

Contents

I Preface

xi

About…

xiii

1

About the Book . xiii

2

About the Author . xiv

3

Acknowledgements . xiv

4

About the organisation of the books

xv

II

Introduction

1

1

Structured Query Language

2

1.1

Some of the Code is Written in SQL

3

1.2

A First Use Case .

4

1.3

Loading the Data Set .

4

1.4

Application Code and SQL

5

1.5

A Word about SQL Injection

9

1.6

PostgreSQL protocol: server-side prepared statements

10

1.7

Back to Discovering SQL .

12

1.8

Computing Weekly Changes

15

2

Software Architecture

18

2.1

Why PostgreSQL? .

20

2.2

The PostgreSQL Documentation

22

3

Getting Ready to read this Book

23

Contents | iii

III

Writing Sql Queries

25

4

Business Logic

27

4.1

Every SQL query embeds some business logic

27

4.2

Business Logic Applies to Use Cases

29

4.3

Correctness .

32

4.4

E ciency .

34

4.5

Stored Procedures — a Data Access API

36

4.6

Procedural Code and Stored Procedures

38

4.7

Where to Implement Business Logic?

39

5

A Small Application

41

5.1

Readme First Driven Development

41

5.2

Loading the Dataset .

42

5.3

Chinook Database .

43

5.4

Music Catalog .

45

5.5

Albums by Artist .

46

5.6

Top-N Artists by Genre .

46

6

The SQL REPL — An Interactive Setup

52

6.1

Intro to psql .

52

6.2

The psqlrc Setup .

53

6.3

Transactions and psql Behavior

54

6.4

A Reporting Tool .

56

6.5

Discovering a Schema .

57

6.6

Interactive Query Editor .

58

7

SQL is Code

60

7.1

SQL style guidelines .

60

7.2

Comments .

64

7.3

Unit Tests .

65

7.4

Regression Tests .

68

7.5

A Closer Look .

69

8

Indexing Strategy

71

8.1

Indexing for Constraints .

72

8.2

Indexing for Queries .

73

8.3

Cost of Index Maintenance

74

8.4

Choosing Queries to Optimize

74

Contents | iv

8.5

PostgreSQL Index Access Methods

74

8.6

Advanced Indexing .

77

8.7

Adding Indexes .

77

9

An Interview with Yohann Gabory

81

IV SQL Toolbox

86

10 Get Some Data

88

11 Structured Query Language

89

12 Queries, DML, DDL, TCL, DCL

91

13 Select, From, Where

93

13.1

Anatomy of a Select Statement

93

13.2 Projection (output): Select .

93

13.3

Data sources: From . 100

13.4 Understanding Joins . 101

13.5

Restrictions: Where . 102

14 Order By, Limit, No Offset

105

14.1 Ordering with Order By . 105

14.2 kNN Ordering and GiST indexes 107

14.3 Top-N sorts: Limit . 109

14.4 No O fset, and how to implement pagination

111

15 Group By, Having, With, Union All

114

15.1

Aggregates (aka Map/Reduce): Group By 114

15.2 Aggregates Without a Group By 117

15.3

Restrict Selected Groups: Having 118

15.4 Grouping Sets . 119

15.5

Common Table Expressions: With 122

15.6 Distinct On . 126

15.7 Result Sets Operations . 127

16 Understanding Nulls

131

16.1

Three-Valued Logic .

131

Contents | v

16.2 Not Null Constraints . 133

16.3 Outer Joins Introducing Nulls 134

16.4 Using Null in Applications 135

17 Understanding Window Functions

137

17.1

Windows and Frames . 137

17.2 Partitioning into Di ferent Frames 139

17.3 Available Window Functions 140

17.4 When to Use Window Functions 142

18 Understanding Relations and Joins

143

18.1

Relations . 143

18.2 SQL Join Types . 145

19 An Interview with Markus Winand

148

V Data Types

152

20 Serialization and Deserialization

154

21 Some Relational Theory

156

21.1

Attribute Values, Data Domains and Data Types 157

21.2 Consistency and Data Type Behavior 158

22 PostgreSQL Data Types

162

22.1 Boolean . 163

22.2 Character and Text . 165

22.3 Server Encoding and Client Encoding 169

22.4 Numbers . 172

22.5 Floating Point Numbers . 174

22.6 Sequences and the Serial Pseudo Data Type 174

22.7 Universally Unique Identi er: UUID 175

22.8 Bytea and Bitstring . 177

22.9 Date/Time and Time Zones 177

22.10 Time Intervals . 181

22.11 Date/Time Processing and Querying 182

22.12 Network Address Types . 187

22.13 Ranges . 190

Contents | vi

23 Denormalized Data Types

193

23.1 Arrays . 193

23.2 Composite Types . 199

23.3 XML . 200

23.4 JSON . 202

23.5 Enum . 204

24 PostgreSQL Extensions

206

25 An interview with Grégoire Hubert

208

VI Data Modeling

211

26 Object Relational Mapping

213

27 Tooling for Database Modeling

215

27.1 How to Write a Database Model 216

27.2 Generating Random Data . 219

27.3 Modeling Example . 221

28 Normalization

227

28.1 Data Structures and Algorithms 227

28.2 Normal Forms . 230

28.3 Database Anomalies . 231

28.4 Modeling an Address Field . 232

28.5 Primary Keys . 234

28.6 Surrogate Keys . 235

28.7 Foreign Keys Constraints . 237

28.8 Not Null Constraints . 238

28.9 Check Constraints and Domains 238

28.10 Exclusion Constraints . 239

29 Practical Use Case: Geonames

240

29.1 Features . 243

29.2 Countries . 244

29.3 Administrative Zoning . 248

29.4 Geolocation Data . 251

29.5 Geolocation GiST Indexing 254

Contents | vii

29.6 A Sampling of Countries . 256

30 Modelization Anti-Patterns

258

30.1 Entity Attribute Values . 258

30.2 Multiple Values per Column 261

30.3 UUIDs . 263

31 Denormalization

265

31.1

Premature Optimization . 266

31.2 Functional Dependency Trade-O fs 266

31.3

Denormalization with PostgreSQL 267

31.4 Materialized Views . 268

31.5

History Tables and Audit Trails 270

31.6 Validity Period as a Range . 272

31.7 Pre-Computed Values . 273

31.8 Enumerated Types . 273

31.9 Multiple Values per Attribute 274

31.10 The Spare Matrix Model . 274

31.11 Partitioning . 275

31.12 Other Denormalization Tools 276

31.13 Denormalize wih Care . 276

32 Not Only SQL

278

32.1 Schemaless Design in PostgreSQL 279

32.2 Durability Trade-O fs . 282

32.3 Scaling Out . 284

33 An interview with Álvaro Hernández Tortosa

286

VII

Data Manipulation and Concurrency Control

291

34 Another Small Application

293

35 Insert, Update, Delete

297

35.1

Insert Into . 297

35.2 Insert Into … Select . 298

35.3 Update . 300

35.4 Inserting Some Tweets . 303

Contents | viii

35.5 Delete . 305

35.6 Tuples and Rows . 307

35.7 Deleting All the Rows: Truncate 307

35.8 Delete but Keep a Few Rows 308

36 Isolation and Locking

309

36.1 Transactions and Isolation . 310

36.2 About SSI .

311

36.3 Concurrent Updates and Isolation 312

36.4 Modeling for Concurrency . 314

36.5 Putting Concurrency to the Test 315

37 Computing and Caching in SQL

319

37.1 Views . 320

37.2 Materialized Views . 321

38 Triggers

324

38.1 Transactional Event Driven Processing 325

38.2 Trigger and Counters Anti-Pattern 327

38.3 Fixing the Behavior . 328

38.4 Event Triggers . 330

39 Listen and Notify

332

39.1 PostgreSQL Noti cations . 332

39.2 PostgreSQL Event Publication System 333

39.3 Noti cations and Cache Maintenance 335

39.4 Limitations of Listen and Notify 340

39.5 Listen and Notify Support in Drivers 340

40 Batch Update, MoMA Collection

342

40.1 Updating the Data . 343

40.2 Concurrency Patterns . 345

40.3 On Con ict Do Nothing . 346

41 An Interview with Kris Jenkins

348

Contents | ix

VIII

PostgreSQL Extensions

352

42 What’s a PostgreSQL Extension?

354

42.1 Inside PostgreSQL Extensions 356

42.2 Installing and Using PostgreSQL Extensions 357

42.3 Finding PostgreSQL Extensions 358

42.4 A Primer on Authoring PostgreSQL Extensions 359

42.5 A Short List of Noteworthy Extensions 359

43 Auditing Changes with hstore

365

43.1 Introduction to hstore . 365

43.2 Comparing hstores . 366

43.3 Auditing Changes with a Trigger 366

43.4 Testing the Audit Trigger . 368

43.5 From hstore Back to a Regular Record 370

44 Last.fm Million Song Dataset

372

45 Using Trigrams For Typos

378

45.1 The pg_trgm PostgreSQL Extension 378

45.2 Trigrams, Similarity and Searches 379

45.3 Complete and Suggest Song Titles 383

45.4 Trigram Indexing . 384

46 Denormalizing Tags with intarray

386

46.1 Advanced Tag Indexing . 386

46.2 Searches . 388

46.3 User-De ned Tags Made Easy 390

47 The Most Popular Pub Names

392

47.1 A Pub Names Database . 392

47.2 Normalizing the Data . 394

47.3 Geolocating the Nearest Pub (k-NN search) 395

47.4 Indexing kNN Search . 396

48 How far is the nearest pub?

398

48.1 The earthdistance PostgreSQL contrib 398

48.2 Pubs and Cities . 399

48.3 The Most Popular Pub Names by City 402

Contents | x

49 Geolocation with PostgreSQL

405

49.1 Geolocation Data Loading . 405

49.2 Finding an IP Address in the Ranges 409

49.3 Geolocation Metadata . 410

49.4 Emergency Pub . 411

50 Counting Distinct Users with HyperLogLog

413

50.1 HyperLogLog . 413

50.2 Installing postgresql-hll . 414

50.3 Counting Unique Tweet Visitors 415

50.4 Lossy Unique Count with HLL 418

50.5 Getting the Visits into Unique Counts 419

50.6 Scheduling Estimates Computations 422

50.7 Combining Unique Visitors 424

51 An Interview with Craig Kerstiens

425

IX

Closing Thoughts

428

X

Index

430

Part I

Preface

| xii

As a developer, The Art of PostgreSQL is the book you need to read in order
to get to the next level of pro ciency.

Af er all, a developer’s job encompasses more than just writing code. Our job
is

to produce results, and for that we have many tools at our disposal. SQL is
one

of them, and this book teaches you all about it.

PostgreSQL is used to manage data in a centralized fashion, and SQL is used
to

get exactly the result set needed from the application code. An SQL result set
is

generally used to ll in-memory data structures so that the application can then

process the data. So, let’s open this book with a quote about data structures
and

application code:

Data dominat . If you’ve chosen the right data structur and orga-

nized things well, the algorithms will almost always be self-evident.

Data structur , not algorithms, are central to programming.

— Rob Pike

About…

About the Book

This book is intended for developers working on applications that use a
database

server. The book speci cally addresses the PostgreSQL RDBMS: it actually is
the world’s most advanced Open Source database, just like it says in the
tagline on the

o cial website. By the end of this book you’ll know why, and you’ll agree!

I wanted to write this book af er having worked with many customers who
were

making use of only a fraction of what SQL and PostgreSQL are capable of
deliv-

ering. In most cases, developers I met with didn’t know what’s possible to
achieve

in SQL. As soon as they realized — or more exactly, as soon as they were
shown

what’s possible to achieve —, replacing hundreds of lines of application code
with

a small and e cient SQL query, then in some cases they would nonetheless
not

https://www.postgresql.org

know how to integrate a raw SQL query in their code base.

Integrating a SQL query and thinking about SQL as code means using the
same

advanced tooling that we use when using other programming languages:
version-

ing, automated testing, code reviewing, and deployment. Really, this is more

about the developer’s work ow than the SQL code itself…

In this book, you will learn best practices that help with integrating SQL into

your own work ow, and through the many examples provided, you’ll see all
the

reasons why you might be interested in doing more in SQL. Primarily, it
means

writing fewer lines of code. As Dijkstra said, we should count lines of code
as lines spent, so by learning how to use SQL you will be able to spend less
to write

the same application!

The practice

pervaded by the reassuring illusion that programs

are just devic like any others, the only difference admitted being

About… | xiv

that their manufacture might require a new type of craftsmen, viz.

programmers. From there it

only a small step to measuring “pro-

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

grammer productivity” in terms of “number of lin of code pro-

duced per month”. Th

a very costly measuring unit because it

encourag the writing of insipid code, but today I am less interested

in how foolish a unit it

from even a pure business point of view.

My point today

that, if we wish to count lin of code, we should

not regard them

“lin produced” but

“lin spent”: the current

conventional wisdom so foolish

to book that count on the wrong

side of the ledger.

On the cruelty of really teaching computing science, Edsger Wybe

Dijkstra, EWD1036

About the Author

Dimitri Fontaine is a PostgreSQL Major Contributor, and has been using and

contributing to Open Source Sof ware for the better part of the last twenty
years.

Dimitri is also the author of the pgloader data loading utility, with fully

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1036.html
http://pgloader.io

automated support for database migration from MySQL to PostgreSQL, or
from

SQLite, or MS SQL… and more.

Dimitri has taken on roles such as developer, maintainer, packager, release
man-

ager, sof ware architect, database architect, and database administrator at di
fer-

ent points in his career. In the same period of time, Dimitri also started
several

companies (which are still thriving) with a strong Open Source business
model,

and he has held management positions as well, including working at the
execu-

tive level in large companies.

Dimitri runs a blog at http://tapoueh.org with in-depth articles showing
advanced use cases for SQL and PostgreSQL.

Acknowledgements

First of all, I’d like to thank all the contributors to the book. I know they all
had other priorities in life, yet they found enough time to contribute and help
make

About… | xv

this book as good as I could ever hope for, maybe even better!

I’d like to give special thanks to my friend Julien Danjou who’s acted as a
mentor over the course of writing of the book. His advice about every part of
the process

http://tapoueh.org

has been of great value — maybe the one piece of advice that I most took to
the

heart has been “write the book you wanted to read”.

I’d also like to extend my thanks to the people interviewed for this book.

In order of appearance, they are Yohann Gabory from the French book

“Django Avancé”, Markus Winand from http://use-the-index-luke.com and

http://modern-sql.com, Grégoire Hubert author of the PHP POMM project,
Álvaro Hernández Tortosa who created ToroDB, bringing MongoDB to SQL,
Kris Jenkins, functional programmer and author of the YeSQL library for
Clojure, and Craig Kerstiens, head of Could at Citus Data.

Having insights from SQL users from many di ferent backgrounds has been
valu-

able in achieving one of the major goals of this book: encouraging you,
valued

readers, to extend your thinking to new horizons. Of course, the horizons I’m

referring to include SQL.

I also want to warmly thank the PostgreSQL community. If you’ve ever
joined a

PostgreSQL community conference, or even asked questions on the mailing
list,

you know these people are both incredibly smart and extremely friendly. It’s
no

wonder that PostgreSQL is such a great product as it’s produced by an
excellent

group of well-meaning people who are highly skilled and deeply motivated to

http://use-the-index-luke.com
http://modern-sql.com
http://www.pomm-project.org
https://www.torodb.com
https://github.com/krisajenkins/yesql
https://www.citusdata.com

solve actual users problems.

Finally, thank you dear reader for having picked this book to read. I hope that

you’ll have a good time as you read through the many pages, and that you’ll
learn

a lot along the way!

About the organisation of the books

Each part of “The Art of PostgreSQL” can be read on its own, or you can
read

this book from the rst to the last page in the order of the parts and chapters

therein. A great deal of thinking have been put in the ordering of the parts, so

that reading “The Art of PostgreSQL” in a linear fashion should provide the
best

experience.

About… | xvi

The skill progression throughout the book is not linear. Each time a new SQL

concept is introduced, it is presented with simple enough queries, in order to

make it possible to focus on the new notion. Then, more queries are
introduced

to answer more interesting business questions.

Complexity of the queries usually advances over the course of a given part,
chap-

ter af er chapter. Sometimes, when a new chapter introduces a new SQL con-

cept, complexity is reset to very simple queries again. That’s because for
most

people, learning a new skill set does not happen in a linear way. Having this
kind

of di culty organisation also makes it easier to dive into a given chapter out-
of-

order.

Here’s a quick breakdown of what each chapter contains:

Part 1, Preface

You’re reading it now, the preface is a presentation of the book and what to
expect

from it.

Part 2, Introduction

The introduction of this book intends to convince application developers such

as you, dear reader, that there’s more to SQL than you might think. It begins

with a very simple data set and simple enough queries, that we compare to
their

equivalent Python code. Then we expand from there with a very important
trick

that’s not well known, and a pretty advanced variation of it.

Part 3, Writting SQL Queries

The third part of the book covers how to write a SQL query as an application

developer. We answer several important questions here:

• Why using SQL rather than your usual programming language?

• How to integrate SQL in your application source code?

• How to work at the SQL prompt, the psql REPL?

• What’s an indexing strategy and how to approach indexing?

About… | xvii

A simple Python application is introduced as a practical example illustrating
the

di ferent answers provided. In particular, this part insists on when to use SQL

to implement business logic.

Part 3 concludes with an interview with Yohan Gabory, author of a French
book

that teaches how to write advanced web application with Python and Django.

Part 4, SQL Toolbox

The fourth part of “The Art of PostgreSQL” introduces most of the SQL con-

cepts that you need to master as an application developer. It begins with the

basics, because you need to build your knowledge and skill set on-top of
those

foundations.

Advanced SQL concepts are introduced with practical examples: every query

refers to a data model that’s easy to understand, and is given in the context of
a

“business case”, or “user story”.

This part covers SQL clauses and features such as ORDER BY and k-NN
sorts,

the GROUP BY and HAVING clause and GROUPING SETS, along with
clas-

sic and advanced aggregates, and then window functions. This part also
covers

the infamous NULL, and what’s a relation and a join.

Part 5 concludes with an interview with Markus Winand, author of “SQL
Perfor-

mance explained” and http://use-the-index-luke.com. Markus is a master of
the SQL standard and he is a wizard on using SQL to enable fast application
delivery

and solid run-time performances!

Part 5, Data Types

The f h part of this book covers the main PostgreSQL data types you can use

and bene t from as an application developer. PostgreSQL is an ORDBMS:

Object-Oriented Relation Database Manager. As a result, data types in Post-

greSQL are not just the classics numbers, dates, and text. There’s more to it,

and this part covers a lot of ground.

Part 5 concludes with an interview with Grégoire Hubert, author of the
POMM

project, which provides developers with unlimited access to SQL and
database

features while proposing a high-level API over low-level drivers.

http://use-the-index-luke.com
http://www.pomm-project.org

About… | xviii

Part 6, Data Modeling

The sixth part of “The Art of PostgreSQL” covers the basics of relational data

modeling, which is the most important skill you need to master as an
application

developer. Given a good database model, every single SQL query is easy to
write,

things are kep logical, and data is kept clean. With a bad design… well my
guess is

that you’ve seen what happens with a not-great data model already, and in
many

cases that’s the root of developers’ disklike for the SQL language.

This part comes late in the book for a reason: without knowledge of some of
the

advanced SQL facilities, it’s hard to anticipate that a data model is going to
be easy enough to work with, and developers then tend to apply early
optimizations to

the model to try to simplify writing the code. Well, most of those
optimizations

are detrimental to our ability to bene t from SQL.

Part 6 concludes with an interview with Álvaro Hernández Tortosa, who built

the ToroDB project, a MongoDB replica solution based on PostgreSQL! His
take on relation database modeling when compared to NoSQL and document

based technologies and APIs is the perfect conclusion of the database
modeling

https://www.torodb.com

part.

Part 7, Data Manipulation and Concurrency Control

The seventh part of this book covers DML and concurrency, the heart of any
live

database. DML stands for “Data Modi cation Language”: it’s the part of SQL

that includes INSERT, UPDATE, and DELETE statements.

The main feature of any RDBMS is how it deals with concurrent access to a
single

data set, in both reading and writing. This part covers isolation and locking,

computing and caching in SQL complete with cache invalidation techniques,

and more.

Part 7 concludes with an interview with Kris Jenkins, a functional
programmer

and open-source enthusiast. He mostly works on building systems in Elm,

Haskell & Clojure, improving the world one project at a time, and he’s is the

author of the YeSQL library.

About… | xix

Part 8, PostgreSQL Extensions

The eighth part of “The Art of PostgreSQL” covers a selection of very useful
Post-

greSQL Extensions and their impact on simplifying application development

when using PostgreSQL.

https://github.com/krisajenkins/yesql

We cover auditing changes with hstore, the pg_trgm extension to implement

auto-suggestions and auto-correct in your application search forms, user-de
ned

tags and how to e ciently use them in search queries, and then we use ip4r for

implementing geolocation oriented features. Finally, hyperlolog is introduced

to solve a classic problem with high cardinality estimates and how to
combine

them.

Part 8 concludes with an interview with Craig Kerstiens who heads the Cloud

team at Citus Data, af er having been involved in PostgreSQL support at

Heroku. Craig shares his opinion about using PostgreSQL extensions when

deploying your application using a cloud-based PostgreSQL solution.

Part II

Introduction

1

Structured Query Language

SQL stands for Structured Query Language; the term de nes a declarative
pro-

gramming language. As a user, we declare the result we want to obtain in
terms

of a data processing pipeline that is executed against a known database model

and a dataset.

The database model has to be statically declared so that we know the type of
every

bit of data involved at the time the query is carried out. A query result set de
nes

a relation, of a type determined or inferred when parsing the query.

When working with SQL, as a developer we relatedly work with a type
system

and a kind of relational algebra. We write code to retrieve and process the
data

we are interested into, in the speci c way we need.

RDBMS and SQL are forcing developers to think in terms of data structure,

and to declare both the data structure and the data set we want to obtain via
our

queries.

Some might then say that SQL forces us to be good developers:

I will, in fact, claim that the difference between a bad programmer

and a good one whether he considers h code or h data structur

more important. Bad programmers worry about the code. Good

programmers worry about data structur and their relationships.

— Lin

Torvalds

Chapter 1 Structured Query Language | 3

Some of the Code is Written in SQL

If you’re reading this book, then it’s easy to guess that you are already
maintaining at least one application that uses SQL and embeds some SQL
queries into its

code.

The SQLite project is another implementation of a SQL engine, and one
might

wonder if it is the Most Widely Deployed Sof ware Module of Any Type?

SQLite

deployed in every Android device, every iPhone and

iOS device, every Mac, every Windows10 machine, every Firefox,

Chrome, and Safari web browser, every installation of Skype, every

version of iTun , every Dropbox client, every TurboTax and Quick-

Books, PHP and Python, most television sets and set-top cable box ,

most automotive multimedia systems.

The page goes on to say that other libraries with similar reach include:

• The original zlib implementation by Jean-loup Gailly and Mark Adler,

• The original reference implementation for libpng,

• Libjpeg from the Independent JPEG Group.

I can’t help but mention that libjpeg was developed by Tom Lane, who then
contributed to developing the specs of PNG. Tom Lane is a Major
Contributor

https://www.sqlite.org/mostdeployed.html
https://en.wikipedia.org/wiki/Tom_Lane_(computer_scientist)

to the PostgreSQL project and has been for a long time now. Tom is simply
one

of the most important contributors to the project.

Anyway, SQL is very popular and it is used in most applications written
today.

Every developer has seen some select … from … where … SQL query string
in

one form or another and knows some parts of the very basics from SQL’89.

The current SQL standard is SQL’2016 and it includes many advanced data
pro-

cessing techniques. If your application is already using the SQL
programming

language and SQL engine, then as a developer it’s important to fully
understand

how much can be achieved in SQL, and what service is implemented by this
run-

time dependency in your sof ware architecture.

Moreover, this service is state full and hosts all your application user data. In

most cases user data as managed by the Relational Database Management
Sys-

tems that is at the heart of the application code we write, and our code means

nothing if we do not have the production data set that delivers value to users.

Chapter 1 Structured Query Language | 4

SQL is a very powerful programming language, and it is a declarative one.

It’s a

wonderful tool to master, and once used properly it allows one to reduce both

code size and the development time for new features. This book is written so

that you think of good SQL utilization as one of our greatest advantages
when

writing an application, coding a new business case or implementing a user
story!

A First Use Case

Intercontinental Exchange provides a chart with Daily NYSE Group Volume
in

NYSE Listed, 2017. We can fetch the Excel le which is actually a CSV le
using tab as a separator, remove the headings and load it into a PostgreSQL
table.

Loading the Data Set

Here’s what the data looks like with coma-separated thousands and dollar
signs,

so we can’t readily process the gures as numbers:

2010

1/4/2010

1,425,504,460

4,628,115

$38,495,460,645

2010

https://www.nyse.com/
http://www.nyxdata.com/nysedata/asp/factbook/viewer_edition.asp?mode=table&key=3141&category=3
http://www.nyxdata.com/nysedata/asp/factbook/viewer_edition.asp?mode=table&key=3141&category=3

1/5/2010

1,754,011,750

5,394,016

$43,932,043,406

2010

1/6/2010

1,655,507,953

5,494,460

$43,816,749,660

2010

1/7/2010

1,797,810,789

5,674,297

$44,104,237,184

So we create an ad-hoc table de nition, and once the data is loaded we then
trans-

form it into a proper SQL data type, thanks to alter table commands.

1

begin;

2

3

create table factbook

4

(

5

year

int,

6

date

date,

7

shares

text,

8

trades

text,

9

dollars text

10

);

11

12

\copy factbook from 'factbook.csv' with delimiter E'\t' null ''

13

14

alter table factbook

15

alter shares

16

type bigint

Chapter 1 Structured Query Language | 5

17

using replace(shares, ',', '')::bigint,

18

19

alter trades

20

type bigint

21

using replace(trades, ',', '')::bigint,

22

23

alter dollars

24

type bigint

25

using substring(replace(dollars, ',', '') from 2)::numeric;

26

27

commit;

We use the PostgreSQL copy functionality to stream the data from the CSV

le into our table. The \copy variant is a psql speci c command and initiates
client/server streaming of the data, reading a local le and sending its content
through any established PostgreSQL connection.

Application Code and SQL

Now a classic question is how to list the factbook entries for a given month,
and because the calendar is a complex beast, we naturally pick February 2017
as our

example month.

The following query lists all entries we have in the month of February 2017:

1

\set start '2017-02-01'

2

3

select date,

4

to_char(shares, '99G999G999G999') as shares,

5

to_char(trades, '99G999G999') as trades,

6

to_char(dollars, 'L99G999G999G999') as dollars

7

from factbook

8

where date >= date :'start'

9

and date

< date :'start' + interval '1 month'

10

order by date;

We use the psql application to run this query, and psql supports the use of
variables. The \set command sets the ‘2017-02-01’ value to the variable start,
and then we re-use the variable with the expression :‘start’.

The writing date :'start' is equivalent to date '2017-02-01' and is called a

decorated literal expression in PostgreSQL. This allows us to set the data
type of the literal value so that the PostgreSQL query parser won’t have to
guess or infer

it from the context.

Chapter 1 Structured Query Language | 6

This rst SQL query of the book also uses the interval data type to compute
the end of the month. Of course, the example targets February because the
end of

the month has to be computed. Adding an interval value of 1 month to the rst
day of the month gives us the rst day of the next month, and we use the less

than (<) strict operator to exclude this day from our result set.

The to_char() function is documented in the PostgreSQL section about Data

Type Formatting Functions and allows converting a number to its text
representation with detailed control over the conversion. The format is
composed of

template patterns. Here we use the following patterns:

• Value with the speci ed number of digits

• L, currency symbol (uses locale)

• G, group separator (uses locale)

Other template patterns for numeric formatting are available — see the Post-

greSQL documentation for the complete reference.

Here’s the result of our query:

date

https://www.postgresql.org/docs/9.6/static/functions-formatting.html
https://www.postgresql.org/docs/9.6/static/functions-formatting.html

│

shares

│

trades

│

dollars

════════════╪═════════════════╪═════════════╪══════════════════

2017-02-01 │

1,161,001,502 │

5,217,859 │ $ 44,660,060,305

2017-02-02 │

1,128,144,760 │

4,586,343 │ $ 43,276,102,903

2017-02-03 │

1,084,735,476 │

4,396,485 │ $ 42,801,562,275

2017-02-06 │

954,533,086 │

3,817,270 │ $ 37,300,908,120

2017-02-07 │

1,037,660,897 │

4,220,252 │ $ 39,754,062,721

2017-02-08 │

1,100,076,176 │

4,410,966 │ $ 40,491,648,732

2017-02-09 │

1,081,638,761 │

4,462,009 │ $ 40,169,585,511

2017-02-10 │

1,021,379,481 │

4,028,745 │ $ 38,347,515,768

2017-02-13 │

1,020,482,007 │

3,963,509 │ $ 38,745,317,913

2017-02-14 │

1,041,009,698 │

4,299,974 │ $ 40,737,106,101

2017-02-15 │

1,120,119,333 │

4,424,251 │ $ 43,802,653,477

2017-02-16 │

1,091,339,672 │

4,461,548 │ $ 41,956,691,405

2017-02-17 │

1,160,693,221 │

4,132,233 │ $ 48,862,504,551

2017-02-21 │

1,103,777,644 │

4,323,282 │ $ 44,416,927,777

2017-02-22 │

1,064,236,648 │

4,169,982 │ $ 41,137,731,714

2017-02-23 │

1,192,772,644 │

4,839,887 │ $ 44,254,446,593

2017-02-24 │

1,187,320,171 │

4,656,770 │ $ 45,229,398,830

2017-02-27 │

1,132,693,382 │

4,243,911 │ $ 43,613,734,358

2017-02-28 │

1,455,597,403 │

4,789,769 │ $ 57,874,495,227

(19 rows)

The dataset only has data for 19 days in February 2017. Our expectations
might

be to display an entry for each calendar day and ll it in with either matching
data

or a zero gure for days without data in our factbook.

Chapter 1 Structured Query Language | 7

Here’s a typical implementation of that expectation, in Python:

1

#! /usr/bin/env python3

2

3

import sys

4

import psycopg2

5

import psycopg2.extras

6

from calendar import Calendar

7

8

CONNSTRING = "dbname=yesql application_name=factbook"

9

10

11

def fetch_month_data(year, month):

12

"Fetch a month of data from the database"

13

date = "%d-%02d-01" % (year, month)

14

sql = """

15

select date, shares, trades, dollars

16

from factbook

17

where date >= date %s

18

and date

< date %s + interval '1 month'

19

order by date;

20

"""

21

pgconn = psycopg2.connect(CONNSTRING)

22

curs = pgconn.cursor()

23

curs.execute(sql, (date, date))

24

25

res = {}

26

for (date, shares, trades, dollars) in curs.fetchall():

27

res[date] = (shares, trades, dollars)

28

29

return res

30

31

32

def list_book_for_month(year, month):

33

"""List all days for given month, and for each

34

day list fact book entry.

35

"""

36

data = fetch_month_data(year, month)

37

38

cal = Calendar()

39

print("%12s | %12s | %12s | %12s" %

40

("day", "shares", "trades", "dollars"))

41

print("%12s-+-%12s-+-%12s-+-%12s" %

42

("-" * 12, "-" * 12, "-" * 12, "-" * 12))

43

44

for day in cal.itermonthdates(year, month):

45

if day.month != month:

46

continue

47

if day in data:

48

shares, trades, dollars = data[day]

49

else:

50

shares, trades, dollars = 0, 0, 0

Chapter 1 Structured Query Language | 8

51

52

print("%12s | %12s | %12s | %12s" %

53

(day, shares, trades, dollars))

54

55

56

if __name__ == '__main__':

57

year = int(sys.argv[1])

58

month = int(sys.argv[2])

59

60

list_book_for_month(year, month)

In this implementation, we use the above SQL query to fetch our result set,
and

moreover to store it in a dictionary. The dict’s key is the day of the month, so
we

can then loop over a calendar’s list of days and retrieve matching data when
we

have it and install a default result set (here, zeroes) when we don’t have
anything.

Below is the output when running the program. As you can see, we opted for
an

output similar to the psql output, making it easier to compare the e fort
needed to reach the same result.

$./factbook-month.py 2017 2

day |

shares |

trades |

dollars

-------------+--------------+--------------+-------------

2017-02-01 |

1161001502 |

5217859 |

44660060305

2017-02-02 |

1128144760 |

4586343 |

43276102903

2017-02-03 |

1084735476 |

4396485 |

42801562275

2017-02-04 |

0 |

0 |

0

2017-02-05 |

0 |

0 |

0

2017-02-06 |

954533086 |

3817270 |

37300908120

2017-02-07 |

1037660897 |

4220252 |

39754062721

2017-02-08 |

1100076176 |

4410966 |

40491648732

2017-02-09 |

1081638761 |

4462009 |

40169585511

2017-02-10 |

1021379481 |

4028745 |

38347515768

2017-02-11 |

0 |

0 |

0

2017-02-12 |

0 |

0 |

0

2017-02-13 |

1020482007 |

3963509 |

38745317913

2017-02-14 |

1041009698 |

4299974 |

40737106101

2017-02-15 |

1120119333 |

4424251 |

43802653477

2017-02-16 |

1091339672 |

4461548 |

41956691405

2017-02-17 |

1160693221 |

4132233 |

48862504551

2017-02-18 |

0 |

0 |

0

2017-02-19 |

0 |

0 |

0

2017-02-20 |

0 |

0 |

0

2017-02-21 |

1103777644 |

4323282 |

44416927777

2017-02-22 |

1064236648 |

4169982 |

41137731714

2017-02-23 |

1192772644 |

4839887 |

44254446593

2017-02-24 |

1187320171 |

4656770 |

45229398830

2017-02-25 |

0 |

0 |

0

2017-02-26 |

0 |

0 |

0

2017-02-27 |

1132693382 |

4243911 |

43613734358

2017-02-28 |

1455597403 |

4789769 |

57874495227

Chapter 1 Structured Query Language | 9

A Word about SQL Injection

An SQL Injections is a security breach, one made famous by the Exploits of a

Mom xkcd comic episode in which we read about little Bobby Tabl .

Figure 1.1: Exploits of a Mom

PostgreSQL implements a protocol level facility to send the static SQL query

text separately from its dynamic arguments. An SQL injection happens when

the database server is mistakenly led to consider a dynamic argument of a
query

as part of the query text. Sending those parts as separate entities over the

https://xkcd.com/327/
https://xkcd.com/327/

protocol means that SQL injection is no longer possible.

The PostgreSQL protocol is fully documented and you can read more about
ex-

tended query support on the Message Flow documentation page. Also
relevant is the PQexecParams driver API, documented as part of the
command execution

functions of the libpq PostgreSQL C driver.

A lot of PostgreSQL application drivers are based on the libpq C driver,
which

implements the PostgreSQL protocol and is maintained alongside the main

server’s code. Some drivers variants also exist that don’t link to any C
runtime,

in which case the PostgreSQL protocol has been implemented in another

programming language. That’s the case for variants of the JDBC driver, and
the

pq Go driver too, among others.

It is advisable that you read the documentation of your current driver and
under-

stand how to send SQL query parameters separately from the main SQL
query

text; this is a reliable way to never have to worry about SQL injection
problems ever again.

In particular, never build a query string by concatenating your query
arguments

Chapter 1 Structured Query Language | 10

https://www.postgresql.org/docs/current/static/protocol-flow.html
https://www.postgresql.org/docs/current/static/libpq-exec.html
https://www.postgresql.org/docs/current/static/libpq-exec.html

directly into your query strings, i.e. in the application client code. Never use
any

library, ORM or another tooling that would do that. When building SQL
query

strings that way, you open your application code to serious security risk for
no

reason.

We were using the psycopg Python driver in our example above, which is
based on libpq. The documentation of this driver addresses passing
parameters to

SQL queries right from the beginning.

When using Psycopg the SQL query parameters are interpolated in the SQL

query string at the client level. It means you need to trust Psycopg to protect

you from any attempt at SQL injection, and we could be more secure than
that.

PostgreSQL protocol: server-side prepared state-

ments

It is possible to send the query string and its arguments separately on the wire

by using server-side prepared statements. This is a pretty common way to do

it, mostly because PQexecParams isn’t well known, though it made its debut
in

PostgreSQL 7.4, released November 17, 2003. To this day, a lot of
PostgreSQL

drivers still don’t expose the PQexecParams facility, which is unfortunate.

http://initd.org/psycopg/
http://initd.org/psycopg/docs/usage.html#passing-parameters-to-sql-queries
http://initd.org/psycopg/docs/usage.html#passing-parameters-to-sql-queries

Server-side Prepared Statements can be used in SQL thanks to the PREPARE

and EXECUTE commands syntax, as in the following example:

1

prepare foo as

2

select date, shares, trades, dollars

3

from factbook

4

where date >= $1::date

5

and date

< $1::date + interval '1 month'

6

order by date;

And then you can execute the prepared statement with a parameter that way,
still

at the psql console:

1

execute foo('2010-02-01');

We then get the same result as before, when using our rst version of the

Python

program.

Now, while it’s possible to use the prepare and execute SQL commands
directly in your application code, it is also possible to use it directly at the
PostgreSQL

Chapter 1 Structured Query Language | 11

protocol level. This facility is named Extended Query and is well
documented.

Reading the documentation about the protocol implementation, we see the
fol-

lowing bits. First the PARSE message:

In the extended protocol, the frontend rst sends a Parse message,

which contains a textual query string, optionally some information

about data types of parameter placeholders, and the name of a des-

tination prepared-statement object […]

Then, the BIND message:

Once a prepared statement exists, it can be readied for execution us-

ing a Bind message. […] The supplied parameter set must match

those needed by the prepared statement.

Finally, to receive the result set the client needs to send a third message, the
EXE-

CUTE message. The details of this part aren’t relevant now though.

https://www.postgresql.org/docs/current/sql-prepare.html
https://www.postgresql.org/docs/current/sql-execute.html
https://www.postgresql.org/docs/current/protocol-flow.html#PROTOCOL-FLOW-EXT-QUERY

It is very clear from the documentation excerpts above that the query string

parsed by PostgreSQL doesn’t contain the parameters. The query string is

sent in the BIND message. The query parameters are sent in the EXECUTE

message. When doing things that way, it is impossible to have SQL
injections.

Remember: SQL injection happens when the SQL parser is fooled into
believ-

ing that a parameter string is in fact a SQL query, and then the SQL engine
goes

on and executes that SQL statement. When the SQL query string lives in your

application code, and the user-supplied parameters are sent separately on the
net-

work, there’s no way that the SQL parsing engine might get confused.

The following example uses the asyncpg PostgreSQL driver. It’s open source
and the sources are available at the MagicStack/asyncpg repository, where
you can browse the code and see that the driver implements the PostgreSQL
protocol

itself, and uses server-side prepared statements.

This example is now safe from SQL injection by design, because the server-
side

prepared statement protocol sends the query string and its arguments in
separate

protocol messages:

1

https://magicstack.github.io/asyncpg/current/index.html
https://github.com/MagicStack/asyncpg

import sys

2

import asyncio

3

import asyncpg

4

import datetime

5

from calendar import Calendar

6

Chapter 1 Structured Query Language | 12

7

CONNSTRING = "postgresql://appdev@localhost/appdev?
application_name=factbook"

8

9

10

async def fetch_month_data(year, month):

11

"Fetch a month of data from the database"

12

date = datetime.date(year, month, 1)

13

sql = """

14

select date, shares, trades, dollars

15

from factbook

16

where date >= $1::date

17

and date

< $1::date + interval '1 month'

18

order by date;

19

"""

20

pgconn = await asyncpg.connect(CONNSTRING)

21

stmt = await pgconn.prepare(sql)

22

23

res = {}

24

for (date, shares, trades, dollars) in await stmt.fetch(date):

25

res[date] = (shares, trades, dollars)

26

27

await pgconn.close()

28

29

return res

Then, the Python function call needs to be adjusted to take into ac-

count the coroutine usage we’re now making via asyncio.

The function

list_book_for_month now begins with the following lines:

1

def list_book_for_month(year, month):

2

"""List all days for given month, and for each

3

day list fact book entry.

4

"""

5

data = asyncio.run(fetch_month_data(year, month))

The rest of it is as before.

Back to Discovering SQL

Now of course it’s possible to implement the same expectations with a single
SQL

query, without any application code being spent on solving the problem:

1

select cast(calendar.entry as date) as date,

2

coalesce(shares, 0) as shares,

3

coalesce(trades, 0) as trades,

4

to_char(

5

coalesce(dollars, 0),

6

'L99G999G999G999'

Chapter 1 Structured Query Language | 13

7

) as dollars

8

from /*

9

* Generate the target month's calendar then LEFT JOIN

10

* each day against the factbook dataset, so as to have

11

* every day in the result set, whether or not we have a

12

* book entry for the day.

13

*/

14

generate_series(date :'start',

15

date :'start' + interval '1 month'

16

- interval '1 day',

17

interval '1 day'

18

)

19

as calendar(entry)

20

left join factbook

21

on factbook.date = calendar.entry

22

order by date;

In this query, we use several basic SQL and PostgreSQL techniques that you

might be discovering for the rst time:

• SQL accepts comments written either in the -- comment style, running

from the opening to the end of the line, or C-style with a /* comment */

style.

As with any programming language, comments are best used to note our

intentions, which otherwise might be tricky to reverse engineer from the

code alone.

• generate_seri () is a PostgreSQL set returning function, for which the
documentation reads:

Generate a series of values, from start to stop with a step size of

step

As PostgreSQL knows its calendar, it’s easy to generate all days from any

given month with the rst day of the month as a single parameter in the

query.

• generate_seri () is inclusive much like the BETWEEN operator, so we
exclude the rst day of the next month with the expression - interval ‘1

day’.

• The cast(calendar.entry

date) expression transforms the generated cal-

endar.entry, which is the result of the generate_seri () function call into the
date data type.

We need to cast here because the generate_seri ()_ function returns a set

Chapter 1 Structured Query Language | 14

of timestamp* entries and we don’t care about the time parts of it.

https://www.postgresql.org/docs/current/static/functions-srf.html

• The left join in between our generated calendar table and the factbook table
will keep every calendar row and associate a factbook row with it only

when the date columns of both the tables have the same value.

When the calendar.date is not found in factbook, the factbook columns (
year, date, shar , trad , and dollars) are lled in with NULL values instead.

• COALESCE returns the rst of its arguments that is not null.

So the expression coalesce(shar , 0)

shar is either how many shares we

found in the factbook table for this calendar.date row, or 0 when we found no
entry for the calendar.date and the left join kept our result set row and lled in
the factbook columns with NULL values.

Finally, here’s the result of running this query:

date

│

shares

│ trades

│

dollars

════════════╪════════════╪═════════╪══════════════════

2017-02-01 │ 1161001502 │ 5217859 │ $ 44,660,060,305

2017-02-02 │ 1128144760 │ 4586343 │ $ 43,276,102,903

2017-02-03 │ 1084735476 │ 4396485 │ $ 42,801,562,275

https://www.postgresql.org/docs/9.5/static/functions-conditional.html#FUNCTIONS-COALESCE-NVL-IFNULL

2017-02-04 │

0 │

0 │ $

0

2017-02-05 │

0 │

0 │ $

0

2017-02-06 │

954533086 │ 3817270 │ $ 37,300,908,120

2017-02-07 │ 1037660897 │ 4220252 │ $ 39,754,062,721

2017-02-08 │ 1100076176 │ 4410966 │ $ 40,491,648,732

2017-02-09 │ 1081638761 │ 4462009 │ $ 40,169,585,511

2017-02-10 │ 1021379481 │ 4028745 │ $ 38,347,515,768

2017-02-11 │

0 │

0 │ $

0

2017-02-12 │

0 │

0 │ $

0

2017-02-13 │ 1020482007 │ 3963509 │ $ 38,745,317,913

2017-02-14 │ 1041009698 │ 4299974 │ $ 40,737,106,101

2017-02-15 │ 1120119333 │ 4424251 │ $ 43,802,653,477

2017-02-16 │ 1091339672 │ 4461548 │ $ 41,956,691,405

2017-02-17 │ 1160693221 │ 4132233 │ $ 48,862,504,551

2017-02-18 │

0 │

0 │ $

0

2017-02-19 │

0 │

0 │ $

0

2017-02-20 │

0 │

0 │ $

0

2017-02-21 │ 1103777644 │ 4323282 │ $ 44,416,927,777

2017-02-22 │ 1064236648 │ 4169982 │ $ 41,137,731,714

2017-02-23 │ 1192772644 │ 4839887 │ $ 44,254,446,593

2017-02-24 │ 1187320171 │ 4656770 │ $ 45,229,398,830

2017-02-25 │

0 │

0 │ $

0

2017-02-26 │

0 │

0 │ $

0

2017-02-27 │ 1132693382 │ 4243911 │ $ 43,613,734,358

2017-02-28 │ 1455597403 │ 4789769 │ $ 57,874,495,227

Chapter 1 Structured Query Language | 15

(28 rows)

When ordering the book package that contains the code and the data set, you
can

nd the SQL queries 02-intro/02-usecase/02.sql and 02-intro/02-
usecase/04.sql, and the Python script 02-intro/02-usecase/03_factbook-
month.py, and run them

against the pre-loaded database yesql.

Note that we replaced 60 lines of Python code with a simple enough SQL
query.

Down the road, that’s less code to maintain and a more e cient
implementation

too. Here, the Python is doing an Hash Join Nested Loop where PostgreSQL

picks a Merge Left Join over two ordered relations. Later in this book, we see
how to get and read the PostgreSQL execution plan for a query.

Computing Weekly Changes

The analytics department now wants us to add a weekly di ference for each
day

of the result. More speci cally, we want to add a column with the evolution as

a percentage of the dollars column in between the day of the value and the
same day of the previous week.

I’m taking the “week over week percentage di ference” example because it’s
both

a classic analytics need, though mostly in marketing circles maybe, and
because

in my experience the rst reaction of a developer will rarely be to write a SQL

query doing all the math.

Also, computing weeks is another area in which the calendar we have isn’t
very

helpful, but for PostgreSQL taking care of the task is as easy as spelling the
word

week:

1

with computed_data as

2

(

3

select cast(date as date)

as date,

4

to_char(date, 'Dy')

as day,

5

coalesce(dollars, 0) as dollars,

6

lag(dollars, 1)

7

over(

8

partition by extract('isodow' from date)

9

order by date

10

)

11

as last_week_dollars

12

from /*

13

* Generate the month calendar, plus a week before

Chapter 1 Structured Query Language | 16

14

* so that we have values to compare dollars against

15

* even for the first week of the month.

16

*/

17

generate_series(date :'start' - interval '1 week',

18

date :'start' + interval '1 month'

19

- interval '1 day',

20

interval '1 day'

21

)

22

as calendar(date)

23

left join factbook using(date)

24

)

25

select date, day,

26

to_char(

27

coalesce(dollars, 0),

28

'L99G999G999G999'

29

) as dollars,

30

case when dollars is not null

31

and dollars <> 0

32

then round(

100.0

33

* (dollars - last_week_dollars)

34

/ dollars

35

, 2)

36

end

37

as "WoW %"

38

from computed_data

39

where date >= date :'start'

40

order by date;

To implement this case in SQL, we need window functions that appeared in
the SQL standard in 1992 but are still of en skipped in SQL classes. The last
thing

executed in a SQL statement are windows functions, well af er join operations
and where clauses. So if we want to see a full week before the rst of
February, we need to extend our calendar selection a week into the past and
then once again

restrict the data that we issue to the caller.

That’s why we use a common table expression — the WITH part of the query
—

to fetch the extended data set we need, including the last_week_dollars
computed column.

The expression extract(‘isodow’ from date) is a standard SQL feature that
allows computing the Day Of Week following the ISO rules. Used as a
partition by frame clause, it allows a row to be a peer to any other row having
the same isodow.

The lag() window function can then refer to the previous peer dollars value
when ordered by date: that’s the number with which we want to compare the
current

dollars value.

The computed_data result set is then used in the main part of the query as a
rela-

Chapter 1 Structured Query Language | 17

tion we get data from and the computation is easier this time as we simply
apply a classic di ference percentage formula to the dollars and the
last_week_dollars columns.

Here’s the result from running this query:

date

│ day │

dollars

│ WoW %

════════════╪═════╪══════════════════╪════════

2017-02-01 │ Wed │ $ 44,660,060,305 │

-2.21

2017-02-02 │ Thu │ $ 43,276,102,903 │

1.71

2017-02-03 │ Fri │ $ 42,801,562,275 │

10.86

2017-02-04 │ Sat │ $

0 │

¤

2017-02-05 │ Sun │ $

0 │

¤

2017-02-06 │ Mon │ $ 37,300,908,120 │

-9.64

2017-02-07 │ Tue │ $ 39,754,062,721 │ -37.41

2017-02-08 │ Wed │ $ 40,491,648,732 │ -10.29

2017-02-09 │ Thu │ $ 40,169,585,511 │

-7.73

2017-02-10 │ Fri │ $ 38,347,515,768 │ -11.61

2017-02-11 │ Sat │ $

0 │

¤

2017-02-12 │ Sun │ $

0 │

¤

2017-02-13 │ Mon │ $ 38,745,317,913 │

3.73

2017-02-14 │ Tue │ $ 40,737,106,101 │

2.41

2017-02-15 │ Wed │ $ 43,802,653,477 │

7.56

2017-02-16 │ Thu │ $ 41,956,691,405 │

4.26

2017-02-17 │ Fri │ $ 48,862,504,551 │

21.52

2017-02-18 │ Sat │ $

0 │

¤

2017-02-19 │ Sun │ $

0 │

¤

2017-02-20 │ Mon │ $

0 │

¤

2017-02-21 │ Tue │ $ 44,416,927,777 │

8.28

2017-02-22 │ Wed │ $ 41,137,731,714 │

-6.48

2017-02-23 │ Thu │ $ 44,254,446,593 │

5.19

2017-02-24 │ Fri │ $ 45,229,398,830 │

-8.03

2017-02-25 │ Sat │ $

0 │

¤

2017-02-26 │ Sun │ $

0 │

¤

2017-02-27 │ Mon │ $ 43,613,734,358 │

¤

2017-02-28 │ Tue │ $ 57,874,495,227 │

23.25

(28 rows)

The rest of the book spends some time to explain the core concepts of
common

table expressions and window functions and provides many other examples
so that you can master PostgreSQL and issue the SQL queries that fetch
exactly the

result set your application needs to deal with!

We will also look at the performance and correctness characteristics of
issuing

more complex queries rather than issuing more queries and doing more of the

processing in the application code… or in a Python script, as in the previous

ex-

ample.

2

Software Architecture

Our rst use case in this book allowed us to compare implementing a simple

feature in Python and in SQL. Af er all, once you know enough of SQL, lots
of

data related processing and presentation can be done directly within your
SQL

queries. The application code might then be a shell wrapper around a sof
ware

architecture that is database centered.

In some simple cases, and we’ll see more about that in later chapters, it is
required for correctness that some processing happens in the SQL query. In
many cases,

having SQL do the data-related heavy lif ing yields a net gain in performance

characteristics too, mostly because round-trip times and latency along with
mem-

ory and bandwidth resources usage depend directly on the size of the result
sets.

The Art Of PostgreSQL, Volume 1 focuses on teaching SQL idioms, both the
ba-

sics and some advanced techniques too. It also contains an approach to
database

modeling, normalization, and denormalization. That said, it does not address

sof ware architecture. The goal of this book is to provide you, the application

developer, with new and powerful tools. Determining how and when to use

them has to be done in a case by case basis.

Still, a general approach is helpful in deciding how and where to implement
ap-

plication features. The following concepts are important to keep in mind
when

learning advanced SQL:

• Relational Database Management System

PostgreSQL is an RDBMS and as such its role in your sof ware architec-

Chapter 2 Sof ware Architecture | 19

ture is to handle concurrent access to live data that is manipulated by sev-

eral applications, or several parts of an application.

Typically we will nd the user-side parts of the application, a front-o ce

and a user back-o ce with a di ferent set of features depending on the user

role, including some kinds of reporting (accounting, nance, analytics),

and of en some glue scripts here and there, crontabs or the like.

• Atomic, Consistent, Isolated, Durable

At the heart of the concurrent access semantics is the concept of a transac-

tion. A transaction should be atomic and isolated, the latter allowing for

online backups of the data.

Additionally, the RDBMS is tasked with maintaining a data set that is con-

sistent with the business rules at all times. That’s why database modeling

and normalization tasks are so important, and why PostgreSQL supports

an advanced set of constraints.

Durable means that whatever happens PostgreSQL guarantees that it

won’t lose any committed change. Your data is safe. Not even an OS crash

is allowed to risk your data. We’re lef with disk corruption risks, and

that’s why being able to carry out online backups is so important.

• Data Access API and Service

Given the characteristics listed above, PostgreSQL allows one to imple-

ment a data access API. In a world of containers and micro-services, Post-

greSQL is the data access service, and its API is SQL.

If it looks a lot heavier than your typical micro-service, remember that Post-

greSQL implements a stateful service, on top of which you can build the

other parts. Those other parts will be scalable and highly available by de-

sign, because solving those problems for stateless services is so much easier.

• Structured Query Language

The data access API o fered by PostgreSQL is based on the SQL program-

ming language. It’s a declarative language where your job as a developer is

to describe in detail the result set you are interested in.

PostgreSQL’s job is then to nd the most e cient way to access only the

data needed to compute this result set, and execute the plan it comes up

with.

Chapter 2 Sof ware Architecture | 20

• Extensible (JSON, XML, Arrays, Ranges)

The SQL language is statically typed: every query de nes a new relation

that must be fully understood by the system before executing it. That’s

why sometimes cast expressions are needed in your queries.

PostgreSQL’s unique approach to implementing SQL was invented in the

80s with the stated goal of enabling extensibility. SQL operators and func-

tions are de ned in a catalog and looked up at run-time. Functions and

operators in PostgreSQL support polymorphism and almost every part of

the system can be extended.

This unique approach has allowed PostgreSQL to be capable of improving

SQL; it o fers a deep coverage for composite data types and documents

processing right within the language, with clean semantics.

So when designing your sof ware architecture, think about PostgreSQL not as

storage layer, but rather as a concurrent data access service. This service is
capable of handling data processing. How much of the processing you want
to implement in the SQL part of your architecture depends on many factors,

including

team size, skill set, and operational constraints.

Why PostgreSQL?

While this book focuses on teaching SQL and how to make the best of this
pro-

gramming language in modern application development, it only addresses the

PostgreSQL implementation of the SQL standard. That choice is down to
sev-

eral factors, all consequences of PostgreSQL truly being the world’s most ad-

vanced open source database:

• PostgreSQL is open source, available under a BSD like licence named the

PostgreSQL licence.

• The PostgreSQL project is done completely in the open, using public mail-

ing lists for all discussions, contributions, and decisions, and the project

goes as far as self-hosting all requirements in order to avoid being in u-

enced by a particular company.

• While being developed and maintained in the open by volunteers, most

PostgreSQL developers today are contributing in a professional capacity,

Chapter 2 Sof ware Architecture | 21

both in the interest of their employer and to solve real customer problems.

• PostgreSQL releases a new major version about once a year, following a

https://www.postgresql.org/about/licence/

when it’s ready release cycle.

• The PostgreSQL design, ever since its Berkeley days under the supervision

of Michael Stonebraker, allows enhancing SQL in very advanced ways, as we
see in the data types and indexing support parts of this book.

• The PostgreSQL documentation is one of the best reference manuals you

can nd, open source or not, and that’s because a patch in the code is only

accepted when it also includes editing the parts of the documentations that

need editing.

• While new NoSQL systems are o fering di ferent trade-o fs in terms of op-

erations, guarantees, query languages and APIs, I would argue that Post-

greSQL is YeSQL!

In particular, the extensibility of PostgreSQL allows this 20 years old system
to

keep renewing itself. As a data point, this extensibility design makes
PostgreSQL

one of the best JSON processing platforms you can nd.

It makes it possible to improve SQL with advanced support for new data
types

even from “userland code”, and to integrate processing functions and
operators

and their indexing support.

We’ll see lots of examples of that kind of integration in the book. One of
them

https://en.wikipedia.org/wiki/Michael_Stonebraker

is a query used in the Schemaless Design in PostgreSQL section where we
deal with a Magic™ The Gathering set of cards imported from a JSON data
set:

1

select jsonb_pretty(data)

2

from magic.cards

3

where data @> '{

4

"type":"Enchantment",

5

"artist":"Jim Murray",

6

"colors":["White"]

7

}';

The @> operator reads contains and implements JSON searches, with
support from a specialized GIN index if one has been created. The
jsonb_pretty() function does what we can expect from its name, and the query
returns magic.cards

rows that match the JSON criteria for given type, artist and colors key, all as
a pretty printed JSON document.

PostgreSQL extensibility design is what allows one to enhance SQL in that
way.

Chapter 2 Sof ware Architecture | 22

The query still fully respects SQL rules, there are no tricks here. It is only
func-

tions and operators, positioned where we expect them in the where clause for
the searching and in the select clause for the projection that builds the output
format.

The PostgreSQL Documentation

This book is not an alternative to the PostgreSQL manual, which in PDF for
the 9.6 server weights in at 3376 pages if you choose the A4 format. The
table of

contents alone in that document includes from pages iii to xxxiv, that’s 32
pages!

This book o fers a very di ferent approach than what is expected from a
reference

manual, and it is in no way to be considered a replacement. Bits and pieces
from

the PostgreSQL documentation are quoted when necessary, otherwise this
book

contains lots of links to the reference pages of the functions and SQL
commands

we utilize in our practical use cases. It’s a good idea to refer to the
PostgreSQL

documentation and read it carefully.

Af er having spent some time as a developer using PostgreSQL, then as a

https://www.postgresql.org/docs/manuals/

Post-

greSQL contributor and consultant, nowadays I can very easily nd my way

around the PostgreSQL documentation. Chapters are organized in a logical
way,

and everything becomes easier when you get used to browsing the reference.

Finally, the psql application also includes online help with \h <sql
command>.

This book does not aim to be a substitute for the PostgreSQL documentation,

and other forums and blogs might o fer interesting pieces of advice and
introduce

some concepts with examples. At the end of the day, if you’re curious about

anything related to PostgreSQL: read the ne manual. No really… this one is

ne.

3

Getting Ready to read this Book

Be sure to use the documentation for the version of PostgreSQL you are
using,

and if you’re not too sure about that just query for it:

1

show server_version;

server_version

════════════════

9.6.5

(1 row)

Ideally, you will have a database server to play along with.

• If you’re using MacOSX, check out Postgres App to install a PostgreSQL

server and the psql tool.

• For Windows check https://www.postgresql.org/download/windows/.

• If you’re mainly running Linux mainly you know what you’re doing al-

ready right? My experience is with Debian, so have a look at https://apt.

postgresql.org and install the most recent version of PostgreSQL on your
station so that you have something to play with locally. For Red Hat
packaging based systems, check out https://yum.postgresql.org.

In this book, we will be using psql a lot and we will see how to con gure it in
a

friendly way.

You might prefer a more visual tool such as pgAdmin or OmniDB; the key
here is to be able to easily edit SQL queries, run them, edit them in order to x
them,

see the explain plan for the query, etc.

Chapter 3 Getting Ready to read this Book | 24

If you have opted for either the Full Edition or the Enterprise Edition of the
book, both include the SQL les. Check out the toc.txt le at the top of the

les tree, it contains a detailed table of contents and the list of les found in
each

https://postgresapp.com
https://www.postgresql.org/download/windows/
https://apt.postgresql.org
https://apt.postgresql.org
https://yum.postgresql.org
https://www.pgadmin.org
https://omnidb.org/en/

section, such as in the following example:

2 Introduction

2 Structured Query Language

2.1 Some of the Code is Written in SQL

2.2 A First Use Case

2.3 Loading the Data Set

02-intro/02-usecase/03_01_factbook.sql

2.4 Application Code and SQL

02-intro/02-usecase/04_01.sql

02-intro/02-usecase/04_02_factbook-month.py

2.5 A Word about SQL Injection

2.6 PostgreSQL protocol: server-side prepared statements

02-intro/02-usecase/06_01.sql

02-intro/02-usecase/06_02.sql

2.7 Back to Discovering SQL

02-intro/02-usecase/07_01.sql

2.8 Computing Weekly Changes

02-intro/02-usecase/08_01.sql

3 Software Architecture

3.1 Why PostgreSQL?

02-intro/03-postgresql/01_01.sql

3.2 The PostgreSQL Documentation

4 Getting Ready to read this Book

02-intro/04-postgresql/01.sql

To run the queries you also need the datasets, and the Full Edition includes
instructions to fetch the data and load it into your local PostgreSQL instance.
The

Enterprise Edition comes with a PostgreSQL instance containing all the data
already loaded for you, and visual tools already setup so that you can click
and run

the queries.

Part III

Writing Sql Queries

| 26

In this chapter, we are going to learn about how to write SQL queries. There
are

several ways to accomplish this this, both from the SQL syntax and semantics

point of view, and that is going to be covered later. Here, we want to address

how to write SQL queries as part of your application code.

Maybe you are currently using an ORM to write your queries and then have

never cared about learning how to format, indent and maintain SQL queries.

SQL is code, so you need to apply the same rules as when you maintain code

written in other languages: indentation, comments, version control, unit
testing,

etc.

Also to be able to debug what happens in production you need to be able to

easily spot where the query comes from, be able to replay it, edit it, and
update

your code with the new xed version of the query.

Before we go into details about the speci cs of those concerns, it might be a
good

idea to review how SQL actually helps you write sof ware, what parts of the
code

you are writing in the database layer and how much you can or should be
writing.

The question is this: is SQL a good place to implement business logic?

Next, to get a more concrete example around The Right Way™ to implement

SQL queries in your code, we are going to have a detailed look at a very
simple

application, so as to work with a speci c code base.

Af er that, we will be able to have a look at those tools and habits that will
help

you in using SQL in your daily life as an application developer. In particular,
this

chapter introduces the notion of indexing strategy and explains why this is
one

of the tasks that the application developer should be doing.

To conclude this part of the book, Yohann Gabory shares his Django
expertise

with us and covers why SQL is code, which you read earlier in this chapter.

4

Business Logic

Where to maintain the business logic can be a hard question to answer. Each

application may be di ferent, and every development team might have a di
ferent

viewpoint here, from one extreme (all in the application, usually in a
middleware layer) to the other (all in the database server with the help of
stored procedures).

My view is that every SQL query embeds some parts of the business logic
you are

implementing, thus the question changes from this:

• Should we have business logic in the database?

to this:

• How much of our business logic should be maintained in the database?

The main aspects to consider in terms of where to maintain the business logic
are

the correctness and the efficiency aspects of your code architecture and
organisation.

Every SQL query embeds some business logic

Before we dive into more speci cs, we need to realize that as soon as you
send

an SQL query to your RDBMS you are already sending business logic to the

database. My argument is that each and every and all SQL query contains
some

levels of business logic. Let’s consider a few examples.

Chapter 4 Business Logic | 28

In the very simplest possible case, you are still expressing some logic in the
query.

In the Chinook database case, we might want to fetch the list of tracks from a

given album:

1

select name

2

from track

3

where albumid = 193

4

order by trackid;

What business logic is embedded in that SQL statement?

• The select clause only mentions the name column, and that’s relevant to
your application. In the situation in which your application runs this

query, the business logic is only interested into the tracks names.

• The from clause only mentions the track table, somehow we decided that’s
all we need in this example, and that again is strongly tied to the logic being

implemented.

• The where clause restricts the data output to the albumid 193, which again
is a direct translation of our business logic, with the added information

that the album we want now is the 193rd one and we’re lef to wonder how

we know about that.

• Finally, the order by clause implements the idea that we want to display

the track names in the order they appear on the disk. Not only that, it also

incorporates the speci c knowledge that the trackid column ordering is

the same as the original disk ordering of the tracks.

A variation on the query would be the following:

1

select track.name as track, genre.name as genre

2

from

track

3

join genre using(genreid)

4

where albumid = 193

5

order by trackid;

This time we add a join clause to fetch the genre of each track and choose to
return the track name in a column named track and the genre name in a
column named genre. Again, there’s only one reason for us to be doing that
here: it’s because it makes sense with respect to the business logic being
implemented in

our application.

Granted, those two examples are very simple queries. It is possible to argue
that,

barring any computation being done to the data set, then we are not actually
im-

plementing any business logic. It’s a fair argument of course. The idea here is
that

Chapter 4 Business Logic | 29

those two very simplistic queries are already responsible for a part of the
business logic you want to implement. When used as part of displaying, for
example, a per

album listing page, then it actually is the whole logic.

Let’s have a look at another query now. It is still meant to be of the same
level of

complexity (very low), but with some level of computations being done on-
top

of the data, before returning it to the main application’s code:

1

select name,

2

milliseconds * interval '1 ms' as duration,

3

pg_size_pretty(bytes) as bytes

4

from track

5

where albumid = 193

6

order by trackid;

This variation looks more like some sort of business logic is being applied to
the

query, because the columns we sent in the output contain derived values from

the server’s raw data set.

Business Logic Applies to Use Cases

Up to now, we have been approaching the question from the wrong angle.
Look-

ing at a query and trying to decide if it’s implementing business logic rather
than something else (data access I would presume) is quite impossible to
achieve without a business case to solve, also known as a use case or maybe

even a user story, depending on which methodology you are following.

In the following example, we are going to rst de ne a business case we want
to

implement, and then we have a look at the SQL statement that we would use
to

solve it.

Our case is a simple one again: display the list of albums from a given artist,
each

with its total duration.

Let’s write a query for that:

1

select album.title as album,

2

sum(milliseconds) * interval '1 ms' as duration

3

from album

4

join artist using(artistid)

5

left join track using(albumid)

6

where artist.name = 'Red Hot Chili Peppers'

Chapter 4 Business Logic | 30

7

group by album

8

order by album;

The output is:

album

│

duration

═══════════════════════╪══════════════════════════════

Blood Sugar Sex Magik │ @ 1 hour 13 mins 57.073 secs

By The Way

│ @ 1 hour 8 mins 49.951 secs

Californication

│ @ 56 mins 25.461 secs

(3 rows)

What we see here is a direct translation from the business case (or user story
if

you prefer that term) into a SQL query. The SQL implementation uses joins

and computations that are speci c to both the data model and the use case we

are solving.

Another implementation could be done with several queries and the computa-

tion in the application’s main code:

1. Fetch the list of albums for the selected artist

2. For each album, fetch the duration of every track in the album

3. In the application, sum up the durations per album

Here’s a very quick way to write such an application. It is important to
include it

here because you might recognize patterns to be found in your own
applications,

and I want to explain why those patterns should be avoided:

1

#! /usr/bin/env python3

2

-*- coding: utf-8 -*-

3

4

import psycopg2

5

import psycopg2.extras

6

import sys

7

from datetime import timedelta

8

9

DEBUGSQL = False

10

PGCONNSTRING = "user=cdstore dbname=appdev
application_name=cdstore"

11

12

13

class Model(object):

14

tablename = None

15

columns = None

16

17

@classmethod

18

def buildsql(cls, pgconn, **kwargs):

19

if cls.tablename and kwargs:

20

cols = ", ".join(['"%s"' % c for c in cls.columns]) 21

qtab = '"%s"' % cls.tablename

Chapter 4 Business Logic | 31

22

sql = "select %s from %s where " % (cols, qtab)

23

for key in kwargs.keys():

24

sql += "\"%s\" = '%s'" % (key, kwargs[key])

25

if DEBUGSQL:

26

print(sql)

27

return sql

28

29

30

@classmethod

31

def fetchone(cls, pgconn, **kwargs):

32

if cls.tablename and kwargs:

33

sql = cls.buildsql(pgconn, **kwargs)

34

curs = pgconn.cursor(cursor_factory=psycopg2.extras.DictCursor)

35

curs.execute(sql)

36

result = curs.fetchone()

37

if result is not None:

38

return cls(*result)

39

40

@classmethod

41

def fetchall(cls, pgconn, **kwargs):

42

if cls.tablename and kwargs:

43

sql = cls.buildsql(pgconn, **kwargs)

44

curs = pgconn.cursor(cursor_factory=psycopg2.extras.DictCursor)

45

curs.execute(sql)

46

resultset = curs.fetchall()

47

if resultset:

48

return [cls(*result) for result in resultset]

49

50

51

class Artist(Model):

52

tablename = "artist"

53

columns = ["artistid", "name"]

54

55

def __init__(self, id, name):

56

self.id = id

57

self.name = name

58

59

60

class Album(Model):

61

tablename = "album"

62

columns = ["albumid", "title"]

63

64

def __init__(self, id, title):

65

self.id = id

66

self.title = title

67

self.duration = None

68

69

70

class Track(Model):

71

tablename = "track"

72

columns = ["trackid", "name", "milliseconds", "bytes", "unitprice"]

73

Chapter 4 Business Logic | 32

74

def __init__(self, id, name, milliseconds, bytes, unitprice):

75

self.id = id

76

self.name = name

77

self.duration = milliseconds

78

self.bytes = bytes

79

self.unitprice = unitprice

80

81

82

if __name__ == '__main__':

83

if len(sys.argv) > 1:

84

pgconn = psycopg2.connect(PGCONNSTRING)

85

artist = Artist.fetchone(pgconn, name=sys.argv[1])

86

87

for album in Album.fetchall(pgconn, artistid=artist.id):

88

ms = 0

89

for track in Track.fetchall(pgconn, albumid=album.id):

90

ms += track.duration

91

92

duration = timedelta(milliseconds=ms)

93

print("%25s: %s" % (album.title, duration))

94

else:

95

print('albums.py <artist name>')

Now the result of this code is as following:

1

$./albums.py "Red Hot Chili Peppers"

2

Blood Sugar Sex Magik: 1:13:57.073000

3

By The Way: 1:08:49.951000

4

Californication: 0:56:25.461000

While you would possibly not write the code in exactly that way, you might
be

using an application object model which provides a useful set of API entry
points

and you might be calling object methods that will, in turn, execute the same
kind

of series of SQL statements. Sometimes, adding insult to injury, your magic
ob-

ject model will insist on hydrating the intermediate objects with as much
infor-

mation as possible from the database, which translates into select * being
used.

We’ll see more about why to avoid select * later.

There are several problems related to correctness and efficiency when this

very simple use case is done within several queries, and we’re going to dive
into them.

Correctness

When using multiple statements, it is necessary to setup the isolation level
correctly. Also, the connection and transaction semantics of your code should
be

Chapter 4 Business Logic | 33

tightly controlled. Our code snippet here does neither, using a default
isolation

level setting and not caring much about transactions.

The SQL standard de nes four isolation levels and PostgreSQL implements

three of them, leaving out dirty reads. The isolation level determines which
side e fects from other transactions your transaction is sensitive to. The
PostgreSQL

documentation section entitled Transaction Isolation) is quite the reference to
read here. If we try and simplify the matter, you can think of the isolation
levels

like this:

• Read uncommitted

PostgreSQL accepts this setting and actually implements read committed

here, which is compliant with the SQL standard;

• Read committed

This is the default and it allows your transaction to see other transactions

changes as soon as they are committed; it means that if you run the follow-

https://www.postgresql.org/docs/current/static/transaction-iso.html

ing query twice in your transaction but someone else added or removed

objects from the stock, you will have di ferent counts at di ferent points

in your transaction.

1

SELECT count(*) FROM stock;

• Repeatable read

In this isolation level, your transaction keeps the same snapshot of the

whole database for its entire duration, from BEGIN to COMMIT. It is

very useful to have that for online backups — a straightforward use case

for this feature.

• Serializable

This level guarantees that a one-transaction-at-a-time ordering of what

happens on the server exists with the exact same result as what you’re

obtaining with concurrent activity.

So by default, we are working in read committed isolation level. As most
default values, it’s a good one when you know how it works and what to
expect from it,

and more importantly when you should change it.

Each running transaction in a PostgreSQL system can have a di ferent
isolation

level, so that the online backup tooling may be using repeatable read while
most

Chapter 4 Business Logic | 34

of your application is using read committed, possibly apart from the stock
management facilities which are meant to be serializable.

Now, what’s happening in our example? Our class fetch* methods are all
seeing

a di ferent database snapshot. So what happens to our code if a concurrent
user deletes an album from the database in between our Album.fetchall call
and our Track.fetchall call? Or, to make it sound less dramatic, reassigns an
album to a di ferent artist to x some user input error?

What happens is that we’d get a silent empty result set with the impact of
showing

a duration of 0 to the end-user. In other languages or other spellings of the
code,

you might have a user-visible error.

Of course, the SQL based solution is immune to those problems: when using

PostgreSQL every query always runs within a single consistent snapshot. The

isolation level impacts reusing a snapshot from one query to the next.

Efficiency

E ciency can be measured in a number of ways, including a static and a
dynamic

analysis of the code written.

The static analysis includes the time it takes a developer to come up with the
solu-

tion, the maintenance burden it then represents (like the likelihood of bug
xes,

the complexity of xing those bugs), how easy it is to review the code, etc.
The

dynamic analysis concerns what happens at runtime in terms of the resources

we need to run the code, basically revolving around the processor, memory,
net-

work, and disk.

The correct solution here is eight lines of very basic SQL. We may consider
that

writing this query takes a couple minutes at most and reviewing it is about as
easy.

To run it from the application side we need to send the query text on the
network

and we directly retrieve the information we need: for each album its name
and

its duration. This exchange is done in a single round trip. From the
application

side, we need to have the list of albums and their duration in memory, and we

don’t do any computing, so the CPU usage is limited to what needs to be
done

to talk to the database server and organise the result set in memory, then walk
the

result it to display it. We must add to that the time it took the server to
compute

the result for us, and computing the sum of the milliseconds is not free.

Chapter 4 Business Logic | 35

In the application’s code solution, here’s what happens under the hood:

• First, we fetch the artist from the database, so that’s one network round

trip and one SQL query that returns the artist id and its name

note that we don’t need the name of the artist in our use-case, so that’s a

useless amount of bytes sent on the network, and also in memory in the

application.

• Then we do another network round-trip to fetch a list of albums for the

artistid we just retrieved in the previous query, and store the result in the

application’s memory.

• Now for each album (here we only have three of them, the same collection

counts 21 albums for Iron Maiden) we send another SQL query via the

network to the database server and fetch the list of tracks and their prop-

erties, including the duration in milliseconds.

• In the same loop where we fetch the tracks durations in milliseconds, we

sum them up in the application’s memory — we can approximate the CPU

usage on the application side to be the same as the one in the PostgreSQL

server.

• Finally, the application can output the fetched data.

The thing about picturing the network as a resource is that we now must
consider

both the latency and the bandwidth characteristics and usage. That’s why in

the

analysis above the round trips are mentioned. In between an application’s
server and its database, it is common to see latencies in the order of
magnitude of 1ms

or 2ms.

So from SQL to application’s code, we switch from a single network round
trips

to ve of them. That’s a lot of extra work for this simple a use case. Here, in

my tests, the whole SQL query is executed in less than 1ms on the server, and

the whole timing of the query averages around 3ms, including sending the
query

string and receiving the result set.

With queries running in one millisecond on the server, the network round-trip

becomes the main runtime factor to consider. When doing very simple
queries

against a primary key column (where id = :id) it’s quite common to see
execution times around 0.1ms on the server. Which means you could do ten
of them

in a millisecond… unless you have to wait for ten times for about 1ms for the

network transport layer to get the result back to your application’s code…

Chapter 4 Business Logic | 36

Again this example is a very simple one in terms of business logic, still, we
can see the cost of avoiding raw SQL both in terms of correctness and e
ciency.

Stored Procedures — a Data Access API

When using PostgreSQL it is also possible to create server-side functions.
Those

SQL objects store code and then execute it when called. The naïve way to
create

a server-side stored procedure from our current example would be the
following:

1

create or replace function get_all_albums

2

(

3

in

name

text,

4

out album

text,

5

out duration interval

6

)

7

returns setof record

8

language sql

9

as $$

10

select album.title as album,

11

sum(milliseconds) * interval '1 ms' as duration

12

from album

13

join artist using(artistid)

14

left join track using(albumid)

15

where artist.name = get_all_albums.name

16

group by album

17

order by album;

18

$$;

But having to give the name of the artist rather than its artistid means that the
function won’t be e cient to use, and for no good reason. So, instead, we are

going to de ne a better version that works with an artist id:

1

create or replace function get_all_albums

2

(

3

in

artistid bigint,

4

out album

text,

5

out duration interval

6

)

7

returns setof record

8

language sql

9

as $$

10

select album.title as album,

11

sum(milliseconds) * interval '1 ms' as duration

12

from album

13

join artist using(artistid)

14

left join track using(albumid)

Chapter 4 Business Logic | 37

15

where artist.artistid = get_all_albums.artistid

16

group by album

17

order by album;

18

$$;

This function is written in PL/SQL, so it’s basically a SQL query that accepts
parameters. To run it, simply do as follows:

1

select * from get_all_albums(127);

album

│

duration

═══════════════════════╪══════════════════════════════

Blood Sugar Sex Magik │ @ 1 hour 13 mins 57.073 secs

By The Way

│ @ 1 hour 8 mins 49.951 secs

Californication

│ @ 56 mins 25.461 secs

(3 rows)

Of course, if you only have the name of the artist you are interested in, you

don’t

need to rst do another query. You can directly fetch the artistid from a
subquery:

1

select *

2

from get_all_albums(

3

(select artistid

4

from artist

5

where name = 'Red Hot Chili Peppers')

6

);

As you can see, the subquery needs its own set of parenthesis even as a
function

call argument, so we end up with a double set of parenthesis here.

Since PostgreSQL 9.3 and the implementation of the lateral join technique, it
is also possible to use the function in a join clause:

1

select album, duration

2

from artist,

3

lateral get_all_albums(artistid)

4

where artist.name = 'Red Hot Chili Peppers';

album

│

duration

═══════════════════════╪══════════════════════════════

Blood Sugar Sex Magik │ @ 1 hour 13 mins 57.073 secs

By The Way

│ @ 1 hour 8 mins 49.951 secs

Californication

│ @ 56 mins 25.461 secs

(3 rows)

Thanks to the lateral join, the query is still e cient, and it is possible to reuse
it in more complex use cases. Just for the sake of it, say we want to list the
album with

durations of the artists who have exactly four albums registered in our

database:

Chapter 4 Business Logic | 38

1

with four_albums as

2

(

3

select artistid

4

from album

5

group by artistid

6

having count(*) = 4

7

)

8

select artist.name, album, duration

9

from four_albums

10

join artist using(artistid),

11

lateral get_all_albums(artistid)

12

order by artistid, duration desc;

Using stored procedure allows reusing SQL code in between use cases, on the

server side. Of course, there are bene ts and drawbacks to doing so.

Procedural Code and Stored Procedures

The main drawback to using stored procedure is that you must know when to

use procedural code or plain SQL with parameters. The previous example can

be written in a very ugly way as server-side code:

1

create or replace function get_all_albums

2

(

3

in

name

text,

4

out album

text,

5

out duration interval

6

)

7

returns setof record

8

language plpgsql

9

as $$

10

declare

11

rec record;

12

begin

13

for rec in select albumid

14

from album

15

join artist using(artistid)

16

where album.name = get_all_albums.name

17

loop

18

select title, sum(milliseconds) * interval '1ms'

19

into album, duration

20

from album

21

left join track using(albumid)

22

where albumid = record.albumid

23

group by title

24

order by title;

Chapter 4 Business Logic | 39

25

26

return next;

27

end loop;

28

end;

29

$$;

What we see here is basically a re-enactment of everything we said was
wrong to

do in our application code example. The main di ference is that this time, we

avoid network round trips, as the loop runs on the database server.

If you want to use stored procedures, please always write them in SQL, and
only

switch to PLpgSQL when necessary. If you want to be e cient, the default

should be SQL.

Where to Implement Business Logic?

We saw di ferent ways to implement a very simple use case, with business
logic

implemented either on the application side, in a SQL query that is part of the

application’s environment, or as a server-side stored procedure.

The rst solution is both incorrect and ine cient, so it should be avoided. It’s

preferable to exercise PostgreSQL’s ability to execute joins rather than play
with

your network latency. We had ve round-trips, with a ping of 2 ms, that’s 10
ms lost before we do anything else, and we compare that to a query that
executes in

less than 1 millisecond.

We also need to think in terms of concurrency and scalability. How many
con-

current users browsing your album collection do you want to be able to
serve?

When doing ve times as many queries for the same result set, we can imagine

that you take a hit of about that ratio in terms of scalability. So rather than in-

vest in an extra layer of caching architecture in front of your APIs, wouldn’t
it

be better to write smarter and more e cient SQL?

As for stored procedures, a lot has already been said. Using them allows the
de-

velopers to build a data access API in the database server and to maintain it in

a transactional way with the database schema: PostgreSQL implements
transac-

tions for the DDL too. The DDL is the data definition language which
contains the create, alter and drop statements.

Another advantage of using stored procedures is that you send even less data
over

Chapter 4 Business Logic | 40

the network, as the query text is stored on the database server.

5

A Small Application

Let’s write a very basic application where we’re going to compare using
either

classic application code or SQL to solve some common problems. Our goal
in

this section is to be confronted with managing SQL as part of a code base,
and

show when to use classic application code or SQL.

Readme First Driven Development

Before writing any code or tests or anything, I like to write the readme rst.

That’s this little le explaining to the user why to care for about the
application,

and maybe some details about how to use it. Let’s do that now.

The cdstore application is a very simple wrapper on top of the Chinook
database.

https://github.com/lerocha/chinook-database

The Chinook data model represents a digital media store, including tables for

artists, albums, media tracks, invoices, and customers.

The cdstore application allows listing useful information and reports on top
of the database, and also provides a way to generate some activity.

Chapter 5 A Small Application | 42

Loading the Dataset

When I used the Chinook dataset rst, it didn’t support PostgreSQL, so I used

the SQLite data output, which nicely ts into a small enough data le.
Nowadays

you will nd a PostgreSQL backup le that you can use. It’s easier for me to
just

use pgloader though, so I will just do that.

Another advantage of using pgloader in this book is that we have the
following

summary output, which lists tables and how many rows we loaded for each of

them. This is the rst encounter with our dataset.

