

The Clean Architecture in PHP

Kristopher Wilson

This book is for sale at http://leanpub.com/cleanphp

This version was published on 2016-04-23

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2013 - 2016 Kristopher Wilson

http://leanpub.com/cleanphp
http://leanpub.com
http://leanpub.com/manifesto

Dedication

First and foremost, I dedicate this book to my wife, Ashley. Thank
you for allowing me to spend so much time staring at millions of
dots on a screen.

Secondly, to my parents, who worked so hard to make sure their
children had everything they needed and wanted, and for encour-
aging me to follow my dreams, however odd they may have been.

Contents

Dedication . iii

Introduction . i
Organization . ii
The Author . ii
A Word about Coding Style iii

The Problem With Code 1

Writing Good Code is Hard 2
Writing Bad Code is Easy 3
We Can’t Test Anything 3
Change Breaks Everything 5
We Live or Die by the Framework 6
We Want to Use All the Libraries 6
Writing Good Code . 7

What is Architecture? . 8
What does Architecture Look Like? 8
Layers of Software . 9
Examples of Poor Architecture 10
Costs of Poor Architecture 19

Coupling, The Enemy . 21
Spaghetti Coupling . 21
OOP Coupling . 22

CONTENTS

Why is Coupling the Enemy? 22
How do we Reduce Coupling? 23

Your Decoupling Toolbox 25

Design Patterns, A Primer 26
The Factory Patterns 27
Repository Pattern . 36
Adapter Pattern . 39
Strategy Pattern . 40
Learning More Design Patterns 45

SOLID Design Principles 46
Single Responsibility Principle 46
Open/Closed Principle 51
Liskov Substitution Principle 53
Interface Segregation Principle 56
Dependency Inversion Principle 60
Applying SOLID Principles 63

Dependency Injection . 64
Inversion of Control . 65
When to use Dependency Injection 72
Handling Many Dependencies 75
Are we still coupling? 76

Defining a Contract with Interfaces 78
Interfaces in PHP . 79
Using Interfaces as Type Hints 81
Using Interfaces as a Contract 84
Making Third Party Code Conform to Contracts 84

Abstracting with Adapters 86
Setting up the Adapter 87
How does this help? . 88

CONTENTS

The Clean Architecture 90

MVC, and its Limitations 91
MVC in a Diagram . 91
The MVC Components 92
Routing . 96
MVC Isn’t Good Enough 99
Obese Models . 99
More Layers for All of the Things! 101

The Clean Architecture . 103
The Clean Architecture 103
The Onion Architecture 107

Framework Independence 112
The Problem with Frameworks 112
Framework Independence 113
This is a Lot of Work 125

Database Independence . 126
Domain Models . 126
Domain Services . 128
Database Infrastructure / Persistence 134
Organizing the Code 139
Wrapping it Up . 140

External Agency Independence 142
Using Interfaces, Adapters and Dependency Injection . 142
Benefits . 145

A Case Study in Clean Architecture . 146

The Billing System . 147
Application Workflow 148
Prerequisites . 148

CONTENTS

Building Our Domain . 150
Setting up the Project 150
Creating the Entities 152
Domain Services . 157
Wrapping it Up . 174

Zend Framework 2 Setup 175
Installing with Composer 175
Cleaning up the Skeleton 177
Setting up Our Database 182
Table Gateway Factory 191
Wrapping it Up . 196

Our Application in Zend Framework 2 197
Customer Management 197
Order Management . 226
Invoice Management 261

Doctrine 2 . 291
Rebuilding the Persistence Layer 292
Creating Doctrine-based Repositories 293
Entity Mapping . 298
Integrating Zend Framework and Doctrine 302
Injecting the New Repositories 304
Updating the Hydrators 309
Summary . 312

Switching to Laravel . 314
Setting up Laravel . 314
Configuring Doctrine 318
Setting up the Dashboard 321
Customer Management 325
Order Management . 337
Invoice Management 348
Next Steps . 359
Summary . 360

Introduction

Figuring out how to architect a brand new application is a big deal.
Doing it the wrong way can lead to a huge headache later. Testing
can become hard – or maybe even impossible – and refactoring is
an absolute nightmare.

While the methods outlined in this book aren’t the only way to go
about developing an application, they do provide a framework for
developing applications that are:

1. Testable
2. Refactorable
3. Easy to work with
4. Easy to maintain

This book is for anyone wanting to build a medium to large sized
application that must be around for a long time and/or be easily
enhanced in the future. The methods outlined in this book aren’t
meant for all applications, and they might be downright over kill
for some.

If your application is small, or an unproven, new product, it might
be best to just get it out the door as fast as possible. If it grows, or
becomes successful, later applying these principles may be a good
idea to create a solid, long lasting product.

The principles outlined in this book involve a learning curve.
Writing code this waywill slow a developer down until themethods
become familiar to them.

i

Introduction ii

Organization

This book begins by discussing common problems with PHP code
and why having good, solid, clean code is important to the success
and longevity of an application. From there, we move on to dis-
cussing some principles and design patterns that allow us to solve
problems with poor code. Using these concepts, we’ll then discuss
the CleanArchitecture and how it further helps solve problemswith
bad code.

Finally, in the second half of the book, we dive into some real
code and build an application following this architecture. When
we’re done with our case study application, we’ll start swapping
out components, libraries, and frameworks with new ones to prove
out the principles of the architecture.

The Author

My name is Kristopher Wilson. I’ve been developing in PHP since
around 2000. That sounds impressive on the surface, but most
of those years involved writing truly terrible code. I would have
benefited greatly from a book like this that outlines the principles
of how to cleanly organize code.

I’ve done it all, from simple websites to e-commerce systems and
bulletin boards. Mostly, I’ve concentrated on working on ERP
(Enterprise Resource Planning) systems and OSS (Operational Sup-
port Systems) – software that runs the entire back office of large
organizations, from manufacturing to telecommunications. I even
wrote my own framework once. It was terrible, but that’s another
story.

I live in Grand Rapids, Michigan with my wife and our four cats
(our application to become a registered zoo is still pending). I’m one
of the founders of the Grand Rapids PHP Developers (GrPhpDev)

Introduction iii

group and am highly involved with organizing, teaching, and
learning from the local community.

AWord about Coding Style

I strongly prefer and suggest the use of PSR-2 coding standards¹. As
a community, it makes it much easier to evaluate and contribute to
one another’s code bases if the dialect is the same. I also strongly
suggest the use of DocBlocks and helpful comments on classes and
methods.

However, for brevity, the code examples in this book make a
few deviations from PSR-2 standards, namely involving bracket
placement, and don’t include many DocBlocks. If this is too jarring
for the PSR-2 and DocBlock fan, like myself, I humbly apologize.

¹https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-
guide.md

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md

The Problem With Code

Writing code is easy. So easy that there are literally hundreds of
books² claiming they can teach you to do it in two weeks, ten
days, or even twenty-four hours. That makes it sound really easy!
The internet is littered with articles on how to do it. It seems like
everyone is doing it and blogging about it.

Here’s a fun question: would you trust a surgeon or even dentist
who learned their profession from a couple of books that taught
them how to operate in two weeks? Admittedly, writing code
is nothing like opening up and fixing the human body, but as
developers, we do deal with a lot of abstract concepts. Things that
only exist as a collection of 1s and 0s. So much so that I’d definitely
want an experienced, knowledgeable developer working on my
project.

The problem with code is that good code, code that serves it’s
purpose, has little or no defects, can survive and perform it’s
purpose for a long time, and is easy to change, is quite difficult to
accomplish.

²http://norvig.com/21-days.html

1

http://norvig.com/21-days.html
http://norvig.com/21-days.html
http://norvig.com/21-days.html

Writing Good Code is Hard
If it were easy, everyone would be doing it

-Somebody, somewhere in history

Writing code is hard. Well, scratch that: writing code is easy. It’s so
easy everyone is doing it. Let me start this chapter over.

If it were easy to be good at it, everyone would be good
at it

-Me, I suppose

Writing code, especially in PHP, but in many other languages as
well, is incredibly easy. Think about the barrier to entry: all you
have to do is go download PHP on your Windows machine, type:

php -S localhost:1337

Now all of your PHP code in that directory is suddenly available
for you via a browser. Hitting the ground running developing PHP
is easy. On Linux, it’s even easier. Install with your distributions
package manager and type the same command as above. You don’t
even have to download a zip file, extract it, worry about getting it
in your path, etc.

Not only is getting a server up easy, but actually learning how to
get things accomplished in PHP is incredibly easy. Just search the
web for “PHP.” Go ahead, I’ll wait. From Google, I got 2,800,000,000
results. The internet is literally littered with articles, tutorials, and
source code relating to PHP.

I chose my words very carefully. The internet is literally littered
with PHP.

2

Writing Good Code is Hard 3

Writing Bad Code is Easy

Since PHP is incredibly easy to get started in, it makes sense that
eventually it would gather a large following of developers. The
good, the bad, and the ugly. PHP has been around since 1994 or
so, as has been gathering developers ever since. At the time of this
writing, that’s twenty years worth of code being written in PHP.

Since then, an absolute horde of poorly written PHP has shown
up on the web, in the form of articles, tutorials, StackOverflow
solutions, and open source code. It’s also fair to point out that some
really stellar PHP has shown up as well. The problem is, writing
code the goodway (we’ll talk about what that means soon) typically
tends to be harder. Doing it the down and dirty, quick, and easy to
understand way, is, well, easier.

The web has been proliferated with poorly written PHP, and the
process of turning out poorly written PHP only naturally increases
with the popularity and adoption of the language.

Simply put: it’s just way too easy to write bad code in PHP, it’s way
too easy to find bad code in PHP, it’s way too easy to suggest (via
putting source code out there or writing tutorials) others write bad
code, and it’s way too easy for developers to never “level up” their
skills.

So why is bad code bad? Let’s discuss the results of bad code.

We Can’t Test Anything

We don’t have time to write tests, we need to get
working software out the door.

-The Project Manager at a previous job

Who has time to write tests? Test are hard, time consuming, and
they don’t make anybody any money. At least according to project

Writing Good Code is Hard 4

managers. All of this is absolutely correct. Writing good tests can be
challenging. Writing good test can be time consuming. Very rarely
will you come across an instance in your life where someone cuts
you a check specifically to write software tests.

The Project Manager at my last job who, painfully, was also
my boss, absolutely put his foot down to writing tests. Working
software out the door was our one and only goal; making that
paycheck. What’s so incredibly ironic about this is that a robust test
suite is the number one way to make it possible to write working
software.

Writing tests is supremely important to having a stable, long
lasting software application. The mountains of books, articles, and
conference talks dedicated to the subject are a testament to that fact.
It’s also a testament to how hard it is to test, or, more correctly, how
important it is to test effectively.

Testing is the single most important means of preventing bugs
from happening in your code. While it’s not bullet proof and can
never catch everything, when executed effectively, it can become a
quick, repetitive, and solid way to verify that a lot of the important
things in your code – such as calculating taxes or commissions or
authentication – is working properly.

There is a direct correlation between how poorly you write your
code, and how hard it is to test that code. Bad code is hard to test.
So hard to test, in fact, that it leads some to declare testing pointless.
The benefits of having tests in place though, cannot be argued.

Why does bad code make tests so hard? Think about a taxing
function in our software. How hard would it be to test that taxing
functionality if it were spattered about controllers? Or worse yet,
spattered about a random collection of .php files? You’d essentially
have to CURL the application with a set of POST variables and then
search through the generated HTML to find the tax rates. That’s
utterly terrible.

Writing Good Code is Hard 5

What happens when someone goes in and changes around the tax
rates in the database? Now your known set of data is gone. Simple:
use a testing database and pump it full of data on each test run.
What about when designers change up the layout of the product
page, and now your code to “find” the tax rate needs to change?
Front-end design should dictate neither business nor testing logic.

It is nearly impossible to test poorly written code.

Change Breaks Everything

The biggest consequence of not being able to test the software is that
change breaks everything. You’ve probably been there before: one
little minute change seems to have dire consequences. Even worse,
one small change in a specific portion of the application causes
errors within a seemingly unrelated portion of the application.
These are regression bugs, which is a bug caused after introducing
new features, fixing other bugs, upgrading a library, changing
configuration settings, etc.

When discovered, these regression bugs often lead to exclamations
of “We haven’t touched that code in forever!” When they’re discov-
ered, it’s often unknown what caused them in the first place, due to
the nature of changes usually happening in “unrelated” portions of
the code. The time elapsed before discovering them is often large,
especially for obscure portions of the application, or very specific
circumstances needed to replicate the bug.

Change breaks everything, because we don’t have the proper archi-
tecture in place to gracefully make those changes. How often have
you hacked something in, and ignored those alarm bells going off
in your brain? Further, how often has that hack come around to bite
you later in the form of a regression bug?

Without good clean architecture conducive to change, and/or a
comprehensive set of test suites, change is a very risky venture

Writing Good Code is Hard 6

for production applications. I’ve dealt with numerous systems that
the knowledgeable developer declared “stable and working” that
they were utterly terrified of changing, because, when they do, “it
breaks.” Stable, huh?

We Live or Die by the Framework

Frameworks are fantastic. If written well, they speed up applica-
tion development tremendously. Usually, however, when writing
software within a framework, your code is so embedded into that
framework that you’re essentially entering a long term contract
with that framework, especially if you expect your project to be
long lived.

Frameworks are born every year, and die every once-in-awhile,
too (read: CodeIgniter, Zend Framework 1, Symfony 1). If you’re
writing your application in a framework, especially doing so the
framework documented way, you’re essentially tying the success
and longevity of your application to that of the framework.

We’ll discuss this much more in later chapters, and go into a
specific instance where my team and I failed to properly prepare
our application for the death of our chosen framework. For now,
know this: there is a way to write code, using a framework, in such a
way that switching out the framework shouldn’t lead to a complete
rewrite of the application.

WeWant to Use All the Libraries

Composer³ and Packagist⁴ brought with them a huge proliferation
of PHP libraries, frameworks, components, and packages. It’s now
easier than it ever has been to solve problems in PHP. The wide

³https://getcomposer.org/
⁴https://packagist.org/

https://getcomposer.org/
https://packagist.org/
https://getcomposer.org/
https://packagist.org/

Writing Good Code is Hard 7

range of available libraries, installed quickly and simply through
Composer, make it easy to use other developer’s code to solve your
problems.

Just like the framework, though, using these libraries comes at a
cost: if the developer decides to abandon them, you’re faced with
no choice but eventually replacing it with something else. If you’ve
littered your code base with usages of this library, you now have a
time consuming process to run through to upgrade your application
to use some other library.

And of course, later, we’ll describe how to gracefully handle this
problem in a way that involves minimal rewriting, and hopefully
minimal bugs if you’ve written a good test suite to verify your
success.

Writing Good Code

Writing good code is hard.

The goal of this book is to solve these problems with bad code.
We’ll discuss how architecture plays a key role in both causing and
solving these problems, and then discuss ways inwhich to correct or
at least mitigate these issues, such that we can build strong, stable,
and long-lasting software applications.

What is Architecture?

Whether you know it or not, any piece of software you have ever
written has followed some sort of architecture, even if it were
just your own. Software architecture is the structure that defines
the flow of information through a software system. It is a set of
decisions made about how software is organized and operates in
order to meet the goals of that software.

Architecture can apply to the application as a whole, or might only
apply to individual pieces of the application. Maybe you follow
one architectural pattern on the client side of the application and
a completely different one on the server side of the application.
The means by which your client side application and server side
application communicate can follow an architectural pattern as
well.

What does Architecture Look Like?

Some examples of architecture include how you organize your
files, whether you intermix your PHP code and your HTML code,
or whether your code is procedural in nature or object-oriented.
The architecture might be whether you interface with the database
directly, or abstract it away in your code so that you’re moving
across several layers to get at the data. Or maybe you’re interacting
with an API on the front-end, using something like Angular JS, and
your back-end PHP is simply an API layer that gives data to the
front-end application.

All of these features of your application determine the architecture.
Architecture is simply a set of attributes about how your code is

8

What is Architecture? 9

laid out, organized, and how it interacts with other pieces or layers
of the code.

Since describing your architecture can be pretty verbose, archi-
tectural patterns can also be named, and often are when they are
shared and described within the industry. Following commonly de-
fined architecture, rather than coming up with something on your
own, makes your code easily readable and understandable by other
developers, especially when that architecture is well documented,
and makes it quite easy to describe your architecture.

For example, you might be able to just say you use the MVC
architecture on the front-end and an API web service on the back-
end. Developers familiar with these ideas should understand you
pretty quickly.

Layers of Software

Often when people talk of software architecture, they mention
layers of software. Layers, in object oriented programming, are
groups of specific classes that perform the similar functions. Usu-
ally, layers are broken up by concerns, which is a particular set
of function or information. Our concerns can be many, depending
on the application, but can include: database interaction, business
rules, API interactions, or the view, or UI.

In good software architecture, these concerns are each broken out
out into layers. Each layer is a separate set of code that should, in
a perfect world, loosely interact with the other layers. For instance,
when a web request comes in, we might pass it off to the control
layer that processes the request, which pulls any necessary data
from the database layer, and finally presents it to the view layer
to render a UI to the user.

In a perfect world, these layers and their interaction is kept fairly
separate, and specifically controlled. As you’re about to see, with-

What is Architecture? 10

out these layers, software can become pretty messy and hard to
maintain.

Examples of Poor Architecture

Before we start discussing how to cleanly build the architecture
of your application, let’s first take a look at some code with poor
architecture. Analyzing the problems faced by poor architecture
can help us in understanding why our good architectural decisions
are important and what benefits we might gain from taking better
architectural routes.

Dirty, In-line PHP

PHP has an easy entry point: it’s not hard to get up and running,
and the internet is littered with code samples. This is good for the
language and community as it creates a low barrier for starting.
Unfortunately, this has its drawbacks in that most of those code
samples found on the web aren’t of the highest caliber, and often
lead new developers into writing code that looks similar to this:

<body>

<?php $results = mysql_query(

'SELECT * FROM customers ORDER BY name'

); ?>

<h2>Customers</h2>

<?php while ($customer = mysql_fetch_assoc($results\

)): ?>

<?= $customer['name'] ?>

<?php endwhile; ?>

</body>

What is Architecture? 11

You’ll find code just like this plastered all over blogs and tutorials,
even on websites touting themselves as a professional resource (no
names named). Sadly, there is quite a bit wrong with writing PHP
this way, especially for anything but tiny applications.

The mysql_ Functions are Deprecated

Right off the bat, the most glaring issue with this code is the use
of the deprecated mysql_ functions. Even worse: the functions are
being removed entirely in PHP 7, although you can install them as
an extension via other channels.

They have been deprecated for a reason: they are considered un-
safe and insecure to use, and suitable alternatives (PDO and the
mysqli_ functions) have been created.

Regardless of third party support, this will make upgrading PHP
hard or impossible some day. Choosing to use these functions today
is choosing heartache tomorrow.

One Layer to Rule Them All

This sample PHP is written in a monolithic style. A monolithic
application is one with a single layer comprising everything that
application does, with each different concern of the application
squished together. These applications are not modular and thus
do not provide reusable code, and are often hard to maintain.
Remember we discussed that software is often layered, keeping the
code responsible for interfacing with the data separate from the
code responsible for displaying it to the user. This sample is the
complete opposite of a layered approach.

Our sample has some code which retrieves data from a database
back-end and a view layer that is responsible for displaying this
information to the user, all together as one single layer. We’re
literally querying right in the middle of our HTML. This monolithic

What is Architecture? 12

approach is the biggest problemwith this sample, and it is the direct
cause of the next two problems.

A Refactoring Nightmare

Refactoring is pretty much out of the window. Consider these
scenarios and what we would have to do to accomplish them:

• What if a table name or column name changes? How many
different files will we have to update to make that change?
What about switching to a library like PDO?What if wewant
to get data from a different data source, like a RESTful API?

• What if we decided we wanted to start using a templating
language, like Twig or Blade? Our database logic is so tightly
wound into our HTML that we would have to rewrite the
application to get it out so that we can have nice templates to
represent the data.

• What if we wanted to provide some kind of standardized
way of displaying user names (like Kristopher W. instead
of Kristopher Wilson)? How many places might we have
displayed a users name that now has to be updated?

Simply put, the ability to refactor code is hampered by our lazy,
dirty architecture that throws everything together without any
concern for the future.

An Untestable Pile of Mush

This approach results in code that is virtually untestable. Sure,
some end-to-end tests, like Behat, will probably allow us to test
this, but unit tests are out the window. We can’t test anything in
isolation. How do we ensure that we got the expected number of
users back? Using a live database, what is the expected number of
users? And since we can’t test the $results variable directly, do we

What is Architecture? 13

have to parse the HTML DOM? And what happens when the DOM
changes?

These are going to be some poor, slow, error prone tests.

Testing onlyworkswhen it can be executed repetitively and quickly.
If it takes a long time to run the tests, the developer simply cannot
rely on them through the process of development as it would incur
toomuch timewaiting to discover if some seeminglyminute change
broke anything unexpected elsewhere in the application.

Poor Man’s MVC

Usually, the next progression in architecture in the world of PHP
development is the adoption of an MVC style architecture, which
we’ll talk about in MVC. While this is a big step up from in-line,
procedural PHP, it can still have several issues, especially if not
implemented correctly. Take this example:

class CustomersController {

public function indexAction() {

$db = Db::getInstance();

$customers = $db->fetchAll(

'SELECT * FROM customers ORDER BY name'

);

return [

'customers' => $customers

];

}

}

What is Architecture? 14

<h2>Customers</h2>

<?php foreach ($this->customers as $customer): ?>

<?= $customer['name'] ?>

<?php endforeach; ?>

This code looks better. We’re using controllers and views, so we’ve
separated the presentation logic from the control logic. The con-
troller’s indexAction() grabs all the customers and then returns
them, which gets passed to the view so it can render the data. This
should make the code much easier to test and refactor. Except it
doesn’t.

Still Hard-coding Queries

This is obvious.We still haven’t solved the problems of having hard-
coded queries in layers that don’t concern the database, such as
controllers. See the comments above in A Refactoring Nightmare
for more details.

Strong Coupling to the Db Class

We’ve moved away from using the deprecated mysql_ functions
and instead have abstracted away the database into some Db class,
which is good. Except we still suffer the pitfalls of not being able
to refactor this code. Our same questions as above in A Refactoring
nightmare still apply. We can hardly change anything about our
database layer without having to touch a large amount of files that
use that database layer to do so.

Still Hard to Test

We’ve made testing much easier now simply by extracting our
code out of the HTML. We now have a controller doing all the

What is Architecture? 15

processing, and then passing that data off to the view. This is much
easier to test, as we can simply instantiate CustomersController,
call the indexAction() method, and analyze the return value. But
how many customers should we expect, and what are their names?
Again, we can’t know this unless we go the complicated route of
setting up a test database (a known state) before running our tests.

Since we are declaring our Db class right in the indexAction()

method, there’s no way to mock that. If there were, we could simply
set it up to return a known set of customers, and then validate that
the indexAction() properly retrieved them.

Two Very Large Layers

1. This code is hard to test in isolation as it declares it’s database
dependency in-line, and thus can’t test without it. We can’t
override it. We could override the configuration so we could
use a properly staged test database, which is good for integra-
tion testing, but unit testing is impossible. We simply can’t
test this controller without the database class.

2. We’re still hard coding queries, which ties us to a database
and specific database flavor at that.

3. We’re retrieving an instance of the Db class, which tightly
couples this implementation to that class. We talk about
this in more detail in Coupling, The Enemy, but for now,
understand that it makes it very hard to test this controller
without bootstrapping our database class as well.

4. If we decide to rewrite our application layer, we lose every-
thing. This is because our data domain is wrapped so tightly
into our application services. Let’s say for an instance that
we’re using Zend Framework and this is a Zend Framework
controller. What happens when we want to switch to Lar-
avel? This would require us to rewrite our entire controllers,
but since our data access logic is stored right in the controller,
we have to rewrite that, too, especially if we switch to using
Eloquent ORM, which ships with Laravel.

What is Architecture? 16

Poor Usage of Database Abstraction

Finally, we get smart and abstract away the data source using the
Repository design pattern:

class CustomersController {

public function usersAction() {

$repository = new CustomersRepository();

$customers = $repository->getAll();

return [

'customers' => $customers

];

}

}

<h2>Customers</h2>

<?php foreach ($this->customers as $customer): ?>

<?= $customer['name'] ?>

<?php endforeach; ?>

This code is much better than our original example, and even better
than our second. We’re slowly coalescing to some good application
architecture.

Instead of interfacing directly with the database, we’ve abstracted
it away into a Repository class. The repository is responsible for
understanding our datasource and retrieving and saving data for
us. Our controller doesn’t have to know anything about where the
data comes from, so we’ve removed the bad, hard-coded queries
from the controller. We could easily refactor CustomersRepository
to get its data from a different source, but wouldn’t have to touch

What is Architecture? 17

any code that uses the repository so long as the getAll()method’s
signature and return result are still the same.

While this is much better architecture, it still suffers some issues:

Strong Coupling to CustomersRepository

We’re using a concrete instance of the CustomersRepository, which
means the controller is still tied to that implementation. For in-
stance, this CustomersRepository probably connects to a database
of some sort to retrieve the information. Now our controller is per-
manently tied to this implementation, unless we refactor it away.
If we’re going to change out where or how our data is stored, we’re
probably going to write a new class instead of completely changing
the existing one. We discuss how to solve this in Dependency
Injection.

Continuing Dependency Issues

We’re still declaring our dependency (CustomersRepository) right
in our method, which makes it impossible to mock and test the
usersAction() method in isolation (remember, we’d have to setup
an entire known state in the database for this to work). This might
be great for end-to-end testing of our application, but it isn’t so great
for unit testing our application.

We’ll also talk about how to solve this in Dependency Injection.

So how Should this Code Look?

It’s pretty easy to pick apart some sample code and explain why it
needs improvement, but it’s much harder to simply provide good
code samples without going into quite a bit of discussions first.
We’re going to solve this exact problem (listing customers) once
we get to our Case Study at the end of the book, which will build
on concepts we discuss in the next few chapters.

What is Architecture? 18

However, just like the days leading up to a holiday, everybody
loves a sneak peek. We were actually really close in the last sample,
and only had to make a few tweaks to make this some rock solid
architecture. This is how we will solve this problem later:

class CustomersController extends AbstractActionControl\

ler {

protected $customerRepository;

public function __construct(CustomerRepositoryInterfa\

ce $repository) {

$this->customerRepository = $repository;

}

public function indexAction() {

return [

'users' => $this->customerRepository->getAll()

];

}

}

We’ve solved several problems:

1. We’re no longer tightly coupled to any repository imple-
mentation by using an interface. Whatever we get will be
required to implement CustomerRepositoryInterface, and
that should give us our data. We don’t care what, how, or
where.

2. We can easily test now aswe canmock the class being used by
the controller and make it return a known set of data. Then
we can test that the controller properly passes it off to the
view.

3. We have nothing in here that should prevent us from ever
upgrading to newer versions of PHP or libraries, unless PHP

What is Architecture? 19

or some library drastically change how they work, which
would require a big rewrite regardless of how we wrote our
code.

4. Queries? We’re not even using queries. Again: we don’t even
knowwhere our data comes from at this layer. If we suddenly
need to get data from a different place, no big deal: simply
pass us a different object that implements CustomerReposi-
toryInterface.

If some of this doesn’t make much sense, don’t worry. We’re about
to cover it all in-depth in the next chapters.

Costs of Poor Architecture

As we’ve just seen, taking a bad approach when developing your
application can lead to several problems. Classically, using a bad
architecture can lead to the following common problems, although
it entirely depends on how the application was written:

1. Untestable. Poor architecture often results in code that is
difficult to test. This especially happens when things are
tightly coupled together and cannot be tested in isolation.
We’ll talk about this in Coupling, the Enemy. Inability to test
can lead to an unstable application.

2. Hard to Refactor. Developers tend to make iterative changes
to the software they build as their understanding of and
solution to a problem is strengthened. Users often request
additional features and changes to existing applications. Both
of these instances are known as refactoring, and software
written with a poor architecture is hard to refactor, especially
without a strong test suite to guarantee nothing breaks. See
#1.

What is Architecture? 20

3. Impossible to Upgrade. Code architected and written poorly
is often very hard to upgrade, either to new versions of
PHP, new versions of underlying frameworks and libraries,
or switching to new frameworks and libraries entirely. This
can cause projects to end up in an impossible upgradeable
limbo.

Coupling, The Enemy
The main issue we were dealing with when we looked at various
examples of poor architecture is coupling. Coupling is the amount
of dependency one component has on another. If one component
simply cannot function without another, it is highly coupled. If one
component, loosely depends on another and can function without
it, it is loosely coupled.

The looser the coupling within your code base, the more flexibility
you have in that codebase. With a high amount of coupling,
refactoring, such as extending new functionality to existing code,
becomes a very dangerous task. With loosely coupled code, it
becomes much easier to change this around and swap out solutions
as the code using that solution is not fully dependent upon it.

To get a better understanding of coupling, let’s look at two very
different examples of highly coupled code.

Spaghetti Coupling

<body>

<?php $users = mysqli_query('SELECT * FROM users'); ?>

<?php foreach ($users as $user): ?>

<?= $user['name'] ?>

<?php endforeach; ?>

</body>

This example, which is very similar to our first example of code
with poor architecture, has a lot of coupling. Can the application

21

Coupling, The Enemy 22

function in any respect without the database? No, we have queries
all over the code. It is highly coupled to the database.

Can the application function without a web browser? Well, techni-
cally yes, but who wants to read straight HTML? Can we get a list
of users without it being formatted in HTML? No, we cannot. Our
application is highly coupled to the browser.

OOP Coupling

class UsersController {

public function indexAction() {

$repo = new UserRepository();

$users = $repo->getAll();

return $users;

}

}

In this example, we have a class, called UsersController, that uses
another class, called UserRepository to get all the users. This code
looks much better than the first example, but it still has a high level
of coupling.

Can the UsersController function without the UserRepository?
Definitely not, it’s highly coupled to it.

Why is Coupling the Enemy?

So what’s the big deal about all this coupling anyway? Who cares?

People who care about having loosely coupled code are:

1. Developers who refactor their code. Do you always get it
right the first time? Do requirements never change on you?

Coupling, The Enemy 23

We often need to move things around or rework them, but
that’s often hard to do when the code you’re reworking is
so tightly bound to code in several other places. One little
change here, a couple dozen regression bugs there.

2. Developers who like to test their code. Testing code can
be an absolute pain if the code is tightly coupled. Often, we
want to test just one component of an application at a time, in
isolation – unit testing. But that’s impossible when one class
requires a dozen other classes to run, and instantiates them
itself.

3. Developers who like to reuse their code. Reusing code is
great! Writing the same code twice sucks. Reusing one piece
of code is absolutely impossible when it is tightly coupled to
the rest of your application. You can’t just copy the class out
and drop it in another project without either hacking away
it’s coupling, or bringing everything else with it. For shame.

Simply put, coupling is the enemy of developers everywhere as it
makes their future lives incredibly difficult. Don’t screw over your
future self.

How do we Reduce Coupling?

There are quite a few ways we can reduce the amount of coupling
within our codebase, but we’ll cover four basic, easy solutions:

1. Have less dependencies. This sounds like a no brainer. Hav-
ing less dependencies reduces the amount of coupling in your
code by reducing the amount of things to couple to. This does
not mean, however, that we need to stop using dependencies.
By making sure our classes and method are short, and only
have one purpose, and by breaking out complex routines into
several classes and methods, we can reduce the amount of

Coupling, The Enemy 24

dependencies each class itself needs, which makes it much
easier to refactor classes in isolation.

2. Use Dependency Injection. We’ll cover this in the next
chapter. Dependency injection provides us with ameans with
move the control of dependencies outside of our class and
giving it to a third party.

3. Use Interfaces, not Concrete Classes. As much as possible,
we want to couple ourselves to interfaces, which provide
a sort of contract of what to expect. Used together with
with dependency injection, we can write classes that know
nothing about our dependencies, only that they request a
specific format for the dependency, and let something else
provide it. We’ll also cover this in the next chapter.

4. Use Adapters. Instead of coupling to something, instead
couple to an adapter, which takes some third party code and
transforms it into what we’d expect to to look and behave
like. Combine this with #2 and #3 above, and we can safely
use third party codewithout tightly coupling to it.We’ll cover
this in Abstracting with Adapters.

Your Decoupling Toolbox

We’ve uncovered various ways in which poor design decisions can
lead to code that is hard to maintain, hard to refactor, and hard to
test. Nowwe’re going to look at some guiding principles and design
patterns that will help us alleviate these problems and help us write
better code. Later, when we talk about architecture, we’ll apply
these principles further to discover how to create truly uncoupled,
refactorable, and easily testable code.

25

Design Patterns, A Primer
A design pattern is a specific solution to a commonly occurring
problem in software development. These design patterns form a
common language among software developers that can be used
to discuss problems and describe solutions. They are transferable
across languages and are not specific to PHP.

Design patterns as we know them today are heavily influenced by
“the Gang of Four” who were instrumental in their popularization
starting in 1994 with their book Design Patterns: Elements of
Reusable Object-Oriented Software. The GoF are: Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides.

In their book, the GoF described twenty three design patterns orga-
nized into three categories: Creational, Structural, and Behavioral.
It would be impossible to cover all of these patterns in any detail in
this book, however, as they are instrumental to nearly every chapter
that follows, we’re going to briefly cover a few of them here.

1. Factory: An object responsible for instantiating other objects
2. Repository: Not actually a GoF design pattern, this is an

object responsible for transitioning data to and from its
storage

3. Adapter: An object that encapsulates another object to make
it conform to a desired API

4. Strategy: Encapsulates a behavior or a set of behaviors,
allowing them to be used interchangeably

For a lighter, and maybe funner approach to design patterns, you
can also checkout Head First Design Patterns⁵ by Freeman, Bates,
Sierra, and Robson.

⁵http://www.headfirstlabs.com/books/hfdp/

26

http://www.headfirstlabs.com/books/hfdp/
http://www.headfirstlabs.com/books/hfdp/

Design Patterns, A Primer 27

The Factory Patterns

Factories are objects that are responsible for creating other objects
when needed, just like factories in real life are responsible for
creating tangible things.

In real life, a Car Factory is responsible for creating cars. If we
wanted this concept in code, it’d be the same. We’d have a Car-

Factory object that would create Car objects for us.

Factories in code can be applied to things that generally wouldn’t
make sense in real life, such as a CustomerFactory or Connection-
StrategyFactory.

Typically, if we wanted to create a Customer object, we’d just
instantiate one:

$customer = new Customer();

And this is fine for very simple classes with little configuration. But
what if we had to bootstrap our Customer object, so to speak? Let’s
say, for instance, that by default, a Customer has a $0 credit limit, is
of status “pending” and is randomly assigned an account manager.
Do we really want to litter our code with this logic in all the places
we might create a new Customer object? What happens when these
business rules change?

Of course, we’re going to use a factory to handle creating Customers
for us:

Design Patterns, A Primer 28

class CustomerFactory {

protected $accountManagerRepo;

public function __construct(AccountManagerRepository \

$repo) {

$this->accountManagerRepo = $repo;

}

public function createCustomer($name) {

$customer = new Customer();

$customer->setName($name);

$customer->setCreditLimit(0);

$customer->setStatus('pending');

$customer->setAccountManager(

$this->accountManagerRepo->getRandom()

);

return $customer;

}

}

The business logic for creating new Customer objects is encapsu-
lated within the CustomerFactory object.

There are several benefits to using factories:

1. Reusable code. Any place you have to create an object, the
same logic is applied. No duplicate logic.

2. Testable code. Factories make creational logic easy to test. If
this code were directly within some other class somewhere,
it wouldn’t be possible to test in isolation.

3. Easy to change. If the logic ever changes, the change only
needs to occur in one place.

Design Patterns, A Primer 29

Static Factories

Often, you’ll see factories in the wild setup as “static classes” (i.e.:
classes with only static methods):

class CustomerFactory {

public static function createCustomer($name) {

$customer = new Customer();

$customer->setName($name);

$customer->setCreditLimit(0);

$customer->setStatus('pending');

return $customer;

}

}

Which would be called simply:

$customer = CustomerFactory::createCustomer('ACME Corp'\

);

At first, this seemsmuch cleaner and easier to use than instantiating
the factory every time we need it. However, our first Customer-
Factory had additional dependencies it needed to create Customer
objects, namely the AccountRepository. We could pass this depen-
dency to the method each time we call it, but that would be a mess
to cleanup if we ever changed the name of AccountRepository or
switched to another paradigm for data management.

I’ll leave it up to you whether you want to use static factories or not.
For simple factories, there’s probably no negatives to doing so. For
involved factories, especially those with dependencies, it can lead
to some pretty smelly code.

Design Patterns, A Primer 30

Types of Factories

The CustomerFactory is typically how repositories are thought of
by many, but it’s not exactly how the Factory Pattern was described
in the Gang of Four design patterns book. In fact, they outlined two
different types of factories.

Typically, the type of factory we created above is called a Simple
Factory. A simple factory is a class responsible for creating another
object.

Let’s look at the two factories patterns defined by the GoF:

1. The Factory Method pattern
2. The Abstract Factory pattern

Factory Method Pattern

According to the Gang of Four, the intent of the Factory Method
Pattern is to:

Define an interface for creating an object, but let
subclasses decide which class to instantiate.

This type of factory isn’t standalone like the Simple Factory we
describe above. Instead, it’s embedded in either an abstract class
or interface, or even within a concrete class. Whatever class needs
to define a subordinate class can have a factory method.

class Document {

public function createPage() {

return new Page();

}

}

Design Patterns, A Primer 31

In this example, we have a simple createPage() method on Docu-

ment which returns a new page.

However, if we want to be able to create multiple different types of
documents, we could make this an abstract class:

abstract class AbstractDocument {

public function render() {

$this->addPage(1, $this->createPage());

}

public function addPage(1, AbstractPage) {

// ...

}

abstract public function createPage();

}

Now if wewanted to create a ResumeDocument and a PortfolioDoc-
ument:

class ResumeDocument extends AbstractDocument {

public function createPage() {

return new ResumePage();

}

}

class PortfolioDocument extends AbstractDocument {

public function createPage() {

return new PortfolioPage();

}

}

Of course, we need those subordinate objects being created by the
factory methods:

Design Patterns, A Primer 32

interface PageInterface {}

class ResumePage implements PageInterface {}

class PortfolioPage implements PageInterface {}

The benefit of using a factory method like this is that it allows
us to keep the bulk of our common functionality within the Ab-

stractDocument class, as it’s inherent to both ResumeDocument and
PortfolioDocument, but not have AbstractDocument reliant on the
actual concrete document it’s working with.

Whenever AbstractDocument needs to generate a new page for
whatever concrete it’s part of, it simply calls createDocument() and
gets one.

The factory pattern works best when a class doesn’t know which
type of objects it is working with and needs to create.

Abstract Factory Pattern

According to the Gang of Four, the intent of the Abstract Factory
Pattern is to:

Provide an interface for creating families of related
or dependent objects without specifying their concrete
classes.

With the Abstract Factory pattern, we’re interested in devising a
solution to handle the creation of multiple different related objects,
when the type of objects that need to be created isn’t known.

The Abstract Factory Pattern typically has several different players:

1. Client Code, which is an object or code that needs to use the
factory to create other objects

2. Object Interface, which defines the structure of the actual
objects to be created

Design Patterns, A Primer 33

3. Concrete Objects, which implement the Object Interface
with specific implementation details

4. An Abstract Factory, which declares an interface to define
how objects (Object Interfaces) should be created

5. Concrete Factories, which implement the Abstract Factory
interface and create specific types of objects (Concrete Ob-
jects)

Let’s say we are writing some code to generate various different
makes and models of cars, but we want the code to be adaptable to
anything we throw at it.

Let’s say we have a Building class that is responsible for generating
a specific car manufacturer’s line. This is our Client Code:

class Building {

public function createCars() {}

public function createTrucks() {}

}

We want this Building to be able to create Cars and Trucks as
necessary. The first thing we need to do for the Abstract Factory
Pattern to work is create an interface that defines these objects.
These are our Object Interfaces:

interface CarInterface {}

interface TruckInterface {}

Let’s say we want to create both Ford and Chevrolet vehicles. We’ll
need to define a concrete class for each manufacturer and each
vehicle type. These are our Concrete Objects:

Design Patterns, A Primer 34

class ChevyMalibu implements CarInterface {}

class ChevySilverado implements TruckInterface {}

class FordFiesta implements CarInterface {}

class FordF250 implements TruckInterface {}

We’re going to need an assembly line to create each of these, so
let’s define an interface for that too. This assembly line will be the
basis for our actual factories. This interface is our Abstract Factory
player.

interface AssemblyLineInterface {

public function createCar();

public function createTruck();

}

And of course, we’ll need some concrete classes of the Assembly-

LineInterface to create each manufacturer’s line. These are our
Concrete Factories:

class ChevyAssemblyLine implements AssemblyLineInterfac\

e {

public function createCar() {

return new ChevyMalibu();

}

public function createTruck() {

return new ChevySilverado();

}

}

class FordAssemblyLine implements AssemblyLineInterface\

{

public function createCar() {

Design Patterns, A Primer 35

return new FordFiesta();

}

public function createTruck() {

return new FordF250();

}

}

Now, our Building class can be supplied a specific Assembly-

LineInterface, and start making vehicles:

class Building {

protected $assemblyLine;

protected $inventory = [];

public function __construct(

AssemblyLineInterface $assemblyLine

) {

$this->assemblyLine = $assemblyLine;

}

public function createCars() {

for ($i = 0; $i < 20; $i++) {

$this->inventory[] =

$this->assemlyLine->createCar();

}

}

public function createTrucks() {

for ($i = 0; $i < 15; $i++) {

$this->inventory[] =

$this->assemlyLine->createTruck();

}

}

}

Design Patterns, A Primer 36

We could call the code as such:

$building = new Building(new FordAssemblyLine());

$building->createCars();

The Abstract Factory pattern is useful when several different ob-
jects need to be created independent from the system that creates
them. If we’re only concerned with created one object, then the
Abstract Factory isn’t a very suitable solution.

