THE
CLEAN
ARCHITECTURE
IN
PHP

KRISTOPHER WILSON

The Clean Architecture in PHP

Kristopher Wilson
This book is for sale at http://leanpub.com/cleanphp

This version was published on 2016-04-23

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2013 - 2016 Kristopher Wilson

http://leanpub.com/cleanphp
http://leanpub.com
http://leanpub.com/manifesto

Dedication

First and foremost, I dedicate this book to my wife, Ashley. Thank
you for allowing me to spend so much time staring at millions of
dots on a screen.

Secondly, to my parents, who worked so hard to make sure their
children had everything they needed and wanted, and for encour-
aging me to follow my dreams, however odd they may have been.

Contents

Dedication iii
Introduction i
Organization ii
The Author, ii
A Word about Coding Style iii

The Problem With Code 1

Writing Good CodeisHard
Writing Bad CodeisEasy
We Can’t Test Anything
Change Breaks Everything
We Live or Die by the Framework
We Want to Use All the Libraries.
Writing Good Code

N OO W WwWwN

=
)
-+
.
2]
>
5
e
=
=
o
e
(=g
=
-
o
=
%

Layers of Software
Examples of Poor Architecture 10
Costs of Poor Architecture 19

Coupling, TheEnemy 21
Spaghetti Coupling 21
OOPCoupling 22

CONTENTS

Your Decoupling Toolbox

Design Patterns, A Primer
The Factory Patterns
Repository Pattern
Adapter Patterno L
Strategy Pattern
Learning More Design Patterns

SOLID Design Principles
Single Responsibility Principle
Open/Closed Principle
Liskov Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle
Applying SOLID Principles

Dependency Injection
Inversionof Control
When to use Dependency Injection
Handling Many Dependencies

Defining a Contract with Interfaces
Interfacesin PHP
Using Interfaces as TypeHints
Using Interfaces as a Contract
Making Third Party Code Conform to Contracts

Abstracting with Adapters
Setting up the Adapter

CONTENTS

The Clean Architecture 90
MVC, and its Limitations 91
MVCinaDiagram 91
The MVC Components 92
Routing 96
MVCIsn’'t GoodEnough 99
ObeseModels 99
More Layers for All of the Things! 101
The Clean Architecture 103
The Clean Architecture 103
The Onion Architecture 107
Framework Independence 112
The Problem with Frameworks 112
Framework Independence 113
ThisisaLotof Work 125
Database Independence 126
DomainModels 126
Domain Services. 128
Database Infrastructure / Persistence 134
Organizingthe Code 139
WrappingitUp 140
External Agency Independence 142
Using Interfaces, Adapters and Dependency Injection . 142
Benefits 145

A Case Study in Clean Architecture . 146

The Billing System 147
Application Workflow 148
Prerequisites oL 148

CONTENTS

Building Our Domain 150
Setting up the Project 150
Creating the Entities 152
Domain Services. 157
WrappingitUp 174

Zend Framework 2Setup 175
Installing with Composer 175
Cleaning up the Skeleton 177
Setting up Our Database 182
Table Gateway Factory 191
WrappingitUp 196

Our Application in Zend Framework 2 197
Customer Management 197
Order Management 226
Invoice Management 261

Doctrine2 291
Rebuilding the Persistence Layer 292
Creating Doctrine-based Repositories 293
Entity Mapping 298
Integrating Zend Framework and Doctrine 302
Injecting the New Repositories 304
Updating the Hydrators 309
Summary 312

Switching to Laravel 314
Settingup Laravel 314
Configuring Doctrine 318
Setting up the Dashboard 321
Customer Management 325
Order Management 337
Invoice Management 348
NextSteps o 359

Summary 360

Introduction

Figuring out how to architect a brand new application is a big deal.
Doing it the wrong way can lead to a huge headache later. Testing
can become hard — or maybe even impossible — and refactoring is
an absolute nightmare.

While the methods outlined in this book aren’t the only way to go
about developing an application, they do provide a framework for
developing applications that are:

. Testable
. Refactorable
. Easy to work with

N W N

. Easy to maintain

This book is for anyone wanting to build a medium to large sized
application that must be around for a long time and/or be easily
enhanced in the future. The methods outlined in this book aren’t
meant for all applications, and they might be downright over kill
for some.

If your application is small, or an unproven, new product, it might
be best to just get it out the door as fast as possible. If it grows, or
becomes successful, later applying these principles may be a good
idea to create a solid, long lasting product.

The principles outlined in this book involve a learning curve.
Writing code this way will slow a developer down until the methods
become familiar to them.

Introduction ii

Organization

This book begins by discussing common problems with PHP code
and why having good, solid, clean code is important to the success
and longevity of an application. From there, we move on to dis-
cussing some principles and design patterns that allow us to solve
problems with poor code. Using these concepts, we’ll then discuss
the Clean Architecture and how it further helps solve problems with
bad code.

Finally, in the second half of the book, we dive into some real
code and build an application following this architecture. When
we’re done with our case study application, we’ll start swapping
out components, libraries, and frameworks with new ones to prove
out the principles of the architecture.

The Author

My name is Kristopher Wilson. I've been developing in PHP since
around 2000. That sounds impressive on the surface, but most
of those years involved writing truly terrible code. I would have
benefited greatly from a book like this that outlines the principles
of how to cleanly organize code.

I’ve done it all, from simple websites to e-commerce systems and
bulletin boards. Mostly, I’ve concentrated on working on ERP
(Enterprise Resource Planning) systems and OSS (Operational Sup-
port Systems) — software that runs the entire back office of large
organizations, from manufacturing to telecommunications. I even
wrote my own framework once. It was terrible, but that’s another
story.

I live in Grand Rapids, Michigan with my wife and our four cats
(our application to become a registered zoo is still pending). I'm one
of the founders of the Grand Rapids PHP Developers (GrPhpDev)

Introduction iii

group and am highly involved with organizing, teaching, and
learning from the local community.

A Word about Coding Style

I strongly prefer and suggest the use of PSR-2 coding standards’. As
a community, it makes it much easier to evaluate and contribute to
one another’s code bases if the dialect is the same. I also strongly
suggest the use of DocBlocks and helpful comments on classes and
methods.

However, for brevity, the code examples in this book make a
few deviations from PSR-2 standards, namely involving bracket
placement, and don’t include many DocBlocks. If this is too jarring
for the PSR-2 and DocBlock fan, like myself, I humbly apologize.

'https://github.com/php-fig/fig-standards/blob/master/accepted/PSR- 2- coding- style-
guide.md

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md

The Problem With Code

Writing code is easy. So easy that there are literally hundreds of
books® claiming they can teach you to do it in two weeks, ten
days, or even twenty-four hours. That makes it sound really easy!
The internet is littered with articles on how to do it. It seems like
everyone is doing it and blogging about it.

Here’s a fun question: would you trust a surgeon or even dentist
who learned their profession from a couple of books that taught
them how to operate in two weeks? Admittedly, writing code
is nothing like opening up and fixing the human body, but as
developers, we do deal with a lot of abstract concepts. Things that
only exist as a collection of 1s and 0s. So much so that I’d definitely
want an experienced, knowledgeable developer working on my
project.

The problem with code is that good code, code that serves it’s
purpose, has little or no defects, can survive and perform it’s
purpose for a long time, and is easy to change, is quite difficult to
accomplish.

*http://norvig.com/21-days.html

http://norvig.com/21-days.html
http://norvig.com/21-days.html
http://norvig.com/21-days.html

Writing Good Code is Hard

If it were easy, everyone would be doing it

-Somebody, somewhere in history

Writing code is hard. Well, scratch that: writing code is easy. It’s so
easy everyone is doing it. Let me start this chapter over.

If it were easy to be good at it, everyone would be good
at it

-Me, I suppose

Writing code, especially in PHP, but in many other languages as
well, is incredibly easy. Think about the barrier to entry: all you
have to do is go download PHP on your Windows machine, type:

php -S localhost:1337

Now all of your PHP code in that directory is suddenly available
for you via a browser. Hitting the ground running developing PHP
is easy. On Linux, it’s even easier. Install with your distributions
package manager and type the same command as above. You don’t
even have to download a zip file, extract it, worry about getting it
in your path, etc.

Not only is getting a server up easy, but actually learning how to
get things accomplished in PHP is incredibly easy. Just search the
web for “PHP.” Go ahead, I'll wait. From Google, I got 2,800,000,000
results. The internet is literally littered with articles, tutorials, and
source code relating to PHP.

I chose my words very carefully. The internet is literally littered
with PHP.

Writing Good Code is Hard 3

Writing Bad Code is Easy

Since PHP is incredibly easy to get started in, it makes sense that
eventually it would gather a large following of developers. The
good, the bad, and the ugly. PHP has been around since 1994 or
so, as has been gathering developers ever since. At the time of this
writing, that’s twenty years worth of code being written in PHP.

Since then, an absolute horde of poorly written PHP has shown
up on the web, in the form of articles, tutorials, StackOverflow
solutions, and open source code. It’s also fair to point out that some
really stellar PHP has shown up as well. The problem is, writing
code the good way (we’ll talk about what that means soon) typically
tends to be harder. Doing it the down and dirty, quick, and easy to
understand way, is, well, easier.

The web has been proliferated with poorly written PHP, and the
process of turning out poorly written PHP only naturally increases
with the popularity and adoption of the language.

Simply put: it’s just way too easy to write bad code in PHP, it’s way
too easy to find bad code in PHP, it’s way too easy to suggest (via
putting source code out there or writing tutorials) others write bad
code, and it’s way too easy for developers to never “level up” their

skills.
So why is bad code bad? Let’s discuss the results of bad code.

We Can’t Test Anything

We don’t have time to write tests, we need to get
working software out the door.

-The Project Manager at a previous job

Who has time to write tests? Test are hard, time consuming, and
they don’t make anybody any money. At least according to project

Writing Good Code is Hard 4

managers. All of this is absolutely correct. Writing good tests can be
challenging. Writing good test can be time consuming. Very rarely
will you come across an instance in your life where someone cuts
you a check specifically to write software tests.

The Project Manager at my last job who, painfully, was also
my boss, absolutely put his foot down to writing tests. Working
software out the door was our one and only goal; making that
paycheck. What’s so incredibly ironic about this is that a robust test
suite is the number one way to make it possible to write working
software.

Writing tests is supremely important to having a stable, long
lasting software application. The mountains of books, articles, and
conference talks dedicated to the subject are a testament to that fact.
It’s also a testament to how hard it is to test, or, more correctly, how
important it is to test effectively.

Testing is the single most important means of preventing bugs
from happening in your code. While it’s not bullet proof and can
never catch everything, when executed effectively, it can become a
quick, repetitive, and solid way to verify that a lot of the important
things in your code — such as calculating taxes or commissions or
authentication - is working properly.

There is a direct correlation between how poorly you write your
code, and how hard it is to test that code. Bad code is hard to test.
So hard to test, in fact, that it leads some to declare testing pointless.
The benefits of having tests in place though, cannot be argued.

Why does bad code make tests so hard? Think about a taxing
function in our software. How hard would it be to test that taxing
functionality if it were spattered about controllers? Or worse yet,
spattered about a random collection of . php files? You’d essentially
have to CURL the application with a set of POST variables and then
search through the generated HTML to find the tax rates. That’s
utterly terrible.

Writing Good Code is Hard 5

What happens when someone goes in and changes around the tax
rates in the database? Now your known set of data is gone. Simple:
use a testing database and pump it full of data on each test run.
What about when designers change up the layout of the product
page, and now your code to “find” the tax rate needs to change?
Front-end design should dictate neither business nor testing logic.

It is nearly impossible to test poorly written code.

Change Breaks Everything

The biggest consequence of not being able to test the software is that
change breaks everything. You’ve probably been there before: one
little minute change seems to have dire consequences. Even worse,
one small change in a specific portion of the application causes
errors within a seemingly unrelated portion of the application.
These are regression bugs, which is a bug caused after introducing
new features, fixing other bugs, upgrading a library, changing
configuration settings, etc.

When discovered, these regression bugs often lead to exclamations
of “We haven’t touched that code in forever!” When they’re discov-
ered, it’s often unknown what caused them in the first place, due to
the nature of changes usually happening in “unrelated” portions of
the code. The time elapsed before discovering them is often large,
especially for obscure portions of the application, or very specific
circumstances needed to replicate the bug.

Change breaks everything, because we don’t have the proper archi-
tecture in place to gracefully make those changes. How often have
you hacked something in, and ignored those alarm bells going off
in your brain? Further, how often has that hack come around to bite
you later in the form of a regression bug?

Without good clean architecture conducive to change, and/or a
comprehensive set of test suites, change is a very risky venture

Writing Good Code is Hard 6

for production applications. I've dealt with numerous systems that
the knowledgeable developer declared “stable and working” that
they were utterly terrified of changing, because, when they do, “it
breaks.” Stable, huh?

We Live or Die by the Framework

Frameworks are fantastic. If written well, they speed up applica-
tion development tremendously. Usually, however, when writing
software within a framework, your code is so embedded into that
framework that you’re essentially entering a long term contract
with that framework, especially if you expect your project to be
long lived.

Frameworks are born every year, and die every once-in-awhile,
too (read: Codelgniter, Zend Framework 1, Symfony 1). If you’re
writing your application in a framework, especially doing so the
framework documented way, you’re essentially tying the success
and longevity of your application to that of the framework.

We'll discuss this much more in later chapters, and go into a
specific instance where my team and I failed to properly prepare
our application for the death of our chosen framework. For now,
know this: there is a way to write code, using a framework, in such a
way that switching out the framework shouldn’t lead to a complete
rewrite of the application.

We Want to Use All the Libraries

Composer® and Packagist* brought with them a huge proliferation
of PHP libraries, frameworks, components, and packages. It’s now
easier than it ever has been to solve problems in PHP. The wide

*https://getcomposer.org/
*https://packagist.org/

https://getcomposer.org/
https://packagist.org/
https://getcomposer.org/
https://packagist.org/

Writing Good Code is Hard 7

range of available libraries, installed quickly and simply through
Composer, make it easy to use other developer’s code to solve your
problems.

Just like the framework, though, using these libraries comes at a
cost: if the developer decides to abandon them, you’re faced with
no choice but eventually replacing it with something else. If you’ve
littered your code base with usages of this library, you now have a
time consuming process to run through to upgrade your application
to use some other library.

And of course, later, we’ll describe how to gracefully handle this
problem in a way that involves minimal rewriting, and hopefully
minimal bugs if you've written a good test suite to verify your
success.

Writing Good Code

Writing good code is hard.

The goal of this book is to solve these problems with bad code.
We'll discuss how architecture plays a key role in both causing and
solving these problems, and then discuss ways in which to correct or
at least mitigate these issues, such that we can build strong, stable,
and long-lasting software applications.

What is Architecture?

Whether you know it or not, any piece of software you have ever
written has followed some sort of architecture, even if it were
just your own. Software architecture is the structure that defines
the flow of information through a software system. It is a set of
decisions made about how software is organized and operates in
order to meet the goals of that software.

Architecture can apply to the application as a whole, or might only
apply to individual pieces of the application. Maybe you follow
one architectural pattern on the client side of the application and
a completely different one on the server side of the application.
The means by which your client side application and server side
application communicate can follow an architectural pattern as
well.

What does Architecture Look Like?

Some examples of architecture include how you organize your
files, whether you intermix your PHP code and your HTML code,
or whether your code is procedural in nature or object-oriented.
The architecture might be whether you interface with the database
directly, or abstract it away in your code so that you're moving
across several layers to get at the data. Or maybe you’re interacting
with an API on the front-end, using something like Angular JS, and
your back-end PHP is simply an API layer that gives data to the
front-end application.

All of these features of your application determine the architecture.
Architecture is simply a set of attributes about how your code is

What is Architecture? 9

laid out, organized, and how it interacts with other pieces or layers
of the code.

Since describing your architecture can be pretty verbose, archi-
tectural patterns can also be named, and often are when they are
shared and described within the industry. Following commonly de-
fined architecture, rather than coming up with something on your
own, makes your code easily readable and understandable by other
developers, especially when that architecture is well documented,
and makes it quite easy to describe your architecture.

For example, you might be able to just say you use the MVC
architecture on the front-end and an API web service on the back-
end. Developers familiar with these ideas should understand you
pretty quickly.

Layers of Software

Often when people talk of software architecture, they mention
layers of software. Layers, in object oriented programming, are
groups of specific classes that perform the similar functions. Usu-
ally, layers are broken up by concerns, which is a particular set
of function or information. Our concerns can be many, depending
on the application, but can include: database interaction, business
rules, API interactions, or the view, or UL

In good software architecture, these concerns are each broken out
out into layers. Each layer is a separate set of code that should, in
a perfect world, loosely interact with the other layers. For instance,
when a web request comes in, we might pass it off to the control
layer that processes the request, which pulls any necessary data
from the database layer, and finally presents it to the view layer
to render a Ul to the user.

In a perfect world, these layers and their interaction is kept fairly
separate, and specifically controlled. As you’re about to see, with-

What is Architecture? 10

out these layers, software can become pretty messy and hard to
maintain.

Examples of Poor Architecture

Before we start discussing how to cleanly build the architecture
of your application, let’s first take a look at some code with poor
architecture. Analyzing the problems faced by poor architecture
can help us in understanding why our good architectural decisions
are important and what benefits we might gain from taking better
architectural routes.

Dirty, In-line PHP

PHP has an easy entry point: it’s not hard to get up and running,
and the internet is littered with code samples. This is good for the
language and community as it creates a low barrier for starting.
Unfortunately, this has its drawbacks in that most of those code
samples found on the web aren’t of the highest caliber, and often
lead new developers into writing code that looks similar to this:

<body>
<?php $results = mysql_query(
"SELECT * FROM customers ORDER BY name'
), 7

<h2>Customers</h2>

<?php while ($customer = mysql_fetch_assoc($results\
) 7
<?= $customer ['name'] 7></1i>
<?php endwhile; 7>

</body>

What is Architecture? 11

You’ll find code just like this plastered all over blogs and tutorials,
even on websites touting themselves as a professional resource (no
names named). Sadly, there is quite a bit wrong with writing PHP
this way, especially for anything but tiny applications.

The mysql_ Functions are Deprecated

Right off the bat, the most glaring issue with this code is the use
of the deprecated mysql_ functions. Even worse: the functions are
being removed entirely in PHP 7, although you can install them as
an extension via other channels.

They have been deprecated for a reason: they are considered un-
safe and insecure to use, and suitable alternatives (PDO and the
mysqli_ functions) have been created.

Regardless of third party support, this will make upgrading PHP
hard or impossible some day. Choosing to use these functions today
is choosing heartache tomorrow.

One Layer to Rule Them All

This sample PHP is written in a monolithic style. A monolithic
application is one with a single layer comprising everything that
application does, with each different concern of the application
squished together. These applications are not modular and thus
do not provide reusable code, and are often hard to maintain.
Remember we discussed that software is often layered, keeping the
code responsible for interfacing with the data separate from the
code responsible for displaying it to the user. This sample is the
complete opposite of a layered approach.

Our sample has some code which retrieves data from a database
back-end and a view layer that is responsible for displaying this
information to the user, all together as one single layer. We're
literally querying right in the middle of our HTML. This monolithic

What is Architecture? 12

approach is the biggest problem with this sample, and it is the direct
cause of the next two problems.

A Refactoring Nightmare

Refactoring is pretty much out of the window. Consider these
scenarios and what we would have to do to accomplish them:

« What if a table name or column name changes? How many
different files will we have to update to make that change?
What about switching to a library like PDO? What if we want
to get data from a different data source, like a RESTful API?

« What if we decided we wanted to start using a templating
language, like Twig or Blade? Our database logic is so tightly
wound into our HTML that we would have to rewrite the
application to get it out so that we can have nice templates to
represent the data.

« What if we wanted to provide some kind of standardized
way of displaying user names (like Kristopher W. instead
of Kristopher Wilson)? How many places might we have
displayed a users name that now has to be updated?

Simply put, the ability to refactor code is hampered by our lazy,
dirty architecture that throws everything together without any
concern for the future.

An Untestable Pile of Mush

This approach results in code that is virtually untestable. Sure,
some end-to-end tests, like Behat, will probably allow us to test
this, but unit tests are out the window. We can’t test anything in
isolation. How do we ensure that we got the expected number of
users back? Using a live database, what is the expected number of
users? And since we can’t test the $results variable directly, do we

What is Architecture? 13

have to parse the HTML DOM? And what happens when the DOM
changes?

These are going to be some poor, slow, error prone tests.

Testing only works when it can be executed repetitively and quickly.
If it takes a long time to run the tests, the developer simply cannot
rely on them through the process of development as it would incur
too much time waiting to discover if some seemingly minute change
broke anything unexpected elsewhere in the application.

Poor Man’s MVC

Usually, the next progression in architecture in the world of PHP
development is the adoption of an MVC style architecture, which
we’ll talk about in MVC. While this is a big step up from in-line,
procedural PHP, it can still have several issues, especially if not
implemented correctly. Take this example:

class CustomersController {
public function indexAction() {
$db = Db::getlInstance();

$customers = $db->fetchAll(
"SELECT * FROM customers ORDER BY name'

);

return |
'customers' => $customers

1;

What is Architecture? 14

<h2>Customers</h2>

<?php foreach ($this->customers as $customer): 7>
<?= $customer['name'] 7></1i>
<?php endforeach; 7>

This code looks better. We’re using controllers and views, so we’ve
separated the presentation logic from the control logic. The con-
troller’s indexAction() grabs all the customers and then returns
them, which gets passed to the view so it can render the data. This
should make the code much easier to test and refactor. Except it
doesn’t.

Still Hard-coding Queries

This is obvious. We still haven’t solved the problems of having hard-
coded queries in layers that don’t concern the database, such as
controllers. See the comments above in A Refactoring Nightmare
for more details.

Strong Coupling to the Db Class

We’ve moved away from using the deprecated mysql_ functions
and instead have abstracted away the database into some Db class,
which is good. Except we still suffer the pitfalls of not being able
to refactor this code. Our same questions as above in A Refactoring
nightmare still apply. We can hardly change anything about our
database layer without having to touch a large amount of files that
use that database layer to do so.

Still Hard to Test

We’ve made testing much easier now simply by extracting our
code out of the HTML. We now have a controller doing all the

What is Architecture? 15

processing, and then passing that data off to the view. This is much
easier to test, as we can simply instantiate CustomersController,
call the indexAction() method, and analyze the return value. But
how many customers should we expect, and what are their names?
Again, we can’t know this unless we go the complicated route of
setting up a test database (a known state) before running our tests.

Since we are declaring our Db class right in the indexAction()
method, there’s no way to mock that. If there were, we could simply
set it up to return a known set of customers, and then validate that
the indexAction() properly retrieved them.

Two Very Large Layers

1. This code is hard to test in isolation as it declares it’s database
dependency in-line, and thus can’t test without it. We can’t
override it. We could override the configuration so we could
use a properly staged test database, which is good for integra-
tion testing, but unit testing is impossible. We simply can’t
test this controller without the database class.

2. We're still hard coding queries, which ties us to a database
and specific database flavor at that.

3. We're retrieving an instance of the Db class, which tightly
couples this implementation to that class. We talk about
this in more detail in Coupling, The Enemy, but for now,
understand that it makes it very hard to test this controller
without bootstrapping our database class as well.

4. If we decide to rewrite our application layer, we lose every-
thing. This is because our data domain is wrapped so tightly
into our application services. Let’s say for an instance that
we’re using Zend Framework and this is a Zend Framework
controller. What happens when we want to switch to Lar-
avel? This would require us to rewrite our entire controllers,
but since our data access logic is stored right in the controller,
we have to rewrite that, too, especially if we switch to using
Eloquent ORM, which ships with Laravel.

What is Architecture? 16

Poor Usage of Database Abstraction

Finally, we get smart and abstract away the data source using the
Repository design pattern:

class CustomersController {
public function usersAction() {
$repository = new CustomersRepository();

$customers = $repository->getAll();

return |

'customers' => $customers

1;

<h2>Customers</h2>

<?php foreach ($this->customers as $customer): 7>
<?= $customer ['name'] 7></1i>
<?php endforeach; 7>

This code is much better than our original example, and even better
than our second. We’re slowly coalescing to some good application
architecture.

Instead of interfacing directly with the database, we’ve abstracted
it away into a Repository class. The repository is responsible for
understanding our datasource and retrieving and saving data for
us. Our controller doesn’t have to know anything about where the
data comes from, so we’ve removed the bad, hard-coded queries
from the controller. We could easily refactor CustomersRepository
to get its data from a different source, but wouldn’t have to touch

What is Architecture? 17

any code that uses the repository so long as the getA11() method’s
signature and return result are still the same.

While this is much better architecture, it still suffers some issues:

Strong Coupling to CustomersRepository

We’re using a concrete instance of the CustomersRepository, which
means the controller is still tied to that implementation. For in-
stance, this CustomersRepository probably connects to a database
of some sort to retrieve the information. Now our controller is per-
manently tied to this implementation, unless we refactor it away.
If we’re going to change out where or how our data is stored, we’re
probably going to write a new class instead of completely changing
the existing one. We discuss how to solve this in Dependency
Injection.

Continuing Dependency Issues

We’re still declaring our dependency (CustomersRepository) right
in our method, which makes it impossible to mock and test the
usersAction() method in isolation (remember, we’d have to setup
an entire known state in the database for this to work). This might
be great for end-to-end testing of our application, but it isn’t so great
for unit testing our application.

We'll also talk about how to solve this in Dependency Injection.

So how Should this Code Look?

It’s pretty easy to pick apart some sample code and explain why it
needs improvement, but it’s much harder to simply provide good
code samples without going into quite a bit of discussions first.
We’re going to solve this exact problem (listing customers) once
we get to our Case Study at the end of the book, which will build
on concepts we discuss in the next few chapters.