Here’s a truncated output from the pgloader run (edited so that it can t in the

book page format):

$ createdb chinook

$ pgloader https://github.com/lerocha/chinook-database/raw/master ⏎

/ChinookDatabase/DataSources

⏎

http://pgloader.io

/Chinook_Sqlite_AutoIncrementPKs.sqlite

pgsql:///chinook

...

table name

errors

rows

bytes

total time

fetch

0

0

1.611s

fetch meta data

0

33

0.050s

Create Schemas

0

0

0.002s

Create SQL Types

0

0

0.008s

Create tables

0

22

0.092s

Set Table OIDs

0

11

0.017s

artist

0

275

6.8 kB

0.026s

album

0

347

10.5 kB

0.090s

employee

0

8

1.4 kB

0.034s

invoice

0

412

31.0 kB

0.059s

mediatype

0

5

0.1 kB

0.083s

playlisttrack

0

8715

57.3 kB

0.179s

customer

0

59

6.7 kB

0.010s

genre

0

25

0.3 kB

0.019s

invoiceline

0

2240

43.6 kB

0.090s

playlist

0

18

0.3 kB

0.056s

track

0

3503

236.6 kB

0.192s

COPY Threads Completion

0

4

0.335s

Create Indexes

0

22

0.326s

Index Build Completion

0

22

0.088s

Reset Sequences

0

0

0.049s

Primary Keys

1

11

0.030s

Create Foreign Keys

0

11

0.065s

Create Triggers

0

0

0.000s

Install Comments

0

0

0.000s

Total import time

✓

15607

394.5 kB

0.893s

Chapter 5 A Small Application | 43

Now that the dataset is loaded, we have to x a badly de ned primary key from

the SQLite side of things:

> \d track

Table "public.track"

Column

│

Type

│

Modifiers

══════════════╪═════════╪═══

trackid

│ bigint

│ not null default nextval('track_trackid_seq'::regclass)

name

│ text

│

albumid

│ bigint

│

mediatypeid

│ bigint

│

genreid

│ bigint

│

composer

│ text

│

milliseconds │ bigint

│

bytes

│ bigint

│

unitprice

│ numeric │

Indexes:

"idx_51519_ipk_track" UNIQUE, btree (trackid)

"idx_51519_ifk_trackalbumid" btree (albumid)

"idx_51519_ifk_trackgenreid" btree (genreid)

"idx_51519_ifk_trackmediatypeid" btree (mediatypeid)

... foreign keys ...

> alter table track add primary key using index idx_51519_ipk_track;

ALTER TABLE

Note that as PostgreSQL implements group by inference we need this
primary

key to exists in order to be able to run some of the following queries. This
means

that as soon as you’ve loaded the dataset, please x the primary key so that we
are

ready to play with the dataset.

Chinook Database

The Chinook database includes basic music elements such as album, artist,
track, genre and mediatype for a music collection. Also, we nd the idea of a
playlist with an association table playlisttrack, because any track can take
part of several playlists and a single playlist is obviously made of several
tracks.

Then there’s a model for a customer paying for some tracks with the tables
staff, customer, invoice and invoiceline.

pgloader# \dt chinook.

List of relations

Schema

│

Name

│ Type

│ Owner

═════════╪═══════════════╪═══════╪═══════

Chapter 5 A Small Application | 44

chinook │ album

│ table │ dim

chinook │ artist

│ table │ dim

chinook │ customer

│ table │ dim

chinook │ genre

│ table │ dim

chinook │ invoice

│ table │ dim

chinook │ invoiceline

│ table │ dim

chinook │ mediatype

│ table │ dim

chinook │ playlist

│ table │ dim

chinook │ playlisttrack │ table │ dim

chinook │ staff

│ table │ dim

chinook │ track

│ table │ dim

(11 rows)

With that in mind we can begin to explore the dataset with a simple query:

1

select genre.name, count(*) as count

2

from

genre

3

left join track using(genreid)

4

group by genre.name

5

order by count desc;

Which gives us:

name

│ count

════════════════════╪═══════

Rock

│

1297

Latin

│

579

Metal

│

374

Alternative & Punk │

332

Jazz

│

130

TV Shows

│

93

Blues

│

81

Classical

│

74

Drama

│

64

R&B/Soul

│

61

Reggae

│

58

Pop

│

48

Soundtrack

│

43

Alternative

│

40

Hip Hop/Rap

│

35

Electronica/Dance

│

30

Heavy Metal

│

28

World

│

28

Sci Fi & Fantasy

│

26

Easy Listening

│

24

Comedy

│

17

Bossa Nova

│

15

Science Fiction

│

13

Rock And Roll

│

12

Opera

│

1

(25 rows)

Chapter 5 A Small Application | 45

Music Catalog

Now, back to our application. We are going to write it in Python, to make it
easy to browse the code within the book.

Using the anosql Python library it is very easy to embed SQL code in Python
and keep the SQL clean and tidy in .sql les. We will look at the Python side

https://www.python.org
https://github.com/honza/anosql

of

things in a moment.

The artist.sql le looks like this:

1

-- name: top-artists-by-album

2

-- Get the list of the N artists with the most albums

3

select artist.name, count(*) as albums

4

from

artist

5

left join album using(artistid)

6

group by artist.name

7

order by albums desc

8

limit :n;

Having .sql les in our source tree allows us to version control them with git,

write comments when necessary, and also copy and paste the les between
your

application’s directory and the interactive psql shell.

In the case of our artist.sql le, we see the use of the anosql facility to name
variables and we use limit :n. Here’s how to bene t from that directly in the

PostgresQL shell:

> \set n 1

> \i artist.sql

name

│ albums

═════════════╪════════

Iron Maiden │

21

(1 row)

> \set n 3

> \i artist.sql

name

│ albums

══════════════╪════════

Iron Maiden

https://git-scm.com

│

21

Led Zeppelin │

14

Deep Purple

│

11

(3 rows)

Of course, you can also set the variable’s value from the command line, in
case

you want to integrate that into bash scripts or other calls:

1

psql --variable "n=10" -f artist.sql chinook

Chapter 5 A Small Application | 46

Albums by Artist

We might also want to include the query from the previous section and that’s

fairly easy to do now. Our album.sql le looks like the following:

1

-- name: list-albums-by-artist

2

-- List the album titles and duration of a given artist

3

select album.title as album,

4

sum(milliseconds) * interval '1 ms' as duration

5

from album

6

join artist using(artistid)

7

left join track using(albumid)

8

where artist.name = :name

9

group by album

10

order by album;

Later in this section, we look at the calling Python code.

Top-N Artists by Genre

Let’s implement some more queries, such as the Top-N artists per genre,
where

we sort the artists by their number of appearances in our playlists. This

ordering

seems fair, and we have a classic Top-N to solve in SQL.

The following extract is our application’s genre-topn.sql le. The best way to

implement a Top-N query in SQL is using a lateral join, and the query here is
using that technique. We will get back to this kind of join later in the book
and

learn more details about it. For now, we can simplify the theory down to
lateral

join allowing one to write explicit loops in SQL:

1

-- name: genre-top-n

2

-- Get the N top tracks by genre

3

select genre.name as genre,

4

case when length(ss.name) > 15

5

then substring(ss.name from 1 for 15) || '…'

6

else ss.name

7

end as track,

8

artist.name as artist

9

from genre

10

left join lateral

11

/*

12

* the lateral left join implements a nested loop over

13

* the genres and allows to fetch our Top-N tracks per

Chapter 5 A Small Application | 47

14

* genre, applying the order by desc limit n clause.

15

*

16

* here we choose to weight the tracks by how many

17

* times they appear in a playlist, so we join against

18

* the playlisttrack table and count appearances.

19

*/

20

(

21

select track.name, track.albumid, count(playlistid)

22

from

track

23

left join playlisttrack using (trackid)

24

where track.genreid = genre.genreid

25

group by track.trackid

26

order by count desc

27

limit :n

28

)

29

/*

30

* the join happens in the subquery's where clause, so

31

* we don't need to add another one at the outer join

32

* level, hence the "on true" spelling.

33

*/

34

ss(name, albumid, count) on true

35

join album using(albumid)

36

join artist using(artistid)

37

order by genre.name, ss.count desc;

Here, we loop through the musical genres we know about, and for each of
them,

we fetch the n tracks with the highest number of appearances in our
registered

playlists (thanks to the SQL clauses order by count desc limit :n). This

correlated subquery runs for each genre and is parameterized with the
current genreid thanks to the clause where track.genreid = genre.genreid. This

where clause implements the correlation in between the outer loop and the

inner one.

Once the inner loop is done in the lateral subquery named ss then we join
again

with the album and artist tables in order to get the artist name, through the

album.

The query may look complex at this stage. The main goal of this book is to
help

you to nd it easier to read and gure out the equivalent code we would have

had to write in Python. The main reason why writing moderately complex
SQL

for this listing is e ciency.

To implement the same thing in application code you have to:

1. Fetch the list of genres (that’s one select name from genre query)

2. Then for each genre fetch the Top-N list of tracks, which is the ss subquery

Chapter 5 A Small Application | 48

before ran as many times as genres from the application

3. Then for each track selected in this way (that’s n times how many genres

you have), you can fetch the artist’s name.

That’s a lot of data to go back and forth in between your application and your

database server. It’s a lot of useless processing too. So we avoid all this extra
work by having the database compute exactly the result set we are interested
in, and then we have a very simple Python code that only cares about the user
interface,

here parsing command line options and printing out the result of our queries.

Another common argument against the seemingly complex SQL query is that

you know another way to obtain the same result, in SQL, that doesn’t involve

a lateral subquery. Sure, it’s possible to solve this Top-N problem in other
ways in SQL, but they are all less e cient than the lateral method. We will
cover how to read an explain plan in a later chapter, and that’s how to gure
out the most e cient way to write a query.

For now, let’s suppose this is the best way to write the query. So of course
that’s

the one we are going to include in the application’s code, and we need an
easy

way to then maintain the query.

So here’s the whole of our application code:

#! /usr/bin/env python3

-*- coding: utf-8 -*-

import anosql

import psycopg2

import argparse

import sys

PGCONNSTRING = "user=cdstore dbname=appdev
application_name=cdstore"

class chinook(object):

"""Our database model and queries"""

def __init__(self):

self.pgconn = psycopg2.connect(PGCONNSTRING)

self.queries = None

for sql in ['sql/genre-tracks.sql',

'sql/genre-topn.sql',

'sql/artist.sql',

'sql/album-by-artist.sql',

'sql/album-tracks.sql']:

queries = anosql.load_queries('postgres', sql)

if self.queries:

for qname in queries.available_queries:

self.queries.add_query(qname, getattr(queries, qname))

else:

self.queries = queries

Chapter 5 A Small Application | 49

def genre_list(self):

return self.queries.tracks_by_genre(self.pgconn)

def genre_top_n(self, n):

return self.queries.genre_top_n(self.pgconn, n=n)

def artist_by_albums(self, n):

return self.queries.top_artists_by_album(self.pgconn, n=n)

def album_details(self, albumid):

return self.queries.list_tracks_by_albumid(self.pgconn, id=albumid)

def album_by_artist(self, artist):

return self.queries.list_albums_by_artist(self.pgconn, name=artist)

class printer(object):

"print out query result data"

def __init__(self, columns, specs, prelude=True):

"""COLUMNS is a tuple of column titles,

Specs an tuple of python format strings

"""

self.columns = columns

self.specs = specs

self.fstr = " | ".join(str(i) for i in specs)

if prelude:

print(self.title())

print(self.sep())

def title(self):

return self.fstr % self.columns

def sep(self):

s = ""

for c in self.title():

s += "+" if c == "|" else "-"

return s

def fmt(self, data):

return self.fstr % data

class cdstore(object):

"""Our cdstore command line application. """

def __init__(self, argv):

self.db = chinook()

parser = argparse.ArgumentParser(

description='cdstore utility for a chinook database',

usage='cdstore <command> [<args>]')

subparsers = parser.add_subparsers(help='sub-command help')

genres = subparsers.add_parser('genres', help='list genres')

genres.add_argument('--topn', type=int)

Chapter 5 A Small Application | 50

genres.set_defaults(method=self.genres)

artists = subparsers.add_parser('artists', help='list artists')

artists.add_argument('--topn', type=int, default=5)

artists.set_defaults(method=self.artists)

albums = subparsers.add_parser('albums', help='list albums')

albums.add_argument('--id', type=int, default=None)

albums.add_argument('--artist', default=None)

albums.set_defaults(method=self.albums)

args = parser.parse_args(argv)

args.method(args)

def genres(self, args):

"List genres and number of tracks per genre"

if args.topn:

p = printer(("Genre", "Track", "Artist"),

("%20s", "%20s", "%20s"))

for (genre, track, artist) in self.db.genre_top_n(args.topn):

artist = artist if len(artist) < 20 else "%s…" % artist[0:18]

print(p.fmt((genre, track, artist)))

else:

p = printer(("Genre", "Count"), ("%20s", "%s")) for row in
self.db.genre_list():

print(p.fmt(row))

def artists(self, args):

"List genres and number of tracks per genre"

p = printer(("Artist", "Albums"), ("%20s", "%5s")) for row in
self.db.artist_by_albums(args.topn):

print(p.fmt(row))

def albums(self, args):

we decide to skip parts of the information here

if args.id:

p = printer(("Title", "Duration", "Pct"),

("%25s", "%15s", "%6s"))

for (title, ms, s, e, pct) in self.db.album_details(args.id):

title = title if len(title) < 25 else "%s…" % title[0:23]

print(p.fmt((title, ms, pct)))

elif args.artist:

p = printer(("Album", "Duration"), ("%25s", "%s")) for row in
self.db.album_by_artist(args.artist):

print(p.fmt(row))

if __name__ == '__main__':

cdstore(sys.argv[1:])

With this application code and the SQL we saw before we can now run our
Top-

N query and fetch the single most listed track of each known genre we have
in

our Chinook database:

$./cdstore.py genres --topn 1 | head

Chapter 5 A Small Application | 51

Genre |

Track |

Artist

---------------------+----------------------+---------------------

Alternative |

Hunger Strike |

Temple of the Dog

Alternative & Punk |

Infeliz Natal |

Raimundos

Blues |

Knockin On Heav… |

Eric Clapton

Bossa Nova |

Onde Anda Você |

Toquinho & Vinícius

Classical |

Fantasia On Gre… |

Academy of St. Mar…

Comedy |

The Negotiation |

The Office

Drama |

Homecoming |

Heroes

Easy Listening |

I've Got You Un… |

Frank Sinatra

Of course, we can change our --topn parameter and have the top three tracks

per genre instead:

$./cdstore.py genres --topn 3 | head

Genre |

Track |

Artist

---------------------+----------------------+---------------------

Alternative |

Hunger Strike |

Temple of the Dog

Alternative |

Times of Troubl… |

Temple of the Dog

Alternative |

Pushin Forward … |

Temple of the Dog

Alternative & Punk |

I Fought The La… |

The Clash

Alternative & Punk |

Infeliz Natal |

Raimundos

Alternative & Punk |

Redundant |

Green Day

Blues |

I Feel Free |

Eric Clapton

Blues |

Knockin On Heav… |

Eric Clapton

Now if we want to change our SQL query, for example implementing another

way to weight tracks and select the top ones per genre, then it’s easy to play
with the query in psql and replace it once you’re done.

As we are going to cover in the next section of this book, writing a SQL
query

happens interactively using a REPL tool.

6

The SQL REPL — An Interactive

Setup

PostgreSQL ships with an interactive console with the command line tool
named

psql. It can be used both for scripting and interactive usage and is moreover
quite a powerful tool. Interactive features includes autocompletion, readline
support (history searches, modern keyboard movements, etc), input and
output redirection, formatted output, and more.

New users of PostgreSQL of en want to nd an advanced visual query editing

tool and are confused when psql is the answer. Most PostgreSQL advanced
users and experts don’t even think about it and use psql. In this chapter, you
will learn how to fully appreciate that little command line tool.

Intro to psql

psql implements a REPL: the famous read-eval-print loop. It’s one of the best
ways to interact with the computer when you’re just learning and trying
things

out. In the case of PostgreSQL you might be discovering a schema, a data set,
or

just working on a query.

We of en see the SQL query when it’s fully formed, and rarely get to see the
steps

that led us there. It’s the same with code, most of en what you get to see is its

nal form, not the intermediary steps where the author tries things and re ne

Chapter 6 The SQL REPL — An Interactive Setup | 53

their understanding of the problem at hand, or the environment in which to

solve it.

The process to follow to get to a complete and e cient SQL query is the same

https://www.postgresql.org/docs/current/static/app-psql.html

as

when writing code: iterating from a very simple angle towards a full solution
to

the problem at hand. Having a REPL environment o fers an easy way to build

up on what you just had before.

The psqlrc Setup

Here we begin with a full setup of psql and in the rest of the chapter, we are
going to get back to each important point separately. Doing so allows you to
have a

fully working environment from the get-go and play around in your
PostgreSQL

console while reading the book.

\set PROMPT1 '%~%x%# '

\x auto

\set ON_ERROR_STOP on

\set ON_ERROR_ROLLBACK interactive

\pset null '¤'

\pset linestyle 'unicode'

\pset unicode_border_linestyle single

\pset unicode_column_linestyle single

\pset unicode_header_linestyle double

set intervalstyle to 'postgres_verbose';

\setenv LESS '-iMFXSx4R'

\setenv EDITOR '/Applications/Emacs.app/Contents/MacOS/bin/emacsclient
-nw'

Save that setup in the ~/.psqlrc le, which is read at startup by the psql
application. As you’ve already read in the PostgreSQL documentation for
psql, we have three di ferent settings to play with here:

• \set [name [value [...]]]

This sets the psql variable name to value, or if more than one value is given,

to the concatenation of all of them. If only one argument is given, the

variable is set with an empty value. To unset a variable, use the \unset

command.

• \setenv name [value]

This sets the environment variable name to value, or if the value is not

supplied, unsets the environment variable.

Chapter 6 The SQL REPL — An Interactive Setup | 54

Here we use this facility to setup speci c environment variables we need

from within psql, such as the LESS setup. It allows invoking the pager

for each result set but having it take the control of the screen only when

necessary.

• \pset [option [value]]

This command sets options a fecting the output of query result tables.

option indicates which option is to be set. The semantics of value vary
depending on the selected option. For some options, omitting value causes

the option to be toggled or unset, as described under the particular option.

If no such behavior is mentioned, then omitting value just results in the

current setting being displayed.

Transactions and psql Behavior

In our case we set several psql variables that change its behavior:

• \set ON_ERROR_STOP on

The name is quite a good description of the option. It allows psql to know

that it is not to continue trying to execute all your commands when a pre-

vious one is throwing an error. It’s primarily practical for scripts and can

be also set using the command line. As we’ll see later, we can easily invoke

scripts interactively within our session with the \i and \ir commands, so

the option is still useful to us now.

• \set ON_ERROR_ROLLBACK interactive

This setting changes how psql behaves with respect to transactions. It is a

very good interactive setup, and must be avoided in batch scripts.

From the documentation: When set to on, if a statement in a transaction

block generates an error, the error is ignored and the transaction continues.

When set to interactive, such errors are only ignored in interactive sessions,

and not when reading script les. When unset or set to o f, a statement in

a transaction block that generates an error aborts the entire transaction.

The error rollback mode works by issuing an implicit SAVEPOINT for

you, just before each command that is in a transaction block, and then

rolling back to the savepoint if the command fails.

Chapter 6 The SQL REPL — An Interactive Setup | 55

With the \set PROMPT1 '%~%x%# ' that we are using, psql displays a little
star in the prompt when there’s a transaction in ight, so you know you need to
nish the transaction. More importantly, when you want to type in anything
that

will have a side e fect on your database (modifying the data set or the
database

schema), then without the star you know you need to rst type in BEGIN.

Let’s see an example output with ON_ERROR_ROLLBACK set to o f. Here’s

its default value:

f1db# begin;

BEGIN

f1db*# select 1/0;

ERROR:

division by zero

f1db!# select 1+1;

ERROR:

current transaction is aborted, commands ignored until end of transaction

block

f1db!# rollback;

ROLLBACK

We have an error in our transaction, and we notice that the star prompt is now
a

ag. The SQL transaction is marked invalid, and the only thing PostgreSQL
will

now accept from us is to nish the transaction, with either a commit or a
rollback command. Both will result in the same result from the server:
ROLLBACK.

Now, let’s do the same SQL transaction again, this time with
ON_ERROR_ROLLBACK

being set to interactive. Now, before each command we send to the server,

psql sends a savepoint command, which allows it to then issue a rollback to

savepoint command in case of an error. This rollback to savepoint is also sent
automatically:

f1db# begin;

BEGIN

f1db*# select 1/0;

ERROR:

division by zero

f1db*# select 1+1;

?column?

https://www.postgresql.org/docs/current/static/sql-savepoint.html
https://www.postgresql.org/docs/current/static/sql-rollback-to.html
https://www.postgresql.org/docs/current/static/sql-rollback-to.html

══════════

2

(1 row)

f1db*# commit;

COMMIT

Notice how this time not only do we get to send successful commands af er
the

error, while still being in a transaction — also we get to be able to COMMIT

our work to the server.

Chapter 6 The SQL REPL — An Interactive Setup | 56

A Reporting Tool

Getting familiar with psql is a very good productivity enhancer, so my advice
is to spend some quality time with the documentation of the tool and get used
to

it. In this chapter, we are going to simplify things and help you to get started.

There are mainly two use cases for psql, either as an interactive tool or as a
scripting and reporting tool. In the rst case, the idea is that you have plenty of
com-

mands to help you get your work done, and you can type in SQL right in your

terminal and see the result of the query.

In the scripting and reporting use case, you have advanced formatting com-

mands: it is possible to run a query and fetch its result directly in either
asciidoc or HTML for example, given \pset format. Say we have a query that

reports

the N bests known results for a given driver surname. We can use psql to set
dynamic variables, display tuples only and format the result in a convenient

HTML output:

1

~ psql --tuples-only

\

2

--set n=1

\

3

--set name=Alesi

\

4

--no-psqlrc

\

5

-P format=html

\

6

-d f1db

\

7

-f report.sql

1

<table border="1" >

2

<tr valign="top" >

3

<td align="left" > Alesi</td>

4

<td align="left" > Canadian Grand Prix</td>

5

<td align="right" > 1995</td>

6

<td align="right" > 1</td>

7

</tr>

8

</table>

It is also possible to set the connection parameters as environment variables,
or to

use the same connection strings as in your application’s code, so you can test
them

with copy/paste easily, there’s no need to transform them into the -d dbname
-h

hostname -p port -U username syntax:

1

~ psql -d postgresql://dim@localhost:5432/f1db

2

f1db#

3

4

~ psql -d "user=dim host=localhost port=5432 dbname=f1db"

5

f1db#

Chapter 6 The SQL REPL — An Interactive Setup | 57

The query in the report.sql le uses the :'name' variable syntax. Using :name

would be missing the quotes around the literal value injected, and :'' allows

one to remedy this even with values containing spaces. psql also supports

:"variable" notation for double-quoting values, which is used for dynamic

SQL when identi ers are a parameter (column name or table names).

1

select surname, races.name, races.year, results.position

2

from results

3

join drivers using(driverid)

4

join races using(raceid)

5

where drivers.surname = :'name'

6

and position between 1 and 3

7

order by position

8

limit :n;

When running psql for reports, it might be good to have a speci c setup. In
this example, you can see I’ve been using the --no-psqlrc switch to be sure
we’re not

loading my usual interactive setup all with all the UTF-8 bells and whistles,
and

with ON_ERROR_ROLLBACK. Usually, you don’t want to have that set for

a reporting or a batch script.

You might want to set ON_ERROR_STOP though, and maybe some other
op-

tions.

Discovering a Schema

Let’s get back to the interactive features of psql. The tool’s main task is to
send SQL statements to the database server and display the result of the
query, and

also server noti cations and error messages. On top of that psql provides a set
of client-side commands all beginning with a backslash character.

Most of the provided commands are useful for discovering a database
schema.

All of them are implemented by doing one or several catalog queri against
the server. Again, it’s sending a SQL statement to the server, and it is
possible for

you to learn how to query the PostgreSQL catalogs by reviewing those
queries.

As an example, say you want to report the size of your databases but you
don’t

know where to look for that information. Reading the psql documentation
you nd that the \l+ command can do that, and now you want to see the SQL
behind

it:

~# \set ECHO_HIDDEN true

Chapter 6 The SQL REPL — An Interactive Setup | 58

https://www.postgresql.org/docs/current/static/app-psql.html

~# \l+

********* QUERY **********

SELECT d.datname as "Name",

pg_catalog.pg_get_userbyid(d.datdba) as "Owner",

pg_catalog.pg_encoding_to_char(d.encoding) as "Encoding",

d.datcollate as "Collate",

d.datctype as "Ctype",

pg_catalog.array_to_string(d.datacl, E'\n') AS "Access privileges",

CASE WHEN pg_catalog.has_database_privilege(d.datname, 'CONNECT')

THEN pg_catalog.pg_size_pretty(pg_catalog.pg_database_size(d.datname))

ELSE 'No Access'

END as "Size",

t.spcname as "Tablespace",

pg_catalog.shobj_description(d.oid, 'pg_database') as "Description"

FROM pg_catalog.pg_database d

JOIN pg_catalog.pg_tablespace t on d.dattablespace = t.oid

ORDER BY 1;

List of databases

...

~# \set ECHO_HIDDEN false

So now if you only want to have the database name and its on-disk size in
bytes,

it is as easy as running the following query:

1

SELECT datname,

2

pg_database_size(datname) as bytes

3

FROM pg_database

4

ORDER BY bytes desc;

There’s not much point in this book including the publicly available
documen-

tation of all the commands available in psql, so go read the whole manual
page to nd gems you didn’t know about — there are plenty of them!

Interactive Query Editor

You might have noticed that we did set the EDITOR environment variable
early in this section. This is the command used by psql each time you use
visual editing commands such as \e. This command launches your EDITOR
on the last edited

query (or an empty one) in a temporary le, and will execute the query once
you

end the editing session.

If you’re using emacs or vim typing with a full-blown editor from within a
terminal, it is something you will be very happy to do. In other cases, it is, of
course,

possible to set EDITOR to invoke your favorite IDE if your psql client runs
lo-

Chapter 6 The SQL REPL — An Interactive Setup | 59

cally.

7

SQL is Code

The rst step here is realizing that your database engine actually is part of your

application logic. Any SQL statement you write, even the simplest possible,
does

embed some logic: you are projecting a particular set of columns, ltering the

result to only a part of the available data set (thanks to the where clause), and

you want to receive the result in a known ordering. That is already is business

logic. Application code is written in SQL.

We compared a simple eight-line SQL query and the typical object model
code

solving the same use case earlier and analyzed its correctness and e ciency is-

sues. Then in the previous section, we approached a good way to have your
SQL

queries as .sql les in your code base.

Now that SQL is actually code in your application’s source tree, we need to
ap-

ply the same methodology that you’re used to: set a minimum level of
expected

quality thanks to common indentation rules, code comments, consistent nam-

ing, unit testing, and code revision systems.

SQL style guidelines

Code style is mainly about following the principle of least astonishment rule.

That’s why having a clear internal style guide that every developer follows is
im-

portant in larger teams. We are going to cover several aspects of SQL code
style

here, from indentation and to alias names.

Chapter 7 SQL is Code | 61

Indenting is a tool aimed at making it easy to read the code. Let’s face it: we
spend more time reading code than writing it, so we should always optimize
for easy to

read the code. SQL is code, so it needs to be properly indented.

Let’s see a few examples of bad and good style so that you can decide about
your

local guidelines.

1

SELECT title, name FROM album LEFT JOIN track USING(albumid)
WHERE albumid = 1 ORDER BY 2; Here we have a run-away query all on

the same line, making it more di cult than

it should for a reader to grasp what the query is all about. Also, the query is
using the old habit of all-caps SQL keywords. While it’s true that SQL
started out a

long time ago, we now have color screens and syntax highlighting and we
don’t

write all-caps code anymore… not even in SQL.

My advice is to right align top-level SQL clauses and have them on new
lines:

1

select title, name

2

from album left join track using(albumid)

3

where albumid = 1

4

order by 2;

Now it’s quite a bit easier to understand the structure of this query at a glance

and to realize that it is indeed a very basic SQL statement. Moreover, it’s
easier

to spot a problem in the query: order by 2. SQL allows one to use output
column number as references in some of its clauses, which is very useful at
the prompt

(because we are all lazy, right?). It makes refactoring harder than it should be

though. If we now decide we don’t want to output the album’s name with
each

track’s row in the result set, as we are actually interested in the track’s title
and duration, as found in the milliseconds column:

1

select name, milliseconds

2

from album left join track using(albumid)

3

where albumid = 1

4

order by 2;

So now the ordering has changed, so you need also to change the order by
clause, obtaining the following di f:

1

@@ -1,4 +1,4 @@

2

-

select title, name

3

+

select name, milliseconds

4

from album left join track using(albumid)

5

where albumid = 1

6

-order by 2;

7

+order by 1;

Chapter 7 SQL is Code | 62

This is a very simple example, but nonetheless we can see that the review
process

now has to take into account why the order by clause is modi ed when what
you want to achieve is changing the columns returned.

Now, the right ordering for this query might actually be to return the tracks in

the order they appear on the album, which seems to be handled in the
Chinook

model by the trackid itself, so it’s better to use that:

1

select name, milliseconds

2

from album left join track using(albumid)

3

where albumid = 1

4

order by trackid;

This query is now about to be ready to be checked in into your application’s

code base, tested and reviewed. An alternative writing would require splitting

the from clause into one source relation per line, having the join appearing
more

clearly:

1

select name, milliseconds

2

from

album

3

left join track using(albumid)

4

where albumid = 1

5

order by trackid;

In this style, we see that we indent the join clauses nested in the from clause,

because that’s the semantics of an SQL query. Also, we lef align the table
names

that take part of the join. An alternative style consists of also entering the join

clause (one of either on or using) in a separate line too:

1

select name, milliseconds

2

from

album

3

left join track

4

using(albumid)

5

where albumid = 1

6

order by trackid;

This extended style is useful when using subqueries, so let’s fetch track
informa-

tion from albums we get in a subquery:

1

select title, name, milliseconds

2

from (

3

select albumid, title

4

from

album

5

join artist using(artistid)

6

where artist.name = 'AC/DC'

7

)

8

as artist_albums

9

left join track

Chapter 7 SQL is Code | 63

10

using(albumid)

11

order by trackid;

One of the key things to think about in terms of the style you pick is being
con-

sistent. That’s why in the previous example we also split the from clause in
the subquery, even though it’s a very simple clause that’s not surprising.

SQL requires using parens for subqueries, and we can put that requirement to

good use in the way we indent our queries, as shown above.

Another habit that is worth mentioning here consists of writing the join
condi-

tions of inner joins in the where clause:

1

SELECT name, title

2

FROM artist, album

3

WHERE artist.artistid = album.artistid

4

AND artist.artistid = 1;

This style reminds us of the 70s and 80s before when the SQL standard did
spec-

ify the join semantics and the join condition. It is extremely confusing to use

such a style and doing it is frowned upon. The modern SQL spelling looks
like

the following:

1

select name, title

2

from artist

3

inner join album using(artistid)

4

where artist.artistid = 1;

Here I expanded the inner join to its full notation. The SQL standard
introduces

noise words in the syntax, and both inner and outer are noise words: a left,
right or full join is always an outer join, and a straight join always is an inner
join.

It is also possible to use the natural join here, which will automatically
expand a join condition over columns having the same name:

1

select name, title

2

from artist natural join album

3

where artist.artistid = 1;

General wisdom dictates that one should avoid natural joins: you can (and
will) change your query semantics by merely adding a column to or removing
a column from a table! In the Chinook model, we have ve di ferent tables
with a

name column, none of those being part of the primary key. In most cases, you
don’t want to join tables on the name column…

Because it’s fun to do so, let’s write a query to nd out if the Chinook data set

includes cases of a track being named af er another artist’s, perhaps re ecting
their

Chapter 7 SQL is Code | 64

respect or inspiration.

1

select artist.name as artist,

2

inspired.name as inspired,

3

album.title as album,

4

track.name as track

5

from

artist

6

join track on track.name = artist.name

7

join album on album.albumid = track.albumid

8

join artist inspired on inspired.artistid = album.artistid

9

where artist.artistid <> inspired.artistid;

This gives the following result where we can see two cases of a singer
naming a

song af er their former band’s name:

artist

│

inspired

│

album

│

track

═══════════════╪═══════════════╪════════════════════╪═══════════════

Iron Maiden

│ Paul D'Ianno

│ The Beast Live

│ Iron Maiden

Black Sabbath │ Ozzy Osbourne │ Speak of the Devil │ Black Sabbath

(2 rows)

About the query itself, we can see we use the same table twice in the join
clause, because in one case the artist we want to know about is the one
issuing the track

in one of their album, and in the other case it’s the artist that had their name

picked as a track’s name. To be able to handle that without confusion, the
query

uses the SQL standard’s relation aliases.

In most cases, you will see very short relation aliases being used. When I
typed

that query in the psql console, I must admit I rst picked a1 and a2 for artist’s
relation aliases, because it made it short and easy to type. We can compare
such

a choice with your variable naming policy. I don’t suppose you pass code
review

when using variable names such as a1 and a2 in your code, so don’t use them
in your SQL query as aliases either.

Comments

The SQL standard comes with two kinds of comments, either per line with

the double-dash pre x or per-block delimited with C-style comments using

/* comment */ syntax. Note that contrary to C-style comments, SQL-style

comments accept nested comments.

Let’s add some comments to our previous query:

Chapter 7 SQL is Code | 65

1

-- artists names used as track names by other artists

2

select artist.name as artist,

3

-- "inspired" is the other artist

4

inspired.name as inspired,

5

album.title as album,

6

track.name as track

7

from

artist

8

/*

9

* Here we join the artist name on the track name,

10

* which is not our usual kind of join and thus

11

* we don't use the using() syntax. For

12

* consistency and clarity of the query, we use

13

* the "on" join condition syntax through the

14

* whole query.

15

*/

16

join track

17

on track.name = artist.name

18

join album

19

on album.albumid = track.albumid

20

join artist inspired

21

on inspired.artistid = album.artistid

22

where artist.artistid <> inspired.artistid;

As with code comments, it’s pretty useless to explain what is obvious in the
query.

The general advice is to give details on what you though was unusual or di
cult

to write, so as to make the reader’s work as easy as possible. The goal of
code

comments is to avoid ever having to second-guess the intentions of the
author(s) of it. SQL is code, so we pursue the same goal with SQL.

Comments could also be used to embed the source location where the query

comes from in order to make nding it easier when we have to debug it in pro-

duction, should we have to. Given the PostgreSQL’s application_name
facility and a proper use of SQL les in your source code, one can wonder how
helpful

that technique is.

Unit Tests

SQL is code, so it needs to be tested. The general approach to unit testing
code

applies beautifully to SQL: given a known input a query should always return

the same desired output. That allows you to change your query spelling at
will

and still check that the alternative still passes your tests.

Examples of query rewriting would include inlining common table
expressions as

Chapter 7 SQL is Code | 66

sub-queries, expanding or branches in a where clause as union all branches,
or maybe using window function rather than complex juggling with
subqueries to

obtain the same result. What I mean here is that there are a lot of ways to
rewrite

a query while keeping the same semantics and obtaining the same result.

Here’s an example of a query rewrite:

1

with artist_albums as

2

(

3

select albumid, title

4

from

album

5

join artist using(artistid)

6

where artist.name = 'AC/DC'

7

)

8

select title, name, milliseconds

9

from artist_albums

10

left join track

11

using(albumid)

12

order by trackid;

The same query may be rewritten with the exact same semantics (but di
ferent

run-time characteristics) like this:

1

select title, name, milliseconds

2

from (

3

select albumid, title

4

from

album

5

join artist using(artistid)

6

where artist.name = 'AC/DC'

7

)

8

as artist_albums

9

left join track

10

using(albumid)

11

order by trackid;

The PostgreSQL project includes many SQL tests to validate its query parser,

optimizer and executor. It uses a framework named the regression tests suite,
based on a very simple idea:

1. Run a SQL le containing your tests with psql

2. Capture its output to a text le that includes the queries and their results

3. Compare the output with the expected one that is maintained in the repos-

itory with the standard diff utility

4. Report any di ference as a failure

You can have a look at PostgreSQL repository to see how it’s done, as an
example

we could pick src/test/regress/sql/aggregates.sql and its matching expected
result le src/test/regress/expected/aggregates.out.

Chapter 7 SQL is Code | 67

https://github.com/postgres/postgres/blob/master/src/test/regress/sql/aggregates.sql
https://github.com/postgres/postgres/blob/master/src/test/regress/expected/aggregates.out

Implementing that kind of regression testing for your application is quite
easy,

as the driver is only a thin wrapper around executing standard applications
such

as psql and diff. The idea would be to always have a setup and a teardown
step in your SQL test les, wherein the setup step builds a database model and
lls it

with the test data, and the teardown step removes all that test data.

To automate such a setup and go beyond the obvious, the tool pgTap is a
suite of database functions that make it easy to write TAP-emitting unit tests
in psql

scripts or xUnit-style test functions. The TAP output is suitable for
harvesting,

analysis, and reporting by a TAP harness, such as those used in Perl
applications.

When using pgTap, see the relation-testing functions for implementing unit
tests based on result sets. From the documentation, let’s pick a couple
examples, testing against static result sets as VALUES:

1

SELECT results_eq(

2

'SELECT * FROM active_users()',

3

$$

4

http://pgtap.org/
http://pgtap.org/documentation.html#canyourelate

VALUES (42, 'Anna'),

5

(19, 'Strongrrl'),

6

(39, 'Theory')

7

$$,

8

'active_users() should return active users'

9

);

and ARRAYS:

1

SELECT results_eq(

2

'SELECT * FROM active_user_ids()',

3

ARRAY[2, 3, 4, 5]

4

);

As you can see your unit tests are coded in SQL too. This means you have all

the SQL power to write tests at your ngertips, and also that you can also
check

your schema integrity directly in SQL, using PostgreSQL catalog functions.

Straight from the pg_prove command-line tool for running and harnessing
pgTAP tests, we can see how it looks:

1

% pg_prove -U postgres tests/

2

tests/coltap.....ok

3

tests/hastap.....ok

4

tests/moretap....ok

5

tests/pg73.......ok

6

tests/pktap......ok

7

All tests successful.

8

http://pgtap.org/pg_prove.html

Files=5, Tests=216,

1 wallclock secs

9

(0.06 usr

0.02 sys +

0.08 cusr

0.07 csys =

0.23 CPU)

Chapter 7 SQL is Code | 68

10

Result: PASS

You might also nd it easy to integrate SQL testing in your current unit testing

solution. In Debian and derivatives operating systems, the pg_virtualenv is a
tool that creates a temporary PostgreSQL installation that will exist only
while you’re

running your tests.

If you’re using Python, read the excellent article from Julien Danjou about

databases integration testing strategies with Python where you will learn
more tricks to integrate your database tests using the standard Python toolset.

Your application relies on SQL. You rely on tests to trust your ability to
change

and evolve your application. You need your tests to cover the SQL parts of

http://manpages.ubuntu.com/manpages/trusty/man1/pg_virtualenv.1.html
https://julien.danjou.info/
https://julien.danjou.info/blog/2014/db-integration-testing-strategies-python

your

application!

Regression Tests

Regression testing protects against introducing bugs when refactoring code.

In SQL too we refactor queries, either because the calling application code is

changed and the query must change too, or because we are hitting problems

in production and a new optimized version of the query is being checked-in
to

replace the previous erroneous version.

The way regression testing protects you is by registering the expected results
from

your queries, and then checking actual results against the expected results.
Typi-

cally you would run the regression tests each time a query is changed.

The RegreSQL tool implements that idea. It nds SQL les in your code
repository and allows registering plan tests against them, and then it
compares the

results with what’s expected.

A typical output from using RegreSQL against our cdstore application looks
like the following:

1

$ regresql test

2

https://github.com/dimitri/regresql

Connecting to 'postgres:///chinook?sslmode=disable'… ✓

3

TAP version 13

4

ok 1 - src/sql/album-by-artist.1.out

5

ok 2 - src/sql/album-tracks.1.out

6

ok 3 - src/sql/artist.1.out

7

ok 4 - src/sql/genre-topn.top-3.out

Chapter 7 SQL is Code | 69

8

ok 5 - src/sql/genre-topn.top-1.out

9

ok 6 - src/sql/genre-tracks.out

In the following example we introduce a bug by changing the test plan
without

changing the expected result, and here’s how it looks then:

1

$ regresql test

2

Connecting to 'postgres:///chinook?sslmode=disable'… ✓

3

TAP version 13

4

ok 1 - src/sql/album-by-artist.1.out

5

ok 2 - src/sql/album-tracks.1.out

6

Query File: 'src/sql/artist.sql'

7

Bindings File: 'regresql/plans/src/sql/artist.yaml'

8

Bindings Name: '1'

9

Query Parameters: 'map[n:2]'

10

Expected Result File: 'regresql/expected/src/sql/artist.1.out'

11

Actual Result File: 'regresql/out/src/sql/artist.1.out'

12

#

13

--- regresql/expected/src/sql/artist.1.out

14

+++ regresql/out/src/sql/artist.1.out

15

@@ -1,4 +1,5 @@

16

-

name

| albums

17

-------------+-------

18

-Iron Maiden | 21

19

+

name

| albums

20

+-------------+-------

21

+Iron Maiden

| 21

22

+Led Zeppelin | 14

23

#

24

not ok 3 - src/sql/artist.1.out

25

ok 4 - src/sql/genre-topn.top-3.out

26

ok 5 - src/sql/genre-topn.top-1.out

27

ok 6 - src/sql/genre-tracks.out

The diagnostic output allows actions to be taken to x the problem: ei-

ther change the expected output (with regresql update) or

x the re-

gresql/plans/src/sql/artist.yaml le.

A Closer Look

When something wrong happens in production and you want to understand it,

one of the important tasks we are confronted with is nding which part of the

code is sending a speci c query we can see in the monitoring, in the logs or in
the

interactive activity views.

Chapter 7 SQL is Code | 70

PostgreSQL implements the application_name parameter, which you can set
in

the connection string and with the SET command within your session. It is
then possible to have it reported in the server’s logs, and it’s also part of the
system

activity view pg_stat_activity.

It is a good idea to be quite granular with this setting, going as low as the
module

or package level, depending on your programming language of choice. It’s
one

of those settings that the main application should have full control of, so
usually

external (and internal) libs are not setting it.

8

Indexing Strategy

Coming up with an Indexing Strate is an important step in terms of mastering
your PostgreSQL database. It means that you are in a position to make an
informed choice about which indexes you need, and most importantly, which
you

don’t need in your application.

A PostgreSQL index allows the system to have new options to nd the data

your queries need. In the absence of an index, the only option available to
your

database is a sequential scan of your tables. The index access methods are
meant to be faster than a sequential scan, by fetching the data directly where
it is.

Indexing is of en thought of as a data modeling activity. When using Post-

greSQL, some indexes are necessary to ensure data consistency (the C in
ACID).

Constraints such as UNIQUE, PRIMARY KEY or EXCLUDE USING

are only possible to implement in PostgreSQL with a backing index. When an

index is used as an implementation detail to ensure data consistency, then the

indexing strate is indeed a data modeling activity.

In all other cases, the indexing strate

is meant to enable methods for faster ac-

cess methods to data. Those methods are only going to be exercised in the
context

of running a SQL query. As writing the SQL queries is the job of a developer,

then coming up with the right indexing strate for an application is also the job

of the developer.

Chapter 8 Indexing Strategy | 72

Indexing for Constraints

When using PostgreSQL some SQL modeling constraints can only be
handled

with the help of a backing index. That is the case for the primary key and
unique

constraints, and also for the exclusion constraints created with the
PostgreSQL

special syntax EXCLUDE USING.

In those three constraint cases, the reason why PostgreSQL needs an index is

because it allows the system to implement visibility tricks with its MVCC
implementation. From the PostgreSQL documentation:

PostgreSQL provides a rich set of tools for developers to manage

concurrent access to data. Internally, data consistency is maintained

by using a multiversion model (Multiversion Concurrency Control,

MVCC). This means that each SQL statement sees a snapshot of

data (a database version) as it was some time ago, regardless of the

current state of the underlying data. This prevents statements from

viewing inconsistent data produced by concurrent transactions per-

forming updates on the same data rows, providing transaction iso-

lation for each database session. MVCC, by eschewing the locking

https://www.postgresql.org/docs/current/static/mvcc.html

methodologies of traditional database systems, minimizes lock con-

tention in order to allow for reasonable performance in multiuser

environments.

If we think about how to implement the unique constraint, we soon realize
that to be correct the implementation must prevent two concurrent statements
from

inserting duplicates. Let’s see an example with two transactions t1 and t2
happening in parallel:

1

t1> insert into test(id) values(1);

2

t2> insert into test(id) values(1);

Before the transactions start the table has no duplicate entry, it is empty. If we

consider each transaction, both t1 and t2 are correct and they are not creating
duplicate entries with the data currently known by PostgreSQL.

Still, we can’t accept both the transactions — one of them has to be refused
—

because they are con icting with the one another. PostgreSQL knows how to
do

that, and the implementation relies on the internal code being able to access
the

indexes in a non-MVCC compliant way: the internal code of PostgreSQL
knows

what the in- ight non-committed transactions are doing.

Chapter 8 Indexing Strategy | 73

The way the internals of PostgreSQL solve this problem is by relying on its
index

data structure in a non-MVCC compliant way, and this capability is not
visible

to SQL level users.

So when you declare a unique constraint, a primary key constraint or an
exclusion constraint PostgreSQL creates an index for you:

1

> create table test(id integer unique);

2

CREATE TABLE

3

Time: 68.775 ms

4

5

> \d test

6

Table "public.test"

7

Column |

Type

| Modifiers

8

--------+---------+-----------

9

id

| integer |

10

Indexes:

11

"test_id_key" UNIQUE CONSTRAINT, btree (id)

And we can see that the index is registered in the system catalogs as being de
ned

in terms of a constraint.

Indexing for Queries

PostgreSQL automatically creates only those indexes that are needed for the
sys-

tem to behave correctly. Any and all other indexes are to be de ned by the
appli-

cation developers when they need a faster access method to some tuples.

An index cannot alter the result of a query. An index only provides another
access

method to the data, one that is faster than a sequential scan in most cases.
Query

semantics and result set don’t depend on indexes.

Implementing a user story (or a business case) with the help of SQL queries
is the

job of the developer. As the author of the SQL statements, the developer also

should be responsible for choosing which indexes are needed to support their

queries.

Chapter 8 Indexing Strategy | 74

Cost of Index Maintenance

An index duplicates data in a specialized format made to optimise a certain
type

of searches. This duplicated data set is still ACID compliant: at COMMIT;
time, every change that is made it to the main tables of your schema must
have

made it to the indexes too.

As a consequence, each index adds write costs to your DML queries: insert,
update and delete now have to maintain the indexes too, and in a
transactional way.

That’s why we have to de ne a global indexing strate . Unless you have in
nite IO bandwidth and storage capacity, it is not feasible to index everything
in your

database.

Choosing Queries to Optimize

In every application, we have some user side parts that require the lowest
latency

you can provide, and some reporting queries that can run for a little while
longer

without users complaining.

So when you want to make a query faster and you see that its explain plan is
lack-ing index support, think about the query in terms of SLA in your
application.

Does this query need to run as fast as possible, even when it means that you
now

have to maintain more indexes?

PostgreSQL Index Access Methods

PostgreSQL implements several index Access Methods. An access method is
a generic algorithm with a clean API that can be implemented for compatible
data

types. Each algorithm is well adapted to some use cases, which is why it’s
inter-

esting to maintain several access methods.

The PostgreSQL documentation covers index types in the indexes chapter,
and tells us that

Chapter 8 Indexing Strategy | 75

PostgreSQL provides several index types: B-tree, Hash, GiST, SP-

GiST, GIN and BRIN. Each index type uses a di ferent algorithm

that is best suited to di ferent types of queries. By default, the CRE-

https://www.postgresql.org/docs/current/static/indexes-types.html
https://www.postgresql.org/docs/current/static/indexes.html

ATE INDEX command creates B-tree indexes, which t the most

common situations.

Each index access method has been designed to solve speci c use case:

• B-Tree, or balanced tree

Balanced indexes are the most common used, by a long shot, because they

are very e cient and provide an algorithm that applies to most cases. Post-

greSQL implementation of the B Tree index support is best in class and

has been optimized to handle concurrent read and write operations.

You can read more about the PostgreSQL B-tree algorithm and its theoret-

ical background in the source code le:

src/backend/access/nbtree/README.

• GiST, or generalized search tree

This access method implements an more general algorithm that again

comes from research activities. The GiST Indexing Project from the
University of California Berkeley is described in the following terms:

The GiST project studies the engineering and mathematics be-

hind content-based indexing for massive amounts of complex

content.

Its implementation in PostgreSQL allows support for 2-dimensional data

types such as the geometry point or the rang data types. Those data types
don’t support a total order and as a consequence can’t be indexed properly in

https://github.com/postgres/postgres/tree/master/src/backend/access/nbtree
http://gist.cs.berkeley.edu
https://en.wikipedia.org/wiki/Total_order

a B-tree index.

• SP-GiST, or spaced partitioned gist

SP-GiST indexes are the only PostgreSQL index access method imple-

mentation that support non-balanced disk-based data structures, such as

quadtrees, k-d trees, and radix trees (tries). This is useful when you want

to index 2-dimensional data with very di ferent densities.

• GIN, or generalized inverted index

Chapter 8 Indexing Strategy | 76

GIN is designed for handling cases where the items to be indexed are com-

posite values, and the queries to be handled by the index need to search

for element values that appear within the composite items. For example,

the items could be documents, and the queries could be searches for docu-

ments containing speci c words.

GIN indexes are “inverted indexes” which are appropriate for data values

that contain multiple component values, such as arrays. An inverted index

contains a separate entry for each component value. Such an index can

e ciently handle queries that test for the presence of speci c component

values.

The GIN access method is the foundation for the PostgreSQL Full Text

Search support.

https://www.postgresql.org/docs/current/static/textsearch-intro.html
https://www.postgresql.org/docs/current/static/textsearch-intro.html

• BRIN, or block range indexes

BRIN indexes (a shorthand for block range indexes) store summaries

about the values stored in consecutive physical block ranges of a table.

Like GiST, SP GiST and GIN, BRIN can support many di ferent

indexing strategies, and the particular operators with which a BRIN index

can be used vary depending on the indexing strategy. For data types that

have a linear sort order, the indexed data corresponds to the minimum

and maximum values of the values in the column for each block range.

• Hash

Hash indexes can only handle simple equality comparisons. The query

planner will consider using a hash index whenever an indexed column is

involved in a comparison using the = operator.

Never use a hash index in PostgreSQL before version 10. In PostgreSQL

10 onward, hash index are crash-safe and may be used.

• Bloom lters

A Bloom lter is a space-e cient data structure that is used to test whether

an element is a member of a set. In the case of an index access method, it

allows fast exclusion of non-matching tuples via signatures whose size is

determined at index creation.

This type of index is most useful when a table has many attributes and

queries test arbitrary combinations of them. A traditional B-tree index is

Chapter 8 Indexing Strategy | 77

faster than a Bloom index, but it can require many B-tree indexes to sup-

port all possible queries where one needs only a single Bloom index. Note

however that Bloom indexes only support equality queries, whereas B-tree

indexes can also perform inequality and range searches.

The Bloom lter index is implemented as a PostgreSQL extension starting

in PostgreSQL 9.6, and so to be able to use this access method it’s necessary
to rst create extension bloom.

Both Bloom indexes and BRIN indexes are mostly useful when covering mut-
liple columns. In the case of Bloom indexes, they are useful when the queries
themselves are referencing most or all of those columns in equality
comparisons.

Advanced Indexing

The PostgreSQL documentation about indexes covers everything you need to
know, in details, including:

• Multicolumn indexes

• Indexes and ORDER BY

• Combining multiple indexes

• Unique indexes

• Indexes on expressions

• Partial indexes

https://www.postgresql.org/docs/10/static/indexes.html

• Partial unique indexes

• Index-only scans

There is of course even more, so consider reading this PostgreSQL chapter in
its

entirety, as the content isn’t repeated in this book, but you will need it to
make

informed decisions about your indexing strategy.

Adding Indexes

Deciding which indexes to add is central to your indexing strate . Not every

query needs to be that fast, and the requirements are mostly user de ned. That

Chapter 8 Indexing Strategy | 78

said, a general system-wide analysis can be achieved thanks to the
PostgreSQL

extension pg_stat_statements.

Once this PostgreSQL extension is installed and deployed — this needs a
Post-

greSQL restart, because it needs to be registered in shared_preload_libraries

— then it’s possible to have a list of the most common queries in terms of
num-

ber of times the query is executed, and the cumulative time it took to execute
the

query.

You can begin your indexing needs analysis by listing every query that

https://www.postgresql.org/docs/current/static/pgstatstatements.html

averages

out to more than 10 milliseconds, or some other sensible threshold for your
appli-

cation. The only way to understand where time is spent in a query is by using
the

EXPLAIN command and reviewing the query plan. From the documentation
of the command:

PostgreSQL devises a query plan for each query it receives. Choos-

ing the right plan to match the query structure and the properties

of the data is absolutely critical for good performance, so the system

includes a complex planner that tries to choose good plans. You can

use the EXPLAIN command to see what query plan the planner

creates for any query. Plan-reading is an art that requires some expe-

rience to master, but this section attempts to cover the basics.

Here’s a very rough guide to using explain for xing query performances:

• use the spelling below when using explain to understand run time charac-

teristics of your queries:

1

explain (analyze, verbose, buffers)

2

<query here>;

https://www.postgresql.org/docs/current/static/using-explain.html

• In particular when you’re new to reading query plans, use visual tools such
as https://explain.depesz.com and PostgreSQL Explain Visualizer, or the one
included in pgAdmin.

• First check for row count di ferences in between the estimated and the
effective numbers.

Good statistics are critical to the PostgreSQL query planner, and the col-

lected statistics need to be reasonnably up to date. When there’s a huge

di ference in between estimated and e fective row counts (several orders

of magnitude, a thousand times o f or more), check to see if tables are ana-

lyzed frequently enough by the Autovacuum Daemon, then check if you

Chapter 8 Indexing Strategy | 79

should adjust your statistics target.

• Finally, check for time spent doing sequential scans of your data, with a

filter step, as that’s the part that a proper index might be able to optimize.

Remember Amdahl’s law when optimizing any system: if some step takes
10%

of the run time, then the best optimization you can reach from dealing with
this

step is 10% less, and usually that’s by removing the step entirely.

This very rough guide doesn’t take into account costly functions and
expressions which may be indexed thanks to index on expressions, nor
ordering clauses that might be derived directly from a supporting index.

Query optimisation is a large topic that is not covered in this book, and
proper

https://explain.depesz.com
http://tatiyants.com/pev/#/about
https://www.pgadmin.org
https://www.postgresql.org/docs/current/static/routine-vacuuming.html#AUTOVACUUM
https://www.postgresql.org/docs/current/static/planner-stats.html
https://en.wikipedia.org/wiki/Amdahl%27s_law

indexing is only a part of it. What this book covers is all the SQL capabilities
that you can use to retrieve exactly the result set needed by your application.

The vast majority of slow queries found in the wild are still queries that
return

way too many rows to the application, straining the network and the servers

memory. Returning millions of rows to an application that then displays a
sum-

mary in a web browser is far too common.

The rst rule of optimization in SQL, as is true for code in general, is to
answer

the following question:

Do I really need to do any of that?

The very best query optimization technique consists of not having to execute
the

query at all. Which is why in the next chapter we learn all the SQL
functionality

that will allow you to execute a single query rather than looping over the
result

set of a rst query only to run an extra query for each row retrieved.

Chapter 8 Indexing Strategy | 80

Figure 8.1: Advanced Django

9

An Interview with Yohann Gabory

Yohann Gabory, Python Django’s expert, has published an “Advanced
Django”

book in France to share his deep understanding of the publication system
with

Python developers. The book really is a reference on how to use Django to
build

powerful applications.

As a web backend developer and Django expert, what do you expect from an

RDBMS in terms of features and behavior?

Consistency and con dence

Data

what a web application reli on. You can manage bad

quality code but you cannot afford to have data loss or corruption.

Someone might say “Hey we do not work for financials, it doesn’t

matter if we lose some data sometime”. What I would answer to

th

: if you are ready to lose some data then your data h

no

value. If your data h no value then there a big chance that your

app h no value either.

So let’s say you care about your customers and so you care about

their data. The first thing you must guaranty

confidence. Your

users must trust you when you say, “I have saved your data”. They

must trust you when you say, “Your data

not corrupted”.

So what

the feature I first expect?

Don’t mess up my database with invalid or corrupted data. Ensure

Chapter 9 An Interview with Yohann Gabory | 82

that when my database says something

saved, it really .

Code in SQL

Of course, th means that each time the coherence of my database

involved I do not rely on my framework or my Python code. I

rely on SQL code.

I need my database to be able to handle code within itself — proce-

dure, tri ers, check_constraints — those are the most basic featur

I need from a database.

Flexible when I want, rigid when I ask

As a developer when first implementing a proof of concept or a MVC

you cannot ask me to know perfectly how I will handle my data in

the future. Some information that do not seem very relevant will

be mandatory or something else I tough w mandatory not after

all.

So I need my database to be flexible enough to let me easily change

what

mandatory and what

not.

Th

point

the main reason some developers fly to NoSQL

databas . Because they see the schemaless options

a way to not

carefully specify their database schema.

At first sight th can seem like a good idea. In fact, th

a ter-

rible one. Because tomorrow you will need consistency and non-

permissive schema. When it happens, you will be on your own, lost

in a world of inconsistency, corrupted data and “eventually consis-

tent” records.

I will not talk about writing consistency and relational checks in

code because it reminds me of nightmar called race-conditions and

Heisenbugs .

What I really expect from my RDBMS

to let me begin schema-

less and after some time, let me specify mandatory fields, relation

insurance and so on. If you think I’m asking too much, have a look

at jsonb or hstore .

What makes you want to use PostgreSQL rather than something else in

your Django projects? Are there any di culties to be aware of when using

Chapter 9 An Interview with Yohann Gabory | 83

PostgreSQL?

Django lets you use a lot of different databas . You can use SQLite,

MariaDB, PostgreSQL and some others. Of course, you can expect

from some databas availability, consistency, isolation, and dura-

bility. Th allows you to make decent applications. But there

always a time where you need more. Especially some database type

that could match Python type. Think about list, dictionary, rang ,

timestamp, timezone, date and datetime.

All of th (and more) can be found in PostgreSQL. Th

so true

that there are now in Django some specific models fields (the Django

representation of a column) to handle those great PostgreSQL fields.

When it com to choosing a database why someone wants to use

something other than the most full-featured?

But don’t think I choose PostgreSQL only for performance, easiness

of use and powerful featur . It’s also a really warm place to code

with confidence.

Because Django h a migration management system that can han-

dle pure SQL I can write advanced SQL functions and tri ers di-

rectly in my code. Those functions can use the most advanced fea-

tur of PostgreSQL and stay right in front of me, in my Git, easily

editable.

In fact version after version, Django let you use your database

more and more. You can now use SQL function like COALESCE,

NOW, a regation functions and more directly in your Django

code. And those function you write are plain SQL.

Th also means that version after version your RDBMS choice

more and more important. Do you want to choose a tool that can

do half the work you expect from it?

Me neither.

Django comes with an internal ORM that maps an object model to a
relational

table and allows it to handle “saving” objects and SQL query writing. Django

also supports raw SQL. What is your general advice around using the ORM?

Well th

a tough question. Some will say ORM sucks. Some

others says mixing SQL and Python code in your application ugly.

Chapter 9 An Interview with Yohann Gabory | 84

I think they are both right. Of course, an ORM limits you a lot.

Of course writing SQL everytime you need to talk to your database

not sustainable in the long run.

When your queri are so simple you can express them with your

ORM why not use it? It will generate a SQL query

good

anybody could write. It will hydrate a Django object you can use

right away, in a breeze.

Think about:

1

MyModel.objects.get(id=1)

Th

equivalent to:

1

select mymodel.id, mymodel.other_field, ...

2

from mymodel

3

where id=1;

Do you think you could write better SQL?

ORM can manage all of your SQL needs. There also some advice

to avoid the N+1 dilemma. The a regation system reli on SQL

and

fairly decent.

But if you don’t pay attention, it will bite you hard.

The rule of thumb for me

to never forget what your ORM

meant for: translate SQL records into Python objects.

If you think it can handle anything more, like avoiding writing

SQL, managing index etc… you are wrong.

The main Django ORM philosophy

to let you drive the car.

• First always be able to translate your ORM query into the

SQL counterpart, the following trick should help you with th

1

MyModel.objects.filter(...).query.sql_with_params()

• Create SQL functions and use them with the Func object

• Use manager methods with meticulously crafted raw sql and

use those methods in your code.

So y , use your ORM. Not the one from Django. Yours !

What do you think of supporting several RDMS solutions in your
applications?

Chapter 9 An Interview with Yohann Gabory | 85

Sorry but I have to admit that back in the days I believed in such

a tale. Now

a grown-up I know two things. Santa and RDBMS

agnosticism do not really exist.

What

true

that a framework like Django lets you choose a

database and then stick with it.

The idea of using SQLite in development and PostgreSQL in pro-

duction leads only to one thing: you will use the featur of SQLite

everywhere and you will not be able to use the PostgreSQL specific

featur .

The only way to be purely agnostic

to use only the featur all the

proposed RDMS provid . But think again. Do you want to drive

your race car like a tractor?

Part IV

SQL Toolbox

| 87

In this chapter, we are going to add to our pro ciency in writing SQL queries.

The structured query language doesn’t look like any other imperative,
functional or even object-oriented programming language.

This chapter contains a long list of SQL techniques from the most basic select

clause to advanced lateral joins, each time with practical examples working
with a free database that you can install at home.

It is highly recommended that you follow along with a local instance of the

database so that you can enter the queries from the book and play with them

yourself. A key aspect of this part is that SQL queries arent’ typically written
in

a text editor with hard thinking, instead they are interactively tried out in
pieces

and stitched together once the spelling is spot on.

The SQL writing process is mainly about discovery. In SQL you need to
explain

your problem, unlike in most programming languages where you need to
focus

on a solution you think is going to solve your problem. That’s quite di ferent

and requires looking at your problem in another way and understanding it

well

enough to be able to express it in details in a single sentence.

Here’s some good advice I received years and years ago, and it still applies to
this

day: when you’re struggling to write a SQL query, rst write down a single
sen-

tence —in your native language— that perfectly describes what you’re trying
to

achieve. As soon as you can do that, then writing the SQL is going to be
easier.

One of the very e fective techniques in writing such a sentence is talking out
loud,

because apparently writing and speaking come from di ferent parts of the
brain.

So it’s the same as when debugging a complex program, as it helps a lot to
talk

about it with a colleague… or a rubber duck.

Af er having dealt with the basics of the language, where means basic really
fun-

damentals, this chapter spends time on more advanced SQL concepts and
Post-

greSQL along with how you can bene t from them when writing your
applica-

tions, making you a more e fective developer.

10

https://en.wikipedia.org/wiki/Rubber_duck_debugging

Get Some Data

To be able to play with SQL queries, we rst need some data. While it is
possible

to create a synthetic set of data and play with it, it is usually harder to think
about abstract numbers that you know nothing about.

In this chapter, we are going to use the historical record of motor racing data,

available publicly.

The database is available in a single download le for MySQL only. Once you

have a local copy, we use pgloader to get the data set in PostgreSQL: 1

$ createdb f1db

2

$ pgloader mysql://root@localhost/f1db pgsql:///f1db

Now that we have a real data set, we can get into more details about the
window

function frames. To run the query as written in the following parts, you also

need to tweak PostgreSQL search_path to include the f1db schema in the
f1db database. Here’s the SQL command you need for that:

1

ALTER DATABASE f1db SET search_path TO f1db, public;

When using the Full Edition or the Enterprise Edition of the book, the
appdev database is already loaded with the dataset in the f1db schema.

11

http://ergast.com/mrd/
http://pgloader.io

Structured Query Language

SQL stands for structured query language and has been designed so that non-

programmer would be able to use it for their reporting needs. Ignoring this
clear

attempt at getting Marketing people to stay away from the developer’s desks,
this

explains why the language doesn’t look like your normal programming
language.

Apart from the aim to look like English sentences, the main aspect of the
SQL

language to notice and learn to bene t from is that it’s a declarative
programming language. This means that you get to declare or state the result
you want to obtain, thus you need to think in term of the problem you want to
solve.

This di fers from most programming languages, where the developer’s job is
to

transform his understanding of the solution into a step by step recipe for how

exactly to obtain it, which means thinking in terms of the solution you
decided

would solve the problem at hand.

It is then quite fair to say that SQL is a very high-level programming
language:

even as a developer you don’t need to come up with a detailed solution,
rather

your job is to understand the problem well enough so that you are able to
trans-

late it. Af er that, the RDBMS of your choice is going to gure out a plan then

execute it, and hopefully return just the result set you wanted!

For some developers, not being in charge of every detail of the query plan is
a

source of frustration, and they prefer hiding SQL under another layer of tech-

nology that makes them feel like they are still in control.

Unfortunately, any extra layer on top of SQL is only there to produce SQL
for

Chapter 11 Structured Query Language | 90

you, which means you have even less control over what plan is going to be
exe-

cuted.

In this section, we review important and basic parts of a SQL query. The goal

is for you to be comfortable enough with writing SQL that you don’t feel like

you’ve lost control over the details of its execution plan, but instead your can

rely on your RDBMS of choice for that. Of course, it’s much easier to reach

that level of trust when you use PostgreSQL, because it is fully open source,
well

documented, supports a very detailed explain command, and its code is very
well commented, making it easy enough to read and review.

12

Queries, DML, DDL, TCL, DCL

SQL means structured query language and is composed of several areas, and
each of them has a speci c acronym and sub-language.

• DML stands for data manipulation language and it covers insert, update
and delete statements, which are used to input data into the system.

• DDL stands for data definition language and it covers create, alter and drop
statements, which are used to de ne on-disk data structures where to

hold the data, and also their constraints and indexes — the things we refer

to with the terms of SQL objects.

• TCL stands for transaction control language and includes begin and commit
statements, and also rollback, start transaction and set transaction
commands. It also includes the less well-known savepoint, release savepoint,
and rollback to savepoint commands, and let’s not forget about the two-phase
commit protocol with prepare commit, commit prepared and rollback
prepared commands.

• DCL stands for data control language and is covered with the statements
grant and revoke.

• Next we have PostgreSQL maintenance commands such as vacuum, ana-

lyze, cluster.

• There further commands that are provided by PostgreSQL such as prepare

and execute, explain, listen and notify, lock and set, and some more.

Chapter 12 Queries, DML, DDL, TCL, DCL | 92

The query part of the language, which covers statements beginning with
select, table, valu and with keywords, is a tiny part of the available list of
commands.

It’s also where the complexity lies and the part we are going to focus our e
forts

in this section.

13

Select, From, Where

Anatomy of a Select Statement

The simplest select statement in PostgreSQL is the following:

1

SELECT 1;

In other systems, the from clause is required and sometimes a dummy table
with a single row is provided so that you can select from this table.

Projection (output): Select

The SQL select clause introduces the list of output columns. This is the list of
data that we are going to send back to the client application, so it’s quite
important: the only reason the server is executing any query is to return a
result set

where each row presents the list of columns speci ed in the select clause. This
is called a projection.

Adding a column to the select list might involve a lot of work, such as:

• Fetching data on-disk

• Possibly uncompressing data that is stored externally to the main table on-

disk structure, and loading those uncompressed bytes into the memory of

Chapter 13 Select, From, Where | 94

the database server

• Sending the data back over the network back to the client application.

Given that, it is usually frowned upon to use either the infamous select star
notation or the classic I don’t know what I’m doing behavior of some object
relational mappers when they insist on always fully hydrating the application
objects, just in case.

The following shortcut is nice to have in interactive mode only:

1

select * from races limit 1;

The actual standard syntax for limit is a little more complex:

1

select * from races fetch first 1 rows only;

It gives the following result:

─[RECORD 1
]──

raceid

│ 1

year

│ 2009

round

│ 1

circuitid │ 1

name

│ Australian Grand Prix

date

│ 2009-03-29

time

│ 06:00:00

url

│ http://en.wikipedia.org/wiki/2009_Australian_Grand_Prix

Note that rather than using this frowned upon notation, the SQL standard al-

lows us to use this alternative, which is even more practical:

1

table races limit 1;

Of course, it gives the same result as the one above.

Select Star

There’s another reason to refrain from using the select star notation in
application’s code: if you ever change the source relation de nitions, then the
same

query now has a di ferent result set data structure, and you might have to re
ect

that change in the application’s in-memory data structures.

Let’s take a very simple Java example, and I will only show the meat of it,
ltering

out the exception handling and resources disposal (we need to close the result

set, the statement and the connection objects):

Chapter 13 Select, From, Where | 95

1

try {

2

con = DriverManager.getConnection(url, user, password);

3

st = con.createStatement();

4

rs = st.executeQuery("SELECT * FROM races LIMIT 1;");

5

6

if (rs.next()) {

7

System.out.println(rs.getInt("raceid"));

8

System.out.println(rs.getInt("year"));

9

System.out.println(rs.getInt("round"));

10

System.out.println(rs.getInt("circuitid"));

11

System.out.println(rs.getString("name"));

12

System.out.println(rs.getString("date"));

13

System.out.println(rs.getString("time"));

14

System.out.println(rs.getString("url"));

15

}

16

} catch (SQLException ex) {

17

// logger code

18

} finally {

19

// closing code

20

}

We can use the le like this:

1

$ javac Select.java

2

$ java -cp .:path/to/postgresql-42.1.1.jar Select

3

1

4

2009

5

1

6

1

7

Australian Grand Prix

8

2009-03-29

9

06:00:00

10

http://en.wikipedia.org/wiki/2009_Australian_Grand_Prix

Even in this pretty quick example we can see that the code has to know the
rac

table column list, each column name, and the data types. Of course, it’s still
pos-

sible to write the following code:

1

if (rs.next()) {

2

for(int i=1; i<=8; i++)

3

System.out.println(rs.getString(i));

4

}

But this case is only relevant when we have no processing at all to do over
the

data, and we still hard code the fact that the rac table has eight column.

Now pretend we had an extra column in our schema de nition at some point,

and thus had the following line in our code to process it from the result set:

1

System.out.println(rs.getString("extra"));

Chapter 13 Select, From, Where | 96

Once the column is no longer here (presumably following a production
rollout

of the schema change), then our code no longer runs:

1

Jun 29, 2017 1:17:41 PM Select main

2

SEVERE: The column name extra was not found in this ResultSet.

3

org.postgresql.util.PSQLException: The column name extra was not found in
this ResultSet.

4

at org.postgresql.jdbc.PgResultSet.findColumn(PgResultSet.java:2610)

5

at org.postgresql.jdbc.PgResultSet.getString(PgResultSet.java:2484)

6

at Select.main(Select.java:35)

That’s because now our code is wrong, and code review can’t help us here,
be-

cause the query in both cases is a plain select * We could have used the

following code instead:

1

try {

2

con = DriverManager.getConnection(url, user, password);

3

st = con.createStatement();

4

rs = st.executeQuery("SELECT name, date, url, extra FROM races LIMIT
1;");

5

6

if (rs.next()) {

7

System.out.println(" race: " + rs.getString("name"));

8

System.out.println(" date: " + rs.getString("date"));

9

System.out.println("

url: " + rs.getString("url"));

10

System.out.println("extra: " + rs.getString("url"));

11

System.out.println();

12

}

13

14

} catch (SQLException ex) {

15

// logger code

16

} finally {

17

// closing code

18

}

Now it’s quite clear that there’s a direct mapping between the column names
in

the SQL query and what we fetch from the result set instance. We still don’t

know at review or compile time if the columns do currently exist in
production,

but at least the error message is crystal clear this time:

1

Jun 29, 2017 1:31:04 PM Select main

2

SEVERE: ERROR: column "extra" does not exist

3

Position: 25

4

org.postgresql.util.PSQLException: ERROR: column "extra" does not exist

Again, when being explicit, the diff is pretty easy to review too:

1

@@ -21,18 +21,17 @@

2

try {

3

con = DriverManager.getConnection(url, user, password);

4

st = con.createStatement();

5

-

rs = st.executeQuery("SELECT name, date, url, extra FROM races LIMIT
1;");

Chapter 13 Select, From, Where | 97

6

+

rs = st.executeQuery("SELECT name, date, url FROM races LIMIT 1;");

7

8

if (rs.next()) {

9

System.out.println(" race: " + rs.getString("name"));

10

System.out.println(" date: " + rs.getString("date"));

11

System.out.println("

url: " + rs.getString("url"));

12

-

System.out.println("extra: " + rs.getString("extra"));

13

System.out.println();

14

}

To summarize, here’s a review of my argument against select star:

• Using select * hides the intention of the code, while listing the columns

explicitly in the code allows for declaring our thinking as a developer.

• It makes code changes easier to review when the column list is explicit in

the code, and despite our previous example in Java using a string literal as

a SQL query, it’s even better of course when the query is found in a proper

.sql le.

• It is not e cient to retrieve all the bytes each time even if you don’t need

them, some bytes are quite expensive to fetch on the server side thanks

to the TOAST mechanism (The Oversized-Attribute Storage Technique), and
then those bytes still need to nd their way in the network and your

application’s memory.

The main point is about being speci c about what your code is doing. It helps

tremendously to never have to second guess what is happening, for example

in cases of production debugging, performances analysis and optimization,

onboarding of new team members, code review, and really just about
anything

that has to do with maintaining the code base.

Select Computed Values and Aliases

https://www.postgresql.org/docs/current/static/storage-toast.html

In the SELECT clause it is possible to return computed values and to rename

columns. Here’s an example of that:

1

select code,

2

format('%s %s', forename, surname) as fullname,

3

forename,

4

surname

5

from drivers;

And here are the rst three drivers we get:

Chapter 13 Select, From, Where | 98

code │

fullname

│ forename │ surname

══════╪════════════════╪══════════╪══════════

HAM

│ Lewis Hamilton │ Lewis

│ Hamilton

HEI

│ Nick Heidfeld

│ Nick

│ Heidfeld

ROS

│ Nico Rosberg

│ Nico

│ Rosberg

(3 rows)

Here we are using the format PostgreSQL function, which mimics what is
usu-

ally available in programming languages such as Python’s print function or
C’s printf. The SQL standard gives us a concatenation operator named || and
we

could achieve the same result with a standard conforming query:

1

select code,

2

forename || ' ' || surname as fullname,

3

forename,

4

surname

5

from drivers;

In this book, we are going to focus on PostgreSQL rather than standard com-

pliance, because PostgreSQL o fers a lot of useful functions and gems that
are

nowhere to be found in the SQL standard, nor in most of the RDBMS compe-

tition.

The visibility of the SELECT alias is important to keep in mind. This is a
topic for later in this chapter, when we learn about the ORDER BY, GROUP
BY, HAVING and WINDOW clauses.

PostgreSQL Processing Functions

PostgreSQL embeds a very rich set of processing functions that can be used
any-

where in the queries, even if most of them are more useful in the SELECT
clause.

Because I see a lot of code fetching only the raw data from the RDBMS and
then

doing all the processing in the application code, I want to show an example
query

processing calendar related information with PostgreSQL.

The next query is a showcase for extract() and to_char() functions, and it also
uses the CASE construct. Read the documentation on date/time functions and

operators for more details and functions on the same topic.

1

select date::date,

2

extract('isodow' from date) as dow,

3

to_char(date, 'dy') as day,

4

extract('isoyear' from date) as "iso year",

5

extract('week' from date) as week,

6

extract('day' from

Chapter 13 Select, From, Where | 99

7

(date + interval '2 month - 1 day')

8

)

9

https://www.postgresql.org/docs/9.6/static/functions-datetime.html
https://www.postgresql.org/docs/9.6/static/functions-datetime.html

as feb,

10

extract('year' from date) as year,

11

extract('day' from

12

(date + interval '2 month - 1 day')

13

) = 29

14

as leap

15

from generate_series(date '2000-01-01',

16

date '2010-01-01',

17

interval '1 year')

18

as t(date);

The generate_seri () function returns a set of items, here all the dates of the
rst day of the years from the 2000s. For each of them we then compute the

day of

the week of this rst day of the year, both in numerical and textual forms, and

then the year number from the date, as de ned by the ISO standard, and the

week number from the ISO year, then the last day of February and a Boolean

which is true for leap years.

Here’s an extract from the PostgreSQL documentation about ISO years and

week numbers:

By de nition, ISO weeks start on Mondays and the rst week of a

year contains January 4 of that year. In other words, the rst Thurs-

day of a year is in week 1 of that year.

So here’s what we get:

date

│ dow │ day │ iso year │ week │ feb │ year │ leap

════════════╪═════╪═════╪══════════╪══════╪═════╪══════╪══════

2000-01-01 │

6 │ sat │

1999 │

52 │

29 │ 2000 │ t

2001-01-01 │

1 │ mon │

2001 │

1 │

28 │ 2001 │ f

2002-01-01 │

2 │ tue │

2002 │

1 │

28 │ 2002 │ f

2003-01-01 │

3 │ wed │

2003 │

1 │

28 │ 2003 │ f

2004-01-01 │

4 │ thu │

2004 │

1 │

29 │ 2004 │ t

2005-01-01 │

6 │ sat │

2004 │

53 │

28 │ 2005 │ f

2006-01-01 │

7 │ sun │

2005 │

52 │

28 │ 2006 │ f

2007-01-01 │

1 │ mon │

2007 │

1 │

28 │ 2007 │ f

2008-01-01 │

2 │ tue │

2008 │

1 │

29 │ 2008 │ t

2009-01-01 │

4 │ thu │

2009 │

1 │

28 │ 2009 │ f

2010-01-01 │

5 │ fri │

2009 │

53 │

28 │ 2010 │ f

(11 rows)

It is very easy to do complex computations on dates in PostgreSQL, and that

includes taking care of time zones too. Don’t even think about coding such
pro-

cessing yourself, as it’s full of oddities.

Chapter 13 Select, From, Where | 100

Data sources: From

The SQL from clause introduces the data sources used in the query, and
supports declaring how those di ferent sources relate to each other. In the
most basic form,

our query is reading a data set from a single table:

1

select code, driverref, forename, surname

2

from drivers;

In this query drivers is the name of a table, so it’s pretty easy to understand
what’s going on.

Now say we want to get the all-time top three drivers in terms of how many
times

they won a race. This time we need information from the drivers table and
from the results table, which along with other information contains a position
column.

The winner’s position is 1.

To nd the all-time top three drivers, we fetch how many times each driver had

position = 1 in the results table:

1

select code, forename, surname,

2

count(*) as wins

3

from

drivers

4

join results using(driverid)

5

where position = 1

6

group by driverid

7

order by wins desc

8

limit 3;

This time the result is more interesting. let’s have a look at our all time top
three winners in the Formula One database:

code │ forename │

surname

│ wins

══════╪══════════╪════════════╪══════

MSC

│ Michael

│ Schumacher │

91

HAM

│ Lewis

│ Hamilton

│

56

¤

│ Alain

│ Prost

│

51

(3 rows)

The query uses an inner join in between the drivers and the results table. In
both those tables, there is a driverid column that we can use as a lookup
reference to associate data in between the two tables.

Chapter 13 Select, From, Where | 101

Understanding Joins

I could spend time here and ll in the book with detailed explanations of every

kind of join operation: inner join, left and right outer joins, cross joins, full
outer join, lateral join and more. It just so happens that the PostgreSQL
documentation covering the FROM clause does that very well, so please read
it carefully along with this book so that we can instead focus on more
interesting and advanced examples.

Now that we know how to easily fetch the winner of a race, it is possible to
also

to display all the races from a quarter with their winner:

1

https://www.postgresql.org/docs/current/static/queries-table-expressions.html#QUERIES-FROM

\set beginning '2017-04-01'

2

\set months 3

3

4

select date, name, drivers.surname as winner

5

from races

6

left join results

7

on results.raceid = races.raceid

8

and results.position = 1

9

left join drivers using(driverid)

10

where date >= date :'beginning'

11

and date <

date :'beginning'

12

+ :months * interval '1 month';

And we get the following result, where we lack data for the most recent race
but

still display it:

date

│

name

│

winner

════════════╪═══════════════════════╪══════════

2017-04-09 │ Chinese Grand Prix

│ Hamilton

2017-04-16 │ Bahrain Grand Prix

│ Vettel

2017-04-30 │ Russian Grand Prix

│ Bottas

2017-05-14 │ Spanish Grand Prix

│ Hamilton

2017-05-28 │ Monaco Grand Prix

│ Vettel

2017-06-11 │ Canadian Grand Prix

│ Hamilton

2017-06-25 │ Azerbaijan Grand Prix │ ¤

(7 rows)

The reason why we are using a left join this time is so that we keep every race
from the quarter’s and display extra information only when we have it. Left
join

semantics are to keep the whole result set of the table lexically on the lef of
the

operator, and to ll-in the columns for the table on the right of the left join
operator when some data is found that matches the join condition, otherwise
using NULL as the column’s value.

Chapter 13 Select, From, Where | 102

In the example above, the winner information comes from the results table,
which is lexically found at the right of the left join operator. The Azerbaijan
Grand Prix has no results in the local copy of the f1db database used locally,
so the winner information doesn’t exists and the SQL query returns a NULL

entry.

You can also see that the results.position = 1 restriction has been moved
directly into the join condition, rather than being kept in the where clause.
Should the

condition be in the where clause, it would lter out races from which we don’t
have a result yet, and we are still interested in those.

Another way to write the query would be using an explicit subquery to build

an intermediate results table containing only the winners, and then join
against

that:

1

select date, name, drivers.surname as winner

2

from races

3

left join

4

(select raceid, driverid

5

from results

6

where position = 1

7

)

8

as winners using(raceid)

9

left join drivers using(driverid)

10

where date >= date :'beginning'

11

and date <

date :'beginning'

12

+ :months * interval '1 month';

PostgreSQL is smart enough to actually implement both SQL queries the
same

way, but it might be thanks to the data set being very small in the f1db
database.

Restrictions: Where

In most of the queries we saw, we already had some where clause. This
clause acts as a lter for the query: when the lter evaluates to true then we keep
the row in

the result set and when the lter evaluates to false we skip that row.

Real-world SQL may have quite complex where clauses to deal with, and it is

allowed to use CASE and other logic statements. That said, we usually try to
keep the where clauses as simple as possible for PostgreSQL in order to be
able to use our indexes to solve the data ltering expressions of our queries.

Chapter 13 Select, From, Where | 103

Some simple rules to remember here:

• In a where clause we can combine lters, and generally we combine them

with the and operator, which allows short-circuit evaluations because as

soon as one of the anded conditions evaluates to false, we know for sure

we can skip the current row.

• Where also supports the or operator, which is more complex to optimize for,
in particular with respect to indexes.

• We have support for both not and not in, which are completely di ferent
beasts.

Be careful about not in semantics with NULL: the following query re-

turns no rows…

1

select x

2

from generate_series(1, 100) as t(x)

3

where x not in (1, 2, 3, null);

Finally, as is the case just about anywhere else in a SQL query, it is possible
in

the where clause to use a subquery, and that’s quite common to use when
implementing the anti-join pattern thanks to the special feature not exists.

An anti-join is meant to keep only the rows that fail a test. If we want to list
the drivers that where unlucky enough to not nish a single race in which they

participated, then we can lter out those who did nish. We know that a driver

nished because their position is lled in the results table: it not null.

