike the various incarnations of EDI; therefore, it is being broadly
embraced by many industries. However, passing the baton from EDI appli-
cations to XML applications is much more involved than simply waving a
magical mark-up wand.

An EDI to XML transformation requires a solid XML/EDI foundation.
The first requirement is that all EDI functions can be mapped to corre-
sponding XML capabilities. This should not be a difficult task because
XML is a more encompassing technology. However, it is an important exer-

XML for Databases and EDI 123

cise for the XML developer to insure that all the EDI bases are covered and
that nothing sneaks in out of left field to shut down the operation.

EDI used leased networks, batch processing, and fixed format. In con-
trast, XML uses the Web, immediate access, and flexible formatting. XML
tags can be defined to handle the same functions as the EDI segment iden-
tifiers.

The EDI/XML foundation, indicated in Figure 7.5, includes templates to
use rules for establishing process steps for the transaction. They can be
incorporated with the DTDs to insure interoperability by providing the
meta-data needed for corporations to understand each other’s vocabularies.

FIGURE 7.5 An EDI/XML foundation combines both technologies by using rules, reposi-
tories, and agents for implementation.

Intelligent agents use the templates to carry out the process steps, link the
correct template to the appropriate task, and create new templates as need-
ed. These agents can be created using XSLT, Java, ActiveX, or any other
programming environment. The correct combination of these components
results in a viable XML/EDI system.

XML/EDI Models

XML/EDI uses four models: star, ad hoc, hybrid, and Web. The star model
is a standard EDI approach in which a central corporation defines the pro-
tocols for all the business partners. The ad hoc model is a Web-based
approach that allows partners to modify their interactions on demand. The
hybrid model combines the best of both worlds and employs a star model

124 XML

XML
Web-Based

EDI
Biz-Based Data

Repository

Intelligent
Agents

Implementations

XSL
Processing

Logic
Business Rules

with ad hoc modifications. The Web model focuses on the information
being transferred as opposed to the data transaction rules that are typical of
a conventional EDI interaction.

By using these four models, XML/EDI developers can build an infra-
structure for a wide variety of B2B systems. Rather than a limited EDI sys-
tem, developers can use XML to build flexible and open systems that will
scale-up to meet the needs of tomorrow’s business opportunities. By adapt-
ing to the individual needs of the developer and the corporation for EDI
solutions, XML applications allow for uniform systems and interoperable
transactions.

Advantages of the XML/EDI Approach

The main advantage of the XML/EDI approach is the flexibility of XML to
define the data and interactions more clearly and more robustly, with a
greater depth than was possible with previous technologies. XML meta-
data: tags and DTDs allow the XML/EDI transaction to carry an “inter-
preter” with the interchange in order to let all parties understand the
results. Another feature of the XML approach is that the XML/EDI foun-
dation can be implemented as an entire system or as a partial solution that
meets the individual needs of the developer.

The EDI of old was not exploited to its full capability because of its com-
plexity. Typically, it was forced on trading partners as opposed to being
embraced freely as a cost saving activity. EDI was used to send structured
data to trading partners, but it was rarely used to send data to other cor-
porations because of the high-dollar, proprietary software involved. In con-
trast, EDI/XML will be an enabling technology that saves money.

Using XML has many additional advantages and benefits. As stated, it
uses open system standards that encourage broader use than the proprietary
EDI standards. Therefore, more partners will participate than did previous-
ly in the EDI approach. The DTDs provide an additional layer of self-
description to the interaction and transaction process. Because of its flexi-
bility, XML will allow corporations to leverage their existing EDI capabili-
ties and will allow vendors to provide new applications for existing systems.
In addition to working with legacy systems, XML will provide a bridge
from the past to the future, also working with emerging systems. Because it
is built on open standards, XML applications tend to be less expensive than

XML for Databases and EDI 125

proprietary EDI systems. The Web approach encourages a real-time pro-
cessing nature, in contrast to the EDI batch processing approach.

XML/EDI Document Management

XML is all about managing documents, as opposed to managing only the
data. Many vendors are building document management systems that inte-
grate with existing database systems and product data management sys-
tems. The advantage of a document management system is that the con-
tained data have context and meaning, providing a richer capability than a
simple database alone.

While traditional EDI systems were built for data transactions, the new
XML/EDI systems will transfer documents, which can include more infor-
mation such as catalogs, inventories, transaction histories, and audit trails.
These capabilities can be developed initially as part of the transaction and
maintained indefinitely as part of the normal process.

In addition, users will not need special EDI tools because they will be
able to use their XML-enabled browsers to view and manipulate the
XML/EDI transaction documents. For example, an XML/EDI document
will contain the transaction data and the rules for handling the transaction.
These rules may include routing, workflow, and event handling. The docu-
ment may have sufficient embedded intelligence to automate its distribution
list and the subsequent actions.

The XML specification was designed for the Web, but, just like HTML,
an XML document can be used on the internal corporate intranet. So the
XML/EDI process can be used internally as well as externally to facilitate
the application-independent transfer of data and documents among organi-
zations, whether or not they exist outside or inside the corporate firewalls.

Intelligent Agents

One of the powerful features of XML/EDI is the automation of various fea-
tures by using templates, rules, and intelligent agents. Although the term
intelligent agent sounds like something out of artificial intelligence research
labs (in fact, it is!), these agents have been in use on the Web since 1995 or
earlier. Many search engines use intelligent agents to index the millions of
Web sites developed throughout the world. The familiar wizards used in the

126 XML

MS Windows operating systems are based on intelligent agents. The Help
function is also based on intelligent agent technology. For the purposes of
EDI/XML, intelligent agent technology is fairly mature.

There is a wide diversity of intelligent agents from simple, repetitive ’bots
to complex, rule-based workflow wizards. For example, a repetitive ’bot
could be a simple script that counts the number of users who visit a Web
page. It can include simple rules, such as sending out an e-mail message
every time the number of users clicked over a new century mark. Although
an agent is usually independent of the application, a complex macro for a
spreadsheet or for a database could also function as an agent.

XML/EDI Connects to EDI

XML/EDI can transfer data between EDI applications by using rules and
templates that provide complete backwards compatibility. The template
maps the EDI messages into a usable format, which reduces the need for
other transformations. However, XML/EDI files will be as much as 50 per-
cent larger than normal EDI transactions. Of course, the EDI transaction
contains much less information and works with fewer systems and applica-
tions. So, the size trade-off is clearly worth the benefit.

The use of XML can cut EDI data transaction costs by getting rid of the
expensive transactions and proprietary VANs that EDI requires. However,
companies where EDI is already a sunken cost and an entrenched technolo-
gy are not about to switch to XML. Therefore, XML has to span both the
legacy EDI world and the new XML B2B world. That’s OK, it can do that.
And at the same time, XML can enable use of EDI without a large, expen-
sive IS staff to manage it. XML is a young technology, but, as it gradually
replaces legacy systems such as EDI, it will grow up and mature into a well-
rounded IT approach for data transfer. However, EDI-centric companies
need not panic. XML probably won’t completely phase out EDI for 5 to 10
years. Meanwhile, companies can use an EDI-to-XML translation capabili-
ty to integrate the two technologies.

Risks

The situation with XML is like the environment for HTML in 1995 and
for the relational database technology in the late 1970s. In the early days

XML for Databases and EDI 127

of relational databases, people did not fully understand how to exploit
their capabilities. With XML, everything is still new and developers are
just now learning how to use XML. However, most people have not yet
had sufficient experience to leverage the full potential of XML. Let’s look
at the relational database model in comparison to the XML document
model.

The relational database model does not put constraints on the way that
developers store data. It provides the format, and the developer chooses
how to define the tables, the columns, and the data. In the same way that
relational databases revolutionized data storage, XML revolutionizes infor-
mation transfer over the Web. Just like a relational database, XML does not
put constraints on the content of the information or the way that it is struc-
tured. That is up to the developers who define tags to implement the vocab-
ularies, structure, and content of the information. Both the relational data-
base and XML models serve as scaffolding to support the structure of infor-
mation in a more robust way than previously possible.

By exploring the lessons of history, we can understand the trends of
XML. In the early 1980s, relational databases were superior to the next best
technology, hierarchical databases. Vendors and developers created more
and more new databases because the technology facilitated ease of develop-
ment and use. In addition, vendors created a plethora of new database
applications to support the development.

One of the first problems that arose from the development of relational
databases was inconsistency. Corporations built hundreds of individual
databases without integrating the results. Any set of databases might con-
tain redundant data, but they could not exchange data because there were
no design standards. Because of the patches and rework needed to exchange
data among databases, other applications were delayed as 30-50 percent of
the information system department budget was devoted to database inte-
gration and data transfer efforts.

For the most part, the problem arose from the lack of coordinated efforts
to design a common format for all the databases. Design efforts were local-
ized, if they even existed at all. Columns were not consistent across two
databases, and integration links were difficult to maintain. The problems
and complexities of database integration persist even today, decades later.

XML development has the same potential for overwhelming complexity
due to a lack of integrated design and development efforts. There are

128 XML

efforts to standardize the use of DTDs within industries, such as the auto-
motive industry, the retail industry, and the financial industry. Currently
many of the B2B efforts attempt to standardize vocabularies within the
B2B community, but that may not help an individual corporation or a com-
pany that belongs to multiple B2B concerns. However, the development of
interfaces and data exchanges is facilitated by a limited number of vocab-
ularies.

As the standards wars begin to heat up, corporations are hesitating to
enter the XML domain, not sure which standard will win. However, this
approach is poor because learning about the changes and then implement-
ing them will be easier if the development team already has a little XML
experience. Besides, there are many technologies that are emerging to help
with the transformation from one standard to another. The battle for stan-
dards domination may go on for a few years, so avoidance may be a crip-
pling business decision.

A much better approach is to jump into the middle of the activity to learn
about XML, documents, and databases. Corporations can develop a collec-
tion of database applications and XML interfaces to work with the various
standards until a few leaders emerge from the pack.

Being vigilant to complexity is important. The complexity of databases
continues to taunt developers and integrators. XML’s flexibility can multi-
ply that complexity to swallow entire companies if they do not learn the les-
sons of the past. One way to wrest control from the spiraling standards is
to develop a set of data and document models that represent how the com-
pany does business. The method for building these models comes under the
general heading of creating an architecture, although this methodology
appears to be lacking in these early days of XML.

Consider that most, if not all, XML programming books on the market
discuss how to build and implement an XML system. These books describe
the methods for defining a problem and for developing the DTDs for an
XML solution. However, this author has not been able to find any books
that detail how to create an enterprisewide XML document design archi-
tecture. A generalized design methodology for representing all corporate
documents as a set of standardized XML documents would go a long way
toward bypassing the pitfalls that befell relational databases. One
approach for a stopgap XML document design architecture is outlined in
the next section.

XML for Databases and EDI 129

XML Document Design Architecture

One of the advantages of using an XML document architecture is that doc-
ument components can be easily stored in a database or in other documents
and then reused. Standardization of the document structure facilitates reuse.
After data element types are defined, the structure of these data elements are
guaranteed to be identical. Documents can be produced in quantity, can be
automated, are immediately available, and have minimal production costs
and predictable search fields. The challenge of standardizing XML docu-
ments lies not in the physical implementation, not in production, but in the
initial design. XML document designers must define document components
that are universally applicable and easily reusable across a variety of cor-
porate documents. Although this task may seem insurmountable, there are
well-defined steps for building an architecture, and the potential savings in
production are immense.

An XML Document Design Architecture (XDA) consists of three layers:
a conceptual layer, a logical layer, and a physical layer. This definition bor-
rows aspects directly from database design, client/server design, and UML
design.

The conceptual layer or model consists of the business requirements that
are captured by all the various documents used throughout the corporation.
Simply gathering all these documents into one location can be a Herculean
task. But the payoff is significant in the longer term, and it is very much
worth the effort.

The logical layer or model is a map from the business requirements and
documents into a set of document templates that decompose into a standard
set of document data element types. The Dublin Core standard
(purl.oclc.org/metadata/dublin_core), which describes the components of a
document and DocBook standard (www.oreilly.com/catalog/docbook/chap-
ter/book/docbook.html), which describes documents from an SGML legacy
viewpoint, may be good places to start for guidance.

The logical model assigns data element types to the specific document
types to create an XML document type template that will be filled with data
and text to satisfy some specific business function. For example, if you want
to write a memo, you would choose the memo template from the collection
of XML document types. Then you would fill in the various data elements
and fields with specific data and text to satisfy your specific need.

The physical layer involves the creation of the document instance by fill-

130 XML

ing in the data elements and fields. Because XML is so new, the editing tools
are not yet mature, so development may be manual. This is the step that
most XML books describe when they discuss the creation of DTDs and
XML documents. However, by using the full architecture lifecycle, an XML
document or database designer can create applications that can be easily
integrated, transferred, and reused.

An important part of defining an architecture is to clearly define each
layer: conceptual, logical, and physical. Relationships clearly map from
conceptual to logical to physical. However, to define each layer, first collect
data and inventory information about the business functions, the document
types, and the document element types. At each layer, review this informa-
tion inventory, analyze it for consistency and redundancy, combine items as
appropriate, and build relationships within layers and across layers. This
iterative process results in a well-defined traceability matrix that maps busi-
ness elements to documents to XML functions. As functions change, docu-
ments may be changed or more documents may be added, and elements may
be added. The process enables a robust implementation and a graceful,
seamless process for extension.

XML promises to be a cathedral in the architecture of the Web and of
information exchange. The vision is that it will provide a convergence of
concrete data and abstract context in a format that is equal to man and
machine. Ultimately, XML may be the key to unlocking the decades old bar-
riers among data transfer, information interoperability, and the knowledge
sharing. A disciplined document and database architecture is one step on
that path to shared knowledge. And a clear corporate document architec-
ture is a gateway toward exploiting the extensibility of XML.

XML for Databases and EDI 131

Introduction

Even though XML is the basis for most B2B sites, it is not the total answer.
The goal of a B2B system is to link front-end individualized Web interfaces
into the back-end enterprise system. A B2B system helps to deliver cus-
tomer information to the marketing and sales departments and also opens
up corporate databases to collaborative trading partners and vendors.
XML provides the ability to carry out catalog development, change man-
agement, order fulfillment, inventory control, and the integration of these
functions.

In addition to integrating the procurement value chain, XML can also
provide access to the manufacturing floor. It is a great common communi-
cations interface for the various process-control devices found on the facto-
ry floor and in the enterprise in general.

Although XML documents are well-structured data and information
repositories, developers cannot just code a few lines and pop out a full B2B
enterprise system. A number of design steps must be taken to create a scal-
able integration solution that leverages the best XML standards to fit the
job. In addition, like any program management activities, an XML project
requires a situation assessment, needs analysis, alternative solution evalu-
ation, and an implementation plan. The plan should include some instruc-
tions for converting legacy information into an XML-compatible format.

132

C H A P T E R 8

B2B Exchange

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

Even as the information exchange problems are addressed, developers need
to explore how to integrate processes from different companies.

B2B provides many advantages: It greatly expands the market for a cor-
poration, because the Web exposes the information to a worldwide com-
munity.

Strategic Advantages of E-Business

E-business has the following strategic advantages:

■ Supports virtual enterprise initiatives

■ Supports interoperability among suppliers, vendors, and partners for a
virtual company

■ Supports new business models

■ Creates new procurement value chains

■ Provides flexible customer personalization

■ Offers higher value that increases the customer’s cost to switch

■ Integrates the design, development, and production cycles

■ Decreases time to market

■ Enables close partner integration, perhaps closer than previously possible
in the single company

■ Unifies interfaces to third party software through the use of XML

The potential payoff for B2B e-commerce is tremendous. Analysts predict
that over the next few years B2B e-commerce revenues will grow into the
trillions of dollars, as shown in Figure 8.1. Based on the growth in on-line
access of U.S. children and teenagers shown in Figure 8.2, as well as the
growth in business to consumers (B2C) in the United States shown in Figure
8.3, it is reasonable to expect the B2B market may increase in order to keep
up with demand by worldwide consumers.

Dell is a well-quoted success story that allows consumers, both corporate
and individual, to order customized PCs. In an industry where profit mar-
gins are slim, Dell has been able to squeeze a healthy profit because of B2B
e-commerce. B2B e-commerce allows Dell to earn higher revenues per
employee than most other companies. Corporations in all industries would
do well to use Dell as a benchmark for B2B e-commerce.

B2B Exchange 133

FIGURE 8.1 The estimated worldwide growth in B2B revenues over the next few years is
expected to reach the trillion-dollar mark by 2004.

FIGURE 8.2 The growth in the number of U.S. children and teenagers who access the
Internet is expected to break through the 50 million mark by 2002.

FIGURE 8.3 The growth in the U.S. B2C is a percentage of the worldwide market and may
help drive the B2B revenues.

1999 2000 2001 2002 2003 2004

N
u

m
b

er
 o

f
E

-C
o

m
m

er
ce

 B
u

ye
rs

0M

50M

100M

150M

200M

250M

[$100M]

[$200M]

[$500M]

[$1B]

[$2B]

[$4B]

1995 1997 1999 2002

N
u

m
b

er
 o

f
C

h
ild

re
n

 O
n

lin
e

1M

7M

25M

[50M]

2001 2002 2003 2004 2005

B
ill

io
n

s
o

f
D

o
lla

rs

25

50

100

1K

2K

4K Estimated B2B Revenues

134 XML

The Makings of a Successful B2B Implementation

A successful B2B implementation will have to manage a variety of factors
such as the existing corporate culture, the corporate business model, the
B2B business model, and the extent of the implementation. However, XML-
based B2B e-commerce implementation is not an automatic, smooth as silk
situation. First, the trading partners must come to some consensus about
what XML standards and DTDs to use. Typically, the companies will have
a general agreement with negotiations about the details. Next, the Web site
cannot be a glamorous façade. It has to be functional and connected into
the deep inner data sanctums of the corporation. Corporate data usually
resides on a legacy database system. So, developers will build Web-enabled
XML applications to access and retrieve this legacy data.

After the developers have integrated the back-end legacy databases into
the B2B applications, they will have the potential to support a just-in-time
supply chain. For this to happen, the developers will have to insure that
database access is integrated to provide real time, on-demand response.

Corporations who want to cultivate B2B e-commerce developers can fol-
low two paths. First, they can redirect their programming expertise to work
on the e-commerce Web site. This can either be treated as a programming
exercise or a business opportunity. As a programming exercise, the Web site
will be cool, but it may not be compelling or good e-commerce. As a busi-
ness opportunity, the Web site may be fairly boring from a technology spe-
cial effects viewpoint, but it can still be compelling, useful, and a successful
e-commerce site. Two good examples are Yahoo! and Dell.

Yahoo! is one of the oldest and busiest sites on the Web. You might think
that a mature Web site would have accumulated the best graphics and the
flashiest new technologies. But that is not the case with Yahoo!. The Yahoo!
Web site has only a few tiny graphics and uses no flashy technology. It is
also one of the fastest loading sites, one of the most visited, and one of the
few profitable dot coms.

Dell is an example of B2B e-commerce. The Web site is clean, quick, and
interactive. It uses a significant amount of new technology, which is all
transparent to the user. The technology is on the back end, allowing the
potential buyer to explore customized variations on PC configuration. One
of the compelling points of the Dell Web site is that customers can play con-
figuration what-if games all day long, without worrying about interference
from commission-driven salespeople. A user can explore different configu-

B2B Exchange 135

rations and immediately see the financial outcome from the exploration.
The process is quick, responsive, and fairly intuitive. And it uses minimal
whistles and bells up front.

However, the Dell Web site uses a significant range of new technologies
that are hidden from the user. They are the mechanism for integrating with
the back-end component databases, and enabling the what-if questions. In
this case, the Web technology supports the business model.

Building XML documents that embody these business models will prove
to be difficult for many users. Establishing a B2B relationship among a few
companies can take an experienced programmer anywhere from a couple of
hours to a couple of weeks, depending on the existing infrastructure. A
carefully designed, scalable B2B exchange can take a few months. With this
kind of IT experience at a premium, the complexities can overwhelm a
development project.

Before any software is written, data analysts and business managers must
define their requirements for B2B. They have to establish the trading agree-
ments, channels, and connections long before the software engineers start
writing code and integrating applications. Basically, the business people have
to set up a conceptual architecture, or at least be guided in its definition as a
representation for the B2B requirements. A set of graphics tools for visualiz-
ing the flow of information is useful. A simple flow diagram can depict the
decisions and actions as a customer browses a catalog, explores a configura-
tion of products and services, looks at the price list, makes a purchase, pays
for the purchase, and receives the order. Eventually, graphical tools may be
developed that will accelerate the steps from concept to implementation,
making a B2B idea as easy to implement as a good presentation is.

A workable B2B system requires a business model that is different from
the conventional model. Rather than automating paper-based systems,
entirely new processes can be enabled. The majority of the procurement
cycle can be automated. According to experts in the automotive field, this
automation can eliminate the need for a large amount of paperwork, great-
ly speed up the process, and save as much as 90 percent of the procurement
costs. Which brings up an interesting point . . .

Startup vs. Conventional

A reasonable assumption might be that startup companies would have a
significant advantage over conventional established companies with regards

136 XML

to B2B. However, two fallacies occur in that kind of thinking. First, B2B
requires a solid business model and good strategies. Large companies, such
as IBM, Ford, GE, and GM are experts on building solid business strategies
when they recognize an opportunity. Past failures were due to pride, not
business planning. And the big companies recognize the profit potential of
B2B. Once pride is overcome, these industry leaders can turn on a dime.

The other issue with B2B involves the new technologies, such as the Web
and XML. Again, many companies have been involved with the Internet for
much of its 30-year lifetime, longer than the lifetime of dot-com employees.
Although they may not have superior XML skills, these traditional compa-
nies may be able to leverage their SGML expertise to rocket up the XML
learning curve. Many of the humble SGML experts are proficient program-
mers who pick up new technologies as rapidly as a linguist picks up new
languages. A good C programmer with SGML experience can pick up Java
in a couple of weeks and XML in a couple of hours of training. The dot-
com startups don’t have the years of application experience stored at the
conventional companies.

In fact, the biggest shot in the arm for XML came from the automotive
industry with the announcement in February 2000 of the Covisint B2B
collaboration among the Big Three automakers, Ford, GM, and
DaimlerChrysler. Although many other B2B efforts were in progress, the
$300 billion worth of products and services from the 30,000 automotive
vendors really put B2B on the map.

Before that announcement, both Ford and GM were working on separate
B2B activities. In fact, Ford has announced a plan to become e-Ford, a vir-
tual company that leverages digital transactions and integrates (rather than
manufactures) automobiles, products, and services. Ford will still make
cars, but it will outsource as much of the work as practical. If it works, an
apt comparison will be that Ford is the “Dell” for cars.

Established companies can take an exploratory approach to entering the
B2B market, using a phased approach to learn quickly what works and
what doesn’t. Their advantage is that they do not put all of their products
and services into one B2B basket, as the dot-com startups are forced to do.
Established companies can fall back on their current business models if
needed. And they can gradually transition more and more of their business
from the conventional approach to an increasingly B2B approach.

The point is that corporations should be planning to do B2B e-commerce

B2B Exchange 137

and e-business; this capability will soon be the cost of staying in the mar-
ketplace and staying competitive. Managers should not think that “even
big companies can play.” The business leaders should be thinking that B2B
is growing because the big companies are building the business models at
the forefront.

Cooperation is a necessity. B2B requires greater cooperation with partners
and competitors. Again, consider the auto industry. Ford and GM are clearly
competitors, yet they cooperate in their B2B venture. This is not really that
difficult to understand. The Covisint B2B venture is not really a sharing of
critical information and corporate secrets. It is a collaboration on procure-
ment, vendors, and suppliers. Any company worth its salt already knows
about the vendors used by its competitors. So there is no chance for loss of
competitive advantage. What these companies are doing is sharing standards.

The auto industry shares many obvious standards. All major U.S. cars
use the same fuel, the same oil, the same sizes of tires, the same batteries,
etc. They also use a similar design for automatic transmission, for bumper
heights, and for seatbelts. The look, feel, handling, and brand are the dis-
criminators. So, the B2B collaboration merely creates another set of stan-
dards for the auto industry to agree upon.

These standards are XML-based descriptions of all parts and services and
also of data transactions in the procurement supply chain. The standards
make life easier and information transfer less expensive. XML enables the
creation, collaboration, and extension of these standards. It is really a sim-
ple concept, somewhat as if all companies spoke a different language and
then agreed to all speak English. That reduces costs involved in one level of
translation. XML reduces costs related to shuffling paperwork among
30,000 different vendors and their supply chain applications. The single
standard may help the vendors, because they won’t have to keep a separate
system for each automaker. In theory, the consumer should see some sort of
cost reduction along down the line.

One of the potential outcomes of the B2B leveling of the playing field is
that goods and services become commodities that are available from differ-
ent vendors. In addition, a B2B exchange simplifies the process of compar-
ison shopping for the best price. Therefore, companies will have to differ-
entiate based on best value for the target customer. For example, if a ven-
dor sells to the automotive industry, then the ability to delivery high volume
goods may be an important factor. The automotive vendor may have an

138 XML

advantage over an aircraft vendor who sells similar goods, because aircraft
tend to be low volume. Or a gadget seller may focus on packaging and serv-
ice for individual customers, while a widget vendor may provide a favorable
billing relationship for corporate sales.

Advertising Impact

Advertising will be even more important, not less, in the world of B2B e-
commerce because vendors will have to clearly differentiate their products
to the target group of customers. For example, Texas Instruments and Intel
would not really want to compete with Radio Shack for the electronic hob-
byist market. Although the margins are great and both companies can han-
dle any levels of volume from hobbyists, neither company is set up to
answer individual hobbyist questions. Both companies are happy to answer
engineering design questions, but not questions like “I opened the back of
my PC and now it doesn’t work. What do I do?” No, those are questions
better handled by Radio Shack, Gateway, or Dell.

In addition, advertising will help attract a whole new class of worldwide
customers. Corporations throughout the world will be able to use B2B sites
to negotiate deals that may be more favorable than terms from a local com-
pany. Through the use of delivery services, such as FedEx, a distant compa-
ny may have better delivery times than a local company. Advertising will
help build that reputation.

Benefits of B2B E-Commerce

So what are some of the benefits of B2B e-commerce for the corporations,
trading partners, vendors, and suppliers? First, a B2B procurement effort
can reduce costs by streamlining the entire procurement processes from ini-
tial order to fulfillment. It can provide the sellers with a more global mar-
ketplace exposure, allowing them greater leverage and visibility for their
products and services without as much cost. On the flip side of the coin,
buyers can use B2B exchanges to comparison shop more easily, exploring a
wider base of suppliers that will have more competitive prices.

The financial benefits of e-business come not from increased revenues but
from a new business model that increases profit margins and efficiencies.
However, one big question is whether B2B is an overhyped or a viable new

B2B Exchange 139

business model. One way to address this question is to benchmark some of
the recent B2B efforts.

Some of the top B2B exchanges include CheMatch.com
(www.chematch.com), which sells chemicals and plastics; PlasticNet.com
(www.plasticnet.com), which sells material and news to the plastics indus-
try; SciQuest.com (www.sciquest.com), which sells lab equipment, news,
and supplies to laboratories and medical companies; Ventro Corp.
(www.ventro.com), which builds vertical value chains; and Altra Energy
Technologies (www.altranet.com), which sells to utility companies.

