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Introduction

Mircea Pitici

This is the ninth volume in our series of remarkable writings on math-
ematics. The pieces you will read here were initially published dur-
ing 2017 in various venues, including academic and other professional 
journals, book chapters, online publications, or newspapers. Except 
for a few technical mathematical notions required to understand select 
pieces, the book is accessible to the public that does not specialize in 
mathematics; yet the book will also interest mathematicians and sci-
entists. Aiming to a wide audience has been, and remains, one of our 
goals when we prepare every volume.

The origins of The Best Writing on Mathematics series go back about 
fifteen years, to a time when my frustration with the clichés about 
mathematics I was reading and hearing made me curious to know 
opinions about mathematics not only from mathematicians but also 
from outsiders. I quickly discovered that a considerable literature on 
mathematics authored by mathematicians and by nonmathematicians 
exists and thrives. Despite its richness in ideas, it is mostly ignored in 
academic institutions, as if it did not exist and it had no instructional 
value. For several years, I mulled over the idea of editing such a se-
ries, and I attempted to start it; yet life difficulties and the disinter-
est toward my proposal from the publishers I approached stopped the 
project in its tracks.

Since 2010, the volumes in this series have contained more than two 
hundred pieces by authors with diverse backgrounds. These articles 
range in style from tightly argued theoretical positions on issues related 
to mathematics to bold speculations on the limits of the applicability of 
mathematics. Overall, the series is meant to convey to its readers the 
extraordinary ramifications of the influence of mathematics on con-
temporary mind, life, and society—and to stimulate connections we 
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usually overlook when we talk about mathematics. The ninth volume is 
no exception from the general profile of the series.

Overview of the Volume

In the first article in the book, Francis Su gives us an impassioned 
credo, which he delivered as president of the Mathematical Associa-
tion of America. Su finds common threads between mathematics on 
one side and play, beauty, truth, justice, and love on the other side—
and from these associations concludes that mathematics contributes to 
human flourishing.

Margaret Wertheim proposes that certain sentient organisms other 
than humans, and even nonliving artifacts, perform mathematics when-
ever they enact rigorous geometric or algebraic patterns—that is, they 
do so without conscious intelligence.

Robert Thomas considers prevalent views on the “beauty” of math-
ematics and argues that the quality of making us interested and curious 
to do mathematics is at least as valuable aesthetically as the quality of 
pleasing us.

Marijn Heule and Oliver Kullmann write that automated computer 
proofs are useful and meaningful even if we cannot understand them—
and describe how such methods work, detailing one example of proof 
done by what they call brute reason.

Peter Denning explains how the growth of computational power en-
abled scientists to change their disciplines from within by adding simu-
lation and information process analysis to the established practices of 
experimenting and theorizing.

Robbert Dijkgraaf points out that the dynamic of the long inter-
action between mathematics and physics is reversing; where tradition-
ally mathematics influenced physics, lately physics branches such as 
string and quantum theories occasion breakthroughs in mathematics, 
possibly leading toward a new type of mathematics, which he tenta-
tively calls “quantum mathematics.”

Erik Demaine and his coauthors describe a planar tangle toy, ex-
amine some of the topological configurations available through ma-
nipulating it, answer some of the mathematical questions it poses, and 
formulate a few open problems related to it.
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James Grime shows us how to build subtly mischievous dice for play-
ing slightly unfair games!

Arthur Benjamin, Joseph Kisenwether, and Ben Weiss consider an-
other game: bingo. They observe and prove that, contrary to unex-
amined expectations, bingo winning patterns are asymmetrical, with 
completed horizontal rows occurring more frequently than completed 
vertical columns.

Peter Winkler summarizes a plethora of conflicting mathematical, 
psychological, semantic, and psychological arguments advanced over 
the past two decades in connection with a question of probability. He 
purposefully settles nothing, convinced that the controversy surround-
ing it will continue forever.

José Ferreirós delves into Eugene Wigner’s intellectual biography 
and finds that Wigner’s conception of mathematics and some of his 
consequential epistemological claims were influenced to a considerable 
degree by his professional friends and associates.

Chris Arney introduces us to the fundamentals of mathematical 
modeling, including to the necessary theoretical components of model-
ing, the current and potential scope of applications, and the essential 
bibliography specialized in mathematical modeling.

Nancy Emerson Kress offers precise advice to school students (and 
implicitly to teachers, but useful to everyone) on how to approach and 
to solve problems in mathematics.

On a topic that I have wanted to include in The Best Writing on Math-
ematics anthologies for a long time, Benjamin Braun and his coauthors 
define active classroom instruction, describe its benefits and variants, 
and prepare instructors inclined to adopt active teaching methods for 
some of the challenges and opportunities they are likely to experience.

In a brief note relating more detailed research, Daniel Mansfield 
and Norman Wildberger explain that in ancient Babylon the mathe-
maticians (or perhaps the surveyors) of the time practiced a different 
trigonometry than we do today—simpler but precise, founded on the 
sexagesimal system of numeration.

Isabel Serrano, Lucy Odom, and Bogdan Suceavă examine the struc-
ture of mathematics in one of the most important encyclopedic works 
of premodern times, the Etymologies authored by Isidore of Seville in the 
seventh century.
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Michael Barany traces the current awareness of the importance of 
mathematics in society to developments that started shortly before, but 
especially during, the Second World War; Barany tells the story of the 
people who accomplished the major shift in research funding from a 
long tradition of private sponsorship to one supported in considerable 
part by the state.

Finally, Caroline Yoon argues that writing and doing mathematics 
have more in common than we usually admit—and encourages math-
ematicians (as well as budding mathematicians) to transfer their math-
ematical skills into writing competencies. Her advice coincides with 
one of the main goals of The Best Writing on Mathematics series.

More Writings on Mathematics

Every year we offer further reading suggestions on mathematics, cho-
sen from recent publications. Toward the end of the book you can find 
a long list of pieces I considered for selection in this volume. Here, I list 
some of the books that have come to my attention lately.

I make special mention of the graphically exceptional collection The 
Arts of Ornamental Geometry, edited by Gülru Necipoğlu and the collec-
tion of interviews with Russian mathematicians edited by Andrei Sobo-
levski under the title Mathematical Walks.

Among books on mathematics in daily life, including puzzles and 
games, you can pick from Gladiators, Pirates and Games of Trust by Haim 
Shapira, Chancing It by Robert Matthews, We Are Data by John Cheney- 
Lippold, A Survival Guide to the Misinformation Age by David Helfand, The 
Math Behind . . . by Colin Beveridge, and The Power of Networks by Chris-
topher Brinton and Mung Chiang.

You will find plenty more expository and exciting mathematics at 
an accessible level in Foolproof by Brian Hayes, Mathematics Rebooted by 
Lara Alcock, Arithmetic by Paul Lockhart, and even in (the now sec-
ond volume of) The Mathematics of Various Entertaining Subjects edited 
by Jennifer Beineke and Jason Rosenhouse. More challenging for the 
mathematically uninitiated, yet appealing to the interested learner 
with a solid background in school mathematics are Prime Numbers and 
the Riemann Hypothesis by Barry Mazur and William Stein, Introduction 
to Experimental Mathematics by Søren Eilers and Rune Johansen, Modern 
Cryptography and Elliptic Curves by Thomas Shemanske, A Conversational 
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Introduction to Algebraic Theory by Paul Pollack, and the very original 
and eye- pleasing presentation in An Illustrated Theory of Numbers by 
Martin Weissman.

In the history of mathematics literature, we have two works on 
China: Daniel Morgan’s Astral Sciences in Early Imperial China, and Tina 
Su Lyn Lim and Donald Wagner’s The Continuation of Ancient Mathemat-
ics. For mathematics on other meridians, we cite Jason Fagone’s The 
Woman Who Smashed Codes [Elizebeth Smith Friedman], Christopher 
Graney’s Mathematical Disquisitions [on Galileo], and Johnny Ball’s Won-
ders beyond Numbers. Also in the field of history are Mathematical Cultures, 
edited by Brendan Larvor, The Mathematics of Secrets by Joshua Holden, 
Edward Watts’s Hypatia, and Michel Serres’s Geometry. An adventurous 
autobiography is Ted Hill’s Pushing Limits.

On statistics, probability, and data, you can learn about Ten Great 
Ideas about Chance from Persi Diaconis and Brian Skyrms, and about The 
Tao of Statistics from Dana Keller. Jeffrey Stanton authored Reasoning 
with Data, and David Carlson published Quantitative Methods in Archaeol-
ogy Using R.

Mathematics is applied in many disciplines, and the literature dedi-
cated to applications is huge. Here are several new titles: Models, Math-
ematics, and Methodology in Economic Explanation by Donald Katzner and 
How Much Inequality Is Fair? by Venkat Venkatasubramanian in econom-
ics; Narrative and Numbers by Aswath Damodaran, The Money Formula by 
Paul Wilmott and David Orrell, The Spider Network by David Enrich, 
and Analysing Quantitative Survey Data for Business and Management Students 
by Jeremy Dawson in business and finance; The Birth of Physics by Michel 
Serres, Reality Is Not What It Seems by Carlo Rovelli, and It’s about Time by 
Roger Cooke in physics; Computational Modeling of Cognition and Behav-
ior by Simon Farrell and Stephan Lewandowsky, How Our Days Became 
Numbered by Dan Bouk, and Political Games by Macartan Humphreys in 
psychology and other social sciences. A wide- ranging collection of con-
tributions on computing and its history, especially related to Alan Tur-
ing’s work, is The Once and Future Turing, edited by Barry Cooper and 
Andrew Hodges. In New Lines, Matthew Wilson applies mathematical 
methods to geography and mapmaking, while Paul Charbonneau does 
so for a multitude of contexts in Natural Complexity. An eminently ac-
cessible introduction to the mathematics of basic  models is Algebra with 
Models by Marian Anton and Karen Santoro. Finally in this category, 
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an idiosyncratic use of mathematics is given by Ben Blatt in Nabokov’s 
Favorite Word Is Mauve.

In the philosophy of mathematics, recent titles include Rethinking 
Knowledge by Carlo Cellucci, Gödel’s Disjunction by Leon Horsten and 
Philip Welch, The Ethics of Technology by Martin Peterson, Objectivity, 
Realism, and Proof, edited by Francesca Boccuni and Andrea Sereni, 
and Categories for the Working Philosopher by Elaine Landry. In the topic 
of logic are Bolzano’s Conception of Grounding by Stefan Roski and Kurt 
Gödel’s Logic Lectures. A wide- ranging book difficult to categorize is 
John Stillwell’s Reverse Mathematics.

Many interdisciplinary books contain mathematical arguments at 
their hearts. This type of literature is expanding fast. Here are some 
titles: Convergence by Peter Watson, The Mathematical Corporation by Josh 
Sullivan and Angela Zutavern, Observation and Experiment by Paul Rosen-
baum, Numbers and the Making of Us by Caleb Everett, Mathematics as a 
Tool edited by Johannes Lenhard and Martin Carrier, Autonomous Nature 
by Carolyn Merchant, Scale by Geoffrey West, Do the Math! by John 
White, The Probabilistic Foundations of Rational Learning by Simon Hut-
tegger, and Game Changers by Rudolf Taschner.

A book that bears the qualification “dictionary” but in fact is a col-
lection of relevant place descriptions, is Mathematical Berlin by Iris and 
Martin Grötschel. Almost exclusively visual but full of interesting in-
formation is The Book of Circles by Manuel Lima.

*
I hope that you, the reader, will enjoy reading this anthology at least as 
much as I did working on it. I encourage you to send comments, sugges-
tions, and materials I might consider for (or mention in) future volumes 
to Mircea Pitici, P.O. Box 4671, Ithaca, NY 14852; or send electronic 
correspondence to mip7 @cornell .edu.
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Mathematics for Human Flourishing

Francis Edward Su

Every being cries out silently to be read differently.
—Simone Weil [7, p. 188]

Christopher is an inmate in a high- security federal prison not far from 
Atlanta. He’s been in trouble with the law since he was fourteen. He 
didn’t finish high school, had an addiction to hard drugs, and at age 
twenty- one, his involvement in a string of armed robberies landed him 
in prison with a thirty- two- year sentence.

Right now, you’ve probably formed a mental image of who Christo-
pher is, and you might be wondering why I’m opening my speech with 
his story. When you think about who does mathematics—both who 
is capable of doing mathematics and who wants to do mathematics—
would you think of Christopher?

And yet he wrote me a letter after seven years in prison. He said, “I’ve 
always had a proclivity for mathematics, but being in a very early stage 
of youth and also living in some adverse circumstances, I never came to 
understand the true meaning and benefit of pursuing an education . . . 
over the last 3 years I have purchased and studied a multitude of books to 
give me a profound and concrete understanding of Algebra I, Algebra II, 
College Algebra, Geometry, Trigonometry, Calculus I and Calculus II.”

Christopher was writing me for help in furthering his mathematics 
education.

When you think of who does mathematics, would you think of 
Christopher?

Every being cries out silently to be read differently.

Simone Weil is a well- known French religious mystic and a widely re-
vered philosopher. She is probably less well known as the younger sister 
of André Weil, one of history’s most famous number theorists.
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For Simone, to read someone means to interpret or make a judgment 
about them. She’s saying, “Every being cries out silently to be judged 
differently.” I sometimes wonder if Simone was crying out about her-
self. For she, too, loved and participated in mathematics, but she was 
always comparing herself to her brother. She wrote [6, p. 64],

At fourteen I fell into one of those fits of bottomless despair that 
come with adolescence, and I seriously thought of dying because 
of the mediocrity of my natural faculties . . . the exceptional gifts 
of my brother, who had a childhood and youth comparable to 
those of Pascal, brought my own inferiority home to me. I did not 
mind having no visible successes, but what did grieve me was the 
idea of being excluded from that transcendent kingdom to which 
only the truly great have access and wherein truth abides. I pre-
ferred to die rather than live without that truth.

We know Simone loved mathematics because she used mathematical 
examples in her philosophical writing. And you’ll find her in photos of 
Bourbaki with her brother.

I often wonder what her relationship to mathematics would be like if 
she weren’t always in André’s shadow.

Every being cries out silently to be read differently.

As president of the Mathematical Association of America (MAA), you 
might think that my relationship to mathematics has always been solid. 
I don’t like the word “success,” but people look at me and think I’m 
successful, as if the true measure of mathematical achievement is the 
grants I’ve received or the numerous papers I’ve published.

Like Christopher, I’ve had a proclivity for mathematics since youth. 
But I grew up in a small rural town in South Texas, with limited op-
portunities. Most of my high school peers didn’t even attend college. I 
did because my dad was a college professor, but my parents didn’t know 
about the many mathematical opportunities I now know exist.

My love for math deepened at the University of Texas, and I man-
aged to get admitted to Harvard for my Ph.D. But I felt out of place 
there, since I did not come from an Ivy League school, and unlike my 
peers, I did not have a full slate of graduate courses when I entered. 
I felt like Simone Weil, standing next to future André Weils, think-
ing I would never be able to flourish in mathematics if I were not 
like them.
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I was told by one professor that I didn’t belong in graduate school. 
That forced me to consider, among other things, why I wanted to do 
mathematics. And in fact, that is essentially the one big question that 
I’d like for you to consider today.

Why do mathematics?

This is a simple question, but worth considerable reflection. Because 
how you answer will strongly determine who you think should be doing 
mathematics, and how you will teach it.

Why is Christopher sitting in a prison cell studying calculus, even 
though he won’t be using it as a free man for another twenty- five years? 
Why was Simone so captivated by transcendent mathematical truths? 
Why should anyone persist in doing math or seeing herself as a math-
ematical person when others are telling her in subtle and not so subtle 
ways that she doesn’t belong?

And in this present moment, the world is also asking what its re-
lationship with mathematics should be. Amid the great societal shifts 
wrought by the digital revolution and a shift to an information econ-
omy, we are witnessing the rapid transformation of the ways we work 
and live. And yet we hear voices in the public sphere, saying “high 
school students don’t need geometry” or “let’s leave advanced math for 
the mathematicians.” And some mathematicians won’t admit it, but 
they signal exactly the same thing by refusing to teach lower- level math 
courses or viewing the math major as a means to weed out those they 
don’t think are fit for graduate school.

Our profession is threatened by voices like these from within, and 
without, who are undermining how society views mathematics and 
mathematicians. And the view of our profession is dismal. The 2012 
report from the President’s Council of Advisors on Science and Tech-
nology pegs introductory math courses as the major obstacle keeping 
students from pursuing STEM majors. We are not educating our stu-
dents as well as we should, and like most injustices, this hurts those 
who are most vulnerable.

I want us as a mathematical community to move forward in a differ-
ent way. It may require us to change our view of who should be doing 
mathematics and how we should teach it. But this way will be no less 
rigorous and no less demanding of our students. And yet it will draw 
more people into mathematics because they will see how mathematics 
connects to their deepest human desires.
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So if you asked me, “Why do mathematics?” I would say, “Mathemat-
ics helps people flourish.”

Mathematics is for human flourishing.

The well- lived life is a life of human flourishing. The ancient Greeks 
had a word for human flourishing, eudaimonia, which they viewed as the 
good composed of all goods. There is a similar word in Hebrew: shalom, 
which is used as a greeting. Shalom is sometimes translated “peace,” 
but the word has a far richer context. To say “shalom” to someone is 
to wish that they will flourish and live well. And Arabic has a related 
word: salaam.

A basic question, taken up by Aristotle, is this: How do you achieve 
human flourishing? What is the well- lived life? Aristotle would say that 
flourishing comes through the exercise of virtue. The Greek concept 
of virtue is excellence of character that leads to excellence of conduct. 
So it includes more than just moral virtue; for instance, courage and 
wisdom are also virtues.

What I hope to convince you of today is that the practice of math-
ematics cultivates virtues that help people flourish. These virtues serve 
you well no matter what profession you choose. And the movement 
toward virtue happens through basic human desires.

I want to talk about five desires we all have. The first of these is play.

1. Play

It is a happy talent to know how to play.
—Ralph Waldo Emerson [2, p. 138]

Think of how babies play. Play is hard to define, but we can think of a 
few qualities that characterize it. For instance, play should be fun and 
voluntary, or it wouldn’t be play. There is usually some structure—even 
babies know that “peekaboo” follows a certain pattern—but there is lots 
of freedom within that structure. That freedom leads to investigation of 
some sort, like “where will you appear if we play peekaboo one more 
time?” There is usually no great stake in the outcome. And the investiga-
tion can often lead to some sort of surprise, like appearing in a different 
place in peekaboo. Of course, animals play too, but what characterizes 
human play is the enlarged role of mind and the imagination.
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Think about Rubik’s Cube or the game Set. There’s interplay be-
tween structure and freedom and no great stake in the outcome, but 
there’s investigation that can lead to the delight of solving the cube or 
finding sets of matching cards.

Mathematics makes the mind its playground. We play with patterns, 
and within the structure of certain axioms, we exercise freedom in ex-
ploring their consequences, joyful at any truths we find. We even have 
a whole area of mathematics known as “recreational mathematics”! Do 
you know another discipline that has a “recreational” subfield? Is there 
a “recreational physics” or “recreational philosophy”?

And mathematical play builds virtues that enable us to flourish in 
every area of our lives. For instance, math play builds hopefulness—
when you sit with a puzzle long enough, you are exercising hope that 
you will eventually solve it. Math play builds community—when you 
share in the delight of working on a problem with another human being. 
And math play builds perseverance—just as weekly soccer practices 
build up the muscles that make us stronger for the next game, weekly 
math investigations make us more fit for the next problem, whatever 
that is, even if we don’t solve the current problem. It’s why the MAA 
supports programs like the American Mathematics Competitions and 
the Putnam Competition. We help kids flourish through building 
hopefulness, perseverance, and community. This year, you may have 
heard that the U.S. team, which MAA trained, won the International 
Math Olympiad for the second time in a row. What you might not have 
heard is that Po- Shen Loh, who coached our team, invited teams from 
other countries to train with them to prepare. You see, our priority 
was community over competition. This action was so impressive to the 
Singaporean prime minister that he publicly thanked President Obama 
for this remarkable collaboration. This was true play: teams in friendly 
competition.

Play is part of human flourishing. You cannot flourish without play.
And if mathematics is for human flourishing, we should “play up” 

the role of play in how we teach and who we teach. Everyone can play. 
Everyone enjoys play. Everyone can have a meaningful experience in 
mathematical play.

And teaching play is hard work! It’s actually harder than lecturing 
because you have to be ready for almost anything to happen in the class-
room, but it’s also more fun. Play is part of what makes inquiry- based 
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learning and other forms of active learning so effective. There’s over-
whelming evidence that students learn better with active learning. This 
year, in the Conference Board of the Mathematical Sciences, I signed a 
statement with presidents of other math organizations endorsing active 
learning, available on the CBMS website. And if you want to see the 
evidence for active learning, we’ve included some background informa-
tion in this statement.

So, teach play.

Another basic human desire is beauty.

2. Beauty

It is impossible to be a mathematician  
without being a poet in soul.
—Sónya Kovalévsky [3, p. 316]

Who among us does not enjoy beautiful things? A beautiful sunset. A 
sublime sonata. A profound poem. An elegant proof.

Mathematicians and scientists are awed by the simplicity, regular-
ity, and order of the laws of the universe. These are called “beautiful.” 
They feel transcendent. Why should mathematics be as powerful as it 
is? This is what Nobel prize–winning physicist Eugene Wigner called 
“the unreasonable effectiveness of mathematics” to explain the natural 
sciences. And Einstein asked, “How can it be that mathematics, being 
after all a product of human thought independent of experience, is so 
admirably adapted to the objects of reality?”

And mathematicians are not satisfied with just any proof of a theo-
rem. We often look for the best proofs, the simplest or most pleasing. 
Mathematicians have a special word for this—we say a proof is “el-
egant.” Paul Erdős often spoke of “The Book” that God keeps, in which 
all the most elegant proofs of theorems are recorded.

Pursuing mathematics in this way cultivates the virtues of tran-
scendence and joy. By joy, I refer to the wonder or awe or delight in 
the beauty of the created order. By transcendence, I mean the ability to 
embrace the mystery of it all. There’s a transcendent joy in experienc-
ing the beauty of mathematics.
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If mathematics is for human flourishing, we must help others see its 
beauty.

But there are many notions of beauty. So the way you motivate math-
ematics through beauty must necessarily be diverse—through art, 
through music, through patterns, through rigorous arguments, through 
the elegance of simple but profound ideas, through the wondrous ap-
plicability of these ideas to the real world in many different fields.

A third basic human desire is truth.

3. Truth

Quid est veritas?
—Pontius Pilate [5, p. 153]

What is truth? This question is an important one, especially today. Each 
day seems to bring more discussion about how fake news may have in-
fluenced the 2016 presidential election. Some dismiss trying to figure 
out what’s true, saying, “How can we even know what is true?”

And yet, in some contexts, people do seek truth at all costs, espe-
cially when there is a lot at stake. When my dad had cancer, we wanted 
to know what treatments had the best chance of saving his life. We had 
to know because his life depended on it.

The quest for truth is at the heart of the scientific enterprise. I say 
“quest” because we don’t do science to confirm simple declarative state-
ments that are easily verified, like “my coffee is hot.” Rather, our sub-
jects of investigation are questions for which the answer is not so clear. 
“Do gravity waves exist, and if so, how would we detect them?”

So there is a quest. We formulate a hypothesis (“they exist”), and 
we design experiments to test our hypothesis. We look for evidence, 
and if we find some, we still ask, “Could there have been any other 
explanation?”

A mathematician might try to prove or disprove a statement through 
logical deductions from first principles. Or she might construct a math-
ematical model to answer the question.

These approaches cultivate in us the virtue of rigorous thinking: 
the ability to handle ideas well and to craft clear arguments with those 



8 Francis Edward Su

ideas. This virtue serves us well in every area of life. We should use this 
ability to reason in the public square, as many in our community have 
done by writing op- ed pieces for newspapers. More of us should exer-
cise this virtue to shape public perceptions about mathematics.

I would like to encourage institutions to start valuing the public 
writing of its faculty. More people will read these pieces than will ever 
read any of our research papers. Public writing is scholarly activity. It 
involves rigorous arguments, is subject to a review process by editors, 
and to borrow the phrase from the National Science Foundation, it has 
broader impacts, and that impact can be measured in the digital age.

The quest for truth predisposes the heart to the virtue of humility. 
Isaac Newton said, “I do not know what I may appear to the world, but 
to myself I seem to have been only like a boy playing on the seashore, 
and diverting myself in now and then finding a smoother pebble or a 
prettier shell than ordinary, whilst the great ocean of truth lay all un-
discovered before me” [1, p. 407]. He’s saying that the more we know, 
the more we realize how much we do not yet know. And we learn 
how to accept being wrong if a counterexample shows that our conjec-
ture was false. In fact, I’ll go so far as to say that counterexamples in 
mathematics have a special place—we celebrate them. We have titles 
of books like “Counterexamples in Topology” or “Counterexamples in 
Analysis.” We like to admit when we are wrong!

So when a student embraces this quest for truth, she begins to as-
sume a certain kind of humility. She handles ideas rigorously, with 
honesty and integrity. She values truthfulness and clarification of dis-
tinctions. This is the virtue of intellectual humility, and it is prized. I 
think a lack of humility characterized the political discourse of 2016 
on both sides. I wish we had more intellectual humility in the public 
square.

We must model the virtue of humility in our own teaching, and we 
should explicitly tell our students we are cultivating humility as a virtue 
that will serve them well their entire lives. One of the most important 
skills we can teach our students is to know when their arguments are 
wrong. How many of you have ever given a super- hard question on an 
exam and gotten answers that look like students just made stuff up, 
hoping for partial credit? I now explicitly say on my exams that I will 
give extra credit on incomplete proofs where students acknowledge 
their gaps. I get much more thoughtful answers that way.
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And mathematics builds the virtue of circumspection. We know 
the limits of our arguments, and we don’t overgeneralize. I like what 
my friend Rachel Schwell said:

“I think math helps me make fewer sweeping generalizations about 
people. For example, I wouldn’t assume a person is, say, uneducated, 
just because she is, say, poor, just as I can’t assume a number is say, posi-
tive, because it is an integer. I can’t even assume it is positive if I know 
it’s nonnegative, even if, probability- wise, it probably is positive! So I 
don’t leap to automatic associations as much.”

Can we help our students see that the virtue of circumspection is 
important in life?

A fourth basic human desire is justice.

4. Justice

Justice. To be ever ready to admit that another person is 
something quite different from what we read when he is there 

(or when we think about him). Or, rather, to read in him 
that he is certainly something different, perhaps something 

completely different from what we read in him.
Every being cries out silently to be read differently.

—Simone Weil [7, p. 188]

Akemi was a student of mine who did research with me as an under-
graduate. Her innovative paper linking game theory and phylogenetics 
was published in a highly regarded mathematical biology journal. She 
went to a top research university for her Ph.D. So I was surprised when 
I learned that Akemi quit after one year.

She told me that she had many negative experiences. Her advisor 
was never willing to meet with her, and she had faced uncomfortable 
experiences as a woman. She told me one example:

At the beginning of the course, I consistently got 10/10 on my 
homework assignments which were all graded by the TA. One 
day, Jeff [a mutual friend] told me that he was hanging out with our 
TA and someone asked the TA how the analysis class was doing. 
He went on and on about some “guy” named Akemi and how per-
fect “his” homeworks were and how clearly they were written, 
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etc. Jeff told him I was a girl and the TA was shocked. (Jeff told 
me this story because he thought it was funny that someone both 
didn’t know my sex from my name and reacted so dramatically 
to finding out.) After that, I never got remotely close to 10/10 on 
my assignments and my exams were equally harsh—most of the 
reasons for docked points were vague with comments like “give 
more detail.” I didn’t feel like my understanding of the material 
diminished that quickly or dramatically.

I hope you agree something is not right with this picture. If a certain 
kind of anger wells up in you, you are experiencing a telltale sign of 
flourishing: the desire for justice. Justice means setting things right. 
And justice is a powerful motivator to action.

Justice is required for human flourishing. We flourish—we experi-
ence shalom—when we treat others justly and when we are treated justly.

Simone Weil realized that correcting injustice must involve chang-
ing how we view others: “to read in him that he is certainly something 
different, perhaps something completely different from what we read in 
him. Every being cries out silently to be read differently.”

Now before we are too quick to censure Akemi’s TA, we have to 
realize that the problem of reading others differently begins with our-
selves. The TA may not have even realized he was doing this. This is the 
problem of implicit bias: unconscious stereotypes that subtly affect our 
decisions. One of the best experiences I had in MAA leadership was at-
tending a workshop on implicit bias, in which I realized in a powerful 
way how I am biased even though I try not to be. We all do it without 
realizing it. Numerous experiments confirm results of the following 
kind: When given two nearly identical resumes except that one has a 
positively stereo typed name and one has a negatively stereotyped name 
(e.g., woman or minority), judges rate the positively stereotyped resume 
higher. This happens even if judges come from the negatively stereo-
typed group.

This is why good practices are important. The MAA now has a docu-
ment for selection committees called “Avoiding Implicit Bias” that lists 
a number of practices that have been shown in research to mitigate the 
effects of implicit bias, such as taking time to make decisions or gener-
ating a large candidate pool. These are good practices even if you don’t 
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believe that bias exists. That document is now distributed with every 
MAA committee assignment.

You see, we have to recognize that even if people are just, even if 
they desire to be just, a society may not be just if its structures and 
practices are not also just. And the only way a whole society can flour-
ish is if the society is a just society. It is often said that the mark of a just 
society is how it treats its most vulnerable members.

So I ask, with great humility, are we a just community?

If you believe that mathematics is for human flourishing, and we teach 
mathematics to help people flourish, you will see, if you look around 
the room, that we aren’t helping all our students flourish. The demo-
graphics of the mathematical community do not look like the demo-
graphics of America. We have left whole segments out of the benefits of 
the flourishing available in our profession.

So we have to talk about race, and that’s hard. It can bring up com-
plicated emotions, even more so with all that has taken place in our 
nation in the past year. In our community, we have to become more 
comfortable talking about race, listening to each other’s experiences, 
and being willing to recognize it’s there. If you want to treat others 
with dignity and they are hurting, you don’t ignore their pain. You ask, 
“What are you going through?”

It’s not enough to say, “I don’t think about race” because in a commu-
nity, how one member is doing affects the whole community. And for 
those of us not in the dominant racial group, we don’t have the luxury 
of saying, “I don’t think about race” because racial issues affect us on a 
daily basis. So let me encourage all of us to try having these conversa-
tions, to be quick to listen, slow to speak, and quick to forgive each 
other when we say something stupid. That’ll happen if you start to have 
conversations, and we just have to have grace for each other if we make 
mistakes—it’s better than not talking.

So if we’re going to have conversation, I’ll start. I grew up in Texas 
in a white and Latino part of the state, and I realized early on that my 
family had different customs from my friends—my clothes were dif-
ferent, the food in my lunchbox was different—and these things were 
causing me not to fit in. I wanted to be white. Not Latino, because 
white people got more respect, and as an Asian, I was getting picked on 
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all the time. I had no role models for being Asian- American. So I tried 
hard to act white, even if I couldn’t look white.

On the other hand, in Chinese communities, I also don’t fit in. I 
don’t speak Chinese. I don’t act Chinese. At Chinese restaurants, I’m 
viewed as white. Did you know that at authentic Chinese restaurants, 
there is often a special menu, a secret menu, that they only give to Chi-
nese people? It has all the good stuff. I don’t get that menu unless I ask 
for it. In fact, they discourage me, saying, “You won’t like the stuff on 
that menu.”

As mathematicians, who gets to see our secret menu? Whom do we 
shepherd toward taking more math courses? Whom do we discourage 
from looking at that menu?

Don’t let me sound as if I’m complaining about my race. There are 
ways in which I benefited from being Asian. People expected me to 
do better at math and science, and I’m sure that’s part of why I did. 
Because I now know there is a recognized literature on “expectancy ef-
fects,” that teacher expectations do affect student performance.

The first time I didn’t feel like a minority was when I moved to Cali-
fornia. There are so many Asian- Americans there. In Texas, I would 
commonly get the question, “Your English is so good! Where are you 
from?”

“Texas.”
“No, where are you really from?” That never happens in California, 

and there’s a feeling of freedom I have in not having to counter these 
verbal stings.

These days, I’m used to being at math conferences and seeing a 
sea of white faces. So even I was a little bit surprised that when I was 
elected MAA president, a prominent blogger on race issues for Asian- 
Americans wrote a blog post about it. His name is Angry Asian Man. 
He looked at the photos of past MAA presidents on our website, and 
given how many Asians he expected to be in math, he noted that they 
were all white except for me and wrote a sarcastic post entitled

“Finally, an Asian guy who’s good at math.”

I am the first president of color of either the American Mathemati-
cal Society (AMS) or MAA. Minorities, including Asians, are easy to 
overlook when you think about who would make a good leader. This 
situation may not be intentional, but when you are asked to think about 
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who is fit for this or that role, you often think of people just like the 
people who have been in office. So it is easy for implicit bias to creep in.

I raise this discussion out of deep affection for the mathematical 
community. I want us to flourish, and there are ways in which we can 
do better.

In 2015, I had the great pleasure of running MSRI- UP, a summer re-
search program for students from underrepresented backgrounds: 
first- generation college students, Latino and African- American kids. 
I asked them to help me prepare this talk, to tell me about obstacles 
they’ve faced doing mathematics.

One of them, who did wonderful work that summer, told me about 
her experience in an analysis course after she got back. She said, “Even 
though the class was really hard, it was more difficult to receive the 
humiliations of the professor. He made us feel that we were not good 
enough to study math and he even told us to change to another ‘easier’ 
profession.” As a result of this and other experiences, she switched her 
major to engineering.

Let me be clear: There is no good reason to tell a student she doesn’t 
belong in math. That’s the student’s decision, not yours. You see the 
snapshot of her progress, but you don’t see her trajectory. You can’t 
know how she will grow and flourish in the future. But you can help 
her get there.

Of course, you should give forthright counsel to students about skills 
they might need to develop further if they want to go on in mathemat-
ics, but if you see mathematics as a means to help them flourish, why 
wouldn’t you encourage them to take more math?

Another student that summer, Oscar, told me about his experience 
as a math major. Unlike his peers and because of his background, he did 
not enter college with any advanced placement credit. He says,

I noticed how different my trajectory was, however, while I was in 
my Complex Analysis course. A student was presenting a solution 
on the board which required a bit of a complicated derivation half-
way through. They skipped over a number of steps, citing “I don’t 
think I need to go through the algebra. . . . we all tested out of 
Calculus here anyway!” with my professor nodding in agreement 
and some students laughing. I quietly commented that Calculus 
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was my first course here. My professor was genuinely surprised 
and said, “Wow, I did not know that! That’s interesting.” I was 
not sure whether to feel proud or embarrassed by the fact that I 
was not the “typical math student” that was successful from the 
beginning of their mathematical career. I felt a sense of pride in 
knowing that I was pursuing a math degree despite my starting 
point, but I could not help but feel as though I did not belong in 
that classroom to begin with.

The reason Oscar was in that class to begin with was because of the 
active support of another professor. Says Oscar,

She presented me with my first research opportunity and always 
encouraged me to study higher math. I was also able to confide in 
her about a lot of the internal struggles I had with being a minor-
ity in mathematics since, as a female, she had a similar experience 
herself! My Complex Analysis professor became one of my men-
tors as well. I think it was just an interesting moment because she 
didn’t realize how her reaction to the situation could have hurt 
me (and I don’t think she’s necessarily at fault!). It was more that 
her reaction piled onto the insecurities I held in regards to being 
a minority with a weak background in math.

Note that Oscar didn’t have a “weak” background—he had a standard 
background.

I’m pleased to say that Oscar and his team from that summer just 
published a paper in an AMS journal, and he is now in graduate school.

You hear from Oscar’s story the importance of having an advocate, 
a faculty member who says, “I see you, and I think you have a future in 
math.” This support can be especially important for underrepresented 
groups and women, who already have so many voices telling them they 
can’t. Can you be that advocate?

And if we teach mathematics to help our students flourish, then 
we should not set up structures that disadvantage smart students with 
weaker backgrounds or make them feel out of place. I know that can 
happen inadvertently among students, but we, as faculty, are the shep-
herds of our departmental culture. When I was a grad student at Har-
vard, they had a regular calculus class, an honors calculus class called 
Math 25, and on top of that, for those with very strong backgrounds, 
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a super honors class called Math 55. Ironically, I regularly encoun-
tered students in the honors track who felt that they didn’t belong in 
math because they hadn’t placed into the super honors track. I had to 
keep reassuring them that “background is not the same as ability.” I 
sometimes wish graduate school admissions would remember this too: 
“Background is not the same as ability.” As my friend Bill Velez says, “If 
you want your Ph.D. program to have more students of color, then you 
have to stop admitting students on the basis of background and start 
admitting students by their ability. And then, support them.” They have 
so many voices telling them that they don’t belong. Be an advocate!

I know our community wants to be just, to set things right. So if 
you are looking to start some conversations with your students or col-
leagues but don’t know where to start, sometimes it can help to have a 
third party. I’m willing to be that third party. I’ve written a number of 
articles on these topics for MAA FOCUS, and they are all posted on my 
web page. You could ask your students to read them and then have a 
discussion. I can assure you that it will be time well spent.

For we are not mathematical machines; we live, we breathe, we feel, 
we bleed. If your students are struggling and you don’t acknowledge it, 
their education becomes disconnected and irrelevant. Why should any-
one care about mathematics if it doesn’t connect deeply to some human 
desire: to play, seek truth, pursue beauty, or fight for justice? You can 
be that connection.

So let me challenge each one of you today. Find one student whom 
you know is facing some challenges, and become that student’s long- 
term advocate. One way to do that is to sign up to be a mentor with 
the Math Alliance. The goal of this program, directed by Phil Kutzko, 
is to ensure that every underrepresented or underserved U.S. student 
with the talent and the ambition has the opportunity to earn a doctoral 
degree in a mathematical science.

Find one student and be her advocate! Be the one who says, “I see 
you, and I think you have a future in math.” Be the one who searches 
out opportunities for her. Be the one who pulls her toward virtue. Be 
the one who calls her when she has skipped class and asks, “Is every-
thing okay? What are you going through?”

I know what I’m asking you to do is hard and takes time.
But we’re mathematicians; we know how to tackle hard problems. 

We have the perseverance to see it through. We have the humility to 
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admit when we make mistakes and to learn from them. We have hope-
fulness that our labor is never in vain and the transcendent belief that 
our work will bear fruit in the flourishing of our students.

Because what I am asking you to do is something you already know, 
at the heart of the teacher–student relationship, pulls us toward virtue.

I’m asking you to love.

5. Love

If I speak in the tongues of mortals and of angels, but have not 
love, I am a noisy gong or a clanging cymbal.

—Paul the Apostle [4, p. 2017]

Love is the greatest human desire. And to love and be loved is a su-
preme mark of human flourishing. For it serves the other desires—
play, truth, beauty, and justice—and it is served by them.

Every being cries out silently to be read differently. Every being 
cries out silently to be loved. Christopher, in prison, wasn’t looking 
only for mathematical advice. He was looking for connection, some-
one to reach out to him in his mathematical space and say, “I see you, 
and I share the same transcendent passion for math that you do, and 
you belong here.”

When I was in the depths of despair in graduate school, struggling 
over many nonacademic things with a professor who had said I don’t 
belong, already interviewing for jobs because I was sure I was going to 
quit, one professor reached out to me, became my advocate. And he 
said, “I would rather see you work with me than quit.” So now I stand 
before you to ask you to find a struggling student, love that student, be 
his advocate!

I’ll close with this reflection by Simone Weil. After wrestling with 
her own insecurity in mathematics, she saw that there was a path to 
virtue through her struggle and that her struggle could help others. She 
wrote [6, pp. 115–116],

The love of our neighbour in all its fullness simply means being 
able to say to him: “What are you going through?” It is a recogni-
tion that the sufferer exists, not only as a unit in a collection, or a 
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specimen from the social category labelled “unfortunate”, but as 
a man, exactly like us, who was one day stamped with a special 
mark by affliction. For this reason it is enough, but it is indispens-
able, to know how to look at him in a certain way.

This way of looking is first of all attentive. The soul empties 
itself of all its own contents in order to receive into itself the being 
it is looking at, just as he is, in all his truth.

Only he who is capable of attention can do this.
So it comes about that, paradoxical as it may seem, a Latin 

prose or a geometry problem, even though they are done wrong, 
may be of great service one day, provided we devote the right 
kind of effort to them. Should the occasion arise, they can one day 
make us better able to give someone in affliction exactly the help 
required to save him, at the supreme moment of his need.

For an adolescent, capable of grasping this truth and generous 
enough to desire this fruit above all others, studies could have 
their fullest spiritual effect, quite apart from any particular reli-
gious belief.

Academic work is one of those fields which contain a pearl so 
precious that it is worthwhile to sell all our possessions, keeping 
nothing for ourselves, in order to be able to acquire it.

Simone Weil had found a path through struggle to virtue. She under-
stood that mathematics is for human flourishing. And the mathematical 
experience cannot be separated from love:

The love between friends who play with a mathematical problem.
The love between teacher and student growing together toward virtue.
The love of a community like the Mathematical Association of Amer-

ica working with each other toward a common goal: through the knowl-
edge and virtues wrought by mathematics, to help everyone flourish.

Thank you for the opportunity to serve you these last two years. 
Shalom and salaam, my friends. Grace and peace to you. May you and 
all your students flourish.
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How To Play Mathematics

Margaret Wertheim

What does it mean to know mathematics? Since math is something we 
teach using textbooks that demand years of training to decipher, you 
might think the sine qua non is intelligence—usually “higher” levels of 
whatever we imagine that to be. At the very least, you might assume 
that knowing mathematics requires an ability to work with symbols 
and signs. But here’s a conundrum suggesting that this line of reasoning 
might not be wholly adequate. Living in tropical coral reefs are species 
of sea slugs known as nudibranchs, adorned with flanges embodying 
hyperbolic geometry, an alternative to the Euclidean geometry that we 
learn about in school, and a form that, over hundreds of years, many 
great mathematical minds tried to prove impossible.

Sea slugs have at least the rudiments of brains; they generally pos-
sess a few thousand neurons, whose large size has made these animals a 
model organism for scientists studying basic neuronal functioning. This 
tiny number isn’t nearly enough to enable the slug to formulate any rep-
resentation of abstract signs, let alone an ability to mentally manipulate 
them, and yet, somehow, a nudibranch materializes in the fibers of its 
very being a form that genius- level human mathematicians didn’t dis-
cover until the nineteenth century; and when they did, it nearly drove 
them mad. In this instance, complex brains were an impediment to 
understanding.

Nature’s love affair with hyperbolic geometry dates to at least the 
Silurian age, more than 400 million years ago, when sea floors of the 
early Earth were covered in vast coral reefs. Many species of corals, 
then and now, also have hyperbolic structures, which we immediately 
recognize by the frills and crenellations of their forms. Although cor-
als are animals, they have only simple nervous systems and can’t be 
said to have a brain. A head of coral is actually a colonial organism 
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made up of thousands of individual polyps growing together; collec-
tively, they grow a vascular system, a respiratory system, and a crude 
gastrointestinal system through which all the individuals of the colony 
eat and breathe and share nutrients. Nothing like a brain exists, and 
yet the colony can organize itself into a mathematical surface disal-
lowed by Euclid’s axiom about parallel lines. Strike two against “higher 
intelligence.”

Ask any high schooler what the angles of a triangle add up to, and 
she’ll say, “180 degrees.” That isn’t true on a hyperbolic surface. Ask 
our student what’s the circumference of a circle, and she’ll say, “2r 
times the radius.” That’s also not true on a hyperbolic surface. Most 
of the geometric rules we’re taught in school don’t apply to hyperbolic 
surfaces, which is why mathematicians such as Carl Friedrich Gauss 
were so disturbed when finally forced to confront the logical valid-
ity of these forms, and hence their mathematical existence. So wor-
ried was Gauss by what he was discovering about hyperbolic geometry 
that he didn’t publish his research on the subject: “I fear the howl of 
the Boetians if I make my work known,” he confided to a friend in 
1829. To their universal horror, other mathematicians soon converged 
on the same conclusion, and the genie of non- Euclidean geometry was 
let loose.

But can we say that sea slugs and corals know hyperbolic geometry? 
I want to argue here that in some sense they do. Absent the apparatus 
of rationalization and without the capacity to form mental representa-
tions, I’d like to postulate that these humble organisms are skilled ge-
ometers whose example has powerful resonances for what it means for 
us humans to know math—and also profound implications for teaching 
this legendarily abstruse field.

I’m not the first person to have considered the mathematical capaci-
ties of nonsentient things. Toward the end of Richard Feynman’s life, 
the Nobel Prize–winning physicist is said to have become fascinated by 
the question of whether atoms are “thinking.” Feynman was drawn to 
this deliberation by considering what electrons do as they orbit the nu-
cleus of an atom. In the earliest days of atomic science, atoms were con-
ceived as little solar systems, with the electrons orbiting in simple paths 
around their nuclei, much as a planet revolves around its sun. Yet in the 
1920s, it became evident that something much more mathematically 
complex was going on; in fact, as an electron buzzes around its nucleus, 
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the shape it makes is like a diffused cloud. The simplest electron clouds 
are spherical; others have dumbbell and toroidal shapes. The form of 
each cloud is described by what’s called a Schrödinger equation, which 
gives you a map of where it’s possible for the electron to be in space.