If we translate the previous sentence into the SQL language, here’s what we
have:

1

\set season 'date ''1978-01-01'''

2

3

select forename,

4

surname,

5

constructors.name as constructor,

6

count(*) as races,

7

count(distinct status) as reasons

8

9

from drivers

10

join results using(driverid)

11

join races using(raceid)

12

join status using(statusid)

13

join constructors using(constructorid)

14

15

where date >= :season

16

and date <

:season + interval '1 year'

17

and not exists

Chapter 13 Select, From, Where | 104

18

(

19

select 1

20

from results r

21

where position is not null

22

and r.driverid = drivers.driverid

23

and r.resultid = results.resultid

24

)

25

group by constructors.name, driverid

26

order by count(*) desc;

The interesting part of this query lies in the where not exists clause, which
might look somewhat special on a rst read: what is that select 1 doing there?

Remember that a where clause is a lter. The not exists clause is ltering based
on rows that are returned by the subquery. To pass the lter, just return
anything,

PostgreSQL will not even look at what is selected in the subquery, it will
only

take into account the fact that a row was returned.

It also means that the join condition in between the main query and the not

exists subquery is done in the where clause of the subquery, where you can
reference the outer query as we did in r.driverid = drivers.driverid and
r.resultid = results.resultid.

It turns out that 1978 was not a very good season based on the number of
drivers

who never got the chance to nish a race so we are going to show only the ten

rst results of the query:

forename

│

surname

│ constructor │ races │ reasons

══════════════╪═══════════╪═════════════╪═══════╪═════════

Arturo

│ Merzario

│ Merzario

│

16 │

8

Hans-Joachim │ Stuck

│ Shadow

│

12 │

6

Rupert

│ Keegan

│ Surtees

│

12 │

6

Hector

│ Rebaque

│ Team Lotus

│

12 │

7

Jean-Pierre

│ Jabouille │ Renault

│

10 │

4

Clay

│ Regazzoni │ Shadow

│

10 │

5

James

│ Hunt

│ McLaren

│

10 │

6

Brett

│ Lunger

│ McLaren

│

9 │

5

Niki

│ Lauda

│ Brabham

│

9 │

4

Rolf

│ Stommelen │ Arrows

│

8 │

5

(10 rows)

The reasons not to nish a race might be did not qualify or gearbox, or any one
of the 133 di ferent statuses found in the f1db database.

14

Order By, Limit, No Offset

Ordering with Order By

The SQL ORDER BY clause is pretty well-known because SQL doesn’t guar-

antee any ordering of the result set of any query except when you use the
order

by clause.

In its simplest form the order by works with one column or several columns
that are part of our data model, and in some cases, it might even allow
PostgreSQL

to return the data in the right order by following an existing index.

1

select year, url

2

from seasons

3

order by year desc

4

limit 3;

This gives an expected and not that interesting result set:

year │

url

══════╪═══

2017 │ https://en.wikipedia.org/wiki/2017_Formula_One_season

2016 │ https://en.wikipedia.org/wiki/2016_Formula_One_season

2015 │ http://en.wikipedia.org/wiki/2015_Formula_One_season

(3 rows)

What is more interesting about it is the explain plan of the query, where we
see PostgreSQL follows the primary key index of the table in a backward
direction

in order to return our three most recent entries. We obtain the plan with the

Chapter 14 Order By, Limit, No O fset | 106

following query:

1

explain (costs off)

2

select year, url

3

from seasons

4

order by year desc

5

limit 3;

Well, this one is pretty easy to read and understand:

QUERY PLAN

══

Limit

->

Index Scan Backward using idx_57708_primary on seasons

(2 rows)

The order by clause can also refer to query aliases and computed values, as
we noted earlier in previous queries. More complex use cases are possible: in
PostgreSQL, the clause also accepts complex expression and subqueries.

As an example of a complex expression, we may use the CASE conditional in

order to control the ordering of a race’s results over the status information.
Say

that we order the results by position then number of laps and then by status
with

a special rule: the Power Unit failure condition is considered rst, and only
then the other ones.

Yes, this rule makes no sense at all, it’s totally arbitrary. It could be that
you’re working with a constructor and he’s making a study about some
failing hardware

and that’s part of the inquiry.

1

select drivers.code, drivers.surname,

2

position,

3

laps,

4

status

5

from results

6

join drivers using(driverid)

7

join status using(statusid)

8

where raceid = 972

9

order by position nulls last,

10

laps desc,

11

case when status = 'Power Unit'

12

then 1

13

else 2

14

end;

We can almost feel we’ve seen the race with that result set:

code │

surname

│ position │ laps │

status

══════╪════════════╪══════════╪══════╪════════════

BOT

│ Bottas

│

1 │

52 │ Finished

Chapter 14 Order By, Limit, No O fset | 107

VET

│ Vettel

│

2 │

52 │ Finished

RAI

│ Räikkönen

│

3 │

52 │ Finished

HAM

│ Hamilton

│

4 │

52 │ Finished

VER

│ Verstappen │

5 │

52 │ Finished

PER

│ Pérez

│

6 │

52 │ Finished

OCO

│ Ocon

│

7 │

52 │ Finished

HUL

│ Hülkenberg │

8 │

52 │ Finished

MAS

│ Massa

│

9 │

51 │ +1 Lap

SAI

│ Sainz

│

10 │

51 │ +1 Lap

STR

│ Stroll

│

11 │

51 │ +1 Lap

KVY

│ Kvyat

│

12 │

51 │ +1 Lap

MAG

│ Magnussen

│

13 │

51 │ +1 Lap

VAN

│ Vandoorne

│

14 │

51 │ +1 Lap

ERI

│ Ericsson

│

15 │

51 │ +1 Lap

WEH

│ Wehrlein

│

16 │

50 │ +2 Laps

RIC

│ Ricciardo

│

¤ │

5 │ Brakes

ALO

│ Alonso

│

¤ │

0 │ Power Unit

PAL

│ Palmer

│

¤ │

0 │ Collision

GRO

│ Grosjean

│

¤ │

0 │ Collision

(20 rows)

kNN Ordering and GiST indexes

Another use case for order by is to implement k nearest neighbours. The kNN

searches are pretty well covered in the literature and is easy to implement in
Post-

greSQL. Let’s nd out the ten nearest circuits to Paris, France, which is at
longi-

tude 2.349014 and latitude 48.864716. That’s a kNN search with k = 10:

1

select name, location, country

2

from circuits

3

order by point(lng,lat) <-> point(2.349014, 48.864716)

4

limit 10;

Along with the following list of circuits spread around in France, we also get
some

tracks from Belgium and the United Kingdom:

name

│

location

│ country

═══════════════════════════════╪══════════════════╪═════════

Rouen-Les-Essarts

│ Rouen

│ France

Reims-Gueux

│ Reims

│ France

Circuit de Nevers Magny-Cours │ Magny Cours

│ France

Le Mans

│ Le Mans

│ France

Nivelles-Baulers

│ Brussels

│ Belgium

Dijon-Prenois

│ Dijon

│ France

Charade Circuit

│ Clermont-Ferrand │ France

Brands Hatch

│ Kent

│ UK

Chapter 14 Order By, Limit, No O fset | 108

Zolder

│ Heusden-Zolder

│ Belgium

Circuit de Spa-Francorchamps

│ Spa

│ Belgium

(10 rows)

The point datatype is a very useful PostgreSQL addition. In our query here,
the points have been computed from the raw data in the database. For a
proper PostgreSQL experience, we can have a location column of point type
in our circuits

table and index it using GiST:

begin;

alter table f1db.circuits add column position point;

update f1db.circuits set position = point(lng,lat);

create index on f1db.circuits using gist(position);

commit;

Now the previous query can be written using the new column. We get the
same

result set, of course: indexes are not allowed to change the result of a query
they

apply to… under no circumstances. When they do, we call that a bug, or
maybe

it is due to data corruption. Anyway, let’s have a look at the query plan now
that

we have a GiST index de ned:

1

explain (costs off, buffers, analyze)

2

select name, location, country

3

from circuits

4

order by position <-> point(2.349014, 48.864716)

5

limit 10;

The (costs off) option is used here mainly so that the output of the command
ts in the book’s page format, so try without the option at home:

QUERY PLAN

══

Limit (actual time=0.039..0.061 rows=10 loops=1)

Buffers: shared hit=7

->

Index Scan using circuits_position_idx on circuits

(actual time=0.038..0.058 rows=10 loops=1)

Order By: ("position" <-> '(2.349014,48.864716)'::point)

Buffers: shared hit=7

Planning time: 0.129 ms

Execution time: 0.105 ms

(7 rows)

We can see that PostgreSQL is happy to be using our GiST index and even
goes so

far as to implement our whole kNN search query all within the index. For
refer-

ence the query plan of the previous spelling of the query, the dynamic
expression

point(lng,lat) looks like this:

1

explain (costs off, buffers, analyze)

2

select name, location, country

Chapter 14 Order By, Limit, No O fset | 109

3

from circuits

4

order by point(lng,lat) <-> point(2.349014, 48.864716)

5

limit 10;

And here’s the query plan when not using the index:

QUERY PLAN

══

Limit (actual time=0.246..0.256 rows=10 loops=1)

Buffers: shared hit=5

->

Sort (actual time=0.244..0.249 rows=10 loops=1)

Sort Key: ((point(lng, lat) <-> '(2.349014,48.864716)'::point))

Sort Method: top-N heapsort

Memory: 25kB

Buffers: shared hit=5

->

Seq Scan on circuits

(actual time=0.024..0.133 rows=73 loops=1)

Buffers: shared hit=5

Planning time: 0.189 ms

Execution time: 0.344 ms

(10 rows)

By default, the distance operator <-> is de ned only for geometric data types
in PostgreSQL. Some extensions such as pg_trgm add to that list so that you
may bene t from a kNN index lookup in other situations, such as in queries
using

the like operator, or even the regular expression operator ~. You’ll nd more
on regular expressions in PostgreSQL later in this book.

Top-N sorts: Limit

It would be pretty interesting to get the list of the top three drivers in terms of

races won, by decade. It is possible to do so thanks to advanced PostgreSQL
date

functions manipulation together with implementation of lateral joins.

The following query is a classic top-N implementation. It reports for each
decade

the top three drivers in terms of race wins. It is both a classic top-N because it
is done thanks to a lateral subquery, and at the same time it’s not so classic
because we are joining against computed data. The decade information is not

https://www.postgresql.org/docs/9.6/static/pgtrgm.html

part of our

data model, and we need to extract it from the rac .date column.

1

with decades as

2

(

3

select extract('year' from date_trunc('decade', date)) as decade 4

from races

5

group by decade

6

)

7

select decade,

Chapter 14 Order By, Limit, No O fset | 110

8

rank() over(partition by decade

9

order by wins desc)

10

as rank,

11

forename, surname, wins

12

13

from decades

14

left join lateral

15

(

16

select code, forename, surname, count(*) as wins

17

from drivers

18

19

join results

20

on results.driverid = drivers.driverid

21

and results.position = 1

22

23

join races using(raceid)

24

25

where

extract('year' from date_trunc('decade', races.date))

26

= decades.decade

27

28

group by decades.decade, drivers.driverid

29

order by wins desc

30

limit 3

31

)

32

as winners on true

33

34

order by decade asc, wins desc;

The query extracts the decade rst, in a common table expression introduced
with the with keyword. This CTE is then reused as a data source in the from
clause.

The from clause is about relations, which might be hosting a dynamically
computed dataset, as is the case in this example.

Once we have our list of decades from the dataset, we can fetch for each
decade

the list of the top three winners for each decade from the results table. The
best way to do that in SQL is using a lateral join. This form of join allows
one to write a subquery that runs in a loop over a data set. Here we loop over
the decades and

for each decade our lateral subquery nds the top three winners.

Focusing now on the winners subquery, we want to count how many times a
driver made it to the rst position in a race. As we are only interested in
winning results, the query pushes that restriction in the join condition of the
left join results part. The subquery should also only count victories that
happened in the current decade from our loop, and that’s implemented in the
where clause, because that’s how lateral subqueries work. Another
interesting implication of using a left join lateral subquery is how the join
clause is then written: on true.

That’s because we inject the join condition right into the subquery as a where

Chapter 14 Order By, Limit, No O fset | 111

clause. This trick allows us to only see the results from the current decade in
the

subquery, which then uses a limit clause on top of the order by wins desc to
report the top three with the most wins.

And here’s the result of our query:

decade │ rank │ forename

│

surname

│ wins

════════╪══════╪═══════════╪════════════╪══════

1950 │

1 │ Juan

│ Fangio

│

24

1950 │

2 │ Alberto

│ Ascari

│

13

1950 │

3 │ Stirling

│ Moss

│

12

1960 │

1 │ Jim

│ Clark

│

25

1960 │

2 │ Graham

│ Hill

│

14

1960 │

3 │ Jack

│ Brabham

│

11

1970 │

1 │ Niki

│ Lauda

│

17

1970 │

2 │ Jackie

│ Stewart

│

16

1970 │

3 │ Emerson

│ Fittipaldi │

14

1980 │

1 │ Alain

│ Prost

│

39

1980 │

2 │ Nelson

│ Piquet

│

20

1980 │

2 │ Ayrton

│ Senna

│

20

1990 │

1 │ Michael

│ Schumacher │

35

1990 │

2 │ Damon

│ Hill

│

22

1990 │

3 │ Ayrton

│ Senna

│

21

2000 │

1 │ Michael

│ Schumacher │

56

2000 │

2 │ Fernando

│ Alonso

│

21

2000 │

3 │ Kimi

│ Räikkönen

│

18

2010 │

1 │ Lewis

│ Hamilton

│

45

2010 │

2 │ Sebastian │ Vettel

│

40

2010 │

3 │ Nico

│ Rosberg

│

23

(21 rows)

No Offset, and how to implement pagination

The SQL standard o fers a fetch command instead of the limit and offset
variant that we have in PostgreSQL. In any case, using the offset clause is
very bad for your query performances, so we advise against it:

Please take the time to read Markus Winand’s Paging Through Results, as I
won’t explain it better than he does. Also, never use offset again!

As easy as it is to task you to read another article online, and as good as it is,
it still seems fair to give you the main take away in this book’s pages. The
offset clause is going to cause your SQL query plan to read all the result
anyway and then

discard most of it until reaching the offset count. When paging through lots of

Chapter 14 Order By, Limit, No O fset | 112

Figure 14.1: No O fset

results, it’s less and less e cient with each additional page you fetch that way.

The proper way to implement pagination is to use index lookups, and if you

have multiple columns in your ordering clause, you can do that with the
row()

construct.

http://use-the-index-luke.com/
http://use-the-index-luke.com/sql/partial-results/fetch-next-page

To show an example of the method, we are going to paginate through the lap-

tim table, which contains every lap time for every driver in any race. For the
raceid 972 that we were having a look at earlier, that’s a result with 828 lines.
Of

course, we’re going to need to paginate through it.

Here’s how to do it properly, given pages of three rows at a time, to save
space in

this book for more interesting text. The rst query is as expected:

1

select lap, drivers.code, position,

2

milliseconds * interval '1ms' as laptime

3

from laptimes

4

join drivers using(driverid)

5

where raceid = 972

6

order by lap, position

7

fetch first 3 rows only;

We are using the SQL standard spelling of the limit clause here, and we get
the rst page of lap timings for the race:

lap │ code │ position │

laptime

═════╪══════╪══════════╪═════════════════════

1 │ BOT

│

1 │ @ 2 mins 5.192 secs

1 │ VET

│

2 │ @ 2 mins 7.101 secs

1 │ RAI

│

3 │ @ 2 mins 10.53 secs

(3 rows)

The result set is important because your application needs to make an e fort
here

and remember that it did show you the results up until lap = 1 and position =
3.

We are going to use that so that our next query shows the next page of
results:

1

select lap, drivers.code, position,

Chapter 14 Order By, Limit, No O fset | 113

2

milliseconds * interval '1ms' as laptime

3

from laptimes

4

join drivers using(driverid)

5

where raceid = 972

6

and row(lap, position) > (1, 3)

7

order by lap, position

8

fetch first 3 rows only;

And here’s our second page of query results. Af er a rst page nishing at lap 1,

position 3 we are happy to nd out a new page beginning at lap 1, position 4:

lap │ code │ position │

laptime

═════╪══════╪══════════╪══════════════════════

1 │ HAM

│

4 │ @ 2 mins 11.18 secs

1 │ VER

│

5 │ @ 2 mins 12.202 secs

1 │ MAS

│

6 │ @ 2 mins 13.501 secs

(3 rows)

So please, never use offset again if you care at all about your query time!

15

Group By, Having, With, Union All

Now that we have some of the basics of SQL queries, we can move on to
more

advanced topics. Up to now, queries would return as many rows as we select

thanks to the where ltering. This lter applies against a data set that is
produced by the from clause and its joins in between relations.

The outer joins might produce more rows than you have in your reference

data set, in particular, cross join is a Cartesian product.

In this section, we’ll have a look at aggregates. They work by computing a
digest

value for several input rows at a time. With aggregates, we can return a
summary

containing many fewer rows than passed the where lter.

Aggregates (aka Map/Reduce): Group By

The group by clause introduces aggregates in SQL, and allows implementing

much the same thing as map/reduce in other systems: map your data into dif-

ferent groups, and in each group reduce the data set to a single value.

As a rst example we can count how many races have been run in each
decade:

1

select extract('year'

2

from

3

date_trunc('decade', date))

4

as decade,

5

count(*)

Chapter 15 Group By, Having, With, Union All | 115

6

from races

7

group by decade

8

order by decade;

PostgreSQL o fers a rich set of date and times functions:

decade │ count

════════╪═══════

1950 │

84

1960 │

100

1970 │

144

1980 │

156

1990 │

162

2000 │

174

2010 │

156

(7 rows)

The di ference between each decade is easy to compute thanks to window
func-

tion, seen later in this chapter. Let’s have a preview:

1

with races_per_decade

2

as (

3

select extract('year'

4

from

5

date_trunc('decade', date))

6

as decade,

7

count(*) as nbraces

8

from races

9

group by decade

10

order by decade

11

)

12

select decade, nbraces,

13

case

14

when lag(nbraces, 1)

15

over(order by decade) is null

16

then ''

17

18

when nbraces - lag(nbraces, 1)

19

over(order by decade)

20

< 0

21

then format('-%3s',

22

lag(nbraces, 1)

23

over(order by decade)

24

- nbraces)

25

26

else format('+%3s',

27

nbraces

28

- lag(nbraces, 1)

29

over(order by decade))

30

31

end as evolution

Chapter 15 Group By, Having, With, Union All | 116

32

from races_per_decade;

We use a pretty complex CASE statement to elaborate on the exact output we

want from the query. Other than that it’s using the lag() over(order by
decade)

expression that allows seeing the previous row, and moreover allows us to
com-

pute the di ference in between the current row and the previous one.

Here’s what we get from the previous query:

decade │ nbraces │ evolution

════════╪═════════╪═══════════

1950 │

84 │

1960 │

100 │ + 16

1970 │

144 │ + 44

1980 │

156 │ + 12

1990 │

162 │ +

6

2000 │

174 │ + 12

2010 │

156 │ - 18

(7 rows)

Now, we can also prepare the data set in a separate query that is run rst,
called a

common table expression and introduced by the with clause. We will expand
on that idea in the upcoming pages.

PostgreSQL comes with the usual aggregates you would expect such as sum,

count, and avg, and also with some more interesting ones such as bool_and.
As its name suggests the bool_and aggregate starts true and remains true only
if every row it sees evaluates to true.

With that aggregate, it’s then possible to search for all drivers who failed to
nish

any single race they participated in over their whole career:

1

with counts as

2

(

3

select driverid, forename, surname,

4

count(*) as races,

5

bool_and(position is null) as never_finished

6

from drivers

7

join results using(driverid)

8

join races using(raceid)

9

group by driverid

10

)

11

select driverid, forename, surname, races

12

from counts

13

where never_finished

14

order by races desc;

Well, it turns out that we have a great number of cases in which it happens.
The

Chapter 15 Group By, Having, With, Union All | 117

previous query gives us 202 drivers who never nished a single race they took
part

in, 117 of them had only participated in a single race that said.

Not picking on anyone in particular, we can nd out if some seasons were less

lucky than others on that basis and search for drivers who didn’t nish a single

race they participated into, per season:

1

with counts as

2

(

3

select date_trunc('year', date) as year,

4

count(*) filter(where position is null) as outs,

5

bool_and(position is null) as never_finished

6

from drivers

7

join results using(driverid)

8

join races using(raceid)

9

group by date_trunc('year', date), driverid

10

)

11

select extract(year from year) as season,

12

sum(outs) as "#times any driver didn't finish a race"

13

from counts

14

where never_finished

15

group by season

16

order by sum(outs) desc

17

limit 5;

In this query, you can see the aggregate filter(where …) syntax that allows us
to update our computation only for those rows that pass the lter. Here we
choose

to count all race results where the position is null, which means the driver
didn’t

make it to the nish line for some reason…

season │ #times any driver didn't finish a race

════════╪══

1989 │

139

1953 │

51

1955 │

48

1990 │

48

1956 │

46

(5 rows)

It turns out that overall, 1989 was a pretty bad season.

Aggregates Without a Group By

It is possible to compute aggregates over a data set without using the group
by

clause in SQL. What it then means is that we are operating over a single
group

Chapter 15 Group By, Having, With, Union All | 118

that contains the whole result set:

1

select count(*)

2

from races;

This very simple query computes the count of all the races. It has built an
implicit

group of rows, containing everything.

Restrict Selected Groups: Having

Are you curious about the reasons why those drivers couldn’t make it to the
end

of the race? I am too, so let’s inquire about that!

1

\set season 'date ''1978-01-01'''

2

3

select status, count(*)

4

from results

5

join races using(raceid)

6

join status using(statusid)

7

where date >= :season

8

and date <

:season + interval '1 year'

9

and position is null

10

group by status

11

having count(*) >= 10

12

order by count(*) desc;

The query introduces the having clause. Its purpose is to lter the result set to
only those groups that meet the having ltering condition, much as the where
clause works for the individual rows selected for the result set.

Note that to avoid any ambiguity, the having clause is not allowed to
reference select output aliases.

status

│ count

════════════════════╪═══════

Did not qualify

│

55

Accident

│

46

Engine

│

37

Did not prequalify │

25

Gearbox

│

13

Spun off

│

12

Transmission

│

12

(7 rows)

We can see that drivers mostly do not nish a race because they didn’t qualify
to

take part in it. Another quite common reason for not nishing is that the driver

Chapter 15 Group By, Having, With, Union All | 119

had an accident.

Grouping Sets

A restriction with classic aggregates is that you can only run them through a
sin-

gle group de nition at a time. In some cases, you want to be able to compute

aggregates for several groups in parallel. For those cases, SQL provides the
grouping sets feature.

In the Formula One competition, points are given to drivers and then used to
compute both the driver’s champion and the constructor’s champion points.

Can we compute those two sums over the same points in a single query? Yes,

of course, we can:

1

\set season 'date ''1978-01-01'''

2

3

select drivers.surname as driver,

4

constructors.name as constructor,

5

sum(points) as points

6

7

from results

8

join races using(raceid)

9

join drivers using(driverid)

10

join constructors using(constructorid)

11

12

where date >= :season

13

and date <

:season + interval '1 year'

14

15

group by grouping sets((drivers.surname),

16

(constructors.name))

17

having sum(points) > 20

18

19

order by constructors.name is not null,

20

drivers.surname is not null,

21

points desc;

And we get the following result:

driver

│ constructor │ points

═══════════╪═════════════╪════════

Andretti

│ ¤

│

64

Peterson

│ ¤

│

51

Reutemann │ ¤

│

48

Lauda

│ ¤

│

44

Depailler │ ¤

│

34

Watson

│ ¤

│

25

Chapter 15 Group By, Having, With, Union All | 120

Scheckter │ ¤

│

24

¤

│ Team Lotus

│

116

¤

│ Brabham

│

69

¤

│ Ferrari

│

65

¤

│ Tyrrell

│

41

¤

│ Wolf

│

24

(12 rows)

We see that we get null entries for drivers when the aggregate has been
computed for a constructor’s group and null entries for constructors when the
aggregate has been computed for a driver’s group.

Two other kinds of grouping sets are included in order to simplify writing
queries.

They are only syntactic sugarcoating on top of the previous capabilities.

The rollup clause generates permutations for each column of the grouping
sets, one af er the other. That’s useful mainly for hierarchical data sets, and it
is still useful in our Formula One world of champions. In the 80s Prost and
Senna were

all the rage, so let’s dive into their results and points:

1

select drivers.surname as driver,

2

constructors.name as constructor,

3

sum(points) as points

4

5

from results

6

join races using(raceid)

7

join drivers using(driverid)

8

join constructors using(constructorid)

9

10

where drivers.surname in ('Prost', 'Senna')

11

12

group by rollup(drivers.surname, constructors.name);

Given this query, in a single round-trip we fetch the cumulative points for
Prost

for each of the constructor’s championship he raced for, so a total combined
798.5

points where the constructor is null. Then we do the same thing for Senna of

course. And nally, the last line is the total amount of points for everybody in-

volved in the result set.

driver │ constructor │ points

════════╪═════════════╪════════

Prost

│ Ferrari

│

107

Prost

│ McLaren

│

458.5

Prost

│ Renault

│

134

Prost

│ Williams

│

99

Prost

│ ¤

│

798.5

Senna

│ HRT

│

0

Senna

│ McLaren

│

451

Chapter 15 Group By, Having, With, Union All | 121

Senna

│ Renault

│

2

Senna

│ Team Lotus

│

150

Senna

│ Toleman

│

13

Senna

│ Williams

│

31

Senna

│ ¤

│

647

¤

│ ¤

│ 1445.5

(13 rows)

Another kind of grouping sets clause shortcut is named cube, which extends
to all permutations available, including partial ones:

1

select drivers.surname as driver,

2

constructors.name as constructor,

3

sum(points) as points

4

5

from results

6

join races using(raceid)

7

join drivers using(driverid)

8

join constructors using(constructorid)

9

10

where drivers.surname in ('Prost', 'Senna')

11

12

group by cube(drivers.surname, constructors.name);

Thanks to the cube here we can see both the total amount of points racked up
by

to those exceptional drivers over their entire careers. We have each driver’s
points

by constructor, and when constructor is NULL we have the total amount of

points for the driver. That’s 798.5 points for Prost and 647 for Senna.

Also in the same query, we can see the points per constructor, independent of

the driver, as both Prost and Senna raced for McLaren, Renault, and Williams

at

di ferent times. And for two seasons, Prost and Senna both raced for
McLaren,

too.

driver │ constructor │ points

════════╪═════════════╪════════

Prost

│ Ferrari

│

107

Prost

│ McLaren

│

458.5

Prost

│ Renault

│

134

Prost

│ Williams

│

99

Prost

│ ¤

│

798.5

Senna

│ HRT

│

0

Senna

│ McLaren

│

451

Senna

│ Renault

│

2

Senna

│ Team Lotus

│

150

Senna

│ Toleman

│

13

Senna

│ Williams

│

31

Senna

│ ¤

│

647

¤

│ ¤

│ 1445.5

Chapter 15 Group By, Having, With, Union All | 122

¤

│ Ferrari

│

107

¤

│ HRT

│

0

¤

│ McLaren

│

909.5

¤

│ Renault

│

136

¤

│ Team Lotus

│

150

¤

│ Toleman

│

13

¤

│ Williams

│

130

(20 rows)

Common Table Expressions: With

Earlier we saw many drivers who didn’t nish the race because of accidents,
and

that was even the second reason listed just af er did not qualify. This brings
into question the level of danger in those Formula One races. How frequent is
an

accident in a Formula One competition? First we can have a look at the most

dangerous seasons in terms of accidents.

1

select extract(year from races.date) as season,

2

count(*)

3

filter(where status = 'Accident') as accidents

4

5

from results

6

join status using(statusid)

7

join races using(raceid)

8

9

group by season

10

order by accidents desc

11

limit 5;

So the ve seasons with the most accidents in the history of Formula One are:

season │ accidents

════════╪═══════════

1977 │

60

1975 │

54

1978 │

48

1976 │

48

1985 │

36

(5 rows)

It seems the most dangerous seasons of all time are clustered at the end of the
70s

and the beginning of the 80s, so we are going to zoom in on this period with
the

following console friendly histogram query:

1

with accidents as

2

(

Chapter 15 Group By, Having, With, Union All | 123

3

select extract(year from races.date) as season,

4

count(*) as participants,

5

count(*) filter(where status = 'Accident') as accidents

6

from results

7

join status using(statusid)

8

join races using(raceid)

9

group by season

10

)

11

select season,

12

round(100.0 * accidents / participants, 2) as pct,

13

repeat(text '■',

14

ceil(100*accidents/participants)::int

15

)

16

as bar

17

from accidents

18

where season between 1974 and 1990

19

order by season;

Common table expression is the full name of the with clause that you see in e
fect in the query. It allows us to run a subquery as a prologue, and then refer
to its

result set like any other relation in the from clause of the main query. In our
case, you can see that the main query is doing from accidents, and the CTE
has been given that name.

In the accidents CTE we compute basic information such as how many
partici-

pants we had overall in all the races of each season (we know this is the
number of

lines in the result table for the races that happened in the selected year, so
that’s the count(*) column — and we also compute how many of those
participants

had an accident, thanks to the filter clause that we introduced before.

Given the accident relation from the CTE, it is then easy to compute a
percentage of accidents over race participants, and we can even get fancy and
display the

percentage in the form of a horizontal bar diagram by repeating a unicode
black

square character so that we have a fancy display: season │

pct

│

bar

════════╪═══════╪════════════════

1974 │

3.67 │ ■■■

1975 │ 14.88 │ ■■■■■■■■■■■■■■

1976 │ 11.06 │ ■■■■■■■■■■■

1977 │ 12.58 │ ■■■■■■■■■■■■

1978 │ 10.19 │ ■■■■■■■■■■

1979 │

7.20 │ ■■■■■■■

1980 │

7.83 │ ■■■■■■■

1981 │

http://www.fileformat.info/info/unicode/char/25a0/index.htm
http://www.fileformat.info/info/unicode/char/25a0/index.htm

3.56 │ ■■■

1982 │

0.86 │

1983 │

0.00 │

1984 │

5.58 │ ■■■■■

Chapter 15 Group By, Having, With, Union All | 124

1985 │

8.87 │ ■■■■■■■■

1986 │

6.07 │ ■■■■■■

1987 │

5.97 │ ■■■■■

1988 │

0.61 │

1989 │

0.81 │

1990 │

1.29 │ ■

(17 rows)

The Formula One racing seems to be interesting enough outside of what we
cover

in this book and the respective database: Wikipedia is full of information
about

this sport. In the list of Formula One seasons, we can see a table of all
seasons and their champion driver and champion constructor: the
driver/constructor

who won the most points in total in the races that year.

To compute that in SQL we need to rst add up the points for each driver and

constructor and then we can select those who won the most each season:

1

with points as

2

(

3

select year as season, driverid, constructorid,

4

sum(points) as points

5

from results join races using(raceid)

6

https://en.wikipedia.org/wiki/List_of_Formula_One_seasons

group by grouping sets((year, driverid),

7

(year, constructorid))

8

having sum(points) > 0

9

order by season, points desc

10

),

11

tops as

12

(

13

select season,

14

max(points) filter(where driverid is null) as ctops,

15

max(points) filter(where constructorid is null) as dtops

16

from points

17

group by season

18

order by season, dtops, ctops

19

),

20

champs as

21

(

22

select tops.season,

23

champ_driver.driverid,

24

champ_driver.points,

25

champ_constructor.constructorid,

26

champ_constructor.points

27

28

from tops

29

join points as champ_driver

30

on champ_driver.season = tops.season

31

and champ_driver.constructorid is null

32

and champ_driver.points = tops.dtops

33

Chapter 15 Group By, Having, With, Union All | 125

34

join points as champ_constructor

35

on champ_constructor.season = tops.season

36

and champ_constructor.driverid is null

37

and champ_constructor.points = tops.ctops

38

)

39

select season,

40

format('%s %s', drivers.forename, drivers.surname)

41

as "Driver's Champion",

42

constructors.name

43

as "Constructor's champion"

44

from champs

45

join drivers using(driverid)

46

join constructors using(constructorid)

47

order by season;

This time we get about a full page SQL query, and yes it’s getting complex.
The

main thing to see is that we are daisy chaining the CTEs:

1. The points CTE is computing the sum of points for both the drivers and

the constructors for each season.

We can do that in a single SQL query thanks to the grouping sets feature

that is covered in more details later in this book. It allows us to run aggre-

gates over more than one group at a time within a single query scan.

2. The tops CTE is using the points one in its from clause and it computes the
maximum points any driver and constructor had in any given season,

We do that in a separate step because in SQL it’s not possible to compute

an aggregate over an aggregate:

ERROR: aggregate function calls cannot be nested

Thus the way to have the sum of points and the maximum value for the

sum of points in the same query is by using a two-stages pipeline, which is

what we are doing.

3. The champs CTE uses the tops and the points data to restrict our result set
to the champions, that is those drivers and constructors who made as

many points as the maximum.

Additionnaly, in the champs CTE we can see that we use the points data
twice for di ferent purposes, aliasing the relation to champ_driver when

looking for the champion driver, and to champ_constructor when looking

for the champion constructor.

4. Finally we have the outer query that uses the champs dataset and formats

Chapter 15 Group By, Having, With, Union All | 126

it for the application, which is close to what our Wikipedia example page

is showing.

Here’s a cut-down version of the 68 rows in the nal result set:

season │ Driver's Champion

│ Constructor's champion

════════╪════════════════════╪════════════════════════

1950 │ Nino Farina

│ Alfa Romeo

1951 │ Juan Fangio

│ Ferrari

1952 │ Alberto Ascari

│ Ferrari

1953 │ Alberto Ascari

│ Ferrari

1954 │ Juan Fangio

│ Ferrari

1955 │ Juan Fangio

│ Mercedes

1956 │ Juan Fangio

│ Ferrari

1957 │ Juan Fangio

│ Maserati

...

1985 │ Alain Prost

│ McLaren

1986 │ Alain Prost

│ Williams

1987 │ Nelson Piquet

│ Williams

1988 │ Alain Prost

│ McLaren

1989 │ Alain Prost

│ McLaren

1990 │ Ayrton Senna

│ McLaren

1991 │ Ayrton Senna

│ McLaren

1992 │ Nigel Mansell

│ Williams

1993 │ Alain Prost

│ Williams

...

2013 │ Sebastian Vettel

│ Red Bull

2014 │ Lewis Hamilton

│ Mercedes

2015 │ Lewis Hamilton

│ Mercedes

2016 │ Nico Rosberg

│ Mercedes

Distinct On

Another useful PostgreSQL extension is the distinct on SQL form, and here’s

what the PostgreSQL distinct clause documentation has to say about it:
SELECT DISTINCT ON (expression [, …]) keeps only the rst

row of each set of rows where the given expressions evaluate to

equal. The DISTINCT ON expressions are interpreted using the

https://www.postgresql.org/docs/current/static/sql-select.html#SQL-DISTINCT

same rules as for ORDER BY (see above). Note that the “ rst row”

of each set is unpredictable unless ORDER BY is used to ensure

that the desired row appears rst.

So it is possible to return the list of drivers who ever won a race in the whole

Formula One history with the following query:

Chapter 15 Group By, Having, With, Union All | 127

1

select distinct on (driverid)

2

forename, surname

3

from results

4

join drivers using(driverid)

5

where position = 1;

There 107 of them, as we can check with the following query:

1

select count(distinct(driverid))

2

from results

3

join drivers using(driverid)

4

where position = 1;

The classic way to have a single result per driver in SQL would be to
aggregate

over them, creating a group per driver:

1

select forename, surname

2

from results join drivers using(driverid)

3

where position = 1

4

group by drivers.driverid;

Note that we are using the group by clause without aggregates. That’s a valid
use case for this clause, allowing us to force unique entries per group in the
result set.

Result Sets Operations

SQL also includes set operations for combining queries results sets into a
single one.

https://www.postgresql.org/docs/current/static/queries-union.html

In our data model we have a driverstandings and a constructorstandings —
they contain data that come from the results table that we’ve been using a lot,
so that you can query a smaller data set… or I guess so that you can write
simple SQL

queries.

The set operations are union, intersect and except. As expected with union
you can assemble a result set from the result of several queries:

1

(

2

select raceid,

3

'driver' as type,

4

format('%s %s',

5

drivers.forename,

6

drivers.surname)

7

as name,

8

driverstandings.points

Chapter 15 Group By, Having, With, Union All | 128

9

10

from driverstandings

11

join drivers using(driverid)

12

13

where raceid = 972

14

and points > 0

15

)

16

union all

17

(

18

select raceid,

19

'constructor' as type,

20

constructors.name as name,

21

constructorstandings.points

22

23

from constructorstandings

24

join constructors using(constructorid)

25

26

where raceid = 972

27

and points > 0

28

)

29

order by points desc;

Here, in a single query, we get the list of points from race 972 for drivers and
con-

structors, well anyway all of them who got points. It is a classic of using
union, as we are adding static column values in each branch of the query, so
that we know

where each line of the result set comes from:

raceid │

type

│

name

│ points

════════╪═════════════╪══════════════════╪════════

972 │ constructor │ Mercedes

│

136

972 │ constructor │ Ferrari

│

135

972 │ driver

│ Sebastian Vettel │

86

972 │ driver

│ Lewis Hamilton

│

73

972 │ driver

│ Valtteri Bottas

│

63

972 │ constructor │ Red Bull

│

57

972 │ driver

│ Kimi Räikkönen

│

49

972 │ driver

│ Max Verstappen

│

35

972 │ constructor │ Force India

│

31

972 │ driver

│ Daniel Ricciardo │

22

972 │ driver

│ Sergio Pérez

│

22

972 │ constructor │ Williams

│

18

972 │ driver

│ Felipe Massa

│

18

972 │ constructor │ Toro Rosso

│

13

972 │ driver

│ Carlos Sainz

│

11

972 │ driver

│ Esteban Ocon

│

9

972 │ constructor │ Haas F1 Team

│

8

972 │ driver

│ Nico Hülkenberg

│

6

972 │ constructor │ Renault

│

6

972 │ driver

│ Romain Grosjean

│

4

972 │ driver

│ Kevin Magnussen

│

4

Chapter 15 Group By, Having, With, Union All | 129

972 │ driver

│ Daniil Kvyat

│

2

(22 rows)

In our writing of the query, you may notice that we did parenthesize the
branches

of the union. It’s not required that we do so, but it improves the readability of
the query and makes it obvious as to what data set the order by clause is
applied for.

Finally, we’ve been using union all in this query. That’s because the way the
queries are built is known to never yield duplicates in the result set. It may
happen that you need to use a union query and then want to remove
duplicates from the result set, that’s what union (with no all) does.

The next query is a little convoluted and lists the drivers who received no
points

in race 972 (Russian Grand Prix of 2017-04-30) despite having gotten some

points in the previous race (id 971, Bahrain Grand Prix of 2017-04-16):

1

(

2

select driverid,

3

format('%s %s',

4

drivers.forename,

5

drivers.surname)

6

as name

7

8

from results

9

join drivers using(driverid)

10

11

where raceid = 972

12

and points = 0

13

)

14

except

15

(

16

select driverid,

17

format('%s %s',

18

drivers.forename,

19

drivers.surname)

20

as name

21

22

from results

23

join drivers using(driverid)

24

25

where raceid = 971

26

and points = 0

27

)

28

;

Which gives us:

driverid │

name

Chapter 15 Group By, Having, With, Union All | 130

══════════╪══════════════════

154 │ Romain Grosjean

817 │ Daniel Ricciardo

(2 rows)

Here it’s also possible to work with the intersect operator in between result
sets.

With our previous query, we would get the list of drivers who had no points
in

either race.

The except operator is very useful for writing test cases, as it allows us to
compute a di ference in between two result sets. One way to use it is to store
the result of

running a query against a known fixture or database content in an expected le.

Then when you change a query, it’s easy to load your expected data set into
the

database and compare it with the result of running the new query.

We said earlier that the following two queries are supposed to return the same

dataset, so let’s check that out:

1

(

2

select name, location, country

3

from circuits

4

order by position <-> point(2.349014, 48.864716)

5

)

6

except

7

(

8

select name, location, country

9

from circuits

10

order by point(lng,lat) <-> point(2.349014, 48.864716)

11

)

12

;

This returns 0 rows, so the index is reliable and the location column is lled
with the same data as found in the lng and lat columns.

You can implement some regression testing pretty easily thanks to the except
operator!

16

Understanding Nulls

Given its relational theory background, SQL comes with a special value that
has

no counterpart in a common programming language: null. In Python, we have

None, in PHP we have null, in C we have nil, and about every other
programming language has something that looks like a null.

Three-Valued Logic

The di ference in SQL is that null introduces three-valued logic. Where that’s
very di ferent from other languages None or Null is when comparing values.

Let’s have a look at the SQL null truth table:

1

select a::text, b::text,

2

(a=b)::text as "a=b",

3

format('%s = %s',

4

coalesce(a::text, 'null'),

5

coalesce(b::text, 'null')) as op,

6

format('is %s',

7

coalesce((a=b)::text, 'null')) as result

8

from (values(true), (false), (null)) v1(a)

9

cross join

10

(values(true), (false), (null)) v2(b);

As you can see cross join is very useful for producing a truth table. It
implements a Cartesian product over our columns, here listing the rst value of
a (true) with every value of b in order (true, then false, then null), then
again with the second

Chapter 16 Understanding Nulls | 132

value of a (false) and then again with the third value of a (null).

We are using format and coalesce to produce an easier to read results table
here.

The coalesce function returns the rst of its argument which is not null, with
the restriction that all of its arguments must be of the same data type, here
text.

Here’s the nice truth table we get:

a

│

b

│

a=b

│

op

│

result

═══════╪═══════╪═══════╪═══════════════╪══════════

true

│ true

│ true

│ true = true

│ is true

true

│ false │ false │ true = false

│ is false

true

│ ¤

│ ¤

│ true = null

│ is null

false │ true

│ false │ false = true

│ is false

false │ false │ true

│ false = false │ is true

false │ ¤

│ ¤

│ false = null

│ is null

¤

│ true

│ ¤

│ null = true

│ is null

¤

│ false │ ¤

│ null = false

│ is null

¤

│ ¤

│ ¤

│ null = null

│ is null

(9 rows)

We can think of null as meaning I don’t know what th

rather than no value

here. Say you have in A (lef hand) something (hidden) that you don’t know

what it is and in B (right hand) something (hidden) that you don’t know what

it is. You’re asked if A and B are the same thing. Well, you can’t know that,
can

you?

So in SQL null = null returns null, which is the proper answer to the
question, but not always the one you expect, or the one that allows you to
write your query

and have the expected result set.

That’s why we have other SQL operators to work with data that might be
null:

they are

distinct from and

not distinct from. Those two operators not only

have a very long name, they also pretend that null is the same thing as null.

So if you want to pretend that SQL doesn’t implement three-valued logic you

can use those operators and forget about Boolean comparisons returning null.

We can even easily obtain the truth table from a SQL query directly:

1

select a::text as left, b::text as right,

2

(a = b)::text as "=",

3

(a <> b)::text as "<>",

4

(a is distinct from b)::text as "is distinct",

5

(a is not distinct from b)::text as "is not distinct from"

6

from

(values(true),(false),(null)) t1(a)

7

cross join (values(true),(false),(null)) t2(b);

With this complete result this time:

Chapter 16 Understanding Nulls | 133

left

│ right │

=

│

<>

│ is distinct │ is not distinct from

═══════╪═══════╪═══════╪═══════╪═════════════╪══════════════════════

true

│ true

│ true

│ false │ false

│ true

true

│ false │ false │ true

│ true

│ false

true

│ ¤

│ ¤

│ ¤

│ true

│ false

false │ true

│ false │ true

│ true

│ false

false │ false │ true

│ false │ false

│ true

false │ ¤

│ ¤

│ ¤

│ true

│ false

¤

│ true

│ ¤

│ ¤

│ true

│ false

¤

│ false │ ¤

│ ¤

│ true

│ false

¤

│ ¤

│ ¤

│ ¤

│ false

│ true

(9 rows)

You can see that we have not a single null in the last two columns.

Not Null Constraints

In some cases, in your data model you want the strong guarantee that a
column

cannot be null. Usually that’s because it makes no sense for your application
to deal with some unknowns, or in other words, you are dealing with a
required

value.

The default value for any column, unless you specify something else, is
always

null. It’s only a default value though, it’s not a constraint on your data model,
so your application may insert a null value in a column with a non null
default: 1

create table test(id serial, f1 text default 'unknown');

2

insert into test(f1) values(DEFAULT),(NULL),('foo');

3

table test;

This script gives the following output:

id │

f1

════╪═════════

1 │ unknown

2 │ ¤

3 │ foo

As we can see, we have a null value in our test table, despite having
implemented a speci c default value. The way to avoid that is using a not null
constraint: 1

drop table test;

2

create table test(id serial, f1 text not null default 'unknown'); 3

insert into test(f1) values(DEFAULT),(NULL),('foo');

4

ERROR:

null value in column "f1" violates not-null constraint

5

DETAIL:

Failing row contains (2, null).

Chapter 16 Understanding Nulls | 134

This time the insert command fails: accepting the data would violate the
constraint we speci ed at table creation, i.e. no null allowed.

Outer Joins Introducing Nulls

As we saw earlier in this chapter, outer joins are meant to preserve rows from
your

reference relation and add to it columns from the outer relation when the join

condition is satis ed. When the join condition is not satis ed, the outer joins

then ll the columns from the outer relation with null values.

A typical example would be with calendar dates when we have not registered
data

at given dates yet. In our motor racing database example, we can ask for the
name

of the pole position’s driver and the nal position. As the model registers the

races early, some of them won’t have run yet and so the results are not
available

in the database:

1

select races.date,

2

races.name,

3

drivers.surname as pole_position,

4

results.position

5

from races

6

/*

7

* We want only the pole position from the races

8

* know the result of and still list the race when

9

* we don't know the results.

10

*/

11

left join results

12

on races.raceid = results.raceid

13

and results.grid = 1

14

left join drivers using(driverid)

15

where

date >= '2017-05-01'

16

and date < '2017-08-01'

17

order by races.date;

So we can see that we only have data from races before the 25 June in the
version

that was used to prepare this book:

date

│

name

│ pole_position │ position

════════════╪═══════════════════════╪═══════════════╪══════════

2017-05-14 │ Spanish Grand Prix

│ Hamilton

│

1

2017-05-28 │ Monaco Grand Prix

│ Räikkönen

│

2

2017-06-11 │ Canadian Grand Prix

│ Hamilton

│

1

2017-06-25 │ Azerbaijan Grand Prix │ ¤

│

¤

2017-07-09 │ Austrian Grand Prix

│ ¤

│

¤

2017-07-16 │ British Grand Prix

│ ¤

│

¤

Chapter 16 Understanding Nulls | 135

2017-07-30 │ Hungarian Grand Prix

│ ¤

│

¤

(7 rows)

With grid having a not null constraints in your database model for the results
table, we see that sometimes we don’t have the data at all. Another way to
say

that we don’t have the data is to say that we don’t know the answer to the
query.

In this case, SQL uses null in its answer.

So null values can be created by the queries themselves. There’s basically no
way to escape from having to deal with null values, so your application must
be prepared for them and moreover understand what to do with them.

Using Null in Applications

Most programming languages come with a representation of the unknown or

not yet initialized state, be it None in Python, null in Java and C and PHP and
others, with varying semantics, or even the Ocaml option type or the Haskell

maybe type.

Depending on your tools of choice the null SQL value maps quite directly to

those concepts. The main thing is then to remember that you might get null

in your results set, and you should write your code accordingly. The next
main

thing to keep in mind is the three-valued logic semantics when you write
SQL,

and remember to use where foo is null if that’s what you mean, rather than

the erroneous where foo = null, because null = null is null and then it

won’t be selected in your resultset:

1

select a, b

2

from (values(true), (false), (null)) v1(a)

3

cross join

4

http://ocaml-lib.sourceforge.net/doc/Option.html
https://wiki.haskell.org/Maybe
https://wiki.haskell.org/Maybe

(values(true), (false), (null)) v2(b)

5

where a = null;

That gives nothing, as we saw before, as there’s no such row where anything

equals null:

a │ b

═══╪═══

(0 rows)

Now if you remember your logic, then you can instead ask the right question:

Chapter 16 Understanding Nulls | 136

1

select a, b

2

from (values(true), (false), (null)) v1(a)

3

cross join

4

(values(true), (false), (null)) v2(b)

5

where a is null;

You then obtain those rows for which a

null:

a │ b

═══╪═══

¤ │ t

¤ │ f

¤ │ ¤

(3 rows)

17

Understanding Window Functions

There was SQL before window functions and there is SQL af er window
functions: that’s how powerful this tool is!

The whole idea behind window functions is to allow you to process several
values of the result set at a time: you see through the window some peer rows
and you are able to compute a single output value from them, much like when
using an

a regate function.

Windows and Frames

PostgreSQL comes with plenty of features, and one of them will be of great
help when it comes to getting a better grasp of what’s happening with
window functions. The rst step we are going through here is understanding
what data the

function has access to. For each input row, you have access to a frame of the
data,

http://www.postgresql.org/docs/current/static/tutorial-window.html
http://www.postgresql.org/

and the rst thing to understand here is that frame.

The array_agg() function is an a regate function that builds an array. Let’s
use this tool to understand window fram :

1

select x, array_agg(x) over (order by x)

2

from generate_series(1, 3) as t(x);

The array_a () aggregates every value in the current frame, and here outputs
the full exact content of the windowing we’re going to process.

Chapter 17 Understanding Window Functions | 138

x | array_agg

---+-----------

1 | {1}

2 | {1,2}

3 | {1,2,3}

(3 rows)

The window de nition over (order by x) actually means over (order by x

rows between unbounded preceding and current row):

1

select x,

2

array_agg(x) over (order by x

3

rows between unbounded preceding

4

and current row)

5

from generate_series(1, 3) as t(x);

And of course we get the same result set as before:

x | array_agg

---+-----------

1 | {1}

2 | {1,2}

3 | {1,2,3}

(3 rows)

It’s possible to work with other kinds of frame specifications too, as in the
following examples:

1

select x,

2

array_agg(x) over (rows between current row

3

and unbounded following)

4

from generate_series(1, 3) as t(x);

x | array_agg

---+-----------

1 | {1,2,3}

2 | {2,3}

3 | {3}

(3 rows)

If no frame clause is used at all, then the default is to see the whole set of
rows

in each of them, which can be really useful if you want to compute sums and

percentages for example:

1

select x,

2

array_agg(x) over () as frame,

3

sum(x) over () as sum,

4

x::float/sum(x) over () as part

5

from generate_series(1, 3) as t(x);

x |

frame

| sum |

part

---+---------+-----+-------------------

1 | {1,2,3} |

6 | 0.166666666666667

2 | {1,2,3} |

6 | 0.333333333333333

Chapter 17 Understanding Window Functions | 139

3 | {1,2,3} |

6 |

0.5

(3 rows)

Did you know you could compute both the total sum of a column and the
ratio

of the current value compared to the total within a single SQL query? That’s
the

breakthrough we’re talking about now with window functions.

Partitioning into Different Frames

Other frames are possible to de ne when using the clause PARTITION BY. It
al-

lows de ning as peer rows those rows that share a common property with the

current row, and the property is de ned as a partition.

So in the Formula One database we have a results table with results from all
the known races. Let’s pick a race:

-[RECORD 1]---

raceid

| 890

year

| 2013

round

| 10

circuitid | 11

name

| Hungarian Grand Prix

date

| 2013-07-28

time

| 12:00:00

url

| http://en.wikipedia.org/wiki/2013_Hungarian_Grand_Prix

Within that race, we can now fetch the list of competing drivers in their
position

order (winner rst), and also their ranking compared to other drivers from the

same constructor in the race:

1

select surname,

2

constructors.name,

3

position,

4

format('%s / %s',

5

row_number()

6

over(partition by constructorid

7

order by position nulls last),

8

9

count(*) over(partition by constructorid)

10

)

11

as "pos same constr"

12

from

results

13

join drivers using(driverid)

14

join constructors using(constructorid)

15

where raceid = 890

16

order by position;

Chapter 17 Understanding Window Functions | 140

The partition by frame allows us to see peer rows, here the rows from results
where the constructorid is the same as the current row. We use that partition
twice in the previous SQL query, in the format() call. The rst time with the

row_number()

window function gives us the position in the race with respect to other drivers

from the same constructor, and the second time with count(*) gives us how

many drivers from the same constructor participated in the race:

surname

│

name

│ position │ pos same constr

═══════════════╪═════════════╪══════════╪═════════════════

Hamilton

│ Mercedes

│

1 │ 1 / 2

Räikkönen

│ Lotus F1

│

2 │ 1 / 2

Vettel

│ Red Bull

│

3 │ 1 / 2

Webber

│ Red Bull

│

4 │ 2 / 2

Alonso

│ Ferrari

│

5 │ 1 / 2

Grosjean

│ Lotus F1

│

6 │ 2 / 2

Button

│ McLaren

│

7 │ 1 / 2

Massa

│ Ferrari

│

8 │ 2 / 2

Pérez

│ McLaren

│

9 │ 2 / 2

Maldonado

│ Williams

│

10 │ 1 / 2

Hülkenberg

│ Sauber

│

11 │ 1 / 2

Vergne

│ Toro Rosso

│

12 │ 1 / 2

Ricciardo

│ Toro Rosso

│

13 │ 2 / 2

van der Garde │ Caterham

│

14 │ 1 / 2

Pic

│ Caterham

│

15 │ 2 / 2

Bianchi

│ Marussia

│

16 │ 1 / 2

Chilton

│ Marussia

│

17 │ 2 / 2

di Resta

│ Force India │

18 │ 1 / 2

Rosberg

│ Mercedes

│

19 │ 2 / 2

Bottas

│ Williams

│

¤ │ 2 / 2

Sutil

│ Force India │

¤ │ 2 / 2

Gutiérrez

│ Sauber

│

¤ │ 2 / 2

(22 rows)

In a single SQL query, we can obtain information about each driver in the
race

and add to that other information from the race as a whole. Remember that
the

window functions only happens af er the where clause, so you only get to see
rows from the available result set of the query.

Available Window Functions

Any and all a regate function you already know can be used against a
window frame rather than a grouping clause, so you can already start to use
sum, min, max, count, avg, and the other that you’re already used to using.

Chapter 17 Understanding Window Functions | 141

You might already know that with PostgreSQL it’s possible to use the
CREATE

AGGREGATE command to register your own custom a regate. Any such
custom aggregate can also be given a window frame definition to work on.

PostgreSQL of course is included with built-in aggregate functions and a
number of built-in window functions.

1

select surname,

2

position as pos,

3

row_number()

4

over(order by fastestlapspeed::numeric)

5

as fast,

6

http://www.postgresql.org/docs/current/static/sql-createaggregate.html
http://www.postgresql.org/docs/current/static/sql-createaggregate.html
http://www.postgresql.org/docs/9.2/static/functions-aggregate.html
http://www.postgresql.org/docs/9.2/static/functions-window.html

ntile(3) over w as "group",

7

lag(code, 1) over w as "prev",

8

lead(code, 1) over w as "next"

9

from

results

10

join drivers using(driverid)

11

where raceid = 890

12

window w as (order by position)

13

order by position;

In this example you can see that we are reusing the same window definition
several times, so we’re giving it a name to simplify the SQL. In this query for
each driver

we are fetching his position in the results, his position in terms of fastest lap
speed, a group number if we divide the drivers into a set of four groups
thanks to the ntile function, the name of the previous driver who made it, and

the name of the driver immediately next to the current one, thanks to the lag
an lead functions: surname

│ pos │ fast │ group │ prev │ next

═══════════════╪═════╪══════╪═══════╪══════╪══════

Hamilton

│

1 │

20 │

1 │ ¤

│ RAI

Räikkönen

│

2 │

17 │

1 │ HAM

│ VET

Vettel

│

3 │

21 │

1 │ RAI

│ WEB

Webber

│

4 │

22 │

1 │ VET

│ ALO

Alonso

│

5 │

15 │

1 │ WEB

│ GRO

Grosjean

│

6 │

16 │

1 │ ALO

│ BUT

Button

│

7 │

12 │

1 │ GRO

│ MAS

Massa

│

8 │

18 │

1 │ BUT

│ PER

Pérez

│

9 │

13 │

2 │ MAS

│ MAL

Maldonado

│

10 │

14 │

2 │ PER

│ HUL

Hülkenberg

│

11 │

9 │

2 │ MAL

│ VER

Vergne

│

12 │

11 │

2 │ HUL

│ RIC

Ricciardo

│

13 │

8 │

2 │ VER

│ VDG

van der Garde │

14 │

6 │

2 │ RIC

│ PIC

Pic

│

15 │

5 │

2 │ VDG

│ BIA

Bianchi

│

16 │

3 │

3 │ PIC

│ CHI

Chilton

│

17 │

4 │

3 │ BIA

│ DIR

di Resta

│

18 │

10 │

3 │ CHI

│ ROS

Rosberg

│

19 │

19 │

3 │ DIR

│ BOT

Chapter 17 Understanding Window Functions | 142

Sutil

│

¤ │

2 │

3 │ GUT

│ ¤

Gutiérrez

│

¤ │

1 │

3 │ BOT

│ SUT

Bottas

│

¤ │

7 │

3 │ ROS

│ GUT

(22 rows)

And we can see that the fastest lap speed is not as important as one might
think, as both the two fastest drivers didn’t even nish the race. In SQL terms
we also

see that we can have two di ferent sequences returned from the same query,
and

again we can reference other rows.

When to Use Window Functions

The real magic of what are called window functions is actually the frame of
data they can see when using the OVER () clause. This frame is speci ed
thanks to the

PARTITION BY and ORDER BY clauses.

You need to remember that the windowing clauses are always considered last
in

the query, meaning af er the where clause. In any frame you can only see
rows that have been selected for output: e.g. it’s not directly possible to
compute a

percentage of values that you don’t want to display. You would need to use a

subquery in that case.

Use window functions whenever you want to compute values for each row of
the result set and those computations depend on other rows within the same
result

set. A classic example is a marketing analysis of weekly results: you typically
out-

put both each day’s gross sales and the variation with the same day in
comparison

to the previous week.

18

Understanding Relations and

Joins

In the previous section, we saw some bits about data sources in SQL when
intro-

ducing the from clause and some join operations. In this section we are going
to expand this on this part and look speci cally at what a relation is.

As usual, the PostgreSQL documentation provides us with some
enlightenment

(here in its section entitled the FROM Clause:

A table reference can be a table name (possibly schema-quali ed),

or a derived table such as a subquery, a JOIN construct, or complex

combinations of these. If more than one table reference is listed

in the FROM clause, the tables are cross-joined (that is, the Carte-

sian product of their rows is formed; see below). The result of the

FROM list is an intermediate virtual table that can then be subject

to transformations by the WHERE, GROUP BY, and HAVING

clauses and is nally the result of the overall table expression.

Relations

We already know that a relation is a set of data all having a common set of
prop-

erties, that is to say a set of elements all from the same composite data type.
The

SQL standard didn’t go as far as de ning relations in terms of being a set in
the

Chapter 18 Understanding Relations and Joins | 144

https://www.postgresql.org/docs/9.6/static/queries-table-expressions.html#QUERIES-FROM

mathematical way of looking at it, and that would imply that no duplicates
are

allowed. We can then talk about a bag rather than a set, because duplicates
are

allowed in SQL relations.

The data types are de ned either by the create type statement or by the more
common create table statement:

1

~# create table relation(id integer, f1 text, f2 date, f3 point);

2

CREATE TABLE

3

4

~# insert into relation

5

values(1,

6

'one',

7

current_date,

8

point(2.349014, 48.864716)

9

);

10

INSERT 0 1

11

12

~# select relation from relation;

13

relation

14

═══

15

(1,one,2017-07-04,"(2.349014,48.864716)")

16

(1 row)

Here we created a table named relation. What happens in the background is

that PostgreSQL created a type with the same name that you can manipulate,
or

reference. So the select statement here is returning tuples of the composite
type relation.

SQL is a strongly typed programming language: at query planning time the
data

type of every column of the result set must be known. Any result set is de ned
in

terms of being a relation of a known composite data type, where each and
every row in the result set shares the common properties implied by this data
type.

The relations can be de ned in advance in create table or create type
statements, or de ned on the y by the query planner when it makes sense for
your query.

Other statements can also create data types too, such as create view — more
on that later.

When you use a subquery in your main query, either in the form of a common

table expression or directly inlined in your from clause, you are e fectively de
ning a relation data type. At query run time, this relation is lled with a dataset,
thus

you have a full-blown relation to use.

Relational algebra is thereby a formalism of what you can do with such
things. In short, this means joins. The result of a join in between two relations
is a relation,

Chapter 18 Understanding Relations and Joins | 145

of course, and that relation can in-turn participates into other join operations.

The result of a from clause is a relation, with which the query planner is
executing the rest of your query: the where clause to restrict the relation
dataset to what’s interesting for the query, and other clauses, up until the
window functions and the select projection are computed so that we can nally
construct the result set, i.e. a relation.

https://en.wikipedia.org/wiki/Relational_algebra

The PostgreSQL optimizer will then re-arrange the computations needed so

they’re as e cient as possible, rather than doing things in the way they are

written. This is much like when gcc is doing its magic and you can’t even

recognize your intentions when reading the assembly outcome, except that
with

PostgreSQL you can actually make sense of the explain plan for your query,

and relate it to the query text you wrote.

SQL Join Types

Joins are the basic operations you do with relations. The nature of a join is to

build a new relation from a pair of existing ones. The most basic join is a
cross join or Cartesian product, as we saw in the Boolean truth table, where
we built a result set of all possible combinations of all entries.

Other kinds of join associate data between the two relations that participate in

the operation. The association is speci ed precisely in the join condition and
is usually based on some equality operator, but it is not limited to that.

We might want to count how many drivers made it to the nish behind the cur-

rent one in any single race, as that’s a good illustration of a non-equality join

condition:

1

select results.positionorder as position,

2

drivers.code,

3

count(behind.*) as behind

4

5

from results

6

join drivers using(driverid)

7

8

left join results behind

9

on results.raceid = behind.raceid

10

and results.positionorder < behind.positionorder

11

12

where results.raceid = 972

Chapter 18 Understanding Relations and Joins | 146

13

and results.positionorder <= 3

14

15

group by results.positionorder, drivers.code

16

order by results.positionorder;

Here are our top three, with how many drivers found behind. We are using
the

positionorder column here because it attributes a position to drivers who
didn’t nish the race, which is useful for us in this very query:

position │ code │ behind

══════════╪══════╪════════

1 │ BOT

│

19

2 │ VET

│

18

3 │ RAI

│

17

(3 rows)

In this example query, we can also see that we are using the same relation
twice

in the same FROM query, thus giving the relation di ferent aliases. It would
be tempting to name those aliases r1 and r2, but much as you would not do
that in your code when naming variables, it’s best to give meaningful names
to your the

SQL objects in your queries.

Relational algebra includes set-based operations, and what we have in SQL
are

inner and outer joins, cross joins and lateral joins. We saw all of them in this

chapter’s example queries, and here’s a quick summary:

• Inner joins are useful when you want to only keep rows that satisfy the

join condition for both involved relation.

• Outer joins are useful when you want to keep a reference relation’s dataset
no matter what and enrich it with the dataset from the other relation when

the join condition is satis ed.

The relation of which you want to keep all the rows is pointed to in the

name of the outer join, so it’s written on the lef -hand side in a left join

and on the right-hand side in a right join.

When the join condition is not satis ed, it means you keep some known

data and must ll in the result relation with data that doesn’t exist, so that’s

when null is very useful, and also why null is a member of every SQL data
type (including the Boolean data type),

• Full outer joins is a special case of an outer join where you want to keep all
the rows in the dataset, whether they satisfy the join condition or not.

• Lateral joins introduce the capability for the join condition to be pushed

Chapter 18 Understanding Relations and Joins | 147

down into the relation on the right, allowing for new semantics such as

top-N queries, thanks to being able to use limit in a lateral subquery.

The key here is to remember that a join takes two relations and a join
condition

as input and it returns another relation. A relation here is a bag of rows that
all

share a common relation data type de nition, known at query planning time.

19

An Interview with Markus Winand

Markus Winand is the author of the very famous book “SQL Performance ex-

plained” and he also provides both http://use-the-index-luke.com and http://

modern-sql.com. Markus is a master of the SQL standard and he is a wizard
in terms of how to use SQL to enable fast application delivery and solid run-
time

performances!

Figure 19.1: Use The Index, Luke!

http://use-the-index-luke.com
http://modern-sql.com
http://modern-sql.com

Developers of en say that SQL is hard to master. Do you agree? What would
be

your recommendations for them to improve their SQL skills?

I think the reason many people find SQL hard to learn

that it

a declarative programming language.

Most people first learn imperative programming: they put a number

of instructions into a particular order so that their execution delivers

the desired result. An SQL statement

different because it simply

defin the result. Th becom most obvio

in the select clause,

which literally defin the columns of the result. Most of the other

Chapter 19 An Interview with Markus Winand | 149

main claus describe which rows should be present in the result. It

important to understand that the author of an SQL statement

do not instruct the database how to run the query. That’s up to

the database to figure out.

So I think the most important step in mastering SQL

to stop

thinking in imperative terms. One recurring example I’ve seen in

the field

how people imagine that joins work and more specifi-

cally, which index can help in improving join performance. Peo-

ple constantly try to apply their knowledge about algorithms to SQL

statements, without knowing which algorithm the database actually

us . Th caus a lot of problems, confusion and frustration.

First, always foc

on writing a clear statement to describe each col-

umn and row of the desired result. If needed, you can take care of

performance afterwards. Th however, requir some understand-

ing of database internals.

What would you say is the ideal SQL wizardry level a developer should reach
to

be able to do their job correctly?

Knowing everything would be best, I guess ;)

In reality, hardly any programmer

just an SQL programmer.

Most are Java, C#, PHP, or whatever programmers who — more

or less frequently — use SQL to interact with a database. Obviously,

not all of them need to be SQL experts.

Today’s programming often boils down to choosing the right tool for

each problem. To do th job correctly,

you properly phrased it,

programmers should at least know what their SQL database could

do. Once you remember that SQL can do a regations without

group by—e.g. for running totals, moving averag , etc.—it’s easy

to search the Internet for the syntax. So I’d say every programmer

(and even more so architects) should have a good overview of what

SQL can do nowadays in order to recognize situations in which SQL

offers the best solution.

Quite often, a few lin of SQL can replace dozens of lin of an

imperative program. Most of the time, the SQL solution

more

correct and even faster. In the vein of an old saying about shell

scripts, I’d say: “Watch out or I’ll replace a day’s worth of your

Chapter 19 An Interview with Markus Winand | 150

imperative programming with a very small SQL statement”.

You know the detailed behavior of many di ferent RDBMS engines and you
are

used to working with them. Would you write portable SQL code in
applications

or pick one engine and then use it to its full capacity, writing tailored SQL

(both

schema and queries)?

I first aim to use standard SQL. Th

just because I know standard

SQL best and I believe that the semantics of standard SQL have

the most rigid definitions. That means standard SQL defin a

meaningful behavior, even for the most obscure corner cas . Vendor

extensions have a tendency to foc

on the main cas . For corner

cas , they might behave in surprising and inconsistent ways — just

because nobody thought about that during specification.

Sometim , I cannot solve a problem with standard SQL — at least

not in a sufficiently elegant and efficient way. That

more often

because the database at hand doesn’t support the standard featur

that I’d like to use for th problem. However, sometim the stan-

dard just doesn’t provide the required functionality. In either case

I’m also happy to use a vendor extension. For me, th

really just

my personal order of preference for solving a problem — it

not a

limitation in any way.

When it com to the benefits of writing portable SQL, there seems

to be a common misconception in the field. Quite often, people argue

that they don’t need portability because they will never use another

database. And I actually agree with that argument in the sense

that aiming for full portability do not make any sense if you don’t

need to run the software on different database right now.

On the other hand, I believe that portability

not only about the

code — it

also about the people. I’d say it

even more about

the people. If you use standard SQL by default and only revert

to proprietary syntax if needed, the SQL statements will be easier

for other people to understand, especially people used to another

database. On the scale of the whole industry it means that bringing

new personnel on board involv less friction. Even from the personal

viewpoint of a single developer, it h a big benefit: if you are used to

writing standard SQL then the chanc increase that you can write

SQL that works on many databas . Th mak you more valuable

Chapter 19 An Interview with Markus Winand | 151

in the job market.

However, there

one big exception and that’s DDL – i.e. create

statements. For DDL, I don’t even aim for portability in the first

place. Th

pointless and too restricting. If you need to create

tabl , views, index , and the like for different databas , it better

to just maintain a separate schema definition for each of them.

How do you see PostgreSQL in the RDBMS o fering?

PostgreSQL

in a very strong position. I keep on saying that from

a developer’s perspective, PostgreSQL’s feature set

closer to that of

a commercial database than to that of the open-source competitors

such

MySQL/MariaDB.

I particularly like the rich standard SQL support PostgreSQL h :

that means simple things like the fully featured valu clause, but

also with [recursive], over, lateral and arrays.

Part V

Data Types

| 153

Reading the Wikipedia article on relations in databases article, we nd the
following:

In relational database theory, a relation, as originally de ned by E.

F. Codd,[1] is a set of tuples (d1, d2, …, dn), where each element dj is

a member of Dj, a data domain. Codd’s original de nition notwith-

standing, and contrary to the usual de nition in mathematics, there

is no ordering to the elements of the tuples of a relation.[2][3] In-

stead, each element is termed an attribute value. An attribute is a

name paired with a domain (nowadays more commonly referred to

as a type or data type). An attribute value is an attribute name paired

with an element of that attribute’s domain, and a tuple is a set of

attribute values in which no two distinct elements have the same

name. Thus, in some accounts, a tuple is described as a function,

mapping names to values.

In a relational database, we deal with relations. The main property of a
relation

is that all the tuples that belong to a relation share a common data de nition:

https://en.wikipedia.org/wiki/Relation_(database)

they have the same list of attributes, and each attribute is of a speci c data
type.

Then we might also might have some more constraints.

In this chapter, we are going to see what data types PostgreSQL makes
available

to us as application developers, and how to use them to enhance our
application

correctness, succinctness and performance.

20

Serialization and Deserialization

It’s all too common to see RDBMS mentioned as a solution to marshaling and

unmarshaling in-memory objects, and even distributed computed systems
tend

to talk about the storage parts for databases. In my opinion, we should talk
about transactional systems rather than storage when we want to talk about
RDBMS

and other transaction technologies. That said, storage is a good name for
distributed le systems.

On this topic, it might be interesting to realize how Lisp introduced print
read-

ably. In Lisp rather than working with a compiler and then running static
binary les, you work with an interactive REPL where the reader and the
printer are fully speci ed parts of the system. Those pieces are meant to be
used by Lisp

users. Here’s what the common Lisp standard documentation has to say about
printing readably:

http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_rda.htm#STprint-readablyST

If *print-readably* is true, some special rules for printing objects go

into e fect. Speci cally, printing any object O1 produces a printed

representation that, when seen by the Lisp reader while the standard

readtable is in e fect, will produce an object O2 that is similar to O1.

In the following example code, we de ne a structure with slots of di ferent
types: string, oat, and integer. Then we create an instance of that structure,
with speci c values for the three slots, and serialize this instance to string,
only to read it back from the string:

1

(defpackage #:readably

2

(:use #:cl))

3

Chapter 20 Serialization and Deserialization | 155

4

(in-package #:readably)

5

6

(defstruct foo

7

(name nil :type (or nil string))

8

(x

0.0 :type float)

9

(n

0

:type fixnum))

10

11

(defun print-and-read ()

12

(let ((instance (make-foo :name "bar" :x 1.0 :n 2)))

13

(values instance

14

(read-from-string

15

(write-to-string instance :escape t :readably t)))))

The result is, as expected, a couple of very similar instances:

1

CL-USER> (readably::print-and-read)

2

#S(READABLY::FOO :NAME "bar" :X 1.0 :N 2)

3

#S(READABLY::FOO :NAME "bar" :X 1.0 :N 2)

The rst instance is created in the application code from literal strings and
num-

bers, and the second instance has been created by the reader from a string,
which

could have been read from a le or a network service somewhere.

The discovery of Lisp predates the invention of the relational model by a long
shot, and Lisp wasn’t unique in its capacity to read data structure in-memory

from external storage.

It is important to understand which problem can be solved with using a
database

service, and to insist that storing and retrieving values out of and back into
mem-

ory isn’t a problem for which you need a database system.

21

Some Relational Theory

Back to relational database management systems and what they can provide
to

your application is:

http://www.paulgraham.com/rootsoflisp.html

• A service to access your data and run transactions

• A common API to guarantee consistency in between several application

bases

• A transport mechanism to exchange data with the database service.

In this chapter, the focus is the C of ACID, i.e. data consistency. When your
application grows, it’s going to be composed of several parts: the
administration

panel, the customer back-o ce application, the public front of the application,

the accounting reports, nancial reporting, and maybe some more parts such as

salespeople back-o ce and the like. Maybe some of those elements are going
to

be implemented using a third-party solution. Even if it’s all in-house, it’s of
en

the case that di ferent technical stacks are going to be used for di ferent parts:
a

backend in Go or in Java, a frontend in Python (Django) or Ruby (on Rails),

maybe PHP or Node.js, etc.

For this host of applications to work well together and respect the same set of

business rules, we need a core system that enables to guaranteeing overall
consistency. That is the main problem that a relational database management
system is meant to solve, and that’s why the relational model is so generic.

In the next chapter — Data Modeling — we are going to compare schemaless
with the relational modeling and go more deeply into this topic. In order to be

able to compare those very di ferent approaches, we need a better understand-

Chapter 21 Some Relational Theory | 157

ing of how the consistency is guaranteed by our favorite database system,
PostgreSQL.

Attribute Values, Data Domains and Data Types

The Wikipedia de nition for relation mentions attribute valu that are part of
data domains. A domain here is much like in mathematics, a set of values
that are given a common name to. There’s the data domain of natural
numbers, and

the data domain of rational numbers, in mathematics.

In relational theory, we can compose basic data domains into a tuple. Allow
me

to quote Wikipedia again, this time the tuple de nition page: The term
originated

an abstraction of the sequence: single, dou-

ble, triple, quadruple, quintuple, sextuple, septuple, octuple, …,

n-tuple, …, where the prefix are taken from the Latin nam of

the numerals.

So by de nition, a tuple is a list of T attributes, and a relation is a list of tuples
that all share the same list of attributes domains: names and data type.

So the basics of the relational model is to establish consistency within your
data

set: we structure the data in a way that we know what we are dealing with,
and

in a way allowing us to enforce business constraints.

https://en.wikipedia.org/wiki/Tuple

The rst business constraint enforced here is dealing with proper data. For in-

stance, the timestamp data type in PostgreSQL implements the Gregorian
Cal-

endar, in which there’s no year zero, or month zero, or day zero. While other
sys-

tems might accept “timestamp formatted” text as an attribute value,
PostgreSQL

actually checks that the value makes sense within the Gregorian Calendar:

1

select date '2010-02-29';

ERROR:

date/time field value out of range: "2010-02-29"

LINE 1: select date '2010-02-29';

^

The year 2010 isn’t a leap year in the Gregorian Calendar, thus the 29th of
Febru-

ary 2010 is not a proper date, and PostgreSQL knows that. By the way, this
input

syntax is named a decorated literal: we decorate the literal with its data type
so that PostgreSQL doesn’t have to guess what it is.

Chapter 21 Some Relational Theory | 158

Let’s try the infamous zero-timestamp:

1

select timestamp '0000-00-00 00:00:00';

ERROR:

date/time field value out of range: "0000-00-00 00:00:00"

No luck, because the Gregorian Calendar doesn’t have a year zero. The year
1 BC

is followed by 1 AD, as we can see here:

1

select date(date '0001-01-01' + x * interval '1 day')

2

from generate_series (-2, 1) as t(x);

date

═══════════════

0001-12-30 BC

0001-12-31 BC

0001-01-01

0001-01-02

(4 rows)

We can see in the previous example that implementing the Gregorian
calendar

is not a restriction to live with, rather it’s a powerful choice that we can put to

good use. PostgreSQL knows all about leap years and time zones, and its time

and date data types also implement nice support for meaningful values:

1

select date 'today' + time 'allballs' as midnight;

midnight

═════════════════════

2017-08-14 00:00:00

(1 row)

The allballs time literal sounds like an Easter egg — its history is explained
in this

pgsql-docs thread.

Consistency and Data Type Behavior

A key aspect of PostgreSQL data types lies in their behavior. Comparable to

an object-oriented system, PostgreSQL implements functions and operator
polymorphism, allowing for the dispatching of code at run-time depending on
the

types of arguments.

If we have a closer look at a very simple SQL query, we can see lots
happening

under the hood:

1

select code from drivers where driverid = 1;

Chapter 21 Some Relational Theory | 159

https://www.postgresql.org/message-id/flat/6EE64EF3AB31D5448D0007DD34EEB3412A75D9%40Herge.rcsinc.local#6EE64EF3AB31D5448D0007DD34EEB3412A75D9@Herge.rcsinc.local
https://www.postgresql.org/message-id/flat/6EE64EF3AB31D5448D0007DD34EEB3412A75D9%40Herge.rcsinc.local#6EE64EF3AB31D5448D0007DD34EEB3412A75D9@Herge.rcsinc.local

In this query, the expression driverid = 1 uses the = operator in between a
column name and a literal value. PostgreSQL knows from its catalogs that the

driverid column is a bigint and parses the literal 1 as an integer. We can
check that with the following query:

1

select pg_typeof(driverid), pg_typeof(1) from drivers limit 1;

pg_typeof │ pg_typeof

═══════════╪═══════════

bigint

│ integer

(1 row)

Now, how does PostgreSQL implements = in between an 8 bytes integer and
a

4 bytes integer? Well it turns out that this decision is dynamic: the operator =

dispatches to an established function depending on the types of its lef and
right

operands. We can even have a look at the PostgreSQL catalogs to get a better

grasp of this notion:

1

select oprname, oprleft::regtype, oprcode::regproc

2

from pg_operator

3

where oprname = '='

4

and oprleft::regtype::text ~ 'int|time|text|circle|ip'

5

order by oprleft;

This gives us a list of the following instances of the = operator:

oprname │

oprleft

│

oprcode

═════════╪═════════════════════════════╪══════════════════════════

=

│ bigint

│ int84eq

=

│ bigint

│ int8eq

=

│ bigint

│ int82eq

=

│ smallint

│ int28eq

=

│ smallint

│ int2eq

=

│ smallint

│ int24eq

=

│ int2vector

│ int2vectoreq

=

│ integer

│ int48eq

=

│ integer

│ int42eq

=

│ integer

│ int4eq

=

│ text

│ texteq

=

│ abstime

│ abstimeeq

=

│ reltime

│ reltimeeq

=

│ tinterval

│ tintervaleq

=

│ circle

│ circle_eq

=

│ time without time zone

│ time_eq

=

│ timestamp without time zone │ timestamp_eq

=

│ timestamp without time zone │ timestamp_eq_date

=

│ timestamp without time zone │ timestamp_eq_timestamptz

=

│ timestamp with time zone

│ timestamptz_eq_timestamp

=

│ timestamp with time zone

│ timestamptz_eq

Chapter 21 Some Relational Theory | 160

=

│ timestamp with time zone

│ timestamptz_eq_date

=

│ interval

│ interval_eq

=

│ time with time zone

│ timetz_eq

(24 rows)

The previous query limits its output to the datatype expected on the left of the
operator. Of course, the catalogs also store the datatype expected on the right
of it, and the result type too, which is Boolean in the case of equality. The
oprcode column in the output is the name of the PostgreSQL function that is
run when

the operator is used.

In our case with driverid = 1 PostgreSQL is going to use the int84eq function
to implement our query. This is true unless there’s an index on driverid of
course, in which case PostgreSQL will walk the index to nd matching rows
without

comparing the literal with the table’s content, only with the index content.

When using PostgreSQL, data types provide the following:

• Input data representation, expected in input literal values

• Output data representation

• A set of functions working with the data type

• Speci c implementations of existing functions for the new data type

• Operator speci c implementations for the data type

• Indexing support for the data type

The indexing support for PostgreSQL covers several kinds of indexes: B-tree,

GiST, GIN, SP-GiST, hash and brin. This book doesn’t go further and cover
the details of each of those index types. As an example of data type support

for

some indexes and the relationship in between a data type, a support function,

an operator and an index, we can have a look at the GiST support for the ip4r
extension data type:

1

select amopopr::regoperator

2

from pg_opclass c

3

join pg_am am on am.oid = c.opcmethod

4

join pg_amop amop on amop.amopfamily = c.opcfamily

5

where opcintype = 'ip4r'::regtype

6

and am.amname = 'gist';

The pg_opclass catalog is a list of operator class, each of them belongs to an
operator family as found in the pg_opfamily catalog. Each index type
implements an access method represented in the pg_am catalog. Finally, each
operator that may be used in relation to an index access method is listed in
the pg_amop catalog.

Knowing that we can access the PostgreSQL catalogs at run-time and
discover

Chapter 21 Some Relational Theory | 161

the ip4r supported operators for a GiST indexed lookup:

amopopr

════════════════

>>=(ip4r,ip4r)

<<=(ip4r,ip4r)

>>(ip4r,ip4r)

<<(ip4r,ip4r)

&&(ip4r,ip4r)

=(ip4r,ip4r)

(6 rows)

Those catalog queries are pretty advanced material that you don’t need in
your

daily life as an application developer. That said, it’s good to have some
under-

standing of how things work in PostgreSQL as it allows a smarter usage of
the

system you are already relying on for your data.

What we’ve seen here is that PostgreSQL implementation of data types is a
com-

pletely dynamic system with function and operator dispatch, and PostgreSQL

extension authors have APIs they can use to register new indexing support at

run time (when you type in create extension).

The goal of understanding that is for you, as an application developer, to
under-

stand how much can be done in PostgreSQL thanks to the integral concept of

data type.