Another benefit that has emerged from B2B is the ability to purchase
products, services, and information while on the go. As discussed previous-
ly in Chapter 6, wireless data communications, WAP (Wireless Application
Protocol), and Bluetooth will enable m-commerce (mobile commerce),
based on WML, a dialect of XML. So, as companies plan their B2B strate-
gies, they will include options for wireless access to corporate applications,
databases, catalogs, and inventories.

A B2B exchange is an example of a more efficient marketplace, because buy-
ers and sellers gain insight into a more accurate picture of supply and demand.
For example, sellers have immediate feedback on the demand and success of
their products. They can get a better idea of customer desires and needs
because they have closer contact with a wider population. Therefore, they can
fine-tune their inventory needs, much the same as Dell Computers currently
enjoys. Observing trends in product demands can result in better inventory
control, which, in turn, can enable more accurate planning cycles and fore-
casting. With a closer feel for the pulse of the market, sellers can focus their
time-to-market cycles and innovation schedules to match customer demand.

B2B Defined

In modern terms, B2B is nothing unusual, just one company selling to
another across the Web. This type of transaction has been going on since
around 1995 for the consumer. With B2B, other companies get into the act.
However, sales and procurement across the Web is more than simply a
method for selling at a distance. Telephone sales and 800 numbers have
been doing that for decades. No, leveraging the Internet and the Web results
in a revolutionary new business model that allows instant information,
rapid financial transactions, and personalized service to millions of cus-

140 XML

tomers. In addition, B2B activities may be more business critical than cus-
tomer interactions. For example, a bad network connection might incon-
venience a single customer, but it might bring a company like Yahoo! to its
knees, or it might bring many companies to a halt if the network belongs to
a company like AT&T. With B2B, the stakes are much higher than they
were in the 1990s.

Three Models

A B2B site is a virtual exchange unconstrained by location, size, distance, or
time. In addition to the benefits of multiple selection and partners, a B2B
site usually includes a variety of value-added services to encourage com-
merce. Consider three kinds of B2B models: individual, exchange, and inter-
mediary. With an individual B2B, one company deals with another compa-
ny, or many companies, one at a time. With a B2B exchange, multiple com-
panies form partnerships, marketplaces, or auctions to elevate the efficien-
cies of scale by controlling millions to hundreds of billions of dollars worth
of products and services. With an intermediary B2B, one portal company
connects buyers and sellers. An anonymous auction site, where the buyer
and seller are unknown to each other, is an excellent instance of an inter-
mediary B2B.

The Payoff

One of the best-publicized applications of XML has been in B2B e-com-
merce. Companies and industry groups realized a few years ago that the
Web and Internet presented an entirely new venue for B2C relationships and
for B2B relationships. XML is the emerging format for describing business
data because it is omnimorphic and can adapt to many different kinds of
business data. Three of the primary arenas where XML is found include e-
business, e-commerce, and B2B transactions and communications. These
areas are addressed by B2B exchanges and by XML/EDI activities.

B2B Design Requirements

In today’s business environment, there are a number of assumptions that
follow B2B. For example, we assume that B2B means Web-based com-

B2B Exchange 141

merce activities of some type. Most B2B ventures are focused on one
industry, although the vertical market exchanges are catching up. We
assume that the exchange is fairly open to global customers. We assume
that data and information exchange is platform and application inde-
pendent, enabled by XML tools. And we assume that participants agree
on and use a common DTD vocabulary for all transactions within the B2B
exchange.

Defining the data is an important part of designing the B2B requirements.
The first step is to define the B2B processes, such as ordering, database
queries, data transactions, catalog entry, and financial transactions. From
the processes, the next step is to define the needed documents, which can be
modeled as XML documents. The designers use these documents to define
the information that will be transferred.

From the information and data, the B2B developers can create a set of
DTDs or schemas. The developers must consider whether industry-strength
DTDs already exist or have to be created from scratch. Regardless of the
source of the DTDs, developers can consider building DTDs with the idea
that they will be transformed into schemas. Keeping this idea in mind may
make the ultimate transformation process easier to plan and execute using
tools like XSLT.

Developing the XML Documents

B2B exchange requirements are captured in the DTDs and schemas. The
DTDs form the logic and define the tags of the XML documents. Using the
tags defined by the DTDs, the developers can create the actual XML docu-
ments to represent the information needed in the B2B exchange. Once all
the initial physical XML documents are created, the developers need to
explore how to process these documents.

Processing XML

After completing the design and development phases of the XML docu-
ments, the developers can consider how to process these documents. An
XML document can be processed in one of four general ways: Document
Object Model (DOM), the Simple Application Protocol Interface for XML
(SAX), the eXtensible Stylesheet Language (XSL), and eXtensible Stylesheet

142 XML

Language Transformations (XSLT). All of these technologies have been
discussed in earlier chapters. For quick review, DOM processes the XML
document tree as a whole, while SAX processes the elements of the
document as a data stream. XSL provides a powerful procedural language
for manipulating and displaying the XML document. And XSLT provides
a similar language for transforming the XML document from one format
into another. The boundaries between these last two capabilities are
blurred.

In a B2B application, the type of B2B processes will determine the best
processing method. For a quick look at gathering some data, such as a mail-
ing address for a delivery label, SAX may be used to extract the data ele-
ments, which are formatted using XSL. For transforming an incoming bill
of materials into a format that is useful to the internal inventory system, the
developer may use XSLT. To convert a catalog of products into a database-
ready format, the developer might apply a DOM and then XSLT. EDI trans-
actions might be handled using SAX and XSLT. Different combinations han-
dle some of the standard B2B transactions. Many of the vendor B2B appli-
cations will handle much of this processing automatically.

Storing the XML Data

After designing, developing, and processing the XML documents, the devel-
opers have to determine how to store the XML document data. One way to
store XML documents and data is to use a database. An object-oriented
database reflects the organization of an XML document better than a rela-
tional database, but relational databases are far more commonplace. The
tree structure and data elements can easily be represented in the table and
columns of a relational database. Most major database vendors, such as
Oracle, IBM, Microsoft, and Sybase, offer free tools and additions to make
their products compatible with XML.

When the XML document data is stored in a relational database, it can
be searched and retrieved as needed. A simple SQL command can retrieve
the information as an XML document. In addition, the SQL command
might retrieve subcomponents of the XML document to be used for other
purposes or in other documents. Or the retrieved information can be parsed
with an XML application, manipulated with an XSL style sheet, or trans-
formed with an XSLT style sheet. For example, incoming data can be stored

B2B Exchange 143

in the B2B repository. Then when a form such as an invoice, order, or ship-
ping instruction is needed, XSLT can transform the data into the correct
format.

Protect XML Documents from Manual Modifications

One of the issues to be aware of is the well-documented danger of text-
based XML. XML is text-based to provide a common format and to make
it easy for people to read. Sometimes, if people can read it, they assume that
they can also change it. Bad move!

An XML document should always be processed with an XML parser,
first. This step will always ensure that the document is well formed and that
other XML applications will be able to manipulate it. Except for a few non-
validating applications used for editing, XML applications will fail if the
XML document is not well formed. Failure can occur due to unbalanced
components, poor nesting, or even an out-of-place space. The trade-off for
a tiny, compact XML parser is that the parser has a small brain and cannot
venture outside the XML document rules. In the beginning, this rigidity will
frustrate experienced HTML programmers who start developing XML doc-
uments. Hopefully, they will soon catch on to the advantages of developing
well-structured documents.

For this reason, once an XML document has been validated, human
hands should never modify the text directly, unless that human is ready to
debug his work. In addition, users and partners should not modify an XML
document using non-XML applications because these applications will not
validate their work. They will change things, but they won’t take responsi-
bility for their own actions. Even for small modifications, use a valid XML
application to be safe.

B2B E-Commerce Examples

At the end of February 2000, the three major U.S. automobile manufactur-
ers, Ford, GM, and DaimlerChysler, announced the formation of Covisint,
an unprecedented alliance to streamline their vast network of 30,000 sup-
pliers for parts and services. This alliance represents the next step up the
evolutionary ladder for improved use of information in the supply chain
network. Covisint is built on XML because XML is a technology that

144 XML

makes e-commerce easier, business-to-business information exchange
smoother, and everyday browsing better.

The Alliance

This centralized, common automotive-parts procurement exchange represents
the largest e-business on the Internet. Capitalization estimates average in the
neighborhood of $40 billion. Annual revenues from transaction fees, advertis-
ing, and other services will run about $3 billion per year. And the supply chain
that flows through this venture will control nearly $300 billion annually.

An important aspect of this new venture is that just a few months ago
Ford and GM were competitors in both real and virtual space. Both com-
panies had their own separate e-businesses with no cooperation in sight.
This situation had the promise of a billion-dollar shootout at the “OK
Corral” with casualties of innocent vendor bystanders as they tried to fig-
ure which company to side with. Happily, the choice was cooperation, in a
win–win–win situation. DaimlerChrysler joined rather than create its own
exchange. This has an added benefit of forestalling a splintered European
standard.

This unprecedented joint venture involving GM, Ford, and
DaimlerChrysler is the world’s largest, fastest exchange for transacting busi-
ness—(e-commerce or otherwise) ever created. Naturally, there is some
overlap of suppliers, but the entire supply chain accounts for about $300
billion worth of business each year.

Antitrust Red Flags

One of the downsides of talking about billions of dollars is that the gov-
ernment tends to want to get involved. However, this case has no exclusive
monopoly. No information is shared, just data formats. The Covisint agree-
ment is similar to agreeing to transfer money in leather bags. Everyone uses
the same bag (data format), but people don’t share the contents (the corpo-
rate data). An XML vocabulary is used to define the shared data formats.
Auto companies have agreed on other standards, such as bumpers, safety
equipment, and quality control. XML is just another standard. So, despite
the amount of money involved, the government is expected to bless this ven-
ture, initially, then take a wait-and-see attitude.

B2B Exchange 145

The Federal Trade Commission (FTC) gave Covisint the go-ahead to
establish the automotive B2B collaborative exchange in September 2000.
Although it will continue to monitor the gargantuan exchange for anticom-
petitive practices, the FTC cannot rule on competitive concerns at this stage
in Covisint’s development. In addition to the FTC ruling, the Covisint ven-
ture needs the blessing of the German government’s Bundeskartellamt
(BKA) for its ruling on antitrust and anticompetitive practices. The regula-
tory agency, the European Union, has not planned to review the case. So
Covisint plans to open its doors for business one month after a hopefully,
favorable ruling from the BKA, expected in the first quarter of 2001.

Covisint plans to launch e-procurement, auctions, and an automated
RFQ (Request for Quotes) service as its initial product offerings. After three
to six months, the venture will offer collaborative design and conferencing
applications. The goal is to get all tiers of the automotive supply chain
involved with this B2B exchange. When the entire supply chain is on-line,
the flow of parts and services should run close to $300 billion per year.
Conservative estimates are that the exchange will save 5 percent in pro-
curement costs within the first year. Visionary extrapolations (read: “mar-
keting hype”) predict cost savings on the order of 90 percent. Regardless of
the percentages that are bandied about, the savings are expected to be in the
billions of dollars, simply by making the process more efficient.

One concern from the vendors and suppliers is that the elimination of
some of those inefficiencies may benefit the large automotive corporations
and squeeze the smaller suppliers out of business. If one of the efficiencies
is the ability to hold an on-line auction, then a larger supplier may be able
to cut prices to squeeze out a smaller supplier.

In the traditional marketplace, the smaller supplier would simply go to
another automotive manufacturer, but with the centralized, global auction
all manufacturers may choose the best bid. The suppliers may have a con-
cern that this kind of collaboration may lead to reverse price setting; all
buyers (automotive manufacturers) will agree to pay only one price for their
parts and services, making competition on other aspects, such as quality and
service, more difficult. This is a valid concern. However, the government
cannot rush in just because this might occur; it can only act after an
antitrust action is taken.

For this reason, Covisint is expected to be very sensitive to these issues
because it will be under public and government scrutiny on a global scale.

146 XML

Linking Rivals

The astonishing magic of blending these powerful rivals was crafted by the
Chicago consulting company, Diamond Technology Partners (DTP). DTP
turned fierce foes into fast friends by focusing on the bottom line and iron-
ing out the smaller technology problems. The elimination of procurement
paperwork to the tune of tens of billions of dollars makes the cooperation
a no-brainer. Let’s emphasize that point. At no time are we talking about
millions of dollars. All quantities are in billions of dollars, numbers that
command respect in any industry.

In 1999, GM launched TradeXchange in collaboration with
CommerceOne, an e-business company and XML repository. TradeXchange
is best described as an Internet-based parts and components procurement
system. On the other hand, Ford set up an e-business system called
AutoXchange in collaboration with Oracle, to leverage the productivity of
its $83 billion purchasing budget and 30,000 suppliers. Oracle and
CommerceOne are both expected to provide services to the new venture.
Cisco will provide networking products in a quick start kit for the more
than 30,000 suppliers; Cisco’s products will enable immediate for transact-
ing business.

Other automobile manufacturers may eventually participate in the new
alliance. For example, Isuzu Motor Co., Subaru, and Suzuki Motor Corp.
(all GM’s Japanese partners) and Mazda Motor Corp. (Ford’s Japanese
affiliate) are expected to join. France’s Renault SA and its Japanese partner
Nissan Motor Co. Ltd. will also participate.

With a flexible standard like XML, companies may tend to create their
own proprietary standards for an advantage in a competitive war, so the
emergence of two e-business systems raised a question. Would GM and
Ford share their separate TradeXchange and AutoXchange XML formats?
Or would all automobile manufacturers choose to splinter the efforts at uni-
fication and efficiency? The recent announcement is a wise decision and sig-
nificant guidepost on the cooperative path to XML as a universal data
exchange format. Standardization efforts are ongoing in other industries,
but the automobile manufacturers’ effort is the most dramatic to date.

The supply chain enterprise will be a separate company and will be open
to other automobile manufacturers. It may eventually expand to include
other industries. The use of XML as a standard will save money and time
in the hundreds of thousands of procurement transactions in the typical

B2B Exchange 147

supply chain. Some estimates suggest a 90 percent reduction in purchase
order costs. By putting the three big automobile manufacturers on the same
playing field and on the same team, XML has demonstrated that it is ready
for the big leagues and is ready to score big.

This unprecedented cooperation by major representatives of the
Industrial Age—the Automotive Industry—is a significant signpost on the
path to e-business, worldwide. First, by choosing to cooperate rather than
compete, the automobile manufacturers have demonstrated the power of
building a common XML vocabulary and a single supply chain. This exam-
ple provides a beacon to other industries to build a single e-business vocab-
ulary, rather than splinter the efforts. Second, the immensity of the effort,
$300 billion, puts high leverage on related industries to support the auto
industry XML vocabulary as a global standard. If other industries team
with the automobile manufacturers, companies like Microsoft will be pres-
sured to join the consortium. We’ll have an interesting irony. Members of
the “Old Guard” may now pose a threat to a member of the “New,” rather
than the reverse.

How Can I Benefit?

Enlightened companies in the Information Age have realized that coopera-
tion, even with competitors, improves efficiencies, costs, and customer serv-
ice. Other industries, such as chemicals, food ingredients, and power utili-
ties, have already set up exchanges. XML facilitates the ability to share
information and data using a common format. For example, the data on
invoices, bills of material, parts inventories, and other forms can be defined
in a common format across all the vendors. Partners can then read any bill
of materials, and information on the bill of materials can be seamlessly
transferred to other forms, such as invoices and inventories.

It is clear that XML will affect every business, worldwide. If, by 2002,
the number of Web users reaches 330 million and the e-business industry
grows to $100 million, as some experts predict, then the potential and the
opportunities will also grow proportionately. In the next three years, B2B e-
commerce should account for roughly a trillion dollars worth of business.
With a goal of cutting spending on parts procurement by 10 percent, when
aggregated across all industries, the Internet-based XML model has the
potential of saving trillions of dollars in productivity gains.

148 XML

In fact, any company or industry can benefit by following the example of
the carmakers. The aerospace industry is planning to start MyAircraft as a
Web site for supply and inventory management.

The aerospace and defense industry group that includes Lockheed
Martin, Boeing, Raytheon BAE Systems, and CommerceOne (a B2B e-com-
merce solutions leader) plan an independent Web exchange for the global
aerospace and defense industry. This aerospace and defense exchange is sepa-
rate from the MyAircraft exchange and will be based on the CommerceOne
MarketSite Portal Solution. The four aerospace and defense companies
will buy $71 billion in goods and services from 37,000 suppliers using
CommerceOne. Aerospace companies are typically not on the cutting edge
in technology, but then neither are the automobile manufacturers, typically.

The Financial Industries Markup Language is an initiative by J.P. Morgan
and PriceWaterhouseCoopers. This is an effort to unify the data format for
financial data transferred among large corporations.

The Steel Markup Language (SML) is being developed by WebMethods,
Computer Sciences Corporation, and E-Steel Corporation. SML can be used
to simplify data and information transfer across all partners in the steel
industry. E-Steel does business with more than 1,500 companies, including
USX and Dofasco. MetalSite includes Weirton, Bethlehem Steel, LTV, and
Ryerson Tull. MetalSpectrum is an exchange for specialty metal products
among Alcoa, Allegheny Technology, Kaiser Aluminum, North American
Stainless, Olin, Reynolds Aluminum, Thyssen North America, and Vincent
Metal Goods.

Johnson & Johnson, GE Medical System, Baxter International, Abbott
Labs, and Medtronic plan to launch an e-business exchange. Health care
providers could use an Internet exchange to reduce their procurement costs
by 40 percent by reducing paperwork and automating processes.

Sears, Roebuck, & Co. and Carrefour SA have created a retail e-commerce
venture called GlobalNetXchange, which is similar to the auto manufactur-
ers’ agreement. This exchange will represent $80 billion in supply chain busi-
ness and link with 50,000 suppliers, partners, and distributors. In an activity
separate from its support for the auto exchange, Oracle Corp. will also sup-
port this exchange. Wal-Mart, the world’s largest retailer, has no plans to join;
it will continue to use its own e-commerce system for supply chain activities.
However, Sears, the second largest retailer in the United States, and Carrefour,
the second largest retailer in the world, both plan to encourage other retail-

B2B Exchange 149

ers to join the exchange. Perhaps as GlobalNetXchange gains more credi-
bility and grows in number of members, Wal-Mart will also join the team.
Buzzsaw.com is the exchange for the construction industry.

Novopoint.com is a food ingredient B2B site in collaboration with Ariba
and Cargill. Novopoint.com competes with Inc2inc, which was also started
by Ariba. Although these efforts provide greater experience, they can cut
into the competitive advantage of the developer.

According to International Data Corp. (IDC), three types of B2B e-com-
merce exchanges exist. The first is the method of selling through a Web site,
where there are few suppliers and lots of customers. The second is based on
procurement, where there are a few dominant buyers, like with the
automakers’ exchange. An emerging third type will be digital marketplaces;
which will be like farmer’s markets across the Web, in which buyer and sell-
er may come together in one of many marketplaces.

B2B Opportunities

If you work for a company that can exert some clout, consider collabora-
tive efforts. If you are a small cog in a big machine, like the rest of us,
explore various industry B2B e-commerce exchanges and compare what
they offer. Also, look into some of the other exchanges. They are not fads
and they are not going away. They are here to stay. You do not need to
become an expert in XML, but reading a few articles to understand what it
is all about will not hurt. The bottom line is that a little education can result
in dramatic savings in procurement costs. You could be the champion for
B2B e-commerce, the first on your block. More importantly, you could be
the hero the next time your boss asks, “Do you know where we could buy
some . . . ?” or “Budget is tight. Do you know how we could save a few
bucks?” Then you could say, “yes” and save the day.

The implementation of a standardized Web-based B2B exchange for the
supply chain is one of the most dramatic marketplace advances over the
past 10 years. This B2B e-commerce convergence of industry verticals
around a common XML vocabulary substantiates a trend toward
improved procurement efficiencies and costs. Even if GM saves only 5
percent on procurement costs, consider that their costs are on the order
of $138 billion, so 5 percent is more than the R&D budgets of most
corporations.

150 XML

With the wide variety of B2B and other alphabetic choices, what to do?
If you haven’t already joined the local industry B2B, explore it. There are
trade-offs, similar to those of a standalone vs. a mall. If you are a large con-
cern, like Wal-Mart, visibility is not a problem. But smaller companies may
benefit significantly from working in a B2B. The downside is the immediate
competition in the B2B; the upside is the visibility from all the vendors in
one location. The downside is conforming to someone else’s DTDs and
XML vocabulary; the upside is avoiding the cost of development and main-
tenance. The downside is following rules of the B2B; the upside is global
exposure.

In 1995, most companies, including Microsoft, were not interested in the
Web. Five years later, in 2000, Microsoft is a major Web company and
many companies strive to use e-commerce across the Internet. In 1999, few
companies had heard of XML. Microsoft had learned from its previous
experience and jumped on the bandwagon early. By 2005, most of business,
bricks and clicks, will be based on XML and some form of Web-based e-
commerce.

The next few years will result in the greatest changes in the business envi-
ronment on a global scale. The realignment from conventional ways of
doing business to streamlined B2B business models will redefine the concept
that the customer comes first. Rather than demographics, businesses will
look at individual characteristics at the B2B level and at the B2C level.
While researchers explore the impacts, corporations will be running
through different changes faster than scholars can analyze them.

To understand these changes, analysts will look to companies such as
Cisco and Dell and to alliances like Covisint as examples of the evolving
B2B business models. Many manufacturers, like Ford, will transform from
traditional metal benders into B2B-enabled virtual integrators. Each indus-
try has the opportunity to participate in this transformation in a unique
way. The application of these new concepts and fundamental changes will
be driven from above, by a B2B champion and visionary.

How can the existing business fit into an existing B2B exchange? What
kinds of collaborations with partners, vendors, customers, or even com-
petitors might make more economic sense? Is brand name more important
than value added? And are those concepts as important as price or service?
Does it make a difference whether these ideas are explored vertically or
horizontally?

B2B Exchange 151

These are the kinds of strategic questions that the surviving leaders of
tomorrow must ask. The executives who do not ask themselves and their
staff these questions may not survive until tomorrow. Although change is
inevitable, growth is only optional. Clearly, B2B and XML are effecting sig-
nificant change throughout the corporate and e-business environments. The
world is shrinking as the marketplace becomes more global, as it becomes a
level playing field that is equally accessible to large corporations and small
Mom-and-Pop stores.

Consider this scenario. A college freshman buys directly from the manu-
facturers and then builds computers in his dorm room and eventually scales
up to become a billion-dollar company called Dell. Why couldn’t a shrewd
teenager use B2B concepts to become an integrator that builds customized
cars (say, modified Mustangs) and competes indirectly with Ford? Although
Linux does not have the unified business model that Microsoft has, it does
show that a loose federation of programmers can create new operating sys-
tems across the Web. By using appropriate strategies, a coordinated B2B
operation could slice market share from Microsoft. The field is level and it
is wide open.

152 XML

Introduction

Aligning XML strategies with business goals is an absolute necessity. In fact,
many successful companies are already committed to XML and embracing
it with its associated tools. One of the better paths to successful implemen-
tation of XML follows an innovative, value-added, customer-centric XML
strategy. XML is different from HTML format, intent, content, and presen-
tation. The business perspective is more pertinent to building a successful
XML business architecture than it is to developing a technical XML imple-
mentation.

A strategic plan must go beyond the current solutions in order to be suc-
cessful with XML in developing new and imaginative opportunities that can
be brought to market early as competitive advantages. The first step in
implementing an XML strategy requires examining the predominant audi-
ence: the customer.

Customer Focused Strategy

Right up front, the focus of the strategy is not the competition. The goal of
a company is not to beat the competition, but to enhance the customer and
make a good profit. So the first focus of an XML implementation strategy
is the customer—the customer’s requirements, needs, wants, and desires.

153

XML
Strategic

Plan

C H A P T E R 9

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

From the customer’s perspective, XML is like any business innovation.
How will this innovation help the customer to improve his business and to
make a profit? What problems will XML solve, what solutions and options
will it provide, and what value does it add? An XML business strategy must
address these questions for the customer from the beginning, because the
next question is the most important one from the customer’s viewpoint:
“Who has the best strategy and the best value proposition to support an
XML business implementation?” Addressing that question can make or
break an opportunity to win new customers.

Business partners are the next group to focus on. As a new and complex
technology, XML requires collaboration to implement successfully. The
minimal collaboration involves use of industry standard DTDs, schemas,
and document elements. Use of these standards improves capabilities for
data transactions, information exchange, and interoperability. Successful
collaborative business alliances will bring in new competencies and visibili-
ty from new customers, potentially resulting in new business opportunities.

The third area of concentration is the core competency. A core compe-
tency is not what the corporation believes it is best at. A core competency
is a unique competitive advantage as perceived by the marketplace.
Although Ford may believe that it makes the best cars, the marketplace may
favor GM. Ford is one of the largest corporations in the world and one of
the largest automobile manufacturers. But by the definition of a unique
competitive advantage, building cars is not its core competency. Its core
competency may be related to marketing, selling, or distributing cars, but
the Ford cars, themselves, are not a business discriminator. In fact, Ford has
created a new venture called FordDirect to address some of its other busi-
ness areas, such as selling, as opposed to manufacturing, cars. This is the
direction of the critical thinking required to determine a corporation’s core
competency.

A discussion of customer perceptions may be beneficial and prudent in
order to define the corporate core competency because the corporate value
proposition should be built on this definition. And the value proposition is
what the customer is interested in. The customer wants to know: What
value-added capability will an XML strategy provide? Who can best sup-
port or supply these capabilities to help me be more profitable? After these
questions are answered, a company is ready to explore the building blocks
for justifying and creating an XML implementation strategy.

154 XML

Leveraging XML Features

After customer needs have been evaluated and the appropriate questions
have been addressed, the next building block of the XML strategic founda-
tion is to approach the features of XML not as a new technology but as a
new business strategy. The technical approach involves a shallow method of
converting a few Web pages from pure HTML to an XML hybrid without
building a vision of the desired outcome and benefits. It demonstrates tech-
nical skill without business experience.

An XML strategy leverages the deeper business opportunities and value
buried in the innovation. Leveraging XML may involve redefining core
competencies, customer relationships, and business partnerships to mine the
innovation for its mother lode. The most successful companies will uncov-
er many opportunities and will polish a few facets to reveal the most prof-
itable activities for providing the best solutions. They will align their XML
business strategies and their business goals to achieve an early opportunity
to stake their claims.

The best strategy builds on the business objectives. An XML implemen-
tation or migration plan is inserted into the existing business context. This
method provides an existing vision with a direction for implementation and
metrics for success. It is flexible because it starts from a solid foundation.
The strategy should inherit and extend the value propositions and compet-
itive advantages built into the corporate business strategy. XML is not a dif-
ferentiator, but it is an enabler for building better market differentiation.
With a business-based XML strategy in place, a corporation may be able to
leapfrog the competition.

Creating Customer Satisfaction

A successful XML strategy supports the customer; it provides more satis-
faction today than yesterday. It improves communications and offers better
solutions and more convenience than the customer currently receives. The
strategy may include partners, but it provides customer satisfaction and
delight, and goes the extra mile to present a pleasant surprise.

One approach for creating new solutions for the customer is to think like
a customer. XML improves information access. How will this help a specif-
ic customer? How do they use products and services in their day-to-day
activities? How can XML enable superior solutions that result in return cus-

XML Strategic Plan 155

tomers? Working with new business and marketing groups may facilitate
answering these questions. This approach may yield a better definition of
core competencies and value propositions in an XML context from the per-
spective of the customer desires.