Abstract Factory uses Factory
Methods
Youmight have noticed that the create()methods in
the assembly lines above look a lot like FactoryMeth-
ods. That’s because they are! The Abstract Factory
Pattern actually uses the Factory Method Pattern.

Repository Pattern

ARepository is an object that allows for the retrieval and persisting
of data to a data store. The Repository Pattern is described in great
detail in Eric Evan’s Domain-Driven Design: Tackling Complexity
in the Heart of Software:

A REPOSITORY represents all objects of a certain
type as a conceptual set (usually emulated). It acts
like a collection, except with more elaborate querying
capability.

Domain-Driven Design, Eric Evans, p. 151

Design Patterns, A Primer 37

When working with repositories, one stops thinking of getting data
as “querying the database,” but instead thinks of the process as
retrieving data from the repository.

Repositories usually have methods to retrieve data and methods to
persist data. They’re usually called different things depending on
the implementation.

Common retrieval methods include:

class MyRepository {

public function getById($id);

public function findById($id);

public function find($id);

public function retrieve($id);

}

I prefer either the get() or find() variants. You’ll often encounter
other methods in repositories aimed at retrieving data in different
ways:

class MyRepository {

public function getById($id);

public function getAll();

public function getBy(array $conditions);

}

Common persistence methods include:

class MyRepository {

public function persist($object);

public function save($object);

}

Design Patterns, A Primer 38

I prefer to use persist(), but these decisions are entirely up to you.

Repositories should only reference one object class. Thus, for each
object you need to retrieve or persist, you should have a separate
repository for them. If we’re working with a Customer object, we
should have a CustomerRepository.

public function saveAction() {

$customer = $this->customerRepository->getById(1001);

$customer->setName('New Customer Name');

$this->customerRepository->persist($customer);

}

This client code is simple to use; it does not need to know the
mechanics or language of the data store. It only needs to know how
to use the repository, which it does through a simple API.

Repositories and Factories are often used together. The factory is
responsible for created the object, and the repository is responsible
for persisting it. When an object already exists in the data store, the
repository is also responsible for retrieving a reference to it, and
later likely responsible for saving changes made to it.

How does a Repository Work?

This is all well and good, but how exactly does a repository work?

Objects of the appropriate type are added and re-
moved, and the machinery behind the REPOSITORY
inserts them or deletes them from the database.

Domain-Driven Design, Eric Evans, p. 151

What is this machinery behind the repository? Making repositories
work can be simple. Making repositories that work very well can be

Design Patterns, A Primer 39

quite complicated. It’s best to rely on an already established frame-
work, especially when you’re just starting out. Doctrine ORM⁶
provides a great Data Mapper implementation, while Eloquent
ORM⁷ and Propel⁸ provide implementations of the Active Record
pattern, and Zend Framework 2⁹ provides a Table Data Gateway
implementation.

However, if you really want to dive in with creating your own
repository backend, I’d highly suggest reading Martin Fowler’s
Patterns of Enterprise Application Architecture¹⁰. This book covers
how to properly implement various patterns that would sit behind
a repository, including Data Mapper, Table Data Gateway, and
Active Record.

Adapter Pattern

The Adapter Pattern allows for encapsulating the functionality of
one object, and making it conform to the functionality of another
object. This pattern is sometimes also referred to as the Wrapper
Pattern, as it involves wrapping one object with another.

Let’s say we have one class whose interface looks something like
this:

class GoogleMapsApi {

public function getWalkingDirections($from, $to) {}

}

We have an interface in our project that defines the structure of an
object that gets us distances:

⁶http://www.doctrine-project.org/projects/orm.html
⁷http://laravel.com/docs/eloquent
⁸http://propelorm.org/
⁹http://framework.zend.com/
¹⁰http://martinfowler.com/books/eaa.html

http://www.doctrine-project.org/projects/orm.html
http://laravel.com/docs/eloquent
http://laravel.com/docs/eloquent
http://propelorm.org/
http://framework.zend.com/
http://martinfowler.com/books/eaa.html
http://www.doctrine-project.org/projects/orm.html
http://laravel.com/docs/eloquent
http://propelorm.org/
http://framework.zend.com/
http://martinfowler.com/books/eaa.html

Design Patterns, A Primer 40

interface DistanceInterface {

public function getDistance($from, $to);

}

If wewant to provide a DistanceInterface concrete class that gives
the walking distance between two points, we can write an adapter
to use the GoogleMapsApi class to do so:

class WalkingDistance implements DistanceInterface {

public function getDistance($from, $to) {

$api = new GoogleMapsApi();

$directions = $api->getWalkingDirections($from, $to\

);

return $directions->getTotalDistance();

}

}

This class inherits from our DistanceInterface, and properly
returns the distance using the GoogleMapsApi class to first get the
walking directions, and then return the distance contained in that
result.

The Adapter Pattern allows us to take one object, and adapt it
to fit the interface of another object, making them compatible in
whatever context we’re trying to use them.

Adapters are discussed in more detail in the chapter Abstracting
With Adapters, including some very valid use cases for this pattern.

Strategy Pattern

The Strategy Pattern allows the behavior of an algorithm to be
determined during runtime of an application. Strategies are usually

Design Patterns, A Primer 41

a family of classes that share a common interface, that each encap-
sulate separate behavior that can be interchangeable at runtime.

Let’s say we need to develop an invoicing process for our customers,
who have the option of choosing between twomethods of receiving
their invoices: email or paper.

public function invoiceCustomers(array $customers) {

foreach ($customers as $customer) {

$invoice = $this->invoiceFactory->create(

$customer,

$this->orderRepository->getByCustomer($customer)

);

// send invoice...

}

}

Our InvoiceFactory takes care of generating an invoice from all the
orders returned by our OrderRepository, so how do we go about
sending those invoices?

Using the Strategy Pattern, we first define an interface that de-
scribes how all invoices should be sent, regardless of delivery
method:

interface InvoiceDeliveryInterface {

public function send(Invoice $invoice);

}

We have two possible methods of delivering an invoice: email or
print. Let’s define a strategy for each.

Design Patterns, A Primer 42

class EmailDeliveryStrategy implements InvoiceDeliveryI\

nterface {

public function send(Invoice $invoice) {

// Use an email library to send it

}

}

class PrintDeliveryStrategy implements InvoiceDeliveryI\

nterface {

public function send(Invoice $invoice) {

// Send it to the printer

}

}

Optimization Opportunity
How these two classes manage to delivery the invoice
aren’t important for this exercise, but consider how
youmight use third party libraries to send emails and
use some kind of printing service (maybe through an
API).

Could the Adapter Pattern be a good way to bring
those libraries into your code base and use them
within these strategies?

Our calling code (the client) now needs to make a determination of
which strategy to use:

Design Patterns, A Primer 43

public function invoiceCustomers(array $customers) {

foreach ($customers as $customer) {

$invoice = $this->invoiceFactory->create(

$customer,

$this->orderRepository->getByCustomer($customer)

);

switch ($customer->getDeliveryMethod()) {

case 'email':

$strategy = new EmailDeliveryStrategy();

break;

case 'print':

default:

$strategy = new PrintDeliveryStrategy();

break;

}

$strategy->send($invoice);

}

}

This code now delivers invoices using the two new strategies. The
Strategy Pattern has allowed us to encapsulate the behavior and
make a determination at runtime of which strategy to use.

The code isn’t perfect, though. Is this the correct place to make the
determination of how to send an invoice to the customer? Could we
maybe utilize one of these design patterns to make this code better?
Of course!

Instantiating the correct strategy to use is the perfect place to use a
factory.

Design Patterns, A Primer 44

class InvoiceDeliveryStrategyFactory {

public function create(Customer $customer) {

switch ($customer->getDeliveryMethod()) {

case 'email':

return new EmailDeliveryStrategy();

break;

case 'print':

default:

return new PrintDeliveryStrategy();

break;

}

}

}

The actual logicwithin the InvoiceDeliveryStrategyFactory class
isn’t any different than what we had in the invoiceCustomers

method, but now it’s reusable (if that were even necessary in this
case), and it’s independently testable. It’s a great use of a factory.

This simple code example now shows the usage of repositories,
factories, strategies, and, if you followed our tip, maybe even
adapters!

public function invoiceCustomers(array $customers) {

foreach ($customers as $customer) {

$invoice = $this->invoiceFactory->create(

$customer,

$this->orderRepository->getByCustomer($customer)

);

$strategy = $this->deliveryMethodFactory->create(

$customer

);

$strategy->send($invoice);

}

}

Design Patterns, A Primer 45

Learning More Design Patterns

Design patterns help us write clean, understandable, concise code
that makes refactoring, testing, and maintainability possible. It also
gives us a common language to use when discussing ideas with
other developers.

This chapter has only scratched the surface of the design patterns
presented, and only presented a handful of the design patterns in
the wild. Even beyond those introduced by the Gang of Four book,
others have defined their own design patterns, and some of those
have gained traction.

I highly recommend you pick up at least one of the two books
mentioned in the beginning of this chapter:

1. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware¹¹

2. Head First Design Patterns¹²

Design patterns are a great, tried-and-true way to solve common
coding problems. We’ll use these patterns throughout the rest of
this book.

¹¹http://amzn.to/XO8DB4
¹²http://www.headfirstlabs.com/books/hfdp/

http://amzn.to/XO8DB4
http://amzn.to/XO8DB4
http://www.headfirstlabs.com/books/hfdp/
http://amzn.to/XO8DB4
http://www.headfirstlabs.com/books/hfdp/

SOLID Design Principles

Much like design patterns are a common language of constructs
shared between developers, SOLIDDesign Principles are a common
foundation employed across all types of applications and program-
ming languages.

The SOLIDDesign Principles are a set of five basic design principles
for object oriented programming described by Robert C. Martin¹³.
These principles define ways in which all classes should behave and
interact with one another, as well as principles of how we organize
those classes.

The SOLID principles are:

1. Single Responsibility Principle
2. Open/Closed Principle
3. Liskov Substitution Principle
4. Interface Segregation Principle
5. Dependency Inversion Principle

Single Responsibility Principle

The Single Responsibility Principle states that objects should have
one, and only one, purpose. This is a principle that is very often
violated, especially by new programmers. Often you’ll see code
where a class is a jack of all trades, performing several tasks, within
sometimes several thousand lines of code, all depending on what
method was called.

¹³http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

46

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

SOLID Design Principles 47

To the new OOP developer, classes are often viewed at first as a
collection of related methods and functionality. However, the SRP
advocates against writing classes with more than one responsibility.
Instead, it recommends condensed, smaller classes with a single
responsibility.

What is a responsibility?

In his description of the Single Responsibility Principle, Robert
Martin describes a responsibility as “a reason for change.” Any time
we look at a given class and see more than one way in which we
might change it, then that class has more than one responsibility.

Another way to look at a responsibility is to look at the behavior of
a class. If it has more than one behavior, it is violating SRP.

Let’s look at a class that represents a User record stored in a
database:

class User {

public function getName() {}

public function getEmail() {}

public function find($id) {}

public function save() {}

}

This User class has two responsibilities: it manages the state of
the user, and it manages the retrieval from and persistence to the
database. This violates SRP. Instead, we could refactor this into two
classes:

SOLID Design Principles 48

class User {

public function getName() {}

public function getEmail() {}

}

class UserRepository {

public function find($id) {}

public function save(User $user) {}

}

The User class continues to manage the state of the user data,
but now the UserRepository class is responsible for managing the
retrieval and persistence to the database. These two concepts are
now decoupled, and the two classes conform to SRP.

When we look at the UserRepository class, we can make a deter-
mination that retrieving and persisting data to the database are the
same responsibility, as a change to one (such as changing where or
how the data is stored) requires a change to the other.

Breaking up Classes

In order to apply the SRP principle to existing classes, or even when
creating new classes, it’s important to analyze the responsibility of
the class. Take for instance a customer invoicing class, like the one
we looked at in the previous chapter:

class InvoicingService {

public function generateAndSendInvoices() {}

protected function generateInvoice($customer) {}

protected function createInvoiceFile($invoice) {}

protected function sendInvoice($invoice) {}

}

SOLID Design Principles 49

Already it’s plainly obvious that this class has more than one
responsibility. Just looking at the method name of generate-

AndSendInvoices() reveals two. It’s not always readily apparent
from class and method names how many responsibilities there are,
though. Sometimes it requires looking at the actual code within
those methods. After all, the method could have simply been named
generateInvoices(), hiding the fact that it was also responsible for
delivering those invoices.

There are at least four separate responsibilities of this class:

1. Figuring out which invoices to create
2. Generating invoice records in the database
3. Generating the physical representation of the invoice (i.e.:

PDF, Excel, CSV, etc)
4. Sending the invoice to the customer via some means

In order to fix this class to conform to SRP, we’ll want to break it up
into smaller, fine tuned classes, each representing one of the four
responsibilities we identified above, plus the InvoicingService

class that ties this all together.

class OrderRepository {

public function getOrdersByMonth($month);

}

class InvoicingService {

public function generateAndSendInvoices() {}

}

class InvoiceFactory {

public function createInvoice(Order $order) {}

}

SOLID Design Principles 50

class InvoiceGenerator {

public function createInvoiceFormat(

Invoice $invoice,

$format

) {}

}

class InvoiceDeliveryService {

public function sendInvoice(

Invoice $invoice,

$method

) {}

}

Our four classes here represent the responsibilities of the previous
InvoicingService class. Ideally, we’d probably even have more
than this: we’ll probably want strategy classes for each format
needed for the InvoiceGenerator and strategy classes for each
delivery method of the InvoiceDeliveryService. Otherwise, these
classes end up having more than one responsibility as they’re
either generatingmultiple file formats, or utilizingmultiple delivery
methods.

This is a lot of classes, almost seemingly a silly number of classes.
What we’ve given up, however, is one very large, monolithic class
with multiple responsibilities. Each time we need to make a change
to one of those responsibilities, we potentially risk introducing an
unintended defect in the rest of the seemingly unrelated code.

Why does SRP matter?

Why are we concerned with making sure a class only has one
responsibility? Having more than one responsibility makes those
responsibilities coupled, even if they are not related. This can make
it harder to refactor the class without unintentionally breaking

SOLID Design Principles 51

something else, whereas having a separate class for each respon-
sibility shields the rest of the code from most of the risk.

It’s also much easier to test a class with only one responsibility:
there’s only one thing to test, although with a potential for many
different outcomes, and there’s much less code involved in that test.

Generally, the smaller the class, the easier it is to test, the easier it
is to refactor, and the less likely it is to be prone to defects.

Open/Closed Principle

The Open/Closed Principle states that classes should be open to
extension, but closed to modification. This means that future devel-
opers working on the system should not be allowed or encouraged
to modify the source of existing classes, but instead find ways to
extend the existing classes to provide new functionality.

The Strategy Pattern introduced in the previous chapter of Design
Patterns provides a great example of how the Open/Closed Prin-
ciple works. In it, we defined strategies for mechanisms to deliver
invoices to customers. If we wanted to add a new delivery method,
perhaps one via an EDI (Electronic Data Interchange), we could
simply write a new adapter:

class EdiStrategy implements DeliveryInterface {

public function send(Invoice $invoice) {

// Use an EDI library to send this invoice

}

}

Now the invoice process has the ability to deliver invoices via EDI
without us having to make modifications to the actual invoicing
code.

SOLID Design Principles 52

The OCP in PHPUnit

The PHPUnit testing framework provides a great example of how a
class can be open to extension, but closed for modification. The PH-
PUnit_Extensions_Database_TestCase abstract class requires that
each individual test case provide a getDataSet() method, which
should return an instance of PHPUnit_Extensions_Database_DataSet_-
IDataSet, an interface. PHPUnit provides several implementations
of this interface, including a CsvDataSet, XmlDataSet, YamlDataSet,
etc.

If you decided you wanted to provide your data sets as plain PHP
arrays, you could write your own data set provider class to do so,
simply by implementing the IDataSet interface. Using this new
class, we could provide the TestCase class with a data set, parsed
from PHP arrays, that works and acts like any of the built-in
PHPUnit data sets.

class MyTest extends DatabaseTestCase {

public function getDataSet() {

return new ArrayDataSet([]);

}

}

The internal code of PHPUnit has not been modified, but now it is
able to process pure PHP arrays as data sets. ¹⁴

https://github.com/mrkrstphr/dbunit-fixture-arrays.

Why does OCP matter?

The benefit of the Open/Closed Principle is that it limits the
direct modification of existing source code. The more often code
is changed, the more likely it is to introduce unintended side effects

¹⁴If you want to see a complete example of this concept in action, checkout

https://github.com/mrkrstphr/dbunit-fixture-arrays

SOLID Design Principles 53

and cause defects. When the code is extended as in the examples
above, the scope for potential defects is limited to the specific code
using the extension.

Liskov Substitution Principle

The Liskov Substitution Principle says that objects of the same
interface should be interchangeable without affecting the behavior
of the client program ¹⁵.

This principle sounds confusing at first, but is one of the easiest
to understand. In PHP, interfaces give us the ability to define the
structure of a class, and then follow that with as many different
concrete implementations as we want. The LSP states that all of
these concrete implementations should be interchangeable without
affecting the behavior of the program.

So if we had an interface for greetings, with various implementa-
tions:

interface HelloInterface {

public function getHello();

}

class EnglishHello implements HelloInterface {

public function getHello() {

return "Hello";

}

}

class SpanishHello implements HelloInterface {

public function getHello() {

return "Hola";

¹⁵http://www.objectmentor.com/resources/articles/lsp.pdf

http://www.objectmentor.com/resources/articles/lsp.pdf

SOLID Design Principles 54

}

}

class FrenchHello implements HelloInterface {

public function getHello() {

return "Bonjour";

}

}

These concrete Hello classes should be interchangeable. If we had
a client class using them, the behavior shouldn’t be affected by
swapping them for one another:

class Greeter {

public function sayHello(HelloInterface $hello) {

echo $hello->getHello() . "!\n";

}

}

$greeter = new Greeter();

$greeter->sayHello(new EnglishHello());

$greeter->sayHello(new SpanishHello());

$greeter->sayHello(new FrenchHello());

While the output may be different, which is desired in this example,
the behavior is not. The code still says “hello” no matter which
concrete instance of the interface we give it.

LSP in PHPUnit

We already discussed an example of the Liskov Substitution Prin-
ciple when we discussed the Open/Closed Principle. The Array-

DataSet class we defined as an instance of PHPUnit’s IDataSet is
returned from the getDataSet()method of DbUnit’s DatabaseTest-
Case abstract class.

SOLID Design Principles 55

class MyTest extends DatabaseTestCase {

public function getDataSet() {

return new ArrayDataSet([]);

}

}

The PHPUnit DatabaseTestCase class expects that the getDataSet()
method will return an instance of IDataSet, but doesn’t necessarily
care what implementation you give it, so long as it conforms to the
interface. This is also referred to as design by contract, which we’ll
talk about in much more detail in Dependency Injection.

The key point of the Liskov Substitution Principle is that the
behavior of the client code shall remain unchanged. Regardless of
what implementation of IDataSet we return from getDataSet(),
it will result in the data set being loaded into the database for unit
tests to be run against. It doesn’t matter if that data came from CSV,
JSON, XML, or from our new PHP array class: the behavior of the
unit tests remain the same.

Why does LSP matter?

In order for code to be easily refactorable, the Liskov Substitution
Principle is key. It allows us to modify the behavior of the program,
by providing a different instance of an interface, without actually
modifying the code of the program. Any client code dependent
upon an interface will continue to function regardless of what
implementation is given.

In fact, as we’ve already seen, the Liskov Substitution Principle goes
hand-in-hand with the Open/Closed Principle.

SOLID Design Principles 56

Interface Segregation Principle

The Interface Segregation Principle dictates that client code should
not be forced to depend on methods it does not use¹⁶. The principle
intends to fix the problem of “fat” interfaces which define many
method signatures. It relates slightly to the Single Responsibility
Principle in that interfaces should only have a single responsibility.
If not, they’re going to have excess method baggage that client code
must also couple with.

Consider for a moment the following interface:

interface LoggerInterface {

public function write($message);

public function read($messageCount);

}

This interface defines a logging mechanism, but leaves the details
up to the concrete implementations. We have a mechanism to write
to a log in write(), and a mechanism to read from the log file in
read().

Our first implementation of this interface might be a simple file
logger:

¹⁶http://www.objectmentor.com/resources/articles/isp.pdf

http://www.objectmentor.com/resources/articles/isp.pdf

SOLID Design Principles 57

class FileLogger implements LoggerInterface {

protected $file;

public function __construct($file) {

$this->file = new \SplFileObject($file);

}

public function write($message) {

$this->file->fwrite($message);

}

public function read($messageCount)

{

$lines = 0;

$contents = [];

while (!$this->file->eof()

&& $lines < $messageCount) {

$contents[] = $this->file->fgets();

$lines++;

}

return $contents;

}

}

As we continue along, though, we decide we want to log some
critical things by sending via email. So naturally, we add an
EmailLogger to fit our interface:

SOLID Design Principles 58

class EmailLogger implements LoggerInterface {

protected $address;

public function __construct($address) {

$this->address = $address;

}

public function write($message) {

// hopefully something better than this:

mail($this->address, 'Alert!', $message);

}

public function read($messageCount)

{

// hmm...

}

}

Do we really want our application connecting to a mailbox to try
to read logs? And how are we even going to sift through the email
to find which are logs and which are, well, emails?

It makes sense when we’re doing a file logger that we can easily also
write some kind of UI for viewing the logs within our application,
but that doesn’t make a whole lot of sense for email.

But since LoggerInterface requires a read() method, we’re stuck.

This is where the Interface Segregation Principle comes into play. It
advocates for “skinny” interfaces and logical groupings of methods
within interfaces. For our example, we might define a LogWriter-

Interface and a LogReaderInterface:

SOLID Design Principles 59

interface LogWriterInterface {

public function write($message);

}

interface LogReaderInterface {

public function read($messageCount);

}

Now FileLogger can implement both LogWriterInterface and
LogReaderInterface, while EmailLogger can implement only Log-
WriterInterface and doesn’t need to bother implementing the
write() method.

Further, if we needed to sometimes rely on a logger that can read
and write, we could define a LogManagerInterface:

interface LogManagerInterface

extends LogReaderInterface, LogWriterInterface {

}

Our FileLogger can then implement the LogManagerInterface and
fulfill the needs of anything that has to both read and write log files.

Why does ISP matter?

The goal of the Interface Segregation Principle is to provide de-
coupled code. All client code that uses the implementation of an
interface is coupled to all methods of that interface, whether it uses
them or not, and can be subject to defects when refactoring within
that interface occur, unrelated to what implementations it actually
uses.

SOLID Design Principles 60

Dependency Inversion Principle

The Dependency Inversion Principle states that ¹⁷:

A. High level modules should not depend upon low
level modules. Both should depend upon abstrac-
tions.

and that:

B. Abstractions should not depend upon details. De-
tails should depend upon abstractions.

This principle is very core to The Clean Architecture, and we’ll
discuss how it fits in great detail in that leading chapter.

Imagine a class that controls a simple game. The game is responsible
for accepting user input, and displaying results on a screen. This
GameManager class is a high level class responsible for managing
several low level components:

class GameManager {

protected $input;

protected $video;

public function __construct() {

$this->input = new KeyboardInput();

$this->video = new ScreenOutput();

}

public function run() {

// accept user input from $this->input

¹⁷http://www.objectmentor.com/resources/articles/dip.pdf

http://www.objectmentor.com/resources/articles/dip.pdf

SOLID Design Principles 61

// draw the game state on $this->video

}

}

This GameManager class is depending strongly on two low level
classes: KeyboardInput and ScreenOutput. This presents a problem
in that, if we ever want to change how input or output are handled
in this class, such as switching to a joystick or terminal output, or
switch platforms entirely, we can’t. We have a hard dependency on
these two classes.

If we follow some guidelines of the Liskov Substitution Principle,
we can easily devise a system in which we have a GameManager that
allows for the input and outputs to be switched, without affecting
the output of the GameManager class:

class GameManager {

protected $input;

protected $video;

public function __construct(

InputInterface $input,

OutputInterface $output

) {

$this->input = $input;

$this->video = $output;

}

public function run() {

// accept user input from $this->input

// draw the game state on $this->video

}

}

Now we’ve inverted this dependency to rely on InputInterface

SOLID Design Principles 62

and OutputInterface, which are abstractions instead of concre-
tions, and now our high level GameManager class is no longer tied to
the low level KeyboardInput and ScreenOutput classes.

We can have the KeyboardInput and ScreenOutput classes extend
from these interfaces, and add additional ones, such as Joystick-
Input and TerminalOutput that can be swapped at run time:

class KeyboardInput implements InputInterface {

public function getInputEvent() { }

}

class JoystickInput implements InputInterface {

public function getInputEvent() { }

}

class ScreenOutput implements OutputInterface {

public function render() { }

}

class TerminalOutput implements OutputInterface {

public function render() { }

}

We’re also utilizing what’s known as Dependency Injection here,
which we’ll talk about in the next chapter, conveniently called
Dependency Injection.

If we can’t modify the input and output classes to conform to our
interfaces, if they’remaybe provided by the system, it would then be
smart to utilize theAdapter Patternwe previously discussed towrap
these existing objects and make them conform to our interface.

Why does DIP matter?

In general, to reach a decoupled code base, one should get to a
point where dependency only flows inward. Things that change

SOLID Design Principles 63

frequently, which are the high level layers, should only depend on
things that change rarely, the lower levels. And the lower levels
should never depend on anything that changes frequently, which is
the higher level layers.

We follow this philosophy to make it easier for change to happen
in the future, and for that change to have as little impact upon the
existing code as possible. When refactoring code, we only want the
refactored code to be vulnerable to defects; nothing else.

Applying SOLID Principles

The SOLID principles work tightly together to enforce code that
is easy to extend, refactor, and test, which ultimately leads to less
defects and quicker turn around time on new features.

Just as we continued building on our Design Patterns in this
chapter, we’ll continue building on the principles of SOLID as we
discuss Inversion of Control and the Clean Architecture later. The
SOLID principles are the founding principles that make the Clean
Architecture work.

Dependency Injection

One of the worst forms of coupling we encounter in object oriented
programming deals with instantiating classes directly within other
classes. The quickest way to find instances of this is to simply look
for the new operator:

class CustomerController {

public function viewAction() {

$repository = new CustomerRepository();

$customer = $repository->getById(1001);

return $customer;

}

}

In this CustomerController, there is a dependency on Customer-

Repository. This is a hard, concrete dependency; without the
existence of CustomerRepository, the CustomerController simply
will not work without it.

Instantiating dependencies within classes introduces several prob-
lems:

1. It makes it hard to make changes later. Refactoring is
difficult when classes manage their own dependencies. If
we wanted to change the method by which we retrieved
data from the database, such as switching out the underlying
library, or switching to a different database storage, we’d
have to find all the instances within our code where we
declared a CustomerRepository and make those changes.
This would be a tedious and error-prone process.

64

Dependency Injection 65

2. It makes it hard to test. In order for us to write any kind
of unit tests for the CustomerController class, we have to
make sure that not only CustomerRepository is available to
the test, but all dependencies that CustomerRepository relies
on – such as a database full with testable data – have to be
available as well. Now we’re doing full stack testing instead
of simple unit testing. Coupling makes it very hard to test
components in isolation.

3. We have no control over dependencies. In some instances,
we might want a class dependency to be configured differ-
ently, depending on various circumstances, when it is used
within another class. This becomes very awkward to develop
when a class is declaring and configuring the declaration of
its own dependencies.

These can turn out to be some pretty big problems, especially in
larger applications. It can severely inhibit a developer from making
even small changes to an application in the future.

Inversion of Control

Inversion of control is the process by which the instantiation and
configuration of dependencies is moved from the dependent class
and given instead to some external means. There are several of these
“external means,” and we’ll talk about two of the most popular: the
service locator pattern and dependency injection.

Using a Service Locator

One method of achieving inversion of control is to use the Service
Locator pattern. A Service Locator is a registry of resources that the
application can use to request dependencies without instantiating
them directly. When using this pattern, our code simply pulls its
dependencies out of the service locator registry.

Dependency Injection 66

public function viewAction() {

$repository = $this->serviceLocator->get('CustomerRep\

ository');

$customer = $repository->getById(1001);

return $customer;

}

Now, instead of instantiating its own dependencies outright, this
controller pulls the dependent object out of the service locator.
Depending on the implementation or framework that you use,
you’ll probably have some code that registers CustomerRepository
with the service locator, so that the service locator knows what to
return to the calling code:

$serviceLocator->setFactory('CustomerRepository', funct\

ion($sl) {

return new Path\To\CustomerRepository(

$sl->get('Connection')

);

});

In this theoretical service locator, an anonymous function is reg-
istered with the key CustomerRepository, and that function is
responsible for building and configuring the repository and return-
ing it. Further, the CustomerRepository itself has a dependency
on something called Connection that we’ll just assume is defined
elsewhere. The point here is to know that dependencies can have
dependencies of their own. When they do, instantiating them
directly when needed becomes even more overwhelming.

This code provides a couple several benefits.

1. There is now only have one place that is responsible for
instantiating a CustomerRepository so that whatever code

Dependency Injection 67

needs it will always have a properly configured repository. If
we ever need to change anything about how that repository
is created, there is only one place to go to do so. This makes
refactoring the code base much easier.

2. Another benefit is that it makes the CustomerController

code much easier to test. When testing the controller above,
the test code can simply give it a different implementation of
the service locator, one that has a mocked repository that can
control what data it returns.

$serviceLocator->setFactory('CustomerRepository', funct\

ion() {

return new Path\To\MockCustomerRepository([

1001 => (new Customer())->setName('ACME Corp')

]);

});

This MockCustomerRepository simply returns the test data “stored”
based on customer ID, so that when testing the controller, it will
return a Customer object with the name of ACME Corp. The
controller is now tested separately from the actual repository, and
the test is now only concerned with what is returned, and not how
it is retrieved.

This code is still only marginally better than the factory example
and the direct instantiation of the original code:

1. It still requests its own dependencies as needed through the
service locator. This is better than instantiating the depen-
dencies directly as at least we have control over what is
actually instantiated within the service locator, which should
make refactoring and testing easier.

2. In order to test, we have to go through the cumbersome
process of setting up a fake service locator and registering
required services with it just to get the controller to work.

Dependency Injection 68

Using Dependency Injection

Dependency Injection is a process by which a dependency is in-
jected into the object that needs it, rather than that object managing
its own dependencies.

Another way to think of dependency injection is to call it “third-
party binding,” as some third party code is directly responsible for
providing the dependency to the class. As Nat Pryce describes it¹⁸,
the use of the term injection can be seen as a misnomer, as it isn’t
really injected into the code, but instead declared as part of the
code’s API.

There are two methods of dependency injection that we’ll discuss:

1. Setter injection - Using this method, dependencies can be
provided to the object through a set method on the class,
which would be stored for later use in a class member
variable.

2. Constructor injection - Using thismethod, dependencies are
provided to the object through its constructor, which would
also be stored for later use in a class member variable.

Using Setter Injection

Using Setter Injection, we would update the mechanism responsible
for instantiating the CustomerController object (either a routing or
dispatching process in our framework) to call some new setmethods
and provide the object with its dependencies:

¹⁸http://www.natpryce.com/articles/000783.html

http://www.natpryce.com/articles/000783.html
http://www.natpryce.com/articles/000783.html

Dependency Injection 69

$controller = new CustomerController();

$controller->setCustomerRepository(new CustomerReposito\

ry());

$customer = $controller->viewAction();

And of course, the CustomerController would be updated to have
this setCustomerRepository method:

class CustomerController {

protected $repository;

public function setCustomerRepository(CustomerReposit\

ory $repo) {

$this->repository = $repo;

}

public function viewAction() {

$customer = $this->repository->getById(1001);

return $customer;

}

}

By the time the viewAction() method is called, this class should
have been injected an instance of CustomerRepository through the
setCustomerRepository method. Now the processes of retrieving
dependencies has been completely removed from the CustomerCon-
troller class.

When testing, we can see how much easier it is to mock the
repository to provide a stable testing state:

Dependency Injection 70

$repository = new MockCustomerRepository([

1001 => (new Customer())->setName('ACME Corp')

]);

$controller = new CustomerController();

$controller->setCustomerRepository($repository);

$customer = $controller->viewAction();

assertEquals('ACME Corp', $customer->getName());

There is still one drawback here, though, and that is that using setter
injection does not make the dependencies required. This puts us in
a situation that can lead to hard-to-detect defects when we forget
to inject some dependency:

$controller = new CustomerController();

$customer = $controller->viewAction();

This code will throw errors as, without calling the setCustomer-

Repository() method, the class $repository variable will be null
when it is used. Given how small this application is, we’ll likely find
the problem easily, but in a larger system with more involved code,
this could lead to a rough time debugging where something went
wrong.

Using Constructor Injection

Using Constructor Injection, the problem presented with setter
injection is solved in that, in order for the object to be instantiated,
the dependencies must be injected via the constructor. If they aren’t,
a very helpful, specific fatal error is thrown by PHP.

Providing that dependency would look something like this:

Dependency Injection 71

$controller = new CustomerController(new CustomerReposi\

tory());

$customer = $controller->viewAction();

The CustomerController is updated to require an instance of
CustomerRepository be passed along to the constructor. We use
type-hinting here so that an actual instance of CustomerRepository
is given, not just any variable.

class CustomerController {

protected $repository;

public function __construct(CustomerRepository $repo)\

{

$this->repository = $repo;

}

public function viewAction() {

$customer = $this->repository->getById(1001);

return $customer;

}

}

The CustomerController is now guaranteed to have an instance
of CustomerRepository ready to be used. This controller can test
this just like it was with setter injection using a mocked repository,
except it would be provided to the constructor rather than the set
method:

Dependency Injection 72

$repository = new MockCustomerRepository([

1001 => (new Customer())->setName('ACME Corp')

]);

$controller = new CustomerController($repository);

$customer = $controller->viewAction();

assertEquals('ACME Corp', $customer->getName());

Dependency injection helps to both loosely couple our code base,
as well as provides the ability to test individual components in
isolation, without having to construct, prepare, and pass around
their individual dependencies. Since constructor injection forces the
object to be injected with its dependencies, it will be preferred over
setter injection throughout the rest of this book.

When to use Dependency Injection

Now that we’ve discussed what dependency injection is and the
problems it can help solve in your code, it’s important to take a
moment think about where it is appropriate to use this technique,
and where it is not. This is a bit of a blurry line, and whoever you
talk to, you’ll probably get a different opinion.

Here’s where I think you should use dependency injection:

1. When the dependency is used by more than one compo-
nent. If it’s being used by many things, it probably makes
sense to abstract out the instantiation and configuration and
inject the dependency, rather than doing it when needed.
Without this, we make it hard to refactor our code that uses
this dependency. However, if the dependency is only used
once, you then only have one place to go when refactoring
the code.

Dependency Injection 73

2. The dependency has different configurations in different
contexts. If a dependency is configured differently in the
different places it is used, then you definitely want to inject
it. Again, this configuration shouldn’t take place in the de-
pendent class. Not only does it make refactoring difficult, but
can make testing difficult as well. You’ll probably also want
to invest in a real factory that can create these dependencies
under different scenarios to abstract further the creation of
those dependencies.

3. When you need a different configuration to test a com-
ponent. If testing a dependent object requires that the de-
pendency needs to be configured differently to be tested,
you’ll want to inject it. There isn’t any other good way
around this. Think back to our example of mocking the
CustomerRepository to control what data it returned.

4. When the dependency being injected is part of a third
party library. If you’re using someone else’s code, you
shouldn’t be instantiating it directly within the code that
depends on it. These dependencies should absolutely be
injected into your code. The usage of someone else’s code is
something we might refactor often. Special attention needs
to be paid to this scenario, and we’ll discuss that in detail in
Abstracting with Adapters using the Adapter Pattern we’ve
already discussed.

But there are definitely some scenarios where you probably don’t
want to use dependency injection.

If a dependency doesn’t need to be configured in anyway (meaning,
no constructor arguments or set methods that need to be called to
set it up), and doesn’t have dependencies itself, it might be safe
to go ahead and just instantiate that dependency within the class
that needs it. This is especially true when the dependency is the
component within the same layer of the application (we’ll get to
talking about various layers of software in a little bit).

Dependency Injection 74

For example, if our framework requires that our controller actions
return some kind of view or response object, it makes perfect sense
to just instantiate and return that right in the action.

public function viewAction() {

$customer = $this->repository->getById(1001);

return new ViewModel([

'customer' => $customer

]);

}

There is little gained value from injecting this ViewModel class into
the controller. It has no configuration, it has no dependencies itself,
and in the case of testing, we probably just want to verify that an
instance of ViewModel was returned with an instance of Customer
stored within it.

Using Factories to Create Dependencies

If we have a dependency that needs configuration, it doesn’t always
make sense to inject that dependency itself. Sometimes it might
be a better idea to inject an object that knows how to build this
dependency for us. This is useful when the way in which that
dependency is configured is controlled by scenarios within the class
itself.

Looking at the example above: what if we wanted to return a
different type of response based on a context requested? Maybe by
default we would return HTML, but based on context, might return
JSON or XML as well?

In this case, we may want to inject a factory that knows how to
build the response based on the requested context:

Dependency Injection 75

class CustomerController {

protected $repository;

protected $responseFactory;

public function __construct(

CustomerRepository $repo,

ResponseFactory $factory

) {

$this->repository = $repo;

$this->responseFactory = $factory;

}

public function viewAction() {

$customer = $this->repository->getById(1001);

$response = $this->responseFactory->create($this->p\

arams('context'));

$response->setData('customer', $customer);

return $response;

}

}

Previously, our dependency was the specific response we were
returning. Now, however, it’s this new ResponseFactory class that
builds a response for us.

The important thing here is that we are abstracting out the logic that
determines how to build the dependency, and instead depending on
that abstraction. We’re also injecting that in so that if the logic or
methodology ever changes, we just have to change the implementa-
tion instead of updating an unknown number of locations that were
previously building their own responses.

Handling Many Dependencies

It’s very easy to let dependency injection get out of control:

Dependency Injection 76

public function __construct(

CustomerRepository $customerRepository,

ProductRepository $productRepository,

UserRepository $userRepository,

TaxService $taxService,

InvoiceFactory $invoiceFactory,

ResponseFactory $factory,

// ...

) {

// ...

}

This is usually indicative of having a class that violates the Single
Responsibility Principle and does too much and contains too much
logic. There’s no hard rule about how many dependencies a class
can have. Generally, the fewer the better, however, it’s entirely
possible to go too far in the other direction as well, and end up
with a hierarchy of tiny classes that are hard to follow, refactor and
test.

After understanding the concepts of this book, you can start to use
the “Feels Bad” policy of knowing when to refactor a bad situation
into good, healthy code.

Are we still coupling?

Our whole reason for going down this path of dependency injection
was to reduce coupling in our code. Recall that our initial example,
pre-inversion of control looked like this:

Dependency Injection 77

class CustomerController {

public function viewAction() {

$repository = new CustomerRepository();

$customer = $repository->getById(1001);

return $customer;

}

}

In this codewe are highly coupled to the CustomerRepository as we
are declaring a concrete dependency right in the middle of our code.
By switching to using dependency injection, we ended up with this:

class CustomerController {

protected $repository;

public function __construct(CustomerRepository $repo)\

{

$this->repository = $repo;

}

public function viewAction() {

$customer = $this->repository->getById(1001);

return $customer;

}

}

Now we’re being provided some kind of class that is an instance
of CustomerRepository. This is much looser coupling, but it’s
still coupling. We still need something that is or extends from
CustomerRepository. There’s no real way around that. And since
this repository will likely sit within our persistence implementation,
we’re also coupling to a whole infrastructure layer that talks to a
database.

There is one level farther we can go with decoupling our dependen-
cies by using interfaces to define contracts.

Defining a Contract with
Interfaces

In the previous chapter we discussed the principle of inversion of
control, and describe how dependency injection can make refac-
toring and testing code easier. We started out by discussing object
coupling, and presented dependency injection as a method of limit-
ing coupling. However, when we reached the end, we realized that
we hadn’t entirely removed the coupling, we only made it weaker
by moving it to the constructor from the methods of the class.

class CustomerController {

protected $repository;

public function __construct(CustomerRepository $repo)\

{

$this->repository = $repo;

}

public function viewAction() {

$customer = $this->repository->getById(1001);

return $customer;

}

}

This class is still well coupled to the CustomerRepository class.
Since the CustomerRepository class is responsible for, at least
through its dependencies, connecting to and retrieving data from a
database, this means that the CustomerController is also coupled
to that database.

78

Defining a Contract with Interfaces 79

This can be problematic if we ever decided to switch data sources,
such as moving to a NoSQL variant, or switching to some API
service to provide our data. If we do that, we’ll have to then go
modify all the code across our entire code base that uses this
CustomerRepository to make it use something else.