22

PostgreSQL Data Types

PostgreSQL comes with a long list of data types. The following query limits
the

types to the ones directly interesting to someone who is an application
developer,

and still it lists 72 data types:

1

select nspname, typname

2

from

pg_type t

3

join pg_namespace n

4

on n.oid = t.typnamespace

5

where nspname = 'pg_catalog'

6

and typname !~ '(^_|^pg_|^reg|_handler$)'

7

order by nspname, typname;

Let’s take only a sample of those with the help of the TABLESAMPLE feature

of PostgreSQL, documented in the select SQL from page of the
documentation: 1

select nspname, typname

2

from

pg_type t TABLESAMPLE bernoulli(20)

3

join pg_namespace n

4

on n.oid = t.typnamespace

5

where nspname = 'pg_catalog'

6

and typname !~ '(^_|^pg_|^reg|_handler$)'

https://www.postgresql.org/docs/current/static/sql-select.html#SQL-FROM

7

order by nspname, typname;

In this run here’s what I get as a random sample of about 20% of the
available

PostgreSQL types. If you run the same query again, you will have a di ferent

result set:

nspname

│

typname

════════════╪═══════════════

pg_catalog │ abstime

pg_catalog │ anyelement

Chapter 22 PostgreSQL Data Types | 163

pg_catalog │ bool

pg_catalog │ cid

pg_catalog │ circle

pg_catalog │ date

pg_catalog │ event_trigger

pg_catalog │ line

pg_catalog │ macaddr

pg_catalog │ oidvector

pg_catalog │ polygon

pg_catalog │ record

pg_catalog │ timestamptz

(13 rows)

Our pick for the data types in this book isn’t based on a table sample query,
though. Yes, it would be some kind of fun to do it like this, but maybe not the

kind you’re expecting from the pages of this book…

Boolean

The Boolean data type has been the topic of the three valued logic section
earlier in this book, with the SQL boolean truth table that includes the values
true, false and null, and it’s important enough to warrant another inclusion
here:

a

│

b

│

a=b

│

op

│

result

═══════╪═══════╪═══════╪═══════════════╪══════════

true

│ true

│ true

│ true = true

│ is true

true

│ false │ false │ true = false

│ is false

true

│ ¤

│ ¤

│ true = null

│ is null

false │ true

│ false │ false = true

│ is false

false │ false │ true

│ false = false │ is true

false │ ¤

│ ¤

│ false = null

│ is null

¤

│ true

│ ¤

│ null = true

│ is null

¤

│ false │ ¤

│ null = false

│ is null

¤

│ ¤

│ ¤

│ null = null

│ is null

(9 rows)

You can have tuple attributes as Booleans too, and PostgreSQL includes
speci c

aggregates for them:

1

select year,

2

format('%s %s', forename, surname) as name,

3

count(*) as ran,

4

count(*) filter(where position = 1) as won,

5

count(*) filter(where position is not null) as finished,

6

sum(points) as points

7

from

races

Chapter 22 PostgreSQL Data Types | 164

8

join results using(raceid)

9

join drivers using(driverid)

10

group by year, drivers.driverid

11

having bool_and(position = 1) is true

12

order by year, points desc;

In this query, we show the bool_and() aggregates that returns true when all
the Boolean input values are true. Like every a regate it silently bypasses null
by default, so in our expression of bool_and(position = 1) we will lter F1
drivers who won all the races they nished in a speci c season:

year │

name

│ ran │ won │ finished │ points

══════╪═════════════════════╪═════╪═════╪══════════╪════════

1950 │ Juan Fangio

│

7 │

3 │

3 │

27

1950 │ Johnnie Parsons

│

1 │

1 │

1 │

9

1951 │ Lee Wallard

│

1 │

1 │

1 │

9

1952 │ Alberto Ascari

│

7 │

6 │

6 │

53.5

1952 │ Troy Ruttman

│

1 │

1 │

1 │

8

1953 │ Bill Vukovich

│

1 │

1 │

1 │

9

1954 │ Bill Vukovich

│

1 │

1 │

1 │

8

1955 │ Bob Sweikert

│

1 │

1 │

1 │

8

1956 │ Pat Flaherty

│

1 │

1 │

1 │

8

1956 │ Luigi Musso

│

4 │

1 │

1 │

5

1957 │ Sam Hanks

│

1 │

1 │

1 │

8

1958 │ Jimmy Bryan

│

1 │

1 │

1 │

8

1959 │ Rodger Ward

│

2 │

1 │

1 │

8

1960 │ Jim Rathmann

│

1 │

1 │

1 │

8

1961 │ Giancarlo Baghetti

│

3 │

1 │

1 │

9

1966 │ Ludovico Scarfiotti │

2 │

1 │

1 │

9

1968 │ Jim Clark

│

1 │

1 │

1 │

9

(17 rows)

If we want to restrict the results to drivers who nished and won every race
they entered in a season we need to then write having bool_and(position not
distinct

from 1)

true, and then the result set only contains those drivers who partici-

pated in a single race in the season.

The main thing about Booleans is the set of operators to use with them:

• The = doesn’t work as you think it would

• Use to test against literal true, false or null rather than =

• Remember to use the

distinct from and

not distinct from operators

when you need them,

• Booleans can be aggregated thanks to bool_and and bool_or.

The main thing about Booleans in SQL is that they have three possible
values:

true, false and null. Moreover the behavior with null is entirely ad-hoc, so ei-

Chapter 22 PostgreSQL Data Types | 165

ther you remember it or you remember to check your assumptions. For more

about this topic, you can read What is the deal with NULLs? from
PostgreSQL

Contributor Je f Davis.

Character and Text

PostgreSQL knows how to deal with characters and text, and it implements
sev-

eral data types for that, all documented in the character types chapter of the
documentation.

About the data type itself, it must be noted that text and varchar are the same
thing as far as PostgreSQL is concerned, and character varying is an alias for
varchar. When using varchar(15) you’re basically telling PostgreSQL to
manage a text column with a check constraint of 15 characters.

Yes PostgreSQL knows how to count characters even with Unicode
encoding,

more on that later.

There’s a very rich set of PostgreSQL functions to process text — you can nd

http://thoughts.davisjeff.com/2009/08/02/what-is-the-deal-with-nulls/
http://thoughts.davisjeff.com/
https://www.postgresql.org/docs/current/static/datatype-character.html

them all in the string functions and operators documentation chapter — with
functions such as overlay(), substring(), position() or trim(). Or aggregates
such as string_a (). There are also regular expression functions, including the
very powerful regexp_split_to_table().

For more about PostgreSQL regular expressions, read the main
documentation

about them in the pattern matching chapter.

Additionnaly to the classic like and ilike patterns and to the SQL standard
similar to operators, PostgreSQL embeds support for a full-blown regular
expression matching engine. The main operator implementing regexp is ~,
and then you

nd the derivatives for not matching and match either case. In total, we have
four operators: ~, !~, ~* and !~*.

Note that PostgreSQL also supports indexing for regular expressions thanks
to

its trigram extension: pg_trgm.

The regular expression split functions are powerful in many use cases. In
particular, they are very helpful when you have to work with a messy
schema, in which

a single column represents several bits of information in a pseudo speci ed
way.

Chapter 22 PostgreSQL Data Types | 166

An example of such a dataset is available in open data: the Archives de la
Planète

or “planet archives”. The data is available as CSV and once loaded looks like
this:

1

https://www.postgresql.org/docs/current/static/functions-string.html
https://www.postgresql.org/docs/current/static/functions-matching.html#FUNCTIONS-POSIX-REGEXP
https://www.postgresql.org/docs/current/static/pgtrgm.html
https://opendata.hauts-de-seine.fr/explore/dataset/archives-de-la-planete/table/?disjunctive.operateur&sort=identifiant_fakir

\pset format wrapped

2

\pset columns 70

3

table opendata.archives_planete limit 1;

And we get the following sample data, all in French (but it doesn’t matter
very

much for our purposes here):

─[RECORD 1
]──

id

│ IF39599

inventory

│ A 2 037

orig_legend │ Serbie, Monastir Bitolj, Un Turc

legend

│ Un Turc

location

│ Monastir (actuelle Bitola), Macédoine

date

│ mai 1913

operator

│ Auguste Léon

...

themes

│ Habillement > Habillement traditionnel,Etres …

│…humains > Homme,Etres humains > Portrait,Rela…

│…tions internationales > Présence étrangère

...

collection

│ Archives de la Planète

...

You can see that the them column contains several categories for a single
entry, separated with a comma. Within that comma separated list, we nd
another

classi cation, this time separated with a greater than sign, which looks like a
hi-

erarchical categorization of the themes.

So this picture id IF39599 actually is relevant to that series of themes:

id

│

cat1

│

cat2

═════════╪═══════════════════════════╪══════════════════════════

IF39599 │ Habillement

│ Habillement traditionnel

IF39599 │ Etres humains

│ Homme

IF39599 │ Etres humains

│ Portrait

IF39599 │ Relations internationales │ Présence étrangère

(4 rows)

The question is, how do we get that information? Also, is it possible to have
an

idea of the distribution of the whole data set in relation to the categories
embed-

ded in the them column?

With PostgreSQL, this is easy enough to achieve. First, we are going to split
the

them column using a regular expression:

1

select id, regexp_split_to_table(themes, ',')

2

from opendata.archives_planete

Chapter 22 PostgreSQL Data Types | 167

3

where id = 'IF39599';

We get the following table:

id

│

regexp_split_to_table

═════════╪══

IF39599 │ Habillement > Habillement traditionnel

IF39599 │ Etres humains > Homme

IF39599 │ Etres humains > Portrait

IF39599 │ Relations internationales > Présence étrangère

(4 rows)

Now that we have a table with an entry per theme for the same document, we

can further split each entry into the two-levels category that it looks like. We
do

that this time with regexp_split_to_array() so as to keep the categories
together: 1

select id,

2

regexp_split_to_array(

3

regexp_split_to_table(themes, ','),

4

' > ')

5

as categories

6

from opendata.archives_planete

7

where id = 'IF39599';

And now we have:

id

│

categories

═════════╪══

IF39599 │ {Habillement,"Habillement traditionnel"}

IF39599 │ {"Etres humains",Homme}

IF39599 │ {"Etres humains",Portrait}

IF39599 │ {"Relations internationales","Présence étrangère"}

(4 rows)

We’re almost there. For the content to be normalized we want to have the
cate-

gories in their own separate columns, say category and subcategory:

1

with categories(id, categories) as

2

(

3

select id,

4

regexp_split_to_array(

5

regexp_split_to_table(themes, ','),

6

' > ')

7

as categories

8

from opendata.archives_planete

9

)

10

select id,

11

categories[1] as category,

12

categories[2] as subcategory

13

from categories

14

where id = 'IF39599';

Chapter 22 PostgreSQL Data Types | 168

And now we make sense of the open data:

id

│

category

│

subcategory

═════════╪═══════════════════════════╪══════════════════════════

IF39599 │ Habillement

│ Habillement traditionnel

IF39599 │ Etres humains

│ Homme

IF39599 │ Etres humains

│ Portrait

IF39599 │ Relations internationales │ Présence étrangère

(4 rows)

As a side note, cleaning up a data set af er you’ve imported it into
PostgreSQL

makes the di ference clear between the classic ETL jobs (extract, transform,
load) and the powerful ELT jobs (extract, load, transform) where you can
transform your data using a data processing language: SQL.

So, now that we know how to have a clear view of the dataset, let’s inquire
about

the categories used in our dataset:

1

with categories(id, categories) as

2

(

3

select id,

4

regexp_split_to_array(

5

regexp_split_to_table(themes, ','),

6

' > ')

7

as categories

8

from opendata.archives_planete

9

)

10

select categories[1] as category,

11

categories[2] as subcategory,

12

count(*)

13

from categories

14

group by rollup(category, subcategory);

That query returns 175 rows, so here’s an extract only:

category

│

subcategory

│ count

════════════════════════╪══════════════════════════════╪═══════

Activite économique

│ Agriculture / élevage

│

138

Activite économique

│ Artisanat

│

81

Activite économique

│ Banque / finances

│

2

Activite économique

│ Boutique / magasin

│

39

Activite économique

│ Commerce ambulant

│

5

Activite économique

│ Commerce extérieur

│

1

Activite économique

│ Cueillette / chasse

│

9

...

Art

│ Peinture

│

15

Art

│ Renaissance

│

52

Art

│ Sculpture

│

87

Art

│ Théâtre

│

7

Art

│ ¤

│

333

...

Chapter 22 PostgreSQL Data Types | 169

Habillement

│ Uniforme scolaire

│

1

Habillement

│ Vêtement de travail

│

3

Habillement

│ ¤

│

163

Habitat / Architecture │ Architecture civile publique │

37

Habitat / Architecture │ Architecture commerciale

│

24

Habitat / Architecture │ Architecture de jardin

│

31

...

Vie quotidienne

│ Vie domestique

│

8

Vie quotidienne

│ Vie rurale

│

5

Vie quotidienne

│ ¤

│

64

¤

│ ¤

│

4449

(175 rows)

Each subcategory appears only within the same category each time, and
we’ve chosen to do a roll up analysis of our data set here. Other grouping
sets are available, such as the cube, or manually editing the dimensions
you’re interested into.

In an ELT assignment, we would create a new categori table containing each
entry we saw in the rollup query only once, as a catalog, and an association
table

in between the main opendata.archiv _planete table and this categories
catalog, where each archive entry might have several categories and
subcategories assigned

and each category, of course, might have several archive entries assigned.

Here, the topic is about text function processing in PostgreSQL, so we just
run

the query against the base data set.

Finally, when mentioning advanced string matching and the regular
expression, we must also mention PostgreSQL’s implementation of a full text
search with support for documents, advanced text search queri , ranking,
highlighting, pluggable parsers, dictionari and stemmers, synonyms, and
thesaur . Additionally, it’s possible to con gure all those pieces. This is
material for another book, so

if you need advanced searches of documents that you manage in PostgreSQL

please read the documentation about it. There are also many online resources

on the topic too.

Server Encoding and Client Encoding

When addressing the text datatype we must mention encoding settings, and
pos-

sibly also issues. An encoding is a particular representation of characters in
bits

and bytes. In the ASCII encoding the letter A is encoded as the 7-bits byte

1000001, or 65 in decimal, or 41 in hexadecimal. All those numbers are

https://www.postgresql.org/docs/current/static/textsearch.html

going

Chapter 22 PostgreSQL Data Types | 170

to be written the same way on-disk, and the letter A too.

The SQL_ASCII encoding is a trap you need to avoid falling into. To know

which encoding your database is using, run the psql command \l:

List of databases

Name

│

Owner

│ Encoding │

Collate

│

Ctype

│ …

═══════════╪══════════╪══════════╪═════════════╪═════════════╪═

chinook

│ dim

│ UTF8

│ en_US.UTF-8 │ en_US.UTF-8 │ …

f1db

│ dim

│ UTF8

│ en_US.UTF-8 │ en_US.UTF-8 │ …

pgloader

│ dim

│ UTF8

│ en_US.UTF-8 │ en_US.UTF-8 │ …

template0 │ postgres │ UTF8

│ en_US.UTF-8 │ en_US.UTF-8 │ …

template1 │ postgres │ UTF8

│ en_US.UTF-8 │ en_US.UTF-8 │ …

yesql

│ dim

│ UTF8

│ en_US.UTF-8 │ en_US.UTF-8 │ …

(6 rows)

In this output, I’ve stripped down the last column of output for better integra-

tion for the page size here, so you don’t get to see the Access privileg for
those databases.

The encoding here is UTF8 which is the best choice these days, and you can
see that the collation and ctype are English based in the UTF-8 encoding,

which is good for my installation. You might, of course, pick something else.

The non-encoding SQL_ASCII accepts any data you throw at it, whereas

the UTF8 encoding (and some others) do check for valid input. Never use

SQL_ASCII, as you will not be able to retrieve data in any encoding and

will lose data because of that! Migrating away from SQL_ASCII to a proper

encoding such as UTF8 is possible but lossy and complex.

You can also have an UTF8 encoded database and use a legacy application
(or

programming language) that doesn’t know how to handle Unicode properly.

In that case, you can ask PostgreSQL to convert all and any data on the y be-

tween the server-side encoding and your favorite client-side encoding, thanks
to

the client_encoding setting.

1

show client_encoding;

Here again, we use UTF8 client side, which allows handling French
accentuated

characters we saw previously.

client_encoding

═════════════════

UTF8

(1 row)

Be aware that not all combinations of server encoding and client encoding
make sense. While it is possible for PostgreSQL to communicate with your
application

Chapter 22 PostgreSQL Data Types | 171

using the latin1 encoding on the client side if the server side dataset includes
texts in incompatible encodings, PostgreSQL will issue an error. Such texts
might

be written using non-Latin scripts such as Cyrillic, Chinese, Japanese, Arabic
or

other languages.

From the Emacs facility M-x view-hello-file, here’s a table with spelling of

hello in plenty of di ferent languages and scripts, all encoded in UTF8:

language

│

hello

════════════════════════════╪═════════════════════════════

Czech (čeština)

│ Dobrý den

Danish (dansk)

│ Hej / Goddag / Halløj

Dutch (Nederlands)

│ Hallo / Dag

English /ˈɪŋɡlɪʃ/

│ Hello

Esperanto

│ Saluton (Eĥoŝanĝo ĉiuĵaŭde)

Estonian (eesti keel)

│ Tere päevast / Tere õhtust

Finnish (suomi)

│ Hei / Hyvää päivää

French (français)

│ Bonjour / Salut

Georgian (ქართველი)

│ გამარჯობა

German (Deutsch)

│ Guten Tag / Grüß Gott

Greek (ελληνικά)

│ Γειά σας

Greek, ancient (ἑλληνική)

│ Οὖλέ τε καὶ μέγα χαῖρε

Hungarian (magyar)

│ Szép jó napot!

Italian (italiano)

│ Ciao / Buon giorno

Maltese (il-Malti)

│ Bonġu / Saħħa

Mathematics

│ ∀ p ∈ world • hello p

□

Mongolian (монгол хэл)

│ Сайн байна уу?

Norwegian (norsk)

│ Hei / God dag

Polish

(język polski)

│ Dzień dobry! / Cześć!

Russian (русский)

│ Здра

́вствуйте!

Slovak (slovenčina)

│ Dobrý deň

Slovenian (slovenščina)

│ Pozdravljeni!

Spanish (español)

│ ¡Hola!

Swedish (svenska)

│ Hej / Goddag / Hallå

Turkish (Türkçe)

│ Merhaba

Ukrainian (українська)

│ Вітаю

Vietnamese (ti� ng Việt)

│ Chào bạn

Japanese (⽇本語)

│ こんにちは /

Chinese (中⽂,普通话,汉语) │ 你好

Cantonese (粵語,廣東話)

│ 早晨, 你好

Now, of course, I can’t have that data sent to me in latin1:

yesql# set client_encoding to latin1;

SET

yesql# select * from hello where language ~ 'Georgian';

ERROR:

character with byte sequence 0xe1 0x83 0xa5 in encoding "UTF8" ⏎

has no equivalent in encoding "LATIN1"

yesql# reset client_encoding ;

RESET

Chapter 22 PostgreSQL Data Types | 172

So if it’s possible for you, use UTF-8 encoding and you’ll have a much
simpler life. It must be noted that Unicode encoding makes comparing and
sorting text

a rather costly operation. That said being fast and wrong is not an option, so
we

are going to still use unicode text!

Numbers

PostgreSQL implement multiple data types to handle numbers, as seen in the

documentation chapter about numeric types:

• integer, 32 bits signed numbers

• bigint, 64 bits signed numbers

• smallint, 16 bits signed numbers

• numeric, arbitrary precision numbers

• real, 32 bits oating point numbers with 6 decimal digits precision

https://www.postgresql.org/docs/current/static/datatype-numeric.html

• double precision, 64 bits oating point numbers with 15 decimal digits pre-

cision

We mentioned before that the SQL query system is statically typed, and Post-

greSQL must establish the data type of every column of a query input and
result-

set before being able to plan and execute it. For numbers, it means that the
type

of every number literal must be derived at query parsing time.

In the following query, we count how many times a driver won a race when
he

started in pole position, per season, and return the ten drivers having done
that

the most in all the records or Formula One results. The query uses integer
expres-

sions grid = 1 and position = 1 and PostgreSQL is lef to gure out which data
type does that literal value 1 belong to.

It could be an smallint, an integer or a bigint. It could also be a numeric
value.

Of course knowing that the grid and position columns are of type bigint
might have an impact on the parsing choice here.

1

select year,

2

drivers.code,

3

format('%s %s', forename, surname) as name,

4

count(*)

5

from results

6

join races using(raceid)

7

join drivers using(driverid)

8

where grid = 1

Chapter 22 PostgreSQL Data Types | 173

9

and position = 1

10

group by year, drivers.driverid

11

order by count desc

12

limit 10;

Which by the way gives:

year │ code │

name

│ count

══════╪══════╪════════════════════╪═══════

1992 │ ¤

│ Nigel Mansell

│

9

2011 │ VET

│ Sebastian Vettel

│

9

2013 │ VET

│ Sebastian Vettel

│

8

2004 │ MSC

│ Michael Schumacher │

8

2016 │ HAM

│ Lewis Hamilton

│

7

2015 │ HAM

│ Lewis Hamilton

│

7

1988 │ ¤

│ Ayrton Senna

│

7

1991 │ ¤

│ Ayrton Senna

│

7

2001 │ MSC

│ Michael Schumacher │

6

2014 │ HAM

│ Lewis Hamilton

│

6

(10 rows)

Also impacting on the PostgreSQL parsing choice of a data type for the 1
literal

is the = operator, which exists in three di ferent variants when its lef operand
is

a bigint value:

1

select oprname,

2

oprcode::regproc,

3

oprleft::regtype,

4

oprright::regtype,

5

oprresult::regtype

6

from pg_operator

7

where oprname = '='

8

and oprleft::regtype = 'bigint'::regtype;

We can see that PostgreSQL must support the = operator for every possible
combination of its integer data types:

oprname │ oprcode │ oprleft │ oprright │ oprresult

═════════╪═════════╪═════════╪══════════╪═══════════

=

│ int8eq

│ bigint

│ bigint

│ boolean

=

│ int84eq │ bigint

│ integer

│ boolean

=

│ int82eq │ bigint

│ smallint │ boolean

(3 rows)

Short of that, we would have to use decorated literals for numbers in all our

queries, writing:

1

where grid = bigint '1' and position = bigint '1'

The combinatorial explosion of internal operators and support functions for

Chapter 22 PostgreSQL Data Types | 174

comparing numbers is the reason why the PostgreSQL project has chosen to
have

a minimum number of numeric data types: the impacts of adding another one

is huge in terms of query planning time and internal data structure sizing.
That’s

why there are no unsigned numeric data types in PostgreSQL.

Floating Point Numbers

Adding to integer data type support, PostgreSQL also has support for oating

point numbers. Please take some time to read What Every Programmer
Should

Know About Floating-Point Arithmetic before considering any serious use of
oating point numbers. In short, there are some numbers that can’t be
represented in base 10, such as 1/3. In base 2 also, some numbers are not
possible to

represent, and it’s a di ferent set than in base 10. So in base 2, you can’t
possibly represent 1/5 or 1/10, for example.

http://floating-point-gui.de/
http://floating-point-gui.de/

In short, understand what you’re doing when using real or double precision
data types, and never use them to deal with money. Use either numeric which
provides arbitrary precision or an integer based representation of the money.

Sequences and the Serial Pseudo Data Type

Other kinds of numeric data types in PostgreSQL are the smallserial, serial
and bigserial data types. They actually are pseudo typ : the parser recognize
their syntax, but then transforms them into something else entirely. Straight
from the

excellent PostgreSQL documentation again:

1

CREATE TABLE tablename (

2

colname SERIAL

3

);

This is equivalent to specifying:

1

CREATE SEQUENCE tablename_colname_seq;

2

CREATE TABLE tablename (

3

colname integer NOT NULL DEFAULT nextval('tablename_colname_seq')

4

);

5

ALTER SEQUENCE tablename_colname_seq OWNED BY
tablename.colname;

Chapter 22 PostgreSQL Data Types | 175

The sequence SQL object is covered by the SQL standard and documented in

the create sequence manual entry for PostgreSQL. This object is the only one
in SQL with a non-transactional behavior. Of course, that’s on purpose, so
that

multiple sessions can get the next number from the sequence concurrently,
with-

out having to then wait until commit; to decide if they can keep their
sequence number.

From the docs:

Sequences are based on bigint arithmetic, so the range cannot ex-

ceed the range of an eight-byte integer (-9223372036854775808 to

9223372036854775807).

So if you have a serial column, its real type is going to be integer, and as
soon as the sequence generates a number that doesn’t t into signed 4-byte
representation, you’re going to have errors.

In the following example, we construct the situation in which we exhaust the
id

column (an integer) and still use the sequence to generate the next entry:

https://www.postgresql.org/docs/current/static/sql-createsequence.html

1

create table seq(id serial);

2

CREATE TABLE

3

4

select setval('public.seq_id_seq'::regclass, 2147483647);

5

setval

6

════════════

7

2147483647

8

(1 row)

9

10

yesql# insert into public.seq values (default);

11

ERROR:

integer out of range

That could happen to your application while in production if you use serial

rather than bigserial. If you need a sequence and need to restrict your column
to 4-byte integers, then you need to implement a maintenance policy around
the

fact that the sequence is 8 bytes and the hosting column only 4.

Universally Unique Identifier: UUID

A universally unique identi er (UUID) is a 128-bit number used to identify
information in computer systems. The term globally unique identi er (GUID)

Chapter 22 PostgreSQL Data Types | 176

is also used. PostgreSQL implements support for UUID, both for storing and

processing them, and also with the uuid-ossp extension, for generating them.

If you need to generate UUIDs from PostgreSQL, which we do in order to
cover

the topic in this book, then install the extension. The extension is part of the

PostgreSQL contribs, so you need to have that OS package installed.

1

create extension "uuid-ossp";

Now we can have a look at those UUIDs:

1

select uuid_generate_v4()

2

from generate_series(1, 10) as t(x);

Here’s a list of locally generated UUID v4:

uuid_generate_v4

══════════════════════════════════════

fbb850cc-dd26-4904-96ef-15ad8dfaff07

0ab19b19-c407-410d-8684-1c3c7f978f49

5f401a04-2c58-4cb1-b203-ae2b2a1a4a5e

d5043405-7c03-40b1-bc71-aa1e15e1bbf4

33c98c8a-a24b-4a04-807f-33803faa5f0a

c68b46eb-b94f-4b74-aecf-2719516994b7

5bf5ec69-cdbf-4bd1-a533-7e0eb266f709

77660621-7a9b-4e59-a93a-2b33977e84a7

881dc4f4-b587-4592-a720-81d9c7e15c63

1e879ef4-6f1f-4835-878a-8800d5e9d4e0

(10 rows)

Even if you generate UUIDs from your application, managing them as a
proper

UUID in PostgreSQL is a good idea, as PostgreSQL actually stores the binary

value of the UUID on 128 bits (or 16 bytes) rather than way more when
storing

the text representation of an UUID:

1

select pg_column_size(uuid 'fbb850cc-dd26-4904-96ef-15ad8dfaff07')

2

as uuid_bytes,

3

4

pg_column_size('fbb850cc-dd26-4904-96ef-15ad8dfaff07')

5

as uuid_string_bytes;

uuid_bytes │ uuid_string_bytes

════════════╪═══════════════════

16 │

37

(1 row)

Should we use UUIDs as identi ers in our database schemas? We get back to
that

question in the next chapter.

Chapter 22 PostgreSQL Data Types | 177

Bytea and Bitstring

PostgreSQL can store and process raw binary values, which is sometimes
useful.

Binary columns are limited to about 1 GB in size (8 bytes of this are used in
the

header out of this). Those types are documented in the PostgreSQL chapter
en-

titled Binary Data Types.

While it’s possible to store large binary data that way, PostgreSQL doesn’t
imple-

ment a chunk API and will systematically fetch the whole content when the
col-

umn is included in your queries output. That means loading the content from

disk to memory, pushing it through the network and handling it as a whole in-

memory on the client-side, so it’s not always the best solution around.

That said, when storing binary content in PostgreSQL it is then automatically

part of your online backups and recovery solution, and the online backups are

transactional. So if you need to have binary content with transactional proper-

ties, bytea might be exactly what you need.

Date/Time and Time Zones

Handling dates and time and time zones is a very complex matter, and on this

topic, you can read Erik Naggum’s piece The Long, Painful History of Time.

The PostgreSQL documentation chapters with the titles Date/Time Types,

Data Type Formatting Functions, and Date/Time Functions and Operators

cover all you need to know about date, time, timestamps, and time zones with

https://www.postgresql.org/docs/current/static/datatype-binary.html
http://naggum.no/lugm-time.html
https://www.postgresql.org/docs/current/static/datatype-datetime.html
https://www.postgresql.org/docs/current/static/functions-formatting.html
https://www.postgresql.org/docs/current/static/functions-datetime.html

PostgreSQL.

The rst question we need to answer here is about using timestamps with or

without time zon from our applications. The answer is simple: always use

timestamps WITH time zon .

A common myth is that storing time zones will certainly add to your storage
and

memory footprint. It’s actually not the case:

1

select pg_column_size(timestamp without time zone 'now'),

2

pg_column_size(timestamp with time zone 'now');

pg_column_size │ pg_column_size

════════════════╪════════════════

Chapter 22 PostgreSQL Data Types | 178

8 │

8

(1 row)

PostgreSQL defaults to using bigint internally to store timestamps, and the

on-disk and in-memory format are the same with or without time zone sup-

port. Here’s their whole type de nition in the PostgreSQL source code (in

src/include/datatype/timestamp.h):

1

typedef int64 Timestamp;

2

typedef int64 TimestampTz;

From the PostgreSQL documentation for timestamps, here’s how it works:

For timestamp with time zone, the internally stored value is always

in UTC (Universal Coordinated Time, traditionally known as

Greenwich Mean Time, GMT). An input value that has an explicit

time zone speci ed is converted to UTC using the appropriate

o fset for that time zone. If no time zone is stated in the input

string, then it is assumed to be in the time zone indicated by the

system’s TimeZone parameter, and is converted to UTC using the

o fset for the timezone zone.

PostgreSQL doesn’t store the time zone they come from with your
timestamp.

Instead it converts to and from the input and output timezone much like
we’ve

seen for text with client_encoding.

1

begin;

2

3

drop table if exists tstz;

4

5

create table tstz(ts timestamp, tstz timestamptz);

6

7

set timezone to 'Europe/Paris';

8

select now();

9

insert into tstz values(now(), now());

10

11

set timezone to 'Pacific/Tahiti';

12

select now();

13

insert into tstz values(now(), now());

14

15

set timezone to 'Europe/Paris';

16

table tstz;

17

18

set timezone to 'Pacific/Tahiti';

19

table tstz;

20

21

commit;

Chapter 22 PostgreSQL Data Types | 179

In this script, we play with the client’s setting timezone and change from a
French value to another French value, as Tahiti is an island in the Paci c that
is part of

France. Here’s the full output as seen when running this script, when
launched

with psql -a -f tz.sql:

BEGIN

...

set timezone to 'Europe/Paris';

SET

select now();

now

═══════════════════════════════

2017-08-19 14:22:11.802755+02

(1 row)

insert into tstz values(now(), now());

INSERT 0 1

set timezone to 'Pacific/Tahiti';

SET

select now();

now

═══════════════════════════════

2017-08-19 02:22:11.802755-10

(1 row)

insert into tstz values(now(), now());

INSERT 0 1

set timezone to 'Europe/Paris';

SET

table tstz;

ts

│

tstz

════════════════════════════╪═══════════════════════════════

2017-08-19 14:22:11.802755 │ 2017-08-19 14:22:11.802755+02

2017-08-19 02:22:11.802755 │ 2017-08-19 14:22:11.802755+02

(2 rows)

set timezone to 'Pacific/Tahiti';

SET

table tstz;

ts

│

tstz

════════════════════════════╪═══════════════════════════════

2017-08-19 14:22:11.802755 │ 2017-08-19 02:22:11.802755-10

2017-08-19 02:22:11.802755 │ 2017-08-19 02:22:11.802755-10

(2 rows)

commit;

COMMIT

First, we see that the now() function always returns the same timestamp
within a single transaction. If you want to see the clock running while in a
transaction,

use the clock_timestamp() function instead.

Then, we see that when we change the timezone client setting, PostgreSQL
outputs timestamps as expected, in the selected timezone. If you manage an
applica-

Chapter 22 PostgreSQL Data Types | 180

tion with users in di ferent time zones and you want to display time in their
own

local preferred time zone, then you can set timezone in your application code
before doing any timestamp related processing, and have PostgreSQL do all
the

hard work for you.

Finally, when selecting back from the tstz table, we see that the column tstz
realizes that both the inserted values actually are the same point in time, but
seen

from di ferent places in the world, whereas the ts column makes it impossible
to compare the entries and realize they actually happened at exactly the same
time.

As said before, even when using timestamps with time zone, PostgreSQL will

not store the time zone in use at input time, so there’s no way from our tstz
table to know that the entries are at the same time but just from di ferent
places.

The opening of this section links to The Long, Painful History of Time, and if
you didn’t read it yet, maybe now is a good time. Allow me to quote a
relevant

http://naggum.no/lugm-time.html

part of the article here:

The basic problem with time that we need to express both time and

place whenever we want to place some event in time and space, yet we

tend to assume spatial coordinat even more than we assume tempo-

ral coordinat , and in the case of time in ordinary communication,

it simply left out entirely. Despite the existence of time zon and

strange daylight saving time regim around the world, most people

are blithely unaware of their own time zone and certainly of how

it relat to standard referenc . Most people are equally unaware

that by choosing a notation that

close to the spoken or written ex-

pression of dat , they make it meaningless to people who may not

share the culture, but can still read the language. It unlikely that

people will change enough to put these issu to rest, so responsible

computer people need to address the issu and resist the otherwise

overpowering urge to abbreviate and drop context.

Several options are available to input timestamp values in PostgreSQL. The
eas-

iest is to use the ISO format, so if your application’s code allows that you’re
all

set. In the following example we leave the time zone out, as usually, it’s

handled

by the timezone session parameter, as seen above. If you need to, of course,
you can input the time zone in the timestamp values directly:

1

select timestamptz '2017-01-08 04:05:06',

2

timestamptz '2017-01-08 04:05:06+02';

Chapter 22 PostgreSQL Data Types | 181

At insert or update time, use the same literal strings without the type
decoration:

PostgreSQL already knows the type of the target column, and it uses that to
parse

the values literal in the DML statement.

Some application use-cases only need the date. Then use the date data type in
PostgreSQL. It is of course then possible to compare a date and a timestamp
with time zone in your SQL queries, and even to append a time o fset on top
of your date to construct a timestamp.

Time Intervals

PostgreSQL implements an interval data type along with the time, date and
timestamptz data types. An interval describes a duration, like a month or two
weeks, or even a millisecond:

1

set intervalstyle to postgres;

2

3

select interval '1 month',

4

interval '2 weeks',

5

2 * interval '1 week',

6

78389 * interval '1 ms';

The default PostgreSQL output looks like this:

interval │ interval │ ?column? │

?column?

══════════╪══════════╪══════════╪══════════════

1 mon

│ 14 days

│ 14 days

│ 00:01:18.389

(1 row)

Several intervalstyle values are possible, and the setting postgr _verbose is
quite nice for interactive psql sessions:

1

set intervalstyle to postgres_verbose;

2

3

select interval '1 month',

4

interval '2 weeks',

5

2 * interval '1 week',

6

78389 * interval '1 ms';

This time we get a user-friendly output:

interval │ interval

│ ?column?

│

?column?

══════════╪═══════════╪═══════════╪═════════════════════

@ 1 mon

│ @ 14 days │ @ 14 days │ @ 1 min 18.389 secs

(1 row)

Chapter 22 PostgreSQL Data Types | 182

How long is a month? Well, it depends on which month, and PostgreSQL
knows

that:

1

select d::date as month,

2

3

(d + interval '1 month' - interval '1 day')::date as month_end,

4

5

(d + interval '1 month')::date as next_month,

6

7

(d + interval '1 month')::date - d::date as days

8

9

from generate_series(

10

date '2017-01-01',

11

date '2017-12-01',

12

interval '1 month'

13

)

14

as t(d);

When you attach an interval to a date or timestamp in PostgreSQL then the
number of days in that interval adjusts to the speci c calendar entry you’ve
picked.

Otherwise, an interval of a month is considered to be 30 days. Here we see
that

computing the last day of February is very easy:

month

│ month_end

│ next_month │ days

════════════╪════════════╪════════════╪══════

2017-01-01 │ 2017-01-31 │ 2017-02-01 │

31

2017-02-01 │ 2017-02-28 │ 2017-03-01 │

28

2017-03-01 │ 2017-03-31 │ 2017-04-01 │

31

2017-04-01 │ 2017-04-30 │ 2017-05-01 │

30

2017-05-01 │ 2017-05-31 │ 2017-06-01 │

31

2017-06-01 │ 2017-06-30 │ 2017-07-01 │

30

2017-07-01 │ 2017-07-31 │ 2017-08-01 │

31

2017-08-01 │ 2017-08-31 │ 2017-09-01 │

31

2017-09-01 │ 2017-09-30 │ 2017-10-01 │

30

2017-10-01 │ 2017-10-31 │ 2017-11-01 │

31

2017-11-01 │ 2017-11-30 │ 2017-12-01 │

30

2017-12-01 │ 2017-12-31 │ 2018-01-01 │

31

(12 rows)

PostgreSQL’s implementation of the calendar is very good, so use it!

Date/Time Processing and Querying

Once the application’s data, or rather the user data is properly stored as times-

tamp with time zone, PostgreSQL allows implementing all the processing
you

need to.

Chapter 22 PostgreSQL Data Types | 183

As an example data set this time we’re playing with git history. The
PostgreSQL

and pgloader project history have been loaded into the commitlog table
thanks to the git log command, with a custom format, and some post-
processing —

properly splitting up the commit’s subjects and escaping its content. Here’s
for

example the most recent commit registered in our local commitlog table:

1

select project, hash, author, ats, committer, cts, subject

2

from commitlog

3

where project = 'postgresql'

4

order by ats desc

5

limit 1;

The column names ats and cts respectively stand for author commit
timestamp and committer commit timestamp, and the subject is the rst line of
the commit message, as per the git log format %s.

To get the most recent entry from a table we order by dates in descending
order then limit the result set to a single entry, and we get a single line of
output:

─[RECORD 1
]──

project

│ postgresql

hash

│ b1c2d76a2fcef812af0be3343082414d401909c8

author

│ Tom Lane

ats

│ 2017-08-19 19:39:37+02

committer │ Tom Lane

cts

│ 2017-08-19 19:39:51+02

subject

│ Fix possible core dump in parallel restore when using a TOC list.

With timestamps, we can compute time-based reporting, such as how many
com-

mits each project received each year in their whole history:

1

select extract(year from ats) as year,

2

count(*) filter(where project = 'postgresql') as postgresql,

3

count(*) filter(where project = 'pgloader') as pgloader

4

from commitlog

5

group by year

6

order by year;

As we have only loaded two projects in our commitlog table, the output is
better with a pivot query. We can see more than 20 years of sustained activity
for the PostgreSQL project, and a less active project for pgloader:

year │ postgresql │ pgloader

══════╪════════════╪══════════

1996 │

876 │

0

1997 │

1698 │

0

1998 │

1744 │

0

1999 │

1788 │

0

2000 │

2535 │

0

Chapter 22 PostgreSQL Data Types | 184

2001 │

3061 │

0

2002 │

2654 │

0

2003 │

2416 │

0

2004 │

2548 │

0

2005 │

2418 │

3

2006 │

2153 │

3

2007 │

2188 │

42

2008 │

1651 │

63

2009 │

1389 │

3

2010 │

1800 │

29

2011 │

2030 │

2

2012 │

1605 │

2

2013 │

1368 │

385

2014 │

1745 │

367

2015 │

1815 │

202

2016 │

2086 │

136

2017 │

1721 │

142

(22 rows)

We can also build a reporting on the repartition of commits by weekday from

the beginning of the project, in order to guess if contributors are working on
the

project on the job only, or mostly during their free time (weekend).

1

select extract(isodow from ats) as dow,

2

to_char(ats, 'Day') as day,

3

count(*) as commits,

4

round(100.0*count(*)/sum(count(*)) over(), 2) as pct,

5

repeat('■', (100*count(*)/sum(count(*)) over())::int) as hist

6

from commitlog

7

where project = 'postgresql'

8

group by dow, day

9

order by dow;

It seems that our PostgreSQL committers tend to work whenever they feel
like

it, but less so on the weekend. The project’s lucky enough to have a solid
team

of committers being paid to work on PostgreSQL:

dow │

day

│ commits │

pct

│

hist

═════╪═══════════╪═════════╪═══════╪═══════════════════

1 │ Monday

│

6552 │ 15.14 │ ■■■■■■■■■■■■■■■

2 │ Tuesday

│

7164 │ 16.55 │ ■■■■■■■■■■■■■■■■■

3 │ Wednesday │

6477 │ 14.96 │ ■■■■■■■■■■■■■■■

4 │ Thursday

│

7061 │ 16.31 │ ■■■■■■■■■■■■■■■■

5 │ Friday

│

7008 │ 16.19 │ ■■■■■■■■■■■■■■■■

6 │ Saturday

│

4690 │ 10.83 │ ■■■■■■■■■■■

7 │ Sunday

│

4337 │ 10.02 │ ■■■■■■■■■■

(7 rows)

Another report we can build compares the author commit timestamp with the

committer commit timestamp. Those are di ferent, but by how much?

Chapter 22 PostgreSQL Data Types | 185

1

with perc_arrays as

2

(

3

select project,

4

avg(cts-ats) as average,

5

percentile_cont(array[0.5, 0.9, 0.95, 0.99])

6

within group(order by cts-ats) as parr

7

from commitlog

8

where ats <> cts

9

group by project

10

)

11

select project, average,

12

parr[1] as median,

13

parr[2] as "%90th",

14

parr[3] as "%95th",

15

parr[4] as "%99th"

16

from perc_arrays;

Here’s a detailed output of the time di ference statistics, per project:

─[RECORD 1
]───────────────────────────────────

project │ pgloader

average │ @ 4 days 22 hours 7 mins 41.18 secs

median

│ @ 5 mins 21.5 secs

%90th

│ @ 1 day 20 hours 49 mins 49.2 secs

%95th

│ @ 25 days 15 hours 53 mins 48.15 secs

%99th

│ @ 169 days 24 hours 33 mins 26.18 secs

═[RECORD 2
]═══════════════════════════════════

project │ postgres

average │ @ 1 day 10 hours 15 mins 9.706809 secs

median

│ @ 2 mins 4 secs

%90th

│ @ 1 hour 46 mins 13.5 secs

%95th

│ @ 1 day 17 hours 58 mins 7.5 secs

%99th

│ @ 40 days 20 hours 36 mins 43.1 secs

Reporting is a strong use case for SQL. Application will also send more

classic

queries. We can show the commits for the PostgreSQL project for the 1st of
June

2017:

1

\set day '2017-06-01'

2

3

select ats::time,

4

substring(hash from 1 for 8) as hash,

5

substring(subject from 1 for 40) || '…' as subject

6

from commitlog

7

where project = 'postgresql'

8

and ats >= date :'day'

9

and ats

< date :'day' + interval '1 day'

10

order by ats;

It’s tempting to use the between SQL operator, but we would then have to re-

member that between includes both its lower and upper bound and we would

Chapter 22 PostgreSQL Data Types | 186

then have to compute the upper bound as the very last instant of the day.
Using

explicit greater than or equal and less than operators makes it possible to
always compute the very rst time of the day, which is easier, and well
supported by

PostgreSQL.

Also, using explicit bound checks allows us to use a single date literal in the
query, so that’s a single parameter to send from the application.

ats

│

hash

│

subject

══════════╪══════════╪═══

01:39:27 │ 3d79013b │ Make ALTER SEQUENCE, including RESTART,
…

02:03:10 │ 66510455 │ Modify sequence catalog tuple before inv…

04:35:33 │ de492c17 │ doc: Add note that DROP SUBSCRIPTION dro…

19:32:55 │ e9a3c047 │ Always use -fPIC, not -fpic, when buildi…

23:45:53 │ f112f175 │ Fix typo…

(5 rows)

Many data type formatting functions are available in PostgreSQL. In the
previous query, although we chose to cast our timestamp with time zone
entry down to a time value, we could have chosen another representation
thanks to

the to_char function:

1

set lc_time to 'fr_FR';

2

3

select to_char(ats, 'TMDay TMDD TMMonth, HHam') as time,

4

substring(hash from 1 for 8) as hash,

5

substring(subject from 1 for 40) || '…' as subject

6

from commitlog

https://www.postgresql.org/docs/current/static/functions-formatting.html

7

where project = 'postgresql'

8

and ats >= date :'day'

9

and ats

< date :'day' + interval '1 day'

10

order by ats;

And this time we have a French localized output for the time value:

time

│

hash

│

subject

═════════════════════╪══════════╪═══

Jeudi 01 Juin, 01am │ 3d79013b │ Make ALTER SEQUENCE, including
RESTART, …

Jeudi 01 Juin, 02am │ 66510455 │ Modify sequence catalog tuple before
inv…

Jeudi 01 Juin, 04am │ de492c17 │ doc: Add note that DROP

SUBSCRIPTION dro…

Jeudi 01 Juin, 07pm │ e9a3c047 │ Always use -fPIC, not -fpic, when
buildi…

Jeudi 01 Juin, 11pm │ f112f175 │ Fix typo…

(5 rows)

Take some time to familiarize yourself with the time and date support that

PostgreSQL comes with out of the box. Some very useful functions such as

date_trunc() are not shown here, and you also will nd more gems.

While most programming languages nowadays include the same kind of
feature

Chapter 22 PostgreSQL Data Types | 187

set, having this processing feature set right in PostgreSQL makes sense in
several

use cases:

• It makes sense when the SQL logic or ltering you want to implement

depends on the result of the processing (e.g. grouping by week).

• When you have several applications using the same logic, it’s of en easier

to share a SQL query than to set up a distributed service API o fering the

same result in XML or JSON (a data format you then have to parse).

• When you want to reduce your run-time dependencies, it’s a good idea to

understand how much each architecture layer is able to support in your

implementation.

Network Address Types

PostgreSQL includes support for both cidr, inet, and macaddr data types.

Again, those types are bundled with indexing support and advanced functions

and operator support.

The PostgreSQL documentation chapters entitled Network Address Types
and

Network Address Functions and Operators cover network address types.

Web servers logs are a classic source of data to process where we nd network

address types and The Honeynet Project has some free samples for us to play
with. This time we’re using the Scan 34 entry. Here’s how to load the sample
data set, once cleaned into a proper CSV le:

1

begin;

2

3

drop table if exists access_log;

4

5

create table access_log

6

https://www.postgresql.org/docs/current/static/datatype-net-types.html
https://www.postgresql.org/docs/current/static/functions-net.html
http://old.honeynet.org/scans/scan34/

(

7

ip

inet,

8

ts

timestamptz,

9

request text,

10

status

integer

11

);

12

13

\copy access_log from 'access.csv' with csv delimiter ';'

14

15

commit;

Chapter 22 PostgreSQL Data Types | 188

The script used to cleanse the original data into a CSV that PostgreSQL is
happy

about implements a pretty simple transformation from

211.141.115.145 - - [13/Mar/2005:04:10:18 -0500] "GET / HTTP/1.1" 403
2898 "-" "Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)"

into

"211.141.115.145";"2005-05-13 04:10:18 -0500";"GET / HTTP/1.1";"403"

Being mostly interested into network address types, the transformation from
the

Apache access log format to CSV is lossy here, we keep only some of the
elds we

might be interested into.

One of the things that’s possible to implement thanks to the PostgreSQL inet

data type is an analysis of /24 networks that are to be found in the logs.

To enable that analysis, we can use the set_masklen() function which allows
us to transforms an IP address into an arbitrary CIDR network address:

1

select distinct on (ip)

2

ip,

3

set_masklen(ip, 24) as inet_24,

4

set_masklen(ip::cidr, 24) as cidr_24

5

from access_log

6

limit 10;

And we can see that if we keep the data type as inet, we still get the full IP
address with the /24 network notation added. To have the .0/24 notation we
need to be using cidr:

ip

│

inet_24

│

cidr_24

═══════════════╪══════════════════╪═════════════════

4.35.221.243

│ 4.35.221.243/24

│ 4.35.221.0/24

4.152.207.126 │ 4.152.207.126/24 │ 4.152.207.0/24

4.152.207.238 │ 4.152.207.238/24 │ 4.152.207.0/24

4.249.111.162 │ 4.249.111.162/24 │ 4.249.111.0/24

12.1.223.132

│ 12.1.223.132/24

│ 12.1.223.0/24

12.8.192.60

│ 12.8.192.60/24

│ 12.8.192.0/24

12.33.114.7

│ 12.33.114.7/24

│ 12.33.114.0/24

12.47.120.130 │ 12.47.120.130/24 │ 12.47.120.0/24

12.172.137.4

│ 12.172.137.4/24

│ 12.172.137.0/24

18.194.1.122

│ 18.194.1.122/24

│ 18.194.1.0/24

(10 rows)

Of course, note that you could be analyzing other networks than /24:

1

select distinct on (ip)

2

ip,

3

set_masklen(ip::cidr, 27) as cidr_27,

4

set_masklen(ip::cidr, 28) as cidr_28

Chapter 22 PostgreSQL Data Types | 189

5

from access_log

6

limit 10;

This computes for us the proper starting ip addresses for our CIDR notation

for us, of course. Af er all, what’s the point of using proper data types if not
for

advanced processing?

ip

│

cidr_27

│

cidr_28

═══════════════╪══════════════════╪══════════════════

4.35.221.243

│ 4.35.221.224/27

│ 4.35.221.240/28

4.152.207.126 │ 4.152.207.96/27

│ 4.152.207.112/28

4.152.207.238 │ 4.152.207.224/27 │ 4.152.207.224/28

4.249.111.162 │ 4.249.111.160/27 │ 4.249.111.160/28

12.1.223.132

│ 12.1.223.128/27

│ 12.1.223.128/28

12.8.192.60

│ 12.8.192.32/27

│ 12.8.192.48/28

12.33.114.7

│ 12.33.114.0/27

│ 12.33.114.0/28

12.47.120.130 │ 12.47.120.128/27 │ 12.47.120.128/28

12.172.137.4

│ 12.172.137.0/27

│ 12.172.137.0/28

18.194.1.122

│ 18.194.1.96/27

│ 18.194.1.112/28

(10 rows)

Equipped with this set_masklen() function, it’s now easy to analyze our
access logs using arbitrary CIDR network de nitions.

1

select set_masklen(ip::cidr, 24) as network,

2

count(*) as requests,

3

array_length(array_agg(distinct ip), 1) as ipcount

4

from access_log

5

group by network

6

having array_length(array_agg(distinct ip), 1) > 1

7

order by requests desc, ipcount desc;

In our case, we get the following result:

network

│ requests │ ipcount

══════════════════╪══════════╪═════════

4.152.207.0/24

│

140 │

2

222.95.35.0/24

│

59 │

2

211.59.0.0/24

│

32 │

2

61.10.7.0/24

│

25 │

25

222.166.160.0/24 │

25 │

24

219.153.10.0/24

│

7 │

3

218.78.209.0/24

│

6 │

4

193.109.122.0/24 │

5 │

5

204.102.106.0/24 │

3 │

3

66.134.74.0/24

│

2 │

2

219.133.137.0/24 │

2 │

2

61.180.25.0/24

│

2 │

2

(12 rows)

Chapter 22 PostgreSQL Data Types | 190

Ranges

Range types are a unique feature of PostgreSQL, managing two dimensions
of

data in a single column, and allowing advanced processing. The main
example

is the daterange data type, which stores as a single value a lower and an
upper bound of the range as a single value. This allows PostgreSQL to
implement a

concurrent safe check against overlapping ranges, as we’re going to see in the
next example.

As usual, read the PostgreSQL documentation chapters with the titles Range

Types and Range Functions and Operators for complete information.

https://www.postgresql.org/docs/current/static/rangetypes.html
https://www.postgresql.org/docs/current/static/rangetypes.html
https://www.postgresql.org/docs/current/static/functions-range.html

The International Monetary Fund publishes exchange rate archives by month

for lots of currencies. An exchange rate is relevant from its publication until
the

next rate is published, which makes a very good use case for our PostgreSQL

range types.

The following SQL script is the main part of the ELT script that has been
used for this book. Only missing from this book’s pages is the transformation
script

that pivots the available tsv le into the more interesting format we use here: 1

begin;

2

3

create schema if not exists raw;

4

5

-- Must be run as a Super User in your database instance

6

-- create extension if not exists btree_gist;

7

8

drop table if exists raw.rates, rates;

http://www.imf.org/external/index.htm
https://www.imf.org/external/np/fin/data/param_rms_mth.aspx

9

10

create table raw.rates

11

(

12

currency text,

13

date

date,

14

rate

numeric

15

);

16

17

\copy raw.rates from 'rates.csv' with csv delimiter ';'

18

19

create table rates

20

(

21

currency text,

22

validity daterange,

23

rate

numeric,

24

25

exclude using gist (currency with =,

Chapter 22 PostgreSQL Data Types | 191

26

validity with &&)

27

);

28

29

insert into rates(currency, validity, rate)

30

select currency,

31

daterange(date,

32

lead(date) over(partition by currency

33

order by date),

34

'[)'

35

)

36

as validity,

37

rate

38

from raw.rates

39

order by date;

40

41

commit;

In this SQL script, we rst create a target table for loading the CSV le. The le

contains lines with a currency name, a date of publication, and a rate as a
numeric value. Once the data is loaded into this table, we can transform it
into something

more interesting to work with from an application, the rat table.

The rat table registers the rate value for a currency and a validity period, and
uses an exclusion constraint that guarantees non-overlapping validity periods
for any given currency:

1

exclude using gist (currency with =, validity with &&)

This expression reads: exclude any tuple where the currency is = to an
existing currency in our table AND where the validity is overlapping with (
&&) any existing validity in our table. This exclusion constraint is
implemented in PostgreSQL using a GiST index.

By default, GiST in PostgreSQL doesn’t support one-dimensional data types

that are meant to be covered by B-tree indexes. With exclusion constraints

though, it’s very interesting to extend GiST support for one-dimensional data
types, and so we install the btree_gist extension, provided in PostgreSQL
contrib package.

The script then lls in the rat table from the raw.rat we’d been importing in
the previous step. The query uses the lead() window function to implement

https://www.postgresql.org/docs/current/static/sql-createtable.html#SQL-CREATETABLE-EXCLUDE

the speci cation spelled out in English earlier: an exchange rate

relevant from its

publication until the next rate

published.

Here’s how the data looks, with the following query targeting Euro rates:

1

select currency, validity, rate

Chapter 22 PostgreSQL Data Types | 192

2

from rates

3

where currency = 'Euro'

4

order by validity

5

limit 10;

We can see that the validity is a range of dates, and the standard output for
this

type is a closed range which includes the rst entry and excludes the second
one:

currency │

validity

│

rate

══════════╪═════════════════════════╪══════════

Euro

│ [2017-05-02,2017-05-03) │ 1.254600

Euro

│ [2017-05-03,2017-05-04) │ 1.254030

Euro

│ [2017-05-04,2017-05-05) │ 1.252780

Euro

│ [2017-05-05,2017-05-08) │ 1.250510

Euro

│ [2017-05-08,2017-05-09) │ 1.252880

Euro

│ [2017-05-09,2017-05-10) │ 1.255280

Euro

│ [2017-05-10,2017-05-11) │ 1.255300

Euro

│ [2017-05-11,2017-05-12) │ 1.257320

Euro

│ [2017-05-12,2017-05-15) │ 1.255530

Euro

│ [2017-05-15,2017-05-16) │ 1.248960

(10 rows)

Having this data set with the exclusion constraint means that we know we
have

at most a single rate available at any point in time, which allows an
application

needing the rate for a speci c time to write the following query:

\index{Operators!@}

1

select rate

2

from rates

3

where currency = 'Euro'

4

and validity @> date '2017-05-18';

The operator @> reads contains, and PostgreSQL uses the exclusion
constraint’s index to solve that query e ciently:

rate

══════════

1.240740

(1 row)

23

Denormalized Data Types

The main idea behind the PostgreSQL project from Michael Stonebraker has
been extensibility. As a result of that design choice, some data types
supported by PostgreSQL allow bypassing relational constraint. For instance,
PostgreSQL

supports arrays, which store several values in the same attribute value. In
standard SQL, the content of the array would be completely opaque, so the
array

would be considered only as a whole.

The extensible design of PostgreSQL makes it possible to enrich the SQL
lan-

guage with new capabilities. Speci c operators are built for denormalized data

types and allow addressing values contained into an array or a json attribute
value, integrating perfectly with SQL.

The following data types are built-in to PostgreSQL and extend its processing

capabilities to another level.

Arrays

PostgreSQL has built-in support for arrays, which are documented in the
Arrays

https://fr.wikipedia.org/wiki/Michael_Stonebraker
https://www.postgresql.org/docs/current/static/arrays.html

and the Array Functions and Operators chapters. As introduced above, what’s
interesting with PostgreSQL is its ability to process array elements from SQL

directly. This capability includes indexing facilities thanks to GIN indexing.

Arrays can be used to denormalize data and avoid lookup tables. A good rule
of

Chapter 23 Denormalized Data Types | 194

thumb for using them that way is that you mostly use the array as a whole,
even

if you might at times search for elements in the array. Heavier processing is
going

to be more complex than a lookup table.

A classic example of a good use case for PostgreSQL arrays is user-de ned
tags.

For the next example, 200,000 USA geolocated tweets have been loaded into
PostgreSQL thanks to the following script:

1

begin;

2

3

create table tweet

4

(

5

https://www.postgresql.org/docs/current/static/functions-array.html
https://www.postgresql.org/docs/current/static/gin-intro.html
http://followthehashtag.com/datasets/free-twitter-dataset-usa-200000-free-usa-tweets/

id

bigint primary key,

6

date

date,

7

hour

time,

8

uname

text,

9

nickname

text,

10

bio

text,

11

message

text,

12

favs

bigint,

13

rts

bigint,

14

latitude

double precision,

15

longitude

double precision,

16

country

text,

17

place

text,

18

picture

text,

19

followers

bigint,

20

following

bigint,

21

listed

bigint,

22

lang

text,

23

url

text

24

);

25

26

\copy tweet from 'tweets.csv' with csv header delimiter ';'

27

28

commit;

Once the data is loaded we can have a look at it:

1

\pset format wrapped

2

\pset columns 70

3

table tweet limit 1;

Here’s what it looks like:

─[RECORD 1
]──

id

│ 721318437075685382

date

│ 2016-04-16

hour

│ 12:44:00

uname

│ Bill Schulhoff

nickname

│ BillSchulhoff

Chapter 23 Denormalized Data Types | 195

bio

│ Husband,Dad,GrandDad,Ordained Minister, Umpire, Poker Pla…

│…yer, Mets, Jets, Rangers, LI Ducks, Sons of Anarchy, Surv…

│…ivor, Apprentice, O&A, & a good cigar

message

│ Wind 3.2 mph NNE. Barometer 30.20 in, Rising slowly. Temp…

│…erature 49.3 °F. Rain today 0.00 in. Humidity 32%

favs

│ ¤

rts

│ ¤

latitude

│ 40.76027778

longitude │ -72.95472222

country

│ US

place

│ East Patchogue, NY

picture

│ http://pbs.twimg.com/profile_images/378800000718469152/53…

│…5032cf772ca04524e0fe075d3b4767_normal.jpeg

followers │ 386

following │ 705

listed

│ 24

lang

│ en

url

│ http://www.twitter.com/BillSchulhoff/status/7213184370756…

│…85382

We can see that the raw import schema is not a good t for PostgreSQL
capabili-

ties. The date and hour elds are separated for no good reason, and it makes
processing them less easy than when they form a timestamptz together.
PostgreSQL

does know how to handle longitude and latitude as a single point entry,
allowing much more interesting processing again. We can create a simpler
relation to

manage and process a subset of the data we’re interested in for this chapter.

As we are interested in the tags used in the messages, the next query also
extracts

all the tags from the Twitter messages as an array of text.

1

begin;

2

3

create table hashtag

4

(

5

id

bigint primary key,

6

date

timestamptz,

7

uname

text,

8

message

text,

9

location

point,

10

hashtags

text[]

11

);

12

13

with matches as (

14

select id,

15

regexp_matches(message, '(#[^ ,]+)', 'g') as match

16

from tweet

17

),

18

hashtags as (

19

select id,

Chapter 23 Denormalized Data Types | 196

20

array_agg(match[1] order by match[1]) as hashtags

21

from matches

22

group by id

23

)

24

insert into hashtag(id, date, uname, message, location, hashtags)

25

select id,

26

date + hour as date,

27

uname,

28

message,

29

point(longitude, latitude),

30

hashtags

31

from

hashtags

32

join tweet using(id);

33

34

commit;

The PostgreSQL matching function regexp_match () implements what we
need

here, with the g ag to return every match found and not just the rst tag in a
message. Those multiple matches are returned one per row, so we then group
by

tweet id and array_a

over them, building our array of tags. Here’s what the

computed data looks like:

1

select id, hashtags

2

from hashtag

3

limit 10;

In the following data output, you can see that we kept the # signs in front of
the hashtags, making it easier to recognize what this data is:

id

│

hashtags

════════════════════╪═══

720553447402160128 │ {#CriminalMischief,#ocso,#orlpol}

720553457015324672 │ {#txwx}

720553458596757504 │ {#DrugViolation,#opd,#orlpol}

720553466804989952 │ {#Philadelphia,#quiz}

720553475923271680 │ {#Retail,#hiring!,#job}

720553508190052352 │

{#downtown,#early…,#ghosttown,#longisland,#morn…

│…ing,#portjeff,#portjefferson}

720553522966581248 │ {"#CapitolHeights,",#Retail,#hiring!,#job}

720553530088669185 │ {#NY17}

720553531665682434 │ {#Endomondo,#endorphins}

720553532273795072 │ {#Job,#Nursing,"#Omaha,",#hiring!}

(10 rows)

Before processing the tags, we create a specialized GIN index. This index
access method allows PostgreSQL to index the contents of the arrays, the tags
themselves, rather than each array as an opaque value.

1

create index on hashtag using gin (hashtags);

Chapter 23 Denormalized Data Types | 197

A popular tag in the dataset is #job, and we can easily see how many times
it’s been used, and con rm that our previous index makes sense for looking
inside

the hashtags array:

1

explain (analyze, verbose, costs off, buffers)

2

select count(*)

3

from hashtag

4

where hashtags @> array['#job'];

5

QUERY PLAN

6

══

7

Aggregate (actual time=27.227..27.227 rows=1 loops=1)

8

Output: count(*)

9

Buffers: shared hit=3715

10

->

Bitmap Heap Scan on public.hashtag (actual time=13.023..23.453…

11

… rows=17763 loops=1)

12

Output: id, date, uname, message, location, hashtags

13

Recheck Cond: (hashtag.hashtags @> '{#job}'::text[])

14

Heap Blocks: exact=3707

15

Buffers: shared hit=3715

16

->

Bitmap Index Scan on hashtag_hashtags_idx (actual time=1…

17

…1.030..11.030 rows=17763 loops=1)

18

Index Cond: (hashtag.hashtags @> '{#job}'::text[])

19

Buffers: shared hit=8

20

Planning time: 0.596 ms

21

Execution time: 27.313 ms

22

(13 rows)

That was done supposing we already know one of the popular tags. How do
we

get to discover that information, given our data model and data set? We do it

with the following query:

1

select tag, count(*)

2

from hashtag, unnest(hashtags) as t(tag)

3

group by tag

4

order by count desc

5

limit 10;

This time, as the query must scan all the hashtags in the table, it won’t use the

previous index of course. The unnest() function is a must-have when dealing

with arrays in PostgreSQL, as it allows processing the array’s content as if it
were

just another relation. And SQL comes with all the tooling to process
relations,

as we’ve already seen in this book.

So we can see the most popular hashtags in our dataset:

tag

│ count

══════════════╪═══════

#Hiring

│ 37964

#Jobs

│ 24776

Chapter 23 Denormalized Data Types | 198

#CareerArc

│ 21845

#Job

│ 21368

#job

│ 17763

#Retail

│

7867

#Hospitality │

7664

#job?

│

7569

#hiring!

│

6860

#Job:

│

5953

(10 rows)

The hiring theme is huge in this dataset. We could then search for mentions
of

job opportunities in the #Retail sector (another popular hashtag we just
discovered into the data set), and have a look at the locations where they are
saying

they’re hiring:

1

select name,

2

substring(timezone, '/(.*)') as tz,

3

count(*)

4

from hashtag

5

6

left join lateral

7

(

8

select *

9

from geonames

10

order by location <-> hashtag.location

11

limit 1

12

)

13

as geoname

14

on true

15

16

where hashtags @> array['#Hiring', '#Retail']

17

18

group by name, tz

19

order by count desc

20

limit 10;

For this query a dataset of geonam has been imported. The left join lateral
allows picking the nearest location to the tweet location from our geoname
reference table. The where clause only matches the hashtag arrays containing
both the

#Hiring and the #Retail tags. Finally, we order the data set by most promising
opportunities:

name

│

tz

│ count

══╪═════════════╪═══════

San Jose City Hall

│ Los_Angeles │

31

Sleep Inn & Suites Intercontinental Airport East │ Chicago

│

19

Los Angeles

│ Los_Angeles │

14

Dallas City Hall Plaza

│ Chicago

│

12

New York City Hall

│ New_York

│

11

Chapter 23 Denormalized Data Types | 199

Jw Marriott Miami Downtown

│ New_York

│

11

Gold Spike Hotel & Casino

│ Los_Angeles │

10

San Antonio

│ Chicago

│

10

Shoppes at 104

│ New_York

│

9

Fruitville Elementary School

│ New_York

│

8

(10 rows)

PostgreSQL arrays are very powerful, and GIN indexing support makes them
ef-cient to work with. Nonetheless, it’s still not so e cient that you would
replace

a lookup table with an array in situations where you do a lot of lookups,
though.

Also, some PostgreSQL array functions show a quadratic behavior: looping
over

arrays elements really is ine cient, so learn to use unnest() instead, and lter
elements with a where clause. If you see yourself doing that a lot, it might be
a good sign that you really needed a lookup table!

Composite Types

PostgreSQL tables are made of tuples with a known type. It is possible to
manage

that type separately from the main table, as in the following script:

1

begin;

2

3

create type rate_t as

4

(

5

currency text,

https://www.postgresql.org/docs/current/static/gin-intro.html

6

validity daterange,

7

value

numeric

8

);

9

10

create table rate of rate_t

11

(

12

exclude using gist (currency with =,

13

validity with &&)

14

);

15

16

insert into rate(currency, validity, value)

17

select currency, validity, rate

18

from rates;

19

20

commit;

The rate table works exactly like the rat one that we de ned earlier in this
chapter.

Chapter 23 Denormalized Data Types | 200

1

table rate limit 10;

We get the kind of result we expect:

currency

│

validity

│

value

═════════════════════╪═════════════════════════╪══════════════

New Zealand Dollar

│ [2017-05-01,2017-05-02) │

1.997140

Colombian Peso

│ [2017-05-01,2017-05-02) │

4036.910000

Japanese Yen

│ [2017-05-01,2017-05-02) │

152.624000

Saudi Arabian Riyal │ [2017-05-01,2017-05-02) │

5.135420

Qatar Riyal

│ [2017-05-01,2017-05-02) │

4.984770

Chilean Peso

│ [2017-05-01,2017-05-02) │

911.245000

Rial Omani

│ [2017-05-01,2017-05-02) │

0.526551

Iranian Rial

│ [2017-05-01,2017-05-02) │ 44426.100000

Bahrain Dinar

│ [2017-05-01,2017-05-02) │

0.514909

Kuwaiti Dinar

│ [2017-05-01,2017-05-02) │

0.416722

(10 rows)

It is interesting to build composite types in advanced cases, which are not
covered

in this book, such as:

• Management of Stored Procedur API

• Advanced use cases of array of composite types

XML

The SQL standard includes a SQL/XML which introduc the predefined data
type XML together with constructors, several routin , functions, and XML-to-
SQL data type mappings to support manipulation and storage of XML in a

SQL database, as per the Wikipedia page.

PostgreSQL implements the XML data type, which is documented in the
chap-

ters on XML type and XML functions chapters.

The best option when you need to process XML documents might be the

https://en.wikipedia.org/wiki/SQL/XML
https://www.postgresql.org/docs/current/static/datatype-xml.html
https://www.postgresql.org/docs/current/static/functions-xml.html

XSLT

transformation language for XML. It should be no surprise that a PostgreSQL

extension allows writing stored procedur in this language. If you have to deal
with XML documents in your database, check out PL/XSLT.

An example of a PL/XSLT function follows:

1

create extension plxslt;

2

3

CREATE OR REPLACE FUNCTION striptags(xml) RETURNS text

Chapter 23 Denormalized Data Types | 201

4

LANGUAGE xslt

5

AS $$<?xml version="1.0"?>

6

<xsl:stylesheet version="1.0"

7

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

8

xmlns="http://www.w3.org/1999/xhtml"

https://en.wikipedia.org/wiki/XSLT
https://github.com/petere/plxslt

9

>

10

11

<xsl:output method="text" omit-xml-declaration="yes"/>

12

13

<xsl:template match="/">

14

<xsl:apply-templates/>

15

</xsl:template>

16

17

</xsl:stylesheet>

18

$$;

It can be used like this:

1

create table docs

2

(

3

id

serial primary key,

4

content xml

5

);

6

7

insert into docs(content)

8

values ('<?xml version="1.0"?>

9

<html xmlns="http://www.w3.org/1999/xhtml">

10

<body>hello</body>

11

</html>');

12

13

select id, striptags(content)

14

from docs;

As expected, here’s the result:

id │ striptags

════╪═══════════

1 │

↵

│ hello

↵

│

(1 row)

The XML support in PostgreSQL might be handy in cases. It’s mainly been

added for standard compliance, though, and is not found a lot in the eld.
XML

processing function and XML indexing is pretty limited in PostgreSQL.

Chapter 23 Denormalized Data Types | 202

JSON

PostgreSQL has built-in support for JSON with a great range of processing

func-

tions and operators, and complete indexing support. The documentation
covers

all the details in the chapters entitled JSON Types and JSON Functions and
Op-

erators.

PostgreSQL implemented a very simple JSON datatype back in the 9.2
release.

At that time the community pushed for providing a solution for JSON users,

in contrast to the usual careful pace, though still speedy. The JSON datatype
is actually text under the hood, with a veri cation that the format is valid json
input… much like XML.

Later, the community realized that the amount of JSON processing and ad-

vanced searching required in PostgreSQL would not be easy or reasonable to

implement over a text datatype, and implemented a binary version of the
JSON

datatype, this time with a full set of operators and functions to work with.

There are some incompatibilities in between the text-based json datatype and
the newer jsonb version of it, where it’s been argued that b stands for better:

• The json datatype, being a text datatype, stores the data presentation ex-

actly as it is sent to PostgreSQL, including whitespace and indentation,

and also multiple-keys when present (no processing at all is done on the

content, only form validation).

https://www.postgresql.org/docs/current/static/datatype-json.html
https://www.postgresql.org/docs/current/static/functions-json.html
https://www.postgresql.org/docs/current/static/functions-json.html

• The jsonb datatype is an advanced binary storage format with full pro-

cessing, indexing and searching capabilities, and as such pre-processes the

JSON data to an internal format, which does include a single value per key;

and also isn’t sensible to extra whitespace or indentation.

The data type you probably need and want to use is jsonb, not the json early
draf that is still available for backward compatibility reasons only. Here’s a
very quick

example showing some di ferences between those two datatypes:

1

create table js(id serial primary key, extra json);

2

insert into js(extra)

3

values ('[1, 2, 3, 4]'),

4

('[2, 3, 5, 8]'),

5

('{"key": "value"}');

The js table only has a primary key and a json column for extra information.
It’s not a good design, but we want a very simple example here and won’t be
coding

Chapter 23 Denormalized Data Types | 203

any application on top of it, so it will do for the following couple SQL
queries:

1

select * from js where extra @> '2';

When we want to search for entries where the extra column contains a
number

in its array, we get the following error:

ERROR:

operator does not exist: json @> unknown

LINE 1: select * from js where extra @> '2';

^

HINT:

No operator matches the given name and argument type(s). ⏎

You might need to add explicit type casts.

Right. json is only text and not very powerful, and it doesn’t o fer an
implementation for the contains operator. Switching the content to jsonb
then: 1

alter table js alter column extra type jsonb;

Now we can run the same query again:

1

select * from js where extra @> '2';

And we nd out that of course our sample data set of two rows contains the

number 2 in the extra jsonb eld, which here only contains arrays of numbers:
id │

extra

════╪══════════════

1 │ [1, 2, 3, 4]

2 │ [2, 3, 5, 8]

(2 rows)

We can also search for JSON arrays containing another JSON array:

1

select * from js where extra @> '[2,4]';

This time a single row is found, as expected:

id │

extra

════╪══════════════

1 │ [1, 2, 3, 4]

(1 row)

Two use cases for JSON in PostgreSQL are very commonly found:

• The application needs to manage a set of documents that happen to be

formatted in JSON.

• Application designers and developers aren’t too sure about the exact set of

elds needed for a part of the data model, and want this data model to be

very easily extensible.

Chapter 23 Denormalized Data Types | 204

In the rst case, using jsonb is a great enabler in terms of your application’s
capabilities to process the documents it manages, including searching and
ltering

using the content of the document. See jsonb Indexing in the PostgreSQL
documentation for more information about the jsonb_path_ops which can be
used

as in the following example and provides a very good general purpose index
for

the @> operator as used in the previous query:

1

create index on js using gin (extra jsonb_path_ops);

Now, it is possible to use jsonb as a exible way to maintain your data model.

It is possible to then think of PostgreSQL like a schemaless service and have
a heterogeneous set of documents all in a single relation.

This trade-o f sounds interesting from a model design and maintenance
perspec-

tive, but is very costly when it comes to daily queries and application
develop-

ment: you never really know what you’re going to nd out in the jsonb
columns, so you need to be very careful about your SQL statements as you
might easily

miss rows you wanted to target, for example.

A good trade-o f is to design a model with some static columns are created

https://www.postgresql.org/docs/current/static/datatype-json.html#JSON-INDEXING

and

managed traditionally, and an extra column of jsonb type is added for those
things you didn’t know yet, and that would be used only sometimes, maybe
for

debugging reasons or special cases.

This works well until the application’s code is querying the extra column in
every situation because some important data is found only there. At this
point,

it’s worth promoting parts of the extra eld content into proper PostgreSQL
attributes in your relational schema.

Enum

This data type has been added to PostgreSQL in order to make it easier to
support

migrations from MySQL. Proper relational design would use a reference
table

and a foreign key instead:

1

create table color(id serial primary key, name text);

2

3

create table cars

4

(

5

brand

text,

6

model

text,

Chapter 23 Denormalized Data Types | 205

7

color

integer references color(id)

8

);

9

10

insert into color(name)

11

values ('blue'), ('red'),

12

('gray'), ('black');

13

14

insert into cars(brand, model, color)

15

select brand, model, color.id

16

from (

17

values('ferari', 'testarosa', 'red'),

18

('aston martin', 'db2', 'blue'),

19

('bentley', 'mulsanne', 'gray'),

20

('ford', 'T', 'black')

21

)

22

as data(brand, model, color)

23

join color on color.name = data.color;

In this setup the table color lists available colors to choose from, and the cars
table registers availability of a model from a brand in a given color. It’s
possible

to make an enum type instead:

1

create type color_t as enum('blue', 'red', 'gray', 'black');

2

3

drop table if exists cars;

4

create table cars

5

(

6

brand

text,

7

model

text,

8

color

color_t

9

);

10

11

insert into cars(brand, model, color)

12

values ('ferari', 'testarosa', 'red'),

13

('aston martin', 'db2', 'blue'),

14

('bentley', 'mulsanne', 'gray'),

15

('ford', 'T', 'black');

Be aware that in MySQL there’s no create type statement for enum types, so
each column using an enum is assigned its own data type. As you now have a
separate anonymous data type per column, good luck maintaining a globally
consistent

state if you need it.

Using the enum PostgreSQL facility is mostly a matter of taste. Af er all, join
operations against small reference tables are well supported by the
PostgreSQL

SQL engine.

24

PostgreSQL Extensions

The PostgreSQL contrib modules are a collection of additional features for
your favorite RDBMS. In particular, you will nd there extra data types such
as hstore, ltree, earthdistance, intarray or trigrams. You should de nitely
check out the contribs out and have them available in your production
environment.

Some of the extensions provided in the contrib sections are production
diagnostic tools, and you will be happy to have them on hand the day you
need them, without having to convince your production engineering team that
they can trust the

package: they can, and it’s easier for them to include it from the get-go. Make
it

so that postgresql-contribs is deployed for your development and production
environments from day one.

PostgreSQL extensions are now covered in this second edition of the book.

Chapter 24 PostgreSQL Extensions | 207

Figure 24.1: The Postgresql object model manager for PHP

25

An interview with Grégoire Hubert

https://www.postgresql.org/docs/9.6/static/contrib.html

Grégoire Hubert has been a web developer for about as long as we have had
web

applications, and his favorite web tooling is found in the PHP ecosystem. He

wrote POMM to help integrate PostgreSQL and PHP better. POMM provides
developers with unlimited access to SQL and database features while
proposing

a high-level API over low-level drivers.

Considering that you have di ferent layers of code in a web application, for
exam-

ple client-side JavaScript, backend-side PHP and SQL, what do you think
should

be the role of each layer?

Web applications are historically built on a pile of layers that can be

seen

an information chain. At one end there the client that can

run a local application in JavaScript, at the other end, there

the

database. The client calls an application server either synchronously

or asynchronously through an HTTP web service most of the time.

Th data exchange interesting because data are highly denormal-

ized and shaped to fit business needs in the browser. The application

server h the tricky job to store the data and shape them

http://www.pomm-project.org

needed

by the client. There are several patterns to do that, the most com-

mon

the Model/View/Controller also known

MVC. In th

architecture, the task of dealing with the database

handed to the

model layer.

In terms of business logic, having a full-blown programming language both
on

the client side and on the server-side makes it complex to decide where to
imple-

Chapter 25 An interview with Grégoire Hubert | 209

ment what, at times. And there’s also this SQL programming language on the

database side. How much of your business logic would you typically hand o f
to

PostgreSQL?

I am essentially dealing with SQL & PHP on a server side. PHP

an object-oriented imperative programming language which means

it good at execution control logic. SQL a set-oriented declarative

programming language and perfect for data computing. Knowing

th , it

easily understandable that business workflow and data

shaping must be made each in its layer. The tricky question

not

which part of the business logic should be handled by what but how

to mix efficiently these two paradigms (the famo

impedance mis-

match known to ORM users) and th

what the Pomm Model

Manager

good at. Separating business control from data com-

putation also explains why I am reluctant to use database vendor

procedural languag .

At the database layer we have to consider both the data model and the
queries.

How do you deal with relational constraints? What are the bene ts and draw-

backs of those constraints when compared to a “schemaless” approach?

The normal form guaranti consistency over time. Th

critical

for business-oriented applications. Surprisingly, only a few people

know how to use the normal form, most of the time, it ends up

in a bunch of tabl with one primary key per relation. It

like

tabl were spreadsheets because people foc

on valu . Relational

databas are by far more powerful than that

they emphasize

typ . Tabl are type definitions. With that approach in mind, in-

teractions between tupl can easily be addressed. All typ life cycl

can be modeled th way. Modern relational databas offer a lot of

tools to achieve that, the most powerful being ACID transactions.

Somehow, for a long time, the normal form w

a pain when it

w

to represent extensible data. Most of the time, th data had

no computation on them but they still had to be searchable and

at least … here. The support of unstructured typ like XML or

JSON in relational databas

a huge step forward in focusing on

what’s really important. Now, in one field there can be labels with

translation, multiple postal address , media definitions, etc. that

were creating a lot of noise in the database schem

before. These

are application-oriented structur . It means the database do not

Chapter 25 An interview with Grégoire Hubert | 210

have to care about their consistency and they are complex business

structure for the application layer.

Integrating SQL in your application’s source code can be quite tricky. How
do

you typically approach that?

It all started from here. Pomm’s approach w about finding a way

to mix SQL & PHP in order to leverage Postgr featur in appli-

cations. Marrying application object oriented with relational not

easy, the most significant step to understand that since SQL us a

projection (the list of fields in a SELECT) to transform the returned

type, entiti had to be flexible objects. They had to be database ig-

norants. Th

the complete opposite of the Active Record design

pattern. Since it not possible to perform SQL queri from entiti

it becom difficult to have nested loops. The philosophy really sim-

ple: call the method that performs the most efficient query for your

needs, it will return an iterator on results that will pop flexible (yet

typed) entiti . Each entity h

one or more model class that de-

fine custom queri and a default projection shared by thes queri .

Furthermore, it

very convenient to write SQL queri and use a

placeholder in place of the list of fields of the main SELECT.

Part VI

Data Modeling

| 212

As a developer using PostgreSQL one of the most important tasks you have
to

deal with is modeling the database schema for your application. In order to

achieve a solid design, it’s important to understand how the schema is then
going

to be used as well as the trade-o fs it involves.

Show me your flowcharts and conceal your tabl , and I shall con-

tinue to be mystified. Show me your tabl , and I won’t usually

need your flowcharts; they’ll be obvio .

Fred Brooks

Depending on the schema you choose for your application, some business
cases

are going to be easier to solve than others, and given the wrong set of trade-

o fs, some SQL queries turn out to be really di cult to write… or impossible

to achieve in a single query with an acceptable level of performances.

As with application code design, the database model should be meant for the
nor-

mal business it serves. As Alan Kay put it simple things should be simple,
complex things should be possible. You know your database schema is good
when all the very simple business cases turn out to be implemented as rather
simple SQL

queries, yet it’s still possible to address very speci c advanced needs in
reporting

or fraud detection, or accounting oddities.

In this book, the data modeling chapter comes quite late for this reason: the

testing of a database model is done by writing SQL queries for it, with real-
world

application and business use cases to answer at the psql prompt. Now that
we’ve seen what can be done in SQL with basic, standard and advanced
features of

PostgreSQL, it makes sense to dive into database modeling.

26

Object Relational Mapping

Designing a database model reminds one of designing an application’s object

model, to some degree. This is so much the case that sometimes you might
won-

https://en.wikiquote.org/wiki/Alan_Kay

der if maintaining both is a case of violating the Don’t Repeat Yourself (or
DRY) principle.

There’s a fundamental di ference between the application’s design of its
internal

state (object-oriented or not) and the database model, though:

• The application implements work ows, user stories, ways to interact with

the system with presentation layers, input systems, event collection APIs

and other dynamic and user-oriented activities.

• The database model ensures a consistent view of the whole world at all

times, allowing every actor to mind their own business and protecting

them from each other so that the world you are working with continues

to make sense as a whole.

As a consequence, the object model of the application is best when it’s speci
c to

a set of user stori making up a solid part of the whole product.

For example, in a marketplace application, the user publication system is
dedi-

cated to getting information from the user and making it available to other
users.

The object model for this part of the application might need pricing
information,

but it knows nothing about the customer’s invoicing system.

The database model must ensure that every user action being paid for is

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

accounted for correctly, and invoiced appropriately to the right party, either

Chapter 26 Object Relational Mapping | 214

via internal booking or sent to customers. Invoicing usually implements rules

for VAT by country, depending on the kind of goods as well as if the buyer is
a

company or an individual.

Maintaining a single object model for the whole application tends to lead to

monolith application design and to reduced modularity, which then slows
down the development and accelerates technical debt.