What is Architecture? 18

However, just like the days leading up to a holiday, everybody
loves a sneak peek. We were actually really close in the last sample,
and only had to make a few tweaks to make this some rock solid
architecture. This is how we will solve this problem later:

class CustomersController extends AbstractActionControl\
ler {

protected $customerRepository;

public function __construct(CustomerRepositorylInterfa\
ce $repository) {

$this->customerRepository = $repository;

public function indexAction() {
return |
'users' => $this->customerRepository->getAll()

1;

We’ve solved several problems:

1. We’re no longer tightly coupled to any repository imple-
mentation by using an interface. Whatever we get will be
required to implement CustomerRepositoryInterface, and
that should give us our data. We don’t care what, how, or
where.

2. We can easily test now as we can mock the class being used by
the controller and make it return a known set of data. Then
we can test that the controller properly passes it off to the
view.

3. We have nothing in here that should prevent us from ever
upgrading to newer versions of PHP or libraries, unless PHP

What is Architecture? 19

or some library drastically change how they work, which
would require a big rewrite regardless of how we wrote our
code.

4. Queries? We're not even using queries. Again: we don’t even
know where our data comes from at this layer. If we suddenly
need to get data from a different place, no big deal: simply
pass us a different object that implements CustomerReposi -
toryInterface.

If some of this doesn’t make much sense, don’t worry. We're about
to cover it all in-depth in the next chapters.

Costs of Poor Architecture

As we’ve just seen, taking a bad approach when developing your
application can lead to several problems. Classically, using a bad
architecture can lead to the following common problems, although
it entirely depends on how the application was written:

1. Untestable. Poor architecture often results in code that is
difficult to test. This especially happens when things are
tightly coupled together and cannot be tested in isolation.
We'll talk about this in Coupling, the Enemy. Inability to test
can lead to an unstable application.

2. Hard to Refactor. Developers tend to make iterative changes
to the software they build as their understanding of and
solution to a problem is strengthened. Users often request
additional features and changes to existing applications. Both
of these instances are known as refactoring, and software
written with a poor architecture is hard to refactor, especially
without a strong test suite to guarantee nothing breaks. See
#1.

What is Architecture? 20

3. Impossible to Upgrade. Code architected and written poorly
is often very hard to upgrade, either to new versions of
PHP, new versions of underlying frameworks and libraries,
or switching to new frameworks and libraries entirely. This
can cause projects to end up in an impossible upgradeable
limbo.

Coupling, The Enemy

The main issue we were dealing with when we looked at various
examples of poor architecture is coupling. Coupling is the amount
of dependency one component has on another. If one component
simply cannot function without another, it is highly coupled. If one
component, loosely depends on another and can function without
it, it is loosely coupled.

The looser the coupling within your code base, the more flexibility
you have in that codebase. With a high amount of coupling,
refactoring, such as extending new functionality to existing code,
becomes a very dangerous task. With loosely coupled code, it
becomes much easier to change this around and swap out solutions
as the code using that solution is not fully dependent upon it.

To get a better understanding of coupling, let’s look at two very
different examples of highly coupled code.

Spaghetti Coupling

<body>
<?php $users = mysqli_query('SELECT * FROM users'); 7>

<?php foreach ($users as $user): 7>
<?= $user['name'] 7></1i>
<?php endforeach; 7>

</body>

This example, which is very similar to our first example of code
with poor architecture, has a lot of coupling. Can the application

21

Coupling, The Enemy 22

function in any respect without the database? No, we have queries
all over the code. It is highly coupled to the database.

Can the application function without a web browser? Well, techni-
cally yes, but who wants to read straight HTML? Can we get a list
of users without it being formatted in HTML? No, we cannot. Our
application is highly coupled to the browser.

OOP Coupling

class UsersController {
public function indexAction() {
$repo = new UserRepository();
$users = $repo->getAll();

return $users;

In this example, we have a class, called UsersController, that uses
another class, called UserRepository to get all the users. This code
looks much better than the first example, but it still has a high level
of coupling.

Can the UsersController function without the UserRepository?
Definitely not, it’s highly coupled to it.

Why is Coupling the Enemy?

So what’s the big deal about all this coupling anyway? Who cares?

People who care about having loosely coupled code are:

1. Developers who refactor their code. Do you always get it
right the first time? Do requirements never change on you?

Coupling, The Enemy 23

We often need to move things around or rework them, but
that’s often hard to do when the code you're reworking is
so tightly bound to code in several other places. One little
change here, a couple dozen regression bugs there.

2. Developers who like to test their code. Testing code can
be an absolute pain if the code is tightly coupled. Often, we
want to test just one component of an application at a time, in
isolation — unit testing. But that’s impossible when one class
requires a dozen other classes to run, and instantiates them
itself.

3. Developers who like to reuse their code. Reusing code is
great! Writing the same code twice sucks. Reusing one piece
of code is absolutely impossible when it is tightly coupled to
the rest of your application. You can’t just copy the class out
and drop it in another project without either hacking away
it’s coupling, or bringing everything else with it. For shame.

Simply put, coupling is the enemy of developers everywhere as it
makes their future lives incredibly difficult. Don’t screw over your
future self.

How do we Reduce Coupling?

There are quite a few ways we can reduce the amount of coupling
within our codebase, but we’ll cover four basic, easy solutions:

1. Have less dependencies. This sounds like a no brainer. Hav-
ing less dependencies reduces the amount of coupling in your
code by reducing the amount of things to couple to. This does
not mean, however, that we need to stop using dependencies.
By making sure our classes and method are short, and only
have one purpose, and by breaking out complex routines into
several classes and methods, we can reduce the amount of

Coupling, The Enemy 24

dependencies each class itself needs, which makes it much
easier to refactor classes in isolation.

2. Use Dependency Injection. We’ll cover this in the next
chapter. Dependency injection provides us with a means with
move the control of dependencies outside of our class and
giving it to a third party.

3. Use Interfaces, not Concrete Classes. As much as possible,
we want to couple ourselves to interfaces, which provide
a sort of contract of what to expect. Used together with
with dependency injection, we can write classes that know
nothing about our dependencies, only that they request a
specific format for the dependency, and let something else
provide it. We’ll also cover this in the next chapter.

4. Use Adapters. Instead of coupling to something, instead
couple to an adapter, which takes some third party code and
transforms it into what we’d expect to to look and behave
like. Combine this with #2 and #3 above, and we can safely
use third party code without tightly coupling to it. We’ll cover
this in Abstracting with Adapters.

Your Decoupling Toolbox

We’ve uncovered various ways in which poor design decisions can
lead to code that is hard to maintain, hard to refactor, and hard to
test. Now we’re going to look at some guiding principles and design
patterns that will help us alleviate these problems and help us write
better code. Later, when we talk about architecture, we’ll apply
these principles further to discover how to create truly uncoupled,
refactorable, and easily testable code.

25

Design Patterns, A Primer

A design pattern is a specific solution to a commonly occurring
problem in software development. These design patterns form a
common language among software developers that can be used
to discuss problems and describe solutions. They are transferable
across languages and are not specific to PHP.

Design patterns as we know them today are heavily influenced by
“the Gang of Four” who were instrumental in their popularization
starting in 1994 with their book Design Patterns: Elements of
Reusable Object-Oriented Software. The GoF are: Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides.

In their book, the GoF described twenty three design patterns orga-
nized into three categories: Creational, Structural, and Behavioral.
It would be impossible to cover all of these patterns in any detail in
this book, however, as they are instrumental to nearly every chapter
that follows, we’re going to briefly cover a few of them here.

1. Factory: An object responsible for instantiating other objects

2. Repository: Not actually a GoF design pattern, this is an
object responsible for transitioning data to and from its
storage

3. Adapter: An object that encapsulates another object to make
it conform to a desired API

4. Strategy: Encapsulates a behavior or a set of behaviors,
allowing them to be used interchangeably

For a lighter, and maybe funner approach to design patterns, you
can also checkout Head First Design Patterns® by Freeman, Bates,
Sierra, and Robson.

*http://www.headfirstlabs.com/books/hfdp/

26

http://www.headfirstlabs.com/books/hfdp/
http://www.headfirstlabs.com/books/hfdp/

Design Patterns, A Primer 27

The Factory Patterns

Factories are objects that are responsible for creating other objects
when needed, just like factories in real life are responsible for
creating tangible things.

In real life, a Car Factory is responsible for creating cars. If we
wanted this concept in code, it’d be the same. We’d have a Car-
Factory object that would create Car objects for us.

Factories in code can be applied to things that generally wouldn’t
make sense in real life, such as a CustomerFactory or Connection-
StrategyFactory.

Typically, if we wanted to create a Customer object, we’d just
instantiate one:

$customer = new Customer();

And this is fine for very simple classes with little configuration. But
what if we had to bootstrap our Customer object, so to speak? Let’s
say, for instance, that by default, a Customer has a $0 credit limit, is
of status “pending” and is randomly assigned an account manager.
Do we really want to litter our code with this logic in all the places
we might create a new Customer object? What happens when these
business rules change?

Of course, we’re going to use a factory to handle creating Customers
for us:

Design Patterns, A Primer 28

class CustomerFactory ({
protected $accountManagerRepo;

public function __construct(AccountManagerRepository \
$repo) {
$this->accountManagerRepo = $repo;

public function createCustomer($name) {
$customer = new Customer();
$customer ->setName($name) ;
$customer->setCreditLimit(Q);
$customer->setStatus('pending');
$customer ->setAccountManager (

$this->accountManagerRepo->getRandom()

);

return $customer;

The business logic for creating new Customer objects is encapsu-
lated within the CustomerFactory object.

There are several benefits to using factories:

1. Reusable code. Any place you have to create an object, the
same logic is applied. No duplicate logic.

2. Testable code. Factories make creational logic easy to test. If
this code were directly within some other class somewhere,
it wouldn’t be possible to test in isolation.

3. Easy to change. If the logic ever changes, the change only
needs to occur in one place.

Design Patterns, A Primer 29

Static Factories

Often, you’ll see factories in the wild setup as “static classes” (i.e.:
classes with only static methods):

class CustomerFactory ({
public static function createCustomer($name) {
$customer = new Customer();
$customer->setName($name);
$customer->setCreditlLimit(Q);
$customer->setStatus('pending');

return $customer;

Which would be called simply:

$customer = CustomerFactory: :createCustomer('ACME Corp'\

)

At first, this seems much cleaner and easier to use than instantiating
the factory every time we need it. However, our first Customer-
Factory had additional dependencies it needed to create Customer
objects, namely the AccountRepository. We could pass this depen-
dency to the method each time we call it, but that would be a mess
to cleanup if we ever changed the name of AccountRepository or
switched to another paradigm for data management.

I'll leave it up to you whether you want to use static factories or not.
For simple factories, there’s probably no negatives to doing so. For
involved factories, especially those with dependencies, it can lead
to some pretty smelly code.

Design Patterns, A Primer 30

Types of Factories

The CustomerFactory is typically how repositories are thought of
by many, but it’s not exactly how the Factory Pattern was described
in the Gang of Four design patterns book. In fact, they outlined two
different types of factories.

Typically, the type of factory we created above is called a Simple
Factory. A simple factory is a class responsible for creating another
object.

Let’s look at the two factories patterns defined by the GoF:

1. The Factory Method pattern
2. The Abstract Factory pattern

Factory Method Pattern

According to the Gang of Four, the intent of the Factory Method
Pattern is to:

Define an interface for creating an object, but let
subclasses decide which class to instantiate.

This type of factory isn’t standalone like the Simple Factory we
describe above. Instead, it’s embedded in either an abstract class
or interface, or even within a concrete class. Whatever class needs
to define a subordinate class can have a factory method.

class Document {
public function createPage() {
return new Page();

Design Patterns, A Primer 31

In this example, we have a simple createPage() method on Docu-
ment which returns a new page.

However, if we want to be able to create multiple different types of
documents, we could make this an abstract class:

abstract class AbstractDocument {
public function render() {
$this->addPage(1, $this->createPage());
}
public function addPage(1, AbstractPage) {
Y/

abstract public function createPage();

Now if we wanted to create a ResumeDocument and a Port folioDoc-
ument:

class ResumeDocument extends AbstractDocument {
public function createPage() {
return new ResumePage();

class PortfolioDocument extends AbstractDocument {
public function createPage() {
return new PortfolioPage();

Of course, we need those subordinate objects being created by the
factory methods:

Design Patterns, A Primer 32

interface Pagelnterface {}
class ResumePage implements Pagelnterface {}

class PortfolioPage implements Pagelnterface {}

The benefit of using a factory method like this is that it allows
us to keep the bulk of our common functionality within the Ab-
stractDocument class, as it’s inherent to both ResumeDocument and
PortfolioDocument, but not have AbstractDocument reliant on the
actual concrete document it’s working with.

Whenever AbstractDocument needs to generate a new page for
whatever concrete it’s part of, it simply calls createDocument () and
gets one.

The factory pattern works best when a class doesn’t know which
type of objects it is working with and needs to create.

Abstract Factory Pattern

According to the Gang of Four, the intent of the Abstract Factory
Pattern is to:

Provide an interface for creating families of related
or dependent objects without specifying their concrete
classes.

With the Abstract Factory pattern, we're interested in devising a
solution to handle the creation of multiple different related objects,
when the type of objects that need to be created isn’t known.

The Abstract Factory Pattern typically has several different players:

1. Client Code, which is an object or code that needs to use the
factory to create other objects

2. Object Interface, which defines the structure of the actual
objects to be created

Design Patterns, A Primer 33

3. Concrete Objects, which implement the Object Interface
with specific implementation details

4. An Abstract Factory, which declares an interface to define
how objects (Object Interfaces) should be created

5. Concrete Factories, which implement the Abstract Factory
interface and create specific types of objects (Concrete Ob-
jects)

Let’s say we are writing some code to generate various different
makes and models of cars, but we want the code to be adaptable to
anything we throw at it.

Let’s say we have a Building class that is responsible for generating
a specific car manufacturer’s line. This is our Client Code:

class Building {
public function createCars() {}
public function createTrucks() {}

We want this Building to be able to create Cars and Trucks as
necessary. The first thing we need to do for the Abstract Factory
Pattern to work is create an interface that defines these objects.
These are our Object Interfaces:

interface Carlnterface {}

interface TruckInterface {}

Let’s say we want to create both Ford and Chevrolet vehicles. We’'ll
need to define a concrete class for each manufacturer and each
vehicle type. These are our Concrete Objects:

Design Patterns, A Primer 34

class ChevyMalibu implements Carlnterface {}
class ChevySilverado implements TrucklInterface {}

class FordFiesta implements CarlInterface {}

class FordF250 implements TruckInterface {}

We’re going to need an assembly line to create each of these, so
let’s define an interface for that too. This assembly line will be the
basis for our actual factories. This interface is our Abstract Factory
player.

interface AssemblylLinelnterface {
public function createCar();
public function createTruck();

And of course, we’ll need some concrete classes of the Assembly-
LineInterface to create each manufacturer’s line. These are our
Concrete Factories:

class ChevyAssemblylLine implements AssemblylLinelnterfac\

e {
public function createCar() {

return new ChevyMalibu();

public function createTruck() {
return new ChevySilverado();

class FordAssemblylLine implements AssemblylLinelnterface\

{

public function createCar() {

Design Patterns, A Primer 35

return new FordFiesta();

public function createTruck() {
return new FordF250();

Now, our Building class can be supplied a specific Assembly-
LineInter face, and start making vehicles:

class Building {
protected $assemblyline;
protected $inventory = [];

public function __construct(
AssemblylLinelnterface $assemblylLine

) |

$this->assemblyline = $assemblyline;

public function createCars() {
for ($i = 0; $i < 20; $i++) {
$this->inventory[] =

$this->assemlylLine->createCar();

public function createTrucks() {
for ($i = 0; $i < 15; $i++) {
$this->inventory[] =

$this->assemlyline->createTruck();

Design Patterns, A Primer 36

We could call the code as such:

$building = new Building(new FordAssemblylLine());
$building->createCars();

The Abstract Factory pattern is useful when several different ob-
jects need to be created independent from the system that creates
them. If we're only concerned with created one object, then the
Abstract Factory isn’t a very suitable solution.

O Abstract Factory wuses Factory
Methods

You might have noticed that the create() methods in
the assembly lines above look a lot like Factory Meth-
ods. That’s because they are! The Abstract Factory
Pattern actually uses the Factory Method Pattern.

Repository Pattern

A Repository is an object that allows for the retrieval and persisting
of data to a data store. The Repository Pattern is described in great
detail in Eric Evan’s Domain-Driven Design: Tackling Complexity
in the Heart of Software:

A REPOSITORY represents all objects of a certain
type as a conceptual set (usually emulated). It acts
like a collection, except with more elaborate querying
capability.

Domain-Driven Design, Eric Evans, p. 151

Design Patterns, A Primer 37

When working with repositories, one stops thinking of getting data
as “querying the database,” but instead thinks of the process as
retrieving data from the repository.

Repositories usually have methods to retrieve data and methods to
persist data. They’re usually called different things depending on
the implementation.

Common retrieval methods include:

class MyRepository {
public function getById($id);
public function findById($id);
public function find($id);
public function retrieve($id);

I prefer either the get() or find() variants. You’ll often encounter
other methods in repositories aimed at retrieving data in different
ways:

class MyRepository {
public function getById($id);
public function getAll();

public function getBy(array $conditions);

Common persistence methods include:

class MyRepository {
public function persist($object);
public function save($object);

Design Patterns, A Primer 38

I prefer to use persist(), but these decisions are entirely up to you.

Repositories should only reference one object class. Thus, for each
object you need to retrieve or persist, you should have a separate
repository for them. If we’re working with a Customer object, we
should have a CustomerRepository.

public function saveAction() {
$customer = $this->customerRepository->getByI1d(1001);
$customer->setName('New Customer Name');

$this->customerRepository->persist($customer);

This client code is simple to use; it does not need to know the
mechanics or language of the data store. It only needs to know how
to use the repository, which it does through a simple APIL

Repositories and Factories are often used together. The factory is
responsible for created the object, and the repository is responsible
for persisting it. When an object already exists in the data store, the
repository is also responsible for retrieving a reference to it, and
later likely responsible for saving changes made to it.

How does a Repository Work?

This is all well and good, but how exactly does a repository work?

Objects of the appropriate type are added and re-
moved, and the machinery behind the REPOSITORY
inserts them or deletes them from the database.

Domain-Driven Design, Eric Evans, p. 151

What is this machinery behind the repository? Making repositories
work can be simple. Making repositories that work very well can be

Design Patterns, A Primer 39

quite complicated. It’s best to rely on an already established frame-
work, especially when you’re just starting out. Doctrine ORM?®
provides a great Data Mapper implementation, while Eloquent
ORM’ and Propel® provide implementations of the Active Record
pattern, and Zend Framework 2° provides a Table Data Gateway
implementation.

However, if you really want to dive in with creating your own
repository backend, I'd highly suggest reading Martin Fowler’s
Patterns of Enterprise Application Architecture'. This book covers
how to properly implement various patterns that would sit behind
a repository, including Data Mapper, Table Data Gateway, and
Active Record.

Adapter Pattern

The Adapter Pattern allows for encapsulating the functionality of
one object, and making it conform to the functionality of another
object. This pattern is sometimes also referred to as the Wrapper
Pattern, as it involves wrapping one object with another.

Let’s say we have one class whose interface looks something like
this:

class GoogleMapsApi {
public function getWalkingDirections($from, $to) {}

We have an interface in our project that defines the structure of an
object that gets us distances:

“http://www.doctrine-project.org/projects/orm.html
"http://laravel.com/docs/eloquent
*http://propelorm.org/

*http://framework.zend.com/
1%http://martinfowler.com/books/eaa.html

http://www.doctrine-project.org/projects/orm.html
http://laravel.com/docs/eloquent
http://laravel.com/docs/eloquent
http://propelorm.org/
http://framework.zend.com/
http://martinfowler.com/books/eaa.html
http://www.doctrine-project.org/projects/orm.html
http://laravel.com/docs/eloquent
http://propelorm.org/
http://framework.zend.com/
http://martinfowler.com/books/eaa.html

Design Patterns, A Primer 40

interface Distancelnterface {
public function getDistance($from, $to);

If we want to provide aDistanceInter face concrete class that gives
the walking distance between two points, we can write an adapter
to use the GoogleMapsApi class to do so:

class WalkingDistance implements Distancelnterface {
public function getDistance($from, $to) {
$api = new GoogleMapsApi();
$directions = $api->getWalkingDirections($from, $to\
);

return $directions->getTotalDistance();

This class inherits from our Distancelnterface, and properly
returns the distance using the GoogleMapsApi class to first get the
walking directions, and then return the distance contained in that
result.

The Adapter Pattern allows us to take one object, and adapt it
to fit the interface of another object, making them compatible in
whatever context we’re trying to use them.

Adapters are discussed in more detail in the chapter Abstracting
With Adapters, including some very valid use cases for this pattern.

Strategy Pattern

The Strategy Pattern allows the behavior of an algorithm to be
determined during runtime of an application. Strategies are usually

Design Patterns, A Primer 41

a family of classes that share a common interface, that each encap-
sulate separate behavior that can be interchangeable at runtime.

Let’s say we need to develop an invoicing process for our customers,
who have the option of choosing between two methods of receiving
their invoices: email or paper.

public function invoiceCustomers(array $customers) {
foreach ($customers as $customer) {
$invoice = $this->invoiceFactory->create(
$customer,
$this->orderRepository->getByCustomer ($customer)

);

// send invoice. ..

Our InvoiceFactory takes care of generating an invoice from all the
orders returned by our OrderRepository, so how do we go about
sending those invoices?

Using the Strategy Pattern, we first define an interface that de-
scribes how all invoices should be sent, regardless of delivery
method:

interface InvoiceDeliverylnterface {
public function send(Invoice $invoice);

We have two possible methods of delivering an invoice: email or
print. Let’s define a strategy for each.

Design Patterns, A Primer 42

class EmailDeliveryStrategy implements InvoiceDeliveryI\
nterface {
public function send(Invoice $invoice) {

// Use an email library to send it

class PrintDeliveryStrategy implements InvoiceDeliveryI\
nterface {
public function send(Invoice $invoice) {
// Send it to the printer

f Optimization Opportunity

How these two classes manage to delivery the invoice
aren’t important for this exercise, but consider how
you might use third party libraries to send emails and
use some kind of printing service (maybe through an
API).

Could the Adapter Pattern be a good way to bring
those libraries into your code base and use them
within these strategies?

Our calling code (the client) now needs to make a determination of
which strategy to use:

Design Patterns, A Primer 43

public function invoiceCustomers(array $customers) {
foreach ($customers as $customer) {
$invoice = $this->invoiceFactory->create(
$customer,
$this->orderRepository->getByCustomer ($customer)

)

switch ($customer->getDeliveryMethod()) {

case 'email’':
$strategy = new EmailDeliveryStrategy();
break;

case 'print':

default:
$strategy = new PrintDeliveryStrategy();
break;

$strategy->send($invoice);

This code now delivers invoices using the two new strategies. The
Strategy Pattern has allowed us to encapsulate the behavior and
make a determination at runtime of which strategy to use.

The code isn’t perfect, though. Is this the correct place to make the
determination of how to send an invoice to the customer? Could we
maybe utilize one of these design patterns to make this code better?
Of course!

Instantiating the correct strategy to use is the perfect place to use a
factory.

Design Patterns, A Primer 44

class InvoiceDeliveryStrategyFactory {
public function create(Customer $customer) {
switch ($customer->getDeliveryMethod()) {
case 'email’':
return new EmailDeliveryStrategy();
break;
case 'print':
default:
return new PrintDeliveryStrategy();

break;

The actual logic within the InvoiceDeliveryStrategyFactory class
isn’t any different than what we had in the invoiceCustomers
method, but now it’s reusable (if that were even necessary in this
case), and it’s independently testable. It’s a great use of a factory.

This simple code example now shows the usage of repositories,
factories, strategies, and, if you followed our tip, maybe even
adapters!

public function invoiceCustomers(array $customers) {
foreach ($customers as $customer)
$invoice = $this->invoiceFactory->create(
$customer,
$this->orderRepository->getByCustomer ($customer)

);

$strategy = $this->deliveryMethodFactory->create(
$customer
);

$strategy->send($invoice);

Design Patterns, A Primer 45

Learning More Design Patterns

Design patterns help us write clean, understandable, concise code
that makes refactoring, testing, and maintainability possible. It also
gives us a common language to use when discussing ideas with
other developers.

This chapter has only scratched the surface of the design patterns
presented, and only presented a handful of the design patterns in
the wild. Even beyond those introduced by the Gang of Four book,
others have defined their own design patterns, and some of those
have gained traction.

I highly recommend you pick up at least one of the two books
mentioned in the beginning of this chapter:

1. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware'!
2. Head First Design Patterns

Design patterns are a great, tried-and-true way to solve common
coding problems. We’ll use these patterns throughout the rest of
this book.

"http://amzn.to/XO8DB4
Phttp://www.headfirstlabs.com/books/hfdp/

http://amzn.to/XO8DB4
http://amzn.to/XO8DB4
http://www.headfirstlabs.com/books/hfdp/
http://amzn.to/XO8DB4
http://www.headfirstlabs.com/books/hfdp/

SOLID Design Principles

Much like design patterns are a common language of constructs
shared between developers, SOLID Design Principles are a common
foundation employed across all types of applications and program-
ming languages.

The SOLID Design Principles are a set of five basic design principles
for object oriented programming described by Robert C. Martin**.
These principles define ways in which all classes should behave and
interact with one another, as well as principles of how we organize
those classes.