Further, if we want to test this CustomerController, we still have
to give it an instance of CustomerRepository. Any mock object we
create will need to extend from CustomerRepository to pass the
type-hint check. That means our simple mock repository will still
have to have the entire database back-end tied to it, even if we are
overriding everything it does. That’s pretty messy.

Interfaces in PHP

Recall that in PHP, an interface is a definition of a class, without
the implementation details. You can think of it as a skeleton of a
class. An interface cannot have any method bodies, just method
signatures.

interface Automobile {

public function drive();

public function idle();

public function park();

}

Any class implementing an interfacemust implement all the meth-
ods of that interface.

Defining a Contract with Interfaces 80

class Car implements Automobile {

public function drive() {

echo "Driving!";

}

public function idle() {

echo "Idling!";

}

public function park() {

echo "Parking!";

}

}

Any number of implementations may exist for the interface Auto-
mobile:

class DumpTruck implements Automobile {

public function drive() {

echo "Driving a Dump Truck!";

}

public function idle() {

echo "Idling in my Dump Truck!";

}

public function park() {

echo "Parking my Dump Truck!";

}

}

The two classes Car and DumpTruck are considered compatible as
they both define the Automobile interface, and either could be used
in any instance where an Automobile is necessary.

Defining a Contract with Interfaces 81

This is known as polymorphism, where objects of different types
can be used interchangeably, so long as they all inherit from a
common subtype.

Using Interfaces as Type Hints

The usage of interfaces comes in handy when trying to reduce
coupling within a class. We can define an interface of some de-
pendency, and then reference only that interface. So far, we’ve
been passing around concrete instances of CustomerRepository.
Now, we’ll create an interface that defines the functionality of this
repository:

interface CustomerRepositoryInterface {

public function getById($id);

}

We have a simple interface with one method, getById(), which
returns a Customer object for the customer data identified by $id.
As this is an interface, we cannot provide any implementation
details, so this class provides no information about where the data
comes from, or how it is retrieved.

Now in our controller, we use PHP’s type-hints for methods and
functions to declare that the argument passed to the __construct()
method must be an instance of our new interface, CustomerRepos-
itoryInterface.

Defining a Contract with Interfaces 82

class CustomerController {

protected $repository;

public function __construct(CustomerRepositoryInterfa\

ce $repo) {

$this->repository = $repo;

}

public function viewAction() {

$customer = $this->repository->getById(1001);

return $customer;

}

}

Now the CustomerController class is only coupled to the Cus-

tomerRepositoryInterface, but that’s okay: this interface isn’t a
concrete implementation, it’s just a definition of an implementa-
tion. We can couple to this and, in fact, we should, as it defines
how our application interacts, without referencing the specific
implementations.

Whatever mechanism is responsible for instantiating the Customer-
Controller can still provide it with the concrete CustomerReposi-
tory, so long as that class implements the ‘CustomerRepositoryIn-
terface’.

class CustomerRepository implements

CustomerRepositoryInterface {

public function getById($id) {

// get and return the customer...

}

}

The CustomerRepository provides the implementation of the get-
ById() method and fulfills the requirements of the interface.

Defining a Contract with Interfaces 83

When we want to test this controller now, we can instead use a
mock instance of CustomerRepositoryInterface:

class MockCustomerRepository implements

CustomerRepositoryInterface {

public function getById($id) {

if ($id == 1001) {

return (new Customer())

->setId(1)

->setName('Customer #1001');

}

}

}

While this may not be the greatest code (and using a mock-
ing library like Mockery¹⁹ or the mocking utilities provided by
PHPUnit would be better²⁰), we can nevertheless pass this in to
CustomersController to fulfill the CustomerRepositoryInterface
type hint. Now the controller is being tested in isolation, without
the specific configuration and dependencies of the real Customer-
Repository.

The CustomersController really doesn’t care what object you end
up injecting it with. So long as that object meets the required
interface (and it will, otherwise a fatal error will be thrown), the
controller should function just the same. This also assumes, of
course, that the dependencies being injected actually work and
return the data they should.

¹⁹https://github.com/padraic/mockery
²⁰http://phpunit.de/manual/4.1/en/test-doubles.html

https://github.com/padraic/mockery
http://phpunit.de/manual/4.1/en/test-doubles.html
http://phpunit.de/manual/4.1/en/test-doubles.html
https://github.com/padraic/mockery
http://phpunit.de/manual/4.1/en/test-doubles.html

Defining a Contract with Interfaces 84

The Liskov Substitution Principle
If this sounds familiar, it should. We already dis-
cussed these principles when we talked about the
Liskov Substitution Principle. Our various concrete
repositories are interchangeable as they both extend
the same interface.

The Dependency Inversion Principle also applies
here, as we’re modifying our high level code (the
controller in our example) to not depend upon low
level code (the repository), and instead depend upon
an abstraction.

Using Interfaces as a Contract

Another way to think about using interfaces with dependency
injection is that they are fulfilling a contract. Our interface is a
contract between the supplier, our code instantiating a dependency
and injecting it, and our client, the class with a dependency need.
The contract is fulfilled when the correct object is injected into the
object.

This concept has been described as programming by contract.
It’s an interesting way to think about interfaces and dependency
injection.

Making Third Party Code Conform to
Contracts

Using interfaces to define contracts is easy when it’s our own code,
but how do we make use of a third party library and make it
conform to an interface for dependency injection? After all, we
shouldn’t simply open up the third party source code and modify it
to extend from one of our interfaces.

Defining a Contract with Interfaces 85

The answer is to use the Adapter Pattern.

Abstracting with Adapters

Interfaces have provided the means to completely decouple our
code from concrete implementations of their dependencies. So far,
we’ve only show how to do this with our own low level code. What
if we want to use some third party library instead?

Let’s say we find a great third party library through Packagist called
Bill’s Geocoder that validates addresses with Google Maps or USPS
or some other service.

class AddressController extends AbstractController {

protected $geocoder;

public function __construct(BillsGeocoder $geocoder) {

$this->geocoder = $geocoder;

}

public function validateAddressAction() {

$address = $this->vars()->fromPost('address');

$isValid = $this->geocoder->geocode($address) !== f\

alse;

}

}

We’re using some dependency injection into the controller, which is
great. This is a step in the right direction and solves some problems
for us, but it’s still strongly coupling our controller to whoever Bill
is. What if he goes away? What if you figure out DavesGeocoder
is so much better because it supports Zip+4, which BillsGeocoder

didn’t? And what if you just happen to use this geocoder all over

86

Abstracting with Adapters 87

the place and now you have to go update all those references? What
if DavesGeocoder doesn’t have a geocode()method but instead has
validateAddress(). You’ve run into a refactoring nightmare.

Setting up the Adapter

Recall back to our discussion on design patterns, specifically the
Adapter Pattern. Adapters are perfectly suited to solve this problem
as they allow us to “wrap” the functionality of the third party code,
and by doing so, make it conform to an interface we define, so that
we can inject that adapter to fulfill the interface.

This is exactly what we did when we discussed the Adapter Pattern.
We started by defining our interface:

interface GeocoderInterface {

public function geocode($address);

}

Then, we’ll go ahead and make our controller depend only upon
this interface:

class AddressController extends AbstractController {

protected $geocoder;

public function __construct(GeocoderInterface $geocod\

er) {

$this->geocoder = $geocoder;

}

public function validateAddressAction() {

$address = $this->vars()->fromPost('address');

$isValid = $this->geocoder->geocode($address) !== f\

alse;

Abstracting with Adapters 88

}

}

Finally, we’ll create an adapter to wrap BillsGeocoder and make
it conform to our GeocoderInterface that is required by our
AddressController class:

class BillsGeocoderAdapter implements GeocoderInterface\

{

protected $geocoder;

public function __construct(BillsGeocoder $geocoder) {

$this->geocoder = $geocoder;

}

public function geocode($address) {

return $this->geocoder->geocode($address);

}

}

In our geocode() method, we’re simply passing off the processing
to our instance of BillsGeocoder, which we take through the
constructor.

We can use dependency injection to inject an instance of Bills-
GeocoderAdapter into our AddressController, which allows us to
use a third party library but makes sure it conforms to the interface
we need.

How does this help?

This method of using adapters with third party libraries allows
us to remain decoupled and free from dependence on those third
party libraries. It allows us to freely swap out those dependencies

Abstracting with Adapters 89

without having to rewrite any code that uses them, and it allows
us to easily test our application and its use of those dependences
without actually having to test those dependencies ourselves. We
only have to test that we’re properly utilizing them.

We’ll later discuss the importance of External Agency Indepen-
dence when we discuss The Clean Architecture.

The Clean Architecture

We’ve explored some messy architecture and some all around
bad code. We’ve also explored some great design patterns and
development principles that can lead to good, quality code.

Nowwe’re going to take a look at some good architectural decisions
that utilize these design patterns and principles to write good, clean,
solid code.

This architecture is called the Clean Architecture.

90

MVC, and its Limitations

When building an application, there are often several different
things going on. There’s theHTML, CSS and JavaScript that presents
your application to the user. There’s usually an underlying data
source, whether it’s a database, an API, or flat files. Then there’s the
processing code that goes in between. The code that tries to figure
out what the user requested, how to act upon their request, and
what data to display to them next. Finally, there’s also the business
rules of the application. The rules that dictate what the application
does, how things relate to one another, and what the confines of
those relationships are.

When one first starts out attempting to better their code (or maybe
they’re lucky enough to learn of it straight on), they quickly
come across the MVC architecture. The Model-View-Controller
architecture dictates a strong separation of concerns by separating
the database logic, control/processing logic, and the view/UI logic.
The MVC architecture does have some faults, which we’ll discuss
in the next chapter, but it does provide a pretty good framework for
cleanly separating code.

For those who think they already know about the MVC architecture
and don’t need a refresher, feel free to skip this chapter and head
on to the next.

MVC in a Diagram

Let’s have a look at a pretty picture of MVC. It commonly looks like
this:

91

MVC, and its Limitations 92

Briefly, the controller is the section of the codebase that analyzes
a request and determines what to do. The user kicks off a controller
by hitting a specific URL in their web browser, which then routes
to the specific controller designed to handle that request (we’ll talk
about routing in a bit).

The controller then manipulates somemodels, which are represen-
tations of data. For instance, if we hit a controller that is meant to
save a new user, the controller would populate a User model with
the data supplied in the post, and then persist it to the database.

Finally, the controller returns a view to the user, which is the PHP,
HTML, CSS, JavaScript, and images that represent the request. In
our example, after creating the new user, we might redirect off to a
View User action which would display our new user’s information
and give us further actions to take upon that user.

The MVC Components

The best way to discuss the MVC architecture is to discuss each
component individually. We’ll start with Model and View, because,

MVC, and its Limitations 93

hey, that’s how the acronym goes, andwe’ll endwith the Controller,
which is quite fitting as it ties the whole thing together, as you’ll see.

The Model

TheModel inMVC is the portion of your application that represents
your data. A specific model is a class that represents data. Consider
this User class:

class User extends AbstractModel {

public $id;

public $alias;

public $fullName;

public $email;

}

This is a model representing a user in our system. Usually the
model layer has somemeans for creating and hydrating thesemodel
records, as well as persisting them to the actual data storage. We’ll
talk about this in more detail in Database Independence.

As a developer, we can manipulate this model like any PHP class:

$user = new User();

$user->alias = 'billybob';

$user->fullName = 'William Bob';

$user->email = 'william.bob@bobcorp.com';

Compare this to traditional use of PDO or the straight mysql_*

or mysqli_* methods: here, we’re using fully backed objects that
represent our data, rather than querying for it and dealing with
arrays of data. We actually have representational data using this
method.

MVC, and its Limitations 94

The View

The View inMVC is simply what is presented to the user. In the PHP
world, it is mostly composed of the HTML, CSS, and JavaScript that
drive the UI. The view is also responsible for the user interaction
with the application, through the use of links, buttons, JavaScript,
etc. These actions may be handled entirely in the view layer, or they
may make additional requests to the web server to load other data
and views.

The View is also responsible for taking models and representing
them to the user of the application. For instance, for our Usermodel,
we may have a page that iterates through a collection of users and
displays them in a grid:

<table>

<thead>

<tr>

<th>ID</th>

<th>Full Name</th>

<th>Email</th>

<th> </th>

</tr>

</thead>

<tbody>

<?php foreach ($this->users as $user): ?>

<tr>

<td><?= $user->id ?></td>

<td><?= $user->fullName ?></td>

<td><?= $user->email ?></td>

<td>

<a href="/users/edit/<?= $user->id ?>">

edit

</td>

</tr>

MVC, and its Limitations 95

<?php endforeach; ?>

</tbody>

</table>

Our view layer is very purposeful: it is meant to display data to the
user. It does no processing outside of simple loops and conditionals.
It doesn’t query anything directly, just manipulates the data that is
given to it.

But just how does the view get its data?

The Controller

The controller is responsible for interpreting the user request and
responding to it. It can load specific models relevant to the request
and pass it off to a view for representation, or it can accept data from
a view (via something like an HTTP POST request) and translate it
to a model and persist it to the data storage.

Controllers come in many forms, but one of the most common form
is an action controller. These controllers are classes that contain one
or more methods, each method representing a specific request.

If we continue our user example, wemight have a UsersController
that is responsible for dealing with requests relevant to users:

class UserController extends AbstractController {

public function indexAction() {}

public function viewAction() {}

public function updateAction() {}

}

This example controller has three actions:

• indexAction is responsible for listing all Users

MVC, and its Limitations 96

• viewAction is responsible for viewing a User
• updateAction is responsible for updating a User

On a specific request, let’s say the view customer request, the cor-
responding action will be called, which would process the request
and prepare the required view. This might look something like:

public function viewAction() {

$id = $this->params('id');

$user = $this->repository->getByid($id);

$view = new View();

$view->setFile('users/view.phtml');

$view->setData(['customer' => $user]);

return $view;

}

This pseudo-controller action in this sample code retrieves the
passed ID from some mechanism, then uses the stored UserRepos-

itory to retrieve that user. Finally, it instantiates a new view, sets
the view file to render, and passes the data off using setData().

Here, we can see that the controller only cares about responding to
requests. It uses the model layer to retrieve data, and then passes it
off to the view layer for processing and display.

Routing

This all starts to make much more sense when you consider how
routing works in web-based MVC applications. We tend to lean
towards using clean URLs these days, where our URI looks like this:

MVC, and its Limitations 97

/users/view/1

Or, if you’re defining RESTful URIs:

/users/1

This is a URI that would route to the UserController’s viewAction
in our examples above. Traditionally when routing clean URLs to
controllers, the first part of the URI, /users maps to the controller,
UsersController in our example, while the part, /view, maps to
the action, which, of course, is the viewAction.

This isn’t always the case, however. Must frameworks allow routing
to be whatever you make it, such that any URI can map to any
controller or action.

Some frameworks make this explicit and do not require any addi-
tional setup. They simplymap the URI to a corresponding controller
and action. Most modern frameworks require you to setup some
sort of routing table that tell it which URIs map to which portions
of code.

In Zend Framework 2, that looks something like this:

return [

'router' => [

'routes' => [

'user' => [

'type' => 'Literal',

'options' => [

'route' => '/users',

'defaults' => [

'controller' => 'App\Controller\Users',

'action' => 'index'

]

MVC, and its Limitations 98

],

'may_terminate' => true,

'child_routes' => [

'view' => [

'type' => 'Segment',

'options' => [

'route' => '/view/[:id]',

'defaults' => [

'action' => 'view'

],

'constraints' => [

'id' => '[0-9]+',

]

]

]

]

]

]

]

];

This long-winded block of code defines two routes, /users, which
routes to UsersController::indexAction(), and /users/view/[:id],
which routes to UsersController:viewAction(). Both are GET

requests.

You can see how flexible this can be in defining routes as they don’t
have to match the controller structure whatsoever. But it is pretty
verbose.

Laravel, on the other hand, takes a much simpler approach to
routing:

MVC, and its Limitations 99

Route::get('user/view/{id}', function($id) {

return 'Viewing User #' . $id;

});

This routing is much simpler and expressive. Any time a URI
matching /users/view/{id} is hit, the anonymous function runs
and returns Viewing User #{id}.

MVC Isn’t Good Enough

The MVC architecture is a great start to building robust and
adaptable software, but it isn’t always enough. With only three
layers in which to organize all code, the developer usually ends up
with too many details in one of the layers. It’s fairly presumptuous
to think that everything should be able to fit into three buckets.
Either it’s a model, or a view, or a controller. The view is usually
saved from being slaughtered as its role is pretty well defined, so
either the controllers become overwhelmed with business logic, or
the model absorbs it all. The community has for quite some time
adopted the mantra of “fat model, skinny controller.”

Obese Models

This “fat model, skinny controller” mantra is all well and good,
until the model layer also becomes the database abstraction and
persistence layer, and now the core business logic is tightly coupled
to a data source. It ultimately becomes the obese model approach.
This is bad news, as it makes it difficult for us to swap out that data
layer, either the actual database itself or the library that powers the
abstraction of it.

As it doesn’t make any sense to put database configuration and
interaction in the view layer, and it becomes messy and not reusable
to place it within controllers, everything related to the database,

MVC, and its Limitations 100

querying, and the representation of the database, the model or
entity, gets shoved into the model. However, this tightly coupling
of the representative data model to the actual data source is prob-
lematic.

Let’s say, for example, through the first iteration of our application,
that we store and retrieve all of our data from a relational database
system. Later down the road, however, our needs and number of
applicationsmight grow, andwemight decide to build aweb service
API to manage the interaction of data with all the applications.
Since we tightly coupled our business logic and data access together
in the form of a model, it becomes difficult to switch over to our API
without having to touch a lot of code. Hopefully we wrote a big test
suite to help us.

Maybe instead of switching primary data sources, you simply find
a much better database abstraction library that you want to use.
Perhaps it is a well written library that better optimizes queries,
saves resources, executes faster, and is easier to write. These are
some great reasons to switch. However, if you initially went down
a path of merging your database implementation details with your
data representation, you might end up having to rewrite the whole
entire model layer just to switch to a better library.

This becomes a clear issue of violating the Single Responsibility
Principle.

A nice, clean model might look like this:

class User {

public $id;

public $alias;

public $fullName;

public $email;

}

How exactly does data get into these variables from the database,

MVC, and its Limitations 101

and how do we save changes we make back to that database? If
we add in methods and mechanisms to this User class to persist
our data to the database for us, we’re then making it very hard to
test and switch data sources or database abstract layers later. We’ll
cover various approaches and solutions to this problem in Database
Independence.

Model Layer vs Model Class vs Entities

The solution to this problem is to realize there’s a difference
between the Model Layer of MVC, and the Model Class. What we
have in our example above is a Model class. It’s a representation of
the data. The code responsible for actually persisting that data to
the database storage is part of our model layer, but should not be
part of our model class. We’re mixing concerns there. One concern
is a representative model of the data, and the other is the persistence
of that data.

From now on, we’re going to refer to the actual model class, like the
one above, as an entity. Entities are simply representational states
of things that have identities and attributes unique to that identity.
For instance, an Order, User, Customer, Product, Employee, Process,
Quotes, etc., can all be entities.

We’re also going to stop referring to the model layer as the persis-
tence layer. The persistence layer is simply the layer of code that
is responsible for persisting data, entities, back to the data store, as
well as retrieving entities from the data store based on their identity.

From here-forth, you can pretend like the word model doesn’t exist,
and with that, we can drop all baggage of the obese model.

More Layers for All of the Things!

Of course our solution here is to really add another layer to the
MVC paradigm.We now have EPVC, whichmight stand for Entity-
Persistence-View-Controller if that were a thing. This doesn’t

MVC, and its Limitations 102

mean that every problem can be solved simply by throwing another
layer at the problem. But it does make sense to split up our
representation of the data with the persistence of the data as they
really are two different things.

Doing this allows us to move the database away from being the
core of our application to being an external resource. The entities
now become the core, which leads to an entirely different way of
thinking about software applications.

The Clean Architecture
So if MVC isn’t enough, if it doesn’t give us enough organization
and segregation of our code base, what is the solution, and what is
enough?

The Clean Architecture

The solution to this problem is what I’m going to refer to as The
Clean Architecture. Not because I named it so, as near as I can tell
that honor goes to “Uncle” Bob Martin who wrote in 2012²¹ about
a collection of similar architectures that all adhered to very strong
forms of separation of concerns, far beyond what traditional MVC
describes.

Uncle Bob describes these architectures as being:

Independent of Frameworks. The architecture does
not depend on the existence of some library of feature
laden software. This allows you to use such frame-
works as tools, rather than having to cram your system
into their limited constraints.

Testable. The business rules can be tested without
the UI, Database, Web Server, or any other external
element.

Independent of UI. The UI can change easily, without
changing the rest of the system. A Web UI could
be replaced with a console UI, for example, without
changing the business rules.

²¹http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

103

http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html
http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

The Clean Architecture 104

Independent of Database. You can swap out Oracle
or SQL Server, for Mongo, BigTable, CouchDB, or
something else. Your business rules are not bound to
the database.

Independent of any external agency. In fact your
business rules simply don’t know anything at all about
the outside world.

Framework Independence

Framework independence is huge. When a developer initially starts
using frameworks for their projects, they might think that the
framework is the end game for their application. They make a
choice and they’re sticking with it. But that’s a terrible decision.

Framework’s live and die, and even when they don’t die, they
change, leaving the project that depends on them out in the cold.
Take Zend Framework, for example. The release of Zend Frame-
work 2 was such a massive change and shift, that it was near
impossible to upgrade any ZF1 application to ZF2 without a com-
plete rewrite. Especially if you based your domain around the
Zend_Model family of classes.

Not only that, but new frameworks come out all the time. The
PHP framework scene is more active than it has ever been, with
previous unknowns like Laravel surging in popularity, and micro-
frameworks, such as Silex, starting to get due respect. The best
decision yesterday is not always the best decision today.

This is why it is the utmost importance to make sure that your
applications are written as framework agnostic as possible. We’ll
talk about this in Framework Independence

The Clean Architecture 105

Testable

Testability in applications of any size of are of extreme importance.
Software tests are the singlemost importantmeans to preventing re-
gression errors in an application. To people who sell their software,
regression bugs often mean warranty work and a loss of billable
time. And for all software developers, bugs are simply a pain to
deal with, often a pain to troubleshoot and fix, and, without tests,
more often than not a guessing game.

When we write software, we refactor code quite often. In fact,
the process of software development in general can be seen as
an endless series of refactoring. As we continually write code,
we’re continually evolving the application, tearing down previous
implementations and replacing them with newer, better ones, or
enhancing them to account for some new feature set.

Since we’re always changing what already exists, having a suite
of tests that are readily available, fast to run, and comprehensive
becomes very important. It can literally be the difference between
quickly preventing many bugs in the first place and spending
hundreds of hours trying to fix them later.

While this book doesn’t have a dedicated chapter to testing, con-
cepts discussed throughout the book will often discuss how they
help the refactoring and testing process, and why they are good
practices for developing a robust and highly available test suite.

Database Independence

Database independence may not seem like an important issue when
building the architecture of an application. To some developers, it
matters a great deal, such as those who are developing an open
source project that users may want to deploy on a variety of
database systems. But if you’re developing in house software where
the architecture is controlled, and often vetted and picked for very
specific reasons, this doesn’t seem like a big deal.

The Clean Architecture 106

However, just like frameworks, databases can live and die. And just
like frameworks, new platforms can spring up that suddenly look
like a much better solution to your problem. Take for instance the
rise of NoSQL alternatives to traditional relational database man-
agement systems (RDMS) in the past decade. For some situations, a
NoSQL like Mongo or Couchmight be a great alternative to MySQL
or PostgreSQL. Butwhen you’ve integratedMySQL into the heart of
your application, it’s a daunting task to try to rip it out and replace
it with something else.

When writing a Customer Relationship Management (CRM) appli-
cation, my colleagues and I went down the common path of using
a relational database, PostgreSQL as our data backend. Through
the course of developing the application over the next six months,
we quickly realized that other applications and systems, including
mobile device applications, were going to need to interface with this
data.

After analyzing the situation, we decided that what we should
really do is build a RESTful API and have the CRM application sit on
top of it. The API would be a middle layer between the application
and the database, and provide a common way of interacting with
the data across all of the applications.

Since we had already developed a good chunk of the application,
this could have proven challenging. However, since we had created
a separate domain layer with interface contracts that our persis-
tence layer adhered to, we were able to simply rewrite our small
persistence layer to pull data from the API rather than from the
database, and never had to touch any other code, like the controllers,
services, etc.

We’ll discuss how we can accomplish database independence in
Database Independence.

The Clean Architecture 107

External Agency Independence

The PHP ecosystem has recently exploded with a plethora of
libraries and frameworks, most of which are now, thanks to PHP-
FIG and Composer, easily plopped into every project you develop.
These libraries are fantastic, and speed up the development of
projects for you by providing proven solutions.

But should you use them? Absolutely! You just have to be careful
how you do.

Just as these wonderful libraries have sprung up, they also die off
and become forgotten just as fast. What could be more frustrating
than having to refactor hundreds of files because you littered usage
of someone else’s library all over your code, and they decided to let
it rot?

Using some tried and true design patterns, we can lessen this
problem by wrapping our usage of these libraries. We’ll discuss this
in intricate detail in External Agency Independence.

The Onion Architecture

One off-shoot of the Clean Architecture, and the first one I came
across before I found Uncle Bob’s article, is The Onion Archi-
tecture²², described by Jeffrey Palermo. While the naming of this
architecture may make one think it is satire, it is, in fact, a pretty
descriptive way to describe how software architecture should be
built.

Palermo described the layers of software like the layers of the onion:
moving out from the core of the onion, each layer depends on the
layers deeper for integrity and purpose, but the inner layers do not
depend on the outer layers. It’s best illustrated by a diagram:

²²http://jeffreypalermo.com/blog/the-onion-architecture-part-1/

http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/

The Clean Architecture 108

In traditional application development, the database is central to the
application. It’s often designed first, andmany application structure
decisions are made around the database. Take it out, and the whole
thing crumbles from within.

In the Onion Architecture, the domain is core to the application,
and it is completely decoupled from the database. The database is
no longer central, or even a required component of the application;
it’s secondary. It can be swapped out at will without touching the
rest of the application. It is supreme Database Independence. We’ll
touch on how this works in Database Independence.

The Domain Model and Domain Services Layers

At the core of your onion is your domain model layer. This layer
contains pure models or entities that are representative of the

The Clean Architecture 109

business objects in your application. They interact with one another
to define relationships, and interact with nothing else. They are pure

Outside of that is your domain services layer. These are things like
factories, repositories, and other services that use the core domain
model

Coupled together, the domain model and domain services make
up the core, most central layer of any application. They contain
the business logic, and almost every other layer of the application
depends on it. For instance, in a CRM application, you probably
have a Customer model and various services for interacting with it
that are used across many of the controllers, views, etc. of the other
layers.

For all intents and purposes, the domain core is your application.
Everything else is simply an extension or a client that interacts with
your actual application.

The Application Services Layer

Outside of the Domain Services layer exists the Application Ser-
vices. This layer is composed of application implementation. In a
traditional MVC, this is your Controller layer. It is the router, which
responds to an HTTP request and routes it to a specific controller
and action, which may use other application services, such as
authentication, data parsers or translators (maybe we’re exporting
a CSV document?) and do everything necessary to bootstrap and
provide the view, which is our UI.

It is important to know that nothing in our application should
depend on this layer. The Application Services layer should be
consider a layer that merely bootstraps our real application, which
is the Domain Model and Domain Services application. Like the
database, we should be able to swap this out at will with minimal
effort. Maybe we started with Symfony but really want to switch
to Laravel. That shouldn’t be a hard thing to do if the application

The Clean Architecture 110

is written correctly. This allows us to achieve Framework Indepen-
dence, which, I’m sure you’ve guessed, we’ll talk about in more
detail in Framework Independence.

The User Interface

One of the final and outermost layers of the onion is the User Inter-
face. The UI has nothing dependent upon it, but is dependent upon
every deeper layer of the onion. It requires the Application Services
to give it meaning, which route through the Domain Services to get
to the Domain, our meat and potatoes of our application. The view,
at its core, is a representation of our domain for the user.

It sits on the outside and has nothing dependent upon it. We can
refactor and hack it up at will without consequence. We could try
a new templating language, or a new JavaScript framework every
week, and the stability of our core application will not change.

We won’t spend any time in this book specifically talking about the
User Interface, but it will be touched on in Framework Indepen-
dence and during our Case Study at the end of the book.

Infrastructure

The infrastructure layer resides in an outer layer of our onion. Its
responsibility is of grave importance: it provides for our domain.
It defines where our data comes from and facilities the retrieving
and saving of it to whatever data source it may come from, either
Database, Web Services (APIs) or something else entirely. Those
things sit on the outside of the application. They’re used by the
Infrastructure layer, but they aren’t part of our onion. They’re
simply data providers.

The Infrastructure relies on the Domain Services and Domain
Model layer as they provide a contract for how the Infrastructure
must work. This is done through interfaces, and we’ll cover that in

The Clean Architecture 111

the chapters on Interfaces and Dependency Injection and Database
Independence.

The Infrastructure also depends upon the Application Services
layer, as it is usually where the infrastructure is configured and
“hooked up” to the domain. It is usually where our configuration is
defined, and where our Dependency Injection Container or Service
Locator is setup to provide services. We’ll see this at work in our
Case Study at the end of the book.

External Libraries

External Libraries are great, and very important to our application
as we discussed above. These libraries sit in a layer on the outside
of our onion, and are used, much in a similar way that Infrastruc-
ture is, by the Application Services layer to provide meaning and
implementation to some portion of the application. For instance,
we might use a Google Maps API library to provide geocoding for
addresses entered by a user.

We’ll talk about these in much detail in External Agency Indepen-
dence.

Tests

Finally, our tests sit outside of the application in an outer layer of
the onion. They, in various incarnations, depend on various layers
of the onion in order to test them. This is not a book about testing,
but just know that if your application ever relies on the existence of
tests to properly function, you’ve done something horribly wrong.

Framework Independence

Frameworks like Laravel, Symfony, Zend Framework, et al provide
great value to the modern day PHP developer. Frameworks tackle
common problems, like authentication, database interaction, API
usage, MVC, routing, etc., by providing proven solutions so that
you, the developer, can get down to brass tax and start actually
building the software you set out to build.

Using a framework can also go a long way to help teach and enforce
good principles to inexperienced developers. You can really learn a
lot by looking at and using a good PHP framework’s code base.
Often, these frameworks even force you into these design patterns
or principles, otherwise the framework simply won’t work.

Finally, frameworks can often speed up development time and allow
the developer to ship the product faster. It makes sense: with less
overhead of having to implement those common problems that
frameworks handle for you, you have more time to develop your
actual product. This, of course, is ignoring the ramp up periodwhere
you actually have to learn the framework, but eventually, this speed
up can be realized.

The Problem with Frameworks

With all the benefits provided by these frameworks, it is often very
easy to ignore the one giant negative about them. The negative that
exists no matter what framework you use and no matter how good
that framework is: coupling.

Having your application tightly coupled to a particular framework
makes it very hard to leave that framework. You will, eventually,

112

Framework Independence 113

want to leave your beloved framework. A new framework might
come out that makes development much easier and much quicker.
Or a framework like Phalcon might come out that makes your code
run faster. Or your framework might even disappear, either being
abandoned by its developers, or reach end of life after a new version
is released.

My coworkers and I once had a large applicationwritten using Zend
Framework 1 that was very successful. When ZF1 reached end of
life, and Zend Framework 2 was released, we were very excited to
begin investigating upgrading. That excitement faded very quickly
when we realized that ZF2 was such a backwards compatibility
break that we were going to need to rewrite our application from
scratch.

That’s costly.

Frameworks can be a blessing, and frameworks can be a curse if not
used properly. If we had paid attention to writing our application
better, in a way that did not rely so heavily and fully upon our
framework, our transition to Zend Framework 2 would have been
much quicker, cheaper, and a lot less stressful.

Framework Independence

The phrase “framework independence” can be quite jarring at first
to the framework developer. We’re not talking about the type of
independence sought by early colonists in North America. Instead,
we’re talking about the ability to switch at will, easily, between one
framework or another, or to using no framework at all. In a software
application, the ability to leave a framework with minimal effort is
a very powerful position to be in.

When writing medium to large applications, it’s important to know
that the pieces of the application that are implemented using your
framework aren’t your application, or at least they shouldn’t be.

Framework Independence 114

Any collection of controllers, forms, helpers, database abstraction,
etc., is not your business application. They exist simply as a means
to hydrate and display data to your users.

The domain model and domain services layers are your application.
This collection of services, repositories, factories and entities are
your application. The rest, the stuff the framework provides, is just
a gateway or GUI sitting on top of your real application.

If your project is an inventory management system, the code that
represents the inventory, the locations, and the means by which
they relate to one another, is your application. This code should
continue to function correctly if youwere to remove the framework.

In order to gain such independence from a framework, there are
several thingswemust rememberwhen developing our applications
and using these frameworks.

Abstract the Usage of the Framework

It is very important, as much as possible, to abstract the usage of
the framework itself. Every line of code you write that directly uses
a component of any framework is code you will have to rewrite if
you ever try to switch frameworks.

We use several tactics to abstract the usage of a framework:

• Use Interfaces Liberally We previously discussed how we
can use interfaces to define base functionality we require,
type-hint to those interfaces, and then pass in concrete im-
plementations of those interfaces using dependency injection
(or some other method of inversion of control).

• Use the Adapter PatternWe also discussed the usage of the
Adapter design pattern to wrap the functionality of one class
and make it conform to the specification of another, such as
an interface.

Framework Independence 115

• Follow the principles of clean code and SOLID Writing
clean code, and following the principles of SOLID, allow
us to have nicely organized and grouped code, and when
implemented correctly, code that doesn’t depend strongly on
the framework to function.

Combining these first two tactics allows us to create a set of
interfaces that define the functionality we need to use, and write
classes that implement these interfaces, and simply wrap frame-
work classes and map to their functionality to meet those interface
requirements.

Additionally, making sure that our code is single-purposed, clean
and short, and independent of other parts, will allow us to easily
refactor away the framework usage later.

Let’s see how this works in different parts of a framework we might
use.

Routes and Controllers

Many of us rely heavily on a framework’s router and controller
mechanisms, as the vast majority of PHP frameworks are MVC-
oriented.

How do you go about abstracting the usage of routes and controllers
so that you don’t tightly couple yourself to them? This is the hardest
part of an application to implement in the Clean Architecture.
Routes and controllers are the entry point of your application. It
is the basis by which all other work in the application is triggered.

It is pretty hard to decouple yourself completely from the frame-
work, unless you actually stop using it. Just think about it: your first
step after defining some route is to define some controller logic. This
usually involves extending from some base or abstract controller:

Framework Independence 116

class CustomersController extends BaseController { }

How do we decouple this from the framework? We’re immediately
extending from the framework, meaning that every piece of code
we write in this class from here on out is going to be coupled to our
controller. It is not just the extension of BaseController, either; it
is all the other mechanisms that this class provides us that our code
begins to rely on.

Using Adapters to Wrap Your Controller

One approach you can take is to write controllers completely
removed from your application. These essentially become very
similar to services:

namespace MyApp\Controller;

class Customers {

public function index() {

return [

'users' => $this->customerRepository->getAll()

];

}

}

With an adapter that looks something like:

Framework Independence 117

class CustomersController extends AbstractActionControl\

ler {

protected $controller;

public function __construct(Customers $controller) {

$this->controller = $controller;

}

public function indexAction() {

return $this->controller->index();

}

}

This seems entirely like overkill. All we’re doing is simply wrapping
one class in another just to call a method and pass it through. It’s a
bunch of busy work just to claim we’re highly decoupled?

If you’re using a lighter framework, like Silex²³, this might be a
little easier as controllers are a developer concept, not a framework
concept proper. Those controllers only become as coupled as you
make them.

Keep Your Controllers Small

Our best bet when dealing with controllers is to make sure we
actually minimize the controller code. We want to follow very
closely the Single Responsibility Principle we discussed previously.
Each controller, and each action in the controller, should have as
little code in it as possible.

Controllers should be thought of as response factories. They are
responsible for building a response based on the input (the HTTP
request). All logic should be passed off to either Domain Services
or Application Services for processing, and the data returned from
them loaded into a response and returned.

²³http://silex.sensiolabs.org/

http://silex.sensiolabs.org/
http://silex.sensiolabs.org/

Framework Independence 118

Ruby on Rails was big on the mantra of “fat model, skinny con-
troller,” and that is at least partially sound. Having a skinny con-
troller is very important. Having a fat model? Well, that depends
on what “fat” and “model” mean to you. We’ll discuss this in depth
in Database Independence. Having a skinny controller means that a
controller doesn’t really do much. Let’s take this controller action,
for example:

class CustomersController extends AbstractActionControl\

ler {

public function indexAction() {

return [

'users' => $this->customerRepository->getAll()

];

}

}

This is a simple GET request to an index action (maybe /customers)
that simply lists all customers. The controller uses the dependency
injected CustomerRepository (not shown) and its getAll()method
to retrieve all the customers.

Obviously we’re going to have more complex actions than index-

Action(), but the point is that we want to pass all of the logic and
processing to our Domain Services layer, and keep the controllers
as small, tight, and single purposed as possible.

Views

Your view layer should be primarily composed of HTML, JavaScript
and CSS. There should be no business logic contained within the
views; only display logic. These views should bemostly transferable
when switching frameworks. The only questionable part is the
means by which data is presented to the view from the controller,
which will probably vary by framework.

Framework Independence 119

The big thing to watch out for is view services, view helpers, and/or
view plugins, which many frameworks provide. These components
help generate common or recurring HTML, such as links or pagi-
nation, or even forms (which we’ll talk about next). The method by
which these exist will likely vary wildly by framework, and could
cause quite a headache if they were very heavily relied on.

If you’re writing your own helpers, which many frameworks allow
you to do, make sure that you’re writing the bulk of the code
without relying on the framework, so that you can easily move
this helper to a new framework. If possible, also consider writing
interfaces and/or an adapter that turns your helper into something
the framework expects.

Do as much as you can to make leaving the framework easy.

Another option would be to forgo your framework’s built-in view
layer and use a third party library, such as Plates²⁴. This will allow
you to keep your view layer intact when switching frameworks.

Forms

In my experience, forms have been one of the hardest things to
deal with in projects. Doing forms cleanly and independent from
the framework is near impossible. Again, we can write a bunch of
adapters to abstract the usage of the framework, but that will almost
certainly negate the time savings given by the framework.

The biggest rule is to make sure that no business logic whatsoever
exists within the form code. Remember: business logic belongs in
the Domain layer. Aside from validation rules and filtering, no logic
should be contained within the forms.

Outside of that: just use them. If the bulk of your work when
switching frameworks is porting the forms, you’re in pretty good
shape.

²⁴http://platesphp.com/

http://platesphp.com/
http://platesphp.com/

Framework Independence 120

Another solution to try would be to use some third party form
library, so that you’re not coupled to your framework’s form
classes. Something such as Aura.Input²⁵ from the Aura components
would suffice, and allow you to keep that code when switching
frameworks. Some form libraries are light enough that you might
even be able to write an adapter around them, but only do so if
you’ll be able to accomplish that quickly.

Framework Services

Most frameworks provide helpful services to make writing day to
day code much easier. These can include services that run HTTP
requests or even do full API calls, components that implement an
OAuth2 client to log in to those APIs, services that generate PDFs
or barcodes, send emails, retrieve emails, etc. While these services
provide a quick and fast way to get the job done by preventing you,
the developer, from writing extraneous code, they are also a great
place to run into coupling problems.

How do you run into coupling problems with these components?
Simply by using them.

Consider Laravel’s Mail facade:

Mail::send('emails.hello', $data, function($message) {

$message->to('you@yoursite.com', 'You')->subject('Hel\

lo, You!');

});

Laravelmakes it extremely simply to send emails, but theminutewe
drop this in a controller or service, we’re tightly coupling ourselves
to Laravel. Remember, our goal with controllers and services are
to have them as small, lightweight, and uncoupled as possible so
that we can mitigate the work needed to migrate that code over

²⁵https://github.com/auraphp/Aura.Input

https://github.com/auraphp/Aura.Input
https://github.com/auraphp/Aura.Input

Framework Independence 121

to another controller system, should we ever switch framework or
underlying controller/routing mechanism.

How do we solve this? Using the previously discussed adapter
design pattern, the correct way to handle these services are to define
an interface outlining the functionality that we need, andwriting an
adapter that wraps the framework code to implement that interface.
Finally, the adapter should be injected into whatever client object
needs it.

interface MailerInterface {

public function send($template, array $data, callable\

$callback);

}

Our adapter would then implement this interface:

class LaravelMailerAdapter implements MailerInterface {

protected $mailer;

public function __construct(Mailer $mailer) {

$this->mailer = $mailer;

}

public function send($template, array $data, callable\

$callback) {

$this->mailer->send($template, $data, $callback);

}

}

The adapter should then be injected into our controller and used,
instead of directly using the Mail facade:

Framework Independence 122

class MailController extends BaseController {

protected $mailer;

public function __construct(MailerInterface $mailer) {

$this->mailer = $mailer;

}

public function sendMail() {

$this->mailer->send('emails.hello', $data, function\

($message) {

$message->to('you@yoursite.com', 'You')->subject(\

'Hello, You!');

});

}

}

To make this work, we’ll register our interface with Laravel’s IoC
container so that when the controller is instantiated, it’ll get a
proper instance of MailerInterface:

App::bind('MailerInterface', function($app) {

return new LaravelMailerAdapter($app['mailer']);

});

Now the controller gets a concrete instance of LaravelMailer-

Adapter, which conforms to the controller’s dependency require-
ment of MailerInterface. If we ever decide to switch mailing
mechanisms, we simplywrite a new adapter and change the binding
of MailerInterface, and all our client code that previously got
injected with LaravelMailerAdapter now gets whatever this new
implementation is.