As a corporation implements an XML strategy, new business assump-
tions, models, and opportunities emerge. The strategic planner recognizes
these changes as opportunities and leverages them. Some general new out-
comes from XML will include improved data exchange, better access to
global information, and quicker ability to fuse facts from diverse databases.
The strategist can extend these outcomes by exploring how the business will
function with the increased interoperability afforded by XML. A customer-
centric or business-focused conceptual model will guide exploration of
future opportunities. There should be a conscious effort to develop and doc-
ument these new assumptions.

Extending New Opportunities

In this context, new opportunities relate to how potential customers can bene-
fit from an XML implementation. This critical task is supported by the business
and marketing departments. One consideration is the selection of new products
and services supplied to existing customers that would also draw in new cus-
tomers. The Web, the Internet, and XML developments are so unpredictable
that new opportunities may come and go like flashes of a lightning bug.
However, the exploration is critical to discovering viable core competencies.

Discovering Viable Core Competencies

The Web, the Internet, and XML have changed many fundamental business
assumptions. Core competencies gain value from the marketplace. If a com-
petency is a commodity, then something else is needed to provide differen-
tiation and value. In the Information Age, core competencies change as
quickly as business and technology. A corporation’s core competency, from
the customer perspective—the only one of importance—may provide high
value in yesterday’s market place but may be diminished by tomorrow’s new
technology. A good example of this is the slide rule; as soon as calculators
became cheaply available, they supplanted slide rules, which are now
dinosaurs of a distant past. Technology changes competency.

156 XML

A corporation builds core competencies based on changes in technology
and in customer perception, resulting in a competitive differentiation. By
leveraging existing products and services, while fostering XML-enhanced
evolution through a profitable path, corporate managers can push for the
creation of strategic advantages. The customer perspective provides the best
way to understand, create, and exploit competitive advantages.

Rapidly changing external technology and business drivers create a need
for new core competencies. The customer perspective is the foundation to
start from. When the customer sees value in an XML implementation, then
XML will become a new technology that has profit potential. The cus-
tomer’s values come first in coloring the viability of a redefined core com-
petency.

Customer-Motivated Creativity

Customer-motivated creativity does not mean building and selling Texas-
sized trucks just because that is what the customer likes. Customer-moti-
vated creativity means exploring new ideas within existing corporate prod-
ucts and services that provide customer value or that were suggested by the
customer. Improved interoperability provides customer value. Customers
like to exchange information easily and seamlessly. The ability to transfer
data and information more easily is a big selling point for an XML strate-
gy. Each corporation has to translate that concept into the proper context.

XML will solve business challenges and create new opportunities. It can
improve business transactions, data exchange, and information transfer. It
can open up new, global markets. XML may initiate Internet and Web
growth of a multiple language capability based on Unicode capabilities.
Each corporation must explore its individual compromises among technol-
ogy, business, and finance involved in potential business opportunities and
customer-valued solutions.

Many of the e-businesses, like Dell and Cisco, represent a variety of Web-
based business models that are worthwhile exploring and benchmarking.
Successful business models have valuable lessons learned and best practices
that can be enhanced by XML. Customers like new ways to address old
problems.

Customers have problems and they want solutions. They want innovative
solutions, because they have new problems or because the old solutions do not

XML Strategic Plan 157

work as well as desired. With an active, XML strategy, a good innovator can
locate the customer-focused, value-added capabilities of a corporate innovation,
product, or service. A good solution will become a necessity to the customer.

Innovation can become profitable. The 3M model for Post-it Notes
might just as well be, “a novel idea, once tasted, becomes a necessity.”
However, in most cases, novelty wears off. Using XML as a novelty to bring
in customers is not a long-term strategy. Customers will expect something
substantial, or they will quickly vote with their feet and abandon the prod-
uct. The best XML strategy is to plan for an innovative product with a long-
term vision, not a flash in the pan novelty.

Value-Added Response

The customer wants value. An XML implementation that does not provide
value is a waste of resources. The value proposition provides a clear picture
of the corporate plan for leveraging XML to provide value. Customer
expectations, priorities, and needs support the development of the value
proposition. XML issues to consider include cost effectiveness, risk,
improved transaction capabilities, resource reuse, and cost avoidance.

XML-based products and services support multiple information capabil-
ities from a single XML document repository. XML documents can be
extended, by definition, and used by different legacy, current, and future
applications. Standards are a crucial part of an XML strategy that enhance
the cooperation vertically, with partners and vendors within an industry
group, and horizontally across other industries.

The Business Model

From the business perspective, profit puts bread on the table. It is the bot-
tom line. While the big question is how to use XML to provide value to the
customer as part of his long-term objectives, the next question is what busi-
ness model makes an XML strategy viable and provides a reasonable prof-
it. Corporate profit models change over time as the relationship with the
customer changes.

One advantage of XML is the ability to develop easily and modify quick-
ly. XML applications and documents can be reused and repurposed. An
XML implementation that provides value for one customer may provide

158 XML

value to another customer with minor modifications. A general solution can
generate one level of profits, while a customized solution generates signifi-
cantly more profits with minimal marginal costs. A classic example occurs
in the airline industry.

A coach ticket on an airplane may cost only $300, while a first class tick-
et may run more than $1000 on the same aircraft. The difference is cus-
tomer perceptions and customized service. Toyota had a different but relat-
ed strategy. When the top of the line Toyota Lexus was introduced, it cost
in the neighborhood of $50,000. The next level down, Toyota Camry, cost
only $20,000. So what? A luxury car is higher quality and should cost more
than a family car. This was not the case for the Lexus and the Camry. The
Camry was already a proven, high-quality automobile. So, Toyota built the
Lexus on the Camry chassis, and added a few dollars of luxuries to more
than double the cost. The point is that customer perceptions can change the
profit model. XML can help to fulfill these perceptions and expectations in
order to improve the business model.

An XML implementation strategy can consider opportunities to leverage
existing products and provide customized solutions with significant increases
in profits. One opportunity that will emerge is the need to port legacy data to
a more open, XML-based format. Initially, this activity will be very resource
intensive. With time and experience, tools will simplify the process. However,
the opportunity for varying service prices with correspondingly increased
profits is clear. One rate covers a simple port, another rate covers a rapid port,
and a third rate covers migration plans, with additional rates for training and
maintenance. The window for this opportunity is open now, but it may close
within the next five years as corporations update their legacy data.

The Internet provides a new economic environment with many new
opportunities. Traditional profit models may not be the best. XML provides
a significant new twist on a cutting edge technology and encourages exper-
imenting with new profit models. The telephone profit model may serve as
a useful example.

In the 1970s, a long distance telephone call could cost a few dollars per
minute. With competition in the 1990s, service improved dramatically and
cost plummeted to a few cents per minute. With wireless telephones, a serv-
ice contract can be cheaper than a conventional telephone service.

In the 70s, few people made long distance calls. In 2000, the perception
is that few people do not use their cell phones to make long distance calls.

XML Strategic Plan 159

This may be only perception, but the profit model suggests that the volume
of cell phone calls competes with calls made by conventional telephones.
XML and the Internet will provide similar opportunities for the innovative
strategic leader.

Anticipating Change

In the very competitive environment of the Information Age, success is fleet-
ing. Even Microsoft observed that few companies survive as leaders across
technology discontinuities. This observation was near the time that the Web
almost became its downfall. Times change and customers move on.
However, companies can anticipate these changes and build contingencies.

One approach is to consider the customer desires during the process of
creating an XML implementation strategy. The model of this approach
includes customer strategies, goals, and desires. This model can be used
to develop products and services that will delight the customer.
Simultaneously, a feeling for future customer requirements can be extrapo-
lated with a goal toward providing lifetime service. Also, consider if com-
petitors can provide the same service more cheaply or more efficiently.

A traditional business strategy plans for contingencies and competition.
An XML implementation strategy should also consider potential competi-
tion. Potential competition comes from offering new services. New services
can be documented as features that are not cost effective at this time, cus-
tomer desires that were not implemented, and the natural extension of tech-
nology and business trends. Two things that cannot be predicted are the
potential customer who does not yet exist, and the potential competitor
who does not yet exist.

Startups can provide a product or service that is not cost effective for
the originator. The best defense against a startup is to leverage knowledge
about the customer to provide the best relationship and the best service so
that customers do not want to switch. In addition, discussing a migration
strategy to provide new services will help retain customers.

Migration to New Services

An XML migration and implementation strategy begins before the avail-
ability of XML functionality and ends with full XML capability as well as

160 XML

a sustainment and maintenance plan. The gap between the current data and
document architecture and the target XML architecture can be significant.
A gap analysis will reveal different implementation phases for each corpo-
ration, and these phases each represent a migration stage. Three- to six-
month phases, considering the speed of Internet development, are reason-
able intervals for planning. Begin with the target and work backwards. The
multiphase approach allows rapid adaptation and learning with minimal
rework to repair mistakes.

A corporation with a new, innovative XML strategy gains the competi-
tive advantage when it is first to market. The customer does not reward sec-
ond place, and while other companies are waiting for clear standards, the
innovator makes money, builds market shares, and learns from his mistakes.
The sideliners miss the opportunity.

However, the reverse situation should be considered. Jumping in, headfirst,
without a plan or a review of the surroundings can result in a broken neck.
XML innovators know themselves, the customers, and the marketplace. They
have mapped out potential pitfalls and possible strategies for when they slip
up; they have built customer loyalty and worked on a long-term strategy to
gain customer trust and partnerships; and they understand that the journey of
one thousand relationships begins with the first customer.

Each step along this journey leads to the fulfillment of the final goal. At
the end of each step, each stage of the strategy, is a measuring process to
review assumptions and goals. Modifications are made as needed. And
many changes will be needed during an XML implementation. All Internet
technologies are changing, and XML is still in flux. While change is
inevitable, aim for growth. With a carefully planned strategy, each stage
grows closer to the goal. Checkpoints along the way allow for assessment
and risk management. Small stages provide a flexible plan that parallels
XML advances and allows for the desired growth.

An outline of business, marketing, and technology objectives for each
phase must be created in order to design a multiphased XML implementa-
tion. Implementation stages should be aligned with business strategy such
as assumptions, core competencies, and profit models. Define milestones,
achievements, and lessons to be learned for each stage. Plan to document
best practices, also.

These steps are fundamentally the same as the steps for creating a busi-
ness strategy for any innovation. However, many businessmen, especially

XML Strategic Plan 161

those who are technically minded, do not always take the time to put good
business practices into place. Strategic planning is not a fun exercise, but a
long-term strategy can save many sleepless nights and telephone calls about
unexpected emergencies.

Reviewing and updating the strategic plan, maintaining contact with the
customers, and communicating progress and goals is a continuous process.
In most projects, better communications about the goals and progress result
in a greater probability of a successful implementation.

The Plan

The plan for incorporating XML into your company includes three phases,
which represent the standard design, development, and implementation life-
cycle. These phases are also the steps used to define an IT architecture using
a conceptual model, a logical model, and a physical model. Consultants
tend to be so familiar with this textbook approach that they will try to get
a head start by establishing the requirements and the scope in the first meet-
ing with the client. They may even have a partial logical model developed
before the initial meeting is complete. The hardest part is the discipline
needed to gather the requirements, to stay on track, and to limit the scope.

Phase One

Determine the activity for which you want to build an XML solution. For
example, do you want to improve some paperwork, make a business
process more efficient, or participate in a B2B exchange? Focus on the spe-
cific process that you want to tackle, and then define the scope of the activ-
ity. If you want to improve a process in the finance department, don’t get
sidetracked by processes in the purchasing department. If you are interest-
ed in a B2B exchange for procurement, then you may not want to confuse
things by building a Web site for marketing and selling your products.

Concentrating on one well-defined activity is critical for avoiding scope
creep and for improving the chances of a successful implementation. Before
even thinking about a technical solution, gather a well-bounded set of clearly
defined requirements for the specific activity. This way, resources will not be
spread out too thinly, and establishing crisp, achievable milestones is easier.

One method for approaching the first step is to look at the activities as a
single business process. Define the initiation and fulfillment steps of the

162 XML

business process to ascertain an unclouded vision of the task at hand.
Determine what you want to do to this process, build it, facilitate it, or
automate it. As these concepts begin to jell, it is easier to define concrete
goals and objectives to shoot for.

Draw a rough flow of the steps needed to go from the current situation
to the target goal or solution. Gather as many requirements as feasible to
portray the situation. Don’t worry about being exhaustive, but fill in as
many details and steps as possible.

Describe the problem, situation, or opportunity that you are trying to
address by using a one-sentence description. This vision statement serves to
crystallize the project both in your mind and in the minds of the team mem-
bers. This sentence should state the problem as completely as possible with-
out spilling over into the solution or technology. Many technology workers
tend to think in terms of solutions, not in terms of problem statements;
therefore, simply sticking with the problem takes considerable self-disci-
pline. Addressing the solution first may work for small tasks that you can
easily get your hands around; however, for more substantial projects, the
problem statement is a good first step. The problem statement separates the
technology from the solution and demonstrates an ability to think like a
businessperson as well as like a technologist. While the problem statement
presents the business case for the solution, the implementation is the tech-
nical method used for satisfying the business case. When creating the prob-
lem statement, consider how it can be linked to a corporate strategic objec-
tive or how it impacts the bottom line. Both of these are excellent business
reasons for addressing any problem.

Phase Two

Building on what is already known, or already in place, use the conceptual
model as a guide for writing down the steps needed to develop and imple-
ment the solution, based on the difference between the current state and the
future solution. At this point, all you are doing is writing down the words
that describe the flow of steps defined in step one. As you write it down, try
to define known gaps. You can address some of the gaps, but you do not
have to solve all of them at this step. But the more gaps that you identify at
this step, the fewer surprises you will have at the implementation step. If
you have made a solid effort to gather a complete requirements set, identi-
fying the gaps will be much easier.

XML Strategic Plan 163

Describe the process flow that represents the problem with words in
addition to the pictures. Document today’s approach and situation by
gathering process flow information from the people who do the actual
work; do not just use the idealized procedures that may be documented as
a corporate process. Although they may know the documented proce-
dures, effective workers, including the CEO, usually find a more efficient
process for doing their jobs, and then never get around to documenting
their better approaches. So you can be the one who documents these bet-
ter approaches. For each process, start with the initial requests or inputs
and then follow the tasks in the process until the final outputs are gener-
ated.

At this stage, continue the focus on the business processes, not the under-
lying technology. Detailed models and data element types can come at the
next stage. Only work on a narrative that indicates the flow of information
and the various interfaces where information changes hands. An interface
may be as sophisticated at a document management system or as simple as
throwing a piece of paper over the wall to the next cubical.

Information is contained in some document. Identify the document as
well as the responsible party for that document. Try to break the process
down into unique steps. For each step in the process, explain what the
inputs and outputs are, who processes the document information, and
where its destination is. But stay at the general level rather than getting
buried down in the details. Implementing an XML solution for a general
process is much easier than doing so for a single specific activity.

Sequence the process tasks based on the original narrative. Identify spe-
cific tasks as events that depict the flow of information at any instant in
time. The sequence of events should illustrate a logical flow of information
that combines into a logical sequence of process tasks. At each event, an
interface, either real or virtual, allows information to flow from one task to
another task. Again, an interface may be as simple as a document or as com-
plex as a transcoding system from one platform to another. However, defer
technical details for physical or implementation phases.

At this stage, simply list all events in the right sequence. When they
occur is important to the business. How they are implemented or any tech-
nical details are not yet pertinent. For example, in a B2B procurement
exchange, the EDI transaction or the XML implementation is not yet
important at this stage. What is important is that a department needs an

164 XML

item, it requests a purchase, a bid goes out to vendors, a winner is select-
ed based on some criteria, the order is placed, the item received, and the
department request is fulfilled. Those steps and the detailed events are
what are recorded at this stage.

Although prototyping a solution may be possible, the results cannot be
measured or managed with any fidelity. In addition, maintaining or extend-
ing a prototyped system is difficult if the complete set of requirements is
missing from the very beginning. This process can be tedious, but it saves
time and money in the long term by avoiding rework and inefficient restarts.
When this step is completed, call this the logical model of the proposed
solution.

Phase Three

Begin the implementation process.
Avoid any tendency to skip steps or go directly from design to imple-

mentation. Don’t try to implement without detailed requirements and
design phases! Implementation of an XML solution is sufficiently new that
skipping steps could be disastrous. This lifecycle has been proven time and
time again over many years to prove the structure needed for implementing
a new technology. Skipping steps can eventually result in missing something
or overlooking important gaps in the requirements.

Now is the time to build a model of the process flow. Start with a simple
high-level view that can be presented to upper management. A high-level
flow chart that fits on one slide is ideal. Crucial, business-critical details can
be discussed on subsequent slides. Again, resist the impulse to jump to the
solution, focus only on the current state and on the requirements of the sit-
uation. Include business partners, vendors, and customers, as germane to
the situation.

The result of this step will be a picture of the target to shoot for, includ-
ing all major roles, documents, information flows, and interfaces. Apply the
narrative to this step to provide a sanity check that identifies any gaps and
helps to streamline process and document flows.

After the events are documented, enlist the appropriate stakeholders to
test and debug the entire process to identify gaps and to suggest additions.
When the process model is complete, you are ready to implement the XML
applications at the correct components in the process model. At this point,
create a formal program management plan for implementation.

XML Strategic Plan 165

If you completed the phases 1 and 2 as described, then you have sketched
out what is needed for an XML document architecture for the project. The
events and interfaces can be represented by one or more XML documents.
The information is represented as data element types within the document,
with some negotiation as information is transferred from one stakeholder to
another. The developer will define these types in the project DTDs or
schemas. There are many good books coming out on the market that
explain the programming details needed to create a good DTD. Or you may
want to use some of the existing DTDs in your own industry. The latter
approach will save time and trouble in the long run.

All milestones, activities, tasks, and events have been sequenced and can
now be placed in a project schedule. The schedule should be reviewed for
timelines and critical path to obtain reasonable durations. With minimal
knowledge of the details of XML, a good program manager can build this
plan.

XML Vocabulary Development

Building an XML document design architecture is a good start for any
XML-based e-business solution. The basic steps are similar to those used in
designing a database, since an XML document is a type of database. Like a
database, an XML document can be used for a variety of data in a variety
of industries. The auto industry, chemical industry, and steel industries all
have their own brand of XML vocabularies.

Use an existing vocabulary if it will meet your needs, but, if you can’t get
a good fit, build your own customized vocabularies. Or, as with EDI, you
may be able to use various tools and transformations to achieve the desired
result.

Where does XML fit as a solution in your specific corporation? The sim-
ple answer is XML belongs wherever there are information transactions.
But you may only want to convert a portion of your data to XML format.
For example, some data may work just fine in the existing databases. And
you can use XML and XSLT to convert data to present on other devices,
such as cell phones and the wireless markup language, or speech processing
and VoiceML.

For any application, the developer will have to determine the information
flow process to determine if and where an XML solution is a best fit. For

166 XML

example, data might be extracted from a product data manager database
and converted into XML documents to work with EDI, B2B, or multiple
devices. After deciding on the tasks for XML, the developer can create the
appropriate DTDs and style sheets.

The maturity of the project will be a driver in the XML development
plan. A new project does not require transformations from legacy systems,
but it does require a definition of the proposed applications. In contrast, an
existing project will have some legacy baggage for XML to deal with. The
more accommodation that XML development will require, the slower the
implementation.

Data in a relational database is fairly straightforward to deal with. In fact,
many database vendors provide tools to support XML. So, it is useful to con-
sider XML support when reviewing databases and applications for use on a
specific project. The difference between support and no support for XML, as
well as the extent of the support, can mean the difference between hours and
weeks for development of an information and data transfer solution.

An interesting paradox is legacy Web page conversion. The Web pages
created in the early days of the Web do not conform to XML specifications.
While tools are emerging to convert from HTML to XHTML, the process
still requires a little manual tweaking. Each conversion will have to be
decided on a case by case basis as to whether to devote the resources now
or to wait.

E-Business Decisions

As you begin your journey into the e-business arena, you need to prepare
a foundation for guiding the company through new territory. Although
most Internet activities have profit potential, any new venture can fail
when not managed. Therefore, make sure that any department or company
that engages in e-business also has financial accountability for its efforts.

In addition, continue to assess and measure various e-business initiatives
to learn from failures and to extract best practices from successes. The idea
of failing quickly cannot be overemphasized. Assume success, but plan for
failure, then learn, regroup, and try again.

The new paradigm for e-business is collaboration and relationships.
Collaboration with partners, collaboration with vendors, collaboration
with customers, and even collaboration with competitors. These collabora-

XML Strategic Plan 167

tions should bring new opportunities to the relationship that are profitable
or at least beneficial for all parties. Partnering and collaboration imply
equal sharing of benefits. Determine if a collaboration, and what type of
collaboration, would benefit your company.

There are different types of collaborations. Procurement collaborations,
like Covisint, benefit the major partners, but do not detract from the com-
petitive environment. Collaborators agree on certain standards in the sup-
ply chain, but how these standards are leveraged within the corporation is
up to each company. Any way that companies can collaborate and make
profits is possible.

Strategic collaborations allow a group of companies to gain a larger
foothold in a marketplace. These alliances can lead to dominance in the
marketplace, raising the red flag of monopoly to the government. The U.S.
government was exploring Covisint because this B2B exchange had the
potential to practice monopolistic practices among the suppliers. Without
Covisint, suppliers have at least three automobile manufactures to sell to.
With Covisint, there is only one marketplace, so vendors have no recourse
if they do not like the conditions of the market.

In the mid-1990s, Texas Instruments (TI) used a term called cocon-
struction of innovation. This was a collaboration with customers to devel-
op specific functions in a TI calculator, based on suggestions. When cus-
tomers agreed on a set of functions, TI would implement them. This
process helped both parties, because the customers got the functions that
were important to them. Also, it was important to TI because the cus-
tomized calculators had a ready market of consumers to purchase them.
The calculators were general enough that a larger population was also
interested in the new functions. But the point was that the collaboration
benefited both parties.

Outline of an Example XML Document
Implementation Plan

Figure 9.1 outlines an example of the 10 steps used to build an XML doc-
ument; these steps are neither mandatory nor comprehensive. They provide
a guide for requirements, analysis, and implementation needed for applying
XML to a small, trade study type of activity.

168 XML

FIGURE 9.1 Outline of an example XML Document Implementation Plan.

Step 1: Data Model

XML is all about data, so the most logical first step is to construct a data
model of the project. A process map of the data flow would also be handy.
The data model provides the guidance needed to create the data elements
that are used to define the tags in the XML documents.

Step 2: Data Elements

The data model provides a list of data types used in the project. The data
types have interrelationships that can be represented as a hierarchy. Some data
types may be combined with others to form a more general data type. Perform
the analysis to address these issues. Then create a set of XML data element
types that correspond to the project data types from the data model.

Step 3: Draft DTDs

Use the data element types to draft a set of DTDs or schemas. It is outside
of the scope of this book to describe the details of programming DTDs or
schemas, but there are plenty of excellent books for the interested develop-
er. The draft DTD will be a model to use when investigating industry DTDs.

Apply Parser
or Processor

Data
Model

Data
Elements

Apply DOM
or SAX

Apply XSL
Style Sheet
to Document

Apply
Browser or
Application

Create DTDs
and Build
Documents

Draft DTDs

Negotiate
and
Normalize
with
Industry
DTD
Standards

For example,
“first” &
“first name”
normalize to
“first_name”

Continue
Learning and
Grow Smarter
about XML

Use XLink to
Connect to
other
Documents

XML Strategic Plan 169

Step 4: Negotiate Industry DTDs

One of the major goals of XML is interoperability, so explore existing stan-
dards before building new ones. Compare the draft DTD to existing indus-
try DTDs and schemas and attempt to modify the draft to match the indus-
try standards. It is terrific if industry standards will fit the project, but be
prepared for a combined solution that uses industry parts and draft parts.
Then create the final DTD or schema.

Step 5: Create DTDs

This step is essentially the same as Step 3. This time, the DTD or schema is
a combination of existing standards and generated DTDs. After they have
been integrated, build a test XML document and validate it. For more infor-
mation about DTDs, see Chapter 2.

Step 6: Apply Parser

The way to validate the XML document is to run it through a parser. The
parser will either generate a hierarchy or an error. After all errors are
debugged, the XML document will parse with no problems and will be val-
idated in relation to the DTD. A valid XML document is ready for use.

Step 7: Apply DOM

Steps 7, 8, and 9 are closely woven details for using an XML document. It
is not necessary to use all steps or even use them in order. However, each
step provides useful experience. The output of a DOM is a hierarchy that is
useful for other applications that locate data and relationships within the
XML document.

Step 8: Apply XSL

XSL and XSLT can be used to modify the presentation or format of the doc-
ument. Like writing DTDs, writing XSL scripts requires the talents of a
developer. However, example scripts are always popping up all over the
Web. The XML Web sites at Microsoft and IBM have a set of interesting
samples that may be useful for this step. Review the information about XSL
and XSLT in Chapter 4.

Step 9: Apply Application

This step is unique to the business. The application can be inventory track-
ing, database manipulation, or spreadsheet analysis, etc. This step is impor-

170 XML

tant for gaining experience with the capabilities of XML. Database access is
a good candidate application to explore because databases are a core part
of business data repositories and e-business capabilities.

Step 10: Distribute by Using XLink

This step is wishful thinking. At the time of this writing, XLink is about to be
released as a standard. The general information is available, but specific
implementations are hard to come by. If anyone has them, then Microsoft will
have released a beta MSXML in order to incorporate the XLink standard into
Internet Explorer 5.x. IBM and Intel may also have information when it is
available. More information about XLink is available in Chapter 5.

A developer who has gone through all of these steps has accomplished a
great deal. Congratulate that developer, or yourself, if that is the case, and
have a celebratory lunch! Finally, relax for a few minutes and learn more
about the new developments in XML that have been released since the
beginning of your project.

XML Strategic Plan 171

Introduction

An important part of an XML strategic implementation is an understanding
of the hype and myths, as well as an analysis of the business concerns and
risks. The first concern is the strategic business risk to implementation that
may be specific to each corporation. The second concern relates to the
unique aspects of XML, its myths, its hype, and its developments. The sep-
aration of these two concerns is artificial because they overlap, but this is
the simplest method to present the ideas.

Many issues may block the success of an XML implementation strategy.
If these issues are anticipated, managed, and addressed, the business oppor-
tunities and the chances for success will improve dramatically.

Move Quickly

Take steps to draft the XML strategy and to implement it quickly.
Competitors following a similar approach may snatch up potential cus-
tomers. A fast response to customer requests for innovation will capture
market share. Inability to respond quickly can result in customers lost to
competitors. A corporation that is structured to respond quickly to cus-
tomer requests will be able to exploit the opportunities that XML presents.
To be competitive, an executive needs to encourage a dynamic and innova-
tive working environment, while discouraging bureaucracy and political

172

C H A P T E R 1 0

Concerns,
Myths, and

Hype

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

posturing. The engineers must understand the business, the businessmen
must understand the technology, and both groups must communicate freely.

Educate the Executives

Until they are educated about the benefits, executives pose a risk to the
changes and new operating models introduced by an XML implementation.
Change is scary. Executives like the status quo. But as the world accelerates
to embrace XML technology, if a corporation does what it has always done,
it could lose what it already has. The improved interoperability afforded by
XML facilitates alliances. Alliances with partners to fill a gap, alliances with
customers who value the complete picture, alliances with vendors who rec-
ognize prosperity, and even alliances with competitors who do not want to
be left behind. XML will drive new ways of doing business and new oper-
ating models.