Best practice application design separates user work ow from systemic
consis-

tency, and transactions have been invented as a mechanism to implement the

latter. Your relational database management system is meant to be part of
your application design, ensuring a consistent world at all times.

Database modeling is very di ferent from object modeling. There are reliable

snapshots of a constantly evolving world on the one side, and transient in-
ights

work ows on the other side.

27

Tooling for Database Modeling

The psql tool implements the SQL REPL for PostgreSQL and supports the
whole set of SQL languages, including data definition language. It’s then
possible to have immediate feedback on some design choices or to check out
possibil-

https://en.wikipedia.org/wiki/Monolithic_application

ities and behaviors right from the console.

Visual display of a database model tends to be helpful too, in particular to
under-

stand the model when rst exposed to it.

The database schema is living with your application and business and as such

it needs versioning and maintenance. New tables are going to be
implemented

to support new products, and existing relations are going to evolve in order to

support new product features, too.

As with code that is deployed and used, adding features while retaining
compat-

ibility to existing use cases is much harder and time consuming than writing
the

rst version. And the rst version usually is an MVP of sorts, much simpler than
the Real Thing™ anyway.

To cater to needs associated with long-term maintenance we need versioning.

Here, it is schema versioning in production, and also versioning of the source

code of your database schema. Naturally, this is easily achieved when using
SQL

les to handle your schema, of course.

Some visual tools allow one to connect to an existing database schema and
pre-

pare the visual documentation from the tables and constraints (primary keys,

https://en.wikipedia.org/wiki/Minimum_viable_product

foreign keys, etc) found in the PostgreSQL catalogs. Those tools allow for
both

Chapter 27 Tooling for Database Modeling | 216

production ready schema versioning and visual documentation.

In this book, we focus on the schema itself rather than its visual
representation,

so this chapter contains SQL code that you can version control together with

your application’s code.

How to Write a Database Model

In the writing SQL queries chapter we saw how to write SQL queries as
separate

.sql

les, and we learnt about using query parameters with the psql syntax for

that (:variable, :'variable', and :"identifier"). For writing our database

model, the same tooling is all we need. An important aspect of using psql is
its capacity to provide immediate feedback, and we can also have that with
modeling

too.

1

create database sandbox;

Now you have a place where to try things out without disturbing existing
appli-

cation code. If you need to interact with existing SQL objects, it might be

better

to use a schema rather than a full-blown separate database:

1

create schema sandbox;

2

set search_path to sandbox;

In PostgreSQL, each database is an isolated environment. A connection string

must pick a target database, and it’s not possible for one database to interact
with

objects from another one, because catalogs are kept separated. This is great
for

isolation purposes. If you want to be able to join data in between your
sandbox and your application models, use a schema instead.

When trying a new schema, it’s nice to be able to re ne it as you go, trying
things

out. Here’s a simple and e fective trick to enable that: write your schema as a
SQL

script with explicit transaction control, and nish it with your testing queries
and

a rollback.

In the following example, we iterate over the de nition of a schema for a kind
of

forum application about the news. Articles are written and tagged with a
single

category, which is selected from a curated list that is maintained by the
editors.

Users can read the articles, of course, and comment on them. In this MVP,
it’s not possible to comment on a comment.

Chapter 27 Tooling for Database Modeling | 217

We would like to have a schema and a data set to play with, with some
categories,

an interesting number of articles and a random number of comments for each

article.

Here’s a SQL script that creates the rst version of our schema and populates

it with random data following the speci cations above, which are intentionally

pretty loose. Notice how the script is contained within a single transaction
and

ends with a rollback statement: PostgreSQL even implements transaction for

DDL statements.

1

begin;

2

3

create schema if not exists sandbox;

4

5

create table sandbox.category

6

(

7

id

serial primary key,

8

name

text not null

9

);

10

11

insert into sandbox.category(name)

12

values ('sport'),('news'),('box office'),('music');

13

14

create table sandbox.article

15

(

16

id

bigserial primary key,

17

category

integer references sandbox.category(id),

18

title

text not null,

19

content

text

20

);

21

22

create table sandbox.comment

23

(

24

id

bigserial primary key,

25

article

integer references sandbox.article(id),

26

content

text

27

);

28

29

insert into sandbox.article(category, title, content)

30

select random(1, 4) as category,

31

initcap(sandbox.lorem(5)) as title,

32

sandbox.lorem(100) as content

33

from generate_series(1, 1000) as t(x);

34

35

insert into sandbox.comment(article, content)

36

select random(1, 1000) as article,

37

sandbox.lorem(150) as content

38

from generate_series(1, 50000) as t(x);

39

40

select article.id, category.name, title

Chapter 27 Tooling for Database Modeling | 218

41

from

sandbox.article

42

join sandbox.category

43

on category.id = article.category

44

limit 3;

45

46

select count(*),

47

avg(length(title))::int as avg_title_length,

48

avg(length(content))::int as avg_content_length

49

from sandbox.article;

50

51

select article.id, article.title, count(*)

52

from

sandbox.article

53

join sandbox.comment

54

on article.id = comment.article

55

group by article.id

56

order by count desc

57

limit 5;

58

59

select category.name,

60

count(distinct article.id) as articles,

61

count(*) as comments

62

from

sandbox.category

63

left join sandbox.article on article.category = category.id

64

left join sandbox.comment on comment.article = article.id

65

group by category.name

66

order by category.name;

67

68

rollback;

This SQL script references ad-hoc functions creating a random data set. This

time for the book I’ve been using a source of Lorem Ipsum texts and some
varia-tions on the random() function. Typical usage of the script would be at
the psql prompt thanks to the \i command:

yesql# \i .../path/to/schema.sql

BEGIN

...

CREATE TABLE

INSERT 0 4

CREATE TABLE

CREATE TABLE

INSERT 0 1000

INSERT 0 50000

id │

name

│

title

════╪════════════╪═══

1 │ sport

│ Debitis Sed Aperiam Id Ea

2 │ sport

│ Aspernatur Elit Cumque Sapiente Eiusmod

3 │ box office │ Tempor Accusamus Quo Molestiae Adipisci

(3 rows)

count │ avg_title_length │ avg_content_length

═══════╪══════════════════╪════════════════════

Chapter 27 Tooling for Database Modeling | 219

1000 │

35 │

738

(1 row)

id

│

title

│ count

═════╪═══╪═══════

187 │ Quos Quaerat Ducimus Pariatur Consequatur

│

73

494 │ Inventore Eligendi Natus Iusto Suscipit

│

73

746 │ Harum Saepe Hic Tempor Alias

│

70

223 │ Fugiat Sed Dolorum Expedita Sapiente

│

69

353 │ Dignissimos Tenetur Magnam Quaerat Suscipit │

69

(5 rows)

name

│ articles │ comments

════════════╪══════════╪══════════

box office │

322 │

16113

music

│

169 │

8370

news

│

340 │

17049

sport

│

169 │

8468

(4 rows)

ROLLBACK

As the script ends with a ROLLBACK command, you can now edit your

schema and do it again, at will, without having to rst clean up the previous

run.

Generating Random Data

In the previous script, you might have noticed calls to functions that don’t

exist in the distribution of PostgreSQL, such as random(int, int) or
sandbox.lorem(int). Here’s a complete ad-hoc de nition for them:

1

begin;

2

3

create schema if not exists sandbox;

4

5

drop table if exists sandbox.lorem;

6

7

create table sandbox.lorem

8

(

9

word text

10

);

11

12

with w(word) as

13

(

14

select regexp_split_to_table('Lorem ipsum dolor sit amet, consectetur

15

adipiscing elit, sed do eiusmod tempor incididunt ut labore et

Chapter 27 Tooling for Database Modeling | 220

16

dolore magna aliqua. Ut enim ad minim veniam, quis nostrud

17

exercitation ullamco laboris nisi ut aliquip ex ea commodo

18

consequat. Duis aute irure dolor in reprehenderit in voluptate velit

19

esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat

20

cupidatat non proident, sunt in culpa qui officia deserunt mollit

21

anim id est laborum.'

22

, '[\s.,]')

23

union

24

select regexp_split_to_table('Sed ut perspiciatis unde omnis iste natus

25

error sit voluptatem accusantium doloremque laudantium, totam rem

26

aperiam, eaque ipsa quae ab illo inventore veritatis et quasi

27

architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam

28

voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia

29

consequuntur magni dolores eos qui ratione voluptatem sequi

30

nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit

31

amet, consectetur, adipisci velit, sed quia non numquam eius modi

32

tempora incidunt ut labore et dolore magnam aliquam quaerat

33

voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem

34

ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi

35

consequatur? Quis autem vel eum iure reprehenderit qui in ea

36

voluptate velit esse quam nihil molestiae consequatur, vel illum qui

37

dolorem eum fugiat quo voluptas nulla pariatur?'

38

, '[\s.,]')

39

union

40

select regexp_split_to_table('At vero eos et accusamus et iusto odio

41

dignissimos ducimus qui blanditiis praesentium voluptatum deleniti

42

atque corrupti quos dolores et quas molestias excepturi sint

43

occaecati cupiditate non provident, similique sunt in culpa qui

44

officia deserunt mollitia animi, id est laborum et dolorum fuga. Et

45

harum quidem rerum facilis est et expedita distinctio. Nam libero

46

tempore, cum soluta nobis est eligendi optio cumque nihil impedit

47

quo minus id quod maxime placeat facere possimus, omnis voluptas

48

assumenda est, omnis dolor repellendus. Temporibus autem quibusdam

49

et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et

50

voluptates repudiandae sint et molestiae non recusandae. Itaque

51

earum rerum hic tenetur a sapiente delectus, ut aut reiciendis

52

voluptatibus maiores alias consequatur aut perferendis doloribus

53

asperiores repellat.'

54

, '[\s.,]')

55

)

56

insert into sandbox.lorem(word)

57

select word

58

from w

59

where word is not null

60

and word <> '';

61

62

create or replace function random(a int, b int)

63

returns int

64

volatile

65

language sql

66

as $$

67

select a + ((b-a) * random())::int;

Chapter 27 Tooling for Database Modeling | 221

68

$$;

69

70

create or replace function sandbox.lorem(len int)

71

returns text

72

volatile

73

language sql

74

as $$

75

with words(w) as (

76

select word

77

from sandbox.lorem

78

order by random()

79

limit len

80

)

81

select string_agg(w, ' ')

82

from words;

83

$$;

84

85

commit;

The not-so-random Latin text comes from Lorem Ipsum and is a pretty good
base for generating random content. We go even further by separating words

from their context and then aggregating them together completely at random
in

the sandbox.lorem(int) function.

The method we use to get N words at random is known to be rather ine cient

given large data sources. If you have this use case to solve with a big enough

table, then have a look at selecting random rows from a table article from
Andrew

Gierth, now a PostgreSQL committer.

http://lipsum.com/
http://blog.rhodiumtoad.org.uk/2009/03/08/selecting-random-rows-from-a-table/
http://blog.rhodiumtoad.org.uk/
http://blog.rhodiumtoad.org.uk/

Modeling Example

Now that we have some data to play with, we can test some application
queries

for known user stories in the MVP, like maybe listing the most recent articles
per category with the rst three comments on each article.

That’s when we realize our previous schema design misses publication times-

tamps for articles and comments. We need to add this information to our draf

model. As it is all a draf with random data, the easiest way around this you

already committed the data previously (by editing the script) is to simply drop
schema cascade as shown here:

yesql# drop schema sandbox cascade;

NOTICE:

drop cascades to 5 other objects

Chapter 27 Tooling for Database Modeling | 222

DETAIL:

drop cascades to table sandbox.lorem

drop cascades to function sandbox.lorem(integer)

drop cascades to table sandbox.category

drop cascades to table sandbox.article

drop cascades to table sandbox.comment

DROP SCHEMA

The next version of our schema then looks like this:

1

begin;

2

3

create schema if not exists sandbox;

4

5

create table sandbox.category

6

(

7

id

serial primary key,

8

name

text not null

9

);

10

11

insert into sandbox.category(name)

12

values ('sport'),('news'),('box office'),('music');

13

14

create table sandbox.article

15

(

16

id

bigserial primary key,

17

category

integer references sandbox.category(id),

18

pubdate

timestamptz,

19

title

text not null,

20

content

text

21

);

22

23

create table sandbox.comment

24

(

25

id

bigserial primary key,

26

article

integer references sandbox.article(id),

27

pubdate

timestamptz,

28

content

text

29

);

30

31

insert into sandbox.article(category, title, pubdate, content)

32

select random(1, 4) as category,

33

initcap(sandbox.lorem(5)) as title,

34

random(now() - interval '3 months',

35

now() + interval '1 months') as pubdate,

36

sandbox.lorem(100) as content

37

from generate_series(1, 1000) as t(x);

38

39

insert into sandbox.comment(article, pubdate, content)

40

select random(1, 1000) as article,

41

random(now() - interval '3 months',

42

now() + interval '1 months') as pubdate,

43

sandbox.lorem(150) as content

Chapter 27 Tooling for Database Modeling | 223

44

from generate_series(1, 50000) as t(x);

45

46

select article.id, category.name, title

47

from

sandbox.article

48

join sandbox.category

49

on category.id = article.category

50

limit 3;

51

52

select count(*),

53

avg(length(title))::int as avg_title_length,

54

avg(length(content))::int as avg_content_length

55

from sandbox.article;

56

57

select article.id, article.title, count(*)

58

from

sandbox.article

59

join sandbox.comment

60

on article.id = comment.article

61

group by article.id

62

order by count desc

63

limit 5;

64

65

select category.name,

66

count(distinct article.id) as articles,

67

count(*) as comments

68

from

sandbox.category

69

left join sandbox.article on article.category = category.id

70

left join sandbox.comment on comment.article = article.id

71

group by category.name

72

order by category.name;

73

74

commit;

To be able to generate random timestamp entries, the script uses another
func-

tion that’s not provided by default in PostgreSQL, and here’s its de nition:

1

create or replace function random

2

(

3

a timestamptz,

4

b timestamptz

5

)

6

returns timestamptz

7

volatile

8

language sql

9

as $$

10

select a

11

+ random(0, extract(epoch from (b-a))::int)

12

* interval '1 sec';

13

$$;

Now we can have a go at solving the rst query of the product’s MVP, as speci
ed before, on this schema draf version. That should provide a taste of the
schema

Chapter 27 Tooling for Database Modeling | 224

and how well it implements the business rules.

The following query lists the most recent articles per category with the rst
three

comments on each article:

1

\set comments 3

2

\set articles 1

3

4

select category.name as category,

5

article.pubdate,

6

title,

7

jsonb_pretty(comments) as comments

8

9

from sandbox.category

10

/*

11

* Classic implementation of a Top-N query

12

* to fetch 3 most articles per category

13

*/

14

left join lateral

15

(

16

select id,

17

title,

18

article.pubdate,

19

jsonb_agg(comment) as comments

20

from sandbox.article

21

/*

22

* Classic implementation of a Top-N query

23

* to fetch 3 most recent comments per article

24

*/

25

left join lateral

26

(

27

select comment.pubdate,

28

substring(comment.content from 1 for 25) || '…'

29

as content

30

from sandbox.comment

31

where comment.article = article.id

32

order by comment.pubdate desc

33

limit :comments

34

)

35

as comment

36

on true

-- required with a lateral join

37

38

where category = category.id

39

40

group by article.id

41

order by article.pubdate desc

42

limit :articles

43

)

44

as article

45

on true -- required with a lateral join

46

47

order by category.name, article.pubdate desc;

Chapter 27 Tooling for Database Modeling | 225

The rst thing we notice when running this query is the lack of indexing for

it. This chapter contains a more detailed guide on indexing, so for now in the

introductory material we just issue these statements:

1

create index on sandbox.article(pubdate);

2

create index on sandbox.comment(article);

3

create index on sandbox.comment(pubdate);

Here’s the query result set, with some content removed. The query has been

edited for a nice result text which ts in the book pages, using jsonb_pretty()
and substring(). When embedding it in application’s code, this extra
processing ougth to be removed from the query. Here’s the result, with a
single article per category

and the three most recent comments per article, as a JSONB document:

─[RECORD 1
]───

category │ box office

pubdate

│ 2017-09-30 07:06:49.681844+02

title

│ Tenetur Quis Consectetur Anim Voluptatem

comments │ [

↵

│

{

↵

│

"content": "adipisci minima ducimus r…",

↵

│

"pubdate": "2017-09-27T09:43:24.681844+02:00"↵

│

},

↵

│

{

↵

│

"content": "maxime autem modi ex even…",

↵

│

"pubdate": "2017-09-26T00:34:51.681844+02:00"↵

│

},

↵

│

{

↵

│

"content": "ullam dolorem velit quasi…",

↵

│

"pubdate": "2017-09-25T00:34:57.681844+02:00"↵

│

}

↵

│]

═[RECORD 2
]═══

category │ music

pubdate

│ 2017-09-28 14:51:13.681844+02

title

│ Aliqua Suscipit Beatae A Dolor

...

═[RECORD 3
]═══

category │ news

pubdate

│ 2017-09-30 05:05:51.681844+02

title

│ Mollit Omnis Quaerat Do Odit

...

═[RECORD 4
]═══

category │ sport

pubdate

│ 2017-09-29 17:08:13.681844+02

title

│ Placeat Eu At Consequuntur Explicabo

...

We get this result in about 500ms to 600ms on a laptop, and the timing is
down

to about 150ms when the substring(comment.content from 1 for 25) || ‘…’
part

Chapter 27 Tooling for Database Modeling | 226

is replaced with just comment.content. It’s fair to use it in production, with
the proper caching strategy in place, i.e. we expect more article reads than
writes.

You’ll nd more on caching later in this chapter.

Our schema is a good rst version for answering the MVP:

• It follows normalization rules as seen in the next parts of this chapter.

• It allows writing the main use case as a single query, and even if the query
is

on the complex side it runs fast enough with a sample of tens of thousands

of articles and f y thousands of comments.

• The schema allows an easy implementation of work ows for editing cate-

gories, articles, and comments.

This draf schema is a SQL le, so it’s easy to check it into your versioning sys-

tem, share it with your colleagues and deploy it to development, integration
and

continuous testing environments.

For visual schema needs, tools are available that connect to a PostgreSQL

database and help in designing a proper set of diagrams from the live schema.

28

Normalization

Your database model is there to support all your business cases and
continuously

provide a consistent view of your world as a whole. For that to be possible,

some rules have been built up and improved upon over the years. The main
goal

of those design rules is an overall consistency for all the data managed in
your

schema.

Database normalization

the process of organizing the columns

(attribut) and tabl (relations) of a relational database to reduce

data redundancy and improve data integrity. Normalization

also the process of simplifying the design of a database so that it

achiev the optimal structure. It w

first proposed by Edgar F.

Codd,

an integral part of a relational model.

Data Structures and Algorithms

Af er having done all those SQL queries and reviewed join operations,
grouping operations, ltering in the where clause and other more sophisticated
processing, it should come as no surprise that SQL is declarative, and as such
we are not

writing the algorithms to execute in order to retrieve the data we need, but
rather

expressing what is the result set that we are interested into.

https://en.wikipedia.org/wiki/Database_normalization#Normal_forms

Still, PostgreSQL transforms our declarative query into an execution plan.
This plan makes use of classical algorithms such as nested loops, merge
joins, and hash

Chapter 28 Normalization | 228

joins, and also in-memory quicksort or a tape sort when data doesn’t t in
memory and PostgreSQL has to spill to disk. The planner and optimiser in
Post-

greSQL also know how to divide up a single query’s work into several
concurrent

workers for obtaining a result in less time.

When implementing the algorithms ourselves, we know that the most
important

thing to get right is the data structure onto which we implement
computations.

As Rob Pike says it in Notes on Programming in C:

Rule 5. Data dominat . If you’ve chosen the right data structur

and organized things well, the algorithms will almost always be self-

evident. Data structur , not algorithms, are central to program-

ming. (See Brooks p. 102.)

In Basics of the Unix Philosophy we read some design principles of the Unix
operating system that apply almost verbatim to the problem space of database

modeling:

1. Rule of Modularity

Write simple parts connected by clean interfac .

https://en.wikipedia.org/wiki/Rob_Pike
http://www.lysator.liu.se/c/pikestyle.html
http://www.faqs.org/docs/artu/ch01s06.html

2. Rule of Clarity

Clarity

better than cleverness.

3. Rule of Composition

Design programs to be connected to other programs.

4. Rule of Separation

Separate policy from mechanism; separate interfac from engin .

5. Rule of Simplicity

Design for simplicity; add complexity only where you must.

6. Rule of Parsimony

Write a big program only when it

clear by demonstration that nothing

else will do.

7. Rule of Transparency

Design for visibility to make inspection and debu ing easier.

Chapter 28 Normalization | 229

8. Rule of Robustness

Robustness

the child of transparency and simplicity.

9. Rule of Representation

Fold knowledge into data so program logic can be stupid and robust.

10. Rule of Least Surprise

In interface design, always do the least surprising thing.

11. Rule of Silence

When a program h nothing surprising to say, it should say nothing.

12. Rule of Repair

When you must fail, fail noisily and

soon

possible.

13. Rule of Economy

Programmer time

expensive; conserve it in preference to machine time.

14. Rule of Generation

Avoid hand-hacking; write programs to write programs when you can.

15. Rule of Optimization

Prototype before polishing. Get it working before you optimize it.

16. Rule of Diversity

Distrust all claims for “one true way”.

17. Rule of Extensibility

Design for the future, because it will be here sooner than you think.

While some of those (such as rule of silence) can’t really apply to database
modeling, most of them do so in a very direct way. Normal forms o fer a
practical way

to enforce respect for those rules. SQL provides a clean interface to connect
our

data structures: the join operations.

As we’re going to see later, a database model with fewer tables isn’t a better
or

simpler data model. The Rule of Separation might be the most important in
that list. Also, the Rule of Representaion in database modeling is re ected
directly in

Chapter 28 Normalization | 230

the choice of correct data types with advanced behavior and processing
function

availability.

To summarize all those rules and the di ferent levels for normal forms, I
believe

that you need to express your intentions rst. Anyone reading your database

schema should instantly understand your business model.

Normal Forms

There are several levels of normalization and the web site
dbnormalization.com

o fers a practical guide to them. In this quick introduction to database normal-

ization, we include the de nition of the normal forms:

http://www.dbnormalization.com/

• 1st Normal Form (1NF)

A table (relation) is in 1NF if:

1. There are no duplicated rows in the table.

2. Each cell is single-valued (no repeating groups or arrays).

3. Entries in a column (eld) are of the same kind.

• 2nd Normal Form (2NF)

A table is in 2NF if it is in 1NF and if all non-key attributes are dependent on
all of the key. Since a partial dependency occurs when a non-key

attribute is dependent on only a part of the composite key, the de nition

of 2NF is sometimes phrased as: “A table is in 2NF if it is in 1NF and if it has
no partial dependencies.”

• 3rd Normal Form (3NF)

A table is in 3NF if it is in 2NF and if it has no transitive dependencies.

• Boyce-Codd Normal Form (BCNF)

A table is in BCNF if it is in 3NF and if every determinant is a candidate key.

• 4th Normal Form (4NF)

A table is in 4NF if it is in BCNF and if it has no multi-valued dependencies.

Chapter 28 Normalization | 231

• 5th Normal Form (5NF)

A table is in 5NF, also called “Projection-join Normal Form” (PJNF), if it is
in 4NF and if every join dependency in the table is a consequence of

the candidate keys of the table.

• Domain-Key Normal Form (DKNF)

A table is in DKNF if every constraint on the table is a logical consequence
of the de nition of keys and domains.

What all of this say is that if you want to be able to process data in your
database, using the relational model and SQL as your main tooling, then it’s
best not to

make a total mess of the information and keep it logically structured.

In practice database models of en reach for BCNF or 4NF ; going all the way
to the DKNF design is only seen in speci c cases.

Database Anomalies

Failure to normalize your model may cause database anomali . Quoting the

wikipedia article again:

When an attempt

made to modify (update, insert into, or delete from) a

relation, the following undesirable side-effects may arise in relations that
have not been sufficiently normalized:

• Update anomaly

The same information can be expressed on multiple rows; therefore updat

to the relation may result in logical inconsistenci . For example, each

record in an “Employe ’ Skills” relation might contain an Employee ID,

Employee Address, and Skill; th

a change of address for a particular

employee may need to be applied to multiple records (one for each skill). If

the update only partially successful — the employee’s address updated

on some records but not others — then the relation left in an inconsistent

state. Specifically, the relation provid conflicting answers to the question

of what th particular employee’s address . Th phenomenon

known

an update anomaly.

• Insertion anomaly

Chapter 28 Normalization | 232

There are circumstanc in which certain facts cannot be recorded at all.

For example, each record in a “Faculty and Their Cours ” relation might

contain a Faculty ID, Faculty Name, Faculty Hire Date, and Course

Code. Therefore we can record the details of any faculty member who

teach at least one course, but we cannot record a newly hired faculty

member who h

not yet been assigned to teach any cours , except by

setting the Course Code to null. Th phenomenon known

an insertion

anomaly.

• Deletion anomaly

Under certain circumstanc , deletion of data representing certain facts

necessitat deletion of data representing completely different facts. The

“Faculty and Their Cours ” relation described in the previo

example

suffers from th type of anomaly, for if a faculty member temporarily ceas

to be assigned to any cours , we must delete the last of the records on which

that faculty member appears, effectively also deleting the faculty member,

unless we set the Course Code to null. Th phenomenon

known

a

deletion anomaly.

A database model that implements normal forms avoids those anomalies, and

that’s why BCNF or 4NF are recommended. Sometimes though some trade-o
fs are possible with the normalization process, as in the following example.

Modeling an Address Field

Modeling an address eld is a practical use case for normalization, where if
you

want to respect all the rules you end up with a very complex schema. That
said,

the answer depends on your application domain; it’s not the same if you are
con-

necting people to your telecom network, shipping goods, or just invoicing at
the

given address.

For invoicing, all we need is a text column where to store whatever our user
is entering. Our only use for that information is going to be for printing
invoices,

and we will be sending the invoice in PDF over e-mail anyway.

Now if you’re in the delivery business, you need to ensure the address
physically

exists, is reachable by your agents, and you might need to optimize delivery
routes

by packing together goods in the same truck and nding the most e cient route

Chapter 28 Normalization | 233

in terms of fuel consumption, time spent and how many packages you can
deliver

in a single shif .

Then an address eld looks quite di ferent than a single text entry:

• We need to have a — possibly geolocalized — list of cities as a reference,

and we know that the same city name can be found in several regions, such

as Portland which is a very common name apparently.

• So for our cities, we need a reference table of districts and regions within

each country (regions would be states in the USA, Länder in Germany,

etc), and then it’s possible to reference a city without ambiguity.

https://en.wikipedia.org/wiki/Portland

• Each city is composed of a list of streets, and of course, those names are

reused a lot within cities of regions using the same language, so we need a

reference table of street names and then an association table of street names

found in cities.

• We then need a number for the street, and depending on the city the same

street name will not host the same numbers, so that’s information relevant

for the association of a city and a street.

• Each number on the street might have to be geo-localized with precision,

depending on the speci cs of your business.

• Also, if we run a business that delivers to the door (and for example as-

sembles furniture, or connects electricity or internet to people homes), we

need per house and per-apartment information for each number in a spe-

ci c street.

• Finally, our users might want to refer to their place by zip code, although a
postal code might cover a district or an area within a city, or group several

cities, usually small rural communities.

A database model that is still simple to enable delivery to known places
would

then involve at least the ve following tables, written in pseudo SQL (meaning

that this code won’t actually run):

1

create table country(code, name);

2

create table region(country, name);

3

create table city(country, region, name, zipcode);

4

create table street(name);

5

create table city_street_numbers

6

(country, region, city, street, number, location);

Chapter 28 Normalization | 234

Then it’s possible to implement an advanced input form with normalization
of

the delivery address and to compute routes. Again, if all you’re doing with
the ad-

dress is printing it on PDF documents (contracts, invoices, etc.) and
sometimes

to an envelope label, you might not need to be this sophisticated.

In the case of the addresses, it’s important to then implement a maintenance
pro-

cess for all those countries, regions and cities where your business operates.

Bor-

ders are evolving in the world, and you might need to react to those changes.

Postal codes usually change depending on population counts, so there again
you

need to react to such changes. Moreover streets get renamed, and new streets
are

constructed. New buildings are built and sometimes given new numbers such
as

2 b or 4 ter. So even the number information isn’t an integer eld…

The point of a proper data model is to make it easy for the application to
process

the information it needs, and to ensure global consistency for the information.

The address exercise doesn’t allow for understanding of those points, and
we’ve

reached its limits already.

Primary Keys

Primary keys are a database constraint allowing us to implement the rst and

second normal forms. The rst rule to follow to reach rst normal form says

“There are no duplicated rows in the table”.

A primary key ensures two things:

• The attributes that are part of the primary key constraint de nition are

not allowed to be null.

• The attributes that are part of the primary key are unique in the table’s

content.

To ensure that there is no duplicated row, we need the two guarantees.
Compar-

ing null values in SQL is a complex matter — as seen in Three-Valued Logic,
and rather than argue if the no-duplicate rule applies to null = null (which is
null) or to null

not null (which is false), a primary key constraint disallow null values
entirely.

Chapter 28 Normalization | 235

Surrogate Keys

The reason why we have primary key is to avoid duplicate entries in the data
set.

As soon as a primary key is de ned on an automatically generated column,
which is arguably not really part of the data set, then we open the gates for
violation of

the rst normal form.

Earlier in this chapter, we draf ed a database model with the following table:

1

create table sandbox.article

2

(

3

id

bigserial primary key,

4

category

integer references sandbox.category(id),

5

pubdate

timestamptz,

6

title

text not null,

7

content

text

8

);

This model isn’t even compliant with 1NF :

1

insert into sandbox.article (category, pubdate, title)

2

values (2, now(), 'Hot from the Press'),

3

(2, now(), 'Hot from the Press')

4

returning *;

PostgreSQL is happy to insert duplicate entries here:

─[RECORD 1]───────────────────────────

id

│ 1001

category │ 2

pubdate

│ 2017-08-30 18:09:46.997924+02

title

│ Hot from the Press

content

│ ¤

═[RECORD 2]═══════════════════════════

id

│ 1002

category │ 2

pubdate

│ 2017-08-30 18:09:46.997924+02

title

│ Hot from the Press

content

│ ¤

INSERT 0 2

Of course, it’s possible to argue that those entries are not duplicates: they
each

have their own id value, which is di ferent — and it is an arti cial value
derived automatically for us by the system.

Actually, we now have to deal with two article entries in our publication
system

with the same category (category 2 is news), the same title, and the same
publica-

Chapter 28 Normalization | 236

tion date. I don’t suppose this is an acceptable situation for the business rules.

In term of database modeling, the arti cially generated key is named a
surrogate

key because it is a substitute for a natural key. A natural key would allow
preventing duplicate entries in our data set.

We can x our schema to prevent duplicate entries:

1

create table sandbox.article

2

(

3

category

integer references sandbox.category(id),

4

pubdate

timestamptz,

5

title

text not null,

6

content

text,

7

8

primary key(category, title);

9

);

Now, you can share the same article’s title in di ferent categories, but you can

only publish with a title once in the whole history of our publication system.

Given this alternative design, we allow publications with the same title at di
fer-

ent publication dates. It might be needed, af er all, as we know that history of
en

repeats itself.

1

create table sandboxpk.article

2

(

3

category

integer references sandbox.category(id),

4

pubdate

timestamptz,

5

title

text not null,

6

content

text,

7

8

primary key(category, pubdate, title)

9

);

Say we go with the solution allowing reusing the same title at a later date. We

now have to change the model of our comment table, which references the
sandbox.article table:

1

create table sandboxpk.comment

2

(

3

a_category integer

not null,

4

a_pubdate

timestamptz not null,

5

a_title

text

not null,

6

pubdate

timestamptz,

7

content

text,

8

9

primary key(a_category, a_pubdate, a_title, pubdate, content),

10

11

foreign key(a_category, a_pubdate, a_title)

Chapter 28 Normalization | 237

12

references sandboxpk.article(category, pubdate, title)

13

);

As you can see each entry in the comment table must have enough
information

to be able to reference a single entry in the article table, with a guarantee that
there are no duplicates.

We then have quite a big table for the data we want to manage in there. So
there’s

yet another solution to this surrogate key approach, a trade-o f where you
have the generated summary key bene ts and still the natural primary key
guarantees

needed for the 1NF :

1

create table sandboxpk.article

2

(

3

id

bigserial primary key,

4

category

integer

not null references sandbox.category(id),

5

pubdate

timestamptz

not null,

6

title

text

not null,

7

content

text,

8

9

unique(category, pubdate, title)

10

);

Now the category, pubdate and title have a not null constraint and a unique
constraint, which is the same level of guarantee as when declaring them a
primary

key. So we both have a surrogate key that’s easy to reference from other
tables in our model, and also a strong 1NF guarantee about our data set.

Foreign Keys Constraints

Proper primary keys allow implementing 1NF. Better normalization forms are
achieved when your data model is clean: any information is managed in a
single place, which is a single source of truth. Then, your data has to be split
into separate tables, and that’s when other constraints are needed.

To ensure that the information still makes sense when found in di ferent
tables,

we need to be able to reference information and ensure that our reference
keeps being valid. That’s implemented with a foreign key constraint.

A foreign key constraint must reference a set of keys known to be unique in
the target table, so PostgreSQL enforces the presence of either a unique or a
primary key constraint on the target table. Such a constraint is always
implemented

Chapter 28 Normalization | 238

in PostgreSQL with a unique index. PostgreSQL doesn’t create indexes at the

source side of the foreign key constraint, though. If you need such an index,
you have to explicitly create it.

Not Null Constraints

The not null constraint disallows unspeci ed entries in attributes, and the data
type of the attribute forces its value to make sense, so the data type can also
be

considered to be kind of constraint.

Check Constraints and Domains

When the data type allows more values than your application or business
model,

SQL allows you to restrict the values using either a domain de nition or a
check constraint. The domain de nition applies a check constraint to a data
type de -

https://en.wikipedia.org/wiki/Single_source_of_truth

nition. Here’s the example from the PostgreSQL documentation chapter
about

check constraints: 1

CREATE TABLE products (

2

product_no integer,

3

name text,

4

price numeric CHECK (price > 0)

5

);

The check constraint can also reference several columns of the same table at
once, if that’s required:

1

CREATE TABLE products (

2

product_no integer,

3

name text,

4

https://www.postgresql.org/docs/current/static/ddl-constraints.html

price numeric CHECK (price > 0),

5

discounted_price numeric,

6

CHECK (discounted_price > 0 AND price > discounted_price)

7

);

And here’s how to de ne a new data domain as per the PostgreSQL
documenta-

tion for the CREATE DOMAIN SQL command: 1

CREATE DOMAIN us_postal_code AS TEXT

2

CHECK

Chapter 28 Normalization | 239

3

(

4

VALUE ~ '^\d{5}$'

5

OR

6

https://www.postgresql.org/docs/current/static/sql-createdomain.html

VALUE ~ '^\d{5}-\d{4}$'

7

);

It is now possible to use this domain de nition as a data type, as in the
following

example from the same documentation page:

1

CREATE TABLE us_snail_addy (

2

address_id SERIAL PRIMARY KEY,

3

street1 TEXT NOT NULL,

4

street2 TEXT,

5

street3 TEXT,

6

city TEXT NOT NULL,

7

postal us_postal_code NOT NULL

8

);

Exclusion Constraints

As seen in the presentation of Ranges in the previous chapter, it’s also
possible to de ne exclusion constraints with PostgreSQL. Those work like a
generalized unique constraint, with a custom operator choice. The example
we used is the following, where an exchange rate is valid for a period of time
and we do not

allow overlapping periods of validity for a given rate:

1

create table rates

2

(

3

currency text,

4

validity daterange,

5

rate

numeric,

6

7

exclude using gist (currency with =,

8

validity with &&)

9

);

29

Practical Use Case: Geonames

The GeoNam geographical database covers all countri and contains over
eleven million place nam that are available for down-

load free of charge.

The website o fers online querying and all the data is made available to
download

and use. As is of en the case, it comes in an ad-hoc format and requires some

processing and normalization before it’s usable in a PostgreSQL database.

1

begin;

2

3

create schema if not exists raw;

4

5

create table raw.geonames

http://www.geonames.org

6

(

7

geonameid

bigint,

8

name

text,

9

asciiname

text,

10

alternatenames

text,

11

latitude

double precision,

12

longitude

double precision,

13

feature_class

text,

14

feature_code

text,

15

country_code

text,

16

cc2

text,

17

admin1_code

text,

18

admin2_code

text,

19

admin3_code

text,

20

admin4_code

text,

21

population

bigint,

22

elevation

bigint,

23

dem

bigint,

Chapter 29 Practical Use Case: Geonames | 241

24

timezone

text,

25

modification

date

26

);

27

28

create table raw.country

29

(

30

iso

text,

31

iso3

text,

32

isocode

integer,

33

fips

text,

34

name

text,

35

capital

text,

36

area

double precision,

37

population

bigint,

38

continent

text,

39

tld

text,

40

currency_code

text,

41

currency_name

text,

42

phone

text,

43

postal_code_format

text,

44

postal_code_regex

text,

45

languages

text,

46

geonameid

bigint,

47

neighbours

text,

48

fips_equiv

text

49

);

50

51

\copy raw.country from 'countryInfoData.txt' with csv delimiter E'\t'

52

53

create table raw.feature

54

(

55

code

text,

56

description text,

57

comment

text

58

);

59

60

\copy raw.feature from 'featureCodes_en.txt' with csv delimiter E'\t'

61

62

create table raw.admin1

63

(

64

code

text,

65

name

text,

66

ascii_name text,

67

geonameid

bigint

68

);

69

70

\copy raw.admin1 from 'admin1CodesASCII.txt' with csv delimiter E'\t'

71

72

create table raw.admin2

73

(

74

code

text,

75

name

text,

Chapter 29 Practical Use Case: Geonames | 242

76

ascii_name text,

77

geonameid

bigint

78

);

79

80

\copy raw.admin2 from 'admin2Codes.txt' with csv delimiter E'\t'

81

82

commit;

Once we have loaded the raw data from the published les at http://download.

geonames.org/export/dump/, we can normalize the content and begin to use
the data.

You might notice that the SQL le above is missing the \copy command for
the

raw.geonam table. That’s because copy failed to load the le properly: some
location names include single and double quotes, and those are not properly

quoted… and not properly escaped. So we resorted to pgloader to load the le,

http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/

with the following command:

load csv

from /tmp/geonames/allCountries.txt

into pgsql://appdev@/appdev

target table raw.geonames

with fields terminated by '\t',

fields optionally enclosed by '§',

fields escaped by '%',

truncate;

Here’s the summary obtained when loading the dataset on the laptop used to

prepare this book:

table name

errors

rows

bytes

total time

fetch

0

0

0.009s

raw.geonames

0

11540466

1.5 GB

6m43.218s

Files Processed

0

1

0.026s

COPY Threads Completion

0

2

6m43.319s

Total import time

✓

3

1.5 GB

6m43.345s

To normalize the schema, we apply the rules from the de nition of the normal

forms as seen previously. Basically, we want to avoid any dependency in
between the attributes of our models. Any dependency means that we need to

create a

separate table where to manage a set of data that makes sense in isolation is
man-

aged.

The raw.geonam table uses several reference data that GeoNam provide as
separate downloads. We then need to begin with xing the reference data used

Chapter 29 Practical Use Case: Geonames | 243

in the model.

Features

The GeoNam model tags all of its geolocation data with a feature class and a
feature. The description for those codes are detailed on the GeoNames codes
page and available for download in the featureCod _en.txt le. Some of the
information we need is only available in a text form and has to be reported
manually.

1

begin;

2

3

create schema if not exists geoname;

4

5

create table geoname.class

6

http://www.geonames.org/export/codes.html

(

7

class

char(1) not null primary key,

8

description

text

9

);

10

11

insert into geoname.class (class, description)

12

values ('A', 'country, state, region,...'),

13

('H', 'stream, lake, ...'),

14

('L', 'parks,area, ...'),

15

('P', 'city, village,...'),

16

('R', 'road, railroad '),

17

('S', 'spot, building, farm'),

18

('T', 'mountain,hill,rock,... '),

19

('U', 'undersea'),

20

('V', 'forest,heath,...');

21

22

create table geoname.feature

23

(

24

class

char(1) not null references geoname.class(class),

25

feature

text

not null,

26

description text,

27

comment

text,

28

29

primary key(class, feature)

30

);

31

32

insert into geoname.feature

33

select substring(code from 1 for 1) as class,

34

substring(code from 3) as feature,

35

description,

36

comment

37

from raw.feature

Chapter 29 Practical Use Case: Geonames | 244

38

where feature.code <> 'null';

39

40

commit;

As we see in this le we have to deal with an explicit ‘null’ entry: there’s a text
that is four letters long in the last line (and reads null) and that we don’t want

to load.

Also, the provided le uses the notation A.ADM1 for an entry of class A and
feature ADM1, which we split into proper attributes in our normalization
process. The natural key for the geoname.feature table is the combination of
the class and the feature.

Once all the data is loaded and normalized, we can get some nice statistics:

1

select class, feature, description, count(*)

2

from feature

3

left join geoname using(class,feature)

4

group by class, feature

5

order by count desc

6

limit 10;

This is a very simple top-10 query, per feature:

class │ feature │

description

│

count

═══════╪═════════╪═════════════════╪═════════

P

│ PPL

│ populated place │ 1711458

H

│ STM

│ stream

│

300283

S

│ CH

│ church

│

236394

S

│ FRM

│ farm

│

234536

S

│ SCH

│ school

│

223402

T

│ HLL

│ hill

│

212659

T

│ MT

│ mountain

│

192454

S

│ HTL

│ hotel

│

170896

H

│ LK

│ lake

│

162922

S

│ BLDG

│ building(s)

│

143742

(10 rows)

Countries

The raw.country table has several normalization issues. Before we list them,
having a look at some data will help us:

─[RECORD 1]──────┬─────────────────────────

iso

│ FR

iso3

│ FRA

Chapter 29 Practical Use Case: Geonames | 245

isocode

│ 250

fips

│ FR

name

│ France

capital

│ Paris

area

│ 547030

population

│ 64768389

continent

│ EU

tld

│ .fr

currency_code

│ EUR

currency_name

│ Euro

phone

│ 33

postal_code_format │ #####

postal_code_regex

│ ^(\d{5})$

languages

│ fr-FR,frp,br,co,ca,eu,oc

geonameid

│ 3017382

neighbours

│ CH,DE,BE,LU,IT,AD,MC,ES

fips_equiv

│ ¤

The main normalization failures we see are:

• Nothing guarantees the absence of duplicate rows in the table, so we need

to add a primary key constraint.

Here the isocode attribute looks like the best choice, as it’s both unique and
an integer.

• The languag and neighbours attributes both contain multiple-valued
content, a comma-separated list of either languages or country codes.

• To reach 2NF then, all non-key attributes should be dependent on the

entire of the key, and the currencies and postal code formats are not de-

pendent on the country.

A good way to check for dependencies on the key attributes is with the
following

type of query:

1

select currency_code, currency_name, count(*)

2

from raw.country

3

group by currency_code, currency_name

4

order by count desc

5

limit 5;

In our dataset, we have the following result, showing 34 countries using the
Euro

currency:

currency_code │ currency_name │ count

═══════════════╪═══════════════╪═══════

EUR

│ Euro

│

34

USD

│ Dollar

│

16

Chapter 29 Practical Use Case: Geonames | 246

AUD

│ Dollar

│

8

XOF

│ Franc

│

8

XCD

│ Dollar

│

8

(5 rows)

In this book, we’re going to pass on the currency, language, and postal code
for-

mats of countries and focus on some information only. That gives us the
follow-

ing normalization process:

1

begin;

2

3

create schema if not exists geoname;

4

5

create table geoname.continent

6

(

7

code

char(2) primary key,

8

name

text

9

);

10

11

insert into geoname.continent(code, name)

12

values ('AF', 'Africa'),

13

('NA', 'North America'),

14

('OC', 'Oceania'),

15

('AN', 'Antarctica'),

16

('AS', 'Asia'),

17

('EU', 'Europe'),

18

('SA', 'South America');

19

20

create table geoname.country

21

(

22

isocode

integer primary key,

23

iso

char(2) not null,

24

iso3

char(3) not null,

25

fips

text,

26

name

text,

27

capital

text,

28

continent char(2) references geoname.continent(code),

29

tld

text,

30

geonameid bigint

31

);

32

33

insert into geoname.country

34

select isocode, iso, iso3, fips, name,

35

capital, continent, tld, geonameid

36

from raw.country;

37

38

create table geoname.neighbour

39

(

40

isocode

integer not null references geoname.country(isocode),

41

neighbour integer not null references geoname.country(isocode),

42

Chapter 29 Practical Use Case: Geonames | 247

43

primary key(isocode, neighbour)

44

);

45

46

insert into geoname.neighbour

47

with n as(

48

select isocode,

49

regexp_split_to_table(neighbours, ',') as neighbour

50

from raw.country

51

)

52

select n.isocode,

53

country.isocode

54

from n

55

join geoname.country

56

on country.iso = n.neighbour;

57

58

commit;

Note that we add the continent list (for completeness in the region drill down)

and then introduce the geoname.neighbour part of the model. Having an
association table that links every country with its neighbours on the map (a
neighbour has a common border) allows us to easily query for the
information:

1

select neighbour.iso,

2

neighbour.name,

3

neighbour.capital,

4

neighbour.tld

5

6

from geoname.neighbour as border

7

8

join geoname.country as country

9

on border.isocode = country.isocode

10

11

join geoname.country as neighbour

12

on border.neighbour = neighbour.isocode

13

14

where country.iso = 'FR';

So we get the following list of neighbor countries for France:

iso │

name

│

capital

│ tld

═════╪═════════════╪══════════════════╪═════

CH

│ Switzerland │ Bern

│ .ch

DE

│ Germany

│ Berlin

│ .de

BE

│ Belgium

│ Brussels

│ .be

LU

│ Luxembourg

│ Luxembourg

│ .lu

IT

│ Italy

│ Rome

│ .it

AD

│ Andorra

│ Andorra la Vella │ .ad

MC

│ Monaco

│ Monaco

│ .mc

ES

│ Spain

│ Madrid

│ .es

(8 rows)

Chapter 29 Practical Use Case: Geonames | 248

Administrative Zoning

The raw data from the GeoNam website then o fers an interesting
geographical breakdown in the country_code, admin1_code and
admin2_code.

1

select geonameid, name, admin1_code, admin2_code

2

from raw.geonames

3

where country_code = 'FR'

4

limit 5

5

offset 50;

To get an interesting result set, we select randomly from the data for France,

where the code has to be expanded to be meaningful. With a USA based data

set, we get states codes as admin1_code (e.g. IL for Illinois), and the
necessity for normalized data might then be less visible.

Of course, never use offset in your application queries, as seen previously.
Here, we are doing interactive discovery of the data, so it is found acceptable,

to some

extent, to play with the offset facility.

Here’s the data set we get:

geonameid │

name

│ admin1_code │ admin2_code

═══════════╪═════════════════════╪═════════════╪═════════════

2967132 │ Zintzel du Nord

│ 44

│ 67

2967133 │ Zinswiller

│ 44

│ 67

2967134 │ Ruisseau de Zingajo │ 94

│ 2B

2967135 │ Zincourt

│ 44

│ 88

2967136 │ Zimming

│ 44

│ 57

(5 rows)

The GeoNam

website provides

les admin1Cod ASCII.txt and ad-

min2Cod .txt for us to use to normalize our data. Those les again use admin

codes spelled as AD.06 and AF.01.1125426 where the raw.geonam table uses
them as separate elds. That’s a good reason to split them now.

Here’s the SQL to normalize the admin breakdowns, splitting the codes and

adding necessary constraints, to ensure data quality:

1

begin;

2

3

create schema if not exists geoname;

4

5

create table geoname.region

6

(

7

isocode

integer not null references geoname.country(isocode),

Chapter 29 Practical Use Case: Geonames | 249

8

regcode

text not null,

9

name

text,

10

geonameid bigint,

11

12

primary key(isocode, regcode)

13

);

14

15

insert into geoname.region

16

with admin as

17

(

18

select regexp_split_to_array(code, '[.]') as code,

19

name,

20

geonameid

21

from raw.admin1

22

)

23

select country.isocode as isocode,

24

code[2] as regcode,

25

admin.name,

26

admin.geonameid

27

from admin

28

join geoname.country

29

on country.iso = code[1];

30

31

create table geoname.district

32

(

33

isocode

integer not null,

34

regcode

text not null,

35

discode

text not null,

36

name

text,

37

geonameid bigint,

38

39

primary key(isocode, regcode, discode),

40

foreign key(isocode, regcode)

41

references geoname.region(isocode, regcode)

42

);

43

44

insert into geoname.district

45

with admin as

46

(

47

select regexp_split_to_array(code, '[.]') as code,

48

name,

49

geonameid

50

from raw.admin2

51

)

52

select region.isocode,

53

region.regcode,

54

code[3],

55

admin.name,

56

admin.geonameid

57

from admin

58

59

join geoname.country

Chapter 29 Practical Use Case: Geonames | 250

60

on country.iso = code[1]

61

62

join geoname.region

63

on region.isocode = country.isocode

64

and region.regcode = code[2];

65

66

commit;

The previous query can now be rewritten, showing region and district names

rather than admin1_code and admin2_code, which we still have internally in
case we need them of course.

1

select r.name, reg.name as region, d.name as district

2

from raw.geonames r

3

4

left join geoname.country

5

on country.iso = r.country_code

6

7

left join geoname.region reg

8

on reg.isocode = country.isocode

9

and reg.regcode = r.admin1_code

10

11

left join geoname.district d

12

on d.isocode = country.isocode

13

and d.regcode = r.admin1_code

14

and d.discode = r.admin2_code

15

where country_code = 'FR'

16

limit 5

17

offset 50;

The query uses left join operations because we have geo-location data
without the admin1 or admin2 levels of details — more on that later. Here’s
the same list of French areas, this time with proper names:

name

│

region

│

district

═════════════════════╪═══════════╪═══════════════════════════════

Zintzel du Nord

│ Grand Est │ Département du Bas-Rhin

Zinswiller

│ Grand Est │ Département du Bas-Rhin

Ruisseau de Zingajo │ Corsica

│ Département de la Haute-Corse

Zincourt

│ Grand Est │ Département des Vosges

Zimming

│ Grand Est │ Département de la Moselle

(5 rows)

Chapter 29 Practical Use Case: Geonames | 251

Geolocation Data

Now that we have loaded the reference data, we can load the main
geolocation

data with the following script. Note that we skip parts of the data we don’t
need

for this book, but that you might want to load in your application’s
background

data.

Before loading the raw data into a normalized version of the table, which will

make heavy use of the references we normalized before, we have to study
and

understand how the breakdown works:

1

select count(*) as all,

2

count(*) filter(where country_code is null) as no_country, 3

count(*) filter(where admin1_code is null) as no_region,

4

count(*) filter(where admin2_code is null) as no_district, 5

count(*) filter(where feature_class is null) as no_class, 6

count(*) filter(where feature_code is null) as no_feat

7

from raw.geonames ;

We have lots of entries without reference for a country, and even more
without detailed breakdown (admin1_code and admin2_code are not always
part of the data). Moreover we also have points without any reference feature
and class,

some of them in the Artic.

all

│ no_country │ no_region │ no_district │ no_class │ no_feat

══════════╪════════════╪═══════════╪═════════════╪══════════╪═════════

11540466 │

5821 │

45819 │

5528455 │

5074 │

95368

(1 row)

Given that, our normalization query must be careful to use left join
operations, so as to allow for elds to be null when the foreign key reference
doesn’t exist.

Be careful to drill down properly to the country, then the region, and only
then

the district, as the data set contains points of several layers of precision as
seen in the query above.

1

begin;

2

3

create table geoname.geoname

4

(

5

geonameid

bigint primary key,

6

name

text,

7

location

point,

8

isocode

integer,

9

regcode

text,

10

discode

text,

11

class

char(1),

Chapter 29 Practical Use Case: Geonames | 252

12

feature

text,

13

population

bigint,

14

elevation

bigint,

15

timezone

text,

16

17

foreign key(isocode)

18

references geoname.country(isocode),

19

20

foreign key(isocode, regcode)

21

references geoname.region(isocode, regcode),

22

23

foreign key(isocode, regcode, discode)

24

references geoname.district(isocode, regcode, discode),

25

26

foreign key(class)

27

references geoname.class(class),

28

29

foreign key(class, feature)

30

references geoname.feature(class, feature)

31

);

32

33

insert into geoname.geoname

34

with geo as

35

(

36

select geonameid,

37

name,

38

point(longitude, latitude) as location,

39

country_code,

40

admin1_code,

41

admin2_code,

42

feature_class,

43

feature_code,

44

population,

45

elevation,

46

timezone

47

from raw.geonames

48

)

49

select geo.geonameid,

50

geo.name,

51

geo.location,

52

country.isocode,

53

region.regcode,

54

district.discode,

55

feature.class,

56

feature.feature,

57

population,

58

elevation,

59

timezone

60

from geo

61

left join geoname.country

62

on country.iso = geo.country_code

63

Chapter 29 Practical Use Case: Geonames | 253

64

left join geoname.region

65

on region.isocode = country.isocode

66

and region.regcode = geo.admin1_code

67

68

left join geoname.district

69

on district.isocode = country.isocode

70

and district.regcode = geo.admin1_code

71

and district.discode = geo.admin2_code

72

73

left join geoname.feature

74

on feature.class = geo.feature_class

75

and feature.feature = geo.feature_code;

76

77

create index on geoname.geoname using gist(location);

78

79

commit;

Now that we have a proper data set loaded, it’s easier to make sense of the
admin-

istrative breakdowns and the geo-location data.

The real use case for this data comes later: thanks to the GiST index over the
geoname.location column we are now fully equipped to do a names lookup
from

the geo-localized information.

1

select continent.name,

2

count(*),

3

round(100.0 * count(*) / sum(count(*)) over(), 2) as pct,

4

repeat('■', (100 * count(*) / sum(count(*)) over())::int) as hist

5

from geoname.geoname

6

join geoname.country using(isocode)

7

join geoname.continent

8

on continent.code = country.continent

9

group by continent.name

10

order by continent.name;

We can see that the GeoNam data is highly skewed towards Asia, North
Amer-

ica, and then Europe. Of course, the Antartica data is not very dense.

name

│

count

│

pct

│

hist

═══════════════╪═════════╪═══════╪═══════════════════════════════════

Africa

│ 1170043 │ 10.14 │ ■■■■■■■■■■

Antarctica

│

21125 │

0.18 │

Asia

│ 3772195 │ 32.70 │ ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

Europe

│ 2488807 │ 21.58 │ ■■■■■■■■■■■■■■■■■■■■■■

North America │ 3210802 │ 27.84 │
■■■■■■■■■■■■■■■■■■■■■■■■■■■■

Oceania

│

354325 │

3.07 │ ■■■

South America │

517347 │

4.49 │ ■■■■

(7 rows)

Chapter 29 Practical Use Case: Geonames | 254

Geolocation GiST Indexing

The previous geoname table creation script contains the following index de
nition:

1

create index on geoname.geoname using gist(location);

Such an index is useful when searching for a speci c location within our table,

which contains about 11.5 million entries. PostgreSQL supports index scan
based lookups in several situations, including the kNN lookup, also known as
the

nearest neighbor lookup.

In the arrays non-relational data type example we loaded a data set of
200,000

geo-localized tweets in the hashtag table. Here’s an extract of this table’s
content:

─[RECORD 1
]──

id

│ 720553458596757504

date

│ 2016-04-14 10:05:00+02

uname

│ Police Calls 32801

message

│ #DrugViolation at 335 N Magnolia Ave. #orlpol #opd

location │ (-81.3769794,28.5469591)

hashtags │ {#DrugViolation,#opd,#orlpol}

It’s possible to retrieve more information from the GeoNam data thanks to
the following lateral left join lookup in which we implement a kNN search
with order by ... <-> ... limit k clause:

1

select id,

2

round((hashtag.location <-> geoname.location)::numeric, 3) as dist,

3

country.iso,

4

region.name as region,

5

district.name as district

6

from hashtag

7

left join lateral

8

(

9

select geonameid, isocode, regcode, discode, location

10

from geoname.geoname

11

order by location <-> hashtag.location

12

limit 1

13

)

14

as geoname

15

on true

16

left join geoname.country using(isocode)

17

left join geoname.region using(isocode, regcode)

18

left join geoname.district using(isocode, regcode, discode)

19

order by id

20

limit 5;

Chapter 29 Practical Use Case: Geonames | 255

The <-> operator computes the distance in between its argument, and by
using

the limit 1 clause we select the nearest known entry in the geoname.geoname
table for each entry in the hashtag table.

Then it’s easy to add our normalized GeoNam information from the country,
region and district tables. Here’s the result we get here:

id

│ dist

│ iso │

region

│

district

════════════════════╪═══════╪═════╪══════════════╪═════════════════════

720553447402160128 │ 0.004 │ US

│ Florida

│ Orange County

720553457015324672 │ 0.004 │ US

│ Texas

│ Smith County

720553458596757504 │ 0.001 │ US

│ Florida

│ Orange County

720553466804989952 │ 0.001 │ US

│ Pennsylvania │ Philadelphia County

720553475923271680 │ 0.000 │ US

│ New York

│ Nassau County

(5 rows)

To check that our GiST index is actually used, we use the explain command
of PostgreSQL, with the spelling explain (costs off) followed by the whole

query as above, and we get the following query plan:

\pset format wrapped

\pset columns 70

QUERY PLAN

══

Limit

->

Nested Loop Left Join

->

Nested Loop Left Join

->

Nested Loop Left Join

Join Filter: (geoname.isocode = country.isocode)

->

Nested Loop Left Join

->

Index Scan using hashtag_pkey on hasht…

…ag

->

Limit

->

Index Scan using geoname_locatio…

…n_idx on geoname

Order By: (location <-> hashta…

…g.location)

->

Materialize

->

Seq Scan on country

->

Index Scan using region_pkey on region

Index Cond: ((geoname.isocode = isocode) AND (ge…

…oname.regcode = regcode))

->

Index Scan using district_pkey on district

Index Cond: ((geoname.isocode = isocode) AND (geoname.…

…regcode = regcode) AND (geoname.discode = discode))

(16 rows)

The index scan using geoname_location_idx on geoname is clear: the index
has been used. On the laptop on which this book has been written, we get the
result

in about 13 milliseconds.

Chapter 29 Practical Use Case: Geonames | 256

A Sampling of Countries

This dataset of more than 11 million rows is not practical to include in the
book’s

material for the Full Edition and Enterprise Edition, where you have a
database dump or Docker image to play with. We instead take a random
sample of 1% of

the table’s content, and here’s how the magic is done:

1

begin;

2

3

create schema if not exists sample;

4

5

drop table if exists sample.geonames;

6

7

create table sample.geonames

8

as select /*

9

* We restrict the “export” to some columns only, so as to

10

* further reduce the size of the exported file available to

11

* download with the book.

12

*/

13

geonameid,

14

name,

15

longitude,

16

latitude,

17

feature_class,

18

feature_code,

19

country_code,

20

admin1_code,

21

admin2_code,

22

population,

23

elevation,

24

timezone

25

/*

26

* We only keep 1% of the 11 millions rows here.

27

*/

28

from raw.geonames TABLESAMPLE bernoulli(1);

29

30

\copy sample.geonames to 'allCountries.sample.copy'

31

32

commit;

In this script, we use the tablesample feature of PostgreSQL to only keep a
random selection of 1% of the rows in the table. The tablesample accepts
several methods, and you can see the PostgreSQL documentation entitled
Writing A

Table Sampling Method yourself if you need to.

Here’s what the from clause documentation of the select statement has to say
about the choice of bernouilli and system, included by default in PostgreSQL:

Chapter 29 Practical Use Case: Geonames | 257

The BERNOULLI and SYSTEM sampling methods each accept

a single argument which is the fraction of the table to sample,

expressed as a percentage between 0 and 100. This argument can

be any real-valued expression. (Other sampling methods might

https://www.postgresql.org/docs/current/static/tablesample-method.html
https://www.postgresql.org/docs/current/static/tablesample-method.html
https://www.postgresql.org/docs/current/static/sql-select.html#SQL-FROM

accept more or di ferent arguments.) These two methods each

return a randomly-chosen sample of the table that will contain

approximately the speci ed percentage of the table’s rows. The

BERNOULLI method scans the whole table and selects or ignores

individual rows independently with the speci ed probability. The

SYSTEM method does block-level sampling with each block having

the speci ed chance of being selected; all rows in each selected block

are returned. The SYSTEM method is signi cantly faster than

the BERNOULLI method when small sampling percentages are

speci ed, but it may return a less-random sample of the table as a

result of clustering e fects.

Running the script, here’s what we get:

yesql# \i geonames.sample.sql

BEGIN

CREATE SCHEMA

DROP TABLE

SELECT 115904

COPY 115904

COMMIT

Our sample.geonam table only contains 115,904 rows. Another run of the
same

query yielded 115,071 instead. Af er all the sampling is made following a
random-

based algorithm.

30

Modelization Anti-Patterns

Failures to follow normalization forms opens the door to anomalies as seen
previously. Some failure modes are so common in the wild that we can talk
about anti-

patterns. One of the worst possible design choices would be the EAV model.

Entity Attribute Values

The entity attribue values or EAV is a design that tries to accommodate with a
lack of speci cations. In our application, we have to deal with parameters and

new parameters may be added at each release. It’s not clear which parameters

we need, we just want a place to manage them easily, and we are already
using a

database server af er all. So there we go:

1

begin;

2

3

create schema if not exists eav;

4

https://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model

5

create table eav.params

6

(

7

entity

text not null,

8

parameter text not null,

9

value

text not null,

10

11

primary key(entity, parameter)

12

);

13

14

commit;

Chapter 30 Modelization Anti-Patterns | 259

You might have already seen this model or a variation of it in the eld. The
model

makes it very easy to add things to it, and very di cult to make sense of the
accumulated data, or to use them e fectively in SQL, making it an anti-
pattern.

1

insert into eav.params(entity, parameter, value)

2

values ('backend', 'log_level', 'notice'),

3

('backend', 'loglevel', 'info'),

4

('api', 'timeout', '30'),

5

('api', 'timout', '40'),

6

('gold', 'response time', '60'),

7

('gold', 'escalation time', '90'),

8

('platinum', 'response time', '15'),

9

('platinum', 'escalation time', '30');

In this example we made some typos on purpose, to show the limits of the
EAV

model. It’s impossible to catch those errors, and you might have parts of your

code that query one spelling or a di ferent one.

Main problems of this EAV anti-pattern are:

• The value attribute is of type text so as to be able to host about anything,
where some parameters are going to be integer, interval, inet or boolean
values.

• The entity and parameter elds are likewise free-text, meaning that any typo
will actually create new entries, which might not even be used anywhere in
the application.

• When fetching all the parameters of an entity to set up your application’s

object, the parameter names are a value in each row rather than the name

of the column where to nd them, meaning extra work and loops.

• When you need to process parameter in SQL queries, you need to add a

join to the params table for each parameter you are interested in.

As an example of the last point, here’s a query that fetches the response time
and the escalated time for support customers when using the previous params
setup.

First, we need a quick design for a customer and a support contract table:

1

begin;

2

3

create table eav.support_contract_type

4

(

5

id

serial primary key,

6

name text not null

7

);

8

Chapter 30 Modelization Anti-Patterns | 260

9

insert into eav.support_contract_type(name)

10

values ('gold'), ('platinum');

11

12

create table eav.support_contract

13

(

14

id

serial primary key,

15

type

integer not null references eav.support_contract_type(id),

16

validity daterange not null,

17

contract text,

18

19

exclude using gist(type with =, validity with &&)

20

);

21

22

create table eav.customer

23

(

24

id

serial primary key,

25

name

text not null,

26

address

text

27

);

28

29

create table eav.support

30

(

31

customer

integer not null,

32

contract

integer not null references eav.support_contract(id),

33

instances integer not null,

34

35

primary key(customer, contract),

36

check(instances > 0)

37

);

38

39

commit;

And now it’s possible to get customer support contract parameters such as re-

sponse time and escalation time, each with its own join:

1

select customer.id,

2

customer.name,

3

ctype.name,

4

rtime.value::interval as "resp. time",

5

etime.value::interval as "esc. time"

6

from eav.customer

7

join eav.support

8

on support.customer = customer.id

9

10

join eav.support_contract as contract

11

on support.contract = contract.id

12

13

join eav.support_contract_type as ctype

14

on ctype.id = contract.type

15

16

join eav.params as rtime

Chapter 30 Modelization Anti-Patterns | 261

17

on rtime.entity = ctype.name

18

and rtime.parameter = 'response time'

19

20

join eav.params as etime

21

on etime.entity = ctype.name

22

and etime.parameter = 'escalation time';

Each parameter you add has to be added as an extra join operation in the

previous query. Also, if someone enters a value for response time that isn’t
compatible with the interval data type representation, then the query fails.

Never implement an EAV model, this anti-pattern makes everything more
com-

plex than it should for a very small gain at modeling time.

It might be that the business case your application is solving actually has an
attribute volatility problem to solve. In that case, consider having as solid a
model as possible and use jsonb columns as extension points.

Multiple Values per Column

As seen earlier, a table (relation) is in 1NF if:

1. There are no duplicated rows in the table.

2. Each cell is single-valued (no repeating groups or arrays).

3. Entries in a column (eld) are of the same kind.

An anti-pattern that fails to comply with those rules means having a multi-
valued

eld in a database schema:

1

create table tweet

2

(

3

id

bigint primary key,

4

date

timestamptz,

5

message text,

6

tags

text

7

);

Data would then be added with a semicolon separator, for instance, or maybe
a

pipe | char, or in some cases with a fancy Unicode separator char such as §, ¶
or

¦. Here we nd a classic semicolon:

id

│ date │ message │

tags

════════════════════╪══════╪═════════╪════════════════════════

720553530088669185 │ ...

│ ...

│ #NY17

Chapter 30 Modelization Anti-Patterns | 262

720553531665682434 │ ...

│ ...

│ #Endomondo;#endorphins

(2 rows)

Using PostgreSQL makes it possible to use the regexp_split_to_array() and
regexp_split_to_table() functions we saw earlier, and then to process the data
in a relatively sane way. The problem with going against 1NF is that it’s
nearly impossible to maintain the data set as the model o fers all the database
anomalies

listed previously.

Several things are very hard to do when you have several tags hidden in a text

column using a separator:

• Tag Search

To implement searching for a list of messages containing a single given tag,

this model forces a substring search which is much less e cient than direct

search.

A normalized model would have a separate tags table and an association

table in between the tweet and the tags reference table that we could name
tweet_tags. Then search for tweets using a given tag is easy, as it’s a simple
join operation with a restriction that can be expressed either as a where

clause or in the join condition directly.

It is even possible to implement more complex searches of tweets contain-

ing several tags, or at least one tag in a list. Doing that on top of the CSV

inspired anti-pattern is much more complex, if even possible at all.

Rather than trying, we would x the model!

• Usage Statistics per Tag

For the same reasons that implementing search is di cult, this CSV model

anti-pattern makes it hard to compute per-tag statistics, because the tags

column is considered as a whole.

• Normalization of Tags

People make typos or use di ferent spellings for the tags, so we might want

to normalize them in our database. As we keep the message unaltered in a

di ferent column, we would not lose any data doing so.

While normalizing the tags at input time is trivial when using a tags refer-

ence table, it is now an intense computation, as it requires looping over all

messages and splitting the tags each time.

Chapter 30 Modelization Anti-Patterns | 263

This example looks a lot like a case of premature optimization, which per
Donald

Knuth is the root of all evil… in most cases. The exact quote reads:
Programmers waste enormo

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Donald_Knuth

amounts of time thinking about, or

worrying about, the speed of noncritical parts of their programs,

and these attempts at efficiency actually have a strong negative im-

pact when debu ing and maintenance are considered. We should

forget about small efficienci , say about 97% of the time: premature

optimization

the root of all evil. Yet we should not pass up our

opportuniti in that critical 3%.

“Structured Programming with Goto Statements”. Computing

Surveys 6:4 (December 1974), pp. 261–301, §1.

Database modeling has a non-trivial impact on query performance and as
such is

part of making attempts at upping e ciency. Using a CSV formatted attribute

rather than two additional tables looks like optimization, but actually it will

make just about everything worse: debugging, maintenance, search, statistics,

normalization, and other use cases.

UUIDs

The PostgreSQL data type UUID allows for 128 bits synthetic keys rather
than

32 bits with serial or 64 bits with bigserial.

The serial family of data types is built on a sequence with a standard de ned

behavior for collision. A sequence is non-transactional to allow several
concurrent transactions to each get their own number, and each transaction
might then commit or fail to commit with a rollback. It means that sequence
numbers are delivered in a monotonous way, always incrementally, and will
be assigned and used

without any ordering known in advance, and with holes in between delivered

values.

Still, sequenc and their usage as a default value for synthetic keys o fer a
guarantee against collisions.

UUIDs on the other hand rely on a way to produce random numbers in a 128

bits space that o fers a strong theoretical guarantee against collision. You
might

have to retry producing a number, though very rarely.

Chapter 30 Modelization Anti-Patterns | 264

UUIDs are useful in distributed computing where you can’t synchronize
every

concurrent and distributed transaction against a common centralized
sequence, which would then act as a Single Point Of Failure, or SPOF.

That said, neither sequences nor UUID provides a natural primary key for
your data, as seen in the Primary Keys section.

31

Denormalization

When modeling a database schema for your application or business case, the
very

rst step should always consist of a thorough normalization of the schema.

This step takes time, and it’s time well spent as it allows us to understand in
depth the

system being designed.

When reaching 3NF then Boyce-Codd Normal Form, and even 4NF, then the
next step is naturally generating content and writing queries. Write queries
that

implement work ow oriented queries, of en named CRUD for create, read,
update, delete where the application mainly deals with a single record at a
time.

Also, write queries that implement a reporting work ow and have a broad
view of your system, maybe for weekly marketing analysis, invoicing, user
suggestions

for upselling, or other activities that are interesting in your business eld.

Once all of that is done, some di culties may appear, either because the fully

normalized schema is too heavy to deal with at the application level without
any

bene ts, or because having a highly normalized schema involves
performances

penalties that you’ve measured and cannot tolerate.

Fully normalized schemas of en have a high number of tables and references
in

between them. That means lots of foreign key constraints and lots of join
operations in all your application queries. That said, PostgreSQL has been
coded with the SQL standard and the normalization rules in mind and is very
good at join

operations in general. Also, PostgreSQL implements row-level locking for
most of its operations, so the cost of constraints isn’t a show stopper in a

great many

cases.

Chapter 31 Denormalization | 266

That said if some part of your application’s workload makes it di cult to
sustain

a fully normalized schema, then it might be time to nd trade-o fs. The process

of denormalization consists of relaxing the normalization rules to reach an
acceptable trade-o f in terms of data quality and data maintenance.

As in any trade-o f game, the techniques to apply depend on your goal: you

might want to speed up reporting activities at the expense of data
maintenance,

or the other way around.

Premature Optimization

As seen in the previous section with the CSV model anti-pattern, database
mod-

eling makes it easy to fall into the trap of premature optimization. Only use

denormalization techniques when you’ve made a strong case for needing
them.

A strong case means you have benchmarked your application code against
your real production data or a data set that has the same distribution and is as
real as possible, and on a range of di ferent server setups. A strong case also
means

that you’ve spent time rewriting SQL queries to have them pass your
acceptance

tests. A strong case means you know how much time a query is allowed to
spend

and how much time it’s actually spending — in average, median, and 95 and
99

percentiles.

When there’s no way to speed-up your application another way, then it is
time

to denormalize the schema, i.e. make a decision to put your data quality at
risk in order to be able to serve your users and business.

In short, performance is a feature. More of en than not, performance isn’t the

most important feature for your business. Af er a certain threshold, poor per-

formance is a killer, and it must be dealt with. That’s when we denormalize a
database schema, and not before.

Functional Dependency Trade-Offs

The main way to denormalize a schema consists of breaking the functional
de-

pendency rules and repeat data at di ferent places so that you don’t have to
fetch

Chapter 31 Denormalization | 267

it again. When done properly, breaking the functional dependency rule is the
same thing as implementing a cache in your database.

How do you know it’s been done properly? When done The Right Way™,
the

application code has an integrated cache invalidation mechanism. In many
cases, the cache invalidation is automated, either in bulk or triggered by some

events.

The Computing and Caching in SQL section in this book addresses some
mechanisms meant to cache data and invalidate a cache, which may be used
when de-

normalizing.

Denormalization with PostgreSQL

When using PostgreSQL denormalization may happen by choosing to use de-

normalized data types rather than an external reference table.

Many other techniques are possible to use, and some of them are listed later
in

this chapter. While some techniques are widespread and well known in other

database management systems, some of them are unique to PostgreSQL.

When implementing any of the following denormalization techniques, please

keep in mind the following rules:

• Choose and document a single source of truth for any and all data you are

managing,

Denormalization introduces divergence, so you will have to deal with mul-

tiple copies of the same data with di ferences between the copies. It needs

to be clear for everybody involved and every piece of code where the truth

is handled.

• Always implement cache invalidation mechanisms.

In those times when you absolutely need to reset your cache and distribute

the known correct version of your data, it should be as simple as running

a well-known, documented, tested and maintained procedure.

• Check about concurrency behavior in terms of data maintenance.

Implementing denormalization means more complex data maintenance

operations, which can be a source of reduced write-scalability for most

Chapter 31 Denormalization | 268

applications. The next chapter — Data Manipulation and Concurrency

Control — dives into this topic.

To summarize, denormalization techniques are meant to optimize a database

model. As it’s impossible to optimize something you didn’t measure, rst nor-

malize your model, benchmark it, and then see about optimizing.

Materialized Views

Back to the f1db database model, we now compute constructor and driver
points per season. In the following query, we compute points for the ongoing
season

and the data set available at the time of this book’s writing:

1

\set season 2017

2

3

select drivers.surname as driver,

4

constructors.name as constructor,

5

sum(points) as points

6

7

from results

8

join races using(raceid)

9

join drivers using(driverid)

10

join constructors using(constructorid)

11

12

where races.year = :season

13

14

group by grouping sets(drivers.surname, constructors.name)

15

having sum(points) > 150

16

order by drivers.surname is not null, points desc;

Here’s the result, which we know is wrong because the season was not over
yet at

the time of the computation. The having clause has been used only to reduce
the number of lines to display in the book; in a real application we would
certainly

get all the results at once. Anyway, here’s our result set:

driver

│ constructor │ points

══════════╪═════════════╪════════

¤

│ Mercedes

│

357

¤

│ Ferrari

│

318

¤

│ Red Bull

│

184

Vettel

│ ¤

│

202

Hamilton │ ¤

│

188

Bottas

│ ¤

│

169

(6 rows)

Chapter 31 Denormalization | 269

Now, your application might need to display that information of en. Maybe
the

main dashboard is a summary of the points for constructors and drivers in the

current season, and then you want that information to be readily available.

When some information is needed way more of en than it changes, having a
cache

is a good idea. An easy way to build such a cache in PostgreSQL is to use a
ma-

terialized view. This time, we might want to compute the results for all
seasons and index per season:

1

begin;

2

3

create schema if not exists v;

4

create schema if not exists cache;

5

6

create view v.season_points as

7

select year as season, driver, constructor, points

8

from seasons

9

left join lateral

10

/*

11

* For each season, compute points by driver and by constructor.

12

* As we're not interested into points per season for everybody

13

* involved, we don't add the year into the grouping sets.

14

*/

15

(

16

select drivers.surname as driver,

17

constructors.name as constructor,

18

sum(points) as points

19

20

from results

21

join races using(raceid)

22

join drivers using(driverid)

23

join constructors using(constructorid)

24

25

where races.year = seasons.year

26

27

group by grouping sets(drivers.surname, constructors.name)

28

order by drivers.surname is not null, points desc

29

)

30

as points

31

on true

32

order by year, driver is null, points desc;

33

34

create materialized view cache.season_points as

35

select * from v.season_points;

36

37

create index on cache.season_points(season);

38

39

commit;

We rst create a classic view that computes the points every time it’s
referenced

Chapter 31 Denormalization | 270

in queries and join operations and then build a materialized view on top of it.

This makes it easy to see how much the materialized view has drif ed from
the authoritative version of the content with a simple except query. It also

helps to disable the cache provided by the materialized view in your
application: only change the name of the relation and have the same result
set, only known to be

current.

This cache now is to be invalidated af er every race and implementing cache
in-

validation is as easy as running the following refresh materialized view
query: 1

refresh materialized view cache.season_points;

The cache.season_points relation is locked out from even select activity
while its content is being computed again. For very simple materialized view
de nitions it is possible to refresh concurrently and avoid locking out
concurrent readers.

Now that we have a cache, the application query to retrieve the same result
set as

before is the following:

1

select driver, constructor, points

2

from cache.season_points

3

where season = 2017

4

and points > 150;

https://www.postgresql.org/docs/current/static/sql-refreshmaterializedview.html

History Tables and Audit Trails

Some business cases require having a full history of changes available for
audit

trails. What’s usually done is to maintain live data into the main table,
modeled

with the rules we already saw, and model a speci c history table convering
where

to maintain previous versions of the rows, or an archive.

A history table itself isn’t a denormalized version of the main table but rather
another version of the model entirely, with a di ferent primary key to begin
with.

What parts that might require denormalization for history tables are?

• Foreign key references to other tables won’t be possible when those refer-

ence changes and you want to keep a history that, by de nition, doesn’t

change.

• The schema of your main table evolves and the history table shouldn’t

rewrite the history for rows already written.

Chapter 31 Denormalization | 271

The second point depends on your business needs. It might be possible to add

new columns to both the main table and its history table when the processing

done on the historical records is pretty light, i.e. mainly listing and
comparing.

An alternative to classic history tables, when using PostgreSQL, takes

advantage

of the advanced data type JSONB.

1

create schema if not exists archive;

2

3

create type archive.action_t

4

as enum('insert', 'update', 'delete');

5

6

create table archive.older_versions

7

(

8

table_name text,

9

date

timestamptz default now(),

10

action

archive.action_t,

11

data

jsonb

12

);

Then it’s possible to ll in the archive older_versions table with data from
another table:

1

insert into archive.older_versions(table_name, action, data)

2

select 'hashtag', 'delete', row_to_json(hashtag)

3

from hashtag

4

where id = 720554371822432256

5

returning table_name, date, action, jsonb_pretty(data) as data;

This returns:

─[RECORD 1

]──

table_name │ hashtag

date

│ 2017-09-12 23:04:56.100749+02

action

│ delete

data

│ {

↵

│

"id": 720554371822432256,

↵

│

"date": "2016-04-14T10:08:00+02:00",

↵

│

"uname": "Brand 1LIVESTEW",

↵

│

"message": "#FB @ Atlanta, Georgia https://t.co/mUJdxaTbyC",↵

│

"hashtags": [

↵

│

"#FB"

↵

│

],

↵

│

"location": "(-84.3881,33.7489)"

↵

│ }

INSERT 0 1

When using the PostgreSQL extension hstore it is also possible to compute
the diff between versions thanks to the support for the - operator on this data
type.

Chapter 31 Denormalization | 272

Recording the data as jsonb or hstore in the history table allows for having a
single table for a whole application. More importantly, it means that dealing
with

an application life cycle where the database model evolves is allowed as well

https://www.postgresql.org/docs/current/static/hstore.html

as

dealing with di ferent versions of objects into the same archive.

As seen in the previous sections though, dealing with jsonb in PostgreSQL is
quite powerful, but not as powerful as dealing with the full power of a
structured data model with an advanced SQL engine. That said, of en enough
the

application and business needs surrounding the history entries are relaxed
com-

pared to live data processing.

Validity Period as a Range

As we already covered in the rates example already, a variant of the historic
table

requirement is when your application even needs to process the data even af
er

its date of validity. When doing nancial analysis or accounting, it is crucial to

relate an invoice in a foreign currency to the valid exchange rate at the time
of the invoice rather than the most current value of the currency.

1

create table rates

2

(

3

currency text,

4

validity daterange,

5

rate

numeric,

6

7

exclude using gist (currency with =,

8

validity with &&)

9

);

An example of using this model follows:

1

select currency, validity, rate

2

from rates

3

where currency = 'Euro'

4

and validity @> date '2017-05-18';

And here’s what the application would receive, a single line of data of course,

thanks to the exclude using constraint:

currency │

validity

│

rate

══════════╪═════════════════════════╪══════════

Euro

│ [2017-05-18,2017-05-19) │ 1.240740

(1 row)

Chapter 31 Denormalization | 273

This query is kept fast thanks to the special GiST indexing, as we can see in
the query plan:

1

\pset format wrapped

2

\pset columns 57

3

4

explain

5

select currency, validity, rate

6

from rates

7

where currency = 'Euro'

8

and validity @> date '2017-05-18';

QUERY PLAN

═══

Index Scan using rates_currency_validity_excl on rates …

… (cost=0.15..8.17 rows=1 width=34)

Index Cond: ((currency = 'Euro'::text) AND (validity …

…@> '2017-05-18'::date))

(2 rows)

So when you need to keep around values that are only valid for a period of
time,

consider using the PostgreSQL range data types and the exclusion constraint
that guarantees no overlapping of values in your data set. This is a powerful
technique.

Pre-Computed Values

In some cases, the application keeps computing the same derived values each
time

it accesses to the data. It’s easy to pre-compute the value with PostgreSQL:

• As a default value for the column if the computation rules only include

information available in the same tuple

• With a before tri er that computes the value and stores it into a column

right in your table

Triggers are addressed later in this book with an example to solve this use
case.

Enumerated Types

It is possible to use ENUM rather than a reference table.

Chapter 31 Denormalization | 274

When dealing with a short list of items, the normalized way to do that is to
han-

dle the catalog of accepted values in a dedicated table and reference this table
everywhere your schema uses that catalog of values.

When using more than join_collapse_limit or from_collapse_limit relations in
SQL queries, the PostgreSQL optimizer might be defeated… so in some
schema

using an ENUM data type rather than a reference table can be bene cial.

Multiple Values per Attribute

In the CSV anti-pattern database model, we saw all the disadvantages of
using

multiple values per attribute in general, with a text-based schema and a
separator used in the attribute values.

Managing several values per attribute, in the same row, can help reduce how

many rows your application must manage. The normalized alternative has a
side

table for the entries, with a reference to the main table’s primary key.

Given PostgreSQL array support for searching and indexing, it is more e
cient

at times to manage the list of entries as an array attribute in our main table.
This

is particularly e fective when the application of en has to delete entries and all
referenced data.

In some cases, multiple attributes each containing multiple values are needed.

PostgreSQL arrays of composite type instances might then be considered.
Cases

when that model beats the normalized schema are rare, though, and managing

this complexity isn’t free.