The popular Symfony YAML²⁶ component is another great example
of where a quick and easy adapter and interface allow you to

²⁶http://github.com/symfony/yaml

http://github.com/symfony/yaml
http://github.com/symfony/yaml

Framework Independence 123

be completely decoupled from the concrete implementation that
Symfony provides.

The component is extremely simple to use:

$data = Symfony\Component\Yaml\Yaml::parse($file);

That’s all it takes to turn a YAML file into a PHP array. But when
using this in our code, we’ll first want to create an interface to define
this functionality that we need:

interface YamlParserInterface {

public function parse($fileName);

}

We then implement this interface with an adapter:

class SymfonyYamlAdapter implements YamlParserInterface\

{

public function parse($fileName) {

return Yaml::parse($file);

}

}

Then we simply utilize dependency injection to provide an instance
of SymfonyYamlAdapter into any code that needs it:

Framework Independence 124

class YamlImporter {

protected $parser;

public function __constructor(YamlParserInterface $pa\

rser) {

$this->parser = $parser;

}

public function parseUserFile($fileName) {

$users = $this->parser->parse($fileName);

foreach ($users['user'] as $user) {

// ...

}

}

}

Now we’re harnessing the power of Symfony’s YAML parser,
without coupling with it. The point of doing this, again, is so that
if we ever need to switch to a different YAML parsing solution in
the future – for whatever reason – we can do so without changing
any of our client code. We would simply write another adapter, and
dependency inject that adapter in SymfonyYamlAdapter’s place.

Database Facilities

Most PHP frameworks come bundled with some sort of Database
Abstract Library (DBAL), and sometimes a Query Builder library
that makes it easier to build SQL queries, or maybe an Object
Relational Mapping (ORM) library, either conforming to the Active
Record or DataMapper patterns. Taking advantage of these libraries
can lead to easy, and rapid development of database-powered
applications.

As always, though, we want to watch out for coupling too tightly
to these database layers.

Framework Independence 125

This is such an important topic, that the entire next chapter,
Database Independence²⁷ is devoted to it.

This is a Lot of Work

Are there any instances in which it’s okay to simply couple yourself
to the framework? Of course. The principles outlined above only
apply, in varying degrees, to the size and complexity of your
application. If your application is so small in scope and function that
it wouldn’t take you very long at all to entirely can it and rewrite
it in a new framework, then by all means, go ahead and coupled to
the framework.

It does take a lot of extra work to write code this way, so it is up to
you to do a cost analysis for the project. If it is a small registration
application that simply collects attendee information and saves it
to the database, it’s going to be quicker to just completely rewrite
it later, rather than go through all of these steps.

When the application is large in scope, like a Customer Relationship
Management (CRM) system or an Enterprise Resource Planning
(ERP) system, it probably makes a lot of sense to think about the
future of the code right away. It probably makes a lot of sense to
write the code in a way that it survives the chosen framework.

²⁷

Database Independence
Often times when developing an application that uses a database
for storage, the database easily becomes the center and focal point
of the application. At first, this makes sense: we’re building an
application on top of the database. Its sole purpose is to display and
manipulate that data stored in the database. Why wouldn’t it be
central to the application?

An application where the database becomes the central focal point
suffers from a few problems:

1. The code is often littered with database interaction code,
often times raw SQL or at least direct references and instan-
tiation of classes that query the database. If the database, or
database abstraction code, is literally all over the code base,
it becomes nearly impossible to refactor that code without a
time consuming effort.

2. Testing this code without using the database because very
hard, if not impossible. Testing using databases is painful: you
have to setup a known state for each and every test case as the
code is modifying the contents of the database with each test.
This can become slow to run, and test suites, to be successful
and helpful, need to be fast.

So if the database shouldn’t be central to the application, what
should take it’s place at the core?

Domain Models

If you paid attention to our previous discussion about the Clean
Architecture, you should already know: the Domain Model is the

126

Database Independence 127

core of our application, and central to everything else around it.
Everything builds from it. So what is it exactly?

The domain model layer is a collection of classes, each represent-
ing a data object relevant to the system. These classes, calledModels
or Entities, are simple, plain old PHP objects.

By definition, the domain model layer, being the core of the
application, cannot be dependent upon any other layer or code base
(except the underlying language, such as PHP). This layer is wholly
independent of anything. This makes it completely uncoupled,
transferable, and quite easily testable.

A Sample Domain Model

A sample domain model for a customer might look something like
this:

class Customer {

protected $id;

protected $name;

protected $creditLimit;

protected $status;

public function getId() {

return $this->id;

}

public function setId($id) {

$this->id = $id;

return $this;

}

public function getName() {

return $this->name;

}

Database Independence 128

public function setName($name) {

$this->name = $name;

return $this;

}

// ...

}

This DomainModel is a pure PHP object. It has no dependencies nor
coupling, other than to PHP itself. We can use this unhindered in
any of our code bases, easily transfer it to other code bases, extend
it with other libraries, and very easily test it.

We’ve achieved some great things following this Domain Model
implementation, but it’s only going to get us so far. Right now,
we just have a simple PHP object with some getters and setters.
We can’t do much with that. We’re going to have to expand on it,
otherwise it’s going to be terribly painful to use.

Domain Services

Domain Services, being the next layer in the onion of our architec-
ture, is meant to expand on this and provide meaning and value
to the Domain Model. Following the rule of our architecture, layers
can only have dependency upon layers deeper in the onion than it is.
This is why our Domain Model layer could have no dependencies,
and why our Domain Services layer can only depend upon, or
couple to, the Domain Model layer.

The Domain Services layer can consist of several things, but is
usually made up of:

• Repositories, classes that define how entities should be
retrieved and persisted back to some data storage, whether

Database Independence 129

it be a database, API, XML or some other data source. At the
Domain Services layer, these are simply interfaces that define
a contract that the actual storage mechanism must define.

• Factories, are simply classes that take care of the creation of
entities. They may contain complex logic about how entities
should be built in certain circumstances.

• Services, are classes that implement logic of things to do
with entities. These can be services such as invoicing or
cost buildup or classes that build and calculate relationships
between entities.

All of these are implemented only using the Domain Model and
other Domain Services classes. Again, they have no dependence or
coupling to anything else.

Repositories

Repositories are responsible for defining how Domain Model enti-
ties should be retrieved from and persisted to data storage. At the
Domain Services layer, these should simply be interfaces that some
other layer will define. Essentially, we’re providing a contract to
follow so that other layers of our application can remain uncoupled
to an implementation. This allows that implementation to be easily
changed, either by switching out what is used in production, or
maybe just switching out what storage is used during testing.

A sample repository might look like this:

Database Independence 130

interface CustomerRepositoryInterface {

public function getAll();

public function getBy($conditions);

public function getById($id);

public function save(Customer $customer);

}

As you can see, again, we have a simple PHP interface, uncou-
pled from anything but the Domain Model (through the usage of
Customer). This interface doesn’t do anything. It simply defines a
contract to be followed by an actual implementation. We’ll talk
about that implementation in Database Infrastructure / Persistence
in a little bit.

The Domain Services layer should contain a definition of all the
repositories an application will need to properly function, as well
as each repository containing all the methods that the application
will need to interact with the data.

Factories

Factories are responsible for creating objects. At first, that seems a
little silly as creating an object is as simple as:

$customer = new Customer();

It’s not always this easy, however. Sometimes, complex logic goes
into creating a customer. If you notice above when we defined the
Customer class, we gave it a credit limit and status attribute. It might
be that all customers get set to a certain state when they’re created
such that these two attributes are always set to a predefined value.
If we were to continue with simple instantiation:

Database Independence 131

$customer = new Customer();

$customer->setCreditLimit(0);

$customer->setStatus('pending');

Now let’s assume wemight have several different places in the code
wherewe create customers.We nowhave to repeat this code all over
the place. If these default rules ever change, we then have several
places we need to go change the code. If we miss some, now we
have bugs in the code.

Using a factory lets us consolidate that code and make it reusable:

class CustomerFactory {

public function create() {

$customer = new Customer();

$customer->setCreditLimit(0);

$customer->setStatus('pending');

return $customer;

}

}

Now, wherever we need to create a customer, we can simply use
our factory:

$customer = (new CustomerFactory())->create();

If our business logic ever changes, all we need to do is simply update
the factory, and each customer creation point will follow the new
rules.

The skillful developer might see an even easier solution to this
problem: just throw the defaults in the class or constructor:

Database Independence 132

class Customer {

protected $id;

protected $name;

protected $creditLimit = 0;

protected $status = 'pending';

}

This is true: that does look much simpler, and it’s completely due
to the simplicity of the example. However, let’s say we have an
account manager that needs to be assigned to every new customer,
and to pick them, we need to find the next available account man-
ager (whatever that might mean in the context of our application):

class CustomerFactory {

protected $managerRepository;

public function __construct(AccountManagerRepositoryI\

nterface $repo) {

$this->managerRepository = $repo;

}

public function create() {

$customer = new Customer();

$customer->setAccountManager(

$this->managerRepository->getNextAvailable()

);

}

}

As our business rules and domain logic become more complex,
using these factories start to make sense. The important thing to
remember is that these factories are completely decoupled from
the actual data storage. Their only dependence is upon the Domain
Model.

Database Independence 133

So how exactly does an instance of AccountManagerRepository-

Interface get into the CustomerFactory? And what exactly is the
implementation of that interface?We’ll cover that soon inDatabase
Infrastructure / Persistence.

Services

Services, simply put, are responsible for doing things. These are
usually processes, such as invoice runs or some kind of cost build
up analysis. Anything that involves business logic that is not either
creational (which belongs in a factory), or retrieving or persisting
data (which belongs in a repository). These services can depend on
repository interfaces and factories to do their work.

Let’s look at an example service for generating invoices based off
orders:

class BillingService {

protected $orderRepository;

protected $invoiceRepository;

protected $invoiceFactory;

public function __construct(

OrderRepositoryInterface $order,

InvoiceRepositoryInterface $invoice,

InvoiceFactory $factory

) {

$this->orderRepository = $order;

$this->invoiceRepository = $invoice;

$this->invoiceFactory = $factory;

}

public function generateInvoices(\DateTime $invoiceDa\

te) {

$orders = $this->ordersRepository

Database Independence 134

->getActiveBillingOrders($invoiceDate);

foreach ($orders as $order) {

$invoice = $this->invoiceFactory->create($order);

$this->invoiceRepository->save($invoice);

}

}

}

This service is pretty simple, because it leverages the power of the
OrderRepository given to it to retrieve orders, and the Invoice-

Factory to generate invoice objects. It then simply persists them to
the database using the InvoiceRepository. The BillingService

can now be used anywhere that invoices need to be generated for
whatever means of ordering the system needs implement. This is
abstracted away into the service, so that the code is not repeated all
over the place.

Further, this code does not depend on a specific data store whatso-
ever, instead, asking for an implementation of both OrderReposi-

toryInterface and InvoiceRepositoryInterface. If those depen-
dencies are satisfied with concrete implementations, the Service
works correctly finding orders to invoice and generating those
invoices.

This code is powerful, but dead simple. It’s coupled to nothing but
the rest of our Domain Model and Domain Services layer. It is 100%
decoupled from any specific database implementation.

Database Infrastructure / Persistence

So far we’ve discussed taking the database from the core of the
application, and replacing it with a robust Domain Model and Do-
main Services core that encompass the primary functionality of our
application. Now the heavy parts of our application are decoupled,

Database Independence 135

well-written, and quite testable. At some point, however, we have to
bring the database back into the picture. A data-centric application
without some sort of data storage implementation is going to be
a failure, regardless of how clean and testable the code base is. So
how do we get the database back in the picture?

Now that we’ve fleshed out our Domain Model and Domain Ser-
vices layers, we can start to build out our Persistence layer, which
is part of the infrastructure layer of our onion. The persistence
layer is responsible for retrieve and persisting data to our data
storage, whatever that may be. In our case, it’s probably going to
be a relational database system, such as MySQL or PostgreSQL. Or
maybe it might be a NoSQL variant or an API services layer that
provides our data.

For instance, if we were using a relational database and using the
Doctrine ORM library to provide persistence, we might implement
our CustomerRepositoryInterface like so:

class CustomerRepository implements CustomerRepositoryI\

nterface {

protected $entityManager;

protected $entityClass = 'MyVendor\Domain\Entity\Cust\

omer';

public function __construct(EntityManager $entityMana\

ger) {

$this->entityManager = $entityManager;

}

public function getAll() {

return $this->entityManager

->getRepository($this->entityClass)->getAll();

}

public function getById($id) {

Database Independence 136

return $this->entityManager->find(

$this->entityClass,

$id

);

}

}

This is a really simple implementation of a repository using Doc-
trine ORM. Of course, to use Doctrine, we also have various
mapping files and configurations we need to setup to get things
to work, but this is our basic repository. We’re also missing the
definition of a couple methods above, but have simply omitted them
for brevity. Were we actually trying to run this code, we’d get an
error that we didn’t implement all methods of the interface.

It implements our CustomerRepositoryInterface, such that any-
thing requesting an instance of this interfacewould be fully satisfied
by using this concrete class.

Of course, this functionality looks pretty generic and unspecific to
our CustomerRepository. We could easily break this out into an
abstract class so that we can prevent duplicate functionality being
littered about all of our repositories:

abstract class AbstractRepository {

protected $entityManager;

protected $entityClass = '';

public function __construct(EntityManager $entityMana\

ger) {

$this->entityManager = $entityManager;

if (empty($this->entityClass)) {

throw new \RuntimeException(

'entityClass not specified for ' . __CLASS__

);

Database Independence 137

}

}

public function getAll()

{

return $this->entityManager

->getRepository($this->entityClass)->getAll();

}

public function getById($id)

{

return $this->entityManager->find(

$this->entityClass,

$id

);

}

}

Our CustomerRepository then simply becomes:

class CustomerRepository extends AbstractRepository

implements CustomerRepositoryInterface {

protected $entityClass = 'MyVendor\Domain\Entity\Cust\

omer';

}

Now we only need to add customer-specific logic to this repository,
as needed.

Utilizing Persistence

The Persistence layer is meant to sit on one of the outer layers of
the onion. It is not central to the application. Again, our Domain

Database Independence 138

Model and Domain Services are. The Persistence layer simply pro-
vides meaning to that Domain Services layer by implementing the
repository interfaces that we setup. Nothing should be dependent
upon this Persistence layer. In fact, we should be able to swap out
Persistence layers with other implementations, and all of the code
that ends up using this layer (through using the interfaces) should
be none the wiser, and continue to function properly.

We’ll experiment with this concept once we start working on our
Case Study.

Using Dependency Injection to Fulfill Contracts

So we’ve defined plenty of interfaces in our Domain Services layer
and implemented them with concrete classes in our Persistence
layer. We’ve discussed that nothing can directly depend on this Per-
sistence layer, so just how exactly do we use it in our application?

We previously discussed Dependency Injection as a means of
preventing coupling, and that’s just what we’d use here. Any time
any class needs a concrete implementation of a repository, it should
declare a dependency to the interface, instead. For instance, when
we discussed our Factory that needed to find the next available
account manager, remember, we only asked for an interface:

class CustomerFactory {

protected $managerRepository;

public function __construct(AccountManagerRepositoryI\

nterface $repo) {

$this->managerRepository = $repo;

}

// ...

}

Database Independence 139

The CustomerFactory is deeper in the onion than that persistence
layer, so it can’t be dependent upon a concrete CustomerRepos-

itory, nor would we want it to be. Instead, it declares, via the
constructor, that it needs something that implements AccountMan-
agerRepositoryInterface. It doesn’t care what you give it, so long
as the what is passed in adheres to the interface. We call this
programming by contract.

So how exactly does a CustomerRepository get into the Cus-

tomerFactory?Whatever means is responsible for instantiating this
Factory would take care of passing in the correct implementation:

$customerFactory = new CustomerFactory(

new CustomerRepository($entityManager)

);

How this works is largely dependent upon your framework and how
it handles Dependency Injection Containers or Service Locators.
We’ll discuss this more when we talk about the framework, and
explore how it works in our Case Study. The important thing to note
here is that our code should only be dependent upon interfaces, not
concrete implementations of the Persistence layer.

Organizing the Code

We’ve discussed Entities, Services, Factories, Repository interfaces
and concrete Repositories. Where do we put all this stuff?

It makes sense to logically separate the layers of your application
to their own root fielders, even if the shared parent folder is
the same. We have essentially talked about two layers, Domain
and Persistence. So starting there might be a good idea, and then
grouping each component type under those two folders:

Database Independence 140

src/

Domain/

Entity/

Factory/

Repository/

Service/

Persistence/

Repository/

Following the PSR-4 autoloading standard²⁸, we’d also have similar
namespaces, for instance:

MyVendor\Project\Domain\Entity\Customer

I’ve taken this one step further in a series of applications that
actually share the same Domain (and ultimately, database). Domain
and Persistence have both been broken up into separate code repos-
itories, all loaded into several parent projects using Composer. It’s
the ultimate in separation of concerns: the code bases are literally
separate. Granted, that doesn’t mean they’re decoupled.

How you want to organize your code is up to you. My ultimate
recommendation is to keep the layers segregated out into at least
their own folders.

Wrapping it Up

The purpose for taking the database away from being the center of
our application is so that we are no longer dependent and coupled
to that database. This gives us the freedom to swap out database
flavors, or even add in a middle layer such as an API in between our
application and the database, without having to rewrite our entire

²⁸http://www.php-fig.org/psr/psr-4/

http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/

Database Independence 141

application. It also gives us the flexibility in switching out database
libraries, say going from Doctrine to Laravel’s Eloquent ORM.

We’ll next look at applying some similar principals to the de-
veloper’s framework of choice, and explore how we can limit
decoupling in Framework Independence.

External Agency Independence
With the arrival of Composer²⁹, the PHP scene suddenly exploded
with a myriad of packages, libraries, components, and tools that
could easily be dropped into any project, and even autoloaded
magically through the Composer autoloader. It is now easier than
it has ever been to load third party libraries into your source code
and solve challenges easily and quickly.

A simple glance at the instructions for many of these projects on
GitHub shows how painfully easy it is to get them installed and
integrated. Usually, installation instructions are followed by a quick
little snippet or two of example usage.

Not so fast.

Every time we pull in one of these third party libraries and use it
directly within our client code, we’re tightly coupling ourselves to
it.

How long is this code going to be around? Is it going to be actively
maintained?What if our needs outgrow what it provides? It’s likely
that at some point, we may need to abandon this library for another
solution. The more tightly coupled we are to this library, the harder
it’s going to be to switch to something else.

Using Interfaces, Adapters and Dependency
Injection

Of course, we’ve already explored the solution to this problemwhen
we discussed how to handle framework services. The solution was
pretty simple:

²⁹https://getcomposer.org/

142

https://getcomposer.org/
https://getcomposer.org/

External Agency Independence 143

1. Create an interface defining the functionality we need
2. Write an adapter that wraps the third party code, making it

conform to our interface
3. Require an implementation of that interface to be injected

into whatever client code needs it

Let’s look at another example of this.

The Geocoder PHP³⁰ library provides a great library for geocoding
services, itself with several adapters to use a variety of different
services to provide the geocoding. Let’s say our app simply needs
to be able to get the longitude + latitude for any given address.

We first define an interface for this need:

interface GeocoderInterface {

public function geocodeAddress($address);

}

This is fairly straight forward. We need this in a controller which
interacts with some mapping:

class AddressController {

protected $geocoder;

public function __construct(

GeocoderInterface $geocoder

) {

$this->geocoder = $geocoder;

}

public function geocode() {

return $this->geocoder->geocodeAddress(

³⁰https://github.com/geocoder-php/Geocoder

https://github.com/geocoder-php/Geocoder
https://github.com/geocoder-php/Geocoder

External Agency Independence 144

$this->params('address')

);

}

}

Now all we need to do to make this code work is provide some-
thing that implements GeocoderInterface, and inject that into the
controller when it is instantiated. Our adapter provides the needed
concrete implementation:

class GeocoderPhpAdapter {

protected $geocoder;

public function __construct(Geocoder $geocoder) {

$this->geocoder = $geocoder;

}

public function geocodeAddress($address) {

$results = $this->geocoder->geocode($address);

return [

'longitude' => $results['longitude'],

'latitude' => $results['latitude']

];

}

}

We’re also injecting the $geocoder into this adapter as wemaywant
to have different configurations for different circumstances:

External Agency Independence 145

$geocoder = new GeocoderPhpAdapter(

new Geocoder(

new GoogleMapsProvider(new CurlHttpAdapter())

)

);

That’s a lot of dependency injection!

Benefits

We want to make sure we have flexibility and freedom in our
applications. Specifically, we need the ability to switch out third
party libraries, whenever necessary, for whatever reason, easily and
quickly.

Not only does it safeguard us against a library going away or no
longer providing what we need, but it can make testing easier
through mocking, and also makes refactoring easier, as it encap-
sulates all functionality of the third party library into one place.

We’ll use this strategy extensively whenever we use third party
libraries throughout the Case Study.

A Case Study in Clean
Architecture

The topics covered in the first few sections of this book provided a
solid foundation for building quality applications in PHP. Let’s see
these practices at work by building a small application and applying
these principles as we go. When we’re done, we’ll switch services
and frameworks a few times to see how our choices have made it
easier to do so.

146

The Billing System

Our Case Study revolves around our client, SimpleTech, who wants
a simple system to keep track of their customer orders, and generate
invoices for those orders.

A simple UML diagram of these relationships would look like:

A Customer has multiple Orders, each of which has an Invoice.

If this application seems incredibly simple, it’s because it is. You
might be asking yourself whether it is worth learning a new archi-
tecture and carefully crafting the code for such a simple application
that would be quite easy to rewrite if needed.

That’s a good observation and leads to a good general rule: if
an application is so small, or so simple that it can be rewritten
quickly, then the value of a tool such as the Clean Architecture is
diminished. That’s not to say that it shouldn’t be done, especially
if you’ve become quite comfortable writing applications in this
manner; it might even be faster!

Let’s pretend that our small case study is part of a much larger sys-
tem that will grow over time to include procurement, manufactur-
ing modules, distribution, accounting, etc; a full blown Enterprise
Resource Planning (ERP) system for SimpleTech. Knowing this, it
very much makes sense to consider the Clean Architecture as a
foundation for such a large system.

147

The Billing System 148

Application Workflow

We’re going to fulfill the following requirements for SimpleTech:

1. Ability to add new Customers
2. Ability to create simple Orders for a Customer
3. Ability to run an Invoicing process that turns Orders into

Invoices when it’s time to bill the customer.

Again, this application will be pretty simple, but will allow us to
show off some of the things we’ve learned in terms of layers of
applications, design patterns, and architecture.

Prerequisites

Before we begin, you’ll have to make sure you have a machine with
PHP installed. If this comes as a shock, you may have purchased
the wrong book. For more information on setting up PHP, checkout
PHP The Right Way³¹ and their section on Getting Started.

You’ll also need to have some kind of database installed. We’ll use
sqlite³² for simplicity, but any relational database, such as MySQL,
PostgreSQL, or Oracle, should suffice. You could even setup this
simple project using a NoSQL variant, but we won’t cover that here.

Everything else we need will installed via Composer.

Setting up Composer

Our next step is to setup Composer³³ so that we can utilize its
autoloader for our unit tests. If you don’t already have it set up,

³¹http://www.phptherightway.com/
³²http://www.sqlite.org/
³³https://getcomposer.org/

http://www.phptherightway.com/
http://www.sqlite.org/
https://getcomposer.org/
http://www.phptherightway.com/
http://www.sqlite.org/
https://getcomposer.org/

The Billing System 149

I highly suggest you install it globally so that you can use it from
anywhere.

On a *nix based system, you can do so easily:

for a home directory install:

curl -sS https://getcomposer.org/installer | \

php -- --install-dir=bin --filename=composer

for a global system install:

curl -sS https://getcomposer.org/installer | \

sudo php -- --install-dir=/usr/local/bin --filename\

=composer

When done, assuming your paths are set up properly, you can
simply run composer to verify it is installed correctly:

composer

You’ll either get an error about command not found, or you’ll
get some output. You might need to double check that ∼/bin or
/usr/local/bin is in your $PATH variable. You can check this easily
by running:

echo $PATH

And looking for those directories in the output. If they’re not in
there, try adding them in your ∼/.bashrc, ∼/.zshrc, or similar
file:

export $PATH='/home/yourname/bin:$PATH'

Make sure you include :$PATH on the end, or you’ll overwrite
everything else stored in your $PATH variable!

Building Our Domain

As the domain is central to our application, it makes perfect sense
for us to start there. At the core, we have a Domain Model layer,
which is composed of models, and models only. We’re going to call
these models entities. Our entities are going to be plain PHP objects
that represent something in our application. These are: Customer,
Order, and Invoice.

Remember: the Domain Model layer can have no dependencies
whatsoever. It is completely uncoupled from everything but PHP
and itself.

Branching out from there, we’re going to have the Domain Services
layer, which builds on top of the Domain Model layer. This layer
can be fully dependent upon the Domain Model layer and itself,
but nothing else.

In addition to services, this layer also contains factories, responsible
for building objects, and repositories, although usually just inter-
faces that define a contract for another layer to implement.

Setting up the Project

The first thing we need is a directory structure:

150

Building Our Domain 151

mkdir -p cleanphp/src/Domain/Entity

In this directory, all of our Entities will live.

With Composer installed (see the previous chapter), we can con-
figure our composer.json file with a simple autoload section to
autoload our resources. This file should go in the root cleanphp/
directory:

{

"autoload": {

"psr-4": {

"CleanPhp\\Invoicer\\": ["src/"]

}

}

}

This configuration tells Composer that we want to use the PSR-4
autoloading standard to load the CleanPhp\Invoicer namespace,
and that the root directory for that namespace is located at src/.
This lets Composer’s autoloader find classes of that namespace
within the src/ directory.

Finally, run the dump-autoload command to instruct Composer to
build its autoload files (which are located at vendor/composer):

composer dump-autoload

If you take a peak, you should now see a vendor/composer directory
with our autoload configuration set up in autoload_psr4.php.

Now we’re ready to create the entities.

Building Our Domain 152

Creating the Entities

These entity classes are all going to use a unique identifier that
represents them. That $id attribute will require a getId() and
a setId() method. To keep from repeating ourselves, and as a
way to identify all entities, let’s go ahead and create an abstract
AbstractEntity that all of these entities can inherit from:

// src/Domain/Entity/AbstractEntity.php

namespace CleanPhp\Invoicer\Domain\Entity;

abstract class AbstractEntity {

protected $id;

public function getId() {

return $this->id;

}

public function setId($id) {

$this->id = $id;

return $this;

}

}

Now let’s define our Customer entity, which as a Name, Email
Address, and Invoice Delivery Method:

Building Our Domain 153

// src/Domain/Entity/Customer.php

namespace CleanPhp\Invoicer\Domain\Entity;

class Customer extends AbstractEntity {

protected $name;

protected $email;

public function getName() {

return $this->name;

}

public function setName($name) {

$this->name = $name;

return $this;

}

public function getEmail() {

return $this->emailAddress;

}

public function setEmail($email) {

$this->email = $email;

return $this;

}

}

Next, let’s define our Order entity, which has a Many to One rela-
tionship with Customer, as well as an Order Number, Description,
and Total Order Amount:

Building Our Domain 154

// src/Domain/Entity/Order.php

namespace CleanPhp\Invoicer\Domain\Entity;

class Order extends AbstractEntity {

protected $customer;

protected $orderNumber;

protected $description;

protected $total;

public function getCustomer() {

return $this->customer;

}

public function setCustomer($customer) {

$this->customer = $customer;

return $this;

}

public function getOrderNumber() {

return $this->orderNumber;

}

public function setOrderNumber($orderNumber) {

$this->orderNumber = $orderNumber;

return $this;

}

public function getDescription() {

return $this->description;

}

public function setDescription($description) {

$this->description = $description;

return $this;

Building Our Domain 155

}

public function getTotal() {

return $this->total;

}

public function setTotal($total) {

$this->total = $total;

return $this;

}

}

Finally, our Invoice entity, which has a Many to One relationship
with an Order, as well as an Invoice Date and Total Invoice Amount:

// src/Domain/Entity/Invoice.php

namespace CleanPhp\Invoicer\Domain\Entity;

class Invoice {

protected $order;

protected $invoiceDate;

protected $total;

public function getOrder() {

return $this->order;

}

public function setOrder(Order $order) {

$this->order = $order;

return $this;

}

public function getInvoiceDate() {

Building Our Domain 156

return $this->invoiceDate;

}

public function setInvoiceDate(\DateTime $invoiceDate\

) {

$this->invoiceDate = $invoiceDate;

return $this;

}

public function getTotal() {

return $this->total;

}

public function setTotal($total) {

$this->total = $total;

return $this;

}

}

These three classes complete our small Domain Model layer.

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 01-domain-models:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 01-domain-models

Building Our Domain 157

Testing Our Domain Models

I’m going to make an executive decision at this point and decide not
to write any tests for these models as they stand right now. Writing
tests for simple getter and setter methods is pretty tedious, and if
something is going to go wrong, it’s likely not going to happen here.

If you want to write these tests, go for it! You’ll likely be at least
somewhat better off for doing so.

We’ll start writing tests next whenwe start building out our domain
services for this application.

Domain Services

Remember that the Domain Services layer was next as we move
outward from the Domain Model layer within the Onion/Clean
Architecture. This layer will hold all the services and service
contracts that the application will use. As the only thing deeper
in the onion is the Domain Model layer, the Domain Services layer
can only depend on the Domain Model layer (as well as PHP itself).

Our domain services layer will comprise of: * Repository Inter-
faces These interfaces will define how the real repositories will

Building Our Domain 158

work. Since we can’t rely on any infrastructure at this point, we
can’t actually code any concrete repositories yet. * Factories These
factories will be responsible for creating domain objects based on
our business rules. * Services These services will be responsible for
implementing the rest of our business rules. They may rely on both
the repositories and the factories to complete their work.

Let’s get started!

Setting up Repositories

We’re going to need to retrieve and persist data from our database,
and we’ll do that by using repositories. Repositories live in the
infrastructure layer of our application, but we’ll define them in the
domain services layer. The infrastructure layer is meant to be highly
swappable, so we’ll want to define some contracts for that layer to
follow within our domain services layer.

Normally, we’d start by writing some tests that define the func-
tionality of these repositories, but since we’re just going to have
interfaces at this point, there would literally be nothing to test.

Generally, we’re going to want to be able to do the following
operations for Customers, Orders and Invoices:

• Get by ID
• Get All
• Persist (Save)
• Begin
• Commit

Since this is common functionality, let’s go ahead and create a base
RepositoryInterface to define this functionality:

Building Our Domain 159

// src/Domain/Repository/RepositoryInterface.php

namespace CleanPhp\Invoicer\Domain\Repository;

interface RepositoryInterface {

public function getById($id);

public function getAll();

public function persist($entity);

public function begin();

public function commit();

}

Now let’s create some interfaces that represent the actual entities,
that extend and inherit the functionality of RepositoryInterface.

Customers

// src/Domain/Repository/CustomerRepositoryInterface.php

namespace CleanPhp\Invoicer\Domain\Repository;

interface CustomerRepositoryInterface

extends RepositoryInterface {

}

Orders

Building Our Domain 160

// src/Domain/Repository/OrderRepositoryInterface.php

namespace CleanPhp\Invoicer\Domain\Repository;

interface OrderRepositoryInterface

extends RepositoryInterface {

}

Invoices

// src/Domain/Repository/InvoiceRepositoryInterface.php

namespace CleanPhp\Invoicer\Domain\Repository;

interface InvoiceRepositoryInterface

extends RepositoryInterface {

}

These repositories each represent an entity, and define a contract
that each concrete repository must follow. Additionally, we’ll use
these interfaces to type-hint dependency injection in each instance
where we need them, so that we can ensure our classes will get the
correct functionality they need.

As part of our invoicing process, we need to find all orders that have
not yet been invoiced. We can define this need by adding a method
to the OrderRepositoryInterface:

Building Our Domain 161

// src/Domain/Repository/OrderRepositoryInterface.php

namespace CleanPhp\Invoicer\Domain\Repository;

interface OrderRepositoryInterface

extends RepositoryInterface {

public function getUninvoicedOrders();

}

This getUninvoicedOrders() method can be used to get all the
orders when our invoicing service runs.

Invoice Factory

Invoices are created for Orders, and inherit some of their data, so
it makes sense that we would encapsulate the creation of these
Invoices into a factory service.

This simple factory should accept an Order object, and return an
Invoice object to the caller:

public function createFromOrder(Order $order);

Let’s start by wring a test that’s going to define this service.
We’ll use the awesome Peridot³⁴ testing framework that follows
a Behavior-Driven Development (BDD) approach to testing. We’ll
also use the assertion library Leo³⁵ made by the same group.

Let’s install the latest stable versions as a development dependency
via Composer:

³⁴http://peridot-php.github.io
³⁵http://peridot-php.github.io/leo

http://peridot-php.github.io
http://peridot-php.github.io/leo
http://peridot-php.github.io
http://peridot-php.github.io/leo

Building Our Domain 162

composer require --dev peridot-php/peridot peridot-php/\

leo

Once it’s installed, we can run it with the command:

./vendor/bin/peridot

If all goes well, you’ll see Peridot run it’s own tests. That’s great,
but we want to run our tests. But before we do that, we’ll have to
write them. Let’s start by creating a root level specs/ directory for
our test specs to live in.

Let’s write our first test:

// specs/domain/service/invoice-factory.spec.php

use CleanPhp\Invoicer\Domain\Entity\Invoice;

use CleanPhp\Invoicer\Domain\Entity\Order;

use CleanPhp\Invoicer\Domain\Factory\InvoiceFactory;

describe('InvoiceFactory', function () {

describe('->createFromOrder()', function () {

it('should return an order object', function () {

$order = new Order();

$factory = new InvoiceFactory();

$invoice = $factory->createFromOrder($order);

expect($invoice)->to->be->instanceof(

'CleanPhp\Invoicer\Domain\Entity\Invoice'

);

});

});

});

Building Our Domain 163

This simple test just makes sure that our InvoiceFactory is return-
ing an instance of an Invoice object.

If we run Peridot again, our test will be failing. So let’s go ahead
and write the basic InvoiceFactory class and make this test pass!

We’ll start with the basic structure of the InvoiceFactory:

// src/Domain/Factory/InvoiceFactory.php

namespace CleanPhp\Invoicer\Domain\Factory;

use CleanPhp\Invoicer\Domain\Entity\Invoice;

use CleanPhp\Invoicer\Domain\Entity\Order;

class InvoiceFactory {

public function createFromOrder(Order $order) {

return new Invoice();

}

}

This is the minimal work needed to get our Peridot tests to pass,
but our class obviously still isn’t work the way we want it to as
it’s just returning an empty Invoice object. Let’s add a few more
expectations to our test to define the behavior of this factory:

// specs/domain/factory/invoice-factory.spec.php

use CleanPhp\Invoicer\Domain\Entity\Invoice;

use CleanPhp\Invoicer\Domain\Entity\Order;

use CleanPhp\Invoicer\Domain\Factory\InvoiceFactory;

describe('InvoiceFactory', function () {

describe('->createFromOrder()', function () {

it('should return an order object', function () {

Building Our Domain 164

$order = new Order();

$factory = new InvoiceFactory();

$invoice = $factory->createFromOrder($order);

expect($invoice)->to->be->instanceof(

'CleanPhp\Invoicer\Domain\Entity\Invoice'

);

});

it('should set the total of the invoice', function \

() {

$order = new Order();

$order->setTotal(500);

$factory = new InvoiceFactory();

$invoice = $factory->createFromOrder($order);

expect($invoice->getTotal())->to->equal(500);

});

it('should associate the Order to the Invoice', fun\

ction () {

$order = new Order();

$factory = new InvoiceFactory();

$invoice = $factory->createFromOrder($order);

expect($invoice->getOrder())->to->equal($order);

});

it('should set the date of the Invoice', function (\

) {

$order = new Order();

$factory = new InvoiceFactory();

Building Our Domain 165

$invoice = $factory->createFromOrder($order);

expect($invoice->getInvoiceDate())

->to->loosely->equal(new \DateTime());

});

});

});

Not only do we want our InvoiceFactory to return an instance of
an Invoice object, but it should also have its $total property set
to the $total of the Order, as well as have the Order that it was
generated for assigned to it, and finally, today’s date should be set
as the $invoiceDate of the Invoice.

Nowwe have some pretty robust tests for what wewant this factory
to do! Let’s make these tests pass now by filling out the rest of the
createFromOrder() method:

public function createFromOrder(Order $order) {

$invoice = new Invoice();

$invoice->setOrder($order);

$invoice->setInvoiceDate(new \DateTime());

$invoice->setTotal($order->getTotal());

return $invoice;

}

And with that, our InvoiceFactory is now complete and its tests
passing.

Writing tests in this manner allows us to quickly define the behavior
of a class and flesh out how it will work and relate to other objects.
This falls into the realm of Behavior-Driven Development (BDD)³⁶,
which you can look into in more detail if it interests you. It goes

³⁶http://dannorth.net/introducing-bdd/

http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/

Building Our Domain 166

hand-in-hand quite well with Domain-Driven Development and
Test-Driven Development.

Peridot has a handy watcher plugin that allows for
continuously running the tests as you make changes.
We can install it by running:

composer require --dev peridot-php/peridot-watcher-plug\

in

After that, we’ll create a peridot.php file in the root
directory that looks like:

// peridot.php

use Evenement\EventEmitterInterface;

use Peridot\Plugin\Watcher\WatcherPlugin;

return function(EventEmitterInterface $emitter) {

$watcher = new WatcherPlugin($emitter);

$watcher->track(__DIR__ . '/src');

};

Now we can use the --watch flag to run the tests
continuously!

./vendor/bin/peridot specs/ --watch

Invoicing Service

The biggest piece of our domain logic in this application is the
invoicing process. We’re going to go collect all un-invoiced orders,
once amonth, and generate invoices for them. It’s our goal to do this
independently of any framework, library, or other external service.

Building Our Domain 167

This way, we can ensure that the core application is completely
uncoupled from anything but itself, and it can easily be dropped
into any framework and perform it’s function.

This service is going to use the OrderRepositoryInterface to
collect the orders to invoice, and then use our InvoiceFactory to
create the invoices for those orders. Let’s again start by writing
some tests to define these behaviors:

// specs/domain/service/invoice-factory.spec.php

describe('InvoicingService', function () {

describe('->generateInvoices()', function () {

it('should query the repository for uninvoiced Orde\

rs');

it('should return an Invoice for each uninvoiced Or\

der');

});

});

Things are a little trickier this time. Since we haven’t written any
concrete repositories yet, we can’t use one to perform this test.
Instead of writing and using a concrete repository, we’re going to
mock one using the Prophecy library.

Luckily, Peridot also comes with a plugin to make integrating those
a piece of cake. Let’s install it:

composer require --dev peridot-php/peridot-prophecy-plu\

gin

And then add it to our peridot.php file:

Building Our Domain 168

// peridot.php

use Evenement\EventEmitterInterface;

use Peridot\Plugin\Prophecy\ProphecyPlugin;

use Peridot\Plugin\Watcher\WatcherPlugin;

return function(EventEmitterInterface $emitter) {

$watcher = new WatcherPlugin($emitter);

$watcher->track(__DIR__ . '/src');

new ProphecyPlugin($emitter);

};

Now, we can write a beforeEach() block that will get executed
before each test to build us a mocked OrderRepositoryInterface:

// specs/domain/service/invoice-factory.spec.php

describe('InvoicingService', function () {

describe('->generateInvoices()', function () {

beforeEach(function () {

$this->repository = $this->getProphet()->prophesi\

ze(

'CleanPhp\Invoicer\Domain\Repository\OrderRepos\

itoryInterface'

);

});

// ...

});

});

When we need it, $this->repository will hold an instance of a
mocked repository. Now we can finish our first test:

Building Our Domain 169

it('should query the repository for uninvoiced Orders',\

function () {

$this->repository->getUninvoicedOrders()->shouldBeCal\

led();

$service = new InvoicingService($this->repository->re\

veal());

$service->generateInvoices();

});

We’re testing here that when we call the generateInvoices()

method, we should expect that the InvoicingService will make
a call to the getUninvoicedOrders() method of
OrderRepositoryInterface.

We’ll also want to add an afterEach() block to tell Prophecy to
check the assertions it makes, like shouldBeCalled() as otherwise
it won’t know exactly when it’s safe to check that assertion. We
can do it in an afterEach() just to make it easy on us, but really
we could add it anywhere within the test:

afterEach(function () {

$this->getProphet()->checkPrediections();

});

Of course, without any code, these tests should be failing, so let’s
go fix that:

Building Our Domain 170

// src/Domain/Service/InvoicingService.php

namespace CleanPhp\Invoicer\Domain\Service;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

class InvoicingService {

protected $orderRepository;

public function __construct(OrderRepositoryInterface \

$orderRepository) {

$this->orderRepository = $orderRepository;

}

public function generateInvoices() {

$orders = $this->orderRepository->getUninvoicedOrde\

rs();

}

}

We’re simply doing exactly what our test expected: injecting an
instance of
OrderRepositoryInterface and calling its getUninvoicedOrders()
method when calling the generateUninvoicedOrders() method.