Conventional thinking leads to an inertial barrier that blocks innovation,
agility, and versatility. The best approach for overcoming resistance is to
embrace the goals of the corporation and wrap them in the new profit
model based on the concrete potential of XML. XML is not a new fad; it
will soon be the cost of doing business, just like the telephone, FAX, and
Internet. A solid XML implementation strategy that addresses concerns and
risks before they arise will go a long way toward allaying most fears and
resistance.

Avoid the Wait-and-See Approach

The conventional business model is usually built on a conservative
approach, which worked fine in the Industrial Age. But in the Information
Age, a wait-and-see attitude can be fatal. Champions of the Industrial Age,
Ford and GM recognize the potential and are moving forward to embrace
the XML-based B2B opportunities. Champions of the Information Age
must be pioneers who create new business models and anticipate new
opportunities. Being the first company in an industry to offer XML-based
services entails some risk, but it also strengthens the leadership position,
when preceded with a strong XML implementation strategy. Another
advantage of being first to market is that it puts the competition in the posi-
tion of having to be reactive and play catch-up.

Concerns, Myths, and Hype 173

Best Foot Forward

The flip side of being first to market is the potential for making the first very
public mistakes. Exhaustive testing in a separate staging area can reduce
some of the problems that may arise with new XML applications.
Customers may not return after a bad first impression, so quality is an
important concern.

Changing Standards

As the business world accelerates, XML tools are released before the stan-
dards are finalized. The risk is that the tools will not be compatible with the
final standard and will thus result in a dead end. The opportunity is that the
tools will be adequate and adaptable to the standards and will thus provide
a leap ahead of the more conservative competition. This situation, which
changes every 12 to 18 months, is now considered the cost of doing busi-
ness with technology. If change is expected and planned for, then this risk
can be managed.

Despite good planning, corporations may be hesitant about accepting
XML DTDs for a given industry or application because of changing stan-
dards. XSL comes to the rescue. XSL allows a company to map its internal
standards to the industry standards at the time. As industry standards
change, the company can remap its internal standards with minimal dis-
ruption. This is a significant change in the software industry, where reports
of vaporware would have a major impact on a company’s IT strategies. XSL
allows a company to include change as a normal part of its strategic plan.

Security Concerns

Information security is always a concern when sharing information outside
the company. The risk can come from intentional corporate espionage and
competitive intelligence, or it can come from unintentional laxness on the
part of the partners. Security risks are part of doing business and the risks
can never be fully mitigated. However, the risks can be managed and
reduced. Although XML documents are meant to use open standards, XML
processors can be designed to provide some level of security. Security con-
sultants can provide suggestions or create an entire security architecture.
Although security is a growing issue, corporations do pay sufficient heed.

174 XML

However, if customers do not trust the level of security, they will hesitate to
do business.

Security is still a big question mark with XML. While LDAP and PKI
may help with these issues, resource sharing and document management
provide a new wrinkle to “eyes only.” Today, if I have a Web page and I
don’t want someone to see information on the page, then I can comment it
out and the browser will ignore it. However, many users can look at the
source if they want to see all of the information.

The same issue is being explored with XML. Although the browser and
XSL will segment control, a clever user can still look at the original XML
document data. In other words, don’t send the entire set of department
salaries in one XML and expect the employee to look at only his with the
accompanying XSL style sheet. A little curiosity can go a long way. But
these issues are being explored.

Legal Issues

The Web opened up many legal issues regarding copyright laws and free-
dom of speech. XML promises to raise these issues to new heights because
the definition of a document will change drastically. If the user downloads
a document that is composed of components from four other documents
that reside in globally dispersed databases, which laws govern the legalities?
Questions of international law come to the forefront. Strict legal issues in
one country are nonissues in another country. Customers or foreign gov-
ernments may object (or worse) to the potentials for XML content. Legal
issues will remain a significant risk as governments and businesses negoti-
ate on the laws.

Financial Planning

Initial XML development efforts will depend on the size of the application
or the number of documents to convert. As a general rule of thumb, the first
project will take at least two and a half times longer than originally esti-
mated. XML development is most like building a data model. However,
today’s data models are built by systems analysts or systems engineers who
do not have enterprise data modeling expertise. What is needed is a dying
breed called data analysts. Data analysts used to be responsible for coordi-

Concerns, Myths, and Hype 175

nating the data needs for an entire corporation. That is the type of expert-
ise required for the first few corporate XML conversions. Otherwise, man-
age the risk by multiplying estimates by 2.5.

Adequate Infrastructure

XML documents will require significant bandwidth to fulfill much of their
capability. As quickly as the Internet is growing, the demand for bandwidth
is outpacing it. When modems provided 300 baud, users were happy with a
line at a time. Today, with T1 lines running 1 Mbps, users want even more
bandwidth. The risk is that a corporation will not have sufficient bandwidth
to keep up with customer demands on XML resources. One approach for
managing this risk is to build a technical architecture migration strategy,
which grows as the business demands increase.

Interoperability Concerns

There is a significant desire among information technology workers to have
standard file formats for sharing data and documents across applications.
Most people who have used a computer have run into the problem of trans-
ferring information from one application to another. In the early 1980s,
people had problems sharing data between IBM mainframe computers and
other computers because of IBM incompatibilities with ASCII characters. In
the early 1990s, people had problems sharing information between Apple
Macintosh computers and IBM-compatible PCs because of different file for-
mats. WordPerfect and Microsoft Word had incompatibilities. And even
Microsoft Office 97 was not completely compatible with Microsoft Office
95 because of file format inconsistencies.

Unfortunately, XML may not solve the problem. Although XML is an
open standard for creating interchangeable file formats and documents, the
DTDs also have to be open standards. Just as Microsoft created its own ver-
sion of HTML and extensions for Web pages, other companies could create
similar proprietary DTDs that are optimized for their applications. In fact,
optimization from proprietary DTDs is a possible strategy for a competitive
advantage in the B2B market. Use of proprietary objects and standard tags
will add functionality available only to members of a specific B2B exchange.
This defeats the idea of open standards. Why is this bad?

176 XML

In a pure capitalist society, proprietary standards provide a corporation
or an industry with a competitive advantage. On a limited scale, this results
in a healthy market and competitive business practices. However, a large
B2B exchange may be in a different category. If it holds a monopoly posi-
tion over their industry, it can set standards for the worldwide market. That
would not be bad, if it publishes the standards so that all documents and
file formats could be interchanged. Everyone wants a single common stan-
dard. The risk is that large B2B efforts, as well as smaller companies, will
splinter the XML standards. Splintering the XML standards will effectively
defeat the purpose of XML. That is the risk.

However, the problem will not likely get out of hand. Considerable glob-
al pressure exists to create a set of open standards based on XML. The
momentum is significant. If any B2B effort attempts to corner and close the
open standards, peer pressure from the corporate and user communities or
legal action from government agencies will block these attempts. Although
B2B e-commerce is big and growing quickly, the Internet is bigger and
growing even more quickly. Although this issue may be overreacting, it does
address a real risk.

Transforming HTML

HTML developers can quickly develop a Web page, and Web browsers are
forgiving of sloppy or unplanned development. However, XML requires care-
ful planning. HTML programmers may not like the initial analysis required
to generate a DTD. Creating a corporate data model is tedious and time con-
suming. Poor planning will result in miscommunication and loss of data
through incompatible applications. Isolated DTD development, in relation to
industry standards, can result in lost time and opportunities. The migration
to XML can thus result in dramatic growing pains for a corporation.

Designers and developers must analyze corporate needs and build mod-
els of the data element to map to a set of XML DTDs. These corporate
DTDs are compared to industry standards and normalized to enhance infor-
mation sharing. Omission of any step can undermine a carefully conceived
XML implementation strategy.

By making DTD development compatible with other companies, ven-
dors, and partners, a corporation will benefit through smooth data transfer.
Negotiations and work arounds will have to be made to accommodate the

Concerns, Myths, and Hype 177

greater good, but the improvements in electronic data exchange will provide
long-term benefits.

Unstable DTD Standards

Because industry acceptance of XML has been so rapid, standards have not
yet been solidified. The definitions of DTDs and schemas remain in flux.
Many different standards groups have created their own sets of DTDs but
with no clear effort to create a single global core set of DTDs for all devel-
opers to draw upon. This crack in the flexible armor of XML presents a risk
to future development efforts.

Corporations may take a “not invented here” approach to develop their
own sets of DTDs, without regard for the resulting fragmented standards
and lost interoperability. Uncoordinated efforts to design DTDs and
schemas, with no intent for collaboration, will produce incompatible
results. Even with collaboration within an industry, different industries may
develop DTDs that are incompatible with other industries. For example, the
chemical industry may create a set of useful DTDs that are not compatible
with DTDs from the automobile industry. However, clearly the two indus-
tries will want to communicate and share data. XML development portends
a risk of communication bottlenecks, the exact reverse of its original intent.

Even One Can Make a Difference

A risk is posed from even one industry trying to set up DTD standards in
isolation, because suppliers and vendors will use the same DTDs. Without
collaboration and forethought, a clear solution is not obvious.
Collaboration among the powerhouses from industry such as IBM,
Microsoft, General Motors, AT&T, and Wal-Mart may be a possible way to
address this risk.

As XML standards evolve, proprietary DTDs will provide a competitive
advantage. One company, like Microsoft, would need a significant incentive
to continue to play fair. There is a risk that immediate profit and market
pressure could outweigh long-term interoperability and peer pressure. Is it
more important to facilitate the general exchange of information or to pro-
mote a competitive advantage? Each company will have to make that deci-
sion and live with the consequences.

178 XML

Sloppy HTML Coders

One of the advantages of HTML was that it was forgiving of sloppy or
unplanned development. XML does not forgive sloppy planning. This can
be seen as an advantage or a disadvantage. A well-planned corporate data
model implemented in a set of XML DTDs will provide dramatic increases
in interoperability, communications, and data sharing. Poor planning can
result in miscommunications and loss of data through incompatible appli-
cations. Someone once said, “Computers are powerful tools for making
more errors, more quickly, and more precisely.” That statement refers just
as easily to XML.

Designers and developers must carefully analyze their needs so that XML
is applied appropriately. A developer can build models of the legacy data
structures and map data models to a set of XML data elements. The XML
data elements are collected into a set of DTDs that can be used to build a
well-defined tree structure for each document.

However, DTD development should not occur in a vacuum. If a corpo-
ration tries to develop its own applications and DTDs, it may find that its
development is incompatible with other companies, vendors, and partners.
Developers can avoid incompatibilities and “standards wars” by learning
about the various industry standard DTDs.

The main advantage of XML will be for sharing data, so all companies
will benefit by using the same standards. Compromises can be made to
ensure widespread and future interoperability. These compromises may
make XML documents larger or less fine-tuned than other solutions, but the
increase in data sharing will be more than worth the trade-off.

Industry Standards

Companies and industry leaders are collaborating to develop standardized
DTDs to share information and to automate business processes. For exam-
ple, if Ford, GM, and DaimlerChrysler agree on a standard B2B e-commerce
DTD with a set of rules for their procurement needs, then they could ensure
that their partners, vendors, and customers could write compatible applica-
tions. The interoperability that XML promises will become a reality as more
and more companies develop industry-specific DTDs.

The focus across vertical industries such as electronics has been to define
specific DTDs so businesses can exchange data. Business-to-business e-com-

Concerns, Myths, and Hype 179

merce and document management are among the areas that will benefit
from the adoption of standardized sets of XML tags. Once interested par-
ties collaborate on a set of XML tags and a corresponding DTD for a given
industry and application, they can seamlessly exchange data encoded with
those tags. As each company or industry decides on a level of detail for its
DTD and document structure, other companies can build on top of the stan-
dards and ignore details as appropriate.

Companies should keep watch of the many industry standards efforts
to help define consistent XML DTDs and data elements. Some of these
standards groups can be found at www.accord.com, www.xmledi.com,
and www.openapplicationsgroup.com. Commerce XML Resources at
www.cXML.org is one such registry for order processing and catalogs, and it
is growing in support.

Bowstreet Software at www.bowstreet.com has deals with IBM,
Microsoft, and Novell to store XML meta-data by using a Lightweight
Directory Access Protocol (LDAP) technology. Microsoft, IBM, and Sun
Microsystems are all working on strategies for leveraging XML to improve
the portability and interoperability of data and information.

Splintering

Industry acceptance of XML has been faster than HTML and even faster
than Java because everyone has data—too much data—and no one knows
what to do with it. So business people are trying to discover what XML
means for their data. Executives, managers, and developers attend XML
conferences trying to learn what it is, and, more importantly, what it is not.

The strength of XML, its flexibility, is also its weakness. Because any
group can create its own standard DTDs, there is the tendency to take the
“not invented here” approach, which results in many fragmented standards
that decrease, rather than enhance, information sharing and interoperabili-
ty. Two uncoordinated efforts to design DTDs and schemas will produce
incompatible results. Also, different industries may develop industry-specif-
ic DTDs that are not compatible with other industries. For example, the
auto industry may create a set of useful DTDs that are not compatible with
DTDs from the retail industry.

However, if industries set up and follow common standards, a dramatic
step in the right direction will be made. But even one industry cannot set up

180 XML

a standard in isolation because suppliers and vendors will also use the stan-
dard. Some universal standard will be needed as a foundation for industry-
strength development.

Parallel development of XML may provide a strong evolutionary envi-
ronment. Standards will facilitate the general exchange of information,
while proprietary DTDs will provide a competitive advantage. And all
companies would like to create their own set of standards. So, trade-offs
will occur as XML standards evolve. In fact, entire nations may be
involved.

International Trade Agreements

Nations may negotiate new trade agreements to support XML-based inter-
national commerce. The same functionality that facilitates sharing of data
may encourage exchanging personal data about consumers. While the
release of personal buying habits may be considered only an annoyance in
the United States, European government privacy laws are less provincial
and more strongly enforced. Rather than violate these laws, European cor-
porations might not participate in some of the XML standards and oppor-
tunities. Without an international agreement that protects consumer priva-
cy, a clear solution is not apparent.

Overreaction?

XML will change the face of the Web; the Web of tomorrow may not resem-
ble the Web of today. Just as the Internet of 1990 is nothing like the Internet
of 2000, the XML-based Web of 2004 will have a richer array of functions
than the Web of 2001. Why is this a risk?

Most Web sites are based on the static technology of HTML. However,
with XML, users may shun a static site in the same way that they avoid a
slowly downloading site today. This implies that the millions of HTML Web
sites will have to be converted to the more dynamic XHTML in some way.
Those sites that are not converted will either contain useful, standalone text
that remains in some dead-end Web alley, or will simply be deleted from
existence.

The impact of this transition is that corporations will prepare new Web
pages using well-structured content, written in XHTML, or some other

Concerns, Myths, and Hype 181

XML dialect. A smooth transition strategy will be the least disruptive to
most corporate plans. This strategy should include an XML document
design architecture that anticipates reuse and repurposing of information
and content by segmenting text into useful components. Information that
is presliced into bite-sized components will be the easiest to digest and to
incorporate into the overall XML-based Web infrastructure over the long
haul.

XML’s omnimorphic capability can be a curse to developers who try to
force fit it into less flexible technologies. For example, many of the current
Internet protocols and applications cannot handle scalable and device inde-
pendent graphics files that are written in text. How does a server handle
information that is portable across speech processing, Braille, and graphics?
XML can handle some of these technologies today, but the Web infrastruc-
ture cannot yet keep up. To fully exploit XML’s potential, changes to the
infrastructure will have to occur.

With a full-blown peer-to-peer communications protocol, such as pro-
posed by Intel, what does a company do with its servers? How does it redi-
rect its WAN/LAN bandwidth? Although the infrastructure for XML is
there already, the new capabilities may require a new mindset, just like
starting out with the first corporate intranet.

Semantic Web

For the past few years, Tim Berners-Lee, the inventor of HTML and the
World Wide Web, has been describing the Semantic Web that leverages the
capabilities of HTML. XML may have blindsided some of those develop-
ment efforts. In fact, any intensive development efforts, such as the new
efforts to build corporate or personal portals, may have to be redirected to
implement these ideas using XML. In the long run, XML is an enabling
technology. But any changes in plans can make those plans slip to the right,
extending the apparent schedule.

As XML becomes more widely accepted and adopted, an XML project
should be faster than the equivalent HTML/Java development. But if a proj-
ect is making progress, do you change horses in midstream with the poten-
tial for slipping, even if the horse is faster in the long run? XML presents
that dilemma.

182 XML

Start Over?

One thing is clear. We are not going to scrap the Internet and the Web and
create an entirely new infrastructure for XML. When gopher arrived, noth-
ing changed on the original Internet. Gopher was added on top. The same
was true with HTML and the Web. And the same is true with XML and its
various vocabularies. The existing standards and protocols are proven, they
are debugged, and they work. WAP will not replace HTML, XHTML, and
XML; it will sit on top or on the side. We do not want to take the risk of
fixing something that is not broken.

What about all the different vocabularies and dialects that B2B is propa-
gating? The last count was quickly approaching 600 different DTDs and
schemas. Capitalism may come to save the day. One of the nice things about
capitalism is that it is politically blind. It works on simple economic con-
tingencies. It does not care about political dogma. Therefore, any industry
that wants to participate in B2B e-business will have to conform to an open
XML vocabulary to exchange data. In fact, as B2B gains more global influ-
ence, participating countries will have to fit in, too. A closed or proprietary
XML vocabulary will tend to isolate the owner, rather than provide a sig-
nificant competitive advantage. Today, communications is the cost of doing
business on the Web. With XML, communications will be even more open
tomorrow.

Fighting Apathy and Ignorance

One of the problems with explaining XML is its simplicity. People ask why
it is important to separate the data from its presentation. Consider the cor-
poration that has plenty of data that is not in a database or transferred
using an interface. Most of the corporate intellectual capital is tied up in its
documents. Two tremendous benefits come from managing the data, the
structure, and the presentation separately.

The first benefit is that the data can be reused and repurposed. For exam-
ple, the CAD drawings for an airplane are used to create the technical man-
uals. These drawings go through significant processing before they are
ready for the manuals. These same drawings go through a completely dif-
ferent kind of processing to produce training manuals to teach technicians
how to repair the airplane. What if we could put the drawings into an XML
format that both technical manual software and CBT (Computer-Based

Concerns, Myths, and Hype 183

Training) software could both use without any processing? We could use the
same data and the same structure, but change the presentation to fit the
task. This method would save millions of dollars in translations costs alone.

The second benefit is improved processing capabilities. If we tag the doc-
uments, the drawings, the manuals, or the CBT with some forethought, then
we may be able to migrate to new technologies, such as wireless and voice
processing, more effectively. In addition, these tags could facilitate changes
in the drawings and propagation of these changes throughout the entire
process. With a disciplined methodology for writing the tags, we can reduce
the size and the processing needed to parse the tags. The structure of the
document helps to accomplish this goal.

When we don’t worry much about the parser, we worry less about the
browser, reducing or eliminating the repeat of Browser Wars. XML sup-
ports these benefits and many more, but this is the basic backbone. By sep-
arating data, processing, and presentation, we can modify any component
without touching the other two. By imposing disciplined tag markup and a
clear structure, we can easily manage the data and focus less on the pars-
ing. And by agreeing on standards, we gain interoperability and improve
profits.

Summary of XML Standards Issues

One of the great challenges that hinders the global adoption of XML by the
corporate community is the potential fragmentation and splintering of
XML standards. Corporations are concerned about three standards.

First, corporations are concerned that companies, such as Microsoft, will
not adhere to the W3C recommendations and specifications. This concern
is probably not valid because all of Microsoft’s actions to this moment have
implied full support of emerging XML standards. The only deviation is
when the standard is not yet well defined, so Microsoft produces software
that is based on an interim standard. Then when the true standard is final-
ized, Microsoft reissues its software. For the most part, these software
applications are free, with no major financial impact.

Second, corporations are concerned with the variety of possible XML
vocabularies and dialects that a department, corporation, or industry may
produce. One of the major goals for XML is interoperability; however, its
main strength, extensibility, results in a conflict. On the one hand, interop-

184 XML

Industry analysts speculate that the 100 or so DTDs in 2001 will merge
into fewer than 20 major DTDs by 2003 and then fewer than 5 DTDs
before 2006. There will still be more than five total DTDs, but the major,
broadly used DTDs will number less than five, possibly only one baseline
vocabulary.

One way that this convergence will come about is through a number of
standards groups that provide for both cross-industry and international col-
laboration. These standards groups, consortia, and other organizations will
be the most efficient way to shepherd the XML flock into a single direction.

The third XML standards issue that corporations are concerned about is
the split between DTDs and schemas. Currently, the large majority of XML
vocabularies are defined by using a DTD. However, the number of schemas
will grow quickly in 2001, and in 2002 the number of schema-based XML
vocabularies will exceed the number of DTD-based XML vocabularies.

This gradual migration from DTDs to schemas will allow developers and
vendors to program better applications for transforming from one meta-
data representation to another. As a result, this standards issue should be
only a minor concern that is already being addressed by organizations such
as IBM, Apache, and the W3C, in the form of transcoding, Cocoon, and
XSLT, respectively.

186 XML

anywhere, anytime, to anyone, about anything, may become a reality with-
in 18 months or faster. The irony (Irony #3) is that now if we could get
Oracle and Microsoft to cooperate, without increasing the hype decibels or
the vaporware promises . . .

Regardless, many vendors are working with XML. Each company has its
own expertise and offering. Rather than fail to make an exhaustive list, this
chapter provides a broad assortment of some activities in XML. This list
should be sufficient to show the reader that XML development is ongoing
in almost every industry.

Automotive

Covisint (www.covisint.com) is the B2B e-commerce site that started it all.
It was not the first B2B, but it was the largest one announced in the early
part of 2000. Even though this $300 billion supply chain covers much of the
automotive industry, its major focus is procurement of parts and services.
The “Big Three” automobile manufacturers retain a strong interest in devel-
oping their own competitive B2B sites for other purposes.

DaimlerChrysler (Stuttgart, Germany, and Auburn Hills, Michigan, USA;
www.DaimlerChrysler.com) has created an industry-specific DTD with the
intent of defining a standard where none exists yet. The DTD is based on
an SGML DTD that was developed for the automotive industry. The com-
pany is developing internal XML applications to gather information from
different sources and combine it into a graphical format for engineers.
DaimlerChrysler’s eventual goal is to release the XML applications and
DTDs, externally, as a common standard within the automotive industry.

Ford (Detroit, Michigan; www.forddirect.com) sells cars over the Web, allow-
ing customers to add features, compare costs, apply for loans, and ultimately
purchase their vehicles. FordDirect is an independently managed, combined
venture among Ford and its dealers to fulfill the customer demand for car
purchasing over the Web and to provide a point of contact for subsequent
support. Although competition exists from sites such as Carpoint and
Autobytel, the FordDirect site has the advantage of backing from Ford, with
the potential for special promotions and individualized deals.

GM (Detroit, Michigan; www.gm.com) plans to use XML to develop an
enterprise portal linking its 8,500 information systems and 110 terabytes of

188 XML

storage. The company will use DataChannel’s RIO, an XML-based solution
for building dynamic two-way corporate portals with publishing and
retrieval capabilities. Besides making information more available to employ-
ees, the system will also improve the customer buying experience. One GM
pilot involves bridging engineering systems to the Web through a browser
with virtual reality support, enabling engineers to view components and
then access legacy systems with relevant information, such as who engi-
neered a part and what defects have been reported. GM is developing other
custom XML portals for quality e-commerce and manufacturing. GM uses
XML because it enables total portability and access to information, and
DataChannel had the most robust implementation of XML. GM’s existing
legacy data can be XML enabled so that it can be accessed from any appli-
cation. GM is also teaming with dealers to build a Web site for car com-
parisons.

Volkswagen (Germany, www.vw.com) is working with ArborText to use the
power of XML to provide service information to dealerships and service
repair centers. It uses the Web to deliver the most up-to-the-minute infor-
mation. Technical information for Volkswagens can total more than 70,000
pages of data, including service repair manuals, owner’s manuals, videos,
technical bulletins, and wiring diagrams. By using XML, Volkswagen can
reuse this massive amount of information both for the dealers and for the
public. Before the XML solution was implemented, technical information
was delivered on CD-ROM from the manufacturing facilities in Germany
and Mexico. Now the information is available across the Web on the same
day that it is created. The information can be provided quickly and accu-
rately, allowing Volkswagen to be more responsive to dealerships and to
customers. Customers demand current, comprehensive, and accurate infor-
mation. Volkswagen can fulfill these demands through the use of XML to
deliver information in a format that will ultimately support different devices
(such as vehicle computer systems, desktop systems, electronic books, and
wireless devices) and provide customers with more options to choose from.

Chemical

DuPont, Dow Chemical—and, indeed, most of the chemical industry—is
working on a chemical XML vocabulary for B2B e-commerce. As described
in Chapter 8, the chemical B2B market is one of the most successful. This

Summary of Industry XML Projects 189

market includes the standard chemicals and lab equipment, but, depending
on the products and services, can also overlap with the petrochemical indus-
try and the metals industry.

A big advantage of a chemical B2B marketplace is the ability to tap into
a global marketplace, which allows the smaller houses to compete on a
more level playing field with the giants of the industry. Despite a growing
number of different chemical B2Bs, consolidation is expected in the near
term. It would also be productive if these B2Bs were to collaborate with
some of the other industry B2Bs to develop a common baseline vocabulary.

Bayer AG is a global chemical and pharmaceutical corporation that is
moving its procurement processes to the B2B world. The transfer to B2B
e-commerce is expected to reduce its $5 billion annual procurement costs
by $250 million, for a savings of roughly 5 percent simply by going digital.
By streamlining procurement processes, Bayer hopes to participant in the
new e-business global supply and demand to increase profitability.

Sequencia Corp. in Phoenix, Arizona, is a major player in chemical batch
processing software. It has launched some new XML-based software prod-
ucts that enable companies to share manufacturing and formulation infor-
mation over the Web. The new products are designed to help companies col-
laborate, as well as buy and sell chemical process manufacturing capability
through chemical B2B exchanges. By simplifying collaboration, chemical-
related companies can reformulate products more rapidly, speed new prod-
ucts to market, and extend existing capacity.

Sequencia’s new XML-based gRecipe software enables companies to cre-
ate and manage product-manufacturing definitions in the form of general
recipes throughout the supply chain. The software can adapt its generalized
recipes into specific manufacturing instructions for the chemical batch-pro-
cessing task at hand. XML facilitates the ability to provide a standardized
way to define and describe a process product. In addition, it supports a
complete start-to-finish B2B solution by providing a comprehensive process
product definition including formula, recipe, equipment, work instruction,
and bill of material information. By using international standards, gRecipe
will shorten the production update cycle from months to only hours.

The company shares its two XML schemas, allowing customers to share
processing information even though they use different software programs
and operating systems. The schemas can be used to adapt existing data

190 XML

models, solutions, and applications for B2B e-commerce. The XML
approach allows companies from specialty chemical, pharmaceutical, as
well as food and beverage, to share site capabilities, recipes, and formula-
tions. The efficiencies yielded by the XML solution will allow process com-
panies to approach the benefits enjoyed by semiconductor and electronics
fabrication houses.

Computer

IBM (Armonk, New York; www.ibm.com) is throwing significant resources
behind XML. They are partnering with a number of companies, including
Microsoft, Sun Microsystems, Oracle, and Adobe to bring XML applica-
tions to fruition. IBM has released a number of free XML/Java developer
tools, as well as XML information at its Web site. The tools include editors,
parsers, and markup language applications.