The SOLID principles are:

Single Responsibility Principle
Open/Closed Principle

Liskov Substitution Principle
Interface Segregation Principle

Gk W=

Dependency Inversion Principle

Single Responsibility Principle

The Single Responsibility Principle states that objects should have
one, and only one, purpose. This is a principle that is very often
violated, especially by new programmers. Often you’ll see code
where a class is a jack of all trades, performing several tasks, within
sometimes several thousand lines of code, all depending on what
method was called.

Phttp://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

46

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

SOLID Design Principles 47

To the new OOP developer, classes are often viewed at first as a
collection of related methods and functionality. However, the SRP
advocates against writing classes with more than one responsibility.
Instead, it recommends condensed, smaller classes with a single
responsibility.

What is a responsibility?

In his description of the Single Responsibility Principle, Robert
Martin describes a responsibility as “a reason for change” Any time
we look at a given class and see more than one way in which we
might change it, then that class has more than one responsibility.

Another way to look at a responsibility is to look at the behavior of
a class. If it has more than one behavior, it is violating SRP.

Let’s look at a class that represents a User record stored in a
database:

class User {
public function getName() {}
public function getEmail() {}

public function find($id) {}
public function save() {}

This User class has two responsibilities: it manages the state of
the user, and it manages the retrieval from and persistence to the
database. This violates SRP. Instead, we could refactor this into two
classes:

SOLID Design Principles 48

class User {
public function getName() {}
public function getEmail() {}

class UserRepository {
public function find($id) {}
public function save(User $user) {}

The User class continues to manage the state of the user data,
but now the UserRepository class is responsible for managing the
retrieval and persistence to the database. These two concepts are
now decoupled, and the two classes conform to SRP.

When we look at the UserRepository class, we can make a deter-
mination that retrieving and persisting data to the database are the
same responsibility, as a change to one (such as changing where or
how the data is stored) requires a change to the other.

Breaking up Classes

In order to apply the SRP principle to existing classes, or even when
creating new classes, it’s important to analyze the responsibility of
the class. Take for instance a customer invoicing class, like the one
we looked at in the previous chapter:

class InvoicingService {
public function generateAndSendInvoices() {}
protected function generatelnvoice($customer) {}
protected function createlnvoiceFile($invoice) {}
protected function sendInvoice($invoice) {}

SOLID Design Principles 49

Already it’s plainly obvious that this class has more than one
responsibility. Just looking at the method name of generate-
AndSendInvoices() reveals two. It’s not always readily apparent
from class and method names how many responsibilities there are,
though. Sometimes it requires looking at the actual code within
those methods. After all, the method could have simply been named
generatelnvoices(), hiding the fact that it was also responsible for
delivering those invoices.

There are at least four separate responsibilities of this class:

1. Figuring out which invoices to create
2. Generating invoice records in the database

3. Generating the physical representation of the invoice (i.e.:
PDF, Excel, CSV, etc)

4. Sending the invoice to the customer via some means

In order to fix this class to conform to SRP, we’ll want to break it up
into smaller, fine tuned classes, each representing one of the four
responsibilities we identified above, plus the InvoicingService
class that ties this all together.

class OrderRepository {
public function getOrdersByMonth($month);

class InvoicingService {

public function generateAndSendInvoices() {}

class InvoiceFactory {

public function createlnvoice(Order $order) {}

SOLID Design Principles 50

class InvoiceGenerator {
public function createlnvoiceFormat(
Invoice $invoice,
$format

) {}

class InvoiceDeliveryService {
public function sendInvoice(
Invoice $invoice,
$method

) {}

Our four classes here represent the responsibilities of the previous
InvoicingService class. Ideally, we’d probably even have more
than this: we’ll probably want strategy classes for each format
needed for the InvoiceGenerator and strategy classes for each
delivery method of the InvoiceDeliveryService. Otherwise, these
classes end up having more than one responsibility as they’re
either generating multiple file formats, or utilizing multiple delivery
methods.

This is a lot of classes, almost seemingly a silly number of classes.
What we’ve given up, however, is one very large, monolithic class
with multiple responsibilities. Each time we need to make a change
to one of those responsibilities, we potentially risk introducing an
unintended defect in the rest of the seemingly unrelated code.

Why does SRP matter?

Why are we concerned with making sure a class only has one
responsibility? Having more than one responsibility makes those
responsibilities coupled, even if they are not related. This can make
it harder to refactor the class without unintentionally breaking

SOLID Design Principles 51

something else, whereas having a separate class for each respon-
sibility shields the rest of the code from most of the risk.

It’s also much easier to test a class with only one responsibility:
there’s only one thing to test, although with a potential for many
different outcomes, and there’s much less code involved in that test.

Generally, the smaller the class, the easier it is to test, the easier it
is to refactor, and the less likely it is to be prone to defects.

Open/Closed Principle

The Open/Closed Principle states that classes should be open to
extension, but closed to modification. This means that future devel-
opers working on the system should not be allowed or encouraged
to modify the source of existing classes, but instead find ways to
extend the existing classes to provide new functionality.

The Strategy Pattern introduced in the previous chapter of Design
Patterns provides a great example of how the Open/Closed Prin-
ciple works. In it, we defined strategies for mechanisms to deliver
invoices to customers. If we wanted to add a new delivery method,
perhaps one via an EDI (Electronic Data Interchange), we could
simply write a new adapter:

class EdiStrategy implements Deliverylnterface {
public function send(Invoice $invoice) {

// Use an EDI library to send this invoice

Now the invoice process has the ability to deliver invoices via EDI
without us having to make modifications to the actual invoicing
code.

SOLID Design Principles 52

The OCP in PHPUnit

The PHPUnit testing framework provides a great example of how a
class can be open to extension, but closed for modification. The PH-
PUnit_Extensions_Database_TestCase abstract class requires that
each individual test case provide a getDataSet() method, which
should return an instance of PHPUnit_Extensions_Database_DataSet_-
IDataSet, an interface. PHPUnit provides several implementations

of this interface, including a CsvDataSet, XmlDataSet, YamlDataSet,

etc.

If you decided you wanted to provide your data sets as plain PHP
arrays, you could write your own data set provider class to do so,
simply by implementing the IDataSet interface. Using this new
class, we could provide the TestCase class with a data set, parsed
from PHP arrays, that works and acts like any of the built-in
PHPUnit data sets.

class MyTest extends DatabaseTestCase {
public function getDataSet() ({
return new ArrayDataSet([]);

The internal code of PHPUnit has not been modified, but now it is
able to process pure PHP arrays as data sets. **

https://github.com/mrkrstphr/dbunit-fixture-arrays.

Why does OCP matter?

The benefit of the Open/Closed Principle is that it limits the
direct modification of existing source code. The more often code
is changed, the more likely it is to introduce unintended side effects

“If you want to see a complete example of this concept in action, checkout

https://github.com/mrkrstphr/dbunit-fixture-arrays

SOLID Design Principles 53

and cause defects. When the code is extended as in the examples
above, the scope for potential defects is limited to the specific code
using the extension.

Liskov Substitution Principle

The Liskov Substitution Principle says that objects of the same
interface should be interchangeable without affecting the behavior
of the client program *°.

This principle sounds confusing at first, but is one of the easiest
to understand. In PHP, interfaces give us the ability to define the
structure of a class, and then follow that with as many different
concrete implementations as we want. The LSP states that all of
these concrete implementations should be interchangeable without
affecting the behavior of the program.

So if we had an interface for greetings, with various implementa-
tions:

interface Hellolnterface {
public function getHello();

class EnglishHello implements HelloInterface {
public function getHello() {
return "Hello";

class SpanishHello implements Hellolnterface {
public function getHello() {
return "Hola";

Phttp://www.objectmentor.com/resources/articles/Isp.pdf

http://www.objectmentor.com/resources/articles/lsp.pdf

SOLID Design Principles 54

class FrenchHello implements Hellolnterface {
public function getHello() {
return "Bonjour";

These concrete Hello classes should be interchangeable. If we had
a client class using them, the behavior shouldn’t be affected by
swapping them for one another:

class Creeter {
public function sayHello(HelloInterface $hello) {
echo $hello->getHello() . "!\n";

$greeter = new Greeter();
$greeter->sayHello(new EnglishHello());
$greeter->sayHello(new SpanishHello());

$greeter->sayHello(new FrenchHello());

While the output may be different, which is desired in this example,
the behavior is not. The code still says “hello” no matter which
concrete instance of the interface we give it.

LSP in PHPUnit

We already discussed an example of the Liskov Substitution Prin-
ciple when we discussed the Open/Closed Principle. The Array-
DataSet class we defined as an instance of PHPUnit’s IDataSet is
returned from the getDataSet () method of DbUnit’s DatabaseTest -
Case abstract class.

SOLID Design Principles 55

class MyTest extends DatabaseTestCase {
public function getDataSet() ({

return new ArrayDataSet([]);

The PHPUnit DatabaseTestCase class expects that the getDataSet ()
method will return an instance of IDataSet, but doesn’t necessarily
care what implementation you give it, so long as it conforms to the
interface. This is also referred to as design by contract, which we’ll
talk about in much more detail in Dependency Injection.

The key point of the Liskov Substitution Principle is that the
behavior of the client code shall remain unchanged. Regardless of
what implementation of IDataSet we return from getDataSet(),
it will result in the data set being loaded into the database for unit
tests to be run against. It doesn’t matter if that data came from CSV,
JSON, XML, or from our new PHP array class: the behavior of the
unit tests remain the same.

Why does LSP matter?

In order for code to be easily refactorable, the Liskov Substitution
Principle is key. It allows us to modify the behavior of the program,
by providing a different instance of an interface, without actually
modifying the code of the program. Any client code dependent
upon an interface will continue to function regardless of what
implementation is given.

In fact, as we’ve already seen, the Liskov Substitution Principle goes
hand-in-hand with the Open/Closed Principle.

SOLID Design Principles 56

Interface Segregation Principle

The Interface Segregation Principle dictates that client code should
not be forced to depend on methods it does not use'. The principle

intends to fix the problem of “fat” interfaces which define many

method signatures. It relates slightly to the Single Responsibility

Principle in that interfaces should only have a single responsibility.

If not, they’re going to have excess method baggage that client code

must also couple with.

Consider for a moment the following interface:

interface LoggerlInterface {
public function write($message);
public function read($messageCount);

This interface defines a logging mechanism, but leaves the details
up to the concrete implementations. We have a mechanism to write
to a log in write(), and a mechanism to read from the log file in
read().

Our first implementation of this interface might be a simple file

logger:

*“http://www.objectmentor.com/resources/articles/isp.pdf

http://www.objectmentor.com/resources/articles/isp.pdf

SOLID Design Principles 57

class FileLogger implements LoggerInterface {
protected $file;

public function __construct($file) {

$this->file = new \SplFileObject($file);

public function write($message) {

$this->file->furite($message);

}
public function read($messageCount)
{

$lines = 0;

$contents = [];

while (!$this->file->eof()
&& $lines < $messageCount) {

$contents[] = $this->file->fgets();

$lines++;

return $contents;

As we continue along, though, we decide we want to log some
critical things by sending via email. So naturally, we add an
Emaillogger to fit our interface:

SOLID Design Principles 58

class EmaillLogger implements LoggerInterface {

protected $address;
public function __construct($address) {

$this->address = $address;

public function write($message) {
// hopefully something better than this:

mail($this->address, 'Alert!', $message);
}
public function read($messageCount)
{
// hmm. ..
}

Do we really want our application connecting to a mailbox to try
to read logs? And how are we even going to sift through the email
to find which are logs and which are, well, emails?

It makes sense when we’re doing a file logger that we can easily also
write some kind of UI for viewing the logs within our application,
but that doesn’t make a whole lot of sense for email.

But since LoggerInter face requires a read() method, we’re stuck.

This is where the Interface Segregation Principle comes into play. It
advocates for “skinny” interfaces and logical groupings of methods
within interfaces. For our example, we might define a LogWriter-
Inter face and a LogReader Inter face:

SOLID Design Principles 59

interface LogWriterInterface {

public function write($message);

interface LogReaderInterface {
public function read($messageCount);

Now FilelLogger can implement both LogWriterInterface and
LogReaderInter face, while Emaillogger can implement only Log-
WriterInterface and doesn’t need to bother implementing the
write() method.

Further, if we needed to sometimes rely on a logger that can read
and write, we could define a LogManagerInter face:

interface LogManagerInterface

extends LogReaderInterface, LogWriterInterface {

OurFilelogger canthen implement the LogManager Inter face and
fulfill the needs of anything that has to both read and write log files.

Why does ISP matter?

The goal of the Interface Segregation Principle is to provide de-
coupled code. All client code that uses the implementation of an
interface is coupled to all methods of that interface, whether it uses
them or not, and can be subject to defects when refactoring within
that interface occur, unrelated to what implementations it actually
uses.

SOLID Design Principles 60

Dependency Inversion Principle

The Dependency Inversion Principle states that *:

A. High level modules should not depend upon low
level modules. Both should depend upon abstrac-
tions.

and that:

B. Abstractions should not depend upon details. De-
tails should depend upon abstractions.

This principle is very core to The Clean Architecture, and we’ll
discuss how it fits in great detail in that leading chapter.

Imagine a class that controls a simple game. The game is responsible
for accepting user input, and displaying results on a screen. This
GameManager class is a high level class responsible for managing
several low level components:

class GameManager ({
protected $input;
protected $video;

public function __construct() {
$this->input = new KeyboardInput();
$this->video = new ScreenOutput();

public function run() {
// accept user input from $this->input

"http://www.objectmentor.com/resources/articles/dip.pdf

http://www.objectmentor.com/resources/articles/dip.pdf

SOLID Design Principles 61

// draw the game state on $this->video

This GameManager class is depending strongly on two low level
classes: KeyboardInput and ScreenOutput. This presents a problem
in that, if we ever want to change how input or output are handled
in this class, such as switching to a joystick or terminal output, or
switch platforms entirely, we can’t. We have a hard dependency on
these two classes.

If we follow some guidelines of the Liskov Substitution Principle,
we can easily devise a system in which we have a GameManager that
allows for the input and outputs to be switched, without affecting
the output of the GameManager class:

class GameManager ({
protected $input;
protected $video;

public function __construct(
InputInterface $input,
OutputInterface $output

) |
$this->input
$this->video

$input;
$output;

public function run() {
// accept user input from $this->input

// draw the game state on $this->video

Now we’ve inverted this dependency to rely on InputInterface

SOLID Design Principles 62

and OutputInterface, which are abstractions instead of concre-
tions, and now our high level GameManager class is no longer tied to
the low level KeyboardInput and ScreenOutput classes.

We can have the KeyboardInput and ScreenOutput classes extend
from these interfaces, and add additional ones, such as Joystick-
Input and TerminalOutput that can be swapped at run time:

class KeyboardInput implements InputInterface {
public function getInputEvent() { }

class JoystickInput implements InputInterface {
public function getInputEvent() { }

class ScreenOutput implements OutputInterface {
public function render() { }

class TerminalOutput implements OutputInterface {
public function render() { }

}

We're also utilizing what’s known as Dependency Injection here,
which we’ll talk about in the next chapter, conveniently called
Dependency Injection.

If we can’t modify the input and output classes to conform to our
interfaces, if they’re maybe provided by the system, it would then be
smart to utilize the Adapter Pattern we previously discussed to wrap
these existing objects and make them conform to our interface.

Why does DIP matter?

In general, to reach a decoupled code base, one should get to a
point where dependency only flows inward. Things that change

SOLID Design Principles 63

frequently, which are the high level layers, should only depend on
things that change rarely, the lower levels. And the lower levels
should never depend on anything that changes frequently, which is
the higher level layers.

We follow this philosophy to make it easier for change to happen
in the future, and for that change to have as little impact upon the
existing code as possible. When refactoring code, we only want the
refactored code to be vulnerable to defects; nothing else.

Applying SOLID Principles

The SOLID principles work tightly together to enforce code that
is easy to extend, refactor, and test, which ultimately leads to less
defects and quicker turn around time on new features.

Just as we continued building on our Design Patterns in this
chapter, we’ll continue building on the principles of SOLID as we
discuss Inversion of Control and the Clean Architecture later. The
SOLID principles are the founding principles that make the Clean
Architecture work.

Dependency Injection

One of the worst forms of coupling we encounter in object oriented
programming deals with instantiating classes directly within other
classes. The quickest way to find instances of this is to simply look
for the new operator:

class CustomerController {
public function viewAction() {
$repository = new CustomerRepository();
$customer = $repository->getById(1001);

return $customer;

In this CustomerController, there is a dependency on Customer-
Repository. This is a hard, concrete dependency; without the
existence of CustomerRepository, the CustomerController simply
will not work without it.

Instantiating dependencies within classes introduces several prob-
lems:

1. It makes it hard to make changes later. Refactoring is
difficult when classes manage their own dependencies. If
we wanted to change the method by which we retrieved
data from the database, such as switching out the underlying
library, or switching to a different database storage, we’'d
have to find all the instances within our code where we
declared a CustomerRepository and make those changes.
This would be a tedious and error-prone process.

64

Dependency Injection 65

2. It makes it hard to test. In order for us to write any kind
of unit tests for the CustomerController class, we have to
make sure that not only CustomerRepository is available to
the test, but all dependencies that CustomerRepository relies
on — such as a database full with testable data — have to be
available as well. Now we’re doing full stack testing instead
of simple unit testing. Coupling makes it very hard to test
components in isolation.

3. We have no control over dependencies. In some instances,
we might want a class dependency to be configured differ-
ently, depending on various circumstances, when it is used
within another class. This becomes very awkward to develop
when a class is declaring and configuring the declaration of
its own dependencies.

These can turn out to be some pretty big problems, especially in
larger applications. It can severely inhibit a developer from making
even small changes to an application in the future.

Inversion of Control

Inversion of control is the process by which the instantiation and
configuration of dependencies is moved from the dependent class
and given instead to some external means. There are several of these
“external means,” and we’ll talk about two of the most popular: the
service locator pattern and dependency injection.

Using a Service Locator

One method of achieving inversion of control is to use the Service
Locator pattern. A Service Locator is a registry of resources that the
application can use to request dependencies without instantiating
them directly. When using this pattern, our code simply pulls its
dependencies out of the service locator registry.

Dependency Injection 66

public function viewAction() {

$repository = $this->servicelocator->get('CustomerRep\
ository');

$customer = $repository->getByld(1001);

return $customer;

Now, instead of instantiating its own dependencies outright, this
controller pulls the dependent object out of the service locator.
Depending on the implementation or framework that you use,
you’ll probably have some code that registers CustomerRepository
with the service locator, so that the service locator knows what to
return to the calling code:

$servicelocator->setFactory('CustomerRepository', funct\
ion($sl) {
return new Path\To\CustomerRepository(
$s1->get('Connection')
),
1)

In this theoretical service locator, an anonymous function is reg-
istered with the key CustomerRepository, and that function is
responsible for building and configuring the repository and return-
ing it. Further, the CustomerRepository itself has a dependency
on something called Connection that we’ll just assume is defined
elsewhere. The point here is to know that dependencies can have
dependencies of their own. When they do, instantiating them
directly when needed becomes even more overwhelming.

This code provides a couple several benefits.

1. There is now only have one place that is responsible for
instantiating a CustomerRepository so that whatever code

Dependency Injection 67

needs it will always have a properly configured repository. If
we ever need to change anything about how that repository
is created, there is only one place to go to do so. This makes
refactoring the code base much easier.

2. Another benefit is that it makes the CustomerController
code much easier to test. When testing the controller above,
the test code can simply give it a different implementation of
the service locator, one that has a mocked repository that can
control what data it returns.

$servicelocator->setFactory('CustomerRepository', funct\
ion() {
return new Path\To\MockCustomerRepository([
1001 => (new Customer())->setName('ACME Corp')
1);
1)

This MockCustomerRepository simply returns the test data “stored”
based on customer ID, so that when testing the controller, it will
return a Customer object with the name of ACME Corp. The
controller is now tested separately from the actual repository, and
the test is now only concerned with what is returned, and not how
it is retrieved.

This code is still only marginally better than the factory example
and the direct instantiation of the original code:

1. It still requests its own dependencies as needed through the
service locator. This is better than instantiating the depen-
dencies directly as at least we have control over what is
actually instantiated within the service locator, which should
make refactoring and testing easier.

2. In order to test, we have to go through the cumbersome
process of setting up a fake service locator and registering
required services with it just to get the controller to work.

Dependency Injection 68

Using Dependency Injection

Dependency Injection is a process by which a dependency is in-
jected into the object that needs it, rather than that object managing
its own dependencies.

Another way to think of dependency injection is to call it “third-
party binding,” as some third party code is directly responsible for
providing the dependency to the class. As Nat Pryce describes it'?,
the use of the term injection can be seen as a misnomer, as it isn’t
really injected into the code, but instead declared as part of the
code’s APL

There are two methods of dependency injection that we’ll discuss:

1. Setter injection - Using this method, dependencies can be
provided to the object through a set method on the class,
which would be stored for later use in a class member
variable.

2. Constructor injection - Using this method, dependencies are
provided to the object through its constructor, which would
also be stored for later use in a class member variable.

Using Setter Injection

Using Setter Injection, we would update the mechanism responsible
for instantiating the CustomerController object (either a routing or
dispatching process in our framework) to call some new set methods
and provide the object with its dependencies:

*http://www.natpryce.com/articles/000783.html

http://www.natpryce.com/articles/000783.html
http://www.natpryce.com/articles/000783.html

Dependency Injection 69

$controller = new CustomerController();
$controller->setCustomerRepository(new CustomerReposito\

ry());

$customer = $controller->viewAction();

And of course, the CustomerController would be updated to have
this setCustomerRepository method:

class CustomerController
protected $repository;

public function setCustomerRepository(CustomerReposit\
ory $repo) {
$this->repository = $repo;

public function viewAction() {
$customer = $this->repository->getByI1d(1001);

return $customer;

By the time the viewAction() method is called, this class should
have been injected an instance of CustomerRepository through the
setCustomerRepository method. Now the processes of retrieving
dependencies has been completely removed from the CustomerCon-
troller class.

When testing, we can see how much easier it is to mock the
repository to provide a stable testing state:

Dependency Injection 70

$repository = new MockCustomerRepository([

1001 => (new Customer())->setName('ACME Corp')
1);
$controller = new CustomerController();
$controller->setCustomerRepository($repository);
$customer = $controller->viewAction();

assertEquals('ACME Corp', $customer->getName());

There is still one drawback here, though, and that is that using setter
injection does not make the dependencies required. This puts us in
a situation that can lead to hard-to-detect defects when we forget
to inject some dependency:

$controller = new CustomerController();
$customer = $controller->viewAction();

This code will throw errors as, without calling the setCustomer-
Repository() method, the class $repository variable will be null
when it is used. Given how small this application is, we’ll likely find
the problem easily, but in a larger system with more involved code,
this could lead to a rough time debugging where something went
wrong.

Using Constructor Injection

Using Constructor Injection, the problem presented with setter
injection is solved in that, in order for the object to be instantiated,
the dependencies must be injected via the constructor. If they aren’t,
a very helpful, specific fatal error is thrown by PHP.

Providing that dependency would look something like this:

Dependency Injection 71

$controller = new CustomerController(new CustomerReposi\

tory());
$customer = $controller->viewAction();

The CustomerController is updated to require an instance of
CustomerRepository be passed along to the constructor. We use
type-hinting here so that an actual instance of CustomerRepository
is given, not just any variable.

class CustomerController {
protected $repository;

public function __construct(CustomerRepository $repo)\

{

$this->repository = $repo;

public function viewAction() {
$customer = $this->repository->getByIld(1001);
return $customer;

The CustomerController is now guaranteed to have an instance
of CustomerRepository ready to be used. This controller can test
this just like it was with setter injection using a mocked repository,
except it would be provided to the constructor rather than the set
method:

Dependency Injection 72

$repository = new MockCustomerRepository(|

1001 => (new Customer())->setName('ACME Corp')
1);
$controller = new CustomerController($repository);
$customer = $controller->viewAction();

assertEquals('ACME Corp', $customer->getName());

Dependency injection helps to both loosely couple our code base,
as well as provides the ability to test individual components in
isolation, without having to construct, prepare, and pass around
their individual dependencies. Since constructor injection forces the
object to be injected with its dependencies, it will be preferred over
setter injection throughout the rest of this book.

When to use Dependency Injection

Now that we’ve discussed what dependency injection is and the
problems it can help solve in your code, it’s important to take a
moment think about where it is appropriate to use this technique,
and where it is not. This is a bit of a blurry line, and whoever you
talk to, you’ll probably get a different opinion.

Here’s where I think you should use dependency injection:

1. When the dependency is used by more than one compo-
nent. If it’s being used by many things, it probably makes
sense to abstract out the instantiation and configuration and
inject the dependency, rather than doing it when needed.
Without this, we make it hard to refactor our code that uses
this dependency. However, if the dependency is only used
once, you then only have one place to go when refactoring
the code.

Dependency Injection 73

2. The dependency has different configurations in different
contexts. If a dependency is configured differently in the
different places it is used, then you definitely want to inject
it. Again, this configuration shouldn’t take place in the de-
pendent class. Not only does it make refactoring difficult, but
can make testing difficult as well. You’ll probably also want
to invest in a real factory that can create these dependencies
under different scenarios to abstract further the creation of
those dependencies.

3. When you need a different configuration to test a com-
ponent. If testing a dependent object requires that the de-
pendency needs to be configured differently to be tested,
you’ll want to inject it. There isn’t any other good way
around this. Think back to our example of mocking the
CustomerRepository to control what data it returned.