Our tests should now pass, so let’s dig deeper into the functionality
of this service:

Building Our Domain 171

it('should return an Invoice for each uninvoiced Order'\

, function () {

$orders = [(new Order())->setTotal(400)];

$invoices = [(new Invoice())->setTotal(400)];

$this->repository->getUninvoicedOrders()->willReturn(\

$orders);

$this->factory->createFromOrder($orders[0])->willRetu\

rn($invoices[0]);

$service = new InvoicingService(

$this->repository->reveal(),

$this->factory->reveal()

);

$results = $service->generateInvoices();

expect($results)->to->be->a('array');

expect($results)->to->have->length(count($orders));

});

We’ve now brought the InvoiceFactory into the picture, and are
testing that its createFromOrder method is called with the results
of getUninvoicedOrders, meaning that each Order returned should
be run through the InvoiceFactory to generate an Invoice.

We’re using the willReturn() method of Prophecy to instruct
the Mock to return $orders whenever getUninvoicedOrders() is
called, and that $invoices[0] should be returned when create-

FromOrder() is called with $orders[0] as an argument.

Finally, we’re doing some expectations after instantiating our object
and calling the
generateInvoices() method to ensure that it is returning the
proper data.

Since we’re now utilizing the InvoiceFactory, which we’ll need to
mock as well, as we want to be able to test the InvoicingService

Building Our Domain 172

in isolation without having to test the InvoiceFactory as well, so
let’s add that mock to the beforeEach():

beforeEach(function () {

$this->repository = $this->getProphet()->prophesize(

'CleanPhp\Invoicer\Domain\Repository\OrderRepositor\

yInterface'

);

$this->factory = $this->getProphet()

->prophesize('CleanPhp\Invoicer\Domain\Factory\Invo\

iceFactory');

});

Andwe’ll have to update the other test to inject it as well, otherwise
it will throw errors:

it('should query the repository for uninvoiced Orders',\

function () {

$this->repository->getUninvoicedOrders()->shouldBeCal\

led();

$service = new InvoicingService(

$this->repository->reveal(),

$this->factory->reveal()

);

$service->generateInvoices();

});

Our tests are, of course, failing as the code isn’t setup to meet the
expectations of the tests, so let’s go finalize the InvoicingService:

Building Our Domain 173

// src/Domain/Service/InvoicingService.php

namespace CleanPhp\Invoicer\Domain\Service;

use CleanPhp\Invoicer\Domain\Factory\InvoiceFactory;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

class InvoicingService{

protected $orderRepository;

protected $invoiceFactory;

public function __construct(

OrderRepositoryInterface $orderRepository,

InvoiceFactory $invoiceFactory

) {

$this->orderRepository = $orderRepository;

$this->invoiceFactory = $invoiceFactory;

}

public function generateInvoices() {

$orders = $this->orderRepository->getUninvoicedOrde\

rs();

$invoices = [];

foreach ($orders as $order) {

$invoices[] = $this->invoiceFactory->createFromOr\

der($order);

}

return $invoices;

}

}

Building Our Domain 174

We’re now accepting an instance of InvoiceFactory in the con-
structor, and using it while looping the results of getUninvoice-

dOrders() to create an Invoice for each Order. When we’re done,
we return this collection. Exactly as our behavior was defined in
the test.

Our tests are passing, and our service is now complete.

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 02-domain-services:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 02-domain-services

Wrapping it Up

This concludes the domain of our application. The domain model
and domain services layers of our application are central to every-
thing else. They contain our business logic, which is the portion of
our application that will not change depending on which libraries
or frameworks we decide to use, or how we choose to persist our
database.

Everything that exists outside of these two layers will utilize them
to complete the goals of the application.

We’re now ready to start building out the front-end portion of the
application!

Zend Framework 2 Setup

We’re going to start building our project using Zend Framework 2.
ZF2 is the second iteration of Zend Framework, and is a modular,
event-based framework with an extensive set of libraries. It is,
at least out of the box using the sample application, an MVC
framework with support for various database systems.

While ZF2 isn’t my first choice in frameworks, it might be one
someone lands upon when first looking for a framework, especially
due to the incorrect assumption that it might actually be endorsed
by or affiliated with PHP itself. This misconception likely stems
from the fact that the current runtime for PHP is called the Zend
Engine, and the two people who started it, Andi Gutmans and
Zeev Suraski (Zeev + Andi = Zend), later started a company, Zend
Technologies, which is responsible for Zend Framework.

Regardless, Zend Framework is not directly affiliated with nor
endorsed by PHP.

Installing with Composer

We installed Composer in the previous chapter to setup our au-
toloader. Now we’re going to use it to pull down and configure the
ZF Skeleton Application. Since you can’t clone a git repo into an
existing, non-empty directory, we’re going to have to get silly for a
minute in order to get this to work.

We’ll create our ZF Skeleton Application in a separate directory
from our previous cleanphp/ directory:

175

Zend Framework 2 Setup 176

cd /path/to/your/preferred/www

composer create-project \

--repository-url="http://packages.zendframework.com" \

-sdev zendframework/skeleton-application \

cleanphp-skeleton

This commandwill ask you if youwant to “remove the existing VCS
history.” When it does, enter “Y” to get rid of the .git directory.

You should now have a working copy of the ZF2 Skeleton applica-
tion. Head to the public/ directory and fire up PHP’s built-in web
server:

cd cleanphp-skeleton

php -S localhost:1337 -t public

Head to http://localhost:1337/ in your web browser, and you should
see the results!

Combining the Code Bases

Now we have two separate projects, so we’ll want to move over the
ZF2 specific code into our cleanphp/ directory. Something like this
from the parent directory of both cleanphp* directories:

cp -R cleanphp-skeleton/config \

cleanphp-skeleton/data \

cleanphp-skeleton/public \

cleanphp-skeleton/module \

cleanphp-skeleton/init_autoloader.php \

cleanphp/

We’ll also want to make sure that Zend Framework is installed via
Composer in this project:

Zend Framework 2 Setup 177

composer require zendframework/zendframework

Now we can remove the cleanphp-skeleton/ directory.

rm -rf cleanphp-skeleton/

That was uncomfortable and awkward, so let’s get going with ZF2!

Cleaning up the Skeleton

Now it’s time to bend the ZF2 skeleton to our will. We’re just going
to do some cosmetic stuff real quick to get the ZF2 branding out of
the way.

First, let’s replace the module/Application/view/layout/layout.phtml
file with:

<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>CleanPhp</title>

<meta name="viewport" content="width=device-width, in\

itial-scale=1.0">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<link href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.1\

/css/bootstrap.css"

media="screen" rel="stylesheet" type="text/css">

<link href="/css/application.css" media="screen"

rel="stylesheet" type="text/css">

</head>

<body>

<nav class="navbar navbar-default navbar-fixed-top" rol\

e="navigation">

Zend Framework 2 Setup 178

<div class="container">

<div class="navbar-header">

CleanPhp

</div>

<div class="collapse navbar-collapse">

<ul class="nav navbar-nav">

Customers

Orders

Invoices

</div>

</div>

</nav>

<div class="container">

<?= $this->content; ?>

<hr>

<footer>

<p>I'm the footer.</p>

</footer>

</div>

</body>

</html>

Here, we’re just ditching a lot of the ZF2 view helpers and layout
and opting to use a CDN supplied version of Bootstrap. We can
go ahead and entirely delete the public/css, public/fonts, pub-
lic/img, and public/js folders.

We defined some links to some future pages in the header. Let’s go

Zend Framework 2 Setup 179

ahead and setup the routes for those in Zend Framework:

// module/Application/config/module.config.php

return [

// ...

'router' => [

'routes' => [

'home' => [

'type' => 'Zend\Mvc\Router\Http\Literal',

'options' => [

'route' => '/',

'defaults' => [

'controller' => 'Application\Controller\Ind\

ex',

'action' => 'index',

],

],

],

'customers' => [

'type' => 'Segment',

'options' => [

'route' => '/customers',

'defaults' => [

'controller' => 'Application\Controller\Cus\

tomers',

'action' => 'index',

],

],

],

'orders' => [

'type' => 'Segment',

'options' => [

'route' => '/orders',

'defaults' => [

Zend Framework 2 Setup 180

'controller' => 'Application\Controller\Ord\

ers',

'action' => 'index',

],

],

],

'invoices' => [

'type' => 'Segment',

'options' => [

'route' => '/invoices',

'defaults' => [

'controller' => 'Application\Controller\Inv\

oices',

'action' => 'index',

],

],

],

],

],

// ...

];

Now let’s replace the module/Application/views/application/in-
dex/index.phtml file with something generic, and not a ZF2 adver-
tisement:

Zend Framework 2 Setup 181

<div class="jumbotron">

<h1>Welcome to CleanPhp Invoicer!</h1>

<p>

This is the case study project for The Clean Archit\

ecture in PHP,

a book about writing excellent PHP code.

</p>

<p>

<a href="https://leanpub.com/cleanphp" class="btn b\

tn-primary">

Check out the Book

</p>

</div>

Now it’s an advertisement for this book. How nice! Things look a
little off, though, so let’s add our public/css/application.css file
to fix that:

body {padding-top: 70px; padding-bottom: 40px}

.navbar-brand {font-weight: bold}

div.page-header {margin-top: 0; padding-top: 0}

div.page-header h2 {margin-top: 0; padding-top: 0}

Now we’re ready to start configuring our database with Zend
Framework.

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 03-base-zf2:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 03-base-zf2

Zend Framework 2 Setup 182

Setting up Our Database

To setup our database and use it within Zend Framework, we’re
going to follow the ZF2 Getting Started³⁷ guide to ensure we do
things the Zend way. I’m going to be brisk on my explanations of
what we’re doing, so refer to this guide for more details if you are
interested.

Let’s get started by creating our database. I’m going to use a sqlite3
database in these examples, as it’s painfully easy to setup (at least
on a Unix/Linux environment), but if you’re a fan of MySQL or
PostgreSQL and want to use one of them, that’s perfect.

If you’re using Debian/Ubuntu, installing sqlite is as
simple as:

sudo apt-get install sqlite3 php5-sqlite

On Mac OS X, you can use Homebrew³⁸ to install
sqlite.

Let’s quickly create our database, which we’ll create at data/-

database.db, via command line:

sqlite3 data/database.db

We’re now in the command line sqlite3 application. We can easily
drop SQL queries in here and run them. Let’s create our tables:

³⁷http://framework.zend.com/manual/current/en/user-guide/database-and-
models.html

³⁸http://brew.sh/

http://framework.zend.com/manual/current/en/user-guide/database-and-models.html
http://brew.sh/
http://framework.zend.com/manual/current/en/user-guide/database-and-models.html
http://framework.zend.com/manual/current/en/user-guide/database-and-models.html
http://brew.sh/

Zend Framework 2 Setup 183

CREATE TABLE customers (

id integer PRIMARY KEY,

name varchar(100) NOT NULL,

email varchar(100) NOT NULL

);

CREATE TABLE orders (

id integer PRIMARY KEY,

customer_id int REFERENCES customers(id) NOT NULL,

order_number varchar(20) NOT NULL,

description text NOT NULL,

total float NOT NULL

);

CREATE TABLE invoices (

id integer PRIMARY KEY,

order_id int REFERENCES orders(id) NOT NULL,

invoice_date date NOT NULL,

total float NOT NULL

);

You can run the .tables command to see the newly created tables,
or .schema to see the schema definition.

Now let’s populate our customers table with a couple rows for test
data:

INSERT INTO customers(name, email) VALUES('Acme Corp', \

'ap@acme.com');

INSERT INTO customers(name, email) VALUES('ABC Company'\

, 'invoices@abc.com');

Connecting to the Database

We want our ZF2 application to be able to connect to this database.
Zend Framework has a set of configuration files located within

Zend Framework 2 Setup 184

config/autoload that get loaded automatically when the applica-
tion is run. If the file ends with local.php, it is specific to that
local environment. If the file ends with global.php, it is application
specific, instead of environment specific.

Let’s create a db.local.php file in config/autoload to hold our
database configuration:

return [

'db' => [

'driver' => 'Pdo_Sqlite',

'database' => __DIR__ . '/../../data/database.db',

],

];

This tells ZF2 that for our database, we want to use the Pdo_Sqlite
driver, and that our database file is located at data/database.db,
after doing some back tracking from the current file’s directory to
get there.

Any *.local.php file is not supposed to be commit-
ted to source control. Instead, you should commit a
*.local.php.dist explaining how the configuration
file should be set up. This keeps secrets, such as
database passwords, from being committed to source
control and potentially leaked or exposed.

Since we don’t have any secrets here, and in the
interest of committing a workable app, I’m going to
put this file in source control anyway.

We’ve now done everything we need to do to tell ZF2 how to talk
to our database. Now we just have to write some code to do it.

Zend Framework 2 Setup 185

Table Data Gateway Pattern

Zend Framework 2 uses the Table Data Gateway Pattern, which
we very briefly mentioned in Design Patterns, A Primer. In the
Table Data Gateway Pattern, a single object acts as a gateway to
a database table, handling the retrieving and persisting of all rows
for that table. ³⁹ This pattern is described in great detail in Martin
Fowler’s Patterns of Enterprise Application Architecture⁴⁰.

Essentially, we’re going to have one object, a Data Table, which
represents all operations on one of our Entity classes. We’re going
to go ahead and make these classes implement our Repository
Interfaces, so that they can fulfill the needed contract in our code.

We’ll place all these files within the src/Persistence/Zend di-
rectory as our Zend Persistence layer. Let’s start with an Ab-

stractDataTable class nested under the DataTable/ directory that
will define our generic database operations that the rest of our
DataTable classes can inherit from:

// src/Persistence/Zend/DataTable/AbstractDataTable.php

namespace CleanPhp\Invoicer\Persistence\Zend\DataTable;

use CleanPhp\Invoicer\Domain\Entity\AbstractEntity;

use CleanPhp\Invoicer\Domain\Repository\RepositoryInter\

face;

use Zend\Db\TableGateway\TableGateway;

use Zend\Stdlib\Hydrator\HydratorInterface;

abstract class AbstractDataTable implements RepositoryI\

nterface {

protected $gateway;

protected $hydrator;

³⁹http://martinfowler.com/eaaCatalog/tableDataGateway.html
⁴⁰http://martinfowler.com/books/eaa.html

http://martinfowler.com/books/eaa.html
http://martinfowler.com/eaaCatalog/tableDataGateway.html
http://martinfowler.com/books/eaa.html

Zend Framework 2 Setup 186

public function __construct(

TableGateway $gateway,

HydratorInterface $hydrator

) {

$this->gateway = $gateway;

$this->hydrator = $hydrator;

}

public function getById($id) {

$result = $this->gateway

->select(['id' => intval($id)])

->current();

return $result ? $result : false;

}

public function getAll() {

$resultSet = $this->gateway->select();

return $resultSet;

}

public function persist(AbstractEntity $entity) {

$data = $this->hydrator->extract($entity);

if ($this->hasIdentity($entity)) {

$this->gateway->update($data, ['id' => $entity->g\

etId()]);

} else {

$this->gateway->insert($data);

$entity->setId($this->gateway->getLastInsertValue\

());

}

return $this;

Zend Framework 2 Setup 187

}

public function begin() {

$this->gateway->getAdapter()

->getDriver()->getConnection()->beginTransaction(\

);

return $this;

}

public function commit() {

$this->gateway->getAdapter()

->getDriver()->getConnection()->commit();

return $this;

}

protected function hasIdentity(AbstractEntity $entity\

) {

return !empty($entity->getId());

}

}

We’re defining our basic database operations - the ones required by
our RepositoryInterface that all other repositories inherit from.
These methods are mostly just wrappers around Zend’s TableGate-
way (that we’ll take a look at in just a minute).

The only interesting piece we have here is the hasIdentity()

method, which just (loosely) determines if our entity had already
been persisted, so that we know whether we’re doing an insert()

or update() operation. We’re relying on the presence of an ID here,
which might not always work. It’s good enough for now.

TableGateway

The first thing that our AbstractDataTable requires is an instance
of TableGateway. The TableGateway is Zend’s workhorse that does

Zend Framework 2 Setup 188

all the database heavy lifting. As you can see by looking at Ab-
stractDataTable, all of our operations live off one of it’s methods.

We’re essentially going to use Zend’s concrete implementation, just
configured to work with our own tables. We’ll define those when
we worry about actually instantiating a DataTable.

Hydrators

The second thing that wants to be injected into the Abstract-

DataTable is an instance of Zend’s HydratorInterface. A hydrator
is responsible for hydrating an object, meaning, filling out it’s
attributes with values. In our case, we’re going from an array of
data to a hydrated entity (think posted form data).

Zend’s hydrators are also responsible for data extraction, which
is the opposite of hydrating: we take data from a hydrated object
and store it in an array representation, which is necessary for
Zend’s database update operations. You can see how it’s used in
the persist() method above.

For the most part, we’ll use a hydrator provided by Zend called the
ClassMethods hydrator. This hydrator scans the object for set and
get methods, and uses them to determine how to hydrate or extract
that object.

For instance, if an object has a setAmount() method, the hydrator
will look for an amount key in the array and, if found, pass the value
at that key to the setAmount()method to hydrate that information
to the object.

Likewise, if an object has a getAmount()method, the hydrator calls
it to get the value and adds an element to the resulting array with
the key of amount and the value returned from getAmount().

In some instances, we’ll use the ClassMethods hydrator directly.
In others, we’ll wrap this hydrator to provide some additional
functionality to it.

Zend Framework 2 Setup 189

Customer DataTable

Let’s define our CustomerTable implementation:

// src/Persistence/Zend/DataTable/CustomerTable.php

namespace CleanPhp\Invoicer\Persistence\Zend\DataTable;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

class CustomerTable extends AbstractDataTable

implements CustomerRepositoryInterface

{

}

The CustomerTable class simply implements the AbstractDataT-

able class. Since the
CustomerRepositoryInterface defines no additional functionality,
we can just use the AbstractDataTable as is.

Order DataTable

Our OrderTable will look pretty much the same as our Cus-

tomerTable:

Zend Framework 2 Setup 190

// src/Persistence/Zend/DataTable/OrderTable.php

namespace CleanPhp\Invoicer\Persistence\Zend\DataTable;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

class OrderTable extends AbstractDataTable

implements OrderRepositoryInterface

{

public function getUninvoicedOrders()

{

return [];

}

}

Our OrderRepositoryInterface defines an extra method that none
of the other interfaces have: getUninvoicedOrders(). We’ll worry
about defining this functionality later once we start using it.

Invoice DataTable

Finally, or InvoiceTable, much the same:

// src/Persistence/Zend/DataTable/InvoiceTable.php

namespace CleanPhp\Invoicer\Persistence\Zend\DataTable;

use CleanPhp\Invoicer\Domain\Repository\InvoiceReposito\

ryInterface;

class InvoiceTable extends AbstractDataTable

implements InvoiceRepositoryInterface

{

}

Zend Framework 2 Setup 191

Table Gateway Factory

Our Data Tables need to be injected with an instance of a Table-

Gateway configured for that particular model. In the ZF Getting
Started docs, they define a TableGateway for each Data Table being
defined. We’ll create one dynamically by writing a factory to do so:

// src/Persistence/Zend/TableGateway/TableGatewayFactor\

y.php

namespace CleanPhp\Invoicer\Persistence\Zend\TableGatew\

ay;

use Zend\Db\Adapter\Adapter;

use Zend\Db\ResultSet\HydratingResultSet;

use Zend\Db\TableGateway\TableGateway;

use Zend\Stdlib\Hydrator\HydratorInterface;

class TableGatewayFactory {

public function createGateway(

Adapter $dbAdapter,

HydratorInterface $hydrator,

$object,

$table

) {

$resultSet = new HydratingResultSet($hydrator, $obj\

ect);

return new TableGateway($table, $dbAdapter, null, $\

resultSet);

}

}

Our factory requires an instance of the Zend Database Adapter,
which we’ll configure in just a bit, as well as an instance of the

Zend Framework 2 Setup 192

Hydrator to use. Finally, it accepts an instance of the object that
represents the data table, and the name of the database table where
the data is stored.

For more information on how this works, see the Zend Getting
Started Guide⁴¹.

Configuring Zend Framework

Our last step of setting up the database is to configure Zend
Framework to use these new Data Tables. Let’s start by defining
the CustomerTable in the service manager. We’ll define this in
the global.php config file, although in a real application, we’d
probably find a much better place to put this:

// config/autoload/global.php

use CleanPhp\Invoicer\Domain\Entity\Customer;

use CleanPhp\Invoicer\Persistence\Zend\DataTable\Custom\

erTable;

use CleanPhp\Invoicer\Persistence\Zend\TableGateway\Tab\

leGatewayFactory;

use Zend\Stdlib\Hydrator\ClassMethods;

return [

'service_manager' => [

'factories' => [

'CustomerTable' => function($sm) {

$factory = new TableGatewayFactory();

$hydrator = new ClassMethods();

return new CustomerTable(

$factory->createGateway(

⁴¹http://framework.zend.com/manual/current/en/user-guide/database-and-
models.html

http://framework.zend.com/manual/current/en/user-guide/database-and-models.html
http://framework.zend.com/manual/current/en/user-guide/database-and-models.html
http://framework.zend.com/manual/current/en/user-guide/database-and-models.html
http://framework.zend.com/manual/current/en/user-guide/database-and-models.html

Zend Framework 2 Setup 193

$sm->get('Zend\Db\Adapter\Adapter'),

$hydrator,

new Customer(),

'customers'

),

$hydrator

);

},

]

]

];

We use our TableGatewayFactory to create a TableGateway in-
stance to provide to our
CustomerTable. We’re also passing an instance of the ClassMethods
hydrator, as well as a Customer object and the name of the cus-

tomers table.

Both the TableGatewayFactory and the CustomerTable need an
instance of our hydrator, so we declare that before-hand and
provide it as needed to each class.

The only new piece here is the Zend Db Adapter.

We’ll need to configure that in the same file:

// config/autoload/global.php

// ...

return [

'service_manager' => [

'factories' => [

'Zend\Db\Adapter\Adapter' => 'Zend\Db\Adapter\Ada\

pterServiceFactory',

Zend Framework 2 Setup 194

// ...

],

],

];

This tells the service manager to use the AdapterServiceFactory

provided by Zend to give us an instance of Zend\Db\Adapter\Adapter
when needed. If you want to understand how all this works, take a
look at the ZF docs for more information, or dive into Zend’s source
code if you’re feeling extra adventurous.

Finally, we’ll setup a nearly identical entry for both the OrderTable
and InvoiceTable:

// config/autoload/global.php

use CleanPhp\Invoicer\Domain\Entity\Customer;

use CleanPhp\Invoicer\Domain\Entity\Invoice;

use CleanPhp\Invoicer\Domain\Entity\Order;

use CleanPhp\Invoicer\Persistence\Zend\DataTable\Custom\

erTable;

use CleanPhp\Invoicer\Persistence\Zend\DataTable\Invoic\

eTable;

use CleanPhp\Invoicer\Persistence\Zend\DataTable\OrderT\

able;

use CleanPhp\Invoicer\Persistence\Zend\TableGateway\Tab\

leGatewayFactory;

use Zend\Stdlib\Hydrator\ClassMethods;

return [

'service_manager' => [

'factories' => [

// ...

'InvoiceTable' => function($sm) {

Zend Framework 2 Setup 195

$factory = new TableGatewayFactory();

$hydrator = new ClassMethods();

return new InvoiceTable(

$factory->createGateway(

$sm->get('Zend\Db\Adapter\Adapter'),

$hydrator,

new Invoice(),

'invoices'

),

$hydrator

);

},

'OrderTable' => function($sm) {

$factory = new TableGatewayFactory();

$hydrator = new ClassMethods();

return new OrderTable(

$factory->createGateway(

$sm->get('Zend\Db\Adapter\Adapter'),

$hydrator,

new Order(),

'orders'

),

$hydrator

);

},

],

],

];

Zend Framework 2 Setup 196

Wrapping it Up

We now have all of our database tables configured and ready to use
with Zend Framework 2, as well as our database configured, ready,
and loaded with some dummy Customer data.

Let’s move forward!

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 04-zf2-database-
setup:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 04-zf2-database-setup

Our Application in Zend
Framework 2

Now that we have Zend Framework configured and ready to rock,
as well as our database setup and configured, we can start actually
using it.

Let’s start with customer management. We stubbed out a route,
but when we navigate to that route, we’re going to get a sad error
message from ZF2:

A 404 error occurred Page not found. The requested
controller could not be mapped to an existing con-
troller class.

Controller: ApplicationControllerCustomers (resolves
to invalid controller class or alias: ApplicationCon-
trollerCustomers) No Exception available

This makes sense as we defined a route to point to a Customers
controller, but didn’t bother creating that controller. So let’s do that.

Customer Management

Let’s start building out our CustomersController::indexAction(),
which will display a grid of all of our customers.

197

Our Application in Zend Framework 2 198

I spent a lot of time trying to figure out how to
unit test controllers in Zend Framework. I’m going to
call it: it’s impossible. Depending on the action, you
need to either bootstrap or mock four to forty-four
different services, plugins, etc.

Zend provides a great tutorial⁴² on testing their con-
trollers. They call it unit testing, but that can only be
true if they mean the whole ZF2 ecosystem as a unit.

As such, I’m going to disregard tests for these con-
trollers. If this were real life, I’d bite the bullet and
write the integration tests (which are important too).
For the sake of this book, that’s just too much to
bother.

Let’s being our indexAction():

// modules/Application/src/Application/Controller/Custo\

mersController.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use Zend\Mvc\Controller\AbstractActionController;

class CustomersController extends AbstractActionControl\

ler {

public $customerRepository;

public function __construct(

CustomerRepositoryInterface $customers

) {

$this->customerRepository = $customers;

⁴²http://framework.zend.com/manual/2.0/en/user-guide/unit-testing.html

http://framework.zend.com/manual/2.0/en/user-guide/unit-testing.html
http://framework.zend.com/manual/2.0/en/user-guide/unit-testing.html

Our Application in Zend Framework 2 199

}

public function indexAction() {

return [

'customers' => $this->customerRepository->getAll()

];

}

}

We have a new CustomersController class with an indexAction()

method. An instance of CustomerRepositoryInterface is injected
in, and later used by the action to call the getAll() method. We
return the result of that method in an array, keyed at customers.

Now we need a proper view to represent the indexAction(), and
we should see our data on the screen. Let’s drop that view file in:

<!-- module/Application/views/application/customers/ind\

ex.phtml -->

<div class="page-header clearfix">

<h2 class="pull-left">Customers</h2>

<a href="/customers/new" class="btn btn-success pull-\

right">

Create Customer

</div>

<table class="table">

<thead>

<tr>

<th>#</th>

<th>Name</th>

<th>Email</th>

</tr>

</thead>

Our Application in Zend Framework 2 200

<?php foreach ($this->customers as $customer): ?>

<tr>

<td>

<a href="/customers/edit/<?= $customer->getId()\

?>">

<?= $customer->getId() ?>

</td>

<td><?= $customer->getName() ?></td>

<td><?= $customer->getEmail() ?></td>

</tr>

<?php endforeach; ?>

</table>

Lastly, we’ll need to configure ZF2 to know that CustomersCon-
troller is the Customers controller we referenced in the route.
If if we had called it CustomersController in the route, ZF2 still
wouldn’t knowwhat we’re talking about as the string here is simply
the key within the controller service locator.

In the controllers section of the module config file, we’ll add an
entry for our new controller:

// module/Application/config/module.config.php

return [

// ...

'controllers' => [

'invokables' => [

'Application\Controller\Index' =>

'Application\Controller\IndexController'

],

'factories' => [

'Application\Controller\Customers' => function ($\

sm) {

return new \Application\Controller\CustomersCon\

Our Application in Zend Framework 2 201

troller(

$sm->getServiceLocator()->get('CustomerTable')

);

},

],

],

// ...

];

Unlike the main IndexController, this CustomersController en-
try will be registered with ZF as a factory, so that it’s not just
instantiated outright, but allows us to bake in logic about how it’s
instantiated, which allows us to inject the proper dependencies.
We’re using the entry we defined in the last chapter for Cus-

tomerTable to grab our Customer Data Table, which implements
the CustomerRepositoryInterface and satisfies the type-hint on
the constructor of the CustomersController.

So now if we navigate to /customers in our beloved browser, we
should see all of our customers from our sqlite database rendered
on to the screen. Success!

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in ac-
tion, you can checkout the tag 05-viewing-customers:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 05-viewing-customers

Our Application in Zend Framework 2 202

Creating Customers

In our HTML, we have a button for creating new customers that
brings the user to the route /customers/new. At this route, we’ll
render a form that, when correctly filled out, will then post back
to the same route where we’ll persist the new information to the
database as a new customer.

Let’s start building out our CustomersController->newAction() to
handle simple GET requests.

CustomersController->newAction()

Let’s start building out our newAction() and the corresponding
view file:

// module/Application/src/Application/Controllers/Custo\

mersController.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use Zend\Mvc\Controller\AbstractActionController;

class CustomersController extends AbstractActionControl\

ler {

// ...

public function newAction() {

}

}

This simple controller action is all we initially need. Let’s build out
our view:

Our Application in Zend Framework 2 203

<!-- module/Application/view/application/customers/new.\

phtml -->

<div class="page-header clearfix">

<h2>New Customer</h2>

</div>

<form role="form" action="" method="post">

<div class="form-group">

<label for="name">Name:</label>

<input type="text" class="form-control" name="name"\

id="name"

placeholder="Enter Name">

</div>

<div class="form-group">

<label for="email">Email:</label>

<input type="text" class="form-control" name="email\

" id="email"

placeholder="Enter Email">

</div>

<button type="submit" class="btn btn-primary">Save</b\

utton>

</form>

Next, we’ll need to update our routing to handle /customers/new:

Our Application in Zend Framework 2 204

// module/Application/config/module.config.php

return [

'router' => [

'routes' => [

// ...

'customers' => [

// ...

'may_terminate' => true,

'child_routes' => [

'create' => [

'type' => 'Segment',

'options' => [

'route' => '/new',

'defaults' => [

'action' => 'new',

],

]

],

]

],

// ...

],

],

// ...

];

This simple child route will combine /customers of the parent
route, with /new of the child route to give us our /customers/new
route, which will point to the newAction() of our CustomersCon-
troller().

Now if we click on theCreate Customer link, we should see our new
form rendered. Now we just have to make this form do something.

Our Application in Zend Framework 2 205

CustomerInputFilter

We’re going to use Zend’s InputFilter to validate and sanitize
our input. You can read more about Zend’s Input Filters in their
documentation⁴³, but essentially, they give us a set of classes to
validate and sanitize input data.

We’re going to drop our InputFilters into the src/ directory, as
we’ll want to use them when we decide to switch away from Zend
Framework. Otherwise, we’d have to build a whole new solution
for validating input data, which would be fine, but it’s nice not to
have to do that at the same time.

We’ll start by writing a spec to describe the behavior we want. First,
we’ll need an instance of our soon-to-be new CustomerInputFilter

for testing:

// specs/input-filter/customer.spec.php

use CleanPhp\Invoicer\Service\InputFilter\CustomerInput\

Filter;

describe('InputFilter\Customer', function () {

beforeEach(function () {

$this->inputFilter = new CustomerInputFilter();

});

describe('->isValid()', function () {

// ...

});

});

We’ll be interested in testing the isValid() method, which Zend
provides to determine whether an InputFilter’s data is valid.We’ll

⁴³http://framework.zend.com/manual/current/en/modules/zend.input-filter.intro.html

http://framework.zend.com/manual/current/en/modules/zend.input-filter.intro.html
http://framework.zend.com/manual/current/en/modules/zend.input-filter.intro.html
http://framework.zend.com/manual/current/en/modules/zend.input-filter.intro.html

Our Application in Zend Framework 2 206

also use the setData() method to supply the InputFilter with
some data to test.

Let’s start with testing validity of the customer name:

it('should require a name', function () {

$isValid = $this->inputFilter->isValid();

$error = [

'isEmpty' => 'Value is required and can\'t be empty'

];

$messages = $this->inputFilter

->getMessages()['name'];

expect($isValid)->to->equal(false);

expect($messages)->to->equal($error);

});

Last, we’ll test the validity of the email address. Here, we’re not
particularly worried about the exact messages ZF2 returns when
we have invalid data, just that we get some kind of array of errors
back, rather than null:

it('should require an email', function () {

$isValid = $this->inputFilter->isValid();

$error = [

'isEmpty' => 'Value is required and can\'t be empty'

];

$messages = $this->inputFilter

->getMessages()['email'];

expect($isValid)->to->equal(false);

Our Application in Zend Framework 2 207

expect($messages)->to->equal($error);

});

it('should require a valid email', function () {

$scenarios = [

[

'value' => 'bob',

'errors' => []

],

[

'value' => 'bob@bob',

'errors' => []

],

[

'value' => 'bob@bob.com',

'errors' => null

]

];

foreach ($scenarios as $scenario) {

$this->inputFilter->setData([

'email' => $scenario['value']

])->isValid();

$messages = $this->inputFilter

->getMessages()['email'];

if (is_array($messages)) {

expect($messages)->to->be->a('array');

expect($messages)->to->not->be->empty();

} else {

expect($messages)->to->be->null();

}

}

});

Our Application in Zend Framework 2 208

We can add somemore robust data to the list of tested
$scenarios if we want to more fully test the email
RFC for valid emails, but we can also trust that ZF2
handles all the cases pretty well. We just want to
make sure that our CustomerInputFilter is setting
up the validation rules correctly.

Now let’s write a new InputFilter class for Customer data:

// src/Service/InputFilter/CustomerInputFilter.php

namespace CleanPhp\Invoicer\Service\InputFilter;

use Zend\InputFilter\Input;

use Zend\InputFilter\InputFilter;

use Zend\Validator\EmailAddress;

class CustomerInputFilter extends InputFilter {

public function __construct() {

$name = (new Input('name'))

->setRequired(true);

$email = (new Input('email'))

->setRequired(true);

$email->getValidatorChain()->attach(

new EmailAddress()

);

$this->add($name);

$this->add($email);

}

}

Our Application in Zend Framework 2 209

Posting Customer Data

Our next step is to utilize this CustomerInputFilter in our Cus-
tomersController. We’ll want to do this when we receive a POST
request only, and if we receive validation errors, we should report
those back to the user. Let’s start by writing a spec of our intended
behavior.

First, we’ll need to inject an instance of the CustomerInputFilter
into the CustomersController as part of the test:

// module/Application/src/Application/Controller/Custom\

ersController.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use CleanPhp\Invoicer\Service\InputFilter\CustomerInput\

Filter;

use Zend\Mvc\Controller\AbstractActionController;

class CustomersController extends AbstractActionControl\

ler {

protected $customerRepository;

protected $inputFilter;

public function __construct(

CustomerRepositoryInterface $customers,

CustomerInputFilter $inputFilter

) {

$this->customerRepository = $customers;

$this->inputFilter = $inputFilter;

}

Our Application in Zend Framework 2 210

// ...

}

Now we can update the newAction() to handle a POST request:

// module/Application/src/Application/Controller/Custom\

ersController.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use CleanPhp\Invoicer\Service\InputFilter\CustomerInput\

Filter;

use Zend\Mvc\Controller\AbstractActionController;

class CustomersController extends AbstractActionControl\

ler {

// ...

public function newAction() {

if ($this->getRequest()->isPost()) {

$this->inputFilter->setData($this->params()->from\

Post());

if ($this->inputFilter->isValid()) {

} else {

}

}

}

}

First, we determine if the request is a POST request. If it is, we supply

Our Application in Zend Framework 2 211

our InputFilter with the posted form data, then check to see if the
InputFilter is valid, given that data.

We have two remaining paths to implement:

1. The data is valid
2. The data is invalid

When the data is valid, we want to persist it to our repository.
However, the data coming in from the POST is a giant array. We
need to be able to persist an instance of Customer. The best way
to handle this is to hydrate a Customer object with the POST data.
To do that, we’ll need to inject an instance of a HydratorInterface
into the controller:

// module/Application/src/Application/Controller/Custom\

ersController.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use CleanPhp\Invoicer\Service\InputFilter\CustomerInput\

Filter;

use Zend\Mvc\Controller\AbstractActionController;

use Zend\StdLib\Hydrator\HydratorInterface;

class CustomersController extends AbstractActionControl\

ler {

protected $customerRepository;

protected $inputFilter;

public function __construct(

CustomerRepositoryInterface $customers,

CustomerInputFilter $inputFilter,

Our Application in Zend Framework 2 212

HydratorInterface $hydrator

) {

$this->customerRepository = $customers;

$this->inputFilter = $inputFilter;

$this->hydrator = $hydrator;

}

// ...

}

We’ll also want to update our controller config to inject these two
new objects that the CustomersController needs:

// module/Application/config/module.config.php

use CleanPhp\Invoicer\Service\InputFilter\CustomerInput\

Filter;

use Zend\Stdlib\Hydrator\ClassMethods;

return [

// ...

'controllers' => [

'invokables' => [

'Application\Controller\Index' =>

'Application\Controller\IndexController'

],

'factories' => [

'Application\Controller\Customers' => function ($\

sm) {

return new \Application\Controller\CustomersCon\

troller(

$sm->getServiceLocator()->get('CustomerTable'\

),

new CustomerInputFilter(),

Our Application in Zend Framework 2 213

new ClassMethods()

);

},

],

],

// ...

];

Next, we’re going to use the hydrator to build a Customer object,
and then persist that customer object using our CustomerReposi-
tory:

public function newAction() {

if ($this->getRequest()->isPost()) {

$this->inputFilter->setData($this->params()->fromPo\

st());

if ($this->inputFilter->isValid()) {

$customer = $this->hydrator->hydrate(

$this->inputFilter->getValues(),

new Customer()

);

$this->customerRepository->begin()

->persist($customer)

->commit();

} else {

}

}

}

We’ll also need a use statement for the Customer class at the top of
the file.

Our Application in Zend Framework 2 214

At this point, we can enter a new Customer in the browser and have
it persisted to the database. But afterward, the user is dumped back
to the New Customer page with no indication that their save was
successful.

Let’s add a redirect to the /customers page, as well as a flash
message alerting them that the save was successful:

public function newAction() {

if ($this->getRequest()->isPost()) {

$this->inputFilter->setData($this->params()->fromPo\

st());

if ($this->inputFilter->isValid()) {

// ...

$this->flashMessenger()->addSuccessMessage('Custo\

mer Saved');

$this->redirect()->toUrl('/customers');

} else {

}

}

}

If you give it a shot in the browser, you should now be redirected to
the /customers page. In order to get the flash message to show up,
we’ll need to setup our layout.phtml file to render flash messages.
Zend provides a helper⁴⁴ to easily display these flash messages, but
it looks terrible. We’ll create our own partial file to render them,
and then include that in our layout.phtml file.

⁴⁴http://framework.zend.com/manual/current/en/modules/zend.view.helpers.flash-
messenger.html

http://framework.zend.com/manual/current/en/modules/zend.view.helpers.flash-messenger.html
http://framework.zend.com/manual/current/en/modules/zend.view.helpers.flash-messenger.html
http://framework.zend.com/manual/current/en/modules/zend.view.helpers.flash-messenger.html

Our Application in Zend Framework 2 215

<!-- view/application/partials/flash-messages.phtml -->

<?php

$flash = $this->flashMessenger();

$flash->setMessageOpenFormat('<div%s role="alert">

<button type="button" class="close"

data-dismiss="alert" aria-label="Close">

×

</button>

<div>')

->setMessageSeparatorString('</div><div>')

->setMessageCloseString('</div></div>');

?>

<?= $this->flashMessenger()->render(

'success',

['alert', 'alert-dismissible', 'alert-success']

) ?>

This is a bunch of bootstrapping to style the existing Zend helper,
then using that helper to generate the messages.

Let’s include it in the layout.phtml file:

<!-- ... ->

<div class="container">

<?= $this->partial('application/partials/flash-messag\

es') ?>

<?= $this->content; ?>

<hr>

<footer>

<p>I'm the footer.</p>

</footer>

</div>

<!-- ... -->

Our Application in Zend Framework 2 216

Now our flash message should be rendered when we create new
customers.

Handling Validation Errors

On InputFilter->isValid() failure, we’ll want to do two things:
hydrate and return a Customer object with the submitted data, sowe
can persist it to the form, and return the validation error messages
so we can show them to the user.

We’ll use the already injected HydratorInterface, but this time,
instead of hydrating sanitized data from the InputFilter, we’re going
to hydrate the data directly posted:

public function newAction() {

$viewModel = new ViewModel();

$customer = new Customer();

if ($this->getRequest()->isPost()) {

$this->inputFilter->setData($this->params()->fromPo\

st());

if ($this->inputFilter->isValid()) {

$this->hydrator->hydrate(

$this->inputFilter->getValues(),

$customer

);

$this->customerRepository->begin()

->persist($customer)

->commit();

$this->flashMessenger()->addSuccessMessage('Custo\

mer Saved');

$this->redirect()->toUrl('/customers');

Our Application in Zend Framework 2 217

} else {

$this->hydrator->hydrate(

$this->params()->fromPost(),

$customer

);

}

}

$viewModel->setVariable('customer', $customer);

return $viewModel;

}

Don’t forget to drop a use statement for Zend\View\Model\ViewModel
at the top of the file.

We’ve started by declaring a new Customer object that gets passed
along to the view. We’ve updated our valid clause to use this
customer, rather than instantiating it’s own. We’ve also updated
our else condition to hydrate this object with data directly from
the POST.