The Spare Matrix Model

In cases where your application manages lots of optional attributes per row,
most

of them never being used, they can be denormalized to a JSONB extra
column

with those attributes, all managed into a single document.

When restricting this extra jonsb attribute to values never referenced

anywhere else in the schema, and when the application only needs this extra
data as a whole,

then jsonb is a very good trade-o f for a normalized schema.

Chapter 31 Denormalization | 275

Partitioning

Partitioning refers to splitting a table with too many rows into a set of tables

each containing a part of those rows. Several kinds of partitioning are
available,

such as list or range partitioning. Starting in PostgreSQL 10, table
partitioning

is supported directly.

While partitioning isn’t denormalization as such, the limits of the
PostgreSQL

implementation makes it valuable to include the technique in this section.
Quot-

ing the PostgreSQL documentation:

• There is no facility available to create the matching indexes on all parti-

tions automatically. Indexes must be added to each partition with sepa-

rate commands. This also means that there is no way to create a primary

key, unique constraint, or exclusion constraint spanning all partitions; it

is only possible to constrain each leaf partition individually.

• Since primary keys are not supported on partitioned tables, foreign keys

https://www.postgresql.org/docs/10/static/ddl-partitioning.html

referencing partitioned tables are not supported, nor are foreign key refer-

ences from a partitioned table to some other table.

• Using the ON CONFLICT clause with partitioned tables will cause an

error, because unique or exclusion constraints can only be created on in-

dividual partitions. There is no support for enforcing uniqueness (or an

exclusion constraint) across an entire partitioning hierarchy.

• An UPDATE that causes a row to move from one partition to another

fails, because the new value of the row fails to satisfy the implicit partition

constraint of the original partition.

• Row triggers, if necessary, must be de ned on individual partitions, not

the partitioned table.

So when using partitioning in PostgreSQL 10, we lose the ability to reach
even the rst normal form by the lack of covering primary key. Then we lose
the ability to maintain a reference to the partitioned table with a foreign key.

Before partitioning any table in PostgreSQL, including PostgreSQL 10, as
with

any other denormalization technique (covered here or not), please do your
home-

work: check that it’s really not possible to sustain the application’s workload
with

a normalized model.

Chapter 31 Denormalization | 276

Other Denormalization Tools

PostgreSQL extensions such as hstore, ltree, intarray or pg_trgm o fer
another set of interesting trade-o fs to implement speci c use cases.

For example ltree can be used to implement nested category catalogs and
reference articles precisely in this catalog.

Denormalize wih Care

It’s been mentioned already, and it is worth saying it again. Only denormalize

your application’s schema when you know what you’re doing, and when
you’ve

double-checked that there’s no other possibility for implementing your
applica-

tion and business cases with the required level of performance.

First, query optimization techniques — mainly rewriting until it’s obvious for

PostgreSQL how to best execute a query — can go a long way. Production
exam-

ples of query rewrite improving durations from minutes to milliseconds are
com-

monly achieved, in particular against queries written by ORMs or other naive

toolings.

Second, denormalization is an optimization technique meant to leverage
trade-

o fs. Allow me to quote Rob Pike again, as he establishes his rst rule of
programming in Notes on Programming in C as the following: Rule 1. You
can’t tell where a program going to spend its time. Bottlenecks occur in
surprising plac , so don’t try to second guess and

https://www.postgresql.org/docs/current/static/ltree.html
https://en.wikipedia.org/wiki/Rob_Pike
http://www.lysator.liu.se/c/pikestyle.html

put in a speed hack until you’ve proven that’s where the bottleneck

.

The rule works as well for a database model as it does for a program. Maybe
the

database model is even more tricky because we only measure time spent by
ran

queries, usually, and not the time it takes to:

• Understand the database model

• Understand how to use the database model to solve a new business case

• Write the SQL queries necessary to the application code

• Validate data quality

Chapter 31 Denormalization | 277

So again, only put all those nice properties at risk with denormalizing the
schema

when there’s no other choice.

32

Not Only SQL

PostgreSQL is a solid ACID relational database management system and uses

the SQL language to process, manage and query the data. Its main purpose is
to guarantee a consistent view of a business as a whole, at all times, while
applications are concurrently active in read and write modes of operation.

To achieve a strong level of consistency, PostgreSQL needs the application
de-

signers to also design a solid data model, and at times to think about
concurrency

issues. We deal with those in the next chapter: Data Manipulation and
Concur-

rency Control.

In recent years, big players in the industry faced a new scale of business,
never

before seen. Nowadays, a big player may have tens or hundreds of millions of

concurrent users. Each user produces new data, and some business models
need

to react quickly to the newly inserted data and make it available to customers
—

mostly advertising networks…

Solving that scale of an activity introduced new challenges and the necessity
to

work in a distributed fashion. A single instance would never be able to
address hundreds of millions of concurrent users, all actively producing data.

In order to be able to address such a scale, new systems have been designed
that

relax one or several of the ACID guarantees. Those systems are grouped
under the NoSQL agship term and are very diverse in their capabilities and
behavior.

Under the NoSQL term, we nd solutions with characteristics including:

• No support for transactions

Chapter 32 Not Only SQL | 279

• Lacking atomic operations, for which transactions are needed

• Lacking isolation, which means no support for online backups

• No query language, instead using an API

• No consistency rules, not even data types

• A reduced set of operations, of en only key/value support

• Lacking support for join or analytics operations

• Lacking support for business constraints

• No support for durability

Relaxing the very strong guarantees o fered by traditional database systems
al-

lows some of the NoSQL solution to handle more concurrent activity, of en
using distributed nodes of computing with a distributed data set: each node
only

has access to a partial set of the data.

Some of those systems then added a query language, with similarities to the
well-

known and established SQL. The NoSQL movement has inspired a NewSQL

movement.

PostgreSQL o fers several ways to relax its ACID guarantees and it can be
compared favorably to most of the NoSQL and NewSQL o ferings, at least
until the concurrency levels can’t be sustained by a single instance.

Solutions to scale-out PostgreSQL are readily available, either as extensions
or as forks, and these are not covered by this book. In this chapter, we focus
on using PostgreSQL as a NoSQL solution with batteries included, for those

cases when you need them, such as reporting, analytics, data consistency and
quality, and

other business needs.

Schemaless Design in PostgreSQL

An area where the NoSQL systems have been prominent is in breaking with

the normalization rules and the hard step of modeling a database schema. In-

stead, most NoSQL system will happily manage any data the application
sends

through. This is called the schemaless approach.

In truth, there’s no such thing as a schemaless design actually. What it means
is that the name and type of the document properties, or elds, are hard-coded
into

the application code.

Chapter 32 Not Only SQL | 280

A readily available JSON data set is provided at https://mtgjson.com that
Provid Magic: the Gathering card data in JSON format, using the CC0
license.

We can load it easily given this table de nition:

1

begin;

2

3

create schema if not exists magic;

https://mtgjson.com
https://creativecommons.org/publicdomain/zero/1.0/

4

5

create table magic.allsets(data jsonb);

6

7

commit;

Then we use a small Python script:

1

#! /usr/bin/env python3

2

3

import psycopg2

4

5

PGCONNSTRING = "user=appdev dbname=appdev"

6

7

if __name__ == '__main__':

8

pgconn = psycopg2.connect(PGCONNSTRING)

9

curs = pgconn.cursor()

10

11

allset = open('MagicAllSets.json').read()

12

allset = allset.replace("'", "''")

13

sql = "insert into magic.allsets(data) values('%s')" % allset

14

15

curs.execute(sql)

16

pgconn.commit()

17

pgconn.close()

Now, the giant JSON document in a single table isn’t representative of the
kind of schemaless design addressed in this chapter. It goes a little too far to
push a 27

MB document containing collections of cards into a single table. We can x
this

easily, though, given that we’re using PostgreSQL:

1

begin;

2

3

drop table if exists magic.sets, magic.cards;

4

5

create table magic.sets

6

as

7

select key as name, value - 'cards' as data

8

from magic.allsets, jsonb_each(data);

9

10

create table magic.cards

11

as

12

with collection as

13

(

Chapter 32 Not Only SQL | 281

14

select key as set,

15

value->'cards' as data

16

from magic.allsets,

17

lateral jsonb_each(data)

18

)

19

select set, jsonb_array_elements(data) as data

20

from collection;

21

22

commit;

Here’s how to query such a table and get data you are interested into. Note
that

we use the generic contains operator, spelled @>, which nds a JSON
document inside another JSON document. Our GIN index de nition above has
support

for exactly this operator.

1

select jsonb_pretty(data)

2

from magic.cards

3

where data @> '{"type":"Enchantment",

4

"artist":"Jim Murray",

5

"colors":["White"]

6

}';

And we get the following card, which has been found using a GIN index
lookup over our collection of 34207 cards, in about 1.5ms on my laptop:

jsonb_pretty

══

{

↵

"id": "34b67f8cf8651964995bfec268498082710d4c6a",

↵

"cmc": 5,

↵

"name": "Angelic Chorus",

↵

"text": "Whenever a creature enters the battlefield under your c…

…ontrol, you gain life equal to its toughness.",

↵

"type": "Enchantment",

↵

"types": [

↵

"Enchantment"

↵

],

↵

"artist": "Jim Murray",

↵

"colors": [

↵

"White"

↵

],

↵

"flavor": "The harmony of the glorious is a dirge to the wicked.…

…",

↵

"layout": "normal",

↵

"number": "4",

↵

"rarity": "Rare",

↵

"manaCost": "{3}{W}{W}",

↵

"imageName": "angelic chorus",

↵

"mciNumber": "4",

↵

"multiverseid": 129710,

↵

"colorIdentity": [

↵

"W"

↵

]

↵

}

Chapter 32 Not Only SQL | 282

(1 row)

The thing with this schemaless design is that documents still have a structure,
with elds and data types. It’s just opaque to the database system and
maintained

in the application’s code anyway.

Of course, schemaless means that you reach none of the normal forms, which
have been designed as a helper to guarantee data quality in the long term.

So while PostgreSQL allows handling schemaless data thanks to its support
for the JSON, XML, arrays and composite data types, only use this approach
when you have zero data quality requirements.

Durability Trade-Offs

Durability is the D of the ACID guarantees, and it refers to the property that
your database management system is not allowed to miss any committed
transaction af er a restart or a crash… any crash. It’s a very strong guarantee,
and it can

impact performances behavior a lot.

Of course, by default, PostgreSQL applies a strong durability guarantee to
every

transaction. As you can read in the documentation about asynchronous
commit,

it’s possible to relax that guarantee for enhanced write capacity.

PostgreSQL allows synchrono _commit to be set di ferently for each
concurrent transaction of the system, and to be changed in- ight within a
transaction. Af er

all, this setting controls the behavior of the server at transaction commit time.

Reducing the write guarantees is helpful for sustaining some really heavy
write

workloads, and that’s easy to do with PostgreSQL. One way to implement
dif-

ferent durability policies in the same application would be to assign a di
ferent level of guarantee to di ferent users:

1

create role dbowner with login;

https://www.postgresql.org/docs/current/static/wal-async-commit.html

2

create role app with login;

3

4

create role critical

with login in role app inherit;

5

create role notsomuch with login in role app inherit;

6

create role dontcare

with login in role app inherit;

7

8

alter user critical

set synchronous_commit to remote_apply;

Chapter 32 Not Only SQL | 283

9

alter user notsomuch set synchronous_commit to local;

10

alter user dontcare

set synchronous_commit to off;

Use the dbowner role for handling your database model and all your DDL

scripts, and create your database with this role as the owner of it. Give
enough

privileges to the app role so that your application can use it to implement all
the necessary work ows. Then the critical, notsomuch and dontcare roles will
have the same set of privileges as the app role, and maybe host a di ferent set
of settings.

Now your application can pick the right connection string or user and obtain
a

stronger guarantee for any data changes made, with the critical user, or no
durability guarantee with the dontcare user.

If you need to change the synchrono _commit setting in- ight, your
application can use the SET LOCAL command.

It’s also possible to implement such a policy entirely in the database side of
things thanks to the following example trigger:

1

SET demo.threshold TO 1000;

2

CREATE OR REPLACE FUNCTION public.syncrep_important_delta()

3

RETURNS TRIGGER

4

LANGUAGE PLpgSQL

https://www.postgresql.org/docs/current/static/sql-set.html

5

AS

6

$$ DECLARE

7

threshold integer := current_setting('demo.threshold')::int;

8

delta integer := NEW.abalance - OLD.abalance;

9

BEGIN

10

IF delta > threshold

11

THEN

12

SET LOCAL synchronous_commit TO on;

13

END IF;

14

RETURN NEW;

15

END;

16

$$;

Such a trigger would have a look at the delta from your balance at commit
time

and depending on the amount would upgrade your synchrono _commit set-

ting.

Sometimes though, even with relaxing the durability guarantees, business re-

quirements can’t be met with a single server handling all the write tra c.
Then,

it is time to scale out.

Chapter 32 Not Only SQL | 284

Scaling Out

A very interesting area in which the NoSQL solutions made progress is in the
ability to natively scale-out a production setup, without extra e forts. Thanks
to

their design choice of a reduced set of operations supported — in particular
the

lack of join operations — and a relaxed consistency requirement set — such
as the lack of transaction support and the lack of integrity constraints — the
NoSQL

systems have been able to be innovative in terms of distributed computing.

Native scale out is achieved when it’s easy to add computing nod or servers
into a production setup, at run-time, and then improve both the read and write
capacity of the whole production setup.

High availability and load balancing are something separate from scale out,
and

can be done both by the NoSQL systems and by PostgreSQL based
architectures,

as covered in the PostgreSQL documentation entitled High Availability, Load

Balancing, and Replication.

PostgreSQL native scale-out does not exist yet. Commercial and open-source
—

both at the same time — extensions and forks are available that solve this
problem

such as Postgres-BDR from 2ndQuadrant or Citus from citusdata.

PostgreSQL 10 ships with logical replication support included, and this
allows for a certain level of scaling-out solutions.

If your business manages data from separated areas, say geographically
indepen-

dent units, then it’s possible to have each geographical unit served by a
separate

PostgreSQL server. Then use logical replication to combine the data set into
a single global server for a classic setup, or to local copies in each region you
operate into.

The application still needs to know where is the data is that it needs to access

to, so the solution isn’t transparent yet. That said, in many business cases
write

https://www.postgresql.org/docs/9.6/static/high-availability.html
https://www.postgresql.org/docs/9.6/static/high-availability.html
https://www.2ndquadrant.com/en/resources/bdr/
https://www.citusdata.com
https://www.postgresql.org/docs/devel/static/logical-replication.html

latency is a bigger problem than write scalibility, so a federated central server
is

still possible to maintain, and now the reporting applications can use that
Post-

greSQL instance.

When considering a scaling out solution, always rst consider the question of
online backups: do you still need them, and if so, are they possible to
implement?

Most of the native scale-out systems o fer no global transactions, which
means

no isolation from concurrent activity and as a result there is no possibility to

Chapter 32 Not Only SQL | 285

implement a consistent online backup.

33

An interview with Álvaro

Hernández Tortosa

IT entrepreneur, founder of two sof ware development companies (8Kdata,
Wiz-zbill). Sof ware architect and developer. Open source consultant and
supporter.

Ávaro Hernández Tortosa leads the ToroDB project, a MongoDB replica
solution based on PostgreSQL!

In particular, check out the Stampede product, which brings MongoDB to
PostgreSQL. Stampede automagically nds the schema of your MongoDB
data and

presents it as relational tables and columns. Stampede is just a hidden

https://www.8kdata.com
https://www.torodb.com
https://www.torodb.com/stampede/

secondary

node of your MongoDB replica set. No need to design any DDL. Plug&Play!

From your experience building the ToroDB bridge in between relational and

“schemaless” worlds, do you still see any advantage in the relational data
model

with business constraints?

I absolutely do. Let me really quantify it, in two very clear scenar-

ios.

One my own experience with dynamic schema (please let me avoid

the schema-less term, which I think it completely flawed. I prefer

dynamic schema or schema-attached). Since ToroDB replicat data

that previously exists on a MongoDB instance, we needed to find

applications that created data on MongoDB. Or write them. We

did, of course, both. And on writing applications for MongoDB,

we experience the dynamic schema on MongoDB for ourselv .

Chapter 33 An interview with Álvaro Hernández Tortosa | 287

It looks appealing at first. I can throw anything at it, and it works.

You don’t need to design the schema! So you start prototyping very

quickly. But data almost always h

“relations”. For instance, we

set-up an IoT device with an antenna (yeah, on our office’s roof) to

receive live flight data (ADSB receiver). And we stored the flight

data in a collection. But soon you download a “database” of car-

riers, and you want to relate them to the flight data. And then

airports. And then plane models. And then…. and how do you

store all that data in MongoDB? In different collections? Embed-

ded into the flight data documents? Otherwise? These questions

typically come up very early, and pose schema design considera-

tions. Wasn’t “schema-less” something that avoided you designing

the schema? Not at all. Indeed, even MongoDB recommends de-

signing the schema

a best-practice, and they even offer full cours

on schema design on MongoDB! And once you understand th and

need to design the schema, you realize you are basically limited to

the following options:

a. Embed 1:1 relationships inside the documents (th

fine).

b. Embed 1:N relationships (de-normalization: may lead to

data duplication)

c. Simulate N:M relationships either by embedding (you choose

only one side of the join , forget about the other, and also leads

to data duplication) or you embed ids , and you do the join at

the application level (reinvent the wheel).

So in any case you need to carefully design the data structure and

your options are much more limited than in the relational world.

That’s not saying there are use cas for dynamic schema, like very

flat data structur , or

a temporary store for data of very dynamic

properti , which you may normalize later. But it’s not the unicorn

we have been told to believe it .

The second scenario

related to analytics performance. Basically,

NoSQL

not designed for analytics purpos and perform very

poorly. We found 1-2 orders of magnitude speedup when performing

the same queri on relational-structured data vs. NoSQL.

Th may sound counterintuitive: after all NoSQL

for “Big

Data”, isn’t it? Well, it could also be explained in a very intuitive

Chapter 33 An interview with Álvaro Hernández Tortosa | 288

manner: NoSQL data

unstructured data. And unstructured

data,

it name impli ,

unstructured, that , doesn’t have

an a priori structure. It

a bit “chaotic”, unorganized. Data

may be present, absent, or located anywhere.

And what

analytics? Obtaining valuable information from data. But if data

unstructured, every analytic query needs to parse and analyze

every single document present and infer its structure, check if the

query predicate match the document (or even if the keys that

are looking for even exist on th document!) and so forth. Th

represents a significant extra effort that

completely not required

in relational datastor . And hence they are able to perform even

orders of magnitude faster. Queri that take hours in NoSQL

may take just a few seconds in relational. It’s th dramatic. For

more information, feel free to read our blog post and benchmarks

on th

topic: https://www.8kdata.com/blog/announcing-torodb-

stampede-1-0-beta/.

With ToroDB Stampede it’s now possible to have both MongoDB and Post-

greSQL feature sets on top of the same live data set. How would you
compare

the query languages for MongoDB and PostgreSQL?

MongoDB query language h been growing, adding new operators

and functionality and I expect th trend to continue with every re-

lease. However, if you compare it feature-wise with SQL, especially

with PostgreSQL’s very rich feature SQL implementation, it

al-

most night and day. To name a couple of exampl , joins are only

limited in a very limited fashion, and there are no window func-

tions. What

worse

that some query patterns in MongoDB are

not optimized and performance vari dramatically from feature to

feature. I expect MongoDB query language to take a long time to

catch up, if that’s possible, with PostgreSQL’s SQL language.

Syntax

another issue. MongoDB’s query language

https://www.8kdata.com/blog/announcing-torodb-stampede-1-0-beta/
https://www.8kdata.com/blog/announcing-torodb-stampede-1-0-beta/

a JSON

document, and it soon becom awkward to understand and follow.

Take a moderately complex query in MongoDB and its equivalent

in SQL and present them to the average developer, not specially

trained in either. You will see the difference.

But the main problem I see in MongoDB, regarding its user-facing

language it’s the compatibility. SQL

a standard, and even if

there are some minor differenc between implementations and the

Chapter 33 An interview with Álvaro Hernández Tortosa | 289

standard itself (by the way, PostgreSQL here do a very good job,

following the standard very closely), it h

led to the development,

for many years, of a huge ecosystem of tools and applications that

you can use with the database. There

simply no such ecosystem

for MongoDB, it’s just a minor fraction in comparison.

Note: sure, MongoDB h

the proprietary BI Connector, which

theoretically allows you to connect MongoDB to any SQL tool. The

true story that BI Connector performance very poor when com-

pared to a SQL database, and its SQL compatibility support also

very small. So it just works on some limited number of cas .

How would you compare a pure JSON “schemaless” database such as
MongoDB

against PostgreSQL denormalization options such as arrays, composite types,

JSONB embedded documents, etc?

PostgreSQL data typ are really rich and flexible. You can very

easily create your own or extend others. JSONB, in particular,

emulat a whole document, and also supports quite advanced in-

dexing (B-tree index on an expression of the JSON document, or

specialized json index that index either the whole document or

paths within it). One very obvio

question

whether jsonb data

type can compete with MongoDB on its own field, dynamic schema.

One the one hand, MongoDB

not only chosen because of

the dynamic schema, but other capabiliti

such

built-in

high-availability (with its own gotch , but after all integrated

into core) and distributed query. On the former, PostgreSQL

cannot compete directly, there

no HA solution in-core, even

though there are several external solutions. As for distributed

queri , more related to the topic being discussed, there

also not

support per se in PostgreSQL (however you may use Cit

Data’s

PostgreSQL extension for a distributed data store or Greenplum

for data warehousing capabiliti). But in combination, we cannot

clearly say that PostgreSQL here offers a complete alternative to

MongoDB.

On the other hand, if we’re just talking about data and not database

infrastructure, JSONB pretty much fulfills the purpos of a docu-

ment store, and it’s probably better in some are . Probably the

query language (JSONB’s query functions and operators, that go

Chapter 33 An interview with Álvaro Hernández Tortosa | 290

beyond SQL) are less advanced than MongoDB’s query language

(even with all the internal issu that MongoDB query language

h). But it offers the best of both worlds: you can freely combine

unstructured with structured data. And th

, indeed, a very com-

pelling use-case: the benefits of a normalized, relational schema de-

sign for the core parts of the data, and those that are obvio

and

clear from the beginning; and add

needed jsonb columns for

less structured, more dynamic, changing data, until you can under-

stand its shape and finally migrate to a relational schema. Th

really the best of both worlds and my best recommendation.

Part VII

Data Manipulation and

Concurrency Control

| 292

In the previous chapters, we saw di ferent ways to fetch exactly the data
you’re

interested into from the database server. This data that we’ve been querying
us-

ing SQL must get there, and that’s the role of the DML parts of the standard:
data manipulation language.

The most important aspects of this language for maintaining data are its
concur-

rency properties with the ACID guarantees, and its capability to process
batches of rows at a time.

The CRUD capabilities are essential to any application: create, read, update
and delete one entry at a time is at the foundation of our applications, or at
least their admin panels.

34

Another Small Application

In a previous chapter when introducing arrays we used a dataset of 200,000
USA

geolocated tweets with a very simple data model. The data model is a direct
port of the Excel sheet format, allowing a straightforward loading process:
we used

the \copy command from psql.

1

begin;

2

3

create table tweet

4

(

5

http://followthehashtag.com/datasets/free-twitter-dataset-usa-200000-free-usa-tweets/
http://followthehashtag.com/datasets/free-twitter-dataset-usa-200000-free-usa-tweets/

id

bigint primary key,

6

date

date,

7

hour

time,

8

uname

text,

9

nickname

text,

10

bio

text,

11

message

text,

12

favs

bigint,

13

rts

bigint,

14

latitude

double precision,

15

longitude

double precision,

16

country

text,

17

place

text,

18

picture

text,

19

followers

bigint,

20

following

bigint,

21

listed

bigint,

22

lang

text,

23

url

text

24

);

25

26

\copy tweet from 'tweets.csv' with csv header delimiter ';'

Chapter 34 Another Small Application | 294

27

28

commit;

This database model is all wrong per the normal forms introduced earlier:

• There’s neither a unique constraint nor primary key, so there is nothing
preventing insertion of duplicates entries, violating 1NF.

• Some non-key attributes are not dependent on the key because we mix

data from the Twitter account posting the message and the message itself,

violating 2NF.

This is the case with all the user’s attributes, such as the nickname, bio,
picture, followers, following, and listed attributes.

• We have transitive dependencies in the model, which violates 3NF this

time.

– The country and place attributes depend on the location attribute and as
such should be on a separate table, such as the geonam data

as used in the Denormalized Data Types chapter.

– The hour attributes depend on the date attribute, as the hour alone can’t
represent when the tweet was transmitted.

• The longitude and latitude should really be a single location column, given
PostgreSQL’s ability to deal with geometric data types, here a point.

It is interesting to note that failing to respect the normal forms has a negative

impact on application’s performance. Here, each time a user changes his or
her

bio, we will have to go edit the user’s bio in every tweet ever posted. Or we
could decide to only give new tweets the new bio, but then at query time
when showing an old tweet, it gets costly to fetch the current bio from the
user.

From a concurrency standpoint, a normalized schema helps to avoid
concurrent

update activity on the same rows from occuring of en in production.

It’s now time to rewrite our schema, and here’s a rst step:

1

begin;

2

3

create schema if not exists tweet;

4

5

create table tweet.users

6

(

7

userid

bigserial primary key,

8

uname

text not null,

Chapter 34 Another Small Application | 295

9

nickname

text not null,

10

bio

text,

11

picture

text,

12

followers

bigint,

13

following

bigint,

14

listed

bigint,

15

16

unique(uname)

17

);

18

19

create table tweet.message

20

(

21

id

bigint primary key,

22

userid

bigint references tweet.users(userid),

23

datetime

timestamptz not null,

24

message

text,

25

favs

bigint,

26

rts

bigint,

27

location

point,

28

lang

text,

29

url

text

30

);

31

32

commit;

This model cleanly separates users and their messages and removes the
attributes

country and place, which we maintain separately in the geonames schema, as
seen earlier.

That said, followers and following and listed elds are a summary of other
information that we should have but don’t. The fact that the extract we
worked with

had a simpler statistics oriented schema shouldn’t blind us here. There’s a
better

way to register relationships between users in terms of who follows who and
who

lists who, as in the following model:

1

begin;

2

3

create schema if not exists tweet;

4

5

create table tweet.users

6

(

7

userid

bigserial primary key,

8

uname

text not null,

9

nickname

text,

10

bio

text,

11

picture

text,

12

13

unique(uname)

14

);

15

Chapter 34 Another Small Application | 296

16

create table tweet.follower

17

(

18

follower

bigint not null references tweet.users(userid),

19

following

bigint not null references tweet.users(userid),

20

21

primary key(follower, following)

22

);

23

24

create table tweet.list

25

(

26

listid

bigserial primary key,

27

owner

bigint not null references tweet.users(userid),

28

name

text not null,

29

30

unique(owner, name)

31

);

32

33

create table tweet.membership

34

(

35

listid

bigint not null references tweet.list(listid),

36

member

bigint not null references tweet.users(userid),

37

datetime

timestamptz not null,

38

39

primary key(listid, member)

40

);

41

42

create table tweet.message

43

(

44

messageid

bigserial primary key,

45

userid

bigint not null references tweet.users(userid),

46

datetime

timestamptz not null default now(),

47

message

text not null,

48

favs

bigint,

49

rts

bigint,

50

location

point,

51

lang

text,

52

url

text

53

);

54

55

commit;

Now we can begin to work with this model.

35

Insert, Update, Delete

The three commands insert, update, and delete have something in common:

they accept a returning clause. This allows the DML command to return a
result set to the application with the same protocol as the select clause, both
are a projection.

This is a PostgreSQL addition to the SQL standard and it comes with clean
and

general semantics. Also, it avoids a network roundtrip when your application

needs to know which default value has been chosen for its own bookkeeping.

Another thing the three commands have in common is a way to do joins. It is

spelled di ferently in each statement though, and it is included in the SQL
stan-

dard too.

Insert Into

Given our model of tweets, the rst thing we need are users. Here’s how to
create

our rst users:

1

insert into tweet.users (userid, uname, nickname, bio)

2

values (default, 'Theseus', 'Duke Theseus', 'Duke of Athens.');

The SQL standard valu clause is usable anywhere select is expected, as we
saw already in our truth tables earlier. Also, values accepts several rows at a
time.

https://www.postgresql.org/docs/current/static/sql-values.html

Chapter 35 Insert, Update, Delete | 298

1

insert into tweet.users (uname, bio)

2

values ('Egeus', 'father to #Hermia.'),

3

('Lysander', 'in love with #Hermia.'),

4

('Demetrius', 'in love with #Hermia.'),

5

('Philostrate', 'master of the revels to Theseus.'),

6

('Peter Quince', 'a carpenter.'),

7

('Snug', 'a joiner.'),

8

('Nick Bottom', 'a weaver.'),

9

('Francis Flute', 'a bellows-mender.'),

10

('Tom Snout', 'a tinker.'),

11

('Robin Starveling', 'a tailor.'),

12

('Hippolyta', 'queen of the Amazons, betrothed to Theseus.'),

13

('Hermia', 'daughter to Egeus, in love with Lysander.'),

14

('Helena', 'in love with Demetrius.'),

15

('Oberon', 'king of the fairies.'),

16

('Titania', 'queen of the fairies.'),

17

('Puck', 'or Robin Goodfellow.'),

18

('Peaseblossom', 'Team #Fairies'),

19

('Cobweb', 'Team #Fairies'),

20

('Moth', 'Team #Fairies'),

21

('Mustardseed', 'Team #Fairies'),

22

('All', 'Everyone speaking at the same time'),

23

('Fairy', 'One of them #Fairies'),

24

('Prologue', 'a play within a play'),

25

('Wall', 'a play within a play'),

26

('Pyramus', 'a play within a play'),

27

('Thisbe', 'a play within a play'),

28

('Lion', 'a play within a play'),

29

('Moonshine', 'a play within a play');

If you have lots of rows to insert into your database, consider using the copy

https://www.postgresql.org/docs/current/static/sql-copy.html

command instead of doing a series of inserts. If for some reason you can’t
use copy, for performance reasons, consider using a single transaction doing
several insert statements each with many valu .

Insert Into … Select

The insert statement can also use a query as a data source. We could, for
instance, ll in our tweet.follower table with people that are known to love
each other from their bio eld; and also we should have the fairies follow their
queen and king, maybe.

First, we need to take this data apart from the previously inserted elds, which
is

our data source here.

Chapter 35 Insert, Update, Delete | 299

1

select users.userid as follower,

2

users.uname,

3

f.userid as following,

4

f.uname

5

from

tweet.users

6

join tweet.users f

7

on f.uname = substring(users.bio from 'in love with #?(.*).')

8

where users.bio ~ 'in love with';

The substring expression here returns only the regular expression matching

group, which happens to be the name of who our user loves. The query then

gives us the following result, which looks about right:

follower │

uname

│ following │

uname

══════════╪═══════════╪═══════════╪═══════════

3 │ Lysander

│

13 │ Hermia

4 │ Demetrius │

13 │ Hermia

13 │ Hermia

│

3 │ Lysander

14 │ Helena

│

4 │ Demetrius

(4 rows)

Now, we want to insert the follower and following data into the
tweet.follower table of course. As the insert into command knows how to
read its input from the result of a select statement, it’s pretty easy to do:

1

insert into tweet.follower

2

select users.userid as follower,

3

f.userid as following

4

from

tweet.users

5

join tweet.users f

6

on f.uname = substring(users.bio from 'in love with #?(.*).')

7

where users.bio ~ 'in love with';

Now about those fairies following their queen and king:

1

with fairies as

2

(

3

select userid

4

from tweet.users

5

where bio ~ '#Fairies'

6

)

7

insert into tweet.follower(follower, following)

8

select fairies.userid as follower,

9

users.userid as following

10

from fairies cross join tweet.users

11

where users.bio ~ 'of the fairies';

This time we even have the opportunity to use a cross join as we want to
produce all the di ferent combinations of a fairy with their royal subjects.

Chapter 35 Insert, Update, Delete | 300

Here’s what we have set-up in terms of followers now:

1

select follower.uname as follower,

2

follower.bio as "follower's bio",

3

following.uname as following

4

5

from tweet.follower as follows

6

7

join tweet.users as follower

8

on follows.follower = follower.userid

9

10

join tweet.users as following

11

on follows.following = following.userid;

And here’s what we’ve setup:

follower

│

follower's bio

│ following

══════════════╪═══╪═══════════

Hermia

│ daughter to Egeus, in love with Lysander. │ Lysander

Helena

│ in love with Demetrius.

│ Demetrius

Demetrius

│ in love with #Hermia.

│ Hermia

Lysander

│ in love with #Hermia.

│ Hermia

Peaseblossom │ Team #Fairies

│ Oberon

Cobweb

│ Team #Fairies

│ Oberon

Moth

│ Team #Fairies

│ Oberon

Mustardseed

│ Team #Fairies

│ Oberon

Peaseblossom │ Team #Fairies

│ Titania

Cobweb

│ Team #Fairies

│ Titania

Moth

│ Team #Fairies

│ Titania

Mustardseed

│ Team #Fairies

│ Titania

(12 rows)

The support for select as a source of data for the insert statement is the way
to implement joins for this command.

The insert into clause also accepts a con ict resolution clause with the on
conflict syntax, which is very powerful, and that we address in the isolation
and locking

part of this chapter.

Update

The SQL update statement is used to replace existing values in the database.
Its most important aspect lies in its concurrency behavior, as it allows
replacing existing values while other users are concurrently working with the
database.

Chapter 35 Insert, Update, Delete | 301

In PostgreSQL, all the concurrency feature are based on MVCC, and in the
case of the update statement it means that internally PostgreSQL is doing
both an insert of the new data and a delete of the old one. PostgreSQL system
columns xmin and xmax allow visibility tracking of the rows so that
concurrent statement have a consistent snapshot of the server’s data set at all

https://www.postgresql.org/docs/current/static/mvcc.html

times.

As row locking is done per-tuple in PostgreSQL, an update statement only
ever blocks another update, delete or select for update statement that targets
the same row(s).

We created some users without a nickname before, and maybe it’s time to
remedy that, by assigning them their uname as a nickname for now.

1

begin;

2

3

update tweet.users

4

set nickname = 'Robin Goodfellow'

5

where userid = 17 and uname = 'Puck'

6

returning users.*;

7

8

commit;

Here we pick the id 17 from the table af er a manual lookup. The idea is to
show

how to update elds in a single tuple from a primary key lookup. In a lot of
cases, our application’s code has fetched the id previously and injects it in the
update query in much the same way as this.

And thanks to the returning clause, we get to see what we’ve done:

1

userid │ uname │

nickname

│

bio

│ picture

2

════════╪═══════╪══════════════════╪══════════════════════╪═════════

3

17 │ Puck

│ Robin Goodfellow │ or Robin Goodfellow. │ ¤

4

(1 row)

As you can see in the previous query not only we used the primary key eld,
but as it is a synthetic key, we also added the real value we are interested into.
Should we have pasted the information wrong, the update would nd no
matching rows

and a fect zero tuples.

Now there’s another use case for that double check: concurrency. We know
that

the Robin Goodfellow nickname applies to Puck. What if someone did update
the uname of Puck while we were running our update statement? With that
double check, we know exactly one of the following is true:

• Either the other statement came in rst and the name is no longear Puck

and we updated no rows.

Chapter 35 Insert, Update, Delete | 302

• The other statement will come later and we did update a row that we know

is userid 17 and named Puck.

Think about that trick when dealing with concurrency in your application’s

code, and even more when you’re xing up some data from the console for a

one-o f x. Then always use an explicit transaction block so that you can check

what happened and issue a rollback; when it’s not what you thought.

We can also update several rows at the same time. Say we want to add a
default nickname to all those characters:

1

update tweet.users

2

set nickname = case when uname ~ ' '

3

then substring(uname from '[^]* (.*)')

4

else uname

5

end

6

where nickname is null

7

returning users.*;

And now everyone is assigned a proper nickname, computed from their user-

name with the easy and practical trick you can see in the query. The main
thing

to remember in that query is that you can use existing data in your UPDATE

statement.

Now, who are our Twitter users?

1

select uname, nickname, bio

2

from tweet.users

3

order by userid;

It’s a bunch of folks you might have heard about before. I’ve taken the names

and biographies from the A Midsummer Night’s Dream play from
Shakespeare, for which there’s a full XML transcript available at
Shakespeare 2.00 thanks to Jon Bosak.

uname

│

nickname

│

bio

══════════════════╪══════════════════╪═══

Theseus

│ Duke Theseus

│ Duke of Athens.

Egeus

│ Egeus

│ father to #Hermia.

Lysander

│ Lysander

│ in love with #Hermia.

Demetrius

│ Demetrius

│ in love with #Hermia.

https://en.wikipedia.org/wiki/A_Midsummer_Night%27s_Dream#Characters
http://research.cs.wisc.edu/niagara/data/shakes/shaksper.htm

Philostrate

│ Philostrate

│ master of the revels to Theseus.

Peter Quince

│ Quince

│ a carpenter.

Snug

│ Snug

│ a joiner.

Nick Bottom

│ Bottom

│ a weaver.

Francis Flute

│ Flute

│ a bellows-mender.

Tom Snout

│ Snout

│ a tinker.

Robin Starveling │ Starveling

│ a tailor.

Chapter 35 Insert, Update, Delete | 303

Hippolyta

│ Hippolyta

│ queen of the Amazons, betrothed to Theseus.

Hermia

│ Hermia

│ daughter to Egeus, in love with Lysander.

Helena

│ Helena

│ in love with Demetrius.

Oberon

│ Oberon

│ king of the fairies.

Titania

│ Titania

│ queen of the fairies.

Puck

│ Robin Goodfellow │ or Robin Goodfellow.

Peaseblossom

│ Peaseblossom

│ Team #Fairies

Cobweb

│ Cobweb

│ Team #Fairies

Moth

│ Moth

│ Team #Fairies

Mustardseed

│ Mustardseed

│ Team #Fairies

All

│ All

│ Everyone speaking at the same time

Fairy

│ Fairy

│ One of them #Fairies

Prologue

│ Prologue

│ a play within a play

Wall

│ Wall

│ a play within a play

Pyramus

│ Pyramus

│ a play within a play

Thisbe

│ Thisbe

│ a play within a play

Lion

│ Lion

│ a play within a play

Moonshine

│ Moonshine

│ a play within a play

(29 rows)

Inserting Some Tweets

Now that we have created a bunch of users from A Midsummer Night’s
Dream,

it is time to have them tweet. The full XML transcript available at
Shakespeare

2.00 contains not only the list of persona but also the full text of the play.

http://research.cs.wisc.edu/niagara/data/shakes/shaksper.htm
http://research.cs.wisc.edu/niagara/data/shakes/shaksper.htm

They are all speakers and they all have lines. That’s a good content for
tweets!

Here’s what the transcript looks like:

1

<PLAYSUBT> A MIDSUMMER NIGHT'S DREAM</PLAYSUBT>

2

3

<ACT><TITLE> ACT I</TITLE>

4

5

<SCENE><TITLE> SCENE I.

Athens. The palace of THESEUS. </TITLE>

6

<STAGEDIR> Enter THESEUS, HIPPOLYTA, PHILOSTRATE, and

7

Attendants</STAGEDIR>

8

9

<SPEECH>

10

<SPEAKER> THESEUS</SPEAKER>

11

<LINE> Now, fair Hippolyta, our nuptial hour</LINE>

12

<LINE> Draws on apace; four happy days bring in</LINE>

13

<LINE> Another moon: but, O, methinks, how slow</LINE>

14

<LINE> This old moon wanes! she lingers my desires, </LINE>

15

<LINE> Like to a step-dame or a dowager</LINE>

16

<LINE> Long withering out a young man revenue. </LINE>

17

</SPEECH>

Chapter 35 Insert, Update, Delete | 304

18

19

<SPEECH>

20

<SPEAKER> HIPPOLYTA</SPEAKER>

21

<LINE> Four days will quickly steep themselves in night; </LINE> 22

<LINE> Four nights will quickly dream away the time; </LINE>

23

<LINE> And then the moon, like to a silver bow</LINE>

24

<LINE> New-bent in heaven, shall behold the night</LINE>

25

<LINE> Of our solemnities. </LINE>

26

</SPEECH>

To have the characters of the play tweet their lines, we write a simple XML
parser

for the format and use the insert SQL command. Extracted from the code
used

to insert the data, here’s the insert query:

1

insert into tweet.message(userid, message)

2

select userid, $2

3

from tweet.users

4

where users.uname = $1 or users.nickname = $1

As the play’s text uses names such as <SPEAKER>QUINCE</SPEAKER>
and we inserted the real name into our database, we match the play’s XML
content against

either the uname or the nickname eld.

Now that the data is loaded, we can have a look at the beginning of the play
in

SQL.

1

select uname, message

2

from tweet.message

3

left join tweet.users using(userid)

4

order by messageid limit 4;

And yes, we can now see Shakespeare tweeting:

uname

│

message

═══════════╪═══

Theseus

│ Now, fair Hippolyta, our nuptial hour

↵

│ Draws on apace; four happy days bring in

↵

│ Another moon: but, O, methinks, how slow

↵

│ This old moon wanes! she lingers my desires,

↵

│ Like to a step-dame or a dowager

↵

│ Long withering out a young man revenue.

Hippolyta │ Four days will quickly steep themselves in night;↵

│ Four nights will quickly dream away the time;

↵

│ And then the moon, like to a silver bow

↵

│ New-bent in heaven, shall behold the night

↵

│ Of our solemnities.

Theseus

│ Go, Philostrate,

↵

│ Stir up the Athenian youth to merriments;

↵

│ Awake the pert and nimble spirit of mirth;

↵

│ Turn melancholy forth to funerals;

↵

Chapter 35 Insert, Update, Delete | 305

│ The pale companion is not for our pomp.

↵

│ Hippolyta, I woo'd thee with my sword,

↵

│ And won thy love, doing thee injuries;

↵

│ But I will wed thee in another key,

↵

│ With pomp, with triumph and with revelling.

Egeus

│ Happy be Theseus, our renowned duke!

(4 rows)

Delete

The delete statement allows marking tuples for removal. Given PostgreSQL’s

implementation of MVCC, it would not be wise to remove the tuple from
disk at the time of the delete:

• First, the transaction might rollback and we don’t know that yet.

• Second, other concurrent transactions only get to see the delete af er
commit, not as soon as the statement is done.

As with the update statement the most important part of the delete statement
has to do with concurrency. Again, the main reason why we use a RDBMS is
so

that we don’t have to solve the concurrency problems in our application’s
code,

where instead we can focus on delivering an improved user experience.

The actual removal of on-disk tuples happens with vacuum, which the system

runs in the background for you automatically thanks to its autovacuum
daemon.

PostgreSQL might also re-use the on-disk space for an insert statement as
soon as the tuple isn’t visible for any transaction anymore.

Say we mistakenly added characters from another play, and we don’t want to

https://www.postgresql.org/docs/current/static/mvcc.html
https://www.postgresql.org/docs/current/static/routine-vacuuming.html#AUTOVACUUM

have to deal with them. First, inserting them:

1

insert into tweet.users (uname, bio)

2

values ('CLAUDIUS', 'king of Denmark.'),

3

('HAMLET', 'son to the late, and nephew to the present king'),

4

('POLONIUS', 'lord chamberlain.'),

5

('HORATIO', 'friend to Hamlet'),

6

('LAERTES', 'son to Polonius'),

7

('LUCIANUS', 'nephew to the king');

The delete syntax is quite simple:

1

begin;

2

3

delete

Chapter 35 Insert, Update, Delete | 306

4

from tweet.users

5

where userid = 22 and uname = 'CLAUDIUS'

6

returning *;

7

8

commit;

And as usual thanks to the returning clause, we know exactly what we just

marked for deletion:

userid │

uname

│ nickname │

bio

│ picture

════════╪══════════╪══════════╪══════════════════╪═════════

22 │ CLAUDIUS │ ¤

│ king of Denmark. │ ¤

(1 row)

Now we can also delete more than one row with the same command — it all

depends on what we match. As the new characters inserted by mistake didn’t

have a part in the play we inserted our messages from, then we can use an
anti-

join to delete them based on that information:

1

begin;

2

3

with deleted_rows as

4

(

5

delete

6

from tweet.users

7

where not exists

8

(

9

select 1

10

from tweet.message

11

where userid = users.userid

12

)

13

returning *

14

)

15

select min(userid), max(userid),

16

count(*),

17

array_agg(uname)

18

from deleted_rows;

19

20

commit;

And as expected we get a nice summary output of exactly what we did. This

should now be your default syntax for any delete you have to run
interactively in any database, right?

min │ max │ count │

array_agg

═════╪═════╪═══════╪══

41 │

45 │

5 │ {HAMLET,POLONIUS,HORATIO,LAERTES,LUCIANUS}

(1 row)

It is also possible to use a join condition when deleting rows. It is written
using

Chapter 35 Insert, Update, Delete | 307

and covered in the PostgreSQL documentation about the delete command.

Tuples and Rows

In this chapter, we’ve been mentioning tupl and rows at di ferent times.
There’s a di ference between the two: a single row might exist on-disk as
more than one tuple at any time, with only one of them visible to any single

https://www.postgresql.org/docs/9.6/static/sql-delete.html

transaction.

The transaction doing an update now sees the new version of the row, the
new tuple just inserted on-disk. As long as this transaction has yet to commit
then the rest of the world still sees the previous version of the row, which is
another tuple on-disk.

While in some contexts tupl and rows are equivalent, in this chapter about
DML

we must be careful to use them in the right context.

Deleting All the Rows: Truncate

PostgreSQL adds to the DML statements the truncate command. Internally, it
is considered to be a DDL rather than a DML. It is a very e cient way to purge
a table of all of its content at once, as it doesn’t follow the per-tuple MVCC
system

and will simply remove the data les on disk.

Note that the truncate command is still MVCC compliant:

1

select count(*) from foo;

2

3

begin;

4

truncate foo;

5

rollback;

6

7

select count(*) from foo;

Assuming there’s no concurrent activity on your system when running the
com-

mands, both the counting queries naturally return the same number.

Chapter 35 Insert, Update, Delete | 308

Delete but Keep a Few Rows

When cleaning up a data set, it may happen that you want to remove most of

the content of a table. It could be a logs table, an audit trail that has expired or

something like that. As we saw earlier when using PostgreSQL, delete marks
the tuples as not being visible anymore and then vacuum does the heavy lif
ing in the background. It is then more e cient to create a table containing only
the new

rows and swap it with the old table:

1

begin;

2

3

create table new_name (like name including all);

4

5

insert into new_name

6

select <column list>

7

from name

8

where <restrictions>;

9

10

drop table name;

11

alter table new_name rename to name;

12

13

commit;

In the general case, as soon as you remove most entries from your table, this
method is going to be more e cient. The trouble with that method is the level

of locking required to run the drop table and the alter table statements.

Those DDL require an access exclusive lock and will block any read and
write tra c to both tables while they run. If you don’t have slow hours or even

o f-hours, then it might not be feasible for you to use this trick.

The good thing about delete and vacuum is that they can run in the middle of
about any concurrent tra c of course.

36

Isolation and Locking

The main feature of any database system is its implementation of
concurrency

and full respect of the system’s constraints and properties when multiple
trans-

actions are modifying the state of the system at the same time.

PostgreSQL is fully ACID compliant and implements transactions isolation
so that your application’s concurrency can be dealt with gracefully.
Concurrency is a

tricky and complex problem, and concurrency issues are of en hard to
reproduce.

That’s why it’s best to rely on existing solutions for handling concurrency
rather

than rolling your own.

Dealing with concurrency issues in programming languages usually involves

proper declaration and use of lock, mutex, and semaphore facilities which
make a clever use of atomic operations as supported by your CPU, and
sometimes

provided by the operating system. Some programming languages such as
Java

o fer synchronized blocks that in turn make use of previously listed low-level

features. Other programming languages such as Erlang only implement
message

passing facilities, and handle concurrency internally (in a mailbox system) so
that you don’t have to.

SQL is a declarative programming language, where our role as developers is
to de-

clare our intention: the result we want to achieve. The implementation is then

tasked with implementing our command and making it right in every detail,
in-

cluding concurrency behavior.

PostgreSQL implementation of the concurrency behavior is dependable and
al-

lows some user control in terms of locking aspects of your queries.

Chapter 36 Isolation and Locking | 310

Transactions and Isolation

Given the ACID properties, a transaction must be Isolated from other
concurrent transactions running in the system. It is possible to choose the
level of isola-

tion from the concurrent activity, depending on your use case.

A simple use case for isolation is online backups. The backup application for
PostgreSQL is pg_dump, and the role of this application is to take a snapshot
of your whole database and export it to a backup le. This requires that
pg_dump

reads are completely isolated from any concurrent write activity in the
system,

and this is obtained with the isolation level repeatable read or serializable as
described next.

From PostgreSQL version 9.1 onward, pg_dump uses the isolation level
serializable. It used to be repeatable read until SSI implementation… more
on that later.

Transaction isolation is de ned by the SQL standard and implemented in
PostgreSQL:

The SQL standard de nes four levels of transaction isolation. The

most strict is Serializable, which is de ned by the standard in a para-

graph which says that any concurrent execution of a set of Serial-

izable transactions is guaranteed to produce the same e fect as run-

ning them one at a time in some order. The other three levels are de-

ned in terms of phenomena, resulting from interaction between

concurrent transactions, which must not occur at each level. The

standard notes that due to the de nition of Serializable, none of

these phenomena are possible at that level. (This is hardly surpris-

ing – if the e fect of the transactions must be consistent with having

been run one at a time, how could you see any phenomena caused

by interactions?)

Still quoting the PostgreSQL documentation, here are the phenomena which
are

prohibited at various levels are:

https://www.postgresql.org/docs/current/static/transaction-iso.html

• Dirty read

A transaction reads data written by a concurrent uncommitted transac-

tion.

Chapter 36 Isolation and Locking | 311

• Nonrepeatable read

A transaction re-reads data it has previously read and nds that data has

been modi ed by another transaction (that committed since the initial

read).

• Phantom read

A transaction re-executes a query returning a set of rows that satisfy a

search condition and nds that the set of rows satisfying the condition

has changed due to another recently committed transaction.

• Serialization anomaly

The result of successfully committing a group of transactions is inconsis-

tent with all possible orderings of running those transactions one at a time.

There are four isolation levels de ned by the standard: read uncommitted,
read committed, repeatable read, and serializable. PostgreSQL doesn’t
implement read uncommitted, which allows dirty reads, and instead defaults
to read committed.

The de nition of those isolation levels says that read committed disallows
dirty read anomalies, repeatable read disallows dirty read and nonrepeatable
read, and serializable disallows all anomalies.

PostgreSQL also disallows phantom read from repeatable read isolation
level.

About SSI

PostgreSQL’s implementation of serializable is an amazing work. It is
described in details at the PostgreSQL wiki page entitled Serializable, and the
wiki page SSI

contains more details about how to use it.

It took about 20 years for the research community to come up with a satisfy-

ing mathematical model for implementing serializable snapshot isolation in
an e cient way, and then a single year for that major progress to be included
in

PostgreSQL!

Chapter 36 Isolation and Locking | 312

Concurrent Updates and Isolation

In our tweet model of an application, we can have a look at handling
retweets, which is a counter eld in the tweet.message table. Here’s how to
make a retweet in our model:

1

update tweet.message

2

set rts = rts + 1

3

where messageid = 1;

https://wiki.postgresql.org/wiki/Serializable
https://wiki.postgresql.org/wiki/SSI

Now, what happens if two users are doing that at the same time?

To better understand what at the same time means here, we can write the
query extended with manual transaction control, as PostgreSQL will do when
sent a

single command without an explicit transaction:

1

begin;

2

3

update tweet.message

4

set rts = rts + 1

5

where messageid = 1;

6

returning messageid, rts;

7

8

commit;

Now, rather than doing this query, we open a psql prompt and send in:

1

begin;

2

3

update tweet.message

4

set rts = rts + 1

5

where messageid = 1

6

returning messageid, rts;

We get the following result now:

messageid │ rts

═══════════╪═════

1 │

2

(1 row)

The transaction remains open (it’s idle in transaction) and waits for us to do
something else, or maybe commit or rollback the transaction.

Now, open a second psql prompt and send in the exact same query. This time
the update doesn’t return. There’s no way it could: the rst transaction is not
done yet and is working on the row where messageid = 1. Until the rst
transaction is

Chapter 36 Isolation and Locking | 313

done, no concurrent activity can take place on this speci c row.

So we go back to the rst prompt and commit.

Then what happens depends on the isolation level required. Here we have the

default isolation level read committed, and at the second prompt the update
command is unlocked and proceeds to immediately return:

messageid │ rts

═══════════╪═════

1 │

3

(1 row)

Now for the following examples, we need to review our psql setting for the

ON_ERROR_ROLLBACK feature. When set to true or interactive, then psql
issues savepoints to protect each outer transaction state, and that will hide
what we’re showing next. Type the following command to momentarily
disable this

helpful setting, so that we can see what really happens:

\set ON_ERROR_ROLLBACK off

If we pick the isolation level repeatable read, with the following syntax:

1

start transaction isolation level repeatable read;

2

https://www.postgresql.org/docs/current/static/sql-rollback-to.html

3

update tweet.message

4

set rts = rts + 1

5

where messageid = 1

6

returning messageid, rts;

Again, we leave the transaction open, switch to a second prompt and do the
same

thing, and only then — while the second update is waiting for the rst transac-

tion to nish — commit the rst transactions. What we get this time is this:

ERROR:

could not serialize access due to concurrent update

yesql!# commit;

ROLLBACK

Also notice that even if we ask for a COMMIT, what we get is a ROLLBACK.

Once an error occurs in a transaction, in PostgreSQL, the transaction can’t
com-

mit anymore.

When using the isolation level serializable, the same behavior as for

repeatable read is observed, with exactly the same error message exactly.

Chapter 36 Isolation and Locking | 314

Modeling for Concurrency

We should have another modeling pass on the tweet.message table now. With

what we learned about concurrency in PostgreSQL, it’s easy to see that we
won’t

get anywhere with the current model. Remember when Donald Knuth said
We should forget about small efficienci , say about 97% of the time:

premature optimization the root of all evil. Yet we should not pass

up our opportuniti in that critical 3%.

Database systems have been designed to handle concurrency so that your
appli-

cation’s code doesn’t have to. One part for the critical 3% is then related to
con-

current operations, and the one that is impossible to implement in a both fast

and correct way is a concurrent update on the same target row.

In our model here, given how the application works, we know that messages
will

get concurrent update activity for the favs and rts counters. So while the
previous model looks correct with respect to normal forms — the counters
are dependent on the message’s key — we know that concurrent activity is
going to be hard to

handle in production.

So here’s a smarter version of the activity parts of the database model:

https://en.wikipedia.org/wiki/Donald_Knuth

1

begin;

2

3

create type tweet.action_t

4

as enum('rt', 'fav', 'de-rt', 'de-fav');

5

6

create table tweet.activity

7

(

8

id

bigserial primary key,

9

messageid

bigint not null references tweet.message(messageid),

10

datetime

timestamptz not null default now(),

11

action

tweet.action_t not null,

12

13

unique(messageid, datetime, action)

14

);

15

16

commit;

In this version, the counters have disappeared, replaced by a full record of the

base information needed to compute them. We now have an activity list with
a denormalized ENUM for possible actions.

To get the rts and favs counters back from this schema, we count lines in the

Chapter 36 Isolation and Locking | 315

activity records associated with a given messageid:

1

select

count(*) filter(where action = 'rt')

2

- count(*) filter(where action = 'de-rt')

3

as rts,

4

count(*) filter(where action = 'fav')

5

- count(*) filter(where action = 'de-fav')

6

as favs

7

from tweet.activity

8

join tweet.message using(messageid)

9

where messageid = :id;

Reading the current counter value has become quite complex when compared
to

just adding a column to your query output list. On the other hand, when
adding

a rt or a fav action to a message, we transform the SQL:

1

update tweet.message set rts = rts +1 where messageid = :id;

This is what we use instead:

1

insert into tweet.activity(messageid, action) values(:id, 'rt');

The reason why replacing an update with an insert is interesting is
concurrency behavior and locking. In the rst version, retweeting has to wait
until all concurrent retweets are done, and the business model wants to
sustain as many concur-

rent activities on the same small set of messages as possible (read about
influencer accounts).

The insert has no concurrency because it targets a row that doesn’t exist yet.
We register each action into its own tuple and require no locking to do that,
allowing

our production setup of PostgreSQL to sustain a much larger load.

Now, computing the counters each time we want to display them is costly.
And

the counters are displayed on every tweet message. We need a way to cache
that information, and we’ll see about that in the Computing and Caching in
SQL

section.

Putting Concurrency to the Test

When we benchmark the concurrency properties of the two statements above,

we quickly realize that the activity table is badly designed. The unique
constraint includes a timestamptz eld, which in PostgreSQL is only precise

down to the

microsecond.

Chapter 36 Isolation and Locking | 316

This kind of made-up unique constraint means we now have these errors to
deal with:

Error: Database error 23505: duplicate key value violates unique

⏎

constraint "activity_messageid_datetime_action_key"

DETAIL: Key (messageid, datetime, action)

⏎

=(2, 2017-09-19 18:00:03.831818+02, rt) already exists.

The best course of action here is to do this:

1

alter table tweet.activity

2

drop constraint activity_messageid_datetime_action_key;

Now we can properly compare the concurrency scaling of the insert and the
update based version. In case you might be curious about it, here’s the testing
code that’s been used:

1

(defpackage #:concurrency

2

(:use #:cl #:appdev)

3

(:import-from #:lparallel

4

#:*kernel*

5

#:make-kernel #:make-channel

6

#:submit-task #:receive-result

7

#:kernel-worker-index)

8

(:import-from #:cl-postgres-error

9

#:database-error)

10

(:export

#:*connspec*

11

#:concurrency-test))

12

13

(in-package #:concurrency)

14

15

(defparameter *connspec* '("appdev" "dim" nil "localhost")) 16

17

(defparameter *insert-rt*

18

"insert into tweet.activity(messageid, action) values($1, 'rt')")

19

20

(defparameter *update-rt*

21

"update tweet.message set rts = coalesce(rts, 0) + 1 where messageid = $1")
22

23

(defun concurrency-test (workers retweets messageid

24

&optional (connspec *connspec*))

25

(format t "Starting benchmark for updates~%")

26

(with-timing (rts seconds)

27

(run-workers workers retweets messageid *update-rt* connspec)

28

(format t "Updating took ~f seconds, did ~d rts~%" seconds rts))

29

30

(format t "~%")

31

32

(format t "Starting benchmark for inserts~%")

33

(with-timing (rts seconds)

34

(run-workers workers retweets messageid *insert-rt* connspec)

35

(format t "Inserting took ~f seconds, did ~d rts~%" seconds rts)))

Chapter 36 Isolation and Locking | 317

36

37

(defun run-workers (workers retweets messageid sql

38

&optional (connspec *connspec*))

39

(let* ((*kernel* (lparallel:make-kernel workers))

40

(channel

(lparallel:make-channel)))

41

(loop repeat workers

42

do (lparallel:submit-task channel #'retweet-many-times

43

retweets messageid sql connspec))

44

45

(loop repeat workers sum (lparallel:receive-result channel))))

46

47

(defun retweet-many-times (times messageid sql

48

&optional (connspec *connspec*))

49

(pomo:with-connection connspec

50

(pomo:query

51

(format nil "set application_name to 'worker ~a'"

52

(lparallel:kernel-worker-index)))

53

(loop repeat times sum (retweet messageid sql))))

54

55

(defun retweet (messageid sql)

56

(handler-case

57

(progn

58

(pomo:query sql messageid)

59

1)

60

(database-error (c)

61

(format t "Error: ~a~%" c)

62

0)))

Here’s a typical result with a concurrency of 100 workers all wanting to do
10

retweet in a loop using a messageid, here message 3. While it’s not
representative to have them loop 10 times to retweet the same message, it
should help create

the concurrency e fect we want to produce, which is having several
concurrent

transactions waiting in turn in order to have a lock access to the same row.

The theory says that those concurrent users will have to wait in line, and thus

spend time waiting for a lock on the PostgreSQL server. We should see that

in

the timing reports as a time di ference:

1

CL-USER> (concurrency::concurrency-test 100 10 3)

2

Starting benchmark for updates

3

Updating took 3.099873 seconds, did 1000 rts

4

5

Starting benchmark for inserts

6

Inserting took 2.132164 seconds, did 1000 rts

The update variant of the test took almost 50% as much time to complete
than the insert variant, with this level of concurrency. Given that we have
really simple SQL statements, we can attribute the timing di ference to
having had to wait in

line. Basically, the update version spent almost 1 second out of 3 seconds
waiting

Chapter 36 Isolation and Locking | 318

for a free slot.

In another test with even more concurrency pressure at 50 retweets per

worker,

we can show that the results are repeatable:

1

CL-USER> (concurrency::concurrency-test 100 50 6)

2

Starting benchmark for updates

3

Updating took 5.070135 seconds, did 5000 rts

4

5

Starting benchmark for inserts

6

Inserting took 3.739505 seconds, did 5000 rts

If you know that your application has to scale, think about how to avoid con-

current activity that competes against a single shared resource. Here, this
shared

resource is the rts eld of the tweet.message row that you target, and the
concurrency behavior is going to be ne if the retweet activity is well
distributed. As

soon as many users want to retweet the same message, then the update
solution has a non-trivial scalability impact.

Now, we’re going to implement the tweet.activity based model. In this model,

the number of retweets needs to be computed each time we display it, and it’s
part of the visible data. Also, in the general case, it’s impossible for our users
to know for sure how many retweets have been made so that we can
implement a

cache with eventual consistency properties.

37

Computing and Caching in SQL

There’s a pretty common saying:

There are only two hard things in computer science: cache invalida-

tion and naming things.

— Phil Karlton

More about that saying can be read at the Two Hard Things page from
Martin Fowler, who tries to track it back to its origins.

It is time that we see about how to address the cache problems in SQL.
Creating a

set of values for caching is of course really easy as it usually boils down to
writing a SQL query. Any SQL query executed by PostgreSQL uses a
snapshot of the

whole database system. To create a cache from that snapshot, the simplest
way is

to use the create table

command.

1

create table tweet.counters as

https://martinfowler.com/bliki/TwoHardThings.html

2

select

count(*) filter(where action = 'rt')

3

- count(*) filter(where action = 'de-rt')

4

as rts,

5

count(*) filter(where action = 'fav')

6

- count(*) filter(where action = 'de-fav')

7

as favs

8

from tweet.activity

9

join tweet.message using(messageid);

Now we have a tweet.counters table that we can use whenever we need the
num-

bers of rts or favs from a tweet message. How do we update the counters?
That’s the cache invalidation problem quoted above, and we’ll come to the

answer by

Chapter 37 Computing and Caching in SQL | 320

the end of this chapter!

Views

Views allow integrating server-side computations in the de nition of a
relation.

The computing still happens dynamically at query time and is made
transparent

to the client. When using a view, there’s no problem with cache invalidation,
because nothing gets cached away.

1

create view tweet.message_with_counters

2

as

3

select messageid,

4

message.userid,

5

message.datetime,

6

message.message,

7

count(*) filter(where action = 'rt')

8

- count(*) filter(where action = 'de-rt')

9

as rts,

10

count(*) filter(where action = 'fav')

11

- count(*) filter(where action = 'de-fav')

12

as favs,

13

message.location,

14

message.lang,

15

message.url

16

from tweet.activity

17

join tweet.message using(messageid)

18

group by message.messageid, activity.messageid;

Given this view, the application code can query
tweet.message_with_counters and process the same relation as in the rst
normalized version of our schema. The

view hides the complexity of how to obtain the counters from the schema.

1

select messageid,

2

rts,

3

nickname

4

from tweet.message_with_counters

5

join tweet.users using(userid)

6

where messageid between 1 and 6

7

order by messageid;

We can see that I played with the generating some retweets in my local
testing,

done mainly over the six rst messages:

messageid │

rts

│

nickname

═══════════╪════════╪══════════════

1 │

20844 │ Duke Theseus

Chapter 37 Computing and Caching in SQL | 321

2 │ 111345 │ Hippolyta

3 │

11000 │ Duke Theseus

5 │

3500 │ Duke Theseus

6 │

15000 │ Egeus

(5 rows)

That view now embeds the computation details and abstracts them away from

the application code. It allows having several parts of the application deal
with

the same way of counting retweets and favs, which might come to be quite
important if you have di ferent backends for reporting, data analysis, and user
analytics

products that you’re selling, or using it to sell advertising, maybe. It might
even

be that those parts are written in di ferent programming languages, yet they
all

want to deal with the same numbers, a shared truth.

The view embeds the computation details, and still it computes the result
each

time it’s referenced in a query.

Materialized Views

It is easy enough to cache a snapshot of the database into a permanent
relation

for later querying thanks to PostgreSQL implementation of materialized
views: 1

create schema if not exists twcache;

2

3

create materialized view twcache.message

4

as select messageid, userid, datetime, message,

5

rts, favs,

6

location, lang, url

7

from tweet.message_with_counters;

8

9

create unique index on twcache.message(messageid);

As usual, read the PostgreSQL documentation about the command CREATE

MATERIALIZED VIEW for complete details about the command and its
options.

The application code can now query twcache.message instead of tw.message
and get the extra pre-computed columns for rts and favs counter. The
information in the materialized view is static: it is only updated with a speci c
command. We

have e fectively implemented a cache in SQL, and now we have to solve the
cache

invalidation problem: as soon as a new action (retweet or favorite) happens
on a message, our cache is wrong.

Chapter 37 Computing and Caching in SQL | 322

Now that we have created the cache, we run another benchmark with 100

https://www.postgresql.org/docs/current/static/sql-creatematerializedview.html
https://www.postgresql.org/docs/current/static/sql-creatematerializedview.html

work-

ers doing each 100 retweets on messageid 3:

1

CL-USER> (concurrency::concurrency-test 100 100 3)

2

Starting benchmark for updates

3

Updating took 8.132917 seconds, did 10000 rts

4

5

Starting benchmark for inserts

6

Inserting took 6.684597 seconds, did 10000 rts

Then we query our cache again:

1

select messageid,

2

rts,

3

nickname,

4

substring(message from E'[^\n]+') as first_line

5

from twcache.message

6

join tweet.users using(userid)

7

where messageid = 3

8

order by messageid;

We can see that the materialized view is indeed a cache, as it knows nothing
about the last round of retweets that just happened:

messageid │ rts

│

nickname

│

first_line

═══════════╪══════╪══════════════╪══════════════════

3 │ 1000 │ Duke Theseus │ Go, Philostrate,

(1 row)

Of course, as every PostgreSQL query uses a database snapshot, the situation

when the counter is already missing actions already happens with a table and
a

view already. If some insert are committed on the tweet.activity table while
the rts and favs count query is running, the result of the query is not counting
the new row, which didn’t make it yet at the time when the query snapshot
had been

taken. Materialized view only extends the cache time to live, if you will,
making the problem more obvious.

To invalidate the cache and compute the data again, PostgreSQL implements
the

refresh materialized view command: 1

refresh materialized view concurrently twcache.message;

This command makes it possible to implement a cache invalidation policy. In

some cases, a business only analyses data up to the day before, in which case
you

can refresh your materialized views every night: that’s your cache
invalidation policy.

Once the refresh materialized view command has been processed, we can
query

Chapter 37 Computing and Caching in SQL | 323

the cache again. This time, we get the expected answer:

messageid │

rts

│

https://www.postgresql.org/docs/current/static/sql-refreshmaterializedview.html

nickname

│

first_line

═══════════╪═══════╪══════════════╪══════════════════

3 │ 11000 │ Duke Theseus │ Go, Philostrate,

(1 row)

In the case of instant messaging such as Twitter, maybe the policy would
require

rts and favs counters to be as fresh as five minut ago rather than yesterday.
When the refresh materialized view command runs in less than ve minutes
then implementing the policy is a matter of scheduling that command to be
executed

every ve minutes, using for example the cron Unix task scheduler.

38

Triggers

When a cache refresh policy of minutes isn’t advisable, a common approach
is to

implement event-based processing. Most SQL systems, including
PostgreSQL,

implement an event-based facility called a tri er.

A tri er allows registering a procedure to be executed at a speci ed timing
when an event is produced. The timing can be before, after or instead of, and
the event can be insert, update, delete or truncate. As usual, the PostgreSQL
documentation covers the topic in full details and is available online, in our
case now at the manual page for the commandCREATE TRIGGER.

https://www.postgresql.org/docs/current/static/sql-createtrigger.html

Many triggers in PostgreSQL are written in the PL/pgSQL — SQL
Procedural

Language, so we also need to read the PLpgSQL trigger procedures
documentation for completeness.

Note that with PostgreSQL, it is possible to write procedures and triggers in

other programming languages. Default PostgreSQL builds include support for

PL/Tcl, PL/Perl, PL/Python and of course C-language functions.

PostgreSQL extensions for other programming languages are available too,
main-

tained separately from the PostgreSQL core. You can nd PL/Java, PL/v8 for
Javascript powered by the V8 engine, or PL/XSLT as we saw in this book
already. For even more programming language support, see the PL Matrix in
the PostgreSQL wiki.

Unfortunately, it is not possible to write triggers in plain SQL language, so
we

have to write stored procedures to bene t from the PostgreSQL trigger
capabili-

Chapter 38 Triggers | 325

ties.

Transactional Event Driven Processing

PostgreSQL triggers call a registered procedure each time one of the
supported

events is committed. The execution of the procedure is always taken as a part

of the transaction, so if your procedure fails at runtime then the transaction is

https://www.postgresql.org/docs/current/static/plpgsql.html
https://www.postgresql.org/docs/current/static/plpgsql.html
https://www.postgresql.org/docs/current/static/plpgsql-trigger.html
https://www.postgresql.org/docs/current/static/pltcl.html
https://www.postgresql.org/docs/current/static/plperl.html
https://www.postgresql.org/docs/current/static/plpython.html
https://www.postgresql.org/docs/current/static/xfunc-c.html
https://github.com/tada/pljava/wiki
https://github.com/plv8/plv8
https://github.com/petere/plxslt
https://wiki.postgresql.org/wiki/PL_Matrix

aborted.

A classic example of an event driven processing with a trigger in our context
is

to update the counters of rts and favs each time there’s a related insert in the
tweet.activity table.

1

begin;

2

3

create table twcache.daily_counters

4

(

5

day

date not null primary key,

6

rts

bigint,

7

de_rts

bigint,

8

favs

bigint,

9

de_favs bigint

10

);

11

12

create or replace function twcache.tg_update_daily_counters ()

13

returns trigger

14

language plpgsql

15

as $$

16

declare

17

begin

18

update twcache.daily_counters

19

set rts = case when NEW.action = 'rt'

20

then rts + 1

21

else rts

22

end,

23

de_rts = case when NEW.action = 'de-rt'

24

then de_rts + 1

25

else de_rts

26

end,

27

favs = case when NEW.action = 'fav'

28

then favs + 1

29

else favs

30

end,

31

de_favs = case when NEW.action = 'de-fav'

32

then de_favs + 1

33

else de_favs

Chapter 38 Triggers | 326

34

end

35

where daily_counters.day = current_date;

36

37

if NOT FOUND

38

then

39

insert into twcache.daily_counters(day, rts, de_rts, favs, de_favs)

40

select current_date,

41

case when NEW.action = 'rt'

42

then 1 else 0

43

end,

44

case when NEW.action = 'de-rt'

45

then 1 else 0

46

end,

47

case when NEW.action = 'fav'

48

then 1 else 0

49

end,

50

case when NEW.action = 'de-fav'

51

then 1 else 0

52

end;

53

end if;

54

55

RETURN NULL;

56

end;

57

$$;

58

59

CREATE TRIGGER update_daily_counters

60

AFTER INSERT

61

ON tweet.activity

62

FOR EACH ROW

63

EXECUTE PROCEDURE twcache.tg_update_daily_counters();

64

65

insert into tweet.activity(messageid, action)

66

values (7, 'rt'),

67

(7, 'fav'),

68

(7, 'de-fav'),

69

(8, 'rt'),

70

(8, 'rt'),

71

(8, 'rt'),

72

(8, 'de-rt'),

73

(8, 'rt');

74

75

select day, rts, de_rts, favs, de_favs

76

from twcache.daily_counters;

77

78

rollback;

Again, we don’t really want to have that trigger in our setup, so the
transaction

ends with a ROLLBACK. It’s also a good way to try in-progress development

in psql in an interactive fashion, and x all the bugs and syntax errors until it
all works.

Chapter 38 Triggers | 327

Without this trick, then parts of the script pass and others fail, and you then
have

to copy and paste your way around until it’s all okay, but then you’re never
sure

that the whole script will pass from the start again, because the conditions in

which you want to apply have been altered on the partially successful runs.

Here’s the result of running our trigger test script:

BEGIN

CREATE TABLE

CREATE FUNCTION

CREATE TRIGGER

INSERT 0 8

day

│ rts │ de_rts │ favs │ de_favs

════════════╪═════╪════════╪══════╪═════════

2017-09-21 │

5 │

1 │

1 │

1

(1 row)

ROLLBACK

The thing is, each time there’s a tweet.activity inserted this trigger will
transform the insert into an update against a single row, and the same target
row for a whole day.

This implementation is totally killing any ambitions we might have had about

concurrency and scalability properties of our model, in a single trigger. Yet
it’s

easy to write such a trigger, so it’s seen a lot in the wild.

Trigger and Counters Anti-Pattern

You might also notice that this triggers is very wrong in its behavior, as
coded.

The implementation of the insert or update — a.k.a. upsert — is coded in a
way to leave the door open to concurrency issues. To understand those issues,
we

need to consider what happens when we start a new day:

1. The rst transaction of the day attempts to update the daily counters table
for this day, but nds no records because it’s the rst one.

2. The rst transaction of the day then inserts the rst value for the day with
ones and zeroes for the counters.

3. The second transaction of the day then executes the update to the daily

counter, nds the existing row, and skips the insert part of the trigger.

Chapter 38 Triggers | 328

That’s the happy scenario where no problem occurs. Now, in the real life,

here’s

what will sometimes happen. It’s not always, mind you, but not never either.

Concurrency bugs — they like to hide in plain sight.

1. The rst transaction of the day attempts to update the daily counters table
for this day but nds no records because it’s the rst one.

2. The second transaction of the day attempts to update the daily counters

table for this day, but nds no records, because the rst one isn’t there yet.

3. The second transaction of the day now proceeds to insert the rst value

for the day, because the job wasn’t done yet.

4. The rst transaction of the day then inserts the rst value… and fails with a
primary key con ict error because that insert has already been done. Sorry
about that!

There are several ways to address this issue, and the classic one is
documented at

A PL/pgSQL Trigger Procedure For Maintaining A Summary Table example
in the PostgreSQL documentation.

The solution there is to loop over attempts at update then insert until one of
those works, ignoring the UNIQUE_VIOLATION exceptions in the process.
That

allows implementing a fall back when another transaction did insert a value
con-

currently, i.e. in the middle of the NOT FOUND test and the consequent
insert.

Starting in PostgreSQL 9.5 with support for the on conflict clause of the
insert into command, there’s a much better way to address this problem.

https://www.postgresql.org/docs/current/static/plpgsql-trigger.html#PLPGSQL-TRIGGER-SUMMARY-EXAMPLE

Fixing the Behavior

While it’s easy to maintain a cache in an event driven fashion thanks to
PostgreSQL and its trigger support, turning an insert into an update with
contention on a single row is never a good idea. It’s even a classic anti-
pattern.

Here’s a modern way to x the problem with the previous trigger implementa-

tion, this time applied to a per-message counter of retweet and favorite
actions: 1

begin;

2

3

create table twcache.counters

4

(

Chapter 38 Triggers | 329

5

messageid

bigint not null references tweet.message(messageid),

6

rts

bigint,

7

favs

bigint,

8

9

unique(messageid)

10

);

11

12

create or replace function twcache.tg_update_counters ()

13

returns trigger

14

language plpgsql

15

as $$

16

declare

17

begin

18

insert into twcache.counters(messageid, rts, favs)

19

select NEW.messageid,

20

case when NEW.action = 'rt' then 1 else 0 end,

21

case when NEW.action = 'fav' then 1 else 0 end

22

on conflict (messageid)

23

do update

24

set rts = case when NEW.action = 'rt'

25

then counters.rts + 1

26

27

when NEW.action = 'de-rt'

28

then counters.rts - 1

29

30

else counters.rts

31

end,

32

33

favs = case when NEW.action = 'fav'

34

then counters.favs + 1

35

36

when NEW.action = 'de-fav'

37

then counters.favs - 1

38

39

else counters.favs

40

end

41

where counters.messageid = NEW.messageid;

42

43

RETURN NULL;

44

end;

45

$$;

46

47

CREATE TRIGGER update_counters

48

AFTER INSERT

49

ON tweet.activity

50

FOR EACH ROW

51

EXECUTE PROCEDURE twcache.tg_update_counters();

52

53

insert into tweet.activity(messageid, action)

54

values (7, 'rt'),

55

(7, 'fav'),

56

(7, 'de-fav'),

Chapter 38 Triggers | 330

57

(8, 'rt'),

58

(8, 'rt'),

59

(8, 'rt'),

60

(8, 'de-rt'),

61

(8, 'rt');

62

63

select messageid, rts, favs

64

from twcache.counters;

65

66

rollback;

And here’s the result of running that le in psql, either from the command line
with psql -f or with the interactive \i <path/to/file.sql command:

BEGIN

CREATE TABLE

CREATE FUNCTION

CREATE TRIGGER

INSERT 0 8

messageid │ rts │ favs

═══════════╪═════╪══════

7 │

1 │

0

8 │

3 │

0

(2 rows)

ROLLBACK

You might have noticed that the le ends with a ROLLBACK statement. That’s

because we don’t really want to install such a trigger, it’s meant as an
example

only.

The reason why we don’t actually want to install it is that it would cancel all

our previous e forts to model for tweet activity scalability by transforming
every

insert into tweet.activity into an update twcache.counters on the same
messageid.

We looked into that exact thing in the previous section and we saw that it
would

never scale to our requirements.

Event Triggers

Event triggers are another kind of triggers that only PostgreSQL supports,
and they allow one to implement triggers on any event that the source code
integrates.

Currently event triggers are mainly provided for DDL commands.

Have a look at “A Table Rewrite Event Trigger Example” in the PostgreSQL

https://www.postgresql.org/docs/9.6/static/event-trigger-definition.html
https://www.postgresql.org/docs/9.6/static/event-trigger-table-rewrite-example.html

documentation for more information about event triggers, as they are not
covered

Chapter 38 Triggers | 331

in this book.

39

Listen and Notify

The PostgreSQL protocol includes a streaming protocol with COPY and also

implements asynchronous messages and noti cations. This means that as soon

as a connection is established with PostgreSQL, the server can send messages
to

the client even when the client is idle.

PostgreSQL Notifications

Messages that ow from the server to the connected client should be processed
by

the client. It could be that the server is being restarted, or an application
message is being delivered.

Here’s an example of doing this:

1

yesql# listen channel;

2

LISTEN

3

4

yesql# notify channel, 'foo';

5

NOTIFY

6

Asynchronous notification "channel" with payload "foo"

⏎

7

received from server process with PID 40430.

Note that the message could be sent from another connection, so try it and see

with several psql instances. The payload from the message can be any text,
up to 8kB in length. This allows for rich messages to ow, such as JSON
encoded

values.

Chapter 39 Listen and Notify | 333

PostgreSQL Event Publication System

In the Triggers section we saw that in order to maintain a cache of the action
counters either by day or by messageid, we can write a trigger. This
implements

event driven processing but kills our concurrency and scalability properties.

It’s possible for our trigger to notify an external client. This client must be a
daemon program, which uses listen to register our messages. Each time a noti
-

cation is sent, the daemon program processes it as necessary, possibly
updating

our twcache.counters table. As we have a single daemon program listening to
no-ti cations and updating the cache, we now bypass the concurrency issues.

Before implementing the client application, we can implement the trigger for

noti cation, and use psql as a testing client:

1

begin;

2

3

create or replace function twcache.tg_notify_counters ()

4

returns trigger

5

language plpgsql

6

as $$

7

declare

8

channel text := TG_ARGV[0];

9

begin

10

PERFORM (

11

with payload(messageid, rts, favs) as

12

(

13

select NEW.messageid,

14

coalesce(

15

case NEW.action

16

when 'rt'

then

1

17

when 'de-rt' then -1

18

end,

19

0

20

) as rts,

21

coalesce(

22

case NEW.action

23

when 'fav'

then

1

24

when 'de-fav' then -1

25

end,

26

0

27

) as favs

28

)

29

select pg_notify(channel, row_to_json(payload)::text)

30

from payload

31

);

32

RETURN NULL;

Chapter 39 Listen and Notify | 334

33

end;

34

$$;

35

36

CREATE TRIGGER notify_counters

37

AFTER INSERT

38

ON tweet.activity

39

FOR EACH ROW

40

EXECUTE PROCEDURE twcache.tg_notify_counters('tweet.activity');

41

42

commit;

Then to test the trigger, we can issue the following statements at a psql
prompt: listen "tweet.activity";

insert into tweet.activity(messageid, action)

values (33, 'rt'),

(33, 'rt'),

(33, 'de-rt'),

(33, 'fav'),

(33, 'de-fav'),

(33, 'rt'),

(33, 'fav');

We get then the following output from the console:

INSERT 0 7

Asynchronous notification "tweet.activity" with payload

⏎

"{"messageid":33,"rts":1,"favs":0}" received from

⏎

server process with PID 73216.

Asynchronous notification "tweet.activity" with payload

⏎

"{"messageid":33,"rts":-1,"favs":0}" received from

⏎

server process with PID 73216.

Asynchronous notification "tweet.activity" with payload

⏎

"{"messageid":33,"rts":0,"favs":1}" received from

⏎

server process with PID 73216.

Asynchronous notification "tweet.activity" with payload

⏎

"{"messageid":33,"rts":0,"favs":-1}" received from

⏎

server process with PID 73216.

So we made seven inserts, and we have four noti cations. This behavior might

be surprising, yet it is fully documented on the PostgreSQL manual page for
the

NOTIFY command: If the same channel name is signaled multiple times
from the same

transaction with identical payload strings, the database server can

decide to deliver a single noti cation only. On the other hand, no-

ti cations with distinct payload strings will always be delivered as

distinct noti cations. Similarly, noti cations from di ferent trans-

actions will never get folded into one noti cation. Except for drop-

ping later instances of duplicate noti cations, NOTIFY guarantees

that noti cations from the same transaction get delivered in the or-

Chapter 39 Listen and Notify | 335

der they were sent. It is also guaranteed that messages from di fer-

ent transactions are delivered in the order in which the transactions

committed.

Our test case isn’t very good, so let’s write another one, and keep in mind
that

our implementation of the cache server with notify can only be correct if the
main application issues only distinct tweet.activity actions in a single

https://www.postgresql.org/docs/current/static/sql-notify.html

transaction. For our usage, this is not a deal-breaker, so we can x our tests.