Schrödinger equations (named after the pioneering quantum theo-
rist Erwin Schrödinger and his hypothetical cat) are so complicated 
that, when Feynman was alive, the best supercomputers could barely 
simulate even the simplest orbits. So how could a brainless electron be 
effortlessly doing what it was doing? Feynman wondered if an electron 
was calculating its Schrödinger equation. And what might it mean to 
say that a subatomic particle is calculating?

The world is full of mundane, meek, unconscious things materially 
embodying fiendishly complex pieces of mathematics. How can we 
make sense of this? I’d like to propose that sea slugs and electrons, and 
many other modest natural systems, are engaged in what we might call 
the performance of mathematics. Rather than thinking about math, they 
are doing it. In the fibers of their beings and the ongoing continuity of 
their growth and existence, they enact mathematical relationships and 
become mathematicians- by- practice. By looking at nature this way, we 
are led into a consideration of mathematics itself not through the lens of 
its representational power but instead as a kind of transaction. Rather 
than being a remote abstraction, mathematics can be conceived of as 
something more like music or dancing; an activity that takes place not 
so much in the writing down as in the playing out.

Music gives us a rich analogy by which to consider the idea of math-
ematics as performance, for you don’t need to be able to write down 
music to be a musician—maybe if you want to play Mozart, but not in 
many other cases. Most folk music throughout history has been created 
by people who are sonically illiterate. Elvis Presley, Michael Jackson, 
Eric Clapton, and Jimi Hendrix all claimed not to read music. In a Brit-
ish TV interview, Paul McCartney said, “As long as the two of us know 
what we’re doing, i.e., John and I, we know what chords we’re playing 
and we remember the melody, we don’t actually ever have the need to 
write it down or read it.”

Indian classical music, easily as complex as the Western classical 
canon, is based on ragas that were generally transmitted aurally from 
master to student, not traditionally written down. In this millennia- 
old practice, music is recognized as an innately mathematical form: the 
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Sanskrit word prastara means the “study of mathematically arranging” 
ragas and rhythms into pleasing compositions. Ragas certainly can be 
written down (indeed, Indian musical notation dates back more than 
2,000 years), and mathematics can be notated, but it doesn’t have to 
be. There are lots of things doing math without a formal script, and I’d 
argue that it makes no sense to say that electrons or sound waves are 
following mathematical instructions any more than it makes sense to 
say that Jimi Hendrix was following a musical score. The possibility of 
writing down music is something apart from its performance, and math 
can be considered in a similar way. In short, the notation isn’t the act.

Among my favorite mathematical performers are holograms, which 
enact a gorgeous operation called the Fourier transform. This extra-
ordinarily complex, elegant equation is named in honor of Joseph 
Fourier, a mathematician and physicist who advised Napoleon and dis-
covered what we now call the greenhouse effect (he called it the “hot-
box” effect). The Fourier transform has been called the most useful 
piece of mathematics of all time; you rely on its power every time you 
make a cell phone call or listen to a piece of digitally recorded music. 
Music synthesis also results from clever applications of Fourier’s equa-
tions. We’ll get to the audio part in a moment, but first let’s look at the 
visual face of this mathematical marvel.

Holograms differ from photographs in a fundamental way: a photo 
captures a two- dimensional rendering of light and shade and color, 
like a very detailed painting; meanwhile, when light shines through a 
holographic plate, it assembles into a three- dimensional replica of the 
original object, re- creating in light a simulacrum of that thing. The 
image you see with a hologram is sculptural, really occupying three- 
dimensional space, so you can move around and view it from different 
angles. Yet when you look at a holographic plate, there’s no image at 
all, just a blur in which you may be able to discern speckled rings and 
dots. What’s been captured on the plate is the Fourier transform of the 
object, which encodes more information and a different kind of infor-
mation than a photo can.

Every object has a Fourier transform, and in theory we could calcu-
late the transform of any object we desire and make a holographic plate 
to generate its form even though an actual physical object never existed. 
The emerging field of computer- generated holography (CGH) is trying 
to do just this. If it can be made to work, it will revolutionize computer 
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games and animation; we’d be able to watch whole movies akin to the 
marvelous holographic projection of Princess Leia in the original Star 
Wars film.

Calculating transforms for complex objects requires vast computa-
tional powers and skills as yet unachieved by human CGH practitio-
ners. Nonetheless, simple chemicals interacting with light on a piece of 
film manage to enact Fourier transforms of complicated scenes. Acting 
together, wave fronts of light and atoms execute a beautiful piece of 
mathematical encoding, and when the light plays back through the film 
they do the de- encoding. As such, where a photograph is a representa-
tion, a hologram is a performance.

Fourier came to his equation in the early 1800s, not to describe im-
ages (the origin of holograms dates to the 1940s), but to describe heat 
flow, and it turns out that his mathematics also leads to enormously 
powerful applications in the audio domain. Why does a piece by Mo-
zart sound so different when played on a flute or a violin? One way of 
explaining it is that, although both instruments are playing the same 
sequence of notes, the Fourier transform of the sound produced by each 
one is different. The transform reveals the sonic DNA of the instru-
ment’s sound, giving us a precise description of its harmonic compo-
nents (formally, it describes the set of pure sine waves that make up the 
sound). With software, audio engineers can analyze the transform of 
a musical recording and tell you what kind of instrument was playing; 
moreover, they can tweak the transform to bring out qualities they like 
and filter out ones they don’t. By fiddling with the math, one can sculpt 
the sound to suit particular tastes.

Calculating Fourier transforms of sounds is a lot easier than calculat-
ing the transforms of visual scenes, and software engineers have created 
programs to simulate musical instruments (e.g., Apple’s GarageBand), 
effectively giving users a sim- orchestra on their laptops for the price 
of an app. Advances in Fourier- based sound simulation have revolu-
tionized the economics of the music business, including movie scoring. 
Now you don’t need an actual orchestra to produce stirring strings to 
accompany a heroine’s triumph; you can conjure them from the virtual 
depths, generated through mathematics.

Whereas music synthesis demonstrates how we can use mathematics 
to create something powerful out of a vacuum, here I’m more inter-
ested in what happens in actual concert halls. Each great hall has its 
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own unique “sound”; each room acts as a filter for the music, tweaking 
and sculpting its Fourier transform. Contemporary acoustic engineers 
use Fourier techniques when designing new concert halls, manipulat-
ing the architecture of the space, for example, adding baffles in spe-
cific places, all aided by software that simulates how sounds will react 
within the space. If the engineers do their job well, there will be no 
“dead spots,” and the hall will sing with warmth and resonance. Here 
we have a mathematical performance between the sound waves, the 
architecture, and the surfaces of the walls.

Some music schools now have electronic “practice rooms,” where, 
through software, you can dial up a Fourier- based simulation of a ca-
thedral or a tin shed and hear what your playing would sound like in 
different spaces. However, music connoisseurs will tell you that no 
simulation is a substitute for physical reality, which is why revered con-
cert halls, such as Vienna’s Musikverein, or New York’s Carnegie Hall, 
won’t be replaced by software any time soon. It’s interesting that most 
of the best- rated halls were built before 1901, a fact that the acoustic 
legend Leo Beranek has attributed to their lack of fancy architecture 
(their resolutely shoe- box shape) and their lightly upholstered seats. 
From the perspective I’m adopting, even the chairs can be said to be 
participating in the mathematical performance enacted in a concert 
hall. Score another home run for nonsentience.

Since at least the time of Pythagoras and Plato, there’s been a great 
deal of discussion in Western philosophy about how we can understand 
the fact that many physical systems have mathematical representations: 
the segmented arrangements in sunflowers, pinecones, and pineapples 
(Fibonacci numbers); the curve of nautilus shells, elephant tusks, and 
rams’ horns (logarithmic spirals); music (harmonic ratios and Fourier 
transforms); atoms, stars, and galaxies, which all now have power-
ful mathematical descriptors; even the cosmos as a whole, now rep-
resented by the equations of general relativity. The physicist Eugene 
Wigner has termed this startling fact “the unreasonable effectiveness 
of mathematics.” Why does the real world actualize math at all? And so 
much of it? Even arcane parts of mathematics, such as abstract algebras 
and obscure bits of topology, often turn out to be manifest somewhere 
in nature. Most physicists still explain this by some form of philosophi-
cal Platonism, which in its oldest form says that the universe is molded 
by mathematical relationships that precede the material world. To 
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Platonists, matter is literally in- formed, and guided by, a preexisting set 
of mathematical ideals.

In the Platonic way of seeing, matter (the stuff of everything) is 
rendered inert, stripped of power, and subordinated to ethereal math-
ematical laws. These laws are given ontological primacy, and matter 
is effectively a sideline to the “true reality” of the equations. Over the 
past half- century, this vision has been updated somewhat because now 
matter, or subatomic particles, have themselves been enfolded into the 
equations. Matter has been replaced by fields—as in electric and mag-
netic fields—and now it’s the fields that follow the laws. Still, it’s the 
laws that retain primacy and power, hence the obsession with finding 
an ultimate law, a so- called “theory of everything.”

Platonism has always bothered me as a philosophy in part because 
it’s a veiled form of theology—mathematics replaces God as the tran-
scendent, a priori power—so if we want to articulate an alternative, we 
need new ways of interpreting mathematics itself that don’t also slip 
into deistic modes. Thinking about math as performative points a way 
forward while also offering a powerful pedagogic model.

Corals and sea slugs construct hyperbolic surfaces, and it turns 
out that humans can also make these forms using iterative handicrafts 
such as knitting and crochet—you can do non- Euclidean geometry 
with your hands. To crochet a hyperbolic structure, one just increases 
stitches at a regular rate by following a simple algorithm: “Crochet n 
stitches, increase one, repeat ad infinitum.” By adding stitches, you 
increase the amount of surface area in a regular way, visually moving 
from a flat or Euclidean plane into a ruffled formation that models the 
“hyperbolic plane.” Mathematically speaking, the hyperbolic plane is 
the geometric opposite of the sphere: where the surface of a sphere 
curves toward itself at every point, a hyperbolic surface curves away 
from itself. We can define these different surfaces in terms of their 
curvature: a Euclidean plane has zero curvature (it’s flat everywhere), 
a sphere has positive curvature, and a hyperbolic plane has negative 
curvature. In this sense, it is a geometric analog of a negative number 
(Figure 1).

Just as geometric relationships on a sphere are different to those on 
a flat plane—think of what you know about the surface of the Earth 
versus a flat piece of paper—so, they are different again on a hyper-
bolic surface. Whereas on a flat plane the angles of a triangle add up to 
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180 degrees, on a sphere they add up to more, and on a hyperbolic sur-
face they add up to less. It’s hard to appreciate this abstractly when you 
learn it from textbooks, as I did at university, but you can demonstrate 
it materially on a crocheted hyperbolic plane by stitching triangles onto 
the surface. You can also demonstrate visually that parallel lines diverge 
and other apparent absurdities. If Gauss had known how to crochet, he 
mightn’t have been driven so bonkers.

It took a woman, the mathematician Daina Taimina at Cornell Univer-
sity, to discover hyperbolic crochet and to give mathematicians a tangible 
model of this form. I have conducted workshops about this with women 
all over the world, delighting in how much geometry can be conveyed 
through acts of making. There’s also a link here with general relativity, 
because the discovery of the hyperbolic plane opened up a whole new 
era in geometric thinking, leading ultimately to generalized Riemannian 
geometry, which can describe any complexly curved surface, and is the 
mathematics underlying Albert Einstein’s equations for the cosmos.

Figure 1. “Crochet Coral Reef” by Margaret and Christine Wertheim and 
the Institute For Figuring installed at the Smithsonian’s National Museum of 
Natural History. Photo © Institute for Figuring. See also color image.
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Via handicrafts, we can introduce people to concepts about curved 
space- time and multidimensional manifolds, leading with our fingers to 
questions about measuring the structure of the cosmic whole. We can 
see this as a form of “digital intelligence,” and it’s worth noting that it-
erated handicrafts (knitting, crochet, weaving) were the original digital 
technologies: their algorithmic “patterns” are literally written in code. 
It’s no coincidence that computer punch cards were derived from the 
cards used in automated looms. Here, knowing emerges from hands 
performing mathematics: it is a kind of embodied figuring.

People talk about playing music, and mathematics can also be a form 
of play. One way of thinking about math is as a language of pattern and 
form, so when you play with patterns you are doing math. A beautiful 
example of mathematical pattern play can be seen with the great Islamic 
mosaicists who decorated mosques and palaces such as the Alhambra 
Palace in Granada in Spain with intricate tilings whose mathematical 
complexities are still a source of wonder (Figure 2).

Figure 2. Mosaic tiling from the tomb of Hafez in Shiraz. Courtesy Wiki-
pedia. See also color image.
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Long before European geometers realized that there are only seven-
teen mathematically distinct tessellations of the plane—different ways 
of filling an area with a regular tiling pattern—medieval mosaicists 
working with their hands using the Hasba method knew about them all. 
Moreover, medieval Islamic tilers had also discovered aperiodic tiling, 
which is a way of filling a plane where the pattern never repeats. West-
ern mathematicians discovered these tilings only in the 1960s, again 
after centuries of theorizing that such patterns were impossible. One 
of the magical qualities of aperiodic tilings is that they look simultane-
ously random and regular; as a geometric form of chaos, they are rule- 
based yet inherently unpredictable.

At first, when Western mathematicians (Sir Roger Penrose among 
them) discovered aperiodic tilings, these formations were thought to 
be just a mathematical curiosity; like hyperbolic surfaces, they seemed 
to defy common sense so that no one imagined such things could be 
present in the physical world (Figure 3). Prejudice was so intense that 
when the Israeli chemist Dan Shechtman announced in 1982 that he’d 
created a new type of crystal with an aperiodic structure, many fellow 
scientists refused to believe him. (Like Gauss, he too delayed publish-
ing because of the supposedly absurd nature of his claims.) Shechtman’s 
quasicrystals have brought about a paradigm shift in crystallography, 
in part because now we know that crystals can be chaotic, exhibiting 
order without repetition.

Lewis Carroll would have had a field day with this concept, which 
calls to mind the Red Queen’s exhortation to Alice that, with practice, 
one can “believe six impossible things before breakfast.” In 2009, after 
an intense search, a naturally occurring example of an aperiodic crys-
tal was also found in the mineral icosahedrite (Figure 4). Strike three 
against intelligence as a prerequisite for doing mathematics.

As a nice coda to this story, in 2011 Shechtman was awarded the 
Nobel Prize in chemistry.

Proof that studying equations isn’t the only path to mathematical 
insight also comes to us from Africa, where crafts people discovered 
fractals centuries ago. A wide variety of fractal patterns are incorpo-
rated into African textiles, hairstyling, metalwork, sculpture, paint-
ing, and architecture. One marvelous Ba- Ila village in southern Zambia 
is laid out in a fractal design reminiscent of the Mandelbrot set, that 
swirling icon of 1990s computer- graphic cool (Figures 5 and 6). In 
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his book African Fractals: Modern Computing and Indigenous Design (1999), 
mathematician Ron Eglash traces the story of the southern continent’s 
priority in a branch of geometry that came into Western consciousness 
only around the turn of the twentieth century and didn’t really flourish 
here until the development of computer graphics chips.

Sea slugs do math, electrons do math, minerals do math. Rainbows 
do an incredible mathematical performance, when you take into ac-
count the primary and secondary bows, the dark band between them, 
and the red and green arcs of light under the primary bow. Next time 
you see a good rainbow, stop and take a look at the space around it—
there’s so much going on; classical geometric optics doesn’t begin to 
capture its complexity. A stunning piece of mathematical performance 

Figure 3. Aperiodic “Penrose” tiling pattern. Courtesy Wikipedia
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is enacted by a peregrine falcon as it hurtles toward its prey; with its 
head held straight so that it can fix one eye steadily on the quarry at a 
constant angle of 40 degrees, it swoops down at two hundred miles 
per hour in a perfect logarithmic spiral. Leonhard Euler’s eighteenth- 
century formula, with its unique mathematical properties, is enacted 
here by a bird.

All around us, nature is playing mathematical games, and we too 
can join in the fun. Mathematics need not be taught as an abstrac-
tion; it can be approached also as an embodied practice, like learning 
a musical instrument. This notion doesn’t invalidate what goes on in 
university classrooms or academic textbooks, since society needs pro-
fessional mathematicians who can work with symbols, people such as 
Fourier and Bernhard Riemann, people who developed the math that 

Figure 4. Image of an aluminum–palladium–manganese quasi-crystal 
 surface. Courtesy Wikipedia. See also color image.
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assists us to make cell phone calls, or determine the structure of the 
cosmos, and so much else besides. Because nature does so much math-
ematics, there will probably never be a time when professional “sym-
bolizing” isn’t profoundly useful. In 2016, the Nobel Prize in physics 
was awarded for “theoretical discoveries about topological phase tran-
sitions in matter”—astonishing, complex work that emerged out of 
the discovery of another kind of supposedly impossible object (the 
quasi- particle) and whose mathematical insights might pave the way 
for quantum computers.

Figure 5. Fractal model for Ba-Ila village. From African Fractals: Modern 
Computing and Indigenous Design by Ron Eglash

Figure 6. First three iterations of fractal model for Ba-Ila village. From 
African Fractals: Modern Computing and Indigenous Design by Ron Eglash
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By thinking about mathematics as performance, we liberate it from 
the straitjacket of abstraction into which it has been too narrowly con-
fined. If you ask professional mathematicians what they love about their 
work, a likely answer is its beauty. “Euclid alone looked on beauty 
bare,” wrote the poet Edna St. Vincent Millay in 1923, while the math-
ematician André Weil (brother of Simone) claimed that solving a hard 
mathematical problem topped sexual pleasure.

The professionals know that mathematics swings; they delight in its 
playfulness, the plasticity of its forms, and (after some initial shock) the 
absurdities it throws up. Hyperbolic surfaces, aperiodic tilings, Möbius 
strips, negative numbers, and zero all generated alarm at first, yet were 
ultimately embraced as gateways to new continents of mathematical 
wonder.

You don’t have to be a symbol expert to appreciate this terrain. Just 
as humans are endowed with an ability to dance and play music (even 
if education too often crushes this out of us), so we have innate form- 
making and pattern- playing proclivities. Sea slugs, sound waves, and 
falcons do mathematics; Islamic mosaicists and African architects do it 
too. So can you.



Beauty Is Not All There Is to 
Aesthetics in Mathematics

Robert S. D. Thomas

I draw attention to the discrepancy in philosophy of mathematics be-
tween the two main uses of terms involving “aesthetics” of which I am 
aware. It is a commonplace to admit or claim that “aesthetic consid-
erations” influence choices in mathematical practice not only in pure 
mathematics but also in applied mathematics, where exclusively utili-
tarian considerations might be expected. On the other hand, discus-
sions of aesthetics within philosophy of mathematics are concerned 
nearly exclusively with discussions of beauty.

In looking at aesthetic literature in philosophy of mathematics (e.g., 
[Plotnitsky, 1998]) in order to confirm that it mostly treats just beauty—
however that is viewed—the closest that I have come to anyone’s look-
ing away from beauty is the essay by Nathalie Sinclair [2006] in the 
 aesthetics volume that she coedited [Sinclair et al., 2006]. In their intro-
ductory chapter, the editors slip into writing of “the aesthetic feeling” 
[Sinclair and Pimm, 2006, p. 12] as though there were only one. That 
does not seem to be Sinclair’s considered view, as she writes of what is 
“beautiful and interesting” [2006, p. 92] and acknowledges three differ-
ent characteristics of “the aesthetic,” the motivational, which attracts to 
what is not yet done and stimulates to do it, the generative, which guides 
mathematical moves that are not deductive, and the evaluative, which is 
the second- order appreciation of what has been done [2006, p. 89].

Having mentioned beauty, I should point out that I accept Rom 
 Harré’s view [1958] that judgments like that of beauty are “second- 
order” (his term) without necessarily wishing to accept his downgrad-
ing them to “quasi- aesthetic” (also his term). What I think Harré means 
by “second- order” is that, in order to view a proof, say, as elegant, his 
favorite such feature, one needs to know it first and to appreciate that 



34 Robert S. D. Thomas

its simplicity has been artfully achieved even if one does not know a 
clumsier proof. This seems to be Sinclair’s evaluation, which she also 
calls “second- order.”

The above discrepancy is an example of the tunnel vision to which all 
scholarship is prone.1 Once things are published that confine  aesthetics 
of mathematics to beauty in mathematics, there is a tendency—has been 
a tendency—to maintain that narrowness. This tendency is well estab-
lished in English [Todd, 2008].2 The resolution of the discrepancy is ob-
vious; aesthetics in mathematics needs to consider more than just what 
is beautiful. Those discussing a number of other features can admit that 
those features are aesthetic. The special issue of Philosophia Mathematica 
[23, 2015, No. 2] on mathematical depth has no acknowledgment that 
its topic may sometimes be an aesthetic one, no indication of such a con-
text, something one might expect even if it were argued about.

A reason why this is not done, which is a bad reason, is the low status 
of aesthetics in general within philosophy. This status is bemoaned even 
by its enthusiasts [Devereaux, 1998].3 Mary Devereaux points out that 
“philosophers widely regard aesthetics as a marginal field.” She continues,

Aesthetics is marginal not only in the relatively benign sense that 
it lies at the edge, or border, of the discipline, but also in the ad-
ditional, more troubling, sense that it is deemed philosophically 
unimportant. In this respect, aesthetics contrasts with areas like 
the philosophy of mathematics, a field which, while marginal in 
the first sense, is widely regarded as philosophically important.

To be at the margin of the margin is to risk falling off the edge. (The cure 
for that is to be edgier.) Whatever may be the case within philosophy in 
general, if one is to consider mathematical practice, which is performed 
by humans with values, their mathematical choices must come into play, 
and those choices are based on aesthetic considerations, among others. 
Aesthetics in mathematical practice is not marginal in either sense.

My argument is for two theses. “Interesting” is an aesthetic feature 
seen in all published mathematics. This phenomenon may be interest-
ing, but I do not see it as important in itself. It implies my second thesis, 
though, that beauty is not all there is to aesthetics in mathematics any 
more than beauty is all there is to aesthetics outside of mathematics. 
This I do not see as interesting, but the default contrary view is impor-
tantly wrong (not to mention the further limitation to proofs).
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1. Being Interesting Is an Aesthetic Value

In order to claim that attribution of aesthetic considerations unrelated 
to beauty is not just eccentric because aesthetic considerations have to 
relate to beauty, I offer some second- hand historical justification. The 
book, The Future of Aesthetics by Francis Sparshott [1998] actually says 
enough about the past of aesthetics for present purposes. The term “aes-
thetik,” he says, was coined by Alexander Gottlieb Baumgarten [1735] 
to cover the nonlogical side of philosophical considerations, matters of 
more and less rather than yes and no. This is plainly the sense in which 
what are still called “aesthetic considerations” influence mathematical 
practice. How it has survived the narrowing of aesthetics to beauty and 
the arts already in the eighteenth century, I do not know. Some word 
has to cover nonlogical matters of degree, and “aesthetics” has remained 
available. “Valid” of a proof is an evaluative term indicating a position 
on a Boolean scale. Aesthetic evaluations are those that are not logical 
but have to do with a scale of merit. “Short” of a proof is descriptive 
and not logical, but it is not in itself an aesthetic judgment. To say, how-
ever, that one proof is shorter than another, ceteris paribus, could be an 
aesthetic evaluation, if only a minor one. How minor would depend on 
the lengths compared. Almost any conceptual proof of the four- color 
theorem would be shorter and aesthetically preferable to the computer- 
assisted proof, while being preferable in other respects as well.

I claim that, as well as “beautiful” and sometimes “deep,” “interest-
ing” is an important aesthetic category—indeed that “interesting” is a 
sine qua non of publishable mathematical research. The main basis for 
this claim is my ten years of experience as managing editor of a math-
ematics journal. For the whole of that time, the criteria that I asked 
referees to use in recommending acceptance of a manuscript were 
whether it was original, correct, and interesting. One does not want 
to publish what has already been published or what is wrong or what 
is new and correct but of no interest. Arithmetic alone supplies an in-
finite sequence of such results, since there are always larger and larger 
number pairs that have not been added. If this were research, M.Sc. 
theses could do additions and Ph.D. theses subtractions. These sums 
and differences must be rejected on the ground of lack of interest, since 
they cannot be rejected for being either wrong or well- known. While 
these particular results lack interest because the method of producing 
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them is well- known, I say without fear of contradiction that there are 
other ways to lack interest. Writers create documents of some origi-
nality that are mathematical but lack mathematical interest; sometimes 
they submit them to a philosophy journal.

Perhaps being interesting, in spite of being a matter of degree, is 
merely an epistemic condition; that would get it out of the aesthetic 
box. It is partly but not just epistemic, because the uninteresting sums 
do tell their reader something that the reader did not already know, 
and the mathematical results that their authors think are of philosophi-
cal though not mathematical interest do not follow well- trodden paths. 
They do tell a reader something that the reader definitely does not 
know but probably does not want to know. Not wanting to know some-
thing is, it seems to me, a negative aesthetic judgment.4 One can hardly 
deny an epistemic component to mathematical interest, but different 
mathematical results feel different. Learning mathematics does not nec-
essarily make one feel interested, as generations of school leavers attest. 
Being interesting is not just an epistemic condition, but is it associated 
with other aesthetic judgments? As soon as I formulated this question 
in the spring of 2015, evidence came unbidden.

In the then current issue of Philosophia Mathematica, the paper on 
mathematical beauty [Inglis and Aberdein, 2015] has the second sen-
tence, “Mathematicians talk of ‘beautiful’, ‘deep’, ‘insightful’, and ‘in-
teresting’ proofs, and award each other prizes on the basis of these 
assessments.” Despite the fact that being interested is very much a mat-
ter of how one feels, “interesting” does not occur again in the paper. In 
particular, it is not one of the eighty adjectives compared with “beauti-
ful.” I do not disagree with the authors that interest seems orthogonal 
to beauty. But they clearly regard it as aesthetic anyway.

In the then current issue of The Mathematical Intelligencer, being 
interesting is singled out in the cooking column [Henle, 2015] as an 
 aesthetic quality common to mathematics and wine. In both cases, one 
needs some level of sophistication to find interest rather than just learn-
ing something or quenching thirst. Having made this point about wine, 
mathematician Jim Henle continues,

Mathematics is much the same. It’s more than useful; it’s engaging. 
The fact that two plus two is four satisfies a primitive need, but a 
complex mathematical structure holds our interest. Mathematical 
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ideas are enigmatic and charming. They yield treasures and they 
keep secrets. Mathematical structures appear different in differ-
ent contexts. Local changes force global transformations. Math-
ematics entertains us and we treasure its mysteries.

The same, but also different. One difference is that interest for math-
ematics is essential, beauty an option; for wine, a pleasing flavor is es-
sential with interest an option. The distinguished aesthetician Frank 
Sibley devoted a long time to a substantial essay [2002a], which he died 
before publishing, on the aesthetic value of tastes and smells. Jim Henle 
did not make up either side of his analogy.

There are two verbal matters to do with “interest” that need to be 
mentioned. Aesthetic judgments, like other judgments that are meant 
to have objectivity or intersubjectivity, are supposed to be disinterested. 
How then can a judgment of interest be disinterested? Because the sense 
of “interest” that disinterest avoids means dependent on the thought of 
or “desire for the use or possession of their objects” ([ Cooper, 1711], 
as quoted in the Stanford Encyclopedia of Philosophy article “18th century 
British aesthetics” of 2014). Accordingly, “disinterested interest” is no 
oxymoron, only a limitation. I return to disinterest.

The other verbal matter is the complementarity of ways, indepen-
dent of those of the previous paragraph, in which we use “interest.” As 
I have often told students of a compulsory course that they would not 
have chosen, one can be passively the prisoner of what interests one 
willy nilly, as everyone knows, or one can deliberately take an interest in 
something that one decides to pay attention to, like a course that one 
is taking, for example. The latter is an act of will that is carried out by 
reading attentively and perhaps doing exercises, but surprisingly often 
(always in my experience) it leads to becoming reactively interested 
by the material. An example is my recent experience of the Spherics 
of  Theodosios [Ver Eecke, 1959]. This second- century BCE treatise 
on circles on a sphere, although it held its place in the quadrivium as 
long as that lengthy tradition lasted, has been little thought of since. 
It did not reactively interest Thomas Heath in particular [1921, vol. 2, 
pp. 248–252], and he did not take an active interest in it. A few years 
ago, I took sufficient interest in it to translate it from Greek.5 This 
work was definitely an act of will; my Greek is not good enough for any 
document to entice me to study it. But when I became familiar with it, 
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I found that it had mathematical interest enough to want to pass it on. 
As a result, I have written something I call an appreciation of the first of 
its three books [Thomas, 2018]. The more one knows about something 
valuable and mathematical, the more interest one finds in it. Mathemat-
ics that is not of sufficiently general interest is published in specialized 
journals where readers know enough about the subject to be reactively 
interested or to take an active interest.

The sense of “interest” at issue can perhaps be conveyed more clearly 
in terms of attention. It is an important feature of advertising and jour-
nalism to attract attention, to interest a person in the reactive sense. 
Good journalism and much other writing attempts to hold attention, 
to develop the reader’s interest after initially grabbing it. This is our 
topic here, although since, being reactive, it must be begun; a bit of 
grabbing is part of the package. “It is a truth universally acknowledged, 
that a single man in possession of a good fortune must be in want of a 
wife.”6 Interest in anything whatever in the active sense is always pos-
sible; one can pay attention to whatever one wants to pay attention to. 
And finally, the kind of interest to which attention is irrelevant is the 
kind referred to in the phrase “one’s own best interests.” Attention may 
advance those interests, but it does not help to define them. This is the 
interest avoided in disinterest.

In these terms, it is reactive interest that indicates the aesthetic 
value. Disinterested aesthetic contemplation is nontrivial to describe. 
Sibley quotes [2002a, p. 230] with approval this description:

Thus we may define an interest in an object X for its own sake as 
a desire to go on hearing, looking at, or in some other way having 
experience of X, where there is no reason for this desire in terms of 
any other desire or appetite that the experience of X may fulfil, and 
where the desire arises out of, and is accompanied by, the thought 
of X . . . I shall respond to the question “Why are you interested in 
X?” . . . with a description of X. [Scruton, 1974, p. 148]

I believe that the sense of “interested in” in the question is “paying at-
tention to.” Scruton is not arguing, with me, that being interesting is 
itself an aesthetic value. When giving a description of X to explain why 
something is of aesthetic value, one frequently mentions nonaesthetic 
characteristics. This is true also of why something mathematical is 
interesting.7



 Beauty Is Not All There Is 39

Scruton’s description illustrates that aesthetics cannot have firm 
boundaries. This is a fact (no necessary or sufficient conditions) em-
phasized by Sibley [1959], “Accordingly, when a word or expression 
is such that taste or perceptiveness is required in order to apply it, I 
shall call it an aesthetic term or expression, and I shall, correspond-
ingly, speak of aesthetic concepts or taste concepts.” I am claiming 
that the aesthetic has been drawn much too narrowly in discussion of 
mathematics. What is interesting in mathematics and how interesting 
(i.e., more or less rather than in what way) are very much matters of 
trained taste.

“Interesting” is not the same thing as the more objective property 
“important,” which is not so subject to disagreement. The taste of wine 
is not in any absolute sense important, however interesting it may be, 
but it is of enormous commercial importance. Likewise, a piece of 
mathematics can be of importance either for application outside math-
ematics or for mathematical use, but it can be interesting without hav-
ing either of those nonaesthetic values. Unfortunately, importance is 
paid more attention than interest in mathematical education. Since a 
most important aspect of teaching is the engagement of students’ inter-
est, this is a mistake. The good effects of Martin Gardner on young 
readers, now alas all grown up, are widely reported by them. Gardner, 
in his column in the Scientific American from 1956 to 1981, chiefly re-
vealed the interest inherent in the topics he chose to expound. No one 
suggests that he manufactured that interest. He had a nearly unique 
ability to find and expose it and in consequence interested thousands of 
persons who became mathematicians and many more others. Education 
needs elements of this skill, as Gardner himself maintained [Mulcahy 
and Richards, 2014]. Discussion on what is interesting (and how) is 
probably a necessary preliminary. This has not been being done. An 
exception is Wells [2015, Ch. 3–6].

As I am not concerned here with beauty, I merely remark that math-
ematical interest is not infected with the difficulties that feminists can 
and do find in male- gendered considerations of beauty since Plato’s 
Symposium [Sparshott, 1998, p. 15].

I have set out the fact that being interesting is regarded by some as 
an aesthetic value; it seems to me that such evidence is more impor-
tant than argument. But as it happens there is an argument available, 
for what it is worth in such a context. It is rightly said that aesthetic 



40 Robert S. D. Thomas

considerations weigh with mathematical researchers when doing re-
search and not just afterward. I claim that those considerations, while 
they may sometimes have to do with beauty, more frequently have to do 
with judgments of what will be interesting. That is to say that research 
is driven more by curiosity- based first- order judgments than second- 
order judgments, which can only be made of results. It is incoherent to 
claim that in searching for one knows not what (otherwise it would not 
be research) one is strongly influenced by the appearance of what is to 
be found. One could easily be influenced by what one hopes to find, and 
no doubt often is, but that is as much about its interest as its potential 
beauty. Conjectures are important, but they are not starting points. 
One way that hopes can work is to motivate adjusting premises to allow 
preferable results or proofs.8

It would be courteous to remark that Sinclair’s “motivational” and 
“generative” characteristics of the aesthetic are close to “being interest-
ing,” since being interesting applies to what one has not yet done and I 
think also to what one has not yet read. Even reading mathematics re-
quires some motivation. Surely one cannot appreciate as beautiful what 
one has not yet done (and may not do) or what one has not yet read? In 
both cases, one can be interested and often is.

I have no desire to put down beauty, only to elevate interest from 
invisibility to its place of importance. There are different ways to be 
interesting, but this is not the place for a catalog. One way currently 
discussed is explanatoriness [Hafner and Mancosu, 2005; Tappenden, 
2008; Baker, 2017]. It is regarded as a value of proofs almost universally, 
although like beauty [Rota, 1997], it can be put down [Zelcer, 2013]. 
Proofs can be explanatory (or not [Resnik and Kushner, 1987]9) of what 
they prove, but also results can explain other results like the interval of 
convergence of the series for 1/(1 + x2). Much philosophical discussion 
of explanation extends from mathematics to physical explananda [Baker, 
2005], but that need not concern us here. Within mathematics various 
ways to be explanatory are identified in Hafner and Mancosu [2005, 
Section 3], where distinct ways of being explanatory are put forward, 
the evidence coming down to the fact that mathematicians find them 
to be explanatory to some degree. All of their analysis is about just one 
way of being interesting. That there is so much room for differences of 
opinion is evidence that being explanatory and interesting more gener-
ally are aesthetic qualities.
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It must be admitted that, as the use of “interesting” in fiction shows, it 
is not the highest aesthetic value there. Crime fiction, fantasy, romances, 
and science fiction are often page- turners without being held to be of 
great literary value. It is unlikely that it is the highest praise for mathemat-
ics either. Both beauty and depth are more highly valued and less time- 
dependent [Wells, 1988, 1990]; all I am saying is that being interesting is 
necessary. The booklet A Manual for Authors of Mathematical Papers [AMS, 
1990] warns not to try to publish detail that it is good to work out “since it 
is likely to be long and un- interesting” (quoted by Sinclair [2011]).

It is no part of my claim for interest that only mathematics is inter-
esting. I have no idea even whether it is uniquely important in math-
ematics. In history, literary criticism, or any other discipline, what is 
written has also to be interesting to be publishable. While being writ-
ten interestingly is a positive feature no doubt, the bad reputation of 
academic writing in general suggests that the interest needed in other 
subjects is in the subject matter for reasons to do with that subject mat-
ter. A history essay is of more interest as the events described are of 
more importance. Literary criticism is of more interest as the literature 
discussed is better. Economics is of more interest as the phenomena 
explained are more widespread or important in some other way. Math-
ematics can be of interest for this sort of reason too. There is limited in-
terest for its own sake in the unsolvability in integers of Pythagoras- like 
relations for higher powers than two, but the proof of Fermat’s famous 
conjecture was of great interest because centuries of effort had ren-
dered it important beyond its raw material. As in many other examples 
of important mathematical accomplishments, active interest was taken 
on account of the importance. I do not mean to suggest that this active 
kind of interest is aesthetic, but that the reactive sort is. It is also the 
more frequent motivation—especially in pure mathematics.

2. Conclusion

I conclude with a pair of contrasting analogies. Much mathematical 
effort is more like landscape gardening than like picture drawing. I 
take picture drawing to begin with a blank sheet on which the art-
ist represents something imagined or seen, a chief aim being to create 
something of value. The artist is free, because the page is blank, in 
the choice of what is to be represented, which need not be something 



42 Robert S. D. Thomas

seen, and in how it is represented. Mathematical creation is not so free, 
hence the contrasting analogy of the landscape gardener, who needs a 
good grasp of the topography before getting down to creating some-
thing beautiful, which needs to be based on that topography. When 
H.S.M. Coxeter handed out copies of the preliminary edition of his 
book Projective Geometry [1974] to his undergraduate students in 1963, 
the preface included a sentence to the effect that the only mention of 
cross ratio in the book was in that sentence.10 He drew our attention 
to this, regarding it as aesthetically pleasing to avoid all use of cross 
ratio in his landscaped development of elementary projective geometry. 
He knew the terrain well and was able to accomplish this aim because 
of his mastery of it. But Desargues had been dead for three hundred 
years11; much projective geometry had been done with the aim of un-
derstanding the topography, curiosity- driven research that had the aim 
of finding interesting projective properties, initially in Euclidean space 
and certainly not avoiding cross ratio. It is in the aesthetic space I have 
been writing about that the complementary scientific pursuit of what 
is interesting and artistic pursuit of what is beautiful interact. A lot of 
mathematics does not get past mapping the topography. G. H. Hardy is 
often quoted as writing “Beauty is the first test: there is no permanent 
place in the world for ugly mathematics” [1967, p. 85]. Being interest-
ing is apparently test zero, because without being interesting it is not 
even ugly mathematical research. Eventually one wants everything to be 
beautiful and so to be permanent, but these things can take time. The 
problematic status of the parallel postulate was regarded as an aesthetic 
blemish on geometry for more than two thousand years before it was 
eliminated by clarifying that there is more to geometry than the Ele-
ments.12 Ars longa; vita brevis.
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Notes
1. An example of this must come from another topic. In 1898, H. B. Swete published 

an important commentary on the Gospel according to Mark, in which he accepted what 
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 evidence there was that the book was written in a particular place for readers in that place. For 
a century, the assumption that each of the four Christian gospels was written for a separate 
community increasingly dominated scholarship, leading to creative and sometimes fanciful 
constructions of these supposed separate communities, about which nothing was known. 
This scholarly consensus was first challenged by Bauckham [1998], on which the above sketch 
depends. Contradictorily, during the same century there arose the even more dominant view 
that two of the Gospels depend on that according to Mark, which had obviously circulated 
to wherever they were written, and the famous source Q, which was also accessible to both 
writers. I return to this idea in note 12.

2. Most aesthetic literature on mathematics does not refer to anything before Harré 
[1958] except the book by Hardy [1967]. The situation is somewhat different in French; see, 
e.g., Sinclair [2011], which cites Hermite and Stieltjes [1905] (negative), Poincaré [1908] 
(heuristic), Hadamard [1945] (psychological), and Le Lionnais [1948] (taxonomic).

3. I owe reference to Devereaux to Robert Kraut [2007].
4. It is perhaps clearer that the decision that a question is uninteresting is nonepistemic 

since in the question there is no knowledge to call forth an epistemic judgment.
5. It had already been translated from a Latin translation in the eighteenth century, but I 

did not know that.
6. The famous first sentence of Pride and Prejudice by Jane Austen (1775–1817).
7. Sibley wrote a whole essay [1965] on the mysterious relation in the arts between aes-

thetic and nonaesthetic properties, in particular that, as Scruton says, one’s explanation of 
aesthetic value is descriptive, and, as Sibley says, that description involves mainly nonaes-
thetic properties, which somehow add up to something aesthetic. A mathematical example 
of this is that, in explaining why a proof is interesting, one might invoke the so- called purity 
of its method.

8. Rota [1997, p. 178], quoted in Cellucci [2014].
9. The negativity of Resnik and Kushner seems to be based on their notion that explanato-

riness is a matter of yes and no rather than of degree, which it is as an aesthetic feature. They 
quote Davis and Hersh [1982, p. 299] before explanatoriness became a common concern as 
writing that the prime- factorization proof of the irrationality of 2 “exhibits a higher degree 
of aesthetic delight” than the Pythagorean proof because it “seems to reveal the heart of the 
matter.” What they clearly regarded as a matter of degree, since they use the word, I venture 
would later have been termed “explanatoriness.”

10. Disappointingly, the sentence was soon changed to, “In particular, the only mention 
of cross ratio is in three exercises at the end of Section 12.3.”

11. Girard Desargues (1591–1661) was a founder of projective geometry.
12. Just as there is more to aesthetics than beauty. This is a further example of what was 

discussed in note 1. It could have been noticed at any time after the writing of the first book 
of Spherics (almost certainly before Euclid, who uses results from what are now the second 
and third books) that the postulates other than the parallel postulate are satisfied by points 
and great circles on a sphere, but attention was reserved for the intended model.
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The Science of Brute Force

Marijn J. H. Heule and Oliver Kullmann

Recent progress in automated reasoning and supercomputing gives rise 
to a new era of brute force. The game changer is “SAT,” a disruptive, 
brute reasoning technology in industry and science. We illustrate its 
strength and potential via the proof of the Boolean Pythagorean tri-
ples problem, a long- standing open problem in Ramsey theory. This 
200- terabyte proof has been constructed completely automatically—
paradoxically, in an ingenious way. We welcome these bold new proofs 
emerging on the horizon, beyond human understanding—both math-
ematics and industry need them.

Many relevant search problems, from artificial intelligence to com-
binatorics, explore large search spaces to determine the presence or 
absence of a certain object. These problems are hard because of com-
binatorial explosion, and they have traditionally been called infeasible. 
The brute force method, which at least implicitly explores all possibili-
ties, is a general approach to systematically search through such spaces.

Brute force has long been regarded as suitable only for simple prob-
lems. This notion has changed in the past two decades because of the 
progress in satisfiability (SAT) solving, which by adding brute reason 
renders brute force into a powerful approach to deal with many prob-
lems easily and automatically. Search spaces with far more possibilities 
than the number of particles in the universe may be completely explored.

SAT solving determines whether a formula in propositional logic has a 
solution, and its brute reasoning acts in a blind and uninformed way—as 
a feature, not a bug. We focus on applying SAT to mathematics as a sys-
tematic development of the traditional method of proof by exhaustion.

Can we trust the result of running complicated algorithms on many 
machines for a long time? The strongest solution is to provide a proof, 
which is also needed to show correctness of highly complex systems; 
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highly complex systems are everywhere, from finance to health care 
to aviation.

Many problems arising from areas such as Ramsey theory and formal 
methods appear to be intrinsically hard and may be only solvable by 
SAT. Any proof for such problems may be huge, in which case math-
ematicians will not be able to produce a paper proof. The enormous 
size of such proofs hardly influences confidence in the correctness, as 
highly trusted systems can validate them.

We argue that obtaining such results is meaningful regardless of our 
ability to understand them.

The Rise of Brute Force

We all know that brute force does not work, or at least is brutish, do we 
not? In our case, it is even “brute reasoning.”

I can stand brute force, but brute reason is quite unbearable. 
There is something unfair about its use. It is hitting below the 
intellect.

—O. Wilde

A mathematician using “brute force” is a kind of barbaric monster, is 
she not? Case distinctions play an important role for thinking, but if the 
number of cases gets too big, it seems impossible to obtain an overview, 
and one has to slavishly follow the details. But perhaps this is what our 
times demand?

In the beginning of the twentieth century, there was a very opti-
mistic outlook for mathematics. Gödel’s incompleteness theorem 
seemed to destroy the positive spirit of the time, famously expressed 
by Hilbert’s “We must know. We will know.” That said, even Gödel 
anticipated the relevance of SAT solving in his letter to von Neumann1, 
shifting the attention to finitizing infinite problems. Today, SAT solv-
ing on high- performance computing systems enables us to conquer 
problems of high complexity, driven by practice. This combination of 
enormous computational power with “magical brute force” can now 
solve very hard combinatorial problems, as well as proving safety of 
systems such as railways.