4. When the dependency being injected is part of a third
party library. If you're using someone else’s code, you
shouldn’t be instantiating it directly within the code that
depends on it. These dependencies should absolutely be
injected into your code. The usage of someone else’s code is
something we might refactor often. Special attention needs
to be paid to this scenario, and we’ll discuss that in detail in
Abstracting with Adapters using the Adapter Pattern we’ve
already discussed.

But there are definitely some scenarios where you probably don’t
want to use dependency injection.

If a dependency doesn’t need to be configured in anyway (meaning,
no constructor arguments or set methods that need to be called to
set it up), and doesn’t have dependencies itself, it might be safe
to go ahead and just instantiate that dependency within the class
that needs it. This is especially true when the dependency is the
component within the same layer of the application (we’ll get to
talking about various layers of software in a little bit).

Dependency Injection 74

For example, if our framework requires that our controller actions
return some kind of view or response object, it makes perfect sense
to just instantiate and return that right in the action.

public function viewAction() {
$customer = $this->repository->getById(1001);

return new ViewModel([
'customer' => $customer

1);

There is little gained value from injecting this ViewModel class into
the controller. It has no configuration, it has no dependencies itself,
and in the case of testing, we probably just want to verify that an
instance of ViewModel was returned with an instance of Customer
stored within it.

Using Factories to Create Dependencies

If we have a dependency that needs configuration, it doesn’t always
make sense to inject that dependency itself. Sometimes it might
be a better idea to inject an object that knows how to build this
dependency for us. This is useful when the way in which that
dependency is configured is controlled by scenarios within the class
itself.

Looking at the example above: what if we wanted to return a
different type of response based on a context requested? Maybe by
default we would return HTML, but based on context, might return
JSON or XML as well?

In this case, we may want to inject a factory that knows how to
build the response based on the requested context:

Dependency Injection 75

class CustomerController
protected $repository;
protected $responseFactory;

public function __construct(
CustomerRepository $repo,
ResponseFactory $factory

) |
$this->repository = $repo;
$this->responseFactory = $factory;

public function viewAction() {
$customer = $this->repository->getByIld(1001);
$response = $this->responsefFactory->create($this->p\

arams('context'));
$response->setData('customer', $customer);
return $response;

Previously, our dependency was the specific response we were
returning. Now, however, it’s this new ResponseFactory class that
builds a response for us.

The important thing here is that we are abstracting out the logic that
determines how to build the dependency, and instead depending on
that abstraction. We’re also injecting that in so that if the logic or
methodology ever changes, we just have to change the implementa-
tion instead of updating an unknown number of locations that were
previously building their own responses.

Handling Many Dependencies

It’s very easy to let dependency injection get out of control:

Dependency Injection 76

public function __construct(
CustomerRepository $customerRepository,
ProductRepository $productRepository,
UserRepository $userRepository,
TaxService $taxService,
InvoiceFactory $invoiceFactory,
ResponseFactory $factory,
VY

) |
V2

This is usually indicative of having a class that violates the Single
Responsibility Principle and does too much and contains too much
logic. There’s no hard rule about how many dependencies a class
can have. Generally, the fewer the better, however, it’s entirely
possible to go too far in the other direction as well, and end up
with a hierarchy of tiny classes that are hard to follow, refactor and
test.

After understanding the concepts of this book, you can start to use
the “Feels Bad” policy of knowing when to refactor a bad situation
into good, healthy code.

Are we still coupling?

Our whole reason for going down this path of dependency injection
was to reduce coupling in our code. Recall that our initial example,
pre-inversion of control looked like this:

Dependency Injection 77

class CustomerController
public function viewAction() {
$repository = new CustomerRepository();
$customer = $repository->getById(1001);
return $customer;

In this code we are highly coupled to the CustomerRepository as we
are declaring a concrete dependency right in the middle of our code.
By switching to using dependency injection, we ended up with this:

class CustomerController {
protected $repository;

public function __construct(CustomerRepository $repo)\

{

$this->repository = $repo;

public function viewAction() {
$customer = $this->repository->getByIld(1001);

return $customer;

Now we’re being provided some kind of class that is an instance
of CustomerRepository. This is much looser coupling, but it’s
still coupling. We still need something that is or extends from
CustomerRepository. There’s no real way around that. And since
this repository will likely sit within our persistence implementation,
we’re also coupling to a whole infrastructure layer that talks to a
database.

There is one level farther we can go with decoupling our dependen-
cies by using interfaces to define contracts.

Defining a Contract with
Interfaces

In the previous chapter we discussed the principle of inversion of
control, and describe how dependency injection can make refac-
toring and testing code easier. We started out by discussing object
coupling, and presented dependency injection as a method of limit-
ing coupling. However, when we reached the end, we realized that
we hadn’t entirely removed the coupling, we only made it weaker
by moving it to the constructor from the methods of the class.

class CustomerController {

protected $repository;

public function __construct(CustomerRepository $repo)\

{

$this->repository = $repo;

public function viewAction() {
$customer = $this->repository->getByIld(1001);

return $customer;

This class is still well coupled to the CustomerRepository class.
Since the CustomerRepository class is responsible for, at least
through its dependencies, connecting to and retrieving data from a
database, this means that the CustomerController is also coupled
to that database.

78

Defining a Contract with Interfaces 79

This can be problematic if we ever decided to switch data sources,
such as moving to a NoSQL variant, or switching to some API
service to provide our data. If we do that, we’ll have to then go
modify all the code across our entire code base that uses this
CustomerRepository to make it use something else.

Further, if we want to test this CustomerController, we still have
to give it an instance of CustomerRepository. Any mock object we
create will need to extend from CustomerRepository to pass the
type-hint check. That means our simple mock repository will still
have to have the entire database back-end tied to it, even if we are
overriding everything it does. That’s pretty messy.

Interfaces in PHP

Recall that in PHP, an interface is a definition of a class, without
the implementation details. You can think of it as a skeleton of a
class. An interface cannot have any method bodies, just method
signatures.

interface Automobile {
public function drive();
public function idle();
public function park();

Any class implementing an interface must implement all the meth-
ods of that interface.

Defining a Contract with Interfaces 80

class Car implements Automobile {
public function drive() {

echo "Driving!";

public function idle() {
echo "Idling!";

public function park() {
echo "Parking!";

Any number of implementations may exist for the interface Auto-
mobile:

class DumpTruck implements Automobile {
public function drive() {
echo "Driving a Dump Truck!";

public function idle() {

echo "Idling in my Dump Truck!";

public function park() {

echo "Parking my Dump Truck!";

The two classes Car and DumpTruck are considered compatible as
they both define the Automobile interface, and either could be used
in any instance where an Automobile is necessary.

Defining a Contract with Interfaces 81

This is known as polymorphism, where objects of different types
can be used interchangeably, so long as they all inherit from a
common subtype.

Using Interfaces as Type Hints

The usage of interfaces comes in handy when trying to reduce
coupling within a class. We can define an interface of some de-
pendency, and then reference only that interface. So far, we've
been passing around concrete instances of CustomerRepository.
Now, we’ll create an interface that defines the functionality of this
repository:

interface CustomerRepositoryInterface {
public function getById($id);

We have a simple interface with one method, getById(), which
returns a Customer object for the customer data identified by $id.
As this is an interface, we cannot provide any implementation
details, so this class provides no information about where the data
comes from, or how it is retrieved.

Now in our controller, we use PHP’s type-hints for methods and
functions to declare that the argument passed to the __construct()
method must be an instance of our new interface, CustomerRepos -
itoryInterface.

Defining a Contract with Interfaces 82

class CustomerController
protected $repository;

public function __construct(CustomerRepositorylInterfa\
ce $repo) {
$this->repository = $repo;

public function viewAction() {
$customer = $this->repository->getByI1d(1001);
return $customer;

Now the CustomerController class is only coupled to the Cus-
tomerRepositoryInterface, but that’s okay: this interface isn’t a
concrete implementation, it’s just a definition of an implementa-
tion. We can couple to this and, in fact, we should, as it defines
how our application interacts, without referencing the specific
implementations.

Whatever mechanism is responsible for instantiating the Customer -
Controller can still provide it with the concrete CustomerReposi -
tory, so long as that class implements the ‘CustomerRepositoryIn-
terface’.

class CustomerRepository implements

CustomerRepositorylnterface {

public function getById($id) {
// get and return the customer. ..

The CustomerRepository provides the implementation of the get-
ById() method and fulfills the requirements of the interface.

Defining a Contract with Interfaces 83

When we want to test this controller now, we can instead use a
mock instance of CustomerRepositorylInter face:

class MockCustomerRepository implements
CustomerRepositorylInterface {

public function getById($id) {
if ($id == 1001) {
return (new Customer())
->setId(1)

->setName('Customer #1001');

While this may not be the greatest code (and using a mock-
ing library like Mockery™ or the mocking utilities provided by
PHPUnit would be better®®), we can nevertheless pass this in to
CustomersController to fulfill the CustomerRepositorylnter face
type hint. Now the controller is being tested in isolation, without
the specific configuration and dependencies of the real Customer -
Repository.

The CustomersController really doesn’t care what object you end
up injecting it with. So long as that object meets the required
interface (and it will, otherwise a fatal error will be thrown), the
controller should function just the same. This also assumes, of
course, that the dependencies being injected actually work and
return the data they should.

https://github.com/padraic/mockery
*http://phpunit.de/manual/4.1/en/test-doubles.html

https://github.com/padraic/mockery
http://phpunit.de/manual/4.1/en/test-doubles.html
http://phpunit.de/manual/4.1/en/test-doubles.html
https://github.com/padraic/mockery
http://phpunit.de/manual/4.1/en/test-doubles.html

Defining a Contract with Interfaces 84

0 The Liskov Substitution Principle

If this sounds familiar, it should. We already dis-
cussed these principles when we talked about the
Liskov Substitution Principle. Our various concrete
repositories are interchangeable as they both extend
the same interface.

The Dependency Inversion Principle also applies
here, as we’re modifying our high level code (the
controller in our example) to not depend upon low
level code (the repository), and instead depend upon
an abstraction.

Using Interfaces as a Contract

Another way to think about using interfaces with dependency
injection is that they are fulfilling a contract. Our interface is a
contract between the supplier, our code instantiating a dependency
and injecting it, and our client, the class with a dependency need.
The contract is fulfilled when the correct object is injected into the
object.

This concept has been described as programming by contract.
It’s an interesting way to think about interfaces and dependency
injection.

Making Third Party Code Conform to
Contracts

Using interfaces to define contracts is easy when it’s our own code,
but how do we make use of a third party library and make it
conform to an interface for dependency injection? After all, we
shouldn’t simply open up the third party source code and modify it
to extend from one of our interfaces.

Defining a Contract with Interfaces

The answer is to use the Adapter Pattern.

85

Abstracting with Adapters

Interfaces have provided the means to completely decouple our
code from concrete implementations of their dependencies. So far,
we’ve only show how to do this with our own low level code. What
if we want to use some third party library instead?

Let’s say we find a great third party library through Packagist called
Bill’s Geocoder that validates addresses with Google Maps or USPS
or some other service.

class AddressController extends AbstractController {
protected $geocoder;

public function __construct(BillsGeocoder $geocoder) {

$this->geocoder = $geocoder;

public function validateAddressAction() {
$address = $this->vars()->fromPost('address');
$isValid = $this->geocoder->geocode($address) !== f\
alse;

}

We’re using some dependency injection into the controller, which is
great. This is a step in the right direction and solves some problems
for us, but it’s still strongly coupling our controller to whoever Bill
is. What if he goes away? What if you figure out DavesGeocoder
is so much better because it supports Zip+4, which BillsGeocoder
didn’t? And what if you just happen to use this geocoder all over

86

Abstracting with Adapters 87

the place and now you have to go update all those references? What
if DavesGeocoder doesn’t have a geocode() method but instead has
validateAddress(). You've run into a refactoring nightmare.

Setting up the Adapter

Recall back to our discussion on design patterns, specifically the
Adapter Pattern. Adapters are perfectly suited to solve this problem
as they allow us to “wrap” the functionality of the third party code,
and by doing so, make it conform to an interface we define, so that
we can inject that adapter to fulfill the interface.

This is exactly what we did when we discussed the Adapter Pattern.
We started by defining our interface:

interface GeocoderlInterface {

public function geocode($address);

Then, we’ll go ahead and make our controller depend only upon
this interface:

class AddressController extends AbstractController {

protected $geocoder;

public function __construct(GeocoderInterface $geocod\

er) {

$this->geocoder = $geocoder;

public function validateAddressAction() {
$address = $this->vars()->fromPost('address');
$isValid = $this->geocoder->geocode($address) !== f\

alse;

Abstracting with Adapters 88

Finally, we’ll create an adapter to wrap BillsGeocoder and make
it conform to our GeocoderInterface that is required by our
AddressController class:

class BillsGeocoderAdapter implements GeocoderInterface\

{

protected $geocoder;

public function __construct(BillsGeocoder $geocoder) {

$this->geocoder = $geocoder;

public function geocode($address) {
return $this->geocoder->geocode($address);

In our geocode() method, we’re simply passing off the processing
to our instance of BillsGeocoder, which we take through the
constructor.

We can use dependency injection to inject an instance of Bills-
GeocoderAdapter into our AddressController, which allows us to
use a third party library but makes sure it conforms to the interface
we need.

How does this help?

This method of using adapters with third party libraries allows
us to remain decoupled and free from dependence on those third
party libraries. It allows us to freely swap out those dependencies

Abstracting with Adapters 89

without having to rewrite any code that uses them, and it allows
us to easily test our application and its use of those dependences
without actually having to test those dependencies ourselves. We
only have to test that we’re properly utilizing them.

We'll later discuss the importance of External Agency Indepen-
dence when we discuss The Clean Architecture.

The Clean Architecture

We’ve explored some messy architecture and some all around
bad code. We've also explored some great design patterns and
development principles that can lead to good, quality code.

Now we’re going to take a look at some good architectural decisions
that utilize these design patterns and principles to write good, clean,
solid code.

This architecture is called the Clean Architecture.

90

MVC, and its Limitations

When building an application, there are often several different
things going on. There’s the HTML, CSS and JavaScript that presents
your application to the user. There’s usually an underlying data
source, whether it’s a database, an API, or flat files. Then there’s the
processing code that goes in between. The code that tries to figure
out what the user requested, how to act upon their request, and
what data to display to them next. Finally, there’s also the business
rules of the application. The rules that dictate what the application
does, how things relate to one another, and what the confines of
those relationships are.

When one first starts out attempting to better their code (or maybe
they’re lucky enough to learn of it straight on), they quickly
come across the MVC architecture. The Model-View-Controller
architecture dictates a strong separation of concerns by separating
the database logic, control/processing logic, and the view/UI logic.
The MVC architecture does have some faults, which we’ll discuss
in the next chapter, but it does provide a pretty good framework for
cleanly separating code.

For those who think they already know about the MVC architecture
and don’t need a refresher, feel free to skip this chapter and head
on to the next.

MVC in a Diagram

Let’s have a look at a pretty picture of MVC. It commonly looks like
this:

91

MVC, and its Limitations 92

Application

Model Controller

\
Browser
/ User
/

/

View

Briefly, the controller is the section of the codebase that analyzes
arequest and determines what to do. The user kicks off a controller
by hitting a specific URL in their web browser, which then routes
to the specific controller designed to handle that request (we’ll talk
about routing in a bit).

The controller then manipulates some models, which are represen-
tations of data. For instance, if we hit a controller that is meant to
save a new user, the controller would populate a User model with
the data supplied in the post, and then persist it to the database.

Finally, the controller returns a view to the user, which is the PHP,
HTML, CSS, JavaScript, and images that represent the request. In
our example, after creating the new user, we might redirect off to a
View User action which would display our new user’s information
and give us further actions to take upon that user.

The MVC Components

The best way to discuss the MVC architecture is to discuss each
component individually. We’ll start with Model and View, because,

MVC, and its Limitations 93

hey, that’s how the acronym goes, and we’ll end with the Controller,
which is quite fitting as it ties the whole thing together, as you’ll see.

The Model

The Model in MVC is the portion of your application that represents
your data. A specific model is a class that represents data. Consider
this User class:

class User extends AbstractModel {
public $id;
public $alias;
public $fullName;
public $email;

This is a model representing a user in our system. Usually the
model layer has some means for creating and hydrating these model
records, as well as persisting them to the actual data storage. We’ll
talk about this in more detail in Database Independence.

As a developer, we can manipulate this model like any PHP class:

$user = new User();

$user->alias = 'billybob';
$user->fullName = 'William Bob';
$user->email = 'william.bob@bobcorp.com';

Compare this to traditional use of PDO or the straight mysql_x
or mysqli_* methods: here, we’re using fully backed objects that
represent our data, rather than querying for it and dealing with
arrays of data. We actually have representational data using this
method.

MVC, and its Limitations 94

The View

The View in MVC is simply what is presented to the user. In the PHP
world, it is mostly composed of the HTML, CSS, and JavaScript that
drive the UL The view is also responsible for the user interaction
with the application, through the use of links, buttons, JavaScript,
etc. These actions may be handled entirely in the view layer, or they
may make additional requests to the web server to load other data
and views.

The View is also responsible for taking models and representing
them to the user of the application. For instance, for our User model,
we may have a page that iterates through a collection of users and
displays them in a grid:

<table>
<thead>
<tr>
<th>ID</th>
<th>Full Name</th>
<th>Email</th>
<th> </th>
</tr>
</thead>
<tbody>
<?php foreach ($this->users as $user): 7>
<tr>
<td> <?= $user->id 7></td>
<td> <?= $user->fullName 2></td>

<td><?= $user-vemail 7></td>

<td>
<a href="/users/edit/<?= $user->id 2>">
edit
</td>

</tr>

MVC, and its Limitations 95

<?php endforeach; 7>
</tbody>
</table>

Our view layer is very purposeful: it is meant to display data to the
user. It does no processing outside of simple loops and conditionals.
It doesn’t query anything directly, just manipulates the data that is
given to it.

But just how does the view get its data?

The Controller

The controller is responsible for interpreting the user request and
responding to it. It can load specific models relevant to the request
and pass it off to a view for representation, or it can accept data from
a view (via something like an HTTP POST request) and translate it
to a model and persist it to the data storage.

Controllers come in many forms, but one of the most common form
is an action controller. These controllers are classes that contain one
or more methods, each method representing a specific request.

If we continue our user example, we might have a UsersController
that is responsible for dealing with requests relevant to users:

class UserController extends AbstractController {
public function indexAction() {}
public function viewAction() {}
public function updateAction() {}

This example controller has three actions:

+ indexAction is responsible for listing all Users

MVC, and its Limitations 96

+ viewAction is responsible for viewing a User
« updateAction is responsible for updating a User

On a specific request, let’s say the view customer request, the cor-
responding action will be called, which would process the request
and prepare the required view. This might look something like:

public function viewAction() {
$id = $this->params('id');
$user = $this->repository->getByid($id);

$view = new View();
$view->setFile('users/view.phtml');

$view->setData(['customer' => $user]);

return $view;

This pseudo-controller action in this sample code retrieves the
passed ID from some mechanism, then uses the stored UserRepos-
itory to retrieve that user. Finally, it instantiates a new view, sets
the view file to render, and passes the data off using setData().

Here, we can see that the controller only cares about responding to
requests. It uses the model layer to retrieve data, and then passes it
off to the view layer for processing and display.

Routing

This all starts to make much more sense when you consider how
routing works in web-based MVC applications. We tend to lean
towards using clean URLs these days, where our URI looks like this:

MVC, and its Limitations 97
/users/view/1

Or, if you’re defining RESTful URIs:

/users/1

This is a URI that would route to the UserController’s viewAction
in our examples above. Traditionally when routing clean URLs to
controllers, the first part of the URI, /users maps to the controller,
UsersController in our example, while the part, /view, maps to
the action, which, of course, is the viewAction.

This isn’t always the case, however. Must frameworks allow routing
to be whatever you make it, such that any URI can map to any
controller or action.

Some frameworks make this explicit and do not require any addi-
tional setup. They simply map the URI to a corresponding controller
and action. Most modern frameworks require you to setup some
sort of routing table that tell it which URIs map to which portions
of code.

In Zend Framework 2, that looks something like this:

return [
'router' => |
'routes' => [
'user' => |
'type' => 'Literal',
'options' => |
'route' => '/users',
'defaults' => [
'controller' => 'App\Controller\Users',

'action' => 'index'

MVC, and its Limitations 98

1
'may_terminate' => true,
'child_routes' => [
'view' => [
'"type' => 'Segment',
'options' => [
'route' => '/view/[:id]"’
"defaults' => [
'action' => 'view'
1,
'constraints' => [
'id' => '[0-9]+"',

This long-winded block of code defines two routes, /users, which
routes to UsersController: :indexAction(), and /users/view/[:id]
which routes to UsersController:viewAction(). Both are GET
requests.

You can see how flexible this can be in defining routes as they don’t
have to match the controller structure whatsoever. But it is pretty
verbose.

Laravel, on the other hand, takes a much simpler approach to
routing:

MVC, and its Limitations 99

Route: :get('user/view/{id}"', function($id) {
return 'Viewing User #' . $id;

1),

This routing is much simpler and expressive. Any time a URI
matching /users/view/{id} is hit, the anonymous function runs
and returns Viewing User #{id}.

MVC Isn’t Good Enough

The MVC architecture is a great start to building robust and
adaptable software, but it isn’t always enough. With only three
layers in which to organize all code, the developer usually ends up
with too many details in one of the layers. It’s fairly presumptuous
to think that everything should be able to fit into three buckets.
Either it’s a model, or a view, or a controller. The view is usually
saved from being slaughtered as its role is pretty well defined, so
either the controllers become overwhelmed with business logic, or
the model absorbs it all. The community has for quite some time
adopted the mantra of “fat model, skinny controller”

Obese Models

This “fat model, skinny controller” mantra is all well and good,
until the model layer also becomes the database abstraction and
persistence layer, and now the core business logic is tightly coupled
to a data source. It ultimately becomes the obese model approach.
This is bad news, as it makes it difficult for us to swap out that data
layer, either the actual database itself or the library that powers the
abstraction of it.

As it doesn’t make any sense to put database configuration and
interaction in the view layer, and it becomes messy and not reusable
to place it within controllers, everything related to the database,

MVC, and its Limitations 100

querying, and the representation of the database, the model or
entity, gets shoved into the model. However, this tightly coupling
of the representative data model to the actual data source is prob-
lematic.

Let’s say, for example, through the first iteration of our application,
that we store and retrieve all of our data from a relational database
system. Later down the road, however, our needs and number of
applications might grow, and we might decide to build a web service
API to manage the interaction of data with all the applications.
Since we tightly coupled our business logic and data access together
in the form of a model, it becomes difficult to switch over to our API
without having to touch a lot of code. Hopefully we wrote a big test
suite to help us.

Maybe instead of switching primary data sources, you simply find
a much better database abstraction library that you want to use.
Perhaps it is a well written library that better optimizes queries,
saves resources, executes faster, and is easier to write. These are
some great reasons to switch. However, if you initially went down
a path of merging your database implementation details with your
data representation, you might end up having to rewrite the whole
entire model layer just to switch to a better library.

This becomes a clear issue of violating the Single Responsibility
Principle.

A nice, clean model might look like this:

class User {
public $id;
public $alias;
public $fullName;
public $email;

How exactly does data get into these variables from the database,

MVC, and its Limitations 101

and how do we save changes we make back to that database? If
we add in methods and mechanisms to this User class to persist
our data to the database for us, we’re then making it very hard to
test and switch data sources or database abstract layers later. We’ll
cover various approaches and solutions to this problem in Database
Independence.

Model Layer vs Model Class vs Entities

The solution to this problem is to realize there’s a difference
between the Model Layer of MVC, and the Model Class. What we
have in our example above is a Model class. It’s a representation of
the data. The code responsible for actually persisting that data to
the database storage is part of our model layer, but should not be
part of our model class. We’re mixing concerns there. One concern
is a representative model of the data, and the other is the persistence
of that data.

From now on, we're going to refer to the actual model class, like the
one above, as an entity. Entities are simply representational states
of things that have identities and attributes unique to that identity.
For instance, an Order, User, Customer, Product, Employee, Process,
Quotes, etc., can all be entities.

We’re also going to stop referring to the model layer as the persis-
tence layer. The persistence layer is simply the layer of code that
is responsible for persisting data, entities, back to the data store, as
well as retrieving entities from the data store based on their identity.

From here-forth, you can pretend like the word model doesn’t exist,
and with that, we can drop all baggage of the obese model.

More Layers for All of the Things!

Of course our solution here is to really add another layer to the
MVC paradigm. We now have EPVC, which might stand for Entity-
Persistence-View-Controller if that were a thing. This doesn’t

MVC, and its Limitations 102

mean that every problem can be solved simply by throwing another
layer at the problem. But it does make sense to split up our
representation of the data with the persistence of the data as they
really are two different things.

Doing this allows us to move the database away from being the
core of our application to being an external resource. The entities
now become the core, which leads to an entirely different way of
thinking about software applications.

The Clean Architecture

So if MVC isn’t enough, if it doesn’t give us enough organization
and segregation of our code base, what is the solution, and what is
enough?

The Clean Architecture

The solution to this problem is what I'm going to refer to as The
Clean Architecture. Not because I named it so, as near as I can tell
that honor goes to “Uncle” Bob Martin who wrote in 2012*' about
a collection of similar architectures that all adhered to very strong
forms of separation of concerns, far beyond what traditional MVC
describes.

Uncle Bob describes these architectures as being:

Independent of Frameworks. The architecture does
not depend on the existence of some library of feature
laden software. This allows you to use such frame-
works as tools, rather than having to cram your system
into their limited constraints.

Testable. The business rules can be tested without
the UI, Database, Web Server, or any other external
element.

Independent of UL The Ul can change easily, without
changing the rest of the system. A Web UI could
be replaced with a console Ul, for example, without
changing the business rules.