1

insert into tweet.activity(messageid, action) values (33, 'rt');

2

insert into tweet.activity(messageid, action) values (33, 'de-rt');

3

insert into tweet.activity(messageid, action) values (33, 'fav');

4

insert into tweet.activity(messageid, action) values (33, 'de-rt');

And this time we get the expected noti cations:

Asynchronous notification "tweet.activity" with payload

⏎

"{"messageid":33,"rts":1,"favs":0}" received from

⏎

server process with PID 73216.

Asynchronous notification "tweet.activity" with payload

⏎

"{"messageid":33,"rts":-1,"favs":0}" received from

⏎

server process with PID 73216.

Asynchronous notification "tweet.activity" with payload

⏎

"{"messageid":33,"rts":0,"favs":1}" received from

⏎

server process with PID 73216.

Asynchronous notification "tweet.activity" with payload

⏎

"{"messageid":33,"rts":-1,"favs":0}" received from

⏎

server process with PID 73216.

Notifications and Cache Maintenance

Now that we have the basic server-side infrastructure in place, where
PostgreSQL

is the server and a backend application the client, we can look into about
main-

taining our twcache.counters cache in an event driven fashion.

PostgreSQL LISTEN and NOTIFY support is perfect for maintaining a
cache.

Because noti cations are only delivered to client connections that are listening
at

the moment of the notify call, our cache maintenance service must implement

the following behavior, in this exact order:

1. Connect to the PostgreSQL database we expect noti cations from and is-

sue the listen command.

2. Fetch the current values from their single source of truth and reset the
cache with those computed values.

Chapter 39 Listen and Notify | 336

3. Process noti cations as they come and update the in-memory cache, and

once in a while synchronize the in-memory cache to its materialized loca-

tion, as per the cache invalidation policy.

The cache service can be implemented within the cache maintenance service.
As

an example, a cache server application might both process noti cations and
serve

the current cache from memory over an HTTP API. The cache service might
also

be one of the popular cache solutions such as Memcached or Redis.

In our example, we implement a cache maintenance service in Go and the
cache

itself is maintained as a PostgreSQL table:

1

begin;

2

3

https://memcached.org
https://redis.io

create schema if not exists twcache;

4

5

create table twcache.counters

6

(

7

messageid

bigint not null primary key,

8

rts

bigint,

9

favs

bigint

10

);

11

12

commit;

With this table, implementing a NOTIFY client service that maintains the
cache

is easy enough to do, and here’s what happens when the service runs and we
do

some testing:

2017/09/21 22:00:36 Connecting to postgres:///yesql?sslmode=disable…

2017/09/21 22:00:36 Listening to notifications on channel "tweet.activity"

2017/09/21 22:00:37 Cache initialized with 6 entries.

2017/09/21 22:00:37 Start processing notifications, waiting for events…

2017/09/21 22:00:42 Received event: {"messageid":33,"rts":1,"favs":0}

2017/09/21 22:00:42 Received event: {"messageid":33,"rts":-1,"favs":0}

2017/09/21 22:00:42 Received event: {"messageid":33,"rts":0,"favs":1}

2017/09/21 22:00:42 Received event: {"messageid":33,"rts":-1,"favs":0}

2017/09/21 22:00:47 Materializing 6 events from memory

As it is written in Go, the client code is quite verbose and at 212 lines won’t t
into these pages. We might have a look at the materialize function though,
because it’s an interesting implementation of pushing the in-memory cache
data structure

down to our PostgreSQL table twcache.counters.

The in-memory cache structure looks like the following:

1

type Counter struct {

2

MessageId int `json:"messageid"`

3

Rts

int `json:"rts"`

Chapter 39 Listen and Notify | 337

4

Favs

int `json:"favs"`

5

}

6

7

type Cache map[int]*Counter

And given such a data structure, we use the e cient Go default JSON
marshaling

facility to transform the cache elements and pass them all down to
PostgreSQL

as a single JSON object.

1

func materialize(db *sql.DB, cache Cache) error {

2

...

3

4

js, err := json.Marshal(cache)

5

6

if err != nil {

7

log.Printf("Error while materializing cache: %s", err)

8

return err

9

}

10

11

_, err = db.Query(q, js)

12

13

...

14

return nil

15

}

The JSON object is then processed in a SQL query, that we nd embedded in

the Go code — it’s the q string variable that is used in the snippet above in
the expression db.Query(q, js), where js is the JSON representation of the
entirety of the cache data.

Here’s the SQL query we use:

1

with rec as

2

(

3

select rec.*

4

from json_each($1) as t,

5

json_populate_record(null::twcache.counters, value) as rec

6

)

7

insert into twcache.counters(messageid, rts, favs)

8

select messageid, rts, favs

9

from rec

10

on conflict (messageid)

11

do update

12

set rts

= counters.rts + excluded.rts,

13

favs = counters.favs + excluded.favs

14

where counters.messageid = excluded.messageid

In this query, we use the PostgreSQL json_populate_record function. This
function is almost magical and it is described as such in the documentation:

Chapter 39 Listen and Notify | 338

Expands the object in from_json to a row whose columns match the

https://www.postgresql.org/docs/9.6/static/functions-json.html#FUNCTIONS-JSON-PROCESSING-TABLE

record type de ned by base (see note below).

Note:

In

json_populate_record,

json_populate_recordset,

json_to_record and json_to_recordset, type coercion from the

JSON is “best e fort” and may not result in desired values for some

types. JSON keys are matched to identical column names in the

target row type. JSON elds that do not appear in the target row

type will be omitted from the output, and target columns that do

not match any JSON eld will simply be NULL.

The function allows transforming a JSON document into a full-blown rela-

tional tuple to process as usual in PostgreSQL. Here we use an implicit
lateral

construct that feeds the json_populate_record() function from the output of

the json_each() function. We could have used the recordset variant, but we’re
discarding the Go cache key that repeats the MessageId here.

Then our SQL query uses the insert into … select … on conflict do update
variant that we’re used to by now.

Baring JSON tricks, the classic way to serialize a complex data structure
targetting

multiple rows is shown in the batch update example that follows this section.

It’s important to note that coded as such, we can use the function to both ma-

terialize a full cache as fetched at startup, and to materialize the cache we
build

in-memory while receiving noti cations.

The query used to fetch the initial value of the cache and set it again at startup
is the following:

1

select messageid, rts, favs

2

from tweet.message_with_counters;

We use the view de nition that we saw earlier to do the computations for us,
and

ll in our in-memory cache data structure from the result of the query.

The trigger processing has a cost of course, as we can see in the following
test:

1

CL-USER> (concurrency::concurrency-test 100 100 35)

2

Starting benchmark for updates

3

Updating took 8.428939 seconds, did 10000 rts

4

5

Starting benchmark for inserts

6

Inserting took 10.351908 seconds, did 10000 rts

Chapter 39 Listen and Notify | 339

Remember when reading those numbers that we can’t compare them mean-

ingfully anymore. We installed our trigger af er insert on tweet.activity, which
means that the update benchmark isn’t calling any trigger whereas the insert

benchmark is calling our trigger function 10,000 times in this test.

About the concurrency, noti cations are serialized at commit time in the same

way that the PostgreSQL commit log is serialized, so there’s no extra work
for

PostgreSQL here.

Our cache maintenance server received 10,000 noti cations with a JSON
payload

and then reported the cumulated gures to our cache table only once, as we can

see from the logs:

2017/09/21 22:24:06 Received event: {"messageid":35,"rts":1,"favs":0}

2017/09/21 22:24:06 Received event: {"messageid":35,"rts":1,"favs":0}

2017/09/21 22:24:06 Received event: {"messageid":35,"rts":1,"favs":0}

2017/09/21 22:24:06 Received event: {"messageid":35,"rts":1,"favs":0}

2017/09/21 22:24:09 Materializing 1 events from memory

Having a look at the cache, here’s what we have:

1

table twcache.counters;

messageid │

rts

│ favs

═══════════╪════════╪══════

1 │

41688 │

0

2 │ 222690 │

0

3 │

22000 │

0

33 │

-4 │

8

5 │

7000 │

0

6 │

30000 │

0

35 │

10000 │

0

(7 rows)

We can see the results of our tests, and in particular, the message with ids
from 1 to 6 are in the cache as expected. Remember the rules we introduced
earlier where

the rst thing we do when starting our cache maintenance service is to reset
the cache from the real values in the database. That’s how we got those
values in the

cache; alter all, the cache service wasn’t written when we ran our previous
series

of tests.

Chapter 39 Listen and Notify | 340

Limitations of Listen and Notify

It is crucial that an application using the PostgreSQL noti cation capabilities

are capable of missing events. Noti cations are only sent to connected client

connections.

Any queueing mechanism requires that event accumulated when there’s no

worker connected are kept available until next connection, and replication

is a special case of event queueing. It is not possible to implement queueing

correctly with PostgreSQL listen/notify feature.

A cache maintenance service really is the perfect use case for this
functionality,

because it’s easy to reset the cache at service start or restart.

Listen and Notify Support in Drivers

Support for listen and notify PostgreSQL functionality depends on the driver

you’re using. For instance, the Java JDBC driver documents the support at
Post-

greSQL™ Extensions to the JDBC API, and quoting their page: A key
limitation of the JDBC driver is that it cannot receive asynchronous noti
cations and must poll the backend to check if any

noti cations were issued. A timeout can be given to the poll func-

tion, but then the execution of statements from other threads will

block.

There’s still a full-length class implementation sample, so if you’re using
Java

check it out.

For Python, the Psycopg driver is the most popular, and Python asynchronous

https://jdbc.postgresql.org/documentation/head/listennotify.html
https://jdbc.postgresql.org/documentation/head/listennotify.html
http://initd.org/psycopg/
http://initd.org/psycopg/docs/advanced.html#asynchronous-notifications

noti cations supports advanced techniques for avoiding busy looping: A
simple application could poll the connection from time to time to

check if something new has arrived. A better strategy is to use some

I/O completion function such as select() to sleep until awakened

by the kernel when there is some data to read on the connection,

thereby using no CPU unless there is something to read.

Chapter 39 Listen and Notify | 341

The Golang driver pq also supports noti cations and doesn’t require polling.

That’s the one we’ve been using this driver in our example here.

For other languages, please check the documentation of your driver of choice.

40

Batch Update, MoMA Collection

The Museum of Modern Art (MoMA) Collection hosts a database of the mu-
seum’s collection, with monthly updates. The project is best described in
their

own words:

MoMA is committed to helping everyone understand, enjoy, and

use our collection. The Museum’s website features 75,112 artworks

from 21,218 artists. This research dataset contains 131,585 records, rep-

resenting all of the works that have been accessioned into MoMA’s

collection and cataloged in our database. It includes basic metadata

http://initd.org/psycopg/docs/advanced.html#asynchronous-notifications
https://godoc.org/github.com/lib/pq
https://godoc.org/github.com/lib/pq#hdr-Notifications
https://github.com/MuseumofModernArt/collection

for each work, including title, artist, date made, medium, dimen-

sions, and date acquired by the Museum. Some of these records

have incomplete information and are noted as “not Curator Ap-

proved.”

Using git and git lfs commands, it’s possible to retrieve versions of the artist
collection for the last months. From one month to the next, lots of the data
remains

unchanged, and some is updated.

1

begin;

2

3

create schema if not exists moma;

4

5

create table moma.artist

6

(

7

constituentid

integer not null primary key,

8

name

text not null,

9

bio

text,

10

nationality

text,

Chapter 40 Batch Update, MoMA Collection | 343

11

gender

text,

12

begin

integer,

13

"end"

integer,

14

wiki_qid

text,

15

ulan

text

16

);

17

18

\copy moma.artist from 'artists/artists.2017-05-01.csv' with csv header
delimiter ','

19

20

commit;

Now that we have loaded some data, let’s have a look at what we have:

1

select name, bio, nationality, gender

2

from moma.artist

3

limit 6;

Here are some of the artists being presented at the MoMA:

name

│

bio

│ nationality │ gender

═════════════════╪═════════════════════╪═════════════╪════════

Robert Arneson

│ American, 1930–1992 │ American

│ Male

Doroteo Arnaiz

│ Spanish, born 1936

│ Spanish

│ Male

Bill Arnold

│ American, born 1941 │ American

│ Male

Charles Arnoldi │ American, born 1946 │ American

│ Male

Per Arnoldi

│ Danish, born 1941

│ Danish

│ Male

Danilo Aroldi

│ Italian, born 1925

│ Italian

│ Male

(6 rows)

Updating the Data

Af er having successfully loaded the data from May, let’s say that we have
received

an update for June. As usual with updates of this kind, we don’t have a diff,
rather we have a whole new le with a new content.

A batch update operation is typically implemented that way:

• Load the new version of the data from le to a PostgreSQL table or a tem-

porary table.

• Use the update command ability to use join operations to update existing
data with the new values.

• Use the insert command ability to use join operations to insert new data
from the batch into our target table.

Chapter 40 Batch Update, MoMA Collection | 344

Here’s how to write that in SQL in our case:

1

begin;

2

3

create temp table batch

4

(

5

like moma.artist

6

including all

7

)

8

on commit drop;

9

10

\copy batch from 'artists/artists.2017-06-01.csv' with csv header delimiter ','

11

12

with upd as

13

(

14

update moma.artist

15

set (name, bio, nationality, gender, begin, "end", wiki_qid, ulan) 16

17

= (batch.name, batch.bio, batch.nationality,

18

batch.gender, batch.begin, batch."end",

19

batch.wiki_qid, batch.ulan)

20

21

from batch

22

23

where batch.constituentid = artist.constituentid

24

25

and (artist.name, artist.bio, artist.nationality,

26

artist.gender, artist.begin, artist."end",

27

artist.wiki_qid, artist.ulan)

28

<> (batch.name, batch.bio, batch.nationality,

29

batch.gender, batch.begin, batch."end",

30

batch.wiki_qid, batch.ulan)

31

32

returning artist.constituentid

33

),

34

ins as

35

(

36

insert into moma.artist

37

select constituentid, name, bio, nationality,

38

gender, begin, "end", wiki_qid, ulan

39

from batch

40

where not exists

41

(

42

select 1

43

from moma.artist

44

where artist.constituentid = batch.constituentid

45

)

46

returning artist.constituentid

47

)

48

select (select count(*) from upd) as updates,

49

(select count(*) from ins) as inserts;

50

Chapter 40 Batch Update, MoMA Collection | 345

51

commit;

Our batch update implementation follows the speci cations very closely. The

ability for the update and insert SQL commands to use join operations are put
to good use, and the returning clause allows to display some statistics about
what’s been done.

Also, the script is careful enough to only update those rows that actually have

changed thanks to using a row comparator in the update part of the CTE.

Finally, note the usage of an anti-join in the insert part of the CTE in order to
only insert data we didn’t have already.

Here’s the result of running this batch update script:

BEGIN

CREATE TABLE

COPY 15186

updates │ inserts

═════════╪═════════

35 │

21

(1 row)

COMMIT

An implicit assumption has been made in the creation of this script. Indeed,

it considers the constituentid from MoMA to be a reliable primary key for our
data set. This assumption should, of course, be checked before deploying
such

an update script to production.

Concurrency Patterns

While in this solution the update or insert happens in a single query, which

means using a single snapshot of the database and a within a transaction, it is
still not prevented from being used concurrently. The tricky case happens if
your

application were to run the query above twice at the same time.

What happens is that as soon as the concurrent sources contain some data for

the same primary key, you get a duplicate key error on the insert. As both the

transactions are concurrent, they are seeing the same target table where the
new data does not exists, and both will conclude that they need to insert the
new data into the target table.

Chapter 40 Batch Update, MoMA Collection | 346

There are two things that you can do to avoid the problem. The rst thing is to

make it so that you’re doing only one batch update at any time, by building
your application around that constraint.

A good way to implement that idea is with a manual lock command as
explain in the explicit locking documentation part of PostgreSQL: 1

LOCK TABLE target IN SHARE ROW EXCLUSIVE MODE;

That lock level is not automatically acquired by any PostgreSQL command,
so

the only way it helps you is when you’re doing that for every transaction you

want to serialize. When you know you’re not at risk (that is, when not
playing

the insert or update dance), you can omit that lock.

Another solution is using the new in PostgreSQL 9.5 on conflict clause for
the insert statement.

On Conflict Do Nothing

When using PostgreSQL version 9.5 and later, it is possible to use the on
conflict clause of the insert statement to handle concurrency issues, as in the
following variant of the script we already saw. Here’s a diff of the rst update
script and the second one, that handles concurrency con icts:

1

--- artists.update.sql

http://www.postgresql.org/docs/9.2/static/explicit-locking.html

2017-09-07 23:54:07.000000000 +0200

2

+++ artists.update.conflict.sql 2017-09-08 12:49:44.000000000 +0200

3

@@ -5,11 +5,11 @@

4

like moma.artist

5

including all

6

)

7

on commit drop;

8

9

-\copy batch from 'artists/artists.2017-06-01.csv' with csv header delimiter ','

10

+\copy batch from 'artists/artists.2017-07-01.csv' with csv header delimiter ','

11

12

with upd as

13

(

14

update moma.artist

15

set (name, bio, nationality, gender, begin, "end", wiki_qid, ulan)

16

@@ -41,10 +41,11 @@

17

(

18

select 1

19

from moma.artist

20

where artist.constituentid = batch.constituentid

Chapter 40 Batch Update, MoMA Collection | 347

21

)

22

+

on conflict (constituentid) do nothing

23

returning artist.constituentid

24

)

25

select (select count(*) from upd) as updates,

26

(select count(*) from ins) as inserts;

27

Notice the new line on conflict (constituentid) do nothing. It basically
implements what it says: if inserting a new row causes a con ict, then the
operation

for this row is skipped.

The con ict here is a primary key or a unique violation, which means that the
row already exists in the target table. In our case, this may only happen
because

a concurrent query just inserted that row while our query is in ight, in
between

its lookup done in the update part of the query and the insert part of the
query.

41

An Interview with Kris Jenkins

Kris Jenkins is a successful startup cofounder turned freelance functional
programmer, and open-source enthusiast. He mostly works on building
systems in

Elm, Haskell & Clojure, improving the world one project at a time.

Kris Jenkins is the author of the YeSQL library, and approach that we’ve
seen in this book in the chapter Writing SQL queries.

As a full stack developer, how do you typically approach concurrency
behavior

in your code? Is it a design-time task or more a scaling and optimizing aspect
of

your delivery?

I try to design for correctness & clarity, rather than performance.

You’ll never really know what your performance and scaling hotspots

will be until you’ve got some real load on the system, but you’ll al-

ways want correctness and clarity. That mindset dictat how I ap-

proach concurrency problems. I worry about things like transaction

boundari up-front, before I write a line of code because I know

that if I get that wrong, it’s going to bite me at some point down

the line. But for performance, I’ll tend to wait and see. Real world

performance issu rarely crop up where you predict — it’s better to

http://blog.jenkster.com
https://github.com/krisajenkins/yesql

observe what’s really happening. Same with scaling issu — you

might think you know which parts of the system will be in high

demand, but reality will often surprise you. But if you foc

on get-

ting the system clear — readable and maintainable — it’s easier to

adapt the design for version two.

Chapter 41 An Interview with Kris Jenkins | 349

Of course, there are exceptions to that. If I knew a certain system

would have a million users on day one, obviously that would change

things. But even then, I’d code up a naive-but-correct prototype.

The point being, concurrency h two sid — “ it right?” and “

it fast?” — and I worry about the first one first. As Paul Phillips

rightly said, performance tail, correctness dog. You don’t let the

tail wag the dog.

How much impact would the choice of a stack would have on your approach

to concurrency behavior? You’ve been doing lots of Clojure and Haskell, and

those are pretty di ferent from the more classic PHP or Python. Do they help
to

implement concurrency correct code?

Definitely. They’re a huge help. The reason Clojure exists

to

bring some clarity to how we deal with the effect of time in program-

ming. Clojure’s key insight

that time doesn’t just complicate con-

current database transactions, but nearly every aspect of program-

ming. Concurrency , “what happens if someone else stomps over

my data at the same time?” Mutability , “what happens if some-

one else stomps over my data, or if I stomp on it myself?” Languag

with immutable data structur , like Clojure, ask, “Why don’t we

just eliminate that whole problem?”

So Clojure

designed from the ground up to eliminate the effect of

time from programming completely, and then only bring it back in

when you really need it. By default there

no concurrency, there

are no competing timelin , and then if you really need to bring it

back you get great support for doing so. You opt-in to concurrency

problems, carefully and with great support. That both fre you up

from worrying about concurrency and mak you very mindful of

it.

Haskell I’d say tak that even further. It doesn’t just make you

suspicio

of the side-effects time

having on your code, but just

about all side effects. Haskell’s been ferocio

about side effects for…

I guess twenty years now… and it’s still an active area of research to

beat them down even harder.

So both languag beat out side effects and then gradually bring

them back in, with controls. And what controls do we see for concur-

rency? For the most part, it’s not the low-level locks and semaphor

Chapter 41 An Interview with Kris Jenkins | 350

of C and Java, but the higher-level ide we love from databas , like

repeatable reads (immutability) and ACID transactions (software

transactional memory).

When using PostgreSQL in your application stacks, which role do you assign
to

it? Is it more of a library, framework, storage engine, processing workhouse,
or

something else entirely?

It h

two key rol for me. First,

the storage engine. It’s the

golden record of what our system knows. Every important fact

should be there. That probably mak

the database the most

precio

part of the system, but that’s okay. Data

precio .

The other role

much more abstract. I use the database a design

tool. There’s something great about the relational mindset that en-

courag you to think about data in itself, separate from how it’s

used. You model the data so it tak its own real shape, rather than

the shape today’s task wants it to have.

By way of contrast, I think one of the downsid of test-driven-

development

in some corners it’s encouraged people to think of

their data

a kind of black box, where only the way it’s used to-

day gets to drive the data implementation. Too often I’ve seen that

lead to big painful rewrit when the data outgrows the featur .

The mindset of making data primary, and today’s use-case sec-

ondary, invaluable if you want a system to grow well. And that’s

something Codd figured out decad ago.

I w lucky enough early in my career to get a job with a financial

database company that really only existed because they had a better

data model than all their competitors. The whole product fell out of

the fact that they figured out a better schema than everyone else, so

they could do many things their competitors stru led with, without

breaking a sweat. They taught me early on that if you get your data

model right, every feature easier. You can get things right without

trying while you competitors firefight their mistak .

When using PostgreSQL, do you pick the default isolation level or do you
have a

speci c approach to picking the right isolation level depending on the task
you’re

implementing?

Ha, boring answer here — I stick to the default! I don’t think I’ve

Chapter 41 An Interview with Kris Jenkins | 351

changed it more than a couple of tim , for a couple of extremely

specific cas .

Part VIII

PostgreSQL Extensions

| 353

PostgreSQL is unique in its approach to data types. The initial design of
Postgres

can be read about in the document entitled The Design Of Postgres, authored
by Michael Stonebraker and Lawrence A. Rowe.

Quoting this foundation paper, we can read:

Th paper presents the preliminary design of a new database man-

agement system, called POSTGRES, that the successor to the IN-

GRES relational database system. The main design goals of the

new system are to:

1. Provide better support for complex objects,

2. Provide user extendibility for data typ , operators and access

methods,

3. Provide faciliti for active databas (i.e. alerters and tri ers)

and inferencing including forward- and backward-chaining,

4. Simplify the DBMS code for crash recovery,

5. Produce a design that can take advantage of optical disks,

workstations composed of multiple tightly-coupled processors,

and custom designed VLSI chips, and

6. Make

http://db.cs.berkeley.edu/papers/ERL-M85-95.pdf

few chang

possible (preferably none) to the rela-

tional model.

The paper describ the query language, programming language in-

terface, system architecture, query processing strate , and storage

system for the new system.

Current modern version of PostgreSQL still follow several of the same design

rules. The development team managed to improve the many facets of the
system,

including adding a full implementation of the SQL standard, without having
to

change the extensibility foundations of Postgres.

In this chapter, we are going to learn about some advanced extensions for
Post-

greSQL, distributed as part of the contrib distribution or by developers other
than PostgreSQL itself.

42

What’s a PostgreSQL Extension?

A PostgreSQL extension is a set of SQL objects that you can add to
PostgreSQL

catalogs. Installing and enabling an extension can be done at run-time,
making

deploying extensions as simple as typing a single SQL command.

PostgreSQL extensions are available to cover di ferent needs, such as the
follow-

ing non-exhaustive list:

• Extensions for application developers

These extensions typically introduce an augmented feature set to

PostgreSQL, making new specialized tricks available to your SQL queries.

Examples of such extensions include PostGIS, a spatial database extender for
the PostgreSQL object-relational database that adds support for geographic
objects allowing location queries to be run in SQL.

• Extensions for PostgreSQL service administrators (ops, dba)

These extensions typically introdude new introspection facilities or useful

tooling to administer your PostgreSQL production instances.

Examples of such extensions include pageinspect, which provides functions
that allow you to inspect the contents of database pages at a low level,

which is useful for debugging purposes.

• Extensions for pluggable languages

These extensions typically implement support for a programming

Chapter 42 What’s a PostgreSQL Extension? | 355

language to be used for writing stored procedures and functions.

PostgreSQL maintains several procedural languages in-core:

– PL/C of course

– PL/SQL, which allows it to use a SQL query with parameters: it is

https://postgis.net
https://www.postgresql.org/docs/current/static/pageinspect.html
https://www.postgresql.org/docs/current/static/xplang.html

not really procedural because it’s plain SQL wrapped in a function

de nition

– PL/pgSQL, a procedural language that implements SQL as a rst-class
citizen and provides procedural control structures around SQL

statements

– PL/TCL which allows using the TCL programming language to write
stored procedures and functions

– PL/Perl

– PL/Python

Adding to that list, we can nd other programming languages support in

external projects — i.e. they’re not maintained by the PostgreSQL com-

mitters team. For instance Plv8 embeds server-side Javascript code right into
your database server, then there’s PL/Java, PL/Lua and many others.

• Extensions for foreign data wrappers

These extensions typically implement support for a accessing data man-

aged externally to PostgreSQL, following the SQL/MED design, which is
part of the SQL standard. In SQL/MED, MED stands for management

of external data.

PostgreSQL ships with some Foreign Data Wrappers that allow it to read

data from les with le_fdw or from a remote PostgreSQL server with

postgres_fdw.

Other FDWs can be found that are not maintained by the PostgreSQL

https://www.postgresql.org/docs/current/static/plpgsql.html
https://www.postgresql.org/docs/current/static/pltcl.html
https://www.postgresql.org/docs/current/static/plperl.html
https://www.postgresql.org/docs/current/static/plpython.html
https://github.com/plv8/plv8
https://github.com/tada/pljava
https://github.com/pllua/pllua
https://en.wikipedia.org/wiki/SQL/MED
https://www.postgresql.org/docs/current/static/file-fdw.html
https://www.postgresql.org/docs/9.5/static/postgres-fdw.html

committers team, such as oracle_fdw or ldap_fdw. The list is incredibly long
and diverse, so be sure to check out the foreign data wrappers page on the
PostgreSQL wiki.

As you can see from this rough categorization attempt, PostgreSQL
extensions

can implement a very wide variety of tools and enhancements.

Chapter 42 What’s a PostgreSQL Extension? | 356

Inside PostgreSQL Extensions

Any SQL object can be part of an extension, and here’s a short list of
common

objects found in popular extensions:

• Stored procedures

• Data type

• Operator, operator class, operator family

• Index access method

As an example, we install the pg_trgm contrib extension and have a look at
what it contains:

1

create extension pg_trgm;

Now the extension is enabled in my database, and it’s possible to list the
object

contained in the pg_trgm extension thanks to the psql command \dx+
pg_trgm.

https://laurenz.github.io/oracle_fdw/
https://github.com/guedes/ldap_fdw
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
http://www.postgresql.org/docs/current/static/pgtrgm.html

Here’s the output of the command:

Objects in extension "pg_trgm"

Object description

══

function
gin_extract_query_trgm(text,internal,smallint,internal,internal,internal,internal)
function gin_extract_value_trgm(text,internal)

function
gin_trgm_consistent(internal,smallint,text,integer,internal,internal,internal,internal)
function
gin_trgm_triconsistent(internal,smallint,text,integer,internal,internal,internal)
function gtrgm_compress(internal)

function gtrgm_consistent(internal,text,smallint,oid,internal)

function gtrgm_decompress(internal)

function gtrgm_distance(internal,text,smallint,oid,internal)

function gtrgm_in(cstring)

function gtrgm_out(gtrgm)

function gtrgm_penalty(internal,internal,internal)

function gtrgm_picksplit(internal,internal)

function gtrgm_same(gtrgm,gtrgm,internal)

function gtrgm_union(internal,internal)

function set_limit(real)

function show_limit()

function show_trgm(text)

function similarity(text,text)

function similarity_dist(text,text)

function similarity_op(text,text)

function word_similarity(text,text)

function word_similarity_commutator_op(text,text)

function word_similarity_dist_commutator_op(text,text)

function word_similarity_dist_op(text,text)

function word_similarity_op(text,text)

operator %(text,text)

operator %>(text,text)

operator <%(text,text)

operator <->(text,text)

Chapter 42 What’s a PostgreSQL Extension? | 357

operator <->>(text,text)

operator <<->(text,text)

operator class gin_trgm_ops for access method gin

operator class gist_trgm_ops for access method gist

operator family gin_trgm_ops for access method gin

operator family gist_trgm_ops for access method gist

type gtrgm

(36 rows)

The functions listed here are stored procedure, and in this extension they hap-

pen to be written in C. Then we see several new operators such as %, which
im-

plements a similarity test. We’re going to cover that in detail later in this
chapter.

The operator class and operator family entries can be considered as glue
objects.

They register index access methods covering the operators provided in the
Post-

greSQL catalogs, so that the planner is capable of deciding to use a new
index.

Finally, the extension implements a new datatype that is also implemented in
C

and installed at run-time, without having to recompile the PostgreSQL server
or

even restart it, in this case.

Installing and Using PostgreSQL Extensions

PostgreSQL extensions live in a given database, even when their deployment
in-

cludes shared object libraries that are usually system wide. Depending on
your

operating system, a shared object might be a .so le, or a .dll le, or even a

.dylib le.

Once the support les for an extension are deployed at the right place on your

operating system, we can type the following SQL command to enable the
trigram

extension in the current database we are connected to:

1

create extension pg_trgm ;

Installing the support les for an extension is done via installing the proper
pack-

age for your operating system. When using Debian make sure to check out
the PostgreSQL Debian distribution at http://apt.postgresql.org.

To make pg_trm installable in PostgreSQL we have to install the proper
contrib

package, which is easily done in Debian, as in the following example where
we

are targeting PostgreSQL version 10:

1

$ sudo apt-get install postgresql-contrib-10

Chapter 42 What’s a PostgreSQL Extension? | 358

It is possible to check whether an extension has already been made available
to

your PostgreSQL instance with the following SQL query:

1

https://www.debian.org
http://apt.postgresql.org

table pg_available_extensions;

Here’s an example list:

name

│ default_version │ installed_version │

comment

═════════════════╪═════════════════╪═══════════════════╪════════════════════════════════════

pg_prewarm

│ 1.1

│ ¤

│ prewarm relation data

pgcrypto

│ 1.3

│ ¤

│ cryptographic functions

lo

│ 1.1

│ ¤

│ Large Object maintenance

plperl

│ 1.0

│ ¤

│ PL/Perl procedural language

pgstattuple

│ 1.5

│ ¤

│ show tuple-level statistics

plpgsql

│ 1.0

│ 1.0

│ PL/pgSQL procedural language

tcn

│ 1.0

│ ¤

│ Triggered change notifications

pg_buffercache

│ 1.3

│ ¤

│ examine the shared buffer cache

pg_freespacemap │ 1.2

│ ¤

│ examine the free space map (FSM)

sslinfo

│ 1.2

│ ¤

│ information about SSL certificates

(10 rows)

Finding PostgreSQL Extensions

The rst set of interesting extensions that should be available on any
PostgreSQL

installation is the contribs themselves. Make sure the operating system
package

for contribs is always deployed everywhere you’re using PostgreSQL, so that
you

can then put those wonderful extensions to good use.

Some of the contrib extensions are meant to debug hairy situations, and
you’ll

be happy that diagnostics are only a create extension command away when

you need to nd out if a table or an index is corrupted, for instance.

Another source of PostgreSQL extensions is the PostgreSQL Extension
Network

where extension authors can register their project themselves, and update the
in-

formation when they release new versions.

https://pgxn.org

In both cases, there’s no guarantee of the quality of any of the extensions
listed, so you will have to test them yourself. In this book we’re going to
cover extensions

that have been known to be of production quality, i.e. the ones that you can
rely

on. We’re also going to add a list of trustworthy extensions even if we don’t
cover

them in details. The list is not exhaustive though, so if you nd an extension
not

listed on these pages, it’s most certainly worth a try!

Chapter 42 What’s a PostgreSQL Extension? | 359

A Primer on Authoring PostgreSQL Extensions

PostgreSQL makes it easy to author an extension. While most extensions
need

to be written in C in order to have access to low-level PostgreSQL facilities,
it’s

not always the case and some extensions can be written in other higher order

programming languages such as PL/Perl, PL/Python or even PL/pgSQL.

If your application already maintains parts of its logic in stored procedures,

you might nd it useful to rely on the PostgreSQL extension facility. The

PostgreSQL documentation section titled Extension Building Infrastructure

details the steps to follow in order to cook your own extension.

You will need to prepare the following les:

https://www.postgresql.org/docs/current/static/extend-pgxs.html

• Make le, if you need to “build” your les, which is mostly necessary when

writing an extension in C

• Control le, to describe the extension properties

• SQL script that is played to install the extension objects, such as tables,

views, functions, stored procedures, operators, data types, etc.

• SQL upgrade scripts to go from one version to the next

If you’re already managing stored procedures, have a look at how to ship
them

to PostgreSQL as extensions. Remember that there was only one reason why
ex-

tensions were added to PostgreSQL in 9.1: being able to seamlessly pg_dump
and

pg_restore your database when it’s using an external module. I know because
I

wrote the PostgreSQL extension feature and got this patch committed.

A Short List of Noteworthy Extensions

Here’s a list of noteworthy PostgreSQL extensions for application
developers.

The following extensions add new features to your RDBMS so that you can
solve

more use cases right inside the database.

Having more data processing tools in the database server is a good thing
when

you have complex problems to solve and want to have a solution that is both

correct (from a transactional standpoint) and e cient (from a data ow stand-

point). We’ll see several detailed examples of these points in the following
sec-

tions of this chapter.

Chapter 42 What’s a PostgreSQL Extension? | 360

Here’s a list of PostgreSQL contrib extensions for application developers:

• Bloom Index Filters

Bloom provides an index access method based on bloom lters.

From the PostgreSQL documentation about this contrib extension:

A Bloom filter a space-efficient data structure that used to test whether

an element

a member of a set. In the case of an index access method,

it allows fast exclusion of non-matching tupl via signatur whose size

determined at index creation.

A signature

a lossy representation of the indexed attribute(s), and

such prone to reporting false positiv ; that , it may be reported that an

element in the set, when it not. So index search results must always be

rechecked using the actual attribute valu from the heap entry. Larger

signatur reduce the odds of a false positive and th

https://www.postgresql.org/docs/current/static/bloom.html

reduce the number

of useless heap visits, but of course also make the index larger and hence

slower to scan.

Th type of index

most useful when a table h

many attribut and

queri test arbitrary combinations of them. A traditional btree index

faster than a bloom index, but it can require many btree index to

support all possible queri where one needs only a single bloom index.

Note however that bloom index only support equality queri , where

btree index can also perform inequality and range search .

• earthdistance

The earthdistance module provid two different approach to calculating

great circle distanc on the surface of the Earth. The one described first

depends on the cube module (which must be installed before earthdistance

can be installed). The second one

based on the built-in point data type,

using longitude and latitude for the coordinat .

In th module, the Earth

assumed to be perfectly spherical. (If that’s

https://www.postgresql.org/docs/current/static/earthdistance.html

too inaccurate for you, you might want to look at the PostGIS project.)

• hstore

Th module implements the hstore data type for storing sets of key/value

pairs within a single PostgreSQL value. Th can be useful in vario

Chapter 42 What’s a PostgreSQL Extension? | 361

scenarios, such

rows with many attribut that are rarely examined, or

semi-structured data. Keys and valu are simply text strings.

• ltree

Th module implements a data type ltree for representing labels of data

stored in a hierarchical tree-like structure. Extensive faciliti for searching

through label tre are provided.

And here’s an example that comes straight from the documentation too,

so that you can decide if you want to have a closer look at it:

1

ltreetest=> SELECT path FROM test WHERE path @ 'Astro* &
!pictures@'; 2

path

3

4

https://www.postgresql.org/docs/current/static/hstore.html
https://www.postgresql.org/docs/current/static/ltree.html

Top.Science.Astronomy

5

Top.Science.Astronomy.Astrophysics

6

Top.Science.Astronomy.Cosmology

7

(3 rows)

• pg_trgm

Th module provid functions and operators for determining the simi-

larity of alphanumeric text based on trigram matching,

well

index

operator class that support fast searching for similar strings.

Now, the next part of the list includes extensions to PostgreSQL that are
main-

tained separately from the main project. That means the projects have their
own

team and organization, and more importantly, their own release cycle.

• PostGIS

PostGIS

a spatial database extender for PostgreSQL object-relational

https://www.postgresql.org/docs/current/static/pgtrgm.html
https://postgis.net

database. It adds support for geographic objects allowing location queri

to be run in SQL.

1

SELECT superhero.name

2

FROM city, superhero

3

WHERE ST_Contains(city.geom, superhero.geom)

4

AND city.name = 'Gotham';

In addition to basic location awareness, PostGIS offers many featur rarely

found in other competing spatial databas such

Oracle Locator/Spatial

and SQL Server. Refer to PostGIS Feature List for more details.

• ip4r

IPv4/v6 and IPv4/v6 range index type for PostgreSQL

Chapter 42 What’s a PostgreSQL Extension? | 362

While PostgreSQL already h builtin typ ‘inet’ and ‘cidr’, the authors

of th module found that they had a number of requirements that were

not addressed by the builtin type.

https://postgis.net/features/
https://github.com/RhodiumToad/ip4r

Firstly and most importantly, the builtin typ do not have good support

for index lookups of the form (column >>= parameter), i.e. where you

have a table of IP address rang and wish to find which on include a

given IP address. Th requir an rtree or gist index to do efficiently, and

also requir a way to represent IP address rang that do not fall precisely

on CIDR boundari .

Secondly, the builtin inet/cidr are somewhat overloaded with semantics,

with inet combining two distinct concepts (a netblock, and a specific IP

within that netblock). Furthermore, they are variable length typ (to

support ipv6) with non-trivial overheads, and the authors (whose applica-

tions mainly deal in large volum of single IPv4 address) wanted a more

lightweight representation.

• citus

Cit horizontally scal PostgreSQL across commodity servers using shard-

ing and replication. Its query engine paralleliz incoming SQL queri

across these servers to enable real-time respons on large datasets.

• pgpartman

pg_partman

an extension to create and manage both time-based and

serial-based table partition sets. Native partitioning in PostgreSQL 10

https://www.citusdata.com
https://github.com/pgpartman/pg_partman

supported

of pg_partman v3.0.1. Note that all the featur of tri er-

based partitioning are not yet supported in native, but performance in

both reads and writ

significantly better.

Child table creation all managed by the extension itself. For non-native,

tri er function maintenance

also handled. For non-native partition-

ing, tabl with existing data can have their data partitioned in easily

managed smaller batch . For native partitioning, the creation of a new

partitioned set

required and data will have to be migrated over sepa-

rately.

• postgres-hll

Th Postgr module introduc a new data type hll, which

a Hyper-

LogLog data structure. HyperLogLog a fixed-size, set-like structure used

Chapter 42 What’s a PostgreSQL Extension? | 363

for distinct value counting with tunable precision. For example, in 1280

byt hll can estimate the count of tens of billions of distinct valu with

https://github.com/citusdata/postgresql-hll

only a few percent error.

• pre x

Prefix matching both very common and important in telephony applica-

tions, where call routing and costs depend on matching caller/callee phone

numbers to an operator prefix.

Let’s say the prefix table

called prefix , a typical query will try to

match a phone number to the longest prefix in the table:

1

SELECT *

2

FROM prefixes

3

WHERE prefix @> '0123456789'

4

ORDER BY length(prefix) DESC

5

LIMIT 1;

• madlib

Apache MADlib an open-source library for scalable in-database analyt-

https://github.com/dimitri/prefix
http://madlib.apache.org/index.html

ics. It provid data-parallel implementations of mathematical, statistical

and machine learning methods for structured and unstructured data.

The MADlib mission: to foster widespread development of scalable an-

alytic skills, by harnessing efforts from commercial practice, academic re-

search, and open-source development.

• RUM

The RUM module provid an access method to work with RUM index.

It

based on the GIN access methods code. RUM solv the GIN rank-

ing, phrase search, and ordering by timestamps performance problems of

GIN by storing additional information in a posting tree. Positional infor-

mation of lexem or timestamps are exampl .

If you’re using full text search with PostgreSQL, then have a look at the

RUM extension.

From this list it’s quite clear how powerful the PostgreSQL extensibility
charac-

teristics are. We have extensions that provide a new data type and its
operators,

moreover with indexing support. Other extensions implement their own SQL

planner and optimizer, like in the case of Citus, which uses that capability to
then

https://github.com/postgrespro/rum

route query executions over a network of distributed PostgreSQL instances.

Chapter 42 What’s a PostgreSQL Extension? | 364

All those PostgreSQL extension can rely on PostgreSQL industry strenghs:

• Correctness via transaction semantics

• Durability and crash safety

• Performance thanks to an advanced planner and cost-based optimizer

• Open source project and protocol

43

Auditing Changes with hstore

The PostgreSQL extension hstore implements a data type for storing sets of
key/value pairs within a single PostgreSQL value. This can be useful in

various scenarios, such as rows with many attributes that are rarely examined,
or

semi-structured data. Keys and values are simply text strings.

We could go so far as to say that hstore is a precursor to JSON support in
Post-

greSQL, as it supports some of the same use cases. The main di ference
between

hstore and JSON is that in hstore, there’s only one data type supported and

that’s text. Also, an hstore composite value is a at dictionnary, so nesting
isn’t

supported.

https://www.postgresql.org/docs/current/static/hstore.html

Still hstore is very useful in some cases, and we’re going to see how to put
hstore

into practice to audit changes in a generic way.

Introduction to hstore

Of course the rst thing we have to do is to enable the hstore extension in our

database with the following SQL command:

1

create extension hstore;

Now, equiped with the extension, we can create hstore values and use the
arrow

operator -> to access the values associated with a given key.

Chapter 43 Auditing Changes with hstore | 366

1

select kv,

2

kv->'a' as "kv -> a",

3

kv-> array['a', 'c'] as "kv -> [a, c]"

4

from (

5

values ('a=>1,a=>2'::hstore),

6

('a=>5,c=>10')

7

)

8

as t(kv);

Here, we fetch the value from the key 'a' as a scalar value, and then we fetch
the

values from multiple keys at once, with the notation array ['a', 'c']:

kv

│ kv -> a │ kv -> [a, c]

═════════════════════╪═════════╪══════════════

"a"=>"1"

│ 1

│ {1,NULL}

"a"=>"5", "c"=>"10" │ 5

│ {5,10}

(2 rows)

As you can see, all we have in hstore keys and values are text values.

Comparing hstores

The hstore extension implements a - operator: its documentation says that it
will delete matching pairs from left operand.

1

select

'f1 => a, f2 => x'::hstore

2

- 'f1 => b, f2 => x'::hstore

3

as diff;

This gives the following result:

diff

═══════════

"f1"=>"a"

(1 row)

That’s what we’re going to use in our chang auditing tri er now, because it’s
a pretty useful format to understand what did change.

Auditing Changes with a Trigger

First we need some setup:

Chapter 43 Auditing Changes with hstore | 367

• We are going to track changes made when we update the MoMA collection,
which we processed in the previous chapter. The table we are audit-

ing is moma.artist.

• The changes are recorded in a table named moma.audit, de ned in a pretty

generic way as we can see below.

• Then we install PostgreSQL triggers on the moma.artist table to capture

any change made to it and populate the moma.audit table with the before

and after versions of updated rows.

The representation of the row is recorded using the hstore format, which

is very exible and could be used to track more than one table de nition.

Either several tables, or just the same table even in the case of schema

changes done with ALTER TABLE.

The idea is to add a row in the audit table each time the moma.artist table is

updated, with the hstore representation of the data in ight before and af er the

change:

1

begin;

2

3

create table moma.audit

4

(

5

change_date timestamptz default now(),

6

before

hstore,

7

after

hstore

8

);

9

10

commit;

In the previous chapter we had an introduction to triggers. Here’s an hstore
auditing one:

1

begin;

2

3

create function moma.audit()

4

returns trigger

5

language plpgsql

6

as $$

7

begin

8

INSERT INTO audit(before, after)

9

SELECT hstore(old), hstore(new);

10

return new;

11

end;

12

$$;

13

14

create trigger audit

Chapter 43 Auditing Changes with hstore | 368

15

after update on moma.artist

16

for each row

17

execute procedure audit();

18

19

commit;

Note that we could attach the same trigger to any other table, as the details of
the

audit table contain nothing speci c about the moma.artist table. When doing

so, it then becomes necessary to also track the origin of the changes with both
a

table_name column and a schema_name column:

1

begin;

2

3

create table moma.audit

4

(

5

change_date timestamptz default now(),

6

schema_name name,

7

table_name

name,

8

before

hstore,

9

after

hstore

10

);

11

12

commit;

Within the trigger procedude, the information we want is available as the

TG_TABLE_SCHEMA and TG_TABLE_NAME variables. To enhance the
trigger proce-

dure code that we’re using in this examples, read the PostgreSQL
documentation

chapter entitled PL/pgSQL Trigger Procedures.

Testing the Audit Trigger

With that in place, let’s try it out:

1

begin;

2

3

create temp table batch

4

(

5

like moma.artist

6

including all

7

)

http://www.postgresql.org/docs/current/interactive/plpgsql-trigger.html

8

on commit drop;

9

10

\copy batch from 'artists/artists.2017-07-01.csv' with csv header delimiter ','

11

12

with upd as

13

(

Chapter 43 Auditing Changes with hstore | 369

14

update moma.artist

15

set (name, bio, nationality, gender, begin, "end", wiki_qid, ulan) 16

17

= (batch.name, batch.bio, batch.nationality,

18

batch.gender, batch.begin, batch."end",

19

batch.wiki_qid, batch.ulan)

20

21

from batch

22

23

where batch.constituentid = artist.constituentid

24

25

and (artist.name, artist.bio, artist.nationality,

26

artist.gender, artist.begin, artist."end",

27

artist.wiki_qid, artist.ulan)

28

<> (batch.name, batch.bio, batch.nationality,

29

batch.gender, batch.begin, batch."end",

30

batch.wiki_qid, batch.ulan)

31

32

returning artist.constituentid

33

),

34

ins as

35

(

36

insert into moma.artist

37

select constituentid, name, bio, nationality,

38

gender, begin, "end", wiki_qid, ulan

39

from batch

40

where not exists

41

(

42

select 1

43

from moma.artist

44

where artist.constituentid = batch.constituentid

45

)

46

on conflict (constituentid) do nothing

47

returning artist.constituentid

48

)

49

select (select count(*) from upd) as updates,

50

(select count(*) from ins) as inserts;

51

52

commit;

This SQL statement outputs the following information:

BEGIN

CREATE TABLE

COPY 15226

updates │ inserts

═════════╪═════════

52 │

61

(1 row)

COMMIT

And thanks to our audit trigger, we can have a look at what has changed:

Chapter 43 Auditing Changes with hstore | 370

1

select (before -> 'constituentid')::integer as id,

2

after - before as diff

3

from moma.audit

4

limit 15;

So here are the rst 15 changes out of the 52 updates we made:

id

│

diff

══════╪═══

546 │ "bio"=>"American, born England. 1906–1994"

570 │ "bio"=>"American, 1946–2016"

920 │ "bio"=>"American, born Switzerland. 1907–1988", "end"=>"1988"

957 │ "bio"=>"Italian, 1906–1996", "end"=>"1996"

1260 │ "bio"=>"American, 1923–2017", "end"=>"2017", "begin"=>"1923"

1372 │ "bio"=>"Belgian, 1901–1986", "end"=>"1986", "name"=>"Suzanne
va…

│…n Damme", "begin"=>"1901", "nationality"=>"Belgian"

1540 │ "bio"=>"American, 1900–1979", "end"=>"1979", "begin"=>"1900",
"…

│…nationality"=>"American"

1669 │ "name"=>"Dušan Džamonja"

1754 │ "name"=>"Erró (Gudmundur Gudmundsson)"

1855 │ "bio"=>"Mexican, 1904–1972", "end"=>"1972"

1975 │ "bio"=>"American, born Uruguay. 1919–2013"

2134 │ "bio"=>"Israeli, 1936–2017"

2679 │ "bio"=>"British, 1932–2017"

3005 │ "bio"=>"French, 1906–1971"

3230 │ "bio"=>"Greek, 1936–2017"

(15 rows)

From hstore Back to a Regular Record

The hstore extension is able to cast data from a record to an hstore with the

hstore() function, and back again with the populate_record() function.

Here’s an example using that very powerful function, where we nd out if any

artist name has been changed and display when the change occurred, what the

old name was and what the new name is:

1

select audit.change_date::date,

2

artist.name as "current name",

3

before.name as "previous name"

4

5

from

moma.artist

6

join moma.audit

7

on (audit.before->'constituentid')::integer

8

= artist.constituentid,

9

populate_record(NULL::moma.artist, before) as before

Chapter 43 Auditing Changes with hstore | 371

10

11

where artist.name <> before.name;

In this query, we extract the constituentid from the audit table in order to join

it with artist table, and then build the following result set:

change_date │

current name

│

previous name

═════════════╪══════════════════════════════╪══════════════════════════════

2018-08-25

│ Suzanne van Damme

│ Elisabeth van Damme

2018-08-25

│ Dušan Džamonja

│ Dusan Dzamonja

2018-08-25

│ Erró (Gudmundur Gudmundsson) │ Erro (Gudmundur Gudmundsson)

2018-08-25

│ Nikos Hadjikyriakos-Ghika

│ Nikos HadjiKyriakos-Ghika

2018-08-25

│ Sam Mendes

│ Same Mendes

2018-08-25

│ Tim Berresheim

│ Tim Berrescheim

2018-08-25

│ Kestutis Nakas

│ Kęstutis Nakas

2018-08-25

│ Jennifer T. Ley

│ Jennifer Ley

(8 rows)

The hstore extension is very useful, even with JSON support in current
versions

of PostgreSQL. The ability to cast from and to a record is unique to this
exten-

sion, and its di ference operator has no equivalent in the JSON feature set.

44

Last.fm Million Song Dataset

In the next two study cases, we’re going to play with the LastFm dataset, the
o cial song tag and song similarity dataset of the Million Song Dataset:

The MSD team is proud to partner with Last.fm in order to bring

you the largest research collection of song-level tags and precom-

puted song-level similarity. All the data is associated with MSD

tracks, which makes it easy to link it to other MSD resources: au-

dio features, artist data, lyrics, etc.

First, we need to import this dataset into a PostgreSQL database. The data set

is o fered both as an SQLite database and a JSON le. Loading the SQLite

https://labrosa.ee.columbia.edu/millionsong/lastfm

database is easy thanks to pgloader:

1

$ curl -L -o /tmp/lastfm_tags.db

2

http://labrosa.ee.columbia.edu/ \

3

millionsong/sites/default/files/lastfm/lastfm_tags.db

4

5

$ pgloader /tmp/lastfm_tags.db pgsql://appdev@localhost/appdev

We get the following output, meaning the data is now available in our

PostgreSQL database for further indexing:

table name

errors

read

imported

bytes

total time

https://pgloader.io

fetch

0

0

0

0.000s

fetch meta data

0

8

8

0.028s

Create Schemas

0

0

0

0.000s

Create SQL Types

0

0

0

0.006s

Create tables

0

6

6

0.031s

Set Table OIDs

0

3

3

0.009s

Chapter 44 Last.fm Million Song Dataset | 373

tids

0

505216

505216

9.2 MB

1.893s

tags

0

522366

522366

8.6 MB

1.781s

tid_tag

0

8598630

8598630

135.7 MB

32.614s

COPY Threads Completion

0

4

4

34.366s

Create Indexes

0

5

5

2m14.346s

Index Build Completion

0

5

5

36.976s

Reset Sequences

0

0

0

0.054s

Primary Keys

0

0

0

0.000s

Create Foreign Keys

0

0

0

0.000s

Create Triggers

0

0

0

0.001s

Install Comments

0

0

0

0.000s

Total import time

✓

9626212

9626212

153.4 MB

3m25.743s

Here, pgloader extracted the table and index de nitions from the SQLite

database using the sqlite_master catalog and the PRAGMA table_info()

commands, and it migrated the data in a streaming fashion to PostgreSQL,

using the COPY protocol.

Having a look at the demo_tags.py script from the Last.fm project, we can
see how to use the relations here, and we realize they are using the 64-bit
signed inte-

ger ROWID system column. We need something comparable to be able to
make sense of the data:

1

begin;

2

3

alter table tags add column rowid serial;

4

alter table tids add column rowid serial;

5

6

commit;

With the new columns in place, we can have a rst look at the provided data.
To

get started, we can search for Brian Setzer in the user-de ned tags:

1

select tags.tag, count(tid_tag.tid)

2

http://www.sqlite.org/autoinc.html
http://www.sqlite.org/autoinc.html

from tid_tag, tags

3

where tid_tag.tag=tags.rowid and tags.tag ~* 'setzer'

4

group by tags.tag;

Sure enough, some fans have been using Last.fm services:

tag

│ count

═════════════════════════════╪═══════

Brian Setzer

│

1

Setzer

│

13

brain setzer orchestra

│

2

brian setzer is GOD

│

1

brian setzer orchestra

│

3

rockabilly Setzer style

│

4

setzer is a true guitarhero │

9

Chapter 44 Last.fm Million Song Dataset | 374

the brian setzer orchestra

│

1

(8 rows)

Time: 394.927 ms

Here the query is mainly doing a join in between the tid table (containing
track ids) and the tid_tag table (containing the association between tracks and
tags), ltering on the case insensitive regular expression 'setzer'. As we can
imagine from reading the query execution time, there’s no index to
implement the ltering here.

Now the million song project is also releasing the data as a set of JSON-
encoded

text les, and in the JSON le we nd additional information such as titles and

artist that we could add to the current track table containing only the track id

information. A track id looks like TRVBGMW12903CBB920 — this is not
the

best way to refer a song for us human beings.

So this time we download the JSON resource and process it with the help of a

small parser script:

1

curl -L -o /tmp/lastfm_subset.zip

2

http://labrosa.ee.columbia.edu/

\

3

millionsong/sites/default/files/lastfm/lastfm_subset.zip

Then we can load this new content into the new table de nition:

1

begin;

2

3

create table lastfm.track

4

(

5

tid

text,

6

artist text,

7

title

text

8

);

9

10

commit;

Because my favorite programming environment involves Common Lisp, the
fol-

lowing source of the script is written in this language. I’ve been using it to
parse

the JSON les from the zip archive and load them all from a COPY command.

Using COPY here means that we can stream the parsed data as we go, and
inject

all the content in a single PostgreSQL command:

1

(defpackage #:lastfm

2

(:use #:cl #:zip)

3

(:import-from #:cl-postgres

4

#:open-db-writer

5

#:close-db-writer

Chapter 44 Last.fm Million Song Dataset | 375

6

#:db-write-row))

7

8

(in-package #:lastfm)

9

10

(defvar *db* '("appdev" "appdev" nil "localhost" :port 5432)) 11

(defvar *tablename* "lastfm.track")

12

(defvar *colnames*

'("tid" "artist" "title"))

13

14

(defun process-zipfile (filename)

15

"Process a zipfile by sending its content down to a PostgreSQL table."

16

17

(pomo:with-connection *db*

18

19

(let ((count 0)

20

(copier (open-db-writer pomo:*database* *tablename* *colnames*)))

21

22

(unwind-protect

23

(with-zipfile (zip filename)

24

(do-zipfile-entries (name entry zip)

25

(let ((pathname (uiop:parse-native-namestring name)))

26

(when (string= (pathname-type pathname) "json")

27

(let* ((bytes

(zipfile-entry-contents entry))

28

(content

29

(babel:octets-to-string bytes :encoding :utf-8)))

30

(db-write-row copier (parse-json-entry content))

31

(incf count))))))

32

(close-db-writer copier))

33

34

;; Return how many rows we did COPY in PostgreSQL

35

count)))

36

37

(defun parse-json-entry (json-data)

38

(let ((json (yason:parse json-data :object-as :alist)))

39

(list (cdr (assoc "track_id" json :test #'string=))

40

(cdr (assoc "artist"

json :test #'string=))

41

(cdr (assoc "title"

json :test #'string=)))))

Of course it’s possible to implement the same technique in any programming

language. All you need is for your PostgreSQL driver of choice to expose the

PostgreSQL COPY protocol. Make sure it does, and then learn how to
properly

load data using it.

With the Postmodern driver for Common Lisp that I’m using, the COPY API
involves the three functions below:

• open-db-writer to open the COPY streaming protocol,

• db-write-row to push a single row to PostgreSQL,

• close-db-writer to signal we’re done and close the COPY streaming.

Chapter 44 Last.fm Million Song Dataset | 376

So if you read the script carefully you’ll see that it is using those API calls to

push one row per JSON le that is parsed. One trick the script is using is that
it’s

reading directly from the zip le, uncompressing it in memory and parsing
JSON

les from there, without writing the JSON les extracted from the zip archive on

disk on the client side. PostgreSQL of course will have to serialize the data to
disk when it appears in the server side of the COPY protocol.

Time to discover the data model and the data itself with a rst batch of
interactive

queries, with the sole aim of ful lling our curiosity:

1

select artist, count(*)

https://github.com/marijnh/Postmodern

2

from lastfm.track

3

group by artist

4

order by count desc

5

limit 10;

We can see that one of the most popular artists in the data set is Aerosmith:

artist

│ count

═════════════════════════════╪═══════

Mario Rosenstock

│

13

Aerosmith

│

12

Snow Patrol

│

12

Phil Collins

│

12

Sugar Minott

│

11

Bill & Gloria Gaither

│

11

Line Renaud

│

11

Shakira

│

11

Radiohead

│

11

Nick Cave and the Bad Seeds │

11

(10 rows)

Now, let’s have a look at the kind of tags this artist would have had attached
to

by Last.fm users:

1

select track.artist, tags.tag, count(*)

2

from tags

3

join tid_tag tt on tags.rowid = tt.tag

4

join tids on tids.rowid = tt.tid

5

join lastfm.track on track.tid = tids.tid

6

where track.artist = 'Aerosmith'

7

group by artist, tags.tag

8

order by count desc

9

limit 10;

With this very simple and classic query, we can see how the data model ts to-

gether, using the tags, tid_tag, tids, and track tables. The model comes from

the SQLite database used by the project, to which we have been adding the
track

table, where we did COPY data from the zip le full of JSON les.

Chapter 44 Last.fm Million Song Dataset | 377

Anyway, here are some tags for Aerosmith:

artist

│

tag

│ count

═══════════╪════════════════╪═══════

Aerosmith │ Radio4You

│

12

Aerosmith │ hard rock

│

12

Aerosmith │ rock

│

11

Aerosmith │ classic rock

│

11

Aerosmith │ 70s

│

10

Aerosmith │ 80s

│

9

Aerosmith │ mi metal1

│

8

Aerosmith │ favorites

│

8

Aerosmith │ male vocalists │

8

Aerosmith │ pop

│

8

(10 rows)

We limited it to ten rows here. The dataset we are playing with actually
contains

464 unique tags just for the Aerosmith band. One of them from the list above
is

spelled favorites, so what titles have been agged as a favorite of Last.fm
users, using one spelling or another?

1

select track.tid, track.title, tags.tag

2

from tags

3

join tid_tag tt on tags.rowid = tt.tag

4

join tids on tids.rowid = tt.tid

5

join lastfm.track on track.tid = tids.tid

6

where track.artist = 'Aerosmith'

7

and tags.tag ~* 'favourite'

8

order by tid, tag;

We can see the 12 all-time favorite songs from Aerosmith… in this dataset at
least:

tid

│

title

│

tag

════════════════════╪═════════════════════════╪════════════════════════════════

TRAQPKV128E078EE32 │ Livin' On The Edge

│ Favourites

TRAVUAJ128E078EDA2 │ What It Takes

│ favourite

TRAYKOC128F930D2B8 │ Cryin'

│ Favourites

TRAYKOC128F930D2B8 │ Cryin'

│ favourite

TRAZDPO128E078ECE6 │ Crazy

│ Favourites

TRAZDPO128E078ECE6 │ Crazy

│ all- time favourite

TRAZDPO128E078ECE6 │ Crazy

│ favourite

TRAZISI128E078EE2F │ Same Old Song and Dance │ first favourite
metalcore song

TRBARHH128E078EDE9 │ Janie's Got A Gun

│ favourite

TRBARHH128E078EDE9 │ Janie's Got A Gun

│ my favourite songs

TRBGPJP128E078ED20 │ Crazy

│ Favourites

TRBGPJP128E078ED20 │ Crazy

│ favourite

(12 rows)

Now that we have an idea about the dataset, it’s time to solve more
interesting

use cases with it.

45

Using Trigrams For Typos

Some popular search engines are capable of adding helpful bits of
information

that depend directly on your search phrase. Both autocorrect and did you
mean?

are part of the basics of a search engine user experience nowadays.

PostgreSQL implements several fuzzy string matching approaches, and one of

them in particular is suitable for implementing suggestions to search strings,
pro-

vided that you are searching in a known catalog of items.

The pg_trgm PostgreSQL Extension

The PostgreSQL extension pg_trgm provides functions and operators for
determining the similarity of alphanumeric text based on trigram matching, as
well as

index operator classes that support fast searching for similar strings.

Before we see how to bene t from the pg_trgm extension, it must be said that
PostgreSQL comes with a complete full text search implementation. For full

exibility and advanced processing, consider using text search parsers and one
of the PostgreSQL dictionnaries with support for stemming, thesaur or syno-
myms support. The facility comes with a full text query language and tools
for

ranking search result. So if what you need really is full text search then go
check the docs.

The use of trigrams is of en complementary to full text search. With trigrams
we

Chapter 45 Using Trigrams For Typos | 379

http://www.postgresql.org/docs/current/static/pgtrgm.html
http://www.postgresql.org/docs/current/static/textsearch-parsers.html
http://www.postgresql.org/docs/current/static/textsearch-dictionaries.html
http://www.postgresql.org/docs/current/static/textsearch-controls.html#TEXTSEARCH-PARSING-QUERIES
http://www.postgresql.org/docs/current/static/textsearch-controls.html#TEXTSEARCH-RANKING

can implement typing correction suggestions or index like and POSIX
Regular

Expressions searches.

Whatever the use case, it all begins as usual by enabling the extension within
your

database server. If you’re running from PostgreSQL packages be sure to
always install the contrib package — it really is important. A time will come
when you

need it and you will then be happy to only have to type create extension to

get started.

1

create extension pg_trgm;

Trigrams, Similarity and Searches

The idea behind trigrams is simple and very e fective. Split your text into a
con-

secutive series of three-letters. That’s it. Then you can compare two texts
based

on how many consecutives three-letters series (trigrams) are common, and
that’s

the notion of similarity. It works surprisingly well, and doesn’t depend on the

language used.

In the following query we show trigrams extracted from several attempts

at spelling the name Tommy and then the similarity value obtained when

http://www.postgresql.org/docs/current/static/functions-matching.html
http://www.postgresql.org/docs/current/static/functions-matching.html
http://www.postgresql.org/download/

comparing tomy and dim to tom.

1

select show_trgm('tomy') as tomy,

2

show_trgm('Tomy') as "Tomy",

3

show_trgm('tom torn') as "tom torn",

4

similarity('tomy', 'tom'),

5

similarity('dim', 'tom');

Note that when using small units of text the similarity might look more like a

guess than anything. Also before we read the result of the query, here’s what
the

pg_trgm documentation says about the similarity function:

Returns a number that indicates how similar the two arguments

are. The range of the result is zero (indicating that the two strings

are completely dissimilar) to one (indicating that the two strings are

identical).

-[RECORD 1]-------------------------------------

tomy

| {"

t"," to","my ",omy,tom}

Tomy

| {"

t"," to","my ",omy,tom}

tom torn

| {"

t"," to","om ",orn,"rn ",tom,tor}

similarity | 0.5

Chapter 45 Using Trigrams For Typos | 380

similarity | 0

As you can read in the PostgreSQL trigram extension documentation, the
default similarity threshold is 0.3 and you can tweak it by using the GUC
setting

pg_trgm.similarity_threshold.

Now we can search for songs about love in our collection of music, thanks to
the

following query:

\index{Operators!%}

1

select artist, title

http://www.postgresql.org/docs/current/static/pgtrgm.html

2

from lastfm.track

3

where title % 'love'

4

group by artist, title

5

order by title <-> 'love'

6

limit 10;

This query introduces several new operators from the pg_trgm extension:

• The operator % reads similar to and involves comparing trigrams of both

its lef and right arguments

• The operator <-> computes the “distance” between the arguments, i.e. one

minus the similarity() value.

Here’s a list of ten songs with a title similar to love:

artist

│

title

════════════════════════════╪═══════════

The Opals

│ Love

YZ

│ Love

Jars Of Clay

│ Love Me

Angelo Badalamenti

│ Love Me

Barry Goldberg

│ Lost Love

The Irish Tenors

│ My Love

Jeanne Pruett

│ Love Me

Spade Cooley

│ Lover

Sugar Minott

│ Try Love

David Rose & His Orchestra │ One Love

(10 rows)

This trigram similarity concept is quite di ferent to a regexp match:

1

select artist, title

2

from lastfm.track

3

where title ~ 'peace';

The query above returns no rows at all, because peace is never found written
exactly that way in the song titles. What about searching in a case insensitive
way

Chapter 45 Using Trigrams For Typos | 381

then?

1

select artist, title

2

from lastfm.track

3

where title ~* 'peace';

Then we nd the following 11 titles, all embedding a variation of lower case
and

upper case letters in the same order as in the expression peace:

artist

│

title

═══════════════════╪════════════════════════════

Bow Wow Wow

│ Love, Peace and Harmony

Billy Higgins

│ Peace

John Mellencamp

│ Peaceful World

Terry Riley

│ Peace Dance

Steinski

│ Silent Partner (Peace Out)

Nestor Torres

│ Peace With Myself

Dino

│ Wonderful Peace

Uman

│ The Way To Peace

Dhamika

│ Peace Prayer

Gonzalo Rubalcaba │ Peace and Quiet Time

Twila Paris

│ Perfect Peace

(11 rows)

Now that we have had a look at what a regexp query nds for us, we can
compare

it with a trigram search.

\index{Operators!%}

1

select artist, title

2

from lastfm.track

3

where title % 'peace';

This query when using the ~ operator didn’t nd any titles, because peace is

always spelled with a capital letter in our catalogue. When using trigrams
though,

the outcome is not so similar:

artist

│

title

═════════════════╪═══════════════════

Billy Higgins

│ Peace

John Mellencamp │ Peaceful World

Terry Riley

│ Peace Dance

Nestor Torres

│ Peace With Myself

Dino

│ Wonderful Peace

Uman

│ The Way To Peace

Dhamika

│ Peace Prayer

Twila Paris

│ Perfect Peace

(8 rows)

Indeed, trigrams are computed in a case insensitive way:

Chapter 45 Using Trigrams For Typos | 382

1

select show_trgm('peace') as "peace",

2

show_trgm('Peace') as "Peace";

─[RECORD 1]──────────────────────────

peace │ {"

p"," pe",ace,"ce ",eac,pea}

Peace │ {"

p"," pe",ace,"ce ",eac,pea}

There’s yet another way to search for similarity, called word_similarity. As
per

the documentation:

This function returns a value that can be approximately understood

as the greatest similarity between the rst string and any substring

of the second string. However, this function does not add padding

to the boundaries of the extent. Thus, the number of additional

characters present in the second string is not considered, except for

the mismatched word boundry.

In other words, this function is better at nding words in a longer text. It
sounds

like it’s well adapted to searching our title strings, so we can try it now:

1

select artist, title

2

from lastfm.track

3

where title %> 'peace';

We now use a new operator: %>. This operator uses the word_similarity
func-

tion introduced above, and takes into account that its lef operand is a longer

string, and its right operand is a single word to search. We could use the <%
op-

erator, where lef and right operands are used the other way round: word <%

phrase.

Here’s what we nd this time:

artist

│

title

═══════════════════╪═════════════════════════════════

Bow Wow Wow

│ Love, Peace and Harmony

Billy Higgins

│ Peace

John Mellencamp

│ Peaceful World

Terry Riley

│ Peace Dance

Steinski

│ Silent Partner (Peace Out)

Nestor Torres

│ Peace With Myself

Dino

│ Wonderful Peace

Uman

│ The Way To Peace

Dhamika

│ Peace Prayer

Gonzalo Rubalcaba │ Peace and Quiet Time

Twila Paris

│ Perfect Peace

Dub Pistols

│ Peaches - Fear of Theydon remix

(12 rows)

Is there any di ference in what we found? Let’s write a query to nd out:

Chapter 45 Using Trigrams For Typos | 383

1

select artist, title

2

from lastfm.track

3

where title %> 'peace'

4

5

except

6

7

select artist, title

8

from lastfm.track

9

where title ~* 'peace';

PostgreSQL computes the di ference between the two result sets for us,
reporting

this line:

artist

│

title

═════════════╪═════════════════════════════════

Dub Pistols │ Peaches - Fear of Theydon remix

(1 row)

It seams like Peaches is similar enough to peace to be selected here.

Complete and Suggest Song Titles

Now, what if the search string is being mistyped? We all make typos, and our

users will too. Let’s try it with a small typo: peas.

1

select artist, title

2

from lastfm.track

3

where title ~* 'peas';

This query returns no rows! It seems our Last.fm selection of titles doesn’t
in-

clude the famous Pass The Pe by Maceo Parker. Anyway, our users will not
be very happy with no result, and I’m sure they would like to see suggestions
of

results.

So instead we could use the following similarity query:

1

select artist, title

2

from lastfm.track

3

where title %> 'peas';

And now here’s a list of song titles having trigrams that are similar to the
trigrams of our search string:

artist

│

title

════════════════════════════╪═════════════════════════════════

Bow Wow Wow

│ Love, Peace and Harmony

Chapter 45 Using Trigrams For Typos | 384

The Balustrade Ensemble

│ Crushed Pears

Little Joe & The Thrillers │ Peanuts

Billy Higgins

│ Peace

John Mellencamp

│ Peaceful World

Terry Riley

│ Peace Dance

Joe Heaney

│ Peigin is Peadar

Steinski

│ Silent Partner (Peace Out)

Nestor Torres

│ Peace With Myself

Dino

│ Wonderful Peace

Uman

│ The Way To Peace

Fania All-Stars

│ Peanuts (The Peanut Vendor)

Dhamika

│ Peace Prayer

Tin Hat Trio

│ Rubies, Pearls and Emeralds

Gonzalo Rubalcaba

│ Peace and Quiet Time

Twila Paris

│ Perfect Peace

Dub Pistols

│ Peaches - Fear of Theydon remix

(17 rows)

That’s 17 rows, so maybe too many for a suggestion as you type input box.
We

would like to limit it to the top ve elements, ordered by how close the titles
are

to the search term:

1

select artist, title

2

from lastfm.track

3

where title %> 'peas'

4

order by title <-> 'peas'

5

limit 5;

Here we use the <-> distance operator again in order to get this short
selection: artist

│

title

════════════════════════════╪═══════════════

Billy Higgins

│ Peace

Little Joe & The Thrillers │ Peanuts

Terry Riley

│ Peace Dance

Dhamika

│ Peace Prayer

Twila Paris

│ Perfect Peace

(5 rows)

Trigram Indexing

Of course if we want to be able to use those suggestions directly from our
nice

user input facility, it needs to be as fast as possible. The usual answer to
speed up speci c SQL queries is indexing.

The pg_trgm extension comes with speci c indexing algorithms to take care
of

Chapter 45 Using Trigrams For Typos | 385

searching for similarity. Moreover, it covers searching for regular expressions
too.

Here’s how to build our index:

1

create index on lastfm.track using gist(title gist_trgm_ops);

We can explain our previous queries and see that they now use our new
index:

1

explain (analyze, costs off)

2

select artist, title

3

from lastfm.track

4

where title ~* 'peace';

Here’s the query plan:

QUERY PLAN

══

Index Scan using track_title_idx on track (actual time=0.552..3.832 rows=11
loops=1)

Index Cond: (title ~* 'peace'::text)

Planning time: 0.293 ms

Execution time: 3.868 ms

(4 rows)

What about this more complex query ordering by distance?

1

explain (analyze, costs off)

2

select artist, title

3

from lastfm.track

4

where title %> 'peas'

5

order by title <-> 'peas'

6

limit 5;

As you can see below, PostgreSQL is still able to implement it with a single
index

scan. Of course the limit part of the query is done with its own query plan on

top of the index. This plan step is able to stop the index scan as soon as it has
sent the rst ve rows, because the index scan is known to return them in order:

QUERY PLAN

═══

Limit (actual time=6.730..6.773 rows=5 loops=1)

->

Index Scan using track_title_idx on track (actual time=6.728..6.770 rows=5
loops=1)

Index Cond: (title %> 'peas'::text)

Order By: (title <-> 'peas'::text)

Planning time: 0.090 ms

Execution time: 6.809 ms

(6 rows)

Finally, we can see that the query execution times obtained on my laptop are

encouraging, and we are going to be able to use those queries to serve users
live.

46

Denormalizing Tags with intarray

Handling user-de ned tags can be challenging in SQL when it comes to
allow-

ing advanced user queries. To illustrate the point here, we’re going to index
and

search for Last.fm tracks that are tagged as blu and rhythm and blu .

Using teh Last.fm dataset from the Million Song Dataset project provides a
data set that we can reuse that is full of tracks and their user tags.

Advanced Tag Indexing

PostgreSQL comes with plenty of interesting datatypes, and one of them is

http://www.lastfm.fr/
http://labrosa.ee.columbia.edu/millionsong/lastfm

known as the arrays type. PostgreSQL also provides a very rich set of
extensions, some of them found under the contrib package; one of them is
intarray. Let me quote the most interesting part of the documentation for that
extension:

The @@ and ~~ operators test whether an array satis es a query,

which is expressed as a value of a specialized data type query_int.

A query consists of integer values that are checked against the

elements of the array, possibly combined using the operators &

(AND), | (OR), and ! (NOT). Parentheses can be used as needed.

For example, the query 1&(2|3) matches arrays that contain 1 and

also contain either 2 or 3.

1

create extension intarray;

Chapter 46 Denormalizing Tags with intarray | 387

The way the intarray extension works, we need to build a new table that
contains the list of tags it’s been associated with for each track as an array of
integers. We’re going to use our rowid identi er for that purpose, as in the
following query: 1

select tt.tid, array_agg(tags.rowid) as tags

2

from

tags

3

http://www.postgresql.org/docs/9.3/interactive/arrays.html
http://www.postgresql.org/docs/9.3/interactive/intarray.html

join tid_tag tt

4

on tags.rowid = tt.tag

5

group by tt.tid

6

limit 3;

And here are our rst three songs with tags as numbers rather than strings:

tid │

tags

═════╪═══════════

1 │ {1,2}

2 │ {3,4}

3 │ {5,6,7,8}

(3 rows)

We might not want to do this computation of tags text to an array of numbers

for every title we have, so we can cache the result in a materialized view
instead:

1

begin;

2

3

create view lastfm.v_track_tags as

4

select tt.tid, array_agg(tags.rowid) as tags

5

from tags join tid_tag tt on tags.rowid = tt.tag

6

group by tt.tid;

7

8

create materialized view lastfm.track_tags as

9

select tid, tags

10

from v_track_tags;

11

12

create index on track_tags using gin(tags gin__int_ops);

13

14

commit;

Given this materialized view, we are going to be able to do advanced
indexing and

searching of the user provided tags. As you can see in the previous SQL
script, we

have been indexing our materialized view with a special index operator,
allowing

us to bene t from the intarray advanced querying.

Chapter 46 Denormalizing Tags with intarray | 388

Searches

Now we are ready for the real magic. Let’s nd all the tracks we have that
have

been tagged as both blu and rhythm and blu :

1

select array_agg(rowid)

2

from tags

3

where tag = 'blues' or tag = 'rhythm and blues';

That query gives the following result, which might not seem very interesting
at

rst:

http://www.postgresql.org/docs/current/interactive/intarray.html

array_agg

═══════════

{3,739}

(1 row)

The intarray PostgreSQL extension implements a special kind of query string,

named query_int. It looks like '(1880&179879)' and it supports the three logic

operators not, and, and or, that you can combine in your queries.

As we want our tag search queries to be dynamically provided by our users,
we

are going to build the query_int string from the tags table itself:

1

select format('(%s)',

2

string_agg(rowid::text, '&')

3

)::query_int as query

4

from tags

5

where tag = 'blues' or tag = 'rhythm and blues';

This query uses the format PostgreSQL function to build a string for us, here

puting our intermediate result inside parentheses. The intermediate result is
ob-

tained with string_agg which aggregates text values together, using a
separator

in between them. Usually the separator would be a comma or a semicolon.
Here

we are preparing a query_int string, and we’re going to search for all the
tracks

that have been tagged both blu and rhythm and blu , so we’re using the and
operator, written &:

query

═════════

3 & 739

(1 row)

That query here allows us to easily inject as many tags as we want to, so that
it’s

easy to use it as a template from within an application where the user is going
to provide the tags list. The intarray extension’s query format also accepts
other

Chapter 46 Denormalizing Tags with intarray | 389

operators (or and not) as we saw before, so if you want to o fer those to your
users you would need to tweak the query_int building part of the SQL.

Now, how many tracks have been tagged with both the blu and the rhythm
and blu tags, you might be asking:

1

with t(query) as (

2

select format('(%s)',

3

array_to_string(array_agg(rowid), '&')

4

)::query_int as query

5

from tags

6

where tag = 'blues' or tag = 'rhythm and blues'

7

)

8

select count(*)

9

from track_tags join t on tags @@ query;

As you can see we use the query template from above in a common table
expression and then inject it in the nal SQL query as join restriction over the
track_tags table.

count

═══════

2278

(1 row)

We have 2278 tracks tagged with both the blu and rhythm and blu tags.

Now of course you might want to fetch some track meta-data, but here the
only

one we have is the track hash id:

1

with t(query) as (

2

select format('(%s)',

3

array_to_string(array_agg(rowid), '&')

4

)::query_int as query

5

from tags

6

where tag = 'blues' or tag = 'rhythm and blues'

7

)

8

select track.tid,

9

left(track.artist, 26)

10

|| case when length(track.artist) > 26 then '…' else '' end 11

as artist,

12

left(track.title, 26)

13

|| case when length(track.title) > 26 then '…' else '' end 14

as title

15

from

track_tags tt

16

join tids on tt.tid = tids.rowid

17

join t on tt.tags @@ t.query

18

join lastfm.track on tids.tid = track.tid

19

order by artist;

That gives us the following result:

Chapter 46 Denormalizing Tags with intarray | 390

tid

│

artist

│

title

════════════════════╪═════════════════════════════╪═════════════════════════════

TRANZKG128F429068A │ Albert King

│ Watermelon Man

TRASBVS12903CF4537 │ Alicia Keys

│ If I Ain't Got You

TRAXPEN128F933F4DC │ B.B. King

│ Please Love Me

TRBFNLX128F4249752 │ B.B. King

│ Please Love Me

TRAUHJH128F92CA20E │ Big Joe Turner

│ Nobody In Mind

TRAOAVZ128F9306038 │ Big Joe Turner

│ Chains Of Love

TRAPRRP12903CD97E9 │ Big Mama Thornton

│ Hound Dog

TRBBMLR128F1466822 │ Captain Beefheart & His Ma… │ On Tomorrow

TRACTQD128F14B0F9D │ Donny Hathaway

│ I Love You More Than You'l…

TRAXULE128F9320132 │ Fontella Bass

│ Rescue Me

TRBAFBU128F427EFCE │ Free

│ Woman

TRAOMMU128F933878B │ Guitar Slim

│ The Things That I Used To …

TRAGVWF128F4230C95 │ Irma Thomas

│ The Same Love That Made Me…

TRACRBQ128F4263964 │ J.J. Cale

│ Midnight In Memphis

TRALIVO128F4279262 │ Janis Joplin

│ Down On Me

TRAPKJT128F9311D9E │ John Mayall & The Bluesbre… │ I'm Your
Witchdoctor

TRADJGU128F42A6C00 │ Jr. Walker & The All Stars

│ Shake And Fingerpop

TRARSZV12903CDB2DE │ Junior Kimbrough

│ Meet Me In The City

TRAZANO128F429A795 │ Little Milton

│ Little Bluebird

TRBIGUJ128F92D674F │ Little Willie John

│ Leave My Kitten Alone

TRAVEOQ128F931C8F4 │ Percy Mayfield

│ Please Send Me Someone To …

TRBCGHP128F933878A │ Professor Longhair

│ Bald Head

TRALWNE12903C95228 │ Ray Charles

│ Heartbreaker

TRAGIJM12903D11E62 │ Roy Brown

│ Love Don't Love Nobody

TRBBRTY128F4260973 │ Screamin' Jay Hawkins

│ Talk About Me

TRAHSYA128F428143A │ Screamin' Jay Hawkins

│ I Put A Spell On You

TRAYTDZ128F93146E3 │ Stevie Ray Vaughan And Dou… │ Mary Had A
Little Lamb

TRAIJLI128F92FC94A │ Stevie Ray Vaughan And Dou… │ Mary Had A
Little Lamb

TRACHTO12903CBE58B │ The Animals

│ The Story of Bo Diddley

TRBFMTO128F9322AE7 │ The Rolling Stones

│ Start Me Up

TRAERPT128F931103E │ The Rolling Stones

│ Time Is On My Side

TRAKBON128F9311039 │ The Rolling Stones

│ Around And Around

TRAHBWE128F9349247 │ The Shirelles

│ Dedicated To the One I Lov…

(33 rows)

The timing is key here, in terms of its order of magnitude. Using 10ms to
search

your tags database leaves you with enough time on the frontend parts of your
ap-

plication to keep your users happy, even when implementing advanced
searches.

User-Defined Tags Made Easy

The usual way to handle a set of user-de ned tags and query against it
involves

join against a reference table of tags, but then it’s quite complicated to
express the

Chapter 46 Denormalizing Tags with intarray | 391

full search query: we want tracks tagged with both blu and rhythm and blu ,
and might then want to exclude finger picking.