Microsoft is a huge supporter of XML and its open standards. Most, if not
all, Microsoft products are becoming XML compliant to some degree. In
addition, Microsoft has developed BizTalk, Microsoft.Net, and SOAP.
These activities are detailed in separate “Microsoft” and “Microsoft.NET”
sections later in this chapter.

Microsoft’s Office 2000 uses XML to give the user control of the layout
of Office documents. Everything is transparent, and nothing about Office
2000 tells the user that documents can be saved as XML. Office 2000 can
export files to XML quite easily through the File/Save As . . . or the File/Save
As Web Page . . . dialogs. But, Office does not say anything about XML
at all. To the user, XML is a Web page or advanced HTML format.

Sun Microsystems (Palo Alto, California; www.sun.com) was an early
backer of the Web, although it has not kept up with the powerhouses in e-
business. It has developed the in-house support needed to offer these new
services in the form of supply chain e-business, auctions, and a centralized
infrastructure for e-commerce. Auctions, through Web sites like eBay, pro-
vide Sun with additional exposure to new businesses that have never pur-
chased Sun products. B2B auctions can bring in as much as $1 billion. Most
of Sun’s on-line purchases have been EDI transactions. XML-based B2B
procurement should simplify the process, resulting in millions of dollars in
savings.

Summary of Industry XML Projects 191

Sun is working with i2 to provide B2B customers with system, purchase,
and delivery transaction information. These B2B processes can shrink man-
ufacturing turnaround times from three weeks to three days. Improved com-
munications and collaboration with suppliers can yield more than $100 mil-
lion per year.

Sun has also devoted significant resources to developing many Java tools
that support XML development. These tools are improving daily, and the
Sun Web site is worth exploring to learn what new tools, applications,
parsers, editors, etc. are being offered.

Cisco Systems, Inc. (San Jose, California; www.cisco.com) is leading an
effort to apply XML to management data. The Service Level Management
Suite uses an open XML interface to support service providers with the abil-
ity to monitor their Virtual Private Networks (VPNs). A browserlike inter-
face will integrate with Cisco’s network hardware and will measure service
levels for VPNs, e-business, etc.

Lernout & Hauspie (Burlington, Massachusetts; www.lhs.com) developed a
powerful intranet portal application called L&H Clinical Reporter on top
of Sequoia Software’s Interchange2000 system. Doctors use the application
to automate the entry of spoken data into patient records as part of their
data entry process. This significantly speeds the process of data entry.
Researchers or physicians can analyze data immediately rather than waiting
hours or weeks for a data transcription.

Oracle Corporation (Redwood Shores, California; www.oracle.com)
expects XML to improve B2B communications by supporting a common set
of tags to describe structured data and information. It has created a pair of
free XML parsers in C and C++ languages to facilitate the use of legacy
data. The parsers work with existing parsers for Java and for Oracle’s
PL/SQL language, and they support the transfer of legacy information
between applications using the features of XML. These parsers are intend-
ed for use with the Oracle Applications Server in Oracle8 and Oracle8i, and
they support Document Object Model and Simple API for XML.

Oracle has also released an XML parser for Java that includes an
eXtensible Stylesheet Language Transformation processor (XSLT), XML
SQL utilities, and XSQL servlet so that users can retrieve database infor-
mation and deliver it in XML.

192 XML

PeopleSoft (Pleasanton, California; www.peoplesoft.com) uses XML as a
communications link to help customers with B2B e-commerce initiatives
and with back-office application integration. The XML capability will
allow users to deliver their activities across the Web. It will exploit the
power of the Internet and give the application a Web browser look and feel.
In addition, PeopleSoft 8 has wireless support and Unicode integration,
anticipating WAP and multilingual requirements.

SAS Institute, Inc. (Cary, North Carolina; www.sas.com) builds products to
support interoperability with other repositories via an import/export facili-
ty, either through its support of MDIS or possibly, a more direct inter-
change. SAS products, such as SAS/Warehouse Administrator software,
SAS/EIS software, SAS/MDDB software and the MDDB procedure, all cre-
ate or use OLAP-related meta-data. SAS/Warehouse Administrator software
could define MDDBs (multidimensional databases).

TekInsight.com Inc. (New York, NY; www.tekinsight.com) uses XML as the
foundation of its BugSolver technology. It uses XML not to carry out data
transactions but to provide massive amounts of failure and monitoring data
to IT departments. It uses streaming XML to break data into sequenced,
self-contained packets that provide a more efficient way to transmit, store,
and retrieve large XML documents and data. Rather than using once-a-
night batch processing, customers can get real-time data on demand by
using the XML tools. The tidal wave of batch data is now subdivided by
XML into a format that can be analyzed more easily. TekInsight has been
so successful that they have applied for a patent on their streaming XML
capability.

Education

Education is another area that XML and e-commerce affects. For example,
e-books are available for both desktop and wireless access. XML provides
an excellent opportunity for turning adult education into a billion dollar
growth business. Most corporations, the government, and the military
spend multibillions of dollars per year on education. The Web provides the
necessary infrastructure to accommodate the schedule of today’s busy adult.

Two vehicles for adult education are “edutainment” and “webucation.”
“Edutainment” is the concept of delivering information in an entertaining

Summary of Industry XML Projects 193

gamelike format. “Webucation” is the idea of delivering Computer-Based
Training (CBT) in an interactive format across the Web.

After an initial startup cost, once the curricula and lessons are in place,
delivery costs are the same whether there is one student, one hundred stu-
dents, or one million students. In addition, training can go on anytime and
anywhere to anyone. For example, while traveling across the country, a
busy executive might learn about new technologies, such as XML and WAP,
by viewing an interactive CBT on a cell phone. Upon arrival, that executive
is just a little more knowledgeable about new technology.

At the moment, education developers take advantage of advances in the
entertainment field for new CBT software. This means that many of the
computer games developed by professional computer engineers eventually
make their way into the foundation of CBT software. Also, many of these
same engineers may be called on to develop the CBTs with a limited time-
line and budget. However, for effective instructional design, well-estab-
lished research and methods from educational psychology and technology
should still be used. But first someone has to pay for the development before
such educational software can be deployed on the Web. So far, the software
companies are footing the bill and paying professional computer engineers
to create education software in the same way that they create game soft-
ware. Eventually, big companies and the military will probably use the
expertise of educators to develop in-house CBTs. As that trend develops,
XML-based adult education will become a growth industry in its own right.

Financial

Just as the conservative automotive industry is embracing XML, so is the
traditional banking industry.

Wells Fargo & Company (San Francisco, California; www.wellsfargo.com) is
exploiting the capabilities of XML to leverage its legacy data for reuse and
repurposing. The IT division is using Java and XML to collect data from dis-
tributed back-end databases to build new ways and profiles for analyzing cus-
tomer data, information, and trends.

While many companies have been taking a wait-and-see attitude, Wells
Fargo has been a leader in the use of XML technologies. Rather than sit
back and let competitors make all the mistakes . . . and learn all the lessons,
Wells Fargo has jumped in with both feet, gotten a little dirty, but also
found that XML can improve access to legacy data.

194 XML

The Java-based XML system is built on a multitier architecture that is
compatible with a variety of existing platforms. This example shows how
XML will be applied to current and proprietary data systems to squeeze
new knowledge from old information. The system allows Wells Fargo to
understand customer trends and to take advantage of these trends by tar-
geting the appropriate customers with new products, services, and loans.
For example, if a young couple bought a mortgage about 15–20 years ago,
they might now be interested in a college loan.

This analysis benefits both parties. First, the couple will not need to go
through the trouble, anxiety, and cost needed to locate the best terms and
the paperwork hassle of establishing credit for the loan. Second, because
Wells Fargo has much of the information already on file, it has a detailed
history of mortgage payments, and it has a motivated client with excellent
credit and collateral. None of these are guesses based on a simple loan
application. These clear trends are known by using XML to pull this infor-
mation from the legacy databases. A little information may need to be
updated, but nothing like the background data that must be collected for a
new loan approval. XML enables the potential for a good deal for both par-
ties: a win–win situation in a painless, timely manner.

Another way that Wells Fargo has planned ahead is to design in special
attributes for security and privacy that allow for expansion and modifica-
tion for new regulations and privacy laws. These attributes are simply car-
ried along in the XML documents and add minimal value and require little
overhead. But when the regulations change, as they do on a continual basis,
a couple of keystrokes, or a search and replace, and all the data will be in
conformance. With legacy systems, that kind of modification might take an
entire rebuild of the database with significant costs as the system is checked
and double-checked. Because the infrastructure is already in place, waiting
for the changes, implementation and testing should be straightforward.

With the special attributes in place, Wells Fargo can also exchange data
with other companies while solving two problems with one application. First,
XML documents can easily be modified to be compatible with the data for-
mats needed by the receiving company. In addition, XSLT can be used to
transform imported data into formats that are compatible with the Wells
Fargo systems. And second, the existing privacy attributes allow Wells Fargo
to transfer data without sending carefully regulated personal information or
closely guarded proprietary data. A little forethought goes along way.

Summary of Industry XML Projects 195

The company has significant experience with XML. In 1999, Wells Fargo
paid Micro Modeling Associates, a consulting firm, the fee of $200,000 to
develop its intranet. Developers performed the initial XML conversions
manually, and then the system automatically creates subsequent XML as
needed. Employees can convert Microsoft Office Tools applications, such as
Word and Excel documents, into an XML format. These XML documents
provide a simple data warehouse capability that allows all managers and
employees to search through the information. The cleaner formats enable
easier access to corporate knowledge, providing significant timesavings and
efficiencies over the previous HTML-based systems.

Dow Jones & Company (New York, New York; www.dowjones.com) col-
lects data feeds from 6,000 periodicals, converts it to XML, and sends it out
to business customers. Customers can parse and manipulate the XML-based
data in a way that can be combined compatibly with in-house data to cre-
ate decisionable information.

Dun & Bradstreet (Murray Hill, New Jersey; www.dnb.com) uses XML
applications to build a common interface among its worldwide offices.
XML automates data exchange between legacy data sources, even when the
data sources have different access protocols. Reporting systems are also eas-
ier to use and maintain because database queries and answers are consistent
across legacy databases and there is only one DTD for all the legacy inter-
faces.

First Union (Charlotte, North Carolina; www.firstunion.com) has devel-
oped an industry-specific DTD to define the standard, rather than waiting
for independent standards. The company plans to use XML for authentica-
tion and, after the bugs are worked out, to release the DTD to internal busi-
ness units across the company and also to clients. First Union uses IBM’s e-
commerce framework to share data among applications.

Merrill Lynch & Company (New York, New York; www.ml.com) has
developed XML applications to transfer data processing from the server to
the desktop. Although HTML data is primarily text, XML data is true
information that can be manipulated without returning to the server. This
functionality allows a user to sort financial data on the desktop to improve
both resource use and response time.

196 XML

Insurance Firms

XML is acting as the catalyst to help the insurance industry migrate from
its legacy data and manual processes. Several insurance companies have
implemented a new XML specification developed by the Acord consortium.

Acord is an insurance consortium that is working on implementing the
XML specifications, called Acord XML, to help bring insurance business
processes on-line. Acord is the same consortium that developed and imple-
mented the EDI specifications for the insurance companies years ago. New
XML transitions are expected to help keep the agents competitive as more
services are offered across the Web. The current XML specifications only
cover complex business policies, because each type of policy offered will
require a different XML specification.

When the XML specifications for the complex business policies are fully
implemented, insurance companies and agents will be able to interoperate
more effectively. In addition, the systems should be able to connect with the
agency management software used by independent agents.

Some of the insurance carriers that are already using this new XML
insurance vocabulary include Hartford Financial Services Group, Travelers
Property Casualty, Safeco, and Manulife Financial. Other insurers are in the
planning phase.

The Acord XML insurance vocabulary serves as the foundation for build-
ing interfaces among the various incompatible insurance systems that are
used by insurance carriers, agents, rating services, and on-line brokers. This
new XML standard and the new interfaces will enable these insurance
groups to exchange policy and customer information. The benefits of lower
operating costs and more efficient customer service are expected to be the
positive outcome of the expected automation and improved response times.

In addition, the new software will enable agencies to use browser-based
systems to communicate with back-end systems and databases. Because of
the improvement in response and turnaround times, information exchange
will occur in seconds rather than hours, resulting in the ability to close a
sale to customers right on the spot. These improvements will help put agents
on a level playing field with Web-based services such as InsWeb and
Quotesmith.

The leading agency management software and application vendors are
working directly with Acord and the insurance companies to develop the
XML-based interfaces. As the number of insurance companies that use these

Summary of Industry XML Projects 197

interfaces, grows, the independent agents will grow in proportion. The
agents will be able to exploit the common interfaces and XML data stan-
dards to compare policies and quotes from within their agency management
interface software.

The process is similar to what is happening in the automotive industry
with the Covisint B2B exchange. Because all 30,000 vendors use the same
XML standards, automotive manufacturers can compare parts, services,
and prices from a single interface. This encourages the vendors to differen-
tiate on something rather than prices, and it allows the automakers to com-
pare offerings more easily.

With the Acord XML standards, independent agents will be able to com-
pare insurance offerings in order to provide their customers with the best
value for their individual needs. This method will be much smoother and
easier than the old fashioned method of learning each individual proprietary
interface and then rekeying data multiple times in order to make simple
comparisons.

Although getting total buy-in from all insurance carriers will take a little
while, competitive pressure will eventually win out. And then the full bene-
fits of XML in the insurance industry will become apparent to the corpora-
tions, the agents, and the customers.

News Media

While XML has established its reputation in B2B e-commerce, industries
and corporations are also exploiting its ability to stream massive amounts
of content and data. For example, the Wavo Corporation, www.wavo.com,
uses XML to enable its MediaXpress service, which streams news, sports,
and entertainment to various Web sites wanting to boost their content with
real-time news stories and on-demand information. The system works on
MS Windows platforms as well as Linux and other Unix operating systems.
Content comes from 1,800 media sources.

MediaXpress leverages its XML applications to send information to cus-
tomers in a format that is completely compatible with their requirements. In
fact, the use of XML makes it possible to tailor the information to the
appropriate format for any target system or device, such as wireless, by nor-
malizing and transforming the content.

The MediaXpress XML application automatically marks up the content,

198 XML

indexes it for location and keywords, and then pushes the information to
the customer Web site. The application is a full-blown markup engine and
it allows MediaXpress to classify information for its customers. XML pro-
vides the general interface capabilities, which allow MediaXpress to both
receive and send information in the needed format.

Telecommunications

More than 300 telecommunications corporations, including Motorola,
Nokia, Ericsson, are developing the Wireless Application Protocol (WAP).
Chapter 6 discussed the Wireless Application Protocol and Bluetooth,
which are the major XML drivers in the wireless industry.

Another application that is becoming famous is VoiceML, which will be
used for speech processing and various kinds of standardized voice input.

Covad Communications, Inc. (Santa Clara, California, www.covad.com)
is a Digital Subscriber Line (DSL) service provider that provides the XLink
API capability for Internet service providers to build and maintain DSL
services. This XLink API is XML based and it supplies uniform data fields
for customer and vendor interactions, resulting in more reliable and cost
effective data exchange.

USENET

Usenet (User’s Network) is an important component of the Internet, as well
as the Web and XML revolutions, that has been mostly ignored by the gen-
eral media. A 20-year old bulletin board just does not seem to have the same
allure as a two-month old startup. However, the 30,000 individual news-
groups within the Usenet bulletin functionality have more diversity and
more information than the Web and most intranets. Usenet information
may grow at the rate of millions of postings per day.

Many newsgroups are devoted to XML developments, and companies
such as Microsoft and IBM have their own newsgroups for XML news. In
fact, as the W3C releases information about new trends in XML technolo-
gy, it posts the information on Usenet.

Usenet is an untapped resource for e-commerce. It is the penultimate
place for networking with people, learning about new topics, and discussing
new ideas or products. One of the reasons that it is unused as a resource for

Summary of Industry XML Projects 199

e-commerce is because it is bad netiquette to use Usenet for a hard sell.
Marketeers don’t like the soft sell, on the order of “here’s a bunch of free
information, and by the way, we sell a product that might solve your prob-
lem.” They operate more like here is the free information, let us come give
a presentation, and we’ll call back until you buy. That kind of attitude does
not play well on Usenet.

Usually people visit newsgroups in much the same way that they would
gather around the water cooler. The discussions may be organized and fair-
ly regular, but they are always informal.

Few companies have been able to profit from Usenet, and most of those
were search engines that, like most search engines, get revenues from Web-
based advertising. However, one company, ClariNet Comunications (San
Jose, California; www.clarinet.com) has found a way to make profits on
Usenet. ClariNet sells “pay for view” or subscriber news articles across
Usenet, on the order of 2,500 articles per day.

When B2B e-commerce companies explore Usenet, they will find that
they can leverage this community for a new value proposition by tapping
into its diversity and providing focused information to individual sub-
scribers. Usenet is a vast resource. If e-commerce on Usenet is approached
with taste and netiquette, then the profit potentials should be dramatic.

Microsoft

Microsoft Corporation (Redmond, Washington, www.microsoft.com) is
involved with XML standards, as well as XSL, DOM, and Namespaces.
Microsoft is supporting e-commerce standards at its www.biztalk.org,
which is used as a repository for XML schemas. One of the advantages of
Microsoft’s BizTalk is that it has many of the functions needed to take over
for EDI using XML technologies. Many companies will be able to use
BizTalk directly in order to pass data between different platforms, without
needing to develop new EDI capabilities.

The Microsoft BizTalk Toolkit, available at www.Microsoft.com/biztalk,
is a free download that provides developers with a set of XML tools need-
ed for building XML applications that are compatible with the BizTalk stan-
dard. BizTalk applications use XML-based transaction models and XML
documents to reproduce and exceed much of the functionality provided pre-
viously by EDI. All XML documents and applications that are developed

200 XML

using the BizTalk tools should be easy to make interoperable with other
BizTalk applications.

The BizTalk thrust is one of Microsoft’s strategies for supporting and
promoting the use of XML throughout and across the enterprise. One of
Microsoft’s business strategies for BizTalk is to support the BizTalk server.
That idea makes good business sense. However, Microsoft has remained
faithful to the XML standards and continues to support the W3C in gener-
al, the XML committee, and each specification as it is accepted.

Early adopters of BizTalk have been able to develop transaction applica-
tions that can integrate customers with backend legacy database systems.
Rather than laboring over complex programming of new APIs, developers
can pull together a system with relative ease. Most of the components for
an end-to-end system already exist in the BizTalk toolkit, so all a developer
has to do is define the requirements and link the pieces needed to satisfy
them.

BizTalk also facilitates data and information exchange among business
partners over the Web. Integration and interoperability merely require an
agreement on the XML tags available in the BizTalk suite. The diversity of
companies from different industries on the BizTalk steering committee has
assured that the BizTalk schemas and tags could conform to the needs of
most corporations. In addition, if adequate schemas do not exist in the
BizTalk repository for some application, then companies can agree to regis-
ter their own definitions with BizTalk. This way the repository works both
ways—for storage and for extension.

As an EDI capability, BizTalk serves as the foundation of Microsoft’s B2B
e-commerce offerings. The BizTalk schemas are customized to support busi-
ness transactions, much the same as EDI applications. In fact, BizTalk
Server 2000 includes tools for transforming EDI content into XML and for
maintaining it. Companies such as Dell, Boeing, Andersen Consulting, SAP,
and CommerceOne support the BizTalk technology, using it for e-commerce
and for integration. However, despite this support and Microsoft’s backing,
general corporate acceptance of BizTalk has been slow. BizTalk Server 2000
is part of the .NET tool set used to develop e-business solutions.

Microsoft.NET

Microsoft is betting $2 billion on the Internet and on XML with a dramat-
ic new strategic thrust called Microsoft.NET. Based on a potential market

Summary of Industry XML Projects 201

that approaches a trillion dollars and on the established need to develop
individualized information and interfaces, Microsoft’s vision is to use
Microsoft.Net to leverage XML technologies to enable developers to blend
interfaces, computers, and communications. In addition, developers will be
able to develop on the PC and deliver to all other XML-enabled platforms.
Microsoft.NET echoes the capabilities of XML and the motto of Sun
Microsystems in the 1980s: “The Network is the Computer.”

Microsoft proposes a number of components to build the Microsoft.NET
capability, including a .NET platform of development tools for distributed
services, a Windows.NET system with associated desktop .NET tools, and
the promise of third-party developers to support the effort to create an
interoperable, interactive environment for an integrated information expe-
rience.

The promise for consumers is networked, integrated services that are
available anywhere, from any devices, at anytime. The potential for corpo-
rate users is a uniform development environment that works transparently
with wireless, desktop, intranet, Internet, and e-commerce activities. The
opportunity for developers is to build reusable and repurposed applications,
fulfilling the “write once, reuse everywhere” vision. Microsoft.NET devel-
opment tools are specifically designed for building interactive Web-based
systems deliverable on any XML-ready platform. The tools automatically
generate XML statements and should integrate well with Microsoft’s
BizTalk tools. In fact, Microsoft intends to offer a set of core
Microsoft.NET functions that developers can use as building blocks for
more efficient deployment of resources.

Some of these tools include security applications with levels of authenti-
cation, messaging applications with e-mail and messaging, profile applica-
tions with rules and preferences for individualization, XML repository
applications with SOAP, calendar applications with scheduling, directory
applications with search capabilities, and automated application update
capabilities with upgrades on demand.

Microsoft’s objective is to weave the PC environment and the Web envi-
ronment together. This integrated capability will adapt to the needs of the
user, according to Microsoft, rather than the user adapting to the comput-
er, as has been the case in the past. In addition, with the use of
Microsoft.NET, each environment (e.g., desktop publishing, accounting,
browsing) will offer seamless interfaces to improve the productivity of the

202 XML

user. These environments will be device independent and will adapt to the
needs of the user.

Some of the technologies that will enable this vision are available as a set
of capabilities, architectures, and tools. These include a Natural Interface
with multiple capabilities such as speech, handwriting, and natural lan-
guage understanding; a collaborative Universal Canvas based on XML to
enable seamless information availability from distributed sources; and a
preferences manager called the Intelligent Agent that gives the user greater
control over personal information and histories.

Microsoft is pulling out all stops to exploit the Internet and XML. It
would appear that the “embrace, extend, extinguish” model has been aban-
doned for the collaboration model. The improved user interface environ-
ment is interesting. If Microsoft has 90 percent of the PC operating system
market, then it seems that user interface issues or difficulties would proba-
bly originate in Microsoft’s backyard. And the same is true for users need-
ing to adapt to the computer rather than the reverse.

From a good business perspective, Microsoft.NET offers tools to enable
collaboration. Users can build or buy, and Microsoft will benefit if they buy.
This approach works well for everyone if the tools add value and there is
competition in the marketplace so that the tools can evolve.

With an open source policy, Microsoft might lose market share to many
of the same developers who have created the Linux tools and some of the
Macintosh tools. Many XML development tools are already freely available
through any search engine. From one viewpoint, Microsoft.NET adds
another set of options.

There is one significant advantage to the Microsoft.NET approach. The
biggest concern about XML is the standards and the splintering of vocabu-
laries. Microsoft has the size and clout to guide the convergence of DTD
and schema vocabularies and transformation tools needed for XML to real-
ize complete integration and interoperability. The XML market has
diverged a little, but it has not yet splintered. BizTalk has not appeared to
affect this divergence one way or the other. Microsoft.NET or another
incarnation may be the guiding force for unification.

Microsoft.NET is the latest step in the Microsoft evolution from “a PC
on every desk” to “Information at your fingertips” resulting in
“Information on any platform, anywhere anytime.” The .NET strategy
counts on XML and SOAP to allow applications to interoperate in a more

Summary of Industry XML Projects 203

user-transparent way. This means that any platform, such as a cell phone or
a Coke machine, that provides data access, may also provide
Microsoft.NET compatibility. Although the device may not use a Microsoft
operating system, Microsoft does want to ensure that some part of the
information chain will depend on a Microsoft product such as
Microsoft.NET.

Microsoft.NET Changes for Applications

Upgrades, operating system changes, and application modifications are dis-
rupting and frequently frustrating. In the move to Windows 2000, some
companies also moved from MS Exchange to MS Outlook. Although the
operating system upgrade was minor, the mail change caused many little
annoyances with profiles, preferences, and personal mail lists. These little
issues tended to wash out the smooth transitions.

One of Microsoft’s goals is to use Microsoft.NET to make changes,
upgrades, and modifications simple or even transparent. It intends to
exploit the flexibility of XML to allow users to ease into modifications by
using the schema meta-data to effect the change.

The single Microsoft.NET schema is the key to the entire process. All appli-
cations share this schema. Any changes in the Microsoft.NET schema will rip-
ple consistently through the entire platform, uniformly. In an ideal
Microsoft.NET implementation, having version 2.3 of one application and
version 3.1 of another will not be possible, so resulting version incompatibil-
ities will not occur. All Microsoft.NET applications use the same schema, can
understand the same data, and therefore maintain smooth interoperability.

In theory, application installation and removal will be as simple as copy
or delete. Microsoft.NET should eliminate complex installation commands
that leave ghost files throughout the file system. As discussed throughout
this book, XML does have the capability to support these kinds of features,
if designed correctly. So, if .NET is installed correctly, it should work as reli-
ably as any other Microsoft product.

The Risks of .NET

With the new Microsoft.NET platform, Microsoft promises a more stable
environment than even on their NT boxes. This means no more downtime,

204 XML

no more reboots, no more blue screen of death indicating that all work has
disappeared into hyperspace. However, SOAP, one of the foundation com-
ponents of Microsoft.NET, is neither secure nor reliable, so Microsoft still
has a long way to go before the corporate world will fully embrace its
vision. In addition, a fault-free system requires fine-tuning and a fault-free
installation, with fault-free support.

Training and support have not big strengths with Microsoft. However,
Microsoft is also training vendors and partners in focused classes and work-
shops, augmenting the standard on-line tutorials and information.
Historically, the best support for Microsoft products seems to come not
from Redmond, but from the local bookstore. The lack of clear help has
resulted in a lucrative business for “third-party” self-help authors, who
write about Microsoft products.

Most companies, therefore, will probably wait a few months, perhaps for
version 2.2, before buying into this new full service business model. In the
case of new Microsoft operating systems, a wait-and-see attitude has never
been a poor choice.

Another approach is to send your developers and implementers from the
IT operations department to Microsoft for all of the Microsoft.NET train-
ing. Although this approach is expensive and risky, a simple one-year train-
ing contract will slow the leak of knowledge from walking out the door. In
addition, a stipulation of the training can be that the developers will also
train people to replace them, distributing the wealth of knowledge.
Microsoft’s .NET platform is sufficiently complex; it won’t hurt to have a
team of experts in-house. The savings in productivity may be worth the cost
of training.

Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) is a W3C specification to allow
applications to communicate across different platforms and through a fire-
wall. SOAP requires special protocols, security, and authentication in order
to be successful as a method of cross-systems communications.

SOAP is an XML-based open standards-based, protocol used to provide
a common messaging format for interoperability, independent of applica-
tion technology. It will link business applications in the same way that XML
will link data exchange. It is supported by companies like Microsoft, Sun,

Summary of Industry XML Projects 205

Compaq Computer, Hewlett-Packard, IBM, and SAP. Their goal is to agree
on a single SOAP standard and to avoid the incompatibility problems expe-
rienced with XML.