Our guiding example is the Pythagorean triples problem [17, 27], a typi-
cal problem from Ramsey theory: We consider all partitions of the set 
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{1, 2, . . .} of natural numbers into finitely many parts, and the ques-
tion is whether always at least one part contains a Pythagorean triple 
(a, b, c) with a2 + b2 = c2. For example, when splitting into odd and even 
numbers, then the odd part does not contain a Pythagorean triple (be-
cause of the rule that states odd plus odd = even), but the even part 
contains, for example, 62 + 82 = 102. We show that the answer is yes 
[17], when partitioning into two parts, and we conjecture the answer 
to be yes for any finite size of the partition.

To solve the Boolean Pythagorean triples problem, it suffices to show the 
existence of a subset of the natural numbers, such that any partition of 
that subset into two parts has one part containing a Pythagorean triple. 
We focus on subsets {1, . . ., n}, and determined by SAT solving that the 
smallest n for which the property holds is 7,825. Plain brute force cannot 
help, since 27825, the number of possible partitions into two parts, is way 
too big. So really “clever” algorithms are needed. An interesting aspect 
here is that there is no known ordinary mathematical existence proof 
for any form of the Pythagorean triples problem, even when generaliz-
ing the problem from triples a2 + b2 = c2 to tuples t2

1 + g + t2
k−1 = t2

k. Only 
computational proofs are known, and, so far at least, only SAT solv-
ing can deal with the harder problems. We show that {1, . . ., 107} can 
be partitioned into three parts, such that no part contains a Pythagorean 
triple. Thus, if there is an n such that every 3- partitioning of {1, . . ., n} 
has a part containing a Pythagorean triple, then n > 107. Because of this 
enormous size, it is thus conceivable that the truth of the three- valued 
Pythagorean triples problem might never be known.

Before considering the solution process, one may ask, why should 
we care? Are there problems for which such reasoning is really useful? 
Yes, the same techniques are used to prove correctness of hardware and 
software systems. Finding a bug in a large hardware system is essen-
tially the same as finding a counterexample, and thus is similar to find-
ing a partition avoiding all Pythagorean triples. Proving correctness of 
a system, that is, that there is no counterexample, is similar to proving 
that each partition must contain some Pythagorean triple. SAT solving 
has revolutionized hardware verification [6], and now SAT can come 
to the rescue of mathematics, solving very hard combinatorial prob-
lems previously completely out of reach. This collaboration works in 
both directions, as the applications in mathematics, especially Ramsey 
theory, sharpen SAT algorithms: the cube- and- conquer method [18] 
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was developed for computing van der Waerden numbers [1], and re-
cently the cube- and- conquer solver Treengeling2 won the parallel track 
of the 2016 SAT competition.3 Deeper mathematical investigations into 
the structure of the SAT instances could help with understanding and 
improving SAT in general.

Well- known early mathematical proofs using proof by exhaustion are 
the four- color theorem [39] and the proof that no projective plane of 
order 10 exists [26]. Given a set of variables with finitely many values, 
a case- split explores all possible values. The former is actually a rather 
small case- split by modern standards (only hundreds of cases). The lat-
ter invokes a larger, but also man- made case- split (billions of cases), 
for which it can be determined in advance whether this will succeed. 
In contrast, we have currently no way of knowing whether the SAT 
solver’s “magic” is sufficient to solve a given problem.

Throughout this article, we use the Boolean Schur triple problem as 
an example: Does there exist a red/blue coloring of the numbers 1 
to n, such that there is no monochromatic solution of a + b = c with 
a < b < c ≤ n. Compared to the Boolean Pythagorean triples problem, 
all natural numbers are involved, not just square numbers. As a re-
sult, there are many more triples, and unsatisfiability is reached much 
sooner. For n = 8, such a coloring exists: color the numbers 1, 2, 4, and 
8 red and 3, 5, 6, and 7 blue. However, such a coloring is not possible 
for n = 9. A naive brute force algorithm would consider all 29 = 512 
possible red/blue colorings. We will show that with brute reasoning 
only six (or even four) red/blue colorings need to be evaluated.

The Art of SAT Solving

A SAT problem uses Boolean variables v (they can be assigned to either 
true or false), which are constrained using clauses, which are dis-
junctions of literals x. Literals are either variables x = v or their nega-
tions x = v̄. A literal x (or x̄) is true if the corresponding variable v is 
assigned to true (or false, respectively). A clause is satisfied if at least 
one of its literals is assigned to true. A SAT formula is a conjunction of 
clauses. We refer to a solution of a SAT formula as an assignment to its 
variables that satisfies all its clauses. Formulas with a solution are called 
satisfiable, and formulas without solutions are called unsatisfiable. Let 
˅ and ˄ refer to the logical OR and AND operators, respectively. For 
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example, the formula (x ˅ ȳ) ˄ (x̄ ˅ y) with two clauses is satisfiable. 
The solutions for this formula are the two assignments that assign both 
x and y to the same value.

SAT solvers, programs that solve SAT formulas, have become ex-
tremely powerful over the past two decades. Progress has been by leaps 
and bounds, starting with the pioneering work by Davis and Putnam 
[10] until the early 1990s when solvers could handle formulas with 
thousands of clauses. Today’s solvers can handle formulas with millions 
of clauses. This performance boost resulted in the SAT revolution [4]: En-
code problems arising from many interesting applications as SAT for-
mulas, solve these formulas, and decode the solutions to obtain answers 
for the original problems. This is in a sense just using the NP- completeness 
of SAT [7, 13, 21]: Every problem with a notion of “solution”—where 
these solutions are relatively short and where an alleged solution can be 
verified (or rejected) quickly—can be reduced to SAT efficiently. For 
many years, NP- completeness was used only as a sign of “you cannot 
solve it!” but the SAT revolution has put this problem back on its feet. 

Figure 1. Encoding and case split of Boolean Schur triples problem. See also 
color image.
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For many applications, including hardware and software verification 
[8, 20], SAT solving has become a disruptive technology that allows 
problems to be solved faster than by other known means.

The main paradigms of SAT solving are the incomplete local search 
[22], which can only find satisfying assignments, and the two complete 
paradigms (which can also determine unsatisfiability), look- ahead [19] 
and conflict- driven clause learning (CDCL) [30]. Local search tries to find 
a solution via local modifications to total assignments (using all vari-
ables). Look- ahead recursively splits the problem as cleverly as possible 
into subproblems, via looking ahead. CDCL tries to assign variables to 
find a satisfying assignment in a straightforward way, and if that fails 
(the normal case), then the failure is transformed into a clause, which 
is added to the formula. Here, we first explain CDCL, which is mainly 
responsible for the SAT revolution. Afterward, we describe how look- 
ahead can enhance CDCL on hard problems.

CDCL SAT solving algorithms cycle through three phases: simplify, 
decide, and learn. Solvers maintain an assignment (initially empty), and 
each phase updates that assignment. During simplify, the assignment is 
extended by detecting new inferences. Afterward, decide heuristically 
picks an unassigned variable and assigns it to true or false. After it-
erating these two phases, the current assignment either satisfies the 
formula, which terminates the search, or falsifies a clause. In the latter 
case, learn this conflict, as a clause, and modify the assignment to re-
solve the conflict. If the empty clause ⊥ is learned, the solver detects 
unsatisfiability; otherwise, simplify- decide is performed again, etc. 
Look- ahead differs from CDCL by using stronger means for simplify 
and decide, but weaker means for learn.

The most basic inference mechanism in SAT solvers works as follows: 
A clause is unit under an assignment that falsifies all but one of its liter-
als, while leaving the remaining literal unassigned. The only possibility 
to satisfy a unit clause (under that assignment) is to assign the remaining 
literal to true. A key SAT solving technique is unit clause propagation 
(UCP): Given an assignment and a formula, while the formula has unit 
clauses, extend the assignment by satisfying the remaining literals in the 
unit clauses. UCP has two possible terminating states: Either all unit 
clauses have been satisfied, or there is a falsified clause because of two 
complementary unit clauses (x) and (x̄). In the latter case, we say that 
UCP results in a conflict. Conflicts are analyzed to obtain new clauses. 
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These conflict clauses are added to the formula to prevent the solver from 
visiting that assignment in the future. Additionally, conflict analysis up-
dates the heuristics to guide the solver toward a short refutation.

There are two types of decision heuristics for SAT solvers: focus and 
global heuristics. Focus heuristics, also known as conflict- driven heuris-
tics (for CDCL solvers), aim at finding short refutations. These heuristics 
are cheap to compute and have been highly successful in solving large 
problems arising from industrial applications. In short, focus heuristics 
work as follows: Whenever a solver encounters a conflicting state, the 
importance of the variables that cause the conflict is increased. Simply 
making these variables more important than all the other variables results 
in state- of- the- art performance on most industrial problems [3].

If no short refutation exists (or is too hard to find), it is best to use 
global heuristics (for look- ahead solvers) to split the search space into 
two parts that are both easier to solve. Global heuristics are based on 
look- aheads [25]: For a given formula F, a look- ahead on literal x assigns 
x to true, applies UCP, and computes the set S of clauses in F that are 
shortened but not satisfied. The heuristic value of a look- ahead on x is 
based on a weighted sum of the clauses in S, where clause weights de-
pend on the length of clauses.

Both focus and global heuristics can reduce the search space expo-
nentially. For really hard problems, such as the Pythagorean triples 
problem, it is best to combine both types of heuristics. Focus heuristics 
are effective when there exists a short refutation of the formula. For 
hard problems, initially there are no short refutations. One therefore 
needs to partition such a problem using global heuristics until the short 
refutations manifest themselves. This is the main idea behind the cube- 
and- conquer SAT solving paradigm [18], which was crucial to solve the 
Pythagorean triples problem.

Consider again the Boolean Schur triples problem on the existence 
of a red/blue coloring of 1, . . ., 9 without a monochromatic solution 
of a + b = c. Figure 1 shows the SAT encoding, consisting of 32 clauses 
using the Boolean variables x1, . . ., x9. If variable xi is assigned to true 
(false), then number i is colored red (blue). For each of the 16 solutions 
of a + b = c, there are two clauses: one stating that at least one of a, b, 
or c must be colored red, one stating that at least one of them must be 
colored blue. A binary tree is shown right beside the clauses. Each inter-
nal node contains a splitting variable xi. The left branches assign decision 
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variables to false (blue edge), while the right branches assign decision 
variables to true (red edge). Each leaf node represents an assignment 
that would result in a conflict during UCP. For example, for the left- 
most leaf node, x1 and x3 are assigned to false (blue): thus x2, x4 have 
to be set to true (because 1 + 2 = 3 and 1 + 3 = 4), forcing x6 to false 
(2 + 4 = 6), which forces x7 and x9 to true (1 + 6 = 7 and 3 + 6 = 9), 
which yields the conflict 2 + 7 = 9 with all three set to true (red). This 
node matches the first clause in the proof of Figure 2. The binary tree (a 
simple form of look- ahead solving) illustrates that heuristics can reduce 
the number of assignments to be evaluated from 512 to 6.

Because of the limited size of the example formula, relatively simple 
heuristics are sufficient to reduce the number of cases from 512 to 6. 
One such simple heuristic is Maximum Occurrences in clauses of Mini-
mal Size (MOMS). Initially, all clauses are ternary and variable x1 oc-
curs most frequently. Therefore, x1 is used as the first decision variable. 
After simplification, several variables occur most frequently in binary 
clauses (twice), but variable x3 has the best tie break (occurrences in 
remaining ternary clauses). Therefore, variable x3 is the best decision 
on the second level of the tree. Finally, variable x5 is the most occurring 
variable in binary clauses on the third level.

A crucial aspect of solving the Boolean Pythagorean triples problem 
was the use of a dedicated look- ahead heuristic based on the recursive 
weight heuristic for random 3- SAT formulas. The three magic con-
stants in this heuristic have been manually tweaked to achieve strong 
performance on the Boolean Pythagorean triples problem [17]. We es-
timate that the use of this optimized look- ahead heuristic reduced the 

Figure 2. Proof and unit clause justification of the Boolean Schur triples 
problem. See also color image.
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number of cases by at least two orders of magnitude compared to alter-
native heuristics, such as focus heuristics or MOMS. Look- ahead heu-
ristics were popular in the 1990s, but they have been mostly ignored 
since CDCL emerged. The usefulness of look- ahead heuristics to boost 
performance on hard problems may revive interest.

Proofs of Unsatisfiability

The unpredictable effectiveness of SAT solvers, together with their 
nontrivial implementations (needed for real- world efficiency), raise the 
question of whether their results can be trusted. If a problem has a 
solution, it is easy to verify that the given solution is correct: simply 
check whether the solution satisfies at least one literal in every clause. 
However, a claim that no solution exists is much harder to validate. 
Since SAT solvers use many complicated techniques that could result in 
implementation as well as conceptual errors, a method is required to 
verify unsatisfiability claims.

There are two approaches to deal with the trust issue of compli-
cated software: prove its correctness or produce a certificate which 
can be validated with a simple program. Work in the first direction 
resulted in verified SAT solving [33]. However, this approach has two 
disadvantages: Only some state- of- the- art techniques are verified, and 
verification is performed only on “higher levels,” and thus excludes the 
low- level implementation tricks that are crucial for fast performance. 
Both disadvantages slow down the verified solver substantially, making 
it useless in most practical settings.

The second approach has been more successful in the context of SAT 
solving. We refer to a certificate of an unsatisfiability claim as a proof of 
unsatisfiability. What kind of format would be useful for such proofs? The 
ideal proof format facilitates five properties: (1) proof production should 
be easy to ensure that it will be supported by many solvers; (2) proofs 
should be compact in order to have small overhead; (3) proof validation 
should be simple; otherwise, the trust issue persists; (4) proof valida-
tion should be efficient to make verification useful in practice; and (5) all 
techniques should be expressible; otherwise, solvers will be handicapped. 
There is a trade- off among these properties. For example, more details 
in a proof should allow a more efficient validation procedure. However, 
adding details makes proofs less compact and harder to produce.
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Initially, proofs of unsatisfiability were based on resolution. Al-
though useful in some settings, it is hard or even impossible to achieve 
the properties of easy production (1), compactness (2), and expressibil-
ity (5) for such proofs. The alternative is clausal proofs [14], for which it 
is now possible to achieve all five properties.

What is a clausal proof of unsatisfiability for a SAT problem? Basi-
cally, we start with the given list of clauses, and add or delete clauses, 
until finally we add the empty clause ⊥, which marks unsatisfiability, 
since there is no literal in it to satisfy. The most basic restriction on add-
ing clauses is that the addition is solution- preserving, that is, all solutions 
(at that point, taking all previous additions and deletions into account) 
also satisfy the added clause. This step guarantees correctness: If all 
additions are solution- preserving, and we are able to add ⊥ (which has 
no solution), then the original SAT problem must be unsatisfiable. For 
example, consider the formula F = (x ˅ y) ˄ (x ˅ ȳ). Adding the clause 
(x) to F is solution- preserving: F has two solutions, and in both solutions 
x is assigned to true.

It is important to validate that clause addition steps are solution- 
preserving; otherwise, we do not have a proof, just some sort of claim. 
This verification should be cheap to perform, and the basic criterion 
is as follows. Suppose a formula F is given, and the clause C is claimed 
to be solution- preserving for F. Take the assignment that sets all liter-
als in C to false. If UCP on F results in a conflict, then the clause is 
indeed solution- preserving since we checked that it is not possible to 
falsify C while satisfying F. This method realizes the first three ideal 
proof format properties: easy, compact, and simple. The solver can 
just output the learned clauses, without a justification, and validation 
happens by UCP.

SAT solvers not only learn lots of clauses, but also aggressively de-
lete them to achieve fast UCP. Proofs should include this deletion in-
formation in order to realize efficient validation. Furthermore, proof 
checkers require dedicated UCP algorithms to make proof validation as 
fast as proof production [16]. Combining these techniques realizes the 
fourth ideal proof property (efficient validation).

A proof of our running example is shown in Figure 2. The proof 
consists of six clause addition steps and two clause deletion steps. The 
latter have a “d” prefix and do not require checking. The correctness of 
each clause addition step is checked using UCP, and shown using a unit 
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clause justification: a sequence of clauses that become unit, ending with 
a falsified clause that marks the conflict. The unit clause justification 
is omitted from clausal proofs to ensure compactness, but the checker 
constructs a justification during validation.

Some SAT solving techniques may change (add or remove) solutions, 
which can significantly reduce solving time. In order to express such 
techniques—to have also the final ideal proof property (expressible)—
support is required for proof steps that go beyond the above solution 
preservation. This support is realized by the concept of solution- preserving 
modulo x for some literal x. Let { be an assignment. We denote by { ⊕ x 
the assignment obtained by flipping the truth value for literal x in {. In 
case x is unassigned in {, then x is assigned to true in { ⊕ x. For a given 
formula F, addition of clause C is solution- preserving modulo x if for all 
solutions { of F at least one of { or { ⊕ x satisfies F and C.

For example, consider the formula F = (x ˅ y) ˄ (x ˅ ȳ) again. The 
addition of clause (x̄ ˅ y) to F is solution- preserving modulo y. Recall 
that F has two solutions. The first solution {1, where x is true and y is 
true, also satisfies (x̄ ˅ y). The second solution {2, where x is true and 
y is false, falsifies (x̄ ˅ y), but {2 ⊕ y satisfies F and (x̄ ˅ y).

How to check that adding clause C is solution- preserving modulo x? 
We use the following efficient criterion: x ∈ C, and for all D ∈ F with 
x̄ ∈ D, we have that setting all literals in C as well as all literals in D\{x̄} 
to false yields a conflict via UCP. The proof format that encapsulates 
this inference in a single step is called the “DRAT” format [4], and it is 
supported by state- of- the- art solvers.

It is instructive to show that this criterion guarantees that adding C 
to F is solution- preserving modulo x. The critical clauses are the D ∈ F 
with x̄ ∈ D, since here flipping of x might change a satisfied clause to 
a falsified clause. First observe that from the criterion follows that all 
C , (D\{x̄}) are solution- preserving with respect to F. Now assume that 
{ is a total satisfying assignment for F, which falsifies C (otherwise, { 
satisfies F and C, and we are done). Thus, { falsifies x, and { ⊕ x satisfies 
C. Since all C , (D\{x̄}) are solution- preserving with respect to F, { sat-
isfies all C , (D\{x̄}). Hence, { satisfies all D\{x̄} (because { falsifies C), 
and so does { ⊕ x as well, and thus indeed { ⊕ x satisfies all D. QED.

The DRAT format seems to be a good proof format for existing and 
future SAT solvers, as it has all the five properties of an ideal proof for-
mat. Moreover, DRAT proofs can be efficiently checked even in parallel, 
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and they have been used to validate the results of the annual international 
SAT competitions since 2013. For the Boolean Schur triples problem 
with n = 9, there exists a DRAT proof consisting of only four clause ad-
ditions: (x1 ˅ x4), (x1), (x4), ⊥. Validating this proof involves more details, 
which can be obtained by using the DRAT proof checker DRAT- trim.4

Indeed, DRAT in a theoretical sense is equivalent to one of the most 
powerful systems studied in proof complexity, extended Frege with 
substitution, and thus it should offer “proofs as short as possible” [5]. 
The extension rule basically states that the clauses (x ∨ ā ∨ b̄ ) ∧ (x̄ ∨ a) 
∧ (x̄ ∨ b) can be added if no literals x and x̄ occur in the formula. In fact, 
each of the clauses are solution- preserving modulo x or x̄ according to 
the above criterion.

Proof size nevertheless becomes an issue. Although DRAT proofs 
are “compact,” the size of the DRAT proof of the Boolean Pythagorean 
triples problem is 200 TB. An obvious challenge of such a huge file is its 
storage. Also, dealing with such files increases the complexity of proof 
validation algorithms, which will need to support parallel checking. On 
the other hand, it is possible to trade complexity for space by adding 
details to the proof that facilitate fast checking. In order to make this 
feasible, the proof can be optimized using a nonverified trimmer, which 
also adds the checking details. This approach has been successfully ap-
plied to validate the 200 TB proof using a checker that was formally 
verified in Coq [9].

Ramsey Theory and Complexity

A popularized summary of Ramsey theory is that “complete chaos is 
impossible” [28]. More concretely, Ramsey theory deals with patterns 
that occur in well- known sets such as the set of natural numbers or the 
set of graphs. For example, coloring the natural numbers with finitely 
many colors will result in a monochromatic Schur triple a + b = c.

Hundreds of papers have been published on determining the smallest 
size of sets such that a given pattern must start to occur [34]. The most 
famous pattern is related to Ramsey numbers R(k): the smallest n such 
that all red/blue edge colorings of the complete graph with n vertices 
have a red or a blue clique of size k. Only the first four Ramsey numbers 
are known. Paul Erdős famously told a story about aliens who threat-
ened to obliterate Earth unless humans provided them with the value of 
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R(5)—with a proof, we may add here. Putting all mankind behind this 
project would do the job in a year. Yet if aliens asked for R(6), we should 
opt for the Hollywood resolution and obliterate them instead [15].

Many problems in Ramsey theory appear to be solved only using 
large case- splits (especially for the determination of Ramsey- type num-
bers), and thus using SAT is a natural option. Also SAT formulations of 
these problems are easy and natural. In order to determine the smallest 
subset in which a pattern starts to occur using SAT, two formulas need 
to be solved. First, it has to be shown that for any smaller subset there 
exists a counterexample. This step is typically easy because the formula 
is satisfiable. The second formula, encoding the existence of the pat-
tern, is much harder to solve as now unsatisfiability must be shown.

The first major success of SAT solving in Ramsey theory was determin-
ing the sixth Boolean van der Waerden number [24]: vdW(6) = 1,132. 
The number vdW(k) expresses the smallest n such that any red/blue 
coloring of the numbers 1 to n results in a monochromatic arithmetic 
progression of length k. The computation used multiple clusters as well 
as dedicated SAT- solving hardware (field- programmable gate array, or 
FPGA, solvers) for several months. Unfortunately, no proof was pro-
duced during the computation, making it impossible to verify the re-
sult. This situation raises several trust issues because errors could have 
been made on several levels. For example, was the splitting correct 
and thus has the whole search space been explored? Also, FPGA solv-
ers have been tested much less thoroughly compared to state- of- the- art 
solvers.

The first important problem with a verified clausal proof is the 
Erdős discrepancy problem (EDP), which states that “complete uni-
formity is impossible.” The problem conjectures that any infinite se-
quence s1, s2, . . . with si = ±1 contains for any positive integer C a 
subsequence sd, s2d, s3d, . . ., skd, for some positive integers k and d, such 
that | |S Cidi 1

k
$/ . Using colors, the conjecture says that for every C ≥ 1 

and every red/blue coloring of 1, 2, . . ., there is a finite initial seg-
ment of some progression d, 2d, 3d, . . . for some d ≥ 1, such that the 
discrepancy between the number of color occurrences is at least C (one 
color occurs at least C times more than the other). The conjecture has 
been a long- standing open problem even for C = 2. The case C = 2 
was eventually solved using SAT by providing the exact bound [23] 
and also applying cube- and- conquer. The encoding of this problem is 
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more involved than the simple encoding of Ramsey problems (which 
are just hypergraph coloring problems), and thus, though a clausal 
proof has been provided, correctness is more of an issue than in cases 
of Ramsey theory. Computationally, EDP is much easier [23], and a 
much smaller proof exists (about a gigabyte) than in our case. Finally, 
a general mathematical existence proof has been provided [37]. This 
mathematical proof was called “much more satisfying” than the com-
putational approach [27]. However, there is for example the possibil-
ity that the Pythagorean tuples conjecture (see below) is not provable 
with current methods. Furthermore, the SAT approach is actually a 
rather “satisfying approach” when taking into account its deep connec-
tions to formal methods.

The Pythagorean tuples conjecture states that Ptn(k; m)—with k the 
length of the tuple and m the number of colors—exists for all k ≥ 3 
and m ≥ 2. That is, for every partitioning of {1, . . ., Ptn(k; m)} into m 
parts, some part contains a Pythagorean tuple of size k. We have shown 
that Ptn(3; 2) = 7,825. The value of Ptn(3; 2) was conjectured [32] not 
to exist after determining the numbers Ptn(k; 2) for 4 ≤ k ≤ 31. We 
have meanwhile computed the only known Pythagorean tuples num-
bers for three colors: Ptn(5; 3) = 191, Ptn(6; 3) = 121, and Ptn(7; 3) 
= 102. We also established Ptn(3; 3) > 107, and this lower bound (via 
local- search algorithms) seems still far away from the exact bound. So 
it is imaginable that a mathematical existence proof cannot be found, 
and finiteness of Ptn(3; 3) might never be established. It is further-
more conceivable that the Pythagorean tuples conjecture is true but the 
best proofs are SAT- like. Thus, formal proofs in systems like Zermelo- 
Fraenkel set theory would only exist for concrete k and m, while there 
would not exist a single proof for all k and m. No mathematical exis-
tence proofs have yet been established for any Ptn(k; m) (see “alien truth 
statements” for further discussions).

Before coming to the industrial applications of SAT, we remark that 
the Ramsey numbers [35] R(k) are very different from the Boolean Py-
thagorean triples problem: namely, the latter is “random- like” and thus 
has no symmetries (besides the trivial color symmetries). Currently, 
SAT solving is more successful in the absence of strong symmetries, 
and Ramsey numbers currently have too much structure for an auto-
mated attack. More sophisticated symmetry- breaking techniques are 
required to improve the performance.
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Brute Force Formal Methods

SAT solvers are a key technology in formal methods for applications, such 
as bounded model checking [6] and equivalence checking. In bounded 
model checking, given a transition system and an invariant such as a safety 
property, the SAT solver determines for some appropriate finitization, 
whether there exists a sequence of transitions that violates the safety 
property. Equivalence checking is used to determine the equivalence of 
a specification and an implementation or two different implementations. 
The SAT solver is asked to find an input such that some output differs. 
Notice that the existence of a solution means that the safety property is 
violated or that there exists a counterexample for equivalence.

All problems discussed so far could be expressed as a propositional 
formula. For many interesting problems, however, this is not the case 
and they require a richer logic for its representation. That does not 
mean that SAT technology cannot be used to solve these problems. On 
the contrary, more and more problems that require a richer logic are 
being solved efficiently using SAT.

The key idea is to abstract away those parts of a given problem that 
cannot be expressed as propositional logic. A solution of the abstracted 
problem may not be a solution of the given problem, while a refutation 
of the abstracted problem is also a refutation of the given problem. In 
case a solution of the abstracted problem is obtained, which is not a so-
lution for the given problem, then the abstraction is refined by adding a 
clause that prevents the SAT solver from finding that solution (and po-
tentially similar solutions) again. This sequence is repeated until either 
a refutation or a solution for the given problem is found. Incremental 
SAT solving [12] facilitates an efficient implementation of this approach.

This approach has been very successful in automated theorem prov-
ing (ATP). The long- time champion in the annual ATP competitions 
is Vampire [38], which has been tightly integrated with a SAT solver. 
Other strong ATP solvers, including iProver and Leo, incorporate 
SAT solvers as well. The major interactive theorem provers, such as 
ACL2, Coq, and Isabelle, support the usage of SAT solvers to deal 
with subproblems that can be expressed in propositional logic. In this 
setting, each SAT solver is treated as a black box, and the emitted 
proofs are validated in the theorem provers. Another successful exten-
sion of SAT in this direction is satisfiability modulo theories (SMTs) [11]. 
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SMTs use multiple theories (such as linear arithmetic, uninterpreted 
functions, and bit vectors) and replace constraints in a theory by propo-
sitional variables. SMT solvers, such as Z3, Boolector, CVC4, and 
Yices have been highly successful.

Alien Truths

The core argument against solving a problem by brute force is that it 
does not contribute to understanding the problem. In that view, the 
proof is meaningless and hard to generalize, and a human mathemati-
cal proof is preferred. Furthermore, without understanding, errors 
seem more likely, although validation can be done by highly trusted 
systems.

The proponents of “elegant” proofs appear to consider problems with 
only very long proofs as not interesting or not relevant. But even un-
provable statements, like the famous continuum hypothesis, have an 
important place in mathematics. If we do not study the limits of our 
current knowledge, we will stay ignorant forever, always restricted 
to a “safe space,” neglecting problems we assume to be too hard. Fur-
thermore, what is a limit of one discipline is a core subject of another 
discipline. Computational complexity and Ramsey theory have close re-
lations. Understanding the hardness of problems from Ramsey instances 
could lead to major breakthroughs [29]. For example, why is proving 
the Ramsey property for a + b = c rather easy, whereas a2 + b2 = c2 
appears to be a very hard problem? In general, even small propositional 
problems might have only very large proofs. If we were to ignore this 
area, then we would allow random holes in our knowledge. The ques-
tion “why there are no short proofs” and “what makes a problem hard” 
are deep and fascinating questions, and we consider them some of the 
most important problems of our times.

To better discuss the untold stories of computer science, complexity 
theory, and SAT, let’s call alien a provable and rather short mathemati-
cal statement with only a very long proof. Artificial alien statements 
can be constructed using Gödel’s methods. Whether a natural truth 
statement can be shown to be alien, such as the Pythagorean triples 
problem, is of highest relevance. Even if a short proof for the Pythago-
rean triples problem may be constructed, that is unlikely to be the case 
for the exact bound result. Now there is actually a whole spectrum of 
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possibilities between human truths and alien truths. Classical mathe-
matical statements for which a paper proof exists, such as Schur’s theo-
rem [36], we consider as human truth statements. Hence, the vast body 
of mathematical works belongs to this category. Furthermore, we con-
sider mathematical statements that have been proven mostly manually, 
but with some computer help, weakly human. More specifically, such 
statements have a large case- split, which could potentially be under-
stood by humans, but which have only been checked mechanically. An 
example of such a statement is the four- color theorem [39]. The proof 
by Appel and Haken [2] considers 663 cases in its improved version. 
The case- split is fully understood and humanly constructed. A theo-
rem prover only checks the cases. Coming to larger cases, we refer to 
a weakly alien truth statement as a giant humanly generated case- split 
that can be validated using plain brute force methods. For example, it 
has been shown that the minimum number of givens is 17 in Sudoku by 
enumerating all possible cases with 16 givens and refuting them all [31] 
(5,472,730,538 cases after symmetry breaking). Although impossible 
to evaluate by humans, it could be directly done mechanically. This 
result is expected to be weakly alien, as it is unlikely that there exists 
a small enough case- split that is checkable by humans.

We arrive at a better understanding of “alien,” namely a truth state-
ment is alien if humanly understandable case- splits are way too big for 
any plain brute force method, but there exists a giant case- split that 
mysteriously avoids an enormous exponential effort. Examples of truth 
statements that are expected to be alien are that vdW(6) = 1,132 (see 
Kouril and Paul [24]) and that the exact bound of EDP with C = 2 is 
1,161 (see Konev and Lisitsa [23]). A plain brute force approach to those 
problems would require the evaluation of 21132 and 21161 cases, respec-
tively. Brute reasoning using SAT solvers significantly reduced the size 
of the case- splits and allowed determining their truth. We think it is 
relevant to make a further distinction: the above two alien truth state-
ments express the exact bound, but for both cases there is a mathemati-
cal existence proof that the pattern cannot be avoided indefinitely. Now 
also high- level statements, such as any red/blue coloring of the natural 
numbers yields a monochromatic Pythagorean triple, could be alien, 
when the bound result, Ptn(3; 2) = 7,825, is the only proof. We call 
such statements indeed strongly alien. If a mathematical existence proof 
is found for the statement here, then only the bound statement remains, 
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which is simply alien. This happened for the Erdős discrepancy prob-
lem: The bound was computed using SAT, and later a mathematical 
existence proof was given.

Finally, for some truth statements, we may never be able to pro-
duce a proof. A possible example problem of this type is the statement 
that every 3- coloring of the natural numbers yields a monochromatic 
Pythagorean triple. As already discussed, experiments show that 
Ptn(3; 3) > 107, where lower bounds are relatively easy to compute. 
Proofs of upper bound results are much harder to obtain: for exam-
ple, Ptn(3; 2) > 7,824 can be computed in one CPU- minute with a 
local search, whereas computing Ptn(3; 2) ≤ 7,825 required more than 
40,000 CPU- hours. We call decidable truth statements extra- alien if a 
proof can never be computed.

The concept of alien truth statements deals with the size of proofs, but 
it touches naturally on unprovability (in current systems like Zermelo- 
Fraenkel set theory). It is conceivable that Ptn(3; 3) does not exist; 
that is, the natural numbers are 3- colorable without a monochromatic 
Pythagorean triple. However, this statement may not be provable, since 
the coloring is too complex. On the other hand, it is conceivable that 
all Ptn(3; m) with m ≥ 3 exist (note that a SAT solver can prove them in 
principle), but these statements are all alien or extra- alien. Since these 
proofs grow with m, the general statement that all Ptn(3; m) with m ≥ 3 
exist, is then unprovable in principle.

Conclusion

Recent successes in brute reasoning, such as solving the Erdős discre-
pency problem and the Pythagorean triples problem, show the poten-
tial of this approach to deal with long- standing open mathematical 
problems. Moreover, proofs for these problems can be produced and 
verified completely automatically. These proofs may be big, but we ar-
gued that compact elegant proofs may not exist for some of these prob-
lems, in particular (but not only) for the exact bound results. The size 
of these proofs does not influence the level of correctness, and these 
proofs may reveal interesting information about the problem.

In contrast to popular belief, mechanically produced huge proofs 
can actually help in understanding the given problem. We can try to 
understand their structure, making them thus smaller. Hardly any 
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research has been done yet in this direction apart from removing re-
dundancy in a given proof. Possibilities are changing the heuristics 
of a solver or introducing new definitions of frequently occurring 
patterns in the proof. Indeed, simply validating a clausal proof does 
not only produce a yes/no answer as to whether the proof is cor-
rect, but also provides an unsatisfiable core consisting of all original 
clauses that were used to validate the proof—revealing important 
parts of the problem. The size of the core depends on the type of 
problem. Problems in Ramsey theory typically have quite a large core 
and therefore provide limited insight. Many bounded model checking 
problems, however, have small unsatisfiable cores, thereby showing 
that large parts of the hardware design were not required to deter-
mine the safety property.

To conclude, it is definitely possible to gain insights by using SAT. 
However that “insight” might need to be reinterpreted here and might 
work on a higher level of abstraction. Every paradigm change means 
asking different questions. Gödel’s incompleteness theorem solved par-
tially the question of the consistency of mathematics by showing that 
the answer provably cannot be delivered in the naive way. Now the task 
is to live up to big complexities and to embrace the new possibilities. 
Proofs must become objects for investigations, and understanding will 
be raised to the next level, how to find and handle them.

So, when the day finally comes and the aliens arrive and ask us 
about Ptn(3; 3), we will tell them: “You know what? Finding the 
answer yourself gives you a much deeper understanding than just tell-
ing you the answer—here you have the SAT solving methodology; 
that’s the real stuff!” And then humans and aliens will live happily 
ever after.

Wir müssen wissen. Wir werden wissen.
(We must know. We will know.)

—David Hilbert, 1930

Notes
1. https:// rjlipton .wordpress .com /the -  gdel -  letter/.
2. http:// fmv .jku .at /lingeling/.
3. http:// www .satcompetition .org/.
4. The tool is available at https:// github .com /marijnheule /drat -  trim.

https://rjlipton.wordpress.com/the-gdel-letter/
http://fmv.jku.at/lingeling/
http://www.satcompetition.org/
https://github.com/marijnheule/drat-trim
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Computational Thinking in Science

Peter J. Denning

A quiet but profound revolution has been taking place throughout sci-
ence. The computing revolution has transformed science by enabling all 
sorts of new discoveries through information technology.

Throughout most of the history of science and technology, there 
have been two types of characters. One is the experimenter, who gath-
ers data to reveal when a hypothesis works and when it does not. The 
other is the theoretician, who designs mathematical models to explain 
what is already known and uses the models to make predictions about 
what is not known. The two types interact with one another because 
hypotheses may come from models, and what is known comes from 
previous models and data. The experimenter and the theoretician were 
active in the sciences well before computers came on the scene.

When governments began to commission projects to build elec-
tronic computers in the 1940s, scientists began discussing how they 
would use these machines. Nearly everybody had something to gain. 
Experimenters looked to computers for data analysis—sifting through 
large data sets for statistical patterns. Theoreticians looked to them for 
calculating the equations of mathematical models. Many such models 
were formulated as differential equations, which considered changes 
in functions over infinitesimal intervals. Consider, for example, the 
generic function f over time (abbreviated f(t)). Suppose that the differ-
ences in f(t) over time give another equation, abbreviated g(t). We write 
this relation as df(t)/dt = g(t). You could then calculate the approxi-
mate values of f(t) in a series of small changes in time steps, abbreviated 
Dt, with the difference equation f(t+Dt) = f(t) + Dtg(t). This calculation 
could easily be extended to multiple space dimensions with difference 
equations that combine values on neighboring nodes of a grid. In his 
collected works, John von Neumann, the polymath who helped design 
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the first stored program computers, described algorithms for solving 
systems of differential equations on discrete grids.

Using the computer to accelerate the traditional work of experi-
menters and theoreticians was a revolution of its own. But something 
more happened. Scientists who used computers found themselves rou-
tinely designing new ways to advance science. Simulation is a prime 
example. By simulating airflows around a wing with a type of equa-
tion (called Navier- Stokes) that is broken out over a grid surrounding a 
simulated aircraft, aeronautical engineers largely eliminated the need 
for wind tunnels and test flights (Figure 1). Astronomers similarly sim-
ulated the collisions of galaxies, and chemists simulated the deteriora-
tion of space probe heat shields on entering an atmosphere. Simulation 

Figure 1. Aeronautics engineers use simulations from computational fluid 
dynamics to model airflows around proposed aircraft. They have become so 
good at this that they can test new aircraft designs without wind  tunnels or 
test flights. The first step is to build a three-dimensional mesh in the space 
surrounding the aircraft (in this case, for the Space Shuttle). The spacing of 
the grid points is smaller near the fuselage, where the changes in air move-
ment are greatest. Then the differential equations of airflow are converted to 
difference equations on the mesh. A supercomputer grinds out the profiles 
of the flow field and the forces on each part of the aircraft over time. The 
numerical results are converted to colored images (left) that reveal where the 
stresses on the aircraft are greatest. (Image at left courtesy of NASA; image 
at right courtesy of Peter A. Gnoffo and Jeffery A. White/NASA.). See also 
color image.
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allowed scientists to reach where theory and experiment could not. It 
became a new way of doing science. Scientists became computational 
designers as well as experimenters and theoreticians.

Another important example of how computers have changed how 
science is done has been the new paradigm of treating a physical process 
as an information process, which allows more to be learned about the 
physical process by studying the information process. Biologists have 
made significant advances with this technique, notably with sequenc-
ing and editing genes. Data analysts also have found that deep learn-
ing models enable them to make surprisingly accurate predictions of 
processes in many fields. For the quantities predicted, the real process 
behaves as an information process.

The two approaches are often combined, such as when the informa-
tion process provides a simulation for the physical process it models.

The Origins of a Term

The term computational science, and its associated term computational 
thinking, came into wide use during the 1980s. In 1982, theoretical 
physicist Kenneth Wilson received a Nobel Prize in physics for devel-
oping computational models that produced startling new discoveries 
about phase changes in materials. He designed computational methods 
to evaluate the equations of renormalization groups and used them to 
observe how a material changes phase, such as the direction of the mag-
netic force in a ferrimagnet (in which adjacent ions have opposite but un-
equal charges). He launched a campaign to win recognition and respect 
for computational science. He argued that all scientific disciplines had 
very tough problems—“grand challenges”—that would yield to mas-
sive computation. He and other visionaries used the term computational 
science for the emerging branches of science that used computation as 
their primary method. They saw computation as a new paradigm of 
science, complementing the traditional paradigms of theory and ex-
periment. Some of them used the term computational thinking for the 
thought processes in doing computational science—designing, testing, 
and using computational models. They launched a political movement 
to secure funding for computational science research, culminating in 
the High- Performance Communication and Computing (HPCC) Act 
passed in 1991 by the U.S. Congress.
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It is interesting that computational science and computational think-
ing in science emerged from within the scientific fields—they were 
not imported from computer science. Indeed, computer scientists were 
slow to join the movement. From the beginnings of computer science 
in the 1940s, there was a small but important branch of the field that 
specialized in numerical methods and mathematical software. These 
computer scientists have the greatest affinity for computational science 
and were the first to embrace it.

Computation has proved so productive for the advancement of 
science and engineering that virtually every field of science and en-
gineering has developed a computational branch. In many fields, the 
computational branch has grown to constitute the majority of the field. 
For example, in 2001, David Baltimore, Nobel laureate in biology, said 
that biology is an information science. Most recent advances in biology 
have involved DNA modeling, sequencing, and editing. We can expect 
this trend to continue, with computation invading deeper into every 
field, including social sciences and the humanities (Figure 2). Many 
people will learn to be computational designers and thinkers.

What Is Computational Thinking?

Computational thinking is generally defined as the mental skills that 
facilitate the design of automated processes. Although this term traces 
back to the beginnings of computer science in the 1950s, it became 
popular after 2006 when educators undertook the task of helping all 
children become productive users of computation as part of STEM (sci-
ence, technology, engineering, and mathematics) education. If we can 
learn what constitutes computational thinking as a mental skill, we may 
be able to draw more young people to science and accelerate our own 
abilities to advance science. The interest from educators is forcing us to 
be precise in determining just what computational thinking is.

Most published definitions to date can be paraphrased as follows: 
“Computational thinking is the thought processes involved in formulating 
problems so that their solutions are represented as computational steps 
and algorithms that can be effectively carried out by an information- 
processing agent.” This definition, however, is fraught with problematic 
ideas. Consider the word “formulating.” People regularly formulate re-
quests to have machines do things for them without having to understand 
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how the computation works or how it is designed. The term “information 
agent” is also problematic—it quickly opens the door to the false belief 
that step- by- step procedures followed by human beings are necessarily 
algorithms. Many people follow “step- by- step” procedures that cannot be 
reduced to an algorithm and automated by a machine. These fuzzy defini-
tions have made it difficult for educators to know what they are supposed 
to teach and how to assess whether students have learned it.

And what “thought processes” are involved? The published defini-
tions say that they include making digital representations, sequencing, 
choosing alternatives, iterating loops, running parallel tasks, abstract-
ing, decomposing, testing, debugging, and reusing. But this is hardly 
a complete description. To be a useful contributor, a programmer also 
needs to understand enough of a scientific field to be able to express 
problems and solution methods appropriate for the field. For example, 

Figure 2. As an example of a problem aided by computational thinking, 
consider a telephone switching office. To determine its capacity, telephone 
engineers pick a target probability of overflow—for example, 0.001. They 
ask, What is the maximum number N of simultaneous phone calls so that 
the chances that a new caller cannot get a dial tone is less than 0.001? A 
random walk computational model yields an answer. The model has states 
n = 0, 1, 2, . . ., N, representing the number of calls in progress up to a 
maximum of N; here N = 10. Requests to initiate new calls are occurring at 
rate m. Individual callers hang up at rate μ. Each new-call arrival increases 
the state by 1, and each hangup decreases it by 1. The movement through 
the possible states is represented by the state diagram above. Telephone 
engineers define p(n) as the fraction of time the system is in state n and can 
prove a difference equation p(n) = (m/nn)p(n − 1). They calculate all the p(n) 
by guessing p(0) and then normalizing so that the sum of p(n) is 1. Then they 
find the largest N so that p(N) is below the target threshold. For example, 
if they find p(N) = 0.001 when N = 10, they predict that a new caller has 
a chance 0.001 of not getting a dial tone when the exchange capacity is 10 
calls. See also color image.
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I once witnessed that a team of computational fluid dynamics scientists 
invited Ph.D. computer scientists to work with them, only to discover 
that the computer scientists did not understand enough fluid dynam-
ics to be useful. They were not able to think in terms of computa-
tional fluid dynamics. The other team members wound up treating the 
computer scientists like programmers rather than peers, much to their 
chagrin. It seems that the thought processes of computational think-
ing should include those of skilled practitioners of the field where the 
computation will be used.

All these difficulties suggest that the word “thinking” is not what we 
are really interested in—we want the ability to design computations. 
Design includes the dimensions of listening to the community of users, 
testing prototypes to see how users react, and making technology of-
fers that take care of user concerns (Figure 3). Therefore, computational 

Figure 3. Computational design helps a doctor build an electronic control-
ler for her office, which consists of a waiting room and a treatment room 
that holds four people. Patients enter the waiting room and sit down. As 
soon as the doctor is free, she calls the next patient into the treatment 
room. When done, the patient departs by a separate door. The doctor wants 
an indicator lamp to glow in the treatment room when patients are waiting, 
and another to glow in the waiting room when she is busy treating someone. 
The engineer designing the controller uses a computational model with 
states (n, t) where n = 0, 1, 2, 3, 4 is the number of patients in the waiting 
room and t = 0, 1 is the number of patients in the treatment room. The 
indicator lamp in the treatment room glows whenever n > 0, and the lamp 
in the waiting room glows whenever t > 0. The controller implements the 
state diagram above. State transitions occur at three events: patient arrival 
(a), patient departure (d), and patient call by the doctor (c). These events are 
signaled by sensors in the three doors. See also color image.
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design is a more accurate term. It is clearly a skill set, not a body of 
mental knowledge about programming.