*http://blog.8thlight.com/uncle-bob/2012/08/13/the- clean-architecture.html

103

http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html
http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

The Clean Architecture 104

Independent of Database. You can swap out Oracle
or SQL Server, for Mongo, BigTable, CouchDB, or
something else. Your business rules are not bound to
the database.

Independent of any external agency. In fact your
business rules simply don’t know anything at all about
the outside world.

Framework Independence

Framework independence is huge. When a developer initially starts
using frameworks for their projects, they might think that the
framework is the end game for their application. They make a
choice and they’re sticking with it. But that’s a terrible decision.

Framework’s live and die, and even when they don’t die, they
change, leaving the project that depends on them out in the cold.
Take Zend Framework, for example. The release of Zend Frame-
work 2 was such a massive change and shift, that it was near
impossible to upgrade any ZF1 application to ZF2 without a com-
plete rewrite. Especially if you based your domain around the
Zend_Model family of classes.

Not only that, but new frameworks come out all the time. The
PHP framework scene is more active than it has ever been, with
previous unknowns like Laravel surging in popularity, and micro-
frameworks, such as Silex, starting to get due respect. The best
decision yesterday is not always the best decision today.

This is why it is the utmost importance to make sure that your
applications are written as framework agnostic as possible. We’ll
talk about this in Framework Independence

The Clean Architecture 105

Testable

Testability in applications of any size of are of extreme importance.
Software tests are the single most important means to preventing re-
gression errors in an application. To people who sell their software,
regression bugs often mean warranty work and a loss of billable
time. And for all software developers, bugs are simply a pain to
deal with, often a pain to troubleshoot and fix, and, without tests,
more often than not a guessing game.

When we write software, we refactor code quite often. In fact,
the process of software development in general can be seen as
an endless series of refactoring. As we continually write code,
we’re continually evolving the application, tearing down previous
implementations and replacing them with newer, better ones, or
enhancing them to account for some new feature set.

Since we’re always changing what already exists, having a suite
of tests that are readily available, fast to run, and comprehensive
becomes very important. It can literally be the difference between
quickly preventing many bugs in the first place and spending
hundreds of hours trying to fix them later.

While this book doesn’t have a dedicated chapter to testing, con-
cepts discussed throughout the book will often discuss how they
help the refactoring and testing process, and why they are good
practices for developing a robust and highly available test suite.

Database Independence

Database independence may not seem like an important issue when
building the architecture of an application. To some developers, it
matters a great deal, such as those who are developing an open
source project that users may want to deploy on a variety of
database systems. But if you’re developing in house software where
the architecture is controlled, and often vetted and picked for very
specific reasons, this doesn’t seem like a big deal.

The Clean Architecture 106

However, just like frameworks, databases can live and die. And just
like frameworks, new platforms can spring up that suddenly look
like a much better solution to your problem. Take for instance the
rise of NoSQL alternatives to traditional relational database man-
agement systems (RDMS) in the past decade. For some situations, a
NoSQL like Mongo or Couch might be a great alternative to MySQL
or PostgreSQL. But when you’ve integrated MySQL into the heart of
your application, it’s a daunting task to try to rip it out and replace
it with something else.

When writing a Customer Relationship Management (CRM) appli-
cation, my colleagues and I went down the common path of using
a relational database, PostgreSQL as our data backend. Through
the course of developing the application over the next six months,
we quickly realized that other applications and systems, including
mobile device applications, were going to need to interface with this
data.

After analyzing the situation, we decided that what we should
really do is build a RESTful API and have the CRM application sit on
top of it. The API would be a middle layer between the application
and the database, and provide a common way of interacting with
the data across all of the applications.

Since we had already developed a good chunk of the application,
this could have proven challenging. However, since we had created
a separate domain layer with interface contracts that our persis-
tence layer adhered to, we were able to simply rewrite our small
persistence layer to pull data from the API rather than from the
database, and never had to touch any other code, like the controllers,
services, etc.

We'll discuss how we can accomplish database independence in
Database Independence.

The Clean Architecture 107

External Agency Independence

The PHP ecosystem has recently exploded with a plethora of
libraries and frameworks, most of which are now, thanks to PHP-
FIG and Composer, easily plopped into every project you develop.
These libraries are fantastic, and speed up the development of
projects for you by providing proven solutions.

But should you use them? Absolutely! You just have to be careful
how you do.

Just as these wonderful libraries have sprung up, they also die off
and become forgotten just as fast. What could be more frustrating
than having to refactor hundreds of files because you littered usage
of someone else’s library all over your code, and they decided to let
it rot?

Using some tried and true design patterns, we can lessen this
problem by wrapping our usage of these libraries. We’ll discuss this
in intricate detail in External Agency Independence.

The Onion Architecture

One off-shoot of the Clean Architecture, and the first one I came
across before I found Uncle Bob’s article, is The Onion Archi-
tecture®®, described by Jeffrey Palermo. While the naming of this
architecture may make one think it is satire, it is, in fact, a pretty
descriptive way to describe how software architecture should be
built.

Palermo described the layers of software like the layers of the onion:
moving out from the core of the onion, each layer depends on the
layers deeper for integrity and purpose, but the inner layers do not
depend on the outer layers. It’s best illustrated by a diagram:

**http://jeffreypalermo.com/blog/the-onion-architecture-part- 1/

http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/

The Clean Architecture 108

Domain Model

In traditional application development, the database is central to the
application. It’s often designed first, and many application structure
decisions are made around the database. Take it out, and the whole
thing crumbles from within.

In the Onion Architecture, the domain is core to the application,
and it is completely decoupled from the database. The database is
no longer central, or even a required component of the application;
it’s secondary. It can be swapped out at will without touching the
rest of the application. It is supreme Database Independence. We’'ll
touch on how this works in Database Independence.

The Domain Model and Domain Services Layers

At the core of your onion is your domain model layer. This layer
contains pure models or entities that are representative of the

The Clean Architecture 109

business objects in your application. They interact with one another
to define relationships, and interact with nothing else. They are pure

Outside of that is your domain services layer. These are things like
factories, repositories, and other services that use the core domain
model

Coupled together, the domain model and domain services make
up the core, most central layer of any application. They contain
the business logic, and almost every other layer of the application
depends on it. For instance, in a CRM application, you probably
have a Customer model and various services for interacting with it
that are used across many of the controllers, views, etc. of the other
layers.

For all intents and purposes, the domain core is your application.
Everything else is simply an extension or a client that interacts with
your actual application.

The Application Services Layer

Outside of the Domain Services layer exists the Application Ser-
vices. This layer is composed of application implementation. In a
traditional MVC, this is your Controller layer. It is the router, which
responds to an HTTP request and routes it to a specific controller
and action, which may use other application services, such as
authentication, data parsers or translators (maybe we’re exporting
a CSV document?) and do everything necessary to bootstrap and
provide the view, which is our UL

It is important to know that nothing in our application should
depend on this layer. The Application Services layer should be
consider a layer that merely bootstraps our real application, which
is the Domain Model and Domain Services application. Like the
database, we should be able to swap this out at will with minimal
effort. Maybe we started with Symfony but really want to switch
to Laravel. That shouldn’t be a hard thing to do if the application

The Clean Architecture 110

is written correctly. This allows us to achieve Framework Indepen-
dence, which, I'm sure you’ve guessed, we’ll talk about in more
detail in Framework Independence.

The User Interface

One of the final and outermost layers of the onion is the User Inter-
face. The UI has nothing dependent upon it, but is dependent upon
every deeper layer of the onion. It requires the Application Services
to give it meaning, which route through the Domain Services to get
to the Domain, our meat and potatoes of our application. The view,
at its core, is a representation of our domain for the user.

It sits on the outside and has nothing dependent upon it. We can
refactor and hack it up at will without consequence. We could try
a new templating language, or a new JavaScript framework every
week, and the stability of our core application will not change.

We won’t spend any time in this book specifically talking about the
User Interface, but it will be touched on in Framework Indepen-
dence and during our Case Study at the end of the book.

Infrastructure

The infrastructure layer resides in an outer layer of our onion. Its
responsibility is of grave importance: it provides for our domain.
It defines where our data comes from and facilities the retrieving
and saving of it to whatever data source it may come from, either
Database, Web Services (APIs) or something else entirely. Those
things sit on the outside of the application. They’re used by the
Infrastructure layer, but they aren’t part of our onion. They’re
simply data providers.

The Infrastructure relies on the Domain Services and Domain
Model layer as they provide a contract for how the Infrastructure
must work. This is done through interfaces, and we’ll cover that in

The Clean Architecture 111

the chapters on Interfaces and Dependency Injection and Database
Independence.

The Infrastructure also depends upon the Application Services
layer, as it is usually where the infrastructure is configured and
“hooked up” to the domain. It is usually where our configuration is
defined, and where our Dependency Injection Container or Service
Locator is setup to provide services. We'll see this at work in our
Case Study at the end of the book.

External Libraries

External Libraries are great, and very important to our application
as we discussed above. These libraries sit in a layer on the outside
of our onion, and are used, much in a similar way that Infrastruc-
ture is, by the Application Services layer to provide meaning and
implementation to some portion of the application. For instance,
we might use a Google Maps API library to provide geocoding for
addresses entered by a user.

We'll talk about these in much detail in External Agency Indepen-
dence.

Tests

Finally, our tests sit outside of the application in an outer layer of
the onion. They, in various incarnations, depend on various layers
of the onion in order to test them. This is not a book about testing,
but just know that if your application ever relies on the existence of
tests to properly function, you've done something horribly wrong.

Framework Independence

Frameworks like Laravel, Symfony, Zend Framework, et al provide
great value to the modern day PHP developer. Frameworks tackle
common problems, like authentication, database interaction, API
usage, MVC, routing, etc., by providing proven solutions so that
you, the developer, can get down to brass tax and start actually
building the software you set out to build.

Using a framework can also go a long way to help teach and enforce
good principles to inexperienced developers. You can really learn a
lot by looking at and using a good PHP framework’s code base.
Often, these frameworks even force you into these design patterns
or principles, otherwise the framework simply won’t work.

Finally, frameworks can often speed up development time and allow
the developer to ship the product faster. It makes sense: with less
overhead of having to implement those common problems that
frameworks handle for you, you have more time to develop your
actual product. This, of course, is ignoring the ramp up period where
you actually have to learn the framework, but eventually, this speed
up can be realized.

The Problem with Frameworks

With all the benefits provided by these frameworks, it is often very
easy to ignore the one giant negative about them. The negative that
exists no matter what framework you use and no matter how good
that framework is: coupling.

Having your application tightly coupled to a particular framework
makes it very hard to leave that framework. You will, eventually,

112

Framework Independence 113

want to leave your beloved framework. A new framework might
come out that makes development much easier and much quicker.
Or a framework like Phalcon might come out that makes your code
run faster. Or your framework might even disappear, either being
abandoned by its developers, or reach end of life after a new version
is released.

My coworkers and I once had a large application written using Zend
Framework 1 that was very successful. When ZF1 reached end of
life, and Zend Framework 2 was released, we were very excited to
begin investigating upgrading. That excitement faded very quickly
when we realized that ZF2 was such a backwards compatibility
break that we were going to need to rewrite our application from
scratch.

That’s costly.

Frameworks can be a blessing, and frameworks can be a curse if not
used properly. If we had paid attention to writing our application
better, in a way that did not rely so heavily and fully upon our
framework, our transition to Zend Framework 2 would have been
much quicker, cheaper, and a lot less stressful.

Framework Independence

The phrase “framework independence” can be quite jarring at first
to the framework developer. We're not talking about the type of
independence sought by early colonists in North America. Instead,
we’re talking about the ability to switch at will, easily, between one
framework or another, or to using no framework at all. In a software
application, the ability to leave a framework with minimal effort is
a very powerful position to be in.

When writing medium to large applications, it’s important to know
that the pieces of the application that are implemented using your
framework aren’t your application, or at least they shouldn’t be.

Framework Independence 114

Any collection of controllers, forms, helpers, database abstraction,
etc., is not your business application. They exist simply as a means
to hydrate and display data to your users.

The domain model and domain services layers are your application.
This collection of services, repositories, factories and entities are
your application. The rest, the stuff the framework provides, is just
a gateway or GUI sitting on top of your real application.

If your project is an inventory management system, the code that
represents the inventory, the locations, and the means by which
they relate to one another, is your application. This code should
continue to function correctly if you were to remove the framework.

In order to gain such independence from a framework, there are
several things we must remember when developing our applications
and using these frameworks.

Abstract the Usage of the Framework

It is very important, as much as possible, to abstract the usage of
the framework itself. Every line of code you write that directly uses
a component of any framework is code you will have to rewrite if
you ever try to switch frameworks.

We use several tactics to abstract the usage of a framework:

+ Use Interfaces Liberally We previously discussed how we
can use interfaces to define base functionality we require,
type-hint to those interfaces, and then pass in concrete im-
plementations of those interfaces using dependency injection
(or some other method of inversion of control).

« Use the Adapter Pattern We also discussed the usage of the
Adapter design pattern to wrap the functionality of one class
and make it conform to the specification of another, such as
an interface.

Framework Independence 115

+ Follow the principles of clean code and SOLID Writing
clean code, and following the principles of SOLID, allow
us to have nicely organized and grouped code, and when
implemented correctly, code that doesn’t depend strongly on
the framework to function.

Combining these first two tactics allows us to create a set of
interfaces that define the functionality we need to use, and write
classes that implement these interfaces, and simply wrap frame-
work classes and map to their functionality to meet those interface
requirements.

Additionally, making sure that our code is single-purposed, clean
and short, and independent of other parts, will allow us to easily
refactor away the framework usage later.

Let’s see how this works in different parts of a framework we might
use.

Routes and Controllers

Many of us rely heavily on a framework’s router and controller
mechanisms, as the vast majority of PHP frameworks are MVC-
oriented.

How do you go about abstracting the usage of routes and controllers
so that you don’t tightly couple yourself to them? This is the hardest
part of an application to implement in the Clean Architecture.
Routes and controllers are the entry point of your application. It
is the basis by which all other work in the application is triggered.

It is pretty hard to decouple yourself completely from the frame-
work, unless you actually stop using it. Just think about it: your first
step after defining some route is to define some controller logic. This
usually involves extending from some base or abstract controller:

Framework Independence 116

class CustomersController extends BaseController { }

How do we decouple this from the framework? We’re immediately
extending from the framework, meaning that every piece of code
we write in this class from here on out is going to be coupled to our
controller. It is not just the extension of BaseController, either; it
is all the other mechanisms that this class provides us that our code
begins to rely on.

Using Adapters to Wrap Your Controller

One approach you can take is to write controllers completely
removed from your application. These essentially become very
similar to services:

namespace MyApp\Controller;

class Customers {
public function index() {
return |
'users' => $this->customerRepository->getAll()

1;

With an adapter that looks something like:

Framework Independence 117

class CustomersController extends AbstractActionControl\
ler {
protected $controller;

public function __construct(Customers $controller) {

$this->controller = $controller;

public function indexAction() {
return $this->controller->index();

This seems entirely like overkill. All we're doing is simply wrapping
one class in another just to call a method and pass it through. It’s a
bunch of busy work just to claim we’re highly decoupled?

If you're using a lighter framework, like Silex*, this might be a
little easier as controllers are a developer concept, not a framework
concept proper. Those controllers only become as coupled as you
make them.

Keep Your Controllers Small

Our best bet when dealing with controllers is to make sure we
actually minimize the controller code. We want to follow very
closely the Single Responsibility Principle we discussed previously.
Each controller, and each action in the controller, should have as
little code in it as possible.

Controllers should be thought of as response factories. They are
responsible for building a response based on the input (the HTTP
request). All logic should be passed off to either Domain Services
or Application Services for processing, and the data returned from
them loaded into a response and returned.

**http://silex.sensiolabs.org/

http://silex.sensiolabs.org/
http://silex.sensiolabs.org/

Framework Independence 118

Ruby on Rails was big on the mantra of “fat model, skinny con-
troller,” and that is at least partially sound. Having a skinny con-
troller is very important. Having a fat model? Well, that depends
on what “fat” and “model” mean to you. We’ll discuss this in depth
in Database Independence. Having a skinny controller means that a
controller doesn’t really do much. Let’s take this controller action,
for example:

class CustomersController extends AbstractActionControl\
ler {
public function indexAction() {
return |
'users' => $this->customerRepository->getAll()

1;

This is a simple GET request to an index action (maybe /customers)
that simply lists all customers. The controller uses the dependency
injected CustomerRepository (not shown) and its getAl1() method
to retrieve all the customers.

Obviously we're going to have more complex actions than index-
Action(), but the point is that we want to pass all of the logic and
processing to our Domain Services layer, and keep the controllers
as small, tight, and single purposed as possible.

Views

Your view layer should be primarily composed of HTML, JavaScript
and CSS. There should be no business logic contained within the
views; only display logic. These views should be mostly transferable
when switching frameworks. The only questionable part is the
means by which data is presented to the view from the controller,
which will probably vary by framework.

Framework Independence 119

The big thing to watch out for is view services, view helpers, and/or
view plugins, which many frameworks provide. These components
help generate common or recurring HTML, such as links or pagi-
nation, or even forms (which we’ll talk about next). The method by
which these exist will likely vary wildly by framework, and could
cause quite a headache if they were very heavily relied on.

If you’re writing your own helpers, which many frameworks allow
you to do, make sure that you’re writing the bulk of the code
without relying on the framework, so that you can easily move
this helper to a new framework. If possible, also consider writing
interfaces and/or an adapter that turns your helper into something
the framework expects.

Do as much as you can to make leaving the framework easy.

Another option would be to forgo your framework’s built-in view
layer and use a third party library, such as Plates*. This will allow
you to keep your view layer intact when switching frameworks.

Forms

In my experience, forms have been one of the hardest things to
deal with in projects. Doing forms cleanly and independent from
the framework is near impossible. Again, we can write a bunch of
adapters to abstract the usage of the framework, but that will almost
certainly negate the time savings given by the framework.

The biggest rule is to make sure that no business logic whatsoever
exists within the form code. Remember: business logic belongs in
the Domain layer. Aside from validation rules and filtering, no logic
should be contained within the forms.

Outside of that: just use them. If the bulk of your work when
switching frameworks is porting the forms, you’re in pretty good
shape.

**http://platesphp.com/

http://platesphp.com/
http://platesphp.com/

Framework Independence 120

Another solution to try would be to use some third party form
library, so that you're not coupled to your framework’s form
classes. Something such as Aura.Input® from the Aura components
would suffice, and allow you to keep that code when switching
frameworks. Some form libraries are light enough that you might
even be able to write an adapter around them, but only do so if
you’ll be able to accomplish that quickly.

Framework Services

Most frameworks provide helpful services to make writing day to
day code much easier. These can include services that run HTTP
requests or even do full APT calls, components that implement an
OAuth2 client to log in to those APIs, services that generate PDFs
or barcodes, send emails, retrieve emails, etc. While these services
provide a quick and fast way to get the job done by preventing you,
the developer, from writing extraneous code, they are also a great
place to run into coupling problems.

How do you run into coupling problems with these components?
Simply by using them.

Consider Laravel’s Mail facade:

Mail::send('emails.hello', $data, function($message) {
$message->to('you@yoursite.com', 'You')->subject('Hel\
lo, You!'");

});

Laravel makes it extremely simply to send emails, but the minute we
drop this in a controller or service, we're tightly coupling ourselves
to Laravel. Remember, our goal with controllers and services are
to have them as small, lightweight, and uncoupled as possible so
that we can mitigate the work needed to migrate that code over

**https://github.com/auraphp/Aura.Input

https://github.com/auraphp/Aura.Input
https://github.com/auraphp/Aura.Input

Framework Independence 121

to another controller system, should we ever switch framework or
underlying controller/routing mechanism.

How do we solve this? Using the previously discussed adapter
design pattern, the correct way to handle these services are to define
an interface outlining the functionality that we need, and writing an
adapter that wraps the framework code to implement that interface.
Finally, the adapter should be injected into whatever client object
needs it.

interface MailerInterface {
public function send($template, array $data, callable\
$callback);

}
Our adapter would then implement this interface:

class LaravelMailerAdapter implements MailerInterface {
protected $mailer;

public function __construct(Mailer $mailer) ({
$this->mailer = $mailer;

public function send($template, array $data, callable\
$callback) {
$this->mailer->send($template, $data, $callback);

The adapter should then be injected into our controller and used,
instead of directly using the Mail facade:

Framework Independence 122

class MailController extends BaseController {
protected $mailer;

public function __construct(MailerInterface $mailer) {
$this->mailer = $mailer;

public function sendMail() {
$this->mailer->send('emails.hello', $data, function\
($message) {
$message->to('you@yoursite.com', 'You')->subject(\
'Hello, You!');
1)

To make this work, we’ll register our interface with Laravel’s IoC
container so that when the controller is instantiated, it’ll get a
proper instance of MailerInterface:

App::bind('MailerInterface', function($app) {
return new LaravelMailerAdapter($app['mailer']);

1);

Now the controller gets a concrete instance of LaravelMailer-
Adapter, which conforms to the controller’s dependency require-
ment of MailerInterface. If we ever decide to switch mailing
mechanisms, we simply write a new adapter and change the binding
of MailerInterface, and all our client code that previously got
injected with LaravelMailerAdapter now gets whatever this new
implementation is.

The popular Symfony YAML?® component is another great example
of where a quick and easy adapter and interface allow you to

**http://github.com/symfony/yaml

http://github.com/symfony/yaml
http://github.com/symfony/yaml

Framework Independence 123

be completely decoupled from the concrete implementation that
Symfony provides.

The component is extremely simple to use:

$data = Symfony\Component\Yaml\Yaml: :parse($file);

That’s all it takes to turn a YAML file into a PHP array. But when
using this in our code, we’ll first want to create an interface to define
this functionality that we need:

interface YamlParserlInterface {

public function parse($fileName);

We then implement this interface with an adapter:

class SymfonyYamlAdapter implements YamlParserInterface\

{

public function parse($fileName) {

return Yaml::parse($file);

Then we simply utilize dependency injection to provide an instance
of SymfonyYamlAdapter into any code that needs it:

Framework Independence 124

class YamlImporter {

protected $parser;

public function __constructor(YamlParserInterface $pa\
rser) {

$this->parser = $parser;

public function parseUserFile($fileName) {
$users = $this->parser->parse($fileName);

foreach ($users['user'] as $user) {

VA

}

Now we’re harnessing the power of Symfony’s YAML parser,
without coupling with it. The point of doing this, again, is so that
if we ever need to switch to a different YAML parsing solution in
the future - for whatever reason — we can do so without changing
any of our client code. We would simply write another adapter, and
dependency inject that adapter in SymfonyYamlAdapter’s place.

Database Facilities

Most PHP frameworks come bundled with some sort of Database
Abstract Library (DBAL), and sometimes a Query Builder library
that makes it easier to build SQL queries, or maybe an Object
Relational Mapping (ORM) library, either conforming to the Active
Record or Data Mapper patterns. Taking advantage of these libraries
can lead to easy, and rapid development of database-powered
applications.

As always, though, we want to watch out for coupling too tightly
to these database layers.

Framework Independence 125

This is such an important topic, that the entire next chapter,
Database Independence? is devoted to it.

This is a Lot of Work

Are there any instances in which it’s okay to simply couple yourself
to the framework? Of course. The principles outlined above only
apply, in varying degrees, to the size and complexity of your
application. If your application is so small in scope and function that
it wouldn’t take you very long at all to entirely can it and rewrite
it in a new framework, then by all means, go ahead and coupled to
the framework.

It does take a lot of extra work to write code this way, so it is up to
you to do a cost analysis for the project. If it is a small registration
application that simply collects attendee information and saves it
to the database, it’s going to be quicker to just completely rewrite
it later, rather than go through all of these steps.

When the application is large in scope, like a Customer Relationship
Management (CRM) system or an Enterprise Resource Planning
(ERP) system, it probably makes a lot of sense to think about the
future of the code right away. It probably makes a lot of sense to
write the code in a way that it survives the chosen framework.

27

Database Independence

Often times when developing an application that uses a database
for storage, the database easily becomes the center and focal point
of the application. At first, this makes sense: we’re building an
application on top of the database. Its sole purpose is to display and
manipulate that data stored in the database. Why wouldn’t it be
central to the application?

An application where the database becomes the central focal point
suffers from a few problems:

1. The code is often littered with database interaction code,
often times raw SQL or at least direct references and instan-
tiation of classes that query the database. If the database, or
database abstraction code, is literally all over the code base,
it becomes nearly impossible to refactor that code without a
time consuming effort.

2. Testing this code without using the database because very
hard, if not impossible. Testing using databases is painful: you
have to setup a known state for each and every test case as the
code is modifying the contents of the database with each test.
This can become slow to run, and test suites, to be successful
and helpful, need to be fast.

So if the database shouldn’t be central to the application, what
should take it’s place at the core?

Domain Models

If you paid attention to our previous discussion about the Clean
Architecture, you should already know: the Domain Model is the

126

Database Independence 127

core of our application, and central to everything else around it.
Everything builds from it. So what is it exactly?

The domain model layer is a collection of classes, each represent-
ing a data object relevant to the system. These classes, called Models
or Entities, are simple, plain old PHP objects.

By definition, the domain model layer, being the core of the
application, cannot be dependent upon any other layer or code base
(except the underlying language, such as PHP). This layer is wholly
independent of anything. This makes it completely uncoupled,
transferable, and quite easily testable.

A Sample Domain Model

A sample domain model for a customer might look something like
this:

class Customer
protected $id;
protected $name;
protected $creditLimit;
protected $status;

public function getId() {
return $this->id;

public function setlId($id) {
$this->id = $id;

return $this;

public function getName() {
return $this->name;

Database Independence 128

public function setName($name) {
$this->name = $name;
return $this;

/e

This Domain Model is a pure PHP object. It has no dependencies nor
coupling, other than to PHP itself. We can use this unhindered in
any of our code bases, easily transfer it to other code bases, extend
it with other libraries, and very easily test it.