SOAP will allow companies to leverage XML and share, not only data,
but also application technology. For example, a computer manufacturer can
download a parts inventory from a vendor’s Web site. In this way, Dell
might explore and compare parts from Intel, AMD, and Texas Instruments
to establish the best deal for that week. An accounting firm might browse a
client’s books as the numbers come in, so Ernst & Young might have caught
the problems with Proctor and Gamble’s books and prevented the 26-point
slide in stock price in early 2000.

The SOAP specification will allow developers to create applications and
services that can be more easily integrated, independent of operating sys-
tem, programming model, or programming language.

206 XML

Introduction

XML provides a foundation for information interoperability. It can serve as
the central point for exchanging data among different databases and sys-
tems by providing a universal data format. Because the major software and
database vendors have embraced the XML standard, in an ideal world, data
integration across different systems is guaranteed.

The ability of an XML document to be self-describing through the use of
a DTD elevates the importance of meta-data. By designing data elements
defined in the DTD to be used as meta-data, XML developers will enhance
the ability of data warehouses, modeling tools, and enterprise portals to
exchange meta-data. Once meta-data can be exchanged, information can be
more easily shared, blended, and united into a virtual document that
addresses an immediate requirement. A reason for creating data element
meta-data stored in DTDs or schemas is to provide more efficient document
information searches.

Universal Data Format

XML is the major enabler for Web-based, interoperable applications that
share information in a universal data format. By functioning more like a
database than a word processor, XML blazes the path for more effective

207

The
Outlook
for XML

C H A P T E R 1 2

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

document management, electronic data interchange, and e-business func-
tionalities.

The use of XML as a universal data format will improve corporate com-
munications and data transfer across the Web and intranets. It will enhance
the capability of working with systems from yesterday, today, and tomor-
row. A universal data format alone is not sufficient to guarantee interoper-
able access of information to everyone, everywhere, every time. Client and
server applications, as well as any two XML applications, need a common
set of protocols and standards in order to communicate. These standards
include the types of data, a common definition of the types, and the repre-
sentation of these types during data transfer. The XML DTD provides a
common method for negotiating these definitions and standards between
applications.

XML-Based Data Warehouses

It is not that big of a conceptual leap from a set of standardized, tagged doc-
uments to a corporate repository of all documents. If a centralized, industry-
strength DTD ties these documents together with a common set of markup
tags, then these documents can be searched for information. A data ware-
house is a large data repository with consistent, time-independent data. That
sounds very similar to the definition of an XML document repository.
Corporations will build more of these XML-based data warehouses as they
realize the cost saving and the efficiencies involved. A startup company has
an excellent opportunity to develop a niche market, converting legacy infor-
mation into an XML document repository with data mining capabilities.

Semantic Web

The idea of the data warehouse can be taken a step further. If a set of stan-
dard DTDs are developed and used, then teaching the computer about
meaning may be possible. If the browser has been taught that a “car” has
“tires,” and that a “tire” is “whitewalled,” then in the future, the browser
may be able to understand that a “car” with “whitewalled” “tires” is the
same concept, but with different syntax. Now, the browser will understand
not only the concepts of “car,” “whitewalled,” and “tire” but also the rela-
tionship in meanings between “whitewalled” and “tire.” As this Semantic

208 XML

Web (as Tim Berners-Lee calls it) of meaning extends to other domains from
e-business to education, the Web evolves into a massive data warehouse of
human knowledge, consistently organized and machine readable.

Corporate Backing: IBM, Oracle, Microsoft

Many companies support XML. However, the support of these three major
corporations indicates the importance of this new technology. All three
companies offer many free XML tools over the Web, as described in other
chapters. Clearly each company has efforts to support its business model.
IBM intends to encourage interoperability with its larger computers. Oracle
wants to ensure that its databases are compatible with future development.
Microsoft does not want to be caught off guard as it was with the Web, and
it would like to nudge the XML evolution toward standards that benefit
Microsoft products.

IBM supports XML by developing a significant offering of XML tech-
nology that is available for platforms including AIX, Windows NT, OS/390,
HP-UX, and Solaris.

Oracle has developed XML components to facilitate the smooth
exchange of data between XML documents and Oracle databases. These
components include XML parsers that also support XSL, DOM, and SAX
for XML interfaces. XML is a natural match for Oracle relational databas-
es, which include a good data dictionary and referential integrity, facilitat-
ing the extraction of data into an XML document.

Microsoft is spending big bucks to make people aware of XML and to lay
the framework for XML development over the next six to eight months. One
of the interesting developments is in data mining. The Microsoft research
team is working on a set of standards to leverage existing products such as
the SQL Server database. If these standards were integrated into SQL Server
as an XML-based data-mining engine, then Microsoft might corner the doc-
ument management market on a platform-independent, system-independent,
and application-independent content management system.

Microsoft is developing a new architecture called DNA 2000, which uses
XML to enable a complete transaction server package. In addition,
Microsoft plans that the next generation of Windows platforms will be
strongly based on XML technology, will be customizable, and will interop-
erate better with non-Windows platforms.

The Outlook for XML 209

Forecast for the Next Decade

Extrapolating forward from the previous 10 years yields many promising
and astounding innovations and developments. XML will help to drive
many of these developments, just as the Web has resulted in greater global
communications.

Faster Connections

The first improvement is broadband connections to the consumer for per-
mitting multicast video and real-time global interconnects at megabit or
faster speeds. Current cable modem technology exceeds megabit transfer
rates. Increased demand will result in increased bandwidth.

B2B E-Business

The Web has an amazing tendency to level the playing field for small com-
panies and large corporations. The agility and versatility of the small com-
pany has been catching up and passing the conservative infrastructure and
bureaucracy of the large corporations. One significant change in the busi-
ness environment is improving information sharing among business part-
ners. While the major corporations may hesitate, the smaller companies
embrace partnering to create virtual companies with complementary skills.
Partnering to share strengths synergistically is efficient, and XML enables
this type of collaborative environment.

International Trade

XML will elevate international trade laws, issues, and differences into the
public spotlight as new trade agreements are negotiated among the nations.
Taken to extreme, dramatic changes may occur in international commerce,
resulting in a new set of unified world trade agreements.

Convergence

Convergence has been a buzzword for many years, and is reminiscent of pic-
ture phones of years past. These are a reality today and the integration
among computers, telephone, and video is growing more efficient every day.
As the Internet Protocols enable convergence, XML will extend it and ele-

210 XML

vate it to a higher plane. Today finding and using a data snippet or a quo-
tation requires search time and expertise for even a hope of success.
Tomorrow, XML tags will enable rapid picture, audio, and video searching
in ways that require millions of dollars today. In their time, the Star Wars
and Jurassic Park movies were considered break throughs in computer ani-
mation. Today, students create similar effects for computer games.
Tomorrow, corporations will pay license fees and use XML-based technol-
ogy to create advertisements and movies by manipulating archives of
deceased celebrities, even animated nonmovie stars like Abraham Lincoln.
The technology exists today, but costs are prohibitive. It will be a desktop
function. XML will enable access to the correct pictures and videos.

Peer-to-Peer Computing

With the millions of computers and information repositories available
across the Internet and the Web, access and use is still limited. XML and
XLink will drive advancements in these areas. With the power to build dis-
tributed data warehouses and corporate portals based on XML, customers
will demand greater access. With the complex linking afforded by XLink,
increased access to “self-aware” knowledge bases and powerful computing
resources will appear just as quickly as the appearance of Web-driven
modem increases, which leads us to the next technology.

Wireless Internet

Nokia already offers a wireless Internet capability through its cell phones,
and Sprint PCS is spending $750 million to build wireless Internet access.
Sprint advertises that Sprint PCS wireless phone owners can use the Sprint
PCS wireless Web Browser to view text versions of selected Web sites. It also
has plans to spend the $750 million on Samsung and Motorola telephone
divisions. The plan includes having Samsung’s American division sell $500
million in wireless phones and Motorola sell $250 million, both efforts to
help support the Sprint digital wireless network and Internet access.

Just as cell phones have become ubiquitous, wireless computing will also
be the norm. Although it is a natural progression to go wireless, XML, and
especially XLink will facilitate the evolution. Today, wireless access and
computing is a convenience (although many business people will argue that

The Outlook for XML 211

it is a necessity). With the ability to synthesize information, anywhere and
anytime, people will want their intelligent computer assistants available 24
hours a day to address both common everyday problems and challenging,
strategic business opportunities.

Ubiquitous Web Servers

Ubiquitous Web servers, which will be XML-enabled, are a natural and pre-
dicted consequence of the coming new Internet Protocol standards. These
Web servers are strongly coupled with wireless resources. If the computing
resources for the house, toaster, and sprinkler do not have to be physically
connected, and if the connections are wireless, then anything that can have
an Internet address will have an Internet address. All of these possibilities can
be speculated on, but the focus here is on automobiles. With the use of the
Web, XML, and Global Positioning intelligent highways, then cars that drive
themselves may become a reality. These three technologies can be linked
today to address that opportunity, but a few more years are needed for the
logistics and engineering bugs to be worked out to public satisfaction.

XML promises to increase the value of data, the value of information,
and the value of communications. The potential is just as bright as the
Internet in the 1980s and the Web in the 1990s. The best way to summarize
and predict the value of XML is by a similar question, “What is the value
of a newborn baby?” XML technology has recently been conceived and
given birth. What is its value, indeed?

Emerging Specifications

XML, even though it is omnimorphic, cannot deliver application integra-
tion by itself. Application integration involves much more than self-describ-
ing, extensible message formats. The applications must be adapted to learn
to communicate using XML. Additional integration services are also
required to route requests, manage tasks, and translate between different
DTDs. A complete solution also includes services to ensure acceptable per-
formance levels and to maintain security.

Many new applications and tools are being developed as this book is
being compiled and published. For example, a new specification for XSLT
was released just before this document was completed. This section address-

212 XML

es some of the emerging tools. Many very recent tools, by necessity, are
omitted in order to stay within time limitations and scope.

Channel Definition Format (CDF) is a Microsoft sponsored specification
that provides a standard set of tags for building push channels to automate
the active flow of information from the server to the browser. CDF uses a
DTD that defines the content, the descriptive information, and the down-
load schedule.

Document Content Description (DCD) is a specification used to build
structural schemas or document content format descriptions. It will provide
one standard for defining different types of document formats based on
content, meaning, and purpose.

Meta Content Framework (MCF) is a Netscape sponsored meta-data
model that reflects a network of XML and HTML information nodes that
describe Web sites and pages. The MCF model facilitates the ability to visu-
alize and navigate through an interconnected Web space of documents.

Open Software Description (OSD) was developed to deliver software
updates over the Internet to target locations that include both Web sites and
client platforms. OSD has the capability to automatically download and
install software programs.

Resource Description Framework (RDF) is a specification that governs
meta-data and applications interoperability. RDF will use the XML syntax
to leverage tools built around XML. The collaborative RDF effort is based
upon several other meta-data initiatives. RDF meta-data can be used to pro-
vide better search engine capabilities, to catalog the content at a Web site,
to facilitate knowledge exchange via intelligent agents, to describe multiple
physical documents that represent a single logical document, and to
describe the intellectual property rights of Web pages.

Web Interface Definition Language (WIDL) is a method of defining inter-
faces among Web applications. It enables automated Web-based processes
by providing client systems with information about Web services. WIDL
applications do not require a browser.

Meta Object Facility (MOF) is the Object Management Group (OMG)
standard for distributed data repositories and for meta-data definitions. The
XML Meta-data Interchange (XMI) is the combination of MOF, XML, and
Unified Modeling Language (UML) supported by the OMG. XMI will sup-
port the use of object-oriented methodologies for meta-data and XML
development.

The Outlook for XML 213

XML Software Autoupdate (XSA) is a simple XML application designed
to extract information from Web documents and use it intelligently. The
information can be reused in different ways, and information suppliers can
use different DTDs for their pertinent applications.

XSLT is a new specification that defines how style sheets can be applied
to process XML documents. It may be a simple conditional language or it
may be based on Scheme, a dialect of LISP. If XSLT is Scheme-based, it
opens up tremendous possibilities for smart XML documents using well-
proven artificial intelligence techniques developed over the past 30 years.
The XSLT definition is still emerging.

Opportunities

XML enhances the Web just as dramatically as HTML enabled the Internet.
Many of the concepts of automation that were initiated years ago, such as
the paperless office and globally distributed information access, will be real-
ized with XML. With careful planning, XML will yield new applications for
increased productivity of information and knowledge on a worldwide scale.

Data Processing

Corporations will share data by using XML documents, so applications and
data formats can be separate issues. The interapplication communication
will be XML based. And the data in the documents will be processed as if
the data resided in a relational database. In the early stages of XML devel-
opment, XML consultants might come in and translate legacy data and doc-
ument to an XML format.

Transaction Processing

The current necessity for middleware applications will be supplanted by the
use of XML on the Web. XML makes middleware unnecessary. Rather than
using special middleware applications, transaction processing and requests
for data will use XML technology. With XML, the format of a database and
the protocols for dealing with it are irrelevant. The retrieved data will
return in the form of an XML document. XML provides a system-neutral
interface that is also format neutral and data neutral. With all of this sur-
rounding intelligence, an API can be very simple—Send_Document,
Receive_Document—and the requesting application automatically figures
out the document type based on the request or transmission.

214 XML

Semantic Web: Machine-Understandable Information

The Web is an information space that is useful for human-to-human com-
munication, with some computer-to-computer interaction. However, most
Web pages are designed to be human readable. Even database information
is converted to a structure that is optimized for people rather than for intel-
ligent agents and Web robots. The XML-based Semantic Web approach will
develop information in a machine-readable format.

Simple XML documents do not have great power, and the reason to use
XML is not immediately evident. The answer is that the XML documents
can be combined with documents and data from other applications on the
Web. Applications, which run on the Web, will use a common framework
for combining information from all documents and applications. For exam-
ple, XLink will allow multiple, distributed documents to be combined in
many clever, unpredictable methods. In addition, new query languages may
exploit the flexibility of powerful logical expressions emerging from XSLT
to provide unforeseen capabilities based on combining information from
simple XML documents. XML will enable the smooth progression of the
Web into a Semantic Web, a web of data, with features of a global data
warehouse.

Just Logic, Not Intelligence

The concept of machine-understandable documents does not imply artificial
intelligence, which will allow machines to think like people. It only indi-
cates the ability to solve a problem by performing well-defined operations
on well-structured data. For example, a spelling checker does not under-
stand how to spell; it simply uses some simple rules and a large dictionary.
In analogy, the Semantic Web will use rules for connecting meaning and
data. Instead of asking machines to understand people’s language, it still
involves asking people to conform to the machine by structuring the docu-
ment and the data.

One advantage of XML over initial artificial intelligence efforts relates
to combining knowledge. Many knowledge representation systems had a
problem connecting separate knowledge bases. They did not scale and
could not create new, independent concepts. However, XML will facilitate
documentation of relationships between originally independent concepts
by providing meta-tags that assign meaning and can be used in associating
new concepts.

The Outlook for XML 215

Data Models

An Entity-Relationship Diagram (ERD) maps a set of relationships. The
Web allows a relationship between two documents or data elements to be
stored separately from other information about these documents or data
elements. This approach is different from object-oriented systems used to
implement Entity-Relationship models, in which information about an
object is stored in the object.

For example, one person may define a dog as having a number of legs
and a tail but does not mention a color. Another person may define that a
specific dog is white with black spots. In an object-oriented approach, the
lack of color in the original definition might cause a problem. In XML,
color is added by simply adding another data element tag. Apart from this
simple but significant change, many concepts involved in the Entity-
Relationship modeling transfer directly onto the Semantic Web model.

Relational Databases

The Semantic Web data model relates directly to the model of relational
databases. A relational database consists of tables, which consist of rows
and columns. Each row consists of a set of data. The row and data are sim-
ilar to an XML data element node with the data values. The mapping is
direct: a row is an XML node; the data element name is a logical data ele-
ment; and the data is a physical value.

The Semantic Web facilitates linking the data to many different models.
It enables the addition of information from different databases on the Web
and thus allows sophisticated operations to be performed across them.

XML Logical Architecture: DTDs and Schemas

The basic XML model allows applications to map the data in any new for-
mat. The DTD and schema layer of the XML model declares the existence
of data elements and new properties. While the DTD declares existence,
schemas can also define more complex relationships. The relationships can
constrain the types of objects and elements to which definitions apply. For
example, the schema allows a relationship such as “the color of the tires is
white,” and prevents a nonsense relationship such as “the tires of a white
wall is a car.” These constraints can be propagated to the next layer of the
XML model, the logical layer.

216 XML

The logical layer provides the method for defining rules for relationships;
for deducing one type of document, such as a memo, from another type,
such as a letter; and for resolving queries by disambiguating terms. The
schema layer and the logical layer will enable automated knowledge extrac-
tion.

Intelligent Information Retrieval

The XML committee has developed tool specifications (such as DTDs,
schemas, XSLT, and RDF) that have the power to express inference rules at
the logical level. For example, it will be possible to encode the following: “If
the color of the tire is white, then the tire color of the tire is white.”

Two fundamental requirements are needed to build a processor for auto-
mated knowledge extraction. First, the processor needs the ability to read a
set of XML documents and deduce how to interpret new similar documents.
The DTDs and schemas will help with this requirement. Second, the proces-
sor needs the ability to extrapolate from one type of document to another
type of document, such as using the format of a memo to understand the
information in a letter.

The logic level defined by XSLT, DTDs, and schemas can be used to
define inference rules for knowledge extraction. The concept of reasoning is
not addressed. XSLT and RDF can be used to write rules, but cannot be
used to specify how to apply them in the same way as an expert system. For
all intents and purposes, a rule application at this stage is sequential and
mechanical. Meta-rules with expert systemlike functions will be a new
development.

Intelligent Search Engines

Search engines cover a huge number of Web sites and index millions of
HTML pages. However, these same search engines will frustrate users because
they find too many inappropriate answers to the searches. Then the user must
search through the answers and manually filter the desired responses.

XML will enable development of an intelligent search engine that com-
bines a reasoning system with the search engine. The tools and technology
are available. And the intelligent retrieval community and the expert sys-
tems community have the expertise. When the tools and expertise are com-
bined, the result will be more than just a Semantic Web, it will be another
evolutionary leap to the Knowledge Navigator.

The Outlook for XML 217

In the late 1980s, John Sculley of Apple Computers, Inc. (Cupertino,
California, www.apple.com) described a concept called the Knowledge
Navigator. The Knowledge Navigator was a futuristic, intelligent assistant
that could search the global network to collect and combine information
from across the world. With XML, tools can be created to allow one Web
site to automatically collect information from many other Web sites and
then combine the results into a coherent presentation for the user. Although
this is a sophisticated application, it is simply not that difficult to design,
considering the flexibility and power already built into XML. The promise
of XML is that the Knowledge Navigator, and more, is right around the
corner.

218 XML

219

Introduction

According to Tim Bray, a coeditor of the XML specification, a massive
amount of static, intellectual capital is locked up in legacy, proprietary, and
inaccessible document formats. Business opportunities will emerge from
unlocking that intellectual capital, leveraging it, and exploiting it for new
profitable ventures. XML can be the catalyst for these opportunities.

In the early part of 1999, acceptance of XML was slow because of ques-
tions about standards and specifications. As specifications were defined,
acceptance of XML accelerated. On the whole, corporations have been
enthusiastic about the power and utility of XML applications. With so
much support behind XML, the technology may exceed its hype. With the
growth of the Internet and the support of major corporations, the potential
may exceed the hype.

XML will be everywhere, and it will be transparent to the user. XML
standards will be firmly embedded within applications in the same way that
TCP/IP is a firmly established but unobtrusive standard of Internet commu-
nications. When XML is ubiquitous, even more so than HTML, it will be
just like any other standard, and it will no longer be news. Just like TCP/IP,
HTML, and CD-ROMs, XML will be accepted as just another technology
to be exploited, until the next killer app comes along.

XML will change the Web landscape just as significantly as HTML cul-
tivated the open fields of the Internet. Many of the seeds of automation that

Summary and
Conclusion

C H A P T E R 1 3

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

were planted years ago, such as the paperless office and globally distributed
information access, may grow and flourish in the fertile XML fields. With
careful cultivation, XML will yield a new crop of applications for increased
productivity of information and knowledge on a worldwide scale.

How to Apply XML

Ralph Oliva of Texas Instruments emphasizes the need to be decisive and
take action. Corporations that take a chance learn faster than others who
wait. Making a mistake and recovering is frequently faster than sitting and
waiting by the sidelines for more information. Hesitating to make a decision
is effectively the same as making the decision.

Clearly B2B e-commerce is the hot new topic. Also WAP is growing in
popularity. But simply implementing a way to exchange data and informa-
tion more easily can reap significant benefits. Dun & Bradstreet gained a
huge benefit from building just a small XML application. And that is the
secret. Build a number of small XML applications to create a chain of suc-
cesses and early wins. Get early wins to build implementation momentum
quickly. The key to building momentum to successfully exploit XML comes
from prudently selecting a problem that can be tackled in a reasonably short
period of time, say six to nine months. Make sure that the XML solution
will have some visibility and will have a demonstrable impact on corporate
operations and on financial improvements.

One method for finding the low-hanging fruit that can be easily picked
as a successful XML implementation is to collect and rank a list of ongoing
corporate problems and challenges. Every corporation has a set of problems
that no one has the expertise, resources, or time to address. Solving that one
juicy problem will build momentum for XML.

Consider the benefits of XML for transferring data among applications,
and exploit that capability to the best corporate interest. For example, a
standardized memo format can use XML to define and insert tags that iden-
tify date, people, subject, and key topics in the memo. Then the memo can
be presented as simple text, or a parser could select out the date, people,
subject, or key topics from the memo for other applications. After selection,
this information could be presented to another application, like a database,
for further manipulation. In addition, all memos could be stored in a docu-
ment repository. As the repository grows, it would become like a data ware-

220 XML

house, with much less overhead than a conventional data warehouse. The
warehouse effort can be leveraged to a full corporate knowledge manage-
ment strategy. These efforts begin with a simple memo DTD. XML can be
implemented for many other projects like this that are specific to each
corporation.

XML will provide dramatic functionality to data warehouse and data
mining applications. Not only does it allow for modeling, XML also uses
built-in meta-data in identifying data content, context, and meaning. Taken
the next step, an XML document repository can serve double duty as a data
warehouse with no additional development. This capability can easily be
extended to the Web. More and more documents will be published in XML
format, and these documents can be used as part of a worldwide distributed
data warehouse for intelligent data mining using XML-enabled search
engines and tools.

Planning an XML Implementation

Planning an XML implementation is much like any program management
activity. Designing a standard XML format for documents and other cor-
porate information is similar to designing a data architecture or a database.
XML will be a core technology in the Information Age and will affect the
local desktop computer and the global information exchange. It can provide
standard formats for the Web, for documents, for databases, and for any
application that exchanges information.

Taking the risk to embrace a technology early is driven by the desire to
gain a competitive business advantage. Before attempting to implement
change, the prudent executive will gather knowledge and then plan a strat-
egy. An outline for an XML implementation strategy is provided in Chapter
9. The key to good planning is not gathering as much information as possi-
ble for making a good decision; by the time enough information exists,
competitors will have leapfrogged ahead. So the key to good strategic plan-
ning is to gather enough information to develop a flexible plan that can
adapt as the environment changes.

Because of differing XML standards, many companies have taken a wait-
and-see attitude, while their competitors have explored the technology. The
competitors learn about the standards and conflicts, they learn from the
errors, and they gain valuable experience that rockets them up the learning

Summary and Conclusion 221

curve. From this experience, smart competitors can build a flexible XML
strategy that will adapt to any emerging standard.

To build an XML strategy, an executive can look at current corporate
applications and documents; review business-to-business transactions, elec-
tronic data interchange, and e-business opportunities; and explore how the
corporation can leverage XML’s ability to organize data into a well-defined
structure for manipulation or transfer across the Internet. There is an
important difference between a researcher and an executive. The researcher
wants to test the outer limits of innovation and worry about implementa-
tion later. The executive is more focused on exploiting the state of the prac-
tice and leveraging it for a competitive advantage that provides a growing
return on investment.

Leveraging Collaboration

One way to focus on the easy, low-risk opportunities is to collaborate with
other corporations that are already building XML applications. The list of
standards and repositories for XML DTD standards is a good place to
begin. These standards are frequently segmented by industry, so location of
a colleague should not be difficult.

XML, itself, can be the basis of corporate collaborations. With XML,
tools can be created to allow one corporation to share information from
many other corporations and then combine the results into a coherent pres-
entation. This sophisticated application is not difficult to design, consider-
ing the flexibility and power already built into XML.

Corporations that embrace XML from a high level will improve their
information flow and open new opportunities. They will also leave the
slower technology laggards behind in the dust.

While exploring XML, do not abandon existing SGML or HTML applica-
tions, yet. The infrastructure, ease of use, and cost of switching will probably
outweigh the perceived technology advantage of attempts to convert every-
thing to XML. Adapt to the changing directions of an emerging technology.

Business Potential

XML offers many advantages to organizations, software developers, Web
sites, and end users. As an industry standard for expressing structured data,

222 XML

XML will open key markets such as advanced database searching, on-line
banking, e-business, and other fields. Extraordinary opportunities result
from sharing actual data rather than simply presenting the data.

XML revolutionizes end-user functionalities on the Internet by imple-
menting a rich array of business applications. XML DTDs can be used to
markup existing information on Web sites. These DTDs will help corpora-
tions exchange information between customers and suppliers.

Development tools are being developed, but there is a growing need for
more tools that support collaborative Web sites. Legacy data is another area
of opportunity. Tools for generating XML data from legacy database infor-
mation and from existing user interfaces will fill a significant need. As a cor-
poration collects lessons learned during an XML implementation, the tools
and experience developed during the effort might be shared with other cor-
porations for considerable profit.

Polylingual Potential

XML provides the ability to read internationalized XML documents, for
example in Japanese. The use of Unicode will open up XML and the Web
to most of the world’s character sets and languages. With the addition of
enabling tools, even SGML products will be able to read valid XML docu-
ments. To read internationalized XML documents, SGML software will
need modifications to handle the Unicode ISO 10646 character set.

The advantage of XML and Unicode is that tags and documents can be
written in a variety of native languages or even mixed languages. HTML-
based Web pages could use other character sets, but the HTML tags still had
to be written in English.

Using XML and Unicode, then, means that English no longer needs to be
the predominant language of the Web. However, it may also create a Tower
of Babel as countries choose to use their native tongues for building the
DTDs, tags, and the documents. Probably a common ground will eventual-
ly merge, especially for e-business.

Information Reuse

One area to focus on is document, information, and data reuse. XML
makes it easy to reuse information. Rather than rewriting a document,

Summary and Conclusion 223

someone can simply modify an existing XML document. Carefully con-
structed DTDs will enable the creation of XML-based information elements
that can be easily reused across multiple media.

A standards-based XML document with additions, changes, or conver-
sions can be used as a template for creating other documents for specific
applications, specific media, or specific customers.

For example, by using an XML format, a corporation can automatically
publish information to the Web, to print media, to CD-ROM, or to HTML-
based pages, without wasting time and effort developing separate versions
for each different type of media. This also eliminates the need to juggle mul-
tiple vendors to accommodate proprietary technologies for the various
media.

In addition, XML documents can be easily customized to provide one-to-
one marketing by tailoring information for targeted customers. XML
enhances a corporation’s ability to provide customers with the information
they want, when they want it, and in the format they want it.