What Is a Computational Model?

An essential aspect of computational design (or thinking) is a machine 
that will carry out the automated steps. But most computational de-
signers do not directly consider the hardware of the machine itself; 
instead they work with a computational model, which is an abstract ma-
chine—basically a layer of software on top of the hardware that trans-
lates a program into instructions for the hardware. Designers are not 
concerned with mapping the model to the real machine because that’s 
a simulation job that software engineers handle.

In computing science, the model most talked about is the Turing 
machine, which was invented in 1936 by computing pioneer Alan Tur-
ing. His model consists of an infinite tape and a finite state control unit 
that moves one square at a time back and forth on the tape, reading 
and changing symbols. Turing machines are the most general model 
for computation—anything that people reasonably think can be com-
puted, can be computed by a Turing machine (Figure 4).

But Turing machines are too primitive to easily represent everyday 
computation. With each new programming language, computer scien-
tists defined an associated abstract machine that represented the entity 
programmed by the language. Software called a compiler then translated 
the language operations on the abstract machine into machine code on 
the real hardware.

The models of the Turing machine and of programming languages 
are all general purpose—they deal with anything that can be com-
puted. But we often work with much less powerful models that are still 
incredibly useful. One of the most common is the finite state machine, 
which consists of a logic circuit, a set of flip- flop switch circuits to re-
cord the current state, and a clock whose ticks trigger state transitions. 
Finite state machines model many electronic controllers and operating 
system command interpreters.

The typical artificial neural network is an even simpler model. It is a 
loop- free network of gates modeled after neurons. The gates are arranged 
in layers from those connected to inputs to those connected to outputs. 
A pattern of bits at the input passes through the network and produces an 
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output. There is no state to be recorded or remembered. Each signal from 
one layer to the next has an associated weight. The network is trained by 
an algorithm that iteratively adjusts the weights until the network be-
comes very good at generating the desired output. Some people call this 
machine learning because the trained (weight- adjusted) circuit acquires a 

Figure 4. Since the 1950s, various geneticists have experimented with 
computer simulations of biological evolution, studying how various traits 
are passed on and how a population evolves to adapt to its circumstances. 
In 1975, John Holland adapted the idea of these simulations to a general 
method for finding near-optimal solutions to complex problems in many 
domains. The idea, depicted in the flow diagram above, is to develop a 
population of candidate solutions to the problem, encoded as bit-strings. 
Each bit-string is evaluated by a fitness function, and the most-fit members 
of the population are selected for reproduction by mutation and crossover. 
A bit-string is modified by mutation when one or several of its bits are 
randomly flipped. A pair of bit-strings is modified by crossover by select-
ing a random break point and exchanging the two tails of the strings. These 
changes generate a new population. The process is iterated many times 
until there are no further improvements in the most-fit individuals or until 
the computational budget is exhausted. This process is surprisingly good at 
finding near-optimal solutions to optimization problems whose direct solu-
tions would otherwise be intractable.
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capability to implement a function by being shown many examples. It is 
also called deep learning because of the hidden layers and weights in the 
circuit. Many modern advances in artificial intelligence and data analyt-
ics have been achieved by these circuits. Simulations of these circuits now 
allow for millions of nodes and  dozens of layers.

When you go outside computer science, you will find few people 
talking about Turing machines and finite state machines. They talk 
instead of machine learning and simulation of computational models 
relevant to their fields. In each field, the computational designer either 
programs a model or designs a new model—or both.

An important issue with computational models is complexity—how 
long does it take to get a result? How much storage is needed? Very 
often a computational model that will give you the exact answer is 
impossible, too expensive, or too slow. Computational designers get 
around this with heuristics—fast approximations that generate close- 
approximation solutions quickly. Experimental validation is often the 
only way to gain trust in a heuristic. An artificial neural network for 
face recognition is a heuristic. No one knows of an exact algorithm for 
recognizing faces. But we know how to build a fast neural network that 
can get it right most of the time.

Advances and Limits

Computing has changed dramatically since the time when computa-
tional modeling grew up. In the 1980s, the hosting system for grand 
challenge models was a supercomputer. Today the hosting system is the 
entire Internet, now more commonly called “the cloud”—a massively 
distributed system of data and processing resources around the world. 
Commercial cloud services allow you to mobilize the storage and pro-
cessing power you need when you need it. In addition, we are no longer 
constrained to deal with finite computations—those that start, com-
pute, deliver their output, and stop. Instead we now tap endless flows 
of data and processing power as needed, and we count on the whole 
thing to keep operating indefinitely. With so much cheap, massive com-
puting power, more people can be computational designers and tackle 
grand challenge problems.

But there are important limits to what we can do with all this com-
puting power. One limit is that most of our computational methods 
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have a sharp focus—they are very good at the particular task for which 
they were designed, but not for seemingly similar tasks. We can often 
overcome that limit with a new design that closes a gap in the old de-
sign. Facial recognition is an example. A decade ago, we did not have 
good methods of detecting and recognizing faces in images—we had to 
examine the images ourselves. Today, with deep learning algorithms, 
we have designed very reliable automated face recognizers, overcoming 
the earlier gap.

Another limit is that there are many problems that cannot be solved 
at all with computation. Some of these problems are purely techni-
cal, such as determining by inspection when a computer program will 
halt or enter an infinite loop. Many others are very complex issues, 
featuring technologies intertwined with social communities and no 
obvious answers—which are known as wicked problems. Many wicked 
problems are caused by the combined effects of billions of people using 
a technology. For example, the production of more than a billion re-
frigerators releases enough fluorocarbons to disrupt the upper atmo-
sphere’s protection against excessive sunlight. Millions of cars produce 
so much smog that some cities are unhealthy. The only solutions to 
these problems will emerge from social cooperation among the groups 
that now offer competing and conflicting approaches. Although com-
puting technology can help by visualizing the large- scale effects of our 
individual actions, only social action will solve the problems we are 
causing.

Still, computational science is a powerful force within science. It 
emphasizes the “computational way” of doing science and turns its prac-
titioners into skilled computational designers (and thinkers) in their 
fields of science. Computational designers spend much of their time 
inventing, programming, and validating computational models, which 
are abstract machines that solve problems or answer questions. Compu-
tational designers need to be computational thinkers as well as practi-
tioners in their own fields. Computational design will be an important 
source of work in the future.
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Quantum Questions Inspire New Math

Robbert Dijkgraaf

Mathematics might be more of an environmental science than we re-
alize. Even though it is a search for eternal truths, many mathemati-
cal concepts trace their origins to everyday experience. Astrology and 
architecture inspired Egyptians and Babylonians to develop geometry. 
The study of mechanics during the scientific revolution of the seven-
teenth century brought us calculus.

Remarkably, ideas from quantum theory turn out to carry tremen-
dous mathematical power as well, even though we have little daily 
experience dealing with elementary particles. The bizarre world of 
quantum theory—where things can seem to be in two places at the 
same time and are subject to the laws of probability—not only repre-
sents a more fundamental description of nature than what preceded it, 
it also provides a rich context for modern mathematics. Could the logi-
cal structure of quantum theory, once fully understood and absorbed, 
inspire a new realm of mathematics that might be called “quantum 
mathematics”?

There is of course a long- standing and intimate relationship between 
mathematics and physics. Galileo famously wrote about a book of na-
ture waiting to be decoded: “Philosophy is written in this grand book, 
the universe, which stands continually open to our gaze. But the book 
cannot be understood unless one first learns to comprehend the lan-
guage and read the letters in which it is composed. It is written in the 
language of mathematics.”

From more modern times we can quote Richard Feynman, who was 
not known as a connoisseur of abstract mathematics: “To those who do 
not know mathematics it is difficult to get across a real feeling as to the 
beauty, the deepest beauty, of nature. . . . If you want to learn about 
nature, to appreciate nature, it is necessary to understand the language 
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that she speaks in.” (On the other hand, he also stated: “If all mathe-
matics disappeared today, physics would be set back exactly one week,” 
to which a mathematician had the clever riposte: “This was the week 
that God created the world.”)

The mathematical physicist and Nobel laureate Eugene Wigner has 
written eloquently about the amazing ability of mathematics to de-
scribe reality, characterizing it as “the unreasonable effectiveness of 
mathematics in the natural sciences.” The same mathematical concepts 
turn up in a wide range of contexts. But these days we seem to be wit-
nessing the reverse: the unreasonable effectiveness of quantum theory 
in modern mathematics. Ideas that originate in particle physics have an 
uncanny tendency to appear in the most diverse mathematical fields. 
This is especially true for string theory. Its stimulating influence in 
mathematics will have a lasting and rewarding impact, whatever its 
final role in fundamental physics turns out to be. The number of dis-
ciplines that it touches is dizzying: analysis, geometry, algebra, topol-
ogy, representation theory combinatorics, probability—the list goes 
on and on. One starts to feel sorry for the poor students who have to 
learn all this!

What could be the underlying reason for this unreasonable effective-
ness of quantum theory? In my view, it is closely connected to the fact 
that in the quantum world everything that can happen does happen.

In a very schematic way, classical mechanics tries to compute how 
a particle travels from A to B. For example, the preferred path could 
be along a geodesic—a path of minimal length in a curved space. In 
quantum mechanics, one considers instead the collection of all possible 
paths from A to B, however long and convoluted. This is Feynman’s fa-
mous “sum over histories” interpretation. The laws of physics will then 
assign to each path a certain weight that determines the probability 
that a particle will move along that particular trajectory. The classical 
solution that obeys Newton’s laws is simply the most likely one among 
many. So, in a natural way, quantum physics studies the set of all paths, 
as a weighted ensemble, allowing us to sum over all possibilities.

This holistic approach of considering everything at once is very much 
in the spirit of modern mathematics, where the study of “categories” of 
objects focuses much more on the mutual relations than on any specific 
individual example. It is this bird’s- eye view of quantum theory that 
brings out surprising new connections.
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Quantum Calculators

A striking example of the magic of quantum theory is mirror symme-
try—a truly astonishing equivalence of spaces that has revolutionized 
geometry. The story starts in enumerative geometry, a well- established, 
but not very exciting branch of algebraic geometry that counts objects. 
For example, researchers might want to count the number of curves on 
Calabi- Yau spaces—six- dimensional solutions of Einstein’s equations of 
gravity that are of particular interest in string theory, where they are 
used to curl up extra space dimensions.

Just as you can wrap a rubber band around a cylinder multiple times, 
the curves on a Calabi- Yau space are classified by an integer, called the de-
gree, that measures how often they wrap around. Finding the numbers of 
curves of a given degree is a famously hard problem, even for the simplest 
Calabi- Yau space, the so- called quintic. A classical result from the nine-
teenth century states that the number of lines—degree- one curves—is 
equal to 2,875. The number of degree- two curves was only computed 
around 1980 and turns out to be much larger: 609,250. But the number 
of curves of degree three required the help of string theorists.

Around 1990, a group of string theorists asked geometers to calculate 
this number. The geometers devised a complicated computer program 
and came back with an answer. But the string theorists suspected it was 
erroneous, which suggested a mistake in the code. Upon checking, the 
geometers confirmed that there was, but how did the physicists know?

String theorists had already been working to translate this geometric 
problem into a physical one. In doing so, they had developed a way to 
calculate the number of curves of any degree all at once. It’s hard to over-
estimate the shock of this result in mathematical circles. It was a bit like 
devising a way to climb each and every mountain, no matter how high!

Within quantum theory, it makes perfect sense to combine the num-
bers of curves of all degrees into a single elegant function. Assembled 
in this way, it has a straightforward physical interpretation. It can be 
seen as a probability amplitude for a string propagating in the Calabi- 
Yau space, where the sum- over- histories principle has been applied. A 
string can be thought to probe all possible curves of every possible de-
gree at the same time and is thus a superefficient “quantum calculator.”

But a second ingredient was necessary to find the actual solution: 
an equivalent formulation of the physics using a so- called “mirror” 
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Calabi- Yau space. The term “mirror” is deceptively simple. In contrast 
to the way an ordinary mirror reflects an image, here the original space 
and its mirror are of very different shapes; they do not even have the 
same topology. But in the realm of quantum theory, they share many 
properties. In particular, the string propagation in both spaces turns 
out to be identical. The difficult computation on the original mani-
fold translates into a much simpler expression on the mirror manifold, 
where it can be computed by a single integral. Et voilà!

Duality of Equals

Mirror symmetry illustrates a powerful property of quantum theory 
called duality: Two classical models can become equivalent when con-
sidered as quantum systems, as if a magic wand is waved and all the 
differences suddenly disappear. Dualities point to deep but often mys-
terious symmetries of the underlying quantum theory. In general, they 
are poorly understood and an indication that our understanding of 
quantum theory is incomplete at best.

The first and most famous example of such an equivalence is the well- 
known particle–wave duality, which states that every quantum particle, 
such as an electron, can be considered both as a particle and as a wave. 
Both points of views have their advantages, offering different perspec-
tives on the same physical phenomenon. The “correct” point of view—
particle or wave—is determined solely by the nature of the question, 
not by the nature of the electron. The two sides of mirror symmetry 
offer dual and equally valid perspectives on “quantum geometry.”

Mathematics has the wonderful ability to connect different worlds. 
The most overlooked symbol in any equation is the humble equal sign. 
Ideas flow through it, as if the equal sign conducts the electric current 
that illuminates the “Aha!” lightbulb in our mind. And the double lines 
indicate that ideas can flow in both directions. Albert Einstein was an 
absolute master of finding equations that exemplify this property. Take 
E = mc2, without a doubt the most famous equation in history. In all 
its understated elegance, it connects the physical concepts of mass and 
energy that were seen as totally distinct before the advent of relativity. 
Through Einstein’s equation, we learn that mass can be transformed 
into energy, and vice versa. The equation of Einstein’s general theory 
of relativity, although less catchy and well- known, links the worlds of 
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geometry and matter in an equally surprising and beautiful manner. A 
succinct way to summarize that theory is that mass tells space how to 
curve, and space tells mass how to move.

Mirror symmetry is another perfect example of the power of the 
equal sign. It is capable of connecting two different mathematical 
worlds. One is the realm of symplectic geometry, the branch of mathemat-
ics that underlies much of mechanics. On the other side is the realm 
of algebraic geometry, the world of complex numbers. Quantum physics 
allows ideas to flow freely from one field to the other and provides an 
unexpected “grand unification” of these two mathematical disciplines.

It is comforting to see how mathematics has been able to absorb so 
much of the intuitive, often imprecise reasoning of quantum physics 
and string theory, and to transform many of these ideas into rigorous 
statements and proofs. Mathematicians are close to applying this exac-
titude to homological mirror symmetry, a program that vastly extends 
string theory’s original idea of mirror symmetry. In a sense, they’re 
writing a full dictionary of the objects that appear in the two separate 
mathematical worlds, including all the relations they satisfy. Remark-
ably, these proofs often do not follow the path that physical arguments 
had suggested. It is apparently not the role of mathematicians to clean 
up after physicists! On the contrary, in many cases completely new 
lines of thought had to be developed in order to find the proofs. This is 
further evidence of the deep and as yet undiscovered logic that under-
lies quantum theory and, ultimately, reality.

Niels Bohr was very fond of the notion of complementarity. The con-
cept emerged from the fact that, as Werner Heisenberg proved with his 
uncertainty principle, in quantum mechanics one can measure either 
the momentum p of a particle or its position q, but not both at the 
same time. Wolfgang Pauli wittily summarized this duality in a letter 
to Heisenberg dated October 19, 1926, just a few weeks after the dis-
covery: “One can see the world with the p- eye, and one can see it with 
the q- eye, but if one opens both eyes, then one becomes crazy.”

In his later years, Bohr tried to push this idea into a much broader 
philosophy. One of his favorite complementary pairs was truth and clar-
ity. Perhaps the pair of mathematical rigor and physical intuition should 
be added as another example of two mutually exclusive qualities. You 
can look at the world with a mathematical eye or with a complementary 
physical eye, but don’t dare to open both.



Tangled Tangles

Erik D. Demaine, Martin L. Demaine,  
Adam Hesterberg, Quanquan Liu,  
Ron Taylor, and Ryuhei Uehara

The Tangle toy [14, 15] is a topological manipulation toy that can be 
twisted and turned in a variety of different ways, producing different 
geometric configurations. Some of these configurations lie in three­ 
dimensional space, while others may be flattened into planar shapes. 
The toy consists of several curved, quarter­ circle pieces fit together at 
rotational/twist joints. Each quarter­ circle piece can be rotated about 
either of the two joints that connect it to its two neighboring pieces. 
Figure 1 shows a couple of Tangle toys that can be physically twisted 
into many three­ dimensional configurations. See [15] for more infor­
mation and for demonstrations of the toy.

More precisely, an n­ Tangle consists of n quarter­ circle links con­
nected at n joints in a closed loop.1 Tangles can be transformed into 
many configurations by rotating and/or twisting the joints along the 
axis of the two incident links (which must meet at a 180° angle). Figure 
2 shows an example of such an axis of rotation along which joints may 
be rotated. The links connected to the joint in Figure 2 can be twisted 
clockwise or counterclockwise about the axis as shown by the arrows. 
While Tangle configurations usually lie in three­dimensional space, 
here we focus on planar Tangle configurations, or Tangle configurations 
that can be flattened on a flat surface.

Previous research into planar Tangle configurations by Chan [5] and 
Fleron [9] uses an analogy between Tangle and cell­ growth problems 
involving polyominoes. An n­ omino is composed of n squares of equal 
size such that every square is connected to the structure via incident 
edges. A well­ known problem involving polyominoes is how many 
distinct free (cannot be transformed into each other via translations, 
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rotations, or reflections) n- ominoes there are for n = 1, 2, 3, . . . . The 
number of free n- polyominoes up to n = 28 has been determined [10, 
11, 12]. Figure 3 shows the two possible free configurations for the 
tromino.

Using the analogy to polyominoes, where a Tangle link represents 
a polyomino cell, Chan [5] and Fleron [9] pose two questions regard-
ing planar Tangle configurations. First, what is the number of distinct 
planar n- Tangles for n = 4i, where i = 1, 2, 3, . . . ? (These numbers are 
known as the “Tanglegram sequence.”) In other words, given a Tangle 
toy with n links, what is the number of distinct planar Tangles that 
can be formed? Second, can any planar n- Tangle be transformed into 
any other according to specified moves described in Section 2 of this 

Figure 2. Blue dots represent joints. The axis is represented by the dotted 
line. Arrows show that both the red and black links can be rotated clock-
wise and counterclockwise about the axis. See also color image.

Figure 1. Two Tangle toys. Photo by Quanquan Liu, 2015. See also color 
image.
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article? It has been conjectured, but not proven, that the answer to the 
second question is “yes.”

The problem of determining whether all planar configurations can be 
reconfigured into each other using allowable moves is known as flat- state 
connectivity [4] of linkages. Recall that a Tangle toy is an example of a link­
age that is composed of links and joints. One can think about the links 
as “edges” and the joints as “vertices”; just as vertices connect edges, 
joints connect links. Thus far, the study of flat­ state connectivity has fo­
cused on fixed- angle linkages, where each link has an assigned fixed length 
and each vertex has an assigned fixed angle (i.e., the angle of incidence 
between two incident links is fixed). A flat state of such a linkage is an 
embedding of the linkage into ℝ2. A linkage is flat- state connected if any 
two flat states of the linkage can be reconfigured into each other using a 
sequence of dihedral motions without self­ intersections. Otherwise, the 
linkage is flat- state disconnected. All open chains with no acute angles, and 
all closed orthogonal unit chains, are flat­ state connected, while open 
chains with 180° edge spins and graphs (as well as partially rigid trees) 
are flat­ state disconnected [4]. For more details regarding these link­
ages, see Aloupis et al. [4]. Closed orthogonal unit fixed­ angle chains 
(chains that have unit length edges and 90° angles of incidence between 
edges) move essentially like Tangles (viewing each quarter­ circle link as 
a 90° corner between two half edges), so their flat­ state connectivity 
means that there are (complex, three­ dimensional) moves between any 
two planar Tangle configurations of the same length.

The previous study of reachable configurations of Tangles considered 
a set of moves called x-  and X­ rotations [5, 9]. We generalize these moves 
into two broad categories, reflections and translations, that allow for a 
larger set of possible moves. In particular, our reflection moves involve 
rotating one chain of the Tangle by 180° around the rest, effectively re­
flecting the former. Such reflections over an axis (such as “flipturns,” 
“Erdős pocket flips,” and “pivots”) have been studied in previous work on 

Figure 3. There are only two possible distinct 
free trominoes.
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transforming planar polygons [1–3, 8]. The purpose of such reflections is 
to simplify complex moves involving many edge flips and rotations into 
simpler, more “local” moves. The reflection and translation moves used 
here encompass all possible edge flips around any two joints in a Tangle; 
thus, they seem natural to use as simplifications of more complex Tangle 
moves. More details of these moves, as well as their relation to the previ-
ous x-  and X- rotations, can be found in Section 3 of this article.

Our results show that Tangle configurations are flat- state discon-
nected under even our general reflection and translation moves, dis-
proving a conjecture of Chan [5]. This result provides an example of 
nontrivial flat- state disconnectedness. Planar Tangle configurations 
are natural examples of flat- state configurations obtained using a set 
of local moves around two joints. We show examples of planar Tangle 
configurations that have no moves whatsoever, as well as examples 
that have a few moves but cannot escape a small neighborhood of 
configurations.

In addition to our results on Tangle flat- state connectivity, we pres-
ent two different Tangle fonts. This is a continuation of a study on 
mathematical typefaces based on computational geometry, as surveyed 
in [6]. The two Tangle fonts were created from 52-  and 56- Tangles.

We define our notation and conventions in Section 1. In Section 2, 
we describe the two classes of moves we considered in evaluating pla-
nar Tangles and their reachable configurations. In Section 3, we present 
examples of planar Tangles that are locked or rigid under our specified 
set of moves. In Section 4, we present the two Tangle fonts. Finally, in 
Section 5, we conclude with some open questions.

1 Definitions

A Tangle link can have two orientations with respect to the body of the 
structure: convex or reflex. These orientations are shown in Figure 4.

A face in a planar Tangle configuration consists of a set of convex 
links. Two faces are tangential if they are connected by reflex links. Fig-
ure 5 shows examples of faces. It has been shown that an n- Tangle can 
form planar Tangle configurations if and only if n is a multiple of 4 [9].

Using this definition of “face,” we can further define the dual graph 
representation of a planar Tangle configuration to be a graph consisting 
of a vertex for each face of the configuration, with an edge connecting 
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each pair of tangential faces (Figure 5). This definition is analogous to 
the graph representation definition given by Taylor [13].

This dual graph representation of planar Tangle configurations is use-
ful in certain proofs in the later sections. Furthermore, the dual graph 
representation is used by our planar Tangle moves enumerator to enable 
users to easily create arbitrarily shaped planar configurations [7].

2 Tangle Moves

We now describe the set of legal moves that can be performed on a 
planar Tangle configuration. We categorize these moves broadly as 
translations and reflections; the distinction is that translation moves are 
asymmetric, whereas reflection moves can be performed along a re-
flection axis.

Figure 4. Reflex (a, b) and convex 
(c, d) links. See also color image.

Figure 5. Dual graphs of planar Tangle configurations. The letters a, b, c, 
and m label faces that are connected to other faces by reflex links. See also 
color image.
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2.1 Reflections

Reflection moves are performed over a linear reflection axis, which con-
sists of a line through two joints of the Tangle. We call these two joints 
the reflection joints. To perform a reflection, one of the two parts of 
the Tangle separated by the reflection joints is rotated 180° clockwise 
or counterclockwise around the reflection axis. In fact, the previously 
mentioned x-  and X- rotations [5] are reflection moves.2

The reflection move may only be made if the following two condi-
tions hold:

1. There are no pieces occupying the space on the other side of 
the reflection.

2. The reflective joints are free to move 180° in the reflection 
direction (i.e., either clockwise or counterclockwise).

It not difficult to see when the second requirement is satisfied (spe-
cifically, when the reflection axis is exactly the axis of rotation of each 
of the joints). Figure 6 shows some examples of successful reflection 
moves.

A reflection around the axis can change the orientation of a link. For 
example, Figure 6 shows the result of reflecting a chain of links over 
the indicated x-  or y- axis, resulting in the final configuration where all 
the orientations of the reflected links have changed. However, there are 
examples of reflections where the orientation of the links do not change 
(see the middle figure in Figure 6).

Some planar Tangle configurations may allow no reflection moves. 
Figure 7 shows two instances where no reflection moves are possible.

Figure 6. Reflection moves over horizontal and vertical axes where the joints 
labeled a and b are the reflection joints. Reflections may or may not change 
the orientation of the reflected links. See also color image.
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2.2 Translations

Translations are asymmetric moves that are not performed across a sin-
gle axis, but across a collection of parallel axes. A translation has two 
translation joints, oriented in the same (vertical or horizontal) direction, 
and four translation links, the two links next to each of the translation 
joints. When a translation move is performed, one of the two con-
nected components of the Tangle without its translation links is picked 
up and translated to a different location relative to the other component 
by rotating the translation links. Figure 8 shows an example of a trans-
lation move.

Translation involves the rotation of the four links connected to the 
translational joints. A translation move may only be made if the follow-
ing conditions hold:

1. The translational links can be rotated.
2. The translated portion may be placed in a location that does 

not contain other links.

The third configuration in Figure 7 shows an example where no trans-
lation moves are allowed.

The natural question (answered in Section 4) is whether any pla-
nar Tangle configurations can reach any other by a sequence of re-
flection and/or translation moves. If not, we call an n- Tangle locked, 
meaning that a proper subset of the planar configurations cannot 
reach  configurations outside the set. In particular, we call a planar 
Tangle configuration rigid if it admits no such reflection or transla-
tion moves.

Figure 7. The first two planar Tangle configurations do not allow any reflec-
tion moves. The third configuration allows no translation moves.
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2.3 Tangle Moves Enumerator

The Tangle Moves Enumerator software [7] takes a starting planar 
Tangle configuration and lists all possible planar configurations that 
can be reached via the moves described in Sections 2.1 and 2.2. The 
enumerator performs the search in a breadth- first manner. There are 
O(n2) possible rotation and translation axes. For each axis, the num-
ber of possible rotational moves is two, and the number of possible 
translational moves is also two. Therefore, the number of possible new 
configurations resulting from moves in each level of the search is O(n2). 
The enumerator exhaustively searches each possible new configuration. 
If a configuration has been previously reached, the current branch of 
the search is terminated. In Section 3, we use this software to explore 
the configurations reachable from a planar Tangle configuration to de-
termine whether it is locked or rigid.

3 Rigid and Locked Tangles

Here we illustrate two planar Tangle structures that are rigid under the 
moves defined in Sections 2.1 and 2.2. Furthermore, we demonstrate a 
set of locked but not rigid configurations with n = 308 links.

Figure 8. Example of a translation move. Translation involves the rotation 
of all four links connected to each of the two translational joints indicated 
by b and e. Here the translation move rotates the links spanned by the joints 
a, b, c, d, e, and f. See also color image.
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We thereby disprove conjectures by Chan [5] and Taylor [13]. Both 
examples can be verified by hand or with the Tangle Moves Enumerator 
(Section 2.3).

Figures 9 and 10 show two symmetric examples of rigid structures 
along with their dual graphs. In addition, Figure 10 shows that, even 
if we restrict ourselves to planar Tangle configurations where the dual 
graph is a path, there exist rigid configurations.

Figure 11 shows an example of locked, but not rigid, Tangles: these 
seven planar 308- Tangles cannot reach any planar configuration outside 
this set. Seven is far less than the number of possible planar 308- Tangle 
configurations, so the set is locked.

4 Tangle Fonts

Mathematical typefaces offer a way to illustrate mathematical theo-
rems and open problems, especially in computational geometry, to the 
general public. Previous examples include typefaces illustrating hinged 
dissections, origami mazes, and fixed- angle linkages; see Demaine and 
Demaine [6]. Free software lets you interact with these fonts.3

Here we develop two Tangle typefaces, where each letter is a planar 
Tangle configuration of a common length. Figures 12 and 13 show the 
typeface of 52-  and 56- Tangles, respectively. Our software allows you 
to write messages in these fonts.4 We know that these configurations 
can reach each other by complex three- dimensional motions without 

Figure 9. (a) A 4-leaf, symmetric, rigid counterexample. (b) The dual graph 
contains four leaves and a cycle. See also color image.

(b)(a)
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collision [2]. An interesting open question is whether the configura-
tions in each font can reach any other using only reflection and transla-
tion moves. We conjecture that the answer is “yes”; see Figure 14 for 
one example.

5 Open Questions

Since we have shown that there exist planar locked and even rigid Tan-
gle structures under our reflection and translation moves, a natural 
next step is to investigate the computational complexity of determining 
whether a structure is rigid. Another natural question is the computa-
tional complexity of determining whether two planar configurations 
of an n- Tangle can be transformed into each other through a sequence 
of valid moves. Furthermore, a natural optimization question is, given 
two planar n- Tangle configurations, find the minimal set(s) of reflec-
tion and translation moves necessary to transform one into the other.

Figure 10. (a) A 2-leaf, symmetric rigid counterexample. (b) The dual graph 
contains two leaves and is a simple path. See also color image.

(b)(a)
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Figure 12. 52-Tanglegram typeface.

Figure 11. Locked planar 308-Tangles. Illustrated are 
seven planar Tangles that can reach one another but 
none of the other planar 308-Tangles.
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Figure 13. 56-Tanglegram typeface.

Figure 14. Transforming R into Z, in honor of Richard Zawitz, the inventor 
of Tangle [14].
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Notes
1. Previous literature has also called the quarter- circles “pieces” or “segments.” Here we 

choose to use “links” for greater specificity (when characterizing Tangle structures as fixed- 
angle linkages) and clarity.

2. Furthermore, the sequence of x- rotations introduced in [5] represents a type of transla-
tion move (described in Section 3.2 of [5]).

3. http:// erikdemaine .org /fonts/.
4. http:// erikdemaine .org /fonts /tangle/.

References
[1] O. Aichholzer, C. Cortés, E. D. Demaine, V. Dujmović, J. Erickson, H. Meijer, M. Over-
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The Bizarre World of Nontransitive Dice:  
Games for Two or More Players

James Grime

Here is a game you can play with a friend. It is a game for two players 
with a set of three dice. These dice are not typical dice, however, be-
cause instead of having the values 1 to 6, they display various unusual 
values.

The game is simple: Each player picks a die. The two dice are then 
rolled together, and whoever gets the highest value wins.

The game seems fair enough. Yet, in a game of, say, ten rolls, you 
will always be able to pick a die with a better chance of winning—no 
matter which die your friend chooses. And you can make these dice at 
home right now.

Here is the set of three special dice (for figures with color labels in 
this article, also see color insert):

RED BLUE OLIVE

We say that A beats B if the probability of die A beating die B is 
greater than 50%.

It is simple to show that the Red die beats the Blue die by way of a 
tree diagram:
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probability Red beats Blue = 7/12

From the diagram, we see that Red beats Blue with a probability of 
7/12. This is greater than 50%, so Red is the better choice here.

Similarly, it can be shown that Blue beats Olive with a probability 
of 7/12. So we can set up a winning chain where Red beats Blue, and 
Blue beats Olive.

> >

RED BLUE OLIVE

Using this information, it would be perfectly reasonable to expect, 
therefore, that Red beats Olive. If this is true, then we call the dice 
transitive.

However, this is not the case. In fact, bizarrely, Olive beats Red with 
a probability of 25/36. This means the winning chain is a circle, similar 
to the game Rock, Paper, Scissors.

B

R
O
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This is what makes the game so tricky because, as long as you let 
your opponent pick first, you will always be able to pick a die with a 
better chance of winning.

Double Whammy

After a few defeats, your friend may have become suspicious, but all 
is not lost. Once you explain how the dice beat each other in a circle, 
challenge your friend to one more game.

This time, you will choose first, in which case your opponent should 
be able to pick a die with a better chance of winning. But then increase 
both the stakes and the number of dice. This time, each player rolls 
two of his or her chosen die, and the player with the highest total wins.

Maybe using two dice means that your opponent has just doubled 
his or her chances of winning. But not so because, amazingly, with two 
dice the order of the chain flips!

2R
2O

2B

In other words, the chain reverses so that the circle of victory now 
becomes a circle of defeat, allowing you to win the game again!

Efron Dice

The paradoxical nature of nontransitive dice goes back to 1959 and 
to the Polish mathematicians Hugo Steinhaus and Stanislaw Trybuła 
[4], [5].

However, the remarkable reversing property is not true for all sets of 
nontransitive dice. For example, here is a set of four nontransitive dice 
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introduced by Martin Gardner in 1970 [2]. This set was invented by the 
American statistician Brad Efron.

REDBLUE OLIVEMAGENTA

Here, the dice form a circle where Blue beats Magenta, Magenta 
beats Olive, Olive beats Red, and Red beats Blue, and they each do so 
with a probability of 2/3.

B
M

O
R

Trybula and Usiskin [6], [7] independently showed that one can al-
ways set up a nontransitive system of m n- sided dice and showed that the 
weakest winning probability has a bound. It is not possible for all win-
ning probabilities to exceed this bound, but it is possible for all winning 
probabilities to be at least this bound, see Savage [3].

For six- sided dice, the set of three dice above achieve this bound. 
Using a different number of sides, the greatest bound for three dice is 
the golden ratio { = 0.618. . . . This theoretical bound increases as the 
number of dice increases and converges to 3/4.

Efron dice achieve the bound for four dice of 2/3. Unfortunately, 
they do not possess the remarkable flipping property when you 
double the number of dice. Some of probabilities reverse, and some 
do not.

It is said that the billionaire American investor Warren Buffett is a 
fan of nontransitive dice. When he challenged his friend Bill Gates to a 
game, with a set of Efron dice, Bill became suspicious and insisted that 
Warren choose first. Maybe if Warren had chosen a set with a reversing 
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property, he could have beaten Gates—he would just need to announce 
whether they were playing a one- die or two- dice version of the game 
after they had both chosen.

Three- Player Games

I wanted to know if it was possible to extend the idea of nontransitive 
dice to make a three- player game, i.e., a set of dice where two of your 
friends may pick a die each, then you can pick a die that has a better 
chance of beating both opponents at the same time!

It turns out that there is a way. The Dutch puzzle inventor M. Oskar 
van Deventer came up with a set of seven nontransitive dice with values 
from 1 to 21. Here, two opponents may each choose a die from the 
set of seven, and there will always be a third die with a better chance 
of beating each of them. The probabilities are remarkably symmetric; 
each arrow on the diagram illustrates a probability of 5/9.

8
19

6
8

19 6

10
7167

10
16

14
17

2
14
17 2

13
15

5
13
15 5

9
21

3
9
21 3

12
20

1
12
20 1

11
18

4
11
184

This means that we can play two games simultaneously; however, 
beating both players at the same time is still a challenge. The probabil-
ity of doing so stands at around 39%.

This set of seven dice form a complete directed graph. In the same 
way, a four- player game would require 19 dice. A direct construction 
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of this set was not known until 2016, when Angel and Davis devised a 
direct construction for any tournament of any number of dice [1].

However, I began to wonder if it was possible to exploit the reversing 
property of some nontransitive dice to design a slightly different three- 
player game, one that uses fewer than seven dice.

Grime Dice

My idea for a three- player game required a set of five dice that con-
tained two nontransitive chains. When the dice were doubled, one 
chain would remain in the same order, while the second chain would 
reverse. This way, choosing a one- die or two- dice version of the game 
will allow you to play two opponents at the same time, no matter which 
dice they pick.

one die two dice

After a small amount of trial and error, I devised the following set of 
five nontransitive dice.

RED BLUE OLIVE YELLOW MAGENTA

These dice appeared to be the best set of five I could find. I have 
written about them before, and they became known as Grime dice.

For one- die games, we have the following chains:
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one die

M Y

O

B

R

All winning probabilities here are at least 5/9, with an average 
winning probability of 63%; I leave the calculations to the interested 
reader. Notice that the first chain is ordered alphabetically, whereas the 
second chain is ordered by word length of the color names.

You can also find nontransitive subsets of dice. For example, the 
Red, Blue, and Olive dice are a copy of the original set of three non-
transitive dice that I describe above, complete with the same winning 
probabilities and reversing property.

For two- dice games, we get the following chains:

two dice

2M 2Y

2O

2B

2R

An unfortunate consequence of Red, Blue, and Olive having the re-
versing property is that, when we double the dice, the first chain (the 
outside circle) reverses order, while the second chain (the inside penta-
gram) stays the same—with one exception.

However, the probability of this exception is close to 50% (specifi-
cally, 625/1,296). Meanwhile, the average of all other winning prob-
abilities is 62% (much higher than for Oskar dice), and so, in practice, 
the three- player game still works.
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It is quite nice that this set of five dice contained three dice with 
their own reversing property. However, I admit, the exception contin-
ued to niggle at me. I wanted to know if there was a set of five nontran-
sitive dice with the desired properties and no exceptions or if this set 
was really as close as we could get.

Finding a New Set of Grime Dice

I enlisted the help of a computer and the invaluable help of my friend 
Brian Pollock to search for sets of five nontransitive dice. The computa-
tional challenge of working out all sets of five dice and their chains was 
large one, so we devised a test.

Three dice can either form a diagram with all three arrows in the 
same direction, which we call a nontransitive chain, or with only two 
arrows in the same direction, which we call a transitive chain.

nontransitive transitive

We wanted to create a set of five nontransitive dice, with two non-
transitive chains, such that, when doubled, one chain stays the same 
and the other chain reverses order.

This means that, for any subset of three dice, if they form a nontran-
sitive chain singly, then they will form a transitive chain when doubled. 
Alternatively, if they form a transitive chain singly, then they will form a 
nontransitive chain when doubled. If a chain remains transitive or nontran-
sitive when the dice are doubled, then we say that the set has failed the test.

There are 10 subsets of three dice from a set of five. Each subset 
needs to pass the test. Furthermore, if all subsets pass the test, we have 
found a valid set of five dice with the desired properties.
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Applying this test allowed us to reject sets without the desired prop-
erty with less calculation.

Initially, we only considered dice using the values 0 to 9. Sets of dice 
that allow draws would be rather unsatisfactory. But after excluding 
draws, no set of five dice passed the test.

Only a few sets of four dice passed the test, which simply turned out 
to be the original Grime dice with one of the dice missing. This proved 
that Grime dice really are the best set of five dice using the values 0 to 
9, without draws.

Dice with Higher Values

Naturally, the next thing to try were dice with higher values. Keeping 
the criterion of no draws, the first success found used the values 0 to 13.

A: 4, 4, 4, 4, 4, 9 
B: 2, 2, 2, 7, 7, 12 
C: 0, 5, 5, 5, 5, 10 
D: 3, 3, 3, 3, 8, 13 
E: 1, 1, 6, 6, 6, 11

There were two such sets using the values 0 to 13; the second set was 
only a slight variation of the above. These were also the only sets of five 
with the desired properties that use consecutive numbers.

I was delighted with this success, but the average winning proba-
bility is about 59%, lower than for Grime dice. So we continued our 
search to find a set with stronger winning probabilities.

The winning probabilities slowly increased as we increased the val-
ues on the dice. Here is one of the strongest sets of five dice using the 
values 0 to 17:

A: 4, 4, 8, 8, 8, 17 
B: 2, 2, 2, 15, 15, 15 
C: 0, 9, 9, 9, 9, 9 
D: 3, 3, 3, 3, 16, 16 
E: 1, 1, 10, 10, 10, 10

Increasing the dice values after this point did nothing to improve the 
winning probabilities. Since the numbers are no longer consecutive, 
there is enough space for the values to change without changing the 
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winning probabilities, meaning that this set can appear repeatedly in 
slightly different forms. The investigation for better sets had plateaued.

For aesthetic reasons, I decided to subtract 8 from all sides of the 
above dice, making a set of new Grime dice (NGD) using values from 
−8 to 9:

RED BLUE OLIVE YELLOW MAGENTA

0
0

0
9

–4
–4

7
7

7
–6

–6
–6 1

11
1

1
–8

8
–5
–5

–5–5
8

–7

–7

2
2

22

Like the original Grime dice (OGD), this set makes two nontransitive 
chains, one with the colors listed alphabetically, the other with the colors 
listed by word length. When doubled, the alphabetical chain remains in 
the same order, whereas the chain ordered by word length flips.

one die

M Y

O

B

R 0
0

0
9

–4
–4

7
7

7
–6

–6
–6

1
11

1
1
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8
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–5

–5–5
8

–7

–7

2
2

22

two dice

2M 2Y

2O

2B

2R

7
7

7
–6

–6
–6

7
7

7
–6

–6
–6

1
11

1
1
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1
11

1
1

–8

8
–5
–5

–5–5
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8
–5
–5

–5–5
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–7

2
2

22

–7

–7

2
2

22

0
0

0
9

–4
–4 0
0

0
9

–4
–4

In single dice games, NGD have the exact same winning probabili-
ties as OGD. When the dice are doubled, NGD are generally slightly 
weaker, with average winning probability 60.4%, about 0.7% lower 
than for OGD. Crucially, however, all winning probabilities are now 
over 50%, allowing for a true three- player game as follows.

Invite two opponents to pick a die each, but do not volunteer whether 
you are playing a one- die or two- dice version of the game. No matter 
which dice your opponents pick, you will always be able to pick a die to 
beat each opponent. If your opponents pick two dice that are consecu-
tive alphabetically, then play the one- die version of the game. If your 
opponents pick two dice that are consecutive by word length, then use 
the two- dice version of the game.
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A Gambling Game

Can we expect to beat the two other players at the same time? Well, 
we have certainly improved the odds, with the average probability of 
beating both opponents now standing around 44%, a 5% improvement 
over Oskar dice. So, if the odds of beating two players is not over 50%, 
then how do we win? Consider the following gambling game.

Challenge two friends to a dice game where you will play your two 
opponents at the same time. If you lose, then you will give your op-
ponent $1. If you win, then your opponent gives you $1. So, if you beat 
both players at the same time, then you win $2; if you lose to both 
players, then you lose $2, and if you beat one player but not the other, 
then your net loss is zero. You and your friends decide to play a game 
of 100 rolls.

If the dice were fair, then each player would expect to win zero since 
each player wins half the time and loses half the time.

However, with Oskar dice, you should expect to beat both players 
39% of the time and lose to both players 28% of the time, which will 
give you a net profit of $22.

But even better, with new Grime dice, you should expect to beat 
both players 44.1% of the time but only lose to both players 23.6% of 
the time, giving you an average net profit closer to $41 (and possibly the 
loss of two former friends)!

I invite you to try out these games yourself and enjoy your successes 
and failures!
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The Bingo Paradox

Arthur Benjamin, Joseph Kisenwether,  
and Ben Weiss

Believe it or not, when a large number of people play bingo, it is much 
more likely that the winning card has a completed horizontal row than a 
completed vertical column. How can this be? If you randomly mark off 
numbers on your own bingo card, you are just as likely to get a horizontal 
bingo as a vertical bingo. Why should the winning card be any different?

A computer program was written that generated 1,000 random 
bingo cards and played the game 100,000 times. To our surprise, hori-
zontal winners were almost twice as likely as a vertical winner.

To better understand this paradox, let’s review the rules of this 
popular game. A typical bingo card, like the one in Figure 1, has five 
columns, labeled B, I, N, G, and O, and each column has five num-
bers underneath it. Column B has five numbers from 1 through 15, in 
a random order. Similarly, columns I, N, G, and O have five random 
numbers from 16 to 30, 31 to 45, 46 to 60, and 61 to 75, respectively. 
Some bingo cards have a free space in the middle of column N.

The caller calls out numbers—such as “B11!”—pulled randomly 
from a container. Players place markers on the corresponding spaces 
on their cards if they have them. The first person to complete a row, 
column, or diagonal yells “Bingo!” and wins a prize. In the analysis that 
follows, we will initially ignore the effect of the free space, but we will 
consider it later.

Suppose that the first eight numbers were drawn in this order: B11, 
I23, G58, B13, I21, N34, G55, and O75. With these numbers, each 
letter has appeared, so it is possible for there to be a bingo card with a 
horizontal or diagonal win. But since no letter has appeared five times, 
it is impossible to have a vertical bingo at this point. This observation 
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suggests a mathematical question that we can sink our teeth into. For 
a randomly generated sequence of bingo numbers, what is the probability 
that all five letters appear before any single letter appears five times?

Analyzing the Paradox

For simplicity, let’s assume that we are playing with so many bingo 
cards that as soon as all five letters appear, we have a horizontal winner 
and as soon as one letter appears five times, we have a vertical winner.

We define a horizontal sequence to be an arrangement of the 75 bingo 
numbers so that all five letters appear before any letter appears five 
times. Otherwise, it is called a vertical sequence. We say a sequence has 
property Hn if it becomes a horizontal sequence on the nth number and 
has property Vn if it becomes a vertical sequence on the nth number. A 
sequence that begins with the eight numbers given above would have 
property H8. Note that it is impossible for a sequence to be both horizon-
tal and vertical since a number like O75 could not simultaneously be the 
first time and the fifth time that the letter O appears in the sequence.