Since we’re now passing off customer details to the view, we’ll need
to update our view file to use these values when generating the
form, so that they’ll show the bad data when we fail validation:

<!-- module/Application/view/application/customers/new.\

phtml -->

<div class="page-header clearfix">

<h2>New Customer</h2>

</div>

<form role="form" action="" method="post">

<div class="form-group">

<label for="name">Name:</label>

<input type="text" class="form-control" name="name"\

Our Application in Zend Framework 2 218

id="name"

placeholder="Enter Name" value="<?= $this->custom\

er->getName() ?>">

</div>

<div class="form-group">

<label for="email">Email:</label>

<input type="text" class="form-control" name="email\

" id="email"

placeholder="Enter Email" value="<?= $this->custo\

mer->getEmail() ?>">

</div>

<button type="submit" class="btn btn-primary">Save</b\

utton>

</form>

We’re now using the supplied $customer to set the value for each
input. On GET, these values will be empty, but on a failed POST,
they’ll contain the user submitted data.

Now, let’s take care of showing the validation messages. First,
we’ll start by making sure they get passed off to the view in the
newAction():

public function newAction() {

$viewModel = new ViewModel();

$customer = new Customer();

if ($this->getRequest()->isPost()) {

// ...

if ($this->inputFilter->isValid()) {

// ...

} else {

$this->hydrator->hydrate(

$this->params()->fromPost(),

Our Application in Zend Framework 2 219

$customer

);

$viewModel->setVariable('errors', $this->inputFil\

ter->getMessages());

}

}

// ...

return $viewModel;

}

Now we can render these errors in the view file. To do that, we’re
going to make a custom View Helper to render the error messages,
if present, for any given input field.

View Helpers

View Helpers in Zend Framework are reusable classes that can
accept data and generate HTML. As long as they are configured
properly within the service manager, ZF2 takes care of instantiating
them for you when you use them in a view.

Using View Helpers involves invoking their name from the $this

object variable within the view:

<?= $this->helperName('some data') ?>

We’ll create a View Helper to help us display validation mes-
sages returned to the view. Our View Helper will live in the
module/Application/src/View/Helper directory, and we’ll call it
ValidationErrors.php:

Our Application in Zend Framework 2 220

namespace Application\View\Helper;

use Zend\View\Helper\AbstractHelper;

class ValidationErrors extends AbstractHelper {

public function __invoke($element) {

if ($errors = $this->getErrors($element)) {

return '<div class="alert alert-danger">' .

implode('. ', $errors) .

'</div>';

}

return '';

}

protected function getErrors($element) {

if (!isset($this->getView()->errors)) {

return false;

}

$errors = $this->getView()->errors;

if (isset($errors[$element])) {

return $errors[$element];

}

return false;

}

}

This view helper will accept an element, which we use to lookup
errors with. If we find some, we return them rendered in pretty
HTML. The errors for each element are an array (to allow for
multiple errors), so we’ll simply implode them and separate them
with a period.

Our Application in Zend Framework 2 221

Next, we need to let Zend know about this view helper using it’s
service locator config in module.config.php:

return [

// ...

'view_helpers' => [

'invokables' => [

'validationErrors' => 'Application\View\Helper\Va\

lidationErrors',

]

],

// ...

];

Finally, we can update the view file to use this new helper and
display any validation error messages for each field:

<!-- module/Application/view/application/customers/new.\

phtml -->

<div class="page-header clearfix">

<h2>New Customer</h2>

</div>

<form role="form" action="" method="post">

<div class="form-group">

<label for="name">Name:</label>

<input type="text" class="form-control" name="name"\

id="name"

placeholder="Enter Name" value="<?= $this->custom\

er->getName() ?>">

<?= $this->validationErrors('name') ?>

</div>

<div class="form-group">

<label for="email">Email:</label>

Our Application in Zend Framework 2 222

<input type="text" class="form-control" name="email\

" id="email"

placeholder="Enter Email" value="<?= $this->custo\

mer->getEmail() ?>">

<?= $this->validationErrors('email') ?>

</div>

<button type="submit" class="btn btn-primary">Save</b\

utton>

</form>

If we submit the form without any data now, or with data that
doesn’t meet our validation requirements, such as an invalid email,
we should get validation error messages rendered under each field.
Any data we do enter should also be preserved in the input field.

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in ac-
tion, you can checkout the tag 06-creating-customers:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 06-creating-customers

Editing Customers

Our next step is to implement the editing of existing customers.
Since this code is going to be very similar to our create customers
code, we’ll use the same action andmodify it slightly to handle both
new and existing Customers.

Let’s first start by refactoring our newAction() to be newOrEditAc-
tion(), and make sure it still works before continuing. Let’s start
with the CustomersController:

Our Application in Zend Framework 2 223

// module/Application/src/Application/Controller/Custom\

ersController.php

// ...

class CustomersController extends AbstractActionControl\

ler {

// ...

public function newOrEditAction() {

// ...

}

}

Next, we’ll update the routing config to point to this new action,
and also add the edit action while we’re at it:

// module/Application/config/module.config.php

return [

'router' => [

'routes' => [

// ...

'customers' => [

'type' => 'Segment',

'options' => [/* ... */],

'may_terminate' => true,

'child_routes' => [

'new' => [

'type' => 'Segment',

'options' => [

'route' => '/new',

'constraints' => [

Our Application in Zend Framework 2 224

'id' => '[0-9]+',

],

'defaults' => [

'action' => 'new-or-edit',

],

]

],

'edit' => [

'type' => 'Segment',

'options' => [

'route' => '/edit/:id',

'constraints' => [

'id' => '[0-9]+',

],

'defaults' => [

'action' => 'new-or-edit',

],

]

],

]

],

// ...

],

],

];

Finally, let’s rename our view/application/customers/new-or-

edit.phtml file to
module/Application/view/application/customers/new-or-edit.phtml.
At this point, our Create Customer button and action should still
work. If we click on the id of a row in the indexAction(), we should
also get a form in the browser, just missing our data. Let’s fix that.

The first thing we’ll want to do is check for an ID passed via the

Our Application in Zend Framework 2 225

URL. If we have one, we should get a Customer object from the
CustomerRepository. If there is no ID, we should instantiate a new
Customer object just like we currently are:

public function newOrEditAction() {

$id = $this->params()->fromRoute('id');

$customer = $id ? $this->customerRepository->getById(\

$id) : new Customer();

// ...

}

This simple change should be all we need to support editing
Customers. Give it a try. Sweet, huh?

We want to do two more things:

1. Link to the Edit Customer page after a successful save.
2. Show Edit Customer as the title instead of New Customer

when editing

The first one is easy; we change the redirect line in newOrEditAc-

tion() to:

$this->redirect()->toUrl('/customers/edit/' . $customer\

->getId());

And changing the title in the view is pretty easy, too:

Our Application in Zend Framework 2 226

<div class="page-header clearfix">

<h2>

<?= !empty($this->customer->getId()) ? 'Edit' : 'Ne\

w' ?>

Customer

</h2>

</div>

We simply check to see if the $customer has an ID to determine if
it is an edit or add operation.

Customer Management is now complete!

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in ac-
tion, you can checkout the tag 06-editing-customers:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 06-editing-customers

Order Management

Let’s move on to orders. We’re going to start by hand-crafting a
List Orders view, much the same way we created a List Customers
view. We already defined our basic route for /orders earlier in this
chapter, so let’s continue that by creating our controller that will be
served by this route.

For our indexAction(), we simply want to get an a collection of
all Orders stored within the database. The controller will use an
implementation of the OrderRepositoryInterface, injected via the
constructor, and it’s getAll() method to get the orders.

Our Application in Zend Framework 2 227

// module/Application/src/Application/Controller/Orders\

Controller.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

use Zend\Mvc\Controller\AbstractActionController;

class OrdersController extends AbstractActionController\

{

protected $orderRepository;

public function __construct(OrderRepositoryInterface \

$orders) {

$this->orderRepository = $orders;

}

public function indexAction() {

return [

'orders' => $this->orderRepository->getAll()

];

}

}

To use this controller, we’ll need to configure it in the controller
service config. We can do so right after the Customers controller
definition:

Our Application in Zend Framework 2 228

// module/Application/config/module.config.php

return [

// ...

'controllers' => [

// ...

'Application\Controller\Orders' => function ($sm) {

return new \Application\Controller\OrdersControll\

er(

$sm->getServiceLocator()->get('OrderTable')

);

},

],

// ...

];

Finally, let’s drop in a view file to render our list of orders:

<!-- module/Application/views/application/orders/index.\

php -->

<div class="page-header clearfix">

<h2 class="pull-left">Orders</h2>

<a href="/orders/new" class="btn btn-success pull-rig\

ht">

Create Order

</div>

<table class="table table-striped clearfix">

<thead>

<tr>

<th>#</th>

<th>Order Number</th>

<th>Customer</th>

Our Application in Zend Framework 2 229

<th>Description</th>

<th class="text-right">Total</th>

</tr>

</thead>

<?php foreach ($this->orders as $order): ?>

<tr>

<td>

<a href="/orders/view/<?= $this->escapeHtmlAttr\

($order->getId()) ?>">

<?= $this->escapeHtml($order->getId()) ?>

</td>

<td><?= $this->escapeHtml($order->getOrderNumber(\

)) ?></td>

<td>

<a href="/customers/edit/<?=

$this->escapeHtmlAttr($order->getCustomer()->\

getId()) ?>">

<?= $this->escapeHtml($order->getCustomer()->\

getName()) ?>

</td>

<td><?= $this->escapeHtml($order->getDescription(\

)) ?></td>

<td class="text-right">

$ <?= number_format($order->getTotal(), 2) ?>

</td>

</tr>

<?php endforeach; ?>

</table>

If you refresh, you should see an empty grid! If we manually drop
a couple orders in the database, we should see some data show up.
And a big fat error, because we’re trying to access the Customer
associated to the Order, but we haven’t actually hydrated one.

This is where we start to see the pitfalls of ZF2’s Data Table

Our Application in Zend Framework 2 230

Gateway. But for the sake of getting something done, let’s continue
on.

Hydrating the Related Customer

In order to hydrate the Customer related to an Order, we’ll have
to build a custom hydrator. To do so, we’ll simply wrap Zend’s
ClassMethods hydrator that we’re already using, and add some
additional functionality to it.

We’ll start by writing a spec to describe the functionality we need:

// specs/hydrator/order.spec.php

use CleanPhp\Invoicer\Domain\Entity\Order;

use CleanPhp\Invoicer\Persistence\Hydrator\OrderHydrato\

r;

use Zend\Stdlib\Hydrator\ClassMethods;

describe('Persistence\Hydrator\OrderHydrator', function\

() {

beforeEach(function() {

$this->hydrator = new OrderHydrator(new ClassMethod\

s());

});

describe('->hydrate()', function () {

it('should perform basic hydration of attributes', \

function () {

$data = [

'id' => 100,

'order_number' => '20150101-019',

'description' => 'simple order',

'total' => 5000

];

Our Application in Zend Framework 2 231

$order = new Order();

$this->hydrator->hydrate($data, $order);

expect($order->getId())->to->equal(100);

expect($order->getOrderNumber())->to->equal('2015\

0101-019');

expect($order->getDescription())->to->equal('simp\

le order');

expect($order->getTotal())->to->equal(5000);

});

});

});

If first test case is to make sure that our OrderHydrator performs
basic hydration of our scalar type values. We’ll be passing off this
work to the ClassMethods hydrator since it’s pretty good at it. Next,
we’ll need to handle our use case for persisting a Customer object
on the Order:

use CleanPhp\Invoicer\Domain\Entity\Customer;

use CleanPhp\Invoicer\Domain\Entity\Order;

use CleanPhp\Invoicer\Persistence\Hydrator\OrderHydrato\

r;

use Zend\Stdlib\Hydrator\ClassMethods;

describe('Persistence\Hydrator\OrderHydrator', function\

() {

beforeEach(function() {

$this->repository = $this->getProphet()->prophesize(

'CleanPhp\Invoicer\Domain\Repository\CustomerRepo\

sitoryInterface'

);

$this->hydrator = new OrderHydrator(

Our Application in Zend Framework 2 232

new ClassMethods(),

$this->repository->reveal()

);

});

describe('->hydrate()', function () {

// ...

it('should hydrate a Customer entity on the Order',\

function () {

$data = [

'customer_id' => 500

];

$customer = (new Customer())->setId(500);

$order = new Order();

$this->repository->getById(500)

->shouldBeCalled()

->willReturn($customer);

$this->hydrator->hydrate($data, $order);

expect($order->getCustomer())->to->equal($custome\

r);

$this->getProphet()->checkPredictions();

});

});

});

We’ve added a dependency to our hydrator for an instance of
CustomerRepositoryInterface. We’ll use this to query for the cus-
tomer record when we find a customer_id value in the data being
hydrated. This is now mocked and injected into the constructor.

Our Application in Zend Framework 2 233

Our test verifies that this properly occurs by checking the value
of $order->getCustomer() and making sure that its the same
customer that we mocked CustomerRepository to return.

Now let’s build this class and make our tests work!

// src/Persistence/Hydrator/OrderHydrator.php

namespace CleanPhp\Invoicer\Persistence\Hydrator;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use Zend\Stdlib\Hydrator\HydratorInterface;

class OrderHydrator implements HydratorInterface {

protected $wrappedHydrator;

protected $customerRepository;

public function __construct(

HydratorInterface $wrappedHydrator,

CustomerRepositoryInterface $customerRepository

)

{

$this->wrappedHydrator = $wrappedHydrator;

$this->customerRepository = $customerRepository;

}

public function extract($object) { }

public function hydrate(array $data, $order) {

$this->wrappedHydrator->hydrate($data, $order);

if (isset($data['customer_id'])) {

$order->setCustomer(

$this->customerRepository->getById($data['custo\

Our Application in Zend Framework 2 234

mer_id'])

);

}

return $order;

}

}

This simple functionality works just like we drew it up in our
tests. We use the ClassMethods() hydrator to do most of the
work for us. When a customer_id value is present, we query our
CustomerRepository for that customer and set it on the Order

object. Our tests should now pass!

This eagerly loading of relationships wouldn’t always be ideal.
What if we don’t need the Customer for the current use case?
One great way to implement some lazy loading of these resources,
which would only load the Customer if we requested it in client
code, would be to use Marco Pivetta’s⁴⁵ awesome ProxyManager⁴⁶
library, which allows us to use Proxy classes instead of Entities
directly, and lazily load related resources. Check out his library if
you’re interested. Another solution, which we’ll explore later, is to
just use a better persistence library, such as Doctrine ORM.

For now, however, we can use this new OrderHydrator in our
OrderTable by modifying the service locator definition for Or-

derTable to use OrderHydrator instead of class methods:

⁴⁵https://github.com/Ocramius
⁴⁶https://github.com/Ocramius/ProxyManager

https://github.com/Ocramius
https://github.com/Ocramius/ProxyManager
https://github.com/Ocramius
https://github.com/Ocramius/ProxyManager

Our Application in Zend Framework 2 235

// config/autoload/global.php

return [

// ...

'service_manager' => [

'factories' => [

// ...

'OrderHydrator' => function ($sm) {

return new OrderHydrator(

new ClassMethods(),

$sm->get('CustomerTable')

);

},

// ...

'OrderTable' => function($sm) {

$factory = new TableGatewayFactory();

$hydrator = $sm->get('OrderHydrator');

return new OrderTable(

$factory->createGateway(

$sm->get('Zend\Db\Adapter\Adapter'),

$hydrator,

new Order(),

'orders'

),

$hydrator

);

},

],

// ...

],

// ...

];

Our Application in Zend Framework 2 236

We declare a new entry in the service locator for OrderHydrator,
so that we can use it wherever we need it. Our first use of it is
in the definition for OrderTable in the service locator which now,
instead of ClassMethods as it was previously using, it now uses
OrderHydrator.

If we refresh our /orders page, we should now see our test Order
with the associated Customer rendered to the page, error free.

To recap: when call OrderTable->getAll(), we’re hydrating all
Orders in the database, as well as eagerly loading the associated
Customer. When we render these to the page, and call Order-
>getCustomer(), we’re using that eagerly loaded Customer object
to render the name and ID of the customer to the page.

Our last step is to implement the extract()method of our hydrator
that we left blank. For this, we’re simply going to pass off work to
the ClassMethods->extract() method as we don’t have a specific
use case for anything else right now.

// src/Persistence/Hydrator/OrderHydrator.php

namespace CleanPhp\Invoicer\Persistence\Hydrator;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use Zend\Stdlib\Hydrator\HydratorInterface;

class OrderHydrator implements HydratorInterface {

// ...

public function extract($object) {

return $this->wrappedHydrator->extract($object);

}

// ...

}

Our Application in Zend Framework 2 237

If you want to write a spec for this, feel free. It’s simple enough that
I’ll assume the Zend developers have tested it enough for us and
that we didn’t mess up such a simple call.

Viewing Orders

Let’s work on the view page for Orders now. First thing we’ll want
to do is setup a route. We’ll adapt our existing /orders route to
optionally allow an /action and /:id to handle all this magic in
one.

Another optionwould be to add an explicit child route for /view/:id.
Either way will result in a 404 if a user navigates to a sub route that
doesn’t exist, such as /orders/steal-all-the-gold.

// module/Application/config/module.config.php

return [

// ...

'router' =>

'routes' => [

// ...

'orders' => [

'type' => 'Segment',

'options' => [

'route' => '/orders[/:action[/:id]]',

'defaults' => [

'controller' => 'Application\Controller\Ord\

ers',

'action' => 'index',

],

],

],

// ...

],

Our Application in Zend Framework 2 238

]

];

Now, we need a controller action to serve this route in our Order-
sController:

public function viewAction() {

$id = $this->params()->fromRoute('id');

$order = $this->orderRepository->getById($id);

return [

'order' => $order

];

}

The viewAction() is pretty simple: we grab the ID from the route
params, query for that Order from the $orderRepository that was
injected into the controller, and return it to the view.

Finally, we’ll need a view file to display our Order data:

<!-- module/Application/views/application/orders/view.p\

html -->

<div class="page-header clearfix">

<h2>Order #<?= $this->escapeHtml($this->order->getOrd\

erNumber()) ?></h2>

</div>

<table class="table table-striped">

<thead>

<tr>

<th colspan="2">Order Details</th>

</tr>

</thead>

Our Application in Zend Framework 2 239

<tr>

<th>Customer:</th>

<td>

<a href="/customers/edit/<?=

$this->escapeHtmlAttr($this->order->getCustomer\

()->getId()) ?>">

<?= $this->escapeHtml($this->order->getCustomer\

()->getName()) ?>

</td>

</tr>

<tr>

<th>Description:</th>

<td><?= $this->escapeHtml($this->order->getDescript\

ion()) ?></td>

</tr>

<tr>

<th>Total:</th>

<td>$ <?= number_format($this->order->getTotal(), 2\

) ?></td>

</tr>

</table>

This simple view is just using a table to dump out details about our
Order, and provides a link back to the Customer record. It’s super
simple. But what happens when we navigate to an ID that doesn’t
exist in the database? We’ll get a giant error.

Let’s handle this case by throwing a 404:

Our Application in Zend Framework 2 240

$order = $this->orderRepository->getById($id);

if (!$order) {

$this->getResponse()->setStatusCode(404);

return null;

}

If we don’t get an Order object back (and instead get null), we
simply grab the response stored on the object, set it’s status to 404,
and return (to halt further processing).

We can check this in the browser by navigation to an Order ID that
doesn’t exist.

Creating Orders

Creating an Order will be very similar to creating a Customer.

We’ll start by writing a spec for our OrderFilter, which we’ll use
to validate our form data:

// specs/input-filter/order.spec.php

use CleanPhp\Invoicer\Service\InputFilter\OrderInputFil\

ter;

describe('InputFilter\Order', function () {

beforeEach(function () {

$this->inputFilter = new OrderInputFilter();

});

describe('->isValid()', function () {

// ...

});

});

Our Application in Zend Framework 2 241

We’re simply setting up an instance of our new OrderInputFilter

so it’s available to specs.We’ll have to test each form element within
the ->isValid() block, so let’s start by testing the customer_id:

it('should require a customer.id', function () {

$isValid = $this->inputFilter->isValid();

$error = [

'id' => [

'isEmpty' => 'Value is required and can\'t be emp\

ty'

]

];

$customer = $this->inputFilter

->getMessages()['customer'];

expect($isValid)->to->equal(false);

expect($customer)->to->equal($error);

});

For customer_id, we’re just interested in making sure it was
provided. In the future, we could, and should, also validate that the
provided value is actually a customer in the database.

When we build our form, instead of using the database value
(customer_id), we’re going to use our entity relationships, which
means that we’ll be looking for customer[id] via the POST data,
so our input filter is going to treat customer as an array.

We’re testing here using the logic of the Required validator in Zend
framework. Obviously, if we ever switch our validation library,
we’ll have to update the specs to the format they provide.

On to orderNumber:

Our Application in Zend Framework 2 242

it('should require an order number', function () {

$isValid = $this->inputFilter->isValid();

$error = [

'isEmpty' => 'Value is required and can\'t be empty'

];

$orderNo = $this->inputFilter

->getMessages()['orderNumber'];

expect($isValid)->to->equal(false);

expect($orderNo)->to->equal($error);

});

Here, we’re simply validating that the orderNumber value was pro-
vided. Again, we’re using the language of the domain, orderNumber,
instead of the database column of order_number.

We also want to make sure it falls within our constraints of being
exactly 13 characters in length:

it('should require order numbers be 13 chars long', fun\

ction () {

$scenarios = [

[

'value' => '124',

'errors' => [

'stringLengthTooShort' =>

'The input is less than 13 characters long'

]

],

[

'value' => '20001020-0123XR',

'errors' => [

'stringLengthTooLong' =>

Our Application in Zend Framework 2 243

'The input is more than 13 characters long'

]

],

[

'value' => '20040717-1841',

'errors' => null

]

];

foreach ($scenarios as $scenario) {

$this->inputFilter = new OrderInputFilter();

$this->inputFilter->setData([

'orderNumber' => $scenario['value']

])->isValid();

$messages = $this->inputFilter

->getMessages()['orderNumber'];

expect($messages)->to->equal($scenario['errors']);

}

});

The $scenarios variable lists several different scenarios to test, and
which errors we would expect in each scenario.

Next, we’ll test the description:

Our Application in Zend Framework 2 244

it('should require a description', function () {

$isValid = $this->inputFilter->isValid();

$error = [

'isEmpty' => 'Value is required and can\'t be empty'

];

$messages = $this->inputFilter

->getMessages()['description'];

expect($isValid)->to->equal(false);

expect($messages)->to->equal($error);

});

Finally, we’ll test the total, and ensure that it’s a floating point
number value:

it('should require a total', function () {

$isValid = $this->inputFilter->isValid();

$error = [

'isEmpty' => 'Value is required and can\'t be empty'

];

$messages = $this->inputFilter

->getMessages()['total'];

expect($isValid)->to->equal(false);

expect($messages)->to->equal($error);

});

it('should require total to be a float value', function\

() {

$scenarios = [

Our Application in Zend Framework 2 245

[

'value' => 124,

'errors' => null

],

[

'value' => 'asdf',

'errors' => [

'notFloat'

=> 'The input does not appear to be a float'

]

],

[

'value' => 99.99,

'errors' => null

]

];

foreach ($scenarios as $scenario) {

$this->inputFilter = new OrderInputFilter();

$this->inputFilter->setData([

'total' => $scenario['value']

])->isValid();

$messages = $this->inputFilter

->getMessages()['total'];

expect($messages)->to->equal($scenario['errors']);

}

});

We provide a list of scenarios again, and check each one of them to
make sure we get the expected error messages, or no error messages
in the case of valid input.

Now that we’ve defined our spec, let’s go ahead and write the Input

Our Application in Zend Framework 2 246

Filter:

// src/Service/InputFilter/OrderInputFilter.php

namespace CleanPhp\Invoicer\Service\InputFilter;

use Zend\I18n\Validator\IsFloat;

use Zend\InputFilter\Input;

use Zend\InputFilter\InputFilter;

use Zend\Validator\StringLength;

class OrderInputFilter extends InputFilter {

public function __construct() {

$customer = (new InputFilter());

$id = (new Input('id'))

->setRequired(true);

$customer->add($id);

$orderNumber = (new Input('orderNumber'))

->setRequired(true);

$orderNumber->getValidatorChain()->attach(

new StringLength(['min' => 13, 'max' => 13])

);

$description = (new Input('description'))

->setRequired(true);

$total = (new Input('total'))

->setRequired(true);

$total->getValidatorChain()->attach(new IsFloat());

$this->add($customer, 'customer');

$this->add($orderNumber);

$this->add($description);

$this->add($total);

Our Application in Zend Framework 2 247

}

}

These validation rules match what we specified in our tests, which
should be passing with this code in place.

The only thing special of note here is that we’re nesting an In-

putFilter for customer[id] and adding the $customer filter as
a named InputFilter of customer, so that Zend understands the
nested data we’re returning in the POST and validates it properly.

OrdersController::newAction()

Now that we have a OrderInputFilter, we can start work on our
newAction() for the OrdersController.

When creating a new order, we’ll need to supply a list of Customers
to the view to allow the user to select which Customer the Order
belongs to. To do so, we’ll have an inject an instance of Customer-
RepositoryInterface into the controller.

// module/Application/src/Application/Controller/Orders\

Controller.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

use Zend\Mvc\Controller\AbstractActionController;

class OrdersController extends AbstractActionController\

{

protected $orderRepository;

Our Application in Zend Framework 2 248

protected $customerRepository;

public function __construct(

OrderRepositoryInterface $orderRepository,

CustomerRepositoryInterface $customerRepository

) {

$this->orderRepository = $orderRepository;

$this->customerRepository = $customerRepository;

}

// ...

}

We’ll need to update our controller config to pass it an instance of
CustomerRepositoryInterface:

// module/Application/config/module.config.php

return [

// ...

'controllers' => [

// ...

'factories' => [

// ...

'Application\Controller\Orders' => function ($sm)\

{

return new \Application\Controller\OrdersContro\

ller(

$sm->getServiceLocator()->get('OrderTable'),

$sm->getServiceLocator()->get('CustomerTable')

);

},

],

Our Application in Zend Framework 2 249

],

// ...

];

Now that we have an instance of CustomerRepositoryInterface,
we can use it to supply the view with a list of Customers to select
and create an Order for:

public function newAction() {

$viewModel = new ViewModel();

$order = new Order();

$viewModel->setVariable(

'customers',

$this->customerRepository->getAll()

);

$viewModel->setVariable('order', $order);

return $viewModel;

}

This should be the minimal code we need for the GET action to
work. Don’t forget to add some use statements for the Order and
Zend\View\Model\ViewModel class.

Let’s create the order.phtml file:

Our Application in Zend Framework 2 250

<!-- module/Application/view/application/orders/new.pht\

ml -->

<div class="page-header clearfix">

<h2>Create Order</h2>

</div>

<form role="form" action="" method="post">

<div class="form-group">

<label for="customer_id">Customer:</label>

<select class="form-control" name="customer[id]" id\

="customer_id">

<option value=""></option>

<?php foreach ($this->customers as $customer): ?>

<option value="<?= $this->escapeHtmlAttr($custome\

r->getId()) ?>"<?=

!is_null($this->order->getCustomer()) &&

$this->order->getCustomer()->getId() == $cust\

omer->getId() ?

' selected="selected"' : '' ?>>

<?= $this->escapeHtml($customer->getName()) ?>

</option>

<?php endforeach; ?>

</select>

<?= $this->validationErrors('customer.id') ?>

</div>

<div class="form-group">

<label for="orderNumber">Order Number:</label>

<input type="text" class="form-control" name="order\

Number"

id="order_number" placeholder="Enter Order Number"

value="<?= $this->escapeHtmlAttr($this->order->ge\

tOrderNumber()) ?>">

<?= $this->validationErrors('orderNumber') ?>

</div>

<div class="form-group">

Our Application in Zend Framework 2 251

<label for="description">Description:</label>

<input type="text" class="form-control" name="descr\

iption"

id="description" placeholder="Enter Description"

value="<?= $this->escapeHtmlAttr($this->order->ge\

tDescription()) ?>">

<?= $this->validationErrors('description') ?>

</div>

<div class="form-group">

<label for="total">Total:</label>

<input type="text" class="form-control" name="total"

id="total" placeholder="Enter Total"

value="<?= $this->escapeHtmlAttr($this->order->ge\

tTotal()) ?>">

<?= $this->validationErrors('total') ?>

</div>

<button type="submit" class="btn btn-primary">Save</b\

utton>

</form>

We use the $order object supplied by the ViewModel to populate the
form. Of course, at this point we don’t have any data to populate it
with. We use the $customers to provide the select options for the
Customer drop down.

If we hit up /orders/new in our browser, we’ll see our hard work.
When we click the Save button, the page looks the same. It’s
probably time to handle the POST data.

Handling POST Data

To facilitate saving the posted data, we’ll need an instance of our
OrderInputFilter injected to the controller so we can use it to
validate the POST data, and an instance of our OrderHydrator to
hydrate the data:

Our Application in Zend Framework 2 252

// module/Application/src/Application/Controller/Orders\

Controller.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Entity\Order;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

use CleanPhp\Invoicer\Persistence\Hydrator\OrderHydrato\

r;

use CleanPhp\Invoicer\Service\InputFilter\OrderInputFil\

ter;

use Zend\Mvc\Controller\AbstractActionController;

use Zend\View\Model\ViewModel;

class OrdersController extends AbstractActionController\

{

protected $orderRepository;

protected $customerRepository;

protected $inputFilter;

protected $hydrator;

public function __construct(

OrderRepositoryInterface $orderRepository,

CustomerRepositoryInterface $customerRepository,

OrderInputFilter $inputFilter,

OrderHydrator $hydrator

) {

$this->orderRepository = $orderRepository;

$this->customerRepository = $customerRepository;

$this->inputFilter = $inputFilter;

$this->hydrator = $hydrator;

}

Our Application in Zend Framework 2 253

// ...

}

If this seems like a lot to inject into the controller, it just might
be. A solution might be to break this controller up into multiple
controllers with smaller responsibilities/less actions. Or you could
investigate a different pattern, like Paul Jones’ Action-Domain-
Responder⁴⁷. For now, I’ll stick with this one controller.

Next, let’s update our controllers config to inject in an OrderIn-

putFilter:

// module/Application/config/module.config.php

use CleanPhp\Invoicer\Service\InputFilter\OrderInputFil\

ter;

return [

// ...

'controllers' => [

'invokables' => [

'Application\Controller\Index' =>

'Application\Controller\IndexController'

],

'factories' => [

// ...

'Application\Controller\Orders' => function ($sm)\

{

return new \Application\Controller\OrdersContro\

ller(

$sm->getServiceLocator()->get('OrderTable'),

$sm->getServiceLocator()->get('CustomerTable'\

⁴⁷https://github.com/pmjones/adr

https://github.com/pmjones/adr
https://github.com/pmjones/adr
https://github.com/pmjones/adr

Our Application in Zend Framework 2 254

),

new OrderInputFilter(),

$sm->getServiceLocator()->get('OrderHydrator')

);

},

],

],

// ...

];

Now our OrdersController should have everything it needs to
operate. Let’s update the newAction() to utilize these components
to posted data:

public function newAction() {

$viewModel = new ViewModel();

$order = new Order();

if ($this->getRequest()->isPost()) {

$this->inputFilter

->setData($this->params()->fromPost());

if ($this->inputFilter->isValid()) {

$order = $this->hydrator->hydrate(

$this->inputFilter->getValues(),

$order

);

$this->orderRepository->begin()

->persist($order)

->commit();

$this->flashMessenger()->addSuccessMessage('Ord\

er Created');

Our Application in Zend Framework 2 255

$this->redirect()->toUrl('/orders/view/' . $ord\

er->getId());

} else {

$this->hydrator->hydrate(

$this->params()->fromPost(),

$order

);

$viewModel->setVariable(

'errors',

$this->inputFilter->getMessages()

);

}

}

$viewModel->setVariable(

'customers',

$this->customerRepository->getAll()

);

$viewModel->setVariable('order', $order);

return $viewModel;

}

This is very similar to how the newOrEditAction() worked in our
CustomersController.

We check to see if the request was a POST. If it was, we load up
our OrderInputFilter with the data from the post, then check to
see if that data is valid. If it is, we hydrate an Order object with the
filtered values, persist them to the OrderRepository, then store a
flash message and redirect to the View Order page.

If the data is not valid, we again hydrate a customer object, but this
time with the raw POST data, and store the validation errors on the
view model to render in the view.

Our Application in Zend Framework 2 256

Next, we need to update our OrderHydrator to be able to handle
customer[id] being sent in via POST data. When it encounters this
data, we’ll want to instantiate a new Customer object and set the
ID.

Let’s update our spec to handle this case:

// specs/hydrator/order-hydrator.spec.php

// ...

describe('Persistence\Hydrator\OrderHydrator', function\

() {

// ...

describe('->hydrate()', function () {

// ...

it('should hydrate the embedded customer data', fun\

ction () {

$data = ['customer' => ['id' => 20]];

$order = new Order();

$this->hydrator->hydrate($data, $order);

assert(

$data['customer']['id'] === $order->getCustomer\

()->getId(),

'id does not match'

);

});

});

});

Let’s update our OrderHydrator to meet this spec:

Our Application in Zend Framework 2 257

// src/Persistence/Hydrator/OrderHydrator.php

namespace CleanPhp\Invoicer\Persistence\Hydrator;

use CleanPhp\Invoicer\Domain\Entity\Customer;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use Zend\Stdlib\Hydrator\HydratorInterface;

class OrderHydrator implements HydratorInterface {

protected $wrappedHydrator;

protected $customerRepository;

public function __construct(

HydratorInterface $wrappedHydrator,

CustomerRepositoryInterface $customerRepository

) {

$this->wrappedHydrator = $wrappedHydrator;

$this->customerRepository = $customerRepository;

}

public function extract($order) {

return $this->wrappedHydrator->extract($order);

}

public function hydrate(array $data, $order) {

$customer = null;

if (isset($data['customer'])) {

$customer = $this->wrappedHydrator->hydrate(

$data['customer'],

new Customer()

);

unset($data['customer']);

}

Our Application in Zend Framework 2 258

if (isset($data['customer_id'])) {

$customer = $this->customerRepository->getById($d\

ata['customer_id']);

}

$this->wrappedHydrator->hydrate($data, $order);

if ($customer) {

$order->setCustomer($customer);

}

return $order;

}

}

We’ll also need to convert the embedded Customer to a customer_id
when extracting so that it properly saves to the database, so let’s add
a spec for that, too:

// specs/hydrator/order-hydrator.spec.php

// ...

describe('Persistence\Hydrator\OrderHydrator', function\

() {

describe('->extract()', function () {

it('should extract the customer object', function (\

) {

$order = new Order();

$order->setCustomer((new Customer())->setId(14)\

);

$data = $this->hydrator->extract($order);

Our Application in Zend Framework 2 259

assert(

$order->getCustomer()->getId() === $data['cus\

tomer_id'],

'customer_id is not correct'

);

});

});

]);

And we’ll make the corresponding changes to the OrderHydrator:

public function extract($object) {

$data = $this->wrappedHydrator->extract($object);

if (array_key_exists('customer', $data) &&

!empty($data['customer'])) {

$data['customer_id'] = $data['customer']->getId();

unset($data['customer']);

}

return $data;

}

If, when we extract the data using the ClassMethods hydrator, we
find a customer key, we’ll extract the ID of the Customer object and
save it as customer_id in the returned data.

If we test out the Order creation now, we should find that most
everything works. Except we never get a validation message when
we don’t select a Customer.

Since we have a nested InputFilter situation going on with cus-

tomers[id], our simple check for errors on a single element won’t
work.

Our Application in Zend Framework 2 260

We’re going to use a nice little library called Keyper⁴⁸ that will allow
us to grab a value nested within an array:

composer require vnn/keyper

Now let’s modify the ValidationErrors ViewHelper:

// module/Application/src/Application/View/Helper/Valid\

ationErrors.php

protected function getErrors($element) {

if (!isset($this->getView()->errors)) {

return false;

}

$errors = Keyper::create($this->getView()->errors);

return $errors->get($element) ?: false;

}

Keyper will take care of getting our nested value customer.id from
the multidimensional array for us. If you submit an empty form
again, you should now get a validation error message.

And with this, order management is now complete!

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 08-managing-orders:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 08-managing-orders

⁴⁸https://github.com/varsitynewsnetwork/keyper

https://github.com/varsitynewsnetwork/keyper
https://github.com/varsitynewsnetwork/keyper

Our Application in Zend Framework 2 261

Invoice Management

Our last module of our sample project is Invoice management.
We’re going to setup an index page for listing Invoices, just like
the ones we setup for Customers and Orders. Let’s start with our
InvoiceController, which will initially look just like our other two
controllers:

// module/Application/src/Application/Controller/Invoic\

esController.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\InvoiceReposito\

ryInterface;

use Zend\Mvc\Controller\AbstractActionController;

class InvoicesController extends AbstractActionControll\

er {

protected $invoiceRepository;

public function __construct(InvoiceRepositoryInterfac\

e $invoices) {

$this->invoiceRepository = $invoices;

}

public function indexAction() {

$invoices = $this->invoiceRepository->getAll();

return [

'invoices' => $invoices

];

}

}

Our Application in Zend Framework 2 262

Next, we’ll need to register the InvoiceControllerwith the service
locator:

// module/Application/config/module.config.php

return [

// ..

'controllers' => [

// ...

'factories' => [

// ...

'Application\Controller\Invoices' => function ($s\

m) {

return new \Application\Controller\InvoicesCont\

roller (

$sm->getServiceLocator()->get('InvoiceTable')

);

}

],

],

];

Pretty standard stuff. We’ll also need to define the InvoiceTable

now for our view file:

Let’s complete the indexAction() by providing the view file:

Our Application in Zend Framework 2 263

<div class="page-header clearfix">

<h2 class="pull-left">Invoices</h2>

<a href="/invoices/generate"

class="btn btn-success pull-right">

Generate Invoices

</div>

<table class="table table-striped clearfix">

<thead>

<tr>

<th>#</th>

<th>Order Number</th>

<th>Invoice Date</th>

<th>Customer</th>

<th>Description</th>

<th class="text-right">Total</th>

</tr>

</thead>

<?php foreach ($this->invoices as $invoice): ?>

<tr>

<td>

<a href="/invoices/view/<?=

$this->escapeHtmlAttr($invoice->getId()) ?>">

<?= $this->escapeHtml($invoice->getId()) ?></\

a>

</td>

<td>

<?= $invoice->getInvoiceDate()->format('m/d/Y')\

?>

</td>

<td>

<?= $this->escapeHtml($invoice->getOrder()->get\

OrderNumber()) ?>

</td>

<td>

Our Application in Zend Framework 2 264

<a href="/customers/edit/<?=

$this->escapeHtmlAttr(

$invoice->getOrder()->getCustomer()->getId()

) ?>">

<?= $this->escapeHtml(

$invoice->getOrder()->getCustomer()->getNam\

e()

) ?>

</td>

<td>

<?= $this->escapeHtml($invoice->getOrder()->get\

Description()) ?>

</td>

<td class="text-right">

$ <?= number_format($invoice->getTotal(), 2) ?>

</td>

</tr>

<?php endforeach; ?>

</table>

If we visit /invoices in our browser, we should see our new, lovely,
empty grid. If we manually create some invoices in the database
and refresh again, we get a giant error. Zend returns a simple string
representation of the invoice_date, instead of a hydrated DateTime
object, so we now need to create an InvoiceHydrator

Invoice Hydration

We have two special needs for invoice hydration that fall out of the
realm of Zend’s standard ClassMethods hydrator:

1. We need to be able to hydrate a DateTime object, as we setup
our Invoice::$invoiceDate attribute to be an instance of
DateTime. Unfortunately, Zend doesn’t provide any magical
way for us to hydrate to these built-in objects.

Our Application in Zend Framework 2 265

2. We need to be able to hydrate the associated Invoice-

>$order Order relationship, so that we can do cool things
on the View Invoice page, like displaying which Order the
Invoice is for.

To handle the DateTime issue, we’re going to write a hydration
strategy⁴⁹ class to deal with it. Zend’s Hydrators have a concept
of strategies built in. These strategies can be added to instances of
hydrators to tell the hydrator how to handle a specific properties.

Going this route also affords us the luxury of reusing this for any
other DateTime properties we need to handle.

We’ll extend the Zend\Stdlib\Hydrator\Strategy\DefaultStrategy
class, which provides extensible extract() and hydrate() meth-
ods.

Let’s first define a spec for this strategy functionality:

// specs/hydrator/strategy/date.spec.php

use CleanPhp\Invoicer\Persistence\Hydrator\Strategy\Dat\

eStrategy;

describe('Peristence\Hydrator\Strategy\DateStrategy', f\

unction () {

beforeEach(function () {

$this->strategy = new DateStrategy();

});

describe('->hydrate()', function () {

it('should turn the string date into a DateTime obj\

ect', function () {

$value = '2014-12-26';

⁴⁹http://framework.zend.com/manual/current/en/modules/zend.stdlib.hydrator.
strategy.html

http://framework.zend.com/manual/current/en/modules/zend.stdlib.hydrator.strategy.html
http://framework.zend.com/manual/current/en/modules/zend.stdlib.hydrator.strategy.html
http://framework.zend.com/manual/current/en/modules/zend.stdlib.hydrator.strategy.html
http://framework.zend.com/manual/current/en/modules/zend.stdlib.hydrator.strategy.html

Our Application in Zend Framework 2 266

$obj = $this->strategy->hydrate($value);

assert($obj->format('Y-m-d') === $value, 'incorre\

ct datetime');

});

});

describe('->extract()', function () {

it('should turn the DateTime object into a string',\

function () {

$value = new DateTime('2014-12-28');

$string = $this->strategy->extract($value);

assert($string === $value->format('Y-m-d'));

});

});

});

We’re expecting that our hydrate() method will accept a string
date/time representation and turn it into a proper DateTime object,
and expecting that extract() will do the opposite, and turn a
DateTime object into a string date/time representation.