We’ve achieved some great things following this Domain Model
implementation, but it’s only going to get us so far. Right now,
we just have a simple PHP object with some getters and setters.
We can’t do much with that. We’re going to have to expand on it,
otherwise it’s going to be terribly painful to use.

Domain Services

Domain Services, being the next layer in the onion of our architec-
ture, is meant to expand on this and provide meaning and value
to the Domain Model. Following the rule of our architecture, layers
can only have dependency upon layers deeper in the onion than it is.
This is why our Domain Model layer could have no dependencies,
and why our Domain Services layer can only depend upon, or
couple to, the Domain Model layer.

The Domain Services layer can consist of several things, but is
usually made up of:

 Repositories, classes that define how entities should be
retrieved and persisted back to some data storage, whether

Database Independence 129

it be a database, API, XML or some other data source. At the
Domain Services layer, these are simply interfaces that define
a contract that the actual storage mechanism must define.

« Factories, are simply classes that take care of the creation of
entities. They may contain complex logic about how entities
should be built in certain circumstances.

« Services, are classes that implement logic of things to do
with entities. These can be services such as invoicing or
cost buildup or classes that build and calculate relationships
between entities.

All of these are implemented only using the Domain Model and
other Domain Services classes. Again, they have no dependence or
coupling to anything else.

Repositories

Repositories are responsible for defining how Domain Model enti-
ties should be retrieved from and persisted to data storage. At the
Domain Services layer, these should simply be interfaces that some
other layer will define. Essentially, we’re providing a contract to
follow so that other layers of our application can remain uncoupled
to an implementation. This allows that implementation to be easily
changed, either by switching out what is used in production, or
maybe just switching out what storage is used during testing.

A sample repository might look like this:

Database Independence 130

interface CustomerRepositorylnterface {
public function getAll();
public function getBy($conditions);
public function getById($id);
public function save(Customer $customer);

As you can see, again, we have a simple PHP interface, uncou-
pled from anything but the Domain Model (through the usage of
Customer). This interface doesn’t do anything. It simply defines a
contract to be followed by an actual implementation. We'll talk
about that implementation in Database Infrastructure / Persistence
in a little bit.

The Domain Services layer should contain a definition of all the
repositories an application will need to properly function, as well
as each repository containing all the methods that the application
will need to interact with the data.

Factories

Factories are responsible for creating objects. At first, that seems a
little silly as creating an object is as simple as:

$customer = new Customer();

It’s not always this easy, however. Sometimes, complex logic goes
into creating a customer. If you notice above when we defined the
Customer class, we gave it a credit limit and status attribute. It might
be that all customers get set to a certain state when they’re created
such that these two attributes are always set to a predefined value.
If we were to continue with simple instantiation:

Database Independence 131

$customer = new Customer();
$customer->setCreditlimit(Q);
$customer->setStatus('pending');

Now let’s assume we might have several different places in the code
where we create customers. We now have to repeat this code all over
the place. If these default rules ever change, we then have several
places we need to go change the code. If we miss some, now we
have bugs in the code.

Using a factory lets us consolidate that code and make it reusable:

class CustomerFactory {
public function create() {
$customer = new Customer();
$customer->setCreditlLimit(0);
$customer->setStatus('pending');

return $customer;

Now, wherever we need to create a customer, we can simply use
our factory:

$customer = (new CustomerFactory())->create();

If our business logic ever changes, all we need to do is simply update
the factory, and each customer creation point will follow the new
rules.

The skillful developer might see an even easier solution to this
problem: just throw the defaults in the class or constructor:

Database Independence 132

class Customer
protected $id;
protected $name;
protected $creditLimit = 0;
protected $status = 'pending';

This is true: that does look much simpler, and it’s completely due
to the simplicity of the example. However, let’s say we have an
account manager that needs to be assigned to every new customer,
and to pick them, we need to find the next available account man-
ager (whatever that might mean in the context of our application):

class CustomerFactory {

protected $managerRepository;

public function __construct(AccountManagerRepositorylI\
nterface $repo) {

$this->managerRepository = $repo;

public function create() {
$customer = new Customer();
$customer ->setAccountManager (
$this->managerRepository->getNextAvailable()
)i

As our business rules and domain logic become more complex,
using these factories start to make sense. The important thing to
remember is that these factories are completely decoupled from
the actual data storage. Their only dependence is upon the Domain
Model.

Database Independence 133

So how exactly does an instance of AccountManagerRepository-
Inter face get into the CustomerFactory? And what exactly is the
implementation of that interface? We’ll cover that soon in Database
Infrastructure / Persistence.

Services

Services, simply put, are responsible for doing things. These are
usually processes, such as invoice runs or some kind of cost build
up analysis. Anything that involves business logic that is not either
creational (which belongs in a factory), or retrieving or persisting
data (which belongs in a repository). These services can depend on
repository interfaces and factories to do their work.

Let’s look at an example service for generating invoices based off
orders:

class BillingService {
protected $orderRepository;
protected $invoiceRepository;
protected $invoiceFactory;

public function __construct(
OrderRepositorylInterface $order,
InvoiceRepositoryInterface $invoice,
InvoiceFactory $factory

) |
$this->orderRepository = $order;
$this->invoiceRepository = $invoice;
$this->invoiceFactory = $factory;

public function generatelnvoices(\DateTime $invoiceDa\
te) {
$orders = $this->ordersRepository

Database Independence 134

->getActiveBillingOrders($invoiceDate);

foreach ($orders as $order) {
$invoice = $this->invoiceFactory->create($order);

$this->invoiceRepository->save($invoice);

This service is pretty simple, because it leverages the power of the
OrderRepository given to it to retrieve orders, and the Invoice-
Factory to generate invoice objects. It then simply persists them to
the database using the InvoiceRepository. The BillingService
can now be used anywhere that invoices need to be generated for
whatever means of ordering the system needs implement. This is
abstracted away into the service, so that the code is not repeated all
over the place.

Further, this code does not depend on a specific data store whatso-
ever, instead, asking for an implementation of both OrderReposi -
toryInterface and InvoiceRepositoryInter face. If those depen-
dencies are satisfied with concrete implementations, the Service
works correctly finding orders to invoice and generating those
invoices.

This code is powerful, but dead simple. It’s coupled to nothing but
the rest of our Domain Model and Domain Services layer. It is 100%
decoupled from any specific database implementation.

Database Infrastructure / Persistence

So far we’ve discussed taking the database from the core of the
application, and replacing it with a robust Domain Model and Do-
main Services core that encompass the primary functionality of our
application. Now the heavy parts of our application are decoupled,

Database Independence 135

well-written, and quite testable. At some point, however, we have to
bring the database back into the picture. A data-centric application
without some sort of data storage implementation is going to be
a failure, regardless of how clean and testable the code base is. So
how do we get the database back in the picture?

Now that we’ve fleshed out our Domain Model and Domain Ser-
vices layers, we can start to build out our Persistence layer, which
is part of the infrastructure layer of our onion. The persistence
layer is responsible for retrieve and persisting data to our data
storage, whatever that may be. In our case, it’s probably going to
be a relational database system, such as MySQL or PostgreSQL. Or
maybe it might be a NoSQL variant or an API services layer that
provides our data.

For instance, if we were using a relational database and using the
Doctrine ORM library to provide persistence, we might implement
our CustomerRepositoryInter face like so:

class CustomerRepository implements CustomerRepositoryI\
nterface {

protected $entityManager;

protected $entityClass = 'MyVendor\Domain\Entity\Cust\

omer"';

public function __construct(EntityManager $entityMana\

ger) {
$this->entityManager = $entityManager;

public function getAll() {
return $this->entityManager
->getRepository($this->entityClass)->getAll();

public function getById($id) {

Database Independence 136

return $this->entityManager->find(
$this->entityClass,
$id

);

This is a really simple implementation of a repository using Doc-
trine ORM. Of course, to use Doctrine, we also have various
mapping files and configurations we need to setup to get things
to work, but this is our basic repository. We’re also missing the
definition of a couple methods above, but have simply omitted them
for brevity. Were we actually trying to run this code, we’'d get an
error that we didn’t implement all methods of the interface.

It implements our CustomerRepositorylInterface, such that any-
thing requesting an instance of this interface would be fully satisfied
by using this concrete class.

Of course, this functionality looks pretty generic and unspecific to
our CustomerRepository. We could easily break this out into an
abstract class so that we can prevent duplicate functionality being
littered about all of our repositories:

abstract class AbstractRepository {
protected $entityManager;

protected $entityClass = ;

public function __construct(EntityManager $entityMana\

ger) {
$this->entityManager = $entityManager;

if (empty($this->entityClass)) {
throw new \RuntimeException(
'entityClass not specified for ' . _CLASS__
)i

Database Independence 137

public function getAll()
{

return $this->entityManager
->getRepository($this->entityClass)->getAll();

public function getById($id)
{

return $this->entityManager->find(
$this->entityClass,
$id

);

Our CustomerRepository then simply becomes:

class CustomerRepository extends AbstractRepository
implements CustomerRepositorylnterface {

protected $entityClass = 'MyVendor\Domain\Entity\Cust\

omer';

}

Now we only need to add customer-specific logic to this repository,
as needed.

Utilizing Persistence

The Persistence layer is meant to sit on one of the outer layers of
the onion. It is not central to the application. Again, our Domain

Database Independence 138

Model and Domain Services are. The Persistence layer simply pro-
vides meaning to that Domain Services layer by implementing the
repository interfaces that we setup. Nothing should be dependent
upon this Persistence layer. In fact, we should be able to swap out
Persistence layers with other implementations, and all of the code
that ends up using this layer (through using the interfaces) should
be none the wiser, and continue to function properly.

We’ll experiment with this concept once we start working on our
Case Study.

Using Dependency Injection to Fulfill Contracts

So we’ve defined plenty of interfaces in our Domain Services layer
and implemented them with concrete classes in our Persistence
layer. We’ve discussed that nothing can directly depend on this Per-
sistence layer, so just how exactly do we use it in our application?

We previously discussed Dependency Injection as a means of
preventing coupling, and that’s just what we’d use here. Any time
any class needs a concrete implementation of a repository, it should
declare a dependency to the interface, instead. For instance, when
we discussed our Factory that needed to find the next available
account manager, remember, we only asked for an interface:

class CustomerFactory ({
protected $managerRepository;

public function __construct(AccountManagerRepositoryI\

nterface $repo) {
$this->managerRepository = $repo;

V72

Database Independence 139

The CustomerFactory is deeper in the onion than that persistence
layer, so it can’t be dependent upon a concrete CustomerRepos-
itory, nor would we want it to be. Instead, it declares, via the
constructor, that it needs something that implements AccountMan-
agerRepositorylInterface. It doesn’t care what you give it, so long
as the what is passed in adheres to the interface. We call this
programming by contract.

So how exactly does a CustomerRepository get into the Cus-
tomerFactory? Whatever means is responsible for instantiating this
Factory would take care of passing in the correct implementation:

$customerFactory = new CustomerFactory(
new CustomerRepository($entityManager)

);

How this works is largely dependent upon your framework and how
it handles Dependency Injection Containers or Service Locators.
We’ll discuss this more when we talk about the framework, and
explore how it works in our Case Study. The important thing to note
here is that our code should only be dependent upon interfaces, not
concrete implementations of the Persistence layer.

Organizing the Code

We’ve discussed Entities, Services, Factories, Repository interfaces
and concrete Repositories. Where do we put all this stuft?

It makes sense to logically separate the layers of your application
to their own root fielders, even if the shared parent folder is
the same. We have essentially talked about two layers, Domain
and Persistence. So starting there might be a good idea, and then
grouping each component type under those two folders:

Database Independence 140

src/

Domain/
Entity/
Factory/
Repository/
Service/

Persistence/
Repository/

Following the PSR-4 autoloading standard?®, we’d also have similar
namespaces, for instance:

MyVendor \Project\Domain\Entity\Customer

I've taken this one step further in a series of applications that
actually share the same Domain (and ultimately, database). Domain
and Persistence have both been broken up into separate code repos-
itories, all loaded into several parent projects using Composer. It’s
the ultimate in separation of concerns: the code bases are literally
separate. Granted, that doesn’t mean they’re decoupled.

How you want to organize your code is up to you. My ultimate
recommendation is to keep the layers segregated out into at least
their own folders.

Wrapping it Up

The purpose for taking the database away from being the center of
our application is so that we are no longer dependent and coupled
to that database. This gives us the freedom to swap out database
flavors, or even add in a middle layer such as an API in between our
application and the database, without having to rewrite our entire

**http://www.php-fig.org/psr/psr-4/

http://www.php-fig.org/psr/psr-4/
http://www.php-fig.org/psr/psr-4/

Database Independence 141

application. It also gives us the flexibility in switching out database
libraries, say going from Doctrine to Laravel’s Eloquent ORM.

We’ll next look at applying some similar principals to the de-
veloper’s framework of choice, and explore how we can limit
decoupling in Framework Independence.

External Agency Independence

With the arrival of Composer®, the PHP scene suddenly exploded
with a myriad of packages, libraries, components, and tools that
could easily be dropped into any project, and even autoloaded
magically through the Composer autoloader. It is now easier than
it has ever been to load third party libraries into your source code
and solve challenges easily and quickly.

A simple glance at the instructions for many of these projects on
GitHub shows how painfully easy it is to get them installed and
integrated. Usually, installation instructions are followed by a quick
little snippet or two of example usage.

Not so fast.

Every time we pull in one of these third party libraries and use it
directly within our client code, we're tightly coupling ourselves to
it.

How long is this code going to be around? Is it going to be actively
maintained? What if our needs outgrow what it provides? It’s likely
that at some point, we may need to abandon this library for another
solution. The more tightly coupled we are to this library, the harder
it’s going to be to switch to something else.

Using Interfaces, Adapters and Dependency
Injection

Of course, we’ve already explored the solution to this problem when
we discussed how to handle framework services. The solution was
pretty simple:

**https://getcomposer.org/

142

https://getcomposer.org/
https://getcomposer.org/

External Agency Independence 143

1. Create an interface defining the functionality we need

2. Write an adapter that wraps the third party code, making it
conform to our interface

3. Require an implementation of that interface to be injected
into whatever client code needs it

Let’s look at another example of this.

The Geocoder PHP* library provides a great library for geocoding
services, itself with several adapters to use a variety of different
services to provide the geocoding. Let’s say our app simply needs
to be able to get the longitude + latitude for any given address.

We first define an interface for this need:

interface GeocoderlInterface {

public function geocodeAddress($address);

This is fairly straight forward. We need this in a controller which
interacts with some mapping:

class AddressController {
protected $geocoder;

public function __construct(
GeocoderInter face $geocoder

) |

$this->geocoder = $geocoder;

public function geocode() {

return $this->geocoder->geocodeAddress(

*https://github.com/geocoder-php/Geocoder

https://github.com/geocoder-php/Geocoder
https://github.com/geocoder-php/Geocoder

External Agency Independence 144

$this->params('address')

);

Now all we need to do to make this code work is provide some-
thing that implements Geocoder Inter face, and inject that into the
controller when it is instantiated. Our adapter provides the needed
concrete implementation:

class GeocoderPhpAdapter
protected $geocoder;

public function _ construct(Geocoder $geocoder) {
$this->geocoder = $geocoder;

public function geocodeAddress($address) {
$results = $this->geocoder->geocode($address);

return |
"longitude' => $results['longitude'],
"latitude' => $results['latitude’]

1;

We’re also injecting the $geocoder into this adapter as we may want
to have different configurations for different circumstances:

External Agency Independence 145

$geocoder = new GeocoderPhpAdapter (
new Geocoder (
new GoogleMapsProvider(new CurlHttpAdapter())
)
);

That’s a lot of dependency injection!

Benefits

We want to make sure we have flexibility and freedom in our
applications. Specifically, we need the ability to switch out third
party libraries, whenever necessary, for whatever reason, easily and
quickly.

Not only does it safeguard us against a library going away or no
longer providing what we need, but it can make testing easier
through mocking, and also makes refactoring easier, as it encap-
sulates all functionality of the third party library into one place.

We'll use this strategy extensively whenever we use third party
libraries throughout the Case Study.

A Case Study in Clean
Architecture

The topics covered in the first few sections of this book provided a
solid foundation for building quality applications in PHP. Let’s see
these practices at work by building a small application and applying
these principles as we go. When we’re done, we’ll switch services
and frameworks a few times to see how our choices have made it
easier to do so.

146

The Billing System

Our Case Study revolves around our client, SimpleTech, who wants
a simple system to keep track of their customer orders, and generate
invoices for those orders.

A simple UML diagram of these relationships would look like:

Customer Order
name:string orderNumber:string

Invoice

invoiceDate:DateTime
total:float

email:string description:string
deliveryMethod:string total:float

A Customer has multiple Orders, each of which has an Invoice.

If this application seems incredibly simple, it’s because it is. You
might be asking yourself whether it is worth learning a new archi-
tecture and carefully crafting the code for such a simple application
that would be quite easy to rewrite if needed.

That’s a good observation and leads to a good general rule: if
an application is so small, or so simple that it can be rewritten
quickly, then the value of a tool such as the Clean Architecture is
diminished. That’s not to say that it shouldn’t be done, especially
if you've become quite comfortable writing applications in this
manner; it might even be faster!

Let’s pretend that our small case study is part of a much larger sys-
tem that will grow over time to include procurement, manufactur-
ing modules, distribution, accounting, etc; a full blown Enterprise
Resource Planning (ERP) system for SimpleTech. Knowing this, it
very much makes sense to consider the Clean Architecture as a
foundation for such a large system.

147

The Billing System 148

Application Workflow

We're going to fulfill the following requirements for SimpleTech:

1. Ability to add new Customers
2. Ability to create simple Orders for a Customer

3. Ability to run an Invoicing process that turns Orders into
Invoices when it’s time to bill the customer.

Again, this application will be pretty simple, but will allow us to
show off some of the things we've learned in terms of layers of
applications, design patterns, and architecture.

Prerequisites

Before we begin, you’ll have to make sure you have a machine with
PHP installed. If this comes as a shock, you may have purchased
the wrong book. For more information on setting up PHP, checkout
PHP The Right Way®* and their section on Getting Started.

You’ll also need to have some kind of database installed. We’ll use
sqlite®” for simplicity, but any relational database, such as MySQL,
PostgreSQL, or Oracle, should suffice. You could even setup this
simple project using a NoSQL variant, but we won’t cover that here.

Everything else we need will installed via Composer.
Setting up Composer

Our next step is to setup Composer®® so that we can utilize its
autoloader for our unit tests. If you don’t already have it set up,

*'http://www.phptherightway.com/
*http://www.sqlite.org/
*https://getcomposer.org/

http://www.phptherightway.com/
http://www.sqlite.org/
https://getcomposer.org/
http://www.phptherightway.com/
http://www.sqlite.org/
https://getcomposer.org/

The Billing System 149

I highly suggest you install it globally so that you can use it from
anywhere.

On a *nix based system, you can do so easily:

for a home directory install:
curl -sS https://getcomposer.org/installer | \
php -- --install-dir=bin --filename=composer

for a global system install:
curl -sS https://getcomposer.org/installer | \
sudo php -- --install-dir=/usr/local/bin --filename\

=composer

When done, assuming your paths are set up properly, you can
simply run composer to verify it is installed correctly:

composer

You'll either get an error about command not found, or you’ll
get some output. You might need to double check that ~/bin or
/usr/local/bin is in your $PATH variable. You can check this easily
by running:

echo $PATH

And looking for those directories in the output. If they’re not in
there, try adding them in your ~/.bashrc, ~/.zshrc, or similar
file:

export $PATH='/home/yourname/bin:$PATH'

Make sure you include :$PATH on the end, or you’ll overwrite
everything else stored in your $PATH variable!

Building Our Domain

Domain Model

As the domain is central to our application, it makes perfect sense
for us to start there. At the core, we have a Domain Model layer,
which is composed of models, and models only. We’re going to call
these models entities. Our entities are going to be plain PHP objects
that represent something in our application. These are: Customer,
Order, and Invoice.

Remember: the Domain Model layer can have no dependencies
whatsoever. It is completely uncoupled from everything but PHP
and itself.

Branching out from there, we’re going to have the Domain Services
layer, which builds on top of the Domain Model layer. This layer
can be fully dependent upon the Domain Model layer and itself,
but nothing else.

In addition to services, this layer also contains factories, responsible
for building objects, and repositories, although usually just inter-
faces that define a contract for another layer to implement.

Setting up the Project

The first thing we need is a directory structure:

150

Building Our Domain 151

mkdir -p cleanphp/src/Domain/Entity

In this directory, all of our Entities will live.

With Composer installed (see the previous chapter), we can con-
figure our composer. json file with a simple autoload section to
autoload our resources. This file should go in the root cleanphp/
directory:

{
"autoload": {
"psr-4": {
"CleanPhp\\Invoicer\\": ["src/"]
}
}
}

This configuration tells Composer that we want to use the PSR-4
autoloading standard to load the CleanPhp\Invoicer namespace,
and that the root directory for that namespace is located at src/.
This lets Composer’s autoloader find classes of that namespace
within the src/ directory.

Finally, run the dump-autoload command to instruct Composer to
build its autoload files (which are located at vendor/composer):

composer dump-autoload

If you take a peak, you should now see a vendor /composer directory
with our autoload configuration set up in autoload_psr4.php.

Now we’re ready to create the entities.

Building Our Domain 152

Creating the Entities

These entity classes are all going to use a unique identifier that
represents them. That $id attribute will require a getId() and
a setId() method. To keep from repeating ourselves, and as a
way to identify all entities, let’s go ahead and create an abstract
AbstractEntity that all of these entities can inherit from:

// src/Domain/Entity/AbstractEntity.php
namespace CleanPhp\Invoicer\Domain\Entity;

abstract class AbstractEntity
protected $id;

public function getlId() ({

return $this->id;

public function setlId($id) {
$this->id = $id;
return $this;

Now let’s define our Customer entity, which as a Name, Email
Address, and Invoice Delivery Method:

Building Our Domain 153

// src/Domain/Entity/Customer.php
namespace CleanPhp\Invoicer\Domain\Entity;

class Customer extends AbstractEntity {
protected $name;
protected $email;

public function getName() {
return $this->name;

public function setName($name) {
$this->name = $name;
return $this;

public function getEmail() {
return $this->emailAddress;

public function setEmail($email) {
$this->email = $email;
return $this;

Next, let’s define our Order entity, which has a Many to One rela-
tionship with Customer, as well as an Order Number, Description,
and Total Order Amount:

Building Our Domain 154

// src/Domain/Entity/Order.php

namespace CleanPhp\Invoicer\Domain\Entity;

class Order extends AbstractEntity {
protected $customer;
protected $orderNumber;
protected $description;
protected $total;

public function getCustomer() {
return $this->customer;

public function setCustomer($customer) {
$this->customer = $customer;
return $this;

public function getOrderNumber() {
return $this->orderNumber;

public function setOrderNumber ($orderNumber) {
$this->orderNumber = $orderNumber;
return $this;

public function getDescription() {
return $this->description;

public function setDescription($description) {
$this->description = $description;
return $this;

Building Our Domain 155

public function getTotal() {
return $this->total;

public function setTotal($total) {
$this->total = $total;

return $this;

Finally, our Invoice entity, which has a Many to One relationship
with an Order, as well as an Invoice Date and Total Invoice Amount:

// src/Domain/Entity/Invoice.php
namespace CleanPhp\Invoicer\Domain\Entity;

class Invoice {
protected $order;
protected $invoiceDate;
protected $total;

public function getOrder() {

return $this->order;

public function setOrder(Order $order) {
$this->order = $order;
return $this;

public function getInvoiceDate() {

Building Our Domain 156

return $this->invoiceDate;

public function setlnvoiceDate(\DateTime $invoiceDate\

) |

$this->invoiceDate = $invoiceDate;

return $this;

public function getTotal() {
return $this->total;

public function setTotal($total) {
$this->total = $total;

return $this;

These three classes complete our small Domain Model layer.

Q This would make a good place to commit your code

to source control.

If you're just reading, but want to see the code in
action, you can checkout the tag 01-domain-models:

git clone https://github.com/mrkrstphr/cleanphp-example\
.git
git checkout 01-domain-models

Building Our Domain 157

Testing Our Domain Models

I’'m going to make an executive decision at this point and decide not
to write any tests for these models as they stand right now. Writing
tests for simple getter and setter methods is pretty tedious, and if
something is going to go wrong, it’s likely not going to happen here.

If you want to write these tests, go for it! You'll likely be at least
somewhat better off for doing so.

We'll start writing tests next when we start building out our domain
services for this application.

Domain Services

Remember that the Domain Services layer was next as we move
outward from the Domain Model layer within the Onion/Clean
Architecture. This layer will hold all the services and service
contracts that the application will use. As the only thing deeper
in the onion is the Domain Model layer, the Domain Services layer
can only depend on the Domain Model layer (as well as PHP itself).

Our domain services layer will comprise of: * Repository Inter-
faces These interfaces will define how the real repositories will

Building Our Domain 158

work. Since we can’t rely on any infrastructure at this point, we
can’t actually code any concrete repositories yet. * Factories These
factories will be responsible for creating domain objects based on
our business rules. * Services These services will be responsible for
implementing the rest of our business rules. They may rely on both
the repositories and the factories to complete their work.

Let’s get started!

Setting up Repositories

We’re going to need to retrieve and persist data from our database,
and we’ll do that by using repositories. Repositories live in the
infrastructure layer of our application, but we’ll define them in the
domain services layer. The infrastructure layer is meant to be highly
swappable, so we’ll want to define some contracts for that layer to
follow within our domain services layer.