In fact, XML provides the framework for creating a unique corporate set
of documents that can be tailored to specific business processes and corpo-
rate standards. The rigidly defined structure of XML provides an almost
chameleon foundation to build corporate standards that can provide the
versatility needed to differentiate between the competition in the market-
place.

Moving to XML

Planning an XML implementation strategy is one thing. Implementing it
and migrating corporate information to an XML format is a completely dif-
ferent mountain to climb. A corporation should build a migration plan to
take strategic advantage of the XML promise for flexible documents and
improved information flow. The migration plan should have three general
steps: (1) building a XML data element model; (2) evaluating tools to devel-
op, deliver, and manage XML documents; and (3) managing the documents.

The Data Model

Converting information and data from a display format such as HTML to
a structured format like XML requires determining the information mean-
ing and content by analyzing how the corporation uses it. The result of the

224 XML

analysis is a corporate information model. Established industry-standard
information models may be used instead of starting from scratch.

Once the relevant information models have been constructed, the effort
to convert existing information into the XML format can proceed. If the
model is complete, with sufficient detail to the data element level, conver-
sion to a set of XML documents and DTDs will proceed smoothly. These
efforts can be done in house, through collaborative efforts, or they can be
completed with the help of qualified consultants.

Content Model

XML provides a method for creating standards for document content and
for modeling the content. Content modeling is the process of showing the
relationships and flows of data content within a corporation, application,
or database from the conceptual model to the logical model to the physical
implementation. The best reason for modeling is for planning purposes. A
content model maps data elements to business needs; this mapping reveals
gaps and facilitates built-in adaptability to changing needs.

For example, the Dublin Core document model organizes the number of
possible data elements for a document into three categories with a total of
15 element types. These element types can be used to define new document
types to fulfill various business functions. Indeed, any business function can
be represented by a finite set of data elements. The full set of business func-
tions, data elements, and their interrelationships makes up a corporate
model. If a new business function is required, the defined data elements can
be used to satisfy the requirement, illustrating the adaptability of a corpo-
rate data model. A week of modeling can save a month of new, unplanned
implementation. In other words, correcting a problem during conceptual or
logical design is more cost effective than debugging an error during imple-
mentation.

XML adds another tool to the modeler’s application toolbox. Developers
can use XML DTDs to model data inputs and outputs. Because of expected
XML tool standardization, model development and the transition to imple-
mentation should be much simpler than with many existing tools. The
momentum behind XML is growing because XML will be the new standard
for meta-data, modeling information, and data content. Software compa-
nies such as Microsoft, IBM, and Sun are focusing on XML applications
and products. Developers can create application-specific DTDs and vocab-

Summary and Conclusion 225

ularies using XML. Although XML is hyped as a document processing lan-
guage, its greater value will come from database applications. In addition,
XML can be used to create middle-tier servers that enable smooth commu-
nications across databases with different formats.

XML facilitates modeling data, documents, and even e-business transac-
tions. By using tags to define elements, entities, and attributes, a developer
can apply XML to create models. The logical structure of a document is rep-
resented by its elements and the physical structure is composed of its enti-
ties. The attributes can be used to specify element-level meta-data.

Document Components

Most business applications have some form of inherent structure.
Documents have well-defined structures that match the type and purpose of
the document. For example, e-mail usually consists of a sender, a recipient,
a subject, a message, and a closing. A memo includes similar information
with a date and a little longer message. An invoice includes a sender, a recip-
ient, and a message. A letter includes addresses of the recipient and sender,
as well as a more formal closing with a signature. From a purely function-
al approach, the format for e-mail could be seen as a subset of an XML
DTD for a formal letter. The e-mail would not use some components of the
letter. The invoice components may be similar to those used for e-mail.

A useful document structure is easier to define than a good data struc-
ture. The corporate document structure has evolved, either formally or
informally, through years of use. By comparing and analyzing the structure
of corporate documents, a developer will find common patterns of usage.
The developer can then use XML to encode these common patterns and
structures, helping to standardize the document and make it more interop-
erable. More importantly, the standards, as defined by XML DTDs, will
support better document management and better information exchange.

Data Structure

In fact, the ability to transform data structures for different applications is
the true strength, the killer app of XML. XML structures, identifies, and
tags the data content—the information—of a memo, a letter, or a job offer.
For example, in a job offer, the date, applicant, job title, and salary are iden-
tified. Much later, an XML parser or browser could be used to search a
repository of job offers, to sort them by job title, and to build a virtual

226 XML

database table of salary offers. Then, by including the date information, a
spreadsheet or graphic can be built to show how salary offers have grown
over time. These types of functions could help to keep a corporation more
competitive in the hiring market. Office automation with this kind of flexi-
bility will dramatically change data-driven workflow.

Creating the infrastructure for an XML document management system is
not a trivial task. Developing the DTDs to match the data structures is a sig-
nificant effort. Careful data analysis is required in order to build an archi-
tectural model that maps business functions to data structures and elements.
The same rules that apply to building a normalized relational database pro-
vide a good starting point for developing DTDs. A data element should be
the simplest item of data field that can be used distinctly.

Technology and Tools

Moving legacy data into XML is a data conversion task and a reformatting
task. It is also a strategic operation to add new business value to the data. XML
and SGML tools will help to map the value to the data and to support conver-
sion tasks. Lists of tools have been provided in various sections in this book. In
addition, new tools are being developed every day. Many tools are free, and
price is not necessarily proportional to quality, but perhaps to options.

A Controlled Approach

Once the repository of XML information has been created, it must be treat-
ed differently from the legacy information. The older applications, file sys-
tems, and other software may not work well with XML. These traditional
tools will not exploit the new flexibility and value in the XML information.
Again, many tools are available to support XML document management;
some of these have already been discussed in previous chapters.

While managing the XML document repository, consider three ongoing
activities. First, manage the XML documents that result from the migration
in order to fully exploit their value and leverage their reusability. Second,
continue to convert legacy information into XML documents and struc-
tured formats to reflect business usage. Third, as new, external information
arrives from partners, vendors, suppliers, and marketing define a process
for converting the information to XML before it is propagated corpo-
ratewide. Users will resist this process, but if the process is automatic and
facilitates dissemination, it will reduce the resistance and pain.

Summary and Conclusion 227

Implementing the XML repository will help to improve content design,
process engineering, and workflow automation. The use of standard DTDs
and XML formats will raise information and document management to
another level of functionality.

Concerns and Contingencies

Despite the extensibility of XML, there are trade-offs. The advantages are
not free; they come with very real costs. For example, one of the advantages
of nonreadable object files is that no one can read them or modify them
without another application. A novice could not easily do damage without
learning something about the application. With XML, a novice may be able
to modify a set of database commands as easily as running a text editor.

Many companies have documents written in different formats.
Historically, it has been easier to transfer and translate raw text to different
formats and across platforms. One vendor advantage and user disadvantage
was the switching cost related to the transfer and translation. For example,
some corporations simply did not want to deal with the trouble of switch-
ing between Macintoshes and PCs, or WordPerfect and MS Word. This
avoidance helped Microsoft capture the PC software market. However,
XML will open information transfer, leading to reduced switching costs.
Microsoft is aware of this and has put an XML strategy in place to guar-
antee customers that they will be able to exchange information with other
customers, corporations, or entities.

Microsoft is a very visible supporter of the XML standard. If Microsoft
sets the standards for DTDs and schemas, that may provide control and a
competitive advantage that inhibits interoperability.

The simplicity of XML encourages developers to create their own elements
and tags. XSL and cascading style sheets will combine with XML to define a
custom formatting language. XML is like a locomotive. With a good plan,
XML is like a train on a straight track and can carry a great deal of informa-
tion cargo with many long distance benefits. But with no direction or in isola-
tion, corporate XML efforts can be dangerous, inflicting unpredictable damage,
much like a train that jumps the tracks and crushes everything in its path.

A custom DTD can separate a company from the rest of the industry, and
one of the goals of XML is improved rather than separate communications.
Indiscriminately combining tags from different industries without planning
is like trying to mix oil and water.

228 XML

With its flexibility and inherent power, XML also has the potential to be
the worst maintenance and incompatibility nightmare since the Year 2000
problem. It is said, with tongue in cheek, that a month of implementation,
maintenance, and repairs will always save an hour’s worth of careful plan-
ning. In other words, collaboration, coordination, and careful planning
across companies will greatly improve the benefits that XML promises to
deliver and will prevent thousands of dollars of wasted effort.

In addition, XML-based interoperability assumes the use of fast comput-
ers. The cost of interoperability is computer cycles. In some cases, for the
immediate future, legacy documents will be translated from one application
format to XML and then back to a different application format. This com-
puter-intensive translation process among three data formats, for the sake
of interoperability, may result in slower, initial processing times.

Another important design issue is for the developers and users to collab-
orate on the structures and elements. The creation of corporate standards
will probably require trade-offs. For example, people like to create their e-
mail quickly and they like to make their memos unique to match their per-
sonal styles. Attempts at building standardized formats will fail if latitude
for personal style is not taken into account. In a pre-Web development
activity to automate corporate standards for document formats, the author
asked for user suggestions and added a few extra options for style changes
in the paragraph arrangement, the fonts, and the closings. These minor
changes had no effect on the information content or structure. The automa-
tion of standard formats improved the speed of generating memos,
improved their readability, and greatly improved response time to memos
and information requests. The author learned an important lesson.
Although automation and standardization are meant to support and
improve corporate processes, ultimately these activities involve people. Any
changes can fail if they do not ultimately involve and improve the working
environment of these people.

Omnimorphic Possibilities

What can a potter do with a piece of clay? What direction does a sculptor take
with a block of marble? What could Picasso do with a pen and a napkin?
What profit potential can a clever manager find in a technology that adapts
and conforms to the structure of his corporate data and information?

Summary and Conclusion 229

At the first level, an IT manager can explore simple XML projects that
deal with data transfer between applications or between departments.
Plenty of software is freely available on the Web, such as at the Microsoft,
IBM, Oracle, and Sun Web sites. In fact, Microsoft’s Windows 2000 and
Office Tools 2000 use native XML in the data formats. Exploring those
paths is a fairly safe way to learn about the technology.

At the second level, an IT department can look into the various XML
markup languages and vocabularies from different sources, such as the
repositories, the B2B efforts, the WAP activities, XHTML, or VoiceML.
Many of these technologies are well proven and have millions or even bil-
lions of dollars of support behind them. From here, the step to the third
level is easy.

At the third level, an IT developer can build an XML vocabulary that is
customized to address the specific challenges and problems of the corpora-
tion. So a company might roll its own XML interfaces, inventory system,
reporting system, or XML document warehouse. With experiences like these
under its belt, a corporation is ready for some insanely great killer apps.

XML enables the ability to transfer information among a variety of
devices. So information on a desktop can be shared with a wireless device.
With a fast wireless connection, a wireless device can use XML and peer-to-
peer technology to share the disk space and processing on remote desktop
computers. What this means is the ability to tap into the computing power
of the Internet from a handheld device at any location.

XML enables the convergence of technologies needed to do more than
interoperate—to share distributed sources as if they were one. As shown in
Figure 13.1, XML pushes through the complexity barrier that stopped con-
ventional technologies; it allows developers to transfer data and informa-
tion in ways that were previously difficult, if not impossible. Because XML
is omnimorphic and can serve as a universal translator across all platforms,
it provides the appropriate data format. High bandwidth wireless provides
the communications, and peer-to-peer computing provides the needed pro-
tocols.

What would a corporation do if it could tap into computing power as
easily as pulling in a radio signal? What would consumers do if computing
power were free, and how could companies make a profit off of it?

Currently, information is virtually free over the Web. Companies leverage
this by selling advertising, providing search engines, and filtering the infor-

230 XML

mation. Free computing power brings additional complexities to the equa-
tion and multiple possibilities. When the technology grows this pervasive,
XML will be as ubiquitous as transistors or electricity is today. Both quan-
tities are all around us and both are taken for granted. Extrapolating from
the example of Web technology, ubiquitous computing will be possible by
2005. If Nokia and other wireless communications companies make some
breakthroughs with WAP, and if Intel does the same with peer to peer, then
these capabilities could appear even faster.

But for all of this to come together, companies must embrace XML, as
the trends have indicated. XML will do for business in this decade what the
Web did in the late 1990s. In fact, XML will do much more. It will help to
level the playing field and allow small companies to compete with large
companies on a global scale. By improving access to information, XML will
improve corporate efficiencies. It is a significant Internet technology, wor-
thy of exploration for its many potential applications.

Summary and Conclusion 231

INFORMATION

Conventional
Technology

XML
Technology

R
E

S
O

U
R

C
E

S

Complexity
Barrier

FIGURE 13.1 XML punches through the complexity barrier by allowing information and
data to go where conventional technologies were unable.

This page intentionally left blank.

A P P E N D I X

The World Wide Web Consortium (W3C) keeps a Web page for each XML
technology specification. Some of these are well written and easy to read,
and others are technical:

www.w3c.org/TR/xslt—XML Stylesheet Language Transformations (XSLT)

www.w3c.org/TR/xml-stylesheet—XML Stylesheet Language (XSL)

www.w3c.org/Note-xml-stylesheet—XML Stylesheet Language (XSL)

www.w3c.org/TR/xlink—XML Linking Language (XLink)

www.w3c.org/TR/xpath—XML Path (XPath)

www.w3c.org/TR/1998/WD-xptr—XML Pointers (XPointer)

www.w3c.org/TR/REC-xml-names—XML Namespaces (Namespaces)

www.w3c.org/TR/xml-schema-1—XML Schemas (Schemas)

www.w3c.org/TR/REC-xml—eXtensible Markup Language (XML)

233

W3C Addresses

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

This page intentionally left blank.

A
A2A (Application to Application)—Communications data transfer from
one application to another.

Acronyms—Abbreviations for common phrases that help simplify the trans-
mission of ideas. Unfortunately, acronyms can also inadvertently exclude
novices and people who are not experts in the field, or in the know.

AIML—Astronomical Markup Language, used for instrument control.

AMPS (Advanced Mobile Phone Service)—An analog network protocol
used by cellular operators in the United States. In other parts of the world,
cellular service is based on digital, not analog protocols.

Analog—The use of continuous frequencies and signals as opposed to digi-
tal signals. Voice telephone calls used to be analog. Grand pianos are still
analog devices.

API (Application Programming Interface)—A collection of subroutines that
provide the software connection or interface between the operating system
and another program. For example, an application program might call an
API subroutine to get mouse information.

Artificial Intelligence (AI)—The study and development of software and
associated hardware that performs tasks, which if performed by a living
thing would indicate a level of intelligence.

235

Glossary

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

ASCII (American Standard Code for Information Interchange)—Seven-bit
Latin character set.

ASP (Application Service Providers)—Companies that lease or rent applica-
tions and services to support them. In general, an ASP vendor provides a
system at its own location with installed applications (e.g., SAP R/3, Notes,
Peoplesoft, Oracle Financials) that are sold to customers on a “per seat”
basis. This concept is similar to Web sites that provide stock portfolio sup-
port. The user logs in, enters his stock information, and uses applications
on the Web site to analyze his portfolio. An ASP is, effectively, a source for
application outsourcing.

ASP (Active Server Pages)—ASP refers to ActiveX scripted pages, when asp
is used as a file type, such as server.asp. Active Server Pages are similar to
other scripted Web pages such as those using Java Script, CGI, or Perl.

Attribute—A modifier of a data element tag. Meta-data about a specific ele-
ment.

B
B2B (Business to business)—Implies communications or data transfer.

Back Door—A hidden method of access, such as a secret password or
account that a hacker can use to gain access to a computer without permis-
sion. A back door can be installed during development by the original pro-
grammer, or it can be created by a Trojan Horse.

Bit—The smallest unit of data in a computer. However, computers usually
store data and execute instructions in multiples of bits, called bytes. A bit is
abbreviated with a small b.

Blob—Binary large object.

BML (Bean Markup Language)—IBM’s markup language for accessing and
configuring JavaBeans.

Bricks and Mortar—Slang term used to indicate non-e-commerce, physical
stores.

BSML–(Biosequence Markup Language)—A graphical language for genetics.

Byte—There are eight bits in a byte. A byte is abbreviated with a capital B.
In communications and data transmission, a byte may be composed of
10 bits because of overhead, compression, and error checking.

236 Glossary

C
CBL (Common Business Library)—A set of business schema developed by
CommerceOne, Inc.

CBT—Computer-Based Training.

CDATA—Character Data used to represent a string of alphanumeric text
data.

Clicks and Mortar—Slang phrase used to describe retailers that have both an
e-commerce presence and a physical store. (See also “Bricks and Mortar.”)

Client—A computer or software program that requests services from anoth-
er computer, called a server.

Client/Server—Combination of client software and server software.
Typically, a client/server system has multiple layers of functions, such as a
presentation layer, a processing layer, and a data layer.

CML (Chemical Markup Language)—Used for chemical information.

Content Model—Range of content that is allowable for an element.

Crawler—See Spider.

CSS (Cascading Style Sheets)—Used to define a page layout for HTML-
based Web pages.

D
DataCraft—IBM product that provides an XML view of databases.

DCD (Document Content Definition)—A schema facility for specifying rules
for the structure and content of XML documents. An alternative to DTDs.

DDML (Data Definition Markup Language)—Used for making data models.

DFD (Data Flow Diagrams)—Provides schematics of data pathways
through a system.

DHTML– (Dynamic HTML)—Animated and nonstatic version of HTML
that allows developers to create Web pages that are more responsive to user
interaction than previous versions of HTML. Netscape Navigator 4.0 and
Internet Explorer 4.0 use different methods to implement DHTML.

Document—In XML, document is a general construct that includes data
and markup.

Glossary 237

bution and future releases, may charge for the second release of the soft-
ware. Freeware may be used, but not resold.

FTP (File Transfer Protocol)—Used for transferring files between two com-
puters across the Internet.

G
GML (Generalized Markup Language)—The first of the markup languages.

H
Hacker—Someone who deliberately gains access to other computers with-
out the knowledge of the owner. Malicious hackers do this to cause damage
or steal information.

HTML (HyperText Markup Language)—The standard of tags defined by
the World Wide Web Consortium (W3C) to define how a Web page is pre-
sented in a browser. HTML is a subset of SGML.

HTML Writers Guild (http://www.HWG.org)—International organization
of Web developers with members throughout the world in more than 130
nations. HWG promotes standards, practices, and techniques for Web
authoring. In addition, HWG provides help on all aspects of Web develop-
ment, including XML.

HTTP (HyperText Transfer Protocol)—The standard used for transferring
information between two computers across the Web.

I
Intelligent Agent—An intelligent agent is a small artificial intelligent soft-
ware program that can carry out a number of different kinds of functions
without further direction. Agents may use technologies such as expert sys-
tems, neural networks, fuzzy logic, and genetic algorithms.

Internet—Collection of networks connected by the Internet Protocol.

IP (Internet Protocol) Address—The identifying number of a computer or
Web server. Static IP addresses always use the same number. Dynamic IP
addresses are assigned a new number every time the computer is logged
onto the Internet.

Glossary 239

ISO (International Organization for Standardization)—A collective, world-
wide standards group for computing, communications, manufacturing, and
engineering processes.

K
Killer App—A popular and useful application that is so compelling that it
builds the interest in a new development, such as XML or the Web. Mosaic
was the killer app for the Web.

L
LDAP—(Lightweight Directory Access Protocol)—A method for storing
and retrieving connection information to directory and database servers.
LDAP is an industry standard for storing access information in a centralized
global directory for easy administration and easy access by all users.

M
m-Commerce—Mobile commerce.

MathML (Mathematics Markup Language)—A language for representing
complex mathematical formulae. As MathML evolves, it may also provide
a capability for processing math.

MCF (Meta Content Framework)—An effort of Netscape to standardize
meta-data. The intent of MCF is to create a common meta-data vocabulary
and a data model to facilitate global interoperability.

Meta-data—Information or meaning about data. Typically, a general cate-
gorization about a collection of similar data. For example, a library card
catalog, TV Guide magazine, and the index in the back of a book are meta-
data about their sources at various levels of detail.

MOF (Meta Object Facility)—A standard created by the Object
Management Group for managing common meta-information and distrib-
uted repositories.

MP3—Stands for MPEG 1, Layer 3 (or Motion Picture Experts Group,
Audio Layer 3), which is used for compression of Internet music or audio.

MPEG 1, Layer 3—Moving Picture Experts Group (MPEG) is a set of stan-
dards for encoding multimedia data. Also known as MP3. MPEG-1 and
MPEG-2 are the previous standards.

240 Glossary

MSXML (Microsoft XML)—Microsoft’s version of XML before the final
standard was defined.

MusicML (Music Markup Language)—Provides a language for representing
musical notes.

N
Namespace—The specific pathname or segment used to define a specific
location or URL.

Namespaces—Collections of universal resource identifier names.
Namespaces provide a way to collect data from multiple sources into one
document and to tag the information with its respective source.

O
OFX (Open Financial Exchange)—The format that Quicken and Microsoft
Money, etc. use to exchange information with banks. This text format sim-
plifies interchange of financial information.

OMG (Object Management Group)—The standards organization for tech-
nologies involved with object-oriented methodology.

Omnimorphic—Serving as a universal foundation on which to construct
any form, structure, character, or style.

OOAD (Object-Oriented Analysis and Design)—The steps used in object-
oriented methodology.

Open Source—The source code of a program that is available to the soft-
ware development community for free. This idea was resurrected by Linux
and the assumption that a broader group of developers across the world will
evolve superior software and distribute their results to others. Another
example is Netscape Communicator, which is open source, although there
is no proof that programmers are distributing improvements.

ORB (Object Request Brokering)—An integrating layer of software or mid-
dleware that encapsulates the intelligence needed to recognize actors and
hide the details of their internal representation from other actors. ORBs
serve as proxies to represent objects to a larger system.

ORM (Object Role Modeling)—A powerful method of designing and
querying an information system (such as a database or an XML document)
at the conceptual level and mapping between conceptual and logical (for

Glossary 241

example, relational) levels where the application is described in terms that
are readily understood by the users. Because developers discuss applications
with subject matter experts at the conceptual level by using natural lan-
guage, more reliable and effective communication occurs, permitting the
analysis of knowledge in simple information units. Compared with models
created by using other methodologies, data models designed with ORM are
richly expressive and semantically stable.

P
P2P—Peer-to-peer computing.

Parser—Software application that processes text, validates its syntax, deter-
mines its logical content, and builds structures to represent data content and
relationships.

PatML—IBM’s pattern match and replacement system for translating XML
documents to XML or non-XML documents.

PDF (Portable Document Format)—Invented by Adobe Systems to represent
documents in a platform-independent format.

PGML (Precision Graphics Markup Language)—Language used for render-
ing vector graphics.

Port—Electronic connection that allows data to travel from the client PC to
the server over a network.

PPC—Peer-to-peer computing.

PPN—Peer-to-peer networking.

Prolog—First statement in an XML document containing processing and
DTD information.

PtP—Peer-to-peer computing.

R
RDF (Resource Description Framework)—A method of processing meta-
data. It provides machine-readable interoperability and enables automated
processing of Web-based documents.

RDBMS–(Relational Database Management System)—The middle-tier soft-
ware used to access and manage data stored in a relational database.

242 Glossary

RTF (Rich Text Format)—A Microsoft format used for exchanging infor-
mation between different applications.

S
SANs (Storage Area Networks)—The combination of data storage systems
and networking technology. Storage is not linked to any single server, but is
deployed separately and managed independently.

SAX—Simple API for XML elements. Alternative for DOM.

Schema—An alternative to a DTD that is more suitable for data-intensive
XML applications. Schemas (or schemata) provide the formal expression of
an XML document structure by representing the defining elements (or
objects) of a data model, their attributes (or properties), and the relation-
ships between the different elements.

SDMI (Secure Digital Music Initiative)—Digital music standard intended to
provide the functionality of MP3 along with a security layer to protect the
copyright and to encourage a pay-for-use business model.

Servlet—A small server application, as opposed to a client-side applet appli-
cation.

SGML (Standard Generalized Markup Language)—The “mother of all
markup languages.” SGML is a meta-language from which HTML and
XML were derived.

Shareware—“Try-before-you-buy” software that is distributed free on a
trial basis. If the user likes it, he or she pays for it later. The software may
have a built-in expiration date to prod the user to purchase it. Sometimes
shareware authors do not require monetary payment, but request items of
local interest, such as colorful stamps, unique coins, or postcards.

SMIL (Synchronized Multimedia Integration Language)—Used to provide
multimedia presentations distributed over the Web. SMIL is intended to
provide multimedia functionality in analogy to what HTML did for hyper-
text.

SOX (Schemas for Object-oriented XML)—A methodology for defining the
structure and content of XML objects.

Spider (Web Spider or Web Crawler)—Spider is a program that searches the
World Wide Web automatically by retrieving a document and all documents
linked to it. Web crawler is a program that retrieves on-line documents and

Glossary 243

all the documents linked to it, downloads their contents, and indexes them.
This enables the user to go to a search engine to retrieve information need-
ed with minimal effort. Web crawlers are used to organize the numerous
Web sites, and their contents, that are found in the World Wide Web.

SQL (Structured Query Language)—A standard query language used for
database information retrieval.

T
TCP/IP (Transmission Control Protocol/Internet Protocol)—The interna-
tional standard used for sending information over the Internet.

TEI (Text Encoding Initiative)—An academic organization that has created
standards for document structures.

Terabyte (TB)—Usually means 1 trillion bytes, 1,000 gigabytes, 1 million
megabytes, or 240 bytes.

TeXML—An XML-document formatting tool created by IBM.

Trojan Horse—A malicious program that masquerades as a harmless pro-
gram, but opens up a backdoor, so that hackers can gain access to someone
else’s computer. Trojan Horse works just like a virus, but does not propa-
gate the way a virus would.

U
UDDI (Universal Description, Discovery, and Integration) project—Seeks to
build a directory that allows companies to look up other businesses and to
get information about their products and services, much the same way that
a telephone book’s yellow pages work. UDDI also provides the ability to
look up what XML DTDs, schemas, and other data formats that business-
es use for information transfer.

UML (Unified Modeling Language)—Used for object-oriented methodology.

Unicode—A 16-bit character set, similar in concept to an extended ASCII
character set. It includes Latin, Greek, non-Latin characters, ideographic
characters, mathematical characters, etc. within a 65,000-character set.

URL (Uniform Resource Locator)—The address of a Web page.

UTF (Unicode Transformation Format)—Abbreviation for the various uni-
code standards, including UTF-8, UTF-16, and UTF-32.

244 Glossary

V
Valid—Term used for an XML document that is well formed and conforms
to a DTD.

Virus—A malicious program that penetrates a computer system and then
replicates to tie up valuable resources or to damage valuable data. A virus
may hide in an executable program that is transferred from computer to
computer.

VPN (Virtual Private Network)—A network that uses security protocols to
allow proprietary corporate transactions over a public network, such as the
Internet.

VRML (Virtual Reality Modeling Language)—Used to define three-dimen-
sional graphics on the Web. The standard is not popular because it is slow
to download.

W
W3C (World Wide Web Consortium)—The international standards group
for the Web.

WAP (Wireless Application Protocol)—The protocol used to send information,
specifically text-based Web pages, to a cellular phone or wireless system.

WDDX (Web Distributed Data eXchange)—Describes complex data struc-
tures, such as arrays and records, so that they can be moved among appli-
cations.

WIDL (Web Interface Definition Language)—Enables application-to-appli-
cation communication. WIDL uses a meta-data syntax to define APIs. A
DOM maps application or document data elements to program variables.