Now let’s write the actual class:

// src/Persistence/Hydrator/Strategy/DateStrategy.php

namespace CleanPhp\Invoicer\Persistence\Hydrator\Strate\

gy;

use DateTime;

use Zend\Stdlib\Hydrator\Strategy\DefaultStrategy;

class DateStrategy extends DefaultStrategy {

public function hydrate($value) {

Our Application in Zend Framework 2 267

if (is_string($value)) {

$value = new DateTime($value);

}

return $value;

}

public function extract($value) {

if ($value instanceof DateTime) {

$value = $value->format('Y-m-d');

}

return $value;

}

}

And so our spec requires, so our code does. This is pretty simple.

Now let’s spec out our actual InvoiceHydrator and figure out how
it should work. We’ll start with the extract() method:

// specs/hydrator/invoice.spec.php

use CleanPhp\Invoicer\Domain\Entity\Invoice;

describe('Persistence\Hydrator\InvoiceHydrator', functi\

on () {

describe('->extract()', function () {

it('should perform simple extraction on the object'\

, function () {

$invoice = new Invoice();

$invoice->setTotal(300.14);

$data = $this->hydrator->extract($invoice);

Our Application in Zend Framework 2 268

expect($data['total'])->to->equal($invoice->getTo\

tal());

});

it('should extract a DateTime object to a string', \

function () {

$invoiceDate = new \DateTime();

$invoice = new Invoice();

$invoice->setInvoiceDate($invoiceDate);

$data = $this->hydrator->extract($invoice);

expect($data['invoice_date'])

->to->equal($invoice->getInvoiceDate()->format(\

'Y-m-d'));

});

});

describe('->hydrate()', function () {

it('should perform simple hydration on the object',\

function () {

$data = ['total' => 300.14];

$invoice = $this->hydrator->hydrate($data, new In\

voice());

expect($invoice->getTotal())->to->equal($data['to\

tal']);

});

it('should hydrate a DateTime object', function () {

$data = ['invoice_date' => '2014-12-13'];

$invoice = $this->hydrator->hydrate($data, new In\

voice());

expect($invoice->getInvoiceDate()->format('Y-m-d'\

Our Application in Zend Framework 2 269

))

->to->equal($data['invoice_date']);

});

});

});

We’re doing four tests that the hydrator should do:

1. simple extraction on all properties
2. DateTime extraction on the invoice_date property
3. simple hydration on all attributes
4. DateTime hydration on the invoice_date attribute

To do this, we’ll rely on wrapping an instance of Zend’s ClassMeth-
ods hydrator, just like we did with the OrderHydrator, so let’s setup
a beforeEach() condition to setup an instance of the hydrator for
us:

// specs/hydrator/invoice.spec.php

use CleanPhp\Invoicer\Domain\Entity\Invoice;

use CleanPhp\Invoicer\Persistence\Hydrator\InvoiceHydra\

tor;

use Zend\Stdlib\Hydrator\ClassMethods;

describe('Persistence\Hydrator\InvoiceHydrator', functi\

on () {

beforeEach(function () {

$this->hydrator = new InvoiceHydrator(new ClassMeth\

ods());

});

// ...

});

Our Application in Zend Framework 2 270

This satisfies the specs requirement to have an instance variable
of $hydrator and injects our InvoiceHydrator with an instance of
ClassMethods. Let’s give it a try and see if our spec passes:

// src/Persistence/Hydrator/InvoiceHydrator.php

namespace CleanPhp\Invoicer\Persistence\Hydrator;

use CleanPhp\Invoicer\Persistence\Hydrator\Strategy\Dat\

eStrategy;

use Zend\Stdlib\Hydrator\ClassMethods;

use Zend\Stdlib\Hydrator\HydratorInterface;

class InvoiceHydrator implements HydratorInterface {

protected $wrappedHydrator;

public function __construct(ClassMethods $wrappedHydr\

ator) {

$this->wrappedHydrator = $wrappedHydrator;

$this->wrappedHydrator->addStrategy(

'invoice_date',

new DateStrategy()

);

}

public function extract($object) {

return $this->wrappedHydrator->extract($object);

}

public function hydrate(array $data, $object) {

return $this->wrappedHydrator->hydrate($data, $obje\

ct);

}

}

Our Application in Zend Framework 2 271

First, in the constructor, we attach the DateStrategy to our $wrapped-
Hydrator for the invoice_date column, so that the hydrator will
use that strategy when it encounters the invoice_date property.

For both extract() and hydrate(), we’re simply passing off the
work to Zend’s ClassMethods hydrator and returning the result,
knowing that it will use our DateStrategy when appropriate.

Now, let’s handle Order hydration. Let’s start by writing specs:

// specs/hydrator/invoice.spec.php

// ...

use CleanPhp\Invoicer\Domain\Entity\Order;

// ...

describe('Persistence\Hydrator\InvoiceHydrator', functi\

on () {

beforeEach(function () {

$this->repository = $this->getProphet()

->prophesize(

'CleanPhp\Invoicer\Domain\Repository\\' .

'OrderRepositoryInterface'

);

$this->hydrator = new InvoiceHydrator(

new ClassMethods(),

$this->repository->reveal()

);

});

describe('->extract()', function () {

// ...

it('should extract the order object', function () {

$invoice = new Invoice();

$invoice->setOrder((new Order())->setId(14));

Our Application in Zend Framework 2 272

$data = $this->hydrator->extract($invoice);

expect($data['order_id'])

->to->equal($invoice->getOrder()->getId());

});

});

describe('->hydrate()', function () {

// ...

it('should hydrate an Order entity on the Invoice',\

function () {

$data = ['order_id' => 500];

$order = (new Order())->setId(500);

$invoice = new Invoice();

$this->repository->getById(500)

->shouldBeCalled()

->willReturn($order);

$this->hydrator->hydrate($data, $invoice);

expect($invoice->getOrder())->to->equal($order);

$this->getProphet()->checkPredictions();

});

it('should hydrate the embedded order data', functi\

on () {

$data = ['order' => ['id' => 20]];

$invoice = new Invoice();

Our Application in Zend Framework 2 273

$this->hydrator->hydrate($data, $invoice);

expect($invoice->getOrder()->getId())->to->equal(\

$data['order']['id']);

});

});

});

The first thing we’re doing is injecting an instance of OrderRepos-
itoryInterface into the InvoiceHydrator so that it can query
for the necessary Order when hydrating. Next, we add a couple
scenarios to extract() and hydrate().

For extract(), we want to make sure that, if there’s an Order on
the Invoice, our extracted data should contain a key for order_id
with the value of the Order object’s $id.

For hydrate(), we test two things:

1. If there is an order_id, we should query the database for that
Order and assign it to the Invoice

2. If there is a nested order[id], we should hydrate an Order

object with that data and assign it to the Invoice.

Let’s update our hydrator:

// src/Persistence/Hydrator/InvoiceHydrator.php

namespace CleanPhp\Invoicer\Persistence\Hydrator;

use CleanPhp\Invoicer\Domain\Entity\Order;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

use CleanPhp\Invoicer\Persistence\Hydrator\Strategy\Dat\

eStrategy;

Our Application in Zend Framework 2 274

use Zend\Stdlib\Hydrator\HydratorInterface;

class InvoiceHydrator implements HydratorInterface {

protected $wrappedHydrator;

private $orderRepository;

public function __construct(

HydratorInterface $wrappedHydrator,

OrderRepositoryInterface $orderRepository

) {

$this->wrappedHydrator = $wrappedHydrator;

$this->wrappedHydrator->addStrategy(

'invoice_date',

new DateStrategy()

);

$this->orderRepository = $orderRepository;

}

public function extract($object) {

$data = $this->wrappedHydrator->extract($object);

if (array_key_exists('order', $data) &&

!empty($data['order'])) {

$data['order_id'] = $data['order']->getId();

unset($data['order']);

}

return $data;

}

public function hydrate(array $data, $invoice) {

$order = null;

if (isset($data['order'])) {

Our Application in Zend Framework 2 275

$order = $this->wrappedHydrator->hydrate(

$data['order'],

new Order()

);

unset($data['order']);

}

if (isset($data['order_id'])) {

$order = $this->orderRepository->getById($data['o\

rder_id']);

}

$invoice = $this->wrappedHydrator->hydrate($data, $\

invoice);

if ($order) {

$invoice->setOrder($order);

}

return $invoice;

}

}

Last, we need to update the definition of our InvoiceTable in the
service manager to use this new InvoiceHydrator:

Our Application in Zend Framework 2 276

// config/autoload/global.php

return [

// ...

'InvoiceHydrator' => function ($sm) {

return new InvoiceHydrator(

new ClassMethods(),

$sm->get('OrderTable')

);

},

// ...

'InvoiceTable' => function($sm) {

$factory = new TableGatewayFactory();

$hydrator = $sm->get('InvoiceHydrator');

return new InvoiceTable(

$factory->createGateway(

$sm->get('Zend\Db\Adapter\Adapter'),

$hydrator,

new Invoice(),

'invoices'

),

$hydrator

);

},

// ...

];

So we define a new entry of InvoiceHydrator to get our new
hydrator, and then update the entry for InvoiceTable to use this
new hydrator.

If we refresh our Invoice index page, we should now see data in the
grid (assuming you manually entered some into sqlite). All of our
specs should be passing, too.

Our Application in Zend Framework 2 277

We did it!

Generating Invoices

Creating Invoices is going to work a bit different than creating
Customers and creating Orders. Instead of providing the user with
a form to enter Invoice data, we’re going to look for uninvoiced Or-
ders, using the OrderRepository::getUninvoicedOrders()method.

For our UI, when clicking on the Generate Invoices button, we’re
going to display a page showing all Orders available for invoicing.
At the bottom, we’ll include another Generate Invoices button
which will take us to another action to actually generate those
invoices.

Finally, when we’re done generating the invoices, we’ll drop the
user on view that shows them the invoices were generated.

The first thing we’ll want to do is give our invoices route some
more liberty to serve up any action we drop in the controller, just
like we did for orders:

// module/Application/config/module.config.php

return [

// ...

'router' => [

'routes' => [

// ...

'invoices' => [

'type' => 'Segment',

'options' => [

'route' => '/invoices[/:action[/:id]]',

'defaults' => [

'controller' => 'Application\Controller\Inv\

oices',

Our Application in Zend Framework 2 278

'action' => 'index',

],

],

],

],

],

// ...

];

In order for our InvoicesController to get the list of uninvoiced
Orders, it will need an instance of the OrderRepositoryInterface,
so let’s update the controller to specify that:

// module/Application/src/Application/Controller/Invoic\

esController.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\InvoiceReposito\

ryInterface;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

use Zend\Mvc\Controller\AbstractActionController;

class InvoicesController extends AbstractActionControll\

er {

protected $invoiceRepository;

protected $orderRepository;

public function __construct(

InvoiceRepositoryInterface $invoices,

OrderRepositoryInterface $orders

) {

$this->invoiceRepository = $invoices;

Our Application in Zend Framework 2 279

$this->orderRepository = $orders;

}

// ...

}

Of course, to do this, we’ll need to update the controller configura-
tion to pass in an instance of the interface:

// ...

return [

// ...

'controllers' => [

// ...

'factories' => [

// ...

'Application\Controller\Invoices' => function ($s\

m) {

return new \Application\Controller\InvoicesCont\

roller(

$sm->getServiceLocator()->get('InvoiceTable'),

$sm->getServiceLocator()->get('OrderTable')

);

},

// ...

],

],

// ...

];

Let’s now work on our initial action that will present the list of
uninvoiced orders to the user:

Our Application in Zend Framework 2 280

public function generateAction() {

return [

'orders' => $this->orderRepository->getUninvoicedOr\

ders()

];

}

This simple action simply returns the uninvoiced orders. Nothing
more; nothing less.

Let’s build our view:

<!-- view/application/invoices/generate.phtml -->

<h2>Generate New Invoices</h2>

<p>

The following orders are available to be invoiced.

</p>

<?php if (empty($this->orders)): ?>

<p class="alert alert-info">

There are no orders available for invoice.

</p>

<?php else: ?>

<table class="table table-striped clearfix">

<thead>

<tr>

<th>#</th>

<th>Order Number</th>

<th>Customer</th>

<th>Description</th>

<th class="text-right">Total</th>

</tr>

</thead>

Our Application in Zend Framework 2 281

<?php foreach ($this->orders as $order): ?>

<tr>

<td>

<a href="/orders/view/<?= $this->escapeHtmlAttr\

($order->getId()) ?>">

<?= $this->escapeHtml($order->getId()) ?>

</td>

<td><?= $this->escapeHtml($order->getOrderNumber(\

)) ?></td>

<td>

<a href="/customers/edit/<?=

$this->escapeHtmlAttr($order->getCustomer()->\

getId()) ?>">

<?= $this->escapeHtml($order->getCustomer()->\

getName()) ?>

</td>

<td><?= $this->escapeHtml($order->getDescription(\

)) ?></td>

<td class="text-right">

$ <?= number_format($order->getTotal(), 2) ?>

</td>

</tr>

<?php endforeach; ?>

</table>

<form action="/invoices/generate-process" method="post"\

class="text-center">

<button type="submit" class="btn btn-primary">Gener\

ate Invoices</button>

</form>

<?php endif; ?>

This pretty simple view first checks to see if we have any orders,
and displays a helpful message if we don’t. If we do have orders,
we loop them and display them in a table, much like we do in our

Our Application in Zend Framework 2 282

index views.

Our table of orders is identical to the table in the
orders index view. A better solution would be to store
this code in a separate view file and load it using
Zend’s partial view helper⁵⁰. Give it a shot.

Next, we’ll want to implement the getUninvoicedOrders()method
of the OrderRepository:

// src/Persistence/Zend/DataTable/OrderTable.php

namespace CleanPhp\Invoicer\Persistence\Zend\DataTable;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

class OrderTable extends AbstractDataTable

implements OrderRepositoryInterface

{

public function getUninvoicedOrders() {

return $this->gateway->select(

'id NOT IN(SELECT order_id FROM invoices)'

);

}

}

This method simply returns all orders where the ID is not in the
invoices table.

If we visit /invoices/generate in our browser, we should see our
view listing all the orders available for invoicing.

⁵⁰http://framework.zend.com/manual/current/en/modules/zend.view.helpers.partial.
html

http://framework.zend.com/manual/current/en/modules/zend.view.helpers.partial.html
http://framework.zend.com/manual/current/en/modules/zend.view.helpers.partial.html
http://framework.zend.com/manual/current/en/modules/zend.view.helpers.partial.html

Our Application in Zend Framework 2 283

Next, we’ll see about implementing our second Generate Invoices
button. We’ll first need to update the InvoiceController to accept
an instance of the InvoicingService we wrote a couple chapters
ago:

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\InvoiceReposito\

ryInterface;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

use CleanPhp\Invoicer\Domain\Service\InvoicingService;

use Zend\Mvc\Controller\AbstractActionController;

class InvoicesController extends AbstractActionControll\

er {

protected $invoiceRepository;

protected $orderRepository;

protected $invoicing;

public function __construct(

InvoiceRepositoryInterface $invoices,

OrderRepositoryInterface $orders,

InvoicingService $invoicing

) {

$this->invoiceRepository = $invoices;

$this->orderRepository = $orders;

$this->invoicing = $invoicing;

}

// ...

}

Of course, we need to modify our controller config for this to work:

Our Application in Zend Framework 2 284

return [

// ...

'controllers' => [

// ...

'factories' => [

// ...

'Application\Controller\Invoices' => function ($s\

m) {

return new \Application\Controller\InvoicesCont\

roller(

$sm->getServiceLocator()->get('InvoiceTable'),

$sm->getServiceLocator()->get('OrderTable'),

new InvoicingService(

$sm->getServiceLocator()->get('OrderTable'),

new InvoiceFactory()

)

);

},

// ...

],

],

// ...

];

We’ll use this InvoicingService in our generateAction():

Our Application in Zend Framework 2 285

public function generateProcessAction() {

$invoices = $this->invoicing->generateInvoices();

$this->invoiceRepository->begin();

foreach ($invoices as $invoice) {

$this->invoiceRepository->persist($invoice);

}

$this->invoiceRepository->commit();

return [

'invoices' => $invoices

];

}

Here, we loop through the invoices generated by the InvoicingSer-
vice and persist them to the InvoiceRepository. Finally, we’ll
return the list of generated invoices to the view.

Speaking of the view, let’s create that:

<div class="page-header">

<h2>Generated Invoices</h2>

</div>

<?php if (empty($this->invoices)): ?>

<p class="text-center">

No invoices were generated.

</p>

<?php else: ?>

<table class="table table-striped clearfix">

<thead>

<tr>

<th>#</th>

Our Application in Zend Framework 2 286

<th>Order Number</th>

<th>Invoice Date</th>

<th>Customer</th>

<th>Description</th>

<th class="text-right">Total</th>

</tr>

</thead>

<?php foreach ($this->invoices as $invoice): ?>

<tr>

<td>

<a href="/invoices/view/<?=

$this->escapeHtmlAttr($invoice->getId()) ?>">

<?= $this->escapeHtml($invoice->getId()) ?></\

a>

</td>

<td>

<?= $invoice->getInvoiceDate()->format('m/d/Y')\

?>

</td>

<td>

<?= $this->escapeHtml($invoice->getOrder()->get\

OrderNumber()) ?>

</td>

<td>

<a href="/customers/edit/<?=

$this->escapeHtmlAttr(

$invoice->getOrder()->getCustomer()->getId()

) ?>">

<?= $this->escapeHtml(

$invoice->getOrder()->getCustomer()->getNam\

e()

) ?>

</td>

<td>

<?= $this->escapeHtml($invoice->getOrder()->get\

Our Application in Zend Framework 2 287

Description()) ?>

</td>

<td class="text-right">

$ <?= number_format($invoice->getTotal(), 2) ?>

</td>

</tr>

<?php endforeach; ?>

</table>

<?php endif; ?>

This view will show the user all the invoices generated on an
invoicing run. It looks just like our Invoice index view.

Our table of invoices is identical to the table in the
invoice index view. A better solution would be to
store this code in a separate view file and load it using
Zend’s partial view helper⁵¹. Give it a shot.

The last thing we have to do is setup our View Invoice action.

Viewing Invoices

Let’s create a viewAction(). We’ll steal from the OrderController
and modify it:

⁵¹http://framework.zend.com/manual/current/en/modules/zend.view.helpers.partial.
html

http://framework.zend.com/manual/current/en/modules/zend.view.helpers.partial.html
http://framework.zend.com/manual/current/en/modules/zend.view.helpers.partial.html
http://framework.zend.com/manual/current/en/modules/zend.view.helpers.partial.html

Our Application in Zend Framework 2 288

// module/Application/src/Application/Controller/Invoic\

esController.php

public function viewAction() {

$id = $this->params()->fromRoute('id');

$invoice = $this->invoiceRepository->getById($id);

if (!$invoice) {

$this->getResponse()->setStatusCode(404);

return null;

}

return [

'invoice' => $invoice,

'order' => $invoice->getOrder()

];

}

And a simple view:

<!-- module/Application/view/application/invoices/view.\

phtml -->

<div class="page-header clearfix">

<h2>Invoice #<?= $this->escapeHtml($this->invoice->ge\

tId()) ?></h2>

</div>

<table class="table table-striped">

<thead>

<tr>

<th colspan="2">Invoice Details</th>

</tr>

</thead>

Our Application in Zend Framework 2 289

<tr>

<th>Customer:</th>

<td>

<a href="/customers/edit/<?=

$this->escapeHtmlAttr($this->order->getCustomer\

()->getId()) ?>">

<?= $this->escapeHtml($this->order->getCustomer\

()->getName()) ?>

</td>

</tr>

<tr>

<th>Order:</th>

<td>

<a href="/orders/view/<?=

$this->escapeHtmlAttr($this->order->getId()) ?>\

">

<?= $this->escapeHtml($this->order->getOrde\

rNumber()) ?>

</td>

</tr>

<tr>

<th>Description:</th>

<td><?= $this->escapeHtml($this->order->getDescript\

ion()) ?></td>

</tr>

<tr>

<th>Total:</th>

<td>$ <?= number_format($this->invoice->getTotal(),\

2) ?></td>

</tr>

</table>

And with this, we’ve completed the sample application.

Our Application in Zend Framework 2 290

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 09-invoicing:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 09-invoicing

Doctrine 2

We have a working, functional app written in Zend Framework 2
that satisfies our business requirements. Let’s say for some reason
that we wanted to try a different approach to interacting with
the database. Maybe we’re about to scale up and add many more
features and have decided that we need an easier solution for
interacting with the database.

Whatever the reason is, let’s say that we have done extensive
research and have settled on using Doctrine ORM⁵².

Doctrine is a Data Mapper⁵³ based Object Relational Mapping
(ORM)⁵⁴ library. Essentially, Doctrine allows us to map database
tables and columns to PHP objects and attributes, and manipulate
data as if we were simply manipulating objects.

The Doctrine ORM project is built on top of the Doctrine DBAL⁵⁵
(Database Abstraction Layer) project, and utilizes the Doctrine
Common⁵⁶ project as well. We’ll get these tools simply by re-
quiring the doctrine/orm library via Composer. We’ll also need
symfony/yaml as we’re going to be writing some mapping files in
YAML:

composer require doctrine/orm symfony/yaml

⁵²http://www.doctrine-project.org/projects/orm.html
⁵³http://martinfowler.com/eaaCatalog/dataMapper.html
⁵⁴http://en.wikipedia.org/wiki/Object-relational_mapping
⁵⁵http://www.doctrine-project.org/projects/dbal.html
⁵⁶http://www.doctrine-project.org/projects/common.html

291

http://www.doctrine-project.org/projects/orm.html
http://martinfowler.com/eaaCatalog/dataMapper.html
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Object-relational_mapping
http://www.doctrine-project.org/projects/dbal.html
http://www.doctrine-project.org/projects/common.html
http://www.doctrine-project.org/projects/common.html
http://www.doctrine-project.org/projects/orm.html
http://martinfowler.com/eaaCatalog/dataMapper.html
http://en.wikipedia.org/wiki/Object-relational_mapping
http://www.doctrine-project.org/projects/dbal.html
http://www.doctrine-project.org/projects/common.html

Doctrine 2 292

Rebuilding the Persistence Layer

Our goal is to swap out the persistence library, which is part of our
infrastructure layer. Remember that this layer of the onion diagram
has nothing dependent upon it, meaning that we should be able
to entirely swap out this layer without having to touch any other
layers of the application.

Okay, I lied; there is one piece of the ZF2 appwe’ll need to tweak: the
configuration files. These files are the social lubricant that gets the
two layers talking. Without it, ZF2 simply wouldn’t be able to use
Doctrine. These two layers are pretty unique; every other layer just
relies on interfaces and dependency injection to make them work
together. But config is necessary whenever a database or third party
service is involved.

So let’s see how well we did earlier when we set up these layers.

Doctrine 2 293

Creating Doctrine-based Repositories

We’ll need to implement the repository interfaces in our domain
services layer using Doctrine. These concrete repositories will sit
on top of and utilize Doctrine’s EntityManager object, which, along
with the UnitofWork object, are the workhorses of Doctrine. In
many cases, these repositories methods will simply be a proxy to
the EntityManager itself.

Let’s start by creating an AbstractDoctrineRepository that will
encapsulate the vast majority of the functionality that each indi-
vidual repository can inherit from, much like we did with the Zend
Data Tables:

// src/Persistence/Doctrine/Repository/AbstractDoctrine\

Repository.php

namespace CleanPhp\Invoicer\Persistence\Doctrine\Reposi\

tory;

use CleanPhp\Invoicer\Domain\Entity\AbstractEntity;

use CleanPhp\Invoicer\Domain\Repository\RepositoryInter\

face;

use Doctrine\ORM\EntityManager;

abstract class AbstractDoctrineRepository implements Re\

positoryInterface {

protected $entityManager;

protected $entityClass;

public function __construct(EntityManager $em) {

if (empty($this->entityClass)) {

throw new \RuntimeException(

get_class($this) . '::$entityClass is not defin\

ed'

Doctrine 2 294

);

}

$this->entityManager = $em;

}

public function getById($id) {

return $this->entityManager->find($this->entityClas\

s, $id);

}

public function getAll() {

return $this->entityManager->getRepository($this->e\

ntityClass)

->findAll();

}

public function getBy(

$conditions = [],

$order = [],

$limit = null,

$offset = null

) {

$repository = $this->entityManager->getRepository(

$this->entityClass

);

$results = $repository->findBy(

$conditions,

$order,

$limit,

$offset

);

return $results;

Doctrine 2 295

}

public function persist(AbstractEntity $entity) {

$this->entityManager->persist($entity);

return $this;

}

public function begin() {

$this->entityManager->beginTransaction();

return $this;

}

public function commit() {

$this->entityManager->flush();

$this->entityManager->commit();

return $this;

}

}

This class has a member named $entityClass, which must be
supplied with the fully qualified name of the Entity class that the
repository will be managing. To ensure this requirement is met, we
check it in the constructor and throw an exception if no string is
provided. Each subclass will be required to provide a value for this
member variable.

Additionally, the constructor accepts an instance of Doctrine’s
EntityManager, which we use extensively in the rest of the methods
to get the work done.

Each of the additional methods simply implements a method of the
interface, and uses the EntityManager to retrieve and persist data
as necessary.

With this abstract class in place, we can start to implement some
concrete repositories.

Doctrine 2 296

CustomerRepository

// src/Persistence/Doctrine/Repository/CustomerReposito\

ry.php

namespace CleanPhp\Invoicer\Persistence\Doctrine\Reposi\

tory;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

class CustomerRepository extends AbstractDoctrineReposi\

tory

implements CustomerRepositoryInterface {

protected $entityClass = 'CleanPhp\Invoicer\Domain\En\

tity\Customer';

}

Since we don’t have any custom methods outside of what Ab-

stractDoctrineRepository defines, we’re done!

OrderRepository

// src/Persistence/Doctrine/Repository/OrderRepository.\

php

namespace CleanPhp\Invoicer\Persistence\Doctrine\Reposi\

tory;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

use Doctrine\ORM\Query\Expr\Join;

class OrderRepository extends AbstractDoctrineRepository

Doctrine 2 297

implements OrderRepositoryInterface {

protected $entityClass = 'CleanPhp\Invoicer\Domain\En\

tity\Order';

public function getUninvoicedOrders() {

$builder = $this->entityManager->createQueryBuilder\

()

->select('o')

->from($this->entityClass, 'o')

->leftJoin(

'CleanPhp\Invoicer\Domain\Entity\Invoice',

'i',

Join::WITH,

'i.order = o'

)

->where('i.id IS NULL');

return $builder->getQuery()->getResult();

}

}

The OrderRepositoryInterface specifies an additional method to
retrieve all orders without invoices, so we have implemented that
functionality using Doctrine’s QueryBuilder class, which allows
us to define queries against entity objects. Note that this is a bit
different from doing queries against a database schema: we’re using
the language of the domain, not the database. This query language
is called Doctrine Query Language (DQL)⁵⁷.

Doctrine provides extensive documentation⁵⁸ for the QueryBuilder
class if you are interested more details.

⁵⁷http://doctrine-orm.readthedocs.org/en/latest/reference/dql-doctrine-query-
language.html

⁵⁸http://doctrine-orm.readthedocs.org/en/latest/reference/query-builder.html

http://doctrine-orm.readthedocs.org/en/latest/reference/dql-doctrine-query-language.html
http://doctrine-orm.readthedocs.org/en/latest/reference/query-builder.html
http://doctrine-orm.readthedocs.org/en/latest/reference/dql-doctrine-query-language.html
http://doctrine-orm.readthedocs.org/en/latest/reference/dql-doctrine-query-language.html
http://doctrine-orm.readthedocs.org/en/latest/reference/query-builder.html

Doctrine 2 298

Invoice Repository

The InvoiceRepository is another simple subclass that requires no
further customization:

// src/Persistence/Doctrine/Repository/InvoiceRepositor\

y.php

namespace CleanPhp\Invoicer\Persistence\Doctrine\Reposi\

tory;

use CleanPhp\Invoicer\Domain\Repository\InvoiceReposito\

ryInterface;

class InvoiceRepository extends AbstractDoctrineReposit\

ory

implements InvoiceRepositoryInterface {

protected $entityClass = 'CleanPhp\Invoicer\Domain\En\

tity\Invoice';

}

Entity Mapping

Doctrine relies on mapping files⁵⁹ to gain information about the
database schema and how tomap that database schema to the entity
objects. Doctrine is an example over configuration over convention.
Other ORMs, especially ones that use the ActiveRecord⁶⁰ pattern,
require way less configuration, but also make deep assumptions
about the database.

There are three methods we can use to generate these mappings:

⁵⁹http://doctrine-orm.readthedocs.org/en/latest/reference/basic-mapping.html
⁶⁰http://www.martinfowler.com/eaaCatalog/activeRecord.html

http://doctrine-orm.readthedocs.org/en/latest/reference/basic-mapping.html
http://www.martinfowler.com/eaaCatalog/activeRecord.html
http://doctrine-orm.readthedocs.org/en/latest/reference/basic-mapping.html
http://www.martinfowler.com/eaaCatalog/activeRecord.html

Doctrine 2 299

1. DocBlock class annotations on the entities themselves
2. XML Mapping Files
3. YAML Mapping Files

The first option is by far the most common, and is even a rec-
ommended standard by Symfony⁶¹. The second option is for super
enterprise people, and the third option is the one we’re going to go
with.

I have two reasons for not using DocBlocks:

• it leaks persistence information into the domain layer, and
the domain layer should not be concerned with how the data
is persisted

• it makes the code rely on comments to function properly.
I’m a strong believer that comments should not have a direct
effect on how code behaves at runtime.

The second complaint mostly goes away if PHP ever implements
true annotations in the language, but for now, it’s a giant code smell
for me.

I have one reason for not using XML: it’s XML.

Really, though, go with whatever method you think is best. It’s
small potatoes in the grand scheme of things, and none of the three
methods will affect how the repositories work.

We’ll store thesemapping files in in the Persistence/Doctrine/Map-
ping folder.

Customers.dcm.yml

This file, CleanPhp.Invoicer.Domain.Entity.Customer.dcm.yml
dictates mapping information for the Customer entity:

⁶¹http://symfony.com/doc/current/best_practices/business-logic.html#doctrine-
mapping-information

http://symfony.com/doc/current/best_practices/business-logic.html#doctrine-mapping-information
http://symfony.com/doc/current/best_practices/business-logic.html#doctrine-mapping-information
http://symfony.com/doc/current/best_practices/business-logic.html#doctrine-mapping-information
http://symfony.com/doc/current/best_practices/business-logic.html#doctrine-mapping-information

Doctrine 2 300

CleanPhp\Invoicer\Domain\Entity\Customer:

type: entity

table: customers

id:

id:

type: bigint

generator:

strategy: IDENTITY

fields:

name:

length: 100

email:

length: 50

Order.dcm.yml

This file, CleanPhp.Invoicer.Domain.Entity.Order.dcm.yml dic-
tates mapping information for the Order entity:

CleanPhp\Invoicer\Domain\Entity\Order:

type: entity

table: orders

id:

id:

type: bigint

generator:

strategy: IDENTITY

fields:

orderNumber:

column: order_number

length: 20

description:

total:

type: decimal

Doctrine 2 301

precision: 10

scale: 2

manyToOne:

customer:

targetEntity: CleanPhp\Invoicer\Domain\Entity\Cus\

tomer

inversedBy: orders

Invoice.dcm.yml

This file, CleanPhp.Invoicer.Domain.Entity.Invoice.dcm.yml dic-
tates mapping information for the Invoice entity:

CleanPhp\Invoicer\Domain\Entity\Invoice:

type: entity

table: invoices

id:

id:

type: bigint

generator:

strategy: IDENTITY

fields:

invoiceDate:

column: invoice_date

type: date

total:

type: decimal

precision: 10

scale: 2

manyToOne:

order:

targetEntity: CleanPhp\Invoicer\Domain\Entity\Ord\

er

inversedBy: invoices

Doctrine 2 302

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 10-doctrine-repo-
mappings:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 10-doctrine-repo-mappings

Integrating Zend Framework and Doctrine

The next step is to wire up Zend Framework and Doctrine to work
together. This turns out to be pretty simple thanks to DoctrineOrm-
Module⁶², a ZF2 module written by the Doctrine team to integrate
the two projects.

We’ll grab the latest version with Composer:

composer require doctrine/doctrine-orm-module

DoctrineOrmModule will bring all the necessary Doctrine depen-
dencies along with it. Now we just have to configure this module
within Zend Framework and we’re ready to use it.

The first thing we’ll want to do is enable the DoctrineORMModule
and DoctrineModule (a dependency of DoctrineORMModule):

⁶²https://github.com/doctrine/DoctrineORMModule

https://github.com/doctrine/DoctrineORMModule
https://github.com/doctrine/DoctrineORMModule
https://github.com/doctrine/DoctrineORMModule

Doctrine 2 303

// config/application.config.php

return [

'modules' => [

'DoctrineModule',

'DoctrineORMModule',

'Application',

],

// ...

];

Next, we’ll drop in a global configuration file to define the basics of
the Doctrine setup, including which mapping driver to use, where
to find the entities, and where to find the mapping files:

// config/autoload/db.global.php

return [

'doctrine' => [

'driver' => [

'orm_driver' => [

'class' => 'Doctrine\ORM\Mapping\Driver\YamlDri\

ver',

'cache' => 'array',

'paths' => [

realpath(__DIR__ . '/../../src/Domain/Entity'\

),

realpath(__DIR__ . '/../../src/Persistence/Do\

ctrine/Mapping')

],

],

'orm_default' => [

'drivers' => ['CleanPhp\Invoicer\Domain\Entity'\

=> 'orm_driver']

Doctrine 2 304

]

],

],

];

We’ll also modify db.local.php file to setup the database connec-
tion information for DoctrineModule. This is the same information
we had previously, just modified slightly to fit the format expected
by DoctrineModule:

// config/autoload/db.local.php

return [

'doctrine' => [

'connection' => [

'orm_default' => [

'driverClass' => 'Doctrine\DBAL\Driver\PDOSqlit\

e\Driver',

'params' => [

'path' => __DIR__ . '/../../data/database.db',

]

]

],

],

];

And that’s it! Zend Framework is now configured to use Doctrine,
so let’s start using it.

Injecting the New Repositories

The only thing left to do is to start using Doctrine. We’ll want to
inject these new repositories into the controllers so they can start
using them.

Doctrine 2 305

Rather than put a bunch of duplicated code in the service config,
we’re going to create a Zend ServiceManager Factory that will be
responsible for instantiating all of the Repositories.

// src/Persistence/Doctrine/Repository/RepositoryFactor\

y;

namespace CleanPhp\Invoicer\Persistence\Doctrine\Reposi\

tory;

use RuntimeException;

use Zend\ServiceManager\FactoryInterface;

use Zend\ServiceManager\ServiceLocatorInterface;

class RepositoryFactory implements FactoryInterface {

public function createService(ServiceLocatorInterface\

$sl) {

$class = func_get_arg(2);

$class = 'CleanPhp\Invoicer\Persistence\Doctrine\Re\

pository\\' . $class;

if (class_exists($class, true)) {

return new $class(

$sl->get('Doctrine\ORM\EntityManager')

);

}

throw new RuntimeException(

'Unknown Repository requested: ' . $class

);

}

}

This factory simply does a string replace on the passed service
locator key (which thanks to ZF2 is hidden within func_get_-

Doctrine 2 306

args()) to normalize it into the fully qualified namespace for the
requested repository, instantiates the resulting class, and returns the
instantiated object.

If the factory can’t find the class for the requested repository, it
throws a RuntimeException.

Next, we’ll make a couple entries in the service config to utilize this
RepositoryFactory when any of the new Doctrine-base reposito-
ries are requested:

// config/autoload/global.php

return [

'service_config' => [

'factories' => [

'OrderHydrator' => function ($sm) {

return new OrderHydrator(

new ClassMethods(),

$sm->get('CustomerRepository')

);

},

'CustomerRepository' =>

'CleanPhp\Invoicer\Persistence\Doctrine\Reposit\

ory\RepositoryFactory',

'InvoiceRepository' =>

'CleanPhp\Invoicer\Persistence\Doctrine\Reposit\

ory\RepositoryFactory',

'OrderRepository' =>

'CleanPhp\Invoicer\Persistence\Doctrine\Reposit\

ory\RepositoryFactory',

]

]

];

Finally, we’ll update the controller config to inject these new

Doctrine 2 307

repositories into the controllers:

// module/Application/config/module.config.php

return [

// ...

'controllers' => [

'invokables' => [

'Application\Controller\Index' =>

'Application\Controller\IndexController'

],

'factories' => [

'Application\Controller\Customers' => function (\

$sm) {

return new \Application\Controller\CustomersCo\

ntroller(

$sm->getServiceLocator()->get('CustomerRepos\

itory'),

new CustomerInputFilter(),

new ClassMethods()

);

},

'Application\Controller\Invoices' => function ($\

sm) {

return new \Application\Controller\InvoicesCon\

troller(

$sm->getServiceLocator()->get('InvoiceReposi\

tory'),

$sm->getServiceLocator()->get('OrderReposito\

ry'),

new InvoicingService(

$sm->getServiceLocator()->get('OrderReposi\

tory'),

new InvoiceFactory()

)

Doctrine 2 308

);

},

'Application\Controller\Orders' => function ($sm\

) {

return new \Application\Controller\OrdersContr\

oller(

$sm->getServiceLocator()->get('OrderReposito\

ry'),

$sm->getServiceLocator()->get('CustomerRepos\

itory'),

new OrderInputFilter(),

$sm->getServiceLocator()->get('OrderHydrator\

')

);

},

],

],

// ...

];

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 11-doctrine-integra-
tion:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 11-doctrine-integration

Doctrine 2 309

Updating the Hydrators

The last update we need to make to the persistence layer is updating
the hydrators to work with Doctrine. Doctrine handles the actual
hydration pretty well. In fact, we don’t need the InvoiceHydrator
anymore. We can go ahead and delete that, which means we can
also delete the DateStrategy strategy we built.

We’ll also make some updates to the OrderHydrator, first starting
with the specs:

// specs/hydrator/order.spec.php

use CleanPhp\Invoicer\Domain\Entity\Customer;

use CleanPhp\Invoicer\Domain\Entity\Order;

use CleanPhp\Invoicer\Persistence\Hydrator\OrderHydrato\

r;

use Zend\Stdlib\Hydrator\ClassMethods;

describe('Persistence\Hydrator\OrderHydrator', function\

() {

beforeEach(function() {

$this->repository = $this->getProphet()->prophesize(

'CleanPhp\Invoicer\Domain\Repository\CustomerRepo\

sitoryInterface'

);

$this->hydrator = new OrderHydrator(

new ClassMethods(),

$this->repository->reveal()

);

});

describe('->hydrate()', function () {

it('should perform basic hydration of attributes', \

function () {

Doctrine 2 310

$data = [

'id' => 100,

'order_number' => '20150101-019',

'description' => 'simple order',

'total' => 5000

];

$order = new Order();

$this->hydrator->hydrate($data, $order);

expect($order->getId())->to->equal(100);

expect($order->getOrderNumber())->to->equal('2015\

0101-019');

expect($order->getDescription())->to->equal('simp\

le order');

expect($order->getTotal())->to->equal(5000);

});

it('should hydrate the embedded customer data', fun\

ction () {

$data = ['customer' => ['id' => 20]];

$order = new Order();

$this->repository->getById(20)->willReturn((new C\

ustomer())->setId(20));

$this->hydrator->hydrate($data, $order);

assert(

$data['customer']['id'] === $order->getCustomer\

()->getId(),

'id does not match'

);

});

});

Doctrine 2 311

describe('->extract()', function () {

// ...

});

});

We’ve removed the test case should hydrate a Customer entity on
the Order and updated the should hydrate the embedded customer
data test case to expect the repository to be used to query for the
Customer.

We don’t need the hydration of the customer via customer_id as
that’s not the way Doctrine provides the data, and Doctrine takes
care of the hydration for us.

As Doctrine’s UnitOfWork needs to know about all existing entities,
otherwise it tries to re-INSERT them, we’ve updated the hydrator
to query for the customer by ID if it encounters an ID. Another way
we could solve this problem is to use the EntityManager::merge()
method to make Doctrine aware of the entity.

Let’s make the corresponding changes to the OrderHydrator:

// src/Persistence/Hydrator/OrderHydrator.php

namespace CleanPhp\Invoicer\Persistence\Hydrator;

use CleanPhp\Invoicer\Domain\Entity\Order;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use Zend\Stdlib\Hydrator\HydratorInterface;

class OrderHydrator implements HydratorInterface {

// ...

public function hydrate(array $data, $order) {

if (isset($data['customer'])

Doctrine 2 312

&& isset($data['customer']['id'])) {

$data['customer'] = $this->customerRepository->ge\

tById(

$data['customer']['id']

);

}

return $this->wrappedHydrator->hydrate(

$data,

$order

);

}

}

Now if we start clicking around the application, it should continue
to work! It looks, from a UI and interaction perspective, like nothing
has changed. Under the hood, however, we’re using an entirely
different database architecture.

That’s very powerful.