Normally, we’d start by writing some tests that define the func-
tionality of these repositories, but since we’re just going to have
interfaces at this point, there would literally be nothing to test.

Generally, we're going to want to be able to do the following
operations for Customers, Orders and Invoices:

« Get by ID

o Get All

« Persist (Save)
+ Begin

« Commit

Since this is common functionality, let’s go ahead and create a base
RepositorylInterface to define this functionality:

Building Our Domain 159

// src/Domain/Repository/RepositorylInter face.php
namespace CleanPhp\Invoicer\Domain\Repository;
interface Repositorylnterface {

public function getById($id);

public function getAll();

public function persist($entity);

public function begin();
public function commit();

Now let’s create some interfaces that represent the actual entities,
that extend and inherit the functionality of RepositoryInterface.

Customers
// src/Domain/Repository/CustomerRepositorylnter face.php
namespace CleanPhp\Invoicer\Domain\Repository;

interface CustomerRepositorylInterface

extends Repositorylnterface {

Orders

Building Our Domain 160

// src/Domain/Repository/OrderRepositorylInterface.php
namespace CleanPhp\Invoicer\Domain\Repository;

interface OrderRepositorylnterface
extends Repositorylnterface {

Invoices

// src/Domain/Repository/InvoiceRepositorylnter face.php
namespace CleanPhp\Invoicer\Domain\Repository;

interface InvoiceRepositorylnterface

extends Repositorylnterface {

These repositories each represent an entity, and define a contract
that each concrete repository must follow. Additionally, we’ll use
these interfaces to type-hint dependency injection in each instance
where we need them, so that we can ensure our classes will get the
correct functionality they need.

As part of our invoicing process, we need to find all orders that have
not yet been invoiced. We can define this need by adding a method
to the OrderRepositorylInter face:

Building Our Domain 161

// src/Domain/Repository/OrderRepositorylInterface.php
namespace CleanPhp\Invoicer\Domain\Repository;

interface OrderRepositorylnterface
extends Repositorylnterface {

public function getUninvoicedOrders();

This getUninvoicedOrders() method can be used to get all the
orders when our invoicing service runs.

Invoice Factory

Invoices are created for Orders, and inherit some of their data, so
it makes sense that we would encapsulate the creation of these
Invoices into a factory service.

This simple factory should accept an Order object, and return an
Invoice object to the caller:

public function createFromOrder(Order $order);

Let’s start by wring a test that’s going to define this service.
We’ll use the awesome Peridot™ testing framework that follows
a Behavior-Driven Development (BDD) approach to testing. We’'ll
also use the assertion library Leo* made by the same group.

Let’s install the latest stable versions as a development dependency
via Composer:

**http://peridot-php.github.io
**http://peridot-php.github.io/leo

http://peridot-php.github.io
http://peridot-php.github.io/leo
http://peridot-php.github.io
http://peridot-php.github.io/leo

Building Our Domain 162

composer require --dev peridot-php/peridot peridot-php/\
leo

Once it’s installed, we can run it with the command:
./vendor /bin/peridot

If all goes well, you'll see Peridot run it’s own tests. That’s great,
but we want to run our tests. But before we do that, we’ll have to
write them. Let’s start by creating a root level specs/ directory for
our test specs to live in.

Let’s write our first test:

// specs/domain/service/invoice-factory.spec.php

use CleanPhp\Invoicer\Domain\Entity\Invoice;
use CleanPhp\Invoicer\Domain\Entity\Order;

use CleanPhp\Invoicer\Domain\Factory\InvoiceFactory;

describe('InvoiceFactory', function () {
describe('->createFromOrder ()", function () {
it('should return an order object', function () {
$order = new Order();
$factory = new InvoiceFactory();

$invoice = $factory->createFromOrder($order);

expect($invoice)->to->be->instanceof(
'CleanPhp\Invoicer\Domain\Entity\Invoice'
);
1)
1)
3

Building Our Domain 163

This simple test just makes sure that our InvoiceFactory is return-
ing an instance of an Invoice object.

If we run Peridot again, our test will be failing. So let’s go ahead
and write the basic InvoiceFactory class and make this test pass!

We’ll start with the basic structure of the InvoiceFactory:

// src/Domain/Factory/InvoiceFactory.php
namespace CleanPhp\Invoicer\Domain\Factory;

use CleanPhp\Invoicer\Domain\Entity\Invoice;
use CleanPhp\Invoicer\Domain\Entity\Order;

class InvoiceFactory {
public function createFromOrder(Order $order)

return new Invoice();

This is the minimal work needed to get our Peridot tests to pass,
but our class obviously still isn’t work the way we want it to as
it’s just returning an empty Invoice object. Let’s add a few more
expectations to our test to define the behavior of this factory:

// specs/domain/factory/invoice-factory.spec.php

use CleanPhp\Invoicer\Domain\Entity\Invoice;
use CleanPhp\Invoicer\Domain\Entity\Order;
use CleanPhp\Invoicer\Domain\Factory\InvoiceFactory;

describe('InvoiceFactory', function () {
describe('->createFromOrder()', function () {
it('should return an order object', function () {

Building Our Domain 164

$order = new Order();
$factory = new InvoiceFactory();
$invoice = $factory->createFromOrder($order);

expect($invoice)->to->be->instanceof(
'CleanPhp\Invoicer\Domain\Entity\Invoice'
)i
1)

it('should set the total of the invoice', function \

O A

$order = new Order();
$order->setTotal (500);

$factory = new InvoiceFactory();

$invoice = $factory->createFromOrder($order);

expect($invoice->getTotal())->to->equal (500);
1)

it('should associate the Order to the Invoice', fun\
ction () {
$order = new Order();

$factory = new InvoiceFactory();

$invoice = $factory->createFromOrder ($order);

expect($invoice->getOrder())->to->equal ($order);

1);
it('should set the date of the Invoice', function (\
) |

$order = new Order();

$factory = new InvoiceFactory();

Building Our Domain 165

$invoice = $factory->createFromOrder($order);

expect($invoice->getinvoiceDate())
->to->loosely->equal (new \DateTime());
1)
1)
1)

Not only do we want our InvoiceFactory to return an instance of
an Invoice object, but it should also have its $total property set
to the $total of the Order, as well as have the Order that it was
generated for assigned to it, and finally, today’s date should be set
as the $invoiceDate of the Invoice.

Now we have some pretty robust tests for what we want this factory
to do! Let’s make these tests pass now by filling out the rest of the
createFromOrder () method:

public function createFromOrder(Order $order) ({
$invoice = new Invoice();
$invoice->setOrder ($order);
$invoice->setinvoiceDate(new \DateTime());
$invoice->setTotal ($order->getTotal());

return $invoice;

And with that, our InvoiceFactory is now complete and its tests
passing.

Writing tests in this manner allows us to quickly define the behavior
of a class and flesh out how it will work and relate to other objects.
This falls into the realm of Behavior-Driven Development (BDD)*,
which you can look into in more detail if it interests you. It goes

**http://dannorth.net/introducing-bdd/

http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/

Building Our Domain 166

hand-in-hand quite well with Domain-Driven Development and
Test-Driven Development.

Peridot has a handy watcher plugin that allows for
continuously running the tests as you make changes.
We can install it by running:

composer require --dev peridot-php/peridot-watcher-plug\
in

After that, we’ll create a peridot . php file in the root
directory that looks like:

// peridot.php

use Evenement\EventEmitterInterface;
use Peridot\Plugin\Watcher\WatcherPlugin;

return function(EventEmitterInterface $emitter) {
$watcher = new WatcherPlugin($emitter);
$watcher->track(_DIR__ . '/src');

b

Now we can use the --watch flag to run the tests
continuously!

./vendor/bin/peridot specs/ --watch

Invoicing Service

The biggest piece of our domain logic in this application is the
invoicing process. We’re going to go collect all un-invoiced orders,
once a month, and generate invoices for them. It’s our goal to do this
independently of any framework, library, or other external service.

Building Our Domain 167

This way, we can ensure that the core application is completely
uncoupled from anything but itself, and it can easily be dropped
into any framework and perform it’s function.

This service is going to use the OrderRepositorylInterface to
collect the orders to invoice, and then use our InvoiceFactory to
create the invoices for those orders. Let’s again start by writing
some tests to define these behaviors:

// specs/domain/service/invoice-factory.spec.php

describe('InvoicingService', function () {
describe('->generatelnvoices()', function () {
it('should query the repository for uninvoiced Orde\
rs');
it('should return an Invoice for each uninvoiced Or\
der');
1)
3

Things are a little trickier this time. Since we haven’t written any
concrete repositories yet, we can’t use one to perform this test.
Instead of writing and using a concrete repository, we’re going to
mock one using the Prophecy library.

Luckily, Peridot also comes with a plugin to make integrating those
a piece of cake. Let’s install it:

composer require --dev peridot-php/peridot-prophecy-plu\
gin

And then add it to our peridot.php file:

Building Our Domain 168

// peridot.php

use Evenement\EventEmitterInterface;
use Peridot\Plugin\Prophecy\ProphecyPlugin;
use Peridot\Plugin\Watcher\WatcherPlugin;

return function(EventEmitterInterface $emitter) {
$watcher = new WatcherPlugin($emitter);
$watcher->track(_DIR__ . '/src');

new ProphecyPlugin($emitter);
b

Now, we can write a beforeEach() block that will get executed
before each test to build us a mocked OrderRepositoryInter face:

// specs/domain/service/invoice-factory.spec.php

describe('InvoicingService', function () {
describe('->generatelnvoices()', function () {
beforeEach(function () {
$this->repository = $this->getProphet()->prophesi\

ze(
'CleanPhp\Invoicer\Domain\Repository\OrderRepos\
itoryInterface'
)i
1)
VI
1)

1)

When we need it, $this->repository will hold an instance of a
mocked repository. Now we can finish our first test:

Building Our Domain 169

it('should query the repository for uninvoiced Orders',\
function () {
$this->repository->getUninvoicedOrders()->shouldBeCal\
led();
$service = new InvoicingService($this->repository->re\
veal());
$service->generatelnvoices();

1)

We're testing here that when we call the generatelnvoices()
method, we should expect that the InvoicingService will make
a call to the getUninvoicedOrders() method of
OrderRepositorylnter face.

We'll also want to add an afterEach() block to tell Prophecy to
check the assertions it makes, like shouldBeCalled() as otherwise
it won’t know exactly when it’s safe to check that assertion. We
can do it in an afterEach() just to make it easy on us, but really
we could add it anywhere within the test:

afterkach(function () {
$this->getProphet()->checkPrediections();
1

Of course, without any code, these tests should be failing, so let’s
go fix that:

Building Our Domain 170

// src/Domain/Service/InvoicingService.php
namespace CleanPhp\Invoicer\Domain\Service;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\
Interface;

class InvoicingService {

protected $orderRepository;

public function _ construct(OrderRepositoryInterface \
$orderRepository) {
$this->orderRepository = $orderRepository;

public function generatelnvoices() ({
$orders = $this->orderRepository->getUninvoicedOrde\
rs();

}

We’re simply doing exactly what our test expected: injecting an
instance of
OrderRepositoryInter face and calling itsgetUninvoicedOrders()
method when calling the generateUninvoicedOrders() method.

Our tests should now pass, so let’s dig deeper into the functionality
of this service:

Building Our Domain 171

it('should return an Invoice for each uninvoiced Order'\
, function () {

$orders = [(new Order())->setTotal(400)];

$invoices = [(new Invoice())->setTotal(400)];

$this->repository->getUninvoicedOrders()->willReturn(\
$orders);
$this->factory->createFromOrder ($orders[0])->willRetu\

rn($invoices([0]);

$service = new InvoicingService(
$this->repository->reveal(),
$this->factory->reveal ()

),

$results = $service->generatelnvoices();

expect($results)->to->be->a('array');
expect($results)->to->have->length(count($orders));

1)

We’ve now brought the InvoiceFactory into the picture, and are
testing that its createFromOrder method is called with the results
of getUninvoicedOrders, meaning that each Order returned should
be run through the InvoiceFactory to generate an Invoice.

We’re using the willReturn() method of Prophecy to instruct
the Mock to return $orders whenever getUninvoicedOrders() is
called, and that $invoices[0] should be returned when create-
FromOrder () is called with $orders[@] as an argument.

Finally, we’re doing some expectations after instantiating our object
and calling the

generatelnvoices() method to ensure that it is returning the
proper data.

Since we're now utilizing the InvoiceFactory, which we’ll need to
mock as well, as we want to be able to test the InvoicingService

Building Our Domain 172

in isolation without having to test the InvoiceFactory as well, so
let’s add that mock to the beforeEach():

beforeEach(function () {
$this->repository = $this->getProphet()->prophesize(
'CleanPhp\Invoicer\Domain\Repository\OrderRepositor\
yInterface'
);
$this->factory = $this->getProphet()
->prophesize('CleanPhp\Invoicer\Domain\Factory\Invo\
iceFactory');

1),

And we’ll have to update the other test to inject it as well, otherwise
it will throw errors:

it('should query the repository for uninvoiced Orders',\
function () {
$this->repository->getUninvoicedOrders()->shouldBeCal\
led();
$service = new InvoicingService(
$this->repository->reveal(),
$this-> factory->reveal()
)i
$service->generatelnvoices();

1),

Our tests are, of course, failing as the code isn’t setup to meet the
expectations of the tests, so let’s go finalize the InvoicingService:

Building Our Domain 173

// src/Domain/Service/InvoicingService.php
namespace CleanPhp\Invoicer\Domain\Service;

use CleanPhp\Invoicer\Domain\Factory\InvoiceFactory;
use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

class InvoicingService{
protected $orderRepository;
protected $invoiceFactory;

public function __construct(
OrderRepositorylInterface $orderRepository,
InvoiceFactory $invoiceFactory

) {
$this->orderRepository = $orderRepository;
$this->invoiceFactory = $invoiceFactory;

public function generatelnvoices() {
$orders = $this->orderRepository->getUninvoicedOrde\

rs();
$invoices = [];

foreach ($orders as $order) {
$invoices[] = $this->invoiceFactory->createFromOr\

der($order);

}

return $invoices;

Building Our Domain 174

We’re now accepting an instance of InvoiceFactory in the con-
structor, and using it while looping the results of getUninvoice-
dOrders() to create an Invoice for each Order. When we’re done,
we return this collection. Exactly as our behavior was defined in
the test.

Our tests are passing, and our service is now complete.

This would make a good place to commit your code
to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 02-domain-services:

git clone https://github.com/mrkrstphr/cleanphp-example\
.git
git checkout 02-domain-services

Wrapping it Up

This concludes the domain of our application. The domain model
and domain services layers of our application are central to every-
thing else. They contain our business logic, which is the portion of
our application that will not change depending on which libraries
or frameworks we decide to use, or how we choose to persist our
database.

Everything that exists outside of these two layers will utilize them
to complete the goals of the application.

We’re now ready to start building out the front-end portion of the
application!

Zend Framework 2 Setup

We’'re going to start building our project using Zend Framework 2.
ZF2 is the second iteration of Zend Framework, and is a modular,
event-based framework with an extensive set of libraries. It is,
at least out of the box using the sample application, an MVC
framework with support for various database systems.

While ZF2 isn’t my first choice in frameworks, it might be one
someone lands upon when first looking for a framework, especially
due to the incorrect assumption that it might actually be endorsed
by or affiliated with PHP itself. This misconception likely stems
from the fact that the current runtime for PHP is called the Zend
Engine, and the two people who started it, Andi Gutmans and
Zeev Suraski (Zeev + Andi = Zend), later started a company, Zend
Technologies, which is responsible for Zend Framework.

Regardless, Zend Framework is not directly affiliated with nor
endorsed by PHP.

Installing with Composer

We installed Composer in the previous chapter to setup our au-
toloader. Now we’re going to use it to pull down and configure the
ZF Skeleton Application. Since you can’t clone a git repo into an
existing, non-empty directory, we’re going to have to get silly for a
minute in order to get this to work.

We'll create our ZF Skeleton Application in a separate directory
from our previous cleanphp/ directory:

175

Zend Framework 2 Setup 176

cd /path/to/your/preferred/www

composer create-project \
--repository-url="http://packages.zendframework.com" \
-sdev zendframework/skeleton-application \

cleanphp-skeleton

This command will ask you if you want to “remove the existing VCS
history.” When it does, enter “Y” to get rid of the .git directory.

You should now have a working copy of the ZF2 Skeleton applica-
tion. Head to the public/ directory and fire up PHP’s built-in web
server:

cd cleanphp-skeleton
php -S localhost:1337 -t public

Head to http://localhost:1337/ in your web browser, and you should
see the results!

Combining the Code Bases

Now we have two separate projects, so we’ll want to move over the
ZF2 specific code into our cleanphp/ directory. Something like this
from the parent directory of both cleanphp* directories:

cp -R cleanphp-skeleton/config \
cleanphp-skeleton/data \
cleanphp-skeleton/public \
cleanphp-skeleton/module \
cleanphp-skeleton/init_autoloader.php \
cleanphp/

We’ll also want to make sure that Zend Framework is installed via
Composer in this project:

Zend Framework 2 Setup 177

composer require zendframework/zendframework
Now we can remove the cleanphp-skeleton/ directory.
rm -rf cleanphp-skeleton/

That was uncomfortable and awkward, so let’s get going with ZF2!

Cleaning up the Skeleton

Now it’s time to bend the ZF2 skeleton to our will. We’re just going
to do some cosmetic stuff real quick to get the ZF2 branding out of
the way.

First, let’s replace themodule/Application/view/layout/layout.phtml
file with:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>CleanPhp</title>
<meta name="viewport" content="width=device-width, in\
itial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<link href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.1\
/css/bootstrap.css”
media="screen" rel="stylesheet" type="text/css">
<link href="/css/application.css" media="screen"
rel="stylesheet" type="text/css">
</head>
<body>
<nav class="navbar navbar-default navbar-fixed-top" rol\

e="navigation">

Zend Framework 2 Setup 178

<div class="container">
<div class="navbar-header">
CleanPhp
</div>
<div class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<1li>
Customers
</1i>

Orders
</1i>

Invoices
</1i>
</ul»>
</div>
</div>
</nav>
<div class="container">
<?= $this->content; 2>
<hr>
<footer>
<p>I'm the footer.</p>
</footer>
</div>
</body>
</html>

Here, we're just ditching a lot of the ZF2 view helpers and layout
and opting to use a CDN supplied version of Bootstrap. We can
go ahead and entirely delete the public/css, public/fonts, pub-
lic/img, and public/ js folders.

We defined some links to some future pages in the header. Let’s go

Zend Framework 2 Setup 179

ahead and setup the routes for those in Zend Framework:
// module/Application/config/module.config.php

return |
V7
'router' => [
'routes' => [
"home' => [
‘type’ =
'options' => |

'Zend\Mvc\Router\Http\Literal',

'route’ = /",
'defaults' => |
'controller' => 'Application\Controller\Ind\

ex',
'action' => 'index',
1,
1,
1,
"customers' => |
"type' => 'Segment',
'options' => |
'route’ => '/customers',
'defaults' => |
'controller' => 'Application\Controller\Cus\
tomers',

'action' => 'index',

1,
1,
'orders' => |
"type' => 'Segment',
'options' => |
'route’ => '/orders',
'defaults' => |

Zend Framework 2 Setup 180

'controller' => 'Application\Controller\Ord\

ers',
'action' => 'index',
1,
1,
1,
"invoices' => |
"type' => 'Segment',
'options' => |
'route’ => '/invoices',
'defaults' => |
'controller' => 'Application\Controller\Inv\
oices',
'action' => 'index',
1,
1,
1,
1,
1,
/7

Now let’s replace themodule/Application/views/application/in-
dex/index.phtml file with something generic, and not a ZF2 adver-

tisement:

Zend Framework 2 Setup 181

<div class="jumbotron">
<h1>Welcome to CleanPhp Invoicer!</hi1>
<p>
This is the case study project for The Clean Archit\
ecture in PHP,
a book about writing excellent PHP code.
</p>
<p>
<a href="https://leanpub.com/cleanphp" class="btn b\
tn-primary">
Check out the Book
</p>
</div>

Now it’s an advertisement for this book. How nice! Things look a
little off, though, so let’s add our public/css/application.css file
to fix that:

body {padding-top: 7Qpx; padding-bottom: 40px}
.navbar-brand {font-weight: bold}

div.page-header {margin-top: 0; padding-top: 0}
div.page-header h2 {margin-top: 0; padding-top: 0}

Now we’re ready to start configuring our database with Zend
Framework.

to source control.

git This would make a good place to commit your code

If you’re just reading, but want to see the code in
action, you can checkout the tag 03-base-zf2:

git clone https://github.com/mrkrstphr/cleanphp-example\
.git
git checkout 03-base-zf2

Zend Framework 2 Setup 182

Setting up Our Database

To setup our database and use it within Zend Framework, we're
going to follow the ZF2 Getting Started*” guide to ensure we do
things the Zend way. 'm going to be brisk on my explanations of
what we’re doing, so refer to this guide for more details if you are
interested.

Let’s get started by creating our database. 'm going to use a sqlite3
database in these examples, as it’s painfully easy to setup (at least
on a Unix/Linux environment), but if you’re a fan of MySQL or
PostgreSQL and want to use one of them, that’s perfect.

4 If you’re using Debian/Ubuntu, installing sqlite is as

simple as:
sudo apt-get install sqlite3 php5-sqglite

On Mac OS X, you can use Homebrew® to install
sqlite.

Let’s quickly create our database, which we’ll create at data/-
database.db, via command line:

sqlitel3 data/database.db

We’re now in the command line sqlite3 application. We can easily
drop SQL queries in here and run them. Let’s create our tables:

*"http://framework.zend.com/manual/current/en/user-guide/database-and-
models.html
**http://brew.sh/

http://framework.zend.com/manual/current/en/user-guide/database-and-models.html
http://brew.sh/
http://framework.zend.com/manual/current/en/user-guide/database-and-models.html
http://framework.zend.com/manual/current/en/user-guide/database-and-models.html
http://brew.sh/

Zend Framework 2 Setup 183

CREATE TABLE customers (
id integer PRIMARY KEY,
name varchar(100) NOT NULL,
email varchar(100) NOT NULL
);

CREATE TABLE orders (
id integer PRIMARY KEY,
customer_id int REFERENCES customers(id) NOT NULL,
order_number varchar(20) NOT NULL,
description text NOT NULL,
total float NOT NULL

);

CREATE TABLE invoices (
id integer PRIMARY KEY,
order_id int REFERENCES orders(id) NOT NULL,
invoice_date date NOT NULL,
total float NOT NULL

);

You can run the . tables command to see the newly created tables,
or .schema to see the schema definition.

Now let’s populate our customers table with a couple rows for test
data:

INSERT INTO customers(name, email) VALUES('Acme Corp', \
'ap@acme.com');

INSERT INTO customers(name, email) VALUES('ABC Company'\
, 'invoices@abc.com');

Connecting to the Database

We want our ZF2 application to be able to connect to this database.
Zend Framework has a set of configuration files located within

Zend Framework 2 Setup 184

config/autoload that get loaded automatically when the applica-
tion is run. If the file ends with local.php, it is specific to that
local environment. If the file ends with global . php, it is application
specific, instead of environment specific.

Let’s create a db.local.php file in config/autoload to hold our
database configuration:

return [
'db' => [
'"driver' => 'Pdo_Sqlite',
'database' => _DIR__ . '/../../data/database.db"',

1,
1;

This tells ZF2 that for our database, we want to use the Pdo_Sqlite
driver, and that our database file is located at data/database.db,
after doing some back tracking from the current file’s directory to
get there.

Any *.local .php file is not supposed to be commit-

0 ted to source control. Instead, you should commit a
*.local.php.dist explaining how the configuration
file should be set up. This keeps secrets, such as
database passwords, from being committed to source
control and potentially leaked or exposed.

Since we don’t have any secrets here, and in the
interest of committing a workable app, I'm going to
put this file in source control anyway.

We’ve now done everything we need to do to tell ZF2 how to talk
to our database. Now we just have to write some code to do it.

Zend Framework 2 Setup 185

Table Data Gateway Pattern

Zend Framework 2 uses the Table Data Gateway Pattern, which
we very briefly mentioned in Design Patterns, A Primer. In the
Table Data Gateway Pattern, a single object acts as a gateway to
a database table, handling the retrieving and persisting of all rows
for that table. ** This pattern is described in great detail in Martin
Fowler’s Patterns of Enterprise Application Architecture®.

Essentially, we’re going to have one object, a Data Table, which
represents all operations on one of our Entity classes. We're going
to go ahead and make these classes implement our Repository
Interfaces, so that they can fulfill the needed contract in our code.