The probability of a horizontal sequence in five draws (the minimum 
number possible) is

( ) .P H 7 7 774
60

3
45

2
30

1
15 0 044005 $ $ $ .=

since after the first number is drawn, 60 of the remaining 74 numbers 
will produce a new letter, then 45 of the remaining 73 numbers will 

Figure 1. A typical bingo card.

3 27 34 50 67
6 19 35 48 65
7 25 FREE

SPACE 54 61
13 26 36 55 64
10 30 42 49 70
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produce a third letter, and so on. Similarly, the chance of a vertical 
sequence in five draws is

( ) .P V 74 73 72 71 0 011 13 12 11 00875 $ $ $ .=

So a horizontal sequence is about 50 times more likely than a vertical 
sequence on the fifth draw.

What about after the fifth draw? Here, the counting gets a lit-
tle more complicated, but we can do it. Let’s find the probability of 
achieving a horizontal sequence in exactly 10 draws. Note that there 
are 75! equally likely sequences of bingo numbers. How many of them 
result in a horizontal sequence on the tenth draw? Let’s choose the 
tenth number first. There are 75 possibilities, so let’s mentally choose 
the tenth to be O75.

The nine previous numbers can have four possible shapes based on 
how many of each of the letters B, I, N, and G appear: 4311, 4221, 
3321, or 3222. For example, the sequence N31, N41, G59, I26, B5, 
N35, B8, B9, B7 (inspired by the digits of pi) has shape 4311, since a 
letter appears four times (B), another letter appears three times (N), 
and the other letters (I and G) each appear once.

The horizontal shapes are partitions of the integer 9 into four positive 
parts, where all parts have size at most 4. Thus, a shape like 5211 is not 
allowed since it contains five of the same letter and would therefore be 
a vertical sequence.

The letters B, I, N, and G can be given a shape of 4311 in 12 differ-
ent ways (BBBBIIING, BBBBINNNG, and so on). Likewise, there are 
12 ways to give them a shape of 4221, 12 ways to give them a shape of 
3321, but only four ways to give them a shape of 3222 (we have four 
choices for which letter appears three times, and the other letters must 
all appear twice). In general, a four- digit shape can be assigned to B, I, 
N, and G in 1, 4, 6, 12, or 24 ways, depending on whether it consists of 
all the same digit, a tripled digit, two pairs of digits, one pair of digits, 
or all different digits, respectively.

Once we have determined how many of each letter is to be used, we 
can count the ways to assign them numbers using binomial coefficients. 
Recall that the binomial coefficient

!( )!
!

k k k
15

15
15

–=` j
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is the number of ways we can choose k items out of a collection of 
15 items. For example, the number of ways to assign numbers to 
BBBBIIING is

, ,,4
15 15 15 15

3 1 1 1365 455 15 139 7418752$$= =a a ` `k k j j
Say we choose the numbers B1, B2, B3, B4, I16, I17, I18, N31, G46. 

Then these nine numbers can be arranged, like Scrabble tiles in a rack, 
in 9! ways. Finally, the remaining 65 numbers (appearing after O75) can 
be arranged in 65! ways. Putting this all together, the probability that a 
bingo sequence becomes horizontal on the tenth draw with shape 4311 is

( ) !
! ! .P 4311 4

15
3

15
1

15
1

15
75

75 12 9 65 0 01517$ $
.= a a ` `k k j j

Similarly, the probabilities of becoming horizontal with the other 
possible shapes are

( ) !
! ! .P 4 1 4

15 15 15
1

15
75

75 12 9 65 0 022 2 2 2451$ $
.= a ` ` `k j j j

( ) !
! ! .P 21 15 15

2
15

1
15

75
75 12 9 65 0 033 3 3 3540$ $

.= a a ` `k k j j
and

( ) !
! ! .P 332 3

15 15
2

15 15
75

75 9 65 0 02 2 2
4 1906$ $

.= a ` ` `k j j j
Altogether, the probability of achieving a horizontal sequence on the 
tenth draw is

( ) ( ) ( ) ( ) .( )P P P PH P 4 1 3 1 0 04311 22 3 2 3222 941510 .= + + +

We perform similar calculations to find P(V10), the probability of a 
vertical sequence on the tenth draw. Again, there are 75 possibilities for 
the tenth draw, which we will assume is O75. The previous nine num-
bers must include exactly four Os, which can be chosen in ( )4

14  ways. 
The remaining five letters can have one of four possible shapes: 4100, 
3200, 3110, or 2210. We exclude the shapes 5000 and 2111, since the 
first shape would create an earlier vertical sequence and the second 
shape (combined with the other Os) would create an earlier horizontal 
sequence. Each of the shapes has one digit that appears twice and can 
therefore be assigned letters in 12 ways. Therefore,

( ) !
! ! .P 4100 4

1 15
1

15
75

75 12 9 65 0 04
4 0223$ $

.= a a `k k j
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( ) !
! ! .P 00 4

14 15 15
75

75 12 9 65 0 0032 3 2 519$ $
.= a a `k k j

( ) !
! ! .P 3 0 4

14
3

15 15
1

15
75

75 12 9 65 0 011 1 1113$ $
.= a a ` `k k j j

and

( ) !
! ! .P 10 4

14 15 15
1

15
75

75 12 9 65 0 0122 2 2 797$ $
.= a ` ` `k j j j

So, the probability of achieving a vertical sequence on the tenth draw is

( ) ( ) ( ) ( ) ( ) .P P P P PV 4 3 22 0 0100 3200 110 10 365210 .= + + +

Comparing P(V10) to P(H10), we see that even on the tenth draw, 
horizontal sequences are more than twice as likely to appear as vertical 
sequences.

Every sequence will become horizontal or vertical within 17 draws: 
After 16 draws, we can have a sequence of four Bs, Is, Ns, and Gs, 
say, but the next number will be either an O (creating a horizontal se-
quence) or a B, I, N, or G (creating a vertical sequence). We summarize 
our findings in Table 1.

Table 1. The Probabilities of a Vertical or a Horizontal Bingo

n Shapes P(Hn) P(Vn) Ratio Sum Cumulative

5 1 0.04400 0.00087 50.57 0.0449 0.0449
6 1 0.08800 0.00373 23.60 0.0917 0.1366
7 2 0.11350 0.00956 11.87 0.1231 0.2597
8 3 0.12052 0.01903 6.33 0.1396 0.3992
9 4 0.11220 0.02902 3.87 0.1412 0.5404
10 4 0.09415 0.03652 2.58 0.1307 0.6711
11 5 0.07191 0.03968 1.81 0.1116 0.7827
12 4 0.04972 0.03748 1.33 0.0872 0.8699
13 4 0.03075 0.03085 1.00 0.0616 0.9315
14 3 0.01658 0.02178 0.76 0.0384 0.09698
15 2 0.00742 0.01260 0.59 0.0200 0.9898
16 1 0.00254 0.00558 0.45 0.0081 0.9980
17 1 0.00052 0.00151 0.34 0.0020 1.0000
Total 35 0.752 0.248  1.000 
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The upshot is that the probability of a horizontal sequence is 75.2 
percent, which is about three times more likely than a vertical sequence. 
A sequence becomes horizontal or vertical by the twelfth draw about 87 
percent of the time. In all these cases, horizontal sequences are much 
more likely than vertical sequences. When it happens on the thirteenth 
draw (about 6 percent of the time) the sequences have almost the same 
probability, and when it happens after the thirteenth draw, which is only 
about 7 percent of the time, then the vertical sequences have the edge.

When all cards begin with a free space in the middle, the chance 
of a vertical sequence increases slightly, since column N now has 15 
numbers instead of 14 numbers to cover the remaining four spaces. 
Joe Kisenwether and Dick Hess independently discovered that when 
the free space is used, the chance of a horizontal win is 73.73 percent 
(see Dick Hess’s The Population Explosion and Other Mathematical Puzzles, 
World Scientific, 2016).

The Numbers of Shapes

Although we have answered our original question, more interesting 
mathematics is lurking behind the analysis.

When we enumerated sequences with properties H10 and V10, we had 
to analyze—in both cases—exactly four shapes. This is not a coinci-
dence. For each n, the sequences that are horizontal and vertical on the 
nth draw yield the same number of shapes. This result is not obvious. 
The number of shapes for Hn is the number of partitions of n − 1 by 
four positive integers less than 5, and the number of shapes for Vn is the 
number of partitions of n − 5 by four nonnegative integers less than 5, 
at least one of which is 0. What’s going on?

We will illustrate the one- to- one correspondence between the 
shapes for Hn and the shapes for Vn in the case n = 10, but the reasoning 
is the same for any n.

The shapes used for the enumeration of H10 consist of four positive 
numbers that add to 9, where all numbers are less than or equal to 4. 
These partitions, 4311, 4221, 3321, and 3222, are displayed pictorially 
in Figure 2. Such representations are called Ferrers diagrams. Note that 
they fit in a 4- by- 4 box.

If we subtract 1 from each value, or equivalently, delete the first col-
umns of dots in the Ferrers diagrams, as in Figure 3, we get partitions 
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of 5 into four nonnegative parts, where all numbers are less than or 
equal to 3. The partitions now fit inside a 4- by- 3 box.

Next, interchange the rows and columns of dots to create the conju-
gate partitions in Figure 4. These Ferrers diagrams fit into a 3- by- 4 box, 
or equivalently a 4- by- 4 box with an empty last row. They correspond 
to partitions of 5 by four nonnegative integers less than or equal to 4, 
at least one of which is 0. In particular, these are the V10 shapes 2210, 
3110, 3200, and 4100.

Thus, this technique gives a bijection between the shapes for H10 and 
the shapes for V10; and the same technique works for other values of n.

In fact, we can get more information from these diagrams. In the 
Vn case, each partition carves out a lattice path from the point (0,0) to 
(4,3) in the 3- by- 4 box. For example, the partition 3200 creates the 
lattice path in Figure 5. Consequently, the number of shapes needed to 

Figure 4. The conjugate partitions of those in Figure 3 fit into a 3-by-4 box. 
See also color image.

Figure 3. Partitions of 5 into nonnegative values less than or equal to 3 fit 
into a 4-by-3 box. See also color image.

Figure 2. Ferrers diagrams for the partitions 4311, 4221, 3321, and 3222 
(left to right) fit into a 4-by-4 box. See also color image.
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compute all of the vertical sequences (and hence the number needed to 
compute all of the horizontal sequences) corresponds to the number of 
lattice paths from (0,0) to (4,3). Since each lattice path takes, in some 
order, four steps to the right and three steps up, the total number of 
shapes is

! !
!

3
7

3 4
7 35= =a k

as seen at the bottom of the second column of Table 1.
Finally, there is a slick way to generate the number of shapes for 

each n (the rest of the entries in the second column of Table 1) using 
q- binomial coefficients, which are polynomial generalizations of binomial 
coefficients.

First we replace the integer m with the polynomial

m q q q q
q

1 1
1

–
–

q
m

m
2 1g= + + + + =

For example,

q q q q
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1

–
–

q
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g= + + + + =

Then a binomial coefficient like

3
7

3 2 1
7 6 5 35
$ $
$ $= =a k

has a corresponding q- binomial coefficient
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Figure 5. The lattice path corresponding to the parti-
tion 3200. See also color image.
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Believe it or not, after simplifying this rational function, we obtain a 
twelfth- degree polynomial in which the coefficient of the qn term is the 
number of partitions of the integer n that fit in a 4- by- 3 box (see Integer 
Partitions by George E. Andrews and Kimmo Ericsson, Cambridge Uni-
versity Press, 2004, for a justification). In other words, it’s the shape- 
counting polynomial

q q q q q q q q q q q q1 2 3 4 4 5 4 4 3 22 3 4 5 6 7 8 9 10 11 12+ + + + + + + + + + + +

as seen in the second column of Table 1.



The Sleeping Beauty Controversy

Peter Winkler

1. Introduction

Consider the following problem, restated here in the third person 
(Sleeping Beauty, or SB):

Sleeping Beauty agrees to the following experiment. On Sunday, 
she is put to sleep, and a fair coin is flipped. If it comes up Heads, 
she is awakened on Monday morning; if Tails, she is awakened on 
Monday morning and again on Tuesday morning. In all cases, she 
is not told the day of the week, is put back to sleep shortly after, 
and will have no memory of any Monday or Tuesday awakenings.

When Sleeping Beauty is awakened on Monday or Tuesday, 
what—to her—is the probability that the coin came up Heads?

I choose to use the term “probability” above since mathematicians 
are accustomed to assigning numerical values to that quantity, as com-
puted or estimated by a particular person about a particular event in a 
particular circumstance. Below, I will assume that this probability is 
the degree of “credence” that the person should have.

The issue is not that the Sleeping Beauty problem is undecidable (that 
is, not solvable from the axioms of set theory); indeed, it seems that 
nearly everyone discussing the problem has a strong opinion about its 
answer. The arguers fall into camps and subcamps, some claiming that 
the answer comes down to the nature of probability, the meaning of 
consciousness, evidential versus causal decision theory, one- world ver-
sus many- world quantum mechanics, conditioning versus updating—
or exactly how the problem is phrased.

Those who believe that the answer is 1/2 have been dubbed “halfers,” 
while those who go with 1/3 are called “thirders.” If you believe either 
answer could be correct—depending, perhaps, on interpretation or 
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phrasing—you are a “dualist”; if you think there is no correct answer 
because the problem cannot be well posed, you’ll be called an “objec-
tor.” There are subcamps (see below), and a few folks who say they 
simply don’t know. Perhaps there should even be a category for those 
who don’t care. But, hey, you’ve read this far, right?

Below, I will present the main arguments of the halfers and thirders, 
temporarily omitting references in order to maintain brevity. Then I 
will review the problem’s history and go back over the arguments in 
reverse order, looking for enlightenment.

InformatIon. Say the halfers: Before SB is put to sleep on Sunday, 
her credence that the fair coin will come up Heads is inarguably 1/2. 
She knows she will be awakened, so when she inevitably is, she has no new 
information, and therefore, her credence in Heads cannot have changed.

reflectIon. Similarly: On Sunday, the thirder SB knows that, on 
Monday, she will give credence 1/3 to Heads. But then she should al-
ready have credence 1/3 on Sunday, which is absurd.

repetItIon. Say the thirders: Repeat the experiment 100 times; 
then SB will be awakened about 150 times, 50 of them to Heads. So 
SB’s probability of Heads, on awakening, must be 1/3.

GamblInG. Say the thirders: Ask SB, upon each awakening, if she’s 
willing to have $3 deducted from her bank account if the coin landed 
Heads, provided that $2 is added to her account if the coin landed Tails. 
(She understands that if it’s Tuesday morning and she accepted the bet 
on Monday, her holdings may already have changed—but that should 
have no influence on today’s decision.)

As a thirder, SB should accept the bet: Her expectation is 1/3 (−$3) 
+ 2/3 (+$2) > 0. And she’s right to do so: Over the course of the 
experiment, she ends up $4 ahead if the coin landed Tails and only $3 
behind if it landed Heads. A corresponding calculation by the halfer SB 
would lead her to refuse the bet.

Symmetry. Suppose that 15 minutes after her Monday awakening, 
SB will be told what day it is. If she hears that it’s Monday, her prob-
ability of Heads is 1/2. Suppose instead that SB will be told the result of 
the coin flip. Then, if it’s Tails, her probability that it’s Monday is 1/2. 
The first implies P(Heads and Monday) = P(Tails and Monday); the 
second, that P(Tails and Monday) = P(Tails and Tuesday). These three 
probabilities represent exhaustive and mutually exclusive events, thus 
each is equal to 1/3.
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2. History

The above symmetry argument appeared in Elga’s seminal paper [12]. 
Elga extracted the Sleeping Beauty problem (named by Robert Stal-
naker) from Example 5 of Michele Piccione et al. [31], one of many 
papers in a volume of Games and Economic Behavior dedicated to a decision- 
theoretic problem known as “The Absent- Minded Driver.”1 Thus began 
a storm of arguments, papers, and blog comments, drawing in philoso-
phers, mathematicians, and even physicists, then (seemingly) everyone.

Philosophers are after much bigger game than the Sleeping Beauty 
problem itself. How does one determine the credence that should be 
given to a particular proposition in given circumstances, and how 
should that credence be updated with new information or the passage of 
time? Sleeping Beauty is a demanding test for any theory that addresses 
these questions, incorporating loss of consciousness, loss of memory, 
and absence of time indication. Many philosophers acknowledge the 
success of Kolmogorov’s probability axioms [24] but question whether 
they are equipped for handling propositions like “I am thirsty” whose 
truth- values change with time and perspective.

The debate in the philosophy community is thus concerned not just 
with the “correct” answer to Sleeping Beauty, but with which (if any) 
answer is implied by a given theory. Some, like Michael Titelbaum (see, 
e.g., [41, 42, 43] but not [40]) doubt that there is a good reason to choose 
any current framework over the rest in an effort to settle the issue. But 
even if you agree with this sentiment, you might ask which answer you 
want your theory to provide, and here the evidence (to me) is that the 
thirder position has emerged as the dominant view. This conclusion is 
not arrived at by counting papers as if they were votes since, of course, 
papers are supposed to present new ideas. Many published papers are 
attacks on the thirder position from various other camps, many others 
rebuttals. But anti- thirders seem to see themselves as fighting the estab-
lishment; concedes halfer Joel Pust [34]: “Most of those writing on the 
SB problem have argued that one- third is the correct answer.”

First to challenge Elga was David Lewis [25], rebutted by Cian 
Dorr [10]. Frank Arntzenius started as an objector [1] but became a 
thirder [2]. Rachel Briggs [5] advanced the idea that causal2 decision 
theorists (like her) should be thirders, and evidential decision theorists 
should be halfers, refuted by Vincent Conitzer [7]. Peter J. Lewis [26] 
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argued that the many- world view of quantum physics implies halfism, 
rebutted by Alistair Wilson [47]. John Pittard, a halfer himself, ar-
gues in [33] that halfers must endorse robust perspectivalism.3 More 
challenges and rebuttals are cited below in connection with particular 
arguments.

There have been many attempts to reconcile thirders and halfers by 
saying both are right (see Jacob Ross [36], who reaches a “rational di-
lemma,” or Berry Groisman [15]), or both wrong (Nick Bostrom [4]); 
there is even (see Namjoong Kim [23]) a camp (the “lessers”) who hold 
that the answer is less than 1/2 but maybe not 1/3. Jessi Cisewski et 
al. [6] claim that both sides, and all values between, are supportable, 
depending on whether one believes that SB’s total knowledge—includ-
ing degree of indigestion—is assumed to be exactly the same Monday 
and Tuesday.4 Pradeep Mutalik [30], who writes for the excellent on-
line magazine QUANTA, believes the answer depends on whether the 
question asks about “the coin associated with this experiment” or “the 
coin associated with this awakening.” But most mathematicians would 
not, I think, accept the notion that equivalent events can have different 
probabilities.

To see why the thirders are leading, I will revisit Elga’s symmetry ar-
gument, which looks a lot like a proof of the thirder position. Is it? We 
mathematicians like to think that an argument either is or isn’t a proof, 
but this applies only to formal proofs (which, like honest politicians, 
are much talked about but rarely seen). In real life, much more is de-
manded of proofs of theorems that have counterintuitive consequences. 
I will therefore return in reverse order to the earlier arguments, ending 
with the halfers’ compelling information argument. Perhaps the conse-
quences of the thirder position can be made more comfortable.

3. Revisits

Symmetry revISIted. Elga’s symmetry argument retains the honor of 
being the most popular target of nonthirders and has been attacked on 
every conceivable front. Here is Elga’s argument in symbolic form.

At a moment of SB’s awakening there are three possible relevant 
states: Heads (H) and Monday (M); Tails (T) and Tuesday (U); T and 
M. If SB is to be told (on every awakening) the day of the week and is 
now told “Monday,” then, by coin- flip symmetry,
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ℙ(H|M) = ℙ(T|M)

If SB is to be told (on every awakening) the state of the coin and is now 
told “Tails,” then, this time by indistinguishability of the Monday and 
Tuesday awakenings,

ℙ(M|T) = ℙ(U|T)

Therefore,

ℙ(H ˄ M) = ℙ(H|M) · ℙ(M) = ℙ(T|M) · ℙ(M) = ℙ(T ˄ M)

and

ℙ(T ˄ M) = ℙ(M|T) · ℙ(T) = ℙ(U|T) · P(T) = ℙ(T ˄ U)

so

ℙ(H ˄ M) = ℙ(T ˄ M) = ℙ(T ˄ U)

Since these events are mutually exclusive and exhaustive, their prob-
abilities sum to 1, so each has probability 1/3 and in particular

ℙ(H) = ℙ(H ˄ M) = 1/3

Some halfers, including Lewis [25], dispute the claim that ℙ(H|M) 
= 1/2—a hard position to maintain when you consider that the experi-
menters don’t need to flip the coin until Monday night. (How can SB’s 
credence in Heads be other than 1/2 if she knows the coin hasn’t been 
flipped yet?) Others (called “double- halfers”) concede that ℙ(H|M) = 
1/2, maintaining that SB’s credence in Heads doesn’t change when she 
hears that it’s Monday. How, then, do they deal with the math? Mi-
kaël Cozic [9] suggests that conditioning is not the right way to modify 
SB’s credence; Ioannis Mariolis [27] claims there are two kinds of “it 
is Monday” events, one of which he calls “Monday*”; Joseph Halpern 
[16] claims a “difference between the probability of heads conditional 
on it being Monday versus the probability of heads conditional on learn-
ing that it is Monday”;5 Patrick Hawley [17] does not accept that SB 
should be uncertain of the day!6 Roger White [46] doesn’t know what’s 
wrong with Elga’s argument but claims that a natural generalization of 
it has an unacceptable consequence. (Terry Horgan [20] is happy with 
the generalization but argues that its consequence is not only accept-
able but demonstrably correct.) As far as I can tell, every published 
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attack on Elga’s argument has been riposted, except perhaps for the 
just- published [6], whose quarrel with Elga is that he assumes that when 
SB is awakened, the events “it is Monday” and “it is Tuesday” are exclu-
sive and exhaustive.

To help clarify the main camps, here’s a rephrasing (some might 
disagree) of Sleeping Beauty: Alice, Bob, and Charlie have each taken 
a new sleeping pill. In hospital experiments, half the subjects slept 
through the night (as intended by the pill’s creators), but the other half 
woke up once in the middle of the night then returned to sleep and 
woke up in the morning with no memory of the night awakening.

Alice wakes up in the middle of the night, and her credence that the 
pill has worked drops to zero (no argument there).

Bob wakes up in the morning; his credence that the pill worked 
remains at 1/2 (thirders and double- halfers would agree, but the Lewis-
ians would not).

Charlie, who has blackout shades in his bedroom, wakes up not 
knowing whether it is morning. According to the thirders, his credence 
in the efficacy of the pill is 1/3 until he raises the shades, at which point 
it rises to 1/2 or drops to zero. If he desperately wants the pill to have 
worked, you might think Charlie would be happy to see the morning 
sun—but would he? The double- halfers believe that the sun does not 
change Charlie’s credence that the pill worked.

Further symmetry arguments have been advanced. Modulo details, 
Dorr [10] and Arntzenius [2] suppose that regardless of the coin flip, 
SB will be awakened on both days, but in the event of Heads, SB will 
be told “Heads and Tuesday” 15 minutes after her Tuesday awakening. 
Then, for the first 15 minutes that SB is awake, “Heads and Monday,” 
“Heads and Tuesday,” “Tails and Monday,” and “Tails and Tuesday” are 
equiprobable by symmetry. After 15 minutes, when SB doesn’t get the 
“Heads and Tuesday” signal, she eliminates that option, and the other 
three possibilities must remain equiprobable.

Other mathematical arguments, including those in Jeffrey Rosen-
thal’s [35] in The Mathematical Intelligencer and Titelbaum’s 2008 paper 
[41], have been offered. These as well are plausible to a mathemati-
cian—except, of course, for possible unintuitive consequences of the 
thirder position, which will be addressed below.

GamblInG revISIted. Both halfers and thirders have attempted to em-
ploy “Dutch books” to discredit the opposition; some of their arguments 
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can be found in Cristopher Hitchcock [18] (great title). A Dutch book 
is a sequence of “fair” bets with a guaranteed negative outcome—of 
course, this ought not to be possible, so the argument is that, if a Dutch 
book can be made, the probabilities upon which the fairness of the bets 
relies must not be correct. (Yes, regardless of SB’s credences, she can 
always work out her best strategy for the whole experiment and bet ac-
cordingly. But her credences ought to be reliable guides.)

Some Dutch book (and other decision- theoretic) arguments present 
situations in which SB’s best choice at a given awakening might depend 
on her decision at a previous or forthcoming awakening. In such cases, 
causal and evidential decision theory might differ concerning her ra-
tional action. A causal decision theorist believes SB’s actions should be 
based only on what they cause (in particular, not on her decisions at 
other awakenings), whereas an evidential decision theorist is permitted 
to use, e.g., her judgment that her decisions at all awakenings will prob-
ably be the same. Readers familiar with the Prisoner’s Dilemma (see, 
e.g., Steven Tadelis [39]) might imagine a case where the prisoners are 
identical twins who don’t necessarily give a fig for one another but have 
historically always made the same decisions in identical situations. If the 
twins are evidential decision theorists, they will escape the dilemma, 
each reasoning that whatever he does, his twin will probably do the 
same. If they are causal decision theorists, too bad!

Conitzer [8] regards as suspect any decision- theoretic argument in 
which SB’s decisions are not “additive,” therefore independent of deci-
sions at other awakenings. Conitzer shows that the thirder SB plays 
additive games optimally but does not believe that this settles the SB 
problem conclusively.

repetItIon revISIted. To the argument that 1/3 of awakenings are 
Heads, the halfers reply that one should count experiments—that is, 
coin flips—not awakenings. Being asked twice upon Tails, they say, 
does not change the result of the fair coin. But, somehow, the halfer’s 
retort seems to lose some force if SB is asked not about the coin but 
about her degree of credence that it is Tuesday. Of course, the halfer 
answer is 1/4 while the thirders claim 1/3; so what? But when the 
question is about the awakening, not (directly) about the coin, it seems 
more natural to count awakenings.

reflectIon revISIted. The idea that if you know that tomorrow you 
will think “X” then you should already think “X” today is known to 
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many philosophers as Bastiaan van Fraassen’s reflection principle [13, 
14]. The reflection principle is for the most part a special case of the 
optional stopping theorem (see, e.g., Richard Durrett [11]), which im-
plies that, if whenever a learning process (more generally, a martingale) 
is stopped the probability of a given event is the same, then the event’s 
a priori probability must be that same value. But the stopping algorithm 
must be implementable. This will not be the case, even when the stop-
ping time is fixed on the clock, if SB doesn’t know what time it is. (See, 
e.g., [38]—another great title.)

In fact, failure of Van Fraassen’s reflection principle in such a case 
is a fairly ordinary occurrence, and no memory loss is required for a 
demonstration. In Fred’s town, if school is to be suspended on account 
of snow, a loud siren blast is heard at 7:00 a.m. sharp. Fred wakes up 
much earlier, estimating a probability of 1/2 that a snow day will be 
declared but has no watch or clock. As time passes and he doesn’t hear 
the blast, his estimate of the snow day probability will go down, reach-
ing perhaps 1/3 (that magic number!7 ) at 6:59 a.m. Of course, this 
number will suddenly jump to 1 at 7:00 a.m. if it is a snow day; other-
wise, it will continue decreasing, reaching 0 when Fred is sure it’s past 
7:00 a.m. But the point is, Fred knows that his estimate of the snow day 
probability will be lower at 6:59 than it is now.

The optional stopping time theorem is not contradicted because, for 
Fred, “6:59” is not a legitimate stopping time. If instead Fred considers 
his snow- day- probability- estimate at the point when it becomes light 
enough to see his dresser—a genuine stopping time—he finds that its 
expected value is 1/2.

Similarly, “Monday” is not a legitimate stopping time for SB unless 
she is to be told the day of the week. When she is told that it’s Monday, 
the theorem applies and we correctly conclude that her credence in 
Heads remains at 1/2.

InformatIon revISIted. How does a thirder handle the argument that, 
upon awakening, SB has no new information to justify changing her Sun-
day appraisal? Elga himself, as well as Hitchcock, Monton [29], and Vaid-
man and Saunders [44], concede the lack of information but believe SB’s 
credence in Heads nonetheless changes. Robert Aumann, Sergiu Hart, 
and Motty Perry [3], giving a thirder argument years before Elga [12] in 
connection with the Absent- Minded Driver, take this view as well.
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Other thirders, especially lately, have argued effectively that to be 
conscious at a given moment, even if you don’t “know what time it is,” 
can constitute genuine information, justifying updating your degree of 
credence. Included in this list are Arntzenius [2] (after his conversion 
to thirdism), Dorr [10], Horgan [19], Karlander and Spectre [21], and 
Weintraub [45].

There are two obvious objections to this contention. One is that, if 
you weren’t conscious, you wouldn’t have the information. True, but 
so what? The Sleeping Beauty problem itself provides an example: If 
SB wakes up on Tuesday and is told the day, she undoubtedly has infor-
mation and can use it to conclude Tails. Yet, if she is not awakened on 
Tuesday, she may never know that the coin came up Heads. Similarly, 
Alice (in the sleeping pill example) learns upon awakening in the mid-
dle of the night that the sleeping pill did not work but would not have 
received the contrary information.

More persuasive is the idea that for your consciousness to provide 
information, you must know when you are conscious. But this calls 
into question the arbitrariness of how, as well as whether, time is mea-
sured. Must a moment be labeled to be a moment? Suppose that in 
SB’s experimental bedroom is an LED device that tells the number of 
days since the Chicxulub impact. She awakens and reads the number 
24,120,373,498. She has no idea what day of the week that represents, 
but she does know that she is conscious on that day and didn’t know 
before that she would be.8

Seen this way, it would be surprising if SB got no information when 
awakened. Once it is conceded that being conscious at a time when SB 
might not have been conscious can justify modifying a credence, it fol-
lows that being conscious at what might be a time when she might not 
have been conscious also can justify modifying a credence.

4. Conclusions

Sleeping Beauty is indeed a beauty of a problem, and I am under no il-
lusions that controversy about its solution will ever entirely disappear. 
But the extensive thought and discussion devoted to Sleeping Beauty 
has not been in vain; the literature suggests, at least to this writer, the 
following points.
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• The Sleeping Beauty problem touches many fascinating issues 
in philosophy but, to the extent that there is agreement about 
what is asked, is also a mathematical question to which many 
think the straightforward answer is 1/3.

• Some consequences of the 1/3 answer appear surprising at first, 
but upon scrutiny, seem (for some) increasingly intuitive. In 
particular, being conscious at a given moment may constitute 
legitimate information, even if—and in some cases, especially 
if—the moment’s time label is not known.

• Kolmogorov’s axioms—in particular, their treatment of condi-
tioning—have held up quite well and together with their impli-
cations (e.g., the optional stopping time theorem) may indeed 
have gained some admirers. Andrey Nikolayevich, were he con-
scious, would be justly proud. But no comprehensive theory of 
credence and how it is updated has been agreed upon.

Finally, there is ample confirmation here that philosophers and 
mathematicians have a lot to gain by talking to one another. The for-
mer, for example, are reminded that replacing a principle by a theorem 
can help achieve clarity, the latter that the path from words to numbers 
can have hidden twists.
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Notes
1. In its simplest form, the absent- minded driver wants to take the second highway exit 

to get home but can’t distinguish the second exit from the first and knows that he will not 
remember whether he already passed an exit. Preferring to miss both exits rather than get 
off at the first, he reluctantly decides to stay on the highway, but when he gets to an exit, 
he reconsiders. In considering randomized algorithms for the driver, most writers assumed 
what would be the thirder view—causing, according, e.g., to Wolfgang Schwarz [37], para-
doxical conclusions
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2. More about causal versus evidential decision theory will be found in the “Gambling 
revisited” section below.

3. Perspectivalism says that two agents can rationally disagree about a proposition even 
though each gives the other’s argument the same weight as her own. Pittard uses “robust” to 
emphasize that in his SB variation, the arguments do not merely have equal weight; they are 
identical.

4. An issue with [6] is that its equation (1) gives the probability that an event is witnessed 
at least once during the experiment, but what is required for SB’s conditioning is that the 
event is witnessed at time t.

5. which would indeed be the case, were SB not told in advance, in Elga’s argument, that 
she would learn what day it is.

6. It is not my intention to make fun of philosophy here; quite the contrary: I love it that 
philosophers question everything. Somebody has to!

7. The argument for 1/3 is that at 6:59 Fred’s a priori probability that 7:00 a.m. has 
passed by is (almost) 1/2, now reduced to 1/3 by the condition of the siren not having gone 
off yet. Thus “before 7:00 a.m., snow day,” “before 7:00 a.m., no snow day,” and “after 
7:00 a.m., no snow day” are equiprobable. Sounds like SB, no? But (as Arntzenius points out 
in [2]) Fred can’t know what his a priori time probability distribution will be at a given time; 
otherwise, he could use that information to tell time!

8. At this point in the article, readers should not be surprised to learn there are frame-
works—see, e.g., [6, 16, 28]—in which the presence of any time- measuring device changes 
the answer to the Sleeping Beauty problem. Others, e.g., Kierland and Monton [22], say 
that unknown time is not really the issue to begin with; the Monday/Tuesday factor can be 
replaced by a random signal, such as the color of the room in which SB is awakened.
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Wigner’s “Unreasonable 
Effectiveness” in Context

José Ferreirós

Einstein famously wrote that the most incomprehensible thing about 
the world is that it is comprehensible. He was thinking about math-
ematical and theoretical physics. The idea is an old one. Nobel Prize 
winner Paul Dirac believed that mathematics was an especially well- 
adapted tool to formulate abstract concepts of any kind, and he also 
famously insisted that mathematical beauty is a key criterion for phys-
ical laws.1 But one of the most famous presentations of that thought 
was by Dirac’s brother- in- law, Wigner Jeńó Pál, a.k.a. Eugene P. 
Wigner.

Wigner was a highly successful scientist. In mathematical circles, he 
is best known for his contributions to quantum theory, pioneering the 
application of group theory to the discovery of fundamental symmetry 
principles—and, of course, for his 1960 paper “The Unreasonable Ef-
fectiveness of Mathematics in the Natural Sciences.” Some passages of 
the 1960 paper are often quoted; here is one:

The miracle of the appropriateness of the language of mathemat-
ics for the formulation of the laws of physics is a wonderful gift 
which we neither understand nor deserve. We should be grateful 
for it and hope that it will remain valid in future research and 
that it will extend, for better or for worse, to our pleasure even 
though perhaps also to our bafflement, to wide branches of learn-
ing (Wigner 1960, 237/549).

Toward the beginning of his essay, Wigner writes that “the enormous 
usefulness of mathematics in the natural sciences is something border-
ing on the mysterious and [. . .] there is no rational explanation for it” 
(1960, 223/535). It is telling that the word “miracle” appears twelve 
times in the text!
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Surely Wigner’s focus was more on the question of what it is in the 
physicist’s approach to reality, as it has developed since Newton, that 
makes it possible to formulate mathematical laws.2 But in fact his paper 
has been widely discussed in connection with a related question, which 
is our concern here; namely, what is it within mathematics that makes 
possible its highly successful application in physics? A good number of 
people have offered replies to Wigner, aiming to show that there is 
no miracle.3 Here too we shall critically discuss elements of Wigner’s 
presentation that unduly transform the relation between mathematics 
and physics into “a gift” or “miracle” that is very difficult to understand. 
Beyond that, we shall try to unveil the sources of Wigner’s point of 
view. His discussion is characteristic of mid- twentieth- century images 
of mathematics, but it is hard to square with present conceptions or 
even with the views of the best experts from a generation before him.4

Wigner’s Views and the New Practice 
of Mathematical Physics

I will distinguish three different parts in Wigner’s 1960 paper. First, 
there are three sections devoted to generalities about mathematics and 
physics, in which the reflections regarding physics stand out as more 
relevant and insightful. Concerning physics, he lays emphasis on how 
the identification of regularities in the chaotic phenomena depends on 
packing a lot of the information into the “initial conditions.”5 Next is 
a section in which Wigner makes his strongest case, highlighting the 
success of mathematical laws in physical theories to underscore how it 
is “truly surprising.” Finally, he moves on to question the uniqueness of 
physical theory, that is, the hope for a single foundation of all physics or 
even all science.6 I will begin in the middle by explaining the strongest 
case Wigner makes for the astonishing effectiveness of mathematics as 
a central component of the methodology of physics.

In the section entitled “Is the Success of Physical Theories Truly 
Surprising?” Wigner offers three examples—which, he adds, could be 
multiplied almost indefinitely—to illustrate the appropriateness and 
accuracy of the mathematical formulation of the laws of nature:

• Newton’s law of gravitation,
• Heisenberg’s rules of matrix mechanics, and
• the theory of Lamb shift in QED.
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The law of gravity, “which Newton reluctantly established” and which 
he could verify to within an error of about 4 per cent, has proved to 
be accurate to within an error of less than 1/10,000 of 1 per cent. It 
“became so closely associated with the idea of absolute accuracy that 
only recently did physicists become again bold enough to inquire into 
the limitations of its accuracy” (Wigner 1960, 231/543).

As for the second example, from the early years of quantum me-
chanics, Heisenberg established some quantum- mechanical rules of 
computation—which were to lead to matrix mechanics—on the basis 
of a pool of data that included the behavior of the hydrogen atom and 
its spectrum. When Pauli (1926) applied quantum mechanics to the 
hydrogen atom in a realistic way, the positive results were an expected 
success. But then, says Wigner, it was “applied to problems for which 
Heisenberg’s calculating rules were meaningless.” These rules presup-
posed that the classical equations of motion had solutions with certain 
periodicity properties, “and the equations of motion of the two elec-
trons of the helium atom, or of the even greater number of electrons of 
heavier atoms, simply do not have these properties, so that Heisenberg’s 
rules cannot be applied to these cases. Yet the calculation of the lowest 
energy level of helium, as carried out a few months ago [in 1959] by 
Kinoshita at Cornell and by Bazley at the Bureau of Standards, agree 
with the experimental data within the accuracy of the observations, 
which is one part in ten millions. Surely in this case we got something 
out of the equations that we did not put in” (Wigner 1960, 232/544).

Certainly Wigner has a point here. In his view, it is the theoreti-
cal separation between initial conditions of the system and the simple, 
mathematical “laws of nature” that have allowed physicists to attain such 
impressive levels of success. Wigner is right in that the actual empirical 
success of physical laws went far beyond anything that might reasonably 
have been expected at the outset. It is unconvincing to regard this as the 
outcome of mere chance, but is there “no rational explanation for it”?

As we shall see, the way in which Wigner framed his understand-
ing of mathematics plays a large role in creating the “mystery,” the 
impression of a miracle. The advancement of physical science shows 
undeniably that there are mathematical structures underlying natural 
processes and phenomena. (Of course we lack an a priori argument 
that it must be so, but science never offers ultimate answers.) Even if 
we admit that there is a common structure between our mathemati-
cal models and real phenomena, this does not force us to interpret 
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realistically all features of the models. That is, one can still be critical 
and ponder the possibility that some features of the mathematics may 
be human artifacts that perhaps impute extra structure, complications 
which distance our physico- mathematical understanding from “the 
real” itself.

Wigner was an important figure in the emergence of the radically 
new mathematical toolbox of quantum physics, built on top of new, ab-
stract, unintuitive representations. Some physicists resented the aban-
donment of the tool kit of classical analysis in favor of group- theoretic 
methods, abstract spaces, and so on. Around 1930, they described 
these innovations as a “group pest” or “plague of groups.” The situation 
worsened when, instead of seeking explicit solutions by calculus, the 
new goal became to find invariants associated with structural represen-
tations. Higher levels of theorizing began to occupy center stage; a case 
in point was symmetry considerations one level above the mathematical 
laws of physics (Scholz 2006).

Broadly speaking, an essential ingredient of the new type of work 
was the infusion of a new style of structural and qualitative methods 
(set theory, topology, symmetries) to replace the old quantitative spirit 
and its search for concrete solutions on the side of calculation. Little 
wonder that questions would arise about the new balance between 
mathematics and physics. Before we discuss his views on mathematics, 
I will argue that Wigner’s formative years in Berlin seem to have been 
particularly relevant in shaping his philosophical views.

Some Biographical Elements

Eugene Wigner, who was born in Budapest in 1902, came from a well- 
to- do family. His long life included an extended period in Berlin until 
1936, and a still longer one in the United States, mostly working at 
Princeton. He was awarded the Nobel Prize for Physics in 1963 “for his 
contributions to the theory of the atomic nucleus and the elementary 
particles, particularly through the discovery and application of funda-
mental symmetry principles.”7 Obviously the Nobel increased the vis-
ibility of Wigner’s reflections on science, and in 1967 he published a 
selection of essays under the apt title Symmetries and Reflections. One 
of them was “The Unreasonable Effectiveness of Mathematics in the 
Natural Sciences,” originally published in the Annals of Pure and Applied 
Mathematics in 1960.
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In Budapest, Wigner attended a secondary school (Gimnázium) where 
he obtained a sound training in mathematics. Two people were crucial 
in this respect, the noted mathematics teacher László Rátz, who knew 
how to care about promising students, and a fellow student who was 
one year younger, Neumann János, a.k.a. John von Neumann. Wign-
er’s friendship with von Neumann was a lasting one, and he would later 
acknowledge that he learned more mathematics from von Neumann 
than from anyone else.8

Wigner studied chemical engineering at the Technical University 
in Berlin, a choice strongly influenced by his father. He himself was 
more attracted to physics, and this led him to attend the Wednesday 
meetings of the German Physical Society, where he could see and hear 
luminaries such as Einstein, Planck, Sommerfeld, and Heisenberg. A 
noteworthy remark in his autobiography reads, “In my apartment, I 
read books and articles on chemical analysis, set theory, and theoretical 
physics” (Szanton 1992, 65). His independent reading on set theory is 
noteworthy, but this was probably because von Neumann was heavily 
engaged with the subject.

In the academic year 1926–1927, Wigner obtained a position in Ber-
lin as an assistant to Karl Weissenberg, who worked on X- ray crystal-
lography. Through his engagement with crystallography, Wigner was 
led to study group theory, taking up the algebra textbook by Heinrich 
Weber and then solving questions posed by Weissenberg.9 The follow-
ing academic year, he went to Göttingen to work as an assistant to 
David Hilbert. This might have been a momentous opportunity, yet 
things did not work out so well since Hilbert was seriously ill. Wigner 
was left to work on his own, and so he decided to investigate the re-
lation between group theory and the new quantum mechanics. Von 
Neumann had given him a crucial pointer, suggesting that he use group 
representations as found in the relevant papers by Georg Frobenius 
and Issai Schur.10 Thus he became a pioneer in the new mathematical 
 methods of theoretical physics.

Someone (presumably Wolfgang Pauli) characterized the period we 
are talking about as a time of “Gruppenpest” in physics.11 The metaphor 
of a disease reflects the feeling of alienation experienced by many theo-
retical physicists, realizing that their traditional toolbox of classical ana-
lytical methods was being replaced by new and foreign “abstract” ideas. 
Wigner worked especially on the study of atomic spectra, which was to 
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be the topic of his important book Gruppentheorie und ihre Anwendungen 
auf die Quantenmechanik der Atomspektren (1931). In the introduction, he 
emphasizes how the precise solution of quantum mechanical equations 
by calculus is extraordinarily difficult, so that one could only obtain 
gross approximations. “It is gratifying, therefore, that a large part of 
the relevant results can be deduced by considering the fundamental 
symmetry operations [durch reine Symmetrieüberlegungen].” He adds,

Against the group- theoretic treatment of the Schrödinger equa-
tion, one has often raised the objection that it is “not physical.” 
But it seems to me that a conscious exploitation of elementary 
symmetry properties ought to correspond better to physical sense 
than a treatment by calculation.12

In 1928, Wigner became a Privatdozent at the Technische Hochschule 
in Berlin, but given the worsening political situation in Europe, in 
1936 Wigner and von Neumann decided to settle permanently in 
“the New World.” Nevertheless, the European years in the 1920s 
and 1930s had a particularly strong impact on Wigner’s views. In 
Germany at the time, there was an intense sense of rupture, of new 
forms of life being created. Quantum mechanics was perceived as a 
radical break with the past. One spoke of “Knabenphysik,” because 
its protagonists were all “youngsters” (except for Max Born and Niels 
Bohr). This tense social and intellectual atmosphere was alluded to in 
Wigner’s reminiscences:

Historians tell us that Berlin in the 1920s was a city in chaos. . . . 
Is a radical a man who repudiates the society of his parents and 
teachers? If so, then I was no radical in Berlin. I admired my teach-
ers more with each passing year. I loved my parents and wanted to 
help them. To dream of pursuing a career that they had not cho-
sen was a radical enough path for a youth of my background. I had 
no wish to be more radical than that. But if a radical is someone 
who regards a traditional subject in a revolutionary way, then per-
haps I was a radical, because quantum mechanics had transformed 
physics and I embraced quantum mechanics fervently (Szanton 
1992, 84).