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in ac-
tion, you can checkout the tag 12-doctrine-hydrators:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 12-doctrine-hydrators

Summary

The application is now using Doctrine for its underlying database
abstraction layer. We didn’t have to change any application code

Doctrine 2 313

in the process, as the application code relied only on interfaces and
dependency injection. Since what is injected works as it should, the
application continues to function without further modifications.

We also have the benefit of having to write much less code to get
database interaction to work. In most cases, we’re simply proxying
off to Doctrine’s EntityManager to do the work for us.

Switching to Laravel

We’re going to try a much larger undertaking for our next ex-
periment. Up until now, we’ve used Zend Framework 2 for our
controller services + view layer of the application. Zend Framework
2 is great, if not over complicated, but everyone seems to love
Laravel, so let’s stop fighting against the current.

The application layer is the biggest part of our application. In a
real application, it would house dozens upon dozens of controllers,
hundreds of views, and many, many routes and configuration.

Our goal this entire time has been to lean on the framework as little
as possible. This was the purpose of our domain model and domain
services layers.

While wewill have to rewrite, or at least tweak, all of our controllers
and views, we should not have to touch any of our domain,
persistence, and business logic. If we find ourselves dipping into
those layers as part of switching frameworks, then we’ve done
something very wrong.

Let’s get started.

Setting up Laravel

Let’s get started by setting up a new Laravel project. Once we have
the source code downloaded, we’ll go ahead and move our existing
core (located in src/), to the Laravel project.

For the most part, we’ll follow the official Laravel docs⁶³.

⁶³http://laravel.com/docs

314

http://laravel.com/docs
http://laravel.com/docs

Switching to Laravel 315

Let’s start by creating a new Laravel project at cleanphp-laravel
and then running the artisan fresh command to purge some of
the scaffolding we don’t need:

composer create-project laravel/laravel --prefer-dist c\

leanphp-laravel

cd cleanphp-laravel

php artisan fresh

Next, we’ll copy over some of our code from our original project,
starting with the .git directory to retain our source control history,
as well as the src/ and specs/ directories, and the Peridot config-
uration file, peridot.php.

We’re going to rename src/ to core/ (for no real good reason other
than src is short for “source” and we have a lot of source code
outside of this directory):

cp -R ../cleanphp-example/.git .

cp -R ../cleanphp-example/src ../cleanphp-example/specs\

\

../cleanphp-example/peridot.php .

git mv src core

Let’s also add an entry to the autoload section of composer.json
to autoload code in our core/ directory:

Switching to Laravel 316

"autoload": {

"classmap": [

"database"

],

"psr-4": {

"App\\": "app/",

"CleanPhp\\Invoicer\\": "core/"

}

},

This requires us to reload the Composer autoloader so that it
contains the autoload specification for this new entry:

composer dump-autoload

We’ll also want to bring our database along with us:

cp -R ../cleanphp-example/data/database.db storage/data\

base.db

git mv data/database.db storage/database.db

Next, let’s grab our application.css file from the old project and
move it over, and remove some of the CSS and fonts that come
default with Laravel:

mkdir public/css

cp ../cleanphp-example/public/css/application.css publi\

c/css/

rm -rf public/css/app.css public/favicon.ico public/fon\

ts

If we run git status, we’ll see that we created a mess of our source
control by moving all of these things around. Let’s go add some of
the important Laravel code, and remove some of the ZF2 stuff we
no longer need:

Switching to Laravel 317

git add .gitignore app/ artisan bootstrap/ \

composer.* config/ public/index.php resources/ \

server.php storage/

git rm -rf data/ init_autoloader.php module/

This Laravel application should now be ready for us to start porting
over some of the code from our ZF2 project. Let’s fire up the
development server and have a look in the browser:

php artisan serve

If we visit http://localhost:8000 in the browser, we should see the
Laravel welcome page.

If you run git status again, you’ll notice we still have some
uncommitted files. We can ignore those for now, or go ahead and
get rid of them.

Our last step is to get Peridot installed again and verify that our
specs are all still passing:

composer require --dev peridot-php/peridot peridot-php/\

leo \

peridot-php/peridot-watcher-plugin peridot-php/perido\

t-prophecy-plugin

And run Peridot:

./vendor/bin/peridot specs/

Whoops! Looks like our specs are failing due to missing ZF2
dependencies. We’ll fix that in a bit.

Switching to Laravel 318

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 13-laravel-setup:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 13-laravel-setup

Configuring Doctrine

Next up, we’re going to configure Doctrine. By default, Laravel uses
Eloquent ORM⁶⁴. We’ll opt to keep using Doctrine for now to limit
how much code we’ll need to rewrite.

To use Doctrine, we’ll need to install a third party provider to
make the two projects talk. In the course of writing this book, I
reviewed several of these “bridge” libraries. Unfortunately, all of
them either only worked for Laravel 4, depended on broken or non
existent versions or commits of Doctrine, or only supported XML
or Annotation based mapping files.

So I quickly wrote a very minimal library to integrate the two
projects. We’ll use this in our examples, but please don’t use it in
production. Bad things may very well happen.

To hopefully prevent public usage, this library was not published
on Packagist, so we’ll have to manually add a repository to the
composer.json file:

⁶⁴http://laravel.com/docs/eloquent

http://laravel.com/docs/eloquent
http://laravel.com/docs/eloquent

Switching to Laravel 319

"repositories": [

{

"type": "vcs",

"url": "https://github.com/mrkrstphr/laravel-indoct\

rinated.git"

}

],

"require": {

"laravel/framework": "5.0.*",

"mrkrstphr/laravel-indoctrinated": "dev-master"

},

Run composer update to install this new repository, which will
bring along with it doctrine/orm and its dependencies.

Once that’s installed, we’ll need to add the new provider to the array
of providers located at config/app.php:

return [

'providers' => [

// ...

'Mrkrstphr\LaravelIndoctrinated\DoctrineOrmServiceP\

rovider'

],

// ...

];

Next, we’ll run a command to publish this provider, which generates
a sample config file for us:

php artisan vendor:publish \

--provider "Mrkrstphr\LaravelIndoctrinated\DoctrineOr\

mServiceProvider"

Now let’s modify our config file located at config/doctrine.php:

Switching to Laravel 320

return [

// database connection information is managed in Lara\

vel's

// config/database.php file

'mappings' => [

'type' => 'yaml',

'paths' => [__DIR__ . '/../core/Persistence/Doctrin\

e/Mapping']

],

];

As the config file says, our database connection information will be
managed by Laravel. Let’s change the config/database.php file as
follows:

return [

'default' => 'sqlite',

'connections' => [

'sqlite' => [

'driver' => 'sqlite',

'database' => storage_path() . '/database.db',

]

]

];

We now have Laravel configured to talk to Doctrine and setup to
use our database.db sqlite database.

Switching to Laravel 321

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 14-laravel-doctrine:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 14-laravel-doctrine

Setting up the Dashboard

By default, Laravel sets up a WelcomeController located at
app/Http/Controllers/WelcomeController.php. Let’s rename this
to DashboardController.php and modify its contents:

// app/Http/Controllers/DashboardController.php

namespace App\Http\Controllers;

class DashboardController extends Controller {

public function indexAction() {

return view('dashboard');

}

}

Let’s also move the resources/views/welcome.blade.php tem-
plate file to dashboard.blade.php and copy over our dashboard.phtml
from our previous code:

Switching to Laravel 322

@extends('layouts.layout')

@section('content')

<div class="jumbotron">

<h1>Welcome to CleanPhp Invoicer!</h1>

<p>

This is the case study project for The Clean Archit\

ecture

in PHP, a book about writing excellent PHP code.

</p>

<p>

<a href="https://leanpub.com/cleanphp" class="btn b\

tn-primary">

Check out the Book

</p>

</div>

@stop

Laravel ships with a templating engine called Blade⁶⁵. In the exam-
ple above, we have a Blade template that extends another template
named layouts.layout, which will be our overall layout. Next,
we define a section named content with the actual content of our
template.

Let’s create the layout now so that we can see how Blade merges the
two.We’ll place this at resources/views/layouts/layout.blade.php:

⁶⁵http://laravel.com/docs/templates

http://laravel.com/docs/templates
http://laravel.com/docs/templates

Switching to Laravel 323

<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>CleanPhp</title>

<meta name="viewport" content="width=device-width, in\

itial-scale=1.0">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<link href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.1\

/css/bootstrap.min.css"

media="screen" rel="stylesheet" type="text/css">

<link href="/css/application.css" media="screen"

rel="stylesheet" type="text/css">

</head>

<body>

<nav class="navbar navbar-default navbar-fixed-top" rol\

e="navigation">

<div class="container">

<div class="navbar-header">

CleanPhp

</div>

<div class="collapse navbar-collapse">

<ul class="nav navbar-nav">

Customers

Orders

Invoices

</div>

</div>

Switching to Laravel 324

</nav>

<div class="container">

<?php if (Session::has('success')): ?>

<div class="alert alert-success"><?= Session::get('su\

ccess') ?></div>

<?php endif; ?>

@yield('content')

<hr>

<footer>

<p>I'm the footer.</p>

</footer>

</div>

</body>

</html>

This layout file is largely the same as our layout in ZF2. We’re using
Blade to render the area named content, which was defined in our
dashboard.blade.php template file, at a specific spot. Each of our
templates going forward will define this content section.

We’re also using Laravel’s Session facade to grab data from the
session, namely our flash message for when we need to alert the
user to something awesome happening (we’ll get to that in a bit
when we start working on the other controllers).

The last thing we need to update is our route for the dashboard. Lar-
avel routes are stored in the app/Http/routes.php file. Currently,
the only route defined is still pointing at the defunct WelcomeCon-
troller. Let’s fix that:

Route::get('/', 'DashboardController@indexAction');

Nowwe’re instructing Laravel to render the DashboardController::indexAction()
when a GET request is made to /.

Try it out in your browser. You should see our lovely dashboard,
back in action!

Switching to Laravel 325

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in ac-
tion, you can checkout the tag 15-laravel-dashboard:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 15-laravel-dashboard

Customer Management

Now let’s move on to managing customers. We’ll start this time by
defining the routes we need for the CustomersController:

// app/Http/routes.php

// ...

Route::get('/customers', 'CustomersController@indexActi\

on');

Route::match(

['get', 'post'],

'/customers/new',

'CustomersController@newOrEditAction'

);

Route::match(

['get', 'post'],

'/customers/edit/{id}',

'CustomersController@newOrEditAction'

);

These new routes are set up to the actions we laid out in Zend

Switching to Laravel 326

Framework 2. So let’s copy over our CustomersControllerwith the
necessary changes to make it work for Laravel.

We’ll start by defining our basic controller:

// app/Http/Controllers/CustomersController.php

namespace App\Http\Controllers;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

class CustomersController extends Controller {

private $customerRepository;

public function __construct(

CustomerRepositoryInterface $customerRepository

) {

$this->customerRepository = $customerRepository;

}

// ...

}

This basic controller looks almost exactly like it did in ZF2, although
missing some dependencies (for now), and has beenmoved to a new
namespace App\Http\Controllers.

Laravel ships with a very powerful Service Container⁶⁶ that handles
dependency injection very well. When CustomersController is
instantiated, it will automatically search the container for Cus-

tomerRepositoryInterface and load it if found. If not found, it
will try to instantiate the object, although in our case, it will not try
to instantiate an interface.

⁶⁶http://laravel.com/docs/container

http://laravel.com/docs/container
http://laravel.com/docs/container

Switching to Laravel 327

So the next thing we need to do is get an entry for Customer-

RepositoryInterface into the service container. We’ll do so in the
app/Providers/AppServiceProvider.php file:

// app/Providers/AppServiceProvider.php

namespace App\Providers;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use CleanPhp\Invoicer\Persistence\Doctrine\Repository\C\

ustomerRepository;

use Illuminate\Support\ServiceProvider;

class AppServiceProvider extends ServiceProvider {

public function register() {

$this->app->bind(

CustomerRepositoryInterface::class,

function ($app) {

return new CustomerRepository(

$app['Doctrine\ORM\EntityManagerInterface']

);

}

);

}

}

We bind an entry into the service manager with the fully qual-
ified namespace name of CustomerRepositoryInterface, using
the ::class keyword off that object (if we refactor this class and
rename it, we won’t have to worry about missing some string-based
references). When invoked, this entry will return an instantiated
CustomerRepository, passing along an instance of Doctrine’s En-
tityManager, which comes from the Doctrine provider we setup
earlier.

Switching to Laravel 328

This is all we need to do to take care of the instantiate of the
controller. Laravel takes care of the rest!

Let’s move on to creating the Customer listing.

Customer Listing

We’ll start with the listing of customers (the /customers route,
which translates to indexAction()

Let’s add our indexAction() to CustomersController:

public function indexAction() {

$customers = $this->customerRepository->getAll();

return view('customers/index', ['customers' => $custo\

mers]);

}

Just like in ZF2, we’re pulling all the customers out of the Customer-
sRepository, and passing them along to the view. We’re using
Laravel’s view() helper to define the template to render and the
data to provide to it.

Let’s create our view resources/views/customers/index.blade.php:

@extends('layouts.layout')

@section('content')

<div class="page-header clearfix">

<h2 class="pull-left">Customers</h2>

<a href="/customers/new" class="btn btn-success pull-\

right">

Create Customer

</div>

<table class="table">

Switching to Laravel 329

<thead>

<tr>

<th>#</th>

<th>Name</th>

<th>Email</th>

</tr>

</thead>

<?php foreach ($customers as $customer): ?>

<tr>

<td>

getId()\

}}}">

{{{ $customer->getId() }}}

</td>

<td>{{{ $customer->getName() }}}</td>

<td>{{{ $customer->getEmail() }}}</td>

</tr>

<?php endforeach; ?>

</table>

@stop

Just like in our dashboard.blade.php, we’re stating that this tem-
plate extends
layouts/layout.blade.php and we’re defining a section named
“content” with our actual view.

New here is the usage of Blades templating syntax. Instead of using
echo statements, we’re wrapping the variable we want printed with
{{{ }}}, which is Laravel’s escape and output syntax. This protects
us against XSS injections by filtering user input data.

Now if we navigate to the Customers page, or manually visit
/customers, we should see a populated grid of our customers.

Switching to Laravel 330

Adding and Editing Customers

Next, we’ll recreate our ability to add and edit customers. We’ll
need a few more dependencies to make this happen, namely our
CustomerInputFilter and Customer object hydrator.

These classes exist in our core/ directory, but they are dependent
upon some Zend Framework libraries. We purposefully put these
classes in the src/ directory when working in ZF2, instead of
putting them within the module/ directory structure so that we
could reuse them.

ZF2 is organized as a collection of components. Namely, we’ll need
the Zend InputFilter and Zend StdLib (which houses the hydration
classes) components. Unfortunately, ZF2 isn’t as modular as it sets
itself up to be. These two libraries actually depend on the Zend
ServiceManager and Zend I18N libraries, but they don’t state it in
their composer.json file’s require block.

This is quite a bit of hogwash. We’ll need to require all these libs:

composer require zendframework/zend-inputfilter \

zendframework/zend-servicemanager \

zendframework/zend-i18n \

zendframework/zend-stdlib

Once we have our Laravel application up and running, we’ll prob-
ably want to refactor away these components to use their Laravel
counterparts.

Another benefit at this point is that our Peridot tests should pass
now with these dependencies in place:

./vendor/bin/peridot specs

Now that we have these dependencies, we can inject them into the
CustomersController constructor:

Switching to Laravel 331

// app/Http/Controllers/CustomersController.php

namespace App\Http\Controllers;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use CleanPhp\Invoicer\Service\InputFilter\CustomerInput\

Filter;

use Zend\Stdlib\Hydrator\HydratorInterface;

class CustomersController extends Controller {

protected $customerRepository;

protected $inputFilter;

protected $hydrator;

public function __construct(

CustomerRepositoryInterface $customerRepository,

CustomerInputFilter $inputFilter,

HydratorInterface $hydrator

) {

$this->customerRepository = $customerRepository;

$this->inputFilter = $inputFilter;

$this->hydrator = $hydrator;

}

// ...

}

Laravel knows to simply instantiate the CustomerInputFilter, but
it can’t instantiate an interface, so we need to tell it what to do
with HydratorInterface. Let’s instruct it to instantiate Zend’s
ClassMethods hydrator to meet this dependency:

Switching to Laravel 332

use Zend\Stdlib\Hydrator\ClassMethods;

use Zend\Stdlib\Hydrator\HydratorInterface;

class AppServiceProvider extends ServiceProvider {

public function register() {

$this->app->bind(HydratorInterface::class, function\

($app) {

return new ClassMethods();

});

// ...

}

}

Now when faced with a request for a HydratorInterface, Laravel
will simply instantiate ClassMethods.

Let’s implement the newOrEditAction():

// app/Http/Controllers/CustomersController.php

public function newOrEditAction(Request $request, $id =\

'') {

$viewModel = [];

$customer = $id ? $this->customerRepository->getById(\

$id) : new Customer();

if ($request->getMethod() == 'POST') {

$this->inputFilter->setData($request->request->all(\

));

if ($this->inputFilter->isValid()) {

$this->hydrator->hydrate(

$this->inputFilter->getValues(),

Switching to Laravel 333

$customer

);

$this->customerRepository

->begin()

->persist($customer)

->commit();

Session::flash('success', 'Customer Saved');

return new RedirectResponse(

'/customers/edit/' . $customer->getId()

);

} else {

$this->hydrator->hydrate(

$request->request->all(),

$customer

);

$viewModel['error'] = $this->inputFilter->getMess\

ages();

}

}

$viewModel['customer'] = $customer;

return view('customers/new-or-edit', $viewModel);

}

So there’s a lot going on here, however it’s nearly identical to our
ZF2 code for the same action. Let’s step through it:

1. As we have a variable {id} in our route, Laravel is kind
enough to pass that along as an argument to the action.We’re
also asking for an instance of Illuminate\Http\Request,
and Laravel is happy to oblige.

Switching to Laravel 334

2. We setup an empty “ViewModel” array variable and use that
throughout the method to collect data to pass along to the
view, which we do at the very end using Laravel’s view()
helper.

3. If we have an ID, we utilize the CustomerRepository to
retrieve that Customer from the database, otherwise we
instantiate an empty Customer object.

4. If the request is a GET request, we simply add the $customer
to the $viewModel and carry on.

5. If the request is a POST, we populate the CustomerInputFil-
ter with the posted data, and then check to see if the input
filter is valid.

6. If the input is valid, we hydrate the $customer object with
the posted values, persist it to the repository, setup a flash
success message using Laravel’s Session facade, and redirect
to the edit page for the Customer.

7. If the input is not valid, we hydrate the customer with the
raw posted data, store the validation error messages in the
$viewModel, and carry on.

For this to work, we’ll need to add a couple more use statements to
the top of the controller (I recommend alphabetizing them):

use CleanPhp\Invoicer\Domain\Entity\Customer;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Session;

use Symfony\Component\HttpFoundation\RedirectResponse;

Now, of course, we need to setup the template file customers/new-
or-edit that’s referenced in the action:

Switching to Laravel 335

<!-- resources/views/customers/new-or-edit.blade.php -->

@extends('layouts.layout')

@section('content')

<div class="page-header clearfix">

<h2>

<?= !empty($customer->getId()) ? 'Edit' : 'New' ?>

Customer

</h2>

</div>

<form role="form" action="" method="post">

<input type="hidden" name="_token" value="<?= csrf_to\

ken(); ?>">

<div class="form-group">

<label for="name">Name:</label>

<input type="text" class="form-control" name="name"\

id="name"

placeholder="Enter Name" value="<?= $customer->ge\

tName() ?>">

@include(

'validation-errors',

['name' => 'name', 'errors' => isset($error) ? $e\

rror : []]

)

</div>

<div class="form-group">

<label for="email">Email:</label>

<input type="text" class="form-control" name="email\

" id="email"

placeholder="Enter Email" value="<?= $customer->g\

etEmail() ?>">

@include(

Switching to Laravel 336

'validation-errors',

['name' => 'email', 'errors' => isset($error) ? $\

error : []]

)

</div>

<button type="submit" class="btn btn-primary">Save</b\

utton>

</form>

@stop

Again, we’re using the Blade templating language, but otherwise
this template is nearly verbatim from our ZF2 project.

Some differences:

1. We’re setting up a CSRF⁶⁷ token so that Laravel can validate
the POST as authentic.

2. We’re using a partial instead of a view helper to show the
validation error messages for a particular element.

We’ll need to setup that partial in order for this to work, so let’s do
that now:

<!-- resources/views/validation-errors.blade.php -->

<?php if ($errors): $errors = \Vnn\Keyper\Keyper::creat\

e($errors) ?>

<?php if ($errors->get($name)): ?>

<div class="alert alert-danger">

<?= implode('. ', $errors->get($name)) ?>

</div>

<?php endif; ?>

<?php endif; ?>

⁶⁷https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29

Switching to Laravel 337

As we did with our ZF2 ViewHelper, we’re using Keyper to easily
check for nested error messages. If we have any error messages for
the input, we implode them with a period, then format them nicely
with some Bootstrap styles.

Let’s make sure we have Keyper installed for this to work:

composer require vnn/keyper

With this in place, we now have the ability to add and edit
Customers again!

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in ac-
tion, you can checkout the tag 16-laravel-customers:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 16-laravel-customers

Order Management

Let’s keep rolling right into Orders. Again, we’ll start by defining
our routes, which are taken and adapted from our ZF2 application:

Switching to Laravel 338

// app/Http/routes.php

// ...

Route::get('/orders', 'OrdersController@indexAction');

Route::match(['get', 'post'], '/orders/new', 'OrdersCon\

troller@newAction');

Route::get('/orders/view/{id}', 'OrdersController@viewA\

ction');

We’ll start with our indexAction().

Listing Orders

Let’s create our OrdersController with its indexAction():

// app/Http/Controllers/OrdersController.php

namespace App\Http\Controllers;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

oryInterface;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

use CleanPhp\Invoicer\Persistence\Hydrator\OrderHydrato\

r;

use CleanPhp\Invoicer\Service\InputFilter\OrderInputFil\

ter;

class OrdersController extends Controller {

protected $orderRepository;

protected $customerRepository;

protected $inputFilter;

protected $hydrator;

Switching to Laravel 339

public function __construct(

OrderRepositoryInterface $orderRepository,

CustomerRepositoryInterface $customerRepository,

OrderInputFilter $inputFilter,

OrderHydrator $hydrator

) {

$this->orderRepository = $orderRepository;

$this->customerRepository = $customerRepository;

$this->inputFilter = $inputFilter;

$this->hydrator = $hydrator;

}

public function indexAction() {

$orders = $this->orderRepository->getAll();

return view('orders/index', ['orders' => $orders]);

}

}

Again, we’ll have to inform Laravel of what concrete class to
instantiate for
CustomerRepositoryInterface:

// app/Providers/AppServiceProvider.php

public function register() {

// ...

$this->app->bind(

OrderRepositoryInterface::class,

function ($app) {

return new OrderRepository(

$app['Doctrine\ORM\EntityManagerInterface']

);

Switching to Laravel 340

}

);

}

Also make sure to drop the required use statements at the top:

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

use CleanPhp\Invoicer\Persistence\Doctrine\Repository\O\

rderRepository;

Last, let’s add our order index file

<!-- resources/views/orders/index.blade.php -->

@extends('layouts.layout')

@section('content')

<div class="page-header clearfix">

<h2 class="pull-left">Orders</h2>

<a href="/orders/new" class="btn btn-success pull-rig\

ht">

Create Order

</div>

<table class="table table-striped clearfix">

<thead>

<tr>

<th>#</th>

<th>Order Number</th>

<th>Customer</th>

<th>Description</th>

<th class="text-right">Total</th>

</tr>

Switching to Laravel 341

</thead>

<?php foreach ($orders as $order): ?>

<tr>

<td>

getId() }}}">

{{{ $order->getId() }}}

</td>

<td>{{{ $order->getOrderNumber() }}}</td>

<td>

getCustomer(\

)->getId() }}}">

{{{ $order->getCustomer()->getName() }}}

</td>

<td>{{{ $order->getDescription() }}}</td>

<td class="text-right">

$ {{ number_format($order->getTotal(), 2) }}

</td>

</tr>

<?php endforeach; ?>

</table>

@stop

And now we have the ability to list orders.

Viewing Orders

Listing orders was easy, and viewing orders should be just as easy.
Let’s start with the controller action:

Switching to Laravel 342

// app/Http/Controllers/OrdersController.php

public function viewAction($id) {

$order = $this->orderRepository->getById($id);

if (!$order) {

return new Response('', 404);

}

return view('orders/view', ['order' => $order]);

}

We’ve introduced a new object Response, so let’s make sure we add
a use statement for it at the top of the file:

use Illuminate\Http\Response;

And then swiftly on to the template:

<!-- resources/views/orders/view.blade.php -->

@extends('layouts.layout')

@section('content')

<div class="page-header clearfix">

<h2>Order #{{{ $order->getOrderNumber() }}}</h2>

</div>

<table class="table table-striped">

<thead>

<tr>

<th colspan="2">Order Details</th>

</tr>

</thead>

Switching to Laravel 343

<tr>

<th>Customer:</th>

<td>

getCustomer(\

)->getId() }}}">

{{{ $order->getCustomer()->getName() }}}

</td>

</tr>

<tr>

<th>Description:</th>

<td>{{{ $order->getDescription() }}}</td>

</tr>

<tr>

<th>Total:</th>

<td>$ {{{ number_format($order->getTotal(), 2) }}}<\

/td>

</tr>

</table>

@stop

Pretty much the same stuff we’ve been doing. And it works!

Adding Orders

Let’s work on adding orders, now. The controller action:

Switching to Laravel 344

// app/Http/Controllers/OrdersController.php

public function newAction(Request $request) {

$viewModel = [];

$order = new Order();

if ($request->getMethod() == 'POST') {

$this->inputFilter

->setData($request->request->all());

if ($this->inputFilter->isValid()) {

$order = $this->hydrator->hydrate(

$this->inputFilter->getValues(),

$order

);

$this->orderRepository

->begin()

->persist($order)

->commit();

Session::flash('success', 'Order Saved');

return new RedirectResponse(

'/orders/view/' . $order->getId()

);

} else {

$this->hydrator->hydrate(

$request->request->all(),

$order

);

$viewModel['error'] = $this->inputFilter->getMess\

ages();

}

}

Switching to Laravel 345

$viewModel['customers'] = $this->customerRepository->\

getAll();

$viewModel['order'] = $order;

return view('orders/new', $viewModel);

}

This action is nearly identical to the CustomersController::newOrEditAction(),
so if you want an explanation of what is going on, go check out that
section. The only new thing we’ve added is querying for the list of
Customers so that the user can select which Customer the Order is
for.

We’ve added quite a few new objects here, so let’s add them to the
use statement block:

use CleanPhp\Invoicer\Domain\Entity\Order;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Session;

use Symfony\Component\HttpFoundation\RedirectResponse;

Next, the template:

<!-- resources/views/orders/new.blade.php -->

@extends('layouts.layout')

@section('content')

<div class="page-header clearfix">

<h2>Create Order</h2>

</div>

<form role="form" action="" method="post">

<input type="hidden" name="_token" value="<?= csrf_to\

Switching to Laravel 346

ken(); ?>">

<div class="form-group">

<label for="customer_id">Customer:</label>

<select class="form-control" name="customer[id]" id\

="customer_id">

<option value=""></option>

<?php foreach ($customers as $customer): ?>

<option value="{{{ $customer->getId() }}}"<?=

!is_null($order->getCustomer()) &&

$order->getCustomer()->getId() == $customer->ge\

tId() ?

' selected="selected"' : '' ?>>

{{{ $customer->getName() }}}

</option>

<?php endforeach; ?>

</select>

@include(

'validation-errors',

['name' => 'customer.id', 'errors' => isset($erro\

r) ? $error : []]

)

</div>

<div class="form-group">

<label for="orderNumber">Order Number:</label>

<input type="text" class="form-control" name="order\

Number"

id="order_number" placeholder="Enter Order Number"

value="{{{ $order->getOrderNumber() }}}">

@include(

'validation-errors',

['name' => 'orderNumber', 'errors' => isset($erro\

r) ? $error : []]

)

</div>

Switching to Laravel 347

<div class="form-group">

<label for="description">Description:</label>

<input type="text" class="form-control" name="descr\

iption"

id="description" placeholder="Enter Description"

value="{{{ $order->getDescription() }}}">

@include(

'validation-errors',

['name' => 'description', 'errors' => isset($erro\

r) ? $error : []]

)

</div>

<div class="form-group">

<label for="total">Total:</label>

<input type="text" class="form-control" name="total"

id="total" placeholder="Enter Total"

value="{{{ $order->getTotal() }}}">

@include(

'validation-errors',

['name' => 'total', 'errors' => isset($error) ? $\

error : []]

)

</div>

<button type="submit" class="btn btn-primary">Save</b\

utton>

</form>

@stop

The new thing here is the select box for selecting the Customer for
the Order. We simply loop through the provided array of customers
and output an <option> for each one, just as we did in the ZF2
application.

This concludes Order Management!

Switching to Laravel 348

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 17-laravel-orders:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 17-laravel-orders

Invoice Management

As before, let’s start with the routes:

// app/Http/routes.php

// ...

Route::get('/invoices', 'InvoicesController@indexAction\

');

Route::get('/invoices/view/{id}', 'InvoicesController@v\

iewAction');

Route::get('/invoices/new', 'InvoicesController@newActi\

on');

Route::post('/invoices/generate', 'InvoicesController@g\

enerateAction');

And stub out our InvoicesController:

Switching to Laravel 349

namespace App\Http\Controllers;

use CleanPhp\Invoicer\Domain\Repository\InvoiceReposito\

ryInterface;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

use CleanPhp\Invoicer\Domain\Service\InvoicingService;

class InvoicesController extends Controller {

protected $invoiceRepository;

protected $orderRepository;

protected $invoicing;

public function __construct(

InvoiceRepositoryInterface $invoices,

OrderRepositoryInterface $orders,

InvoicingService $invoicing

) {

$this->invoiceRepository = $invoices;

$this->orderRepository = $orders;

$this->invoicing = $invoicing;

}

}

We’ll also need to let Laravel know what to instantiate for In-

voiceRepositoryInterface:

Switching to Laravel 350

// app/Providers/AppServiceProvider.php

public function register() {

// ...

$this->app->bind(

InvoiceRepositoryInterface::class,

function ($app) {

return new InvoiceRepository(

$app['Doctrine\ORM\EntityManagerInterface']

);

}

);

}

And let’s not forget the two new use statements at the top of the
file:

use CleanPhp\Invoicer\Domain\Repository\InvoiceReposito\

ryInterface;

use CleanPhp\Invoicer\Persistence\Doctrine\Repository\I\

nvoiceRepository;

Listing Invoices

The indexAction() will look terribly familiar:

// app/Http/Controllers/InvoicesController.php

public function indexAction() {

$invoices = $this->invoiceRepository->getAll();

return view('invoices/index', ['invoices' => $invoice\

s]);

}

As well as the view:

Switching to Laravel 351

<!-- resources/views/invoices/index.blade.php -->

@extends('layouts.layout')

@section('content')

<div class="page-header clearfix">

<h2 class="pull-left">Invoices</h2>

<a href="/invoices/new" class="btn btn-success pull\

-right">

Generate Invoices

</div>

<table class="table table-striped clearfix">

<thead>

<tr>

<th>#</th>

<th>Order Number</th>

<th>Invoice Date</th>

<th>Customer</th>

<th>Description</th>

<th class="text-right">Total</th>

</tr>

</thead>

<?php foreach ($invoices as $invoice): ?>

<tr>

<td>

getId() }\

}}">

{{{ $invoice->getId() }}}

</td>

<td>

{{{ $invoice->getInvoiceDate()->format('m/d/Y')\

}}}

</td>

<td>{{{ $invoice->getOrder()->getOrderNumber() }}\

Switching to Laravel 352

}</td>

<td>

getOrder\

()

->getCustomer()->getId() }}}">

{{{ $invoice->getOrder()->getCustomer()->getN\

ame() }}}

</td>

<td>{{{ $invoice->getOrder()->getDescription() }}\

}</td>

<td class="text-right">

$ {{{ number_format($invoice->getTotal(), 2) }}}

</td>

</tr>

<?php endforeach; ?>

</table>

@stop

I’m running out of things to say after these code snippets.

Generating Invoices

Our next step is generating new invoices. We’ll start with the
/invoices/new route which resolves to the newAction():

// app/Http/Controllers/InvoicesController.php

public function newAction() {

return view('invoices/new', [

'orders' => $this->orderRepository->getUninvoicedOr\

ders()

]);

}

Switching to Laravel 353

This simple action just grabs all uninvoiced orders and supplies
them to the view template:

<!-- resources/views/invoices/new.blade.php -->

@extends('layouts.layout')

@section('content')

<h2>Generate New Invoices</h2>

<p>

The following orders are available to be invoiced.

</p>

<?php if (empty($orders)): ?>

<p class="alert alert-info">

There are no orders available for invoice.

</p>

<?php else: ?>

<table class="table table-striped clearfix">

<thead>

<tr>

<th>#</th>

<th>Order Number</th>

<th>Customer</th>

<th>Description</th>

<th class="text-right">Total</th>

</tr>

</thead>

<?php foreach ($orders as $order): ?>

<tr>

<td>

getId() }}}">

{{{ $order->getId() }}}

</td>

Switching to Laravel 354

<td>{{{ $order->getOrderNumber() }}}</td>

<td>

getCustome\

r()->getId() }}}">

{{{ $order->getCustomer()->getName() }}}

</td>

<td>{{{ $order->getDescription() }}}</td>

<td class="text-right">

$ {{{ number_format($order->getTotal(), 2) }}}

</td>

</tr>

<?php endforeach; ?>

</table>

<form action="/invoices/generate" method="post" class="\

text-center">

<input type="hidden" name="_token" value="<?= csrf_to\

ken(); ?>">

<button type="submit" class="btn btn-primary">Generat\

e Invoices</button>

</form>

<?php endif; ?>

@stop

The view shows the uninvoiced orders, if any, and provides a button
to generate invoices for those orders.

So let’s work that action:

Switching to Laravel 355

// app/Http/Controllers/InvoicesController.php

public function generateAction() {

$invoices = $this->invoicing->generateInvoices();

$this->invoiceRepository->begin();

foreach ($invoices as $invoice) {

$this->invoiceRepository->persist($invoice);

}

$this->invoiceRepository->commit();

return view('invoices/generate', ['invoices' => $invo\

ices]);

}

This, like all the code in this chapter, is stolen directly from the ZF2
project, and modified slightly for Laravel. Let’s finish off with the
view, which shows a list of the generated invoices:

<!-- resources/views/invoices/generate.blade.php -->

@extends('layouts.layout')

@section('content')

<div class="page-header">

<h2>Generated Invoices</h2>

</div>

<?php if (empty($invoices)): ?>

<p class="text-center">

No invoices were generated.

</p>

Switching to Laravel 356

<?php else: ?>

<table class="table table-striped clearfix">

<thead>

<tr>

<th>#</th>

<th>Order Number</th>

<th>Invoice Date</th>

<th>Customer</th>

<th>Description</th>

<th class="text-right">Total</th>

</tr>

</thead>

<?php foreach ($invoices as $invoice): ?>

<tr>

<td>

getId() }}}\

">

{{{ $invoice->getId() }}}

</td>

<td>

{{{ $invoice->getInvoiceDate()->format('m/d/Y') }\

}}

</td>

<td>{{{ $invoice->getOrder()->getOrderNumber() }}}<\

/td>

<td>

getOrder()

->getCustomer()->getId() }}}">

{{{ $invoice->getOrder()->getCustomer()->getNam\

e() }}}

</td>

<td>{{{ $invoice->getOrder()->getDescription() }}}<\

/td>

<td class="text-right">

$ {{{ number_format($invoice->getTotal(), 2) }}}

Switching to Laravel 357

</td>

</tr>

<?php endforeach; ?>

</table>

<?php endif; ?>

@stop

And viola, invoice generation.

Viewing Invoices

The last stop on our Laravel journey is to view an individual invoice.
Let’s start with the viewAction():

// app/Http/Controllers/InvoicesController.php

public function viewAction($id) {

$invoice = $this->invoiceRepository->getById($id);

if (!$invoice) {

return new Response('', 404);

}

return view('invoices/view', [

'invoice' => $invoice,

'order' => $invoice->getOrder()

]);

}

Let’s make sure Response is part of the use statements:

use Illuminate\Http\Response;

And next, our view:

Switching to Laravel 358

<!-- resources/views/invoices/view.blade.php -->

@extends('layouts.layout')

@section('content')

<div class="page-header clearfix">

<h2>Invoice #{{{ $invoice->getId() }}}</h2>

</div>

<table class="table table-striped">

<thead>

<tr>

<th colspan="2">Invoice Details</th>

</tr>

</thead>

<tr>

<th>Customer:</th>

<td>

getCustomer(\

)->getId() }}}">

{{{ $order->getCustomer()->getName() }}}

</td>

</tr>

<tr>

<th>Order:</th>

<td>

getId() }}}">

{{{ $order->getOrderNumber() }}}

</td>

</tr>

<tr>

<th>Description:</th>

<td>{{{ $order->getDescription() }}}</td>

</tr>

<tr>

Switching to Laravel 359

<th>Total:</th>

<td>$ {{{ number_format($invoice->getTotal(), 2) }}\

}</td>

</tr>

</table>

@stop

And viewing invoices, and all invoice functionality, is complete.

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 18-laravel-invoices:

git clone https://github.com/mrkrstphr/cleanphp-example\

.git

git checkout 18-laravel-invoices

Next Steps

If this were a real project, I’d recommend a few things:

1. Test this application layer. Test it through and through.
These will likely be integration tests, or full system tests,
as unit testing controllers in any framework, except maybe
something like Silex, is near impossible.

2. Ditch the ZF2 components and use the Laravel counterparts.
ZF2 isn’t component based, no matter how hard they try to
pretend, and we were forced to bring along the kitchen sink
just to use two tiny little slivers of the framework.

3. Fully embrace Blade, or don’t. We kind of went half-and-half
in the examples. I’d opt for not using blade; it’s just weird.

Switching to Laravel 360

Summary

This was a lot of work. A lot of tedious work. If we were switching
from ZF2 to Laravel in a real, large application, this would have
been a lot more work.

Is this feasible? It definitely is, as we’ve seen here, but it’s a
huge undertaking. One that most certainly will lead to bugs and
issues not present in the old system â€“ especially since we didn’t
write any tests for this layer. As testing this layer can be quite
complicated, I left it out of this book. However, having a full suite
of tests for each layer will aid greatly in detecting and fixing issues
early in the process.

Switching frameworks is incredibly laborious. Do so sparingly, and
spend a lot of time evaluating your framework choice up front, so
that hopefully you’ll never have a need to switch. Further, write
code intelligently and favor highly decoupled components. It will
only make your application better in the long run.

	Dedication
	Table of Contents

	Introduction
	Organization
	The Author
	A Word about Coding Style

	The Problem With Code
	Writing Good Code is Hard
	Writing Bad Code is Easy
	We Can't Test Anything
	Change Breaks Everything
	We Live or Die by the Framework
	We Want to Use All the Libraries
	Writing Good Code

	What is Architecture?
	What does Architecture Look Like?
	Layers of Software
	Examples of Poor Architecture
	Costs of Poor Architecture

	Coupling, The Enemy
	Spaghetti Coupling
	OOP Coupling
	Why is Coupling the Enemy?
	How do we Reduce Coupling?

	Your Decoupling Toolbox
	Design Patterns, A Primer
	The Factory Patterns
	Repository Pattern
	Adapter Pattern
	Strategy Pattern
	Learning More Design Patterns

	SOLID Design Principles
	Single Responsibility Principle
	Open/Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle
	Applying SOLID Principles

	Dependency Injection
	Inversion of Control
	When to use Dependency Injection
	Handling Many Dependencies
	Are we still coupling?

	Defining a Contract with Interfaces
	Interfaces in PHP
	Using Interfaces as Type Hints
	Using Interfaces as a Contract
	Making Third Party Code Conform to Contracts

	Abstracting with Adapters
	Setting up the Adapter
	How does this help?

	The Clean Architecture
	MVC, and its Limitations
	MVC in a Diagram
	The MVC Components
	Routing
	MVC Isn't Good Enough
	Obese Models
	More Layers for All of the Things!

	The Clean Architecture
	The Clean Architecture
	The Onion Architecture

	Framework Independence
	The Problem with Frameworks
	Framework Independence
	This is a Lot of Work

	Database Independence
	Domain Models
	Domain Services
	Database Infrastructure / Persistence
	Organizing the Code
	Wrapping it Up

	External Agency Independence
	Using Interfaces, Adapters and Dependency Injection
	Benefits

	A Case Study in Clean Architecture
	The Billing System
	Application Workflow
	Prerequisites

	Building Our Domain
	Setting up the Project
	Creating the Entities
	Domain Services
	Wrapping it Up

	Zend Framework 2 Setup
	Installing with Composer
	Cleaning up the Skeleton
	Setting up Our Database
	Table Gateway Factory
	Wrapping it Up

	Our Application in Zend Framework 2
	Customer Management
	Order Management
	Invoice Management

	Doctrine 2
	Rebuilding the Persistence Layer
	Creating Doctrine-based Repositories
	Entity Mapping
	Integrating Zend Framework and Doctrine
	Injecting the New Repositories
	Updating the Hydrators
	Summary

	Switching to Laravel
	Setting up Laravel
	Configuring Doctrine
	Setting up the Dashboard
	Customer Management
	Order Management
	Invoice Management
	Next Steps
	Summary