We'll place all these files within the src/Persistence/zZend di-
rectory as our Zend Persistence layer. Let’s start with an Ab-
stractDataTable class nested under the DataTable/ directory that
will define our generic database operations that the rest of our
DataTable classes can inherit from:

// src/Persistence/Zend/DataTable/AbstractDataTable.php
namespace CleanPhp\Invoicer\Persistence\Zend\DataTable;

use CleanPhp\Invoicer\Domain\Entity\AbstractEntity;

use CleanPhp\Invoicer\Domain\Repository\RepositoryInter\
face;

use Zend\Db\TableGateway\TableGateway;

use Zend\Stdlib\Hydrator\HydratorInterface;

abstract class AbstractDataTable implements RepositoryI\
nterface {

protected $gateway;

protected $hydrator;

**http://martinfowler.com/eaaCatalog/tableDataGateway.html
“*http://martinfowler.com/books/eaa.html

http://martinfowler.com/books/eaa.html
http://martinfowler.com/eaaCatalog/tableDataGateway.html
http://martinfowler.com/books/eaa.html

Zend Framework 2 Setup 186

public function __construct(
TableGateway $gateway,
HydratorInterface $hydrator
) {
$this->gateway = $gateway;
$this->hydrator = $hydrator;

public function getById($id) {
$result = $this->gateway
->select(['id' => intval($id)])
->current();

return $result ? $result : false;

public function getAll() {
$resultSet = $this->gateway->select();
return $resultSet;

public function persist(AbstractEntity $entity) {
$data = $this->hydrator->extract($entity);

if ($this->haslidentity($entity)) {
$this->gateway->update($data, ['id' => $entity->g\
et1d()]);
} else {
$this->gateway->insert($data);
$entity->setId($this->gateway->getLastInsertValue\
)
}

return $this;

Zend Framework 2 Setup 187

public function begin() {
$this->gateway->getAdapter()
->getDriver()->getConnection()->beginTransaction(\
)i

return $this;

public function commit() ({
$this->gateway->getAdapter()
->getDriver()->getConnection()->commit();
return $this;

protected function hasIdentity(AbstractEntity $entity\

) A
return !empty($entity->getId());

We’re defining our basic database operations - the ones required by
our RepositoryInterface that all other repositories inherit from.
These methods are mostly just wrappers around Zend’s TableGate-
way (that we’ll take a look at in just a minute).

The only interesting piece we have here is the hasIdentity()
method, which just (loosely) determines if our entity had already
been persisted, so that we know whether we’re doing an insert()
or update() operation. We're relying on the presence of an ID here,
which might not always work. It’s good enough for now.

TableGateway

The first thing that our AbstractDataTable requires is an instance
of TableGateway. The TableGateway is Zend’s workhorse that does

Zend Framework 2 Setup 188

all the database heavy lifting. As you can see by looking at Ab-
stractDataTable, all of our operations live off one of it’s methods.

We’re essentially going to use Zend’s concrete implementation, just
configured to work with our own tables. We’ll define those when
we worry about actually instantiating a DataTable.

Hydrators

The second thing that wants to be injected into the Abstract-
DataTable is an instance of Zend’s Hydrator Inter face. A hydrator
is responsible for hydrating an object, meaning, filling out it’s
attributes with values. In our case, we’re going from an array of
data to a hydrated entity (think posted form data).

Zend’s hydrators are also responsible for data extraction, which
is the opposite of hydrating: we take data from a hydrated object
and store it in an array representation, which is necessary for
Zend’s database update operations. You can see how it’s used in
the persist() method above.

For the most part, we’ll use a hydrator provided by Zend called the
ClassMethods hydrator. This hydrator scans the object for set and
get methods, and uses them to determine how to hydrate or extract
that object.

For instance, if an object has a setAmount() method, the hydrator
will look for an amount key in the array and, if found, pass the value
at that key to the setAmount () method to hydrate that information
to the object.

Likewise, if an object has a getAmount () method, the hydrator calls
it to get the value and adds an element to the resulting array with
the key of amount and the value returned from getAmount().

In some instances, we’ll use the ClassMethods hydrator directly.
In others, we’'ll wrap this hydrator to provide some additional
functionality to it.

Zend Framework 2 Setup 189

Customer DataTable

Let’s define our CustomerTable implementation:

// src/Persistence/Zend/DataTable/CustomerTable.php
namespace CleanPhp\Invoicer\Persistence\Zend\DataTable;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

orylInterface;

class CustomerTable extends AbstractDataTable

implements CustomerRepositoryInterface

The CustomerTable class simply implements the AbstractDataT-
able class. Since the

CustomerRepositorylInter face defines no additional functionality,
we can just use the AbstractDataTable as is.

Order DataTable

Our OrderTable will look pretty much the same as our Cus-
tomerTable:

Zend Framework 2 Setup 190

// src/Persistence/Zend/DataTable/OrderTable.php

namespace CleanPhp\Invoicer\Persistence\Zend\DataTable;

use CleanPhp\Invoicer\Domain\Repository\OrderRepository\

Interface;

class OrderTable extends AbstractDataTable
implements OrderRepositorylnterface

{
public function getUninvoicedOrders()
{
return [];
}
}

Our OrderRepositoryInter face defines an extra method that none
of the other interfaces have: getUninvoicedOrders(). We'll worry
about defining this functionality later once we start using it.

Invoice DataTable

Finally, or InvoiceTable, much the same:

// src/Persistence/Zend/DataTable/InvoiceTable.php
namespace CleanPhp\Invoicer\Persistence\Zend\DataTable;

use CleanPhp\Invoicer\Domain\Repository\InvoiceReposito\

rylnterface;

class InvoiceTable extends AbstractDataTable

implements InvoiceRepositorylInterface

Zend Framework 2 Setup 191

Table Gateway Factory

Our Data Tables need to be injected with an instance of a Table-
Gateway configured for that particular model. In the ZF Getting
Started docs, they define a TableGateway for each Data Table being
defined. We’ll create one dynamically by writing a factory to do so:

// src/Persistence/Zend/TableGateway/TableGatewayFactor \
y-php

namespace CleanPhp\Invoicer\Persistence\Zend\TableGatew\
ay;

use Zend\Db\Adapter\Adapter;

use Zend\Db\ResultSet\HydratingResultSet;
use Zend\Db\TableGateway\TableGateway;

use Zend\Stdlib\Hydrator\HydratorInterface;

class TableGatewayFactory {
public function createGateway(
Adapter $dbAdapter,
HydratorInterface $hydrator,
$object,
$table
) |
$resultSet = new HydratingResultSet($hydrator, $obj\
ect);
return new TableGateway($table, $dbAdapter, null, $\
resultSet);

}

Our factory requires an instance of the Zend Database Adapter,
which we’ll configure in just a bit, as well as an instance of the

Zend Framework 2 Setup 192

Hydrator to use. Finally, it accepts an instance of the object that
represents the data table, and the name of the database table where
the data is stored.

For more information on how this works, see the Zend Getting
Started Guide*'.

Configuring Zend Framework

Our last step of setting up the database is to configure Zend
Framework to use these new Data Tables. Let’s start by defining
the CustomerTable in the service manager. We'll define this in
the global.php config file, although in a real application, we’d
probably find a much better place to put this:

// config/autoload/global.php

use CleanPhp\Invoicer\Domain\Entity\Customer;

use CleanPhp\Invoicer\Persistence\Zend\DataTable\Custom\
erTable;

use CleanPhp\Invoicer\Persistence\Zend\TableGateway\Tab\
leGatewayFactory;

use Zend\Stdlib\Hydrator\ClassMethods;

return [
'service_manager' => [
'factories' => [
"CustomerTable' => function($sm) {
$factory = new TableGatewayFactory();
$hydrator = new ClassMethods();

return new CustomerTable(

$factory->createGateway(

“‘http://framework.zend.com/manual/current/en/user-guide/database-and-
models.html

http://framework.zend.com/manual/current/en/user-guide/database-and-models.html
http://framework.zend.com/manual/current/en/user-guide/database-and-models.html
http://framework.zend.com/manual/current/en/user-guide/database-and-models.html
http://framework.zend.com/manual/current/en/user-guide/database-and-models.html

Zend Framework 2 Setup 193

$sm->get('Zend\Db\Adapter \Adapter'),
$hydrator,
new Customer(),
'customers'’
),
$hydrator

);

We use our TableGatewayFactory to create a TableGateway in-
stance to provide to our

CustomerTable. We're also passing an instance of the ClassMethods
hydrator, as well as a Customer object and the name of the cus-
tomers table.

Both the TableGatewayFactory and the CustomerTable need an
instance of our hydrator, so we declare that before-hand and
provide it as needed to each class.

The only new piece here is the Zend Db Adapter.

We'll need to configure that in the same file:

// config/autoload/global.php

/)

return |
'service_manager' => |
'factories' => [
'Zend\Db\Adapter\Adapter' => 'Zend\Db\Adapter\Ada\
pterServiceFactory',

Zend Framework 2 Setup 194

This tells the service manager to use the AdapterServiceFactory
provided by Zend to give us an instance of Zend\Db\Adapter \Adapter
when needed. If you want to understand how all this works, take a
look at the ZF docs for more information, or dive into Zend’s source
code if you’re feeling extra adventurous.

Finally, we’ll setup a nearly identical entry for both the OrderTable
and InvoiceTable:

// config/autoload/global.php

use CleanPhp\Invoicer\Domain\Entity\Customer;

use CleanPhp\Invoicer\Domain\Entity\Invoice;

use CleanPhp\Invoicer\Domain\Entity\Order;

use CleanPhp\Invoicer\Persistence\Zend\DataTable\Custom\
erTable;

use CleanPhp\Invoicer\Persistence\Zend\DataTable\Invoic\
eTable;

use CleanPhp\Invoicer\Persistence\Zend\DataTable\OrderT\
able;

use CleanPhp\Invoicer\Persistence\Zend\TableGateway\Tab\
leGatewayFactory;

use Zend\Stdlib\Hydrator\ClassMethods;

return [
'service_manager' => [
'factories' => [

/7

"InvoiceTable' => function($sm)

Zend Framework 2 Setup 195

$factory = new TableGatewayFactory();
$hydrator = new ClassMethods();

return new InvoiceTable(
$factory->createGateway(
$sm->get (' Zend\Db\Adapter \Adapter'),
$hydrator,
new Invoice(),
"invoices'
).
$hydrator
);
},
'OrderTable' => function($sm) {
$factory = new TableGatewayFactory();
$hydrator = new ClassMethods();

return new OrderTable(

$factory->createGateway(
$sm->get('Zend\Db\Adapter\Adapter '),
$hydrator,
new Order(),
'orders’

),

$hydrator

Zend Framework 2 Setup 196

Wrapping it Up

We now have all of our database tables configured and ready to use
with Zend Framework 2, as well as our database configured, ready,
and loaded with some dummy Customer data.

Let’s move forward!

it This would make a good place to commit your code
g to source control.

If you’re just reading, but want to see the code in
action, you can checkout the tag 04-zf2-database-
setup:

git clone https://github.com/mrkrstphr/cleanphp-example\
.git
git checkout 04-zf2-database-setup

Our Application in Zend
Framework 2

Now that we have Zend Framework configured and ready to rock,
as well as our database setup and configured, we can start actually
using it.

Let’s start with customer management. We stubbed out a route,
but when we navigate to that route, we're going to get a sad error
message from ZF2:

A 404 error occurred Page not found. The requested
controller could not be mapped to an existing con-
troller class.

Controller: ApplicationControllerCustomers (resolves
to invalid controller class or alias: ApplicationCon-
trollerCustomers) No Exception available

This makes sense as we defined a route to point to a Customers
controller, but didn’t bother creating that controller. So let’s do that.

Customer Management

Let’s start building out our CustomersController: : indexAction(),
which will display a grid of all of our customers.

197

Our Application in Zend Framework 2

@

I spent a lot of time trying to figure out how to
unit test controllers in Zend Framework. I'm going to
call it: it’s impossible. Depending on the action, you
need to either bootstrap or mock four to forty-four
different services, plugins, etc.

Zend provides a great tutorial*® on testing their con-
trollers. They call it unit testing, but that can only be
true if they mean the whole ZF2 ecosystem as a unit.

As such, 'm going to disregard tests for these con-
trollers. If this were real life, I'd bite the bullet and
write the integration tests (which are important too).
For the sake of this book, that’s just too much to
bother.

Let’s being our indexAction():

198

// modules/Application/src/Application/Controller/Custo\

mersController.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\

orylInterface;

use Zend\Mvc\Controller\AbstractActionController;

class CustomersController extends AbstractActionControl\

ler {

public $customerRepository;

public function __construct(

CustomerRepositorylInterface $customers

) |

$this->customerRepository = $customers;

“’http://framework.zend.com/manual/2.0/en/user-guide/unit- testing. html

http://framework.zend.com/manual/2.0/en/user-guide/unit-testing.html
http://framework.zend.com/manual/2.0/en/user-guide/unit-testing.html

Our Application in Zend Framework 2 199

public function indexAction() {
return |

'customers' => $this->customerRepository->getAll()

1;

We have a new CustomersController class with an indexAction()
method. An instance of CustomerRepositorylInterface is injected
in, and later used by the action to call the getA11() method. We
return the result of that method in an array, keyed at customers.

Now we need a proper view to represent the indexAction(), and
we should see our data on the screen. Let’s drop that view file in:

<!-- module/Application/views/application/customers/ind\
ex.phtml -->

<div class="page-header clearfix">
<h2 class="pull-left">Customers</h2>
<a href="/customers/new" class="btn btn-success pull-\
right">
Create Customer
</div>

<table class="table">
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Email</th>
</tr>
</thead>

Our Application in Zend Framework 2 200

<?php foreach ($this->customers as $customer): 7>
<tr>
<td>
<a href="/customers/edit/<?= $customer->getId()\
25"
<?= $customer->getld() 7>
</td>
<td> <7= $customer->getName() 7></td>
<td> <7= $customer->getEmail() 72></td>
</tr>
<?php endforeach; 7>
</table>

Lastly, we’ll need to configure ZF2 to know that CustomersCon-
troller is the Customers controller we referenced in the route.
If if we had called it CustomersController in the route, ZF2 still
wouldn’t know what we’re talking about as the string here is simply
the key within the controller service locator.

In the controllers section of the module config file, we’ll add an
entry for our new controller:

// module/Application/config/module.config.php

return |
VI
'controllers' => [
"invokables' => [
"Application\Controller\Index' =>
"Application\Controller\IndexController’
1,
"factories' => [
"Application\Controller\Customers' => function ($\
sm) {

return new \Application\Controller\CustomersCon\

Our Application in Zend Framework 2 201

troller(
$sm->getServicelLocator()->get('CustomerTable")

)

Unlike the main IndexController, this CustomersController en-
try will be registered with ZF as a factory, so that it’s not just
instantiated outright, but allows us to bake in logic about how it’s
instantiated, which allows us to inject the proper dependencies.
We’re using the entry we defined in the last chapter for Cus-
tomerTable to grab our Customer Data Table, which implements
the CustomerRepositoryInterface and satisfies the type-hint on
the constructor of the CustomersController.

So now if we navigate to /customers in our beloved browser, we
should see all of our customers from our sqlite database rendered
on to the screen. Success!

to source control.

git This would make a good place to commit your code

If you're just reading, but want to see the code in ac-
tion, you can checkout the tag 05-viewing-customers:

git clone https://github.com/mrkrstphr/cleanphp-example\
.git
git checkout 05-viewing-customers

Our Application in Zend Framework 2 202

Creating Customers

In our HTML, we have a button for creating new customers that
brings the user to the route /customers/new. At this route, we’ll
render a form that, when correctly filled out, will then post back
to the same route where we’ll persist the new information to the
database as a new customer.

Let’s start building out our CustomersController->newAction() to
handle simple GET requests.

CustomersController->newAction()

Let’s start building out our newAction() and the corresponding
view file:

// module/Application/src/Application/Controllers/Custo\
mersController.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\
oryInterface;

use Zend\Mvc\Controller\AbstractActionController;

class CustomersController extends AbstractActionControl\
ler {

/7

public function newAction() {

This simple controller action is all we initially need. Let’s build out
our view:

Our Application in Zend Framework 2 203

<!l-- module/Application/view/application/customers/new.\
phtml -->

<div class="page-header clearfix">
<h2>New Customer</h2>
</div>

<form role="form" action="" method="post">
<div class="form-group">
<label for="name">Name:</label>
<input type="text" class="form-control" name="name"\
id="name"
placeholder="Enter Name">
</div>
<div class="form-group">
<label for="email">Email:</label>
<input type="text" class="form-control" name="email\
" id="email"
placeholder="Enter Email">
</div>
<button type="submit" class="btn btn-primary">Save</b\
utton>

</form>

Next, we’ll need to update our routing to handle /customers/new:

Our Application in Zend Framework 2 204

// module/Application/config/module.config.php

return [
'router' => |
'routes' => [
Y/
"customers' => [
/)
'may_terminate' => true,
'child_routes' => [
'create' => |
'type' => 'Segment',
'options' => |
'route' => '/new',
"defaults' => |

'action' => 'new',

This simple child route will combine /customers of the parent
route, with /new of the child route to give us our /customers/new
route, which will point to the newAction() of our CustomersCon-
troller().

Now if we click on the Create Customer link, we should see our new
form rendered. Now we just have to make this form do something.

Our Application in Zend Framework 2 205

CustomerInputFilter

We’re going to use Zend’s InputFilter to validate and sanitize
our input. You can read more about Zend’s Input Filters in their
documentation®’, but essentially, they give us a set of classes to
validate and sanitize input data.

We’re going to drop our InputFilters into the src/ directory, as
we’ll want to use them when we decide to switch away from Zend
Framework. Otherwise, we’d have to build a whole new solution
for validating input data, which would be fine, but it’s nice not to
have to do that at the same time.

We'll start by writing a spec to describe the behavior we want. First,
we’ll need an instance of our soon-to-be new Customer InputFilter
for testing:

// specs/input-filter/customer.spec.php

use CleanPhp\Invoicer\Service\InputFilter\CustomerInput\
Filter;

describe('InputFilter\Customer', function () {
beforeEach(function () {
$this->inputFilter = new CustomerInputFilter();
1)

describe('->isValid()', function () {
VI

1)

3

We’ll be interested in testing the isvalid() method, which Zend
provides to determine whether an InputFilter’s data is valid. We’ll

“*http://framework.zend.com/manual/current/en/modules/zend.input-filter.intro.html

http://framework.zend.com/manual/current/en/modules/zend.input-filter.intro.html
http://framework.zend.com/manual/current/en/modules/zend.input-filter.intro.html
http://framework.zend.com/manual/current/en/modules/zend.input-filter.intro.html

Our Application in Zend Framework 2 206

also use the setData() method to supply the InputFilter with
some data to test.

Let’s start with testing validity of the customer name:

it('should require a name', function () {
$isValid = $this->inputFilter->isValid();

$error = [
"isEmpty' => 'Value is required and can\'t be empty'

1;

$messages = $this->inputFilter

->getMessages() ['name'];

expect($isvValid)->to->equal(false);
expect($messages)->to->equal ($error);

1),

Last, we’ll test the validity of the email address. Here, we're not
particularly worried about the exact messages ZF2 returns when
we have invalid data, just that we get some kind of array of errors
back, rather than null:

it('should require an email', function () {
$isValid = $this->inputFilter->isValid();

$error = [
"isEmpty' => 'Value is required and can\'t be empty'

1;

$messages = $this->inputFilter

->getMessages()['email'];

expect($isvValid)->to->equal(false);

Our Application in Zend Framework 2

expect($messages)->to->equal ($error);

});

it('should require a valid email', function () {
$scenarios = [
[
'value' => 'bob',
'errors' => []

'value' => 'bob@bob',
'errors' => []

'value' => '"bob@bob.com',
'errors' => null
]
1;

foreach ($scenarios as $scenario) {
$this->inputFilter->setData([
"email' => $scenario['value']
]1)->isvalid();

$messages = $this->inputFilter

->getMessages()['email'];

if (is_array($messages)) {
expect($messages)->to->be->a('array');
expect($messages)->to->not->be->empty();

} else {
expect($messages)->to->be->null();

});

207

Our Application in Zend Framework 2 208

$scenarios if we want to more fully test the email
RFC for valid emails, but we can also trust that ZF2
handles all the cases pretty well. We just want to
make sure that our CustomerInputFilter is setting
up the validation rules correctly.

Q We can add some more robust data to the list of tested

Now let’s write a new InputFilter class for Customer data:

// src/Service/InputFilter/CustomerInputFilter.php
namespace CleanPhp\Invoicer\Service\InputFilter;

use Zend\InputFilter\Input;
use Zend\InputFilter\InputFilter;
use Zend\Validator\EmailAddress;

class CustomerInputFilter extends InputFilter ({
public function __construct() {
$name = (new Input('name'))

->setRequired(true);

$email = (new Input('email'))
->setRequired(true);

$email->getValidatorChain()->attach(
new EmailAddress()

);

$this->add($name);
$this->add($email);

Our Application in Zend Framework 2 209

Posting Customer Data

Our next step is to utilize this CustomerInputFilter in our Cus-
tomersController. We'll want to do this when we receive a POST
request only, and if we receive validation errors, we should report
those back to the user. Let’s start by writing a spec of our intended
behavior.

First, we’ll need to inject an instance of the CustomerInputFilter
into the CustomersController as part of the test:

// module/Application/src/Application/Controller/Custom\
ersController.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\
orylInterface;

use CleanPhp\Invoicer\Service\InputFilter\CustomerInput\
Filter;

use Zend\Mvc\Controller\AbstractActionController;

class CustomersController extends AbstractActionControl\
ler {

protected $customerRepository;

protected $inputFilter;

public function __construct(
CustomerRepositorylnterface $customers,
CustomerInputFilter $inputFilter

) |
$this->customerRepository = $customers;
$this->inputFilter = $inputFilter;

Our Application in Zend Framework 2 210

Y/

Now we can update the newAction() to handle a POST request:

// module/Application/src/Application/Controller/Custom\
ersController.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\
orylnterface;

use CleanPhp\Invoicer\Service\InputFilter\CustomerInput\
Filter;

use Zend\Mvc\Controller\AbstractActionController;

class CustomersController extends AbstractActionControl\
ler {
/)

public function newAction() {
if ($this->getRequest()->isPost()) {
$this->inputFilter->setData($this->params()->from\
Post());
if ($this->inputFilter->isvalid()) {

} else {

First, we determine if the request is a POST request. If it is, we supply

Our Application in Zend Framework 2 211

our InputFilter with the posted form data, then check to see if the
InputFilter is valid, given that data.

We have two remaining paths to implement:

1. The data is valid
2. The data is invalid

When the data is valid, we want to persist it to our repository.
However, the data coming in from the POST is a giant array. We
need to be able to persist an instance of Customer. The best way
to handle this is to hydrate a Customer object with the POST data.
To do that, we’ll need to inject an instance of a Hydrator Inter face
into the controller:

// module/Application/src/Application/Controller/Custom\
ersController.php

namespace Application\Controller;

use CleanPhp\Invoicer\Domain\Repository\CustomerReposit\
oryInterface;

use CleanPhp\Invoicer\Service\InputFilter\CustomerInput\
Filter;

use Zend\Mvc\Controller\AbstractActionController;

use Zend\StdLib\Hydrator\HydratorInterface;

class CustomersController extends AbstractActionControl\
ler {

protected $customerRepository;

protected $inputFilter;

public function __construct(
CustomerRepositorylnterface $customers,
CustomerInputFilter $inputFilter,

Our Application in Zend Framework 2 212

HydratorInterface $hydrator

) |
$this->customerRepository = $customers;
$this->inputFilter = $inputFilter;
$this->hydrator = $hydrator;

/S

We'll also want to update our controller config to inject these two
new objects that the CustomersController needs:

// module/Application/config/module.config.php

use CleanPhp\Invoicer\Service\InputFilter\CustomerInput\
Filter;
use Zend\Stdlib\Hydrator\ClassMethods;

return [
Y/
'controllers' => |
"invokables' => [
"Application\Controller\Index' =>
"Application\Controller\IndexController'
1,
"factories' => [
"Application\Controller\Customers' => function ($\
sm) {
return new \Application\Controller\CustomersCon\
troller(
$sm->getServicelLocator()->get('CustomerTable'\

)l

new CustomerInputFilter(),

Our Application in Zend Framework 2 213

new ClassMethods()
);

Next, we’re going to use the hydrator to build a Customer object,
and then persist that customer object using our CustomerReposi -
tory:

public function newAction() {
if ($this->getRequest()->isPost()) {
$this->inputFilter->setData($this->params()->fromPo\
st());
if ($this->inputFilter->isValid()) {
$customer = $this->hydrator->hydrate(
$this->inputFilter->getValues(),
new Customer()

);

$this->customerRepository->begin()
->persist($customer)
->commit();
} else {

We’ll also need a use statement for the Customer class at the top of
the file.

Our Application in Zend Framework 2 214

At this point, we can enter a new Customer in the browser and have
it persisted to the database. But afterward, the user is dumped back
to the New Customer page with no indication that their save was
successful.

Let’s add a redirect to the /customers page, as well as a flash
message alerting them that the save was successful:

public function newAction() {
if ($this->getRequest()->isPost()) {
$this->inputFilter->setData($this->params()->fromPo\
st());
if ($this->inputFilter->isvalid()) {
/S

$this-> flashMessenger()->addSuccessMessage('Custo\
mer Saved');
$this->redirect()->toUrl("'/customers');
} else {

If you give it a shot in the browser, you should now be redirected to
the /customers page. In order to get the flash message to show up,
we’ll need to setup our layout.phtml file to render flash messages.
Zend provides a helper** to easily display these flash messages, but
it looks terrible. We’ll create our own partial file to render them,
and then include that in our layout.phtml file.

“*http://framework.zend.com/manual/current/en/modules/zend.view.helpers.flash-
messenger.html

http://framework.zend.com/manual/current/en/modules/zend.view.helpers.flash-messenger.html
http://framework.zend.com/manual/current/en/modules/zend.view.helpers.flash-messenger.html
http://framework.zend.com/manual/current/en/modules/zend.view.helpers.flash-messenger.html

Our Application in Zend Framework 2 215

<l-- view/application/partials/flash-messages.phtml -->
<?php
$flash = $this->flashMessenger();
$flash->setMessageOpenFormat('<div¥%s role="alert">
<button type="button" class="close"
data-dismiss="alert" aria-label="Close">
<{span aria-hidden="true">×
</button>
<div> ")
->setMessageSeparatorString('</div><div>"')
->setMessageCloseString('</div></div>");
?2>

¢<?= $this->flashMessenger()->