Wigner’s early exposure to abstract mathematical theories led him to 
adopt some new and radical ideas about mathematics. These ideas were 
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very different from the views of previous generations, and they came to 
be clearly expressed in his 1960 paper.

What Is Mathematics? To Be or Not To Be a Formalist

In the section “What is mathematics?” Wigner provides a surprisingly 
simple answer to this question:

[. . .] mathematics is the science of skillful operations with con-
cepts and rules invented just for this purpose. The principal em-
phasis is on the invention of concepts. [. . .] The depth of thought 
which goes into the formulation of the mathematical concepts 
is later justified by the skill with which these concepts are used 
(Wigner 1960, 224/536).

Wigner here emphasizes the predominant role of intramathematical 
considerations, regardless of the potential for application to real phe-
nomena. However, he makes a distinction. On the one hand, we have 
basic ideas such as the concepts and principles of elementary geometry, 
rational arithmetic, and even irrational numbers—which are directly 
suggested by the physical world. On the other hand,

Most more advanced mathematical concepts, such as complex 
numbers, algebras, linear operators, Borel sets—and this list 
could be continued almost indefinitely—were so devised that they 
are apt subjects on which the mathematician can demonstrate his 
ingenuity and sense of formal beauty (Wigner 1960, 224/536).

Ingenuity, inventiveness, the skill of the virtuoso to develop interesting 
connections, guided by a sense of formal beauty and a basic concern for 
logical coherence, are what drive pure mathematics.

Such a description brings to mind the modernist work of von Neu-
mann around 1930: developing axiomatic set theory in a way completely 
different from Zermelo’s and introducing the notion of Hilbert space 
to redefine in a much more abstract setting the foundations of quantum 
mechanics.13 Further, von Neumann was working on Hilbert’s meta-
mathematical program and was invited to represent the foundational 
standpoint of formalism in a conference on the Epistemology of the 
Exact Sciences, organized jointly by the Berlin Society for Empirical 
Philosophy and the Vienna Circle in September 1930.
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Strict formalism interprets mathematical systems as a game of sym-
bols. The symbols have no other content than they are assigned in the 
calculus by their behavior with respect to certain rules of combination; 
the only requirement is consistency of the system. The network of rela-
tions thus codified in a formal calculus restricts possible applications or 
interpretations of the system. In the 1930s, this formalistic standpoint 
had the advantage of eliminating all “metaphysical difficulties” concern-
ing mathematics, and in particular the need for positing any Platonic 
realm of mathematical objects. Formalism also incorporated traits of 
“conventionalism” about mathematics, such as the insistence on sim-
plicity and elegance or beauty as guides in the formulation of the basic 
principles of axiomatic systems.

In fact, Wigner’s paper offers very little information on his sources 
about the idea of mathematics. We find a brief reference to Hilbert on 
foundations (1922a), another passing reference to Karl Polanyi,14 and 
mention of Die Philosophie der Mathematik in der Gegenwart (1932) by Wal-
ter Dubislav. Yet if we reflect on these sources, adding Wigner’s time in 
Göttingen and his relation to von Neumann, links to the Hilbert School 
are predominant.

The case of Walter Dubislav (1895–1937) is particularly interest-
ing. He was a member of the Berlin Association for Empirical Phi-
losophy and one of the signers of the famous Vienna Circle manifesto. 
He began studying mathematics at Göttingen, but World War I in-
tervened. After military service, he went to the University of Berlin, 
concentrating on philosophy and logic. The brief presentation of the 
philosophy of mathematics offered in his 1932 textbook is very clear, 
emphasizing mathematical logic, axiomatic thinking, and a form of 
empiricism in the case of applied mathematics. The imprint of the 
Hilbert School is undeniable here. Dubislav argued for the “character 
of calculation [Kalkülcharakter] in pure mathematics” and defended a 
strict formalism:

Formalism states the following: that pure logic like pure math-
ematics are in the strict sense of the term not sciences, [. . .] Pure 
logic and pure mathematics are calculi [Kalküle] which deal with 
this: obtaining from certain initial formulas, arbitrary in them-
selves, more and more formulas according to rules of operation 
that in themselves are arbitrary. Put grossly: pure logic and pure 
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mathematics, taken in themselves, are games of formulas [Formel-
spiele] and nothing else (Dubislav 1932).

This was not yet a familiar point of view. As it turns out, Dubislav was 
a Privatdozent at the Technische Hochschule Berlin from 1928 and a col-
league of Wigner there.15

Two issues deserve to be emphasized. First, logical empiricism 
would continue to be prominent in the philosophical context around 
Wigner and is visible in his (1960). But the second point is more di-
rectly interesting for my purposes. We have seen that Dubislav was 
a strict formalist, and that Wigner himself still defended a kind of 
formalism in his remarks about mathematics. The previous generation 
of physicists and mathematicians were not formalists, and it was only 
the generation that matured in the 1920s that understood the new 
ideas about axiomatics, structures, logic, and foundations in a radical 
way. The situation is parallel to the radicalism of the new conceptions 
of the physical world among the “youngsters” who advanced quantum 
physics.

Hilbert was not a formalist at the level of epistemology. His cel-
ebrated formalism was a method adopted in the context of studies of the 
foundations of mathematics, for the goals of metamathematics (consis-
tency proofs, decision procedures). Using the axiomatic method, one 
may begin by considering a particular field of work with concrete ideas. 
But there is much to gain methodologically by disregarding the par-
ticular meaning of the concepts, considering the axioms as schematic 
conditions, and adopting full freedom of interpretation. In foundational 
research, this attitude can be amplified to achieve strict formalization, 
but these methods do not expand into a full epistemological account, 
and such an account was not at all Hilbert’s intention.

Incidentally, it is easy to find a thousand places in which Hilbert 
is alleged as saying, “Mathematics is a game played according to cer-
tain simple rules with meaningless marks on paper.” The source of this 
(mis)quotation seems to be E. T. Bell, and it can nowhere be found in 
Hilbert’s papers. What we can find in lectures of 1919–1920 is the fol-
lowing: “There is no talk of arbitrariness here. Mathematics is not like 
a game in which the problems are determined by rules invented arbi-
trarily, but a conceptual system [endowed] with inner necessity, that 
can only be this, and not any other way.”16
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I have previously mentioned the novelty of the work in mathematical 
physics around 1930 with its infusion of a new spirit of structural and 
qualitative methods in place of the old quantitative spirit. But this was not 
unknown to Henri Poincaré or Hilbert, so it cannot be simply regarded 
as the source of a formalist attitude. In this case, other more general 
sources have to be found, coming largely from the intellectual context.

As we discussed earlier, the young intellectuals in Berlin, during the 
1920s, were living in a rather chaotic, rapidly changing, and heated cul-
tural atmosphere. After wartime defeat and the political and economic 
turmoil (inflation, the Weimar republic), one could hear everywhere the 
call for a “new order,” a new society, indeed a “new man,” and of course 
new forms of science. Such a setting promoted forms of modernism in the 
sciences, modernistic tendencies that presented themselves as a radical 
break with the past.17 Jeremy Gray (2008) offered a reconstruction of 
early twentieth- century mathematics as undergoing a “modernist trans-
formation.” He defines modernism, in science or mathematics, as the new 
conception of the field as “an autonomous body of ideas, having little or 
no outward reference, placing considerable emphasis on formal aspects of 
the work and maintaining a complicated—indeed, anxious—rather than 
a naïve relationship with the day- to- day world” (Gray 2008, 1). The in-
terwar period was a particularly high time for such modernist tendencies.

Hilbert was basically right: formalism is very good as a method for 
studying foundations, but philosophical questions about the epistemic 
nature of mathematical knowledge require more sophisticated answers. 
Moreover, the examples Wigner presents from advanced mathematics 
do not support his formalist views. His list included complex numbers, 
algebras, linear operators, and Borel sets. His idea was that the elabo-
ration of such concepts is guided by intramathematical considerations, 
disregarding considerations of the potential for application to natural 
phenomena. They are, according to him, “so devised that they are apt 
subjects on which the mathematician can demonstrate his ingenuity and 
sense of formal beauty.”

What Is Mathematics? Remarks on the 
Reasonable Development from Physics

Wigner’s most convincing example is that of complex numbers. Ital-
ian mathematicians introduced the square root of −1 in the sixteenth 
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century to manipulate numbers and expressions in algebraic equations. 
Astonishingly, the imaginary numbers turned out to play important 
roles in different places: the equation that some consider the most beau-
tiful in all of math, eri

 + 1 = 0 (Euler), the fundamental theorem of al-
gebra (D’Alembert and Gauss), Cauchy’s integral formula, Riemann’s 
mapping theorem, etc. Even so, the early results and procedures did 
not establish a secure position for imaginary numbers in the world of 
mathematics. Their full adoption occurred only in the nineteenth cen-
tury and involved a reconception of the number concept as well as the 
establishment of geometric representations of the complex numbers. 
For Gauss and Riemann, considering the system of complex numbers as 
the natural general framework for number in general was a basic com-
mitment and fundamental principle of pure mathematics.18

Wigner later emphasizes that quantum mechanics is formulated on 
the basis of complex Hilbert space. This is why theoretical physicists, 
such as Wigner and Roger Penrose, have placed great emphasis on the 
complex number structure. However, going somewhat against Wig-
ner’s thesis, the complex field inherits most of its properties from the 
real field. Wigner himself stressed that the real number system was 
devised so as to mirror the properties of measurable quantities. But let 
us concede that the story of complex numbers fits well with Wigner’s 
viewpoint; their importance in connection with the theory of electro-
magnetic fields and, even more, quantum theory is astonishing.

Given that Wigner pioneered group- theoretic methods in quantum 
mechanics, it is noteworthy that group theory is not among his ex-
amples. However, it may well be the case that Wigner was aware of 
opinions like Hermann Weyl’s (1928), that the group concept is in a 
sense “one of the oldest” mathematical concepts. The reasoning behind 
this statement is that group structures are implicit behind all kinds of 
ancient concepts and practices—symmetry considerations, operations 
of translation and congruence in basic geometry, measuring operations, 
and so on. Weyl’s quite reasonable view is that nineteenth- century ex-
plorations and formalizations just made explicit and abstract what had 
been there, implicitly, throughout the history of mathematics.

Likewise, linear operators and matrices might have seemed a very 
novel feature to physicists around 1930, for the simple reason that 
they had not been part of their basic education, but in fact linear al-
gebra arose naturally in different areas of mathematics and its applica-
tions. As Kleiner (2007, 79) remarks, “the subject had its roots in such 
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diverse fields as number theory (both elementary and algebraic), ge-
ometry,19 abstract algebra (groups, rings, fields, Galois theory), analy-
sis (differential equations, integral equations, and functional analysis), 
and physics.” Thus these examples were not good choices for Wigner’s 
purposes.

Perhaps the oddest example in Wigner’s list is his reference to Borel 
sets, given that these play no immediate role in physics. Probably 
Wigner chose the example of Borel sets as one of the central concepts 
of set theory in the first third of the twentieth century—what better 
example of the purest in pure math?20 Yet this case goes rather against 
his thesis. Borel sets are strongly linked with the function concept, and 
their study was motivated by a desire to restrain the most general and 
arbitrary possibilities opened by set theory, to focus on concrete ideas 
closer to classical math.21 The all- important notion of function is some-
thing that one misses in Wigner’s list. But the study of functions has 
constantly been promoted by extramathematical considerations, mostly 
physical.

As suggested previously, it is natural to compare Wigner’s views 
with Poincaré’s. Both were pioneers in the new mathematical methods 
and their use in physics—the group concept was a key guiding ele-
ment—and both were highly influential in promoting new qualitative 
approaches and techniques. Also, both scientists were inclined to gen-
eral philosophical reflection, and it is interesting that both emphasized 
the importance of the aesthetic element in guiding pure mathematics. 
Yet Poincaré never suggests a “miracle” in the role of mathematics in 
physics; on the contrary, he insisted on the interplay between math-
ematics and science, and he (unlike Wigner) emphasized the centrality 
of the continuum and the function concept. Thus in The Value of Science 
(1905) he writes,

physics has not only forced us to choose among problems which 
came in a crowd; it has imposed upon us problems such as we 
should without it never have dreamed of.22

A case in point might be Fourier’s work in Théorie analytique de la chaleur 
(1822), in which he used trigonometric series in mathematical physics, 
also linked with the famous eighteenth- century discussion about vibrat-
ing strings. Fourier series were the background for Dirichlet’s (1829) 
proposal of the notion of arbitrary function, as well as Riemann’s (1854) 
study of highly discontinuous functions and his notion of the integral.
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Conclusions

Even Wigner’s friend, János von Neumann, who may have entertained 
modernist views akin to formalism around 1930, was no longer in 
agreement with him after World War II. In an interesting paper for the 
general public, published in 1947, he writes,

The most vitally characteristic fact about mathematics is, in my 
opinion, its quite peculiar relationship to the natural sciences, or, 
more generally, to any science which interprets experience on a 
higher than purely descriptive level. [. . .] Some of the best inspira-
tions of modern mathematics (I believe, the best ones) clearly origi-
nated in the natural sciences. The methods of mathematics pervade 
and dominate the “theoretical” divisions of the natural sciences.

Contemporary Soviet mathematicians, who would have regarded 
Wigner’s presentation as a quintessential example of bourgeois philoso-
phy, were even more in favor of such views. I am led to mention this 
because Wigner, like his Hungarian friends Leo Szilard, Edward Teller, 
and von Neumann, was strongly anticommunist—and it may be the 
case that his political views colored his philosophical ideas.

Many of the great abstractions introduced in mathematics from the 
mid- nineteenth century have strong roots in the (physically motivated) 
mathematics of functions, analysis, the real- number continuum, and ge-
ometry. Actually the twentieth- century abstractions are often based on 
making the basic assumptions behind the earlier systems more flexible. 
And this increase in flexibility provides a very rational explanation of 
the applicability of mathematics! It is hardly surprising that a much more 
general and flexible theory of geometrical structures (e.g., Riemannian 
differential geometry) can be applied in many contexts in which the 
rigid structures of Euclidean geometry would not be applicable.

Yet perhaps the empirical success of mathematical laws in physics 
requires something else.

Notes
1. Dirac (1963) expressed this consideration in very strong terms; see also Kragh (1990).
2. In an interesting paper, Arezoo Islami (2016) suggests that this is the right under-

standing of Wigner’s paper. This convincing reading would also help to explain the relatively 
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careless presentation of ideas about mathematical theory, as opposed to physical theory, in 
the paper

3. An example in Mathematical Intelligencer is Grattan- Guinness 2008; see also Lützen 
(2011) and Russ (2011).

4. For a broad and enlightening historical perspective on this topic, see Bottazzini and 
Dalmedico (2001).

5. Wigner’s views on physical theory are very interesting, but we cannot go into de-
tails here. The interested reader may consult his Nobel lecture, in which he amplifies these 
themes, and also Islami (2016).

6. He insists that it is conceivable that one will be unable to unify the fundamental physi-
cal theories, and even more so for theories of biology or of consciousness. This argument 
may well have been aimed at the Unity of Science movement, which was seeking to unify all 
science from a physicalist standpoint.

7. Half the prize went to Wigner, and the other half jointly to Maria Goeppert Mayer (the 
second woman to get the prize, after Marie Curie) and to J. Hans D. Jensen.

8. “Jancsi von Neumann taught me more mathematics than any other of my teachers, even 
Ratz of the Lutheran gimnázium. And von Neumann taught not only theorems, but the essence 
of creative mathematical thought: methods of work, tools of argument” (Szanton 1992, 130).

9. See Szanton (1992, 105–106); one of these questions was recognized by von Neumann 
to be related to group representations, and he told Wigner to study Frobenius and Schur. 
On Weber’s textbook, a crucial source for one or two generations of algebraists, see Corry 
(1996).

10. Such as Schur (1905). See Hawkins (2000).
11. Szanton (1992, 116–117). In a 1963 interview with Kuhn, Wigner said, “I don’t think 

[Pauli] liked it particularly . . . there was a word, Die Gruppenpest, and you have to chase 
away the Gruppenpest. But Johnny Neumann told me, ‘Oh these are old fogeys; in five years 
every student will learn group theory as a matter of course,’ and essentially he was right.” 
(Kuhn 1963)

12. Years later, when the English version was published, he wrote, “When the original 
German version was first published, in 1931, there was a great reluctance among physicists 
toward accepting group theoretical arguments and the group theoretical point of view. It 
pleases the author that this reluctance has virtually vanished in the meantime and that, in 
fact, the younger generation does not understand the causes and the basis for this reluctance. 
Of the older generation it was probably M. von Laue who first recognized the significance 
of group theory as the natural tool with which to obtain a first orientation in problems of 
quantum mechanics.”

13. According to Saunders Mac Lane (in Duren 1989, 330), after a lecture by von Neu-
mann at Göttingen in 1929, Hilbert asked “Dr. von Neumann, ich möchte gern wissen, was 
ist dann eigentlich ein Hilbertscher Raum?” (“Dr. von Neumann, I would like to know, what 
after all is a Hilbert space?”).

14. There is not enough space here to develop, but one should emphasize that Polanyi was 
a very important influence, “my dearest teacher” who “decisively marked my life” (Szanton 
1992, 76). A physical chemist, Polanyi was to become a philosopher of science and may have 
influenced Wigner insofar as he was heavily marked by matter/mind dualism (Szanton 1992, 
76 ff). See also Esfeld (1999).

15. He may have given the 1930 book to Wigner as a gift. Wigner (1960, 237/549) also 
refers to Dubislav’s Natural Philosophy of 1933, a text defending an empiricist philosophy of 
science.
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16.D. Hilbert (1922b), lectures delivered in 1919–1920. The point has been made repeat-
edly by experts such as Corry (1996), Rowe (2000), and Mancosu (2010, 139–140). 

17. See Gray (2008), Epple and Müller (2019), and earlier work by Herbert Mehrtens 
(1990).

18. On the history of complex numbers, see Nahin (1998), Ebbinghaus et al. (1991), and 
Flament (2003).

19. Thus Grassmann in 1844 coming from geometry, and Dedekind in 1871 from al-
gebraic number theory, were among the first to articulate modern ideas about the subject 
clearly (Kleiner 2007, 84–88).

20. If Wigner studied Hausdorff’s (1914) textbook in the 1920s, he must have learned 
about Borel sets. Hausdorff and Alexandroff proved in 1916 that the continuum hypothesis 
is true in the limited case of Borel sets; certain properties called “regularity properties” 
were established for them (e.g., Lebesgue measurability), and set- theorists were hard at work 
studying how far those properties applied.

21. As a matter of historical fact, Émile Borel, René Baire, and Henri Lebesgue were 
all critics of Zermelo set theory. After 1905, they all criticized the most general notions of 
“arbitrary” set, “arbitrary” function, and the axiom of choice. It was their intention to obtain 
more clarity about the notion of set by focusing on sets that can be “constructed” by well- 
understood operations. See Ferreirós (1999, 315–316) and the letters from 1905 that were 
translated in the Appendix of the book by Moore (1982).

22. “Analysis and Physics,” Chapter V of Poincaré (1905, 80).
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Learning and Teaching 
Interdisciplinary Modeling

Chris Arney

Interdisciplinary modeling combines concepts, methods, techniques, 
and elements of various disciplines (in the sciences, humanities, and 
arts) to

• obtain solutions to problems;
• develop understanding of issues;
• provide recommendations to decision makers; and
• implement and build tools, algorithms, and systems.

To be effective for society, interdisciplinary modeling must provide 
the capability for analysts to solve realistic and challenging problems. 
Good education programs teach students both disciplinary and inter-
disciplinary modeling and problem- solving methods, and they provide 
opportunities for students to practice and hone their modeling skills. 
The Interdisciplinary Contest in Modeling (ICM) experience is one 
way to build experience and refine skills.

Here we look at the nature, processes, education, and resources re-
lated to interdisciplinary modeling and problem solving, with the hope 
that students can use this information to prepare for the ICM and im-
prove their interdisciplinary modeling skills.1

Interdisciplinary Problems

Real issues and modern problems can have many challenging character-
istics. Some of these are the following:

• Intransparency (lack of clarity of the situation or changing envi-
ronments and criteria);
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• Multiple goals (many stakeholders with competing criteria);
• Complexity (large numbers of items, interrelations, decision 

elements, dimensions, geometries, and time scales);
• Dynamics (time considerations, constraints, and sensitivities);
• Spatial and geometric considerations (integral or fractional di-

mensions); and
• Political and social elements (human or cyber considerations).

One element to avoid or minimize in modeling is confirmation bias, 
which is favoring a preconceived notion. Confirmation bias can dramat-
ically harm or constrain modeling and problem solving. Modelers must 
be aware of and adapt their models to avoid or resist irrelevant, biased, 
or erroneous information. Since data are never perfectly accurate nor 
completely clean, considerable effort to reduce errors or eliminate bad 
data is needed. ICM problems often require data to be considered—
and sometimes obtained or generated—by the teams. This collection, 
choosing, and weighing of data are important steps in the modeling 
process that should not be treated lightly by the teams.

Mathematical Modeling

Mathematical modeling is a structured process with many loops and 
choices that can make it as much art as science. In performing this 
process, the modeler needs to describe the phenomena in mathematical 
terms. The four basic steps in the process (as described in Arney [2014, 
169–170]) are the following:

• Step 1: IdentIfy the problem. The problem is stated in as pre-
cise a form as possible. Sometimes, this is an easy step; other 
times this may be the most difficult step of the entire process.

• Step 2: develop a model. This is both a translation from the 
natural language statement made in Step 1 to mathematical lan-
guage but also the development of relationships between the 
factors involved in the problem. Because real- world situations 
are often too complex to allow the modeler to account for every 
facet of the situation, simplifying assumptions must be made. 
Data collection is often part of model construction. Variables 
are defined, notation is established, and some form of math-
ematical relationship and/or structure is established.
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• Step 3: Solve the model. The model is solved so that the an-
swer is understood in the context of the original problem. If the 
model cannot be solved, it may need to be simplified by adding 
more assumptions in Step 2.

• Step 4: verIfy, Interpret, and USe the model. Before using 
the model, it should be tested or verified that it makes sense and 
works properly. Its output should be interpreted in the context 
of the problem. It is possible that the model works, but it’s too 
cumbersome or too expensive to implement. The modeler re-
turns to earlier steps to adjust as needed.

The modeling process is iterative in the sense that the modeler may 
need to go back to earlier steps and repeat the process or continue to 
cycle through the entire process (or part of it) several times. If the 
model cannot be solved or is too cumbersome to use, the model is sim-
plified. If the model needs to be more powerful, or more complication 
or rigor needs to be added, the process of relaxing assumptions is called 
refining the model. By simplifying and refining, the modeler can adjust 
the realism, accuracy, precision, and robustness of the model. By using 
this mathematical modeling process, modeling students can gain con-
fidence to approach complex and difficult problems and even develop 
their own innovative approaches to solving problems.

Interdisciplinary Modeling

Interdisciplinary modeling is a creative process that, while sometimes 
based on structured processes such as mathematical modeling, usually in-
volves an innovative and complex combination of modeling and problem- 
solving methods from various disciplines and schools of thought.

The traditional modeling process was based on making viable and 
appropriate assumptions and connections to produce a framework. 
This structured, Newtonian style of modeling and problem solving was 
often based in mathematics, mechanics, engineering, and physical sci-
ence (Teller [1980]).

With the advent of the computer and the availability of tremendous 
amounts of data, modern interdisciplinary modeling often reduces 
assumptions to a minimum and attempts to embrace the complexity 
of the real situation. Interdisciplinary modeling combines established 
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methodologies with novel procedures in its processes and structures, 
thus allowing for complexity and specificity in its framework. The 
model is then solved, used, implemented, tested, and/or validated, to

• produce a measure,
• design an algorithm,
• solve a problem,
• accomplish a task,
• understand a phenomenon,
• build a system, and/or
• make a decision.

Modeling can and usually does rely on research that incorporates 
accurate scientific information and data, relevant knowledge, and in-
novative perspectives in the model. Interdisciplinary modeling can be 
quantitative or qualitative, but most viable modern models are hybrid 
and incorporate many different kinds of steps and processes.

The modern form of interdisciplinary modeling is called by various 
names, such as network modeling, data science, operations research, analytics, 
informatics, and information science.

The most emblematic inventor of these kinds of processes was 
mathematician Norbert Wiener, whose theory of cybernetics included 
 models with iterative control and feedback loops. After the initial 
stages of cybernetics in the 1950s, interdisciplinary modeling was 
used in design and analysis of communication systems, electronics, 
biological systems, and economics (Wiener [1961]).

This method of interdisciplinary modeling was the key to unlock-
ing issues in computing, artificial intelligence, neurobiology, psy-
chology, and sociological systems. This new modeling paradigm not 
only allowed for the entry of the fields of life, behavioral, and so-
cial sciences into the modeling world, but also began to challenge 
the Newtonian simplicity assumption at a conceptual level. Other 
interdisciplinary modelers soon followed to make interdisciplinary 
modeling a highly valuable methodology and tool. Lorenz provided 
rigorous backing through chaos theory and strange attractors to show 
that even a perfectly deterministic system can behave in erratic ways. 
Benôit Mandel brot [1977] demonstrated that a high level of complex-
ity exists in rudimentary geometric objects that make up the world 
as we know it. These ideas are now conceptual elements of interdis-
ciplinary modeling.
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Measures and Metrics

Building good measures for system properties, data, and the sensitivi-
ties of their effects on the achievement of goals for the problem are 
important, especially if the data set is wider than it is deep, thereby af-
fecting most of the elements of the model. Good measures are needed 
in many models, especially when the problem is quantitative. In quali-
tative modeling, the measuring is often performed by comparison. 
Marcus Weeks [2010] discusses determination of size by a comparison 
methodology and makes the size comparison relevant to humans.

A Course in Modeling

Interdisciplinary modeling courses seek to address the complex process 
of translating real- world events into mathematical and scientific lan-
guage, solving or running the resulting model (iterating as necessary), 
and interpreting the results in terms of real- world issues. Topics often 
include model development from data, regression, general curve fit-
ting, and deterministic and stochastic model development. Easley and 
Kleinberg [2010] and Newman [2010] are textbooks that are helpful 
in such a course. Guidelines for Assessment and Instruction in Mathemati-
cal Modeling Education (GAIMME) edited by Garfunkel and Montgom-
ery [2016] is an excellent reference for teaching foundational courses. 
There are many good modeling textbooks, and some are listed below.

Interdisciplinary projects based on actual problems and issues 
are used to integrate the various topics of modeling for the student. 
Through such a course, students should be able to

• Frame a question using mathematics and science to begin devel-
oping a model,

• Understand different modeling approaches and the trade- offs 
with selecting an approach, and

• Interpret the results of a model.

During a section on optimization, students learn to

• Take a scenario and transform it into a model focused on 
optimization;

• Understand how to set up an optimization formulation with de-
cisions, an objective, and constraints;
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• Understand the unique aspects of certain optimization cases, 
such as linear, integer, and dynamic programming;

• Take the solution to an optimization formulation and interpret 
the answer; and

• Understand the robustness and sensitivity of a model.

Through the study of dynamical systems modeling, students learn to

• Take a scenario and transform it into a model focused on a dy-
namical system;

• Understand how to set up a dynamical system with an indepen-
dent variable, dependent variables, and a governing relationship;

• Interpret the model without solving the differential equations;
• Understand the robustness of the model (sensitivity); and
• Understand the possibility of chaotic solutions.

From a stochastic point of view, students learn to

• Take a scenario and transform it into a model while incorporat-
ing uncertainty;

• Understand how to set up a probabilistic model with a random 
variable, sample space, and distribution; and

• Understand how to set up a Markov model with a state space, a 
random variable with distribution, and state transitions.

Future Trends in Modeling

Society and organizations need experts in interdisciplinary modeling in 
order to make better and faster decisions. Future modelers will need 
to build viable models to confront complex multidisciplinary and inter-
disciplinary issues in our information- centric world. High- impact areas 
include analyzing many issues for a larger and smarter Internet, auto-
mation of knowledge through artificial intelligence and machine learn-
ing, high- powered cloud computing, autonomous vehicles, and smart 
robots. Modeling in these areas is by nature interdisciplinary.

A striking example of a project that reveals the future of interdis-
ciplinary modeling is IBM’s development of the Watson system to 
compete in the information- centric game Jeopardy. Watson’s notable 
success in that first endeavor, and in many applications since, illus-
trates the potential of interdisciplinary modeling. Modern science is 
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embracing the future contributions of interdisciplinary modeling as 
science shifts from little science (single investigators) and big science 
(large labs working on specific projects) to a future of team science 
(multidisciplinary teams of scientists, much like the IBM Watson team 
and the ICM team framework) (West [2016]). Modern science, through 
its use of interdisciplinary modeling, is building a collective power that 
is more creative, more original, and more effective than any single dis-
ciplinary perspective and the simplicity- focused Newtonian modeling 
of the past.

Another example of interdisciplinary modeling is found in cyber-
space, where computing and networking are important elements in the 
model, but so are ethical, political, and social elements. Data science, 
human psychology, and many other disciplines are all parts of the vir-
tual and digital cyberworld. The complex issues in cybermodeling are 
twofold:

• What is the balance between security and performance versus 
privacy and information availability?

• How do models treat the underlying competitive nature of the 
attacker versus defender dynamic?

Hackers and malicious systems are pitted against defenders of free-
dom, information, and the system’s performance. These game- 
theoretic settings take interdisciplinary modeling to new heights of 
what- if, cause–effect, and who- did- it questions. Cyberproblem solv-
ing can require high- dimensional, nonlinear models, with dynamic 
structures and processes to adapt to the changing situations. A major 
challenge is that the same elements of the network that create its 
positive attributes (effectiveness and freedom) also produce its nega-
tive elements (vulnerability and lack of privacy and security). What 
makes a network robust, survivable, and hard to kill, paradoxically 
can also make it inefficient, difficult to manage, and vulnerable to 
penetration.

Diversity is often the model’s attribute that best provides the poten-
tial for resilience to vulnerabilities and yet limits agility. One natural 
way to create diversity in cybersystems is through randomness (explic-
itly designed random processes). As a result, future interdisciplinary 
modelers will need to build diversity and randomness into many of 
their models and systems.
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The Interdisciplinary Contest in Modeling (ICM)

The ICM tries to mimic the elements of real- life problem solving previ-
ously outlined. Real- life problem solving is inherently interdisciplin-
ary, and therefore education programs should include interdisciplinary 
modeling. Policy modeling has become a popular way to inform deci-
sion makers of potential priorities and determine the what- if effects of 
different scenarios or decisions; so we intend to continue that type of 
modeling problem in the ICM. A more traditional field where interdis-
ciplinary modeling plays a major role is environmental science. And, since 
interdisciplinary modeling can include many types of knowledge and 
perspectives, we intend to continue problems in operations research and 
network science that bring modern issues to the ICM problem set. So we 
will continue problems in the three current areas of the ICM: opera-
tions research and network science, environment, and policy.

Quite often, the assembly and pathways from which interdisciplin-
ary models are built or implemented are artistic and lead to qualitative 
models. Good problem solving thus involves making necessary assump-
tions and adding appropriate complexity that leads to appropriately 
quantitative or qualitative models using scientific and artistic methods. 
Many viable models are hybrid—containing quantitative, qualitative, 
scientific, and artistic elements—and incorporate many different disci-
plinary and interdisciplinary structures and processes.

Resources

The following three lists of problem materials can help interdisciplin-
ary modelers learn methods, see examples, and gain understanding of 
the modeling process. The lists are divided into

• modeling and problem- solving books and articles,
• interdisciplinary books and articles, and
• journals relevant to interdisciplinary modeling.

Modeling and Problem- Solving Books and Articles
Albright, Brian. 2010. Mathematical Modeling with Excel. Burlington, MA: Jones and Bartlett.
Beckmann, J. F., and J. Guthke. 1995. Complex problem solving, intelligence, and learning 

ability. In Frensch and Funke [1995], 177–200.
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Bender, Edward A. 1978. An Introduction to Mathematical Modeling. New York: Wiley. 2012. 
Reprint. Mineola, NY: Dover.

COMAP. 2012. The Mathematical Modeling Handbook. Print and CD- ROM. Bedford, MA: 
COMAP.

——. 2013. The Mathematical Modeling Handbook II: The Assessments. Print and CD- ROM. Bed-
ford, MA: COMAP.

——. 2015. The Mathematical Modeling Handbook III: Lesson Paradigms. CD- ROM. Bedford, 
MA: COMAP.

Dym, Clive L. 2004. Principles of Mathematical Modeling. 2nd ed. New York: Academic Press.
Farid, Mohammed M. 2010. Mathematical Modeling of Food Processing. Boca Raton, FL: CRC Press.
Ford, Andrew. 2009. Modeling the Environment. 2nd ed. Washington, DC: Island Press.
Frensch, P. A., and J. Funke (eds.). 1995. Complex Problem Solving: The European Perspective. 

Hillsdale, NJ: Lawrence Erlbaum Associates.
Giordano, Frank R., William P. Fox, and Steven B. Horton. 2013. A First Course in Mathemati-

cal Modeling. 5th ed. Boston: Brooks- Cole.
Jones, Beau Fly, Claudette M. Rasmussen, and Mary C. Moffitt. 1997. Real- Life Problem Solv-

ing: A Collaborative Approach to Interdisciplinary Learning. Washington, DC: American Psy-
chological Association.

Meerschaert, Mark M. 2013. Mathematical Modeling. 4th ed. New York: Academic Press.
Meyer, Walter J. 1984. Concepts of Mathematical Modeling. New York: McGraw Hill. 2004. 

Reprint. Mineola, NY: Dover.
Otto, Sarah, and Troy Day. 2007. A Biologist’s Guide to Mathematical Modeling in Ecology and 

Evolution. Princeton, NJ: Princeton University Press.
Polya, George. 1945. How to Solve It: A New Aspect of Mathematical Method. Princeton, NJ: 

Princeton University Press. 1957. 2nd ed. New York: Doubleday. 2004. Reprinted with 
foreword by John Conway. Princeton, NJ: Princeton University Press. 2009. Reprinted 
with foreword by Sam Sloan. San Rafael, CA: Ishi Press.

Schoenfeld, A. H. 1985. Mathematical Problem Solving. Orlando, FL: Academic Press.
Shier, Douglas R., and K. T. Wallenius. 1999. Applied Mathematical Modeling: A Multidisci-

plinary Approach. Boca Raton, FL: CRC Press.
Sokolowski, John A., and Catherine M. Banks. 2009. Principles of Modeling and Simulation: A 

Multidisciplinary Approach. Hoboken, NJ: Wiley.
——. 2009. Modeling and Simulation for Analyzing Global Events. Hoboken, NJ: Wiley.
Walloth, Christian, Jens Martin Gurr, and J. Alexander Schmidt. 2014. Understanding Com-

plex Urban Systems: Multidisciplinary Approaches to Modeling. New York: Springer.
Xin- She Yang. 2013. Mathematical Modeling with Multidisciplinary Applications. New York: Wiley.

Interdisciplinary Books and Articles
Augsburg, Tanya. 2005. Becoming Interdisciplinary: An Introduction to Interdisciplinary Studies. 

Dubuque, IA: Kendall/Hunt.
Davies, M., and M. Devlin. 2007. Interdisciplinary Higher Education: Implications for Teaching 

and Learning. Melbourne, Australia: Centre for the Study of Higher Education, University 
of Melbourne.

Dluhy, Milan J., and Kan Chen (eds.). 1986. Interdisciplinary Planning: A Perspective for the Fu-
ture. New Brunswick, NJ: Center for Urban Policy Research. 2012. Reprint. New Bruns-
wick, NJ: Transaction Publishers.
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Frodeman, Robert (ed.). 2010. The Oxford Handbook of Interdisciplinarity. New York: Oxford 
University Press.

Frodeman, R., and C. Mitcham. 2007. New directions in interdisciplinarity: Broad, deep, 
and critical. Bulletin of Science, Technology, and Society 27 (6): 506–514.

Hendler, James, Nigel Shadbolt, Wendy Hall, Tim Berners- Lee, and Daniel Weitzner. 2008. 
Web science: An interdisciplinary approach to understanding the Web. Communications of 
the Association for Computing Machinery 51 (7): 60–69.

Klein, Julie Thompson (ed.). 2002. Interdisciplinary Education in K- 12 and College: A Foundation 
for K- 16 Dialogue. New York: The College Board.

——. 2005. Humanities, Culture, and Interdisciplinarity: The Changing American Academy. Albany 
NY: State University of New York Press.

——. 2006. Resources for interdisciplinary studies. Change: The Magazine of Higher Learning 
38 (2) (March/April): 50–56.

——. 2010. Creating Interdisciplinary Campus Cultures: A Model for Strength and Sustainability. San 
Francisco, CA: Jossey- Bass.

Kleinberg, Ethan. 2008. Interdisciplinary studies at the crossroads. Liberal Education 94 (1): 
6–11.

Journals Relevant to Interdisciplinary Modeling
Applied Mathematical Modeling
Chaos: Interdisciplinary Journal of Nonlinear Science
International Journal of Modeling, Simulation, and Scientific Computing
Journal of Informatics
Journal of Interdisciplinary Modeling and Simulation
Journal of Policy Modeling
Math and Computer Education Journal
Mathematical Modeling and Numerical Analysis
Mathematical Models and Methods in Applied Science
PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies
SIAM: Multiscale Modeling and Simulation
The UMAP Journal of Undergraduate Mathematics and Its Applications

Conclusion

Interdisciplinary modeling seeks to connect the various problem- 
solving methodologies and perspectives that exist across many disci-
plines. To be effective for society, modeling must provide the capability 
for analysts to solve modern realistic and challenging problems. The 
ICM experience is one way to build experience and refine interdisci-
plinary modeling skills.

Many good educational programs offer students both disciplinary 
and interdisciplinary problem- solving opportunities, but often more 
modeling and problem solving are needed outside the classroom in 
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order to develop analysts. This is where the ICM plays an important 
role. The problem categories for next year’s ICM will be the same as 
the last two years: operations research and network science, the envi-
ronment, and policy.

Note
1. The opinions in this article are the author’s alone and do not necessarily reflect the 

opinion of his colleagues, the U.S. Military Academy (West Point), the Department of the 
Army, or any other U.S. government agency.
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Six Essential Questions 
for Problem Solving

Nancy Emerson Kress

Martina joined my precalculus class in November of her senior year of 
high school. (The name and some details of this student’s experience 
have been changed to protect her identity.) She told me that she did not 
consider herself to be good at math, but she felt that a good grade in 
precalculus would be an important part of her college applications. She 
also told me that college was critical to her ability to live a better life 
than she had had as a child and that she was certain she would be able 
to do well in precalculus as long as I was very clear about exactly what 
I wanted her to do.

One of the primary expectations I have for my students is for them 
to develop greater independence when solving complex and unique 
mathematical problems. Martina joined the majority of the class in 
telling me that she was comfortable with explicit, step- by- step instruc-
tions, but that working independently on math problems that were dif-
ferent from those she had previously been shown how to solve was very 
difficult. Martina was especially emphatic about the nature and degree 
of this challenge. The expectations that many of my students had of 
me with regard to prescriptive, step- by- step instructions were at odds 
with my expectations for them—and yet we avoided conflict. The 
story of how I supported my students as they gained confidence and 
independence with complex and unique problem- solving tasks, while 
honoring their expectations with regard to clear, explicit instruction, 
is rooted in a set of guiding questions I call essential questions for problem 
solving.
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Why We Use Essential Questions for Problem Solving

One challenge that teachers face is developing instructional methods 
that support the continued growth of successful problem solvers and 
simultaneously nurturing the development of confidence and enabling 
success among students who struggle. It is incumbent on the mathemat-
ics teaching community to implement teaching strategies that genuinely 
reflect the belief that all students are able to learn and do mathematics 
(Boaler 2016; Dweck 2007) and that provide every student with robust 
support and rich opportunities to expand their problem- solving skill set.

A strategy commonly used to improve students’ success with prob-
lem solving is to increase their exposure to challenging and interest-
ing problems. Providing support and teaching students that the key to 
success is perseverance (Boaler 2016; Dweck 2007) may increase their 
ability to solve a variety of problems in the future. However, experi-
ence and perseverance alone do not consistently lead all students to 
become successful with complex or unique problem- solving tasks.

Students are not all equally prepared to participate in open cur-
ricular and reform approaches to learning mathematics (Boaler 2002). 
There is concern that some students may be less aware of the particu-
lar mathematical practices that are being used and developed in their 
classes (Ball et al. 2005; Boaler 2002; Lubienski 2000; Selling 2016), 
and for many this is because they expect teaching to be more direct 
(Delpit 1988). This concern is especially strong in relation to students 
from lower socioeconomic status or working- class backgrounds, stu-
dents who speak English as a second language, and students who belong 
to minority racial or ethnic groups (Ball et al. 2005; Boaler 2002; Del-
pit 1988; Lubienski 2000; Parks 2010).

The term explicit, as applied to mathematics teaching, is often associ-
ated with step- by- step procedural instruction. This is the form of in-
struction my students were most comfortable with. But Boaler (2002) 
cautions against responding to equity concerns with a return to more 
direct teaching methods because direct instruction can reduce stu-
dents’ opportunities to engage in sense making about complex problems 
(Boaler 2002; Greeno and Boaler 2000; Schoenfeld 1992; Selling 2016).
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Improving equity, particularly for students who respond positively 
to direct teaching methods, without resorting to prescriptive methods 
of teaching requires a more nuanced understanding of what it means to 
be explicit. Selling (2016) suggests an alternative to being explicit that 
centers on bringing direct attention to mathematical practices being 
used in the classroom. She claims that “participants in this interaction 
may be more or less aware that they (or others) are engaging in particu-
lar mathematical practices” (p. 510). She suggests that a form of being 
explicit that is direct about highlighting mathematical practices, as op-
posed to step- by- step instructions, enables all students to be equally 
aware of the strategies and practices being used. This interpretation has 
important implications for increasing equitable access to mathematics 
for students from widely varied backgrounds.

Essential Questions as a Framework

The essential questions described in this article are designed to pro-
vide a framework to support students to pose purposeful questions 
(NCTM 2014, p. 35) about complex mathematical problems, and they 
are consistent with design principles for active learning (Webb 2016). 
Although these questions differ significantly from the questions and 
suggestions that Pólya proposed (1945), they take a similar approach 
in the sense that they are applicable to a wide range of problem- solving 
tasks and do not prescribe specific mathematical steps for solving a par-
ticular type of problem. I used these questions in second- year algebra 
and precalculus classes to support increased learning opportunities for 
all students.

The first step in developing essential questions for problem solving 
was to identify a specific skill set that would support reliable and con-
sistent success at problem solving for all students. It involved observ-
ing precisely which actions students were taking that lead to success, 
regardless of whether students themselves consciously identified the 
critical practices they were using. The actions and skills identified as 
both fundamental and comprehensive for supporting problem- solving 
success across a wide range of problem types are as follows:

• Noticing, or making observations;
• Asking questions;
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• Knowing how and why to carry out particular mathematical 
actions; and

• Verifying accuracy.

Desirable strategies that are less frequently applied, even among 
highly successful students include these:

• Making connections and
• Extending the problem.

A study of the alignment of the questions to the Common Core’s 
(CCSSI 2010) Standards for Mathematical Practice (SMP) was carried 
out (Kress 2014), and the questions were refined over the course of two 
years of application in precalculus and second- year algebra.

How to Introduce Six Essential 
Questions for Problem Solving

When I first introduce these questions to a class, I use a prompt—
just a single quadratic function—that is not complex or unique at all. 
The task’s lack of complexity allows me to introduce the questions as 
a structure to support students’ exploration of mathematics. They can 
make observations, ask for additional information, and try out ideas. 
After one fifty- minute class period, students see how previously iso-
lated topics fit together to form a big picture. Students seem to gain 
satisfaction from the experience of making multiple connections be-
tween concepts that they have previously experienced as isolated, and 
use of the questions increases both the depth and breadth of students’ 
understanding of quadratic functions and their graphs.

The six questions are listed below, followed by a description of the 
purpose and role of each question, as well as examples of how my stu-
dents took up and responded to the questions.

1. What do you notice?
2. What additional information or clarification would be helpful?
3. What can you do or figure out?
4. How do you know that your work and/or answer are accurate?
5. Is there another way you could approach this problem?
6. What else can you say about the problem, and what else would 

you like to know?
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What Do You Notice?

Many students immediately attempt to begin mathematical work on 
problems without pausing to consider the overall picture or subtle 
details. This first question supports students in taking stock of what 
they know before they get embroiled in the complexities of the task. 
This question also provides the teacher with formative assessment 
information.

When Martina and her precalculus classmates were asked to con-
sider a single quadratic function as a prompt and were asked, “What do 
you notice?” the responses included observations such as these:

• “There’s a little two above the x.”
• “It’s a quadratic.”
• “You could factor.”
• “There are three terms.”
• “You could graph it.”
• “I think the graph might be a parabola.”