WML (Wireless Markup Language)—Uses WAP to convert HTML Web
pages or XML data into a format that cell phones, digital assistants, or
other wireless systems can display on the small screen.

Worm—A malicious program that penetrates a computer system and pro-
gressively travels throughout the system damaging data along its path. A
worm may hide in an executable program that is transferred from comput-
er to computer.

WYSIWIG—Stands for “what you see is what you get,” which implies that
the text on the computer screen will look the same when it is printed on a
page. The term is usually associated with word processing.

Glossary 245

X
XFA (Extensible Forms Architecture)—An open-standards-based forms
architecture created by JetForm Corp., in Ottawa, [www.jetform.com] and
submitted to the W3C to help define XML requirements for business forms.
The W3C standards that support on-line forms will include a combination
of XFA and XFDL.

XFDL (eXtensible Forms Description Language)—An open-standards-
based forms architecture created by Uwi.com, in Concord, California,
[www.uwi.com] and submitted to the W3C to help define XML require-
ments for business forms. The W3C standards that support on-line forms
will include a combination of XFA and XFDL.

XHTML (XML-based HTML)—HTML 4.0 is based on SGML; XHTML is
the result of rewriting HTML functionality as an XML-application lan-
guage.

XLink (XML Linking Language)—Specification that provides a functional
approach to document linking by using XML. XLink provides new func-
tionalities for Web linking.

XLL (XML Linking Language)—The same as XLink.

XMI (XML Meta-data Interchange) Format—A standard that combines
XML and object-oriented advantages using UML and OMG’s MOF stan-
dards.

XML (eXtensible Markup Language)—A meta-language subset of SGML
used to create markup languages that can identify the meaning or the
semantics of a document.

XML Bean Maker—An IBM application that automatically generates
JavaBean classes for any DTD.

XML-Data—An alternative to DTDs that uses XML syntax and includes
data typing.

XML Editor Maker—An IBM application that automatically builds visual
editors.

XML Parser—Parser that reads XML data, builds a tree structure, and val-
idates the data using DTD or schema.

XML Productivity Kit—IBM application that is a companion to the XML
Parser for Java.

246 Glossary

XML-RPC (eXtensible Markup Language–Remote Procedure Call)
Protocol—The method used for interapplication service requests.

XML TreeDiff—IBM package of Beans for differentiating and updating
document object model trees.

XPointer—eXtensible Pointer for a location within an XML document.

XQL (eXtensible Query Language)—A query language similar to SQL that
is used to query XML documents and then return well-formed XML docu-
ments containing the retrieved information.

XSL (eXtensible Stylesheet Language)—Refers to formatting objects that
are similar to CSS. XSL is used to extract data from the document and con-
vert it to another format.

XSLT (eXtensible Stylesheet Language Transformations)—Includes a set of
features and processing capabilities such as templates, patterns, scripting,
and tree processing.

Glossary 247

This page intentionally left blank.

A
A2A (application to application), 235
Abbott Labs, 149
Acord consortium, 197–198
Acronyms, 235
Active server pages (ASP), 236
Ad hoc model, 124
Adapt, ability to, xxiii–xxiv
Advanced mobile phone service (AMPS),

235
Advertising, 139
Agents, intelligent, 126–127
AI (Artificial Intelligence), 235
AIML (Astronomical Markup Language),

235
Alta Energy Technologies, 140
AMPS (advanced mobile phone service),

235
Analog, 235
Antitrust, 145–146
Apache, 186
API (application programming interface),

235
Apple Computers, Inc., 218
Application service providers (ASP), 236
Application to application (A2A), 235

Applications, XML, 87–107
Bluetooth, 98–99
browsers, XML, 103–104
business, on-line, 88
catalogs, on-line, 89
CDF (Channel Definition Format), 95
data warehousing, 91–92
document configuration control, 89–90
e-commerce, 87–88
and EDI, 94–95
and intellectual capital, 91
m-commerce, 99–103
OFX (Open Financial Exchange), 95
order fulfillment, 89
PDM (Product Data Manager), 90–91
SMIL (Synchronized Multimedia

Integration Language), 94
SVG (Scalable Vector Graphics), 93
WAP (Wireless Application Protocol),

96–97
WML (Wireless Markup Language),

97–98
XHTML (eXtensible HyperText Markup

Language), 92–93
and XML data format/transfer, 104–107

Architecture, document, 43–44, 130–131

249

Index

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

Artificial Intelligence (AI), 235
ASCII, 236
ASP (active server pages), 236
ASP (application service providers), 236
Astronomical Markup Language (AIML),

235
Attributes, 26, 236
Automotive industry, 188–189
AutoXchange, 147

B
B2B (business-to-business) exchange,

xxii–xxiv, 14, 85, 87–88, 121–123,
132–152, 210, 236

and advertising, 139
and antitrust, 145–146
benefits of, 139–140
design requirements for, 141–142
examples of, 144–151
exchange requirements for, 142
individual, 141
intermediary, 141
new business model for, 140–141
opportunities in, 150–152
potential benefits of, 133–134, 148–150
with startup vs. conventional companies,

136–139
successful implementation, creation of,

135–139
and XML, 142–145, 147–148, 150–152

B2C (business-to-consumer), xxiii, 133, 134
Back doors, 236
Bandwidth issues, 176, 210
Baxter International, 149
Bayer AG, 190
BEA Systems, 55
Bean Markup Language (BML), 236
Benefits of XML, 2, 13–14
Berners-Lee, Tim, 182
Bethlehem Steel, 149
Bidirectional linking, 85
Biosequence Markup Language (BSML),

236
Bit, 236
BKA (Bundeskartellamt), 146
Blob, 236

Bluetooth, 92, 98–99, 140, 199
BML (Bean Markup Language), 236
Boeing, 30, 34, 149
Bosak, Jon, 5
Bray, Tim, 5, 219
Bricks and mortar, 236
Browsers, xxv, 103–104
BSML (Biosequence Markup Language),

236
Business, on-line, 88
Business model, 158–160
business-to-business exchange

(see B2B exchange)
Business-to-consumer (see B2C)
Byte, 236

C
C++, 68, 70–72
Carrefour SA, 149–150
Cascading Style Sheets (CSS), 64, 237
Catalogs, on-line, 89
CBL (Common Business Library), 237
CBT (see Computer-based training)
CDATA, 237
CDF (Channel Definition Format), 95, 213
CDMA (code division multiple access), 96
CDPD (cellular digital packet data), 96
Channel Definition Format (CDF), 95, 213
CheMatch.com, 140
Chemical industry, 189–191
Chemical Markup Language (CML), 237
China, xxiv, 102–103
Cisco Systems, Inc., 151, 157, 192
Clicks and mortar, 237
Client, 237
Client/server, 237
Closed content model, 28
CML (Chemical Markup Language), 237
Coconstruction of innovation, 168
Cocoon, 186
Code division multiple access (CDMA), 96
CommerceOne, 147, 149
CommerceXML, 16
Common Business Library (CBL), 237
Compatibility issues, 174
complexType tag, 26

250 Index

Computer-based training (CBT), 183–184, 194
Computer industry, 191–193
Computer Sciences Corporation (CSC), 149
Conceptual layer, 130
Conditional processing, 64
Conditional statements, 70
Content, 83–85
Content management, 56
Content model, 225–226, 237
Convergence, 210–211
Core competencies, 154, 156–157
Cost savings, xxii
Covad Communications, Inc., 199
Covisint, 138, 144–148, 151, 188
CSS (Cascading Style Sheets), 64, 237
Customer-motivated creativity, 157–158
Cybenko, George, 83

D
DaimlerChrysler, xxii, 5, 15, 17, 137, 144,

145, 188
Darwinian model, xxiii
Data, 119

documents vs., 49–50
exchanging, 114
format for transfer of, 114
legacy, 114
reuse of, 183–184, 223–224
storing XML, 143–144
structure of, 226–227

Data Definition Markup Language
(DDML), 237

Data element tags, 53–54
Data Flow Diagrams (DFD), 237
Data management, 48–49
Data mining, 120
Data model (for XML implementation),

224–225
Data processing, 214
Data warehouses, 91–92, 115–119, 208

advantages of XML, 118–119
definition of, 116
integration of data in, 116–117
nonvolatility of data in, 118
subject orientation of, 117
time variant character of, 117–118

Database(s):
relational, 216
storing XML in, 109–110
XML as, 108–109

DataCraft, 237
Datatypes, 26–27
DCD (Document Content Definition), 237
DDML (Data Definition Markup

Language), 237
Decomposition, document, 110–114
Dell, 133, 135–136, 151, 152, 157
Denial of Service (DoS), 238
Deutsche Telecom, 102
DFD (Data Flow Diagrams), 237
DHTML (Dynamic HTML), 237
Diamond Technology Partners (DTP), 147
Digital Subscriber Line (DSL), 199, 238
DII COE (Defense Information

Infrastructure Common Operating
Environment), 16, 18

DocBook standard, 130
Document configuration control, 89–90
Document Content Definition (DCD), 237
Document element, 238
Document Object Model (see DOM)
Document Style Semantics and Specification

Language (DSSSL), 238
Document Type Definitions (see DTDs)
Document(s), 42–62, 237

architecture of, 43–44, 130–131
and content management, 56
data element tags in, 53–54
data vs., 49–50
decomposition of, 110–114
definition of, 42
design on, 46–49
example using, 50–51
hierarchical structure of, 45–46, 52–53
inserting business rules into, 25–26
processing, 104
rationale for using, 44–45
repurposing, 65–67
schema or DTD associated with, 42–43
and security, 54–55
self-describing, 24–25
size of, 59–61

Index 251

Document(s) (Cont.):
standards for, 55–56, 61
tagging of, 184
types of, 51–52
validating, 61–62
virtual, 20–21
well-formed, 9
and XML implementation, 168–171
and XML structure/grammar, 57–59
in XML/EDI, 126

DOM (Document Object Model), xxvi, 12,
143, 238

DoS (Denial of Service), 238
Dow Chemical, 189–190
Dow Jones & Company, 196
DSL (Digital Subscriber Line), 199, 238
DSSSL (Document Style Semantics and

Specification Language), 238
DTDs (Document Type Definitions), xxvi,

3, 6–7, 11, 14–16, 19–20, 23, 35–41,
238

creating, 31–33
debate over standards for, 40–41
function of, 35–36
future of, 216
industry standards for, 179–180
meta-data defined by, 36–40
proprietary, 178
rationale for, 35
repositories/standards, 15–16
rules defined by, 36
schemas vs., 24, 25, 27–29
and transformation of XML documents,

33–35
unstable standards for, 178
and XML document, 42–43

DTP (Diamond Technology Partners), 147
Dublin Core standard, 130, 225
Dun & Bradstreet, 196
Dupont, 189–190
Dynamic content, 86
Dynamic HTML (DHTML), 237

E
Earned value management system (EVMS),

26

E-business:
strategic advantages of, 133–134
and XML implementation, 167–168
(See also B2B e-commerce)

ebXML, 56
ECMAScript, 238
ECML (Electronic Commerce Markup

Language), 238
E-commerce, xxii–xxiv, 2, 87–88
EDI (Electronic Data Interchange), 2, 87,

94–95, 121–127
EDI-XML, 92
Electronic Commerce Markup Language

(ECML), 238
Electronic Data Interchange (see EDI)
Element type, 238
Entities, 238
ERD (Entity-Relationship Diagram), 216
Ericsson, 199
E-Steel Corporation, 149
EVMS (earned value management system),

26
Executive support, obtaining, 173
Extended links, 78, 238
eXtensible Forms Architecture (XFA), 246
eXtensible Forms Description Language

(XFDL), 246
eXtensible Markup Language (see XML)
eXtensible Query Language (XQL), 247
eXtensible Stylesheet Language (see XSL)
eXtensible Stylesheet Language

Transformations (see XSLT)

F
Federal Trade Commission (FTC), 146
File Transfer Protocol (FTP), 239
Financial Industries Markup Language, 149
Finland, 102
FinXML, 51
Firewalls, 238
First Union, 196
Ford Motor Company, xxii, 4, 14, 15, 17,

30, 34, 69, 74, 137, 138, 144, 145,
173, 188

Freeware, 238–239
FTC (Federal Trade Commission), 146

252 Index

FTP (File Transfer Protocol), 239
Future of XML, 207–218

and B2B e-business, 210
and connection speed/bandwidth, 210
and convergence, 210–211
and data processing, 214
and data warehouses, 208
and emerging specifications, 212–214
and international trade, 210
and peer-to-peer computing, 211
and Semantic Web, 208–209, 215–218
and transaction processing, 214
and ubiquitous Web servers, 212
and universal data format, 207–208
and wireless Internet, 211–212

G
GE Medical System, 149
General Electric (GE), 137
General Motors (GM), xxii, xxiii, 4, 14, 15, 17,

137, 138, 144, 145, 147, 173, 188–189
Generalized Markup Language (GML), 239
Global solutions, 185
Global systems for mobile communications

(GSM), 96
GM (see General Motors)
GML (Generalized Markup Language), 239
Gnutella, 82–83, 86
Gopher, 183
Grammar, XML, 57–59
GSM (global systems for mobile communi-

cations), 96

H
Hackers, 239
HTML (HyperText Markup Language),

xxv, 4, 239
and appearance of Web page, 17
Cascading Style Sheets in, 64
data in, 49
flexibility of, 15
and migration to XML, 177–178
“sloppy planning” with, 179
and WML, 97–98
and XHTML, 92–93
XML vs., 6–10, 104, 105

HTML Writers Guild, 239
HTTP (HyperText Transfer Protocol), 97,

239
Human Genome Project, 14
Hybrid model, 124–125
HyperText Markup Language (see HTML)
HyperText Transfer Protocol (see HTTP)

I
IBM, xxiii, 13, 14, 48, 56, 59, 137, 180,

186, 191, 209
IDC (International Data Corp), 150
Implementation, XML, 153–177, 224–229

and anticipation of change, 160
avoiding wait-and-see approach to,

173–174
and business model, 158–160
compatibility issues in, 174
content model for, 225–226
controlled approach to, 227–228
and core competencies, 154, 156–157
customer-focused strategy for, 153–158
data conversion/reformatting of legacy

data, 227
data model for, 224–225
and data structure, 226–227
document building, 168–171
and document structure, 226
e-business decisions associated with,

167–168
executive support of, 173
and financial planning, 175–176
infrastructure needed for, 176
interoperability concerns, 176–177
legal issues in, 175
and leveraging of XML features, 155
new services, migration to, 160–162
phases of, 162–166
planning for, 221–222
security issues in, 174–175
speed of, 172–173
testing for, 174
trade-offs of, 228–229
and value-added response, 158
and vocabulary development, 166–167

Inc2inc, 150

Index 253

Individual B2B, 141
Information:

definition of, 119
reuse of, 223–224

Information retrieval, intelligent, 217
Inmon, Bill, 116
Insurance industry, 197–198
Integration, data, 116–117
Intel, 139
Intellectual capital, 91
Intelligent agents, 126–127, 239
Intermediary B2B, 141
International Data Corp (IDC), 150
International Organization for

Standardization (ISO), 240
International trade, 181, 210
Internet, xxi, 83, 239
Interoperability, 176–177
IP (Internet Protocol) addresses, 239
ISO (International Organization for

Standardization), 240
Iterations (XSLT), 71–72

J
Java, 13, 68, 70–72
Johnson & Johnson, 149
Joins, 112
J.P. Morgan, 149

K
Killer apps, 240
Knowledge Navigator, 218
Knowledge (term), 119–120

L
LAN (Local Area Network), 98
LDAP (Lightweight Directory Access

Protocol), 55, 175, 180, 240
Legacy data, using, 114, 227
Lernout & Hauspie, 192
Lightweight Directory Access Protocol

(see LDAP)
Linking:

bidirectional, 85
multiway, 85
out-of-line, 85–86

Links:
extended, 78
simple, 78

LISP, 68, 71
Local Area Network (LAN), 98
Lockheed Martin, 149
Logical layer, 130
Lovett, Chris, 60
LTV, 149

M
Markup languages, 4
MathML (Mathematics Markup Language),

240
MCF (Meta Content Framework), 213, 240
M-commerce, 99–103, 240
MediaXpress, 198–199
Medtronic, 149
Merrill Lynch & Company, 196
Meta Content Framework (see MCF)
Meta-data, 240

definition of, 37, 120
for DTDs, 36–40
for schemas, 24–25

MetalSite, 149
Microsoft Corporation, 3, 5, 13, 14, 44, 48,

59, 151, 152, 180, 191, 200–205, 209
Microsoft Word, 73
Microsoft.NET, 201–205
Modular design, 47–49
MOF (Meta Object Facility), 213, 240
Moore’s Law, xxi
Motorola, 30, 199, 211
MP3, 240
MPEG 1, Layer 3, 240
MSXML (Microsoft XML), 241
Multiway linking, 85
MusicML, 5, 241

N
Namespaces, 27–28, 241
Napster, 21, 81–82, 86
Netscape, 5, 13
Nokia, 30, 199, 211
Novopoint.com, 150
Nonvolatility, 118

254 Index

NTT (Nippon Telegraph & Telephone),
100, 102

O
Oasis, 14, 16, 56, 61
Object Management Group (OMG), 241
Object-Oriented Database (OODB),

111–114
Object-Oriented Analysis and Design

(OOAD), 241
OFX (Open Financial Exchange), 51, 92,

95, 241
Oliva, Ralph, 220
OMG (Object Management Group), 241
Omnimorphic (term), 1, 241
OOAD (Object-Oriented Analysis and

Design), 241
OODB (Object-Oriented Database), 111–114
Open content model, 28
Open Financial Exchange (see OFX)
Open source, 241
Open standards, 176
Oracle Corporation, xxiii, 13, 16, 44, 48,

59, 147, 192, 209
Oracle Exchange, xxiii
ORB (Object Request Brokering), 241
Order fulfillment, 89
ORM (Object Role Modeling), 241–242
Out-of-line linking, 85–86

P
P2P (peer-to-peer networking), 21, 82–86,

211, 242
Paoli, Jean, 5
Parsers, 242
PlasticNet.com, 140
PatML, 242
Pattern matching (in XSLT), 71
PDF (Portable Document Format), 242
PDM (Product Data Manager), 90–91
Peer-to-peer networking (see P2P)
PeopleSoft, 193
Perl, 68, 71, 72
PGML (Precision Graphics Markup

Language), 242
Physical layer, 130–131

PKI (public key infrastructure), 55, 175
Portable Document Format (PDF), 242
Ports, 242
PPC, 242
PPN, 242
Precision Graphics Markup Language

(PGML), 242
Procurement costs, xxii
Product Data Manager (PDM), 90–91
Prolog, 242
PtP, 242
Public key infrastructure (PKI), 55, 175

R
Radio Shack, 139
Rationale for XML, 4–5
Raytheon BAE Systems, 149
RDF (Resource Description Framework),

213, 242
RDMS (Relational Database Management

System), 242
RealAudio, 94
RealNetworks, 94
RealVideo, 94
Relational Database Management System

(RDMS), 242
Relational databases, 111–112, 216
Repurposing, document, 65–67
Resource Description Framework (RDF),

213, 242
Rich Text Format (RTF), 73, 243
Risks, 3, 14–15, 127–129
RTF (Rich Text Format), 73, 243
Ryerson Tull, 149

S
Samsung, 211
SANs (Storage Area Networks), 243
SAS Institute, Inc., 193
SAX (Simple Application Programming

Interface), 13, 104, 143, 243
Scalable Vector Graphics (SVG), 92–94
Schema(s), 7, 11, 23–33, 243

and attributes, 26
creating, 31–33
and datatypes, 26–27

Index 255

Schema(s) (Cont.):
DTDs vs., 24, 25, 27–29
file specifications associated with, 25
future of, 216
inserting business rules with, 25–26
meta-data standard for, 24–25
and namespaces, 27–28
purpose of, 24
rationale for, 29–31
and transformation of XML documents,

33–35
and XML document, 42–43
XML vs. database, 23–24

SciQuest.com, 140
Sculley, John, 218
SDMI (Secure Digital Music Initiative),

243
Search engines, intelligent, 217
Sears, Roebuck, & Co., 149–150
Security:

with XML documents, 54–55
with XML implementation, 174–175

Self-describing documents, 24–25
Semantic Web, 182, 208–209, 215–218
Sequencia Corp., 190–191
Servlets, 243
SGML (Standard Generalized Markup

Language), 4–10, 35, 137, 243
Shareware, 243
Siemens, 102
Simple Application Programming Interface

(see SAX)
Simple links, 78
Simple Object Access Protocol (see SOAP)
simpleType tag, 26
Size, document, 59–61
SMIL (Synchronized Multimedia

Integration Language), 94, 243
SML (Steel Markup Language), 149
SOAP (Simple Object Access Protocol),

12–13, 205–206
SOX, 243
Sperberg-McQueen, Michael, 5
Spider, 243–244
SQL (Structured Query Language), 143,

244

Standard Generalized Markup Language
(see SGML)

Standards, 176–177, 184–186
DTD, 178–180
fragmented, 180–181
and international trade agreements, 181

Star model, 124
Startup companies, 136–139
Steel Markup Language (SML), 149
Storage Area Networks (SANs), 243
Strategy, XML (see Implementation, XML)
Structure, XML, 57–59
Structured Query Language (SQL), 143, 244
Style sheets (XSLT), 71
Sun Microsystems, 5, 44, 48, 180, 191–192
SVG (Scalable Vector Graphics), 92–94
Synchronized Multimedia Integration

Language (SMIL), 94, 243

T
Tags, 184
TCP/IP, 96, 244
TEI (Text Encoding Initiative), 244
TekInsight.com Inc., 193
Telecommunications industry, 199
Telephone system, 159–160
Templates, 70
Terabyte, 244
Texas Instruments, 139, 168
TeXML, 244
Text Encoding Initiative (TEI), 244
Time variance, 117–118
Toyota, 159
tpaML, 56
Trade agreements, international, 181
TradeXchange, 147
Transaction processing, 214
Transfer rates, 60
Tree structure (XML documents), 52–53
Trends (see Future of XML)
Trojan horses, 244

U
Ubiquitous Web servers, 212
UDDI (Universal Description, Discovery,

and Integration) project, 244

256 Index

UML (Unified Modeling Language), 213,
244

Unicode, 74, 223, 244
Unicode Transformation Format (UTF), 244
Unified Modeling Language (UML), 213,

244
Uniform Resource Locator (URL), 244
United Nations, 56
Universal data format, 207–208
Universal Description, Discovery, and

Integration (UDDI) project, 244
URL (Uniform Resource Locator), 244
U.S. military, 18
Usenet, 199–200
UTF (Unicode Transformation Format), 244

V
Validation, document, 61–62
Validity, 9–10, 245
Value added networks (VANs), 121, 127
Value-added response, 158
VANs (value added networks), 121, 127
Variables (in XSLT), 72
Ventro Corp., 140
Virtual documents, 20–21
Virtual Private Network (VPN), 245
Virtual Reality Modeling Language

(VRML), 245
Viruses, 245
Vocabularies, 23, 24, 29, 34–35, 166–167
VoiceML, xxv, 199
Volkswagen, 189
VoxML, xxv
VPN (Virtual Private Network), 245
VRML (Virtual Reality Modeling

Language), 245

W
W3C (World Wide Web Consortium), 10,

23, 77, 186, 233, 245
Wait-and-see approach, 173–174
Wal-Mart, 69, 149, 150
WAN (Wide Area Network), 98
WAP (Wireless Application Protocol), xxiv,

2, 30, 92, 96–99, 102, 140, 199, 220,
245

Watson, James, 15
WDDX (Web Distributed Data eXchange),

245
Web Interface Design Language (WIDL),

213
Web model, 125
WebMethods, 149
Weirton, 149
Well-formed documents, 9
Wells Fargo & Company, 194–196
Wide Area Network (WAN), 98
WIDL (Web Interface Design Language),

213
Wireless Application Protocol (see WAP)
Wireless devices, xxiv, 211–212
Wireless Markup Language (see WML)
Wisdom, 120
WML (Wireless Markup Language), xxiv,

5, 92, 97–98, 140, 245
World Wide Web, xxi, xxiii, xxv, 83–84,

181–182
World Wide Web Consortium (see W3C)
Worms, 245
WYSIWIG, 245

X
XDA (XML Document Design

Architecture), 130
XFA (Extensible Forms Architecture), 246
XFDL (eXtensible Forms Description

Language), 246
XHTML (XML-based HTML), 8, 13,

92–93, 246
Xin De Telecom, 102
XLink API, 199
XLink (XML Linking Language), xxvi, 9,

12, 76–86, 171, 246
classifications of linking in, 20–21,

77–78
and content issues, 83–85
extended links in, 78
implementing, 81–83, 85–86
simple links in, 78
and XML Infoset, 81
and XPath specification, 80
and XPointers, 79–80

Index 257

XMI (XML Meta-data Interchange), 213
XML (eXtensible Markup Language), 246

in automotive industry, 188–189
and B2B e-commerce, xxii–xxiv
benefits of, 2, 13–14
business opportunities created by,

xxiv–xxv
changes required to take advantage of, 3
in chemical industry, 189–191
in computer industry, 191–193
corporate support for, 13
costs of adapting, 4
as database, xxvi, 108–109
and DTDs, 6–7, 14–16, 19–20
in education sector, 193–194
exploiting, 16–19
in financial sector, 194–196
HTML vs., 6–10
in insurance industry, 197–198
and Microsoft, 200–205
in news media, 198–199
as omnimorphic language, 1–2
and peer-to-peer networking, 21
polylingual potential of, 223
potential benefits of, 230–231
rationale for, 4–5
risks associated with, 3, 14–15, 127–129
SGML vs., 5–10
storage in databases, 109–110
technologies associated with, 10–13
in telecommunications industry, 199
universal data format of, 207–208
and virtual documents, 20–21
(See also specific headings)

XML Bean Maker, 246
XML Document Design Architecture

(XDA), 130
XML Editor Maker, 246

XML Infoset, 81
XML Meta-data Interchange (XMI), 213
XML Namespaces, 12
XML Parser, 246
XML Productivity Kit, 246
XML Software Autoupdate (XSA), 214
XML TreeDiff, 247
XML-based HTML (see XHTML)
XML-Data, 246
XML/EDI, 121–127

advantages of using, 125–126
document management in, 126
and EDI applications, 127
EDI to XML transformation, 123–124
features of, 123
intelligent agents in, 126–127
models used in, 124–125

XML-RPC, 247
XPath specification, 80
XPointers, 79–80, 247
XQL (eXtensible Query Language), 247
XSA (XML Software Autoupdate), 214
XSL (eXtensible Stylesheet Language), xxvi,

8–12, 63–67, 143, 247
XSLT (eXtensible Stylesheet Language

Transformations), 3, 12, 30, 33–34,
58–59, 63, 67–75, 79, 143–144, 186,
212–214, 247

conditionals in, 70
iterations in, 71–72
output formats in, 72–73
parameters in, 72
pattern matching in, 71
style sheets in, 71
variables in, 72

Y
Yahoo!, 84, 135

258 Index

Solomon H. Simon (Arlington, TX) has more than 20 years of senior man-
agement experience in advanced IT. He holds a doctorate in Information
Technology and a master’s degree in Nuclear Physics, both from Texas
A&M University. The author of over 90 articles on science and technology,
he is a contributing writer on XML and wireless technologies to Intelligent
Enterprise.

259

About the Author

Copyright 2001 Solomon H. Simon. Click Here for Terms of Use.