The intarray extension provides a powerful query specialized language with
direct index support, so that you can build dynamic indexes searches directly
from

your application.

47

The Most Popular Pub Names

PostgreSQL implements the point data type. Using this datatype, it’s possible
to register locations of points of interest on Earth, by using the point values as

coordinates for the longitude and latitude. The open source project Open
Street

Map publishes geographic data that we can use, such as pubs in the UK.

A Pub Names Database

Using the Overpass API services and a URL like the following, we can
download

an XML le containing geolocated pubs in the UK:

http://www.overpass-api.de/api/xapi?*[amenity=pub]

http://www.postgresql.org/docs/9.3/interactive/intarray.html
http://www.openstreetmap.org/
http://www.openstreetmap.org/

[bbox=-10.5,49.78,1.78,59]

The data itself is available from OSM in some kind of XML format where
they

managed to handle the data in an EAV model: 1

<node id="262706" lat="51.0350300" lon="-0.7251785" > 2

<tag k="amenity" v="pub" />

3

<tag k="created_by" v="Potlatch 0.10f" />

4

<tag k="name" v="Kings Arms" />

5

</node>

In our context in this chapter, we only need a very simple database schema
for

where to load this dataset, and the following is going to be ne for this
purpose:

1

create table if not exists pubnames

2

(

Chapter 47 The Most Popular Pub Names | 393

http://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model

3

id

bigint,

4

pos

point,

5

name text

6

);

So as to be able to load the data in a streaming fashion with the COPY
protocol,

we are going to use a SAX API to read the XML. Here’s a slightly edited
portion of the code I’ve been using to parse and load the data, available as the
pubnames

project on GitHub. Once more, the script is written in Common Lisp:

1

(defun parse-osm-end-element (source stream)

2

"When we're done with a <node>, send the data over to the stream"

3

http://common-lisp.net/project/cxml/klacks.html
https://github.com/dimitri/pubnames

(when (and (eq 'node (current-qname-as-symbol source))

4

current-osm)

5

;; don't send data if we don't have a pub name

6

(when (osm-name *current-osm*)

7

(cl-postgres:db-write-row stream (osm-to-pgsql *current-osm*)))

8

9

;; reset *current-osm* for parsing the next <node>

10

(setf *current-osm* nil)))

11

12

(defmethod osm-to-pgsql ((o osm))

13

"Convert an OSM struct to a list that we can send over to PostgreSQL"

14

(list (osm-id o)

15

(format nil "(~a,~a)" (osm-lon o) (osm-lat o))

16

(osm-name o)))

17

18

(defun import-osm-file (&key

19

table-name sql pathname

20

(truncate t)

21

(drop nil))

22

"Parse the given PATHNAME file, formated as OSM XML."

23

24

(maybe-create-postgresql-table :table-name table-name

25

:sql sql

26

:drop drop

27

:truncate truncate)

28

29

(klacks:with-open-source (s (cxml:make-source pathname))

30

(loop

31

with stream =

32

(cl-postgres:open-db-writer (remove :port *pgconn*) table-name nil)

33

for key = (klacks:peek s)

34

while key

35

do

36

(case key

37

(:start-element (parse-osm-start-element s))

38

(:end-element

(parse-osm-end-element s stream)))

39

(klacks:consume s)

40

41

finally (return (cl-postgres:close-db-writer stream)))))

Chapter 47 The Most Popular Pub Names | 394

Given that code, we can parse the data in the XML le and load it into our
Post-

greSQL table in a streaming fashion, using the PostgreSQL COPY protocol.
We

use a SAX parser for the XML content, to which tag handler functions are
regis-

tered:

• The parse-osm-start-element and parse-osm-end-element extract the

information we need from the node and tag XML elements, and ll in our

OSM internal data structure.

• Once the node and tag XML elements are parsed into an OSM in-

memory structure, we serialize this record to PostgreSQL using the

cl-postgres:open-db-writer and osm-to-pgsql functions.

The Common Lisp driver for PostgreSQL that is used here is named
Postmodern

and implements the COPY protocol with the three functions open-db-writer,

db-write-row, and close-db-writer, as we already saw earlier. Again, we’re

using the COPY support from our PostgreSQL driver to stream the data as we

parse it.

It is of course possible to implement this approach in any programming lan-

guage.

Normalizing the Data

As we are interested in the most popular pub names in the United Kingdom,
we

need to do some light data normalization. Of course, it’s easy and e cient to
do

that directly in SQL once the data has been loaded.

Here we’re using the technique coined ELT rather than the more common
ETL,

so extract, load, and only then transform the data:

select array_to_string(array_agg(distinct(name) order by name), ', '),

count(*)

from pubnames

group by replace(replace(name, 'The ', ''), 'And', '&')

order by count desc

limit 5;

In this query we group pub names that look alike. Here are then our most
pop-

ular pub names, with their spelling alternatives, coma separated:

array_to_string

│ count

══════════════════════════════╪═══════

Chapter 47 The Most Popular Pub Names | 395

Red Lion, The Red Lion

│

350

Royal Oak, The Royal Oak

│

287

Crown, The Crown

│

204

The White Hart, White Hart

│

180

The White Horse, White Horse │

163

(5 rows)

The array_to_string function allows us to tweak the output at our conve-

nience, as the array_agg(distinct(name) order by name) aggregate is doing

all the work for us here in grouping all nam together and keeping an ordered
set of a unique entry per variant.

Which nam do we group together you might ask? Well, those having the
same

name apart from some spelling variants: we don’t want to consider The to be
a

di ference so we replace it with an empty string, and we do want to consider
both

and and & as the same thing too.

Geolocating the Nearest Pub (k-NN search)

To implement a k-NN search in PostgreSQL, we need to order the result set
with a distance operator, written <->. Here’s the full SQL for searching the
pubs nearby a known position:

1

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://www.postgresql.org/

select id, name, pos

2

from pubnames

3

order by pos <-> point(-0.12,51.516)

4

limit 3;

With this geolocation, we obtain the following nearby pubs:

id

│

name

│

pos

═══════════╪════════════════════════╪═════════════════════════

21593238 │ All Bar One

│ (-0.1192746,51.5163499)

26848690 │ The Shakespeare's Head │ (-0.1194731,51.5167871)

371049718 │ The Newton Arms

│ (-0.1209811,51.5163032)

(3 rows)

The PostgreSQL point datatype data type implement abstract coordinates in a
two dimensional system, and it isn’t bound to any speci c projection of the

Earth. As a result, the distance operator is the Euclidian distance, and the
point data type doesn’t implement Earth distance in meters or miles itself.
There’s

more about that in the next example though, using the earthdistance exten-

sion.

Chapter 47 The Most Popular Pub Names | 396

Indexing kNN Search

The previous query ran in about 20ms. With a dataset of 27878 rows having
an

answer in about 20ms is not a great achievement. Indeed, we didn’t create
any

indexing whatsoever on the table yet, so the query planner has no other
choice

but to scan the whole content on disk and lter it as it goes.

It would be much better for performance if we could instead evaluate our
query

constraints (here, the ORDER BY and LIMIT clauses) using some index
search in-

stead.

That’s exactly the kind of situation that GiST and SP GiST indexes have been
designed to be able to solve for you in PostgreSQL, and in particular the kNN

GiST support. Let’s give it a try:

http://www.postgresql.org/docs/current/interactive/datatype-geometric.html#AEN6473
http://www.postgresql.org/docs/9.2/interactive/gist.html
http://www.postgresql.org/docs/9.2/interactive/spgist.html

1

create index on pubnames using gist(pos);

With that index, we can now run the same query again, and of course we get
the

same result:

1

\pset format wrapped

2

\pset columns 72

3

4

explain (analyze, verbose, buffers, costs off)

5

select id, name, pos

6

from pubnames

7

order by pos <-> point(51.516,-0.12)

8

limit 3;

Here’s the query explain plan:

QUERY PLAN

══

Limit (actual time=0.071..0.077 rows=3 loops=1)

Output: id, name, pos, ((pos <-> '(51.516,-0.12)'::point))

Buffers: shared hit=6

->

Index Scan using pubnames_pos_idx on public.pubnames (actual tim…

…e=0.070..0.076 rows=3 loops=1)

Output: id, name, pos, (pos <-> '(51.516,-0.12)'::point)

Order By: (pubnames.pos <-> '(51.516,-0.12)'::point)

Buffers: shared hit=6

Planning time: 0.095 ms

Execution time: 0.125 ms

There we go! With a dataset of 27878 rows in total, nding the three nearest

pubs in less than a millisecond is something we can actually be happy with,
and

we can use this directly in a web application. I would expect this performance
to

Chapter 47 The Most Popular Pub Names | 397

remain in the right ballpark even for a much larger dataset, and I’ll leave it as
an

exercise for you to nd that dataset and test the kNN GiST indexes on it!

48

How far is the nearest pub?

Computing the distance between two given positions on the Earth expressed
as

longitude and latitude is not that easy. It involves knowing how to process
the Earth as a sphere, and some knowledge of the projection system in which
the

coordinates are valid. PostgreSQL makes it easy to solve though, thanks to
the

earthdistance extension, included in contribs.

The earthdistance PostgreSQL contrib

As the mathematics are complex enough to easily make mistakes when
imple-

menting them again, we want to nd an existing implementation that’s already

been tested. PostgreSQL provides several contrib extensions: one of them is
named earthdistance and it is made to solve our problem. Time to try it!

1

create extension cube;

2

create extension earthdistance;

Equipped with that extension we can now use its <@> operator and compute
a

http://www.postgresql.org/docs/9.2/static/contrib.html
http://www.postgresql.org/docs/9.2/static/earthdistance.html

distance in miles on the surface of the Earth, given points as (longitude,
latitude): 1

select id, name, pos,

2

round((pos <@> point(-0.12,51.516))::numeric, 3) as miles

3

from pubnames

4

order by pos <-> point(-0.12,51.516)

5

limit 10;

Chapter 48 How far is the nearest pub? | 399

We now have our ten closests pubs, and the distance to get there in miles!

id

│

name

│

pos

│ miles

════════════╪════════════════════════╪═════════════════════════╪═══════

21593238 │ All Bar One

│ (-0.1192746,51.5163499) │ 0.039

26848690 │ The Shakespeare's Head │ (-0.1194731,51.5167871) │ 0.059

371049718 │ The Newton Arms

│ (-0.1209811,51.5163032) │ 0.047

438488621 │ Marquis Cornwallis

│ (-0.1199612,51.5146691) │ 0.092

21593236 │ Ship Tavern

│ (-0.1192378,51.5172525) │ 0.093

312156665 │ The Prince of Wales

│ (-0.121732,51.5145794)

│ 0.123

312156722 │ O'Neills

│ (-0.1220195,51.5149538) │ 0.113

25508632 │ Friend at Hand

│ (-0.1224717,51.5148694) │ 0.132

338507304 │ The Square Pig

│ (-0.1191744,51.5187089) │ 0.191

1975855516 │ Holborn Whippet

│ (-0.1216925,51.5185189) │ 0.189

(10 rows)

So the nearest pub is All Bar One, 0.039 miles away, or apparently 68.64
yards.

Also, adding the computation to get the distance in mil didn’t add that much
to the query timing, which remains well under a millisecond ona laptop when

data is available in memory.

Pubs and Cities

Just as easily as we found the nearest pubs we can also of course query for
the pubs that are farthest away from any location.

1

select name, round((pos <@> point(-0.12,51.516))::numeric, 3) as miles 2

from pubnames

3

order by pos <-> point(-0.12,51.516) desc

4

limit 5;

I’m not sure how useful that particular query would be. That said, it shows
that

the kNN search supports the ORDER BY DESC variant:

name

│

miles

═════════════════╪═════════

Tig Bhric

│ 440.194

TP's

│ 439.779

Begley's

│ 439.752

Ventry Inn

│ 438.962

Fisherman's Bar │ 439.153

(5 rows)

Now we want to know what city those pubs are in, right? With the following

URL and using the Open Street Map APIs, I’ve been able to download a list
of

Chapter 48 How far is the nearest pub? | 400

cities in the same area as where the pub names were fetched:

http://www.overpass-api.de/api/xapi?*[place=city]
[bbox=-10.5,49.78,1.78,59]

Tweaking the parser and import code at https://github.com/dimitri/pubnames

was easy, and allowed to import those city names and locations in 0.087
seconds

of real time, with the following schema:

http://www.openstreetmap.org/
https://github.com/dimitri/pubnames

1

create table if not exists cities

2

(

3

id

bigint,

4

pos point,

5

name text

6

);

7

8

create index on cities using gist(pos);

Now let’s see where those far away pubs are:

1

select name,

2

(select name from cities c order by c.pos <-> p.pos limit 1) as city, 3

round((pos <@> point(-0.12,51.516))::numeric, 3) as miles

4

from pubnames p

5

order by pos <-> point(-0.12,51.516) desc

6

limit 5;

This time, we get the name of the closest known city to the pub:

name

│

city

│

miles

═════════════════╪════════╪═════════

Tig Bhric

│ Galway │ 440.194

TP's

│ Galway │ 439.779

Begley's

│ Galway │ 439.752

Ventry Inn

│ Galway │ 438.962

Fisherman's Bar │ Cork

│ 439.153

(5 rows)

As you can see we are fetching the pubs at a distance from our given point
and

then the nearest city to the location of the pub. The way it’s implemented
here

is called a correlated subquery.

It’s also possible to write such a query as a LATERAL join construct, as in
the following example:

1

select c.name as city, p.name,

2

round((pos <@> point(-0.12,51.516))::numeric, 3) as miles

3

from pubnames p,

4

lateral (select name

http://www.postgresql.org/docs/devel/static/queries-table-expressions.html#QUERIES-LATERAL

5

from cities c

6

order by c.pos <-> p.pos

7

limit 1) c

Chapter 48 How far is the nearest pub? | 401

8

order by pos <-> point(-0.12,51.516) desc

9

limit 5;

It provides the same result of course:

city

│

name

│

miles

════════╪═════════════════╪═════════

Galway │ Tig Bhric

│ 440.194

Galway │ TP's

│ 439.779

Galway │ Begley's

│ 439.752

Galway │ Ventry Inn

│ 438.962

Cork

│ Fisherman's Bar │ 439.153

(5 rows)

So apparently the bounded box that we’ve been given (
[bbox=-10.5,49.78,1.78,59]) includes Ireland too… and more importantly the
query execution penalty is

quite important.

That’s because the planner only know how to solve that query by scanning
the

position index of the cities 27878 times in a loop (once per pubnames entry),
as

we can see in this explain (analyze, costs off) output:

QUERY PLAN

══

Limit (actual time=1323.517..1323.518 rows=5 loops=1)

->

Sort (actual time=1323.515..1323.515 rows=5 loops=1)

Sort Key: ((p.pos <-> '(-0.12,51.516)'::point)) DESC

Sort Method: top-N heapsort

Memory: 25kB

->

Nested Loop (actual time=0.116..1310.214 rows=27878 loops=…

…1)

->

Seq Scan on pubnames p (actual time=0.015..4.465 row…

…s=27878 loops=1)

->

Limit (actual time=0.044..0.044 rows=1 loops=27878)

->

Sort (actual time=0.043..0.043 rows=1 loops=27…

…878)

Sort Key: ((c.pos <-> p.pos))

Sort Method: top-N heapsort

Memory: 25kB

->

Seq Scan on cities c (actual time=0.003.…

….0.019 rows=73 loops=27878)

Planning time: 0.236 ms

Execution time: 1323.592 ms

(13 rows)

It’s possible to force the planner into doing it the obvious way though:

1

with pubs as (

2

select name, pos,

3

round((pos <@> point(-0.12,51.516))::numeric, 3) as miles

4

from pubnames

5

order by pos <-> point(-0.12,51.516) desc

6

limit 5

7

)

8

select c.name as city, p.name, p.miles

Chapter 48 How far is the nearest pub? | 402

9

from pubs p, lateral (select name

10

from cities c

11

order by c.pos <-> p.pos

12

limit 1) c;

We still get the same result of course, this time in about 60ms rather than
more

than a second as happened before:

city

│

name

│

miles

════════╪═════════════════╪═════════

Galway │ Tig Bhric

│ 440.194

Galway │ TP's

│ 439.779

Galway │ Begley's

│ 439.752

Galway │ Ventry Inn

│ 438.962

Cork

│ Fisherman's Bar │ 439.153

(5 rows)

The Most Popular Pub Names by City

Let’s now nd out which cities have the highest count of pubs, considering
that

a pub is a liated with a city if it’s within ve miles of the single point we have
as

city location in our data set.

1

select c.name, count(cp)

2

from cities c, lateral (select name

3

from pubnames p

4

where (p.pos <@> c.pos) < 5) as cp

5

group by c.name

6

order by count(cp) desc

7

limit 10;

We use that method of associating pubs and cities because within the data we

exported from Open Street Map, the only information we have is a single
point

to represent a city. So our method amounts to drawing a 5-mile circle around

that point, and then consider that anything that’s inside the circle to be part of

the town.

name

│ count

═════════════╪═══════

London

│

1388

Westminster │

1383

Dublin

│

402

Manchester

│

306

Bristol

│

292

Leeds

│

292

Chapter 48 How far is the nearest pub? | 403

Edinburgh

│

286

Liverpool

│

258

Nottingham

│

218

Glasgow

│

217

(10 rows)

If we look at a map we see that Westminster is in fact within London given
our arbitrary rule of within 5 mil , so in the next query we will simply lter it
out.

Exercise lef to the reader: write a query allowing to remove from

London’s count the pubs that are actually in Westminster (when

within 1 mile of the location we have for it). Then extend that query

to address any other situation like that in the whole data set.

It’s a good time to hint towards using PostGIS here if your application needs
to consider the real world shapes of cities rather than

playing guestimat as we are doing here.

And now what about the most popular pub names per city? Of course we
want

to normalize our pub names again here but only for counting: we still display
all

the names we did count.

https://postgis.net

1

select c.name,

2

array_to_string(array_agg(distinct(cp.name) order by cp.name), ', '),

3

count(*)

4

from cities c,

5

lateral (select name

6

from pubnames p

7

where (p.pos <@> c.pos) < 5) as cp

8

where c.name <> 'Westminster'

9

group by c.name, replace(replace(cp.name, 'The ', ''), 'And', '&') 10

order by count(*) desc

11

limit 10;

This query uses all the previous tricks:

• A lateral subquery

• Data normalization done within the query

• Distance computations thanks to the <@> point operator provided by the

earthdistance extension

• We add an ordered aggregate that removes duplicates

In case you might be curious, here’s the result we get:

name

│

array_to_string

│ count

══════════╪══╪═══════

Chapter 48 How far is the nearest pub? | 404

London

│ Prince of Wales, The Prince of Wales

│

15

London

│ All Bar One

│

12

London

│ The Beehive

│

8

London

│ O'Neills

│

7

London

│ The Crown

│

7

London

│ The Windmill

│

7

London

│ Coach and Horses, The Coach and Horses │

6

London

│ The Ship

│

6

Bradford │ New Inn, The New Inn

│

6

London

│ Red Lion, The Red Lion

│

6

(10 rows)

49

Geolocation with PostgreSQL

We have loaded Open Street Map points of interests in the previous section: a

localized set of pubs from the UK. In this section, we are going to have a
look at

how to geolocalize an IP address and locate the nearest pub, all within a
single

SQL query!

For that, we are going to use the awesome ip4r extension from
RhodiumToad.

Geolocation Data Loading

The rst step is to nd an geolocation database, and several providers o fer that.

The one I ended up choosing for the example is the
http://www.maxmind.com

free database available at GeoLite Free Downloadable Databases.

Af er having had a look at the les there, we de ne the table schema we want
and

load the archive using pgloader. So, rst, the target schema is created using the

following script:

1

create extension if not exists ip4r;

2

create schema if not exists geolite;

3

4

create table if not exists geolite.location

5

(

6

https://github.com/RhodiumToad/ip4r
http://blog.rhodiumtoad.org.uk/
http://www.maxmind.com
http://dev.maxmind.com/geoip/legacy/geolite/

locid

integer primary key,

7

country

text,

8

region

text,

Chapter 49 Geolocation with PostgreSQL | 406

9

city

text,

10

postalcode text,

11

location

point,

12

metrocode

text,

13

areacode

text

14

);

15

16

create table if not exists geolite.blocks

17

(

18

iprange

ip4r,

19

locid

integer

20

);

21

22

create index blocks_ip4r_idx on geolite.blocks using gist(iprange); The data
can now be imported to those target tables thanks to the following

pgloader command, which is quite involved:

/*

* Loading from a ZIP archive containing CSV files.

*/

LOAD ARCHIVE

FROM
http://geolite.maxmind.com/download/geoip/database/GeoLiteCity_CSV/GeoLiteCity-
latest.zip INTO postgresql://appdev@/appdev

BEFORE LOAD EXECUTE 'geolite.sql'

LOAD CSV

FROM FILENAME MATCHING ~/GeoLiteCity-Location.csv/

WITH ENCODING iso-8859-1

(

locId,

country,

region

[null if blanks],

city

[null if blanks],

postalCode [null if blanks],

latitude,

longitude,

metroCode

[null if blanks],

areaCode

[null if blanks]

)

INTO postgresql://appdev@/appdev

TARGET TABLE geolite.location

(

locid,country,region,city,postalCode,

location point using (format nil "(~a,~a)" longitude latitude),

metroCode,areaCode

)

WITH skip header = 2,

drop indexes,

fields optionally enclosed by '"',

fields escaped by double-quote,

fields terminated by ','

AND LOAD CSV

Chapter 49 Geolocation with PostgreSQL | 407

FROM FILENAME MATCHING ~/GeoLiteCity-Blocks.csv/

WITH ENCODING iso-8859-1

(

startIpNum, endIpNum, locId

)

INTO postgresql://appdev@/appdev

TARGET TABLE geolite.blocks

(

iprange ip4r using (ip-range startIpNum endIpNum),

locId

)

WITH skip header = 2,

drop indexes,

fields optionally enclosed by '"',

fields escaped by double-quote,

fields terminated by ',';

The pgloader command describe the le format so that pgloader can parse the

data from the CSV le and transform it in memory to the format we expect in

PostgreSQL. The location in the CSV le is given as two separate elds latitude

and longitude, which we use to form a single point column.

In the same vein, the pgloader command also describes how to transform an
IP

address range from a couple of integers to a more classic representation of the

same data:

1

CL-USER> (pgloader.transforms::ip-range "16777216" "16777471") 2

"1.0.0.0-1.0.0.255"

The pgloader command also nds the les we want to load independently from

the real name of the directory, here GeoLiteCity_20180327. So when there’s
a

new release of the Geolite les, you can run the pgloader once again and
expect it to load the new data.

Here’s what the output of the pgloader command looks like. Note that I have

stripped the timestamps from the logs output, in order for the line to t in those

pages:

1

$ pgloader --verbose geolite.load

2

NOTICE Starting pgloader, log system is ready.

3

LOG Data errors in '/private/tmp/pgloader/'

4

LOG Parsing commands from file #P"/Users/dim/dev/yesql/src/1-
application-development/data/geolite/geolite.load"

5

LOG Fetching
'http://geolite.maxmind.com/download/geoip/database/GeoLiteCity_CSV/GeoLiteCity-
latest.zip'

6

LOG Extracting files from archive
'/var/folders/bh/t1wcr6cx37v4h87yj3qj009r0000gn/T/GeoLiteCity-latest.zip'

7

NOTICE unzip -o
"/var/folders/bh/t1wcr6cx37v4h87yj3qj009r0000gn/T/GeoLiteCity-latest.zip"
-d "/var/folders/bh/t1wcr6cx37v4h87yj3qj009r0000gn/T/GeoLiteCity-latest/"

8

NOTICE Executing SQL block for before load

9

NOTICE ALTER TABLE "geolite"."location" DROP CONSTRAINT IF
EXISTS "location_pkey" ; 10

NOTICE COPY "geolite"."location"

11

NOTICE Opening
#P"/private/var/folders/bh/t1wcr6cx37v4h87yj3qj009r0000gn/T/GeoLiteCity-
latest/GeoLiteCity_20180327/GeoLiteCity-Location.csv"

12

NOTICE copy "geolite"."location": 234105 rows done,

11.5 MB,

2.1 MBps

Chapter 49 Geolocation with PostgreSQL | 408

13

NOTICE copy "geolite"."location": 495453 rows done,

24.3 MB,

2.2 MBps

14

NOTICE copy "geolite"."location": 747550 rows done,

37.1 MB,

2.2 MBps

15

NOTICE CREATE UNIQUE INDEX location_pkey ON geolite.location
USING btree (locid)

16

NOTICE ALTER TABLE "geolite"."location" ADD PRIMARY KEY
USING INDEX "location_pkey" ; 17

NOTICE DROP INDEX IF EXISTS "geolite"."blocks_ip4r_idx" ;

18

NOTICE COPY "geolite"."blocks"

19

NOTICE Opening
#P"/private/var/folders/bh/t1wcr6cx37v4h87yj3qj009r0000gn/T/GeoLiteCity-
latest/GeoLiteCity_20180327/GeoLiteCity-Blocks.csv"

20

NOTICE copy "geolite"."blocks": 227502 rows done,

7.0 MB,

1.8 MBps

21

NOTICE copy "geolite"."blocks": 492894 rows done,

15.2 MB,

1.9 MBps

22

NOTICE copy "geolite"."blocks": 738483 rows done,

22.9 MB,

2.0 MBps

23

NOTICE copy "geolite"."blocks": 986719 rows done,

30.7 MB,

2.1 MBps

24

NOTICE copy "geolite"."blocks": 1246450 rows done,

38.9 MB,

2.2 MBps

25

NOTICE copy "geolite"."blocks": 1489726 rows done,

47.1 MB,

2.2 MBps

26

NOTICE copy "geolite"."blocks": 1733633 rows done,

55.1 MB,

2.2 MBps

27

NOTICE copy "geolite"."blocks": 1985222 rows done,

63.3 MB,

2.2 MBps

28

NOTICE CREATE INDEX blocks_ip4r_idx ON geolite.blocks USING gist
(iprange)

29

LOG report summary reset

30

table name

errors

read

imported

bytes

total time

31

32

download

0

0

0

0.793s

33

extract

0

0

0

0.855s

34

before load

0

5

5

0.033s

35

fetch

0

0

0

0.005s

36

37

"geolite"."location"

0

928138

928138

46.4 MB

20.983s

38

"geolite"."blocks"

0

2108310

2108310

67.4 MB

30.695s

39

40

Files Processed

0

2

2

0.024s

41

COPY Threads Completion

0

4

4

51.690s

42

Index Build Completion

0

0

0

49.363s

43

Create Indexes

0

2

2

49.265s

44

Constraints

0

1

1

0.002s

45

46

Total import time

✓

3036448

3036448

113.8 MB

2m30.344s

We can see that pgloader has dropped the indexes before loading the data,
and

created them again once the data is loaded, in parallel to loading data from
the

next table. This parallel processing can be a huge bene t on beefy servers.

So we now have the following tables to play with:

List of relations

Schema

│

Name

│ Type

│ Owner

│ Size

│ Description

═════════╪══════════╪═══════╪════════╪═══════╪═════════════

geolite │ blocks

│ table │ appdev │ 89 MB │

geolite │ location │ table │ appdev │ 64 MB │

(2 rows)

Chapter 49 Geolocation with PostgreSQL | 409

Finding an IP Address in the Ranges

Here’s what the main data looks like:

1

table geolite.blocks limit 10;

The TABLE command is SQL standard, so we might as well use it:

iprange

│ locid

═════════════════════╪════════

1.0.0.0/24

│ 617943

1.0.1.0-1.0.3.255

│ 104084

1.0.4.0/22

│

17

1.0.8.0/21

│

47667

1.0.16.0/20

│ 879228

1.0.32.0/19

│

47667

1.0.64.0-1.0.81.255 │ 885221

1.0.82.0/24

│ 902132

1.0.83.0-1.0.86.255 │ 885221

1.0.87.0/24

│ 873145

(10 rows)

What we have here is an ip range column. We can see that the output
function for ip4r is smart enough to display ranges either in their CIDR
notation or in the more general start-end notation when no CIDR applies.

The ip4r extension provides several operators to work with the dataset we
have, and some of those operators are supported by the index we just created.
Just for

the fun of it here’s a catalog query to inquire about them:

1

select amopopr::regoperator

2

from pg_opclass c

3

join pg_am am on am.oid = c.opcmethod

4

join pg_amop amop on amop.amopfamily = c.opcfamily

5

where opcintype = 'ip4r'::regtype and am.amname = 'gist';

The catalog query above joins the PostgreSQL catalogs for operator classes,
and

uses index access methods according to the notion of an operator family in
order

to retrieve the list of operators associated with the ip4r data type and the

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

GiST

access method:

amopopr

════════════════

>>=(ip4r,ip4r)

<<=(ip4r,ip4r)

>>(ip4r,ip4r)

<<(ip4r,ip4r)

&&(ip4r,ip4r)

=(ip4r,ip4r)

Chapter 49 Geolocation with PostgreSQL | 410

(6 rows)

Note that we clearly could have been using the psql \dx+ ip4r command in-

stead, but that query directly list operators that the GiST index knows how to
solve. The operator >>= reads as contains and is the one we’re going to use
here.

1

select iprange, locid

2

from geolite.blocks

3

where iprange >>= '91.121.37.122';

So here’s the range in which we nd the IP address 91.121.37.122, and the
location

it’s associated with:

iprange

│ locid

══════════════════════════╪═══════

91.121.0.0-91.121.71.255 │

75

This lookup is fast, thanks to our specialized GiST index. Its timing is under
a

millisecond.

Geolocation Metadata

Now with the MaxMind schema that we are using in that example, the inter-

esting data is actually to be found in the other table, i.e. geolite.location.

Let’s use another IP address now — I’m told by the unix command host that

google.us has address 74.125.195.147 and we can inquire where that IP is

from:

1

select *

2

from

geolite.blocks

3

join geolite.location using(locid)

4

where iprange >>= '74.125.195.147';

Our data locates the Google IP address in Mountain View, which is credible:

─[RECORD 1]───────────────────────────

locid

│ 2703

iprange

│ 74.125.191.0-74.125.223.255

country

│ US

region

│ CA

city

│ Mountain View

postalcode │ 94043

location

│ (-122.0574,37.4192)

metrocode

│ 807

areacode

│ 650

Chapter 49 Geolocation with PostgreSQL | 411

Now you can actually draw that on a map as you have the location
information

as a point datatype containing both the longitude and latitude.

Emergency Pub

What if you want to make an application to help lost souls nd the nearest pub

from where they are currently? Now that you know their location from the IP

address they are using in their browser, it should be easy enough right?

As we downloaded a list of pubs from the UK, we are going to use an IP
address

that should be in the UK too:

1

$ host www.ox.ac.uk

2

www.ox.ac.uk has address 129.67.242.154

3

www.ox.ac.uk has address 129.67.242.155

Knowing that, we can search the geolocation of this IP address:

1

select *

2

from

geolite.location l

3

join geolite.blocks using(locid)

4

where iprange >>= '129.67.242.154';

And the Oxford University is actually hosted in Oxford, it seems:

─[RECORD 1]─────────────

locid

│ 375290

country

│ GB

region

│ K2

city

│ Oxford

postalcode │ OX1

location

│ (-1.25,51.75)

metrocode

│ ¤

areacode

│ ¤

iprange

│ 129.67.0.0/16

What are the ten nearest pubs around you if you’re just stepping out of the
Ox-

ford University? Well, let’s gure that out before we get too thirsty!

1

select pubs.name,

2

round((pubs.pos <@> l.location)::numeric, 3) as miles,

3

ceil(1609.34 * (pubs.pos <@> l.location)::numeric) as meters

4

5

from geolite.location l

6

join geolite.blocks using(locid)

7

left join lateral

Chapter 49 Geolocation with PostgreSQL | 412

8

(

9

select name, pos

10

from pubnames

11

order by pos <-> l.location

12

limit 10

13

) as pubs on true

14

15

where blocks.iprange >>= '129.67.242.154'

16

order by meters;

Here’s the list, obtained in around about a millisecond on my laptop:

name

│ miles │ meters

════════════════════╪═══════╪════════

The Bear

│ 0.268 │

431

The Half Moon

│ 0.280 │

451

The Wheatsheaf

│ 0.295 │

475

The Chequers

│ 0.314 │

506

The Old Tom

│ 0.315 │

507

Turl Bar

│ 0.321 │

518

St Aldate's Tavern │ 0.329 │

530

The Mad Hatter

│ 0.337 │

542

King's Arms

│ 0.397 │

639

White Horse

│ 0.402 │

647

(10 rows)

So with PostgreSQL and some easily available extensions, we are actually
capable

of performing advanced geolocation lookups in a single SQL query. In
addition,

with query timing between 1ms and 6ms, it is possible to use this technique
in

production, serving users requests directly from the live query!

50

Counting Distinct Users with

HyperLogLog

If you’ve been following along at home and keeping up with the newer
statistics

developments, you might have heard about this new state of the art
cardinality

estimation algorithm called HyperLogLog.

This technique is now available for PostgreSQL in the extension postgresql-
hll

available at https://github.com/citusdata/postgresql-hll and is packaged for
multiple operating systems such as Debian and RHEL, through the
PostgreSQL

community packaging e forts and resources.

HyperLogLog

HyperLogLog is a very special hash value. It aggregates enough information
into

a single scalar value to compute a distinct value with some precision loss.

Say we are counting unique visitors. With HyperLogLog we can maintain a
sin-

gle value per day, and then union those values together to obtain unique

http://research.google.com/pubs/pub40671.html
http://research.google.com/pubs/pub40671.html
http://metamarkets.com/2012/fast-cheap-and-98-right-cardinality-estimation-for-big-data/
http://blog.aggregateknowledge.com/2013/02/04/open-source-release-postgresql-hll/
https://github.com/citusdata/postgresql-hll

weekly or monthly visitor counts!

Here’s an example in SQL of the magic provided by the hll extension:

1

select to_char(date, 'YYYY/MM') as month,

2

round(#hll_union_agg(users)) as monthly

Chapter 50 Counting Distinct Users with HyperLogLog | 414

3

from daily_uniques

4

group by month;

While we are keeping daily aggregates on disk, we can use the HyperLogLog

maths to union them together and compute an approximation of the monthly

unique count from the same dataset!

month

| monthly

---------+---------

2013/02 | 1960380

(1 row)

So by keeping only a small amount of data per day, typically 1280 bytes, it is
then

possible to compute monthly unique counts from that, without having to scan

a whole month of records again.

Installing postgresql-hll

It’s as simple as create extension hll;, once the OS package is installed on

your system. The extension provides a new datatype named hll and we can
use

\dx+ hll to discover what kind of support comes with it. Here’s an edited ver-

sion of the output of the \dx+ hll command, where some lines have been l-

tered out of the 71 SQL objects:

Objects in extension "hll"

Object description

══

cast from bigint to hll_hashval

cast from bytea to hll

cast from hll to hll

cast from integer to hll_hashval

function hll(hll,integer,boolean)

function hll_add(hll,hll_hashval)

function hll_add_agg(hll_hashval)

function hll_add_agg(hll_hashval,integer)

function hll_add_agg(hll_hashval,integer,integer)

function hll_add_agg(hll_hashval,integer,integer,bigint)

function hll_add_agg(hll_hashval,integer,integer,bigint,integer)

function hll_add_rev(hll_hashval,hll)

...

function hll_cardinality(hll)

function hll_empty()

function hll_eq(hll,hll)

...

function hll_hash_any(anyelement,integer)

function hll_hash_bigint(bigint,integer)

function hll_hash_boolean(boolean,integer)

function hll_hash_bytea(bytea,integer)

Chapter 50 Counting Distinct Users with HyperLogLog | 415

function hll_hash_integer(integer,integer)

function hll_hash_smallint(smallint,integer)

function hll_hash_text(text,integer)

...

operator #(NONE,hll)

operator <>(hll,hll)

operator <>(hll_hashval,hll_hashval)

operator =(hll,hll)

operator =(hll_hashval,hll_hashval)

operator ||(hll,hll)

operator ||(hll,hll_hashval)

operator ||(hll_hashval,hll)

type hll

type hll_hashval

From that output we learn the list of hll operators, such as the interesting #

operator, a unary operator that works on an hll value. More about this one

later…

Counting Unique Tweet Visitors

As an example use case for the HyperLogLog data type, we are going to
count

unique visitors to our tweets, using the application we introduced in Data Ma-

nipulation and Concurrency Control.

The two main operations around an hll data type consists of the following:

• Build a hash from an input value, such as an IP address.

• Update the already known hll value with the hash.

The main idea behind hll is to keep a single hll value per granularity, here
per tweet message and per day. This means that each time we have a new
visit on a

tweet, we want to UPDATE our hll set to count that visitor.

As we have seen in the previous chapter, concurrency is a deal breaker for
UP-

DATE heavy scenarios where the same row is solicited over and over again.
So

we are going to work in two steps again here, rst doing an INSERT per visit
and

then arranging a background process to transform those visits into an
UPDATE

to the single hll aggregate per tweet and date.

Here’s the visitor table where we can insert every single visit:

1

create table tweet.visitor

2

(

3

id

bigserial primary key,

Chapter 50 Counting Distinct Users with HyperLogLog | 416

4

messageid

bigint not null references tweet.message(messageid),

5

datetime

timestamptz not null default now(),

6

ipaddr

ipaddress,

7

8

unique(messageid, datetime, ipaddr)

9

);

It’s a pretty simple structure, and is meant to register our online activity.

We can generate some tweet visits easily with a program such as the
following.

Again, I’m using Common Lisp to implement a very simple COPY-based
load-

ing program.

1

(defparameter *connspec* '("appdev" "dim" nil "localhost")) 2

(defparameter *visitor-table*

"tweet.visitor")

3

(defparameter *visitor-columns* '("messageid" "ipaddr" "datetime")) 4

5

(defun insert-visistors (messageid n &optional (connspec *connspec*))

6

(pomo:with-connection connspec

7

(let ((count 0)

8

(copier (open-db-writer connspec *visitor-table* *visitor-columns*)))

9

(unwind-protect

10

(loop :for i :below n

11

:do (let ((ipaddr

(generate-ipaddress))

12

(datetime (format nil "~a" (generate-timestamp))))

13

(db-write-row copier (list messageid ipaddr datetime))

14

(incf count)))

15

(close-db-writer copier))

16

17

;; and return the number of rows copied

18

count)))

The script is written so as to target a smallish range of IP addresses and range
of dates in order to generate collisions and see our unique visitors count as
being

more than one.

1

;;;

2

;;; select '192.168.0.0'::ip4::bigint; == 3232235520

3

;;;

4

(defparameter *ip-range-start* 3232235520)

5

(defparameter *ip-range-size* (expt 2 16))

6

7

(defun generate-ipaddress (&optional

8

(range-size *ip-range-size*)

9

(range-start *ip-range-start*))

10

"Generate N random IP addresses, as strings."

11

(int-to-ip (+ range-start (random range-size))))

12

13

(defun generate-timestamp ()

14

"Generate a random timestamp between now and a month ago."

15

(local-time:timestamp- (local-time:now) (random #. (* 24 60 31)) :minute))

Chapter 50 Counting Distinct Users with HyperLogLog | 417

When generating data with those function, we pick the subnet in
192.168.0.0/16

and a span of a month of data. Here’s how to interactively generate 100 000

visits from the Common Lisp REPL, measuring the time that takes:

1

CL-USER> (time (shakes::insert-visistors 3 100000))

2

(SHAKES::INSERT-VISISTORS 3 100000)

3

took 7,513,209 microseconds (7.513209 seconds) to run.

4

244,590 microseconds (0.244590 seconds, 3.26%) of which was spent in GC.

5

During that period, and with 4 available CPU cores,

6

5,242,334 microseconds (5.242334 seconds) were spent in user mode

7

314,728 microseconds (0.314728 seconds) were spent in system mode

8

691,153,296 bytes of memory allocated.

9

770 minor page faults, 0 major page faults, 0 swaps.

10

100000

Thanks to using the COPY streaming protocol, we can mix generating the
num-

bers and communicating with the PostgreSQL server, and have our hundred

thousand visits be generated in the database in less than 8s on my laptop.
That’s

certainly fast enough for interactive discovery of a data model. It’s quite easy
with PostgreSQL to just try it and see.

We can check the result of inserting 100000 visits to the messageid 3 with the

following query:

1

select messageid,

2

datetime::date as date,

3

count(*) as count,

4

count(distinct ipaddr) as uniques,

5

count(*) - count(distinct ipaddr) as duplicates

6

from tweet.visitor

7

where messageid = 3

8

group by messageid, date

9

order by messageid, date

10

limit 10;

We have a precise count of all the visitors to the message, and we can see that
even

with a 16-bits range of IP addresses we already have several visits from the
same

IP addresses.

messageid │

date

│ count │ uniques │ duplicates

═══════════╪════════════╪═══════╪═════════╪════════════

3 │ 2018-08-07 │

746 │

742 │

4

3 │ 2018-08-08 │

3298 │

3211 │

87

3 │ 2018-08-09 │

3260 │

3191 │

69

3 │ 2018-08-10 │

3156 │

3077 │

79

3 │ 2018-08-11 │

3241 │

3161 │

80

3 │ 2018-08-12 │

3270 │

3197 │

73

3 │ 2018-08-13 │

3182 │

3106 │

76

3 │ 2018-08-14 │

3199 │

3124 │

75

Chapter 50 Counting Distinct Users with HyperLogLog | 418

3 │ 2018-08-15 │

3308 │

3227 │

81

3 │ 2018-08-16 │

3261 │

3184 │

77

(10 rows)

Lossy Unique Count with HLL

We can rewrite the previous query using our HLL data type now, even
though

at this stage it’s not going to be very useful, because we still have the full
logs of every visit and we can a ford to compute precise counts.

Nonetheless, our goal is to dispose of the daily entries, that we anticipate will
be

just too large a data set. So, the hll-based query looks like this:

1

select messageid,

2

datetime::date as date,

3

hll_add_agg(hll_hash_text(ipaddr::text)) as hll

4

from tweet.visitor

5

where messageid = 3

6

group by grouping sets((messageid),

7

(messageid, date))

8

order by messageid, date nulls first

9

limit 10;

In this query we use several new functions and operators related to the hll
data

type:

• The # operator takes a single argument: it’s a unary operator, like factorial

(written !) for example. This unary operator when applied to a value of

type hll computes the estimated number of distinct entries stored in the

hyperloglog set.

• The hll_add_agg() aggregate function accumulates new hashes into a

given hyperloglog set.

• The hll_hash_text function computes the hyperloglog hash of a text

value, here used with the IP address as a text form. We could also use

the IP address as a 32-bit integer with the hll_hash_integer function

instead, but then this wouldn’t support IPv6 addresses, which only t in

a 128-bit number.

The notation # hll shows the level of exibility that PostgreSQL brings to the

table with its extensibility support. Not only can you de ne new operators at

runtime from an extension, but those operators can also be unary or binary.

Chapter 50 Counting Distinct Users with HyperLogLog | 419

The lossy distinct count result looks like this:

messageid │

date

│

hll

═══════════╪════════════╪══════════════════

3 │ 2018-08-07 │ 739.920627061887

3 │ 2018-08-08 │ 3284.16386418662

3 │ 2018-08-09 │ 3196.58757626223

3 │ 2018-08-10 │ 3036.32707701154

3 │ 2018-08-11 │ 3140.21704515932

3 │ 2018-08-12 │ 3191.83031512197

3 │ 2018-08-13 │ 3045.15467688584

3 │ 2018-08-14 │ 3031.92750496513

3 │ 2018-08-15 │ 3135.58879460201

3 │ 2018-08-16 │ 3230.20146096767

(10 rows)

When used that way, the hll feature set doesn’t make much sense. We still
have

to process as many rows as before, but we lose some precision in the result.
The

reason why we’ve done that query here is to show the following:

1. Demonstrate how to use the hll operators and functions in a query

2. Show that the estimates from the hll data structures are pretty good, even

at this low cardinality

Getting the Visits into Unique Counts

In a production setup we would have the following context and constraints:

• Tweets are published and users from the Internet are visiting our tweets.

• Our application inserts a new row in tweet.visitor with the visitor’s IP

address each time there is a new visit to one of our tweet. It also registers

the precise timestamp of the visit.

• As we anticipate quite some success on our little application idea, we also

anticipate not being able to keep all the visitor logs, and not being able to

respect our quality of service terms when computing the unique visitors

on the y each time someone needs them.

• Finally, as the numbers being used in a marketing context rather than in

an invoicing context, we are in a position to lose some precision over the

number, and we would actually like to implement a system that is lossy if

it allows us to relax our storage and processing requirements.

Chapter 50 Counting Distinct Users with HyperLogLog | 420

The previous sections present a great tool for achieving the last point above,
and

now is the time to put hll to good use. From the tweet.visitor table we are

now going to compute a single hyperloglog value per message and per day:

1

begin;

2

3

with new_visitors as

4

(

5

delete from tweet.visitor

6

where id = any (

7

select id

8

from tweet.visitor

9

order by datetime, messageid

10

for update

11

skip locked

12

limit 1000

13

)

14

returning messageid,

15

cast(datetime as date) as date,

16

hll_hash_text(ipaddr::text) as visitors

17

),

18

new_visitor_groups as

19

(

20

select messageid, date, hll_add_agg(visitors) as visitors

21

from new_visitors

22

group by messageid, date

23

)

24

insert into tweet.uniques

25

select messageid, date, visitors

26

from new_visitor_groups

27

on conflict (messageid, date)

28

do update set visitors = hll_union(uniques.visitors, excluded.visitors)

29

where uniques.messageid = excluded.messageid

30

and uniques.date = excluded.date

31

returning messageid, date, # visitors as uniques;

32

33

rollback;

This query is implemented in several stages thanks to the PostgreSQL
support

for writable common table expressions:

1. Compute new_visitors by deleting from the buffer table tweet.visitor

a thousand rows at a time, and using the skip locked facility that is new

in PostgreSQL 9.5.

By default, when attempting to delete a row that is already in use by an-

other transaction doing either an update or a delete, PostgreSQL would

have to block until the other transaction released its lock. With the skip

locked clause, PostgreSQL can omit the row from the current transaction

Chapter 50 Counting Distinct Users with HyperLogLog | 421

without incurring any locking or waiting.

Rows skipped that way may appear in the next batch, or they may already

be concurrently processed in another batch.

This construct allows the query to be run in more than one transaction at

the same time, which might in turn be useful if we ever have some serious

lag in our processing.

2. This rst CTE of our query then also computes the date from the times-

tamp with a CAST expression, and the hll hash from the IP address,

preparing for the next stage of processing.

3. Compute the new_visitor_groups by aggregating the just computed hll

individual hashes into a single hll set per messageid and per date.

4. Finally, insert those messages daily unique visitors hll sets into our sum-

mary table tweet.uniques. Of course, if we did compute a set for the

same message and the same day before, we then update and hll_union the

existing and the new set together.

5. Because PostgreSQL is such a powerful system, of course we return the

result of processing the given batch at the end of the query, using the

returning clause of the insert command.

The do update set clause requires that any single row in the target table be

updated only once per command, in order to ensure that the con ict handling

mechanism is deterministic. That’s the reason why we prepare the hll sets in
the

new_visitor_groups CTE part of the query.

When running this query, we obtain the following result:

BEGIN

messageid │

date

│

uniques

═══════════╪════════════╪══════════════════

3 │ 2018-08-07 │ 739.920627061887

3 │ 2018-08-08 │ 257.534468469694

(2 rows)

INSERT 0 2

ROLLBACK

Notice that we nish our script with a rollback command. That allows us to

debug and re ne the query until we’re happy. This 5-stage, 29-line SQL query

isn’t going to be too complex to maintain thanks to its actions being well
sepa-

rated using CTE, it still doesn’t get written in a single session in a text le. It

gets

Chapter 50 Counting Distinct Users with HyperLogLog | 422

brewed at your favorite SQL prompt and re ned until satisfactory, and it
being

a DML query, we prefer to rollback and try again rather than impact the data

set and have to clean it up for the next iteration.

Scheduling Estimates Computations

Now that we know how to compute unique visitors approximations from the

insert heavy table, we need to have a background process that runs this
processing

every once in a while.

The easiest way to do that here would be to create a new API endpoint on
your

backend server and set up a cron-like utility to use that endpoint for your
speci-

ed schedule. In case of emergency though, it’s nice to be able to run this
updat-

ing process interactively. A solution to have both the backend API integration

and the interactive approaches available consist of packaging your SQL
query as a stored procedure.

While stored procedures aren’t covered in this book, it’s easy enough to write
a

SQL function around the statement we have already:

1

begin;

2

3

create function tweet.update_unique_visitors

4

(

5

in batch_size

bigint default 1000,

6

out messageid

bigint,

7

out date

date,

8

out uniques

bigint

9

)

10

returns setof record

11

language SQL

12

as $$

13

with new_visitors as

14

(

15

delete from tweet.visitor

16

where id = any (

17

select id

18

from tweet.visitor

19

order by datetime, messageid

20

for update

21

skip locked

22

limit update_unique_visitors.batch_size

23

)

24

returning messageid,

Chapter 50 Counting Distinct Users with HyperLogLog | 423

25

cast(datetime as date) as date,

26

hll_hash_text(ipaddr::text) as visitors

27

),

28

new_visitor_groups as

29

(

30

select messageid, date, hll_add_agg(visitors) as visitors

31

from new_visitors

32

group by messageid, date

33

)

34

insert into tweet.uniques

35

select messageid, date, visitors

36

from new_visitor_groups

37

on conflict (messageid, date)

38

do update set visitors = hll_union(uniques.visitors, excluded.visitors)

39

where uniques.messageid = excluded.messageid

40

and uniques.date = excluded.date

41

returning messageid, date, cast(# visitors as bigint) as uniques; 42

$$;

43

44

commit;

And here’s an interactive session where we use the newly de ned stored
proce-

dure to update our unique visitors hll table. Again, because we are testing
mod-

i cations to a data set, we make sure to ROLLBACK our transaction:

appdev> begin;

BEGIN

appdev>* select * from tweet.update_unique_visitors();

messageid │

date

│ uniques

═══════════╪════════════╪═════════

3 │ 2018-08-07 │

740

3 │ 2018-08-08 │

258

(2 rows)

appdev>* rollback;

ROLLBACK

We can see that it works as we wanted it to, and so we can interactively use
this

procedure without having to implement the backend API yet. Our next move

is the following, where we set the daily unique counts for the whole data set
we

produced:

select * from tweet.update_unique_visitors(100000);

The function returns 32 rows, as expected, one per messageid and per day.
We

have generated visitors over that period, all on the messageid 3. Note also
that

once this command has run, we don’t have any rows in the tweet.visitor table,

as we can check with the following query:

1

select count(*)

Chapter 50 Counting Distinct Users with HyperLogLog | 424

2

from tweet.visitor;

This returns zero, of course. In this implementation, the tweet.visitor table is

a bu fer of the current activity, and we summarize it in the tweet.uniques table

when calling the tweet.update_unique_visitors() function.

Combining Unique Visitors

Now, we can bene t from the nice hyperlolog set properties:

1

select to_char(date, 'YYYY/MM') as month,

2

to_char(date, 'YYYY IW') as week,

3

round(# hll_union_agg(visitors)) as unique,

4

sum(# visitors)::bigint as sum

5

from tweet.uniques

6

group by grouping sets((month), (month, week))

7

order by month nulls first, week nulls first;

The new function hll_union_agg is an aggregate that knows how to compute

the union of two hyperloglog sets and recognize how many visitors were
globally

unique when combining two sets of unique visitors. That’s pretty magical, if
you

ask me:

month

│

week

│ unique │

sum

═════════╪═════════╪════════╪═══════

2018/08 │ ¤

│

45300 │ 75699

2018/08 │ 2018 32 │

15119 │ 16589

2018/08 │ 2018 33 │

18967 │ 21461

2018/08 │ 2018 34 │

19226 │ 22104

2018/08 │ 2018 35 │

14046 │ 15545

2018/09 │ ¤

│

18640 │ 21415

2018/09 │ 2018 35 │

6143 │

6299

2018/09 │ 2018 36 │

13510 │ 15116

(8 rows)

By using the grouping sets feature here we can make it more obvious how ad-

vanced hyperloglog set support works for unique counting works with the
sup-

port of a union operator from multiple sets. In particular, we can see that the

sum of the number of unique visitors would be double-counting a large
portion

of the population, which the hyperloglog technique knows how to avoid!

51

An Interview with Craig Kerstiens

Craig heads up the Cloud team at @citusdata. Citus extends Postgres to be a

horizontally scalable distributed database. If you have a database, especially
Post-

gres, that needs to scale beyond a single node (typically at 100GB and up)
Craig

is always happy to chat and see if Citus can help.

Previously Craig has spent a number of years @heroku, a platform-as-a-
service,

which takes much of the overhead out of IT and lets developers focus on
building

features and adding value. The bulk of Craig’s time at Heroku was spent
running

product and marketing for Heroku Data.

In your opinion, how important are extensions for the PostgreSQL open
source

project and ecosystem?

To me the extension APIs and growing ecosystem of extensions are

the bi est advancement to Postgr in probably the last 10 years.

Extensions have allowed Postgr to extend beyond a traditional re-

lational database to much more of a data platform. Whether it’s

the initial NoSQL datatyp (if we exclude XML that) in hstore,

to the rich feature set in geospatial with GIS, or approximation al-

gorithms such

HyperLogLog or TopN you have extensions that

now by themselv take Postgr into a new frontier.

Extensions allow the core to move at a slower pace, which mak

sense. Each new feature in core means it h to be thoroughly tested

and safe. That’s not to say that extensions don’t, but extensions

that can exist outside core, then become part of the contrib provide

Chapter 51 An Interview with Craig Kerstiens | 426

a great on ramp for things to move much faster.

What are your favorite PostgreSQL extensions, and why?

My favorite three extensions are:

1. pg_stat_statements

2. Cit

3. HyperLogLog

pg_stat_statements

easily the most powerful extension for

an application developer without having to understand deep

database internals to get insights to optimize their database.

For many application developers the database

a black box,

but pg_stat_statements

a great foundation for AI for your

database that I only expect to be improved upon in time.

Citus : I’m of course biased because I work there, but I followed Ci-

t

and pg_shard for 3 years prior to joining. Cit

turns Postgr

into a horizontally scalable database. Under the covers it’s sharded,

but application developers don’t have to think or know about that

complexity. With Cit

Postgr

equipped to tackle larger work-

loads than ever before

previously Postgr w

constrained to a

single box or overly complicated architectur .

HyperLogLog : I have a confession to make. In part I just love

saying it, but it also mak you seem uber-intelligent when you

read about the algorithm itself. “K minimum value, bit observable

patterns, stochastic averaging, harmonic averaging.” I mean who

doesn’t want to use something with all those things in it? In simpler

terms, it’s close enough approximate uniqu that are compose-able

with a really small footprint on storage. If you’re building something

like a web analytics tool HyperLogLog

an obvio

go to.

How do you typically nd any extension you might need? Well, how do you

know you might need a PostgreSQL extension in the rst place?

pgxn.org and github are my two go-tos. Though Google also tends to work
pretty well. And of course I stay up to date on new on via

Postgr Weekly.com.

Though in reality I often don’t always realize I need one. I search

for the problem I’m trying to solve and discover it. I would likely

Chapter 51 An Interview with Craig Kerstiens | 427

never search for HyperLogLog, but a search for Postgr approxi-

mate count or approximate distincts would yield it pretty quickly.

Is there any downside you could think of when your application code base
now

relies on some PostgreSQL extension to run? I could think of extension’s
avail-

https://pgxn.org
https://postgresweekly.com

ability in cloud and SaaS o ferings, for instance.

It really depends. There are extensions that are much more bleed-

ing edge, and on that are more mature. Many of the major cloud

providers support a range of extensions, but they won’t support any

extension. If they do support it there isn’t a big downside to lever-

aging it. If they don’t you need to weigh the cost of running and

managing Postgr yourself vs. how much value that particular ex-

tension would provide. As with all things managed vs. not, there

a trade-off there and you need to decide which one

right for you.

Though if something supported and easy to leverage wherever you

run, by all means, go for it.

Part IX

Closing Thoughts

I have written The Art Of PostgreSQL so that as a developer, you may think
of SQL as a full-blown programming language. Some of the problems that
we have

to solve as developers are best addressed using SQL.

Not just any SQL will do: PostgreSQL

the world’s most advanced open

source database. I like to say that PostgreSQL

YeSQL as a pun, which com-

pares it favorably to many NoSQL solutions out there. PostgreSQL delivers

the whole SQL experience with advanced data processing functionality and

document-based approaches.

We have seen many SQL features — I hope many you didn’t know before.
Now

you can follow the one resultset, one query mantra, and maintain your
queries over the entirety of their life cycles: from speci cation to testing,
including code

review and rewrite.

Of course your journey into The Art Of PostgreSQL is only starting. Writing

code is fun. Have fun writing SQL!

Knowledge

of no value unless you put it into practice.

— Anton Chekhov

Part X

Index

Index

ACID, 18, 156, 309

Author

Aggregate

Dimitri Fontaine, xiv

array_agg, 195

bool_and, 116, 117, 163

bernouilli, 162, 256

count, 103, 116, 117, 122, 145, 163, between, 320

319

bool_and, 116, 117

count disctinct, 417

Cache Invalidation, 319

distinct, 103

calendar, 157

lter, 117, 163, 183, 319

case, 15, 106, 115

median, 184

Cast, 417

order by, 195

cast, 12, 15

percentile, 184

catalog, 159

sum, 117

pg_am, 160, 409

within group, 184

pg_amop, 160, 409

Amdahl’s law, 79

pg_catalog, 162

Anomalies, 231

pg_opclass, 160, 409

deletion anomaly, 232

pg_operator, 159, 173

insertion anomaly, 231

pg_pgnamespace, 162

update anomaly, 231

pg_type, 162

anosql, 45

regoperator, 160

Anti-Patterns, 258

regproc, 159

EAV, 258

regtype, 159

Multiple Values, 261

ceil, 411

Triggers, 327

Citus, 284, 425

UUID, 263

clock_timestamp, 179

array_agg, 195

Clojure, 348

array_length, 189

coalesce, 12, 15

array_to_string, 394

comments, 64

Attribute Value, 157

Common Lisp, 154, 316, 374, 393, 416

Index | 432

consistency, 156

Scan34, 187

Constraints

The Museum of Modern Art

Check, 238

Collection, 342

Exclusion, 239

Tweets, 194

Foreign Keys, 237

Data Type, 157, 162

Not Null, 238

Array, 193

Primary Key, 234

arrays, 386

Surrogate Key, 235

bigint, 172

Unique, 237

bigserial, 174

contrib, 357

boolean, 163

COPY, 4, 187, 194, 374, 393, 416

Bytea, 177

count, 100, 103, 116, 117, 122, 145

character, 165

create table, 144

cidr, 187

cube, 121

composite, 199

current_setting, 283

date, 157

double precision, 172

Dat Type

inet, 187

JSON, 374

integer, 172

Data Domain, 157

interval, 158, 181

Data Set

ip4r, 160

A Midsummer Night’s Dream,

ipaddr, 418

302

JSON, 21, 202, 286

Access Log, 187

JSONB, 21, 202, 280

cdstore, 41

macaddr, 187

Chinook, 43

Network Address Types, 187

commilog, 183

number, 172

f1db, 88

numeric, 172

Geonames, 240

point, 395

IMF, 190

query_int, 388

International Monetary Fund,

range, 190, 272

190

real, 172

Last.fm, 372

sequence, 174

Lorem Ipsum, 219

serial, 174

Maxmind Geolite, 405

smallint, 172

MoMA, 342, 367

text, 165

Open Street Map, 392

Time Zones, 177

Pub Names, 392

timestamp, 158, 178

Rates, 190

timestamptz, 178

sandbox, 217

UUID, 176, 263

Index | 433

varchar, 165

create table like, 308

XML, 200

create trigger, 325, 328, 333, 367

Database Anomalies, 231

create type, 205, 271, 314

Date

create unique index, 321

allballs, 158

create view, 320, 387

clock_timestamp, 179

drop schema, 221

date_trunc, 117

drop table, 280

day, 98

drop table if exists, 205

extract, 109

exclude using, 239, 272

generate_series, 182

foreign key, 236

interval, 98

primary key, 236

isodow, 98, 184

references, 236

isoyear, 98

refresh

materialized

view

Time Zones, 177

concurrently, 322

to_char, 184

trigger, 283

week, 98

truncate, 307

year, 98

unique, 237

DCL, 91

default, 175

DDL, 91

desc, 103

alter table, 308, 373

di f, 96, 346, 366

alter user set, 282

distance, 254

cascade, 221

distinct, 103

check, 238

distinct on, 126, 188

create database, 216

Django, 81

create domain, 238

DML, 91

create extension, 357, 365, 379, delete, 305

386, 398

delete returning, 305, 420

create function, 283, 422

insert into, 297

create index, 196, 204, 225, 254, insert on con ict do update, 337,

269, 385, 387, 396, 400

420

create materialized view, 269,

insert returning, 344, 420

321, 387

insert select, 195, 204, 298

create or replace function, 325,

on con ict do nothing, 346

328

truncate, 307

create role, 282

update, 300, 312

create schema, 216

update returning, 301, 313, 344

create schema if not exists, 271

DRY, 213

create table, 144, 175, 202, 204,

217, 233, 240, 271, 280

encoding, 170

Index | 434

client_encoding, 170

grouping sets, 119

server encoding, 170

enum, 205

having, 37, 118, 163, 189

except, 129, 382

sum, 268

Exclusion Constraints, 239

histogram, 122, 184, 253

explain, 106, 108, 197, 255, 385, 396, hll_add_agg, 418

401

hll_hash_text, 418

extensibility, 193

hll_union_agg, 424

Extension, 206, 353

Index

contrib, 357

B Tree, 75, 225

cube, 398

bloom, 75

earthdistance, 398

BRIN, 75

hll, 413

GIN, 75, 204, 387

hstore, 271, 365

gin, 196

hyperloglog, 413

gin__int_ops, 387

intarray, 276, 386

GiST, 75, 254, 385, 396

ip4r, 405

gist, 160

ltree, 276

gist_trgm_ops, 385

pg_trgm, 276, 356, 378

Hash, 75

PL/XSLT, 200

jsonb_path_ops, 204

extract, 98, 122

SP GiST, 75

fetch rst rows only, 112

interval, 98

lter, 117, 163

Interview

format, 97, 388

Alvaro Hernandez Tortosa, 286

from, 93, 100

Craig Kerstiens, 425

Gregoire Hubert, 208

generate_series, 12, 15, 98, 217

Kris Jenkins, 348

Geolocation, 240

Markus Winand, 148

Geonames, 240

Yohann Gabory, 81

Go, 336

is false, 163

listen, 341

is null, 163

notify, 341

is true, 163

group by, 37, 44, 100, 103, 109, 114, Isolation, 309

163, 253

Dirty Read, 310

cube, 121

Non-Repeatable Read, 310

grouping sets, 119, 268, 269, 418, Phantom Read, 310

424

Serializable, 311

rollup, 120, 168

Serialization, 310

Index | 435

SSI, 311

lef join, 12

Isolation Levels, 33

limit, 100, 105, 248

Lisp, 316

Java, 94, 96

Listen, 332

listen, 340

Little Bobby Tables, 9

notify, 340

lock table, 346

join, 37, 100, 101, 103, 109, 122, 146, Lorem Ipsum, 219

253, 370, 376, 411

cross join, 131, 135

Modelisation

full outer, 146

Anti-Patterns, 258

inner, 146

Audit Trails, 270

insert, 204

Check Constraints, 238

lateral, 109, 146, 280, 400

Database Anomalies, 231

lateral join, 197

Denormalization, 265

lef , 146

Exclusion Constraints, 239

lef join, 15, 44, 66, 102, 134, 145, Foreign Keys, 217, 237

217, 250, 254, 304

History Tables, 270

lef join lateral, 109, 198, 224, Indexing, 225

254, 269, 411

JSON, 279

on true, 198, 254, 269, 411

Lorem Ipsum, 219

outer, 146

Materialized Views, 268

outer join, 134

Normal Forms, 230

subquery, 102, 198, 254, 269, Normalization, 227

400, 411

Not Only SQL, 278

using, 254, 304

Nul Null Constraints, 238

JSON, 21, 202, 374

Partitioning, 275

json_each, 337

Primary Keys, 217, 234

json_populate_record, 337

Schemaless, 279

JSONB, 21, 202

Surrogate Keys, 235

jsonb_array_elements, 280

Music

jsonb_each, 280

AC/DC, 62

jsonb_pretty, 21, 224

Aerosmith, 376

Black Sabbath, 64

kNN, 107, 130, 395

Iron Maiden, 64

Maceo Parker, 383

lag, 15, 141

Red Hot Chili Peppers, 30

lateral, 37

MVCC, 72

lc_time, 186

MVP, 215

lead, 141

leap year, 99

no o fset, 111

Index | 436

Normal Forms, 230

order by sum, 117

1NF, 230, 261, 294

window function, 138

2NF, 230, 245, 294

over, 15, 138, 141

3NF, 230, 294

4NF, 230

partition by, 15

5NF, 230

Partitioning, 275

BCNF, 230

People

DKNF, 230

Alan Kay, 212

NoSQL, 21, 278

Alvaro Hernandez Tortosa, 286

not exists, 103

Amdahl, 79

not found, 328

Andrew Gierth, 221, 405

not null, 133

Anton Chekhov, 429

Not Only SQL, 278

Craig Kerstiens, 425

Notify, 332

Dimitri Fontaine, xiv

now, 178

Donald Knuth, 263, 314

ntile, 141

Edsger Wybe Dijkstra, xiii

null, 131, 134

Fred Brooks, 212

Gregoire Hubert, 208

o fset, 111, 248

Julien Danjou, xv

Open Street Map, 392

Kris Jenkins, 348

Operators

Lawrence A. Rowe, 353

->, 369

Linus Torvalds, 2

::, 417

Markus Winand, 111, 148

>, 398

Martin Fowler, 319

<->, 254, 380, 395, 398

Michael Stonebraker, 193, 353

<>, 344

Phil Karlton, 319

»=, 410

Rob Pike, xii, 228, 276

>, 21, 197, 198, 203

Shakespeare, 302

, 380

Tom Lane, 3

*, 373, 381

Yohann Gabory, 81

between, 320

percentile_cont, 184

order by, 12, 15, 44, 100, 103, 105–107, pg_column_size, 177

109, 163, 253

pg_database_size, 58

is not null, 268

pg_stat_statements, 425

nulls rst, 418

pg_typeof, 159

nulls last, 139

pgloader, 42, 88, 242, 372, 406

order by case, 106

PHP, 208

order by distance, 107, 130, 395, PLpgSQL, 38

398, 400

populate_record, 370

Index | 437

PostGIS, 403

regexp_matches, 195

Programming Language

regexp_split_to_array, 167

Common Lisp, 154, 316, 374, regexp_split_to_table, 166, 167

393, 416

regresql, 68

Go, 336

Regular Expression, 166

Java, 94, 96

relation, 143, 156

Lisp, 316

relational, 156

PHP, 208

Relational algebra, 144

Python, 7, 30, 48, 280

REPL, 215

psql, 43, 52

replace, 394

columns, 166, 255

rollup, 120

ECHO_HIDDEN, 57

round, 15, 254, 398

EDITOR, 53

row_number, 141

format, 166, 255

rows between, 138

include, 218

intervalstyle, 53

sample, 162

LESS, 53

sampling, 256

ON_ERROR_ROLLBACK,

Scale Out, 284

53, 313

Schemaless, 279

ON_ERROR_STOP, 53

search_path, 216

PROMPT1, 53

select, 93

pset, 53

select star, 94

psqlrc, 53

self join, 124

REPL, 215

server_version, 23

set, 53, 268

set local, 283

setenv, 53

set_masken, 188

psqlrc, 57

setval, 175

Python, 7, 30, 48, 280

share row exclusive, 346

anosql, 45

show_trgm, 379

listen, 340

similarity, 379

notify, 340

SQL, 24–427

SRF, 197, 280

Queries, 91

Stored Procedure, 38, 422

query_int, 388

subquery, 62, 102

subselect, 400

random, 223

substring, 185, 198

RDBMS, 18, 156

sum, 117

references, 217

Surrogate Keys, 235

regex, 166

synchronous_commit, 283

Index | 438

table, 166, 199, 409

wikipedia, 124

table of truth, 131

window function, 15, 137

tablesample, 162, 256

array_agg, 137

Tahiti, 178

lag, 15, 141

TCL, 91

lead, 141

begin, 423

ntile, 141

commit, 55

order by, 15, 138, 139

isolation level, 313

over, 15

repeatable read, 313

partition by, 15, 139

rollback, 55, 328, 420, 423

row_number, 139, 141

start transaction, 313

sum, 138

three-valued logic, 131

winners, 124

timezone, 178

with, 15, 37, 66, 109, 115, 116, 122, 124,

to_char, 5, 12, 15, 424

168, 195, 401, 420

TOAST, 97

delete insert, 420

top-N, 109, 224

delete returning, 420

ToroDB, 286

insert returning, 344

transaction, 156

update returning, 344

Transaction Isolation, 309

with delete, 306

Trigger, 325, 328, 333, 367

within group, 184

triggers, 324

Trigrams, 378

XKCD, 9

Tuple, 157

XML, 303, 392

union, 127

YeSQL, 21, 348

union all, 127

unique violation, 328

Unix

Basics of the Unix Philosophy,

228

Notes on Programming in C,

228

unnest, 197

using, 66

UUID, 263

uuid_generate_v4, 176

values, 205

where, 93, 102

Document Outline
I Preface

About…
About the Book
About the Author
Acknowledgements
About the organisation of the books

II Introduction
Structured Query Language

Some of the Code is Written in SQL
A First Use Case
Loading the Data Set
Application Code and SQL
A Word about SQL Injection
PostgreSQL protocol: server-side prepared statements
Back to Discovering SQL
Computing Weekly Changes

Software Architecture
Why PostgreSQL?
The PostgreSQL Documentation

Getting Ready to read this Book
III Writing Sql Queries

Business Logic
Every SQL query embeds some business logic
Business Logic Applies to Use Cases
Correctness
Efficiency
Stored Procedures — a Data Access API
Procedural Code and Stored Procedures
Where to Implement Business Logic?

A Small Application
Readme First Driven Development
Loading the Dataset
Chinook Database

Music Catalog
Albums by Artist
Top-N Artists by Genre

The SQL REPL — An Interactive Setup
Intro to psql
The psqlrc Setup
Transactions and psql Behavior
A Reporting Tool
Discovering a Schema
Interactive Query Editor

SQL is Code
SQL style guidelines
Comments
Unit Tests
Regression Tests
A Closer Look

Indexing Strategy
Indexing for Constraints
Indexing for Queries
Cost of Index Maintenance
Choosing Queries to Optimize
PostgreSQL Index Access Methods
Advanced Indexing
Adding Indexes

An Interview with Yohann Gabory
IV SQL Toolbox

Get Some Data
Structured Query Language
Queries, DML, DDL, TCL, DCL
Select, From, Where

Anatomy of a Select Statement
Projection (output): Select
Data sources: From
Understanding Joins
Restrictions: Where

Order By, Limit, No Offset
Ordering with Order By

kNN Ordering and GiST indexes
Top-N sorts: Limit
No Offset, and how to implement pagination

Group By, Having, With, Union All
Aggregates (aka Map/Reduce): Group By
Aggregates Without a Group By
Restrict Selected Groups: Having
Grouping Sets
Common Table Expressions: With
Distinct On
Result Sets Operations

Understanding Nulls
Three-Valued Logic
Not Null Constraints
Outer Joins Introducing Nulls
Using Null in Applications

Understanding Window Functions
Windows and Frames
Partitioning into Different Frames
Available Window Functions
When to Use Window Functions

Understanding Relations and Joins
Relations
SQL Join Types

An Interview with Markus Winand
V Data Types

Serialization and Deserialization
Some Relational Theory

Attribute Values, Data Domains and Data Types
Consistency and Data Type Behavior

PostgreSQL Data Types
Boolean
Character and Text
Server Encoding and Client Encoding
Numbers
Floating Point Numbers
Sequences and the Serial Pseudo Data Type

Universally Unique Identifier: UUID
Bytea and Bitstring
Date/Time and Time Zones
Time Intervals
Date/Time Processing and Querying
Network Address Types
Ranges

Denormalized Data Types
Arrays
Composite Types
XML
JSON
Enum

PostgreSQL Extensions
An interview with Grégoire Hubert

VI Data Modeling
Object Relational Mapping
Tooling for Database Modeling

How to Write a Database Model
Generating Random Data
Modeling Example

Normalization
Data Structures and Algorithms
Normal Forms
Database Anomalies
Modeling an Address Field
Primary Keys
Surrogate Keys
Foreign Keys Constraints
Not Null Constraints
Check Constraints and Domains
Exclusion Constraints

Practical Use Case: Geonames
Features
Countries
Administrative Zoning
Geolocation Data

Geolocation GiST Indexing
A Sampling of Countries

Modelization Anti-Patterns
Entity Attribute Values
Multiple Values per Column
UUIDs

Denormalization
Premature Optimization
Functional Dependency Trade-Offs
Denormalization with PostgreSQL
Materialized Views
History Tables and Audit Trails
Validity Period as a Range
Pre-Computed Values
Enumerated Types
Multiple Values per Attribute
The Spare Matrix Model
Partitioning
Other Denormalization Tools
Denormalize wih Care

Not Only SQL
Schemaless Design in PostgreSQL
Durability Trade-Offs
Scaling Out

An interview with Álvaro Hernández Tortosa
VII Data Manipulation and Concurrency Control

Another Small Application
Insert, Update, Delete

Insert Into
Insert Into … Select
Update
Inserting Some Tweets
Delete
Tuples and Rows
Deleting All the Rows: Truncate
Delete but Keep a Few Rows

Isolation and Locking

Transactions and Isolation
About SSI
Concurrent Updates and Isolation
Modeling for Concurrency
Putting Concurrency to the Test

Computing and Caching in SQL
Views
Materialized Views

Triggers
Transactional Event Driven Processing
Trigger and Counters Anti-Pattern
Fixing the Behavior
Event Triggers

Listen and Notify
PostgreSQL Notifications
PostgreSQL Event Publication System
Notifications and Cache Maintenance
Limitations of Listen and Notify
Listen and Notify Support in Drivers

Batch Update, MoMA Collection
Updating the Data
Concurrency Patterns
On Conflict Do Nothing

An Interview with Kris Jenkins
VIII PostgreSQL Extensions

What's a PostgreSQL Extension?
Inside PostgreSQL Extensions
Installing and Using PostgreSQL Extensions
Finding PostgreSQL Extensions
A Primer on Authoring PostgreSQL Extensions
A Short List of Noteworthy Extensions

Auditing Changes with hstore
Introduction to hstore
Comparing hstores
Auditing Changes with a Trigger
Testing the Audit Trigger
From hstore Back to a Regular Record

Last.fm Million Song Dataset
Using Trigrams For Typos

The pg_trgm PostgreSQL Extension
Trigrams, Similarity and Searches
Complete and Suggest Song Titles
Trigram Indexing

Denormalizing Tags with intarray
Advanced Tag Indexing
Searches
User-Defined Tags Made Easy

The Most Popular Pub Names
A Pub Names Database
Normalizing the Data
Geolocating the Nearest Pub (k-NN search)
Indexing kNN Search

How far is the nearest pub?
The earthdistance PostgreSQL contrib
Pubs and Cities
The Most Popular Pub Names by City

Geolocation with PostgreSQL
Geolocation Data Loading
Finding an IP Address in the Ranges
Geolocation Metadata
Emergency Pub

Counting Distinct Users with HyperLogLog
HyperLogLog
Installing postgresql-hll
Counting Unique Tweet Visitors
Lossy Unique Count with HLL
Getting the Visits into Unique Counts
Scheduling Estimates Computations
Combining Unique Visitors

An Interview with Craig Kerstiens
IX Closing Thoughts
X Index

	I Preface
	About…
	About the Book
	About the Author
	Acknowledgements
	About the organisation of the books

	II Introduction
	Structured Query Language
	Some of the Code is Written in SQL
	A First Use Case
	Loading the Data Set
	Application Code and SQL
	A Word about SQL Injection
	PostgreSQL protocol: server-side prepared statements
	Back to Discovering SQL
	Computing Weekly Changes

	Software Architecture
	Why PostgreSQL?
	The PostgreSQL Documentation

	Getting Ready to read this Book

	III Writing Sql Queries
	Business Logic
	Every SQL query embeds some business logic
	Business Logic Applies to Use Cases
	Correctness
	Efficiency
	Stored Procedures — a Data Access API
	Procedural Code and Stored Procedures
	Where to Implement Business Logic?

	A Small Application
	Readme First Driven Development
	Loading the Dataset
	Chinook Database
	Music Catalog
	Albums by Artist
	Top-N Artists by Genre

	The SQL REPL — An Interactive Setup
	Intro to psql
	The psqlrc Setup
	Transactions and psql Behavior
	A Reporting Tool
	Discovering a Schema
	Interactive Query Editor

	SQL is Code
	SQL style guidelines
	Comments
	Unit Tests
	Regression Tests
	A Closer Look

	Indexing Strategy
	Indexing for Constraints
	Indexing for Queries
	Cost of Index Maintenance
	Choosing Queries to Optimize
	PostgreSQL Index Access Methods
	Advanced Indexing
	Adding Indexes

	An Interview with Yohann Gabory

	IV SQL Toolbox
	Get Some Data
	Structured Query Language
	Queries, DML, DDL, TCL, DCL
	Select, From, Where
	Anatomy of a Select Statement
	Projection (output): Select
	Data sources: From
	Understanding Joins
	Restrictions: Where

	Order By, Limit, No Offset
	Ordering with Order By
	kNN Ordering and GiST indexes
	Top-N sorts: Limit
	No Offset, and how to implement pagination

	Group By, Having, With, Union All
	Aggregates (aka Map/Reduce): Group By
	Aggregates Without a Group By
	Restrict Selected Groups: Having
	Grouping Sets
	Common Table Expressions: With
	Distinct On
	Result Sets Operations

	Understanding Nulls
	Three-Valued Logic
	Not Null Constraints
	Outer Joins Introducing Nulls
	Using Null in Applications

	Understanding Window Functions
	Windows and Frames
	Partitioning into Different Frames
	Available Window Functions
	When to Use Window Functions

	Understanding Relations and Joins
	Relations
	SQL Join Types

	An Interview with Markus Winand

	V Data Types
	Serialization and Deserialization
	Some Relational Theory
	Attribute Values, Data Domains and Data Types
	Consistency and Data Type Behavior

	PostgreSQL Data Types
	Boolean
	Character and Text
	Server Encoding and Client Encoding
	Numbers
	Floating Point Numbers
	Sequences and the Serial Pseudo Data Type
	Universally Unique Identifier: UUID
	Bytea and Bitstring
	Date/Time and Time Zones
	Time Intervals
	Date/Time Processing and Querying
	Network Address Types
	Ranges

	Denormalized Data Types
	Arrays
	Composite Types
	XML
	JSON
	Enum

	PostgreSQL Extensions
	An interview with Grégoire Hubert

	VI Data Modeling
	Object Relational Mapping
	Tooling for Database Modeling
	How to Write a Database Model
	Generating Random Data
	Modeling Example

	Normalization
	Data Structures and Algorithms
	Normal Forms
	Database Anomalies
	Modeling an Address Field
	Primary Keys
	Surrogate Keys
	Foreign Keys Constraints
	Not Null Constraints
	Check Constraints and Domains
	Exclusion Constraints

	Practical Use Case: Geonames
	Features
	Countries
	Administrative Zoning
	Geolocation Data
	Geolocation GiST Indexing
	A Sampling of Countries

	Modelization Anti-Patterns
	Entity Attribute Values
	Multiple Values per Column
	UUIDs

	Denormalization
	Premature Optimization
	Functional Dependency Trade-Offs
	Denormalization with PostgreSQL
	Materialized Views
	History Tables and Audit Trails
	Validity Period as a Range
	Pre-Computed Values
	Enumerated Types
	Multiple Values per Attribute
	The Spare Matrix Model
	Partitioning
	Other Denormalization Tools
	Denormalize wih Care

	Not Only SQL
	Schemaless Design in PostgreSQL
	Durability Trade-Offs
	Scaling Out

	An interview with Álvaro Hernández Tortosa

	VII Data Manipulation and Concurrency Control
	Another Small Application
	Insert, Update, Delete
	Insert Into
	Insert Into … Select
	Update
	Inserting Some Tweets
	Delete
	Tuples and Rows
	Deleting All the Rows: Truncate
	Delete but Keep a Few Rows

	Isolation and Locking
	Transactions and Isolation
	About SSI
	Concurrent Updates and Isolation
	Modeling for Concurrency
	Putting Concurrency to the Test

	Computing and Caching in SQL
	Views
	Materialized Views

	Triggers
	Transactional Event Driven Processing
	Trigger and Counters Anti-Pattern
	Fixing the Behavior
	Event Triggers

	Listen and Notify
	PostgreSQL Notifications
	PostgreSQL Event Publication System
	Notifications and Cache Maintenance
	Limitations of Listen and Notify
	Listen and Notify Support in Drivers

	Batch Update, MoMA Collection
	Updating the Data
	Concurrency Patterns
	On Conflict Do Nothing

	An Interview with Kris Jenkins

	VIII PostgreSQL Extensions
	What's a PostgreSQL Extension?
	Inside PostgreSQL Extensions
	Installing and Using PostgreSQL Extensions
	Finding PostgreSQL Extensions
	A Primer on Authoring PostgreSQL Extensions
	A Short List of Noteworthy Extensions

	Auditing Changes with hstore
	Introduction to hstore
	Comparing hstores
	Auditing Changes with a Trigger
	Testing the Audit Trigger
	From hstore Back to a Regular Record

	Last.fm Million Song Dataset
	Using Trigrams For Typos
	The pg_trgm PostgreSQL Extension
	Trigrams, Similarity and Searches
	Complete and Suggest Song Titles
	Trigram Indexing

	Denormalizing Tags with intarray
	Advanced Tag Indexing
	Searches
	User-Defined Tags Made Easy

	The Most Popular Pub Names
	A Pub Names Database
	Normalizing the Data
	Geolocating the Nearest Pub (k-NN search)
	Indexing kNN Search

	How far is the nearest pub?
	The earthdistance PostgreSQL contrib
	Pubs and Cities
	The Most Popular Pub Names by City

	Geolocation with PostgreSQL
	Geolocation Data Loading
	Finding an IP Address in the Ranges
	Geolocation Metadata
	Emergency Pub

	Counting Distinct Users with HyperLogLog
	HyperLogLog
	Installing postgresql-hll
	Counting Unique Tweet Visitors
	Lossy Unique Count with HLL
	Getting the Visits into Unique Counts
	Scheduling Estimates Computations
	Combining Unique Visitors

	An Interview with Craig Kerstiens

	IX Closing Thoughts
	X Index