Second- year algebra students who had been introduced to quadratic 
functions in their first algebra course responded similarly. I made cer-
tain that every student response was accepted and publicly recorded.

What Additional Information or 
Clarification Would Be Helpful?

Some students hesitate to ask questions. Others ask for help without 
putting effort into refining their questions or identifying what aspect 
of the problem requires clarification. This prompt legitimizes students 
asking for additional information while supporting student ownership 
and responsibility for the thought process.

When I asked students to consider a quadratic function and, “What 
additional information or clarification would be helpful?” they re-
sponded with questions such as the following:

• “What does the two above the x mean?”
• “How would you factor that?”
• “What does the graph look like?”
• “How do you know it’s a quadratic?”
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Questions can be answered immediately, either by student volun-
teers or by the teacher. If they are not answered immediately, then 
establishing a strategy to ensure that all questions are answered in the 
course of that class period is imperative.

What Can You Do or Figure Out?

This is the point at which students do the work of attempting to deter-
mine an answer if the prompt calls for one. In the context of a quadratic 
function prompt, my students typically explore the mathematics and 
draw connections and conclusions.

In second- year algebra and precalculus, my students did some or all 
of the following:

• Factored,
• Made a table of values,
• Drew a graph,
• Solved for x- intercepts using the quadratic formula,
• Stated x- intercepts,
• Stated the y- intercept, and
• Stated the coordinates of the vertex.

Letting students determine the direction of the discussion is impor-
tant. Students usually think of new ideas that build off one another’s 
responses, but the order in which this work happens varies from class 
to class. I facilitate the discussion by calling on students and taking de-
tailed notes on the board. Another teacher might opt to ask a student 
to take the notes on the board. It is important that the notes are visible 
to everyone as the students work together. By the end of this stage, my 
classes have created a board covered with mathematical calculations 
and information related to the quadratic function on which they are 
working.

How Do You Know That Your Work 
and/or Answer Are Accurate?

Students have many different methods of verifying accuracy. One is 
to solve the problem in a different way, confirming that the same re-
sult is obtained. Students may also consider whether their observations 
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contain contradictions, substitute an answer back into an equation to 
verify its validity, or check that the solution obtained from an equation 
agrees with what is shown on a graph. Methods vary greatly by student 
as well as by type of problem.

Martina and her classmates, when applying this question to the qua-
dratic function f(x) = x2 + 3x − 4, responded in the following ways:

• “The y- intercept on the graph is at −4, and in the equation, 
when you make x = 0, then y = −4.”

• “The x- intercepts are at 1 and −4, and the factors are (x + 4) 
and (x − 1).”

• “The graph opens up, and the coefficient of x2 is positive.”
• “The graph is symmetrical, so it looks right.”

If some of their work contains an error, they may observe the 
following:

• “We drew the graph with a y- intercept at −3, but the constant 
in the equation is −4. That doesn’t make sense.”

• “Our graph crosses the x- axis at 4, but when I substitute 4 into 
the function, I don’t get 0 for an answer.”

If students are slow to respond, follow- up questions are necessary. I 
used such probing questions as these:

• “How are the y- intercept and constant in the function related to 
each other?”

• “What do you notice if you substitute 4 into the function for x?”

Is There Another Way You  
Could Approach This Problem?

Students often address this question in conjunction with the previous 
one because solving the problem in another way is an efficient method 
of confirming the accuracy of their work. They are presented separately 
because both topics are of significant importance. Because they can be 
answered separately, considering them as unique concerns is valuable.

This consideration does not always result in a second practical 
method of solving the problem, but even when it does not, students 
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typically gain additional insights through investigating the possibility 
of other angles.

When considering a quadratic function, this is the point at which my 
students are likely to notice if they have omitted the use of a familiar 
strategy, such as the quadratic formula or factoring. They add that work 
to what they have done previously, further strengthening their ability 
to confirm that their previous observations make sense.

What Else Can You Say About the Problem, 
and What Else Would You Like To Know?

These questions serve the purpose of prompting students to stop and 
think before moving on. Having arrived at a solution and confirmed 
that the process and answer are accurate, students are frequently pre-
pared to be finished with a task they feel has been completed. This 
question encourages students to reflect on the ways in which the work 
fits into their larger experience or general knowledge base. It also pro-
vides additional assessment information to the teacher.

Students in my second- year algebra and precalculus classes asked 
questions and made new observations such as these:

• “What would make the graph open down?”
• “Can a parabola open sideways?”
• “What would the graph look like if there were a different coef-

ficient for x2?”
• “The +/− in the quadratic formula gives you values to the right 

and left of the vertex, or the axis of symmetry. That’s how you 
get the x- intercepts. You could even write it as this:

a
b b ac

2
4–– 2! .”

Teaching students to use these essential questions purposefully as 
prompts to work through stages of solving problems increased engage-
ment in my classes. The questions shaped and directed students’ think-
ing and supported all students in becoming aware of the use of these 
practices for solving mathematical problems. Students’ confidence 
increased, and they began doing work that was more thorough and 
complete.
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Next Steps: Moving toward Independence

When Martina first joined my class, she struggled to participate within 
the existing norms of the classroom. When the class engaged in dis-
course about mathematics, collective sense making around open- ended 
problems, or communal exploration of multiple methods of solution, 
she did not participate. If I did not provide immediate explanations of 
step- by- step procedures for solving problems, she got frustrated and 
stopped participating for the rest of the class period.

The structure of the essential questions for problem solving sup-
ported Martina to reduce her dependence on procedural instruction. 
Her willingness to engage in open- ended and complex tasks gradually 
increased, and she became more likely to participate in class and group 
discussions. She developed the ability to generate observations, ideas, 
and solution strategies independently. She and her classmates built on 
their experience working with a simple quadratic function prompt, and 
they became more comfortable working on complex problems such as 
the following:

To celebrate the Fourth of July, a city has hired Star Burst, Inc. 
to launch fireworks into the air from the top of a tower 20 feet 
tall. The fireworks can be fired with an initial upward velocity 
of 128 feet per second. Write a mathematical model for this sce-
nario, and use your model to find how many seconds after launch 
the fireworks attains its maximum height (assuming it has not yet 
exploded). What is its height above ground at this time? Explain 
how you know that this is the maximum height. If you wanted the 
fireworks to reach its maximum height exactly 5 seconds after 
launching, how might you accomplish this?

Early in the school year, my students would have responded to the 
problem described above by asking for demonstration of step- by- step 
strategies using a nearly identical problem. Later in the year, Martina 
and her classmates were able to read such a problem and use the es-
sential questions to work their way through the scenario. They devel-
oped greater ability to engage in productive struggle (NCTM 2014, pp. 
48–52), and they demonstrated the ability to persist through a process 
to solve problems unlike those they had seen before.
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I found that the essential questions proved useful with a variety of 
concepts and problem types, including—but not limited to— graphing 
rational, higher- order polynomial, trigonometric, exponential, and 
logarithmic functions as well as a variety of modeling scenarios.

In Conclusion

Teaching problem- solving skills equitably is challenging. Detailed 
procedural instruction supports students in the short term but runs 
the risk of undermining students’ independence. Being explicit about 
mathematical practices that lead to effective problem solving has the po-
tential to increase equitable access to high- level learning about complex 
mathematical problem- solving tasks. Essential questions for problem 
solving differentiate and personalize instruction by providing structure 
for students who need it, while helping successful students to recognize 
and take ownership of the actions underlying their success.
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Mean for Mathematicians?

Benjamin Braun, Priscilla Bremser,  
Art M. Duval, Elise Lockwood,  

and Diana White

In August 2016, fifteen presidents of member societies of the Confer-
ence Board of the Mathematical Sciences (CBMS), an umbrella orga-
nization consisting of the American Mathematical Society and sixteen 
other professional societies in the mathematical sciences, released a 
statement on active learning [1] with the following call to action:

We call on institutions of higher education, mathematics depart-
ments and the mathematics faculty, public policy- makers, and 
funding agencies to invest time and resources to ensure that ef-
fective active learning is incorporated into post- secondary math-
ematics classrooms.

This call is part of a broad movement to increase the use of active 
and student- centered teaching techniques across science, technology, 
engineering, and mathematics (STEM) disciplines. A landmark 2014 
meta- analysis published in the Proceedings of the National Academy of Sci-
ences [2] highlighted the efficacy of active learning techniques across 
STEM disciplines. In mathematics specifically, a comprehensive study 
of student outcomes for inquiry- based learning [3] has further estab-
lished that active learning methods have a strong positive impact on 
women and members of other underrepresented groups in mathe-
matics. This movement extends beyond the academic  community—for 
example, at the federal level the White House STEM- for- All initiative 
[4] includes active learning as one of its three areas of emphasis for the 
2017 budget.
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While robust support from education researchers, funding agen-
cies, public policy makers, and institutions is a critical component of 
effective active learning implementation, at the end of the day these 
techniques and methods are put into practice by mathematics faculty 
leading classes of students. Thus, mathematics faculty need to be well 
informed about active learning and related topics. Our goal in this ar-
ticle is to provide a foundation for productive discussions about the use 
of active learning in postsecondary mathematics. We focus on topics 
that frequently arise at the department level, namely, definitions of ac-
tive learning, examples of active learning techniques and environments 
used by individual faculty or teams of faculty, things to expect when 
using active learning methods, and common concerns. An extended 
discussion of these issues and a substantial bibliography can be found in 
the six- part series on active learning [5] written by the authors for the 
AMS blog On Teaching and Learning Mathematics.

What Is Active Learning?

A frequently asked question is, what is active learning? We base our 
discussion on the definition given in the CBMS statement [1]: Active 
learning [refers] to classroom practices that engage students in activities, such 
as reading, writing, discussion, or problem solving, that promote higher- order 
thinking. Using a broad definition such as this increases the risk of fac-
ulty, administrators, and other stakeholders “talking past” one another, 
as much is left to the imagination regarding what actually happens with 
such methods. However, it also acknowledges that active learning can 
and does involve a wide variety of specific activities in diverse settings, 
with instructors of varied background and experience, and for different 
kinds of students.

Another approach to defining active learning is more useful in local 
settings, such as internal department discussions or conversations be-
tween department leaders and administrators. In this approach, one 
focuses discussion on a specific course and defines active learning as 
a task that students will complete during class time. This approach 
helps ensure that everyone in the discussion has a similar vision of what 
methods are actually being proposed or discussed in the context of ex-
plicit course goals and student- learning outcomes.
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Examples of Active Learning Techniques and Environments

In contemporary college and university courses, lecturing remains the 
dominant teaching technique used by mathematics faculty. While ac-
tive learning and lecture are sometimes viewed as two diametrically 
opposed teaching options, this is a misconception, as the following ex-
amples illustrate. We begin with examples that primarily involve indi-
vidual faculty, and we end with examples that require collective buy- in 
and support from faculty, departments, and institutions.

thInk- paIr- Share. One of the simplest examples of an active learning 
technique suitable for use in lectures is “think- pair- share.” In this tech-
nique, the instructor provides students with a short task such as doing a 
computation, completing a step in a proof, generating one or more ex-
amples, or forming a hypothesis or conjecture. After providing the stu-
dents with two to three minutes of time to independently consider the 
task (“think”), students take two minutes to compare their answers with 
other students sitting nearby (“pair”). Finally, some or all of the students 
are asked to share their answers in some manner, either with the groups 
next to them or with the entire class (“share”). Giving students time to 
think about and discuss mathematics midlecture encourages their active 
participation in the class. This task has no implications for departments 
or institutions and serves as an effective comprehension check in which 
students are able to refocus their attention during a lecture.

claSSroom reSponSe SyStemS (“clIckerS”). In addition to think- 
pair- share, there are many related examples of “classroom voting” sys-
tems and techniques that can be used to increase student engagement. 
These systems are often useful when scaling up think- pair- share and 
related techniques to large- lecture environments. While some systems 
are entirely Web-  and mobile phone–based, others require students to 
rent or purchase a response device. Thus, depending on the choice of 
system, there can be implications for departments when clicker systems 
are widely used, and often it is helpful to implement clicker use with a 
team of faculty rather than individually.

Inverted (or “flIpped”) claSSeS. In an inverted (or “flipped”) 
classroom environment, instructor presentations of basic definitions, 
examples, proofs, and heuristics are provided to students in videos or 
in assigned readings that are completed before attending class. As a 
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result, class time becomes available for active learning tasks that di-
rectly engage students. The type of task that instructors use during this 
time ranges from using think- pair- shares with complex problems or 
examples to having students work in small groups on a sequenced ac-
tivity worksheet with occasional instructor or teaching assistant feed-
back. The inverted model of teaching has been used as the structure for 
entire courses, as an occasional event for handling topics that are less 
amenable to lecture presentations, as the basis for review sessions or 
problem- solving sessions, and more. Depending on the method used 
for flipping individual class periods or entire courses, department and/
or institutional support (in the form of technical assistance) may often 
be key ingredients in this model.

InqUIry- baSed learnInG. One of the most well- known active 
learning methods in mathematics is inquiry- based learning (IBL). In 
IBL courses, class time is spent with students working on problem 
sets individually or in groups, presenting solutions and/or proofs to 
the class, and receiving feedback from peers and faculty. IBL courses 
are not based on pure, unguided student discovery; instead, faculty 
design a series of carefully scaffolded (i.e., sequenced in a structured 
way) activities, some for individuals, some for pairs, some for small 
groups, and some for the whole class, including minilectures as ap-
propriate. Because faculty using IBL need to develop facility with a 
range of teaching strategies and need to develop familiarity with many 
“teaching moves” that are not typically used in lecture environments, 
IBL is a more ambitious active learning environment. There are vari-
ous opportunities for professional development with IBL, including 
the workshops offered by the Academy for lnquiry- Based Learning at 
www .inquirybasedlearning .org.

math emporIUm. The math emporium model uses a large room 
filled with computer workstations at which students progress through 
self- paced online courses. Unlike inverted classes, many emporium 
models do not include a lecture component at all, and most have been 
developed to handle remediation issues and low- level courses such as 
developmental mathematics and college algebra. An emporium usually 
has tables at which students can work collaboratively and is staffed by a 
large number of teaching assistants and tutors. Because the work of stu-
dents is self- paced, students spend most of their time actively engaging 
with course content through a range of tasks. Because of the significant 

http://www.inquirybasedlearning.org
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investment in classroom space and technological resources required, a 
math emporium is typically launched as a collaborative venture among 
faculty, departments, and administrators.

modelInG and compUter laboratorIeS. Modeling is a rich arena 
for increasing student engagement, one that is often augmented with 
computer labs. Since the 1990s, many mathematics courses have in-
cluded computer lab activities for exploration using programs such as 
Mathematica, Maple, MATLAB, and Sage. Recent years have seen a 
growth in the number of support networks for faculty using lab and 
modeling components, such as the SIMIODE .org project for differ-
ential equations. The 2016 SIAM (Society for Industrial and Applied 
Mathematics) report Guidelines for Assessment and Instruction in Math-
ematical Modeling Education [8] provides examples of modeling activities 
across the undergraduate curriculum that actively engage students and 
discusses related issues such as assessment. Incorporating modeling and 
laboratory components into postsecondary courses can be done at many 
levels, ranging from stand- alone activities in a single class to program- 
wide implementations supported at the institutional level.

Things To Expect with Active Learning

Faculty using active learning for the first time need a realistic expecta-
tion of what impact these techniques will have. Because there are so 
many different active learning techniques and because different tech-
niques often influence students in unique ways, it is not always pos-
sible to clearly say what will happen when we use a new active learning 
method. However, there do seem to be a few things faculty can typi-
cally expect. Here are five of them.

expect to GaIn InSIGhtS aboUt yoUr StUdentS. For many faculty 
using active learning, these techniques inspire richer discussions with 
students and provide a window into the reality of students’ mathemati-
cal experiences. This richness allows faculty to be more responsive 
to students’ misunderstandings, which in turn causes students to feel 
more supported in the course, frequently leading to increased engage-
ment. Even in 200- student lectures, where student–faculty dialogue 
might be heavily moderated by clicker systems, faculty often report 
that active learning methods provide a clearer sense of what their stu-
dents understand than with traditional lecture alone.

http://www.SIMIODE.org
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expect yoUr StUdentS to SUrprISe yoU. Active learning provides op-
portunities for faculty–student interaction not present in courses focused 
on direct instruction. Active learning methods can reach and excite some 
students who might not typically be vocal or engaged in class—students 
who are quiet and reserved by nature frequently demonstrate their full 
potential when provided with the right opportunity. On the other hand, 
active learning methods can uncover deep misconceptions about math-
ematics, even from straight- A students, that homework and exams do 
not reveal. Furthermore, students often respond to active learning tasks 
with interesting observations and thought- provoking questions, infusing 
standard courses like calculus with fresh energy.

expect reSIStance from Some StUdentS. For many reasons, it is 
common for some students to resist active learning methods, especially 
at the beginning of a course. Some students are not particularly inter-
ested in mathematics and do not want to engage at a deeper level. Other 
students have experienced significant success in traditional mathemat-
ics courses and feel threatened by an unfamiliar environment. With all 
students, instructors need to clearly articulate the value of the active 
learning methods they use and maintain high expectations for student 
participation and engagement. Often, students who are initially resis-
tant find themselves surprised at the end of a course by how much they 
appreciate active learning.

expect to learn from yoUr mIStakeS. Much like learning math-
ematics, learning how to effectively use a new pedagogical technique, 
especially one of the more complex active learning techniques, involves 
a process of persistence and error correction through small failures. 
Mathematics faculty need to be prepared to start small and develop gradually and 
consistently. Almost every faculty member the authors have spoken with 
who uses active learning describes the development of his or her teach-
ing as a sequence of mixed successes and failures. If you are implement-
ing an active learning technique that is new to you, it is often helpful 
to first discuss with your department chair how teaching in that course 
will be evaluated for merit reviews. Many colleges have policies to sup-
port faculty as they build experience with new teaching techniques, 
especially if the techniques are evidence based.

expect lonG- term ImpactS. When used in combination with a 
foundation of good general teaching practices, active learning often 
has a particularly positive impact on student persistence and sense of 
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belonging in mathematics. This in turn can lead students to be more 
engaged in their studies and pursue more mathematics over the long 
term. Because many active learning techniques emphasize communica-
tion and collaboration, faculty often report that using these techniques 
is a catalyst for building strong student communities. These peer net-
works persist through subsequent courses, contributing to students’ 
experience throughout their mathematical studies. Many of these im-
pacts of active learning become fully visible only after a course ends 
and thus can be hard to measure or even identify with standard course 
evaluation instruments.

Common Concerns about Active Learning

While active learning has many advocates among mathematicians, there 
are also responsible teachers who have reasonable concerns about active 
learning methods. We address four of them here.

how wIll StUdentS learn the mathematIcS If we do not clearly 
tell them everythInG aboUt It? The historical dominance of the lecture 
format rests on the belief that learning occurs as a result of transmis-
sion of information from instructor to student and that students learn 
by a process of taking in bits of information that their instructors say 
or write. Furthermore, because of our passion and love for mathemat-
ics, a natural human impulse is for mathematics faculty to tell students 
about the ways we have come to understand our discipline, to shed light 
on the subtleties that surround most mathematical ideas, and to ex-
plain the fundamental insights of our field. Our common experience, 
supported by research, demonstrates that learning is not this simple. 
For example, almost every teacher has experienced telling a student a 
certain mathematical fact—such as the fact that (a + b)2 does not equal 
a2 + b2—only to have them demonstrate on a test that they have not 
learned it. Such experiences suggest that it is not enough for students 
simply to be told information if we want to produce deep and meaning-
ful learning. Thus, the key is to find an effective balance between direct 
instruction and active learning, wherein instructors provide guidance 
through a combination of explanations and active learning tasks.

what If I can’t cover the Same amoUnt of materIal? Direct in-
struction alone can be an efficient way of getting through material. 
However, the example of students not knowing that (a + b)2 does not 
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equal a2 + b2 should not be far from our minds: lecturing in order 
to cover more material is not always effective for students. By exclu-
sively considering course content coverage and responding to content 
coverage with telling, we risk forgetting the many other elements of 
student learning that active learning addresses, such as the cognitive 
goals for students outlined in the 2015 MAA CUPM Curriculum Guide 
[6], including:

• recognize and make mathematically rigorous arguments,
• communicate mathematical ideas clearly and coherently both 

verbally and in writing,
• work creatively and self- sufficiently,
• assess the correctness of solutions,
• create and explore examples,
• carry out mathematical experiments, and
• devise and test conjectures.

In addition to the recognition that content topics are not the ex-
clusive subject of coverage, recent research suggests that coverage of 
material is less important for student persistence and achievement in 
mathematics than the use of teaching techniques that address these 
other types of learning goals.

how do I know If I’m doInG a Good job wIth my teachInG? The 
crafting of rich lectures contributes to mathematicians’ feelings of ef-
ficacy in their discipline. There are, however, a number of other ways 
in which teachers may gain efficacy while balancing traditional lec-
ture with active learning in their classrooms. These methods include 
activities such as choosing problems, predicting student reasoning, 
generating and directing discussion, pushing students for high- quality 
explanations, asking for questions that extend student knowledge, and 
obtaining immediate feedback from students regarding what they just 
learned. Reflecting in this manner shifts the way we measure our own 
teaching away from the quality of our presentations and toward the 
quality of the tasks we provide students. Furthermore, many mathema-
ticians who implement active learning report that they have a deeper 
understanding of student progress and can observe changes in students 
more clearly than in their previous courses.

I dIdn’t need actIve learnInG; why do my StUdentS? Although this 
is changing, many mathematicians have not personally experienced 
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undergraduate teaching environments that include active learning 
components. Thus, for many mathematicians and graduate students, 
their first experience with active learning techniques will be as teach-
ers rather than as students. However, we should be careful when com-
paring our own experiences with those of our students; as Carl Lee [7] 
has written:

I often engaged in math classes at a high cognitive level merely as 
a result of a teacher’s direct instruction (“lecture”). As a teacher I 
quickly learned that I engaged few of my students by this process. 
Not all developed their “mathematical habits of mind” or “math-
ematical practices” through my in- class lectures and out- of- class 
homework (often worked on individually). I now better appreci-
ate the significant role of personal context and informal education 
in the development of students’ capacity.

Research [2], [3] suggests that active learning has a strong positive ef-
fect on a wide range of students, not only those who enter our courses 
ready to independently engage with math at a high cognitive level. 
That research also suggests that active learning does not harm, and 
may further benefit, already high- achieving students. Reflecting on 
our own educations, the authors agree that we would likely have built 
a firmer mathematical foundation had we experienced more active 
learning environments and that active learning would have prompted 
in us an earlier understanding of mathematics as an inquiry- based 
discipline.

Conclusion

New instructional techniques cannot be effectively implemented over-
night. We must start small and develop gradually and consistently, ide-
ally implementing changes as part of a team that can provide feedback 
and support. For experienced faculty, this development is something 
we need to do not only for ourselves but with an eye toward training 
the next generation of mathematicians.

Those of us who work at master’s-  and doctoral- granting institutions 
should provide graduate students with training and experience in using 
active learning techniques, whether as part of recitation duties or in 
situations where graduate students serve as independent instructors for 
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courses. Given the many demands of graduate school, it is unreasonable 
to expect that every graduate student in math will emerge as an expert 
teacher, but we should provide as many opportunities as possible for 
graduate students to build their skill in using a combination of direct in-
struction and active learning techniques. For early- career faculty, long- 
standing professional development programs such as Project NExT of 
the Mathematical Association of America provide a valuable service to 
the mathematical community.

There is a fundamental way in which our training as mathematicians 
can help us develop as teachers: mathematicians are expert problem 
solvers. As a community of mathematicians and educators, we are in 
the process of solving the problem of how best to teach mathematics, 
and we are working together toward that end. As with all complex 
real- world problems, the challenge for us is that there is not an exact 
solution but rather a collection of approximate solutions. Nevertheless, 
our mathematical training has prepared us as problem solvers to hone 
our intelligence, our diligence, our spirit of curiosity, and our love of 
learning in order to develop meaningful and effective ways of teaching. 
These qualities are directly related to who we are as mathematicians, 
and they give us hope for success in our continued endeavor of improv-
ing mathematics teaching and learning for all.
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Written in Stone: The World’s  
First Trigonometry Revealed  

in an Ancient Babylonian Tablet

Daniel Mansfield and N J Wildberger

The ancient Babylonians—who lived from about 4000 BCE in what is 
now Iraq—had a long forgotten understanding of right- angled triangles 
that was much simpler and more accurate than the conventional trigo-
nometry we are taught in schools.

Our new research, published in Historia Mathematica, argues that the 
Babylonians were able to construct a trigonometric table using only 
the exact ratios of sides of a right- angled triangle. This is a completely 
different form of trigonometry that does not need the familiar modern 
concept of angles (Figure 1).

At school we are told that the shape of a right- angled triangle de-
pends upon the other two angles. The angle is related to the circumfer-
ence of a circle, which is divided into 360 parts or degrees. This angle is 
then used to describe the ratios of the sides of the right- angled triangle 
through sin, cos, and tan (Table 1).

But circles and right- angled triangles are very different, and the 
price of having simple values for the angle is borne by the ratios, which 
are difficult to compute and must be approximated.

This approach can be traced back to the Greek astronomer and 
mathematician Hipparchus of Nicaea (who died after 127 BCE). He is 
said to be the father of trigonometry because he used his table of chords 
to calculate orbits of the Moon and Sun.

But our new research shows that this was not the first, or only, or 
necessarily best approach to trigonometry.
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Babylonian Trigonometry

The Babylonians discovered their own unique form of trigonometry 
during the Old Babylonian period (1900–1600 BCE), more than 1,500 
years earlier than the Greek form.

Remarkably, their trigonometry contains none of the hallmarks of 
our modern trigonometry—it does not use angles, and it does not use 
approximation.

Figure 1. The Plimpton 322 tablet. UNSW/Andrew Kelly, CC BY-SA. See 
also color image.

Table 1. The Three Ratios of a Modern Trigonometric 
Table, Rounded to Six Decimal Places, with Auxiliary Angle 

i in Degrees (Daniel Mansfield, Author provided)

sin i cos i tan i i

0.017452 0.999848 0.017455 1
0.034899 0.999391 0.034921 2
0.052336 0.998630 0.052408 3
0.069756 0.997564 0.069927 4
0.087156 0.996195 0.087489 5
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The Babylonians had a completely different conceptualization of a 
right triangle. They saw it as half of a rectangle, and because of their 
sophisticated sexagesimal (base 60) number system, they were able 
to construct a wide variety of right triangles using only exact ratios 
(Figure 2).

The sexagesimal system is better suited for exact calculation. For 
example, if you divide one hour by three, then you get exactly 20 min-
utes. But if you divide one dollar by three, then you get 33 cents, with 
1 cent left over. The fundamental difference is the convention to treat 
hours and dollars in different number systems: time is sexagesimal, and 
dollars are decimal.

The Babylonians knew that their sexagesimal number system al-
lowed for many more exact divisions. For a more sophisticated exam-
ple, 1 hour divided by 48 is 1 minute and 15 seconds.

This precise arithmetic of the Babylonians also influenced their ge-
ometry, which they preferred to be exact. They were able to generate 
a wide variety of right- angled triangles with exact ratios b/l and d/l, 
where b, l, and d are the short side, long side, and diagonal of a rect-
angle. The variety is a unique feature of their sexagesimal system and 
cannot be achieved using exact decimal ratios.

The ratio b/l was particularly important to the ancient Babylonians 
and Egyptians because they used this ratio to measure steepness.

Figure 2. The Greek (left) and Babylonian (right) conceptualization of a 
right triangle. Notably, the Babylonians did not use angles to describe a right 
triangle. Daniel Mansfield, Author provided
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The Plimpton 322 Tablet

We now know that the Babylonians studied trigonometry—which we 
take in a general sense to mean the measurement of triangles without 
the modern bias toward angles—because we have a fragment of one of 
their trigonometric tables.

Plimpton 322 is a broken clay tablet from the ancient city of Larsa, 
which was located near Tell as- Senkereh in modern- day Iraq. The tab-
let was written between 1822 and 1762 BCE.

In the 1920s, the archaeologist, academic, and adventurer Edgar 
J. Banks sold the tablet to the American publisher and philanthropist 
George Arthur Plimpton.

Plimpton bequeathed his entire collection of mathematical artifacts 
to Columbia University in 1936, and it resides there today in the Rare 
Book and Manuscript Library. It is available online through the Cunei-
form Digital Library Initiative.

In 1945, the tablet was revealed to contain a highly sophisticated 
sequence of integer numbers that satisfy the Pythagorean equation a2 + 
b2 = c2, known as Pythagorean triples.

This is the fundamental relationship of the three sides of a right- 
angled triangle, and this discovery proved that the Babylonians knew 
this relationship more than 1,000 years before the Greek mathemati-
cian Pythagoras was born (Figure 3).

Plimpton 322 has ruled space on the reverse side, which indicates 
that additional rows were intended. In 1964, the Yale- based science 
historian Derek J. de Solla Price discovered the pattern behind the 
complex sequence of Pythagorean triples, and we now know that it was 
originally intended to contain 38 rows in total (Figure 4).

Figure 3. The fundamental relation be-
tween the side lengths of a right triangle. 
In modern times this is called Pythagoras’ 
theorem, but it was known to the Baby-
lonians more than 1,000 years before 
Pythagoras was born.a2 + b2 = c2

b
c

a
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The tablet also has missing columns, and in 1981 the Swedish math-
ematics historian Jöran Friberg conjectured that the missing columns 
should be the ratios b/l and d/l (Table 2). But the tablet’s purpose re-
mained elusive.

The surviving fragment of Plimpton 322 starts with the Pythago-
rean triple 119, 120, 169. The next triple is 3,367, 3,456, 4,825. This 
makes sense when you realize that the first triple is almost a square 
(which is an extreme kind of rectangle), and the next is slightly flatter. 
In fact, the right- angled triangles are slowly but steadily getting flatter 
throughout the entire sequence.

So the trigonometric nature of this table is suggested by the informa-
tion on the surviving fragment alone, but it is even more apparent from 
the reconstructed tablet.

This argument must be made carefully because modern notions such 
as angle were not present at the time Plimpton 322 was written. How 
then might it be a trigonometric table?

Fundamentally, a trigonometric table must describe three ratios of a 
right triangle. So we throw away sin and cos and instead start with the 
ratios b/l and d/l. The ratio that replaces tan would then be b/d or d/b, 
but neither can be expressed exactly in sexagesimal.

Figure 4. The other side of the Plimpton 322 tablet. UNSW/Andrew 
Kelly, Author provided. See also color image.
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Instead, information about this ratio is split into three columns of 
exact numbers. A squared index and simplified values of b and d con-
tain all the information about this third ratio that you might practically 
need, written without approximation.

No Approximation

The most remarkable aspect of Babylonian trigonometry is its preci-
sion. Babylonian trigonometry is exact, whereas we are accustomed to 
approximate trigonometry.

The Babylonian approach is also much simpler because it only uses 
exact ratios. There are no irrational numbers and no angles, and this 
means that there is also no sin, cos, tan, or approximation.

It is difficult to say why this approach to trigonometry has not sur-
vived. Perhaps it was the work of a lone genius, or perhaps this under-
standing was lost in 1762 BCE when Larsa was captured by Hammurabi 
of Babylon. Without evidence, we can only speculate.

We are only beginning to understand this ancient civilization, which 
is likely to hold many more secrets waiting to be discovered.

Table 2. The First Five Rows of Plimpton 322, with 
Reconstructed Columns and Numbers Written in Decimal

 Information Relating to b/d or d/b

b/l d/l (d/l)2 b d Row

0.99166666 1.40833333 1.98340277 119 169 1
0.97424768 1.39612268 1.94915855 3,367 4,825 2
0.95854166 1.38520833 1.91880212 4,601 6,649 3
0.94140740 1.37340740 1.88624790 12,709 18,541 4
0.90277777 1.34722222 1.81500771 65 97 5



Quadrivium:  
The Structure of Mathematics  

as Described in Isidore  
of Seville’s Etymologies

Isabel M. Serrano, Lucy H. Odom,  
and Bogdan D. Suceavă

It is a paradox that, after the catastrophic ce fifth century, notorious for 
the great invasions of Western Europe and the Mediterranean Basin by 
populations coming from different geographical areas and the ultimate 
fall of the Roman Empire, the Roman culture continued to develop 
and several Latin works were produced. A natural question from the 
standpoint of the historian of mathematics is to understand how works 
written in this Roman postimperial historical period reflected the clas-
sical perspective on the structure of mathematics. Isidore of Seville was 
born in ce 560, approximately, and died on April 4, 636, in Visigothic 
Spain. His Etymologies, an encyclopedia compiled at the beginning of the 
seventh century, circulated widely in manuscript for many centuries 
and was printed as early as 1472. This encyclopedic work enjoyed a 
wide audience during the medieval period and became one of the most 
influential scholarly publications of its time. Because of its influence 
and accessibility in medieval libraries, it is interesting to examine the 
structure of mathematics, as described in Etymologies. In particular, we 
investigate the sources Isidore might have used when he wrote his ety-
mological definitions.

Why Is Etymologies Important?

The Greco- Roman epoch witnessed important achievements in math-
ematics. Scholars investigated geometry and arithmetic to obtain subtle 
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and interesting results through the classical Hellenistic and Roman peri-
ods, as most famously exemplified by Euclid’s Elements. After the dissolu-
tion of the Western Roman Empire fostered by Gothic invasions, scholars 
located in the newfound cultural centers salvaged information, albeit less 
connected to the original scholarly context, through Latin translations.

The editors of the English edition of Etymologies [12] note in their 
Introduction (p. 24) that “it would be hard to overestimate the influ-
ence of Etymologies on medieval European culture, and impossible to 
describe it fully. Nearly a thousand manuscript copies survive, a truly 
huge number.” They also point out that Etymologies “was among early 
printed books (1472), and nearly a dozen printings appeared before the 
year 1500.” There are numerous papers and volumes where a thorough 
discussion of Etymologies’s influence is studied (for a series of references 
see pp. 30–31 in [12]). Of particular interest to mathematicians, how-
ever, is the encyclopedia’s implicit description of mathematics as un-
derstood in Isidore’s times. Etymologies aimed to summarize definitions 
known up until the early seventh century, a construction which, in 
philosopher Emil Cioran’s suggestive wording, looks like a “a cemetery 
of definitions” [4]. Indeed, we might inquire today, if a phenomenon is 
defined, is the concept necessarily understood?

As historian Edward Grant remarks [9], “between the fourth and 
the eighth centuries, encyclopedic authors produced a series of Latin 
works that were to have significant influence throughout the Middle 
Ages, especially prior to 1200,” among the most influential were Chal-
cidius, Macrobius, Martianus Capella, Boethius, Cassiodorus, Isidore 
of Seville, and the Venerable Bede. Thus, Etymologies was written dur-
ing a peak of encyclopedic production. Despite the apparent success 
of encyclopedic work during this time, it is difficult to assess whether 
Isidore envisioned the impact his work would have over the course of 
the following centuries.

Among Latin encyclopedists, the core of scientific learning was re-
ferred to as the quadrivium, or the four mathematical sciences: arithme-
tic, geometry, astronomy, and music. The classical education model 
included grammar, rhetoric, logic, and the quadrivium to form the 
seven liberal arts. The quadrivium was initially outlined by Plato in The 
Republic, Book VII. In [12], p. 11, note 28, it is pointed out that “the 
scheme of the Seven Liberal Arts came to the Middle Ages primarily by 
way of Martianus Capella.”
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In [5] we read that: “Cassiodorus, Isidore, Augustine, and other 
Christian authors of antiquity and the Middle Ages, while warning of 
the dangers inherent in their pagan origins, encouraged or permitted 
study of the liberal arts as preparation for the understanding of Scrip-
ture and the study of theology.” Hence, the education model inherited 
from the classical Greco- Roman period was adapted to educate poten-
tial clergymen, in Isidore’s case in Visigothic Spain. Thus, we conclude 
that the Etymologies reflects theologians’ views of mathematics in early 
Church history. Since Etymologies is a window into seventh- century 
mathematical thought, our fundamental inquiry is this: How was math-
ematics presented in the early medieval period?

Grant notes that in drafting Etymologies, Isidore “drew heavily upon 
Cassiodorus, who had, in turn, excerpted from the lengthy Boethian 
translation of Nicomachus’s Introduction to Arithmetic” [9]. The editors 
of [12], supporting Grant’s claim, stress the importance of Boethius’ 
(480–524) works in Isidore’s mathematical explanations ([12], p. 13). 
To this list of sources, we wish to add Boethius’ lost Latin translation 
of Euclid’s Elements. Because of the significant impact of Isidore’s work, 
theological prestige, and his political influence, which later developed 
into centuries- long editorial success, we need to explore both Isidore’s 
encyclopedic vision and the society in which he lived.

Culturally, Western Europe was experiencing drastic changes due 
to the fall of the Roman Empire. The Visigoths invaded the Roman 
Empire in 376 [1], defeating the Roman Imperial army several times [2] 
and sacking Rome under Alaric’s leadership in 410. After 418, when the 
Visigoths settled in Aquitania, the Visigoths’ political power extended 
south, covering Southern France and most of the Iberian Peninsula [11].

Isidore was related to the Visigoth royal family and is credited with 
persuading King Reccared I (586–601) to convert from Arianism (a faith 
named after Arius, c. ce 250–336, a Christian presbyter in Alexandria, 
Egypt) to Catholic Christianity. This was an important political step 
with profound historical implications. Likewise, Isidore participated in 
a Church council at Toledo in 610, and presided at the second Council of 
Seville, which took place in the year 618 or 619. Hence, Isidore evidently 
had a powerful political and religious presence in Visigothic Spain, and 
much of his editorial prestige is rooted in his political prestige.

Because of this historical and cultural context, the Visigoth ruling 
class adopted the Latin culture. Isidore, among other scholars, was 
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admired for the extent of his knowledge of the Greek and Hebrew 
languages and developments ([12], p. 7). Yet, as Barney et al. note, 
Isidore’s knowledge of the Greek language was limited ([12], p. 7). 
Thus, in transcribing his encyclopedia, Isidore relied on Latin transla-
tions of these sources.

The editors of [12] explain Isidore’s process in writing the Etymologies:

Obviously [Isidore] compiled the work on the basis of extensive 
notes he took while reading through the sources at his disposal. 
Not infrequently he repeats verbatim in different parts of the 
work; either he copied extracts twice or he had a filing system 
that allowed multiple use of a bit of information. Presumably he 
made his notes on the slips of parchment that he might have called 
schedae: ≪A scheda is a thing still being emended, and not yet 
redacted into books≫ (VI.xiv.8).

This description shows that Isidore was exposed to classical literature and 
relied heavily on these sources in constructing his work. Isidore’s Etymolo-
gies, then, is not simply a summary, but also a commentary. The ency-
clopedia extends further by reflecting how information was preserved, 
evaluated, and incorporated into a more general image of the scholarly 
culture during the early seventh century. Very few works from this period 
remain, making Etymologies unique in its structure, content, and ability to 
reveal the past. This encyclopedia, in its hope of explaining terminologies 
to the intended audiences in Visigothic Spain, invites an analysis of the 
structure and arguments of knowledge during Isidore’s time.

Furthermore, it is quite possible that at least for some parts of the 
book Isidore might have had help. The editors of [12] point out that “the 
guess that Isidore had help from a team of copyists finds some support 
in the fact that some errors of transmission may indicate that Isidore 
was using excerpts poorly copied or out of context, perhaps excerpts 
made by a collaborator” (see [12], p. 18, indicating also [8], p. 526).

Structure of Medieval Mathematics

In Etymologies, Book III is titled De mathematica, translated in [12] as 
Mathematics. Before engaging in the first etymological discussion, 
Isidore inserts a brief discussion of mathematics. He defines and classi-
fies mathematics as follows [12], p. 89:
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Mathematics in Latin means the science of learning (doctrinalis sci-
entia), which contemplates abstract quantity. An abstract quantity 
is something that we investigate by reasoning alone, separating it 
by means of the intellect from matter or from accidental qualities 
such as even or odd, and other things of this kind. There are four 
types of mathematics, namely Arithmetic, Music, Geometry, and 
Astronomy. Arithmetic is the study of numeric quantity in and of 
itself. Music is the study that is occupied with the numbers that 
are found in sounds. Geometry is the study of size and shapes. As-
tronomy is the study that contemplates the course of the heavenly 
bodies and all the figures and positions of the stars. We will cover 
these studies, each in turn, a little more fully, that their principles 
can be suitabl[y] shown.

In the short paragraph III.ii, Isidore delves into a discussion on the 
“originators of mathematics,” hinting at the scholars he referenced in 
compiling his work. He writes, “People say that Pythagoras was the 
first among the Greeks to commit the study of numbers to writing. 
Next, Nicomachus laid out the subject more broadly. Among the Latin 
speakers, first Apuleius and then Boethius translated this.” Isidore in-
dicates here among his references Nicomachus, followed chronologi-
cally by Apuleius and Boethius. Several authors note that Plato’s Timaeus 
seems to have inspired certain parts in Isidore’s text, particularly the 
section on Geometry, as indicated in [12], following J. Fontaine’s study 
[8]. We add to these conclusions several connections to Euclid’s Ele-
ments, which are not mentioned in [12]. Yet, any reader familiar with 
Euclid’s work could easily notice that definitions in Isidore’s text re-
sembled, if not matched, those stated by Euclid. We gather that Isidore 
most likely used Boethius’ translation of the Elements, which would have 
been completed a century earlier.

Since Boethius’ translation of Euclid’s Elements did not survive, it 
is not entirely clear if Boethius completed this translation. This un-
certainty is primarily a result of Boethius’ untimely execution in the 
middle of translation projects. Yet Isidore’s access to Boethius’ transla-
tion, despite the distance between the Visigothic (modern- day Spain) 
and the Ostrogothic (modern- day Italy) kingdoms, lies in their politi-
cal, cultural, and religious ties, best exemplified through their shared 
Bible, translated into Gothic by Ulfila in the fourth century [3, 13, 14]. 
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Due to the nature and the method of Isidore’s Etymologies, it is quite 
possible that we are reading in Isidore’s work fragments of Boethius’ 
translation. We indicate where Euclid’s definitions match Isidore’s text 
in the following text.

Arithmetic

The first mathematical topic Isidore approaches is Arithmetic. The dis-
cussion begins with a purely etymological analysis of Latin and Greek 
numerals. Isidore mentions the classification of numbers into either 
evens or odds (he does not use “integers,” but “numbers”), then he 
further discusses “evenly even” numbers, that is, multiples of 4, then 
“evenly odd” numbers, that is, numbers that in modern notation satisfy 
4k + 2, with k integer. The discussion is focused more on various classes 
of integers than on the study of their properties. Grant justly states [9], 
“Faced with an unrelated collection of inept definitions, supplemented 
by a few trivial examples, the reader of Isidore’s section on arithmetic 
could have used little of it. A comparison with the arithmetic books of 
Euclid’s Elements (Books VII to IX) illustrates the depth to which arith-
metic had fallen.”

Of particular interest, however, is III.v.11, where Isidore writes,

A perfect number is one that is completely filled up by its own 
parts, as, for example, 6, for it has 3 parts: 6, 3, and 2. The part 
that occurs 6 times is 1, the part that occurs 3 times is 2, and 
the part that occurs 2 times is 3. When these parts are added 
together, that is, when 1, 2, and 3 are summed up together, they 
make the number 6. Perfect numbers that occur within 10 in-
clude 6; within 100, 28; and within 1000, 496.

The definition of perfect numbers mimics Definition 22, Book VII, in 
Euclid’s Elements ([7], p. 278), indicating some reference to concepts 
found in Euclid’s work. (The editors of [12] do not point out this connec-
tion.) In a footnote on p. 90, they write, “In this book we often translate 
Isidore’s term pars as ≪part,≫ where a modern equivalent would be 
≪factor.≫ Isidore and his predecessors conceptualized multiplication 
not so much as a process that derives from factors, but rather as a set 
of static relationships among numbers.” The notes to the edition ([7], 
p. 293), point out that “Theon of Smyrna and Nicomachus both give the 
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same definition of a perfect number, as well as the law of formation of 
such numbers which Euclid proves in the later proposition IX.36.”

We remark that Greek scholars were aware of the existence of a 
fourth perfect number, 8,128, which appears in the work of Nicoma-
chus as early as ce 100, but Isidore did not list it. It is also worth observ-
ing that although Isidore maintains that there are three parts of 6, he 
initially cites the parts as 6, 3, and 2, which then change to 1, 2, and 3, 
which suggests a superficial understanding at best.

Geometry

The structure of geometry is presented in III.xi, where Isidore divides 
geometry into four branches: planar, numerical magnitude, rational 
magnitude, and solid figures, which Grant describes as “strange” [9].

This division of geometry is indeed awkward and condensed. No 
remark is made on spherical geometry as a distinct discipline (not even 
in the section on astronomy) and explanations of geometric proofs and 
their structure (i.e., the relationship between geometry and logic) are 
altogether absent, although the classical Greco- Roman period had ad-
vanced knowledge in these directions.

In III.xi.2, Isidore writes, “Planar figures are those that have length 
and breadth and are, following Plato, five in number.” The editors of 
[12] point out that in Timaeus Plato presents five solids, and not five 
planar figures. What Isidore intended is ambiguous because he does not 
specify five planar figures. Isidore continues with the specification that 
“numeric size is that which can be divided by the numbers of arithme-
tic.” Then, the single sentence present in III.xi.3 introduces a distinc-
tion for one of the categories listed in III.xi.1: “rational sizes are those 
whose measures we are able to know, but irrational sizes are those the 
quantity of whose measures cannot be known.”

Paragraph III.xii includes definitions of geometrical figures, with 
the solids included in the same paragraph as the planar figures. The 
figures are introduced in the following order: the cube (as a particu-
lar case of solid figure), the circle (lacking a clear definition of any 
geometric consistency), then the quadrilateral, a planar figure in gen-
eral, described by the term dianatheton grammon, then an orthogonium, 
which is “a planar figure with a right angle,” which is also a triangle, 
which is in modern language a right triangle. The section continues 
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by mentioning the isopleuros, that is, a planar figure, that could be 
either an isosceles or an equilateral triangle, a sphere, a cube again, a 
cylinder, a cone, and a pyramid.

From this list we see that the classification is not complete, and no 
indication of a method in selecting this information is suggested.

Grant [9] points out that the definition of the cube was given by 
Euclid as a “solid figure contained by six equal squares,” which is quite 
precise, whereas Isidore defines a cube as “a proper solid figure which 
is contained by length, breadth and thickness,” a definition satisfied 
by every solid. On the other hand, Isidore defines a quadrilateral as “a 
square in a plane which consists of four straight lines.” Grant writes 
(see [9]) that this equates “all four- sided figures with squares!” Rather 
unusual is the definition of a cylinder: “a four- sided figure having a 
semicircle above.” Isidore (and his collaborators) collected the defini-
tions, but, as is apparent, lacked experience in using these concepts.

In the last part of III.xii, we observe clear references to Euclid’s 
work. The last paragraph starts by saying that the first figure of the art 
of geometry is the point (punctus), which has no parts. He continues: 
“The second figure is the line (linea), a length without breadth.” We 
recognize in these statements the first two definitions in Book I of Eu-
clid’s Elements. However, Isidore next states: “A straight (rectus) line is 
one that lies evenly along its points.” There is little doubt this is exactly 
Definition 4, Book I, in Euclid’s Elements ([6], p. 165). We note that 
here the copyist skipped Euclid’s Definition 3, “The ends of a line are 
points” ([6], p. 165). This is particularly important, as it shows how 
in Euclid lines (corresponding to modern curves) are finite, as long as 
they have ends. For our present discussion, the omissions are as impor-
tant as Isidore’s selections.

The text continues as follows: “A plane (superficies) has length and 
breadth only.” We believe that the editors of [12] should have translated 
superficies as “surface,” as this is the term used in Definition 5 of Euclid’s 
Elements. In this definition, Euclid described a more general surface, not 
only a plane (see also the important comments from [6], p. 169). For 
the plane, there is a separate definition (it has number 7 in the Elements 
[6], p. 171). The very next sentence in Isidore’s Etymologies is, “The 
boundaries of planes (superficies) are lines.” This matches Definition 6 in 
Euclid’s Elements, suggesting again that the English translation should 
be “surface” instead of “plane.”
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Then Isidore stops abruptly. He writes one more sentence, of a rather 
obscure intention: “The forms of these are not placed in the preceding 
ten figures, because they are found among them.” The editors of [12] 
usefully footnote the following: “That is, the point, line, and plane are 
illustrated by the manuscript figures of the circle, the various planes, 
and the solids, respectively.”

Isidore’s list of concepts retained in section III.xii is not exhaustive, 
in that the copyist would have come across more of Euclid’s definitions, 
which are not discussed, for example, definitions for the concepts of 
angle, diameter, rhomboid, parallel lines, etc. We find it remarkable 
that many definitions available in Book I of the Elements are not included 
in Etymologies. However, it is difficult to draw any conclusions without 
knowing the contents of the translation Isidore used. It is possible that 
Boethius translated just Book I, or just parts of it. If Boethius com-
pleted a translation of the entire Elements, then Isidore chose the con-
cepts he would include.

If Isidore had access to a complete version of the Elements, then his 
omissions demonstrate (i) Isidore’s lack of interest in expanding the 
geometric section, (ii) Isidore’s unfamiliarity with Euclid’s work, and 
(iii) as Etymologies served as the educational model for Visigothic clergy, 
that the clergy needed in Isidore’s vision a basic understanding of only 
the aforementioned geometric concepts.

Music

Isidore follows a classical model first introduced by Plato, who viewed 
music as a branch of mathematics. There are several studies addressing 
“the place of Musica in medieval classifications of knowledge,” for ex-
ample [5], where we read that “models for the medieval classifications 
were available in Greek philosophy, Latin authors of Late Antiquity 
(Boethius), and in the writings of Arabic philosophers and commenta-
tors on Aristotle.”

Isidore notes that “music is the practical knowledge of modulations 
and consists of sound and song.” The editors of [12] comment on III.
xv that “several early manuscripts present elaborate figures, of obscure 
meaning, illustrating various mathematical principles of music. [. . .] 
Presumably because his work is incomplete, Isidore does not discuss 
these in his text.”
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After Isidore covers three divisions of music (harmonic, organicus, 
and rhythmic), he reaches the topic of musical numbers, which was to 
act as the primary connection of music to mathematics. For this reason, 
we cite here the whole paragraph III.xxiii ([12], pp. 98–99):

Musical Numbers (De Numeris Musicis)

1. You find numbers with respect to music in this way (see viii.3 
above). When the high and the low numbers have been set, 
as, for example, 6 and 12, you see by how many units 6 is 
exceeded by 12, and that is by 6 units. You make this number 
into a square, and 6 six times make 36. You add together 
the low and high numbers that you first took, 6 and 12, and 
together they make 18. You divide 36 by 18, and it makes 2. 
You add this to the low number, that is, 6, and it comes to 8. 
Eight is the mean between 6 and 12. Wherefore 8 exceeds 6 
by two units, that is, a third of 6, and 8 is exceeded by 12 by 
four units, a third of 12. Thus, the high number exceeds the 
mean by the same proportion as the low number is exceeded 
by the mean.

2. But just as this proportion in the universe derives from the 
revolution of the spheres, so even in the microcosm it has 
such power beyond mere voice that no- one exists without its 
perfection and lacking harmony. Indeed, by the perfection 
of the same art of Music, meters are composed of arsis and 
thesis, that is, by rising up and setting down.

We can only conjecture that this section is incomplete. Some of the 
assertions included here are a discussion of particular cases without a 
clear context. If Isidore inherited the view that music is a branch of 
mathematics from earlier references, his explanation lacks a convincing 
argument, as demonstrated in the earlier discussion.

Astronomy

We do not intend to engage here in a discussion on the Ptolemaic model 
of the universe. Instead, we mention only that a geocentric model of 
the universe was considered in the Etymologies as the fourth branch of 
mathematics.
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In III.xxiv, Isidore states that “astronomy is the law (cf. oónow, “law”) 
of the stars (aster,) which, by investigative reasoning, touches of the 
courses of the constellations, and the figures and positions of the stars 
relative to each other and to the earth.” Then Isidore covers a descrip-
tion of the universe following Claudius Ptolemy’s model. The Almagest 
was barely known during the early Middle Ages, and the fairly popu-
lar book by Johannes de Sacrobosco (his Tractatus de Sphaera) appeared 
much later, in the thirteenth century, and was far more elementary. 
The editors of [12] point out (see p. 99) that Isidore identifies Claudius 
Ptolemy (ce second century) with the Ptolemys who ruled Egypt (and 
this is not the only historical information that lacks accuracy). The de-
scription of Ptolemy’s system is of less mathematical interest today; that 
is true for reasons illustrated by statements such as III.lxi: “Stars are 
said not to possess their own light, but to be illuminated by the sun, as 
the moon is.”

We can only agree with Grant when he writes in [9], p. 17, that 
“too often, [Latin encyclopedists] failed to comprehend the material 
they read; nonetheless, they copied it, or paraphrased it, in their own 
treatises.” Even the structure of mathematics has been inherited from 
classical Greek literature, without much evolution, reflecting a halt in 
academic progress. However, we must note that the positive contri-
bution of Latin encyclopedic works rests in their collection and pres-
ervation of Greco- Roman knowledge that otherwise would have been 
lost in Western Europe. Unfortunately, the lack of translated classical 
scientific works affected the understanding of fundamental concepts.

Isidore’s official biographies characterize him as one of the most in-
fluential scholars of the early centuries. Etymologies, like its author, had 
a long- lasting effect. The literary work survived in ancient libraries for 
centuries and served as a model of reference and structural organization 
of knowledge for many centuries. Only five centuries after Isidore’s 
death did Western Europe witness new attempts of original scientific 
inquiries [9, 10]. Even then, these groundbreaking scholars were edu-
cated in places where Etymologies was preserved and held in high regard. 
Thus, Etymologies, in all its influence, demonstrates and illustrates the 
ample regression in knowledge in Latin Europe during the centuries 
following the fall of the Roman Empire. For the mathematician inves-
tigating the complex historical evolutions of understanding mathemat-
ics across the centuries, the content of the Etymologies is revealing and 
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symptomatic. A collection of information does not and cannot replace 
the competent active use of mathematics. This process can be partially 
explained by the historical decay happening all over Europe after the 
fall of the Roman Empire, but only by looking at the specific pieces of 
mathematical information can we assess the precise measure of this ex-
tensive loss of competences and profound mathematical thinking.
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The World War II Origins  
of Mathematics Awareness

Michael J. Barany

Since ancient times, advocates for mathematics have argued that their 
subject is foundational for many areas of human endeavor, though the 
areas and arguments have changed over the years. Much newer, however, 
is the idea that mathematicians should systematically try to promote 
the usefulness or importance of mathematics to the public. This effort, 
which I shall generically call “mathematics awareness,” was largely an 
American invention. One outward manifestation was the 1986 inaugu-
ration, by President Ronald Reagan, of the first Mathematics Awareness 
Week. Every year since then, mathematicians and mathematics educa-
tors in the United States have dedicated a week—or, beginning in 1999, 
the month of April—to raising public awareness of “the importance of 
this basic branch of science to our daily lives,” as Reagan put it.

While today’s mathematics awareness is focused on schools and on 
peaceful applications of mathematics, a direct line connects it to its 
origins in a very different kind of activity: mathematicians promoting 
their expertise to leaders of the American war effort during World War 
II. Recent mathematics awareness has focused on encouraging more 
people to take up the discipline. However, wartime and early post-
war mathematics awareness centered on securing resources for those 
already in the profession. To understand the origins of mathematics 
awareness, one must follow the money.

A Discipline in Need

For most of the discipline’s history, mathematicians have supported 
their research either through independent wealth or through patron-
age from the wealthy. Universities and a select few other academic 
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institutions—all, themselves, historically channels for wealthy patron-
age—eventually became the dominant sites and funders of mathemati-
cal scholarship. So long as publication and travel were relatively small 
parts of such scholarship, this arrangement suited mathematicians’ 
needs well enough. But by the early twentieth century, mathemati-
cians were publishing and traveling much more than before and across 
greater distances. They needed new organizations and new sponsors to 
support their work.

Such were the rationales for mathematicians’ first professional soci-
eties, many of which date to the latter part of the nineteenth century 
and the start of the twentieth. The American Mathematical Society 
(AMS) originated in 1888 on the heels of corresponding societies in 
Europe, such as the London Mathematical Society (1865) and Société 
Mathématique de France (1872). The Mathematical Association of 
America (MAA) entered the scene at the close of 1915. These societies 
drew their support principally from their members’ universities (both 
directly and by way of members’ dues), national governments, and pri-
vate sponsorship.

Following the First World War, U.S. mathematicians had some lim-
ited success securing corporate sponsorship for their work, for instance 
from the American Telephone & Telegraph Company, and consider-
ably greater success courting major philanthropies such as the Rocke-
feller Foundation and the Carnegie Corporation of New York. Yet these 

A War of Mathematics

World War II was not the first war that mathematicians at-
tempted to characterize as “a war of mathematics,” but it was 
the first one where the characterization appeared to stick. In 
addition to lobbying elite policy makers, mathematicians wrote 
articles for the popular press and offered radio broadcasts that 
attempted to explain why mathematics mattered in terms the 
masses could understand. For example, Bennington P. Gill, who 
served as AMS treasurer from 1938 to 1948, gave an interview 
in 1942 with WNYC for their series on The Role of Science in War 
(www.wnyc.org/story/bennington-p-gill/).

http://www.wnyc.org/story/bennington-p-gill/
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relationships tended to be piecemeal and tenuous. U.S. mathematicians 
had successfully bid to host the 1924 International Congress of Math-
ematicians but ended up ceding the congress to Toronto after find-
ing themselves unable to secure the needed financial backing. (John 
Charles Fields, on the other hand, managed to find enough money for 
the Toronto meeting that it concluded with a modest surplus, which 
provided the seed money for what became the Fields Medals.)

The Americans tried again to host an International Congress in 
1940. When preliminary fundraising efforts again fell short, Insti-
tute for Advanced Study mathematician Marston Morse approached 
the Rockefeller Foundation with the argument that his discipline was 
“unique . . . as having no natural sources of support.” Indeed, when it 
came to major donors, Rockefeller and Carnegie were the only rela-
tively sure bets, and no grant was assured. To grow, U.S. mathematics 
would need new constituencies and new sources of funding.

Preparing for War

The AMS suspended plans for the envisioned 1940 International Con-
gress of Mathematicians following the German invasion of Poland in 
1939. As war threatened to engulf Europe and beyond, U.S. math-
ematicians thought back to their experiences of the Great War. Some 
concluded that a lack of coordination among U.S. mathematicians had 
restricted their contributions to the previous war effort. Without such 
coordination, military leaders would have a hard time learning where 
mathematicians were needed and where the needed mathematicians 
could be found.

A new joint AMS–MAA War Preparedness Committee aimed to 
provide this coordination by synthesizing the lessons from the last war 
and positioning mathematicians for a new conflict that seemed sure to 
draw American involvement sooner or later. Marston Morse was ap-
pointed chair, and a subcommittee chaired by Dunham Jackson focused 
on mathematical research. The subcommittee included Marshall Stone, 
whose two- year presidency of the AMS would fall in the middle of the 
United States’ official engagement in World War II. From start to fin-
ish, Stone advocated formal mathematical coordination with particular 
force and frequency. In a summer 1940 missive on “the organizational 
aspects of the research problems of national defense,” Stone articulated 
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three purposes for the subcommittee. First and most urgent was to 
find an efficient means to join together current “technical problems and 
competent mathematicians” who could solve them. Second, the United 
States would need to make much greater use of mathematical tech-
niques than it currently did. The third, long- range, goal was to make 
war service pay off for the U.S. mathematical profession even after the 
war’s end.

“If mathematics is to be brought to bear upon our defense problems 
in full measure,” Stone then asserted, “we shall have to organize and 
conduct propaganda to this end.” He anticipated an uphill struggle. The 
subcommittee would have to confront “not only the appalling limita-
tions of our military officers, but also the general American attitude 
of antagonism to theory in general and to mathematical refinements 
in particular and the abysmal ignorance of the majority of intelligent 
Americans concerning the uses of mathematics.”

Enter Mina Rees

The U.S. military officially entered the war as 1941 drew to a close. 
The next year, the AMS and MAA responded by dissolving the War 
Preparedness Committee and appointing a new War Policy Commit-
tee, with Marshall Stone (soon to be AMS president) as chair and Mars-
ton Morse (who was just finishing his own term as AMS president) in 
a supporting role. Soon, leaders from academia, philanthropy, and the 
military drew on approaches from their respective fields to develop for 
the U.S. government a system for identifying problems and contract-
ing them out to academic research groups. This formed the basis for a 
massive system of contracts that would support advanced mathematical 
research and training after the war, as well as the postwar system of 
government grants familiar to many mathematicians today. But math-
ematics awareness remained the exclusive province of a narrow elite.

Richard Courant, one of the academic leaders who helped to craft 
that system, used his wartime government connections both dur-
ing and after the war to build his institute at New York University 
into one of the world’s leading centers of mathematics. Perhaps even 
more important for postwar mathematics in and beyond the United 
States, however, was Courant’s close associate Mina Rees. Although 
she had earned a Ph.D. under Leonard Dickson from the University of 
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Chicago, Rees’s prospects within the mathematics profession were lim-
ited by widespread institutional sexism. At Courant’s urging, Rees was 
appointed as technical aide to the main government clearinghouse for 
coordinating mathematicians’ war service. There, she facilitated the 
broad array of contracts by gathering information, assessing outcomes, 
and making needed connections.

Stone, in 1944, expressed his frustration that the government “would 
display considerable reluctance to call on the leaders of our profession.” 
In his view, mathematicians could and should have done much more to 
dedicate themselves wholly to the war effort. He himself set out imme-
diately after the conclusion of his term as AMS president on a mission 
classified top secret to advise and assess Allied signal intelligence in 
India, Burma, and China in the first part of 1945.

A Few Key Men at the Top

Marshall Stone’s dim view of the public appreciation for math-
ematics led him to focus on a few “key men at the top” rather than 
aim to convince the masses or even the much smaller mass of 
officers and policy makers. Among those key men were Harvard 
president James Bryant Conant, chair of the National Defense 
Research Committee, and Frank Jewett, chairman of the Board 
of Directors of Bell Laboratories and president of the National 
Academy of Sciences. Referring to the commonplace character-
ization of the Great War as the chemist’s war, Conant famously 
quipped on the front page of Chemical & Engineering News in No-
vember 1941, “This is a physicist’s war rather than a chemist’s.” 
According to AMS secretary Roland Richardson, when Conant 
shared the view with Jewett, the latter shot back that “It may be 
a war of physics, but the physicists say it is a war of mathematics.” 
At least one key man got the message.

Further Reading: Michael J. Barany, “Remunerative combina-
torics: Mathematicians and their sponsors in the mid-twentieth 
century,” in Mathematical Cultures: The London Meetings 2012–2014, 
edited by Brendan Larvor (Basel, Switzerland: Birkhäuser, 2016, 
pp. 329–346; preprint online at mbarany.com/publications.html).

http://www.mbarany.com/publications.html
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Mathematicians in the United States concluded the war with a range 
of views of their relative success or failure. While they did not lay claim 
to a breakthrough on the scale of the Manhattan Project as physicists 
would, mathematicians contributed to a great many of the United 
States’ decisive wartime innovations in weaponry, aeronautics, provi-
sioning, communications and intelligence, and other areas.

Coordination for a Growing Discipline

In 1946, Rees took over the mathematics arm of the Office of Naval 
Research (ONR), helping the navy to become a leading funder of re-
search and publication in both pure and applied mathematics. One of 
her earliest efforts was to forge a partnership with the AMS’s Mathemat-
ical Reviews to translate new Russian mathematical works into English. 
This and related undertakings reinforced the United States as an inter-
national clearinghouse for postwar mathematics, allowing U.S. institu-
tions to assume a lasting dominance in the discipline.

The ONR led the way for a wide range of government- funded re-
search programs associated with other branches of the military and 
various civilian offices. These eventually included the National Science 
Foundation (NSF), founded in 1950 after years of debate informed 
by wartime and early postwar military- sponsored science. ONR and 
other contracts funded faculty, students, seminars, and publications on 
a wide scale in the first postwar decades. They supported visiting re-
searchers from abroad and allowed U.S. mathematicians to disseminate 
their work rapidly and efficiently. These new funding sources allowed 
the mathematics profession to grow quickly—so quickly, in fact, that 
U.S. mathematicians could turn from worrying about finding enough 
sources of support to worrying about finding enough people to make 
good use of that support.

Over the years, as new mathematical organizations sprang up and 
the mathematical profession collectively faced new funding and policy 
issues, the AMS and MAA continued to adapt and reconfigure a series 
of joint undertakings aimed at the kind of mathematics awareness pur-
sued in the 1940s.1 Early postwar joint committees laid the ground-
work for the International Mathematical Union and advocated for the 
new NSF and a mathematics division in the National Research Council. 
The 1970s- era Joint Projects Committee in Mathematics eventually 
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grew into the Joint Policy Board for Mathematics, which currently 
spearheads the annual Mathematics Awareness Month (in 2017, the 
name became Mathematics and Statistics Awareness Month).

A New Wave

If more people saw how important math was to their lives, the thinking 
since the 1980s has been, more people would participate in shaping that 
mathematics in the future. In practice, it has not always worked out 
that way. National and even international campaigns for mathematics 
education have put the power of mathematics on public display, but for 
many there remain significant barriers to success in the mathematical 
profession.

Mina Rees

In recognition of Rees’s contributions to the mathematics profes-
sion, the AMS Council adopted a resolution in 1953 asserting:

Under her guidance, basic research in general, and especially 
in mathematics, received the most intelligent and whole-
hearted support. No greater wisdom and foresight could 
have been displayed and the whole postwar development of 
mathematical research in the United States owes an immea-
surable debt to the pioneering work of the Office of Naval 
Research and to the alert, vigorous and farsighted policy 
conducted by Miss Rees. (Bulletin of the AMS, March 1954.)

Rees continued after 1953 to serve as an administrator and advi-
sor for a wide range of important boards and institutions, fos-
tering the development of pure and applied mathematics in and 
beyond the United States.

Further reading: Judy Green, Jeanne LaDuke, Saunders Mac-
Lane, and Uta C. Merzbach, “Mina Spiegel Rees (1902–1997),” 
Notices of the American Mathematical Society 45 (1998) no. 7, 866–
873; Amy Shell-Gellasch, In Service to Mathematics: The Life and 
Work of Mina Rees (Boston: Docent Press, 2011).
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The first wave of mathematics awareness took place at a time when 
U.S. mathematicians were relatively isolated from many areas of policy 
and the economy and correspondingly lacked obvious places to turn 
for resources. The second wave responded to a different problem: the 
need for a public posture that would ensure a supply of mathematicians 
in the future. The Mathematics Awareness Weeks, and later Months, 
addressed that need by displaying the relevance of mathematics to mod-
ern life and to society at large.

We are now starting to see a third wave of mathematics awareness, 
focused less on what mathematics can do for war- making policy elites 
or for everyday citizens and more on the mathematicians themselves 
who create and apply that mathematics and train future generations in 
their field. Efforts to highlight women and minority pioneers in the dis-
cipline and to support underrepresented groups may yet make headway 
where other approaches have fallen short. The history of mathematics 
awareness shows that by banding together and working systematically, 
mathematics organizations can make real changes in how important 
constituencies view and engage the discipline. The history also shows 
that mathematics awareness can take many forms, each reflecting the 
priorities and blind spots of its time.

Note
1. For a blow- by- blow account of the various joint committees, see Everett Pitcher, A 

History of the Second Fifty Years: American Mathematical Society, 1939–1988 (Providence, 
RI: American Mathematical Society, 1988), pp. 273–85.



Figure 1 from “How to Play Mathematics”  (Wertheim).  
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Figure 2 from “How to Play Mathematics” (Wertheim). Courtesy Wikipedia.



Figure 4 from “How to Play Mathematics” (Wertheim). Courtesy Wikipedia.
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Figure 1 from “Computational Thinking in Science” (Denning). 
(Image at top courtesy of NASA; image at bottom courtesy of Peter A. 

Gnoffo and Jeffery A. White/NASA.).



Figure 2 from “Computational Thinking in Science”  (Denning)

Figure 3 from “Computational Thinking in Science” (Denning)



Figure 1 from “Tangled Tangles” (Demaine, Demaine, and others).  
Photo by Quanquan Liu, 2015.

Figure 2 from “Tangled Tangles” (Demaine, Demaine, and others)
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Figure 1 from “The Bizarre World of Nontransitive Dice” (Grime)
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Figure 10 from “Tangled Tangles” (Demaine, Demaine, and others)
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Figure 2 from “The Bingo Paradox” (Benjamin/Kisenwether/Weiss)

Figure 15 from “The Bizarre World of Nontransitive Dice” (Grime)
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Figure 5 from “The Bingo Paradox” (Benjamin/Kisenwether/Weiss)

Figure 3 from “The Bingo Paradox” (Benjamin/Kisenwether/Weiss)

Figure 4 from “The Bingo Paradox” (Benjamin/Kisenwether/Weiss)



Figure 1 from “Written in Stone: The World’s First Trigonometry Revealed 
in an Ancient Babylonian Tablet” (Mansfield/Wildberger).  

UNSW/Andrew Kelly, CC BY-SA.

Figure 4 from “Written in Stone: The World’s First Trigonometry Revealed 
in an Ancient Babylonian Table” (Mansfield/Wildberger).  

UNSW/Andrew Kelly, Author provided.



The Writing Mathematician

Caroline Yoon

Writing isn’t like math; in math, two plus two  
always equals four no matter what your mood is like.  
With writing, the way you feel changes everything.

—Stephenie Meyer [1]

I feel for my students when I hand them their first essay assignment. 
Many are mathematicians—students and teachers—who chose to 
study mathematics partly to avoid writing. But in my mathematics edu-
cation courses, and in the discipline more generally, academic writing is 
part of our routine practice.

Mathematicians face some challenging stereotypes when it comes to 
writing. As the Meyer quote suggests, writing is often seen as ephem-
eral, subjective, and context- dependent, whereas mathematics is seen 
as enduring, universal, and context- free. Writing reflects self, math-
ematics transcends it; they are essentially unlike each other. This false 
dichotomy of writing versus mathematics can discourage mathemati-
cians from writing, especially when combined with similarly coarse 
dichotomies such as right brain | left brain, creativity | logic, and art | 
 science. Taken together, these dichotomies suggest that writing is out-
side the natural skill set of the mathematician, and that one’s math-
ematics training not only neglects one’s development as a writer, but 
also actively prevents it.

Where does this writing | mathematics dichotomy come from? It is 
profoundly unhelpful for our discipline of mathematics education: it as-
sumes a gatekeeping role, turning away potential newcomers who might 
otherwise have a lot to offer. This essay deconstructs the writing | math-
ematics dichotomy by identifying similarities between the practices of 
academic writing and mathematics. I offer three writing- mathematics 
metaphors based on these similarities: writing as modeling, writing 
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as problem solving, and writing as proving (Table 1). I propose that 
these metaphors might encourage students who identify more as math-
ematicians than writers to recognize and replace unproductive writing 
beliefs and practices with more productive ones that are grounded in 
familiar mathematical experiences.

Table 1. Metaphor Mappings between Mathematics and Writing Practice

Writing-Mathematics 
Metaphors

Unproductive 
Beliefs and Practices 
Addressed

Productive Beliefs and 
Practices Encouraged

Writing as modeling: The 
drafting process is like 
the modeling cycle, 
where early drafts 
are created in order 
to generate improved 
subsequent drafts.

Belief: One should 
know what to write 
before one starts 
writing.

Practice: Wait until 
the last minute before 
beginning to write.

Belief: Writing can 
generate ideas.

Practice: Create early 
drafts as a mechanism 
for figuring out what 
one wants to write.

Writing as problem 
solving: Writing is like 
solving a mathematical 
problem, where 
getting stuck is natural 
and expected.

Belief: If one knows 
what to write, the 
writing should flow 
easily.

Practice: Give up 
when stuck.

Belief: Writing can be 
used to analyze and 
organize ideas.

Practice: When stuck, 
approach one’s writing 
metacognitively, 
and seek new ways 
of structuring one’s 
attention to one’s 
ideas.

Writing as proving: 
Academic writing 
is like a proof that 
performs a dialogic 
role in the way it 
addresses and seeks to 
convince a public.

Belief: Writing is 
a permanent, inert 
record of one’s 
knowledge.

Practice: Dismiss 
actual and potential 
reader interpretations 
of one’s writing.

Belief: Writing is a 
dialogue with a public.

Practice: Seek readers’ 
interpretations of one’s 
writing, from self-
as-reader, imagined 
readers, and actual 
readers.
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I wish to delimit my intentions around this offering. I am not suggest-
ing that mathematicians who read this essay will automatically become 
highly competent writers, simply by acknowledging similarities be-
tween writing and mathematics. Nor am I suggesting that one’s skill in 
mathematical modeling, problem solving, and proving transfer effort-
lessly to the domain of writing. My goals are more modest and realistic. 
I want my students to work on their writing, just as they have worked 
on their mathematics. The three metaphors are offered as encourage-
ment to begin this process, rather than being intended as a remedy or 
solution. I propose that mathematicians do not have to see themselves as 
starting from nothing when they engage in academic writing. Rather, 
they can view their writing development as building on competencies 
they have already honed in their mathematical training, but which they 
may not have formerly recognized as writerly.

The Imperfect Ideal: Writing as Modeling

Let us consider a prototypical mathematics education student who has 
spent weeks thinking, reading, and talking about her essay topic but 
only starts writing it the night before it is due. She writes one draft 
only—the one she hands in—and is disappointed with the low grade 
her essay receives. She wishes she had started earlier, but rationalizes 
to herself that she was still trying to figure out what she wanted to say 
up until the moment she started writing. It was only the pressure of the 
deadline that forced her to start writing; without it, she would have 
spent even more time thinking and reading to develop her ideas. After 
all, she reasons, there is no point writing when you do not know what 
to write about!

This “think first, write after” approach, sometimes known as the 
“writing up” model is a dangerous trap that many students fall into, 
and is at odds with the way writing often works (Menary 2007). The 
approach allows no room for an iterative drafting process, whereby im-
perfect drafts are written that are not intended as final copy, but are 
necessary steps toward subsequent improved drafts. Writing experts 
trade on the generative power of imperfect writing—they encourage 
writers to turn off their internal critic and allow themselves to write 
badly as a way of overcoming writing inertia and discovering new ideas 
(Elbow 1985). Lamott heralds the “shitty first draft” (1994) as an ideal 
(and achievable!) first goal in the writing process: anyone can produce 
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a sketchy first draft that generates material that can be worked on, im-
proved, and eventually rewritten into a more sharable form.

Mathematical modeling offers a compelling metaphor for the genera-
tive power of imperfect writing in the creative process. Like polished 
writing, polished mathematical models are seldom produced in a first 
attempt. A modeler typically begins with some understanding of the 
real [2] situation to be modeled. The modeler mathematizes variables 
and relationships from his or her understanding of the real situation, 
and “writes” it into an initial mathematical model. Next, the modeler 
runs the model to test it and interprets the results back into the real 
situation, comparing the mathematical output with real data. At this 
point, the modeler may notice information in the real situation that 
was previously missed, create a revised model based on this enhanced 
interpretation of the situation, and subject the model to further testing 
and revision, ultimately going through the full modeling cycle multiple 
times until she or he is satisfied (Borromeo- Ferri 2006). The model is 
his or her mathematical description of the situation, written in mathe-
matical notation, and the modeler who publishes a mathematical model 
has typically created and discarded multiple models along the way, just 
as the writer who publishes a piece of writing has typically written and 
discarded multiple drafts along the way.

Novices to modeling might regard this iterative process as a waste 
of time: Why bother creating models that will only be discarded? The 
novice might try to bypass the iterations, thinking that if one thinks 
harder in the first place, one might produce a better model in an ini-
tial attempt. But the experienced modeler takes the more efficient ap-
proach of entering into modeling cycles, not avoiding them. Models 
self- propagate: the model one produces to express one’s interpretation 
of a situation becomes a conceptual lens through which one can review 
the situation (Lesh and Doerr 2003); on this reviewing, one can notice 
deeper levels of structure that can be incorporated into a more power-
ful model. The modeler who views a real situation through multiple 
models typically notices more than one who spends the same amount 
of time trying to understand the real situation from an initial, untested 
point of view in the hope of producing a perfect first model. Similarly, 
the writer who writes, reads, and revises multiple drafts is likely to 
develop his or her ideas further than the writer who only thinks about 
his or her ideas in the hope of producing a perfect first draft.
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A mathematical model is not valued for its verisimilitude, but for 
the opportunity it gives the user to manipulate, predict, or explain a 
system in a way that is not otherwise possible: “All models are wrong. 
But some are useful” (Box 1976). Modelers are aware that their math-
ematical descriptions exaggerate some features of a system and omit 
others, and they manipulate this exaggeration consciously to enhance 
the usefulness of the model. Perfection is simply not a relevant ideal in 
mathematical modeling; the utility of a model comes from its approxi-
mation of reality.

Modeling, like drafting, expects imperfection. This notion can be 
liberating: one can create a bad first model without worrying that it 
means one is a bad modeler. Modeling can be a useful metaphor for the 
generative role of writing for the mathematics education student who 
does not know what to write for her essay. Instead of waiting to figure 
out her ideas before writing, she can allow herself to write a bad first 
draft—full of contradictions, unfinished thoughts, ideas that are not 
structured well—in order to generate material that can be worked on 
and improved. Rather than viewing her bad first draft as evidence that 
she is a bad writer, she can view it as a useful tool for figuring out what 
she wants to say. She can enter into the drafting cycle knowing that the 
writing she does now will help her figure out what she wants to say.

The Thinking Laboratory: Writing as Problem Solving

The generation of ideas is just one of writing’s roles; writing also plays 
a role in the analysis and organization of ideas that have been generated. 
Our prototypical student comes close to experiencing this second role 
when she knows what she wants to write about but struggles to write 
it. She has a thesis and outline for her intended essay, but the writing is 
painstaking. She spends hours writing the first sentence, only to delete 
it the next day. She throws up her hands and complains that she knows 
what she wants to say, but does not know how to say it—that she is “bad 
at writing” and that if she were “good at writing” she would be able to 
convey the same ideas more effectively, more eloquently. Good writ-
ers, she thinks, would not get stuck like this; their writing would flow 
elegantly from their pens.

It is an intimidating expectation. Even the most talented writer can 
be scared into inaction by the demand for elegant sentences created on 
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the spot: “Be brilliant. Now!” Rather than finding it easy, many writers 
approach writing as an act of problem solving where getting stuck is a 
natural and expected part of the process. They may have a clear goal in 
mind but do not know how to get there. They write carefully, analyzing 
their writing as they go, shifting their attention back and forth between 
the writing that has been done and the goal that is beyond their reach. 
They scrutinize their inscriptions, using their writing as a thinking tool 
(Ong 1982) that helps them answer questions like these: “Should I start 
with this point, or leave it until these other two are developed first? 
Does this sentence move me toward my argument, or does it hint at a 
weakness that would undermine it? Is my central thesis workable, or 
should I modify it in light of the arguments in this first section?” Writ-
ers may begin with an outline plan, but they are not surprised when 
they abandon it as their analysis and writing lead them to reevaluate 
their goals and to create and work toward new ones.

Mathematical problem solving has been characterized as involving a 
similar process of working back and forth between givens and goals and 
posing new problems while exploring existing ones (Kontorovich et al. 
2012). Mathematical problems require the solver to combine known 
ideas in previously unknown ways to create a solution method that 
was not already known. Problems have been distinguished from math-
ematical exercises (Schoenfeld 1985), which are strings of structurally 
similar questions that require students to practice a recently learned 
procedure. A student who has mastered a procedure will complete ex-
ercises quickly, easily, and accurately, much like the mythical “good 
writer” who issues a stream of perfect sentences in one sitting without 
breaking a sweat. This difference is important: Exercises require less 
mental effort because the script is already known; problems are more 
demanding, as they require the solvers to create the scripts as they go.

Writing an original essay is like trying to solve a problem—there 
is no script to follow; it must be created by simultaneously determin-
ing one’s goals and figuring out how to achieve them. In both essay 
writing and mathematical problem solving, getting stuck is natural and 
expected—it is even a special kind of thrill. When mathematicians 
get stuck, they engage in metacognitive activity (Garofalo and Les-
ter 1985), reviewing their desired goals and comparing them to their 
current ways of thinking in order to identify their domain of validity 
(Brousseau 2002)—the domain where their ways of thinking work and 
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the point at which they break down. They also try to shift their ways of 
attending (Mason 2003) to the problem, often by using heuristics such 
as working backward, drawing a diagram, or solving a related problem 
(Polya 1945) in the hope of finding productive ways of thinking. They 
usually conduct such activities with a writing implement (pencil, chalk, 
whiteboard marker, keyboard) in hand, creating a “coded system of vis-
ible marks [. . .] whereby a writer could determine the exact words that 
a reader would generate from a given text” (Ong 1982, p. 83). That is, 
they write.

This last observation may come as a surprise to mathematicians who 
do not think of their problem- solving activity as writing. Doing mathe-
matics—that is, the ordinary everyday concrete details of manipulating 
mathematical relationships and objects to notice new levels of structure 
and pattern—involves scratching out symbols, making marks, moving 
ideas around the page or board (Livingston 2015). To most mathemati-
cians, writing is synonymous with “writing up one’s results,” and the 
semiotic activity that precedes the “writing up” is “working,” “think-
ing,” or “figuring things out,” but not “writing” [3]. Of course, we are 
talking about different kinds of writing. The “writing up” of results 
is writing- as- reporting, performed at the end of the problem solving. 
In contrast, the semiotic activity that precedes “writing up” is a more 
analytic form of writing used to restructure one’s ways of thinking dur-
ing the problem- solving process. In academic writing, this writing- as- 
analysis is often performed without the expectation that it will appear 
intact in the final draft; it is often performed on scrap pieces of paper, 
with scribbles and arrows used to help the writer/thinker restructure 
his or her arguments.

Even if mathematicians do not call such semiotic activity writing, 
they readily acknowledge that the marks they make on the page, screen, 
or board are fundamental to their mathematical progress—that they 
help them analyze their ideas, that they “restructure thought” (Ong, 
1982). My mathematician colleague Rod Gover once declared, “The 
whiteboard is our laboratory,” when arguing for more space in uni-
versity buildings. Another mathematician, Steven Galbraith, told my 
class, “I use a whiteboard when the ideas are too big for my head,” 
conjuring an image of the whiteboard as an extension of the mind, with 
thinking distributed across multiple modalities. These marks help sep-
arate the known from the knower (Ong 1982), a distancing that allows 
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the mathematician to “examine [one’s] thoughts more consciously as a 
string of assertions in space” (Elbow 1985, p. 284) than if one spoke or 
thought them without writing them. Such distancing facilitates abstrac-
tion, which is a mathematical ideal.

Then why not call it writing? I suspect that the reluctance stems from 
a disciplinary tendency to overestimate the role of purely mental faculties 
and to underestimate the role of the diagrams, symbols, gestures, and 
glances that help mathematicians see new levels of structure. The arche-
typal story of mathematical discovery tells how Poincaré unexpectedly 
realized the link between non- Euclidean geometry and complex func-
tion theory while stepping on a bus, resumed his previous (nonmath-
ematical) conversation for the rest of the bus ride with quiet certitude of 
his discovery, and only verified it when he got home—presumably with 
pen and paper (Hadamard 1945). The story creates a powerful image 
of pure thought (or divine inspiration) as the source of mathematical 
discovery, and it diminishes the role of writing to verification. Math-
ematicians’ reluctance to call their analytical writing “writing” may also 
be motivated by a mathematical aesthetic that depends on the purity, 
simplicity, and abstraction of mathematics from the materiality of the 
so- called real world: ink and chalk dust are substantial, but the ideas 
they express endure and transcend. Perhaps this aesthetic prevents some 
mathematicians from acknowledging their role as writers who deal in 
messy physical marks, preferring instead to consider themselves think-
ers reflecting on the ideal forms those marks express.

Why do I care that mathematicians acknowledge their semiotic ac-
tivity as “writing”? Quite frankly, because they are good at it. They 
have spent years honing their ability to use writing to restructure their 
thoughts, to dissect their ideas, and identify new arguments—they 
possess an analytic discipline that most writers struggle with. Yet few 
of my mathematics education students take advantage of this in their 
academic writing. They want their writing to come out in consecutive, 
polished sentences, and become discouraged when it does not, rather 
than using their writing to analyze and probe their arguments as they 
do when they are stuck on mathematical problems. By viewing writing 
only as a medium for communicating perfectly formed thoughts, they 
deny themselves their own laboratories, their own thinking tools.

I am not suggesting that one’s success in solving mathematical prob-
lems automatically translates into successful essay writing. But the 
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metaphor of writing as problem solving may encourage a mathematics 
education student not to give up too easily when she finds herself stuck 
in her writing. Perhaps she can approach her writing metacognitively, 
reviewing her central thesis in light of her arguments, articulating her 
goals and identifying limitations in her current ways of thinking, just 
like she does when working on a mathematical problem. She may even 
try using problem- solving heuristics to break her current ways of at-
tending to her writing and attend to her writing (and ideas) in new 
ways. At the very least, she may come to view her stuckness as a natu-
ral and expected state (Burton 2004), just as mathematicians do with 
mathematics, and recognize it as an opportunity to analyze and restruc-
ture her ideas.

Entering into Dialogue: Writing as Proving

Our prototypical student now has a good draft that she is happy with. 
She is satisfied that it represents her knowledge of the subject matter, 
and she has read extensively to check the accuracy of its content. A 
friend reads the draft and finds it difficult to understand. Unperturbed, 
our prototypical student attributes the reader’s difficulty to insuffi-
cient subject knowledge. She is confident that her essay demonstrates 
her mastery of the topic, and that this will be recognized by her more 
knowledgeable teacher.

But the essay is not merely an inert record of a writer’s knowledge, 
and its quality is not merely judged on the number of correct facts it 
contains. The essay is also a rhetorical act that seeks to engage a public. 
It has to do real work as a dialogic tool: it must address an audience; 
it must convince or persuade a public; it must inspire some kind of 
response or action. Writers take considerable care to shape their writ-
ing’s addressivity (Bakhtin 1986) by seeking insight into their readers’ 
experience of the writing.

Mathematical proofs are like expository essays in this regard: they 
must also convince an audience. When an undergraduate mathematics 
student switches from memorizing other peoples’ proofs to construct-
ing proofs of her own, she becomes concerned with how her proof 
(writing) performs under dialogic conditions. She is encouraged to 
test her proofs on different audiences: “convince yourself, convince 
a friend, convince an enemy” (Mason et al. 2010). She may take an 
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undergraduate course in proof construction, in which she learns how 
to read and evaluate proofs as part of learning how to write and con-
struct one (Weber 2010).

Mathematicians who construct proofs are like writers who create 
utterances as part of a dialogic chain in order to move, to persuade, 
“to do things to people” (Elbow 1985, p. 300). They are conscious of 
their audiences and often vary the style, amount of detail, and linguistic 
features of a proof (Pimm and Sinclair 2009), depending on whether 
it is being presented in real time to close colleagues, written in lecture 
notes for a graduate class, or submitted to a research journal. More-
over, these different modes of address can sometimes be generative: the 
awareness of different audiences’ needs may alert the mathematician to 
new mathematical details or big picture isomorphisms that need to be 
worked out.

Mathematicians actively seek out listeners and readers who can iden-
tify weaknesses in the proofs they are constructing. Perhaps our proto-
typical student could enhance her writing by similarly seeking ways to 
evaluate her writing’s dialogic performance. She could read her writing 
aloud to “hear it”; she could ask someone else to read it and tell her 
where their attention wanders; she could imagine herself writing for a 
particular person or audience; she could leave the essay and read it at a 
later date through the eyes of a reader. Such practices can result in pro-
ductive tensions, where the reader sees something different from what 
the writer intended: “That’s not what I meant!” And the writer reenters 
into dialogue, revising her argument, with a deeper understanding of 
what she is trying to say.

Reflections

I have challenged the common perception that writing is opposite to 
mathematics by offering three metaphors that highlight similarities 
between aspects of writing and mathematics practices (Table 1). Ac-
cording to Sword (2017), “metaphors, after all, are the stories that 
we tell ourselves about our relationship to the world. By changing 
our metaphors, we can rewrite our stories” (p. 191). I hope these 
metaphors will help students who identify more as mathematicians 
than writers to re- story themselves as writing mathematicians, who 
use writing as a tool for thinking more deeply about the mathematics 
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and mathematics- education questions they care about most. I offer 
these metaphors with the conviction that it is ethically and fundamen-
tally imperative that we support our mathematics education students’ 
writing development—not only to help students reach their academic 
potential but also to ensure that our conversations include diverse 
voices (Geiger and Straesser, 2015) that are critical to our discipline’s 
progress.
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Notes
[1] http:// stepheniemeyer .com /2008 /08 /midnight -  sun.
[2] Readers may object to the use of the term “real”—is mathematics not real? Some writers 

on modeling us the term “extra- mathematical” instead of “real” to acknowledge the on-
tological slipstream; Borromeo- Ferri (2006) points out that some demarcation between 
mathematical and “real” or “extra- mathematical” worlds is necessary and the use of “real” 
to describe the “extra- mathematical” can be a pragmatic choice.

[3] See also Latour and Woolgar’s (1979) anthropological observation of laboratory scientists 
as “compulsive and manic writers [. . .] who spend the greatest part of their day coding, 
marking, altering, correcting, reading, and writing” (pp. 48–49).
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